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Foreword 

It is a pleasure to write these opening comments for Deitel and Kogan's, The Design of 
OS/2. We at IBM believe strongly that the new 32-bit OS/2 2.0 will have an important 
place in the market for personal computers, workstations, and network servers. The book 
clearly and thoroughly explains the architecture of the operating system in a manner.ap­
propriate both for technical professionals who want to understand OS/2's internal struc­
ture, and for software developers considering investing in OS/2 applications 
development. It provides insights into why various key design decisions were made. 

Dr. Michael Kogan is the chief architect of OS/2 2.0; Dr. Harvey Deitel is the author 
of one of the world's most widely used operating systems textbooks. Their combined 
experience covers every major current IBM operating system, as well as the UNIX sys­
tem, networking, multimedia, and open systems. Dr. Kogan, through his position at IBM, 
is well apprised of IBM architectural trends. Dr. Deitel consults in the open systems arena 
with activities related to open operating systems, object orientation, OSI protocols, and 
international computing and communications standards. 

Why OS/2? 

Computer systems are evolving rapidly, and OS/2 is designed to support these changes. 
There are radical changes in hardware, from older systems supported by modest 8- or 
16-bit microprocessors, to newer high-powered 32-bit microprocessors such as the Intel 
8Q386 and 80486. RISC systems and multiprocessing systems offer the potential for 
massive increases in net processing power. 

Radical changes in user support also are demanded. The personal computers of the 
early to mid-1980s tended to be standalone systems. In the 1990s, personal computers 
will be networked in local and wide area networks. OS/2 is designed to support mission­
critical applications-that is, applications that must function continuously and reliably 
to support key activities of businesses and other organizations. OS/2 is designed to en­
hance personal productivity. End users working in OS/2 environments can get more 
done because of the ease of use, high performance, high reliability, information accessi­
bility, and system integrity provided by OS/2. 

v 
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The shift in application development toward object-orientation is gaining momen­
tum. To become more productive software developers need to reuse components, to de­
velop prototypes more rapidly, and to implement polished and tuned applications faster. 
OS/2 provides an environment conducive to object-oriented systems development. 

The following sections briefly describe OS/2 2.0 and its capabilities. As you read 
this book, you will come to understand what is "under the hood," and how these capabil­
ities are implemented. 

The Integration Platform 

We call OS/2 2.0 the "integration platform" because you can run your existing DOS 
applications, DOS extender (such as the popular Windows) applications, and OS/2 1.3 
applications on OS/2 2.0, and they will run more efficiently on the same hardware than 
they do under their originally intended operating systems. You can also run the new, 
high-performance 32-bit applications designed to take advantage of 32-bit architectures. 
Applications run better from the standpoint of performance, integrity, and usability, 
translating into productivity gains. 

Protected Multitasking 

OS/2 2.0 represents the evolution of DOS into the world of protected multitasking. It 
uses the protection mechanisms of the 80386/80486 architecture to ensure robust opera­
tion. It runs many applications simultaneously without the danger of misbehaved appli­
cations destroying one another or the operating system-precisely what is needed in 
mission-critical application environments. An application may not access the private 
data of other applications. This level of protection is facilitated by the fact that OS/2 
applications execute in separate address spaces; DOS extender applications, on the other 
hand, share a single address space. An errant DOS application may destroy a DOS 
extender's kernel, thus requiring a reboot, and work may be lost; the OS/2 kernel is pro­
tected from errant applications. OS/2 can run multiple versions of the same software 
simultaneously, making it ideal as an application developer's platform. Its multitasking 
capabilities make it appropriate as a network server. It uses preemptive scheduling, so it 
offers good responsiveness to applications of differing characteristics. Priorities are cal­
culated dynamically, so OS/2 can multitask timing-critical applications in both the fore­
ground and the background. 

Mission-Critical Systems 

OS/2 has many features that support mission-critical business applications. It provides 
protected multitasking, processes, threads, interprocess communication, and virtual 
memory, as well as reliability/availability/service (RAS) features that help to isolate 
software problems and to ensure robust operation. 

Applications 

There are already 2500 OS/2 software applications announced or available, including 
300 Presentation Manager applications. Popular software packages are available, such as 
Lotus 1-2-3, DBase, WordPerfect, and many others. Many 32-bit OS/2 applications have 
appeared, and hundreds more are under development. OS/2 2.0 is a critical platform for 
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IBM's Systems Application Architecture (SAA), our plan for integrating the IBM main­
frame, minicomputer, workstation, and personal computer product lines. OS/2 2.0 is de­
signed for machines based on Intel's 32-bit 80386/80486 architecture. In particular, 
80386-based systems have proliferated, creating the installed base needed to attract the 
resources of the independent software vendors. With the appearance of 32-bit OS/2, 
major user organizations and independent software vendors are making substantial 
commitments to developing OS/2 applications. OS/2 2.0 provides a powerful base for 
future growth; 32-bit applications provide dramatic performance improvements over 
their 16-bit counterparts. Our PMREXX application, for example, demonstrated a 60 
percent improvement when used in the 32-bit programming environment. 

Memory Management and Virtual Memory 

OS/2 2.0's virtual memory model provides 4-gigabyte addressing. The large, flat, paged 
32-bit memory model frees the application developer from the memory constraints of 
the 16-bit segmented model, and from the complexity of managing memory in the 16-bit 
environment. The 32-bit paging model achieves better utilization of memory and higher 
performance. The DOS extenders that use virtual memory are typically constrained to a 
small virtual space; Windows 3.0 applications, for example, share a virtual memory no 
larger than four times the size of physical memory. In OS/2 2.0, each application has a 
512MB virtual memory limit, so the key memory limit is the available disk space. DOS 
extenders generally use the segmented memory model, in which each piece of memory 
can only be as large as 64KB; in OS/2 2.0, memory objects can be as large as they need 
to be (up to the limits of virtual memory). OS/2 runs multiple DOS applications, each 
with more real memory and far more virtual memory than is available through DOS ex­
tenders such as Windows, and each protected from the others to ensure more robust 
operation. DOS applications can use the DOS Protected Mode Interface (DPMI) to 
access up to 512MB of extended memory. 

Productivity and Ease of Use 

OS/2 2.0 provides numerous productivity and ease-of-use improvements. It provides a 
graphical installation procedure, and it uses an object-oriented, graphical user interface 
with the drag-and-drop environment implemented consistently across the entire system. 
Local area network requestor capabilities are integrated into the shell. Intelligent font 
technology is employed. OS/2 2.0 supports a great variety of printers. It provides an on­
line, interactive tutorial, and includes various utilities, games, and productivity applica­
tions to help the user become familiar with the system quickly. Extensive on-line help 
capabilities are provided. In a typical OS/2 environment, the operating system manages 
the environment transparently to the user. OS/2 worries about the network, and deter­
mines whether it has the latest software updates and data updates. The user does not see 
all that activity. Rather, the user sees only the graphical user interface, which will con­
tinue to be enhanced. 

Workplace Model 

OS/2 2.0 implements the SAA Common User Access Workplace model, which uses the 
desktop metaphor of how people work. It derives from our Office Vision system, and 
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works in the object-oriented paradigm. The Workplace model provides an intuitive user 
interface for managing any objects, including programs, files, and devices. 

Presentation Manager 

Given that we can run Windows applications out of the box, why do we encourage the 
development of Presentation Manager (PM) applications? PM applications offer better in­
tegration with the Workplace model. Threads can be used to maximize the advantages of 
multitasking, and to increase system responsiveness. PM applications can take advantage 
of the capabilities of the OS/2 Database Manager and Communications Manager. In gen­
eral, PM applications can use the more powerful capabilities provided in OS/2 2.0 for 
interprocess communication, tasking, semaphores, multithreading, and graphics. The 
High-Performance File System (HPFS) offers greater data integrity, minimizes disk frag­
mentation, exploits SCSI performance features, uses sophisticated input/output caching 
algorithms, and supports huge disks and long filenames. Finally, OS/2 2.0 uses installable 
file systems, which makes it easy to support new kinds of media, such as CD-ROM. 

Portability 

The popularity of flat, 32-bit virtual address spaces across many platforms facilitates 
porting OS/2 to those platforms. This portability enables OS/2 to compete effectively 
with UNIX in the workstation marketplace. Porting to RISC platforms is underway. The 
32-bit API is portable to multiprocessor architectures, as well as to uniprocessor 
architectures. 

Multimedia 

OS/2 2.0's exploitation of the 80386/80486 architecture is important for high-performance 
applications, such as speech synthesis and recognition, full-motion color video with sound, 
and the integration of these technologies under the rubric of multimedia. OS/2 is a particu­
larly strong system for multimedia applications. It encapsulates system resources, freeing 
the developer from having to control them directly, and it offers powerful graphics capa­
bilities. Multitasking supports the multiple data streams common in multimedia applica­
tions. OS/2 2.0 supports the notion of fast threads specifically for multimedia applications. 
Multimedia also demands the manipulation of huge objects such as bitmaps; this capability 
is facilitated by the large, flat, 32-bit virtual addressing model. 

Object Orientation 

Through extended attributes, OS/2 provides file-system support for object-oriented 
capabilities, and we are enhancing support for object-orientation. The motivation for this 
support is clear. Object orientation enables developers to write collaborative software 
without having a detailed understanding of all components. It yields reusability of sub­
stantial functions, dramatically improving the productivity of developers working on so­
phisticated new applications-surely a source of excitement in our industry. Projects 
underway emphasize the use of object-oriented programming techniques and of other 
edge-of-the-art technologies (such as multimedia, expert systems, and visual pro­
gramming) to create applications useful across a wide range of hardware and operating 
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system platforms. These efforts focus on developing applications by combining reusable 
software objects. Their work products will become available on OS/2, AIX, UNIX, and 
Macintosh systems, among others, ensuring wide distribution. 

Networking and Distributed Computing 

IBM has endorsed the Distributed Computing Environment (DCE) of the Open Software 
Foundation. DCE supports heterogeneous, multivendor distributed computing. IBM's 
SAA is being extended to include DCE. OS/2 is a key SAA system and will support 
DCE. In particular, OS/2 will include remote procedure calls (RPCs), the distributed 
naming service (in conformance with OSI's X.500 standard), the time service, the secu­
rity service, the threads service, and the distributed file system. OS/2 provides many fea­
tures that support networked environments, DCE, and cooperative processing. Perhaps 
most crucial is OS/2's support of key networking standards, such as SNA, TCP/IP, and 
OSI. OS/2 LAN support includes key local area networking standards, such as token 
ring and Ethernet, and wide area networking standards, such as X.25. 

Overview of the Book 

Deitel and Kogan describe the evolution of personal-computer operating systems 
through the early years of DOS and its various versions, and the development of OS/2 
through its 16-bit and 32-bit versions. They discuss the microprocessor architectures, 
hardware system architectures, and operating system architectures of the IBM-com­
patible, personal computing marketplace. They explain how protected multitasking is 
implemented, and provide insights into the relationships between threads and processes. 
A detailed discussion of memory management is presented, including explanations of 
the segmented model of OS/2 l.X and the flat model of OS/2 2.0. The various interpro­
cess communication mechanisms are considered, including shared memory, semaphores, 
signals, queues, and pipes. The 1/0 management chapter explains the notions of files, 
devices, installable file systems, device drivers, and Dev Help services. With all the 
attention on graphical user interfaces today, the reader will appreciate the discussion of 
the Presentation Manager and windowing concepts. The book's highly detailed treat­
ment of providing compatibility for DOS, Windows 3.0, and OS/2 1.3 is superb. The 
communications features of OS/2-including OSI, X.25, LANs, SNA, and TCP/IP-are 
covered in depth. The book concludes with a look to the future, considering such im­
portant topics as open systems, competition and cooperation between OS/2 and UNIX, 
IBM's Systems Application Architecture, multiprocessing, security, and multimedia. 
Deitel and Kogan have written a clear, thorough, well-illustrated, frank, and insightful 
analysis of the architecture of OS/2 2.0. Their work is an important contribution to the 
operating systems literature. 

James A. Cannavino 
IBM Vice President and 
General Manager, Personal Systems 
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The goal of this work is to provide insights into the design decisions and philosophies of 
the OS/2 operating system. We discuss the motivation, architecture, and realization of 
OS/2 in the personal computing marketplace. The designs of the major components of 
OS/2 are described. Each area bridges operating systems theory to the design and imple­
mentation of OS/2. Where appropriate, a comparison of the technical aspects of OS/2 
and UNIX is provided. The evolution of personal computer operating systems from 
DOS through 16-bit OS/2 and 32-bit OS/2 is presented. 

Chapter I recounts the history and evolution of the DOS and OS/2 operating sys­
tems. It sets the stage as we illustrate how the OS/2 development teams reconciled real­
world development constraints with providing the functionality and performance 
demanded by a maturing PC industry. 

Chapter 2 describes the microprocessor architectures on which the DOS and OS/2 
systems execute. We consider the 8088/8086 processor family, the 80286, the 80386, 
and 80486 CISC-style processors. Looking towards the future, we consider RISC-style 
processors such as the Intel 80860 and the IBM POWER architecture used in IBM 
System/6000 workstations. 

Chapter 3 presents the hardware system architectures of the personal computer sys­
tems that use the processors discussed in Chapter 2. We consider key personal computer 
bus architectures-the original Industry Standard Architecture (ISA), the Micro Channel 
Architecture, and the Extended Industry Standard Architecture (EISA). Uniprocessor 
and multiprocessor configurations are discussed. The programming tools available for 
the various hardware architectures are described, and the evolution of these is traced 
across the operating system platforms. 

Chapter 4 overviews the architectures of 16-bit and 32-bit OS/2 systems and pro­
grams. A discussion of the DOS system gives the technical foundations of the precursor 
to the OS/2 system. 

Chapters 5 through 10 describe the architecture and design of the major components 
of the 16-bit and 32-bit OS/2 systems. When a component provides the same functional-
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ity in both the 16-bit and 32-bit systems, a single discussion is rendered and differences 
in the two versions of the component are noted where significant (as in Chapter 5 on 
multitasking). When the 16-bit and 32-bit versions of a single component are substan­
tially different, separate treatments of the component are presented for each version (as 
in Chapter 6 on memory management). Each major component is discussed in terms of 
its API calls, internal algorithms, and data structures. These specify the behavior and 
content of 16-bit OS/2 and 32-bit OS/2. 

Chapter 5 discusses OS/2 multitasking. The overall architecture, internal data struc­
tures, and major algorithms that compose the OS/2 task manager, dispatcher, and sched­
uler are detailed. 

Chapter 6 describes OS/2 memory management. Both the segmented 16-bit memory 
model and the paged 32-bit memory model are discussed. 

Chapter 7 deals with interprocess communication issues in the multitasking environ­
ment. Shared memory, semaphores, signals, pipes, queues, and exceptions are examined in 
both the 16-bit and 32-bit OS/2 systems. 

Chapter 8 describes the I/O components of OS/2. The architectures for devices, file 
systems, and device drivers are elaborated along with their respective APis or interfaces. 

Chapter 9 describes the presentation management aspects of OS/2. The roles of the 
keyboard, mouse, and screen devices are examined and analyzed with respect to OS/2's 
session management architecture. The function and design of the graphical user inter­
face of OS/2, as provided by the Presentation Manager, are also described. 

Chapter 10 explores issues in providing compatibility. Both the 16-bit and 32-bit 
versions of OS/2 provide DOS compatibility. The 32-bit version also provides Windows 
3.0 compatibility and 16-bit OS/2 compatibility. 

Chapter 11 examines the role of OS/2 in the communications arena. IBM's System 
Application Architecture and the ISO Open Systems Interconnection reference model 
are described, as well as OS/2 Extended Edition and LAN Manager. The role of OS/2 in 
networked workstation and multiuser environments is also considered. 

Chapter 12 discusses future issues for OS/2. We examine the technical requirements 
placed on OS/2 to support open systems, RISC architectures, multiprocessor platforms, 
and multimedia. 

It is a pleasure to acknowledge the people who helped us throughout the writing, 
review, and production phases of this project. Thanks to the individuals in IBM man­
agement, communications, and legal areas for their support in this endeavor. We are also 
grateful for the comments of many IBM OS/2 designers, testers, planners, and developers. 

The book was reviewed by many people, including 
Jack Boyce (IBM Corporation) Byron Pazey (Consultant) 
Glenn Brew (IBM Corporation) Raymond Pedrizetti (Microsoft Corporation) 
Ross Cook (IBM Corporation) Dr. Freeman Rawson (IBM Corporation) 
Greg Gruse (CITRIX) Dr. Edward Simco (Nova University) 
Edward Iacobucci (CITRIX) Dr. Raisa Szabo (Nova University) 
Dr. Edward Lieblein (Nova University) Raymond Westwater (Future Ware) 
Jim Macon (IBM Corporation) 



xiii 

Iris Boshell took dictation of major portions of the first draft of the manuscript. 
Our efforts were encouraged by IBM managers including Lee Reiswig, Tommy 

Steele, Roy Clauson, Oscar Fleckner, Janis Walkow, and Shon Saliga. We are especially 
grateful to James Cannavino for taking the time out of an incredibly busy schedule to 
prepare the foreword to the book. 

Special thanks are due to Ross Cook of IBM for many insights into the intriguing 
subtleties of the operating system design process, and to Glenn Brew of IBM for serving 
as a constant technical sounding board, for his friendship, and for his encouragement. 

Thanks to Barbara Deitel for handling the development of the manuscript from the 
author's side, and for coordinating the production of the book with Addison Wesley. 
Her tireless efforts enabled us to concentrate on preparing the technical material. 

Framingham, Massachusetts 
Delray Beach, Florida 

H.M.D. 
M.S.K. 





Contents 

ILLUSTRATIONS xxi 

ABOUT THE AUTHORS xxv 

CHAPTER 1 
HISTORICAL BACKGROUND 1 

1.1 Introduction 3 
1.2 DOS History 3 
1.3 DOS Limitations 6 
1.4 OS/2 History 10 
1.5 The Evolving Market 14 
1.6 OS/2 1.2 16 
1.7 OS/2 1.3 17 
1.8 Windows 3.0 17 
1.9 OS/2 2.0 19 
1.10 The 1990s 21 

Summary 21 

CHAPTER2 
MICROPROCESSOR ARCHITECTURES 25 

2.1 Introduction 28 
2.2 Intel 8088/8086 28 
2.3 Intel 80286 32 
2.4 Intel 80386 42 
2.5 Intel 80486 52 
2.6 RISC Processors 53 

Summary 53 

xv 



xvi Contents 

CHAPTER3 
HARDWARE ARCHITECTURES 59 

3.1 Introduction 61 
3.2 IBM PC 61 
3.3 IBM PC/AT 62 
3.4 AT 80386 63 
3.5 Micro Channel Architecture 63 
3.6 IBMPS/2 64 
3.7 Extended Industry System Architecture 66 
3.8 Cache Systems 66 
3.9 Multiprocessor Systems 68 
3.10 Multiprocessor System Interconnection 69 

Summary 71 

CHAPTER4 
OPERATING SYSTEM ARCHITECTURES 75 

4.1 Introduction 77 
4.2 DOS System 77 
4.3 DOSAPI 78 
4.4 DOS Programs 80 
4.5 OS/2 1.X System 86 
4.6 OS/21.XAPI 93 
4.7 OS/2 1.X Programs 94 
4.8 OS/2 2.X System 94 
4.9 OS/2 2.XAPI 98 
410 OS/2 2.X Programs 98 

Summary 99 

CHAPTERS 
MULTITASKING 105 

5.1 Introduction 107 
5.2 Processes 108 
5.3 Threads 112 
5.4 Scheduling 115 
5.5 Kernel Architecture 118 
5.6 Multitasking API 135 

Summary 135 

CHAPTERS 
MEMORY MANAGEMENT 141 

6.1 Introduction 143 



Contents xvii 

6.2 OS/2 l .X Memory Management 144 
6.3 OS/2 2.X Memory Management 163 
6.4 Segmented vs. Flat Memory Model 189 
6.5 Memory Management API 189 
6.6 Dynamic Linking API 189 

Summary 189 

CHAPTER 7 
INTERPROCESS COMMUNICATION 197 

7.1 Introduction 199 
7.2 Shared Memory 199 
7.3 Semaphores 200 
7.4 Signals 216 
7.5 Queues 218 
7.6 Pipes 219 
7.7 Exceptions 222 
7.8 System Integrity Issues 227 

Summary 228 

CHAPTER 8 
1/0 MANAGEMENT 231 

8.1 Introduction 233 
8.2 Devices 233 
8.3 Installable File System Architecture 233 
8.4 File System Name Space 234 
8.5 File System Objects 235 
8.6 File System API 235 
8.7 OS/2 l .X File System Drivers 238 
8.8 OS/2 2.X File System Drivers 240 
8.9 Device Drivers 241 
8.10 Hardware Device Structure 241 
8.11 Hardware Device Attributes 242 
8.12 Hardware Device Independence 244 
8.13 OS/2 1.X Device Drivers 245 
8.14 Device Driver Structure 245 
8.15 Device Driver Header 248 
8.16 Device Attribute Flags 248 
8.17 Request Packets 249 
8.18 Strategy Commands 249 
8.19 DevHelp Services 251 
8.20 OS/2 2.X Device Drivers 254 

Summary 256 



xviii Contents 

CHAPTER9 
PRESENTATION MANAGEMENT 261 

9.1 Introduction 263 
9.2 Session Management 263 
9.3 Presentation Manager 267 
9.4 Windows Architecture 268 
9.5 Message Architecture 271 
9.6 Graphics Architecture 274 
9.7 Resources 274 
9.8 Application Data Exchange 276 
9.9 Multitasking Issues 276 

Summary 278 

CHAPTER 10 
COMPATIBILITY 281 

10.1 Introduction 283 
10.2 DOS Compatibility 283 
10.3 80286 DOS Compatibility 283 
10.4 80386 DOS Compatibility 290 
10.5 OS/2 2.X Windows 3.X Compatibility 300 
10.6 OS/2 2.X 16-Bit Compatibility 301 
10.7 Hybrid System Strategies 301 
10.8 Memory Model Coexistence 301 
10.9 LDTTiling 303 
10.10 Thunks 307 

Summary JlO 

CHAPTER 11 
COMMUNICATIONS 315 

11.1 Introduction 317 
11.2 Networks 317 
11.3 Open Systems Interconnection 318 
11.4 OSI Reference Model 319 
11.5 X.25 321 
11.6 LANs322 
11.7 System Network Architecture 324 
11.8 TCP/IP 326 
11.9 Network Coexistence 327 
11.10 OS/2 Extended Edition 329 
11.11 Multiuser OS/2 331 

Summary 332 



Contents xix 

CHAPTER 12 
THE FUTURE 337 

12.1 Introduction 339 
12.2 Open Systems 339 
12.3 Open UNIX 340 
12.4 Systems Application Architecture 342 
12.5 System Portability 345 
12.6 Multiprocessor Systems 345 
12.7 Security 346 
12.8 Multimedia 349 

Summary 349 

BIBLIOGRAPHY 353 

INDEX 361 





Illustrations 

Fig. 1.1 DOS system structure. 4 
Fig. 1.2 DOS memory map. 7 
Fig. 1.3 DOS system call. 9 
Fig. 1.4 DOS system extensions. 10 
Fig. 1.5 Software development process. 12 
Fig. 2.1 8088 segment registers. 28 
Fig. 2.2 8088 address calculation. 29 
Fig. 2.3 8088 address aliasing. 29 
Fig. 2.4 8088 register set. 30 
Fig. 2.5 80286 segment descriptor. 33 
Fig. 2.6 80286 selector format. 34 
Fig. 2.7 80286 protected-mode address translation. 34 
Fig. 2.8 80286 access rights information. 36 
Fig. 2.9 80286 privilege levels and the ring protection model. 37 
Fig. 2.10 80286 call gate descriptor. 39 
Fig. 2.11 80286 call gate control transfer. 39 
Fig. 2.12 80386 register set. 43 
Fig. 2.13 80386 control registers. 44 
Fig. 2.14 80386 segment descriptor. 45 
Fig. 2.15 80386 linear address. 47 
Fig. 2.16 80386 paged linear address translation. 48 
Fig. 2.17 80386 page table entry (PTE). 48 
Fig. 2.18 80386 address translation. 50 
Fig. 2.19 Multiple v86 mode address spaces. 51 
Fig. 3.1 IBM PC system architecture. 61 
Fig. 3.2 IBM PC/ AT system architecture. 63 
Fig. 3.3 IBM PS/2 system architecture. 65 
Fig. 3.4 Cache memory subsystem. 67 

xxi 



xxii Illustrations 

Fig. 3.5 Loosely-coupled multiprocessor. 69 
Fig. 3.6 Tightly-coupled multiprocessor. 70 
Fig. 3.7 Relationship between processor coupling and memory access. 70 
Fig. 3.8 Uniform-memory-access multiprocessor (UMA). 71 
Fig. 3.9 Nonuniform-memory-access multiprocessor (NUMA). 72 
Fig. 4.1 DOS system structure. 77 
Fig. 4.2 DOS device chain. 78 
Fig. 4.3 DOS system call. 79 
Fig. 4.4 Program development process. 81 
Fig. 4.5 DOS (EXE) executable file. 82 
Fig. 4.6 Example of segment-relative fixup. 83 
Fig. 4.7 Small-model program. 84 
Fig. 4.8 DOS example program (static linking). 85 
Fig. 4.9 OS/2 system structure. 86 
Fig.4.10 Dynamic linking. 90 
Fig. 4.11 OS/2 file system architecture. 91 
Fig. 4.12 Device driver interfaces. 91 
Fig. 5.1 DOS versus OS/2 multitasking. 107 
Fig. 5.2 Process layout. 108 
Fig. 5.3 Process hierarchy. 110 
Fig. 5.4 Thread layout. 112 
Fig. 5.5 Multilevel priority structure. 116 
Fig. 5.6 Multitasking kernel components. 119 
Fig. 5.7 Per-task data area (PTDA). 121 
Fig. 5.8 Thread control block (TCB). 122 
Fig. 5.9 Layout of 16-bit PTDA and TCB. 122 
Fig. 5.10 Layout of 32-bit PTDA, TCB, and TSD. 123 
Fig. 5.11 Thread state transitions. 128 
Fig. 5.12 Interrupt table. 129 
Fig. 5.13 ProcBlock calling sequence. 134 
Fig. 6.1 16-bit virtual address spaces. 145 
Fig. 6.2 16-bit memory sharing. 148 
Fig. 6.3 16-bit handle table entry (HTE). 152 
Fig. 6.4 16-bit virtual memory management data structures. 155 
Fig. 6.5 16-bit executable file format. 156 
Fig. 6.6 16-bit physical memory map. 158 
Fig. 6.7 16-bit arena header. 159 
Fig. 6.8 16-bit arena physical layout. 160 
Fig. 6.9 16-bit swapper data structures. 162 
Fig. 6.10 32-bit virtual address spaces. 164 
Fig. 6.11 32-bit arena structures. 171 
Fig. 6.12 32-bit arena record. 172 
Fig. 6.13 32-bit arena layout for three processes. 173 
Fig. 6.14 32-bit object record. 174 



Illustrations xxiii 

Fig. 6.15 32-bit context record. 175 
Fig. 6.16 Private-address, private-storage object. 176 
Fig. 6.17 Private-address, shared-storage object. 177 
Fig. 6.18 Shared-address, shared-storage object. 178 
Fig. 6.19 Shared-address, private-storage object. 178 
Fig. 6.20 Page table entry (PTE). 182 
Fig. 6.21 Page frame (PF) array entry. 182 
Fig. 6.22 Free and idle page frame lists. 183 
Fig. 6.23 Virtual page (VP) structure. 184 
Fig. 6.24 Page structures for initially allocated committed page. 184 
Fig. 6.25 Page structures after page fault. 187 
Fig. 6.26 Page structures for idle page. 188 
Fig. 7.1 RAM semaphore structure. 204 
Fig. 7.2 System semaphore tables. 206 
Fig. 7.3 System semaphore structure. 207 
Fig. 7.4 Fast-safe RAM semaphore structure. 208 
Fig. 7.5 Private semaphore structures. 212 
Fig. 7.6 Shared semaphore structures. 213 
Fig. 7.7 Mutual-exclusion (mutex) semaphore structure. 213 
Fig. 7.8 Event semaphore structure. 215 
Fig. 7.9 Muxwait semaphore structure. 215 
Fig. 7.10 IPC queue. 218 
Fig. 7.11 Anonymous pipe. 220 
Fig. 7.12 Named pipe (three-channel full duplex). 221 
Fig. 7.13 Per-thread exception chain. 226 
Fig. 8.1 File and device 1/0 subsystem. 234 
Fig. 8.2 File and path management file system data structures. 237 
Fig. 8.3 Device driver file structure. 246 
Fig. 8.4 OS/2 l .X device driver interfaces. 247 
Fig. 8.5 Device driver header. 248 
Fig. 8.6 Device driver attribute flags. 249 
Fig. 8.7 Device driver request packet format. 249 
Fig. 8.8 OS/2 2.0 extended device driver interfaces. 255 
Fig. 8.9 Request list. 256 
Fig. 9.1 Session structure. 263 
Fig. 9.2 OS/2 1.0 session and process hierarchy. 264 
Fig. 9.3 Full-screen user-l/O subsystem architecture. 265 
Fig. 9.4 16-bit OS/2 session and process hierarchy with the PM. 266 
Fig. 9.5 OS/2 2.0 session and process hierarchy. 267 
Fig. 9.6 Window hierarchy. 270 
Fig. 9.7 Standard window with menu bar and scroll bars. 271 
Fig. 9.8 PM message architecture. 272 
Fig. 9.9 PM application message loop processing. 273 
Fig. 9.10 PM device-independent graphics architecture. 274 



xx iv Illustrations 

Fig. 10.l 16-bit physical memory layout with DOS compatibility. 287 
Fig. 10.2 16-bit memory tiling. 289 
Fig. 10.3 MVDM architecture. 293 
Fig. 10.4 Virtual DOS machine memory layout. 295 
Fig. 10.5 32-bit model for physical and virtual device drivers. 299 
Fig. 10.6 Coexistence strategies for 16-bit and 32-bit APL 302 
Fig. 10.7 0:32 and 16: 16 address conversion. 304 
Fig. 10.8 LDT tiling. 305 
Fig. 10.9 LDT tiling with 16-bit private code packing. 307 
Fig. 11.1 OSI reference model. 319 
Fig. 11.2 X.25 architecture. 322 
Fig. 11.3 IEEE 802 LAN standards. 323 
Fig. 11.4 IBM SNA architecture. 325 
Fig. 11.5 TCP/IP architecture. 326 
Fig. 11.6 Comparison of OSI, SNA, and TCP/IP. 329 
Fig. 11.7 OS/2 protocol stacks. 331 
Fig. 12. l Components of the IBM Systems Application Architecture. 343 
Fig. 12.2 Orange Book security levels. 347 

Table 1.1 DOS evolution. 6 
Table 1.2 OS/2 evolution. 20 
Table 3.1 PS/2 product line. 65 
Table 4.1 OS/2 API content. 94 
Table 5.1 Multitasking API calls. 136 
Table 6.1 Memory object types. 147 
Table 6.2 Memory management APL 190 
Table 6.3 Dynamic linking APL 190 
Table 7.1 OS/2 l .X semaphores APL 203 
Table 7.2 OS/2 l .X semaphore model usage. 209 
Table 7.3 OS/2 2.X semaphores APL 211 
Table 7.4 OS/2 1.X signals APL 217 
Table 7.5 OS/2 Queueing APL 219 
Table 7.6 OS/2 pipes APL 222 
Table 7.7 16-bit exceptions. 223 
Table 7.8 32-bit exceptions. 225 
Table 7.9 OS/2 exceptions APL 227 
Table 8.1 File System API . 239 
Table 8.2 Device driver strategy commands. 251 
Table 8.3 Dev Help functions. 253 
Table 8.4 32-bit Dev Help functions. 257 
Table 10.l Segmented- and flat-model programming environments. 302 



xxv 

ABOUT THE AUTHORS 

Dr. Harvey M. Deitel has 30 years experience in the computer field. He participated in 
the research and development of several large-scale operating systems and in the design 
and implementation of numerous commercial systems. His current research is in the 
areas of open systems and open systems interconnection (OSI)-the emerging interna­
tional standards in computer networking. He received the Bachelor of Science and 
Master of Science Degrees from the Massachusetts Institute of Technology where he did 
extensive development work on the Multics operating system. He received the Doctor of 
Philosophy Degree from Boston University where his dissertation research examined the 
problems of developing very large-scale structured software systems. 

Dr. Deitel has been interested in operating systems since 1963. He worked on the 
pioneering teams that developed IBM's OS, IBM's TSS, and M.I.T. 's Multics; these 
systems led to today's MYS, VM, and UNIX operating systems. He has consulted for 
Epson, Advanced Computer Techniques Corporation, Computer Usage Corporation, 
Harbridge House, American Express, IBM Systems Development Division, IBM 
Advanced Systems Development Division, IBM Thomas J. Watson Research Center, 
M.l.T.'s Project MAC, Microsoft, Apple, Digital Equipment Corporation, Sun 
Microsystems, and the Corporation for Open Systems International (COS). 

Dr. Deitel is the former chairman of the Computer Science Department at Boston 
College where he developed and implemented the graduate program in computer sci­
ence. He currently serves as Full Professor of Computer Science and Full Professor of 
Computer Information Systems at Nova University in Fort Lauderdale, Florida, where 
he has been involved in the implementation of Nova's Master of Science Program in 
Computer Science at IBM's Entry Systems Division in Boca Raton. He has received 
numerous teaching commendations, and has been rated nationally among the top 
computing educators in the country. 

Dr. Deitel is a member of several professional honoraries including Tau Beta Pi 
(engineering), Eta Kappa Nu (electrical engineering), Sigma Xi (scientific research), and 
Beta Gamma Sigma (management). He holds the CDP certification of the Institute for 
the Certification of Computer Professionals, and is a member of various professional so­
cieties including the Association for Computing Machinery, and the Computer Society 
of the Institute of Electrical and Electronics Engineers. 

Dr. Deitel's publications include Absentee Computations in a Multiple-Access 
Computer System, MAC-TR-52, Advanced Research Projects Agency, Department of 
Defense, 1968; Introduction to Computer Programming, Prentice-Hall, 1977; Structured 
Software Development, Ph.D. dissertation published by University Microfilms, 1980; 
Operating Systems (with H. Lorin of the IBM Systems Research Institute), Addison­
Wesley, 1980, "Functions of Operating Systems," (with H. Lorin) Software World, Vol. 
12, No. 2, 1981, "Computers and Communications: Improving the Employability of 
Persons with Handicaps," Journal for Vocational Needs Education, 1984; An 
Introduction to Operating Systems, Addison-Wesley, 1990 (Second Edition); VAX-11 
BASIC, Prentice-Hall, 1985; Computers and Data Processing (with B. Deitel), 
Academic Press, 1985; An Introduction to Information Processing (with B. Deitel), 



xxvi About the Authors 

Academic Press, 1986, Microsoft Macintosh BASIC (with P. Deitel), Prentice-Hall, 
1988; Microsoft IBM QuickBASIC (with P. Deitel), Prentice-Hall, 1989. 

Dr. Deitel is currently writing four other books including: C Programming (with P. 
Deitel) (Prentice Hall), SPARC System Software and the Sun Operating System: UNIX 
System V Release 4 (Addison Wesley), SunNET: Sun's Approach to Distributed 
Computing (Addison Wesley), and the third edition of his book, Operating Systems 
(Addison Wesley)-now considered a classic in the field of computer science-whose 
previous editions have been used in 1000 universities in more than 100 countries 
throughout the world. 

Dr. Deitel's current research is in the area of open systems interconnection (OSI)­
the emerging worldwide standards for computer networking. He is the series editor of 
the Open Systems Series sponsored by the Corporation for Open Systems International 
(COS) and published by Addison-Wesley. This series includes advanced texts on key as­
pects of OSI and the Integrated Services Digital Network (ISDN). He is currently writ­
ing the lead text, Open Systems Interconnection, for this series. He has given operating 
system seminars at the International Congress Center in West Berlin. His books have 
been translated into Japanese, Chinese, Spanish, and Russian. 

Dr. Michael S. Kogan has 10 years of experience in the computer field. In 1984, he 
received the Bachelor of Science degree in Computer Science and Mathematics from 
Emory University in Atlanta, Georgia. At Emory he work in Berkeley UNIX and CP/M 
environments on VAX and 8080-based systems. In 1986, he earned the Master of 
Science degree in Computer Science from Nova University in Ft. Lauderdale, Florida. In 
1991, he received the Doctor of Science degree in Computer Science at Nova 
University. His dissertation examined the motivation and design of 32-bit OS/2. 

In 1984, Dr. Kogan joined IBM in Boca Raton, where he developed and tested sev­
eral products in the IBM Engineering/Scientific software series. This experience includ­
ed the testing of a DOS-based FORTRAN compiler, and the development and testing of 
DOS device drivers for hardware cards used to interface with engineering devices. He 
led the effort to redesign the device driver architecture of XENIX 2.0 for the 80286 
processor, and developed and tested several XENIX device drivers. 

In 1985, he was drafted into the OS/2 project. He was a lead developer for two and 
one half years during the design, development, and testing of the 16-bit versions of 
OS/2. He had responsibilities in many areas of the 16-bit system including device 
drivers, memory management, debugging, queues, DOS compatibility, and system 
initialization. This was followed by another two and one half years as the principal 
architect of the 32-bit version of OS/2. 

Dr. Kogan has published articles on OS/2 in the IBM Systems Journal (Ko88) and in 
IBM Personal Systems Developer (Ko90)(Ko90a)(Ko90b). Several of these articles have 
been reprinted in other publications worldwide. Dr. Kogan is also credited with numerous 
software inventions, and has several patents pending for technologies he developed for 
the 32-bit OS/2 system. He frequently represents IBM internationally in a consulting 
capacity to IBM customers who are moving to the OS/2 platform. 



1 
Historical Background 

Nothing endures but change. 

Heraclitus 

It is always good when a man has two irons in the fire. 

Francis Beaumont and John Fletcher 

That's a better hardware base [the PS/2] than what UNIX 
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1.1 INTRODUCTION 

This chapter reviews the history of personal computers and operating systems. It traces 
the evolution of personal computer hardware from the original IBM Personal Computer 
to the latest IBM PS/2, and examines how this process has affected the content and de­
sign of DOS and OS/2. 

Before 1980 most computers were mainframes and minicomputers, large computing 
resources that were mainly job- and transaction-processing systems. Operating system 
technology had evolved from its early simplistic control program stages to sophisticated 
multiprogrammed virtual memory systems such as VM, MYS, and later versions of 
UNIX. In the era of large, centralized computing resources, computer time was expen­
sive, learning was time consuming, assistance was difficult to obtain, and computing re­
sources were scarce. Users rarely had opportunities to interact privately with a local 
computing resource. 

The advent of the microprocessor and of inexpensive, off-the-shelf computer 
components enabled the creation of the first microcomputer systems. The Altair, a prim­
itive computer kit based on the Intel 8080, was one of the most popular early systems. 
The Altair was surpassed by the Apple I and II computers created by Steve Jobs and 
Steve Wozniak. The Apples used the MOS Technology 6502 chip and included a key­
board and display. Also gaining acceptance were microcomputer systems configured 
with the Intel 8080 and Zilog Z80 processors. Besides the Apple, which had its own pro­
prietary operating system, the Intel and Zilog systems principally ran the CP/M operat­
ing system. CP/M was primarily designed for 8-bit single-user microcomputers that had 
floppy-disk drives. 

At this point, during the late 1970s, IBM decided to spin off an independent busi­
ness unit (IBU) to investigate the potential of an IBM microcomputer system. In the late 
1970s, IBM used IBU s to respond rapidly to new opportunities, and granted them 
considerable freedom within IBM's business processes. An IBU is similar to a venture 
capital operation that attempts to exploit evolving technologies. The IBU ultimately 
became the current Entry Systems Division (ESD) of the IBM Corporation, which is re­
sponsible for personal computer hardware and operating system development. 

1.2 DOS HISTORY 

The DOS era of microcomputer operating system technology began when the first IBM 
Personal Computer (PC) was designed. The first IBM PC went beyond the current 8-bit 
technology available and used the then-new 16-bit Intel 8088 processor. This choice was 
made because the current 8-bit systems were being eclipsed by the newer 16-bit systems, 
and the 16-bit system architecture provided a base for more robust software. The 8088 and 
8086 processors are functionally identical, but the 8088 was used in the IBM PC since it 
was cheaper to configure in hardware. The 8088 processor could address up to lMB of 
memory; few designers could envision using all that memory in a desktop personal com­
puter in 1979. IBM also chose the 8088 microprocessor because porting software from 
existing 8080-based systems to the 8088 would be relatively straightforward. 
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With the hardware for the first PC under development, IBM sought to adapt existing soft­
ware for the system. Developing a new operating system and software tools would have taken 
too long. IBM contracted Microsoft, at the time a new company, to provide a BASIC in­
terpreter, assembler, and link editor for the machine. IBM chose Microsoft because of Bill 
Gates's experience in writing the most popular BASIC interpreter to date for the Altair systems. 

Since many CP/M-based programs were available, IBM initially attempted to 
interest Digital Research, Inc. (DRI) in providing a 16-bit version of the CP/M operat­
ing system for the IBM PC. However, DRI did not foresee the success of the 8088 
microprocessor and declined to participate in the venture. IBM then approached 
Microsoft and, after explaining the requirements, asked Microsoft whether it was inter­
ested in providing the operating system software as well as the tools. The main con­
cern of both IBM and Microsoft at the time was whether Microsoft had the resources 
to develop both the software tools and the operating system in the time required. 
Realizing that writing a new system was not feasible due to the schedules, Microsoft 
acquired from Seattle Computing Products a CP/M clone called SCP-DOS. With the 
SCP-DOS technology as a base, Microsoft predicted that it could complete the operat­
ing system, and the original operating system agreement between IBM and Microsoft 
was established. 

In 1981, the first version of the DOS operating system, 1.0, was shipped for IBM 
PCs. The system supported PCs with up to 256KB RAM, two 180KB floppy-disk 
drives, and included a Basic Input Output System (BIOS) built into the system ROM. 
DOS 1.0 was similar to CP/M in the way it managed the diskette devices and files, and 
it provided the base platform for the first 8088 DOS applications. Since the primary data 
structure used by the DOS file system to map file blocks to diskette addresses was the 
file allocation table (FAT), the DOS file system became known as the FAT file system. 
Figure 1.1 illustrates the DOS system structure. 

In 1982, IBM began shipping PCs with 360KB floppy disk drives. Since the new 
diskette medium had a format different from that of the 180KB diskettes, DOS had to 

DOS application 

DOS system 

Device drivers 

ROM BIOS 

Hardware 

Fig. 1.1 DOS system structure. 
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be updated. IBM shipped DOS 1.1 when the new diskette drives became available in 
1982. 

IBM next enhanced its PC line in 1983 with the addition of the IBM PC/XT. The 
PC/XT had a hard disk that could store far more data than could traditional floppy 
diskettes. This development illustrates how mainframe technology was becoming less 
expensive and more widely available in the PC market. The IBM PC/XT also included a 
new system board that allowed 640KB of memory to be installed. 

At this point, a trend emerged that continues to this day in the computer industry: 
The hardware drives the software. The addition of a hard disk to the PC was a problem 
for DOS 1.1, since the FAT file system was written for floppy-disk systems in which a 
single 360KB diskette could contain a maximum of 64 files. This limitation had to be 
removed; even the smallest hard disks could hold lOMB of data. 

Responding to this requirement, the DOS team at Microsoft explored different hard­
disk and file-allocation strategies to select one that would enable DOS software to ex­
ploit future improvements in storage technology. Merely extending the limit of 64 files 
per disk would yield too many files to manage in a single file space, so the Microsoft 
team chose a hierarchical file-management approach similar to the one found in UNIX. 
They implemented this approach to support both diskettes and hard drives. 

Another requirement for the next version of DOS was an architecture for extending 
the system to support different peripheral devices. This support took the form of device 
drivers, user-installable program modules that interface the DOS system and applica­
tions to devices. The version of DOS that included the hierarchical FAT file system, 
support for hard disks, and a device-driver model for extending the system was shipped 
as DOS 2.0 in 1983. 

IBM's next PC enhancements involved providing faster systems with larger hard 
disks. The Intel 80286 chip was selected for the next-generation IBM PC, the PC/AT. 
The 80286 has two modes of operation called real mode and protected mode. In real 
mode, the 80286 functions as a fast 8088. In protected mode, the 80286 allows up to 
16MB of memory to be addressed and provides features that support a protected multi­
tasking environment. These protection features allow an operating system to separate the 
memory spaces associated with different programs. However, since the 80286 was not 
designed to allow existing DOS applications to run in protected mode, they could nei­
ther be executed concurrently, nor use more than lMB of memory. Therefore, DOS 
applications used the 80286 as a fast 8088. Other operating systems-such as Intel's 
RMX or Microsoft's XENIX-used the protected mode of the 80286, but neither of 
these systems was considered to be a mainstream desktop system due to a lack of appli­
cations compared to the number of DOS applications. 

The PC/AT was also the first PC to use l.2MB 5.25-inch diskette drives. Since sev­
eral modifications to DOS 2.0 were necessary for the PC/AT hardware, DOS 3.0 was 
not released until August 1984. DOS 3.1 was released in 1985 to provide support for PC 
local-area networks (LANs). Another update to the system (DOS 3.2) was made for sup­
porting 3.5-inch diskettes in 1986. Table 1.1 shows the evolution of the DOS operating 
system. 
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Year Version System contents 

1981 1.0 IBM PC 
5.25" 180KB diskette 
Single task 
Single user 

1982 1.1 5.25" 360KB diskette 

1983 2.0 IBMPC/XT 
Hard disk 
FAT file system 
Device drivers 

1984 2.1 IBM PC Jr. 

1984 3.0 IBM PC AT 
80286/80287 real mode 
5.25" 1.2MB diskette 

1985 3.1 IBM PC network 

1986 3.2 IBM PC Convertible 
3.5" 720KB diskette 

1987 3.3 IBMPS/2 
80386/80387 real mode 
3.5" l.4MB diskette 

1989 4.0 User shell 
LIM expanded memory 
More user memory 

Table 1.1 DOS evolution. 

1.3 DOS LIMIT A TIO NS 

Between 1983 and 1985, IBM, Microsoft, and most application developers began to be 
aware of certain limitations of DOS and the 8088 environment. These limitations were 
in the areas of memory management, 1/0 management, multitasking, system extendibil­
ity, and graphical user interfaces. 

1.3.1 Memory Management 

The lMB address space, which seemed large in 1980, became a major limitation for 
larger DOS programs. Applications such as spreadsheets and database systems allowed 
users to create large volumes of data that needed to be in memory to be processed. The 
lack of memory became known as the 640KB barrier, since only 640KB of the 8088 ad­
dress space mapped RAM. The memory at addresses from 640KB to lMB in the PC 
mapped the system ROMs and memory-mapped 1/0 devices such as the display buffer. 
The DOS system used from 50KB to 60KB, and device drivers also consumed a portion of 
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the 640KB address space. Thus, application software had less than 640KB available of the 
lMB memory addressable by an 8088. Figure 1.2 illustrates the DOS memory layout. 

One of the mechanisms DOS applications developers devised to relieve this memo­
ry constraint was the overlay scheme. Overlays allowed portions of a program not cur­
rently needed to reside on a secondary-storage device, usually a hard disk. Since DOS 
contains only a primitive memory manager, DOS applications had to provide their own 
overlay management, further increasing their size and complexity. 

These memory integrity problems were exacerbated by the behavior of terminate-and­
stay-resident (TSR) modules. TSRs are loaded like any other DOS program but stay resident 
in memory after terminating. A TSR is accessed after terminating by either a hardware or a 
software interrupt. TSRs that monitor keystrokes by intercepting keyboard interrupts are 
called hot-key pop-up applications. The DOS print spooler is a TSR that intercepts timer 
and printer interrupts to allow the simultaneous queueing and printing of files. 

Since TSRs can never be guaranteed that the memory needed will be available when 
they are invoked, they must allocate when they are loaded all the memory they will ever 
need. Also, since TSRs are not aware of one another's existence and resource require­
ments, they can easily cause the system to behave unpredictably. For example, their be­
havior may depend on the order in which they are loaded. 

The 8088 processor provides no memory-protection features, since it was designed 
to run one application at a time. All 8088 programs execute using actual physical­
memory addresses with no distinction between accessing the DOS system's memory or 
application memory. This lack of protection allows programs to modify one another and 
the system inadvertently, often causing the system to hang. In a protected system, illegal 
memory accesses are trapped by the hardware. The operating system is given control; it 
usually terminates the offending application. 

1MB 

640KB 

0 

Fig. 1.2 DOS memory map. 
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1.3.2 1/0 Management 

Another area in which the DOS environment is limited is I/O control. Any application 
•. 1 may read from or write to any 1/0 device without having access granted by DOS. 

Although this limitation is really a shortcoming of the 8088/8086 processor, rather than 
one of DOS, it is still an integrity problem. Application program errors can cause the 
system to hang, or, even more serious, can cause data on a secondary storage unit to be 
destroyed inadvertently. 

Another I/0 problem is that applications have the capability of disabling interrupts to 
the 8088/8086 processor with a single instruction. If an application disables interrupts and 
executes a spin loop, the system will remain in the loop forever. Even intermittent dis­
abling of the interrupts to the system can cause applications to behave incorrectly. For 
example, if an application disables interrupts while a TSR print spooler is using timer tick 
interrupts to pace its spooling, the spooler will not receive interrupts to continue moving 
data to the printer. Disabling interrupts can also disrupt communications applications that 
depend on receiving periodic interrupts for maintaining communications sessions. 

1.3.3 Multitasking 

DOS was designed to run one application at a time; it is a single-task or single-thread 
environment. Even in a single-user, one-program-at-a-time environment, there are re­
quirements for being able to multiprogram the system. A common scenario is using a 
TSR print spooler to print a file in the background while the user is editing another file 
from the keyboard. Since DOS provides no multitasking services, programs that require 
multitasking must do it themselves. However, there is a catch-since DOS is not reen­
trant, only one program can correctly use the DOS system services at a time. Therefore, 
competing applications and TSRs can inadvertently both enter DOS, confuse it, and dis­
rupt the system. 

A major benefit of building multitasking into the system, instead of into the appli­
cations, is that the system can allocate the processor more efficiently than can the appli­
cations. When one application attempts to do 1/0, it will block, and the system scheduler 
can resume another application until the I/O is completed. In the DOS environment, an 
application that requests 1/0 typically spins in a loop waiting for the device status to 
indicate that the 1/0 is complete. This is called polling, and wastes many processor cy­
cles that could be spent on other tasks. Since each DOS application that needs to multi­
task has to do it itself, putting together two DOS applications that need to multitask 
frequently results in unpredictable behavior. 

1.3.4 System Extendibility 

DOS applications request DOS system services by issuing software interrupts, an 8088-
specific form of transferring control between routines. An interrupt causes a transfer of 
control to an address that is retrieved from an interrupt vector table (IVT) based on the 
interrupt number invoked. The main difference between a software interrupt and a hard­
ware interrupt is that the software interrupt is caused by the synchronous execution of an 
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INT instruction rather than by an external hardware-device interrupt request. Figure 1.3 
illustrates how the DOS system services are invoked using software interrupts. 

Since DOS and BIOS system services are routed through software interrupts, the 
application requesting the service must pass as a parameter information that specifies 
which service is desired. Since the information that binds the application with a specific 
service is hard coded into the application, this is called a statically linked interface. DOS 
and BIOS software interrupt requests specify the software interrupt number and the 
function code of the service. Thus, there are two levels of decode for each static link. 
The software interrupt number is decoded by the processor, and the function code is 
decoded by the software providing the service. 

Because all DOS and BIOS (device) services are accessed through the 8088 inter­
rupt mechanism, the memory in which the interrupt-vector table resides is not protected 
from applications and TSRs. Thus, any application or TSR can hook an interrupt and 
intercept program control when an interrupt is invoked. The result is that the system can 
be extended by hooking interrupts, but, as more extensions are loaded (usually in the 
form of TSRs or device drivers), the system's behavior becomes increasingly unpre­
dictable. Also, the order in which the extensions are loaded can change the semantics of 
the system's behavior. Figure 1.4 illustrates a DOS system with two TSRs loaded. 

1.3.5 Graphical User Interface 

DOS is packaged with a line-oriented command processor; thus, users must learn DOS 
commands before they can use the system. New users often find DOS overwhelmingly 
complex; they complain about the lack of an intuitive paradigm that would make using 
the system easier. The Apple Macintosh computers were the first microcomputers to ex­
ploit successfully the graphical user interface (GUI) technology developed by Xerox at 

DOS application 

INT 21 IRET 

DOS system 

IVT (interrupt vector table) 

Fig. 1.3 DOS system call. 
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DOS application 
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DOS 

ROM BIOS 

i IRET 

Hardware 

Fig. 1.4 DOS system extensions. ( 0512 Programmer's Guide, E. Iacobucci, 
Copyright 1988. McGraw-Hill Publishing Company. Reprinted by permission.) 

its Palo Alto Research Center (PARC) in the 1970s. This GUI technology allows users 
to interact with the system via a user-friendly pointing device such as a mouse, and visu­
al display keys or icons that parallel the user's tasks. More advanced GUls provide a 
device-independent programming model that applications use for user 1/0 functions. 
This model enables these applications to take advantage of whatever user 1/0 devices 
are attached to the system, regardless of the devices' particular physical characteristics. 
GUls often provide a what-you-see-is-what-you-get (WYSIWYG) capability for display­
ing graphical information on a variety of output devices. 

1.4 OS/2 HISTORY 

The need for a more robust version of DOS to provide solutions to these shortcomings 
was recognized by both IBM and Microsoft, and each company initiated projects devot­
ed to this end. IBM undertook several projects to extend the functionality of DOS while 
providing compatibility for current DOS applications by using the protected mode of the 
80286. Microsoft began DOS 4.0 (not the one that was shipped in 1989) or MT-DOS 
(for multitasking DOS), a project to define a real-mode multitasking environment that 
could run on 80286 and 8088/8086 systems. Although none of these projects led to re­
leased products in the PC market, both companies learned about the limitations of DOS 
and of the 80286 architecture and the scope of independent development efforts. 
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1.4.1 IBM-Microsoft Joint Development 

In 1985, IBM and Microsoft signed an agreement to define and ship the operating sys­
tem that would extend the capabilities of DOS. Under the agreement, both companies 
would jointly design, develop, and own the resulting product. By 1990 the practice of 
software companies joining forces to define and develop products had become common 
in the computer industry. Alliances among computer companies such as Open Software 
Foundation and UNIX International, and many smaller joint projects among applications 
developers, are now leading the computer software industry into an era of open systems. 
Emerging software standards will lead to greater software portability and, thus, to better 
software productivity. Chapter 12 discusses the open-systems platform and the role it 
will play in the future. 

To understand why IBM and Microsoft worked together, we must explore the goals 
of the product they desired to create and the attributes of both companies' development 
methodologies. Both companies realized that, if two different advanced DOS systems 
were developed, the software market would be confused about which was the "right" 
one. So it made sense for IBM and Microsoft to combine their efforts, and to create a 
single industry-standard operating system that was endorsed by the two leading compa­
nies in the PC market. 

IBM has traditionally been known as a hardware company, although it writes most 
of the software marketed for its larger systems. IBM is by far the largest computer com­
pany and wields the most influence in the computer industry. IBM projects are typically 
large, comprising many layers of management, staff, and technical personnel in the 
product organization. On the other hand, Microsoft became the leading independent 
software vendor (ISV) during the 1980s. Microsoft has led the PC software industry in 
the development of DOS, Windows, and a variety of programming tools. Microsoft also 
is a leader in applications software for both the Apple Macintosh and the IBM PC sys­
tems. Unlike those at IBM, most Microsoft projects are implemented by a small core 
team of programmers who manage themselves, with extra staff added as needed. 
Therefore, the combination of the companies created a good team in the design, devel­
opment, and testing areas. 

To facilitate both companies participating in the design and development of the sys­
tem, they constructed a software-development process to describe the methodology for 
building the product. Figure 1.5 illustrates the general process framework. 

1.4.2 Multisite Development 

An interesting part of the IBM and Microsoft relationship is that OS/2 was designed, de­
veloped, and tested by physically distant partners. Within IBM, there are many sites that 
work on OS/2 and contribute to the content of the standard and extended editions. The 
IBM site at Boca Raton, Florida is the sister to Microsoft's site in Redmond, 
Washington. Together, these two sites are responsible for most of the OS/2 Standard 
Edition (SE) content and testing. The IBM site at Austin, Texas provides most of the 
communications and database content for OS/2 Extended Edition (EE). The IBM site at 
Hursley in the United Kingdom provided the initial releases of the graphics API 
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Fig. 1.5 Software development process. 

(application programming interface) for the Presentation Manager (PM) and software 
for supporting IBM's video hardware. The IBM site at Cary, North Carolina provides 
dialog-management functions for the PM. 

All these sites contributing code to a single system created a major problem in 
source-code control. In a typical single-site development project, a server machine run­
ning source-control software is used to ensure the integrity of the source code. The soft­
ware performs its function by assigning owners to source files, forcing owners to check 
files out for editing, and to check the files back in when done. However, source-code 
control is much more complex when a common set of source files must be available to 
several remote sites that are thousands of miles apart. The solution used in the develop­
ment of OS/2 is to organize, at each remote site, build groups that enforce a build pro­
cess for maintaining a virtual single-server image of the OS/2 source code. The build 
process describes how code is integrated into the system and how the system source­
code integrity is maintained across the remote development sites. 

The build group implements remote system builds, tracks the build process, maintains 
backups of all versions of the system, and provides database services to the other develop­
ment organizations. A database system that facilitates entry of problem reports, design 
changes, and routing of these items to their appropriate owners is a requirement. All 
changes to the system and the reasons for the changes are tracked online, so the status of 
any particular change to the system can be tracked from creation to system integration. 
This approach allows the system design process to be perceived as a sequence of in­
cremental changes and fixes. Although there are other methodologies, this approach re­
duces the risk of introducing large numbers of errors into the system at any one time. 
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1.4.3 OS/2 1.0 

The time frame for the development of the initial OS/2 system was from 1985 to 1987. 
During its design and development, OS/2 assumed many names, including DOS 5, DOS 
286, Big DOS, and CP/DOS. The major requirements for OS/2 were these: 

Break the 640KB physical memory barrier; support up to 16MB of physical 
memory. 

Utilize virtual memory to extend the physical memory resource of a system. 

Provide a protected multitasking environment. 

Provide an extendible, flexible system application program interface (API) 
architecture. 

Provide a graphical user interface (OS/2 1.1 ). 

Support DOS application binary compatibility to encourage migration from 
DOS to OS/2. 

Remarkably, OS/2 was originally supposed to run on both the 80286 and the 8088 
systems. However, the designers simplified the product to work on only the 80286, since 
meeting the memory-management requirements for supporting both processors was not 
realistically feasible. As a result, a subset of the OS/2 API, called the family AP/ (FAP/), 
was developed. OS/2 applications that used only FAPI functions could run on DOS, as 
well as on OS/2. At this time (early 1985), it was not yet clear what the 80386 would be 
or when it would be delivered, but Intel assured IBM and Microsoft that protected-mode 
80286 programs would run on the 80386, as would DOS programs, if certain guidelines 
were followed. 

From 1985 through 1987, IBM and Microsoft developed OS/2 from the MT-DOS 
and DOS 3.2 source-code bases. Early prototyping involving the mode-switching capa­
bilities of the 80286 convinced designers that a system could be constructed that multi­
tasked protected-mode applications while running a single DOS application in the 
foreground. At this stage, it was known that OS/2 on an 80286 would not be able to run 
multiple DOS applications, or to run a DOS application in the background. CP/DOS 1.0 
was nearly complete by late 1986; at that time, however, the next generation of IBM 
PCs, called PS/2s, was nearing availability, and IBM elected to support the new PS/2 
family of computers before shipping OS/2 1.0. 

The PS/2 family of PCs was introduced in April 1987. These PCs were of a form 
factor different from that of the original PC and PC-AT, had 3.5-inch instead of 5.25-
inch diskette drives, and used a new bus design called the Micro Channel Architecture. 
(Chapter 3 discusses the Micro Channel Architecture.) The PS/2 family initially includ­
ed 8088/8086 systems (Model 25), 16-bit Micro Channel 80286 systems (models 50, 
50Z, and 60), and a 32-bit Micro Channel system (Model 80). (Chapter 3 describes the 
PS/2 product line in more detail.) DOS 3.3 was also shipped to enable DOS applications 
to work on the PS/2 family. OS/2 1.0 Standard Edition was announced in April 1987, 
when the PS/2s became available; it was shipped in December 1987. 



14 Historical Background 

As is true of most new operating systems, OS/2 initially lacked an applications base. 
Furthermore, OS/2 1.0 did not include the Presentation Manager (PM) GUI. Software 
developers were tentative about beginning OS/2 application development without the GUI. 
The DOS compatibility of OS/2 did not allow most communications applications to run, 
and the Extended Edition of OS/2 that provides communications and database support was 
not available. Therefore the industry did not immediately migrate to the OS/2 platform. 

1.4.4 OS/2 1.1 

From the time OS/2 1.0 was shipped until late 1988, IBM and Microsoft concentrated on 
completing the initial release of the Presentation Manager. PM provides a graphical user 
interface with device-independent graphics in a protected multitasking environment. 
OS/2 1.1 was delivered in November 1988. 

1.5 THE EVOLVING MARKET 

The DOS world was not standing still while OS/2 was being developed. DOS applica­
tion vendors came up with their own ways to extend DOS and to break the 640KB 
physical-memory barrier. The use of special memory-mapping hardware, and later the 
80386, played major roles in extending the memory-management and multitasking capa­
bilities of the DOS environment. Due to concerns about the cost of rewriting DOS appli­
cations for OS/2 and the limited size of the initial OS/2 market, many developers opted 
to use these techniques to extend the life of their current DOS products, instead of 
immediately porting to OS/2. However, these short-term DOS add-on technologies 
required DOS applications to perform more complex memory-management and multi­
tasking strategies, resulting in an evolution of more DOS-based limitations. 

1.5.1 Microsoft Windows 

Prior to and during the development of OS/2, Microsoft designed a graphical user inter­
face for the DOS environment called Windows, which was announced in late 1983. 
Microsoft hoped that Windows would become the standard graphical user interface for 
DOS systems. However, Windows was not actually shipped until late 1985, and no com­
mercial Windows applications existed when it shipped. By late 1987, Windows 2.0 had 
been released, and some DOS developers were beginning to migrate their products to 
the Windows platform. 

1.5.2 DOS Expanded Memory 

One method of allowing DOS applications to access more than 640KB is called expand­
ed memory. Expanded memory works by using a special memory card that bank switch­
es its memory into the 8088 address space through a technique called windowing (not to 
be confused with GUis that manage windows on the screen). Bank switching involves 
mapping a portion of the memory on a hardware card into a window of the processor's 
address space under control of application software. 
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Expanded memory could be used by existing DOS applications with relatively few 
modifications and gave the user a solution for relieving the 640KB memory limitation. 
The expanded memory standard, the Lotus/Intel/Microsoft Expanded Memory 
Specification (LIM EMS), evolved while OS/2 1.0 was being developed. The LIM 3.2 
specification allows up to 32MB of expanded memory to be addressed through 16KB 
address windows in the DOS address space. The LIM 4.0 specification added a 256KB 
code window. Since DOS applications had to do their own expanded-memory manage­
ment, expanded memory was clearly not a long-term solution to the problem of the 
640KB barrier; however, it did provide programmers with enough relief from memory 
concerns that they could create applications with better performance in the short term. 

1.5.3 DOS Extended Memory 

Similar to expanded memory is extended memory. Extended memory in general refers to 
memory that can be added to a personal computer above the lMB physical-memory 
boundary that originated with 8088-based personal computers. Extended-memory cards 
do not have any special bank-switching hardware. A specification analogous to LIM 
EMS, called Extended Memory Specification (XMS), describes the software interface to 
the DOS-based memory-extending software. 

1.5.4 DOS Extenders 

DOS extenders utilize the XMS technology to allow DOS applications to run in pro­
tected mode and to take advantage of more than 640KB of memory. Although this is 
transparent to the application user, the program still utilizes real-mode DOS and BIOS 
for system and 1/0 services. Extenders provide interfaces that allow programs to switch 
the processor between real mode and protected mode for DOS and BIOS function calls, 
and to manage extended memory. 

1.5.5 Intel 80386 

By late 1987, the 80386 had been shipped, and software vendors were eager to exploit 
the chip's new features. Significant on the 80386 are its virtual 8086 mode (a special 
mode for emulating 8088 and 8086 environments), a true 32-bit programming model, 
and a paged memory-management unit (PMMU). The virtual 8086 and paging features 
of the 80386 made the task of writing a DOS multitasker-a system that manages multi­
ple virtual 8086 machines and multitasks them-more feasible than it had been on 
80286 machines. The 80386 paging capability also allowed DOS multitaskers to emu­
late expanded-memory support using extended memory. This resulted in a DOS plat­
form that could run multiple DOS applications that use more than 640KB of memory 
concurrently. 

1.5.6 DOS Multitaskers 

DOS multitaskers support the concurrent execution of regular DOS applications, DOS 
extender-based applications, and applications that use expanded memory. Examples of 
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DOS multitaskers are Quarterdeck DesqView and Windows 386 (later Windows 3.0). 
Since these systems are all based on the nonreentrant, real-mode DOS and BIOS, and 
rely on mode switching between real mode and protected mode, many complications can 
arise in the multitasking environment. The complications occur because DOS multi­
taskers and extenders leave the management of memory and the control of mode switch­
ing in applications instead of in a protected kernel. The Virtual Control Program 
Interface (VCPI) was developed by a consortium of vendors, including Lotus and 
Quarterdeck, to address these problems. VCPI specifies an interface that allows EMS 
emulators, DOS extenders, and DOS multitaskers to coexist correctly in an unprotected 
environment. 

While these DOS add-on technologies that exploit the features of the 80386 were 
being developed and used by DOS applications, OS/2 was not so quick to exploit the 
features of the 80386 for several reasons. The investment in the 80286 version was sub­
stantial. To keep system memory requirements down and to meet performance goals, the 
programmers had to write virtually the entire kernel in 80286 assembler code, instead of 
in a high-level programming language. Although the 16-bit OS/2 system and applica­
tions would run as they were on an 80386, redesigning the system and rec~ding it to ex­
ploit the 80386 32-bit programming model and the virtual 8086 DOS compatibility 
feature was a nontrivial task. 

In fact, the task was not feasible, given the limited resources that IBM and 
Microsoft were able to devote to the project at that time, since both companies had com­
mitted to shipping OS/2 1.0 in 1987 and OS/2 1.1 with the Presentation Manager in 
1988. 

By mid-1989, the PC market had several solutions to the limitations of DOS: 

Expanded memory 

DOS extenders 

DOS multitaskers 

16-bit OS/2 

A factor that inhibited acceptance of OS/2 was the lack of applications. In early 
1989, after OS/2 1.1 was shipped with the PM, few applications targeted for OS/2 1.0 
were available, and no PM applications were available until mid-1989. Another factor 
was that the DOS multitaskers provided capabilities that the OS/2 DOS compatibility 
environment lacked, such as expanded memory support and multitasking of DOS appli­
cations. Also, the hardware requirements for OS/2 were larger than were those for DOS 
extender-based systems, and people began to question how well 16-bit OS/2 could run 
on an 8MHz 80286 AT-class computer. 

1.6 OS/2 1.2 

From the end of 1988 through the middle of 1989, IBM and Microsoft worked on finish­
ing the 16-bit OS/2 system. The OS/2 1.2 system was completed by late 1989; it con­
tained the High-Performance File System (HPFS). Recall how DOS 2.0 came out with 
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the hierarchical FAT file system to overcome shortcomings inherited from CP/M. Now, 
OS/2 needed a new file system that could manage large volumes of disk space more effi­
ciently than could the FAT file system inherited from DOS. In OS/2 1.0, the FAT file 
system limited each drive unit to 32MB of storage-a hard disk that could contain 
90MB had to be partitioned into three logical drive units. With hard disks available in 
sizes approaching a gigabyte, and with optical media on the horizon, this restriction 
clearly needed to be lifted. Also, the FAT file system was designed for a single-user sin­
gle-process environment, and OS/2 needed a more robust file system to support the 
multitasking server environment. OS/2 1.2 relieved the 32MB per volume restriction for 
the FAT file system and also provided HPFS. 

Another improvement in OS/2 1.2 was in the area of the DOS environment. 
Although OS/2 1.2 made available more memory for DOS applications, it still neither 
provided compatibility for many DOS communications applications, nor exploited any 
of the features of the 80386. 

At about the same time as OS/2 1.2 was shipped, DOS 4.0 was released to provide 
support for FAT-based hard-disk partitions larger than 32MB, more memory to DOS 
programs, a simple user shell interface, and EMS emulation support on an 80386. 

1.7 OS/2 1.3 

IBM recognized in 1989, that the OS/2 1.2 product needed to use less memory and to 
run even faster if it was to meet the commitment of supporting low-end 80286 machines. 
Therefore, IBM continued to enhance the 16-bit OS/2 1.2 from late 1989 through 1990 
to produce OS/2 1.3. This version basically is the same as 1.2, but it runs in less memory 
and is faster, especially when used in a local area network environment. OS/2 1.3 can 
run on an 80286 machine with 2MB of memory. OS/2 1.3 became generally available in 
October 1990. 

In September of 1990, IBM and Microsoft also announced a change in their develop­
ment relationship: The companies decided to discontinue the policy of splitting develop­
ment responsibility for OS/2 across sites. IBM became solely responsible for the 
development of 16-bit and 32-bit OS/2, while Microsoft continued work on advanced 
OS/2 kernel technology and the Windows system. As in the previous development agree­
ment, both companies retain rights to OS/2. Ultimately, the new arrangement allows 
future OS/2 development to proceed faster than previously. 

1.8 WINDOWS 3.0 

Microsoft continued enhancing the Windows product while participating in OS/2 devel­
opment. The Win386 release of Windows essentially added the capability of running 
multiple DOS applications on an 80386 processor. Win386 also ran existing Windows 
2.0 real-mode applications. Win386 was viewed as a stopgap product that would maintain 
Microsoft's revenue stream until OS/2 caught on. However, Microsoft announced plans 
to enhance Win386 to provide a third-generation version of Windows that would inte­
grate a graphical user interface with DOS multitasker and extender technology. The 
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announcement of Microsoft's plans for Windows caused further confusion in the PC mar­
ket concerning what platforms users and programs should migrate toward. Windows 
popularity was on the rise due to the promises of the unreleased Windows 3.0, and many 
developers could not afford to build both Windows and PM versions of their applications. 

Windows 3.0 became generally available in June 1990 and soon achieved tremen­
dous sales volumes. The product's success can be attributed to two major factors. First, 
the extravagant marketing blitz by Microsoft for Windows 3.0 had positioned the prod­
uct as the stepping stone between DOS and OS/2. The Windows 3.0 marketing effort by 
Microsoft dwarfed the marketing and exposure given OS/2 by IBM and Microsoft com­
bined. Second, there was no other product that exploited all the DOS capabilities of the 
80386 while providing a graphical user interface. For these two reasons, many users 
migrated to Windows, and many application vendors gave up their commitment to PM 
development in favor of Windows 3.0 development, to maximize short-term profits. 

Since VCPI was not compatible with the Windows 3.0 environment, DOS multi­
tasker and extender programs could not run under Windows 3.0. To reconcile the differ­
ences in VCPI and Windows, Microsoft introduced the DOS Protected Mode Interface 
(DPMJ) standard. It also provided mechanisms for allowing VCPI programs to run in 
the Windows environment. 

Some interesting technical comparisons can be made between Windows 3.0 and 
OS/2 1.3. Both systems provide support for up to 16MB of memory on 80286 and 80386 
platforms. The user shell of Windows 3.0 looks and feels like a modified OS/2 1.2 user 
shell. To run a single DOS application and a single protected-mode application, 
Windows 3.0 requires 3MB to 4MB of memory and an 80386 processor, whereas OS/2 
1.3 requires 3MB of memory and an 80286 processor. 

Both products use protected mode, but Windows 3.0 does not exploit any of the fea­
tures for protecting the system from applications, and applications from one another. 
Thus, any Windows 3.0 application can destroy any other Windows 3.0 application and 
crash the system. Furthermore, since the 16-bit protected-mode API of Windows 3.0 
runs on top of real-mode DOS and BIOS, it is easy to write a program that passes a bad 
pointer to DOS or BIOS, and that therefore hangs the system. Thus, the Windows 3.0 
program model is built on the same technology as DOS extender architectures, and has 
similar shortcomings. On the other hand, OS/2 1.3 is completely protected from applica­
tions programs. The Windows-DOS API, compared to the OS/2-PM API, is inferior in 
many ways-in memory management, in file-system support and 1/0 controls, in inter­
process communication, in the windowing architecture, and in the graphics power and 
versatility (Pe90). 

Another difference in these products, at the design level, is that Windows trades 
integrity and protection for DOS compatibility, whereas OS/2 does not. The result is 
that Windows experiences more system crashes due to poorly behaved DOS applica­
tions. Functionally, the only advantage of Windows 3.0 over OS/2 1.3 is the capability 
of multitasking DOS applications when running on an 80386. Except for this capabili­
ty, Windows 3.0 represents a regression in operating-system technology, compared to 
OS/2 1.3. 
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With these drawbacks in mind, it is interesting to theorize why application vendors 
and users rushed to the Windows 3.0 platform. The multitasking DOS capability and 
graphical user interface in a DOS environment are the major functional factors that mo­
tivated users to migrate to Windows 3.0. However, the major marketing campaign by 
Microsoft that made Windows 3.0 appear to be more of a DOS-like product than OS/2, 
and the low price (the product was free, in many cases) of Windows 3.0, also were con­
tributing factors in placing Windows 3.0 on the desktops of many users. This migration 
occurred without the availability of Windows 3.0 applications that would take advantage 
of the 16-bit Windows 3.0 protected-mode API and even though Windows 3.0 did not 
provide any system protection or integrity, a key issue in a multitasking system. 

The large marketing push also caused application vendors to plan ports of their 
DOS software to the Windows 3.0 16-bit API, so as to maximize short-term profits. 
Many application vendors even gave up previous commitments to OS/2 PM application 
development, begun in 1988, so that they could concentrate on Windows. This behavior 
is confusing, especially when we consider that porting applications to Windows is about 
as difficult as is porting to the PM, that the performance of 16-bit Windows applications 
is similar to that of their 16-bit OS/2 PM counterparts, and that the Windows environ­
ment is much more fragile than the OS/2 environment. Furthermore, the shift in applica­
tion development strategies came after most developers began working with OS/2. 
However, we must expect the vendors to migrate their applications to the market with 
the largest expected volumes. 

1.9 05/2 2.0 

While OS/2 1.2 development was drawing to a close, Microsoft and IBM were also de­
signing the 32-bit version of OS/2 that would finally 

Exploit the features of the 80386 and 80486 processors. 

Provide a demand-paged system with a 32-bit programming model that is 
portable to other 32-bit processor architectures. 

Multitask DOS applications in a protected environment. 

Provide 16-bit OS/2 application binary compatibility. 

Provide Windows 3.0 application binary compatibility in a protected environ­
ment. 

OS/2 2.0 lays the foundation for the 32-bit operating environment of the future. Like its 
predecessors, it provides system and application protection for 16-bit and 32-bit protected­
mode applications. The major design goals for the 32-bit programming model were to break 
the 64KB barrier associated with Intel's previous segmented 16-bit processors, and to pro­
vide a portable 32-bit programming model for the future. Since the system is demand 
paged, OS.2 2.0 can run in a configuration with 3MB to 4MB of memory. The multiple 
DOS application support is a protected implementation so that DOS applications cannot 
breach the system's integrity and cause failures. Windows 3.0 application compatibility 
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encourages users who run Windows 3.0 on an 80386 platform to upgrade to OS/2 2.0. 
Table 1.2 summarizes the evolution of the OS/2 system through the OS/2 2.0 release. 

The 64KB barrier broken by OS/2 2.0 is one inherited from the original 8088 family 
of processors. Since a 16-bit processor can naturally address only 64KB of memory at a 
time, programmers had to manage memory in terms of segments that could be up to 
64KB long. This made programs sensitive to the underlying addressing scheme of the 
processor, and nonportable to anything but Intel processors. The 64KB barrier was an 
even larger problem for 16-bit OS/2 applications than it was for DOS applications, since 
OS/2 runs applications in protected mode. In protected mode, the instruction for chang­
ing the segment to be addressed runs more than eight times slower than in real mode­
so 16-bit OS/2 applications incur a large performance penalty to pay for their protection. 

Date Version System Contents 

1987 1.0 SE Initial 16-bit system 
Multitasking 
Memory management 
Protection 
Dynamic linking 
16-bit API 
DOS environment 

1988 1.0EE Communications 
SNA 
X.25/APPC/LU 6.2 
LANManager 

Database 
Query Manager 
SQL 

1988 1.1 SE Presentation Manager (PM) 

1989 1.1 EE Remote Database 

1989 1.2 SE High Performance 
File System (HPFS) 
Installable File System 
Better DOS environment 

1990 1.2 EE Exploit PM 
TCP/IP and Ethernet support 

1990 1.3 SE Faster/smaller 
Intelligent fonts 

1991 1.3 EE 
1991 2.0SE Initial 32-bit system 

Demand paging 
Portable 32-bit API 
Multiple DOS sessions 
Windows 3.X compatibility 
Workplace shell 

Table 1.2 OS/2 evolution. 
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Furthermore, the 64KB barrier requires both DOS and 16-bit OS/2 applications to have 
code to deal with segmented memory addressing, which makes them highly nonportable 
to a processor architecture where their required type of segmentation is not available in 
the hardware. 

1.10 THE 1990s 

Where does this evolution of operating systems leave the user? What choices are there? 
The answers depend on available hardware platforms and on the user's requirements. 
IBM and Microsoft have stated that systems with less than 4MB of memory are 
DOS/Windows systems, and that the remainder are OS/2 systems. But this distinction 
fails to clarify what users should do, especially since OS/2 2.0 can also run in the same 
environment and perform more functions reliably. 

Hardware generally has been made available before the software that could exploit 
it. How to ensure the migration of software to newer hardware platforms where better 
price/performance is achieved is one of the most difficult problems facing the computer 
industry. Thus far, the solution for the DOS world has been for each microprocessor to 
provide binary compatibility for the processor of the previous generation. However, this 
solution prevents software from truly becoming open enough to migrate to any platform. 

The creation of standards for source-code portability for a given operating system 
across different platforms is an initial requirement if the operating system and its 
applications are to migrate across different hardware architectures. The OS/2 2.0 32-bit 
programming model, like UNIX, is designed to be portable across almost any platform, 
whether uniprocessor or multiprocessor. This portability will enable 32-bit OS/2 pro­
grams to penetrate platforms other than Intel-based systems when the underlying operat­
ing system is enabled on other processor platforms, such as RISC-based systems. 

The trend in hardware systems toward workstation configurations that contain a 
generic workhorse processor attached to large amounts of memory and DASD illustrates 
that hardware is quickly becoming a commodity rather than a technology. This distinc­
tion is evident every time one company puts out a system that achieves a certain perfor­
mance level, and another company quickly assembles a system offering the same 
components, but with a slightly higher clock rate and at a slightly lower price. Portable 
software will hasten recognition of the trend to turn hardware into a commodity and will 
demonstrate that the true technology of the future lies in software. This core issue is ad­
dressed by architectures such as SAA and open systems. In Chapter 12, these issues and 
others are explored with respect to the future of OS/2, and with respect to the PC/work­
station operating system market. 

SUMMARY 

This chapter described the history of personal computers and of personal computer oper­
ating systems. DOS is the most popular single-user, single-tasking personal computer oper­
ating system. OS/2 is an advanced single-user, multitasking personal computer operating 
system that exploits advanced hardware platforms and meets the needs of the future. 
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EXERCISES 

1.1 Describe the strategy IBM used to bring its PC to market quickly. 

1.2 Discuss the layered architecture of the DOS system as shown in Fig. 1.1. Such layered archi­
tectures have become popular and effective designs for today's increasingly complex systems. 
Give several pros and cons for using the layered approach to designing operating systems. As you 
read this text, watch for the use of layering in OS/2. 

1.3 What first motivated designers to include a UNIX-like hierarchical file system in an early 
version of DOS? 

1.4 Discuss the problems inherent in real-mode multitasking systems. 

1.5 What capabilities were provided in the Intel 80286 to support a protected multiprogramming 
environment? Given these capabilities, why were most 80286s initially used as fast 8088/8086s? 

1.6 Describe the limitations of DOS that motivated IBM and Microsoft to begin development of 
OS/2. 

1.7 What software technique did DOS application developers use to relieve the 640KB memory 
constraint? Give several disadvantages of this scheme. 

1.8 How do terminate-and-stay-resident modules (TSR) work? What is a hot-key pop-up appli­
cation? What problems do TSRs present to the application developer? 

1.9 DOS applications can disable interrupts with a single instruction. Describe a scenario using 
this capability that might cause the system to hang (i.e., to deadlock). 

1.10 Discuss several benefits of building multitasking into the operating system, rather than hav -
ing applications do multitasking themselves. 

1.11 Explain the operation of the software-interrupt mechanism. 

1.12 What does it mean to hook an interrupt? Why is this possible in the DOS environment? Give 
several examples of software that might hook interrupts. What serious problem might develop in a 
system in which interrupt hooking is commonly used? 

1.13 What is a statically linked interface? 

1.14 What major requirements did the design of OS/2 have to address? 

1.15 Given the numerous limitations of DOS that motivated the development of OS/2, why was 
it considered so important to be able to run existing DOS applications under OS/2? 

1.16 Why was the family API (FAPI) developed? 

1.17 From the early stages in the development of OS/2, it was known that OS/2 on the 80286 
would not be able to multitask DOS applications or to run them in the background. At the time, 
this limitation was not viewed as a serious problem from a marketing standpoint. Give several rea­
sons why marketing specialists believed that users would not be concerned about the lack of these 
capabilities. Give several reasons why users would indeed like to multitask DOS applications and 
to run them in the background. 

1.18 What short-term hardware techniques were developed to relieve DOS 's 640KB memory 
barrier? From the applications developers' standpoint, what key problem did these techniques 
have in common? 

1.19 Discuss the factors that tended to inhibit the broader acceptance of early versions of OS/2. 

1.20 What considerations motivated the development of the High-Performance File System (HPFS)? 
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1.21 One factor that tended to confuse the applications development marketplace in 1990 was 
that the Windows and Presentation Manager application programming interfaces (APis) were dif­
ferent. Given the obvious advantages of a common interface, why do you suppose the APis are 
indeed different? 

1.22 What factors motivated the development of OS/2 1.3? 

1.23 Compare and contrast Windows 3.0 and OS/2 1.3 with regard to memory requirements, 
processor requirements, and product capabilities. 

1.24 What key capabilities was 32-bit OS/2 2.0 designed to provide? 

1.25 What issues hinder the portability of 16-bit OS/2 programs? 

1.26 Why do 16-bit OS/2 applications incur a large performance penalty to pay for their protection? 

1.27 The OS/2 2.0 system, like UNIX, is designed to be portable across a wide variety of plat­
forms. What kinds of standards facilitate such portability? 

1.28 Argue that compatibility with widely used hardware and software is an important con­
sideration for designers of new operating systems. Explain how the design of OS/2 reflects the 
importance of compatibility issues. 
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28 Microprocessor Architectures 

2.1 INTRODUCTION 

This chapter describes the processor architectures on which the DOS and OS/2 systems 
execute. The various microprocessors and their memory organizations are described and 
analyzed with respect to their capabilities for supporting systems and applications software. 

2.2 INTEL 8088/8086 

The Intel 8088 is a 16-bit general-purpose microprocessor used in early IBM PCs and 
compatibles. The 8088 and 8086 are architecturally identical chips, except that the 8088 
has an 8-bit external data bus and the 8086 has a 16-bit external data bus. Throughout 
this book, references to the 8088 include the 8086. The 8088 is capable of developing 
20-bit physical addresses for a maximum of lMB of memory addressability. 

2.2.1 Memory Architecture 

The memory architecture of the 8088 is a segmented model. Since a 16-bit processor 
with 16-bit registers is capable of addressing only 64KB using a direct addressing 
scheme, the segmented model was designed to allow access to lMB of memory. Each 
physical location of memory is addressed by two 16-bit values-a segment and an offset. 
The segment value denotes the start of a 64KB region, and the offset value is the num­
ber of bytes from the beginning of the 64KB segment to the byte being addressed. 
Memory locations are described by logical addresses in the segment:offset format or 
16:16 format. Segment values are loaded into one of four segment registers that point to 
the beginning of the four currently addressable memory segments. Figure 2.1 illustrates 
the four segment registers. 

When a memory location is accessed, the value in the segment register is used to 
determine the 20-bit base physical address of the segment, and the offset value is the 
distance in bytes from the segment base address to the desired memory location. The 
system calculates the base physical address by shifting the value in a segment register to 
the left 4 bits, effectively multiplying the segment value by 16. The offset is then added 
to the base segment address, resulting in a final physical address that is a 20-bit value 

- 16 bits - Code 

cs segment 

Stack 
segment 

..... .....- SS 

Data. DS 
segment 

Extra ES 
segment 

Fig. 2.1 8088 segment registers. 
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ranging from 0 to lMB + 64KB. References to the memory between lMB and JMB + 
64KB are wrapped by hardware to the lower 64KB of physical memory in 8088-based 
systems. Figure 2.2 illustrates the 8088 address calculation. 

Due to the nature of the address computation, the segment values are 16-byte or 
paragraph granular. A paragraph on the 8088 is 16 bytes. Since addresses are calculated 
arithmetically, segments can overlap, and there can be more than one combination of 
segment:offset for each byte in the lMB of storage. Figure 2.3 illustrates this aspect of 
8088 addressing, called aliasing. 

2.2.2 Register Set 

The 8088 register set consists of general registers, special registers, and segment regis­
ters. Figure 2.4 illustrates the 8088 register set. 

The AX, BX, ex, DX, SI, and DI registers are used to contain the operands of logi­
cal and arithmetic operations. These registers can be used in most simple instructions, 
and each one also has a specialized role in some of the more complex instructions avail­
able. The AX register is used as an accumulator by default in many instructions. The BX 
register is used as a base-addressing register, the ex register is used as a counter in loop 
operations, and the DX register is used in 1/0 operations. The SI and DI registers can be 
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Fig. 2.4 8088 register set. 

Special registers 
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used as source and target offsets with special string instructions to perform memory-to­
memory transfers of data. The BX, SI, DI, and BP registers are the only registers that 
can be used as index or offset operands of general address calculations. 

As previously stated, the segment registers establish the four 64KB segments the 
8088 currently addresses. Each segment register has a special usage. The CS segment 
register determines the base address of the segment containing the currently executing 
sequence of instructions, called a code segment. The 8088 fetches all instructions from 
this code segment using as an offset the contents of the IP register. The CS:IP register 
combination forms the instruction counter and is changed implicitly as the result of 
control-transfer instructions such as CALL, JMP, interrupts, and exceptions. When a 
transfer occurs without the CS register changing, the transfer is called "near," since the 
reference is to a location within the current code segment. When a transfer occurs and 
CS is reloaded, the transfer is called "far," since the transfer is to a location not in the 
current code segment. 

The 8088 uses a stack to facilitate subroutine linkages, parameter passing, and the 
creation of local activation records. The SS register always contains the base address of 
the current stack, and the SP register points to the top of the stack. The stack is refer­
enced implicitly by PUSH, POP, CALL, and other control-transfer operations. Unlike 
CS, the SS register can be loaded explicitly, allowing programmers to define stacks dy­
namically. The BP register is usually used as a stack-frame base pointer for accessing 
activation records and dynamically allocated local data on the stack. When BP is used as 
the index register in an address calculation, the current stack segment is used in the 
address calculation by default. 

The DS and ES registers allow the specification of data segments. Typically, the DS 
register is used to reference an application's default data segment, and ES is used for 
other data references outside the scope of the default data segment. Most instructions 
that reference memory use the DS register by default to select the segment to be 
addressed, allowing the instructions to be encoded more efficiently. 
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The FLAGs register contains the status flags or condition codes. These flags allow 
the results of one instruction to influence later instructions by preserving the status of 
arithmetic and logical operations. The status flags are carry, parity, auxiliary, zero, sign, 
and trap. 

2.2.3 Interrupts and Exceptions 

Interrupts and exceptions are two mechanisms used to interrupt program execution. 
Exceptions are synchronous events that are the responses of the processor to conditions 
detected during the execution of an instruction, such as attempts to divide by 0 or to exe­
cute an invalid opcode. Interrupts are asynchronous events triggered by external devices 
requiring attention. Another class of interrupts, called software interrupts, facilitates in­
tentional synchronous control transfers using the interrupt mechanism. Software inter­
rupts are executed using the INT instruction. 

The 8088 uses the stack and the interrupt vector table (!VT) to effect a control 
transfer when an exception, interrupt, or software interrupt occurs. The IVT table begins 
at physical address zero; it consists of an array of addresses in the segment:offset for­
mat. When an exception, interrupt, or software interrupt occurs, the 8088 saves the cur­
rent instruction pointer (CS:IP) and the contents of the FLAGs register on top of the 
current stack, then indexes into the IVT based on the interrupt or exception number to 
find the new address from which to continue execution. An interrupt handler is called 
when an interrupt or an exception occurs. When the interrupt or exception has been 
completed, the IRET instruction is used by the handler to return control to the original 
point of the interrupt. 

2.2.4 Input/Output 

The 8088 allows 1/0 to be performed using one of two techniques: a separate !10-
address space with specific 1/0 instructions, or memory-mapped 110 using general­
purpose instructions. The 8088 I/0 address space is divided into ports that can be 8, 16, 
32, or 64 bits wide. That is, each port can map an 1/0 device internal register that can 
range in size from 8 to 64 bits. Using the IN and OUT instructions, 8088 programs read 
and write ports in the 1/0 address space. Memory-mapped 1/0 is used by connecting the 
peripheral devices to respond like normal memory components. Memory-mapped 
devices can then be accessed using regular instructions such as MOV. An example of a 
memory-mapped device is the video RAM associated with the display. 

2.2.5 Analysis 

Since the 8088 does not provide memory protection or 1/0 protection, it is not appropri­
ate as a multitasking platform. Due to the segmented memory addressing scheme, source 
code written for the 8088 is portable only to systems with exactly the same segment 
semantics and addressing scheme. The segmented memory model and small register set 
add a level of complexity to the development of programs and programming tools to 
support the 8088. 
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2.3 INTEL 80286 

The 80286 microprocessor is used in the IBM PC/AT and compatible systems. The 
80286 has two modes of operation, called real mode and protected mode. In real mode, 
the 80286 behaves like a fast 8088, and is compatible with all systems and applications 
that run on the 8088. 

When protected mode is enabled, the 80286 provides an architecture that supports 
virtual addressing, memory protection, 1/0 protection, and access to 16MB of physical 
memory. As in the 8088, the maximum segment size is 64KB, so the 16MB of physical 
memory must still be accessed in 64KB chunks. The instructions and register set used 
by applications running in protected mode are identical to those used in real mode; vari­
ous system registers not available to applications are used by the operating system to im­
plement the operating system's functions and policies. 

2.3.1 Memory Architecture 

The 80286 is put into protected mode by setting the protected mode bit in the Machine 
Status Word (MSW), a system register of the 80286. Once put into protected mode, the 
80286 cannot be reset to real-mode operation without special external circuitry on the 
system board. Mode switching an 80286 from protected mode to real mode is described 
in more detail in Chapter 10. 

2.3.2 Descriptors 

When the 80286 runs in protected mode, the memory model is different from the real 
mode 8088 memory model. On the 8088, the segment values are directly related to the 
real storage address that the segment occupies. The virtual addressing of the 80286 
disassociates the addresses referenced by a program from the actual addresses available 
in primary storage. The addresses used in protected mode are called virtual addresses. 
The addresses available in primary storage are called real addresses or physical 
addresses. To map virtual addresses to physical addresses as a program executes, the 
80286 uses a construct called a descriptor to implement direct segment translation. 

A descriptor is 8 bytes and contains what the base physical address of the segment 
is, what the segment size or limit is, how the segment can be accessed, and what privi­
lege is required to access the segment. Figure 2.5 shows the information in an 80286 
data segment descriptor. 

The segment base address is the 24-bit physical address where the segment begins. 
Since this base address is not visible to the running program, an operating system may 
relocate segments dynamically in physical memory. This relocation is transparent to a 
program using virtual addresses. 

The segment limit field in the descriptor denotes the size of the segment. An impor­
tant feature of the Intel segmentation scheme is that segments are variable in size and 
can be grown and shrunk dynamically. This feature allows an operating system to pro­
vide a segmented memory model in which memory objects can be dynamically resized. 
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Fig. 2.5 80286 segment descriptor. (Reprinted by permission of Intel Corporation, 
Copyright/Intel Corporation 1983.) 

The remaining information in the descriptor is called access rights information, and 
describes how the segment can be referenced. Both of these fields are discussed further 
in Section 2.3.6. 

2.3.3 Descriptor Tables 

The 80286 architecture groups descriptors into descriptor tables, which are arrays of de­
scriptor entries. A descriptor table is a special variable-length segment that can contain up 
to 8192 entries for a maximum size of 64KB. There are two primary descriptor tables in 
the 80286 architecture, the global descriptor table (GDT) and the local descriptor table 
(LDT). There can only be one GDT in an 80286 system, whereas there may be multiple 
LDTs. Although the 80286 does not prohibit a system with multiple GDTs, switching and 
managing multiple GDTs under system software control is not realistic. Furthermore, the 
80286 has a multitasking model that uses a single descriptor table (GDT) for the system 
resources, and a descriptor table (LDT) for each 80286 task's resources. An 80286 task is 
not the same as an OS/2 process, since OS/2 does not use the 80286 multitasking model. 
Chapter 5 describes the differences in the 80X86 and OS/2 multitasking models with 
respect to context switching and process management. The 80286 version of OS/2 puts in 
the GDT descriptors for segments that are global to all processes. 

Descriptors for segments that are owned or accessed on a per-process basis are put 
into an LDT associated with each process. The GDT and LDT segments are located by 
the 80286 using two special registers called the GDTR and LDTR. These registers store 
the base address and limits of the descriptor tables. 

2.3.4 Selectors 

Unlike addressing on the 8088, the segment values on the 80286 no longer represent ac­
tual locations in physical storage; rather, they are indices into a descriptor table, and are 
called selectors. On the 80286, 16:16 addresses in protected mode are virtual addresses 
in selector:offset format. Figure 2.6 illustrates the format of a selector. 

Selectors are 16-bit values, but not all 16 bits are used as an index into a descriptor 
table. The table-indicator bit designates whether the index should reference the GDT or 
LDT. The remaining bits are used for protection information, as discussed in Section 2.3.6. 
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Fig. 2.6 80286 selector format. (Reprinted by permission of Intel Corporation, 
Copyright/Intel Corporation 1983.) 

2.3.5 Address Translation 

When a 16:16 memory reference occurs, the descriptor table is used in the address 
calculation to determine a 24-bit base segment address that is added to the offset of the 
target address. Figure 2.7 illustrates the address translation through a descriptor table in 
protected mode. 

If a selector that references an invalid segment descriptor is loaded into a segment 
register, the 80286 raises a general protection fault that the operating system handles. 
Illegal memory accesses after the loading of a valid selector can also trigger a general 
protection fault. Although applications are aware of selectors, they do not have direct 
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Fig. 2.7 80286 protected-mode address translation. (Reprinted by permission of 
Intel Corporation, Copyright/Intel Corporation 1983.) 
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access to the descriptor tables. The descriptor tables are maintained by the operating sys­
tem on behalf of executing programs. 

Since the descriptor tables of the 80286 are maintained in memory, it would seem 
that memory access would be a slow operation, since the contents of a descriptor would 
have to be examined on each memory access. To provide fast address translation, the 
80286 maintains a hidden descriptor cache for each segment register. When a segment 
register is loaded with a valid selector, the descriptor is read into the on-chip segment­
register cache automatically. Subsequent memory access operations within the segment 
proceed without the descriptor table needing to be referenced. To maintain the integrity 
of the descriptor cache, the operating system must be careful not to change the contents 
of a descriptor that is in use, since the 80286 will not reload the cache until the segment 
register is reloaded. 

2.3.6 Protection 

The concept of protection is key in multiprogrammed virtual-addressing systems. The 
operating system must be protected from errant applications, and applications must be 
protected from one another. The 80286 provides a protection model that allows an oper­
ating system to isolate itself from user applications, to isolate user applications from one 
another, and to validate memory accesses. Whenever memory is referenced, the memory 
management unit (MMU) hardware on the 80286 checks the reference to verify that it 
satisfies the protection criteria. Since these checks are made before an instruction that 
references memory completes, any protection violation occurring during the checks will 
cause the 80286 to raise an exception. 

The 80286 privilege levels are used to protect critical system code and data from 
less trusted code. When applied to procedures, privilege is the degree to which the pro­
cedure can be trusted not to make a mistake that might affect other procedures. When 
applied to data, privilege is the degree of protection that the data should have from less 
trusted procedures. The system uses LDTs to isolate each task or process segment by 
allocating an LDT for each one and by switching LDTs when tasks or processes are 
switched. 

Since the segment is the unit of protection, the natural place in which to store the 
protection information is the segment descriptor. The access-rights information in the 
segment descriptor contains the protection information for each segment. When a selec­
tor referencing a segment is loaded into a segment register, the processor loads not only 
the base physical address and limit of the segment into the descriptor cache, but also the 
protection information. Figure 2.8 illustrates the access rights portion of a segment de­
scriptor. 

The accessed bit is reset each time that a selector is loaded into a segment register. 
It is set whenever the segment is read or written, and can be used by an operating system 
to monitor segment usage. 

The present bit in the descriptor tells whether the segment is in memory. If a pro­
gram loads a selector to a segment that is marked not present, then a segment not­
present fault is raised. The present bit and a segment-not-present fault are used by 
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Fig. 2.8 80286 access rights information. (Reprinted by permission of Intel 
Corporation, Copyright/Intel Corporation 1983.) 

operating systems to manage virtual memory. Chapter 6 describes how 16-bit OS/2 uses 
the segment-not-present fault mechanism to extend the physical memory resource. 

2.3.7 Type Checking 

The type field of a descriptor distinguishes among different descriptor formats, and 
specifies the intended use of a segment. For instance, the type field indicates whether the 
descriptor is for a code segment, a data segment, or a special segment used by the sys­
tem. The segment type checking occurs both when a selector is loaded into a segment 
register and during memory references. The type checking ensures that the CS register 
can be loaded only with the selector of a code segment, and that only selectors of 
writable data segments are loaded into SS. 

The writable bit in the access rights information indicates whether a data segment is 
read-only. For code segments, this bit means execute-only, which prevents the contents 
of a code segment from being read. 

2.3.8 Limit Checking 

The segment-limit field in the descriptor denotes the size of the segment. Since 80286 
segments are variable sized, they support byte-granular protection checks. If a program 
attempts to access an offset beyond the limit of a segment, a general protection fault is 
raised. When a general protection fault occurs, the invalid memory access is reported 
with byte-level accuracy. Limit checking is useful for detecting programming errors 
such as array subscripts that are out of the boundary of the array and invalid pointer cal­
culations. 

2.3.9 Privilege Levels 

The 80286 has a four-level protection scheme that an operating system can use to define 
how the system and programs are protected from one another. Privilege value 0 repre­
sents the greatest privilege and the most trust; privilege value 3 represents the least trust. 
The privilege model can also be thought of as comprising rings of protection, in which 
the center ring is for segments containing the system software, and the outer rings are 
for segments of less trusted user software. An operating system may use as many or as 
few of the protection levels as needed in the system architecture. Figure 2.9 illustrates 
the ring protection model. 
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Fig. 2.9 80286 privilege levels and the ring protection model. (Reprinted by per­
mission of Intel Corporation, Copyright/Intel Corporation 1983.) 

Privilege levels are found in three areas of 80286 architecture. Descriptors contain a 
field, called the descriptor privilege level (DPL), that indicates the privilege level re­
quired to access the segment. Selectors contain a field called the requestor privilege 
level (RPL). The RPL represents the privilege level of a procedure that supplies a selec­
tor as a parameter. The 80286 also internally tracks the current privilege level (CPL). 
The CPL is usually equal to the DPL of the currently executing code segment. The CPL 
value changes when control is transferred to code segments with different DPLs. 

The 80286 determines the right of a procedure to access segments by comparing the 
CPL with the privilege levels (DPL and RPL) of the segments to be accessed. The privi­
lege level access checks occur when a selector is loaded into a segment register. If the 
checks fail, the instruction loading the selector into a segment register does not complete 
and a general protection fault is raised. 

2.3.10 Protected Data Access 

When a program loads the selector of a data segment into a segment register, the 80286 
checks to see whether the program has access to the desired segment by comparing 
privilege levels. The privilege check is successful if the CPL is numerically less than or 
equal to the DPL of the segment (CPL_DPL). That is, if the processor is currently run­
ning at a privilege level (CPL) that is the same or more trusted than that of the data be­
ing accessed (DPL), the access is valid. Therefore, a procedure can access only data that 
are at the same or a less trusted privilege level. 

The segments addressable by a program or task change when the CPL changes by 
executing a protected control transfer. When executing at ring 0 (CPL == 0), data seg­
ments at all privilege levels are accessible; when executing at ring 1 (CPL= 1), data 
segments with DPL == 1 and higher are accessible; and so forth. 
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2.3.11 Protected Control Transfers 

The 80286 accomplishes control transfers using the JMP, CALL, and RET instructions 
(interrupts and exceptions are discussed separately). There are three flavors of control 
transfer that differ based on the "distance" of the transfer. 

Control transfers within a single segment require no change in privilege level and 
are called near transfers since the transfer is within the current code segment. The near 
variant of the CALL or JMP instruction is used with an offset in the current code seg­
ment as an operand. 

Transfers between code segments are called far transfers and require the CS register 
to be reloaded with the selector of the transfer target. If a far transfer is to another code 
segment at the same privilege level as the source code segment, the far variant of the 
CALL or JMP instruction is used, specifying the selector of the target code segment and 
the offset in the target code segment to which control should be transferred. When the 
CALL or JUMP instruction is issued, the 80286 checks to see whether the DPL of the 
target code segment is equal to the CPL (the DPL of the current code segment). The 
80286 also performs a type check on the target descriptor to make sure the latter is a 
code descriptor, and a limit check to ensure that the target offset is actually within the 
target code segment. 

If a control transfer is between segments at different privilege levels, a special 
80286 protection construct called a gate must be used as the operand of the CALL 
instruction to execute a far call across privilege levels. A gate is represented by a special 
descriptor, called a gate descriptor. There are four types of gate descriptors, called call 
gates, trap gates, interrupt gates, and task gates. This section describes the general gate 
mechanism using call gates. The call gate's two main functions are to define an entry 
point to a procedure and to specify the privilege level of the entry point. 

To understand why a construct such as a gate is necessary, we can imagine an 
80286 operating system implemented at ring 0 with an application running at ring 3. 
According to the rules of protection, the application at ring 3 has no way to call the op­
erating system for trusted system services such as system calls, since the target code de­
scriptor has a DPL that is numerically less (more trusted) than that of the requestor. We 
need a construct allowing the operating system to make a protected entry point available 
to the less trusted code of the application. 

Call gate descriptors are used in CALL instructions the same way as are code seg­
ment descriptors, except the selector operand references a gate descriptor, and the offset 
operand is ignored. When the 80286 executes the CALL instruction and recognizes that 
the target descriptor is a gate instead of a code segment, the call is executed according to 
gate semantics. Figure 2.10 illustrates the contents of a call gate. 

The call gate contains a unique identifier in the type field of the access rights byte 
to identify to the 80286 that it is a gate descriptor. The gate contains the selector:ojfset 
of the entry point to the desired procedure and a DPL that is the privilege level of the 
gate, not of the target code segment. The gate DPL determines what privilege levels can 
use the gate for a control transfer. For instance, in the example of an operating system at 
ring 0 attempting to provide a protected entry point for ring 3 applications, a call gate of 
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Fig. 2.10 80286 call gate descriptor. (Reprinted by permission of Intel Corporation, 
Copyright/Intel Corporation 1983.) 

DPL = 3 is inserted into one of the descriptor tables and contains the selector:off~et of 
the protected ring 0 entry point. Figure 2.11 illustrates the indirect control transfer 
through a call gate. 

To guarantee system integrity, the 80286 architecture provides for a different stack 
at each privilege level. This provision is necessary so that a trusted procedure does not 
have to rely on the caller to provide sufficient stack space. Also, the trusted system code 
should not run on a stack that can be accessed by less-trusted code. The 80286 maintains 
pointers to the privilege-level stacks in a structure called a task state segment (TSS). The 
TSS is the 80286 data structure used for maintaining a task and the data associated with 
that task. The TSS contains an entire register set for the currently executing task, includ­
ing the stack pointers for privilege levels 0, 1, and 2, it is located by the tasking register 
(TR). Although OS/2 does not use the TSS for representing OS/2 processes, a TSS must 
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be used to facilitate ring transitions. Chapter 5 describes the OS/2 system's minimal 
dependency on the TSS construct with respect to process management and context 
switching. 

When a control transfer between privilege levels occurs using a call gate, the 80286 
automatically switches from the current stack to the more privileged stack by accessing 
the TSS. However, there is a requirement to copy the parameters from the original stack 
to the more privileged stack, so the trusted code can validate them and perform its trust­
ed service. It is here that the count field in the call gate descriptor comes into play. The 
80286 automatically copies the parameters from the target stack to the new stack based 
on the count field in the gate descriptor. During the transfer, all protection checks are ac­
tive when the new stack selector is loaded and when the parameters are copied. This ca­
pability allows the operating system to make transparent to the caller whether the call 
instruction goes through a gate to more privileged code or directly to a code segment at 
the same privilege level. 

2.3.12 Parameter Validation 

An important part of the implementation of operating system calls is the validation of 
pointer parameters passed into the system by application programs. The operating sys­
tem must verify that each pointer parameter is to valid application memory, not to sys­
tem memory, to prevent application programs from inadvertently or maliciously 
destroying system integrity. If an application attempts to access a system address by 
passing a pointer to system addresses as a parameter to a system call, the pointer is 
called a Trojan horse. The pointer's action parallels that of the soldiers during the 
Trojan war who concealed themselves in a wooden horse that they presented as a gift to 
the enemy. The enemy soldiers took the horse into their camp, allowing the concealed 
soldiers to attack them. Any protection system must account for Trojan horses, prevent­
ing less trusted code from passing a parameter to a trusted data object. To assist trusted 
code in validating pointers and avoiding Trojan horses the 80286 provides the requestor 
privilege level (RPL) and an instruction called ARPL. 

The RPL field of a selector indicates to the 80286 the privilege level of the original 
supplier of the pointer. For an access to be valid, the RPL must be numerically less than 
or equal to the DPL of the selected segment, indicating greater or equal privilege of the 
originator (RPL_DPL). In other words, the original caller had to be able to access the se­
lected segment. The privilege-level check verifies that the maximum of the RPL and the 
CPL is less than or equal to the DPL. 

An example of a Trojan horse scenario on an 80286 is a ring 3 procedure calling a 
ring 2 procedure using a call gate, which passes a selector to a ring 2 segment with 
RPL = 2 as a parameter. The ring 2 procedure must have some way of determining the 
validity of the data selector with respect to the originator's privilege level. The ring 2 
procedure could simply insert the caller's privilege level into the RPL portion of the 
selector, but this policy would cause the originating caller's RPL to be lost if the selec­
tor was passed subsequently to a ring 0 procedure. Therefore, the 80286 provides the 
ARPL instruction to allow more trusted code to adjust the RPL field of a data selector 
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before that field is used to be the maximum of the selector's RPL and the caller's CPL. 
This adjustment stamps the selector with the minimum privilege, and assures the trusted 
code that a Trojan horse cannot be passed in. 

In this example, a ring 2 procedure is passed a selector that has RPL = 2. When the 
ring 2 procedure stamps the selector with the ARPL instruction, it alters the RPL of the 
selector to RPL = 3, the minimum privilege (numerically greater) of the CPL and RPL. 
If the ring 2 procedure then passes the selector as a parameter to a ring 0 procedure, the 
ARPL instruction will result in restamping of the selector with RPL = 3, since the orig­
inal RPL = 3 and the caller's CPL= 2. If the ring 0 procedure executing with CPL= 0 
attempts to access the ring 2 segment using the passed selector, the access will cause a 
general protection fault, since the maximum of the RPL and CPL (3) is greater than the 
DPL (2) of the selected segment. 

2.3.13 Protected Instructions 

Since some instructions have the capability of affecting the entire protected system, the 
80286 provides protection to ensure that only trusted procedures with appropriate privi­
leges execute these instructions. Two classes of protected instructions exist: privileged 
instructions used by an operating system, and sensitive instructions used for 1/0 opera­
tions. Privileged instructions can be executed at only privilege level 0. Sensitive instruc­
tions are categorized in Section 2.3.15. 

2.3.14 Interrupts, Exceptions, and Faults 

Interrupts and exceptions in protected mode on the 80286 are similar to those found in 
real mode on the 80286, except that the IVT is replaced by a descriptor table called the 
interrupt descriptor table (IDT). Unlike the IVT, the IDT can reside anywhere in physi­
cal memory and is located by the IDTR register. The IDT may consist of trap, interrupt, 
and task gates. When an interrupt or exception occurs, the number of the interrupt is 
used as an index into the IDT to select a gate that determines the target of the control 
transfer. 

Trap and interrupt gates are similar to call gates, except that they contain no count 
field. The difference between interrupt and trap gates is that interrupt gates transfer control 
to the target code with external interrupts disabled, whereas trap gates transfer control with 
external interrupts enabled. Interrupt and trap gates also have a privilege level field associ­
ated with them that allows the system to control access to the interrupt and exception 
routines. 

For example, assume an operating system with applications at privilege level 3 and 
the system at privilege level 0. All interrupt and fault handling is performed by the system 
at privilege level 0. If an interrupt occurs while CPL = 3 and the interrupt gate descriptor 
has DPL = 0 and a selector to a ring 0 interrupt handling procedure, a general protection 
fault will occur, since the caller (the interrupted code) does not have sufficient privilege to 
access the gate. Therefore, interrupts and traps that may occur at less trusted privilege lev­
els need to have the DPLs in their gate descriptors set to the minimum trusted (numerically 
greatest) privilege level to support potentially less trusted clients. 
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A fault uses the same mechanism as an exception or interrupt, except that a fault is 
caused by synchronous execution of an instruction and the instruction is restartable. A 
fault is a special case of an interrupt or exception. The segment-not-present fault is usu­
ally used by operating systems that swap segments to secondary storage. The general 
protection fault occurs when a protection violation occurs. The operating system deter­
mines whether faults result in program termination. 

2.3.15 Input/Output 

The 80286 has the same 1/0 capabilities in protected mode as exist in real mode or on an 
8088. However, the 1/0 instructions used for accessing the ports in the 80286 1/0 ad­
dress space are protected; they are called sensitive instructions. The 80286 has a field in 
the FLAGs register called the input/output protection level (/OPL) field. The IOPL field 
defines the privilege necessary to execute the sensitive 1/0 instructions, and other in­
structions that manipulate the processor's interrupt flag, such as CLI and STI. If a task 
attempts to use sensitive instructions and is running at a privilege level numerically 
greater (less trusted) than the system's IOPL, its behavior is considered a protection vio­
lation, and a general protection fault occurs. 

2.3.16 Analysis 

The 80286 protected model provides the functions necessary to implement a multitasking 
virtual memory operating system. Due to the 64KB limitations in the addressing ar­
chitecture, programming the 80286 is nontrivial, and source code is relatively nonportable. 
Since large 80286 programs must change segment registers often, and since this operation 
is slow due to the protection checks (compared to loading a segment register in real mode), 
performance of a protected 80286 system is usually not as good as is that of an equivalent 
nonprotected real-mode or 8088 system. However, the 80286 can be used to break the 
lMB barrier associated with the 8088 and to provide rudimentary segmented virtual mem­
ory management. Although 80286 protected mode applications use the same instructions 
as do 8088 applications, due to the difference in segment semantics and to errata on most 
80286 chips in the field, it is not feasible to run 8088 real-mode programs in protected 
mode on the 80286 to take advantage of more than lMB of memory. 

2.4 INTEL 80386 

The 80386 microprocessor is used in some IBM PS/2 and AT-compatible systems. Like 
the 80286, the 80386 has a real mode and a protected mode; it also has another mode 
called virtual 8086 mode. In real mode, the 80386 behaves like a fast 8088. Therefore, 
in real mode, the 80386 is compatible with all systems and applications that run on the 
8088. In protected mode, the 80386 is compatible with protected mode software written 
for the 80286. Virtual 8086 mode is designed to allow 8086/8088 programs and, systems 
to run in a protected-mode environment. 

The 80386 register set and protected mode addressing architecture have stretched the 
80286 to 32 bits to support 32-bit arithmetic, segments up to 4GB in size, and physical 
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memory configurations of up to 4GB. The 80386 provides a paged architecture 
underneath the segmented model to enable more efficient usage of physical memory in 
systems with large memories. 

There are two versions of the 80386 processor; the 80386DX and the 80386SX. 
From the software perspective, the two versions are architecturally equivalent. In the re­
mainder of this book, we shall specify the type of 80386 only where it is significant to 
the discussion. The difference between the two 80386 chips lies in the external connec­
tions: The 80386DX has 32-bit external data and addressing paths, whereas the 
80386SX has a 16-bit external data path and 24-bit external addressing path. Therefore, 
the 80386SX can be used to provide 80386 function and performance in a 16-bit bus 
architecture, such as those found in 80286-based computers, whereas the 80386DX 
requires a 32-bit bus architecture. Although the 80386 32-bit memory architecture sup­
ports up to 4GB of physical memory addressing, 80386SX systems are limited to l 6MB 
of physical memory because of the smaller external bus architecture. 

2.4.1 Register Set 

The general register set of the 80286 has been extended to 32 bits to support 32-bit arith­
metic and addressing operations. This extension allows software to provide significantly 
higher performance than is possible on 16-bit architectures. Figure 2.12 illustrates the 
80386 register set. 

Unlike in the 80286, any of the general registers can be used as the offset portion of 
a memory address calculation. Although the registers are each 32 bits, the 16-bit por­
tions of the registers used by 8088/8086 and 80286 programs can be accessed in real 
mode, protected mode, and virtual 8086 mode. The segment registers are the same as the 
80286, except for the addition of two more segment registers, FS and GS. The FLAGs 
register has been extended to provide a flag bit to indicate virtual 8086 mode operation. 
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Fig. 2.12 80386 register set. (Reprinted by permission of Intel Corporation, 
Copyright/Intel Corporation 1986.) 
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In the past, breakpoint debugging had to be implemented by software, but the 80386 
contains debugging registers that facilitate the implementation of hardware debugging 
breakpoints. The 80386 retains the same memory management system registers as found 
on the 80286: the GDTR, LDTR, IDTR, and TR. 

The 80386 contains a new set of system registers called control registers. Figure 
2.13 illustrates the 80386 CRO, CRl, CR2, and CR3 control registers. 

Like the MSW on the 80286, CRO contains the system control flags; it also contains 
a new flag for indicating whether paging is enabled in the system. CR3 is used to locate 
the paging directory structure and is also called the page directory base register 
(PDBR). CR2 is used when paging is enabled to indicate the linear address of a page 
fault. The control registers and paging are discussed in Section 2.4.4. 

The 80386 also contains a set of test registers used for testing the translation looka­
side buffer (TLB ), a cache used for storing paging information. The TLB is discussed in 
Section 2.4.4. 

2.4.2 Memory Architecture 

The 80386 provides segmented and paged virtual address translation. When protected 
mode is enabled, 32-bit segmented address translation occurs by default. Addresses 
resulting from segmented address translation are physical addresses, as on the 80286, 
unless paging is enabled. If paging is enabled, the addresses generated by segmented 
address translation are called linear addresses. The linear addresses are then further 
translated by the paging unit to create physical addresses. Neither of these translations is 
visible to applications programmers, but both allow system programmers great flexibili­
ty in designing different memory models. 

2.4.3 Segmentation 

Segmented address translation occurs in the protected mode of the 80386, whether or 
not paging is enabled, so we shall discuss segmentation without regard for paging and 
its associated address translation and structures. The segmented memory architecture of 
the 80386 uses exactly the same constructs as are used on the 80286 to facilitate virtual 
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Fig. 2.13 80386 control registers. (Reprinted by permission of Intel Corporation, 
Copyright/Intel Corporation 1986.) 
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memory addressing and protection. The 80386 uses the same descriptors, descriptor ta­
bles, associated system registers, and protection mechanism as does the 80286. All the 
"32-bitness" of the segmentation on the 80386 results from the redefinition of reserved 
fields in the descriptors to support 32-bit addressing. Since the 80286 required these 
fields to be 0, all 80286 system and application code that correctly zeros the reserved 
fields in descriptors runs on the 80386 without any changes. As we shall see, 32-bit ad­
dressing does occur, but the high-order 8 bits of physical addresses generated by the 
80386 will always be 0. Therefore, when 80286 code is being run, physical addresses 
larger than 16MB are not generated by the 80386, and the system effectively is a fast 
80286 running in protected mode. 

As in the 80286, a segment descriptor is 8 bytes and contains the base address of the 
segment, the segment size or limit, and access information that describes what the seg­
ment type is and how it can be used. Figure 2.14 illustrates the contents of an 80386 seg­
ment descriptor. 

The high 2 bytes of the segment descriptor that were reserved on the 80286 are used 
to extend the basic descriptor definition on the 80386. There is a 32-bit segment base ad­
dress, a 24-bit segment limit field, and several new access bits. A segment's base 
address can be anywhere in the 4GB range. 

The 24-bit segment limit specifies the size of the segment using one of two meth­
ods, depending on the setting of the granularity bit. If the granularity bit is clear, the 
limit is defined in units of 1 byte up to a maximum of lMB. If the granularity bit is set, 
the limit is defined in units of 4KB up to a maximum of 4GB. Notice that an 80286 sys­
tem running on the 80386 will always have this bit clear, so limits are interpreted as 16-
bit and byte granular. 

The interpretation of the bit labeled "default/big" (D/B) in Fig. 2.14 depends on 
whether the descriptor type indicates a code or a data segment. If the descriptor is for a 
code segment, then the bit is called the default bit or D-bit. If the descriptor is for a data 
segment, the bit is called big bit or B-bit. To understand the purpose of these bits, we 
must examine how the 80386 deals with providing 16-bit and 32-bit semantics with 
essentially the same instruction set as is used on the 80286. 

When running on the 80286, operands such as registers and address offsets are 16 
bits. On an 80386, however, each of these entities can be 32 bits as well. So that it can 
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Fig. 2.14 80386 segment descriptor. (Reprinted by permission of Intel Corporation, 
Copyright/Intel Corporation 1986.) 
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track in which mode the 80386 is running, the 80386 maintains internally a default 
operand and address state. When the 80386 runs in real mode or in virtual 8086 mode, 
this state is 16 bit by default, enabling 8088/8086 program execution. When the 80386 is 
in protected mode, the default operand and address size are determined by the D-bit in 
the descriptor of the segment that the processor is executing currently. Therefore, when 
the 80386 is running a code segment with the D-bit clear, 80286 semantics are applied 
when instructions are executing, resulting in the use of 16-bit registers, operands, and 
addresses. By "16-bit addresses" here, we mean 16-bit address offsets, instead of 32-bit 
address offsets, being the default during segmented address translation. If the D-bit is 
set, the 80386 defaults to using the 32-bit registers, operands, and address offsets when 
an instruction is executed. Special instruction prefixes, called overrides, are available in 
all processor modes when the default semantics of an instruction must be changed 
temporarily. 

The B-bit also plays a large role in the interpretation of the instruction stream. When 
the selector of a data segment descriptor is used in the SS register to set up a stack, the 
B-bit in the descriptor is used to determine the default size of the stack pointer. If the B-bit 
is clear, the 80386 applies 80286 16-bit stack semantics-stacks are no larger than 64KB 
and have a 16-bit stack pointer, the SP register. If the B-bit is set, the 80386 supports 32-
bit stacks larger than 64K and uses a 32-bit stack pointer, the ESP register. The B-bit also 
allows the 80386 to apply the correct stack semantics when executing an instruction that 
implicitly references the stack, such as PUSH, POP, and CALL. 

The protection mechanisms of the 80386 are identical to those found on the 80286. 
The same four-privilege-level protected architecture and rules apply. However, the 
80386 defines gate descriptors with a different type than 80286 gate descriptors, so that 
it can apply different semantics when executing gated control transfers. The difference 
between 80286 and 80386 gate descriptors is that 80386 descriptors contain a full 16:32 
target address, and the count of stack parameters to transfer during the transition is inter­
preted as 4-byte words. Another difference during gated transfers is that the new stack 
pointer retrieved from the TSS needs to have 32 bits of offset, instead of the 16 bits 
found in the TSS on an 80286. To facilitate this, the 80386 defines an 80386 TSS that 
contains a 32-bit version of the task state information. However, note that a 32-bit TSS 
is not needed if the 80386 is running an 80286 operating system and applications, since 
no 32-bit gated transitions will occur. 

2.4.4 Paging 

Paging is a technique of managing virtual memory as fixed-length blocks (called pages), 
as opposed to variable-length segments in segmented systems. The 80386 uses a paged 
architecture to provide a mechanism for managing the allocation of physical memory in 
a system with large segments. Since the 80386 allows segments to be much larger than 
64KB, managing the physical memory resource without paging can be difficult, since 
the segment must reside in physically contiguous memory. Also, swapping large vari­
able-length segments to secondary storage can cause a virtual memory system to 
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perform poorly. Therefore, the paging mechanism of the 80386 allows segments to 
reside in physically discontiguous memory, and allows virtual memory to be managed in 
terms of small, fixed-length blocks. 

In previous sections, we referred to the 32-bit address that is the result of a seg­
mented address translation as a physical address. On the 80386, however, this address is 
called a linear address. If the 80386 does not have paging enabled, the linear address is 
the same as the physical address. However, if the paging mechanism is enabled by the 
paging bit in CRO being set, then the linear address is not equal to the physical address. 
Rather, the 32-bit linear address is translated by the paging unit on the 80386 into a final 
32-bit physical address. 

With paging enabled, the 80386 divides physical memory into 4KB units of con­
tiguous addresses called page frames. A linear address is actually an ordered tuplet that 
specifies a page table, a page frame within that page table, and an offset within the page 
frame. Figure 2.15 illustrates the format of a linear address. 

The 80386 paging unit performs dynamic address translation using a two-level 
direct mapping. The structure used by the paging unit to map addresses is called the 
page table. A page table is itself a page and contains lK 32-bit entries that are page 
specifiers. Two levels of page tables are used to address a page of memory. The first 
level is a page table, called a page directory, that is located by the CR3 register. The 
page directory addresses up to lK page tables of the second level. A page table of the 
second level addresses up to lK page frames. Therefore, each page table can map 
4MB of physical memory, and a page directory can map lK * 4MB = 4GB of physical 
memory. Figure 2.16 shows how the 80386 converts a linear address into a physical 
address. 

Page table entries have the same format regardless of whether they are in the first or 
second level. Since each page in the system is on a 4KB boundary, each page table entry 
(PTE) uses only the high-order 20 bits to designate a page. The remaining 12 bits of a 
page specifier are used to signify the page attributes. Figure 2.17 illustrates the format of 
a page table entry. 

The present bit indicates whether a PTE can be used in address translation. If the 
present bit is not on in either set of page tables for an entry when an address translation 
occurs, the 80386 raises a page fault. The fault handler can bring the required page into 
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Fig. 2.16 80386 paged linear address translation. (Reprinted by permission of Intel 
Corporation, Copyright/Intel Corporation 1986.) 

physical memory and restart the faulting instruction. This can occur twice for a given 
memory access if the page table is also not present. 

The accessed bit and the dirty bit are used to profile the usage of a page frame. The 
80386 sets the accessed bit whenever a memory reference attempts to read or write to an 
address mapped by a P'TE. The dirty bit is set only when the write is to an address mapped by 
a P'TE. The 80386 does not clear either of these bits. Typically, an operating system uses these 
bits and resets them to age the pages in the system and to determine which pages should be 
swapped out of physical memory when the demand for physical memory exceeds the avail­
able resources. In Chapter 6, we explain how 32-bit OS/2 uses these bits to age pages. 
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Fig. 2.17 80386 page table entry (PTE). (Reprinted by permission of Intel 
Corporation, Copyright/Intel Corporation 1986.) 
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2.4.5 Page Protection 

The read/write bit and the user/supervisor bit are used for page-level protection. The 
user/supervisor bit specifies which privilege levels are allowed access to a page. If the 
user/supervisor bit is clear, the page is a supervisor page; if it is set, the page is a user 
page. The current privilege level (CPL) is used to determine whether the 80386 is cur­
rently running at the user or supervisor privilege level. If the CPL is 0, 1, or 2, the 80386 
is executing at supervisor privilege level. If the CPL is 3, the CPU is executing at user 
privilege level. When the 80386 is executing at supervisor privilege level, all pages are 
addressable; when it is executing at user privilege level, only user pages are addressable. 

The read/write bit determines the access type of a given page. If the read/write bit is 
clear, the page may only be read; if it is set, the page can be read or written. When the 
80386 is executing at supervisor level, all pages are both readable and writable. When it 
is executing at user level, attempts to access a supervisor page or to write a read-only 
page result in a page fault. Since read-only supervisor pages can be written when run­
ning at privilege levels 0, 1, or 2, operating systems that use privilege level 1 or 2 for 
user pages cannot implement copy-on-write algorithms to optimize performance. 
Chapter 6 examines copy-on-write pages in more detail. 

Since the page tables are in physical memory, a reference to a memory location re­
quires memory cycles to bring the address information from the paging data structures 
to the 80386 processor for address translation. To increase the performance of this criti­
cal operation, the 80386 uses a four-way associative cache called the translation looka­
side buffer (TLB) to store the most recently used page table data on-chip. The existence 
of this cache implies that system programmers must include instructions that flush the 
cache whenever the contents of page tables are changed. They can flush the cache by 
reloading CR3, the page directory base register (PDBR = CR3 ). The TLB is similar in 
concept to the segment descriptor cache for increasing descriptor lookup performance 
during segmented address translation. Figure 2.18 illustrates 80386 memory addressing 
with segmentation and paging. 

Since the 80386 provides both segmentation and paging, two methods of combining 
them are used to construct system memory models. The flat architecture is used to exe­
cute software that does not use segments, but rather relies on a large flat address space 
that can be addressed using 32-bit pointers. Although this effectively disables segmenta­
tion, the segment translation of protected mode cannot physically be disabled. However, 
we can achieve the same effect by loading the segment registers with selectors for de­
scriptors that map the entire 32-bit linear address space. Once loaded, the segment regis­
ters do not need to be changed, and the 32-bit offsets are used to address the entire 
address space. Because each task is provided with its own page tables, each task gets a 
unique protected 32-bit linear address space. 

Contrasted with the flat architecture is a memory model that utilizes the full seg­
mented capabilities of the 80386. The 80386 supports segments smaller than a page, 
segments that span pages, and packing of small segments on a single page. A segmented 
system can be constructed using several combinations of the descriptor tables and page 
tables to provide address isolation for individual tasks. Since access to memory is 
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Fig. 2.18 80386 address translation. 

through segments, the system could conceivably have a single linear address space 
shared among tasks that have their own LDT, or a linear address space for each task. 

2.4.6 Virtual 8086 Mode 

The 80386 virtual 8086 mode supports execution of 8086 or 8088 programs in a pro­
tected-mode environment. Virtual 8086 mode enables system software to emulate an 
8086 environment with a virtual machine. The 80386 hardware provides an encapsulat­
ed virtual 8086 environment, while system software controls the external interfaces of 
the virtual machine, such as 1/0 devices, interrupts, and exceptions. 

The 80386 executes in virtual 8086 mode (called v86 mode) when the virtual ma­
chine (VM) bit in the EFLAGS register is set. Paging does not have to be enabled for 
v86 mode to be entered, but the 80386 must be in protected mode. The 80386 leaves 
v86 mode and returns to protected mode when an interrupt or exception occurs. When 
the 80386 is in v86 mode, loading the segment registers causes the 80386 to use 8088-
style address formation, resulting in addresses in the range of 0 to lMB. In addition, the 
80386 allows a system to trap the execution of sensitive instructions in order to allow 
system software to virtualize 1/0 devices and interrupts. 

When the 80386 is in v86 mode, the 8088 address calculation generates 20-bits of 
significant address information. However, 32 bits of address are actually generated with 
the unused bits set to 0. Therefore, the linear addresses calculated during v86 mode 
execution (which are always in the range of 0 to lMB) can be mapped using page tables 
to any 32-bit physical address. Without paging enabled, only one v86 mode task can run 
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effectively, since there is only one unique range of addresses from 0 to lMB that the 
v86 mode task can use. If paging is enabled, however, the system software can provide a 
separate linear address space for each v86 mode task, supporting an environment in 
which multiple encapsulated v86 mode tasks can run concurrently. Figure 2.19 illus­
trates multiple v86 address spaces. 

Paging has several other uses when a v86 mode environment is being provided. 
Paging can allow to exist multiple v86 mode environments that are larger than the size 
of the available physical address space. Another use is to map a single copy of the 8086 
system code or the ROM BIOS code that is common to all v86 tasks into the address 
space of the virtual machines. Paging also can be used to redirect or trap references to 
memory-mapped 1/0 devices using the page protection attributes and page faults. 
Emulation of expanded memory using extended memory also can be provided by 
utilization of the paging feature. 

Since the 80386 does not use descriptors for address calculations when executing in 
v86 mode, it also does not use the segment protection mechanisms while executing in 
v86 mode. A v86 virtual machine can be encapsulated and protected by use of an 
independent address space for each virtual machine, and use of the user/supervisor bit of 
PTEs to protect the system software that is located in each v86 task's address space. 
When the 80386 executes in v86 mode, CPL is set to 3, so an executing v86 mode task 
receives user-level page privileges. 

When the system is in v86 mode, instructions that alter the state of the EFLAGS 
register (such as INT, IRET, CLI, and STI) are sensitive to the system's 1/0 privilege 
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level (IOPL). The I/0 address-space instructions IN and OUT, which are normally 
sensitive to IOPL are not sensitive to IOPL in v86 mode. Since the CPL is always 3 in 
v86 mode, setting IOPL to less than 3 causes the execution of sensitive instructions to 
generate general protection faults. It is up to the v86 mode emulation software to deter­
mine a policy for handling sensitive instructions when emulating DOS INT-style system 
calls or virtualizing the state of the v86 task's interrupt flag. 

2.4.7 Virtual 1/0 

Most 8086 programs and systems were designed to execute on single-task 8086 systems 
and to use the hardware devices directly. However, when a user attempts to run these 
programs concurrently, this use of the actual devices can disrupt system operation. 
Therefore the 80386 provides mechanisms that allow the system software to control the 
I/0 occurring in v86 tasks in a transparent manner. Virtual I/O refers to the capability of 
providing to each virtual machine virtual devices that respond transparently like the real 
devices that the v86 task believes it is using. The system software can emulate or virtu­
alize the hardware devices for the v86 mode tasks. 

We have already seen how the paging mechanism can be used to virtualize memory­
mapped I/0 devices. There also exists a mechanism for trapping accesses to the I/0 
address space. Port-based I/0 in v86 mode differs from protected mode only in that the 
protection mechanism does not consult IOPL when executing the IN and OUT I/O 
instructions. Instead, a special map contained in a v86 task's TSS, called an l/0-
permission bitmap, specifies which I/O port addresses are valid for that v86 task. Each 
v86 task may have its own bitmap or may share a global map describing the I/O address 
space for v86 tasks. When a v86 program executes an IN or OUT instruction, the 
bitmap is consulted to see if the port is valid for the v86 task. If the port address is not 
valid in the bitmap, a general protection fault is raised by the 80386. Using this type of 
protection, system software can provide virtual I/0 services for v86 tasks, or can permit 
a v86 task to have direct access to a particular piece of hardware. 

2.4.8 Analysis 

The 80386 contains the functions necessary to provide a 32-bit protected multitasking 
environment. Just as important is the virtual 8086 mode feature that allows an 80386 
operating system to provide a protected environment for the concurrent execution of 
8086 systems and programs. The 32-bit programming model allows systems to break the 
64KB barrier associated with 80286 systems and defines the 32-bit programming plat­
form for the future. 

2.5 INTEL 80486 

The 80486 is an 80386-compatible 32-bit processor. Functionally, both the 80386 and 
80486 are identical, except for several changes in the latter to enhance performance. 
Throughout this book, references to the 80386 include the 80486 unless specified other­
wise. The 80486 has an 8KB on-chip cache for storing frequently used instructions and 
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data. The 80486 also integrates the 80387 numeric coprocessor onto the 80486 chip. 
From the perspective of system software, the 80486 is a fast 80386 with an on-chip 
cache and 80387. The 80486 allows the page-level protection to be configured in a way 
different from on an 80386. Recall that read-only pages may be written by code running 
in supervisor mode. This prohibits system software from using lazy page allocation 
strategies such as copy-on-write pages (see Chapter 6). The 80486 has a write-protect 
(WP) hit defined in the CRO control register that allows a system to protect read-only 
pages from supervisor mode access. The 80486 also achieves pipelined instruction 
execution; this allows the processor to process instructions in parallel, and in most cases, 
it increases processor performance. 

2.6 RISC PROCESSORS 

The fundamental goal of reduced-instruction-set computing (RISC) architectural designs 
is to maximize the effective speed of a processor design. RISC does this by performing 
most functions in software. The only functions remaining in hardware are those whose 
inclusion in the instruction set yields a net gain in performance when used by programs 
written in a high-level language (HLL). The 80286, 80386, and 80486 processors are 
complex-instruction-set computing (CISC) architectures. RISC processors have simple 
hardwired instruction sets with little microcode, singleccycle instruction execution, fixed 
instruction length, simple addressing modes, and deep pipelined architectures. Although 
not all RISC processors adhere to these guidelines, most on the market do. For the pur­
pose of studying RISC as a hardware platform, a RISC processor is treated as a generic 
32-bit or 64-bit processor with a large number of registers and a high-performance virtu­
al memory system (usually paged). RISC programming is always done in high-level lan­
guages, and the compilers and linkers are responsible for optimizing the use of the 
hardware. 

There are many popular RISC chips on the market today, including SPARC, MIPS, 
AMD 29000, the Intel 80860 and 80960, and the IBM POWER architecture used in the 
RISC System/6000. Most of these architectures conform to most of the tenets of RISC 
design. However, the major drawback of these chips is their lack of support for 8088 
compatibility. Although it is feasible to simulate the entire 8088 instruction set with a 
RISC engine, protected concurrent execution of DOS applications and of extended DOS 
applications such as those found in the Windows 3.0 environment is difficult without ex­
tra hardware support. 

SUMMARY 

The Intel family of microprocessors includes the segmented 8086/8088, 80286, 80386, 
and 80486. Each of these processors includes a common mode, called real mode, that is 
used by the DOS operating system. Real mode supports 16-bit execution and a lMB ad­
dress space that is divided into 64KB segments. Real mode provides no virtual memory 
capability or protection mechanisms; it is suitable for small single-user, single-task op­
erating systems such as DOS. 
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The 80286, 80386, and 80486 provide another mode, called protected mode, which 
provides support for virtual memory, program, and system isolation. These features en­
able these processors to access up to 16MB (80286) or 4GB (80386 and 80486) of phys­
ical memory while providing protection mechanisms that meet the needs of multitasking 
virtual-memory operating systems, such as OS/2 and UNIX. 

The 80386 and 80486 provide a virtual 8086 mode, which allows multiple 8086 
programs to be run within a protected environment. 

RISC processors provide generic 32-bit and 64-bit platforms that can address large 
amounts of memory using reduced-instruction-set technology. 

TERMINOLOGY 
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access right 
aliasing 
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page frame 
page-not-present exception 
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protection 
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real address 
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EXERCISES 

Questions pertaining to the 8088: 

segmented model 
selector:offset format 
sensitive instruction 
SI register 
16:16 format 
software interrupt 
special register 
stack 
supervisor page 
synchronous event 
task gate 
task state segment (TSS) 
tasking register (TR) 
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32-bit linear address space 
translation lookaside buffer (TLB) 
trap gate 
Trojan horse 
user page 
user/supervisor bit 
virtual address 
virtual addressing 
virtual 8086 mode 
virtual 1/0 
virtual machine (VM) 
virtual memory 
write-protect bit 

2.1 Describe the 16: 16 segment: offset logical addressing scheme of the 8088 microprocessor. 
Show precisely how a typical physical memory address is calculated from a logical memory 
address. 

2.2 What does it mean for 8088 segment values to be 16-byte or paragraph granular? Explain the 
concept of 8088 address aliasing. 

2.3 Distinguish between near transfers and far transfers. 

2.4 Discuss the usage of each of the registers (including segment registers) in the 8088 's register 
set. 

2.5 Distinguish among the 8088's notions of interrupts, exceptions, and software interrupts. 
Which are synchronous events and which are asynchronous? Explain how the 8088 uses the inter­
rupt vector table (IVT) to route interrupts, exceptions, and software interrupts to appropriate han­
dler routines. How does the handler return control after handling an event? 
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2.6 Discuss each of the two ways the 8088 performs I/0-namely, the use of the I/0 address 
space with specific I/0 instructions, and the use of memory-mapped I/0 with general-purpose 
instructions. 

Questions pertaining to the 80286: 

2.7 Explain the 80286's notions of real mode and protected mode. 

2.8 How does the 80286 distinguish between segments that are global to all tasks and segments 
that are local to particular tasks? 

2.9 Explain the following statement: "Unlike in the addressing scheme on the 8088, the segment 
values on the 80286 do not represent actual locations in physical storage." Specify what these seg­
ment values do represent. 

2.10 Describe in detail how virtual address translation occurs in 80286 protected mode. 

2.11 Why are descriptor tables in an 80286 system maintained by the operating system instead 
of being made directly accessible to executing programs? 

2.12 The descriptor tables of the 80286 are maintained in memory, so we might expect memory 
access to be a slow operation, since the contents of a descriptor would have to be examined on 
each memory access. What special hardware does the 80286 use to speed up memory references? 
What assumption about a program's memory reference pattern makes the use of such hardware 
worthwhile? 

2.13 Explain the importance of protection in the 80286. Describe how protection is im­
plemented. 

2.14 When applied to procedures, what does "privilege" mean? When applied to data, what does 
"privilege" mean? 

2.15 When a program loads a selector to a segment that is marked as not present, then a 
segment-not-present fault is raised. A fault is not fatal; it merely indicates to the operating system 
that some action needs to be taken before a program can resume normal execution. What actions 
must the operating system take in response to a segment-not-present fault? 

2.16 How is the segment limit field used in error checking? What error is explicitly tested for by 
examination of the segment limit field? What kinds of program errors might be detected with this 
check? 

2.17 Explain the 80286's ring protection model. 

2.18 Describe how the 80286 enables an indirect transfer through a call gate. 

2.19 Distinguish between privileged instructions and sensitive instructions. 

2.20 Discuss the differences between trap gates and interrupt gates. 

2.21 How is the input/output protection level (IOPL) field of the FLAGs register used in con­
junction with sensitive instructions? 

2.22 What aspects of the 80286 addressing architecture make programming the 80286 nontrivial 
and hinder 80286 source-code portability? 

Questions pertaining to the 80386 and the 80486: 

2.23 Discuss each of the 80386 modes of operation: real mode, protected mode, and virtual 8086 
mode. 
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2.24 The 80386 allows for segmented addressing either with or without paging enabled. Explain 
both addressing schemes. 

2.25 Explain the use of the granularity bit in the 80386. 

2.26 How does the 80386 provide both 16-bit and 32-bit semantics with essentially the same 
instruction set as is used by the 80286? ' 

2.27 What problems of segmentation make the use of paging in addition to segmentation attractive? 

2.28 Explain 80386 paged linear address translation. 

2.29 Explain 80386 memory addressing with segmentation and paging. 

2.30 Discuss the notions of virtual 8086 mode, virtual machines, virtual I/O, and virtual devices 
as they are used in the 80386. 

2.31 How does the 80486 differ from the 80386? 

2.32 Explain the fundamental differences between CISC architectures and RISC architectures. 





3 
Hardware Architectures 

"The question is," said Humpty Dumpty, "which is to 
be master - that's all." 

Lewis Carroll 

What's going to happen in the next decade is that we'll figure 
out how to make parallelism work. 

David Kuck 
quoted in TIME, March 28, 1988 

... In a new channel,fair and evenly. 

William Shakespeare 
Henery IV, Part I 
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3.1 INTRODUCTION 

This chapter explores the system configurations found in personal computers in order to 
lay a foundation for understanding how the OS/2 system is designed and implemented. 

Most PC hardware architectures are uniprocessor systems that consist of a main 
processor, memory, and peripheral devices attached to a single shared hus. The bus con­
nects the units in a system and defines the medium for data exchange in a computer. A 
bus typically is composed of data lines for sending data, address lines for sending 
addresses, and control lines for sending interrupts and for operating the bus. 

The system is built on a system planar or motherboard. The motherboard contains 
slots or connectors for adding cards that extend the functionality of the system. There 
are various ways these components can be configured, as well as various bus technolo­
gies. This chapter surveys PC hardware architectures from the original IBM PC to the 
latest systems. 

3.2 IBM PC 

The original IBM PC, also called the PC-1, contains an 8088 microprocessor that is 
driven by a 4.7MHz clock. The 8088 and peripherals are configured on a bus that allows 
20 bits of addressing and 8 bits of data to be transferred at about 2MB per second. Only 
a single transfer can occur on the bus at any one time, requiring software to pace and 
serialize access to the bus by the 8088 and the peripheral devices. The planar contains 
several bus-extension slots for adding peripheral attachment cards, such as serial and 
parallel ports, hard disk controllers, communications cards, and memory. The IBM PC 
supports 16 different interrupt levels for interrupt-driven I/0, and a DMA controller to 
allow devices to steal cycles from the 8088 during large I/0 transfers. DMA is described 
further in Chapter 8. Figure 3.1 shows the layout of the IBM PC system. 
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Since the 8088 does not support any floating-point arithmetic operations, the 8087 
numeric coprocessor can be added optionally to the IBM PC to enhance performance of 
floating-point operations. The 8087 is closely tied to the 8088-the 8088 is called the 
master, and the 8087 is called the slave since it operates only on behalf of the 8088. 

The system read-only memory (ROM), video buffer (VRAM), and other memory­
mapped devices are mapped into the 8088 address space in the range from 640KB to 
lMB. The system ROM contains the power-on self-test (POST) and BIOS. POST is ex­
ecuted each time the PC is started. The BIOS is a set of routines accessed by software 
interrupt in real mode that can be used by operating systems to provide a level of hard­
ware device independence. 

The first IBM PCs provided up to 256KB of RAM on the planar, which could be 
expanded to 640KB by attachment of memory cards. The IBM PC/XT planar was fur­
ther enhanced to support up to 512KB. Access times for planar memory are generally 
shorter than are access times for memory that is attached to the bus via a memory card 
(bus-attached memory). 

The IBM PC is configured using switches called dip switches, which are small tog­
gles the size of a pencil tip. When the PC display is set up or memory is added, dip 
switches must be set to indicate the configuration on the planar and on the expansion 
card. 

3.3 IBM PC/AT 

The IBM PC/AT is similar to the IBM PC, but it contains an 80286 processor that is 
driven by a 6MHz clock. The 80286 uses the 80287 numeric coprocessor to perform 
floating-point operations. Since the PC/AT utilizes the 80286, it can be configured with 
up to 16MB of memory. 

The system bus is wider than that on the PC-1 to allow 24 bits of addressing and 16 
bits of data to be transferred on the bus at rates up to 4MB per second. The bus architec­
ture is extended in an upward-compatible fashion so that 8-bit expansion cards that 
could be added to the IBM PC can still be used in an IBM PC/AT. This bus architecture 
is known as the Industry Standard Architecture (ISA) because it has become the standard 
bus of IBM compatibles and clones. Figure 3.2 illustrates an IBM PC/AT with an ISA 
bus configuration. 

Whereas the original IBM PC/ATs came with 512KB on the planar, later models 
provided 640KB on the system board. Since the 80286 and the PC/AT system allow 
more than lMB of memory to be attached, the AT system allows memory cards to be 
added to the system using the bus. As on the PC-1, bus-attached RAM is slower than the 
RAM on the planar. 

Memory cards for the IBM PC/AT are configured with dip switches like expansion 
cards on a PC-1, but the PC/AT planar has no dip switches. Instead, the system configu­
ration information is saved in a 64KB CMOS RAM that is powered by a small lithium 
battery. 

Although the ISA bus allows expansion cards with intelligent processors that can 
access all of installable system memory, these cards must access system memory under 
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direct control of the processor or the DMA controller. For example, the IBM PC LAN 
card contains an 80186 processor to perform NETBIOS-level network services. 
Although the 80186 on the LAN card contains its own memory, which is not visible to 
the main processor, it can transfer data between its memory and the system's memory 
only by using the system's DMA controller. 

3.4 AT 80386 

While IBM does not have any 80386 PCs based on the ISA bus, Compaq and many 
other vendors have produced a class of PCs called AT 80386 machines. These PCs use 
the 80386 as the main processor and the 80287 or the 80387 numeric coprocessor for 
floating-point operations. The bus in this class of machine is the same as the ISA bus, 
but special extended connectors for memory cards allow one or two 32-bit memory 
cards to be attached to the system. The 16-bit memory cards used in 80286 AT machines 
can usually be installed in most machines of the 80386 AT class. However, none of the 
80386 AT-class machines provide 32-bit I/O capabilities. 

3.5 MICRO CHANNEL ARCHITECTURE 

When IBM staff began designing its first 80386-based PC, they realized that the 16-bit 
ISA architecture had several limitations that inhibited performance and decreased quali­
ty. These problems were in the areas of system configuration, interrupt sharing, bus 
sharing, and 32-bit I/O. To overcome these problems, IBM created the Micro Channel 
Architecture. 

Since many hardware problems on PCs were directly related to incorrect dip-switch 
settings, IBM wanted to provide a self-configuring system. With the large number of ex­
pansion cards in the market, IBM could not provide such a system without changing the 
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extension card and bus architecture. The Micro Channel requires extension cards to have 
special registers and identifiers that are used when configuring the system. 

Interrupt sharing, which occurs when two different expansion cards have 1/0 
devices that use the same interrupt level, is difficult to implement on the ISA bus since it 
uses edge-triggered interrupts. An edge-triggered interrupt is equivalent to a pulse sent 
down the bus on an interrupt line. If the processor or interrupt controller is not ready for 
the pulse, the interrupt can be lost and a system crash may result. The Micro Channel 
Architecture supports interrupt sharing with level-triggered interrupts. In a level-trig­
gered system, an interrupt causes a specific interrupt line on the bus to be held at an 
interrupt level. Only when the software interrupt handlers clear the interrupting device is 
the interrupt line released. Therefore, the Micro Channel Architecture provides a much 
more reliable environment for interrupt sharing. 

As previously described, the ISA bus does not support generic bus sharing. To allow 
intelligent devices attached to the bus to take over or master the bus, IBM had to make sig­
nificant changes in the bus architecture. The Micro Channel Architecture provides a func­
tion called bus arbitration that regulates access to the bus by extension cards and by the 
main processor. Different arbitration levels are assigned to components on the bus. When 
a bus arbitration cycle occurs, the "winning" device is awarded exclusive access to the bus 
for a period of time. Devices that attach to the Micro Channel and arbitrate to take over the 
bus are called bus masters. Bus master support also allows multiprocessor configurations 
of the Micro Channel to be created by the addition of bus master adapters containing a 
processor and its support chips. 

Since the Micro Channel Architecture is intended to support 16-bit and 32-bit sys­
tems, it comes in both 16-bit and 32-bit versions. Both versions of the Micro Channel 
Architecture have the same functions, but the 16-bit bus contains a 24-bit address path 
and 16-bit data path like the ISA bus, and the 32-bit bus provides a 32-bit address path 
and 32-bit data path. The Micro Channel is capable of transferring data at rates from 
20MB to 40MB per second, which is much faster than the ISA bus transfer rate. 

As a result of the improvements to the ISA to form the Micro Channel Architecture, 
it was necessary for IBM to alter the form factor of the system. The form factor 
describes the size of the extension cards and the shape of the connector used to attach 
the cards to the bus. As we shall see, since PS/2s include far more devices on the planar, 
there is not much reason to provide the capability to attach old ISA cards to the system, 
although many people thought that this capability was necessary to preserve their invest­
ment in extension cards. 

3.6 IBM PS/2 

The IBM PS/2 machines are available in various models based on the processor type, 
clock speed, and bus technology. There are both 16-bit 80286-based PS/2s, and 32-bit 
80386-based and 80486-based PS/2s. Table 3.1 summarizes the PS/2 product line. 

Figure 3.3 illustrates the PS/2 Model 80 system architecture. Unlike that of the PC-1 
and PC/AT, the PS/2 planar includes a Video Graphic Array (VGA) display controller, 
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Fig. 3.3 IBM PS/2 system architecture. 
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diskette controller, serial controller, and parallel controller. Except for Models 90 and 95, 
PS/2s have nonuniform memory access speeds depending on whether memory is on the 
planar or is attached via the bus. The planar architecture of Models 90 and 95 is different 
from that of the other PS/2s. The processor, external cache, and DMA controller exist on a 
special hardware card called the processor complex. This reorganization of the planar al­
lows the processor to be upgraded by changing the processor complex, and also provides an 
environment that facilitates consistent memory subsystem speeds. Models 90 and 95 also 
use a more advanced display controller called the Extended Graphics Array (XGA), which 
provides video modes supporting 1024- by 768-pixel resolution and VGA compatibility. 

3.7 EXTENDED INDUSTRY SYSTEM ARCHITECTURE 

Since the Micro Channel Architecture was introduced by IBM, many other hardware 
vendors were reluctant to begin copying an IBM proprietary architecture in their prod­
ucts. Since these companies had mostly ISA-based products, they decided to create an 
extension of the ISA that would not be owned by a single company, and that would meet 
the same requirements met by the Micro Channel Architecture. The new extended ISA 
architecture (EISA), describes a bus architecture similar to, but not compatible with, the 
Micro Channel Architecture. 

EISA provides for optional self-configuring systems and shared interrupts, 32-bit 
I/0, and the capability of adding bus master devices to the system. EISA transfers data 
at rates up to 33MB per second. The main difference between EISA and the Micro 
Channel Architecture is the shape of the connectors of extension cards. The Micro 
Channel Architecture uses a connector that is totally different from that found on ISA 
systems, whereas EISA uses a connector similar to that used by ISA. 

3.8 CACHE SYSTEMS 

Several models of the 80386 and 80486 PS/2s, EISA systems, and 80386 ATs are driven 
by 20MHz to 33MHz clocks, resulting in a large mismatch between the speed of the 
processor and the mean memory access time. So that wait states do not have to be added 
to the bus cycles to match the processor and memory speeds, these systems make use of 
an external cache to allow the 80386 to sustain its high performance. A cache subsystem 
is usually composed of a small amount of fast memory in the form of static RAM 
(SRAM), a large amount of slow memory in the form of dynamic RAM (DRAM), and a 
cache controller. Static RAM is faster but more expensive than dynamic RAM. Figure 
3.4 illustrates a cache subsystem. 

In a cached system, main memory is used to store all the data, but some of the data is 
replicated in the cache. When the main processor accesses memory, the cache is checked 
for the data first. If the data is not in the cache, a cache miss occurs, and the cache con­
troller fetches the data from main memory for the processor and retains the data in the 
cache. If the data is found in the cache, a cache hit occurs, and the processor receives the 
data quickly, since the data is in the static RAM cache. The cache-hit ratio is the percentage 
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Fig. 3.4 Cache memory subsystem. (Reprinted by permission of Intel Corporation, 
Copyright/Intel Corporation 1987.) 

of accesses that are cache hits; its value is affected by the size of the cache and the algo­
rithm used to allocate cache blocks. Common cache algorithms are the fully associative, 
direct-mapped, and set-associative cache. Each has its own characteristic methods for 
attempting to provide a balance among hit rate, performance, and cost. 

Since two copies of the same data can exist at once at the same address in cache 
systems, the cache controller must have a system for maintaining the integrity of the 
cache and of memory. To prevent stale data from being used, cache controllers use 
schemes called write-through and write-back to update the cache during memory write 
operations. 

In a write-through cache, the cache controller copies the data to be written to main 
memory immediately after it is written to the cache. The result is that main memory al­
ways contains correct data. In a write-through cache, any block of data in the cache can 
be overwritten without loss of data. 

In a write-back cache, information is retained by the cache controller in the cache 
that indicates whether the data has been written and is more recent than the data in main 
memory. Before any data in the cache is overwritten, this information is checked, and 
the controller writes the data to main memory before overwriting the block. Write-back 
caching is faster than write-through caching, since the number of times a changed mem­
ory block must be copied to main memory is usually less than the number of memory 
write operations. However, write-back caches are more complex and must write all al­
tered data in the cache to main memory before any I/0 device accesses main memory. 

Although write-through caches and write-back caches eliminate stale data in main 
memory, if caches are used in a system where more than one device has access to main 
memory, a new stale data problem is introduced. For example, if a bus master device on 
the Micro Channel writes data to main memory, the 80386 cache may now contain stale 
data. A system that prevents the stale data problem in this situation is said to maintain 
cache coherency. Four methods of maintaining cache coherency are bus watching, hard­
ware transparency, noncacheable memory, and cache flushing. 

With bus watching, also called snooping, the cache controller watches the system 
address lines on the bus to see whether another bus master writes to main memory. If the 
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main memory altered by the bus master also exists in the processor cache, then the con­
troller invalidates the cache entry. 

Hardware transparency ensures cache consistency by making sure that all accesses 
to memory mapped by a cache are routed through the cache, or by broadcasting all 
cache writes to all other caches that share the main memory. 

Noncacheable memory allows certain accesses of selected memory addresses, such 
as those for memory-mapped I/0 buffers, to bypass the cache. Cache flushing causes all 
data in a cache to be written to main memory. In this technique, the operating system 
must flush the cache before any device I/0 occurs to main memory. 

In most cached architectures on PCs and PS/2s, a combination of these four strate­
gies is applied. Since the PS/2 uses direct memory access (DMA) to overlap disk and 
main processor cycles, the cache controller must also monitor DMA write operations to 
main memory in order to maintain cache coherency. 

3.9 MULTIPROCESSOR SYSTEMS 

As we saw in systems built around the Intel 80X86 series of processors, an auxiliary 
processor called a floating-point coprocessor was used to perform floating-point opera­
tions for the main processor. This configuration is not a multiprocessor; the floating­
point processor is called a "coprocessor" since it is performing only functions needed by 
a single 80X86 processor, and since it does not run without the 80X86 processor to tell 
it what operations to perform. 

Another type of configuration that appears to be a multiprocessor configuration is a 
general-purpose processor used on an extension card to drive an intelligent device. For 
example, a RISC processor on a graphics card might be used to perform graphics opera­
tions, instead of the main processor performing the operations. In this configuration, the 
RISC processor is called a dedicated processor or a peripheral processor. 

Multiprocessor systems are characterized by having multiple processors used in 
parallel to achieve a greater system throughput than can be achieved by a uniprocessor 
configuration. Multiprocessor systems have the common traits of being able to execute 
multiple instruction streams and to manipulate multiple data streams in parallel. Some 
people recognize any system with multiple processors as being a multiprocessor ma­
chine; however, by "multiprocessor systems," we mean a configuration in which the 
multiple processors work to increase the general computing power of a system. 
Multiprocessor systems also usually have the capability of losing a processor and allow­
ing the system to continue operation. The development of multiprocessing hardware re­
quires a multithreaded, multitasking operating system that is designed to have minimum 
code and data serialization. 

A multiprocessor system in which all of the processors are of the same type is 
called a homogeneous system. A system in which at least one processor is different is 
called a heterogeneous system. For example, a system composed of an Intel 80486 and 
an Intel 80860 is a heterogeneous system; a system composed of several 80486s is a 
homogeneous system. 
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Multiprocessor systems are also classified by the way they are treated by an operating 
system. There are two primary models for operating system distribution in a multiprocessor 
environment: master/slave and peer. In a master/slave system, one processor is the master 
and the rest are slaves. The master processor governs I/0 and system resources while 
assigning computational jobs to the slave processors. In a peer processor system, each pro­
cessor either runs a copy of the same operating system or actually runs the same operating 
system. In both cases, all processors are capable of 1/0 processing and job scheduling. 
Operating system distribution in a multiprocessor system is discussed in Chapter 6. 

3.10 MULTIPROCESSOR SYSTEM INTERCONNECTION 

A key issue in the architecture of multiprocessor systems is what processor interconnec­
tion scheme is used. How the processors are interconnected determines how memory is 
accessed, and how I/0 is performed. The coupling of a system describes how closely as­
sociated the processors are connected. A loosely coupled multiprocessor system consists 
of several processors connected by an internal (bus) or external communications link. A 
loosely coupled multiprocessor is almost analogous to a network of processors, and 
communication between processors is usually done by message passing since none of 
the processors share memory. Another classification of loosely coupled systems is called 
no-remote-memory-access (NORMA) multiprocessors (Te87). NORMA configurations 
are distinguished by the characteristic that no processor can access another processor's 
memory. NORMA systems constitute the loosest coupling possible, and are the easiest 
to build in configurations with large numbers of processors. Figure 3.5 illustrates the in­
terconnection scheme of a loosely coupled system. 

A tightly coupled multiprocessor consists of several processors that share memory 
and 1/0 devices. Since all the processors can access main memory, interprocessor com­
munication is done by shared memory. Typically, tightly coupled multiprocessor sys­
tems have some hardware support for locking shared memory, so that processor 
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Fig. 3.5 Loosely coupled multiprocessor. (Reprinted from Harvey M. Deitel, 
Operating Systems, 2nd Edition, Copyright 1990, Addison-Wesley Publishing Co., 
Inc. Reading, MA. Reprinted by permission.) 
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contention can be resolved. These systems are also called symmetric multiprocessors. In 
symmetric-multiprocessor systems, each processor runs the same operating system. 
Figure 3.6 illustrates the interconnection scheme of a tightly coupled system. 

There are two types of tightly coupled systems, based on the memory access charac­
teristics of the system. A system in which each processor has uniform access times to a 
shared memory is called a uniform-memory-access (UMA) multiprocessor. If each pro­
cessor has a nonuniform memory access time-perhaps due to a local memory associated 
with each processor that is faster than the main shared memory-then the system is a 
nonuniform-memory-access (NUMA) multiprocessor. The UMA, NUMA, and NORMA 
designations were defined during research on the Mach operating system at 
Carnegie-Mellon University (Te87). Figure 3.7 illustrates how coupling relates to memory 
access. 

The shared bus is an interconnection approach similar to the Micro Channel 
Architecture and EISA that is used on most UMA systems. Processors can be added to 
the system via attachment to the bus. If the processors have local memories on their ex­
tension cards but can also share main memory, the configuration is classified as falling 
between UMA and NUMA. If the processor extension cards can access only the local 
memory on their cards, the configuration is classified as NORMA, and the bus acts as an 
internal network. 

In a typical UMA system, each processor has a cache. Caches cause problems in 
multiprocessor configurations since the hardware does not always guarantee cache co­
herency between processors. Furthermore, in a UMA composed of 80486s, each 80486 
has its own translation lookaside buffer (TLB) for virtual address translation. Operating 
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of processors of processors of processors 

Fig. 3.7 Relationship between processor coupling and memory access. (Reprinted 
from A. Tevanian, Jr. "Architecture-Independent Virtual Memory Management for 
Parallel and Distributed Environments: The Mach Approach." Copyright 1987. PhD 
thesis at Carnegie-Mellon University. Reprinted by permission.) 
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systems supporting multiprocessing environments must take into account TLB and 
cache coherency between processors. Since the 80486 provides no capability to connect 
the processors such that TLB coherency is ensured by the hardware, this task must be 
performed by the operating system using a software-based interprocessor-communica­
tion scheme. As described in Section 3.8, cache coherency can be maintained in a UMA 
configuration if each processor snoops the bus for memory write transactions. 
Alternatively, a memory write to the shared memory can cause a cache invalidate signal 
to be sent to each processor, so that each processor can check for local stale data and can 
flush its cache if necessary. Figure 3.8 illustrates a UMA configuration. 

UMA configurations work well for small numbers of processors; however, due to 
bus contention and cache flushing, nonuniform memory access times can result. 
Therefore we say that UMA architectures do not scale up to configurations with more 
processors. NUMA configurations typically attempt to avoid these problems by associat­
ing a local memory with each processor. The local memory can be accessed quickly by 
the local processor, but a performance penalty is incurred if the local memory is 
accessed by a nonlocal processor. In some NUMA systems, the local memory is 
addressable by only the local processor. Keeping cache contents consistent is more diffi­
cult in NUMA systems, leading most such systems to provide no cache consistency or to 
have no caches at all. In such cases, however, the local memory behaves in some ways 
like a cache. Figure 3.9 illustrates a NUMA configuration. 

SUMMARY 

fhe original IBM PC is based on the 8088 processor and is a single-bus uniprocessor 
system. The IBM PC/ AT was the first PC to use the 80286 processor. The bus structure 
of the IBM PC/ AT is known as the Industry Standard Architecture (ISA). 

The IBM PS/2 line of systems uses a bus structure called the Micro Channel 
Architecture. The Micro Channel Architecture comprises a 32-bit bus that supports both 
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Fig. 3.9 Nonuniform-memory-access multiprocessor (NUMA). 
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uniprocessor and multiprocessor configurations, and a technique called bus mastering. The 
PS/2 line of computers includes systems based on the 8086, 80286, 80386, and 80486. 

The Extended Industry Standard Architecture (EISA) is a bus architecture that com­
petes with high-end Micro Channel systems and provides many of the same features. 
However, peripheral device adapter cards designed for the EISA and Micro Channel 
systems are not interchangeable. 

Since systems with fast processors can run much faster than the memory they ac­
cess, cache subsystems are used to improve performance of interactions between the 
processor and memory. A cache is a high-speed memory buffer between the processor 
and memory that is used to minimize the number of times a processor must access main 
memory. An algorithm is used to control the contents of the cache, and to ensure the in­
tegrity and coherency of the cache. Bus snooping, hardware transparency, cache flush­
ing, and noncacheable memory are techniques used to maintain cache coherency. When 
a cache contains incorrect data or is not kept in a coherent state, we say that it contains 
stale data. 

Multiprocessor systems use clusters of processors that run in parallel to increase 
throughput and performance. Multiprocessor systems are described by the coupling be­
tween the processors and by the way resources such as memory, 1/0 devices, and buses 
are shared. 
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wait state 
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3.1 Discuss the functions of each of the lines typically included on a bus (data lines, address 
lines, and control lines). 

3.2 Compare access times for planar memory to access times for bus-attached memory. 

3.3 Describe the IBM PC system architecture. 

3.4 Describe the IBM PC/AT system architecture. 

3.5 What is the significance of the AT 80386 machines? 

3.6 Discuss the limitations of the 16-bit ISA bus architecture that led IBM to introduce the 
Micro Channel Architecture. 
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3.7 Compare and contrast edge-triggered interrupts with level-triggered interrupts. 

3.8 Why is interrupt sharing difficult on the ISA bus? 

3.9 Explain the notions of bus arbitration and bus mastering associated with the Micro Channel 
Architecture. 

3.10 Describe the IBM PS/2 system architecture. 

3.11 Explain the notion of nonuniform memory access speeds in the context of the PS/2. 

3.12 What was the primary motivation for the creation of the Extended Industry Standard 
Architecture (EISA) bus? 

3.13 Describe the architecture of a typical cache memory subsystem used with an 80386. 

3.14 Discuss the notions of cache miss, cache hit, and cache-hit ratio. 

3.15 Explain the operation of write-through caches and write-back caches. Which is faster? 
Explain your answer. 

3.16 Discuss each of the following methods of maintaining cache coherency: bus watching, 
hardware transparency, noncacheable memory, and cache flushing. 

3.17 Why is a processor-coprocessor configuration fundamentally different in nature from a 
multiprocessor configuration? 

3.18 Is using a RISC processor on a graphics card to perform graphics operations instead of hav­
ing the main processor performing the operations, considered a multiprocessor configuration? 
Explain your answer. 

3.19 What attributes characterize a multiprocessor system? 

3.20 Distinguish between homogeneous multiprocessors and heterogeneous multiprocessors. 

3.21 Distinguish between master/slave multiprocessing and peer multiprocessing. 

3.22 Describe the architecture of a typical loosely coupled multiprocessor system. How is com­
munication between the processors accomplished in such a system? 

3.23 Describe the architecture of a typical tightly coupled multiprocessor system. How is com­
munication between the processors accomplished in such a system? 

3.24 What kind of hardware support is typically provided in a tightly coupled multiprocessor to 
resolve processor contention over shared memory? 

3.25 Distinguish among UMA, NUMA, and NORMA multiprocessors. 

3.26 How can cache coherency be maintained in a UMA multiprocessor? 
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4.1 INTRODUCTION 

This chapter describes the overall architecture of the 16-bit and 32-bit OS/2 systems. To 
provide the reader with a background for the OS/2 content, we first review the overall ar­
chitecture of the DOS system. Each system is described with respect to the structure and 
layering of the system, the architecture and content of the application-program interface 
(AP/), and the structure and tools used to construct programs and the system itself. 

4.2 DOS SYSTEM 

The DOS system is a single-user, single-task system: It is designed to allow one program 
at a time to use the processor and device resources. Therefore, DOS is the simplest type of 
operating system; it is a sequential one. Due to the lack of protection in the 8088 architec­
ture, DOS does not provide any hardware enforced separation between the operating sys­
tem and the running program. Both the DOS system and the programs can access all 
facilities in the machine, including special instructions, ROM BIOS routines, and the actu­
al 1/0 ports that control the peripheral devices. Both the system and its programs execute 
using physical memory addresses and have the capability of altering each other. 

As we saw in Chapter I, the DOS system is composed of the DOS kernel, which 
provides all the system supervisor functions, and device drivers, which provide a layer 
of software between the system and the actual hardware. The system also requires a 
shell that allows users to start programs and to interact with the system. The shell pro­
vided with DOS Versions 1.0 through 3.3 is called COMMAND.COM, and it is a primi­
tive command-line-oriented program. DOS 4.0 introduced a simple text-oriented 
user-interface shell to make the system easier for novice users not familiar with the com­
mand shell. Figure 4.1 illustrates the layering of the DOS system. 
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Fig. 4.1 DOS system structure. 
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DOS supports two types of devices-block devices, such as the disk and diskette 
drives, and character devices, such as the keyboard, printer, and serial devices. DOS 
maintains a data structure called the device chain that maps the logical device names 
onto the appropriate device driver that services each device. Block devices are designat­
ed by a letter in the alphabet followed by a colon-A:, B:, through Z:. Character devices 
are designated by names up to eight characters long, followed by a colon, such as PRN: 
and LPTI: for printer devices, and COMJ: for serial devices. Figure 4.2 illustrates the 
DOS device chain. 

The DOS device chain can be extended by the addition of a device driver to the sys­
tem. Device drivers for devices that are not supported by the basic DOS system are in­
stalled when the system is started. Device drivers manipulate their respective devices by 
utilizing the ROM BIOS subroutines or by directly accessing the device hardware. ROM 
BIOS routines are accessed by the software interrupt mechanism. 

4.3 DOS API 

An executing program makes service requests of the DOS kernel by calling an applica­
tion program inte1face (APJ), or by making a system call. The term "API" can refer to a 
collection of system call routines, or to a single system call routine. The API is also con­
ceived as the boundary between applications and the operating system, providing a level 
of information hiding. The DOS kernel provides the DOS API to DOS programs. The 
DOS API contains functions for rudimentary memory management, file and device I/0, 
and program loading and termination. 

Since the DOS API does not contain functions for graphics or mouse control, many 
DOS programs use a combination of ROM BIOS routines and direct hardware access for 
managing a graphic display or mouse. Therefore, the ROM BIOS routines should be 
considered part of the DOS API, since many DOS programs bypass the DOS I/0 inter­
faces and use the lower-level code. 

When a system call or a call to a subroutine in a library or program is used, a set of 
calling conventions describes how routines call each other. The conventions, also called 
linkage conventions, define rules for subroutine names, instructions for transferring con­
trol between routines, and conventions for register usage in the linkage between the rou­
tines. Calling conventions are usually invisible to a programmer using a high-level 
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language, but system programmers and designers pay attention to the required functions 
and performance of the calling conventions because the latter have a significant effect 
on the overall structure and performance of the system. 

The calling conventions for the DOS API require the requestor to place the parame­
ters in registers, including a special parameter that denotes by an ordinal number the 
specific system call requested. The program then issues a software interrupt instruction 
that causes the program's execution to transfer control to the DOS kernel. The DOS ker­
nel dispatches the system call by looking up the system call number provided in the 
parameters in a table and calling the appropriate routine. After the routine completes, 
control returns to the requesting program with a return code that indicates the status of 
the requested operation. 

Most early DOS programs were written in BASIC and assembler. However, by 
1984, high-level languages (HLLs) such as C were preferred by most programmers. 
Since most HLLs use a stack for parameter passing and CALL instructions for control 
transfers, they cannot directly invoke the DOS API, since the API uses registers for pa­
rameter passing and software interrupts for control transfer. Therefore, most HLLs pro­
vide bindings that move system call parameters from the stack to the registers and that 
issue the software interrupt. This mismatch in calling convention models degrades appli­
cation performance, since each system call takes slightly longer to execute. As we shall 
see in Section 4.4, these bindings are packaged in a library and are linked into the pro­
gram when it is created. Figure 4.3 illustrates a DOS system call with a binding layer. 
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Fig. 4.3 DOS system call. 
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4.4 DOS PROGRAMS 

A DOS program is a collection of code and data segments that is stored in an executable 
(EXE) file on a secondary storage medium. When a program is executed, its code and 
data objects are loaded into memory by the operating system loader, and the address of 
the initial routine within the code object is loaded into the instruction pointer of the pro­
cessor. Most programs include a stack, a last-in-first-out (LIFO) data object used for 
temporary memory allocations. Due to the 8088 memory architecture, DOS memory 
objects are segments. 

A program is specified in a source file using a programming language. Regardless 
of in what programming language a program is written, the program must be translated 
into machine instructions executable by the processor of the target system, and format­
ted into an executable file. Assembler language is used to specify programs using 
machine instructions, whereas a high-level language such as C or FORTRAN allows 
programmers to specify a program without having to understand the underlying machine 
language. High-level language programs are translated into machine instructions by 
compilers. 

Due to the complex nature of programs, it is often useful to organize a program into 
separate program modules. Each program module contains a collection of code and data 
dedicated to a specific function of the program. By separating the components of a pro­
gram in this fashion, programmers are better able to minimize errors and to make a 
program readable and maintainable. To enable programs to be developed in this fashion, 
the DOS and OS/2 development systems provide a two-step architecture that allows a 
program specified in multiple source files to be compiled separately, and then to be 
combined into an executable file by a tool called a link editor. The intermediate file cre­
ated by a high-level language compiler or assembler is called an object (OBJ) file. Since 
all language translators use the same intermediate file format, the link editor is not pro­
gramming-language specific, but rather is system specific. The link editor collects object 
files and combines them into a single system specific EXE file. Figure 4.4 illustrates the 
program development process. 

So that tested subroutine modules can be reused, and so that programs can specify a 
minimum number of instructions for their tasks, library (LIB) files are supported by 
most development systems. A library is a collection of subroutines created using a li­
brarian, a tool that collects single OBJ files into a library. When a reference to a subrou­
tine in a library is made by a program, the compiler stores the external reference in the 
OBJ file. When the link editor is invoked, it resolves these external references to their 
locations either in another OBJ file or in a library. 

There are two types of libraries that differ in the way they are linked or bound to 
programs. Static link libraries are linked into the final executable load module when the 
program is created. Dynamic link libraries (DLLs) are not linked into the final exe­
cutable module, but instead are bound dynamically to the calling program when the pro­
gram is loaded into memory or when they are loaded explicitly by an already executing 
program. When dynamic link libraries are used, the program load modules tend to be 
smaller and the delayed binding allows libraries and systems to be extended without 
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requiring the programs to be recompiled and relinked. DOS supports only static link 
libraries, but both OS/2 and Windows 3.0 support dynamic link libraries. Like programs, 
libraries contain code and data-however, they do not contain an initial routine address, 
since they are called by programs. A library subroutine usually runs using the stack of 
the calling routine. Examples of libraries are the run-time libraries that come with pro­
gramming languages and the system libraries or bindings that operating systems provide 
to allow programs to access their APis. 

The formats for intermediate object modules and for DOS executable modules were 
defined during the development of DOS. The Intel Object Module Format (OMF) de­
scribes the format of the object or OBJ files, and the DOS Technical Reference provided 
by IBM describes the DOS executable file format for executable or EXE files. The OMF 
is defined based on the characteristics of the 8086 processor, and supports multiple seg­
ments and all the addressing modes of the 8086. Therefore, the object module format ex­
hibits the trait of processor architectural dependence. However, the EXE format is 
defined based on the characteristics both of the processor and of the DOS loader and 
memory environment. Therefore, the EXE format also exhibits the trait of operating sys­
tem architectural dependence. 

The OMF defines an object module to be a series of records that describe the mem­
ory objects of a source file in terms of logical segments. When a source file is com­
piled, the object module produced contains the logical code and data segments that 
represent the program. The object module also contains records that describe whether 
the symbols in the module are public, external, or hidden. A public definition of a 
symbol in an object module implies that the symbol can be referenced by other object 
modules when the modules are linked. Public definitions are used for global program 
data and routines that are used in multiple object modules of a program. An external 
symbol is used in an object module to denote a reference to a symbol in another object 
module. The extern keyword of the C programming language causes the compiler to 
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generate external definitions in an object module. If a symbol is defined as hidden, it 
can be referenced only within the object module in which it is defined. The static key-

• 1 word of the C programming language causes the compiler to place hidden definitions in 
an object module. 

All address references within the logical segments are unknown at the time that the 
object module is created. Therefore, fixup records, which describe the locations that 
have unknown addresses and the types of those unknown addresses, are inserted into the 
object module. Addresses within a segment (near or short) are called self-relative, and 
addresses of other segments (far) are called segment-relative. 

The DOS linker combines logical segments into physical segments and resolves 
self-relative fixups. The linker accepts as input object modules and library modules, and 
produces a DOS format executable file. 

When the linker combines logical segments into physical segments, the addresses of 
the self-relative fixups can be resolved since they are relative to the base address of the 
segment. Since the base addresses of the physical segments are unknown when the 
object modules are linked, the segment-relative fixups are propagated into the exe­
cutable file for relocation by the system loader. The ordering of the logical segments 
within physical segments is controlled using group directives in the object module. 

The DOS system defines the format of executable modules loaded by the DOS load­
er. Figure 4.5 illustrates a simple DOS EXE file. Contained in an executable file are the 
segments of the program, the stack pointer (SS:SP), and the instruction pointer (CS:IP) 
of the starting point. The linker determines what to put in the starting point field of the 
EXE file from the input object modules. An object module may have a special main 
record indicating that it contains the starting point for code execution. Only a single OBJ 
can have this information when a program is linked, and the information is retained in 

1MB 
ROM BIOS 

640KB 
FOO.EXE 

EXE header 
Free memory 

Code segment DOS 
ES 

Data segment loader SP 

Extra segment DS=SS 

Code segment 
CS:IP 

COMMAND. COM 

DOS 
0 

Fig. 4.5 DOS executable (EXE) file. 
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the executable file. Typically, the starting point is in the run-time library, since it must 
be initialized before the main entry point of the program defined by the programmer. 

As previously mentioned, when a DOS program is linked, all references from the 
object modules that are input to the linker, except the references to segment addresses, 
are resolved. For the remaining segment-relative fixups, the linker inserts a relocation or 
fixup record into the EXE header that identifies (to the DOS loader) locations within the 
EXE file that contain addresses dependent on where the image is loaded into memory. 
For example, if a program executes the instructions in Fig. 4.6 to set the DS register to 
address the data segment DGROUP, the value of DGROUP to insert into the MOY in­
struction is not known until the program is loaded into memory. 

Therefore, DOS programs are relocatable on a segment basis. Note that there are no 
references to other program or to library modules in a DOS EXE file. When the program 
is linked, all self-relative fixups in the OBJ files being linked that reference code or data 
within the program are resolved. 

4.4.1 Memory Models 

Since there are many ways to use multiple segments in a program, the programming lan­
guages for 8086 environments need a model for how a program's segments are speci­
fied. Assembler programs have complete control over which instructions and variety of 
segmentation are used in applications. Most high-level languages have no concept of 
segmentation, so they have to be extended to allow programmers to optimize segment 
usage in programs. Therefore, there are several program models available based on their 
segment usage: small model, medium model, compact model, large model, and huge 
model. Each programming model requires a unique version of the program-language 
,·un-time library for linking the application. 

A small-model program is similar to a compact-model program, except that the 
code is contained in a separate segment. Therefore, a small-model program can contain 
at most 64KB of code and at most 64KB of data and stack. Figure 4.7 illustrates the seg­
ments of a small-model program. 

Code segment 

MOV AX, DGROUP 
MOV DS,AX 

Code ends 

Fig. 4.6 Example of segment-relative fixup. 

; fixup here 
; load segment register 
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Code segment Data segment (DGROUP) 
64KB 64KB 

IP SP 
Stack 

Free memory 
consumed by 

Code stack and heap 

Heap 

Data 
cs 0 DS =SS 0 

Fig. 4.7 Small-model program. 

A program written in the C language must have an initial routine called main. When 
the program is loaded, a routine within the C run-time system called startup is called by the 
DOS loader after the program is loaded into memory. This routine initializes the C run-time 
library, loads the DS and SS segment registers to point to the data and stack segments, and 
then calls the program's main routine. The data segment is also called the automatic data 
segment or DGROUP. Since a small-model program contains only a single code segment 
and a single data segment, it does not make any intersegment (far) references. 

Let us consider how a DOS program written in C is constructed using the programming 
tools. The example in Fig 4.8 shows a program composed of two separate C source mod­
ules that are compiled and then are linked together statically by the DOS link editor. 

Assume that the program to be constructed is called MAIN.EXE and consists of a 
main routine that calls a subroutine named Joo. The program uses the small memory 
model since less than 64KB of code and less than 64KB of data are necessary. However, 
the program is divided into two source files, MAIN.C and FOO.C. MAIN.C contains the 
main routine and FOO.C contains the Joo subroutine. Since these routines are in dif­
ferent modules, the C source code in the file MAIN.Chas an extern statement to tell the 
compiler that the address of subroutine Joo will be resolved later by the link editor. 
Figure 4.8 illustrates the example program. 

Compiling MAIN.C produces an object module called MAIN.OBJ, which contains 
an intermediate representation of the logical segments that represent the contents of 
MAIN.C. So that the linker can later process the CALL instruction generated by the C 
compiler to execute subroutine Joo, a fix up record is inserted into MAIN.OBJ ref­
erencing the call instruction. Since the call instruction is to a target within the code seg­
ment, the type of the fixup is self-relative. The MAIN.OBJ object file also contains an 
external definition record for the reference to the name of subroutine Joo. 

When FOO.C is compiled, file FOO.OBJ is created. Besides the contents of the log­
ical segments, FOO.OBJ has a public definitions record with the name of the subroutine 
Joo. Without the public definitions record, the linker would treat subroutine Joo as hid­
den, and would abort any attempted fixup resolution to subroutine Joo. When the link 
editor links the two object files and the C run-time library into an executable image, it 
combines the contents of the logical segments in the two object files and matches the 
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external definitions in MAIN.OBJ with the public definitions in FOO.OBJ. Then, the 
fixup for the call instruction to subroutine Joo is replaced by the correct offset within the 
physical code segment created by the linker. 

The other programming models-medium, large, and huge-allow more than 64KB 
of code and/or data to be used in different combinations. The medium model allows for 
more than a single code segment. Therefore, all code pointers in the medium model are 
of the far type and use segment-relative fixups, since they must contain both segment 
and offset values (a 16:16 or far pointer). The compiler generates the code from each C 
source file into a unique code segment, and uses the CALL FAR instruction when ref­
erencing a routine in another segment. Since the address of a segment is not known until 
the program is loaded into memory, only the offset portion of the CALL FAR instruc­
tion can be fixed up by the linker. The linker leaves a segment-relative fixup record in 
the final EXE file, to tell the DOS loader that there is a reference to a segment address 
that needs to be fixed up before the starting point is called. The compact model allows a 
program to have a single code segment and multiple data segments. 

The large model allows data items as well as code items to be in separate segments, 
and all data pointers become far pointers by default. However, none of these program­
ming models can minimize, as well as can an assembler program, the number of times 
that segment registers must be reloaded. This inefficiency occurs because programs code 
in languages that allow freeform pointer arithmetic and casting (like C) can have multi­
ple levels of pointer aliases. This makes sophisticated flow analysis during program op­
timization difficult and, in many cases, infeasible. Therefore, languages for the Intel 
segmented architecture usually provide limited optimization of segment loading for far 
pointers. 
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4.5 OS/2 1.X SYSTEM 

"OS/2 l.X" is used in this book to indicate the 16-bit versions of the OS/2 system. OS/2 
is a single-user, multitasking operating system. It performs centralized resource manage­
ment for sharing the processor, main and secondary memory, mass-storage devices, 1/0 
devices such as the keyboard, display, and mouse, and communications interfaces. OS/2 
provides architectural relief for the 640KB memory limitation of the DOS/8088 environ­
ment. OS/2 1.X also provides support for running a DOS application in order to provide 
backward compatibility for users migrating to OS/2 from DOS. The Sections 4.5.1 
through 4.5.7 give an overview of the structure and major functions of the system. 

4.5.1 System Structure 

The OS/2 system is composed of the kernel, device drivers, dynamic link libraries, and 
application programs. Figure 4.9 illustrates the structure of the OS/2 system. 

The kernel is the heart of the system; it contains the control program that runs with 
supervisor privileges. As in DOS, the kernel uses device drivers to access the system's 
hardware resources. The most critical portions of the system-such as multitasking, 
memory management, interprocess communication, DOS compatibility, and 1/0-reside 
in the kernel. The architecture and content of the kernel are analyzed throughout this 
book as the system is exposed component by component. 

Many of the system's APis are located in the kernel, but some APis are located in 
dynamic link libraries-shared libraries that can be used to extend the functionality of 
the system. As we shall see in Section 4.5.4, the location of APis is transparent to 
applications, so designers can move and extend functions as requirements dictate. 

Fig. 4.9 OS/2 system structure. 
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4.5.2 Multitasking 

The OS/2 multitasking architecture provides the capability to execute programs concur­
rently in a protected environment. It defines the model used for sharing the system's re­
sources. The model consists of a hierarchy of multitasking objects called sessions, 
processes, and threads. The session is at the top of the hierarchy, and the thread is at the 
bottom. The session is the unit of user 1/0 device sharing. Processes are analogous to 
programs, and are the unit of sharing for such resources as memory, files, semaphores, 
queues, and threads. A thread is the basic unit of execution, and a single process may 
have multiple threads that execute concurrently within it. 

Each session contains a logical video buffer, logical keyboard, logical mouse, and 
one or more processes that are said to be running in or attached to the session. The logi­
cal devices are per-session representations of the actual devices. Processes running in 
the session perform their user 1/0 on the session's logical devices. Only one session at a 
time has its logical devices mapped onto the actual devices; this session is called the 
foreground session. The other sessions are in the background. Users can change the cur­
rent foreground session by issuing the commands to switch between sessions with the 
keyboard or mouse. Sessions are used to provide an infrastructure for program manage­
ment and user 1/0 device sharing. 

A process is the basic unit of resource management in OS/2. A process is created by 
the invocation of a particular program. Programs are invoked by issuance of a 
DosExecPgm system call with the name of an executable program file as a parameter. 
Each process has its own memory, threads, and file system and interprocess 
communication (!PC) data structures. When a process is created, it contains one thread, 
or sequential execution path. The thread is the unit of processor dispatching, and each 
thread has its own scheduling priority. A thread can create a new thread within a process 
by calling DosCreateThread. All threads within a process share all the process's 
resources, including the address space. The multithread process model helps the system 
to achieve a high degree of parallelism, concurrent execution, and interactivity. Since 
threads are less expensive to create and maintain than are processes, the cost of achiev­
ing concurrency is significantly lower than is possible in a single-thread process system 
such as UNIX. 

OS/2 is a preemptive, priority-based, multitasking system. The scheduler deter­
mines what is the highest-priority thread in the system and runs that thread for a time­
s/ice. At the expiration of a timeslice, the thread is preempted by the system, and the 
scheduler determines whether another thread is ready to run. The scheduler implements 
a multilevel priority scheme with dynamic priority variation and round-robin scheduling 
within a priority level. Dynamic priority variation changes the priority of threads based 
on their activity to improve overall performance and responsiveness. Round-robin dis­
patching within a priority level ensures that all threads at a common priority level have 
an equal chance to execute. 

OS/2 is interrupt driven to allow the processor to be used while 1/0 is occurring. If 
an interrupt occurs while a thread is executing, and another thread of higher priority be­
comes ready to run, the original thread will be preempted to allow the higher priority 
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thread to run. However, OS/2 does not provide complete preemption. A thread can be 
preempted only when it is running in user code. If the thread has issued a system call 
and is running OS/2 kernel code, the thread will not be preempted until it exits the ker­
nel, unless it is running in the highest priority class. 

4.5.3 Memory Management 

OS/2 l .X presents a segmented memory model that takes advantage of the 80286 
processor's virtual memory capabilities. Since the system runs in 80286 protected mode 
(except for the DOS environment), the system and applications can use up to 16MB of 
physical memory, a significant breakthrough of the 640KB barrier associated with 
DOS/8088 systems. However, each segment is limited to 64KB due to the 16-bit archi­
tecture of the 80286. The OS/2 l .X segmented memory model is also known as the 
16:16 memory model since a 16-bit selector to a segment must be specified, as well as a 
16-bit offset into that segment, to address a single byte of memory. 

The memory protection features of the 80286 described in Chapter 2 are used to iso­
late the system memory from user memory, and to protect individual processes from one 
another. The memory segments that make up the system are mapped into privilege level 
0 of the 80286's ring architecture, the highest privilege level. Executing at ring 0 is also 
known as executing in supervisor mode. The system is mapped by the 80286 GDT to 
make it accessible from every process. Since the system is mapped at ring 0 and pro­
cesses are mapped at rings 2 and 3, the system is protected from the processes. 

Each process is allocated its own LDT for mapping the process's address space into 
physical memory. Memory allocated by the process is mapped into the LDT at privilege 
level 2 or 3. When a thread context switch occurs between threads in different processes, 
the OS/2 kernel switches process address spaces by switching LDTs. Since each process 
has its own LDT, processes are protected from one another. 

The OS/2 memory manager supports sharing of memory among processes. Shared 
memory is a powerful form of interprocess communication, and plays a large role in the 
architecture of shared libraries and subsystems. There are two varieties of shared memo­
ry: named and anonymous. Named shared memory is accessed by a name, whereas in 
anonymous shared memory, access is controlled directly by processes. Both named and 
anonymous shared memory are implemented by a common virtual address in the address 
space of different processes that maps a single physical memory segment. Instance 
memory is used to provide to each process a unique copy of a data segment. Like shared 
memory, instance memory is mapped at the same virtual address in each process's 
address space. 

OS/2 also manages memory such that more memory can be allocated than the ma­
chine actually has. This service, called memory overcommit, allows the user to continue 
running programs in a memory-constrained environment. Segments that are not actively 
being used can be swapped out to the swap file on a secondary storage medium to make 
room in physical memory for more segments. When a segment that is swapped out is 
referenced, the system swapper brings the segment into memory and restarts the opera­
tion that referenced the segment. Since all the memory used by a segment must be 
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physically contiguous, OS/2 also moves segments in physical memory to maximize the 
amount of free space available. This segment motion is called compaction. Code seg­
ments and read-only segments can be discarded rather than swapped, since they can be 
reloaded on demand from their original disk images. This type of memory management 
is called demand segment swapping. Since segments are of variable length and the per­
formance of personal computer secondary storage media is relatively poor, the system 
swapping policy is to allow applications to continue running when physical memory is 
overcommitted, rather than to attempt to provide large amounts of virtual memory on 
the secondary storage media. 

4.5.4 Dynamic Linking 

Dynamic linking allows the binding of code and data references to be delayed until the 
program is actually loaded or until the program specifically requests the operating sys­
tem to link dynamically to a dynamic link library (DLL). The former type of dynamic 
linking is called load-time dynamic linking, whereas the latter is called run-time dynamic 
linking. There are two types of executable modules in the OS/2 environment: EXE mod­
ules for programs and DLL modules containing shared libraries. Both module types use 
the OS/2 segmented executable file format, but they are distinguished by a special bit in 
the executable file header. 

Dynamic linking requires imports and exports of code and data objects across EXE 
or DLL modules. The OS/2 linker allows the programmer to specify that an external ref­
erence is in another executable module; this causes the linker to create an import record 
in the import table of the EXE header that describes the external reference by module 
name and object name, or ordinal number. When the OS/2 loader attempts to load an 
EXE into memory following a DosExecPgm request, or to load a DLL as the result of a 
reference in an EXE or a DosLoadModule request, it attempts to resolve a module's im­
ports. It attempts resolution by loading the module(s) that export the desired import ref­
erences, and performing fixups on the dynamic link references in the module being 
loaded. The program loading process continues until the program or library is ready to 
execute. If the system loader is unable to resolve a load-time dynamic link request, the 
program or library load is aborted. If necessary, one or more DLL may be loaded and 
fixed up so that loading of an EXE or a DLL can be completed. Figure 4.10 illustrates 
how dynamic linking could be used for linkage between the main and Joo routines in the 
example cited earlier. 

Whereas an EXE file typically only imports dynamic links, a DLL file usually im­
ports and exports dynamic links. If an EXE attempts to import a dynamic link and there 
is no corresponding exported dynamic link, the program load fails. In general, the dy­
namic link mechanism can be likened to an external reference that exists in a different 
program module. All dynamic links use 16:16 far addresses, since they resolve linkages 
across segments in different program modules. 

Dynamic linking is also a powerful mechanism for providing linkages to shared code 
and data objects in a multitasking virtual memory environment. It provides an extendible 
and flexible foundation for meeting the criteria of API abstraction and information hiding. 
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Fig. 4.10 Dynamic linking. 
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Another benefit of dynamic linking is that EXE files are not as large, since commonly 
used routines can be placed in a DLL instead of being replicated in each EXE that uses 
them. This results in saved disk space and potentially faster program loading. Dynamic 
linking is described further in Chapter 6 with respect to memory management, and in 
Chapter 7 with respect to interprocess communication and resource sharing. 

4.5.5 1/0 

As in DOS, devices in OS/2 are categorized as either block devices or character devices, 
and the same naming conventions are used. In fact, the system uses a similar device 
chain for managing the devices and their names. However, the user 1/0 devices-such 
as the display, keyboard, and mouse-are accessed differently from in DOS. Reentrant 
subsystems with well-defined APis allow concurrently executing processes to share the 
user 1/0 devices. The block devices are accessed using the file system API as in DOS, 
and the other character devices are accessed by APis. 

OS/2 supports the FAT file system used by DOS, and consequently can read and 
write DOS files. Although this capability is desirable from compatibility and migration 
standpoints, the FAT file system was not originally designed to support many concur­
rent 1/0 requests from different processes on large block devices. Therefore, OS/2 pro­
vides an alternative file system, called the High Performance File System (HPFS). To 
provide an architecture in which programs are transparent to the type of file system, 
OS/2 has an installable file system (IFS). The system has facilities for installing multiple 
file systems, and a standard file system API to which all installable file systems adhere 
to. Figure 4.11 illustrates the OS/2 file system architecture. 

OS/2 device drivers are significantly different from DOS device drivers. Like the 
kernel, they run in the most privileged execution state, privilege level 0. Device drivers 
have two main entry points: a strategy routine that receives requests from the kernel, 
and an interrupt routine that is called when a hardware interrupt occurs. Since the strate­
gy routine and interrupt routine may both need access to the same structures, the device 
driver must carefully serialize access to shared structures and manage race conditions 
between the strategy and interrupt routines. Strategy routine requests are made in the 
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form of request packets that describe the operation. Device drivers perform the request­
ed operation using a combination of the hardware and a set of system services created 
specially for device drivers called device-help (DevHelp) routines. Figure 4.12 illustrates 
the interfaces of device drivers. 

When a request to a device driver's strategy routine occurs, it is made within the 
context of the currently running thread. The strategy routine either satisfies the request 
immediately and returns, or initiates an 1/0 request that will complete on a hardware in­
terrupt notification and blocks the requesting thread. When the strategy routine blocks 
the requesting thread, the system dispatches another thread to run. When the original 
thread's interrupt occurs, notifying the device driver that the I/O is complete, the inter­
rupt routine is not able to assume that it is running in the context of the requesting 
thread. Thus, the system must provide services that allow device drivers to maintain 
global data that can be accessed in any context. This facility also allows device drivers 
to service multiple requests concurrently and to perform overlapping I/0 operations. 
Chapter 8 provides a more detailed description of the OS/2 I/0 architecture. 
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Fig. 4.12 Device driver interfaces. 
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4.5.6 Presentation Manager 

The Presentation Manager (PM) is the graphical user interface for OS/2. It provides an 
environment for graphical applications to share the video display in a windowed envi­
ronment. PM programs have a common user interface composed of windows, scroll 
bars, dialog boxes, pull-down menus, and other desktop controls that are accessed 
through the keyboard, mouse, or other user input devices. The user interface of PM 
applications is easier to learn and more consistent than are traditional user interfaces 
such as command lines or application-specific interfaces. 

The PM consists of a large API that contains functions for managing windows and 
performing graphic operations on a device-independent presentation space. The PM 
maps the applications' requests to alter the presentation space into device-dependent 
operations on the actual output device, whether that device is a video display or high­
resolution printer. This strategy allows all PM programs to be transparent to the specific 
characteristics and nuances of the actual output device. The PM accomplishes this task 
with the assistance of special PM device drivers that are different from the base system's 
device drivers. 

When OS/2 is started, the system executes the user shell, a PM program called the 
desktop manager. The desktop manager provides an icon-oriented interface that allows 
users to start programs, to switch between programs, and to manage programs as groups. 
The desktop manager represents each program in the system with a name or icon. The 
desktop manager and all other PM programs share a single session called the PM ses­
sion. Programs that do not use the PM API for their user I/0 are called full-screen pro­
grams, and they each run in their own session. Chapter 9 gives a complete treatment of 
session management and the PM architecture. 

4.5.7 DOS Compatibility 

One of the most critical features of OS/2 is the capability to run DOS programs. This 
facility allows users migrating to OS/2 from DOS to continue running their current pro­
grams. It helps customers to preserve their investments in DOS software while migrat­
ing to OS/2. DOS compatibility also permits OS/2 users to draw on the large 
applications base of DOS programs, until there are comparable OS/2 programs avail­
able. However, capturing the unprotected DOS environment in a system such as OS/2 
that provides traditional resource management is a difficult problem. This task is even 
more difficult since the 80286 architecture does not provide the ability to run 8088 real­
mode programs in the protected-mode environment. 

The goal of OS/2's DOS environment for 80286-based systems is to allow a sin­
gle DOS application to run in the foreground while OS/2 programs continue to run in 
the background. Thus, DOS programs do not benefit from the multitasking features 
of OS/2. When the DOS environment is moved to the background by the user, its 
execution is frozen. The DOS environment exists in a special session called the DOS 
session. 
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OS/2 uses a technique known as mode switching to support the concurrent execution 
of the DOS environment in real mode, and OS/2 programs in protected mode. Because the 
80286 was designed to switch easily into protected mode from real mode, but not from pro­
tected mode to real mode, this mode switch back to real mode from protected mode is 
accomplished with the assistance of extra circuitry provided on 80286-class machines. 

Due to the presence of mode switching, certain critical parts of the OS/2 kernel and 
device drivers must be accessible in both real mode and protected mode. These include 
device and interrupt management, mode and context switching, and anything that must 
be accessed at interrupt time. Code that can run in either real or protected mode is called 
bimodal code. Bimodal code enables OS/2 to minimize the amount of mode switching 
that is done on performance-critical paths, such as device and interrupt handling. 
However, bimodal code must reside in the physical memory addresses below 640KB to 
be addressable in both real and protected modes. The challenge of partitioning the sys­
tem into bimodal and protected-mode code so that as much of the lower 640KB would 
be available to DOS applications was one of the most difficult in the design of the sys­
tem. For instance, although the file system is used by DOS applications, it resides in 
memory above lMB, and the system mode switches to protected mode to service DOS 
application file system requests. Chapter 10 describes the architecture for DOS compati­
bility in much greater detail. 

4.6 OS/2 1.X API 

Dynamic linking is at the center of the OS/2 API architecture. Because it uses dynamic 
linking as the linkage for system calls, OS/2 has the flexibility to extend and relocate 
system functions without requiring programs to be recompiled and relinked. Also, the 
location of an API is transparent to the requestor, so API routines can be in the OS/2 
kernel or in a DLL module. This capability has allowed OS/2 to be extended by commu­
nications and database products. 

The OS/2 API calling conventions specify that all API parameters are placed on the 
stack, and the CALL FAR instruction is used to transfer control to an API service rou­
tine. Since this model parallels the linkage architecture found in most high-level lan­
guages, APls can be invoked directly instead of requiring a library of bindings. Each 
API preserves the state of the registers except AX, which is used for return codes. Also, 
it is the API routine's responsibility to remove the requestor's parameters from the stack 
on completion of service. 

The OS/2 API is composed of several APls that are grouped according to the ser­
vices they provide. The prefixes of the names of the functions within an API indicate the 
portion of the OS/2 API to which the functions belong. The base system API is called 
the Dos AP/. The keyboard, mouse, and video subsystem APls used by full-screen pro­
grams are called the Kbd, Mou, and Via AP Is, respectively. The PM API is distinguished 
from the base system API by the prefixes Win for window management, and Gpi for 
graphics management. Table 4.1 summarizes the names of the OS/2 APis and the type 
of functionality contained in each APL 
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Category API name 

DOS (base) DosXXX 

KBD (base) KbdXXX 

VIO (base) VioXXX 

MOU (base) MouXXX 

WIN (PM) WinXXX 

GPI (PM) GpiXXX 

Table 4.1 OS/2 API content. 

4. 7 OS/2 1.X Programs 

Functions 

Multitasking, interprocess communication, memory 
management, dynamic linking, file system, exceptions, 
signals, session management 

Logical keyboard management 

Logical video management 

Logical mouse management 

Window management and I/0 

Presentation graphics 

Similar to the DOS programs, 16-bit OS/2 programs are collections of relocatable seg­
ments containing code and data. Also, the same variety of language memory models 
found in DOS applications are available to support the different flavors of segmenta­
tion in OS/2. The major difference between DOS and OS/2 with regard to program 
structure and development is the usage of selectors for segment fixups, dynamic link­
ing, and the different API functions in OS/2. The OMF used by the OS/2 development 
tools is the same as that on the 8086, since the instruction sets and addressing modes 
are virtually identical. OS/2 uses an enhanced executable file format that provides 
support for dynamic linking and demand loading of segments from EXE and DLL 
modules. 

4.8 OS/2 2.X SYSTEM 

"OS/2 2.X" is the general moniker used in this book to reference the 32-bit versions of 
the OS/2 system. At the time this book was published, OS/2 2.0 was the first and only 
32-bit version of the OS/2 system. OS/2 2.0 is targeted for the Intel 80386 and 80486 
computer systems. It uses the paging feature of the 80386 to provide a demand-paged, 
virtual memory environment that supports a new 32-bit portable programming model. 
OS/2 2.0 provides binary compatibility for OS/2 l .X applications and dynamic link 
libraries. The DOS compatibility environment is enhanced to take advantage of the vir­
tual 8086 mode of the 80386, enabling multiple DOS sessions to run concurrently and in 
the background. In general, the system has the same content as do the OS/2 l.X systems, 
but it is scaled up to 32 bits and has an architecture designed to allow applications, 
dynamic link libraries, and ultimately the system itself to be portable to other processor 
platforms. 



4.8 OS/2 2.X System 95 

OS/2 2.0 also provides greater ease of use in the areas of installation and the user 
shell. It features a PM-based installation program, and the capability of performing in­
stallations across a local area network. A new user shell called the workplace shell pro­
vides an object-oriented environment that seamlessly integrates programs and data so 
that the system is intuitively easy to use. Sections 4.8. l through 4.8.6 describe the major 
enhancements compared to the 16-bit version of the system. 

4.8.1 Memory Management 

The overriding goal in the design of the 32-bit programming environment is to provide 
an architecture that allows applications, subsystems, and the system itself to be portable 
to processing platforms other than the uniprocessor Intel 80X86-based machines. This 
requirement led to the development of a new memory model called the flat model, which 
enables processes to view memory as a large linear address space addressable by 32-bit 
offsets, rather than as a collection of segments, as in OS/2 1.X systems. The flat model 
is an architecture that is easily portable to most processor architectures, since all that the 
hardware must provide is a base register capable of addressing a large, paged linear 
address space and an offset register for indexing into the address space. The flat model 
effectively hides all segmentation from the programmer, resulting in a portable program­
ming model with much higher performance than a segmented system could provide. The 
flat memory model is also known as the 0:32 memory model, since only the 32-bit offset 
into the process's address space is used to develop the address of a single byte of memo­
ry. OS/2 2.0 was not designed to be a 386-specific OS/2, but 32-bit OS/2 is implemented 
on the 80386 and 80486 platform. 

In the flat model, the basic unit of allocation and sharing is a 4KB page, and mem­
ory is divided not into segments, but rather into memory objects that consist of one or 
more 4KB pages. Memory objects are not relocatable (as segments are in OS/2 l.X), are 
allocated in units of 4KB, can be larger than 64KB, and are aligned on page boundaries 
in the process address space. A major difference between memory objects in the flat 
model and segments in the 16-bit segmented model is memory protection. In the 16-bit 
segmented model, protection exists on a per-segment basis. However, in the flat model 
all an application's memory objects exist within a single large segment, so the Intel seg­
ment protection semantics are bypassed and 80386 page-level protection is used to man­
age the memory in the process's address space. To provide each process with a unique 
address space, OS/2 2.0 allocates a different set of page tables for each address space, 
instead of allocating an LDT per process like OS/2 l.X. 

The high performance of applications, subsystems, and the system using the flat 
model is derived from several areas. In the segmented or 16-bit model, segment registers 
had to be reloaded with selectors every time a different 64KB block of memory needed 
to be accessed. These selector load operations are expensive in protected mode on 
80X86 processors due to the checking that must occur to provide segment protection. In 
the flat model, a 32-bit offset relative to the base of the process address space is used to 
address any byte of memory without reloading any selectors. In fact, 32-bit programs 
and subsystems do not use or know about the segment registers. Performance is also 
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increased by the use of the 32-bit registers and arithmetic that the 32-bit Intel architec­
ture provides. 

4.8.2 Paging 

The paging feature of the 80386 is used not only to support the flat model and multiple 
DOS address spaces, but also to allow OS/2 to provide memory overcommitment differ­
ent from that offered by OS/2 1.X. In OS/2 1.X, segment swapping is used to keep the 
system running in memory-stressed conditions; due to the I/O performance of most 
fixed disks, however, segment swapping does not perform well enough to provide gen­
eral-purpose virtual memory on demand. However, since the 80386 provides paging, 
storage can be virtualized on fixed disk media at a much lower I/0 cost, because the size 
of a page is not variable. Also, the system can do a better job of tracking memory usage, 
since memory aging algorithms operate on a page granularity, instead of a segment 
granularity, resulting in better memory utilization. Therefore, OS/2 2.0 is a demand­
paged, virtual memory system and is designed so that the system will run acceptably in 
nominally overcommitted situations. 

4.8.3 Multitasking 

The multitasking architecture of 32-bit OS/2 is essentially the same as that of 16-bit 
OS/2, except for increased limits on the number of threads and processes supported, 
and enhancements to the multitasking APL The 32-bit system supports up to 4095 pro­
cesses instead of 255, and 4095 threads instead of 512. The multitasking API is 
enhanced to allow better control of thread creation and termination. Also, the system's 
timeslice management uses dynamic times/icing to maximize processor utilization for 
applications. 

4.8.4 Dynamic Linking 

OS/2 2.0 provides dynamic linking, but the elimination of segmentation in the flat 
model is propagated to the dynamic link model of the system. Instead of all dynamic 
links being far, all objects are near, and objects do not require segment register reloading 
when an API or dynamically linked object is referenced. Therefore, the cost of making 
dynamic links and API calls is significantly less than the cost of making the comparable 
calls in OS/2 l .X. 

4.8.5 OS/2 1.X Compatibility 

OS/2 2.0 runs all OS/2 l.X application and dynamic link library executable files without 
change. To provide this portability, the OS/2 designers had to come up with an ar­
chitecture in which 16-bit and 32-bit modules could coexist. The difficulty of this task 
lies in the differences in the segmented and flat memory models. The major requirement 
for laying a foundation in which both models can coexist is a high-performance mecha­
nism for converting 16-bit addresses to 32-bit addresses, and vice versa. Once this 
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problem is solved, the task of servicing a 16-bit API call with a 32-bit routine, or vice 
versa, becomes a feasible task. The technique used to deal with address conversions 
between the segmented and flat models is called LDT tiling. 

The rest of the 16-bit compatibility requires a layer of procedures that takes 16-bit 
API requests, converts them into 32-bit API requests, issues the requests, and completes 
the API return conditions with 16-bit semantics. The name of a routine that does this 
function for a single API is called a thunk or, more specifically, a l 6-to-32 thunk. 
Thunks can also be created to go in the opposite direction, from 32-bit semantics to 16-
bit semantics-these thunks are called 32-to-16 thunks. Thunks are merely tools that al­
low us to build one type of API (16 or 32) from the other when both APis are needed in 
one system. Thunks are not APis. Chapter 10 describes LDT tiling and thunks in more 
detail, and discusses other compatibility issues. 

4.8.6 DOS Compatibility 

OS/2 2.0 provides DOS 5.0 compatibility using the virtual 8086 mode of the 80386 pro­
cessor, and uses paging to provide more than one DOS compatibility environment. The 
DOS environment is more DOS compatible than is the environment offered with OS/2 
1.X, due to the ability to encapsulate the entire DOS environment in a virtual DOS 
machine (VDM). This virtual DOS machine gives the system far better protection than is 
offered by the OS/2 l .X DOS compatibility environment. In OS/2 l .X, an errant DOS 
application could conceivably hang the entire system. In OS/2 2.0, an errant DOS appli­
cation can hang only its own DOS session, and the hung DOS session can be terminated 
from the desktop manager. 

DOS applications can be run full screen, windowed, or iconized in the background. 
In addition to being better protected, providing better compatibility, and allowing more 
DOS sessions, the OS/2 2.0 DOS environment leaves applications approximately 
620KB in which to execute-more space than is available in DOS. Both EMS and XMS 
expanded memory support are provided using the paging feature of the 80386 for emula­
tion. Since the DOS environments are swappable, starting many DOS sessions does not 
drive up system memory requirements. 

The DOS environment in OS/2 2.0 allows specific versions of DOS to be booted 
into VDMs, enabling DOS version-dependent applications to run. It also provides DPMI 
server functions, enabling DPMI-based DOS extenders and their applications to run, in­
cluding Windows 3.0 and its applications. 

The OS/2 2.0 DOS support provides an extendible OEM architecture that allows the 
environment to be tailored to emulate any DOS environment. At the heart of this ex­
tendibility is an architecture that uses a virtual device driver (VDD). The OS/2 1.X bi­
modal device-driver architecture is changed to move all low-level DOS support into 
virtual device drivers and out of the physical device drivers. Due to the 80386 virtual 
8086 mode, all interrupt processing is done in protected mode, so the need for bimodal 
device drivers no longer exists. The OS/2 2.X device driver architecture distinguishes 
between physical device drivers (PDDs) for basic device support, and VDDs for virtual 
devices in the DOS environments. 
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4.9 OS/2 2.X API 

OS/2 2.0 provides the dynamically linked 32-bit API to allow flat-model applications to 
use the OS/2 system services. The 32-bit API has been designed so that applications and 
subsystems that use and provide 32-bit APis will be portable to any future OS/2 2.X 
platform. 

The major differences in the API architecture between OS/2 l.X and OS/2 2.0 are 
that there are no 64KB restrictions, and API pointers are of the 0:32 format. The API 
calling conventions are different to allow support of the dynamic linking in the flat 
model environment and the 32-bit register set. Also, the basic word size exploited by the 
API is the 4-byte double word, instead of the 2-byte word found in OS/2 l .X. Many of 
the API names are changed to be more consistent than they are in the OS/2 l .X APL 

Several areas of the API have been enhanced to provide greater functionality and 
portability. The multitasking API provides better thread management in the areas of cre­
ation and termination, and the system supports up to 4095 processes and 4095 threads. 
The memory management API has functions similar to those of its 16-bit counterpart, 
but it manages memory objects composed of pages instead of segments. The semaphores 
portion of the interprocess communications API are portable and are more reliable than 
their 16-bit counterparts. The exception management API provides the capability of han­
dling exceptions on a per-thread, instead of a per-process, basis, and is also machine 
independent. The keyboard, mouse, and video APis from the 16-bit API have no 
counterparts in the 32-bit API, since they are extremely device dependent. Instead, 
32-bit programs use the PM for managing their user 1/0. 

4.10 OS/2 2.X PROGRAMS 

The overall program-development process and architecture for 80386/80486 32-bit OS/2 
systems are similar to those for 16-bit OS/2 and DOS, but the definition of memory ob­
jects and the addressing capabilities of the 32-bit architecture are different. This differ­
ence leads to enhancements in the programming languages and OMF to support fixups 
with 32-bit offsets, and to the definition of an EXE format that supports a demand­
paged, dynamically linked environment. 

The OMF in the 32-bit environment is extended to support 32-bit offset fixups 
called 0:32 fixups, and to allow memory objects larger than 64KB. Since the OMF is 
different from the one used in 16-bit OS/2 or DOS, the compilers that generate the OMF 
are significantly different from their 16-bit counterparts. 

The proliferation of memory models to allow various flavors of segmentation in 16-
bit OS/2 does not occur in the 32-bit flat addressing environment. Instead, all the mem­
ory models are replaced by the flat model. The flat model is the equivalent of a 
small-model program that can have up to 4GB of code and data simultaneously address­
able using 32-bit offsets. 

The link editor for 32-bit OS/2 is significantly different from that for 16-bit OS/2 or 
DOS. The 32-bit OS/2 link editor deals in memory objects and creates executable files 
suitable for the demand-paged environment. The link editor combines objects in 
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different object files, and relocates all objects relative to a fixed absolute base in the 
EXE file emitted. The EXE image is the equivalent of a single large segment that con­
tains the memory objects of the program, so there are no fixups remaining in a 32-bit 
EXE file except those for dynamic links external to the EXE. Since dynamic links in 
32-bit OS/2 provide linkage to memory objects instead of to segments, each dynamic 
link is represented by a self-relative fixup rather than by a segment-relative fixup, as in 
16-bit OS/2 dynamic linking. 

Since EXE files are guaranteed to load at the same base address in the I in ear 
address space, the linker performs the internal self-relative fixups and then discards 
them. However, since DLLs must remain relocatable, the link editor retains the fixup 
information for relocating the DLL's memory objects. 

The EXE format used in 32-bit OS/2 reflects the requirements of the demand-paged 
environment. In a demand-paged system, pages are loaded and reloaded into memory di­
rectly from executable files. For this mechanism to be efficient, the EXE files are orga­
nized into pages instead of segments, and all the fixup information within the EXE files 
is organized on a page basis instead of a segment basis. Another important property of 
EXE formats for demand-paged systems is the reduction of the number of fixups in the 
pages of an EXE file; a page with no fixups is called a pure page, since it can be loaded 
directly into memory without processing by the system's loader. 

SUMMARY 

This chapter described the overall architecture of the DOS, OS/2 1.X, and OS/2 2.X sys­
tems. The structure of the systems and their content were elaborated, and their API and 
program functionality explained. 
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EXERCISES 

Questions pertaining to the DOS system: 

4.1 Discuss the layered architecture of the DOS system as presented in Fig. 4.1. 

4.2 Distinguish between block devices and character devices. 

4.3 Describe the organization of the DOS device chain. 

4.4 How do DOS programs typically manage a graphic display or a mouse, given that the DOS 
API does not contain functions for these purposes? 

4.5 Why is it that most high-level languages cannot directly invoke DOS API calls? 

4.6 List several advantages of using dynamic linking instead of static linking. 

4.7 What do we mean when we say that the OMF exhibits the trait of processor architectural 
dependence and the EXE format exhibits the trait of operating system architectural dependence? 

4.8 Distinguish between self-relative addresses and segment-relative addresses. 

4.9 Briefly describe each of the following program models: compact model, small model, medium 
model, large model, and huge model. 

Questions pertaining to the OS/2 l .X system: 

4.10 Indicate the new capabilities OS/2 offers compared to DOS. 

4.11 Many of the APis are located in the kernel, but some APis are located in dynamic link 
shared libraries. Why are both locations used? 

4.12 Define the OS/2 notions of sessions, processes, and threads. 

4.13 What are logical devices? What logical devices are available? 

4.14 Distinguish between foreground and background sessions. 

4.15 How are processes and threads related? How do threads provide a lower-overhead form of 
parallelism than is possible with processes? 

4.16 Describe briefly how OS/2's preemptive, priority-based multitasking operates. 

4.17 Under what circumstances will OS/2 not preempt a running thread? 

4.18 Compare and contrast OS/2 1.X memory management with DOS memory management. 
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4.19 When a thread context switch occurs between threads in different processes, how does 
OS/2 switch process address spaces? How is protection between address spaces ensured? 

4.20 Distinguish among named shared memory, anonymous shared memory, global shared 
memory, and instance shared memory. 

4.21 Describe OS/2 notion of memory overcommit. How does OS/2 enable processes to run 
even though not all their segments are in physical memory at once? 

4.22 Explain how dynamic linking operates. Discuss the advantages that dynamic linking provides. 

4.23 Why are I/O devices-such as the display, keyboard, and mouse-accessed in OS/2 differ­
ently from in DOS? 

4.24 Why does OS/2 have an installable file-system (IFS) architecture? 

4.25 Discuss the architecture of OS/2 device drivers. In particular, explain the functions per­
formed by the various device-driver routines. 

4.26 Why does the presentation manager use device drivers different from the base system's 
device drivers? 

4.27 Why is DOS compatibility such an important feature of OS/2? 

4.28 Why is it that DOS programs do not benefit from the multitasking environment of OS/2? 

4.29 Discuss the OS/2 technique of mode switching. What limitation of the 80286 with regard to 
mode switching was corrected with the use of additional hardware on PC/AT-class machines? 

4.30 What is bimodal code? What performance advantage does it offer? In what physical memo­
ry addresses must bimodal code reside? Explain your answer. 

Questions pertaining to the OS/2 2.X system: 

4.31 Describe the key new capabilities offered by OS/2 2.X systems over OS/2 1.X systems. 

4.32 What capability of the 80386 processor enables OS/2 2.X to run multiple DOS sessions 
concurrently and in the background? 

4.33 Comment on the following statement and indicate its importance in defining OS/2 as a 
UNIX competitor: "The overriding goal in the design of the 32-bit programming environment is to 
provide an architecture that allows applications, subsystems, and the system itself to be portable to 
processing platforms other than the single-processor, Intel 80X86 machines." 

4.34 What is the significance of the flat model? Why is it appropriate to call the flat model the 
0:32 memory model? 

4.35 How does OS/2 2.X provide each process with a unique address space? 

4.36 Discuss several reasons for the high performance of OS/2 2.X applications, subsystems, 
and the system using the flat model compared to the memory model used in OS/2 1.X systems. 

4.37 How does OS/2 2.X support memory overcommit? 

4.38 Why is the cost of making dynamic links and API calls in OS/2 2.X systems significantly 
lower than the costs in OS/2 1.X systems? 

4.39 What challenges did the designers of OS/2 2.X face in enabling OS/2 1.X applications and 
dynamic link library executable files to run without change? What are LDT tiling and thunks? 

4.40 Distinguish between OS/2 2.X's physical device drivers and virtual device drivers. 
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4.41 What are the major differences between the AP! architectures of OS/2 2.X and OS/2 l .X? 

4.42 Compare the 32-bit flat model to the 16-bit compact model. 

4.43 How does an API encapsulate the hardware and the operating system? Could two different 
operating systems offer identical APis? What would be advantages and disadvantages of such an 
approach? 
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Multitasking 

It was surprising that Nature had gone tranquilly on with her 
golden process in the midst of so much devilment. 

The Red Badge of Courage 
Stephen Crane 

I claim not to have controlled events, but confess plainly that 
events have controlled me. 

Abraham Lincoln 

Learn to labor and to wait. 

Henry Wadsworth Longfellow 
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5.1 INTRODUCTION 

This chapter describes the multitasking aspects of the OS/2 system. In any multitasking 
operating system, the hardware is managed as a shared resource to be distributed among 
concurrently executing entities. The architecture that describes how these concurrent 
entities are created, terminated, and managed is called the tasking or multitasking 
model. The multitasking model describes how resources-such as the processor, memo­
ry, files, devices, and interprocess communications structures-are shared in the OS/2 
system. 

Perhaps the most important resource that is shared in a multitasking environment is 
the processor. The operating system shares the processor among concurrently executing 
entities using a technique known as times/icing. An operating system that provides 
timeslicing switches between programs, enabling each program to run for a short period 
of time called a timeslice or quantum. This technique results in the processor resource 
being shared among the programs. 

The DOS operating system is not a multitasking system; it runs only one application 
at a time. However, DOS applications can do their own timeslicing by taking over the 
system timer and dividing up the processor time among different programs that are 
specifically known to them. In an unprotected environment such as DOS, it is difficult 
for multiple applications that do their own timeslicing to coexist without resource con­
flicts occurring. 

In the OS/2 system, multitasking services are built into the system. This centralized 
tasking scheme allows all applications to take advantage of the multitasking functions of 
the operating system. Figure 5.1 illustrates the difference between multitasking in DOS 
and OS/2. 

As we saw in Chapter 4, the multitasking hierarchy of OS/2 consists of sessions, 
processes, and threads. Sessions are described more completely in Chapter 9. This chap­
ter concentrates on the description of processes, threads, and scheduling, and examines 
the kernel architecture that supports the multitasking of processes and threads. This 
chapter deals with both the 16-bit and 32-bit versions of OS/2. For the most part, the 

Multitasker 
Timer ticks 

OS/2 kernel 
DOS kernel 

Fig. 5.1 DOS versus OS/2 multitasking. 
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multitasking architectures of both 16-bit and 32-bit OS/2, of OS/2 1.X, and of OS/2 2.X 
are identical. Where they differ significantly, the differences are explained. 

5.2 PROCESSES 

A process is the basic unit of programming and resource sharing in OS/2. A process cor­
responds to a program and is created when a program is loaded. A process is the central 
abstraction for the sharing of resources, such as processors, memory, files, and interpro­
cess communication data structures. Each process is assigned a unique process identifier 
(PID) by the kernel. The 16-bit version of OS/2 provides support for up to 255 pro­
cesses; the 32-bit version provides support for up to 4095 processes. Figure 5.2 illus­
trates the structure of an OS/2 process. 

The system maintains many resources on a per-process basis. The primary resources 
contained in a process are the memory domain and the threads of execution. A thread 
provides a sequence of instructions with an instance of execution. All processes are cre­
ated with one thread and have the capability of creating more threads. The threads with­
in a process all share the process's resources and have access to one another. Although 
memory and threads are the main features within a process, the system also tracks many 
other resources on a process basis, such as signal handlers, open files, and interprocess 
communication features such as semaphores, queues, and pipes. 

5.2.1 Process Virtual Address Space 

The per-process memory domain is called the process virtual address space. Since each 
process receives its own unique process virtual address space, the memory accessible by 
each process is protected from other processes. Also, the system is protected from appli­
cation processes, since it is not accessible by user-level code within the process virtual 
address space. In other words, a process cannot access memory in another process, and a 
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Fig. 5.2 Process layout. 
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process cannot access the system's memory. This scheme is known as memory protec­
tion and is a key feature in any multitasking virtual memory operating system. Memory 
protection allows the OS/2 system to provide an architecture with much more integrity 
than is found in DOS or any of the extended DOS environments. 

The process virtual address space is implemented differently in the 16-bit and 32-bit 
versions of OS/2 because of their different memory models. The process virtual address 
space in 16-bit OS/2 is represented as a collection of segments mapped by a local de­
scriptor table (LDT). The system switches LDTs when switching between processes. A 
process can access only memory that is mapped by its own LDT. In 32-bit OS/2, the 
process virtual address space is a single large segment (on the order of 512MB) that rep­
resents a flat linear address space. Each process virtual address space is mapped by a 
per-process set of page tables. When processes are switched, the page tables that map 
the process virtual address space are switched, effectively changing process virtual 
address spaces. In either case, each process has a unique protected virtual address space 
that maps all the memory it can access. 

Chapter 6 discusses the management of the process virtual address space, such as 
the switching of address spaces, the allocation and deallocation of memory objects with­
in address spaces, and the sharing of memory objects across address spaces. Memory 
management is described there in detail. 

5.2.2 Process Creation 

Processes are created using DosExecPgm. DosExecPgm services requests by creating a 
process, loading an executable program file into the process virtual address space, and 
calling the entry point specified in the program file. The name of the executable file and 
a set of execution flags are the parameters required by DosExecPgm. For example, call­
ing DosExecPgm with the parameter FOO.EXE causes the program in the executable 
file FOO.EXE to be loaded into a new process virtual address space and starts that pro­
gram running. All processes are initially created with a single thread. However, the ini­
tial thread may create other threads within the process and also may create other 
processes. DosExecPgm returns to its caller the PID for the created process. 

The loading of an executable program file into a process's virtual address space is 
performed by the program loader component of the OS/2 kernel. To load an executable 
file into the process's memory, the program loader must resolve any dynamic link imports 
that the program contains. As we saw in Chapter 4 when we described dynamic linking, 
these imports are references to routines and data items outside the program module itself. 
These references are either to the kernel or to dynamic link libraries that provide APis. 

When the program loader detects an external reference in a program (EXE) module 
or dynamic link library (DLL) module to an API in the kernel, the reference can be 
resolved immediately. However, if an external reference is to code or data in a DLL, that 
DLL must be loaded into the process's virtual address space before the original external 
reference can be resolved. Therefore, program loading is a recursive mechanism that 
usually ends up loading several DLLs to load just one executable (EXE) file. After all 
the necessary DLLs have been loaded, then the optional initialization entry point in each 
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DLL is called so that it can initialize any structures necessary for the operation of that 
DLL. Once all the external references within the original executable program file and its 
imported DLLs are resolved, the new process and its first thread are ready to be dis­
patched according to the execution flags passed into the DosExecPgm request. Chapter 6 
further explains the role of the program loader with respect to memory management, and 
describes the sharing of DLLs among processes. 

OS/2 processes have a hierarchical structure. The process that calls DosExecPgm to 
create another process is called the parent process, and the created or spawned process 
is called the child process. Processes that share the same parent are called sibling pro­
cesses. Therefore, as processes are created, they form a process tree. Figure 5.3 illus­
trates the hierarchical nature of processes. 

In Fig. 5.3, process A is at the root of the process tree. Processes B, C, and D are 
children of the parent process A and have a sibling relationship with one another. 
Processes E and F are children of process B, and grandchildren of process A. The pro­
cess hierarchy enables processes to control their children and descendants. 

The execution flags provided as a parameter to DosExecPgm allow the parent pro­
cess to control the execution of each child process. They specify whether a new child 
process should be run synchronously or asynchronously relative to the parent, and 
whether a child is being traced by a debugger. When a child process is executed syn­
chronously, the parent process is suspended during the DosExecPgm request until the 
child process terminates. In the case of a child being executed asynchronously, both the 
parent process and the child process execute concurrently. 

5.2.3 Process Termination 

A process is terminated when its last thread dies. Termination is accomplished by a call 
to DosExit. DosExit can be called to terminate a single thread or to terminate all the 
threads in the process. 

Bis the 
parent of 
E and F. 

Fig. 5.3 Process hierarchy. 
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When a process dies, it may be necessary to notify the process itself or the DLLs 
referenced by this process that the process is ending. An EXE or DLL needing process 
termination notification can call DosExitList to register a process-termination ( exitlist) 
handler. The kernel maintains a list of exitlist procedures that have been registered for 
notification when the process is being terminated. During process termination, the ker­
nel calls each of the exitlist handlers for the terminating process using the context of 
thread I in the process. After the exitlist handlers have been called, the system 
reclaims any other process resources managed by the kernel, such as memory and 
semaphores. 

The 32-bit version of OS/2 provides alternatives for process termination notifica­
tion. A thread executing in an EXE or a DLL can register a process termination excep­
tion handler. Also, 32-bit DLLs can have a termination routine, as well as an 
initialization routine, that is called when a process releases a DLL. Exception handling 
is discussed in more detail in Section 5.5.8 and in Chapter 7. 

Another way for a process to be terminated is via the DosKillProcess call. 
DosKillProcess can be used to send a notification indicating process termination to a 
single process or to a process and its descendants. In 16-bit OS/2 system, signals are 
used to send asynchronous events between processes. In 32-bit OS/2, the signals have 
been integrated into the exception management architecture as asynchronous exceptions. 
In both systems, signals and asynchronous exceptions are used to notify a process of the 
Ctrl-C and Ctrl-BREAK keyboard sequences (SIGINTR and SIGBREAK), process 
termination requests (SIGTERM), or application-defined events sent using the signals or 
exceptions APL When a signal is received by a process in the 16-bit system, one of three 
alternatives occurs: The process can choose to ignore a signal, to take the default action, 
or to handle a signal by providing a signal handler. In the case of the termination signal, 
SIGTERM, the default action is to terminate the process. For example, in Fig. 5.3, pro­
cess A can kill process B and B's children (processes E and F) by invoking 
DosKillProcess with the PID of process B. The handling of exceptions and signals is 
discussed in more detail in Chapter 7. 

5.2.4 Process Control 

Process identifiers (P!Ds) are used to indicate which process is to be controlled. In the 
16-bit system, the DosGetPID call is used to get the PID of the cmrent process. In 32-bit 
OS/2, the priority is stored in the thread information block (TIB ), a system-provided per­
thread data area in the process address space. Chapters 6 and 7 explain the role of the 
TIB and the way it is accessed. In both versions of the system, DosGetPPID is used to 
get the PID of the current process's parent. 

Process execution can be synchronized using a function called DosWaitChild in 
OS/2 2.X, and one called DosCWait in OS/2 l.X. DosWaitChild allows a parent process 
to wait for the termination of a specific child process or for the termination of all its 
descendants (the entire process subtree). For example, in Fig. 5.3, process A executes 
child processes B, C, and D asynchronously. At some later time, process A may wish to 
wait until one of the child processes has terminated and also to acquire the exit status of 
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the child's termination. Alternatively, process A could wait until all its descendants have 
terminated before resuming execution. 

For debugging a process, a special function-called DosDebug in OS/2 2.X and 
DosPTrace in OS/2 1.X-is provided to permit a parent to trace the execution of a child 
process. The parent process is usually a debugger program that creates the child process 
being debugged by calling DosExecPgm with the execution control flags that indicate 
the process is to be traced. The debugger program then issm:s DosDebug or DosPTrace 
requests to access and modify the child process's context. 

5.3 THREADS 

Threads are the dispatchable units within an OS/2 process. In other words, processes do 
not really run, but threads do. A thread provides within a process a piece of code with an 
execution instance. Each process in the system has a least one thread. From the user's 
perspective, a thread's context consists of a register set, a stack, and an execution prior­
ity. Figure 5.4 illustrates the context of a thread. 

Threads share all the resources owned by the process that creates them. All the 
threads within a process share the same virtual address space, open file handles, 
semaphores, and queues. Each thread is in one of three states: running, ready to run, or 
blocked. Only a single thread in the system is actually in the running state on unipro­
cessor hardware platforms. The running thread is the ready-to-run thread that is current­
ly selected to run according to the OS/2 priority scheme. Threads that are in the blocked 
state are awaiting the completion of an event. 

When OS/2 switches between threads, it automatically saves the context of the cur­
rent running thread and restores the context of another thread that is ready to run. The 
16-bit version of OS/2 supports up to 512 threads; the 32-bit version supports up to 4095 
threads. The 16-bit system has limitations on the number of threads that can run within a 
process (on the order of 50 threads per process) due to the segmented nature of the 16-
bit kernel. The 32~bit system allows as many threads as the user desires within a pro­
cess, up to the limit of the number of threads available in the system. 

There are several advantages to a multithread process model over the traditional sin­
gle-thread process model found in systems such as UNIX. Since threads share the pro­
cess's resources, thread creation is far less expensive than process creation, and threads 
within a process enjoy a tightly coupled environment. When a thread is created, the 

Thread 

Fig. 5.4 Thread layout. 
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system does not have to create a new virtual address space or to load a program file, 
resulting in an inexpensive additional concurrent execution path. If a system with a sin­
gle-thread process model requires two concurrent execution paths, two processes must 
be created, their execution must be synchronized, and any resource sharing between the 
processes must be managed. In contrast, in the OS/2 multithreaded process model, a sin­
gle process with two threads is used, and the threads naturally share the process address 
space and resources. In addition to the lower cost for creation and termination of threads 
compared to that for processes, any synchronization needed between the execution of 
the threads is less expensive than that between processes, since the threads already share 
the process virtual address space. Chapter 7 discusses the different approaches used in 
OS/2 for interthread communication, regardless of whether or not the threads are in the 
same process. 

Another benefit of a multithread process model is that multiple threads promote a 
greater overlapping of I/O requests. A multithreaded system is able to be more interac­
tive than is a single-threaded one, due to the greater level of concurrency achieved. For 
instance, programs usually dedicate a single thread to servicing requests from the user 
interface while other threads actually perform the work requested by the user. Multiple 
threads better support an environment where parallel applications can execute with a far 
better performance than is possible in a single-thread process model. 

All these benefits accrue on both uniprocessor and multiprocessor hardware 
architectures. In a multiprocessor environment, the multithreaded architecture also pro­
motes parallelism, in which many portions of a program can execute concurrently on 
different processors. Chapter 12 discusses issues relevant to implementing the multi­
thread process model on different multiprocessor architectures. 

5.3.1 Thread Creation 

Threads are created by a call to DosCreateThread. In 16-bit OS/2, the requestor must al­
locate a stack for the thread, and must pass to DosCreateThread the address of the stack 
and the address of the code the thread is to execute. In 32-bit OS/2, the system allocates 
the stack and dynamically resizes it as necessary during the thread's life. 
DosCreateThread returns a thread ID (TID) that is similar to a PID. Each thread in the 
system can be uniquely identified by a PID:TID pair. Unlike processes, threads are not 
hierarchical. All threads in a process have a sibling relationship with one another and 
remain part of that process until they terminate. 

The thread that is created when a process is created with DosExecPgm is called 
thread I, and it has some special properties that other threads within the process do not 
have. Thread 1 receives all signals sent to the process, is used for exitlist processing 
when the process dies, and also is used for per-process DLL initialization during pro­
gram and library loading. In other words, each of these special per-process entry points 
executes using the context of thread 1. As a result, if thread 1 terminates, then all other 
threads in the process are terminated. Otherwise, another thread could potentially hang 
the process, since the process would be unable to receive the SIGTERM signals or to 
perform existlist handling during termination. 
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5.3.2 Thread Termination 

A thread is terminated by a call to DosExit. DosExit can be used to terminate the cur­
rent thread or all threads in a process. Whereas there is no function in the multitasking 
API of the 16-bit system for killing another thread that is analogous to DosKillProcess, 
the 32-bit system provides DosKillThread for terminating another thread in the current 
process. Neither is there a mechanism for handling thread termination in the 16-bit sys­
tem that is analogous to the exitlist mechanism for process termination. However, the 
32-bit system does provide a process termination exception that is sent to all threads of 
a process during process termination. Per-thread process termination exception han­
dlers can be registered using the 32-bit exception management API discussed further in 
Chapter 7. 

The 32-bit system also provides the DosW aitThread call, which allows a thread to 
wait explicitly on the termination of a specific or nonspecific thread within the process. 
DosWaitThread is useful when the threads within a process have a master/slave relation­
ship with each other, in which the master dispatches slave threads to perform tasks. 

5.3.3 Thread Control 

There are several functions in the multitasking API for controlling thread operation. The 
DosEnterCritSec and DosExitCritSec calls allow threads within a process to disable 
thread switching within that process. This facility is useful when threads in a process 
need to execute concurrently code that accesses data shared by the threads. The region 
of code that must be managed carefully is called a critical section. Critical sections 
require that each thread executing the code has mutually exclusive access to that code. 
Using the critical section functions around the critical section guarantees mutual exclu­
sion for threads within a process. However, since the critical section calls totally disable 
thread switching within the process, they may negatively affect interactive response if 
the critical section is too long. There are other mechanisms better suited to synchroniz­
ing thread execution, such as the semaphores discussed in Chapter 7. 

Another method of controlling threads within a process is to allow one thread to 
suspend the execution of another thread, and to resume execution at a later time. 
Suspension and resumption can be accomplished using the DosSuspendThread and 
DosResumeThread calls, respectively. Both calls take a TID as a parameter to indicate 
which thread should be suspended or resumed. A thread can suspend or resume only a 
thread that is within the same process. 

5.3.4 Process and Thread Information 

The 16-bit system provides several special memory objects called information segments, 
or infosefis. The system contains two infosegs: a filobal infosefi shared by all processes, 
and a local infoseg for each process. The global infoseg contains system-wide informa­
tion that is used by all processes, such as the date, time, and other system configuration 
parameters. The local infosegs contain per-process information such as the process's 
priority, current thread ID, and current thread priority, as well as the address of the 
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process's environment information. A process requests the system to map the infosegs 
into its address space by calling DosGetlnfoSeg. 

The 32-bit system does not use the infoseg architecture of the 16-bit system, except 
that it provides compatibility to 16-bit OS/2 applications. Chapter 10 discusses in more 
detail the 16-bit OS/2 compatibility issues. Since most of the information from the in­
fosegs is already available via existing API functions, and the infoseg architecture is ma­
chine dependent, the infosegs are not continued in the 32-bit architecture. However, 
there exists a requirement for per-process and per-thread data structures that contain crit­
ical data that processes and their threads need to access quickly. The process informa­
tion block (PIB) is a per-process memory object allocated within each process's virtual 
address space that contains per-process data, such as the process ID, process default pri­
ority, and module information. The thread information block (TIB) is allocated on a per­
thread basis within the process virtual address space. It contains all the information 
pertaining to a thread in a process, such as the thread stack base and stack limit, the 
thread priority, and the thread ID. A thread can access its information blocks by calling 
DosGet/ nfoB locks. 

5.4 SCHEDULING 

All threads in the system compete for processor time. To determine which threads 
should run, OS/2 implements a multilevel priority architecture with dynamic priority 
variation and round-robin scheduling within a priority level. Each thread has its own 
execution priority, and high-priority threads that are ready to run are dispatched before 
low-priority threads that are ready to run. Processes also have a priority; however, this 
priority does not enter into the calculations of which threads should run next. The pro­
cess priority is merely the default priority for threads that are created by that process. A 
thread may change the priority of any or all threads within the current process using 
DosSetPrty. A thread can also change the default priority of threads in other processes, 
regardless of whether they are related in the process hierarchy. 

In the 16-bit system, DosGetPrty is used to query the priority of a thread or process. 
In OS/2 2.X, however, DosGetPrty does not exist, since the priority information has 
been moved into the thread information block. Chapter 6 provides more information on 
accessing the thread information block. 

There are four priority classes in the OS/2 system: time critical, server, regular, and 
idle. The server class is also called the fixed-high priority class. Each priority class is fur­
ther divided into 31 priority levels. Figure 5.5 illustrates the priority classes and levels. 

Threads in the highest, or time-critical, priority class, have timing restraints. An ex­
ample of a time-critical thread is a thread that waits for data to come from a device driv­
er monitoring a high-speed communications device. The system guarantees that there is 
a maximum interrupt disable time of 400 microseconds, and that time-critical threads 
are dispatched within 6 milliseconds of becoming ready to run. These timing criteria 
ensure that the system can respond rapidly to the needs of time-critical threads, and also 
be flexible enough to allow a user to switch between programs quickly. Most threads in 
the system are in the regular priority class. 
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Fig. 5.5 Multilevel priority structure. (Adapted from OS/2 Programmer's Guide, E. 
Iacobucci, Copyright 1988, McGraw-Hill Publishing Company. Reprinted by permission.) 

The server priority class is used for programs that run on a server environment that 
need to execute before regular-priority-class programs on the server. The server class 
ensures that client programs relying on the server processor do not suffer performance 
degradation due to a regular-class program running locally on the server itself. 

Threads in the idle priority class will run only when there is nothing to run in time­
critical, server, or regular priority class. Typically, idle-class threads are daemon threads 
that run in the background. A daemon thread is one that intermittently awakens to per­
form some chores, and then goes back to being blocked. 

The scheduling algorithm is round-robin within the same priority level. For exam­
ple, if five threads have the same priority, the system will run each of the five, one after 
another, by giving each one a timeslice. The timeslicing is driven by a system clock, and 
the user can configure the timeslices from 32 to 248 milliseconds by using the 
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TIMESLICE keyword in the CONFIG.SYS file. A thread runs for its entire timeslice 
unless an interrupt occurs that results in making another thread of a higher priority class 
ready to run. In such cases, the running thread is preempted. Otherwise, a thread runs for 
the length of its timeslice, unless it calls the kernel and blocks. 

The 32-bit version of OS/2 implements optional dynamic times/icing that maxi­
mizes utilization of the processor for threads running in user mode. Dynamic timeslicing 
reduces the number of interrupts the system processes to implement timeslicing by using 
the number of ready-to-run threads as a heuristic in the scheduling algorithm. 

Since a thread can be preempted at any time due to an interrupt or timeslice end, 
threads that are sharing resources with threads in the same process or with threads in 
other processes must protect critical sections where these shared resources are manipu­
lated. They can implement protection by using one of the interprocess communication 
constructs, such as semaphores. Chapter 7 explores several mechanisms for providing 
interprocess communication and critical section management. 

Dynamic priority variation is the scheduler's ability to adjust the priorities of 
threads in the regular class to ensure that all threads get a chance to run, and that the sys­
tem provides as interactive a response as possible. These priority adjustments are called 
priority boosts. Dynamic priority variation can be enabled or disabled by the user when 
the system is started. 

The process that is running in the foreground has the locus of control of the user in­
put devices (mouse and keyboard). This is also called the input focus, and only one pro­
cess in the system can be in the foreground at a time. Processes that are not in the 
foreground are said to be in the background. So that the system will be responsive to the 
user's requests, all the threads of the foreground process receive a boost in priority. 
Then, the actual thread in the foreground process that performs the user 1/0 receives an 
additional priority boost. This priority adjustment is called the foreground boost. 

When a thread becomes ready to run as the result of an 1/0 operation completing, 
the thread receives an //0 boost from the scheduler. Since the thread went from the run­
ning to the blocked state when it issued its 1/0 request, this boost assists the thread in 
getting rescheduled quickly so that it can continue execution. An 1/0 boost changes a 
thread's priority to be the highest level within that thread's priority class. 

The third boost is called the starvation boost; it is applied to threads in the regular 
priority class that are in the ready-to-run state and that have not run recently. The 
amount of time a thread waits until the scheduler considers it starved can be configured 
by the user using the MAXWAIT keyword in the CONFIG.SYS file. The starvation 
boost causes the priority of a thread to be boosted out of its current class to a level just 
below the time-critical priority class. 

When a thread receives either an 1/0 boost or a starvation boost, the thread's priori­
ty is adjusted, and the timeslice also is adjusted to a minimum timeslice quantum that 
can be configured using the TIMESLICE keyword in the CONFIG.SYS file. The mini­
mum timeslice value can be set from 32 to 248 milliseconds, and must be less than or 
equal to the regular timeslice configuration parameter. A boosted thread retains its boost 
priority until it runs for a single timeslice; then, the priority and timeslice are reset to 
their original values. 
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5.5 KERNEL ARCHITECTURE 

The kernel is the OS/2 control program, or supervisor. It contains the nucleus of func­
tions for multitasking, interprocess communications, memory management, interrupt 
management, device 1/0, and DOS compatibility. In this section, we focus on the gen­
eral architecture of the kernel in the 16-bit and 32-bit versions of OS/2, and on the mul­
titasking portion of the kernel. 

The 16-bit and 32-bit OS/2 systems have different kernels that reflect their architec­
tural differences. Since the 16-bit system is targeted for the 80286 processor, the 16-bit 
kernel is segmented and is highly sensitive to 64KB restrictions in the management of 
its data structures. It is written in assembler to be fast as possible, while using a minimal 
amount of memory. Since the 16-bit kernel is written in assembler, all subroutine link­
ages in the kernel use registers for passing parameters. Because applications pass pa­
rameters on API requests using the stack, the kernel must take the parameters off the 
stack and put them in registers before calling the kernel functions for implementing the 
APis. A component called the system call interpreter is used to move the API parame­
ters from stacks to registers and to call the kernel routine for implementing the API, so 
that there is no need for a separate piece of code for dispatching each API request. 

Reflecting the segmented nature of the system, the routines in the 16-bit kernel are 
grouped into segments that are mapped by the global descriptor table (GDT). Mapping the 
kernel and its segments using the GDT ensures that the kernel is accessible at all times 
because the GDT is present in the context of all processes. However, the kernel segments 
are protected from applications since they are mapped at privilege level 0, the most trusted 
privilege level in the protected ring architecture of the 80286. Like 16-bit applications, the 
kernel must reload segment registers when establishing addressability to different seg­
ments. Most of the segments that compose the 16-bit kernel reside permanently in memory. 

The 32-bit kernel reflects the linear nature of the 32-bit flat memory model. The 32-
bit kernel is written in C for portability, although it contains portions that must be writ­
ten in assembler on any architecture. Since it uses C, the 32-bit kernel routines use 
stack-based linkages for passing parameters within the kernel. Thus, no system call in­
terpreter is necessary for moving the users' parameters to the registers during a kernel 
API request. Since the 32-bit kernel is flat, segment registers do not have to be loaded to 
establish addressability to different memory objects, resulting in better performance 
since segment register loading is a relatively slow operation. 

Like the 16-bit kernel, the 32-bit kernel also is mapped into the GDT at privilege 
level 0. However, since the 32-bit system is paged instead of segmented, portions of the 
kernel that are not used frequently are swappable instead of resident. Frequently execut­
ed portions of the 32-bit kernel reside permanently in memory. 

Logically, the kernel can be viewed as a top half and a bottom half The API inter­
faces, worker routines, and most of their associated components compose the top half. 
When a thread is executing in the top half of the kernel, it has access to the kernel data 
structures and to the context of the current process and thread executing. When a thread 
in the top half of the kernel blocks, it usually waits on the bottom half to be unblocked. 

The bottom half of the kernel is the collection of routines for handling hardware in­
terrupts and faults that are unrelated to the current process and thread executing. Also in 
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the bottom half are routines provided by the kernel needed to assist the interrupt and 
fault handlers in completing their services. Since the activities serviced by the bottom 
half of the kernel occur asynchronously, the bottom half cannot rely on a specific pro­
cess or thread context to be mapped. Routines that access data shared by the top and bot­
tom halves must serialize their access to the shared data in a mutually exclusive fashion 
to guarantee the data's integrity. 

Both the 16-bit and 32-bit kernels are organized into components. Each component 
has a set of routines for system call service, called worker routines. When a system call 
is dispatched, the worker routine from the appropriate component is called to service the 
request. The worker routine uses the kernel interfaces provided by the kernel compo­
nents to validate parameters; it then performs the system call request. During a system 
call, the kernel either completes the request immediately or blocks the requesting thread 
awaiting an event, such as completion of I/O or the availability of a required resource. 

The kernel components involved in the management of multitasking are the tasking 
manager, the dispatcher, the scheduler, the interrupt manager, and the trap manager. The 
tasking manager provides the process and thread API routines, and manages the kernel 
data structures that represent processes and threads. The dispatcher manages the opera­
tional loop that drives the system, context switching, and blocking and unblocking of 
threads. The scheduler manages thread priorities, thread states, and processor usage, and 
also chooses the next thread to run when the dispatcher switches contexts. The dispatcher 
and the scheduler work together in determining when to context switch and which thread 
to run. The interrupt and trap managers are responsible for routing and for handling hard­
ware interrupts and exceptions. Figure 5.6 illustrates the multitasking components. 

5.5.1 User Mode 

Since the OS/2 system is protected, a distinction is made between the state of a thread 
running in the kernel and that of one running in an application. When a thread is running 
code from a program or dynamic link library, the thread is said to be in user mode. A 
thread that is running in user mode runs at privilege level 2 or 3, executes within the 
domain of the process's virtual address space, and can be preempted. The process's vir­
tual address space is also called its user space. 

While running in user mode or user space, a thread can access memory only within 
its own process's virtual address space. It is unable to access memory in another pro­
cess's virtual address space, unless memory sharing has been set up by the memory 
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Fig. 5.6 Multitasking kernel components. 
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manager. A thread in user mode is also unable to access memory belonging to the sys­
tem. If a thread attempts to access memory addresses within its address space that have 
not been mapped by the memory manager, a general protection fault is raised, and the 
errant thread and process are terminated. In the 32-bit version of OS/2, general protec­
tion faults can be handled in user mode by setting of an exception handler. Protection is 
implemented using the protection and memory mapping hardware of the processor. The 
implementation of the process virtual address space in both the 16-bit and 32-bit sys­
tems is explained in Chapter 6. 

5.5.2 Kernel Mode 

A thread that is running code in the top half of the OS/2 kernel is in kernel mode. A 
thread makes the transition from user mode to kernel mode during API requests to the 
kernel and potentially during interrupt processing. A thread that enters the kernel has 
two options: it either completes the operation and attempts to exit the kernel, or blocks 
awaiting some resource's availability or event to complete an operation (e.g., I/0). 
When running in kernel mode, a thread executes at privilege level 0, and is not pre­
emptible. An interrupt may cause control to transfer temporarily for interrupt service, 
but control is always returned to the thread in kernel mode. A thread running in kernel 
mode has access to all the memory in the system-all of the process virtual address 
spaces, as well as the kernel's code and data areas. The aggregate of these memory areas 
is called the system virtual address space, or kernel space. 

The OS/2 kernel architecture makes further distinctions among user mode, kernel 
mode, and the privilege level architecture. It is possible for a thread to be executing at 
privilege level 0 but not be in kernel mode. A thread officially enters kernel mode when 
a special entry point in the dispatcher named EnterKMode is called. EnterKMode saves 
the state of the thread and sets a global flag in the kernel named lnDOS. Actually, a 
thread is not preemptible if it is executing at privilege level 0 or if lnDOS is set indicat­
ing that the thread is in kernel mode. An example of a thread executing at privilege level 
0 that is not in kernel mode arises when an interrupt occurs while a thread is in user 
mode-the interrupt handling occurs in interrupt mode. A thread that is in kernel mode 
returns to whatever mode it was in previously by calling the dispatcher routine 
ExitKMode. The only time that a context switch can occur is when a thread exits kernel 
mode. The logic of this constraint is described later in this chapter, where the opera­
tional loop of the system is discussed. 

5.5.3 Kernel Process Context 

The data structure used by the kernel to track each process in the system is called the 
per-task data area (PTDA). Each PTDA is allocated, when a process is created, by a call 
to DosExecPgm; each PTDA uses fixed memory within the kernel space. Figure 5.7 
illustrates some of the major fields of a PTDA. 

The PTDA contains the PID of the process and links to the parent, sibling, and first 
child processes, a pointer to the process virtual address space, a list of open file handles 
and semaphores, a pointer to the chain of threads within the process, and a pointer to the 
current thread within the process that is running. Also in the PTDA are the default process 
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priority, signal and exception handling information, and a link to the module table entry 
(MTE) that describes the executable file loaded into the process virtual address space. 
MTEs are described in more detail in Chapter 7, in the discussion of the program loader. 

When a thread is in kernel mode, the PTDA for the current process is always 
mapped by a global kernel variable so that kernel routines always have access to the 
PTDA of the current process. In the 16-bit system each PTDA is a segment, and the cur­
rent PTDA is always mapped by having the SS register loaded with the selector of the 
PTDA. In the 32-bit system, each PTDA is a flat memory object accessible by a 32-bit 
offset relative to the kernel's system virtual address space~the current PTDA is 
accessible through a global kernel variable that contains the offset of the current PTDA. 

5.5.4 Kernel Thread Context 

The data structure used by the kernel to track each thread in the system is called the 
thread control block (TCB). Each TCB is allocated either by a call to DosCreateThread 
when a thread is created, or by a call to DosExecPgm when the initial thread is created 
during process creation. Like the PTDAs, TCBs use fixed memory and reside within the 
kernel space. The TCBs for each process are linked in a chain, with the head of the 
chain in the PTDA. Figure 5.8 illustrates the layout of a TCB. 

The primary structure in each TCB is the kernel stack, which is used when the 
thread is running at privilege level 0 or in kernel mode. Each thread in the system must 
have its own kernel stack for two reasons. First, since a thread may block while in the 
kernel, a place is needed for saving the blocked state information, as well as the local 
data already allocated as the thread made its way to the point where it had to block. 
Second, since there are special cases where a thread voluntarily yields the processor 
while in kernel mode, the top half of the kernel must be reusable. Voluntary preemption 
and yielding are discussed later in this chapter. 
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When a thread makes the transition from user mode to kernel mode through a gate, 
the 80X86 gate hardware automatically switches from the user stack to the kernel stack. 
Therefore, the gated architecture of the 80X86 processors supports a natural, stack­
based implementation of dynamic linking. The pointer to the kernel stack for the current 
thread is maintained in the task state segment (TSS), which is accessed by the processor 
when privilege level transitions occur. The kernel stack is used to preserve the state of 
the user's context when EnterKMode is called, and to provide local storage during ker­
nel processing. Also contained in each TCB is information for controlling 1/0; schedul­
ing information, such as priorities and processor usage fields; and forced-action flags 
that indicate pending actions that the thread must perform when exiting the kernel. 

In the 16-bit version of the system, the TCBs belonging to a process are allocated in 
the same segment as the PTDA. When a new thread is created, the PTDA segment is re­
sized and the new TCB is allocated. Figure 5.9 illustrates the layout of PTDAs and 
TCBs in the 16-bit system. 

SS:O----------~ 

SP 
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current thread 

Fig. 5.9 Layout of 16-bit PTDA and TCB. 
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Allocating the TCBs in the same segment as the PTDA has several interesting rami­
fications. Since the current PTDA segment is always addressable by the SS segment reg­
ister, the current thread's TCB is always addressable by loading of an offset 
register-typically, the current running thread is always addressable by SS:BP. Also, the 
links in the chain of TCBs need to be only 16-bit fields, since they are relative to the 
base of the PTDA segment. However, there is a cost for this quick access to the current 
thread's TCB: Since the maximum segment size on an 80286 is 64KB, there is a limita­
tion of approximately 50 threads per process. Also, in potential future versions of the 
l 6-bit system, any growth in the TCB or kernel stack will decrease the number of 
threads available per process. 

The 32-bit version of the system does not have this limitation, since the TCBs are 
allocated out of the kernel space as flat memory objects addressable using a 32-bit offset 
relative to the base of the system virtual address space (like PTDAs in the 32-bit sys­
tem). Therefore, the links in the chain of TCBs within a process are 32-bit offset fields. 
Since the 32-bit kernel is written in 32-bit C, the kernel stacks are larger than in the 16-
bit version, since the code is 32-bit granular instead of 16-bit granular, and high-level 
languages such as C use the stack for local storage. Therefore, the 32-bit system divides 
the TCB into a fixed portion called the TCB and a swappable portion called the thread 
swappable data (TSD ). The TSDs primarily contain the kernel stacks, and can be 
swapped out when a thread is in the blocked state. Figure 5.10 illustrates the layout of 
PTDAs, TCBs, and TSDs in the 32-bit system. 

5.5.5 Context Switching 

Context switching refers to the mechanism used by the kernel to stop running one thread 
and to start running another. The OS/2 dispatcher implements a policy of context 
switching only when a thread attempts to exit the kernel (ExitKMode) or when a thread 
in the kernel blocks waiting on an event or resource. Therefore, the ExitKMode routine 
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becomes the single locus of control for forced actions that a thread must perform, such 
as context switching, signal dispatching, and termination. 

A global flag variable called ReSched is shared between the dispatcher and the sched­
uler. ReSched indicates whether there is potentially a thread of priority higher than that of 
the current thread that has been made ready to run. Part of the ExitKMode routine called 
whenever a thread attempts to exit kernel mode checks the ReSched flag. If the ReSched 
flag is set, the SchedNext routine of the dispatcher is called to switch out the current run­
ning thread in order to run the highest-priority ready thread in the system. SchedNext is the 
actual context switch routine of the system, and is the only place that a thread switch 
occurs in the kernel. It is called only from ExitKMode and from ProcBlock; the latter rou­
tine is used when a thread in the kernel blocks and gives up the processor. 

The thread that is currently running when SchedNext is invoked is called the outgo­
ing thread, and the thread to which SchedNext ultimately switches is called the incoming 
thread. Only outgoing threads call SchedNext, and only incoming threads return from 
SchedNext. We now look in more detail at how the SchedNext routine performs the con­
text switch. 

SchedNext begins execution by calling the GetNextRunner routine in the scheduler 
component to determine the highest-priority thread that should be the new running 
(incoming) thread. If the outgoing thread is the same as the incoming thread, SchedNext 
merely returns, and the current thread continues executing. If the outgoing thread is dif­
ferent from the incoming thread, SchedNext performs a context switch. 

If GetNextRunner indicates that there are no threads in the system that are ready to 
run, it executes a loop known as the idle loop. The idle loop is executed when all threads 
in the system are blocked on some external event. This implies that there is no background 
activity and that there are no user requests occurring via keyboard or mouse-the entire 
system is waiting. The idle loop exists within SchedNext, and consists of polling the 
ReSched flag with interrupts enabled. When an interrupt occurs that makes a blocked 
thread ready to run, the thread running in the idle loop will exit, will call GetNextRunner 
again, and will continue executing SchedNext to switch in the ready-to-run thread. 

Once a new thread to run has been selected, SchedNext determines whether the out­
going thread is within the same process as the incoming thread, or is within a different pro­
cess. If the incoming and outgoing threads are in different processes, SchedNext must 
switch the process context (PTDAs, process virtual address spaces, etc.) and the thread con­
text. If both threads are within the same process, only the thread context must be switched. 

The actual switching of the process context entails changing the current PTDA, and 
calling the memory manager to switch process virtual address spaces. Switching a thread 
context entails setting the current thread variable in the current PTDA, changing kernel 
stacks, and resuming execution at a known place in SchedNext at which all threads re­
sume running when they are outgoing. Since the task-state segment (TSS) of the system 
contains the address of the current thread's kernel stack, it also must be edited during a 
context switch to ensure that future privilege level transitions by the running thread use 
the proper kernel stack. 

An interesting caveat in the OS/2 context switching model is that there is no explicit 
"save/restore" instruction or routine used to save all the registers from one thread and 
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restore the registers for another. Although the TSS construct of the 80X86 tasking archi­
tecture provides this function, OS/2 does not utilize it except for the minimum of having 
a single TSS for supporting privilege level transitions. The TSS switching feature of 
80X86 processors provides a mechanism for performing a save/restore for the entire reg­
ister set in a single instruction. Since this set includes all segment registers on 80286 
architectures, and also the paging registers on the 80386 and 80486, the TSS switch is 
slow due to flushing of the segment register caches, flushing of the translation lookaside 
buffer used for page translation, and the protection checks that occur as the segment reg­
isters are reloaded. 

When contrasted with the OS/2 context switch model, this overhead is not required 
for several reasons. The thread's user mode register set is saved on the kernel stack 
when the thread enters kernel mode, and is restored when a thread exits kernel mode. 
Within SchedNext, only the process virtual address space needs to be switched (and only 
in the process switch case), since both the outgoing and incoming threads are executing 
in the system virtual address space. Also, all threads resume execution in SchedNext at a 
fixed point where known values are loaded into the registers-the threads do not rely on 
any saved state lo resume their execution in the kernel, since they are on the kernel stack 
already. This results in much faster context switching compared to the TSS switching 
model. It also uses less memory, since the TSS model requires a TSS to be allocated and 
managed for each thread in the system. 

5.5.6 System Calls 

System calls, or API function requests, are used by threads running in user mode to ac­
cess services provided by the operating system. Traditionally, most operating systems 
place all the system calls in the kernel. This implementation makes the system-and, 
consequently, its API-difficult to change without changing the kernel. So that the sys­
tem and its API are more flexible and extendible, OS/2 system calls are implemented us­
ing dynamic linking. This implementation allows OS/2 APis functions to reside in either 
a dynamic link library or the kernel transparently to the requesting thread. 

All 16-bit and 32-bit OS/2 API requests are made by pushing the parameters on the 
user mode thread stack, then issuing a CALL instruction to transfer control to the target 
API routine. The address of the target API routine is a dynamic link that is resolved ei­
ther when a process is created and loaded into the process virtual address space, or at 
run time using the dynamic linking API functions. In the 16-bit system, all addresses 
and dynamic links are segmented 16: 16 virtual addresses, and the control transfer occurs 
using the far variety of the CALL instruction. In the 32-bit system, all addresses and dy­
namic links are flat 0:32 virtual addresses, and the control transfer utilizes the near vari­
ety of the CALL instruction. 

5.5.6.1 DLLAP!s 

OS/2 DLLs are loaded into the process virtual address space when the process is creat­
ed, and potentially while the process's threads are executing in user mode (at run time). 
Therefore, DLLs are effectively attached to the process, and the threads within the 
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process can make use of the DLLs API functions. Since DLLs are mapped into user space, 
their code and data are swappable, instead of being fixed in the kernel. Also, a DLL can 
easily access the API parameters on the thread's user stack, since it is running in the 
requestor's context. Since a thread that has called an API in a DLL runs in user mode, a 
thread executing in a DLL can be preempted. For DLLs to be shared among processes, 
they must be reentrant. DLLs make use of interprocess communication constructs, such as 
semaphores and shared memory, to ensure their integrity. A DLL with integrity is one that 
can be shared by processes, yet not allow any process to hinder any other process. In this 
environment, an errant or malicious process can cause only its own termination. Chapter 7 
discusses issues related to interprocess communication, memory sharing, and parameter 
validation that must be considered to guarantee this level of integrity. 

An example of an API that is implemented in a DLL instead of in the OS/2 kernel is 
the queueing API, which provides functions for managing queues between processes. 
Since the queueing API can be implemented without requiring the protection or nonpre­
emptive execution state of the kernel, it is a DLL that uses other functions in the API to 
provide services. The queueing code and data are swappable and can be preempted, 
resulting in more efficient memory and processor utilization. Since the dynamic linkage 
to the queueing API is transparent, the queueing API can be freely migrated to the ker­
nel, or perhaps to another DLL module, without requestors having to change. However, 
some APis require functions that exist only in the kernel, or have special performance or 
protection requirements. We now discuss the implementation of kernel system calls and 
APis. 

5.5.6.2 Kernel AP!s 

In both 16-bit and 32-bit OS/2 systems, the kernel's code and data are mapped into the 
system virtual address space at privilege level 0 using global descriptor table (GDT) se­
lectors. This mapping makes the kernel and its API automatically accessible to all pro­
cesses, since there is only one GDT in the system. However, since it is mapped at 
privilege level 0, it cannot be accessed directly by a thread running in user mode (privi­
lege level 3) without a general protection fault occurring. 

OS/2 uses the call gate mechanism employed on the 80X86 processors for transfer­
ring control from threads running in user mode to an API implemented in the kernel. For 
each API implemented by the OS/2 kernel, a call gate is allocated in the GDT. Recall 
from Chapter 2 that a call gate has a privilege level, and has a target address field within 
its descriptor. The call gates for the OS/2 kernel APis have privilege level 3, so that they 
are accessible to threads running in user mode executing CALL FAR instructions. The 
target address within the gate descriptor points to the entry point at privilege level 0 for 
the APL 

Other traditional operating systems that employ static linking in their API calling 
conventions typically vector all API requests through a single call gate, along with an 
extra parameter called the system call number. Although, at first glance, this mechanism 
seems simpler than the call gate-per-API model, it implies that the requestor must have a 
layer of bindings statically linked into its code to put in place the static link or system 
call number. It also implies that the kernel must have a dispatch mechanism to fan out 
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the API calls to the worker routines, rather than having them called directly from the call 
gate entry point. This prohibits API functions from being called directly from applica­
tion code, slows performance, and restricts API extendibility and flexibility. 

In any operating system, several events occur during the processing of a system call 
in the kernel. The application initiates transfer of control to the kernel using a trap or 
service call instruction. The kernel copies the user parameters from the user space to the 
kernel space to prevent them from being altered while the system call executes. The ker­
nel then saves the user mode context and dispatches the system call to the proper kernel 
routine. The kernel routine responsible for the API validates the parameters, performs its 
service, and then exits with the return status. When the system call service routine com­
pletes, the kernel restores the user mode context, and transfers control back to the re­
questor with the return status. 

In OS/2, the call gate mechanism is used for most of these steps. When the thread in 
user mode issues the CALL FAR instruction to a call gate in the GDT, the processor 
switches automatically from the thread's user stack to the kernel stack, and copies the 
parameters from the user stack to the kernel stack using the count parameter in the gate 
descriptor. Several necessary steps are thus accomplished~control has been transferred 
to an entry point in the system virtual address space, the processor is executing at the 
most trusted privilege level, and the requestor's parameters have been copied from user 
space to kernel space. 

EnterKMode is then called to save the user context on the thread stack, and official­
ly to stamp the thread as being in kernel mode. Note that there is a state where a thread 
is running at privilege level 0 but is not yet in kernel mode. The entry point then branch­
es to the worker routine that validates the API parameters and performs the API func­
tion. After the worker routine completes, the thread then calls ExitKMode to restore the 
user-mode context and subsequently to return to user mode with the RET FAR instruc­
tion. Figure 5.11 illustrates the sequence of operations for a kernel system call. 

When a system call is serviced in the kernel, the thread may either block awaiting 
some resource or event, or complete service without waiting. If the thread must stop to 
wait on some resource, it calls the ProcBlock routine of the dispatcher. ProcBlock 
moves a thread from the running state to the blocked state, and calls SchedNext to force 
a context switch. The ProcRun routine is used to wake up a blocked thread. ProcRun 
moves one or more threads to the ready-to-run state and sets the ReSched flag to force a 
dispatch cycle when the current thread exits the kernel. ProcBlock and ProcRun are dis­
cussed in more detail later in this chapter. 

When the system call worker routine completes its service, the thread attempts to 
return to the calling code. The thread calls ExitKMode to exit kernel mode and to restore 
the user mode context. However, ExitKMode is the focal point of context switching pol­
icy; before restoring the user mode context and returning, it checks to see whether there 
are any per-process forced actions. Examples of forced actions are pending signals and 
exceptions, critical sections, and trace events used for debugging programs. After the 
process's forced actions have been serviced, the ReSched flag is tested to see whether a 
reschedule cycle is pending, indicating that another thread may be a better candidate to 
run. Note that interrupts must be disabled while the ReSched flag is tested, since it can 



128 Multitasking 

Privilege level 2 and 3 

Privilege level 0 

Interrupt 

IRET 

Fig. 5.11 Th read state transitions. 

ProcRun 

', Context switch 
------------possible 

----- ~:~ ...... 

be set during an interrupt. If ReSched is set, SchedNext is called to perform a context 
switch. When a thread is ultimately scheduled and exits the kernel, the user mode con­
text is restored from the kernel stack, and control is transferred back to the requestor 
using the RET FAR instruction. 

You might wonder, if a thread executing in kernel mode is nonpreemptible, how can 
there be another thread that is a better candidate to run? Although the kernel is nonpre­
emptible, it is interruptible. Interrupts from external devices such as clocks, disk drives, 
and communications controllers can occur, and these interrupts usually result in comple­
tion of 1/0 service for another thread that is not in the current context. An interrupt oc­
curring while a thread is in kernel mode causes a control transfer to a device interrupt 
handler. The handler often calls ProcRun to notify a blocked thread that the thread's re­
quest is complete and to make it ready to run. Since the interrupted code was executing in 
privilege level 0, and privilege level 0 and kernel mode are nonpreemptible, control reverts 
to the thread originally executing in kernel mode. When the thread exits the kernel, 
ExitKMode detects the set ReSched flag to indicate that a reschedule cycle is necessary. 
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Another interesting aspect of the system call mechanism is how threads executing 
32-bit API requests within the flat model move to privilege level 0 from user mode. 
Since the 32-bit dynamic link is implemented with a CALL NEAR using a 0:32 pointer, 
and the 80X86 architecture requires a CALL FAR to use a call gate, a layer of stub rou­
tines is provided for each API function. The stub routines are near entry points that 
make a CALL FAR to a call gate in the GDT on behalf of the requestor. There is a two­
line stub routine for each 32-bit API serviced by the kernel. The stub routines are invisi­
ble to users of the API, and are mapped into the process virtual address space within one 
of the system's DLLs. 

5.5. 7 Interrupts 

Interrupts are special kinds of control transfers that are used to handle asynchronous events 
external to the processor. The 80X86 processor architectures provide both maskable and 
nonmaskable interrupts. Maskable interrupts can be inhibited by software that controls the 
interrupt flag of the processor flags. The CLI and STI instructions are used for enabling 
and disabling maskable interrupts. The interrupt controller used in all PC architectures is 
the Intel 8259 chip. The 8259 receives eight levels of interrupts. It assigns priorities to 
them, and dispatches them to the host processor according to how it is programmed. Most 
PCs have two of these chips, providing 15 levels of external interrupts. When a hardware 
interrupt occurs, the 8259 begins an interrupt cycle with the host 80X86 processor, and 
holds further interrupts on the active interrupt level and levels of lower priority until the 
processor sends an end-of-interrupt (EOI) command to the 8259. 

In OS/2, interrupts refer specifically to external hardware interrupt service requests 
from devices. The interrupt manager, a component of the kernel, is responsible for han­
dling the interrupt controller, managing interrupt handlers, and dispatching interrupt re­
quests. The addresses of interrupt handlers registered by the kernel and device drivers 
are saved by the interrupt manager in an interrupt table. Since the PS/2 and EISA com­
puter architectures allow multiple devices to have a single interrupt level, the table may 
have multiple handlers for each interrupt level. Figure 5.12 illustrates the interrupt table. 

Interrupt level Interrupt handler addresses 

0 J J -,. 

1 J I I 
2 ..... J .L 

14 ..... ..... J ...... -,. ...... 
15 ...... J 

Fig. 5.12 Interrupt table. 
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Like system calls, the protected-mode interrupt mechanism of the 80X86 processors 
uses gates to facilitate privilege level transitions during interrupt service. The interrupt 
descriptor table (IDT) contains interrupt or trap gates for each interrupt and exception 
serviced by the system. Since hardware interrupts can occur while the system is in both 
user mode and kernel mode, the privilege level of the hardware interrupt gate descriptors 
is 3. Each gate descriptor points to a stub of code that saves the interrupt number and 
vectors to the interrupt manager's dispatch routine. 

When an interrupt occurs, control is transferred through the IDT to the interrupt 
manager's dispatch routine with interrupts disabled. The registers of the interrupted con­
text are saved, and the system switches into interrupt mode by switching from the cur­
rent thread kernel stack to a global system interrupt stack. Interrupt mode is the bottom 
half of the kernel; it runs using a systemwide interrupt stack, since the bottom half 
should not alter the top half's current kernel stack, and it cannot rely on any specific 
process or thread to be currently running. 

Once the system has entered interrupt mode, the interrupt manager's dispatch rou­
tine then uses the number of the interrupt as an index into the interrupt table, and calls 
all the interrupt handlers chained together for that interrupt level. The dispatch cycle fin­
ishes when an interrupt handler indicates that it has serviced the interrupt. 

Before the dispatch routine prepares to return to the interrupted context, a critical 
part of the code for enforcing the system's preemption policy is executed. If the inter­
rupted context was executing code at privilege level 0, then the interrupted thread was 
running in kernel mode or at privilege level 0. In this case, since kernel mode and privi­
lege level 0 are nonpreemptible, the interrupted context is resumed directly by restora­
tion of the registers and return of control to the interrupted point. 

If the interrupted context was executing at privilege level 2 or 3, however, then the 
interrupted thread was executing in user mode. Since user mode is preemptible, the dis­
patcher checks the ReSched flag to see whether another thread is potentially ready to 
run. If the ReSched flag is set and the interrupted context indicates user mode, the inter­
rupt dispatch routine calls EnterKMode immediately, followed by ExitKMode, to force a 
preemptive rescheduling cycle. The interrupt manager does not perform the context 
switch itself. The ReSched flag gets set when an interrupt handler issues a ProcRun for a 
blocked thread awaiting an interrupt. 

Having a single global interrupt stack also allows the interrupt manager to identify 
and manage nested interrupts. A nested interrupt can occur after an interrupt handler 
sends an EOI command to the 8259 after clearing the interrupt at the original device. At 
this point, the interrupt handler can enable maskable interrupts, and the interrupt dis­
patch routine can be reentered before the current interrupt dispatch cycle completes. The 
code that performs preemption control at the end of the dispatch cycle also recognizes a 
nested interrupt when examining the interrupted context, and returns to the previous 
interrupt mode context even though the ReSched flag is set. Nested interrupts are an 
important feature that allows an operating system to be more responsive to interrupts 
and reduces interrupt dispatch latency. So that the requirements for interrupt dispatch 
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latency are met, the maximum time that interrupts can be disabled in any portion of the 
system is 400 microseconds. 

5.5.8 Exceptions 

Exceptions are internal processor events that cause a special type of control transfer. On 
80X86 processors, exceptions are dispatched the same way as interrupts, but there is no 
involvement with an external interrupt controller. Exceptions are assigned reserved 
interrupt numbers by the processor, and are delivered using trap or interrupt gates in the 
system's IDT. 

Exceptions are further classified in the 80X86 architecture into faults, traps, and 
aborts. A fault is an exception that is reported before or during the instruction that will 
cause the exception. The state saved during the control transfer references the instruc­
tion that causes the fault, allowing instruction to be potentially restarted. Examples of 
faults include page faults, segment-not-present faults, and divide-by-zero or invalid­
opcode exceptions. Traps are reported immediately after the instruction that causes 
them. A typical trap would be the use of the INT 3 breakpoint instruction for debugging 
a program. An abort is an exception that does not permit the precise location of the error 
to be reported; it is used to report nonrecoverable system errors. 

The OS/2 trap manager, a component of the kernel, provides exception handlers for 
the 80X86 exceptions, and services for routing exceptions to the appropriate kernel or 
user exception handlers. The trap manager registers its exception handlers by initializing 
the appropriate IDT gate descriptors to point directly to the trap manager's low-level 
trap handlers. These trap handlers save the exception context and call an exception dis­
patching routine in the trap manager. 

OS/2 divides the exceptions into those that can be handled by threads in user mode, 
called user exceptions, and those handled by the system. System exceptions are handled 
by the kernel and are routed directly to their components by the trap manager. Note that 
it is possible for the current thread to block during the handling of a system exception 
such as a page fault when swap I/O must be done before the thread can continue execu­
tion. User exceptions such as divide by zero, invalid opcode, and boundary check have 
default actions that are taken by the system if the user thread does not handle them. 
Typically, the default action in user exceptions is to terminate the process. 

A difference between 16-bit and 32-bit OS/2 is that the 16-bit system maintains user 
exception handlers on a per-process basis, whereas the 32-bit system provides user excep­
tion handling on a per-thread basis. The general protection fault exception, which is raised 
when a protection violation occurs, cannot be handled by users in 16-bit OS/2 and results 
in process termination. However, 32-bit OS/2 allows users to handle general protection 
faults, since the latter are useful in lazy parameter validation schemes. Lazy parameter val­
idation is discussed further in Chapter 7, with respect to exception management. 

When an exception occurs, control is transferred through the IDT to the trap man­
ager dispatch routine, with interrupts disabled and the trap number identified. The trap 
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manager dispatch routine calls EnterKMode to preserve the thread's user context, and 
then dispatches the thread to the appropriate trap handler according to the trap type. The 
trap handler either blocks by calling ProcBlock, or completes and returns to the trap 
manager dispatch routine. The trap manager dispatch routine then calls ExitKMode to re­
store the user context and to resume execution. Unlike interrupts, exceptions are handled 
on the kernel stack of the thread that caused the exception. They are handled there 
because the current thread caused the exception. Also, unlike interrupts, exceptions do 
not nest, so the amount of stack space required is limited. 

Exceptions that can be potentially handled by user mode threads are routed to a spe­
cial trap handler called the user exception dispatcher, which implements the exception 
APis and user exception routing. User exceptions are not dispatched immediately. 
Instead, the user exception dispatcher builds an exception stack frame on the current 
thread's user mode stack that will simulate an exception in the current thread when that 
thread returns to user mode. When the trap manager dispatch routine finally calls 
ExitKMode to restore the thread's context, the thread will resume automatically in the 
context of the user exception handler the next time it is scheduled. If the exception was 
not handled by a user handler, the kernel processes the default action. If the default 
action is process termination, a bit is set in the process's force flags that forces the pro­
cess to terminate itself the next time one of its threads exits the kernel. 

5.5.9 Timeslicing 

The timeslicing function of the system provides an environment where each thread runs 
for a short time and is then preempted for a rescheduling cycle. The length of time each 
thread gets to run is called a times/ice, and the timeslice value is configured when the 
system is started. Since OS/2 implements preemption in user mode, a thread is not al­
ways permitted to run for a complete timeslice. This section describes how the scheduler 
and dispatcher components interact to provide the basic timeslicing function. 

The timeslice is counted using a real-time clock external to the processor. OS/2 uses 
ticks from the clock to calculate timeslice intervals. A timeslice can be anywhere from 
34 milliseconds to 9999 milliseconds. However, the clock is set to a tick granularity 
finer than the timeslice, so that other timer services can be provided to applications. 

The scheduler manages the states and priorities of threads and calculates real-time 
processor usage. Timer ticks are recorded when the clock device interrupts the proces­
sor. The clock interrupt causes the system to enter interrupt mode and to dispatch the 
interrupt to the clock device driver interrupt handler. The clock interrupt handler calls 
the scheduler entry point for recording timer ticks, SchedClock. SchedClock calls the 
routine SchedTick for timeslice accounting, and various other components of the kernel 
that rely on real-time aging algorithms. 

SchedTick adds the elapsed time to the current thread's processor usage field, and 
checks to see whether the thread has run for a timeslice. If the thread has completed a 
timeslice, SchedTick sets the ReSched flag, resulting in a forced rescheduling cycle oc-
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curring the next time the thread exits the kernel. In either case, SchedTick returns to the 
clock interrupt handler, which ultimately returns to the interrupt dispatcher. 

As in all interrupts, the interrupt dispatcher checks whether the interrupted context 
was in interrupt mode (i.e., resulting in a nested interrupt), kernel mode, or user mode. If it 
was in interrupt mode or kernel mode, the interrupted context is restored directly, since 
these are nonpreemptible modes. Ultimately, when the thread finishes running nonpre­
emptible code and exits the kernel, the forced reschedule cycle (timeslice) occurs. If the 
interrupted context is user mode, then the interrupt dispatcher calls EnterKMode followed 
by ExitKMode to force a reschedule. In this scenario, the preemption is called a timeslice. 

5.5.10 ProcBlock/ProcRun 

The low-level dispatcher routines responsible for moving a thread from the running state 
to the blocked state, and from the blocked state to the ready-to-run state, are called 
ProcBlock and ProcRun, respectively. Threads executing in kernel mode either com­
plete their service or block awaiting a resource or an external interrupt. Threads can also 
block when they incur page faults or segment-not-present faults, waiting for the I/0 to 
load the memory. 

The ProcBlock routine requires three parameters: an event identifier, a timeout 
value, and flags. The event identifier is a token that represents the event on which the 
blocked thread is waiting. OS/2 maps the event identifiers onto system virtual addresses. 
Typically, a thread calling ProcBlock uses the address of a major data structure related 
to the block request. The timeout value allows a thread to specify the maximum amount 
of time that the thread should block waiting on the event. The flags parameter specifies 
whether the block is interruptible by signals. Because both the timeout and flags 
parameters are used, blocked threads are prevented from being blocked forever. 

ProcBlock is allowed to be called only in kernel mode (top half), never in interrupt 
mode (bottom half). When a thread in kernel mode calls ProcBlock, the thread is moved 
into the blocked state, is inserted on the appropriate timeout and block queues, and exe­
cutes SchedNext to force another thread to be run. The timeout value is aged by 
SchedClock, discussed previously in this chapter. If a thread's timeout occurs before 
ProcRun is issued on the event, the thread is moved automatically into the ready state, 
and the ReSched flag is set. 

The ProcRun routine requires one parameter: an event identifier. Since event identi­
fiers are mapped onto system virtual addresses, they are not unique. Therefore, ProcRun 
must wake up all threads blocked on a given event identifier. This requirement is a side 
effect of using system virtual addresses for event identifiers. Multiple threads waiting on 
a single event cannot be distinguished from multiple threads waiting on different events 
using the same address for the event identifier. Therefore, ProcRun marks all the threads 
waiting on the event as ready, sets ReSched, and returns to the caller. ProcRun can be 
called in kernel mode, but is most often called from interrupt mode. 

The use of system virtual addresses for mapping event identifiers leads to other side 
effects in the system. Since more than a single thread can be blocked using a single 
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event identifier, when a thread awakens and returns from ProcBlock, it must check 
whether the intended event has occurred. Also, since ProcRun can be called at interrupt 
time, interrupts must be disabled before the condition of the event is checked. The man­
agement of the state of the interrupt flag during calls to ProcBlock is critical, since the 
state is used to guarantee mutually exclusive access to data and code shared by the top 
half and bottom half of the kernel. Figure 5 .13 illustrates how ProcB lock is called. 

If all threads awaken, race conditions arise in the kernel, because all the awakened 
threads are rescheduled according to priority. All the awakened threads, except for the one 
that finds its event satisfied, will be rescheduled long enough for their conditions to be 
checked and for ProcBlock to be called again. This practice is avoided where possible by 
careful selection of event identifiers by the system, but it cannot be avoided in some cases. 
The mapping of events to system virtual addresses also has the potential to cause logic and 
correctness problems to occur in unexpected areas. In Chapter 7, we shall examine the 
effect this race condition has on the performance of 16-bit semaphores. 

An interesting comparison to the UNIX system can be made in this area. The 
ProcBlock and ProcRun routines closely parallel the UNIX sleep and wakeup routines. 
Both systems use addresses for event identifiers; both suffer from the same side effects. 
However, the 32-bit version of OS/2 introduces a different architecture that uses unique 
event identifiers and allows the caller of ProcRun to request single or multiple thread 
wakeup. This distinction enables the system to wake up a single thread of highest prior­
ity among a group of threads blocked on an event identifier. The capability to wake up 
multiple threads when that is the intention also is retained. This capability allows the 
system to eliminate race conditions and wasted processor cycles, and to provide a 
consistent wake-up time no matter how many threads block on an event. 

The 32-bit dispatcher uses a hash table to store and search event block ids so that 
the performance of ProcBlock and ProcRun is consistent no matter how many threads in 
the system are blocked. Each hash entry contains a pointer to a list of TCBs blocked on 
one or more event ids. There can be more than one event id in the same hash entry, since 
more than one unique event id can be hashed to the same value. The list of TCBs 
blocked on an event id is sorted in order of priority. 

5.5.11 Voluntary Preemption 

Since a thread running in kernel mode is not preemptible, it would seem that a thread in 
the kernel could continue running and effectively exclude other threads from running. 
This situation is especially problematic given the existence of time-critical threads. 
Although most system calls and kernel services complete rapidly or block the requesting 

Disable interrupts 
While (need to block) 

ProcBlock (Event, Timeout, Flags) 

Fig. 5.13 ProcBlock calling sequence. 
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thread, there arc a few situations in which large lists must be searched, or long 
sequences of instructions must be executed, in order to complete the service. For 
instance, in the 16-bit system, the memory manager performs compaction, an expensive 
process in which segments are copied between areas of physical memory. 

OS/2 guarantees that a time-critical thread that is made ready to run will be dis­
patched within 4 milliseconds. To ensure that ready time-critical threads will get a 
chance to run within 4 milliseconds, the kernel implements a type of voluntary preemp­
tion called a yield. So that this criterion is met, there is a secondary version of the 
RcSchcd flag, called the TCRcSchcd (for time-critical) flag. The TCRcSchcd flag is set 
whenever a thread in the time-critical class moves to the ready state. In specific areas in 
the kernel where an operation may take longer than 4 milliseconds, the code is written to 
call periodically a dispatcher interface named TCYicld. TCYield examines the state of 
the TCReSchcd flag and forces a context switch if TCRcSched is set by calling a special 
entry point in the SchedNcxt routine. 

Since the yielding thread can potentially own resources, it is important that execu­
tion return to the yielding thread after the time-critical thread has run. To ensure this re­
turn, TCYicld boosts the priority of the yielding thread to a priority level just below the 
lowest time-critical priority. Note that these critical sections of code in the kernel that 
can potentially yield the processor must be written to be reentrant, and are in effect 
small sections of coarsely preernptible code in the kernel. Full preemption, instead of 
voluntary preemption, would require the entire kernel to be written such that a preemp­
tion cycle could occur at any time, not just at specifically defined points where it is nec­
essary. A symmetric multiprocessor version of the kernel would have to be reentrant and 
to allow concurrent execution of multiple threads in the kernel. 

In the example of copying 64KB of memory, the 16-bit memory-manager code that 
performs the operation is written to copy as much of the segment as is possible in 4 milli­
seconds, to call TCYicld to allow time-critical threads to run, then to continue the opera­
tion after the time-critical threads have run. 

5.6 Multitasking API 

Table 5.1 lists the 16-bit and 32-bit multitasking API calls. 

SUMMARY 

This chapter presented OS/2' s multitasking architecture. The basic elements of the 
architecture are processes and threads; they are managed by the multitasking APL The 
scheduling model that threads use in OS/2 is a multilevel priority scheme with round­
robin scheduling within a priority level. The kernel contains most of the critical portions 
of the system, and the multitasking components that provide the system's concurrency 
features. The task manager, scheduler, dispatcher, and interrupt manager work together 
to provide the fundamental multitasking functions of context switching, dispatching, and 
scheduling. 
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16-bit API name 32-bit API name 

DosCreateThread DosCreateThread 

DosCWait DosWaitChild 

NIA DosWaitThread 

DosEnterCritSec DosEnterCritSec 

DosExecPgm DosExecPgm 

DosExit DosExit 

DosExitList DosExitList 

DosGetlnfoSeg DosGetlnfoBlocks 

DosGetPrty NIA 
DosKillProcess DosKillProcess 

NIA DosKillThread 

DosSetPrty DosSetPriority 

DosGetPID NIA 
DosGetPPID DosGetPPID 

DosPTrace DosDebug 

DosResumeThread DosResumeThread 

DosSuspendThread DosSuspendThread 

DosGetEnv NIA 
DosScanEnv DosScanEnv 

Table 5.1 Multitasking API calls. 

TERMINOLOGY 

API requests 
asynchronous 1/0 operation 
blocked 
blocking 
CALL FAR instruction 
call gate 
child process 
clock device-driver interrupt handler 
context 
context switching 
critical section 
daemon thread 
device interrupt handler 
device 1/0 

Description 

Create a thread 
" Wait for child process termination 

Wait for thread termination 

Disable thread switching within process 

Create child process and load program 

Terminate thread/process 

Register process termination handler 

Get process/thread info 

Get execution priority 

Send termination signal to process 

Kill thread within process 

Set execution priority 

Get process/thread IDs 

Get parent process ID 

Debug program/process 

Resume a thread 

Suspend a thread 

Get process environment 

Scan process environment 

dispatcher 
DOS compatibility 
DosCreateThread 
DosCWait 
DosKillProcess 
DosExecPgm 
DosExit 
DosExit AP! 
DosPTrace 
dynamic link import 
dynamic link library 
dynamic priority variation 
EnterKMode 
event 



ExitKMode 
exception 
exception handler 
exitlist procedure 
external reference 
fault 
flat linear address space 
file handle 
foreground 
foreground boost 
general protection fault 
idle loop 
idle priority class 
incoming thread 
inDOS 
input focus 
1/0 boost 
interprocess communication 
interrupt 
interrupt descriptor table (IDT) 
interrupt dispatch latency 
interrupt management 
interrupt manager 
interrupt mode 
interrupt table 
kernel 
kernel mode 
kernel space 
kernel stack 
maskable interrupt 
massive parallelism 
massively parallel 
master/slave relationship 
memory management 
memory protection 
module table entry (MTE) 
multilevel priority architecture 
multitasking 
multitasking API 
multithread process model 
nested interrupt 
open file handle 
outgoing thread 
page table 
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parent process 
per-task data area (PTDA) 
priority boost 
privilege level 0 
process 
process ID (PID) 
process termination handler 
process virtual address space 
program 
program loader 
queue 
ready 
reentrant 
regular priority class 
ReSched 
resume 
round-robin scheduling 
SchedNext 
scheduling algorithm 
scheduler 
segment-not-present fault 
semaphore 
sess10n 
sibling process 
SIGBREAK 
SIGCTRLC 
signal 
signal handler 
SIG TERM 
single-thread process model 
stack-based calling convention 
stack-based linkage 
starvation boost 
supervisor 
suspend 
system call interpreter 
system clock 
system interrupt stack 
system timer 
system virtual address space 
tasking manager 
task state segment (TSS) 
thread 
thread control block (TCB) 
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thread ID (TID) 
thread 1 
thread swappable data (TSD) 
thread termination 
time-critical priority class 
time-critical thread 
time slice 
timeslicing 
translation lookaside buffer (TLB) 
trap 

EXERCISES 

trap dispatcher 
trap manager 
unblocking 
user exception 
user exception dispatcher 
user space 
user stack 
worker routine 
yield 

5.1 Explain how, even though DOS is not a multitasking operating system, it is still possible for 
applications to provide their own multitasking. 

5.2 What are the primary resources contained by a process? 

5.3 Why can a process not access another process's memory or the system's memory? 

5.4 How are processes created in OS/2? 

5.5 Explain OS/2's hierachical process structure. Discuss the notions of parent, child, and sib­
ling processes, and of the root of the process tree. 

5.6 What do we mean when we say that a child process runs synchronously relative to its parent? 
What do we mean when we say that a child process runs asynchronously relative to its parent? 

5.7 How are processes terminated in OS/2? 

5.8 What is an exitlist handler? How does the kernel know which handlers are associated with a 
particular process? 

5.9 What is a signal? In what three ways may a process respond to a signal? 

5.10 Is it true that OS/2 processes do not run? Explain your answer. 

5.11 Explain the various thread states (i.e., running, ready, and blocked), and describe the vari­
ous transitions that may occur between thread states. 

5.12 List advantages to the multithread process model over the traditional single-thread process 
model found in systems such as UNIX and MVS. 

5.13 How does the multithread process model promote greater overlapping of I/O requests? 

5.14 Why is OS/2's multithread process model important in the context of multiprocessor sys­
tems? 

5.15 Unlike processes, OS/2 threads are not hierarchical. What implication does this have for the 
relationships among the threads of a process? 

5.16 Discuss the special significance of thread 1. 

5.17 How does OS/2 guarantee mutually exclusive access to shared data among the threads of a 
process? 

5.18 What do we mean when we say that a set of threads within a process have a master/slave 
relationship? 
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5.19 Describe OS/2's multilevel priority architecture. Explain dynamic priority variation and 
round-robin scheduling. 

5.20 Is it possible for a thread's execution to be postponed indefinitely? Explain your answer. 

5.21 An OS/2 thread may set its own priority. In some operating systems, allowing individual 
activities to control their own destiny in this manner is frowned on. Why is such a capability rea­
sonable in OS/2? 

5.22 Distinguish among time-critical threads, regular-priority-class threads, and idle-priority­
class threads. 

5.23 What guarantees does the system give to time-critical threads? 

5.24 In OS/2, timeslicing is driven by a system clock and can be configured by the user. 
Values for the quantum may be set between 34 milliseconds and 9999 milliseconds. What are 
the consequences of selecting far too large a quantum? What are the consequences of selecting 
far too small a quantum? How might a user tune the quantum to an appropriate value for a given 
system? 

5.25 Define each of the following terms in the context of OS/2 multitasking: foreground, input 
focus, background, foreground boost, 1/0 boost, starvation boost. 

5.26 What are the key functions performed by the OS/2 kernel? 

5.27 Describe the functions of each of the following kernel components involved in the manage­
ment of multitasking: the tasking manager, the dispatcher, the scheduler, the interrupt manager, 
and the trap manager. 

5.28 Explain how the dichotomy between user mode and kernel mode helps to ensure protection 
in OS/2's multitasking environment. 

5.29 What might cause a general protection fault? How does the system typically respond to 
such a condition? 

5.30 What is kernel mode? Under what circumstances might a thread make the transition from 
user mode to kernel mode? 

5.31 Why do you suppose threads running in kernel mode are not preemptible? 

5.32 How might a thread be executing at privilege level 0, yet not be in kernel mode? 

5.33 When can context switches occur? 

5.34 In the operating systems literature, the data structure that serves as a central depository for 
all information about a process is called the process control block (PCB). What data structure in 
OS/2 corresponds to the PCB? 

5.35 How is the PTDA of the current process located in 16-bit OS/2? How is the PTDA of the 
current process located in 32-bit OS/2? 

5.36 What is the idle loop? 

5.37 Distinguish between process context switching and thread context switching. What opera­
tions are performed to accomplish each type of context switch? 

5.38 Can a thread that has called an API in a dynamic link library, and is currently executing in 
that dynamic link library, be preempted? Explain your answer. 

5.39 Describe the sequence of events that occurs in OS/2 from the initiation of a system call 
request by an application, through the processing of the system call by the kernel, to the resump­
tion of the application. 
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5.40 What do we mean when we say that, in OS/2, although the kernel is nonpreemptible, it is 
interruptible? 

5.41 What is a maskable interrupt? What does it mean to enable or disable maskable interrupts? 

5.42 Describe the communications that occur between an Intel 8259 controller and a host 80X86 
processor when an interrupt occurs. 

5.43 Why does the OS/2 interrupt table potentially have multiple interrupt handlers per interrupt 
level? 

5.44 How might a nested interrupt occur? 

5.45 Distinguish among the three exception types on the 80X86 architecture: faults, traps, and 
aborts. 

5.46 Under what circumstances might the current thread block during the handling of a system 
exception? 

5.47 Why are exceptions, unlike interrupts, handled on the kernel stack of the thread that caused 
them? 

5.48 Explain how OS/2 implements timeslicing. 

5.49 How is 32-bit OS/2's algorithm for thread-wakeup superior to UNIX's algorithm? 

5.50 Discuss the operation of OS/2's voluntary preemption technique, called a yield. How does 
the yield capability help to ensure rapid response to the needs of time-critical threads? 

5.51 Give an example of an application that is inherently parallel. Explain why programming 
such an application with multiple threads is more natural than is programming it with a single 
thread. 

5.52 In what sense are all the threads of a process identical? In what sense are they different? 
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Memory Management 

The fancy is indeed no other than a mode of memory 
emancipated from the order of time and space. 

Samuel Taylor Coleridge 

'Tis in my memory lock' d, 
And you yourself shall keep the key of it. 

William Shakespeare 

A great memory does not make a philosopher, 
any more than a dictionary can be called a grammar. 

John Henry, Cardinal Newman 
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6.1 INTRODUCTION 

This chapter describes the memory management aspects of OS/2. We begin with a look at 
the terminology necessary to understand OS/2 memory management. Physical memory is 
primary memory, or the range of real addresses within a computer. For example, the DOS 
system allows a program to access physical addresses in the range from OKB to 640KB. 
OS/2 systems allow far more physical storage to be accessed than do DOS systems. 

A major feature of most multitasking systems such as OS/2 is to utilize virtual 
memory. The key to virtual memory is that it allows the addresses referenced in a run­
ning program to be disassociated from the addresses available in primary storage. A pro­
cessor's memory management unit (MMU) provides this feature, which is called 
address translation. The MMU translates virtual addresses into physical addresses as 
instructions are executed. The range of virtual addresses available is called the virtual 
address space; the range of physical addresses available is called the physical address 
space. Virtual memory systems have the characteristic of allowing a program or process 
to be independent of its actual position in physical memory, whether all or part of that 
program or process is in physical memory. The address translation between virtual and 
physical addresses occurs at run time and must be extremely fast-otherwise, the perfor­
mance of the system would be degraded severely. Another attribute of virtual memory 
systems is that the range of the virtual address space can be independent of the range of 
real memory. In other words, the virtual address space can be far larger than the real 
address space. Typically, secondary storage media, such as disks, are used as swapping 
devices for saving the portions of a program that are not resident in physical memory at 
the time that the program is running. 

In a multitasking, virtual memory system, protection is another major feature usu­
ally provided by the memory management unit of the processor. There are two forms of 
protection that are required in a multitasking system. The first is protection among the 
processes in the system, which allows each process to have an isolated memory envi­
ronment in which to run. This memory environment is called the process virtual address 
space, as we saw in Chapter 5. By allocating a process virtual address space to each pro­
cess, we protect the individual processes in the system from one another. The archi­
tecture of the process virtual space defines what the memory model of a system is, or 
how memory looks to the processes in the system. The second type of protection pro­
vides isolation of the system from the user processes. In the implementation of this pro­
tection scheme, the system virtual address space encompasses the kernel memory and all 
the process virtual address spaces. The system virtual address space is accessible only 
by a thread running in kernel mode. 

Relating these factors to what we discussed in Chapter 5, a thread running in user 
mode can access only memory mapped by its own process virtual address space; it can­
not access memory within another process's virtual address space unless memory shar­
ing between the processes has been set up. A thread in user mode also cannot access 
kernel memory. However, a thread in kernel mode can access all process virtual address 
spaces and kernel memory. In summation, both kinds of protection are necessary in any 
multitasking system to guarantee the integrity of concurrent applications. 
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The memory management component of the system is responsible for allocating 
process virtual address spaces and for setting up the required hardware structures to 
enable processes to be protected from one another and from the system. The memory 
management API allows threads within a process to manipulate the contents of the pro­
cess virtual address space. It also provides functions for manipulating memory objects 
within the process virtual address space. OS/2 provides functions for object allocation, 
deallocation, and sharing. 

6.2 OS/2 1.X MEMORY MANAGEMENT 

In this section, we describe the motivations for the architecture of 16-bit OS/2 memory 
management. The 16-bit OS/2 version targets the 80286 processor platforms. The main 
goals with respect to memory management in 16-bit OS/2 are to break the 640KB 
barrier associated with DOS systems and to provide a protected environment for 
multitasking. Another major goal is to allow applications to allocate more memory than 
physically is present in the computer. Finally, a powerful memory sharing capability is 
necessary to permit multiple processes to communicate through shared memory and to 
support dynamic link libraries. 

6.2.1 Memory Model 

When the 80286 processor is placed in protected mode, it provides virtual segmented 
addressing. The addresses within the virtual address space of the processor are not 
contiguous because they are divided into variable-sized portions called segments. 
Segments can have sizes from 1 to 64KB. Each segment must be mapped by a descriptor 
or a general protection fault will occur when the memory is accessed. The OS/2 memory 
model for 80286 processor systems is called the segmented memory model. 

Unlike in real-mode DOS systems, segment arithmetic cannot be performed on the 
protected mode virtual segmented addresses. Segment arithmetic occurs when a DOS 
program takes advantage of the fact that a single memory location can be addressed 
using different segment:offset combinations or aliases. Recall from Chapter 2 that, on an 
8088 architecture, the values loaded into the segment registers are directly related to the 
generated physical address. In the 80286 environment of 16-bit OS/2, the segment val­
ues are specific selectors that map descriptors, and each segment can be addressed only 
by a unique selector. Therefore, the segment protection of the 80286 automatically pro­
hibits segment arithmetic. Segment protection is accomplished using the protection ring 
architecture discussed in Chapter 2. Segment swapping allows more physical memory 
than is available in the computer to be allocated by applications. 

The system address space is common to all processes and is mapped by the GDT at 
privilege level 0. Each process has an LDT that represents its process virtual address 
space. A process can access only memory mapped by the GDT or by its own LDT. 
Because each process has its own LDT, the process virtual address spaces are encapsu­
lated and isolated. Threads running in user mode cannot access the descriptors in the 
LDT or the GDT. Furthermore, each LDT's descriptors are divided into private and 
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shared descriptors, in order to differentiate between addresses (not storage) private to a 
process and addresses that are shared across processes. Figure 6.1 illustrates the usage of 
the descriptor tables for the system and process virtual address spaces. 

6.2.2 Memory Objects 

Memory objects in 16-bit OS/2 are segments. A segment is from 1 to 64KB, is physi­
cally contiguous, and is addressable via a 16-bit selector value in combination with a 16-
bi t offset. This fully qualified virtual address is also called a 16: 16 address 
(selector:offset). Segments are also relocatable in physical memory and are swappable. 
Since there are only four segment registers available on the 80286 processor, all the seg­
ments within a process's virtual address space cannot be addressed simultaneously. To 
establish addressability to a segment, a thread must load a segment register with the se­
lector for that segment. 

Segments are classified according to type of virtual address, type of storage, and 
what kind of segment it really is. Segments can be fixed, movable, swappable, and dis­
cardable. Most of the kernel itself is fixed memory, and only the kernel can allocate 
fixed memory. Fixed memory never moves, is never swapped, and is resident in physi­
cal memory. Memory that is movable can be relocated. However, this relocation is 
transparent to applications, since segments are relocatable through their descriptor 
tables. Swappable segments are those that can be swapped to disk if physical memory is 
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Fig. 6.1 16-bit virtual address spaces. 
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in short supply. Discardable segments are those that can be reloaded from their exe­
cutable files when they are referenced during execution. Examples of discardable seg­
ments are application code segments and data segments that are read-only. Unless 
segment swapping or segment motion is disabled when the system is started, all applica­
tion data segments are swappable and moveable. 

Segments can share their virtual addresses, their contents, or both. Each process vir­
tual address space has separate shared and private selector regions within the LDT. 
Actually, the selectors are interleaved within an LDT to allow the smallest LDT size 
possible. Selectors that map to descriptors in the private part of the LDT are called 
private selectors; those that map to descriptors in the shared portion of the LDT are 
called shared selectors. The selector type is independent of whether the contents of the 
segment are shared. Therefore, there are four possible combinations of the virtual­
address-space and storage-type attributes. 

Segments with private addresses and private storage are those allocated by the 
memory management API, and read-write data segments that are loaded from exe­
cutable files. Segments with private addresses and shared contents are executable code 
and read-only data segments. Thus, executable EXE code and read-only data segments 
can be shared by all processes that are running the same EXE. 

Shared address segments are managed differently from private address segments 
since they can be accessed by multiple processes concurrently. Whereas the 80286 hard­
ware places no constraints on whether processes map shared segments using the same 
LDT descriptor, OS/2 shared segments are mapped at the same address in all processes. 
Thus, all processes use the same virtual address when accessing shared addresses. 

Since code segments have fixups to other segments that must be resolved when the 
code segments are loaded into memory, these fixups must be valid in all contexts in which 
the code segment will be used. Placing all shared segments and EXE code segments at the 
same address in all contexts meets this criterion. The same address is provided in each pro­
cess's context by use of the same LDT selector/descriptor pair for the shared segments. 
Thus, OS/2 divides an LDT into private and shared descriptors, and reserves shared 
descriptors in all LDTs when a shared segment is allocated by any process. 

Shared addresses with shared storage segments are shared segments. In other words, 
there is a single physical segment that is referenced in the context of multiple processes. 
Shared memory is allocated either at run time using the shared memory APis, or at load 
time when a dynamic link library's code and global data segments are loaded. Shared 
address private storage segments are called instance segments. Instance segments are 
mapped using shared addresses; however, a different copy of the segment exists for each 
process in physical memory. Instance segments are allocated by dynamic link libraries 
when they are loaded, and contain per-process data defined by the library. Table 6.1 
illustrates the possible combinations of segment types. 

6.2.3 OS/2 1.X Memory Management API 

This section describes the functions of the 16-bit OS/2 memory management APL 
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Address type 

Private 

Private 

Shared 

OS/2 1.X Memory Management 

Storage type Origin 

Private EXE read-write data or private 
memory API 

Shared EXE code or EXE read-only data 

Private DLL instance read-write data 

Shared Shared DLL code, DLL read-only data, 
DLL shared data, or shared­
memory API 

Table 6.1 Memory object types. 

6.2.3.1 Private Memory 
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Private memory is allocated by a call to DosAllocSeg. DosAllocSeg allows the requestor 
to allocate a segment of up to 64KB, and returns an LDT selector to the allocated seg­
ment. Allocation flags that are supplied during requests allow the requestor to determine 
whether the memory is to be private, or is to be shared through the give-get mechanism 
(discussed in Section 6.2.3.2). A segment is freed by a call to DosFreeSeg. 

DosReallocSeg allows the requestor to change the size of a segment. Private seg­
ments can be grown or shrunk, whereas shared segments are usually only grown. If a 
shared segment is of the give-get variety, its size can be reduced if a special bit was set 
in the allocation flags when the segment was created by DosAllocSeg. A segment reallo­
cation request can cause a segment to be relocated in physical memory. 

Since segments have a maximum size of 64KB, a special type of construct, called a 
huge segment, exists in 16-bit OS/2 to allow a memory object larger than 64KB to be 
allocated. DosAllocHuge allows a huge object to be constructed. A huge object consists 
of a series of LDT selectors, each of which maps a segment of the huge object. The LDT 
selectors for a huge object are mathematically related by a value called the huge incre­
ment or huge shift factor. The huge increment is applied to one of the LDT selectors that 
maps a portion of a huge object, allowing applications to address different 64KB por­
tions of the huge object. The huge-segment arithmetic is reminiscent of segment-value 
arithmetic in DOS. The huge increment must be determined by a call to 
DosGetHugeShift. DosReallocHuge supports resizing of huge objects. 

6.2.3.2 Shared Memory 

The shared memory API provides functions for manipulating global shared segments. 
Global shared segments use shared LDT addresses and shared storage. As the section on 
16-bit memory objects explained, in the traditional shared memory scheme, a single 
copy of a segment is shared within the context of multiple processes. There are several 
ways to manage global shared memory. The first method is named shared memory. 
Named shared memory is created by issuance of a DosAllocShrSeg request. One of the 
parameters in the request to create the named shared segment is a name in the 
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\SHAREMEM\XXX format. This name is entered into the name space of the file system 
using an entry in the directory \SHAREMEM. Since any name in the file system name 
space is global to all processes, any process that knows the name of the segment can 
gain access to that segment by calling DosGetShrSeg. DosGetShrSeg causes the named 
shared segment to be mapped into the requesting process's LDT, and returns the selector 
for accessing the segment. Recall that the selector for a given shared segment is the 
same in all processes. Named shared memory is typically used between loosely coupled 
peer processes as an interprocess communication mechanism. 

Another type of global shared memory is called give-get shared memory. Give-get 
shared memory is allocated using DosAllocSeg with the giveable and getable flags set in 
the allocation flags as an input parameter. If the giveable flag is set, the segment may be 
given to another process by a call to DosGiveSeg. If the getable flag is set, the segment 
may be gotten by another process a by call to DosGetSeg. This strategy allows a process 
either to give addressability to a segment to another process, or a process to get address­
ability to a segment in another process. For example, if process A allocates some shared 
memory that is giveable, it specifies the PID of process B to give that segment to pro­
cess B when invoking DosGiveSeg. This specification establishes a mapping in process 
B's process address space (LDT). Conversely, if the segment was getable, process B 
could get access to process A's segment by calling the DosGetSeg API and providing 
the selector of the segment in process A's context. In both cases, the process gaining 
access to the shared segment must become aware of the selector for addressing the seg­
ment through an interprocess communication mechanism. Give-get shared memory is 
typically used by closely coupled peer processes that need to pass data to each other. 
Figure 6.2 illustrates 16-bit memory sharing. 
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DosFreeSeg is used for freeing all segments in the system, whether they are shared 
or private. For each shared segment, the system maintains a usage count that represents 
the number of times a segment has been shared. Each time a segment is freed, the usage 
count is decremented. The actual shared segments are freed when their usage count 
reaches 0. When a process terminates, the system automatically frees any allocated 
memory that has not already been deallocated. 

6.2.3.3 Memory Suhallocation 

Since the system must track each segment that is allocated, it is expensive to allocate a 
segment for small memory objects (1 byte to 2KB). Allocating a segment for every 
small object can slow down the process, since segment management is performed by 
kernel APis, and the process must continually reload segment registers to change ad­
dressability to each small segment. When the size of a segment is smaller than the size 
of the data structures that the system maintains for that segment, memory as a resource 
is not being used in an optimal fashion. Allocating a segment for each small object need­
ed also causes the LDT selectors that compose the process virtual address space to be 
consumed excessively. Furthermore, allocating a segment for each object requires seg­
ment registers to be loaded whenever the segment is addressed, a slow operation com­
pared to accessing memory within a segment that is already addressed. 

To reduce this overhead and fragmentation, OS/2 provides a memory-suballocation 
subsystem that provides management for memory objects within a segment. The mem­
ory-suballocation subsystem runs in user mode and resides in a dynamic link library. 
Therefore, the memory-suballocation API functions are extremely fast compared to the 
kernel API functions, and run preemptibly. A segment that is suballocated in this fash­
ion is also known as a heap. DosSuhSet initializes a segment for use as a memory pool. 
Memory objects allocated from the pool are of variable length and are byte-granular. 
Memory is allocated from the heap using DosSuhAlloc, and is deallocated using 
DosSubFree. Since the memory objects reside within the same segment, access is much 
faster because a segment register does not have to be reloaded to address different 
objects in the memory pool. A memory pool or heap can be used with private or shared 
segments. Since the suballocation APls are serialized, a heap can be accessed concur­
rently by multiple threads in different processes. 

6.2.3.4 Dynamic Linking 

DosExecPgm is used to load programs, as described in Chapter 5. The memory for a 
program or a library that is allocated while the latter is being loaded is called load-time 
memory. Memory that is allocated while a program or library is being executed using an 
API is called run-time memory. When an executable (EXE) file is loaded into memory, 
segments are allocated for the contents of the executable file and for the segments of any 
associated dynamic link libraries (DLLs). The only time that instance data can be allo­
cated is when a DLL is being loaded. 

Dynamic linking occurs at load time and at run time. Chapter 5 described how load­
time dynamic linking occurs when a process is created using DosExecPgm. However, 
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there are several functions in the memory management API that allow a process explic­
itly to load or attach to a specific DLL module at run time. DosLoadModule loads a se­
lected DLL and any resources it needs to complete its load at run time. The process 
loading or attaching to the library is returned a handle to the loaded module. Generally, 
handles are used by user processes to specify system-managed objects in API calls. 
Once a process has loaded a module, the handle can be used on subsequent 
DosGetProcAddr calls to retrieve the address of entry points within the module. When 
the process has finished using the library, DosFreeModule is invoked with the module 
handle to notify the system that the process has finished using the module. 

6.2.4 OS/2 1.X Memory Management Kernel 

The OS/2 kernel provides most of the memory management functions. The memory man­
agement portion of the kernel consists of four components: the virtual memory manager, 
the loader, the physical memory manager, and the swapper. The virtual memory manager 
is responsible for providing the memory management API, and for handling the descriptor 
table for mapping virtual memory to physical memory. The loader is responsible for pro­
gram loading, dynamic linking, and demand loading of segments from executable files and 
dynamic link libraries. The physical memory manager is responsible for the management 
of physical memory resources and of compaction to reclaim physical memory fragments. 
The swapper extends the physical memory resource by storing currently unneeded seg­
ments in a swap file and restoring them when they are referenced. 

6.2.4.1 Virtual Memory Management 

The virtual memory manager is responsible for providing the memory management API 
used by processes to manipulate segments within their process virtual address spaces. It 
is also responsible for the management of the descriptor tables, of shared addresses, and 
of memory-overcommit accounting. Finally, the virtual memory manager maintains data 
structures representing user segments and handles segment-not-present faults. 

6.2.4.1.1 Overcommit Accounting Overcommit accounting is necessary to ensure 
that the system always has enough memory to run, and that the total allocated resources 
do not exceed the size of the swap file. The 80286 has four segment registers, and each 
segment register can map a single 64KB segment at a time. Since a single instruction 
can cause an access of two more segments at a time, such as a call through a call gate 
between privilege levels, a total of 6 x 64KB, or 372KB, of physical memory must be 
available in order to guarantee that a process can run. So that a process does not thrash 
the system attempting to load its segments into memory when it exits the kernel, a spe­
cial routine is used to load all the process's segments atomically. Fixed kernel memory 
and locked user segments in the system reduce the amount of memory available for a 
process to run. Fixed kernel allocations and long-term locks fail if the total memory 
remaining is too small for a single process to run. 

6.2.4.1.2 Descriptor Management The 80286 descriptor tables are managed by the 
virtual memory manager. The GDT is used to map the system virtual addresses to physi­
cal memory. The GDT contains the descriptors for the kernel's code and data, for the 
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device drivers' code and data, and for the call gates to the kernel. Free GDT descriptors 
are linked into a free list using the fields of the descriptor fields that are unused when a 
descriptor is invalid. The kernel provides simple functions for allocating and freeing 
GDT descriptors when necessary. 

Each process virtual address space is mapped by an LDT. Each LDT is a segment 
that is grown dynamically as the size of the largest LDT in the system increases. Each 
LDT maps all the segments allocated at load time and run time on behalf of a given pro­
cess. When context switches occur between processes, the dispatcher calls the virtual 
memory manager to switch LDTs. Figure 6.1 illustrates the descriptor tables. 

The LDT is divided into private and shared selectors (or descriptors). In OS/2 1.0, 
the shared and private selectors are interleaved in a ratio of one shared selector to one 
private selector (I: I). However, OS/2 1.1 changed this ratio to three shared selectors to 
one private selector (3: I). Shared and instance objects are allocated at common shared 
addresses in the process virtual address spaces, because processes tend to need more 
shared virtual addresses than they do private virtual addresses. The selector type is inde­
pendent of whether the segment contents are shared. The private selectors within an 
LDT are used to map segments that are private to a process, including code and data 
segments from the EXE file and API-allocated private segments. Even though EXE code 
and read-only objects are private, they are shared with each instance of the same pro­
gram. Since a process can dynamically attach to a shared library, shared selectors are 
used to map segments from dynamic link libraries. Code, global shared data, and 
instance data segments are mapped using shared selectors. Shared selectors are also used 
for API-allocated shared memory, both named and give-get. 

As stated previously, all shared segments, whether code or data, occur at the same 
virtual address in all process virtual address spaces. This single address simplifies the 
task of tracking shared memory usage in different processes. The virtual memory man­
ager uses a systemwide bitmap for handling the reservation of shared selectors across all 
LDTs in the system. Each bit in the bitmap corresponds to a descriptor or selector in the 
LDT. The bits for the private selectors in the bitmap are set to indicate that the selectors 
are not available, and the bits representing shared selectors are clear to indicate that 
these selectors are free. When a shared segment is allocated, a slot for the shared de­
scriptor is found by consultation with the system LDT bitmap, and the descriptor is re­
served across all processes by setting of the entry in the bitmap. Private LDT descriptors 
are managed in the same way as GDT descriptors. Free LDT descriptors within an LDT 
are linked in a free list using the fields of the descriptor that are unused when the 
descriptor is invalid. 

Dividing the LDT into shared and private descriptors reduces virtual memory con­
sumption. If each process's code were mapped using shared selectors, then every time a 
process was started, the system would have to update and grow every LDT in the system 
to accommodate the new segments. This strategy would force each LDT to be larger 
than necessary. Splitting the process virtual address space into private and shared 
addresses eliminates this side effect. However, another side effect is introduced by the 
sharing of memory at the same virtual address in all contexts. If a single process uses 
many shared objects or segments, it can consume shared address space in another pro­
cess's LDT. 
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Code segments from executable files and dynamic link libraries always share their 
contents or storage. For this scheme to work, the virtual memory manager must ensure 
that the same selector is available in all contexts for mapping the shared code. For 
shared libraries, the LDT bitmap reserves selectors across processes. However, this 
mechanism does not work for code from an executable file, since it is mapped using pri­
vate selectors. The system guarantees that the same private selectors are available each 
time a given process is loaded, since the LDT is empty at the time a program is loaded. 

6.2.4.1.3 Object Management The major data structure that is used by the virtual 
memory manager for tracking system objects and user segments is called the handle 
table. Each memory object in the system is assigned a 16-bit handle. The handle of a 
memory object is an index into the virtual memory manager's handle table. A handle 
selects a handle table entry (HTE) that represents the memory object. Each HTE con­
tains permanent information on segments, indicating whether they are present in physi­
cal memory, in the swap file, or in an executable file or dynamic link library. Figure 6.3 
illustrates the contents of a handle table entry. 

The handle table has a semaphore associated with it that is used to serialize access 
to the handle table when it is grown. The only times that two different threads try to 
modify the handle table concurrently are when one thread tries to access an object in 
interrupt mode while another thread is accessing it in kernel mode during a system call, 
or while a thread in kernel mode has voluntarily yielded the processor. This is due to the 
nonpreemptible nature of the OS/2 kernel. 

Each HTE has a flags field that indicates whether the object is shared or private, and 
whether it is moveable, fixed, swappable, or discardable. The flags also indicate whether 
the memory object must reside in physical memory above or below IMB. The latter 
indicator is significant with respect to how the system provides DOS compatibility. It 
allows the virtual memory manager to be flexible enough to allocate memory so that the 
memory is addressable when the processor is in real mode running a DOS application. 
Another bit in the HTE flags is used to indicate when an operafon is in progress for the 
object. This bit is used as a per-object semaphore for allowing a thread to gain owner­
ship of a handle for the duration of an operation on a specific memory object. If an oper­
ation is in progress when a thread attempts to access a handle, it blocks using the 
address of the HTE as a block identifier. 

In addition to the HTE flags, each HTE also contains the physical address of an object 
when that object is present in physical memory and is mapped by a descriptor. The selec­
tor field in the HTE indicates the descriptor used to map the segment. The lock count field 

------- 32 bits-------

Handle flags PhysAddr (low) 

PhysAddrJ 
(high) Lock count Primary selector 

Fig. 6.3 16-bit handle table entry (HTE). 
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indicates the number of outstanding locks on the object. Locks are used by the kernel and 
device drivers to fix discardable or swappable memory segments in physical memory. 
Some of the fields for physical address in HTEs are overlapped by other information when 
an object is not present, as we shall describe in a moment. Locks are discussed in more 
detail in Chapter 8. Some of the fields in HTEs are overlapped by other information when 
an object is not present, as we shall also examine now. 

Each object in the system has an owner field that identifies from where the memory 
object came. In other words, the owner field indicates whether the segment is a discard­
able one that can be reloaded from an EXE or DLL module, or is a swappable API­
allocated one that resides on the swap file. If the memory object is discardable, the 
owner is the handle to the MTE of the module that contains the segment. If it is swap­
pable, the owner is a handle to the PTDA of the process. 

There are two prinicipal types of memory objects mapped by the handle table: sys­
tem objects and user objects. System objects are always present and fixed, and have spe­
cial reserved handle values for their owner fields. Examples of system objects are 
PTDAs, MTEs, and LDTs. Each PTDA has an HTE that contains its physical address, 
and a special owner value that tells the virtual memory manager that the system object is 
a PTDA. A different owner-field value (handle) is reserved for MTEs, LDTs, and other 
system-object classes. 

System objects are mapped dynamically; in other words, they are not allocated per­
manent descriptor mappings, and are not accessible until they are mapped explicitly. 
The distinction between an object and a segment in 16-bit OS/2 is that an object does 
not necessarily have a descriptor mapping it, whereas a segment is always mapped. 
Since there are so many system objects, allocating to each system object a permanent 
descriptor would cause a huge growth in the GDT, and would result in a significant 
reduction in the number of GDT selectors available for other purposes. Therefore, each 
system object is mapped by an HTE to a physical address, instead of being mapped by a 
descriptor, to conserve GDT selectors. This mapping strategy also allows references to 
these system objects to use 16-bit memory object handles instead of 24-bit physical 
addresses or 32-bit 16: 16 virtual addresses, resulting in a memory savings in kernel data 
structures. These fixed objects are dynamically mapped and unmapped by the virtual 
memory manager whenever they need to be accessed. 

For example, if an MTE needs to be addressed, the MTE handle is passed to a map­
ping routine called MemMapMTE, which allocates a GDT descriptor that maps the phys­
ical address contained in the HTE for the MTE. When the MTE no longer needs to be 
addressed, MemUnmapMTE is called to deallocate the descriptor mapping. Any refer­
ences to the MTE in other kernel data structures use the 16-bit memory-object handle 
for that MTE. 

User objects also are mapped by the handle table. User objects are either API-allo­
cated segments or segments that reside in an EXE or DLL file. Note that user objects are 
called segments since they always have a virtual memory mapping in an LDT. The 
owner field of a user object is either an MTE handle or a PTDA handle, based on 
whether the segment comes from an EXE or DLL file, or whether it is allocated by an 
API request. The rest of the contents of the HTE of a user memory object depend on 
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whether or not the segment is present in physical memory. In the case of system objects, 
segments are always present. User objects, however, can be present or not present. 

Figure 6.4 illustrates the 16-bit virtual memory management data structures for 
three segments. Segment A is a discardable segment that resides in the EXE file of the 
process when it is not in memory. Segment B is a swappable segment that resides in the 
swap file when not in memory. Segment C is a swappable present segment in physical 
memory. 

If a segment is present, the HTE's physical address field contains the 24-bit physi­
cal address of the segment in physical memory. Although, at first glance, this address 
appears redundant, since the present descriptor also contains the physical address, it is 
needed because the memory manager may be called in real mode as the result of an 
interrupt occuring while a DOS application is running, and because the owner field is 
saved by the physical memory manager to save space. Chapter 10 discusses in more 
detail the requirements of the DOS compatibility component on the kernel. 

The lock field in the HTE is valid for counting locks that are made by device drivers 
or other portions of the kernel for I/0 operations that require the object to be fixed. A 
lock forces a segment to be fixed, and prevents the segment from being moved or 
swapped until it is unlocked. A present segment also has a descriptor allocated to it, and 
the descriptor points to the physical memory that is allocated by the physical memory 
manager. The selector field of the HTE indicates which descriptor was allocated for the 
segment. In Fig. 6.4, segment C is a present swappable segment. 

If a segment is not present, the HTE is used to store information that can be used to 
determine how to reload the segment when a segment-not-present fault occurs. If a seg­
ment is not present, the descriptor contains the memory handle of the HTE that repre­
sents the memory object. When a segment-not-present fault occurs, the virtual memory 
manager uses the memory handle in the faulting descriptor to get to the permanent in­
formation for the memory object. If the object is swapped (segment B in Fig 6.4), the 
physical address field is overlaid with a swap!D that is passed to the swapper for loading 
in the image from the swap file. If the segment is discarded (segment A in Fig. 6.4), the 
physical address is overlaid with the MTE handle of the originating module, and the 
MTE handle and selector are passed to the loader so that it can demand load the segment 
from the module. 

All the allocation of physical memory occurs as a result of segment-not-present 
faults. This style of physical memory resource commitment is called lazy segment allo­
cation. Postponing physical memory allocation until the latest possible moment results 
in a reduction in the number of 1/0 operations that occur when segments are demand 
loaded from their load modules or from the swap file. The following example illustrates 
the events that occur when an application allocates a segment by invoking DosAllocSeg. 
From the virtual memory manager's perspective, this is an allocation request for swap­
pable allocate-on-demand memory. An HTE is allocated for the segment, as is an LDT 
descriptor. Overcommit accounting is performed to ensure that the system can satisfy 
the request with swap space at a later time. The descriptor is marked not present and is 
filled with the memory object handle for the allocated HTE. The selector allocated is 
returned to the thread requesting the memory. When the thread attempts to use the 
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selector by loading the latter into a segment register, a segment-not-present fault occurs, 
causing the segment-not-present fault handler to be called in the virtual memory manag­
er. The segment-not-present fault handler then calls the physical memory manager to 
allocate physical storage for the object. After the physical storage is allocated, the physi­
cal address returned by the physical memory manager is inserted into the HTE and the 
descriptor, and the object owner and handle are saved by the physical memory manager. 
The faulting instruction is restarted, and the process continues. 

6.2.4.2 Loader 

The loader is responsible for program loading and for the management of dynamic link­
ing APL It manages the EXE and DLL modules that are loaded into memory, as well as 
the segments from these modules. Although both EXE and DLL modules are "exe­
cutable files," EXEs are programs, whereas DLLs are shared libraries. The loader also 
provides for demand loading of segments from DLLs and EXEs. The OS/2 loader prere­
solves at load time all external references that might be called during execution. Figure 
6.5 illustrates the file format for 16-bit executable files. 

The primary data structure used to track modules and their segments is called the 
module table entry (MTE). Every load module in the system, whether it is an EXE or a 
DLL module, has an MTE that describes it. As mentioned previously, from the view­
point of the virtual memory manager, an MTE is a system object that contains the mem­
ory representation of the executable file control information. When the loader allocates 
an MTE, the virtual memory manager allocates a handle table entry and physical memo­
ry for the MTE, since the latter is a fixed system object. Therefore, MTEs are referenced 
using a 16-bit handle, and are dynamically mapped into the system virtual address space 
when accessed. 

When a process is created with DosExecPgm, the loader allocates an MTE, stores 
the MTE handle in the PTDA of the new process, and maps the MTE into memory. The 
loader then reads the executable header from the module being loaded into the MTE. All 
the MTEs in the system are linked in a graph. Since an EXE usually contains references 
to DLLs, all the DLL modules that are loaded as a result of loading of an EXE module 

EXE file header 
Import data 
Export data 
Module table 
Segment table 
Segment 1 
Segment 1 fixups 
Segment 2 
Segment 2 fixups 

Fig. 6.5 16-bit executable file format. 
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are lin~(ed together. Thus, the MTEs that represent EXE files are head pointers or roots 
into the system's graph of MTEs. 

Each MTE also contains a reference count of the number of times each program 
module is loaded. During the program load process, the loader first scans the MTEs in 
the system to see whether the module is already loaded. If it is, then the new process 
attaches to the module by incrementing the reference count in the MTE and calling the 
virtual memory manager to attach the module's segments to the new process. Figure 6.4 
contains an illustration of an MTE. 

The MTE also contains the module file name and an open file pointer for accessing 
the load file. The import data contain information on references to other modules; the 
export data contain the module's public definitions. The module table portion of an 
MTE contains MTE handles of the modules that have been loaded to resolve this mod­
ule's dynamic link imports. 

The portion of the MTE that maps the segments of a module is called the segment 
tahle. The segment table contains segment tahle entries (STEs). Each STE contains the 
flags that describe the attributes of the segment, the size of the segment, a file offset into 
the load module from which the segment can be loaded, the virtual memory handle for 
the segment, and the selector used to map the segment. Figure 6.4 contains an illustra­
tion of an STE. 

When DosExecPgm is called, the loader calls multitasking to allocate a process with 
an LDT and a PTDA. Next, the loader reads the EXE header to determine the size of the 
MTE; this step is necessary because the MTE is of variable length, depending on the 
size of the load module. Once the size of the MTE is known, the loader calls the virtual 
memory manager to allocate an MTE as a system object. Once the MTE object is 
mapped, the loader then calls the file system to read the MTE into memory from the 
load module file. The next step in program loading is to load the DLLs referenced by the 
import table. If these DLLs are already loaded for another process, then the EXE's MTE 
is linked to the MTE of the loaded DLL. 

The last portion of program loading is to process the segments in the segment table. 
The loader allocates virtual memory for each segment, and the descriptors are marked 
not present. If the load module is being attached to only the new process, the virtual 
memory manager attaches the segments to the process virtual address space by editing 
the LDT. Segments that are required by the user to be loaded when the program is load­
ed are called preload segments. The default alternative to a preload segment is a demand 
load segment that is loaded when a thread accesses the descriptor and causes a segment­
not-present fault. 

Demand loading occurs when the loader is called by the virtual memory manager 
during a segment-not-present fault to load in a segment that resides in an EXE or DLL 
module. Recall from Section 6.2.4.1 that, when a segment-not-present fault occurs, the 
descriptor for the segment contains the handle for the object. In the case of a demand­
loadable object, the handle table entry indicates that the segment resides in a load mod­
ule and contains the MTE handle of the originating module. The segment-not-present 
fault handler allocates physical memory for the segment based on the size in the descrip­
tor, sets the base address field in the faulting descriptor, then passes the MTE handle and 
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the faulting selector to the loader. From this information, the loader can map the appro­
priate MTE, and can search the segment table for the segment allocated to the same 
selector. Once the correct STE is found, the loader calls the file system to load the seg­
ment from the load module into physical memory. The loader then performs any neces­
sary fixups on the segment, validates the descriptor, and returns to the faulting 
instruction. 

To provide preload segments, the loader calls a virtual memory manager interface 
that simulates a segment-not-present fault for the preload segments. This fault causes the 
loader to demand load the segments before the module's entry point is executed. The 
simulated-fault approach is used, since the virtual memory manager is already prepared 
to perform lazy allocation of the physical memory for segments. 

6.2.4.3 Physical Memory Management 

The physical memory manager manages the system's physical memory resource. It con­
sists of two components: the physical allocator and the compactor. The physical alloca­
tor manages free and allocated blocks of physical memory in the system's physical 
address space. So that free blocks that are small and fragmented within the physical 
address space can be reclaimed, compaction is implemented. The compactor runs only 
as a result of a request for allocation of physical memory. 

Figure 6.6 illustrates the physical memory layout of the system. The system is par­
titioned into those portions that are necessary for DOS compatibility, and those that are 
not. The 1 MB boundary is a critical mark, since physical addresses above 1 MB can be 
accessed only when the processor is in protected mode. Portions of the system that must 
be accessed while a DOS program is running must be in contiguous memory below 
IMB, since the system runs DOS applications in real mode. However, in OS/2 1.3, the 
DOS environment can be swapped when it is moved to the background. Chapter 10 dis­
cusses the memory requirements of the DOS environment in more detail. 

The main data structure used by the physical memory manager to track physical 
memory is called an arena header. Each arena header describes a free or in-use physical 
memory block. There are two double-linked lists of arena headers in the system: one 
that links all arena headers, and one that links all arena headers for free blocks. The free 
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list is used by the physical allocator when satisfying allocation requests, and the in-use 
list is used by the compactor when attempting to reclaim free space by copying seg­
ments around physical memory. The physical arena refers to all the free and allocated 
physical memory and arena lists. Figure 6.7 illustrates the layout of an arena header. 

Each arena header contains a next and a previous field, a next-free and a previous­
free field, the size of the object, the handle table entry of the object, the owner of the 
object, a lock count for the object, some flags, and a timestamp. The timestarnp indicates 
the last time that the object was accessed. 

The handle and owner fields that are in the arena header are kept there on behalf of 
the virtual memory manager for two reasons. When a segment is present in memory and 
is mapped by a descriptor and a handle table entry, the owner and handle must be saved 
by the physical memory manager for later use by the virtual memory manager when the 
segment is swapped out or discarded. Recall that there is no room in an HTE for this in­
formation if a segment is present. The second reason is that they are needed by the com­
pactor to tell the virtual memory manager which descriptors to update when a segment is 
moved in physical memory. From the HTE, the virtual memory manager can find all the 
descriptors in all contexts that map a given physical block. 

The arena headers arc linked using 32-bit physical pointers, and are physicaJly lo­
cated adjacent to the physical block that they describe. When the arena is traversed, the 
32-bit physical address link fields are converted to 16: 16 virtual addresses using GDT 
selectors reserved by the physical memory manager. Effectively, each arena header is in 
its own segment, since a segment register must be reloaded when a link is traversed. 
Furthermore, none of the arena headers have permanent descriptors to map them, so the 
dynamic GDT mapping occurs between links also. The layout of the arena data struc­
tures in physical memory is illustrated in Fig. 6.8. 

Compared to placing the arena headers in a table, this approach at first appears 
nonoptimal. Placing the arena headers in a table would still require 32-bit link fields un­
less the table were restricted to 64KB (a single segment). More complex descriptor man­
agement would be needed for setting up the table, as weJI as logic to deal with growing 
and shrinking the table dynamically. However, there are also positive side effects associ­
ated with placing the arena headers throughout physical memory. Translating any virtual 
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address into the address of an arena structure is simple, since the beginning of the arena 
structure is located directly beside and below the segment in physical memory. 
Subtracting the size of an arena header from the base address in a descriptor yields the 
physical address of the arena header for the segment. 

We now describe a typical physical memory allocation scenario. A thread running 
in user mode attempts to access a segment allocated with DosAllocSeg, but a segment­
not-present fault occurs. The virtual memory manager handles the fault and checks the 
handle table entry to determine whether the segment is allocate on demand, discarded, 
or swapped. The physical allocator is called to allocate physical memory for the seg­
ment, and employs afirst}it allocation strategy. The physical allocator scans the free list 
of arena headers, searching for a block big enough to service the request. If a free block 
is found that can fulfill the request, the arena header is removed from the free list. The 
handle and owner of the segment previously stored in the HTE for the segment are 
passed to the physical allocator as parameters of the allocation request, and are placed in 
the allocated arena header. The physical address of the allocated block is returned to the 
virtual memory manager. The virtual memory manager then completes the transaction 
by updating the descriptor with the allocated base address. If the segment is discarded or 
swapped, the loader or swapper is called to swap the segment into memory: if the seg­
ment is allocate on demand, no segment loading is necessary. Finally, the virtual memo­
ry manager validates the descriptor by setting the present bit; it then restarts the original 
faulting instruction. 

The scenario changes if the physical allocator fails to find an arena header on the 
free list for a block large enough to satisfy the physical allocation request. Since the 
allocation and freeing of small segments can cause fragmentation in the physical address 
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space, there may exist enough free physical storage to satisfy the request, but it may not 
be in contiguous blocks. So that enough free physical storage to satisfy the request can 
be created, the compactor portion of the physical memory manager is called. The com­
pactor attempts to reclaim free storage by moving (copying) physical blocks and thus 
creating a free block large enough to satisfy the allocation request. If the compactor fails 
to reclaim enough storage to satisfy the request, it either discards or swaps out enough 
segments to create a large-enough block. Physical memory allocations can potentially 
block, and also can drive the compaction and swapping of segments in the system. 

Compaction is needed because variable-length segments can fragment physical 
memory. To reduce this fragmentation and to reclaim physical memory, the compactor 
performs segment motion. A segment can be moved invisibly to the processes using it, 
since the segment is referenced via a descriptor. The compactor interacts with the virtual 
memory manager to update the base address field of the descriptors referencing moved 
segments. The compactor executes only as a result of a physical allocation request; it is 
serialized to move only one segment at a time. Since copying of segments can be a 
lengthy operation, when the compactor is copying large segments, it yields the processor 
using the TCYield interface discussed in Chapter 5. Compaction can be disabled when 
the system is started. 

Segments are aged in a least recently used (LRU) fashion to determine the best can­
didate for swapping or discarding. The timestamp field of an arena header is used to 
record the age of a segment, and is initialized with the time at which a physical alloca­
tion occurs. Approximately four times per second, the SchedClock routine (discussed in 
Chapter 5) calls the physical memory manager to age swappable segments in the GDT. 
Swappable segments in the GDT can be allocated by device drivers and file systems. 
Whenever a process is being context switched out, one-quarter of the process's LDT is 
aged before the new LDT is switched in. Segments are aged by scanning the segment 
descriptors and checking the accessed bit to see whether the segment has been refer­
enced since the last time its age was recorded. If the accessed bit is set, the time is 
recorded in the timestamp field of the arena header for the segment, and the accessed bit 
is reset. The timestamp field of an arena header is also reset whenever a segment is 
swapped in. 

When the compactor determines that a swap out or discard operation is necessary to 
satisfy an allocation request, it constructs an ordered list of the oldest segments in the 
system. The compactor then discards or swaps out the segments on the list until enough 
free storage is available to satisfy the original physical allocation request. If the swap 
file is full and cannot be grown, the system attempts to find enough discardable seg­
ments to create sufficient free storage. 

6.2.4.4 Segment Swapping 

OS/2 implements segment swapping; it does not use program swapping, as used in 
UNIX systems. Compaction is not a complete solution, since it does not allow more 
physical memory to be allocated than exists in the computer. Swapping does soften the 
physical memory barrier, and does allow programs to use more memory than is present. 
A situation in which memory is 25 percent overcommitted usually performs acceptably. 
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However, the relatively slow disk speeds on most 80286 systems (on the order of 20 to 
80 milliseconds) prevent true demand segment swapping from being feasible in heavily 
overcommitted situations. Like compaction, swapping can be disabled when the system 
is started. 

There are basically two routines in the swapper, called SwapOut and Swapln. 
SwapOut is called only as a result of an allocation request, as described in the previous 
section. Swapln is called as the result of a segment-not-present fault on a swapped-out 
segment. Swapping occurs on a thread different from the thread that causes the fault. 
The swapper thread is a special kernel thread that executes at privilege level 0. 

The major data structure of the swapper is called the swap control table (SCT). The 
SCT is composed of swap control table entries (SCTEs). Each SCTE contains flags de­
scribing the segment and the offset in the swap file of the segment. The size of a seg­
ment that is swapped out is maintained in the not-present descriptor(s) for the segment. 
Figure 6.9 illustrates the swapper data structures. 

When SwapOut is called, the swapper allocates an SCTE for the segment and writes 
the segment to the swap file. The index into the SCT for the allocated entry is called the 
swap!D and is stored by the virtual memory manager in the handle table entry for the seg­
ment. The virtual memory manager marks the descriptor not present, and puts, into the 
descriptor the handle to the segment, so that the segment can be located later. During a 
segment-not-present fault, the virtual memory manager calls Swapln and provides the 
swapID of the desired segment and an address into which the swapper can read the seg­
ment. 

The swap file is managed by the file system rather than by the swapper. Some sys­
tems allow the swapper to perform direct I/O to the swap device for better performance, 
but this approach also has drawbacks. The swapper must have intimate knowledge of the 
layout of the physical swap device (usually a disk), and growing the swap file without 
reformatting the swap device is difficult. The OS/2 approach keeps the swapper simple 
and allows the file system to manage the swap disk. Under the FAT file system, it can 
lead to some swap file fragmentation at a physical level, but the HPFS file system sup­
ports a physically contiguous swap file. Even on a FAT system, the user can move the 
swap file to its own partition, resulting in a contiguous swap file. 

Swap file 

Fig. 6.9 16-bit swapper data structures. 
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Since the swapping of small segments in an overcommitted system can lead to ex­
cessive performance overhead, a swap cache is used to reduce the number of disk opera­
tions for swapping. The swap cache resides in a fixed buffer on the order of 16KB. 
When SwapOut is called with a small segment, the swapper merely copies the segment 
into the swap cache. When the swap cache is full, it is written to the swap file in a single 
operation. Each small segment still retains its own swapID and SCTE. 

6.3 OS/2 2.X MEMORY MANAGEMENT 

The primary motivation behind the design of OS/2 2.X is to ensure portability. For OS/2 
2.X to compete with other high-end workstation operating system platforms such as 
UNIX, OS/2's 32-bit applications, its dynamic link libraries, and the OS/2 2.X system 
itself must be retargetable to other processor platforms. This requirement is especially 
significant given the current trend toward generic RISC processor engines in work­
stations. This design goal represents a major departure from the design philosophy of 
OS/2 1.X, which emphasizes exploitation of the 80286 processor. 

The memory model of an operating system is key in providing the capability for 
applications, dynamic link libraries, and the system to be recompiled when a new pro­
cessor architecture is being retargeted. The initial implementation of OS/2 2.X is tar­
geted at the 80386 processor and 80486 processors. It takes full advantage of the 
capabilities of these processors that are common with most 32-bit processor engines, 
and makes use of features specific to the Intel processors only in areas of DOS and 16-
bit OS/2 compatibility (see Chapter 10). 

OS/2 2.X defines a 32-bit memory model that is designed to be portable to any 32-
bit uniprocessor or multiprocessor architecture including RISC platforms. Another 
major design goal of the memory model for OS/2 2.X is to provide memory objects that 
are greater than 64KB or larger than physical memory. The 16-bit version of OS/2 
allows segments up to only 64KB, forcing applications to add logic for managing the 
segmented virtual address space. OS/2 2.X provides all the same memory sharing and 
memory allocation functions as does 16-bit OS/2. 

6.3.1 Memory Model 

The main features of the 80386 and 80486 processors are paged virtual memory and 32-
bit-wide segments, which are up to 4GB in size. A weakness with the Intel segmentation 
scheme is that its memory architecture combines addressing and protection in a unique 
way that is different from the scheme used by most processors. Segmentation also forces 
applications to have code that implements processor-dependent addressing. A seg­
mented virtual address space is not contiguous and, therefore, provides an unnatural 
memory addressing model. However, a 32-bit segment can be used to simulate a large, 
flat 32-bit virtual address space that is contiguous. The flat 32-bit virtual address space 
is a common feature on many processors, and it is portable. 

In 80286 addressing, a segmented virtual address (selector:offset) is translated by a 
descriptor into a physical address. However, on the 80386 with paging enabled, another 
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level of address translation exists between the descriptor mapping and physical memory; 
it is called the linear address space (see Chapter 2). On the 80386, a segmented virtual 
address (16:16 or 16:32) is translated by descriptors into a 32-bit (flat) linear address, 
which in turn is mapped to a 32-bit physical address by page tables. If a pair of code and 
data descriptors is created that maps the entire linear address space, and is loaded into 
the segment registers and never changed, the virtual address space is "flattened" and 
segmentation is masked from applications. This memory model is called the flat memory 
model, and is used in 32-bit OS/2. 

Since segments on the 80386 have 32-bit sizes, any byte within the linear address 
space can be accessed using only a 32-bit linear address without changing the segment 
registers. In the flat model, a linear address is a virtual address. A flat model virtual ad­
dress is also called a 0:32 address, since the segment value is never changed and the off­
set value is a 32-bit offset. In addition to being portable, the flat model provides superior 
performance over any segmented model, since it does not require segment registers to be 
reloaded every time addressability to a different memory object needs to be established. 

The system virtual address space is mapped by a pair of GDT code and data 
descriptors with limit fields of 4GB. When a thread is executing in kernel mode or at 
privilege level 0, the segment registers contain selectors for the entire 32-bit linear 
address space. 

The process virtual address space is mapped by a pair of GDT code and data 
descriptors with limit fields of 512MB. The 512MB limit is due to the implementation 
of 16-bit OS/2 compatibility and will be removed in future versions. The segment limit 
of the process virtual address space is used to protect the system memory from threads 
running in user mode. The system provides an independent 5 l 2MB linear address space 
to each process by giving each process its own set of page tables. Like the 16-bit process 
virtual address spaces, the 32-bit process virtual address space is partitioned into private 
and shared regions that grow toward each other. Page tables, rather than LDTs, are used 
to provide the same level of sharing found in the 16-bit system. Although LDTs are not 
used for the flat model, they are used for providing compatibility for 16-bit OS/2 appli­
cations and are discussed in Chapter 10. Figure 6.10 illustrates the virtual address spaces 
present in the flat model of OS/2 2.X. 
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6.3.2 Memory Objects 

The smallest memory unit in the flat model is a page (4KB on the 80386), compared to a 
byte in the 16-bit segmented model. Thus, the flat model is page-granular. A memory 
object is not a segment in the flat model, but rather is a range of contiguous linear pages 
within the process virtual address space. The base address of a memory object is aligned 
on a page boundary, and the size of a memory object is a multiple of the page size. 
Unlike in the segmented system, all memory objects are addressable simultaneously. No 
segment registers need to be loaded, which results in optimal performance for an 80386 
in protected mode. Also, since no application logic is tied to a processor-dependent 
memory model, the portability requirement is met. Memory objects in the flat model are 
nonrelocatable, and the pages that compose memory objects are swappable. 

The use of paging allows memory objects to be larger than 64KB, and larger than 
physical memory; it also allows more efficient swapping and memory overcommit algo­
rithms. Paging also allows sparse ohjects to be allocated. Sparse objects have some 
pages that are present and some pages that are invalid. Since the flat model "flattens" the 
segmented architecture, page-level protection is used to provide separation of code and 
data within a process virtual address space. Each page is assigned the read-only or read­
write attribute. Although the granularity of memory protection is a page, rather than a 
byte as in the segmented model, illegal memory accesses by flat-model programs are re­
ported with byte-granular accuracy. 

As in the 16-bit system, there are basically four types of objects that are classified 
according to the attributes of virtual address type, storage type, and the type of pages 
that back that storage. Besides the method of addressing memory objects and the 
attributes of pages, the memory object types in the OS/2 32-bit flat model are equivalent 
to those found in the 16-bit segmented model. 

Pages are also classified according to whether they are fixed, resident, swappahle, 
discardable, invalid, or guard. Fixed and resident pages exist only in kernel space and 
are always present in physical memory. Swappable and discardable pages are allocated 
by applications and by dynamic link libraries. Invalid pages are not mapped. Accessing 
an invalid page causes a fault that is the equivalent of a general protection fault in the 
16-bit system. Pages are also classified according to whether they are read-only (code 
pages), or read-write (data pages), and whether they are accessible from user or supervi­
sor (kernel) mode. When a memory object is allocated, all the pages have the same 
attributes. However, page attributes can be changed dynamically using a function of the 
memory management APL 

Sparse objects are a natural subset of page-granular memory objects. A sparse 
object consists of pages that have varying attributes. The flat model API allows an appli­
cation to reserve linear memory without physical memory. The virtual address space for 
the object is reserved and the pages are set to invalid. Linear pages that have been 
reserved and set invalid are said to be uncommitted. When the application needs to uti­
lize some uncommitted but reserved pages, it can dynamically request the system to 
commit the pages for usage. When a page is committed, the system then reserves physi­
cal or swap memory for backing up that page, and the page is accessible by the 
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requestor. If an application accesses an uncommitted page, the result is the same as a 
general protection fault in 16-bit OS/2, since the page is invalid. 

A guard page is a special type of committed page used to allow user thread stacks to 
grow dynamically. Thread stacks are sparse objects with a guard page between the stack 
pages that have been committed and those that are uncommitted. When an instruction 
causes the guard page to be accessed, the system removes the guard attribute from the 
faulting page, resulting in a regular committed page. Then, an exception is generated 
that allows the thread to commit the next page in the stack as a guard page, and then to 
resume the faulting instruction. The use of guard pages, user thread stack growth, and 
the associated exceptions are discussed further in Chapter 7. 

As in the 16-bit segmented model, there are both private and shared virtual address­
es, and private and shared storage. Instead of the private and shared addresses being 
defined by different descriptors in an LDT, they are represented by contiguous regions 
in the process virtual address space that grow toward each other. The level of sharing in 
the segmented system is achieved using a set of page tables, instead of an LDT, for each 
process virtual address space. 

API-allocated objects and EXE read-write data objects are private-address and 
private-storage objects. Private addresses and shared storage are used for mapping EXE 
code and read-only objects, as in the 16-bit system. Shared-address objects also have the 
classifications found in the 16-bit system. Shared-address objects are mapped at the 
same virtual address in all processes. Analogous to reserving shared LDT descriptors in 
the 16-bit segmented model, the linear pages representing objects in the shared address 
region are reserved across all processes to allow shared objects to reside at the same 
address in all contexts. Shared objects with shared storage are allocated using the shared 
memory API or during the load-time allocation of dynamic link libraries' shared code 
and data objects. Instance data objects also exist in which there is a shared address with 
a private storage copy of the object for each process that has attached to it for dynamic 
link libraries. As in the 16-bit system, instance objects are used by DLLs for per-process 
data structures. 

6.3.3 OS/2 2.X Memory Management API 

This section describes the functions of the 32-bit OS/2 memory management APL 

6.3.3.J Private Memory 

Private memory is allocated using DosAllocMem. DosAllocMem allows the requestor lo 
allocate an object up to the size of available memory in the process virtual address 
space, and returns a 32-bit offset to the start of the allocated memory object. The memo­
ry allocation granularity of the system is a 4KB page. All memory objects are aligned on 
linear page boundaries, and their sizes are rounded up to the closest multiple of 4KB. 

Memory objects allocated with DosAllocMem are composed of swappable pages. 
Allocation flags that are supplied during requests allow the requestor to determine the 
memory object's attributes, such as read-only, read-write, committed, decommitted, or 
guard. All the pages within an object have the same attributes when the object is 
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allocated. If the pages are not committed when the object is allocated, the system 
reserves only linear address space, creating a sparse object. If uncommitted pages are 
accessed by a user-mode thread, a protection fault is generated. 

Private memory is deallocated by a call to DosFreeMem. The base address of a 
valid memory object is the only valid parameter accepted by DosFreeMem. Since flat 
memory objects are not relocatable, there is no memory object reallocation API, as there 
is in the 16-bit system. Since movement of objects within the address space does not 
occur, applications use sparse objects and commit pages dynamically in situations where 
data structures or memory pools must be extended. 

6.3.3.2 Shared Memory 

Shared-memory objects are allocated from the shared address region of the process vir­
tual address space. As in the 16-bit system, the shared-memory APis provide support for 
both named and give-get shared memory. Both APl-allocated shared-memory types use 
shared addresses and shared storage. The functions of the 32-bit shared-memory API are 
similar to those of the 16-bit shared-memory API, but there are some differences. The 
API performs operations on flat memory objects that are referenced by a 0:32 virtual 
address, instead of segments that are referenced by a 16: 16 virtual address. Also, the 
API function names refer to memory objects, instead of to segments. 

The previous paragraph stated that the 16-bit and 32-bit APis are similar but not 
identical. All shared memory-whether it is named or give-get-is allocated using the 
DosAllocSharedMem function. Allocation flags passed to DosAllocSharedMem indicate 
whether the shared object is giveable or gelable, and whether the pages are initially 
committed or uncommitted. An object-name parameter can be used optionally to create 
a named shared-memory object. Give-get shared objects are unnamed; attempting to cre­
ate one with a name results in an error. Also, API-allocated shared-memory objects can 
be allocated as sparse (uncommitted) objects, and contain swappable pages. 

Named shared-memory objects are accessed by processes other than the creator by a 
call to DosGetNamedSharedMem. Giveable shared objects are given to other processes 
using DosGiveSharedMem, and getable shared objects can be mapped into a process's 
virtual address space by a call to DosGetSharedMem. Since each process has its own set 
of page tables for mapping the shared-memory object, each process that attaches to the 
shared memory can set its own attributes for the pages in the shared object. 
DosFreeMem is used to free shared memory-objects as well as private memory objects. 
Except for the basic shared memory allocation API, the shared-memory APis are the 
same as the 16-bit versions. 

6.3.3.3 Memory Object Control 

Each page within a flat-model memory object can have its own set of attributes. 
DosQueryMem allows a thread to query the attributes of a linearly contiguous range of 
pages within a process virtual address space. DosQueryMem accepts a base address pa­
rameter and size that define the region of pages to be queried. This memory manage­
ment API is the only one that accepts an address range that is not entirely within a single 
memory object. DosQueryMem scans the region of pages beginning at the base address 
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until the entire range of pages is scanned, a page with a nonmatching set of attributes is 
encountered, or the first page of a memory object is encountered. DosQueryMem returns 
the attributes of the pages in the region and the size of the region scanned. Therefore, all 
the pages ultimately scanned in a single request have the same attributes. Attributes re­
turned indicate whether the range of pages is committed, free (never allocated and there­
fore invalid), reserved (uncommitted), read-only, execute-only, read-write, or guard. 

DosSetMem performs the complementary function of setting the attributes of a 
range of pages within a memory object. DosSetMem can be used to create a sparse ob­
ject by committing and decommitting pages within a memory object. It also can be used 
to change the page type. Both DosQueryMem and DosSetMem can be used on shared 
and private memory objects. When a shared page is committed, it is committed in all 
contexts that have attached to it. The page access protection applied to a committed page 
in another context is the same access protection as that specified when the object was 
originally allocated or attached to that context. A page in a shared object cannot be de­
committed unless a control flag is set when the object is allocated that explicitly allows 
pages to be decommitted. 

6.3.3.4 Memory Suballocation 

The memory suballocation API also exists in the 32-bit system to manage small memory 
objects, which are less than one page (4KB). Since the granularity of allocation in the flat­
model system is a page, a page is the minimum-sized object that can be allocated. If an 
application requires many small memory objects smaller than one page, a heap or memory 
suballocation pool should be used to divide a large object into many small ones. This strat­
egy prevents fragmentation of the process virtual address space and waste of system 
resources, which would occur if whole pages were used for each small object. 

The memory suballocation API in 32-bit OS/2 is similar in basic function to its 16-
bit counterpart, but has several added features. Since the flat model supports memory 
objects larger than 64KB, a suballocation pool can be arbitrarily large. Also, the pro­
grammer has the option of using sparse heaps, in which the pages within the heap object 
are committed dynamically by the suballocation API as needed. This dynamic commit­
ment is in contrast to requiring all the pages in the heap to be committed at all times. 
Although the 16-bit version has always provided serialization of threads so that shared 
heaps are supported, serialization is an option for increasing performance when the heap 
is a private one. 

DosSubSetMem is used to initialize a heap inside a memory object. When 
DosSubSetMem is called, flags are provided that tell the suballocator whether the object 
is sparse, or whether serialized access to the heap is required. The flags also indicate 
whether the heap is being created for the first time, or whether another process is attach­
ing to a shared heap. Unlike in the 16-bit version of suballocation, if a shared heap is be­
ing used, all processes must attach to the shared memory in which the heap resides, and 
must call DosSubSetMem to notify the system. Also contained in the flags is a bit that 
allows a current heap to be grown. 

DosSubAllocMem is used for allocating memory from the heap, and DosSubFreeMem 
is used to free memory allocated from the heap. DosSubUnsetMem allows the memory 
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suballocator to clean up the resources used to manage the heap. Like the 16-bit memory­
suballocation API, the 32-bit version resides in a DLL and runs in user mode. 

6.3.3.5 Dynamic Linking 

The 32-bit dynamic linking APis are essentially the same as the 16-bit versions. 
DosExecPgm is used to load programs, as described in Chapter 5, and the program load­
er performs all load-time memory allocations. As in the 16-bit system, dynamic linking 
occurs at both load time and run time. 

The 32-bit run-time dynamic linking API is a flat-model analogue of the 16-bit ver­
sion. DosLoadModule loads a selected DLL and any other modules it needs to complete 
its load at run time. The process loading or attaching to the library is returned a 32-bit 
handle to the loaded module. Once a process has loaded a module, the handle may be 
used on subsequent DosQueryProcAddr requests to retrieve the address of entry points 
within the module. When the process has finished using the shared library, it calls 
DosFreeModule, supplying the handle to notify the system that the process has finished 
using the module. 

6.3.4 OS/2 2.X Memory Management Kernel 

The 32-bit kernel is based on the flat memory model, rather than the segmented model 
of the 16-bit kernel. Also, a greater percentage of the 32-bit kernel is swappable than of 
the 16-bit kernel, due to paging. The kernel consists of basically the same memory man­
agement components: the virtual memory manager, loader, physical memory manager, 
and swapper. However, the physical memory manager is replaced by the page manager 
and the swapper is replaced by the page swapper. The virtual memory manager is 
responsible for implementing the memory management API, kernel memory allocators, 
descriptor table management, virtual address space management and object manage­
ment. The loader is responsible for program loading, dynamic linking, and demand load­
ing of pages from executable and dynamic link library files. The page manager controls 
the paged physical memory resource, and the page tables that map linear addresses onto 
physical addresses. The page swapper is used to extend the physical memory resource so 
that more physical memory can be allocated than exists in a machine. 

6.3.4.1 Virtual Memory Management 

The OS/2 2.X virtual memory manager provides the flat-model memory management 
APis. As described in the API section, these APis have the equivalent functions of the 
segmented APis, but they are for flat memory objects. The virtual memory manager pro­
vides kernel memory allocators, which are used to manage kernel memory. It also per­
forms descriptor management to map the system virtual address space and the process 
virtual address spaces to linear memory. The virtual memory manager maintains regions 
of linear address space for the private and shared regions within a process, and for the 
system region that contains the system memory. Object records are used for tracking 
system and user memory objects that are mapped into the address spaces. When allocat­
ing an object, the virtual memory manager calls the page manager to reserve page tables 
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for the virtual memory. The page manager is also called when virtual pages are commit­
ted and uncommitted, and during context switch operations. 

6.3.4.1.1 Kernel Memory Allocators Kernel memory allocators are used to manage 
kernel memory and to reduce fragmentation of memory within the kernel. They are used 
by most kernel components such as multitasking and interprocess communication. There 
are three kernel memory allocation interfaces-the block management package (BMP), 
the resident heap, and the swappable heap. The BMP routines manage kernel memory 
pools of fixed-length objects. The use of the BMP reduces fragmentation within the ker­
nel by allowing objects to be packed within a page. The BMP also supports sparse 
arrays, where pages within a large array are committed and decommitted dynamically. 
Memory pages are fixed once they are allocated and committed through the BMP. The 
BMP provides initialization, allocation, free, query, and set interfaces for other kernel 
components to use. 

The resident heap is used for managing variable-length kernel memory objects with­
in the kernel. All objects allocated from the resident heap are packed into fixed pages. 
The resident heap manager provides UNIX-like malloc and free style interfaces for allo­
cation and deallocation of memory. The swappable heap is used to manage variable­
length kernel memory objects that can be swapped. The kernel components that use 
swappable kernel memory must deal with the fact that they can be preempted when at­
tempting to access that memory. The swappable heap manager also provides interfaces, 
called smalloc and sfree, similar to those of the resident heap manager. There are sepa­
rate read-write and read-only versions of both the resident and the swappable heaps. 

6.3.4.1.2 Descriptor Management The descriptor management performed by the vir­
tual memory manager is much simpler than that of the 16-bit version of OS/2. The GDT 
is used to map the process and system virtual address spaces to linear memory. 
However, no LDTs are necessary in the 32-bit system, although they exist for 16-bit 
OS/2 compatibility. The usage of LDTs in the 32-bit system is described further in 
Chapter 10. 

The system address space maps the current process virtual address space and the sys­
tem memory region, which contains the kernel's code and data. The current process virtual 
address space is a subset of the system virtual address space. The system is protected from 
the user-mode threads using segment-limit protection. If a user-mode thread attempts to 
use an address past the limit of the process virtual address space (512MB), a general pro­
tection fault occurs. Since each address space has both a code and a data segment alias, 
separation of read-only (code) and read-write objects within the process virtual address 
space is implemented using page-level protection attributes instead of segment attributes. 

The system and process virtual address spaces are mapped using four descriptors to 
emulate two large segments. The first pair of descriptors, one code and one data, is 
privilege level 0 with a limit of 4GB. These two descriptors are loaded into the segment 
registers when a thread is in kernel mode, and represent the system virtual address 
space. The other pair of descriptors, also code and data, is privilege level 3 and has lim­
its of 512MB. This pair of descriptors is loaded into the segment registers when a thread 
is executing in user mode. The limitation of 512MB for each process virtual address 
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space is due to the 16-bit OS/2 compatibility implementation; it is discussed further in 
Chapter 10. Figure 6.10 illustrates the 32-bit virtual address spaces. 

Only the one pair of user space GDT descriptors is used for all processes in the sys­
tem. Descriptors point to linear memory, and the linear memory is in tum mapped to the 
physical memory by page tables. Since each process has its own linear address space, 
only one set of descriptors is needed. Because a separate linear address space defined by 
page tables is provided for each process, processes are encapsulated and are protected 
from one another. During a context switch, the page manager switches the per-process 
page tables and flushes the TLB; no segment register reloading is necessary. 

6.3.4.1.3 Linear Address Management In the 32-bit version of OS/2, arenas are 
used by the virtual memory manager to manage regions of linear address space. Arenas 
are similar to the physical arena used to manage physical memory found in 16-bit OS/2. 
However, in the 32-bit system an arena represents a contiguous subset of virtual (instead 
of physical) address space, and there are several arenas in the system. There are three 
arena types: the system arena, the shared arena, and the per-process private arenas. 
Figure 6.11 illustrates the arenas in the system. 

The system arena maps the range of system linear addresses above the process vir­
tual address space. The system arena is backed by a single set of page tables that is 
shared in the context of all processes. System memory objects are accessible only by a 
thread in kernel mode or privilege level 0, and are mapped into the system arena. 

Each process has its own private arena that is used for mapping private objects, 
such as API-allocated data and EXE code. The private arena maps the private addresses 
of a process much as do the private selectors in a process's LDT in the 16-bit system. 
The private arena begins at the low addresses in each process virtual address space, and 
is guaranteed to contain a minimum of 64MB of available private address space when a 
process is created. Since the private arena starts at the low addresses, EXE code is 
guaranteed to be loaded at the same virtual address in all process contexts. Therefore, if 
the same program is loaded into multiple processes, the EXE code is loaded into the 
same private virtual address in each context, and a single copy of the code is shared. 
Recall that EXE code is a private-address, shared-storage memory object. 
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Fig. 6.11 32-bit arena structures. 
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The shared arena maps shared-address objects such as DLL code and data in the 
process virtual address spaces. The shared arena is shared by all processes and is analo­
gous to the shared LDT selectors in the 16-bit system. Using a single shared arena 
ensures that all shared address memory objects have the same virtual addresses in all 
process contexts. The shared arena begins at the top of the process virtual address space 
and grows toward lower addresses and the private arena. The minimum size of the 
shared arena is 64MB of shared address space. 

Each process has its own set of page tables that maps the private and shared arenas. 
This strategy allows per-process instance shared objects and per-process selective access 
to the memory objects in the shared arena. 

The private and shared arenas grow toward each other. The 64MB minimum arena 
size guarantee serves several purposes. Since shared objects have the same address in all 
contexts, growth of the shared arena can restrict the maximum possible size of a new 
process's private arena. Also, a process with a large amount of private memory can po­
tentially prevent from being loaded a future process that dynamically links to a huge 
amount of shared memory, since the shared arena cannot grow "lower" than the largest 
private arena. This side effect also occurs in the 16-bit system, and is handled by setting 
of the ratio of shared memory to private memory at 3: 1 (shared selectors to private 
selectors). The 32-bit arena implementation guarantees a large amount of shared and pri­
vate virtual address space, and lets float the ratio of shared to private memory, depend­
ing on the dynamics and requirements of the processes in the system. 

An arena is represented by a circular double-linked list of arena records sorted in 
ascending order of base virtual address. Arena records serve a purpose similar to that 
served by arena headers in the 16-bit system, but are much more specialized than their 
counterparts. Arena records are allocated out of a fixed sparse array managed by the 
BMP. So that space in data structures that reference arena records is conserved, a maxi­
mum of 64K arena records exist in the system. This allows each arena record to be 
accessed by a 16-bit handle, which is an index into the array of arena records. As a 
result of the 16-bit handle, instead of a 32-bit linear address, being used, there is large 
memory savings in structures that reference or link to arena records, including the arena 
records themselves. Figure 6.12 illustrates the layout of an arena record. 

Since arena records are double linked, each arena record has a previous and a next 
link that together form a 16-bit handle to an arena record. The flags in the arena record 

------- 32 bits-------
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Size 

Object handle l Context handle or 
PTDA handle 

Fig. 6.12 32-bit arena record. 
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indicate the type of arena record and the disposition of the fields within the record. The 
virtual page number field of the arena record indicates the base linear address of the 
allocated region, and the size represents the size of the allocated region in 4KB pages. 
The object handle and context/PTDA handle fields are used to cross-link the arena 
record with the data structures representing the memory object allocated at the base vir­
tual address. This linkage is described in more detail in Sections 6.3.4.1.4 and 6.3.4.1.5. 

Each arena record maps allocated linear memory-there are no arena records for 
unallocated linear memory. Free regions are represented by consecutive arena records 
that are not contiguous; that is, the base linear address plus the size of the nth record is 
less than the base linear address of the n+ 1st record. The calculation for finding free 
space is efficient and results in fewer arena records. Figure 6.13 illustrates the layout of 
the private and shared arenas for three processes. 

There are three types of arena records that are differentiated using the arena flags 
field: regular, sentinel, and arena boundary. Regular arena records represent allocated 
linear address space. Each private arena in the system is headed by an arena sentinel 
record that is referenced by each PTDA. The last regular record in each private arena is 
linked back to the start sentinel. The start sentinel also contains the highest private 
address used and points to the arena boundary record that represents the beginning of the 
shared arena. If the the base virtual address and size of the arena boundary record are 
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varied, the boundary between the private and shared arenas is moved dynamically as 
necessary. The arena boundary record also is the head of the shared arena, and the last 
regular record in the shared arena is linked to the arena boundary. When the virtual 
memory manager must determine whether a virtual address is in the shared or private 
arena, the address is compared to the virtual address values represented by the sentinel 
for the private arena and the arena boundary. 

6.3.4.1.4 Object Management The system object table is used to track memory 
objects and their attributes. Like the arena records, object records are also managed 
using the BMP. The system supports a maximum of 64K object records, and each object 
is referenced using a 16-bit handle which is an index into the system object table array. 
Each object record is cross-linked with an associated arena record that represents the 
virtual address space of the memory object. Figure 6.14 illustrates the layout of an 
object record. 

Each object record contains an arena record handle, which links the object to the 
arena record that maps the linear address space occupied by the memory object. The ob­
ject flags indicate the type of object, the way the object was allocated, and the initial at­
tributes assigned to the pages within the object. Each object is associated with an owner, 
as in the 16-bit system. If the object is defined by a load module and is shared, the 
record contains the MTE handle of the module. The object chain field is used to track 
shared objects in the shared arena that are accessed in multiple contexts. The object 
semaphore is used to serialize operations on the object, and the lock count fields denote 
outstanding long-term and short-term locks on the object. Locks are counted on a per­
object basis. Lock requests force pages within a record to be fixed until the object is 
unlocked. There are both long-term and short-term locks. Device drivers use short-term 
locks on memory objects for some 1/0 operations. 

In the flat model, memory objects are allocated with page granularity. However, 
since system objects such as PTDAs and MTEs are substantially smaller than the 4KB 
page size, it would be a waste to allocate an entire page for each of these small struc­
tures. Also, these objects require 32-bit addresses where they are referenced by other 
structures. To overcome the problem of fragmentation due to small structures and exces­
sive data structure sizes, the virtual memory manager defines pseudo objects. A pseudo 
object has an object handle just like a regular object; however, the object record flags 
have a bit set, indicating the object is a pseudo object. The object record for a pseudo 

~------- 32 bits -------
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MTE handle Semaphore 
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Fig. 6.14 32-bit object record. 
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object contains the object's 32-bit linear address, and is not linked to a corresponding 
arena record. Pseudo objects in the 32-bit system perform the same roles as that of sys­
tem objects in the 16-bit system. Pseudo objects enable objects smaller than a page to be 
packed on pages to reduce fragmentation, and allow these objects to be referenced using 
a 16-bit memory object handle to reduce data structure sizes. 

Most internal virtual memory management functions receive a virtual address as in­
put that the virtual memory manager needs to validate and then convert into an object 
record. The virtual memory manager uses a bitmap associated with each arena to indi­
cate which virtual pages within the arena contain the first page of an object. The bitmap 
for each private arena is in the process's PTDA. When a virtual address is input, the vir­
tual memory manager determines whether the address resides in the current process's 
private arena or the shared arena. The virtual page number is broken out of the virtual 
address and is used as an index into the appropriate arena bitmap. The bitmap is then 
scanned in reverse to find a bit that is set, indicating the beginning of an object. That bit 
in the bitmap is then used as an index and converted into a virtual page number that rep­
resents the base virtual address of an object. 

In the next step, the virtual memory manager searches the arena records in the selected 
arena for a record with a matching base virtual address. Since performing this search 
sequentially results in inconsistent and nonoptimal performance, a hash table is used to 
speed the search. The arena records within an arena are linked into a hash table using the 
hash field of the arena record. The hash algorithm takes advantage of the fact that arena 
records are linked in ascending order, and provides fast, consistent search times. Once an 
arena record is found that contains the base virtual address of the object, the virtual memory 
manager verifies that the original input address actually is within a valid object. 

So that an object in the shared arena can be mapped into multiple contexts at the 
same address, another record is required to iterate these references. The data structure 
that provides this information is called the context record. Like arena and object records, 
context records are managed by the BMP as a large sparse array. There are a maximum 
of 64K context records in the system, and a context record is referenced by a 16-bit han­
dle that is an index into the context array. As is true of arena and object records, this 
scheme reduces the size of structures that link and reference context records. Context 
records are chained from a shared arena record that represents an object's linear address 
in all contexts. Each context record contains a PTDA handle and a link to the next con­
text record. It also contains flags to indicate the initial permissions of the object's pages 
in each context. Figure 6.15 illustrates the layout of a context record. 

-16bits---

Next context 

PTDA handle 
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Fig. 6.15 32-bit context record. 
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6.3.4.1.5 Arena-Object Linkages There are four user object types, depending on the 
address-type and storage-type attributes. This section describes how arena records, 
object records, and context records are linked together for the four basic types of memo­
ry objects. 

The first category of object is private-address, private-storage objects. They are 
mapped into the private arena, are read-write objects, and use private storage. Thus, only 
a single copy of the data exists, and it is referenced by only one process. Both load-time 
EXE read-write memory objects and API-allocated private objects (i.e., those allocated 
by DosAllocMem at run-time) are in this class. They are mapped into the private arena 
by an arena record, and are represented by an object record that is cross-linked to the 
arena record. Figure 6.16 illustrates the linkage of the data structures for a private 
address-private storage object allocated by DosAllocMem. 

In Fig. 6.16, the object record owner field contains the handle to the PTDA of the 
process that allocated the memory. If the memory object had been allocated as the result 
of loading the process's EXE, the owner would be the MTE handle of the originating 
module. The MTE handle field references the MTE of the EXE that contains the pro­
gram loaded by the process. 

The next object category is private-address, shared-storage objects, such as EXE 
code and EXE read-only objects. These objects are shared by linkage of arena records in 
different private arenas to a single object record. Each private arena into which the read­
only object is mapped has an arena record that indicates the linear address space where 
it is allocated. Since only EXE load-time allocations fit into this category, the same 
address is available in all private arenas for mapping these objects. Figure 6.17 illus­
trates the data structures for private-address, shared-storage objects. 
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Fig. 6.16 Private-address, private-storage object. 
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Fig. 6.17 Private-address, shared-storage object. 

The arena records in different private arenas are chained to the same object record 
that represents the object using the link field in the arena record. Since there are many 
processes using the memory object but only one object record, the memory object is 
freed when the MTE is freed, not when the process is freed. Therefore, the MTE 
becomes the owner and the object record contains an MTE handle instead of a PTDA 
handle. Each arena record contains a PTDA handle that leads to the page tables for that 
process. The page tables in the different processes that map a private-address, shared­
storage object are mapped to shared page frames. 

The third object category is shared-address, shared-storage objects. In this category 
are DLL read-write data, DLL read-only or code objects, and API-allocated shared 
memory objects. They are mapped into the shared arena by an arena record that contains 
a context chain to iterate the multiple process contexts that share the memory. A single 
object record is used, since there is only a single object in the system that is being 
shared. Figure 6.18 illustrates the data structures for shared-address, shared-storage 
objects. 

The fourth type of object is the shared-address, private-storage object. The only 
type of memory object in this class is DLL read-write instance data. This object is 
mapped in the shared arena, and there is a copy of the object for each process that refer­
ences it. Instance objects are mapped into the shared arena by an arena record, and there 
is one object record per instance. The object records for the instances are linked using 
the object chain field of the object record. Each object record points back to the shared 
arena record that maps the linear address space. Also, each object record contains the 
handle of the MTE for loading the instance data from the DLL. Figure 6.19 illustrates 
the linkage of data structures for a shared-address, private-storage object. 
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Shared arena 

Fig. 6.18 Shared-address, shared-storage object. 

6.3.4.2 Loader 

The loader is responsible for program loading, the dynamic linking API, and the demand 
loading of pages from EXE and DLL modules for the page manager. It manages loaded 
modules and the memory objects within loaded modules. The loader supports a 32-bit 
executable file format different from the 16-bit format. The 32-bit executable files are 
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organized into pages instead of segments, and the fixup information is organized on a 
per-page basis. The linker relocates 32-bit EXE files to a base address of 64KB instead 
of 0, and reserves the first 64KB of the virtual address space to contain invalid pages. 
This scheme allows null pointer (0) references to be trapped by applications and 
libraries. As a result of 32-bit EXEs being relocated by the linker to a fixed base 
address, the EXEs have no fixups in them except for external dynamic link references. A 
file thus can have more pure pages-pages with no fixups-that can be read directly 
into memory when referenced. However, 32-bit DLL files retain most of their fixup 
records, so that they can be relocated in the shared region at load time. The 32-bit load 
module format supports 0:32 fixups for 32-bit dynamic linking. 

As in the 16-bit loader, MTEs are used to track modules and modules' memory ob­
jects. MTEs are allocated from the kernel swappable heap and are mapped by pseudo-ob­
ject records. MTEs are linked into a graph with executable file MTEs as head pointers into 
the graph. Each MTE contains a reference count to indicate how many processes have 
loaded a program module. The MTE also has a module filename, open file pointer, import 
data, export data, and a module table, much the same as in the 16-bit system. However, 
instead of a segment table, the 32-bit MTE has an object table that contains each object's 
attributes, such as flags, size, the block number in which the object can be found, and a 
handle to the memory object. The block number for the object is used by the loader to 
determine the executable file offset from which the object can be retrieved. 

During DosExecPgm requests, the loader calls the multitasking component to allo­
cate a process with an empty process virtual address space. The executable file header is 
read into memory to determine the size of the MTE, and then the virtual memory man­
ager is called to allocate an MTE pseudo object. The file system is called to read the 
executable file header into the MTE in memory. The loader then processes the DLL 
references made in the import table section of the MTE. If a DLL module is already 
loaded for another process, the DLL is attached to the process by a call to the virtual 
memory manager. Otherwise, the loader loads the referenced DLL. In either case, the 
MTE for the EXE is ultimately linked into the MTE graph. 

When the loader allocates the virtual memory for each object, it passes the MTE 
handle and the block number of the object within the executable file to the virtual mem­
ory manager allocation routine. The MTE handle is saved by the virtual memory man­
ager inside the object record, and the block number is passed on by the virtual memory 
manager to the page manager so that the correct page can be found in the executable file 
when a page fault occurs. The page table entries that are allocated for each object are 
marked not-present, and the preload pages of the module are touched after they are allo­
cated by the loader, to force preloading of pages. 

The loader component also performs demand paging on behalf of the page manager 
during page faults. When a page fault occurs, the loader is passed an MTE handle, a 
block number, and the virtual address of a page frame into which to load the page. The 
MTE handle is used by the loader to determine from which module to load the page. The 
block number indexes the executable page table map, a page map in the 32-bit exe­
cutable file header that tells the loader where in the executable file this object is stored. 
The relative page number indicates where within the object the page is found. From 
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there, the loader can call the file system to load the page into memory, perform any fix­
ups necessary, and then return to the faulting instruction. Demand paging from the exe­
cutable file allows the system to provide fast program loading. 

6.3.4.3 Page Management 

The page manager manages the physical memory resource, which is divided into page 
frames when paging is enabled. It is also responsible for the overcommit calculations 
and the management of the secondary storage provided by the swapper. Unlike in 16-bit 
OS/2, the overcommit calculation occurs in the physical memory management layer, in­
stead of in the virtual memory management layer. The overriding policy of the page 
manager is to postpone commitment of actual physical memory as long as possible, via a 
lazy allocation scheme. In a lazy allocation scheme, physical memory pages are allo­
cated only as the result of a page fault. The scheme is called lazy because physical mem­
ory allocation is postponed until the last possible moment. This scheme results in 
postponement of I/0 operations for the demand loading of pages from load modules and 
the swap file, and potentially results in a reduction in the number of I/Os necessary to 
keep the system running. 

The page manager provides interfaces for allocating and deallocating pages, 
committing and uncommitting pages, attach and detach operations for sharing pages, 
and lock and unlock operations for fixing pages in physical memory (pinning). 
Internally, the page manager maintains both hardware-specific data structures for sup­
porting paged address translation, and system data structures for tracking the contents 
and disposition of the paged memory resource. The principal data structures are the page 
tables, the page frame array, and the virtual page structures. The page tables are used to 
map linear addresses to physical addresses, and to provide selective access to shared 
pages. A virtual page structure exists for each committed page in the system. The page 
frame array contains entries for each physical page of memory in the system. 

There are four types of pages: fixed, swappable, discardable, and invalid. Fixed 
pages are the same as resident pages: They never move, and they are always mapped by 
a page table. Swappable, discardable, and invalid pages are similar to their 16-bit seg­
ment counterparts. Pages also can be read-only or read-write, and can be accessed by the 
user or supervisor (kernel). 

6.3.4.3.1 Page Tables The paging mechanism of the 80386 processor was discussed 
in Chapter 2. As mentioned there, the page size for the 80386 is 4KB, and the hardware 
data structure for converting 32-bit linear addresses into 32-bit physical addresses is 
called the page table (PT). Each page table contains 1024 (lK) 32-bit page table entries 
(PTEs), each of which maps a 4KB page of physical memory. A page table is a page 
itself and is 4KB. A single page table can map 4MB (lK * 4KB per page) of memory. 
The CR3 control register of the 80386 points to the system page directory, the top-level 
page table in the system. The lK PTEs of the page directory are also called page direc­
tory entries (PDEs), since they map page tables in the two-level page address transla­
tion. Since each entry in the page directory maps 4MB of memory, the processor can 
map 4GB (lK * 4MB per page table) of linear memory to physical memory at a time. 
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Multiple independent linear address spaces can be implemented via provision of a set of 
page tables for each 4GB linear address space, and via switching of page directory con­
tents when context switching is performed between linear address spaces. Whenever a 
PTE is changed or a linear address space is switched, the 80386 translation lookaside 
buffer (TLB) cache must be flushed by reloading of CR3. Figure 2.16 in Chapter 2 illus­
trates the 80386 paging data structures. 

The page tables representing the system region are shared. When the system is start­
ed, enough linear memory is reserved for the system page tables to map the maximum 
size of the system arena. Each process has its own set of page tables that maps the pro­
cess virtual address space in the range from the 0 to 512MB. So that all the page tables 
of the system can be addressed, linear address space in the system arena is reserved for 
page tables for 256 512MB processes (128MB of system linear address space). Each 
512MB process requires 128 page tables, each of which maps 4MB of linear memory. 
This setup results in 512KB of linear memory reserved for the page tables of each pro­
cess. Each process's PTDA contains variables that point to the page tables that map the 
private and shared arenas for that process, and that indicate how many page tables are 
actually in use at the shared and private ends of the 5 l 2MB process virtual address 
space. The process page tables can also be thought of as a sparse array of per-process 
page tables, where each entry contains the memory for a single process's page tables. 
When a process is created, one of the 256 blocks of linear memory is allocated for the 
new process's page tables. All interfaces of the page manager exported to the virtual 
memory manager and loader accept a PTDA parameter that indicates on which set of 
page tables the page manager should operate. The parameter is ignored by the page man­
ager for linear addresses in the system arena. 

Rather than allocate a page directory for each process, the OS/2 page manager uses 
a single directory for the entire system, since each process usually is much smaller than 
512MB. Having a page directory for each process would add an unnecessary overhead 
to the amount of memory used by the system. When a single page directory is used, the 
page tables being used by a process are copied in and out of the page directory when a 
context switch occurs. This single directory results in memory savings, since there is no 
need for a directory for each process. Since most processes use relatively few of the 
available page tables, the operation of copying the in-use shared and private page table 
addresses is fast. The TLB is flushed after the context switch, since its contents may rep­
resent invalid mappings. 

The OS/2 page manager allows page tables to be swappable like normal page 
frames. However, the system must keep track of how many PTEs within a page table are 
in use by the page manager, and how many of the in-use PTEs are currently present. 
When the present count of the number of PTEs in a page table falls to 0, the page table 
can be swapped. If the number of PTEs in use falls to 0, the page table is freed. 

6.3.4.3.2 Page Table Entries Each committed page in the system may be referenced 
by one or more PTEs. Multiple PTEs referencing the same page may be independently 
marked present or not present. The PTE contains different information, depending on 
whether the page is present. If the page is present, the PTE contains a physical page 
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P: present 
R/W: readable/writeable 
U/S: user/supervisor 
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PG: pageable 
Frame: if oresent. PF index; else. VP index 

Fig. 6.20 Page table entry (PTE). 

number and the attributes of the page in a format defined by the 80386. Figure 6.20 
illustrates the definition of a PTE. 

If a page is present, the attributes defined by the 80386 indicate whether the page is 
read-only or read-write, whether the page has been accessed (referenced) or dirtied 
(written), and how the page should be treated with respect to caching. Most pages are set 
up for transparent, write-through caching. However, pages representing memory­
mapped 1/0 devices must be disabled from the hardware external caching scheme. Note 
that the cache bits in the 80386 PTEs are for external cache control, not for the internal 
translation lookaside buffer on the processor. If a page is not present, the page manager 
defines the content of the unused 31 bits of the PTE to contain information for determin­
ing a course of action on a page fault. Since the PTE is not large enough to contain all 
the information for processing a page during a page fault, the page manager uses the vir­
tual page data structure to represent each committed page of memory. Not-present PTEs 
for valid pages contain pointers to virtual page structures. 

6.3.4.3.3 Page Frames Each page of physical memory in the system is represented by a 
page frame (PF). The PFs are stored in an array indexed by physical PF number. Each PF 
contains flags that indicate what type of physical memory constitutes it, and whether it is 
eligible for page replacement. For example, the PF may be fast (planar) or slow (channel­
attached) memory, and may be above the lMB or 16MB physical memory addresses. 
Figure 6.21 illustrates the contents of a PF array. 

A page frame can have one of three states: in use, idle, and free. A PF is in use if 
there are any present PTEs in the system that reference the frame. A PF for an in-use 
page contains a pointer to the associated (virtual page) structure (explained in 

---------- 32 bits ______ .._ 

VP index 

Lock counts T PF reference count 

File offset I Flags 

Fig. 6.21 Page frame (PF) array entry. 
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Section 6.3.4.3.4), long- and short-term lock counts, and a reference count that indicates 
the number of present PTEs that point to the page frame. The file offset field of a PF 
contains a swap/D or loader block number of the page for finding the page on disk when 
the page is in use. 

The next type of PF is a.free page frame. When the system is started, all the fixed 
pages representing the system are mapped as present and in use. However, the rest of the 
pages are marked as free and available for paging. The PF free list is a doubly linked list 
with fast PFs at one end and slow PFs at the other. When a PF is allocated, the page 
manager attempts to allocate fast memory before slow memory. Also, when a PF is 
freed, fast frames are placed on the fast end of the list, and slow frames are placed on the 
slow end of the list. 

When the system is in an overcommitted situation and the free PF resource decreas­
es below a low-water mark, the page ager begins aging pages in the system. As a result 
of page aging, PFs that contain data that have not been used recently change from the in­
use state to the idle state. A page frame is idle if no PTEs reference a PF, but the data 
inside the page are reclaimable. A reclaimable PF is still linked to a valid virtual page 
structure (see Section 6.3.4.3.4). All the idle PFs in the system are on a doubly linked 
list called the idle list. The page ager makes sure that no PTEs reference a PF before 
marking the PF idle. Figure 6.22 illustrates the free list and the idle list. 

The idle list contains idle PFs, which are dirty or clean, and are reclaimable if a PTE 
is faulted on that indirectly references the page through a virtual page structure. The idle 
list is doubly linked and is accessed by the LRU or MRU (most-recently-used) end. 
When the page manager allocates a PF to satisfy a page allocation request as a result of 
a page fault, the page manager first attempts to allocate a free PF. If there are no free 
PFs, a PF is allocated (stolen) from the idle list. If the page is dirty, then the contents 
must be swapped out before the PF is stolen to satisfy the request. Discardable pages are 
never dirty, since they are code or read-only data pages. 

6.3.4.3.4 Virtual Pages Whenever the virtual memory manager allocates a committed 
page, a virtual page (VP) is allocated. The VP structure is necessary, since the page 
manager allows more pages to be committed than can be held simultaneously in physical 
memory. The page manager extends the physical memory resource of the system by 
demand loading discardable pages from load modules, and by swapping pages to the 
swap file. The VP structure also stores the permanent information for each page that 
describes the disposition of a page, regardless of whether that page is in memory. A VP 

Free PFs 

Slow ------------------ Fast 

Dirty and clean reclaimable idle PFs 
(linked to VPs) 

MRU ------------------ LRU 

Fig. 6.22 Free and idle page frame lists. 
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Frame pointer l Flags J 
Object-relative page number l Object handle J 
PTE reference count J 

Fig. 6.23 Virtual page (VP) structure. 

is an extension of the contents of a not-present PTE, since a not-present PTE is not large 
enough to contain all the necessary information. 

At any time, the disposition of an allocated committed page is one of allocate-on­
demand, in physical memory, or on disk. If a page is on disk, it is either swapped in the 
swap file or demand loadable from a load module. Allocate-on-demand disposition im­
plies that a PF is to be allocated when the page is referenced. A VP exists independent 
of whether a PF has been allocated to satisfy an allocation or commit request. 
Overcommit accounting is performed when a VP for committed swappable memory is 
allocated, since the system guarantees backing store for the request. Figure 6.23 illus­
trates the contents of a VP structure. 

Each VP contains a reference count of the number of present and not-present PTEs 
that reference the VP. The VP contains an object handle and an object-relative page 
number passed in by the virtual memory manager; these data are used to enumerate all 
references to the page and to process page faults. The flags in the VP indicate the state 
of the page, the action to be taken on the page for page faults, and the contents of the 
frame field of the VP. The flags also provide bits used for per-VP semaphores to serial­
ize access to each VP. 

When a page in a memory object is committed, a PTE and a VP are allocated. The 
PTE for the page is set to not-present and contains the VP index, which is a pointer to 
the VP. The VP flags indicate whether the page is allocate-on-demand, swapped, dis­
carded, swappable-on-write, copy-on-write, dirty, or idle. Figure 6.24 illustrates the lay­
out of the page data structures for an initially allocated committed page. 

Page table y VP J 
Fig. 6.24 Page structures for initially allocated committed page. 
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When a thread accesses the virtual address mapped by the PTE, a page fault occurs 
and the system immediately processes the VP referenced in the PTE. The VP flags de­
termine the source of the data for the page, if there are any. The page is loaded from the 
swap file, loaded from a load module, or supplied by the page manager. 

The frame value within the VP has different meanings depending on whether the 
page is present. If a page is present, the frame value contains the physical page number, 
which is also the PF array index of the corresponding PF. When the page is present, the 
frame value for locating the page contents when the page is not present is stored in the 
associated PF. If the page is not present, the VP frame field contains either a swapID or 
a loader block number, depending on whether the page is swapped or discarded. If it is 
neither swapped nor discarded, the page is allocate-on-demand and the frame field has a 
flag indicating whether the page should be zero-initialized. 

6.3.4.3.S Overcommit Calculations The page manager is also responsible for over­
commit calculations. Overcommit calculations are made when a swappable or fixed page 
is committed-when a VP is allocated for swappable or fixed memory. Discardable pages 
are not part of the overcommit calculation, since they are not swapped. If the total number 
of swappable committed pages in the system exceeds the size of the swap file, then the 
system attempts to grow the swap file. If the swap file cannot be grown, the allocation 
fails. Page tables are included in the overcommit calculation. 

6.3.4.3.6 Page Operations Page table allocation occurs when the virtual memory 
manager calls the page manager to allocate or reserve linear pages for an object. If an 
object is allocated and linear address space is merely reserved (not committed) for it, 
then the PTEs are marked invalid, and page tables are allocated to map them. Accessing 
an invalid page causes the current thread to receive a general protection fault, which 
results in process termination if the fault is not handled by the faulting thread. If fixed 
memory is committed, a VP and a PF are allocated, and they are cross-linked. A PTE is 
allocated and marked present, and it points to the PF. Except for fixed allocations and 
lock requests, all PF allocations occur during page faults. 

If a swappable or discardable page is committed, a VP is allocated, a PTE is allo­
cated and marked not present, and the PTE is pointed to the VP. The VP reference count 
is set to 1, and the VP frame contains the loader block number passed in by the loader 
when memory was allocated if the object is initially discarded. The VP also stores the 
handle of the object in which the page is located. No physical memory is allocated until 
the VP is referenced by a page fault. 

Page sharing occurs when the virtual memory manager calls the page manager to at­
tach one page to another page. Page sharing allows multiple PTEs to reference the same 
VP. Attach requests are honored by copying of the contents of the source PTE to the tar­
get PTE and incrementing of the VP count. If the original PTE referenced a present 
page, then the PF reference count is incremented also. Attach requests commonly occur 
when the virtual memory manager services shared memory API requests and shared 
module load requests. 

When a page is deallocated, the PTE is zeroed out, and the VP reference count is 
decremented. If the PTE references a present page, the PF reference count is decremented 
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also. If the VP reference count falls to 0, both the VP and the PF can be freed. However, 
if the PF reference count falls to 0 and the VP reference count is still greater than 0, then 
not-present PTEs still reference the virtual page. In this situation, the PF is in the idle 
state, and can be ultimately stolen or reclaimed. 

6.3.4.3. 7 Page Faults Page faults are handled by the page manager page fault 
handler. When a fault occurs, the 80386 hardware provides the system with the virtual 
address that was faulted on. The virtual address is used to look up the PTE that caused 
the fault. If the page is valid, the PTE contains a link to the VP that describes the page's 
disposition and state. If the VP is linked to a PF, then the page is reclaimed from the idle 
list. If the page is not reclaimable, then a PF must be allocated, and must be filled with 
the data as specified in the VP flags. 

When a PF is needed, the page manager first attempts to allocate a PF from the 
fast end of the free list. If a free PF exists, the PF immediately satisfies the requests 
and is cross-linked to the faulting VP. If there are no free PFs available, as is common 
in a memory-stressed system, the page manager steals a PF from the LRU end of the 
idle list. When a PF is stolen, it is effectively stolen from one VP and linked to the 
faulting VP. 

For a PF steal to be performed, the flags in the VP associated with the PF to be 
stolen are checked to determine how the page should be stolen. If the page to be stolen is 
a clean swappable page with a valid image on the swap file, or is a discardable page, 
then it can be stolen without further processing. If it is a swappable page that has been 
written to since the last write to the swap file, it is dirty and must be swapped out before 
the PF can be stolen. The PF steal is completed when the link between the old VP and 
PF is severed, and a link between the faulting VP and the PF is established. 

Once the faulting VP is linked to a PF, the page's data are loaded as specified in the 
flags of the faulting VP. If the page is a new swappable page, it is zeroed out. If the VP 
flags indicate that the VP is swapped, then the VP contains the swapID and the swapper 
is called with the swapID to bring in the page. If the VP flags indicate that the VP is a 
discarded loader page, then the VP link to the object record is used to obtain the MTE 
handle of the originating module. The MTE handle, loader block number, and a linear 
address for loading the page are passed to the loader to demand load the page. After the 
contents of the page have been loaded, the faulting PTE is marked present and contains 
the physical page number of the allocated PF. The VP frame field is saved in the file off­
set field of the PF, and then is set to reference the allocated PF. The PF reference count 
is set to 1, and ultimately the faulting instruction is restarted, resuming the thread at the 
start of the faulting instruction. Figure 6.25 illustrates the layout of the page data struc­
tures after a page fault has caused a page to be allocated. 

The page manager uses copy-on-write and swap-on-write for optimizing page 
allocation. When the virtual memory manager commits a swappable page that originates 
in an executable module (i.e., private EXE data), it requests the page manager to allocate 
the pages swap-on-write. The page manager allocates a VP for the page and sets the VP 
flags to indicate that the page is discarded (can be reclaimed from an executable mod­
ule), but that the page should be made swappable when written to. The PTE for the page 
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Fig. 6.25 Page structures after page fault. 

is set to read-only. When the page is written to, a page fault occurs and the page manag­
er changes the page to a swappable page, performs overcommit accounting, and changes 
the PTE to read-write. This postpones reservation of space on the swap device until the 
page is made swappable during a page fault. 

Copy-on-write is used for managing multiple copies of a page in multiple contexts. 
When the virtual memory manager needs to allocate a new copy of an existing read­
write page (i.e., attaching to some instance data in a DLL), it sets the copy-on-write 
attribute when it calls the page manager to commit or create the copy. The page manager 
allocates a VP for each copy-on-write page, and sets the PTE for the page to point to the 
original page. However, the allocation of the PF for the new copy of the original page is 
delayed as long as possible. All PTEs that reference a copy-on-write page are set to pre­
sent and read-only. When a copy-on-write page is written to, a page fault occurs, since 
the PTE is marked read-only. If the VP referenced by the faulting PTE is copy-on-write, 
the page fault handler allocates a PF, copies the contents of the original PF to the new 
PF, links the VP and PTE to the new PF, marks the PTE present, and restarts the faulting 
instruction. Thus, the actual allocation of a PF for the original request to allocate a copy 
of a page is delayed until the page is written to. 

Recall from Chapter 2 that the 80386 allows any page to be written (even if the 
page is marked read-only) if the access is made in supervisor mode. Since the 80386 de­
fines supervisor mode to be privilege levels 0, 1, and 2, a read-only page can be written 
to be a thread running at privilege level 2. Since OS/2 allows user-mode threads to exe­
cute with 1/0 privilege at privilege level 2, a copy-on-write or swap-on-write page can 
be written to inadvertently by a thread running at privilege level 2. Therefore, the page 
manager does not implement copy-on-write or swap-on-write on the 80386. However, 
the 80486 allows read-only page protection in all rings, enabling copy-on-write and 
swap-on-write to be performed on an 80486. 

6.3.4.4 Page Aging 

A special thread called the page ager exists for aging pages in the system so that the 
system can replace page frames on an LRU basis. The page ager thread is a kernel 
thread and runs at privilege level 0. The ager thread is blocked until the system's idle 
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and free page count reaches a low-water mark, which indicates that the system is run­
ning low on memory resources. At this time, the page ager's priority is increased until 
the page ager ultimately is allowed to run. It implements a single-hand clock algorithm, 
in which it examines the present PTEs of processes. As stated previously, present PTEs 
contain the physical PF number of the present page, which is also an index into the PF 
array for the corresponding physical page information. 

If a scanned PTE is present, the ager examines the accessed and dirty bits to see 
whether this page has been accessed since the last time the page ager scanned it. If the 
page has not been accessed, then the PTE is marked not present, and is pointed to the 
appropriate VP referenced by the PF, and the reference count in the PF entry is decre­
mented. If the PF reference count falls to 0, then the page is linked onto the idle list. If 
the page is dirty and is swap-on-write, then it is marked swappable. Read-only pages are 
never dirty or swap-on-write. Figure 6.26 illustrates the page data structure when a page 
has been idled. 

So that the number of PTEs scanned by the ager is minimized, the count per-page 
table of the number of present pages is used when each process's page tables are 
scanned. This is a global aging scheme, in that processes do not page against them­
selves, but rather page against the working set of the entire system. 

6.3.4.5 Page Swapping 

Page swapping is executed on the context of the faulting thread, unlike in 16-bit OS/2, 
where there is a separate kernel swapper thread used for swap 1/0. The swap file is man­
aged by the file system, and the swap manager uses a bitmap to manage space within the 
swap file. Each bit in the bitmap corresponds to a disk frame (DF) in the swap file. The 
index in the bitmap of a DF is used as a swapID when a page is marked swappable. The 
32-bit swapper also implements multiple swap outs, or group paging. When it is time to 
allocate a page from the idle list, and the LRU page on the idle list is dirty, the page's 
contents must be swapped out before the frame can be stolen to satisfy the current 

PF 

Page table 

VP 

Fig. 6.26 Page structures for idle page. 
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request. In this situation, the page allocation routine looks for more dirty pages on the 
idle list that need to be swapped out, and swaps out several pages at a time. This strategy 
takes advantage of the scatter-gather disk hardware that exists to support 1/0 in a paged 
environment. 

6.4 SEGMENTED VERSUS FLAT MEMORY MODEL 

The performance of the flat memory model is far better than that of the segmented mem­
ory model, since segment registers do not need to be loaded when a new memory object 
is addressed. Also, the flat memory model allows objects to be larger than 64KB, and 
lends itself more easily to a portable environment, whereas the segmented model forces 
nonportable programming constructs on application programmers. Both models have the 
equivalent level of memory protection. However, the flat model uses page-granular pro­
tection; while the segmented model uses byte-granular protection. Another difference in 
the memory models is the type of pointer used in API calls for returning data to the 
requestor. If the 32-bit system had used a segmented model, API pointers would have 
been 16:32 pointers with a selector and a 32-bit offset. When pushed on the stack, a 
pointer parameter would require 64 bits, leading to slower API performance and larger 
user thread stacks. Also, validating pointers would require segment register loads, further 
slowing down the system. 

6.5 MEMORY MANAGEMENT API 

Table 6.2 summarizes the 16-bit and 32-bit memory management API calls. 

6.6 DYNAMIC LINKING API 

Table 6.3 summarizes the 16-bit and 32-bit dynamic linking API calls. 

SUMMARY 

This chapter explained the architecture, APis, and design of OS/2 16-bit and 32-bit 
memory management. The 16-bit version of OS/2 uses a segmented memory model that 
results in the system having a segmented API and process virtual address space. Due to 
the segment size limitation of 64KB, 16-bit OS/2 programs tend to be dependent on the 
memory architecture of the 80286 processor. The 32-bit version of OS/2 uses a flat 
memory model that provides a large, contiguous process virtual address space that can 
be addressed naturally using offset pointers. As a result, the 32-bit system and programs 
can be ported to any 32-bit architecture that supports large, flat, paged virtual address 
spaces. Both systems provide virtual memory solutions for protecting memory and for 
extending the physical resources of a system using secondary storage devices as swap 
media. 
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16-bit API name 32-bit API name 

DosAllocSeg DosAllocM em 

DosAllocShrSeg DosAllocSharedMem 

DosGetShrSeg DosGetNamedSharedMem 

DosGetSeg DosGetSharedMem 

DosGiveSeg DosGiveSharedMem 

DosReallocSeg NIA 

DosFreeSeg DosFreeMem 

DosAllocHuge NIA 

DosGetHugeShift NIA 

DosReallocHuge NIA 

DosCreateCSAlias NIA 

DosMemAvail NIA 

DosSizeSeg NIA 

DosSubSet DosSubSetMem 

DosSubAlloc DosSubAllocMem 

DosSubFree DosSubFreeMem 

NIA DosSubUnsetMem 

NIA DosQueryMem 

NIA DosSetMem 

Table 6.2 Memory management API. 

16-bit API name 32-bit API name 

DosLoadM odule DosLoadM odule 

DosFreeM odule DosFreeModule 

DosGetProcAddr DosQueryProcAddr 

DosGetModHandle DosQueryModuleHandle 

DosGetModName DosQueryM oduleName 

DosQAppType DosQueryAppType 

DosGetResource DosGetResource 

Table 6.3 Dynamic linking API. 

Description 

Allocate memory 

Allocate shared memory 

Access shared memory 

Get shared memory 

Give shared memory 

Reallocate memory 

Free memory 

Allocate huge memory 

Get huge shift count 

Reallocate huge memory 

Create code alias 

Query system memory 

Get segment size 

Initialize heap 

Allocate heap memory 

Free heap memory 

Uninitialize heap 

Query process memory 

Set process memory 

Description 

Load DLL module 

Free DLL module 

Resolve fixup to DLL 

Query module handle 

Query module name 

Query application type 

Get application resource 
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allocate-on-demand page 
arena boundary record 
arena header 
arena record 
arena sentinel record 
block management package (BMP) 
call gate 
committed page 
compaction 
compactor 
context record 
copy-on-write page 
demand loading 
demand-load segments 
demand paging 
descriptor 
dirty page 
discardable page 
discardable segment 
disk frame (DF) 
DLLmodule 
DLL read-write instance data objects 
dynamic linking 
dynamic link 
80286 descriptor tables 
EXE code segment 
EXE module 
export data 
FAT file system 
fault 
fixed page 
fixed segment 
fix up 
flat memory model 
flush cache 
fragment 
fragmentation 
free 
free list 
free page frame 
give-get mechanism 
give-get shared memory 

global aging scheme 
global infoseg 
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global shared segment 
group paging 
guard page 
handle table 
handle table entry 
heap 
HPFS file system 
huge increment 
huge segment 
huge shift factor 
idle list 
idle page 
idle page frame 
import data 
import table 
infoseg 
instance segment 
in-use page frame 
invalid page 
lazy allocation scheme 
least recently used (LRU) 
loader 
load-time memory 
local infoseg 
long-term lock 
LRU page replacement 
LRU segment replacement 
malloc 
memory management unit (MMU) 
memory overcommit 
module table entry (MTE) 
movable segment 
named shared memory 
object record 
open file pointer 
page ager 
page directory 
page directory entry (PDE) 
page fault 
page frame (PF) 
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page frame array 
page frame array entry 
page frame array structure 
page frame free list 
page manager 
page manager page fault handler 
page swapper 
page table 
page table entry (PTE) 
page table map 
physical allocator 
physical arena 
physical memory manager 
pinning pages 
preload segment 
private-address, private-storage object 
private address shared storage object 
private arena 
private sector 
privilege level 0 
process virtual address space 
protection ring architecture 
pseudo object 
PTDA 
read-only page 
read-write page 
real address space 
regular arena record 
resident heap 
resident page 
run-time memory 
segment 
segment arithmetic 
segment motion 
segment-not-present fault 
segment protection 
segment register 
segment swapping 
segment table 
segment table entry (STE) 

EXERCISES 

segmented memory model 
Sfree 
shared-address, private-storage 

read-write objects 
shared-address, shared-storage 

read-write object 
shared arena 
shared memory 
shared sector 
shared segment 
short-term lock 
single-hand clock algorithm 
16-bit handle 
Smalloc 
swap cache 
swap control table (SCT) 
swap control-table entry (SCTE) 
swap file 
swap file fragmentation 
swapID 
swap-on-write 
swap-on-write page 
swappable heap 
swappable-on-write page 
swappable page 
swappable segment 
swapper 
system arena 
system virtual address space 
32-bit linear address space 
thread information block (TIB) 
translation lookaside buffer 

(TLB) cache 
uncommitted page 
virtual address space 
virtual memory manager 
virtual page (VP) 
virtual page structure 
0:32 address 

6.1 What is the key aspect of virtual memory that makes the latter fundamentally different from 
physical memory? 
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6.2 Explain the notions of virtual address space and real address space. 

6.3 What relationship, if any, exists between the size of a system's virtual address space and the 
size of that system's real address space? 

6.4 Can one process reference portions of another process's virtual address space? 

6.5 What address spaces can a thread in kernel mode access? 

Questions pertaining to OS/2 I .X systems: 

6.6 What are the main goals of memory management in 16-bit OS/2 systems? 

6.7 Explain the architecture of the segmented memory model. 

6.8 Can threads running in user mode access descriptors in the LDT or GDT? Explain your 
answer. 

6.9 Why are not all segments in a process virtual address space simultaneously addressable? 
How is addressability to a segment established? 

6.10 Distinguish among fixed segments, movable segments, swappable segments, and discard­
able segments. 

6.11 What are private selectors and shared selectors? 

6.12 How are instance segments mapped and allocated? 

6.13 Private segments can be grown or shrunk, but shared segments are usually only grown. 
Explain why shared segments are not shrunk. 

6.14 Explain the notion of a huge segment. 

6.15 How is named shared memory accessed? 

6.16 What is give-get shared memory? 

6.17 What kind of shared memory is appropriate for interprocess communication between loose­
ly coupled peer processes? What kind of shared memory is appropriate for passing data between 
closely coupled peer processes? Explain your answers. 

6.18 What technique is used to allocate small memory objects? What is a heap? 

6.19 What are infosegs? What kinds of information appear in the global infoseg? What kinds of 
information appear in local infosegs? 

6.20 Distinguish between load-time memory and run-time memory. 

6.21 Explain the operation of each of the main components of the memory management portion 
of the kernel-namely, the virtual memory manager, the loader, the physical memory manager, 
and the swapper. 

6.22 What is overcommit accounting? 

6.23 All shared objects, whether code or data, occur at the same virtual address in all process 
virtual address spaces. Why are they placed in this way? 

6.24 Why does dividing the LDT into shared and private descriptors (selectors) reduce virtual 
memory consumption? 

6.25 What is the handle table? What is the significance of the flag indicating "above or below 
lMB" in each handle table entry? 

6.26 Under what circumstances will two different threads try to access an object? 

6.27 What is lazy segment allocation? 
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6.28 Explain the relationship between loader and module table entries (MTEs). 

6.29 Discuss how program loading is accomplished. 

6.30 Distinguish between preload segments and demand-load segments. 

6.31 When a segment-not-present fault occurs, what does the descriptor for the segment 
contain? 

6.32 Discuss the operation of the two components of the physical memory manager-namely, 
the physical allocator and the compactor. 

6.33 Under what circumstances can physical memory above lMB be accessed? 

6.34 Describe how arena headers are used to track free and in-use memory blocks. 

6.35 Effectively, each arena header is in its own segment. Why is this so? 

6.36 Give positive and negative side effects of placing arena headers throughout physical memory. 

6.37 Describe a typical physical memory allocation scenario. Indicate situations in which the 
compactor and the swapper will be needed. 

6.38 Why can segments be moved invisibly to the processes that reference them? 

6.39 How is LRU aging of segments implemented to determine the best candidate for swapping? 

Questions pertaining to OS/2 2.X systems: 

6.40 The primary motivation behind the design of OS/2 2.X is to ensure portability. List several 
aspects of OS/2 2.X memory management that facilitate portability across a wide variety of 
platforms. 

6.41 List several aspects of segmentation that detract from the portability of OS/2 2.X. 

6.42 Why does the flat memory model provide performance superior to that of the segmented 
memory model? 

6.43 Discuss each of the following page attributes: fixed, resident, swappable, discardable, 
invalid, and guard. 

6.44 Distinguish between committed pages and uncommitted pages. 

6.45 How is memory suballocation implemented? 

6.46 Describe each of the kernel memory allocation interfaces: the block management package 
(BMP), the resident heap, and the swappable heap. 

6.47 Discuss each of the following arena types: the system arena, the shared arena, and the pri­
vate arena. 

6.48 Discuss each of the following object types: private-address, private-storage objects; pri­
vate-address, shared-storage objects; shared-address, shared-storage read-write objects; and 
shared-address, private-storage read-write objects. 

6.49 Discuss the use of each of the following key data structures by the page manager: the page 
table, the page frame array, and the virtual page structure. 

6.50 Why is the TLB flushed after a context switch? 

6.51 Discuss each of the states in which a page frame may be: in-use, idle, and free. 

6.52 Describe how the page ager operates to increase the number of free page frames. In particu­
lar, discuss the single-hand clock algorithm used. 



6.53 Trace the complete processing of a page fault. 

6.54 Distinguish between copy-on-write pages and swap-on-write pages. 

6.55 Explain OS/2's notion of group paging. 
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6.56 Compare and contrast the flat memory model of OS/2 2.X and the segmented memory 
model of OS/2 l .X. 





7 
Interprocess 

Communication 

Many shall run to and fro, and knowledge shall be increased. 

Daniel 12:2 

A person with one watch knows what time it is; a person with 
two watches is never sure. 

Proverb 

The path of duty lies in what is near, and man seeks for it in 
what is remote. 

Mencius 
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7 .1 INTRODUCTION 

OS/2 is a multitasking operating system. The existence of multiple processes and asyn­
chronous concurrent threads implies the need for mechanisms to allow processes to ex -
change data and to synchronize the execution of their threads. Interprocess 
communication primitives provide these basic features for data sharing and thread syn­
chronization. This chapter describes various aspects of interprocess communication 
(/PC) in the 16-bit and 32-bit OS/2 systems. 

The IPC facilities of the OS/2 system are organized into a tiered hierarchy based on 
the complexity of the IPC mechanism. The simplest IPC mechanisms are shared memo­
ry, semaphores, signals, and exceptions. These constructs are classified as simple con­
structs, since the processes that use them must communicate with one another explicitly. 
More abstract IPC mechanisms higher in the hierarchy are built out of the low-level 
mechanisms. Queues and named pipes are examples of higher-level abstractions that 
allow processes to exchange data and to synchronize their execution. However, the 
usage of low-level IPC constructs, such as shared memory and semaphores, is masked 
from the users of queues and named pipes. The highest-level abstraction of IPC mecha­
nisms is the API call. Since each API function defines an abstraction and a level of 
information hiding, these functions manage the usage of any necessary IPCs from 
requestors. The API abstraction is often used by application programs that build their 
own API functions into dynamic link libraries that are tailored to their specific needs. 
Clients of the API are not sensitive to the underlying IPC usage of the dynamic link 
library, that allows it to be used by multiple processes and threads. 

7 .2 SHARED MEMORY 

Shared memory is the simplest type of IPC mechanism. Its functions are similar in both 
16-bit and 32-bit versions of OS/2. Chapter 6 described the types of shared memory that 
OS/2 supports. This chapter describes shared memory in terms of its role in IPCs. 

Run-time shared memory is allocated while a thread is running, whereas load-time 
shared memory is allocated when a process is loaded into memory by DosExecPgm, or 
when a library is loaded by DosLoadModule. There are two types of run-time shared 
memory: named shared memory and give-get shared memory. Named shared memory 
has the name of the shared memory registered in the file-system name space. It creates a 
directory entry in the file system that allows access to the named shared memory by 
loosely coupled peer processes. These peer processes can access the shared memory by 
knowing the name of the memory. Chapter 6 discussed the named-shared-memory API 
calls. 

Give-get shared memory is anonymous; no name is associated with the memory. 
Giveable memory is allocated by a process and is passed to another process explicitly by 
specification of the address of the memory and the PID of the process that is being given 
the memory. Conversely, gettable memory is acquired by specification of the memory 
address from the process that allocated the memory. Ultimately, access is passed directly 
from process to process. Chapter 6 discussed the give-get shared-memory API functions. 



200 Interprocess Communication 

The give-get shared-memory model is safer to use than is the named shared-memory 
model, since access to the memory in the former is controlled directly by the sharing 
processes. 

Load-time shared memory is allocated when a process's EXE file and associated 
DLLs are loaded into memory. It consists of shared code and shared data. All code in 
the OS/2 system, whether it comes from an EXE file or a DLL, is shared and is reen­
trant. It is mapped at the same address in every virtual address space (as is all shared 
memory) in both the 16-bit and 32-bit systems. The writer of shared code must keep in 
mind that shared code accessing shared resources, such as shared data, must be able to 
handle being preempted at any time. 

Specifying the sharing granularity of memory is a way of classifying memory ac­
cording to how it is accessed. Thread memory (also called local memory) is memory that 
consists of the thread's user stack. It is local to the thread and is mapped within the pro­
cess virtual address space. Process memory is memory mapped within the process virtu­
al address space; it is accessed and shared by the threads of the process. No API calls are 
necessary to set up this sharing-it is part of the multitasking model introduced in 
Chapter 5. Shared memory is accessed and shared by threads in different processes, and 
is mapped into the shared portion of the process virtual address space. 

Process and shared memory usually need some type of serialization if the memory 
is accessed concurrently by multiple threads. In other words, if threads within a process 
are all using process memory that is not their own stacks or thread local memory, then 
the threads need to access that memory in a controlled fashion to guarantee the integrity 
of the shared data. When multiple threads in different processes attempt to access shared 
memory, the same situation arises. 

Shared-address, private-storage memory objects, which are used for instance data 
in dynamic link libraries, usually need no serialization unless they are being accessed by 
more than one thread within the same process. Instance memory is used for per-process 
data within a dynamic link library. 

Although shared memory is conceptually simple, it has several weaknesses. The 
protocol and layout of the shared memory must be understood by all threads accessing 
that memory. Also, since there are multiple threads accessing the memory, semaphores 
or flags usually are needed to control concurrent access to the shared region. 

7 .3 SEMAPHORES 

When multiple threads concurrently execute shared code that accesses shared data or 
serially reusable shared resources, those threads need mutually exclusive access to the 
shared resources. Semaphores are special protected variables with a defined set of oper­
ations that allow threads to synchronize their execution. OS/2 provides two basic types 
of semaphores: mutual exclusion semaphores and event synchronization semaphores. 

A critical section of code is a portion of code in which a thread accesses shared, mod­
ifiable data. Only one thread at a time can be allowed to access the modifiable data, and 
that thread must exclude other threads from executing the critical section of code simul­
taneously. Threads not in the critical section continue to run. So that threads waiting to get 
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into the critical section are not blocked for a long time, critical sections should be as short 
and fast as possible, and threads should not block within critical sections if possible. 

Critical sections as described here are not to be confused with the DosEnterCritSec 
and DosExitCritSec API calls (described in Chapter 5) that enable and disable thread 
switching within a process. These API calls provide a coarse granularity of synchroniza­
tion that is valid only for threads within a process. Disabling thread switching within a 
process can also have bad side effects on threads within a process. Semaphores provide 
a more reliable and robust mechanism for managing critical sections. 

A mutual exclusion semaphore is used to serialize access of threads to shared modi­
fiable data or resources. When a thread wants to enter the critical section, it requests 
ownership of the semaphore. If the semaphore is unowned, then there is no thread in the 
critical section; the requesting thread is given ownership of the semaphore and proceeds 
to execute the critical section of code. If, while this thread is in the critical section, an­
other thread attempts to enter that critical section, the second thread's request for 
semaphore ownership blocks until the first thread exits the critical section and releases 
ownership of the semaphore. At the time the thread within the critical section exits, the 
highest-priority thread that has blocked requesting ownership of the semaphore is awak­
ened and is given ownership of the semaphore. 

Event synchronization semaphores are used when one or more threads need to wait 
for a single event to occur. Event semaphores have no concept of ownership. They have 
two possible states: set or clear. When a thread needs to wait for an event to occur, it 
performs a wait operation on an event semaphore. If the event semaphore is in the set 
state, the thread blocks until the event occurs and the semaphore is cleared. If more than 
one thread is waiting on the event when the semaphore is cleared, all the threads waiting 
on the event are notified that the event has occurred, and the threads are made runnable. 
Another type of event synchronization is the muxwait operation; it is used when a thread 
needs to wait on multiple semaphores simultaneously. 

Like shared memory, semaphores also have several drawbacks for IPCs. Processes 
sharing the resources must understand the semaphore semantics and the shared-memory 
format. Queues and pipes are higher-level IPC abstractions that utilize semaphores and 
shared memory in a way that is transparent for the requestors. 

7 .3.1 OS/2 1.X Semaphores 

Three types of semaphores are supported in the 16-bit OS/2 system. Each has its own 
sharing, performance, and protection characteristics. OS/2 l .X offers both hardware­
based and software-based semaphores. The hardware-based semaphores are RAM and 
fast-safe RAM (FSRAM) semaphores. RAM and FSRAM semaphores depend on the 
hardware to provide an uninterruptible test-and-set instruction to prevent preemption 
during semaphore operations. Software-based semaphores are called system 
semaphores; they rely on the nonpreemptibility of kernel mode for implementing atomic 
semaphore operations. 

RAM and system semaphores can be used for mutual exclusion (mutex) or event 
synchronization operations. FSRAM semaphores can be used only for mutex operations. 



202 Interprocess Communication 

The same API calls are used for manipulating RAM and system semaphores; FSRAM 
semaphores use two different special API calls. RAM, FSRAM, and system semaphores 
are accessed by a 32-bit semaphore handle. 

If a program or library has a critical section in which it accesses some shared re­
source, and it needs to serialize concurrently executing threads accessing that shared re­
source, the DosSemRequest and DosSemClear API calls are used to provide mutually 
exclusive access to the critical section. DosSemRequest receives the handle of the 
semaphore being used for serializing access to the critical section, and a timeout value. 
If the semaphore is unowned, there is no thread within the critical section; the requesting 
thread gains ownership of the semaphore and enters the critical section. Subsequent re­
quests for the semaphore while it is owned cause threads to block or, in the case of no 
timeout, to return immediately. When the thread in the critical section executes 
DosSemClear to release semaphore ownership and to exit the critical section, the 
highest-priority thread that blocked requesting the semaphore gains ownership of the 
semaphore and is the next thread to execute the critical section. This strategy ensures 
that only one thread at a time accesses the shared resource; sequential access guarantees 
the integrity of the shared resource. 

FSRAM semaphores use API calls different from those of system or RAM 
semaphores for their mutex operations. These additional API functions are necessary to 
allow the system to distinguish between RAM and FSRAM semaphores. The FSRAM 
API functions, DosFSRamSemRequest and DosFSRamSemClear, have the same seman­
tics as do DosSemRequest and DosSemClear. 

Event operations are used for synchronizing threads. An event semaphore has no 
concept of ownership; it is in either the clear or the set state. DosSemClear clears an 
event semaphore; DosSemSet sets an event semaphore. When a thread wishes to wait on 
an event semaphore, it issues a DosSemWait request. If the semaphore is clear, 
DosSemWait returns immediately. If the semaphore is set, DosSemWait blocks the 
thread until the semaphore is cleared. When the semaphore is cleared, all threads wait­
ing on the semaphore are made runnable. A timeslice can occur between calls to 
DosSemSet and DosSemWait, so a thread can miss DosSemClear operations, since the 
event semaphore has a binary nature. Therefore, DosSemSetWait can be used atomically 
to set-and-wait on an event semaphore. Event operations wake up all threads waiting on 
a semaphore, whereas mutex operations give ownership to only one thread and make 
only that thread acquiring semaphore ownership ready-to-run. 

The timeout parameter used in DosSemRequest, DosFSRamSemRequest, 
DosSemSetWait, and DosSemWait allows threads to control their semaphore waiting 
semantics. During a mutex semaphore request operation, the timeout describes the 
action to be taken when the semaphore is owned by another thread. During an event 
semaphore wait operation, the timeout describes the action to be taken when the 
semaphore is set. If the timeout value is 0, there is no timeout, and the API call returns 
immediately if the semaphore is owned or set. If the timeout value is -1, the requesting 
or waiting thread will wait indefinitely until the semaphore is cleared. Otherwise, a 
timeout value is a positive number that indicates the number of milliseconds that the 
thread remains blocked if the semaphore is owned or set. If a DosSemClear operation 
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does not occur before the timeout expires, the API call returns to the requestor or waiter 
with a timed-out return code. 

7 .3.2 OS/2 1.X Semaphore API 

Table 7 .1 summarizes the 16-bit semaphore APL 

7.3.2.1 RAM Semaphores 

A RAM semaphore consists of a 32-bit double word in user memory. It can reside in 
shared memory or private memory, and the system supports an unlimited number of RAM 
semaphores. A RAM semaphore is a binary semaphore-it is in either the owned or 
unowned state. The RAM semaphore is initialized to zero to indicate that it is unowned. 
The semaphore handle to a RAM semaphore is the address of the semaphore in user mem­
ory. Therefore, since all user memory in 16-bit OS/2 is addressed through the process's 
LDT, all RAM semaphore handles have an LDT selector for the high word. 

The system does not save the owner of a RAM semaphore. Therefore, if a thread 
terminates while owning a RAM semaphore, threads that are blocked requesting the 
semaphore may remain blocked forever, depending on their timeout values. Since the 
system does not retain the information of which thread owns the semaphore, the system 
cannot help to notify those requesting the semaphore when the owner terminates. 
Therefore, RAM semaphores are preferred for providing mutually exclusive access to a 
resource shared by threads within a process, since only that process is harmed if a thread 
terminates owning the semaphore. Using RAM semaphores in shared memory to pro­
vide mutually exclusive access to a resource shared by threads in different processes is 
dangerous and should be avoided. RAM semaphores are also used for event 

API name 

DosSemC!ear 

DosSemRequest 

DosSemSet 

DosSemSetWait 

DosSemWait 

DosM1p;:SemWait 

DosCreateSem 

DosOpenSem 

DosC!oseSem 

DosFSRamSemRequest 

DosFSRAMSemC!ear 

Description 

Clear semaphore 

Request semaphore ownership 

Set semaphore 

Set and wait on semaphore 

Wait on semaphore 

Wait on multiple semaphores 

Create system semaphore 

Open system semaphore 

Close system semaphore 

Request fast-safe RAM 
semaphore ownership 

Clear fast-safe RAM 
semaphore ownership 

Table 7.1 OS/2 1.X semaphores API. 
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synchronization operations among threads within a process. RAM semaphores are fast 
and are useful for threads within a process. 

The RAM semaphores API runs in user mode and resides in a system DLL. The 
80286 XCHG instruction is used to provide an uninterruptible atomic test-and-set opera­
tion for claiming the semaphore. Because this instruction is used, there is no need to en­
ter the kernel to protect the thread from preemption while attempting to gain ownership 
of the semaphore. The kernel is called only in the case when the RAM semaphore is al­
ready owned and the thread needs to be blocked. There being no kernel call this results 
in a significant performance gain when an unowned semaphore is claimed, compared to 
implementing semaphore operations in the kernel. The semaphore can be requested or 
cleared by any thread with addressability to the semaphore. 

Figure 7 .1 illustrates how the system interprets the contents of a RAM semaphore. 
The high-order word is a 16-bit value that is used for saving the event/D used when a 
thread blocks, awaiting a clear operation. The low-order word consists of a wait flags 
field and a busy field that indicates whether the semaphore is owned. The wait flags sig­
nify whether there are any threads in the kernel blocked on the semaphore. 

When DosSemRequest is issued, the XCHG instruction is done on the owner field to 
determine whether the semaphore is owned. If the semaphore is not owned, the XCHG 
instruction claims ownership of the semaphore, and DosSemRequest returns. If the 
semaphore is owned, the kernel is called to block the thread. Once the thread enters the 
kernel, a unique eventlD for this RAM semaphore is constructed from the semaphore 
handle and an internal counter, and a portion of it is saved in the high-order word of the 
RAM semaphore itself. Since the eventlD used for blocking the thread can be recon­
structed from the semaphore contents, the kernel does not allocate any memory or main­
tain any block information. The wait flags are set to indicate that a thread is blocked on 
the semaphore in the kernel; then, the dispatcher routine ProcBlock is used to block the 
thread on the RAM semaphore. 

DosSemClear clears the owner field of the RAM semaphore. DosSemClear then 
checks the wait flag field of the RAM semaphore to see whether there are any threads 
blocked on this RAM semaphore in the kernel. If there are threads blocked in the kernel, 
the kernel is called. The kernel executes a ProcRun after regenerating the eventID using 
the blockID stored in the RAM semaphore and the handle of the semaphore. 
Subsequently, the wait flag field in the RAM semaphore is cleared. 

Several race conditions may arise inside the path of the RAM semaphores. As men­
tioned in Chapter 5, 16-bit OS/2 has a race condition built into the dispatcher because of 
the way ProcBlock and ProcRun work. Since all threads that are blocked on a given 

High word Low word 

Reserved for Wait 
BlocklD flags 

31 16 15 

Fig. 7.1 RAM semaphore structure. 

Owned/ 
busy 

8 7 0 
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eventID are awakened when a ProcRun is issued, all the threads must check to see 
whether the condition for which they went to sleep has been satisfied. In the case of 
DosSemRequest, all of the threads requesting the semaphore that are blocked in the ker­
nel are blocked on the same eventID. All the blocked threads are awakened when the 
semaphore is cleared by DosSemClear. However, only the highest-priority thread (the 
first one dispatched) blocked in DosSemRequest will find the semaphore unowned; the 
others will find the semaphore owned and will go back to sleep. This method of allocat­
ing ownership expends excess processor cycles and is a race condition. 

Another race condition exists since the RAM semaphore API code runs in user mode 
and kernel mode. When DosSemRequest is invoked and a RAM semaphore is unowned, 
there is a chance that there may be threads blocked on the RAM semaphore in the kernel 
that are at a higher priority. This situation can occur because the code in the DLL that 
implements DosSemClear is preemptible. DosSemClear clears the RAM semaphore in 
user mode, then calls the kernel to wake up any threads blocked on the semaphore. 
Therefore, an interrupt or timeslice can occur between the time the owner field is cleared 
in user mode and the time the threads blocked on the semaphore in the kernel are awak­
ened. If the clearing thread is preempted during this window by a timeslice or an interrupt, 
the thread that is dispatched by the system can request and successfully gain ownership of 
the semaphore, since the owner field is clear. However, the threads blocked in the kernel 
may be of higher priority than the new owner; due to the race condition, however, they 
effectively miss the DosSemClear and do not get an opportunity to compete fairly for the 
semaphore on a priority basis. To overcome this condition, DosSemRequest checks to see 
whether the wait flags in the RAM semaphore are set. If they are, it calls the kernel to give 
those other threads previously blocked on the semaphore a chance to compete for the 
semaphore with the current requesting thread. 

The usage of RAM semaphores for events is much simpler. DosSemSet sets the 
owner field of the semaphore. DosSemWait tests the owner field of the semaphore, and 
returns immediately if the field is clear. Otherwise, it calls the kernel to block the thread 
in much in the same way as DosSemRequest does, except that the threads do not attempt 
to claim the semaphore when they are awakened. DosSemClear does the same thing as it 
would for a mutex operation on a RAM semaphore: It clears the owner field and calls 
the kernel to wake up any blocked threads. DosSemSetWait is an atomic set-and-wait 
operation. It allows a thread to set the RAM semaphore and then to wait for the event to 
occur, in a single operation. There is a chance that a semaphore could be cleared 
between the. set and wait operations, causing the subsequent wait to return immediately 
when a thread anticipates blocking. DosSemSetW ait allows a thread to control the situa­
tion, since the 16-bit event model does not allow the user to detect the number of clears 
between set operations. 

7.3.2.2 System Semaphores 

The 16-bit OS/2 system supports 255 system semaphores. System semaphores exist in 
kernel space and are accessed using the same API calls as are used for RAM 
semaphores. However, when the API code for semaphores in user mode detects that a 
handle is to a system semaphore, the API code immediately calls the kernel. Since sys­
tem semaphores are accessible only in kernel mode, they are slower than RAM 
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semaphores. However, they are completely protected, and ownership is tracked by the 
system. Each process has its own open system semaphore table in its PTDA. Open 
semaphore handles, but not semaphore ownership, are inherited by child processes. 

Unlike RAM semaphores, system semaphores must be created using an API call 
since they reside in the kernel. DosCreateSem creates a system semaphore. Every sys­
tem semaphore must have a name, and these names are mapped within the file system 
name space using a directory entry. This allows system semaphores to be accessed by 
peer processes using the global name of the semaphore. DosOpenSem is used by pro­
cesses to gain access to an existing system semaphore. DosCloseSem is used to close a 
semaphore; when all processes referencing a system semaphore have performed close 
operations, the semaphore is freed by the system. 

System semaphores use the same API calls as do RAM semaphores for mutex and 
event operations, but the system semaphore has a different type of handle. This differ­
ence allows the system DLL that contains the user-mode layer of the semaphores API to 
decide if the semaphore operation should be serviced in user mode or kernel mode, 
depending on the type. RAM semaphore handles have an LDT selector as the high-order 
word of their semaphore handle. System semaphores ensure that the LDT bit or table 
indicator bit of the selector used as the high-order word of the system semaphore handle 
is clear. Therefore, system and RAM semaphores can always be distinguished by a 
quick test operation on the semaphore handle. Figure 7 .2 illustrates the kernel structures 
for tracking system semaphores. 

Process A PTDA 

Open semaphore table 

rll--1--------1 

System 
semaphore 

System semaphore table 

Fig. 7.2 System semaphore tables. 

Process B PTDA 

Open semaphore table 
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The system semaphore can be accessed by any thread in any process that has 
opened the semaphore. The system maintains an open and close count for each system 
semaphore in the system. This count is incremented when a process opens a semaphore; 
it is decremented when a process closes a semaphore. When the count falls to 0, a 
semaphore is freed. The system also saves the owner of a system semaphore to provide 
better cleanup facilities than RAM semaphores provide. Figure 7.3 illustrates the system 
semaphore data structure. 

When a process terminates while owning a system semaphore, since in this case the 
system knows the owner of the semaphore, the system performs deadlock recovery, so 
that threads blocked on the semaphore do not wait forever. This deadlock recovery 
mechanism is called owner died notification. When a process terminates while owning a 
system semaphore, the owner died notification is sent to the thread that next acquires the 
semaphore through DosSemRequest. The blocked threads are awakened, and they return 
from their pending DosSemRequest calls with an error code indicating that the 
semaphore owner has died. This implies to the blocked requestors that the resource pro­
tected by the semaphore is corrupted and that the threads should close the semaphore so 
that it can be released. 

So that the fatal owner died recovery cycle can be prevented, a system semaphore 
can be cleaned up during the exitlist processing that occurs when a process dies. Exitlist 
processing occurs before the owner died notification is sent, to allow the semaphore to 
be cleared and the resource potentially restored. Since exitlist handling is performed on 
the context of thread 1 of a process, the system allows thread 1 to claim ownership of a 
system semaphore during execution of an exitlist handler even if another thread in the 
terminating process owned the semaphore. The semaphore can then be cleared and the 
shared resource can be restored so that operations on the shared resource can continue. 
In this case, the exitlist handling avoids the owner died notification by cleaning up the 
semaphore and shared resource. 

There are two types of system semaphores: exclusive and nonexclusive. Exclusive 
system semaphores are used for mutex operations among threads in different processes. 
Exclusive semaphores are owned by a thread, not by a process, and can be cleared only 
by the thread that owns them except during the execution of an exitlist handler. They are 
counting semaphores in that the system provides a count that indicates how many times 
the semaphore has been requested. The thread that owns the semaphore may request the 
semaphore recursively. Each request operation increments the request count; each clear 
operation decrements the request count. Recursive request and clear operations must 
nest, and the semaphore is not clear until the count falls to 0. 

------- 16 bits-------

Owner 

Flags t Reference count 

Request count Name pointer 

Fig. 7.3 System semaphore structure. 
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Nonexclusive system semaphores are used for thread event signaling among threads 
that are in different processes. Since nonexclusive semaphores can be requested only 
once, subsequent requests by the owner cause the thread to block. Any thread in any 
process that has opened the semaphore can clear the semaphore. 

Since system semaphores also rely on the dispatcher's ProcBlock and ProcRun rou­
tines for low-level block and unblock primitives, the race condition encountered in the 
RAM semaphores API also arises for system semaphores. 

7.3.2.3 MuxWait Semaphores 

Muxwait semaphores give threads the capability to wait until one or moff semaphores 
are cleared. A muxwait list consists of up to 16 semaphore handles. DosMuxSemWait 
allows a thread to wait on all the semaphores in a muxwait list. When one of the 
semaphores in the muxwait list is cleared, DosMuxSemWait returns. After a clear opera­
tion, threads muxwaiting run even though the semaphore may be reset before the awak­
ened thread actually runs. Threads that are part of a muxwait condition have wakeup 
priority over threads that are waiting on the same semaphore from a single 
DosSemRequest or DosSemWait operation. Muxwait semaphores have the same race 
conditions as those associated with the other 16-bit semaphores. 

7.3.2.4 Fast-Safe RAM Semaphores 

A fast-safe RAM semaphore (FSRAM) is a modified RAM semaphore. It is designed to 
give the performance of RAM semaphores with the protection of system semaphores. 
FSRAM semaphores are similar to RAM semaphores in that they exist in user space and 
their API is implemented in both user mode and kernel mode. However, the owner of 
the semaphore and a request count are maintained by the system in the user-provided 
FSRAM semaphore structure. Figure 7.4 illustrates the FSRAM semaphore structure. 

Like that of a RAM semaphore, the semaphore handle of a FSRAM semaphore is the 
address of the structure. However, DosSemClear and DosSemRequest are not used for 
FSRAM semaphores, since these semaphores' handles cannot be distinguished from those 
of RAM semaphores. Therefore, there are different API functions for requesting and clear­
ing FSRAM semaphores-namely, DosFSRamSemRequest and DosFSRamSemClear. 
These two calls are identical to DosSemRequest and DosSemClear for RAM semaphores, 
except that DosFSRamSemRequest retains the unique PID:TID values of the thread that 
owns the semaphore in the FSRAM semaphore data structure. 

------- 32 bits-------

Length I Owner data 

Owner (PID:TID) 

RAM semaphore 

Reference count J 
Fig. 7.4 Fast-safe RAM semaphore structure. 



7.3 Semaphores 209 

If a process terminates while one of its threads owns the FSRAM semaphore, its ex­
itlist handler can look at the FSRAM semaphore and detect whether the semaphore is 
owned by a thread in the terminating process. If a thread in the terminating process does 
own the semaphore, the exitlist handler can clear the semaphore and restore the shared re­
source, allowing other threads blocked on the resource to continue running. The owner of 
a FSRAM semaphore may request and clear the semaphore multiple times, since there is a 
request count built into the semaphore structure. FSRAM semaphores are used only for 
mutex operations and have semantics that are equivalent to exclusive system semaphores. 

Since the FSRAM semaphore API code runs in user mode, it needs some method of 
atomically setting several fields in the FSRAM structure. Since it cannot do this task in a 
single instruction, some other means must be used to ensure atomic semaphore opera­
tions in a preemptible environment. Therefore, the code for the FSRAM semaphores 
API resides in a special type of code segment called an IOPL segment. As pointed out in 
Chapter 2, IOPL on an 80286 is the privilege level necessary to use the trusted 1/0 in­
structions such as IN, OUT, CLI, and STI. OS/2 sets IOPL to be privilege level 2. This 
setting allows any code segment at privilege level 2 to execute the CLI and STI instruc­
tions that enable and disable interrupts. The FSRAM semaphore code disables interrupts 
while claiming semaphore ownership to prevent any interrupt or timeslice from occur­
ring while the semaphore is being taken. When this practice is used, any segments that 
need to be addressed in the section of code with interrupts disabled must be loaded into 
the segment registers beforehand. Otherwise, a segment-not-present fault may occur if 
the segment is swapped, and the critical section of code may be reentered by another 
thread while the swap 1/0 occurs. IOPL is strictly an 80X86 feature; it is not portable to 
other architectures. For certain special cases, it allows the flexibility needed to provide 
high performance without calling the kernel. 

Like the other semaphore models in the 16-bit version of OS/2, FSRAM 
semaphores also use the ProcBlock and ProcRun primitives of the dispatcher to block 
and run threads. Therefore, the same race conditions found in the rest of the 16-bit 
semaphore APis arise for FSRAM semaphores also. Table 7 .2 summarizes the uses of 
the different types of 16-bit OS/2 semaphores. 

7 .3.3 OS/2 2.X Semaphore Models 

The OS/2 2.X semaphore models are all completely protected and portable. The 32-bit 
semaphores reside in kernel space and are manipulated using kernel API calls. There are 
no RAM semaphores in the 32-bit version of OS/2, since they are not portable to 

Usage 
Mutual exclusion 

Threads in the same process Threads in different processes 
RAM semaphore FSRAM semaphore or exclusive system 

semaphore 

Event signaling RAM semaphore Nonexclusive system semaphore 

Table 7.2 OS/2 1.X semaphore model usage. 
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multiprocessor architectures. RAM semaphores are not portable because they are 
mapped in user memory, and, depending on the multiprocessor architecture, they may 
not be naturally addressable by all processors. Therefore, RAM semaphores are not 
carried forward into the 32-bit semaphore architecture. All 32-bit semaphores are 
software-based and rely on kernel mode for providing atomic nonpreemptible 
semaphore operations. The 32-bit OS/2 semaphore architecture provides two semaphore 
classes with different sharing, protection, and performance characteristics: private 
semaphores and shared semaphores. 

There are 64K private semaphores allowed per process in the system. They are used 
for semaphore operations among threads within a process. Private semaphores have no 
names and are accessed by handle. There also are 64K shared semaphores allowed in the 
system. They are used for semaphore operations among threads in different processes. 
Shared semaphores may be named or unnamed. If they are named, the names are entered 
into the file system name space, as in 16-bit OS/2. Unnamed, shared semaphores are ac­
cessed by handle. 

The 16-bit semaphores API is overloaded, since the same API calls are used for 
both mutex and event semaphore operations. The 32-bit semaphores API, in contrast, is 
not overloaded. The private and shared semaphore classes are further divided into three 
semaphore types: mutual exclusion semaphores, event semaphores, and muxwait 
semaphores. Mutual exclusion (mutex) semaphores are used for managing critical sec­
tions, event semaphores are used for thread synchronization, and muxwait semaphores 
are used for constructing compound semaphore conditions. Each semaphore type has its 
own set of API functions for creating, opening, closing, querying, and operating on a 
semaphore. The APis are named for the semaphore type on which they operate-private 
or shared semaphores. 

The mutex semaphores API allows a thread to gain ownership and release owner­
ship of a mutex semaphore. A mutex semaphore is created using DosCreateMutexSem. 
If the semaphore is private, there is no name parameter to DosCreateMutexSem. 
However, if the created semaphore is shared, there may optionally be a name parameter, 
which is entered into the file system name space with a directory entry. 
DosCreateMutexSem returns to the created semaphore a semaphore handle that is used 
on subsequent API requests. If the semaphore is shared, other processes obtain access to 
the semaphore by issuing DosOpenMutexSem API requests. If the semaphore is named, 
the name is used as an input parameter. Otherwise, the semaphore is anonymous, and the 
handle returned from the create API is used as an input parameter for identifying the 
semaphore. The semaphore handle is returned to the caller of DosOpenMutexSem. So 
that recursive code is supported, a semaphore can be opened up to 64K times. In the 
case of a private semaphore, it is not necessary to open the semaphore at all, since once 
the semaphore is created, it is accessible by all threads within the process. However, 
nested open and close operations are supported in both the private and the shared cases. 
A mutex semaphore is closed using DosCloseMutexSem. When the number of close 
operations is equal to the number of open operations, the system frees the semaphore. 
Process termination closes all private semaphores, and decrements reference counts for 
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all shared semaphores. A mutex semaphore can be queried by invocation of 
DosQueryMutexSem. The create, open, close, and query operations described for mutex 
semaphores are the same, but there are different names for event and muxwait 
semaphores. DosRequestMutexSem is used to request ownership, and 
DosReleaseMutexSem is used to release ownership, of a mutex semaphore. Table 7.3 
summarizes the 32-bit semaphores APL 

The event semaphore API calls are used for thread synchronization. The termino­
logy used in the 32-bit event semaphores is different from that used for 16-bit events. 
DosResetEventSem is similar to the 16-bit DosSemSet, and is used to initialize an event 
semaphore before waiting for the event to occur begins. DosPostEventSem is similar to 
the 16-bit DosSemClear and is used to signal that an event has occurred or has been 
posted. DosWaitEventSem is used to wait on an event to be posted; it is similar to the 
16-bit DosSemWait. Thus, the 32-bit event semaphores use the terms reset and post to 
mean the same as set and clear mean in the 16-bit event model. 

The muxwait semaphores API allow a thread to wait on a list of semaphores to be 
posted or released. They are similar to the 16-bit DosMuxSemWait API function, but 
provide a richer muxwait semaphore type. The muxwait API allows a thread to define a 
muxwait semaphore with a list of up to 64 muxwait events. Entries in a muxwait list can 
be added and deleted dynamically using the DosAddMuxWaitSem and 
DosDeleteMuxWaitSem API calls. A muxwait list can contain event or mutex exclusion 
semaphores, but cannot contain both. Private and shared semaphores may be mixed in a 
muxwait list if the muxwait semaphore is private. DosWaitMuxWaitSem is used for a 
thread to wait on a muxwait semaphore. 

API name Description 

DosCreateXXXSem Create semaphore 
(XXX = Mutex, Event, or MuxWait) 

DosOpenXXXSem Open semaphore 

DosCloseXXXSem Close semaphore 

DosQueryXXXSem Query semaphore state 

DosRequestMutexSem Request/wait mutex semaphore 

DosReleaseMutexSem Release mutex semaphore 

DosPostEventSem Post event semaphore 

DosResetEventSem Reset event semaphore 

DosWaitEventSem Wait event semaphore 

DosAddMuxWaitSem Add semaphore to muxwait list 

DosDeleteMuxWaitSem Delete semaphore from muxwait list 

DosWaitMuxWaitSem Wait for muxwait list 

Table 7.3 OS/2 2.X semaphores API. 
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7.3.3.l Semaphore Handles 

All 32-bit semaphores are accessed by 32-bit semaphore handles. The kernel uses the 
semaphore handle to differentiate between private and shared semaphores, and to locate 
the associated semaphore data structure during semaphore API requests. Except for the 
semaphore-creation API calls, all the semaphore API calls require the kernel to translate 
a semaphore handle to a kernel-space semaphore structure. Due to its frequent use, this 
operation significantly affects the performance of the 32-bit semaphores APL Therefore, 
the internal semaphore data structures used by the kernel to track instances of private 
and shared semaphores are important. Since the limits on the number of semaphores 
allowed are determined by class (private or shared) instead of by type (mutex, event, or 
muxwait), there are two semaphore handle spaces. The high-order bit (bit 31) in the 
semaphore handle is used to indicate whether the semaphore is private or shared. 

Since private semaphores are accessed by threads only within a process, the kernel 
uses a per-process array of semaphore structures for mapping semaphore handles into 
semaphore structures. The semaphore handle of a private semaphore has the private bit 
set in the high word of the handle, and the low word of the handle is an index into the 
per-process private semaphore array. The private semaphore array contains pointers to 
the actual semaphore structure for each private semaphore. Only the actual semaphore 
structure is sensitive to the type of semaphore. Figure 7.5 illustrates the mapping of pri­
vate semaphore handles to the internal semaphore data structure. Each private 
semaphore has an open count that indicates how many times the private semaphore has 
been opened by the threads in the process. 

Shared semaphore handles are accessed by threads in different processes. The ker­
nel must track which processes have access to each shared semaphore, and how many 
times each process has opened the shared semaphore. The kernel allocates a per-process 
bitmap that is used to track which shared semaphores are in use by each process. The 
semaphore handle of a shared semaphore has the shared-private bit set to shared in the 
high word, and an index into the per-process open shared semaphore bitmap in the low­
order word. The bitmap index is used to verify that a process has access to a semaphore, 
and also is used as an index into the system's shared semaphore array. The actual 
semaphore data structure is pointed to by an entry in the shared semaphore array, and 
each shared semaphore structure has an open queue for tracking the number of opens 
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Fig. 7.5 Private semaphore structures. 
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performed by each process. Figure 7.6 illustrates the data structures used for shared 
semaphores in the 32-bit kernel. 

7.3.3.2 Mutual-Exclusion Semaphores 

M utex semaphores are used for serializing access to shared data structures or for managing 
critical sections in programs and shared libraries. They have performance characteristics 
that are similar to those of 16-bit FSRAM semaphores, and they are protected. Each mutex 
semaphore has a request count, like that used in the exclusive 16-bit system semaphore 
model. Therefore, a thread that owns a mutex semaphore can recursively call 
OosRequestMutexSem and DosReleaseMutexSem in a nested fashion. Each mutex 
semaphore has a field for flags, a muxwait queue for muxwait events, a request count indi­
cating the number of requests, an open count or open queue indicating the number of 
opens, and an owner. Figure 7.7 illustrates the 32-bit mutex semaphore structure. 

Mutex semaphores can be recovered when the owner dies by use of a process termi­
nation exception handler (explained later in this chapter) or an exitlist handler. If the 
semaphore is not recovered during process termination, then the system closes the 

-------- 32 bits _______ ._ 

Flags l Owner 

MuxWait queue 

Open queue/count 

Name pointer 

Request count J 
Fig. 7.7 Mutual-exclusion (mutex) semaphore structure. 
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semaphore for the terminating process and returns the owner died return code to all 
threads blocked in the DosRequestMutexSem API call. The threads receiving the owner 
died return code from DosRequestMutexSem then perform deadlock recovery by closing 
the semaphore and the resource. As part of the owner died termination processing, the 
system closes all semaphore references for the terminating process. 

Unlike the 16-bit semaphores, all the 32-bit semaphores utilize the 32-bit single 
wakeup mechanism in the dispatcher, which was described in Chapter 5. This mecha­
nism ensures that there are no race conditions when the system wakes up the highest-pri­
ority thread that has blocked waiting for mutex semaphore ownership. When 
DosReleaseMutexSem is called, only the single highest-priority thread that has blocked 
on the semaphore by calling DosRequestMutexSem is made runnable. The 
DosQueryMutexSem can be used to determine the semaphore owner. 

When a process terminates while owning a mutex semaphore, the system performs 
deadlock recovery so that threads blocked on the semaphore do not wait forever. The 
deadlock recovery mechanism is called owner died notification. When a process termi­
nates while owning a system semaphore, the owner died notification is sent to all 
threads blocked on the semaphore. The blocked threads are awakened, and they return 
from their pending DosRequestMutexSem calls with an error code indicating that the 
semaphore owner died. This error code indicates to the blocked requcstors that the 
resource protected by the semaphore is corrupted and that the threads should close the 
semaphore so that it can be released. As in the 16-bit system, the owner died recovery 
cycle can be avoided, and the semaphore and shared resource can be restored by use of 
exitlist handlers. The exitlist handlers manage the condition of a process that terminates 
while owning a mutex semaphore. In the 32-bit system, a process termination exception 
handler also can be used to manage termination conditions. The 32-bit exception man­
agement and process termination exception are described later in this chapter. 

7.3.3.3 Event Semaphores 

Event semaphores are used for signaling events and synchronizing thread execution. 
Whereas the 16-bit event semaphores are binary, the 32-bit event semaphores are count­
ing semaphores. The system retains the number of times an event has been signaled or 
posted, and returns this post count when the semaphore is reset or queried. When a 
thread wishes to set an event semaphore so that a subsequent wait operation will block 
the thread until the event is posted, DosResetEventSem is called. When a thread wishes 
to signal an event, it invokes DosPostEventSem. DosWaitEventSem is used to block a 
thread waiting for an event to be posted. When DosPostEventSem is called to signal the 
event, all threads blocked on the event by calling DosWaitEventSem are made runnable. 
The awakened threads remain runnable even if the event semaphore is reset before they 
are dispatched. If a thread calls DosWaitEventSem and the event has been posted 
already, the thread returns immediately without blocking. Figure 7.8 illustrates the event 
semaphore data structure. 

The post count maintained by the system for each event semaphore enables the com­
municating threads to detect exactly how many post operations occur between reset opera­
tions. The binary nature of 16-bit event semaphores creates the possibility that clear (post) 
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._ _______ 32 bits --------

Flags I Post count 

MuxWait queue 

Open queue/count 

Name pointer 

Fig. 7.8 Event semaphore structure. 

operations can be missed. A timeslice may occur between DosSemSet and subsequent 
DosSemWait calls, allowing the event to be cleared (posted) by another thread before the 
original thread waits. Since there is no count of clear (post) operations in the 16-bit events, 
it is not known how many clear (post) operations occur before a thread waits on the event. 
Therefore, the 16-bit system provides DosSemSetWait to atomically allow a thread to set 
an event and to block on it. With the addition of the post count, the 32-bit event 
semaphores API does not require an atomic reset-and-wait operation. 

7.3.3.4 MuxWait Semaphors 

The muxwait semaphore architecture provides a special compound semaphore model 
that allows lists of events or mutex semaphores to be waited on in a single operation. 
DosCreateMuxWaitSem is used to create a muxwait semaphore. A muxwait semaphore 
can be private or shared, and is composed of a list of either event or mutex semaphore 
handles called a muxwait list. Shared muxwait semaphores can have only shared 
semaphores in the muxwait list. Private muxwait semaphores can have private and 
shared semaphores of the same type in the muxwait list. Figure 7 .9 illustrates the data 
structure used for a muxwait semaphore. 

Each muxwait semaphore contains a flags field, a count of the number of 
semaphores in the muxwait list, the muxwait list itself (composed of semaphore 
records), an open count or queue, and a wait count. Muxwait semaphores have an at­
tribute set when they are created that describes whether the semantics of the muxwait 
semaphore are wait-any or wait-all. Depending on whether the muxwait list contains 
mutex or event semaphores, the semantics of DosWaitMuxWaitSem are different. The 
wait-any attribute implies that a thread blocking on a muxwait semaphore will wait until 

-------- 32 bits --------
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Fig. 7.9 Muxwait semaphore structure. 
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any one of the semaphores is released or posted. Wait-all implies that the thread will 
wait until all semaphores in the muxwait list are released or posted. 

With mutex semantics, the wait-any attribute will cause threads to block until any 
one of the mutex semaphores in the muxwait list is released. Ownership of the released 
semaphore is given to the highest-priority blocked thread in a DosWaitMuxWaitSem re­
quest. DosWaitMuxWaitSem returns the semaphore handle of the released semaphore 
after a successful wait-any request. If a thread is blocked in the wait-all condition, the 
thread will return only when all the semaphores in the muxwait list are released. The 
thread does not incrementally take ownership of the semaphores in the muxwait list. 
This averts any indefinite postponement or deadlock conditions that may occur when a 
thread attempts to claim multiple resources. Only when all semaphores in the muxwait 
list are released does the thread claim ownership of the muxwait semaphore. As in the 
16-bit system, threads waiting on muxwait semaphores have wakeup priority over 
threads blocked in a single mutex operation. 

The kernel prevents race conditions between single mutex semaphore 
DosRequestMutexSem requests, and between DosWaitMuxWaitSem requests on a 
muxwait semaphore that have the same mutex semaphore in its muxwait list. To prevent 
race conditions, the kernel detects when mutex semaphores are part of muxwait op­
erations, and gives muxwait operations priority over single semaphore operations when 
the semaphore is released. If the owner of one of the semaphores within a muxwait list 
dies while owning a mutex semaphore, DosWaitMuxWaitSem returns with the owner 
died return code. Then, DosQueryMutexSem can be used to find the semaphore within 
the muxwait list that has been corrupted. 

The event semantics for DosWaitMuxWaitSem are different. With event muxwait 
semaphores, the wait-any attribute will cause threads to block on a 
DosWaitMuxWaitSem operation until any one of the event semaphores in the muxwait 
list is posted. When the post occurs, all threads waiting on the muxwait event are made 
runnable. DosWaitMuxWaitSem returns the semaphore handle of the posted semaphore 
after a wait-any request. If the wait-all attribute is used with an event muxwait list, the 
threads remain blocked in DosWaitMuxWaitSem until all the event semaphores in the 
muxwait list are simultaneously in the posted state. In this case, if one of the events in 
the list is posted and then is reset immediately, and then the other event semaphores in 
the list are posted, the muxwait semaphore remains in the reset state, since one of the 
semaphores is not posted. 

7.4 SIGNALS 

Signals are used for asynchronous event notification between processes. To the process 
that receives a signal, a signal is a simulated external interrupt to the flow of instruction 
execution. A signal is sent to a process by direct user keyboard interaction or by the ac­
tions of asynchronous processes. Signals are an archaic leftover from the command-line­
oriented interfaces of the UNIX and DOS command shells. Since most OS/2 programs are 
PM programs that do not utilize the command-line interface architecture, and there are 
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better constructs for performing interprocess communications, signals do not play a large 
role in 16-bit OS/2 applications. Signals exist mainly as an aid to tty-style and text-based 
applications being ported to 16-bit OS/2 from the DOS and UNIX environments. 

Another by product of the 16-bit OS/2 signals implementation is that the source code 
that uses the signals architecture is not portable to other processor architectures. The signal 
handler calling conventions require applications to code some of their signal handlers 
using assembler, and the context in which signal handlers run is poorly defined. Therefore, 
signals were not continued in the 32-bit version of OS/2. The signal functions that were 
needed were integrated into the portable 32-bit exception architecture. The UNIX system 
integrates all exceptions and signals into a single, large, signal mechanism. 

The signals available in the OS/2 16-bit system are break (SIGBREAK), interrupt 
(SIGINTR), termination (SIGTERM), and user-defined flag events. SIGBREAK and SIG­
INTR occur when the ctrl-BREAK or ctrl-C key sequences are typed on the keyboard. 
SIGTERM is sent to a process when DosKillProcess is called with the target process's PID. 
DosSendSignal sends SIGBREAK or SIGINTR to another process. DosFlagProcess sends 
a user-defined flag signal to another process. DosHoldSignal can be used to disable signals 
in critical sections. Signals can be sent to a single process or to an entire process tree. 

The kernel maintains a signal vector and signal dispositions within each PTDA in 
the system. A process's signal disposition describes how a given signal should be han­
dled when received. The disposition can be to take a default action, to ignore the signal, 
or to handle the signal by calling a user-supplied signal handler. The default action for 
all signals is forced process termination. When a process is created, all signals are set to 
take the default action of termination. DosSetSigHandler allows a process to change the 
state of a signal's disposition, or to set a signal handler. Table 7.4 summarizes the sig­
nals API in 16-bit OS/2. 

Signals are applied to a process or to a process tree, as described in Chapter 5. Since 
a process can consist of more than a single thread, and the signal architecture is built on 
the process model, OS/2 must define a protocol for signals that takes into account a pro­
cess with multiple threads. Any thread in a process can issue any of the signal API re­
quests and thus alter that process's signal vectors and disposition. This ability follows 
from the process architecture, which allows the threads of a process to share the pro­
cess's resources. OS/2 defines the first thread of a process, thread 1, as the thread that 
receives signals. Therefore, thread 1 must be the last thread in a process to die, ensuring 
that the signals are handled. 

API name Description 

DosHoldSignal Disable signal dispatching 

DosSetSigHandler Register signal handler 

DosSendSignal Send signal 

DosFlagProcess Send signal flag 

Table 7.4 OS/2 1.X signals API. 
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As described in Chapter 5, signals are dispatched when a thread exits kernel mode, 
not at the time the signal is "sent." It is during the ExitKMode routine that the kernel 
consults the process force flags to see whether any signals need to be handled when the 
thread is dispatched. If the exiting thread is thread 1, the kernel dispatches the signal 
after checking to make sure that there is not a hold-signal condition from a 
DosHoldSignal API call. If the signal disposition indicates that a user signal handler 
exists, the signal is dispatched via building of an 80286 interrupt frame on the thread I 
user stack, followed by return to user mode at the address of the signal handler. The sig­
nal handler can return to the interrupt instruction by executing an IRET instruction. 

7.5 QUEUES 

Queues are a form of peer-process interprocess communication. The queueing model of 
OS/2 is a mailbox scheme in which multiple processes may write to the queue and a sin­
gle owner process may read the queue. The process that owns the queue is usually called 
the server process; the processes that write to the queue are called client processes. A 
return receipt function enables processes that write to the queue to detect that their ele­
ment has been read from the queue by the owner. The queueing functions are nearly 
identical in the 16-bit and 32-bit OS/2 systems. 

Queues are created by a call to DosCreateQueue. Each queue has a unique name 
within the file system name space, mapped by a directory entry that allows peer pro­
cesses to access the queue by name in the DosOpenQueue API call. A queue is closed 
by a call to DosCloseQueue. A queue is deleted by the system when all processes 
referencing that queue have closed the queue or terminated. 

When a queue is created, it can be defined to use different element-ordering 
schemes based on the needs of the application. A FIFO queue implements elements that 
come and go in first-in-first-out protocol. A LIFO queue is similar to a stack, since ele­
ments are read from the queue in last-in-first-out order. A priority queue allows each 
element to be assigned a priority that is used to order the queue elements. Like most 
OS/2 objects, queues are accessed using a queue handle returned by DosCreateQueue or 
DosOpenQueue. Figure 7.10 illustrates several processes using a queue. 

Client process A 
DosOpenOueue 
DosWriteOueue 

Client process B 
DosOpenOueue ---~ 
DosWriteOueue 

Client process C 
DosOpenOueue 
DosWriteOueue 

Fig. 7.10 IPC queue. 

Element Element Element 

Server process 

DosCreateOueue 
~ DosReadOueue 



7.6 Pipes 219 

DosReadQueue and DosWriteQueue are used for reading elements from and writing 
elements to a queue. The messages passed through a queue are actually 4-byte queue 
elements whose contents are defined by the communicating processes. They are chained 
together to form a queue by the queueing subsystem. Usually, these 4-byte elements are 
pointers to shared memory elements. If shared memory is used for passing messages 
through a queue, the sharing of the memory containing the elements must be established by 
the communicating processes, not by the queueing subsystem. Usually, named shared mem­
ory is used for queue elements, and the name of the shared memory parallels the name of 
the queue. Since shared memory is involved, queues cannot be used across a network. 

DosPeekQueue can be used to take a look at the next element to be read from the 
queue without removing that element. DosPurgeQueue allows a queue owner to clear all 
the elements from a queue. DosQueryQueue can be used by owners and clients to find 
out what the status of the queue is. Table 7.5 summarizes the OS/2 queueing API calls. 

The queueing API calls reside in a system DLL. They run in user mode, are pre­
emptible, and use the memory suballocation API to manage queue and element data 
structures in shared memory. Fast-safe RAM semaphores are used for serializing access 
to the shared memory representing queue and element structures. The queueing DLL 
registers an exitlist handler each time a process attaches to it, so that it can clean up per­
process queue resources and semaphores during process termination. 

7.6 PIPES 

A pipe is a data connection between two processes. OS/2 provides two different types of 
pipes in both the 16-bit and 32-bit systems: anonymous and named pipes. 

7 .6.1 Anonymous Pipes 

An anonymous pipe or unnamed pipe is a FIFO file. The origins of anonymous pipes lie 
with the UNIX system and its command line shell architecture. Anonymous pipes are 
used to pass data between filters, which are utility programs such as more and sort that 

16-bit API name 32-bit API name Description 

DosCreateQueue DosCreateQueue Create queue 

DosOpenQueue DosOpenQueue Open queue 

DosCloseQueue DosCloseQueue Close queue 

DosPeekQueue DosPeekQueue Peek queue 

DosPurgeQueue DosPurgeQueue Purge queue 

DosQueryQueue DosQueryQueue Query queue 

DosReadQueue DosReadQueue Read queue 

DosWriteQueue DosWriteQueue Write queue 

Table 7.5 05/2 Queueing API. 
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read standard input, to process the data, and to write to standard output. The command 
interpreter can set up a chain of filters that are connected by pipes, so that the filters are 
not aware they are reading and writing pipes instead of files. This strategy allows data to 
be redirected transparently between files and filter processes due to the convention of 
using the standard 1/0 streams. 

In OS/2, an anonymous pipe is a FIFO character stream between two related pro­
cesses. Anonymous pipes can be accessed only by processes that are descendants of the 
creating process. There are no directory entries associated with anonymous pipes, and 
the pipes are not in the file system name space. Open pipes are passed between related 
processes using the process creation inheritance mechanism. When a process creates 
another process, the child inherits the parent's open file table. This inheritance scheme 
allows a child to gain access to pipes created by the parent. Data in pipes are accessed 
sequentially. Pipes have one reading end and one writing end; thus, they are half-duplex. 
Pipes are accessed using file system APls. Figure 7 .11 illustrates two processes 
communicating over an anonymous pipe. 

Anonymous pipes are created using DosCreatePipe. DosCreatePipe creates the 
pipe structures and allocates two file descriptors from the open file table in the PTDA of 
the requesting process. One is the read descriptor and one is the write descriptor. The 
read and write descriptors may subsequently be used in DosRead and DosWrite calls to 
perform file 1/0 on the pipe. They may also be used in DosClose when they are finished 
being used. DosDupHandle is used to manipulate the descriptors within the open file 
table of a process. DosDupHandle is used in combination with open-file-handle inheri­
tance mechanism to set up filters among parent and child processes. The system per­
forms 1/0 synchronization when 1/0 is performed to pipes. A DosRead request on a pipe 
blocks until the pipe has data or until the writer dies. A DosWrite request to a pipe 
blocks if there is not enough room in the pipe for the data, or until the reader dies. 

7.6.2 Named Pipes 

Named pipes allow message data streams to be passed between peer processes. They are 
helpful in the client-server computing environment, where processes may be remotely 
connected by a network. Named pipes provide local and remote network transparency 

Parent process Child process 
Dos W rite(Stdout) DosRead(Stdin) 

Open file table Data flow 
Open file table 

...... 
...JAJBlCJAlBJ CjAj · · · JAJ~ --.. 

Fig. 7.11 Anonymous pipe. 
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through the network redirector, as described in Chapter 11. Named pipes provide basic 
connection and data transfer services, as well as functions for remote procedure calls 
and transaction processing. They can be accessed by peer processes, not just by pro­
cesses within a process hierarchy. They can be multiplexed, allowing a single named 
pipe to have multiple instances. Using multiple instances, multiple paths can be set up 
for different sets of requestors on a single pipe. A named pipe can run full- or half­
duplex. That is, a named pipe can be bidirectional and have a single handle used for 
reading and writing operations. Named pipes can also be accessed transparently using 
the DosOpen, DosRead, DosWrite, and DosClose file system API calls. 

The creator of a named pipe is typically called a server process. The server provides 
service for clients using the named pipe as a medium of data exchange. Named pipes are 
created using the DosCreateNPipe call. Their names are taken from the file system 
name space. A directory entry is created for each named pipe that allows peer processes 
to access the named pipe by using the name. DosCreateNPipe returns the pipe handle 
for accessing the pipe. It also sets the pipe mode and number of instances. The capabili­
ty of having multiple instances of a pipe allows a server to service more than one client 
using a single named pipe. 

The use of named pipes is best described by an example interchange between a 
server and a client process. Once the server creates the named pipe, it calls 
DosConnectNPipe to listen for a client attempting to access the named pipe. When a 
client process calls DosOpen using the name of the named pipe, it is connected to the 
named pipe, and the server process is notified that a client has established a connection 
with the named pipe instance. If there are no pipe instances available when a client pro­
cess issues DosOpen, DosWaitNPipe can be used by the client to wait for the next 
instance to become available. Figure 7.12 illustrates a named pipe with three instances. 

1/0 is performed across pipes with DosRead and DosWrite using the handle of the 
named pipe. The pipe can be configured to perform blocking 110 or nonblocking 110 
when it is created. DosPeekNPipe is used to support peek operations by the server pro­
cess on the contents of the pipe. DosTransactNPipe is the equivalent of a Dos Write fol­
lowed by a DosRead across a named pipe. Although the separate DosWrite and 
DosRead operations perform the same actions as does DosTransactNPipe, in a situation 
where the named pipe represents a connection across a network, combining the two 
operations into one provides a significant performance savings. This savings is the rea­
soning behind the DosCallNPipe API function. This function is the equivalent of a 

Fig. 7.12 Named pipe (three-channel full duplex). 

Server 
process 
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DosOpen, DosWrite, DosRead, and DosClose sequence of operations on a named pipe. 
It causes almost exactly the same actions as occur when a remote procedure call is 
issued to a process running on another machine. The named pipe API calls (see Table 
7.6) are basically the same in the 16-bit and 32-bit OS/2 systems. 

7.7 EXCEPTIONS 

Exceptions are used to deliver synchronous events caused by the current thread of 
execution. In this section, the 16-bit and 32-bit OS/2 exception architectures are 
described separately, since they are so different. 

7.7.1 OS/2 1.X Exception Architecture 

Chapter 2 described the 80286 exception architecture. Under OS/2, the exceptions that 
can occur on an 80286 are further classified into system exceptions and user exceptions. 
System exceptions are handled by the kernel. User exceptions can be handled by the ap­
plications that cause them; if a user exception is not handled, the kernel takes a default 
action of terminating the process that caused the exception. Table 7. 7 illustrates the 
80286 exceptions and classifies them according to system or user types. 

The kernel maintains an exception vector in each PTDA for handling the user 
exceptions. The user-handleable exceptions for 16-bit OS/2 are divide overflow, over­
flow, bound, invalid opcode, numeric coprocessor (NPX) not available, and NPX error. 

16-bit API name 32-bit API name Description 

DosMkPipe DosCreatePipe Create anonymous pipe 

DosMakeNmPipe DosCreateNPipe Create named pipe 

DosConnectNmPipe DosConnectNPipe Connect named pipe 

DosD isC onnectN mPipe DosDisConnectNPipe Disconnect named pipe 

DosWaitNmPipe DosWaitNPipe Wait named pipe 

DosPeekNmPipe DosPeekNPipe Peek named pipe 

Do~QNmPHandState DosQueryNPHState Query named pipe handle state 

DosQNmPipelnfo DosQueryNPipelnfo Query pipe information 

DosQNmPipeSemState DosQueryNPipeSemState Query Named Pipe Semaphore 
State 

DosSetNmPHandlnfo DosSetNPHState Set named pipe handle state 

DosSetNmPipeSem DosSetNPipeSem Attach semaphore to named 
pipe 

DosCal/NmPipe DosCallNPipe RPC transaction 

DosTransactNmPipe DosTransactNPipe Write/read transaction 

Table 7.6 OS/2 pipes API. 
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Exception description Type 

Divide by zero User 

Single step System 

Nonmaskable interrupt (NMI) System 

Breakpoint System 

INTO overflow System 

Bound range exceeded User 

Invalid opcode User 

NPX not available User 

Double fault System 

NPX error User 

Invalid TSS System 

Segment not-present System 

Stack overrun System 

General protection fault System 

Table 7.7 16-bit exceptions. 

Debugged processes rarely cause exceptions-most exceptions are the result of error 
conditions. Usually, these error conditions are fatal, so the default action for a user 
exception is to terminate the process immediately. However, there are cases when a pro­
cess needs notification that an exception has occurred. For example, a process comput­
ing a mathematical limit may use an algorithm that indicates that it is completed when a 
divide-by-zero operation occurs. Also the NPX exceptions are used by floating-point 
emulation libraries when a coprocessor is not present. A process can register an excep­
tion handler using the DosSetVec API call. The exception handler address is provided to 
DosSetVec, and the address of the handler previously installed in the PTDA exception 
vector is returned. The exception vectors for a process are shared by all threads in the 
process, and are used regardless of which thread causes an exception. 

As Chapter 5 described, when an exception occurs, the kernel trap manager builds 
an exception frame on the stack of the thread that caused the exception, and then 
resumes thread execution in user mode at the exception handler address stored in the 
PTDA. To the exception handler, the stack frame looks like the thread has been inter­
rupted, thereby requiring an IRET instruction to return to the point of the interruption. 
The exception handler runs within the context of the thread that caused the exception. 
Since there is only a single set of exception vectors in each PTDA for the threads of a 
process, multiple threads in the same process may inadvertently corrupt the contents of 
the exception vectors. If each thread is executing an API that uses different DLLs, and 
both DLLs attempt to register a handler for the same exception, the last one to register 
sets the exception vector for the exception. If the first thread then causes the exception, 
the wrong handler will be executed. This shortcoming in the 16-bit exception 
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architecture is addressed in the 32-bit architecture. However, it is not too critical, since 
the limited user handleable exceptions are rarely encountered. 

The system trap manager handles most of the system exceptions. The most important 
system exceptions are the general protection fault and the segment-not-present exception. 
The segment-not-present exception is passed to the virtual memory manager so that the 
segment can be brought into memory. A GP fault can occur in any situation in which the 
segment protection semantics of the 80286 are violated. When a GP fault occurs, the sys­
tem terminates the process and prints the fault information on the screen for debugging. 

A major shortcoming of the 16-bit exception architecture is that GP faults cannot be 
handled by the process. This restriction has side effects on API parameter passing and 
parameter validation. If a process calls a kernel API and passes a bad address as a 
parameter, the kernel detects the fault and terminates the process without returning from 
the APL Another option would be to detect the bad parameter and to return a return code 
from the API to the requestor, but this option is not supported. Since the process is ter­
minated, the requestor has no opportunity to perform resource cleanup except during an 
exitlist handler. The thread that causes the fault is not necessarily aware of what other 
threads in the process are doing, and can cause resource cleanup and rollback problems 
for other threads. For example, if one thread is updating a remote database while another 
thread causes a forced termination of the process, the transaction with the remote 
database can be left in an indeterminate state. Although th.e exitlist handler for the 
remote transaction API' s DLL does get a chance to clean up, its options are limited due 
to the overhead of tracking the states of the threads that use it. 

Following the example set by the kernel APis, APis implemented in DLLs perform 
practically no address parameter validation. If a DLL API is passed an invalid address 
parameter, the DLL uses the address in good faith and causes a GP fault. Although this 
algorithm for treating invalid addresses makes the behavior of the kernel and DLL API 
calls consistent, it is undesirable. 

Ideally, the entire API should be changed such that all API requests are guaranteed 
to return. When invalid pointers were passed to a kernel API, a bad parameter error code 
would be returned. If GP faults could be handled by user-mode threads, a DLL API 
could perform lazy parameter validation by registering a GP fault exception handler, and 
handling the exceptions caused when invalid address parameters are passed in. Although 
it is riot necessarily obvious at first, there is an underlying assumption that any 80286 
GP fault must be restartable. Unfortunately, many of the 80286 chips shipped to date 
have an erratum that causes the CX register to be corrupted during a GP fault. This cor­
ruption effectively prevents the system from restarting instructions that cause GP faults. 
Since 16-bit OS/2 is targeted for the 80286 processor, the design of the system had to 
take into account all the errata inherent in the 80286. The 80286 dependencies of the 16-
bit OS/2 exception architecture also prohibit portability. 

7.7.2 05/2 2.X Exception Architecture 

The 32-bit exception architecture is portable, is machine independent, and provides the 
fundamental building blocks for resource recovery. The 32-bit exception architecture 
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carefully defines the exception handler context and handles exceptions on a per-thread 
basis. GP faults can be handled by user-mode threads to provide better lazy parameter 
validation in DLLs. The exceptions are generalized into machine-independent categories 
that can be implemented on any architecture. Support for user-defined exceptions and 
system-reserved exceptions allow applications to define their own exceptions also. 

Two new guard page exceptions exist to allow dynamic growth of user stacks. Also, 
the functions for dealing with the SIGINTR and SIGBREAK signals from the 16-bit sig­
nal API are integrated into exception management. A new exception, called the process 
termination exception, is used by threads to handle individual thread termination. 
Unwind operations allow a thread to backtrack and to unwind exception handlers that 
have been registered during nonlocal goto operations. The 32-bit exception architecture 
supports frame-based language strategies, in which an exception handler is set for each 
activation frame on the user stack. This allows better resource cleanup in nonlocal 
branching (goto) operations such as longjump and setjump in the C language. Table 7.8 
lists the 32-bit OS/2 exceptions. 

Exception description 

Divide by zero 

Debug 

Nonmaskable interrupt (NMI) 

Breakpoint 

INTO overflow 

Bound range exceeded 

Invalid opcode 

NPX not available 

Double fault 

NPX error 

Invalid TSS 

Segment not present 

Stack overrun 

General protection fault 

Page fault 

Guard page fault 

Guard page allocation fault 

Process termination 

SIG BREAK 

SIGINTR 

SIG TERM 

Table 7.8 32-bit exceptions. 

Type 

User 

System 

System 

System 

System 

User 

User 

User 

System 

User 

System 

System 

System 

User 

System 

User 

User 

User 

User 

User 

User 
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For each thread in the system, there is a chain of exception handlers in user space that is 
headed by a pointer in the thread information block (TIB). DosSetExceptionHandler and 
DosUnsetExceptionHandler are used for the registration and deregistration of exception han­
dlers on a thread's exception chain. When an exception occurs, control transfers to the kernel 
trap manager. The kernel trap manager determines whether the exception is handled by a 
user mode thread or the system. If the exception is a user exception, the trap manager trans­
fers control to the user-mode exception dispatcher. The user-mode exception dispatcher then 
processes the exception handler chain based off the TIB by calling each exception handler. 
Figure 7.13 illustrates the per-thread exception chain. 

When each exception handler is called, the exception dispatcher passes to the han­
dler information that describes the exception. Since the exception architecture is 
portable, exception handlers can be written in high-level languages without any machine 
dependence. However, there is also a machine-specific structure attached to the excep­
tion handler information that allows machine-specific operations if they are desired. The 
exception handler either handles the exception or does not handle the exception, and 
then returns to the exception dispatcher. If the exception was handled, it is restarted at 
the address specified by the exception handler. If it was not handled, the exception dis­
patcher continues processing the exception chain until it has exhausted all exception 
handlers. If none of the exception handlers handles the exception, then the default sys­
tem action for the exception is taken. The default action for all exceptions except guard 
page exceptions is process termination. The exception dispatcher also supports nesting 
of exceptions in case an exception handler causes another exception. 

DosRaiseException raises an exception in the context of the current thread. 
DosUnwindException unwinds exception handlers on the thread exception handler chain up 
to a certain point. The unwind causes each exception handler to be called with an indicator 
that an unwind request is being processed. DosSendSignalException is used for sending the 
SIGIN1R and SIGBREAK signal exceptions to other processes. These signal exceptions are 
fielded as exceptions, not as signals. The DosSetSignalExceptionFocus enables a process to 
receive the signal exceptions. 

Thread 
information 

block 

Exception 
chain head 

Exception Exception Exception 
--- record i--- record ---~i record 

Exception 
handler 

Exception 
handler 

Exception 
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Fig. 7.13 Per-thread exception chain. 
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As a result of the addition of the process termination exception and the unwind 
operations, process termination is much more robust than in the 16-bit system. When a 
single thread dies by calling DosExit, it receives the process termination exception, fol­
lowed by an unwind operation. This process termination exception is of the synchronous 
variety. If a thread causes a forced termination of the entire process, then all threads in 
the process receive a process termination exception followed by an unwind exception, 
and then the process exitlist handlers are called. This type of delivery of the process ter­
mination exception is called asynchronous, since it is not caused by the threads receiv -
ing the exception, except for one. Asynchronous delivery gives 32-bit DLLs the ability 
to provide much better resource cleanup in forced-termination situations. The process 
termination exception also provides to DLLs the ability to ensure that critical operations 
in independent threads are completed. Handling of the process termination exception 
allows the termination of an individual thread to be deferred. Since the GP fault to be 
handled by user-mode exception handlers, fewer involuntary forced termination situa­
tions are encountered. Table 7.9 summarizes the OS/2 exception APls. 

7 .8 SYSTEM INTEGRITY ISSUES 

Protection and security are two different system integrity issues. Security is discussed in 
Chapter 11. This section examines protection from the standpoint of interprocess com­
munications. For instance, any device driver can totally destroy the system, since it has 
addressability to the kernel memory space. However, this possibility is more a security 
issue than a protection issue, since in a secure system only a user with permission to al­
ter the system configuration files could load a device driver. Protection and integrity de­
scribe how the system prevents from occurring deadlock situations, such as a thread 
waiting on an event that will never occur. In the DOS system, there is almost no protec­
tion. If a DOS application disables interrupts and goes into a spin loop, the system 
hangs. If an application destroys the memory containing an interrupt vector, control is 
transferred to an unknown location when the interrupt occurs. Since the DOS system is 
not protected, faults do not occur, and protection violations usually result in the system 
crashing. 

16-bit API name 

DosSetVec 

NIA 

NIA 
NIA 
NIA 

NIA 

NIA 

32-bit API name 

DosS etExceptionH and/er 

DosUnsetExceptionHandler 

DosRaiseException 

DosU nwindException 

DosSendSignalException 

DosSetSignalExceptionF ocus 

DosAcknowledge Signal Exception 

Table 7.9 OSl2 exceptions API. 

Description 

Register exception handler 

Deregister exception handler 

Raise exception 

Unwind exception handlers 

Raise signal exception in another 
process 
Enable process to receive signal 
exceptions 

Acknowledge signal exception 
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In the protected environment of OS/2 with multiple processes and threads concur­
rently executing and sharing resources, a more sophisticated means of deadlock recov­
ery exists. The underlying theme for protection revolves around the process model. If a 
process accidentally or maliciously causes errors, the errors affect only that process. 
Processes that are hung can be shut down from the user interface. Also, termination han­
dlers exist to allow DLLs to do resource housekeeping during termination. Properly de­
bugged libraries and programs in OS/2 do not deadlock the system. An improperly 
debugged program can harm only itself, and an improperly debugged library can harm 
only its client processes. 

There are several categories of integrity breaches that can cause an OS/2 process to 
execute some kind of recovery scheme. If a signal arrives and the signal handler does 
not return to the interrupted code, a critical section can perhaps be interrupted. This 
could cause a semaphore to be in an owned state even though the owner died. Another 
possible situation is that a process can kill another process using DosKil!Process. In 16-
bit OS/2, a process can incur a GP fault or a nonrecoverable exception. A process can 
also fail to release a semaphore due to a coding error. However, all these situations can 
be avoided using the appropriate interprocess communication constructs and the right 
combination of termination housekeeping and resource cleanup. Having exitlist and pro­
cess termination exception handlers allows semaphores to be cleaned up and ensure that 
threads are never blocked waiting for conditions that will never occur. However, if these 
handlers do not exist, the threads that are blocked will be notified using the owner died 
logic of the 16-bit system semaphores or the 32-bit semaphores discussed previously. 
This notification allows recovery and cleanup to occur, so that the processes can be ter­
minated gracefully without the loss of data. 

SUMMARY 

This chapter described the OS/2 interprocess communication features. Shared memory is 
one of the simple IPC constructs, as are semaphores, signals, and exceptions. 
Anonymous pipes, named pipes, and queues are more complex IPC structures. IPC 
mechanisms are used by DLLs and programs to facilitate sharing of data resources and 
integrity management. OS/2 provides a rich set of IPC constructs; selecting the correct 
mix of such constructs is critical to writing successful programs for the OS/2 system. 

TERMINOLOGY 
anonymous pipe 
asynchronous concurrent threads 
asynchronous event notification 
atomic set-and-wait operation 
binary semaphore 
blocking 1/0 
client-server computing 

counting semaphore 
critical section 
data sharing 
deadlock 
deadlock recovery 
event ID 
event semaphore 



event signaling 
event synchronization semaphore 
exception 
exception dispatcher 
exception handler 
exception vector 
exclusive system semaphore 
exitlist handler 
fast-safe RAM (FSRAM) 
filter 
general protection (GP) fault 
give-get shared memory 
graceful process termination 
guard page 
guard page exception 
hardware-based semaphore 
inheritance mechanism of 

process creation 
instance memory 
interprocess communication (IPC) 
IOPL segment 
kernel mode 
kernel trap manager 
load-time shared memory 
local memory 
LTD selector 
more filter 
mutual exclusion (mutex) 
mutual exclusion semaphore 
mutually exclusive access to 

shared resources 
muxwait 
muxwait list 
muxwait semaphores 
named pipe 
named shared memory 
network redirector 
nonblocking I/O 
nonexclusive system semaphore 
numeric coprocessor (NPX ) 
open file handle inheritance 
open file table 
open system semaphore table 
owner died logic 

Terminology 

owner died notification 
owner died return code 
peek operation 
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peer-process interprocess communication 
per-process open shared 

semaphore bitmap 
per-task data area (PTDA) 
pipe handle 
pipe mode 
post a signal 
private semaphore 
queue 
race condition 
RAM semaphore 
remote procedure call (RPC) 
reset 
run-time shared memory 
segment-not-present exception 
segment-not-present fault 
semaphore 
semaphore handle 
server process 
shared address private memory 
shared memory 
shared semaphore 
SIG BREAK 
signal 
signal handler 
SIGINTR 
SIG TERM 
16-bit event semaphore 
software-based semaphore 
sort filter 
synchronous event 
system exception 
system semaphore 
system trap manager 
test-and-set instruction 
thread exception handler chain 
thread memory 
thread l 
thread synchronization 
transaction processing 
unnamed pipe 
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unwind operation 
user exception 
user mode 

EXERCISES 

user-mode exception dispatcher 
XCHG instruction 

7.1 Discuss the notions of run-time shared memory, load-time shared memory, named shared 
memory, and give-get shared memory. 

7.2 Distinguish among thread memory, process memory, and shared memory. 

7.3 Give several weaknesses of shared memory. 

7 .4 Explain the notions of critical section and mutual exclusion. 

7.5 Distinguish between mutual exclusion semaphores and event synchronization semaphores. 
Describe a muxwait operation. 

7.6 Discuss the usage of each of the three types of semaphores that are supported in 16-bit OS/2: 
RAM semaphores, fast-safe RAM (FSRAM) semaphores, and system semaphores. 

7.7 Distinguish between binary semaphores and counting semaphores. 

7.8 What instruction is used on the 80286 to claim a RAM semaphore? What attribute of this 
instruction eliminates the need to enter the kernel to protect the thread from preemption while 
attempting to gain ownership of a semaphore? 

7 .9 Describe several race conditions that may develop with the use of RAM semaphores. 

7.10 Explain the use of owner died notification. How is this mechanism useful in deadlock recovery? 

7.11 Distinguish between exclusive system semaphores and nonexclusive system semaphores. 

7.12 Why are there no RAM semaphores in the 32-bit version of OS/2? 

7.13 Distinguish between 32-bit OS/2 private semaphores and shared semaphores. 

7.14 Explain the use of mutual exclusion semaphores, event semaphores, and muxwait 
semaphores in 32-bit OS/2. 

7.15 How does 32-bit OS/2 prevent deadlocks between threads awaiting muxwait semaphores? 

7.16 What are signals? Why were signals omitted from 32-bit OS/2? How is signal processing 
performed in 16-bit OS/2? 

7.17 How are queues used for peer-process communication among client and server processes? 

7.18 Distinguish between named pipes and anonymous (unnamed) pipes. Which processes may 
access an anonymous pipe? When would a read operation from a pipe block? When would a write 
operation to a pipe block? 

7.19 Explain the use of named pipes to establish communication among remote processes in a 
networked environment. 

7.20 List several advantages of named pipes over anonymous pipes. 

7.21 Describe an example interchange over a named pipe between a client and a server process. 

7.22 Discuss the respective exception architectures of 16-bit and 32-bit OS/2. Why is the 32-bit 
architecture superior? 
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I can only assume that a "Do Not File" document is 
filed in a "Do Not File" file. 

Senator Frank Church 
Senate Intc11igence Subcommittee Hearing, 1975 

Gather up the ji'agments that remain, that nothing be lost. 

John 6:12 

A form of government that is not the result of a long sequence of 
shared experiences, efforts, and endeavors can never take root. 

Napoleon Bonaparte 

A fair request should be followed by the deed in silence. 

Dante 

... the latter, in search of the hard latent value with which it 
alone is concerned, sniffs round the mass as instinctively and 

unerringly as a dog suspicious of some buried bone. 

William James 
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8.1 INTRODUCTION 

This chapter describes file and device 1/0 management in OS/2. OS/2 I/0 can be divided 
into two categories: system 110 and user 110. Processes use system I/Oto perform file­
level l/O to secondary storage devices managed by file systems, and to perform devicc­
level 1/0 to devices managed by device drivers. System 1/0 is programmed using the file 
system AP/. Processes utilize user 1/0 to interact with the user by employing the key­
board, mouse, and display. User 1/0 is programmed using the keyboard (KBD), mouse 
(MOU), and video (V/0) subsystems, or the Presentation Manager (PM). This chapter 
concentrates on the file system and device driver architectures. The discussion in this 
chapter describes the device driver model that supports the user-1/0 device subsystems 
at the lowest level. Chapter 9 describes how processes interact with the user I/O devices 
and the associated subsystems. 

8.2 DEVICES 

OS/2 has two types of devices: block devices and character devices. Block devices usu­
ally have random access characteristics and transfer blocks of data between devices and 
memory. Block devices comprise secondary storage media, such as hard disks, diskettes, 
and optical disk devices. Character devices transfer sequential streams of characters to 
and from devices such as the serial port, keyboard, or parallel port. 

Each device in the OS/2 system has a name that is used to access it via the file sys­
tem APL Device names depend on whether the device is a block or a character device. 
Character device names have up to seven characters, such as COM: and LPT:. Block de­
vices can be partitioned into one or more logical block units, also called logical drives. 
Logical drives are named using the letters of the alphabet-A:, B:, through Z:. File sys­
tems manage the storage of files on logical block devices. Block device drivers manage 
the mapping of logical block devices to physical drives, and the low-level I/O on behalf 
of file systems. Data structures similar in function to the device chain of DOS (discussed 
in Chapter 4) are used to link the logical drive unit letters and character device names to 
the device drivers that support them. 

8.3 INSTALLABLE FILE SYSTEM ARCHITECTURE 

OS/2 has an installable file system (IFS) architecture, introduced in Version 1.2, that al­
lows the coexistence of multiple file systems. Since each logical block unit can have its 
own file system, different file systems are usually used for block devices that have 
different characteristics. For example, write-once-read-many (WORM) and CD/ROM 
devices need file systems different from those used by random access hard disks. 

Each file system supports the management of file system objects, such as files and 
directories, in a hierarchical fashion. File system objects and devices are managed and 
accessed by processes using a common file system APL Since the file system API is not 
sensitive to any of the file system naming conventions, each file system can have its 
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own name structure for the file system objects it supports. Figure 8.1 illustrates the in­
stallable file system architecture. 

The OS/2 kernel installable file system router routes file system API requests to the 
appropriate file system based on the logical unit addressed by the requesting process. 
Each file system is called a file system driver (FSD ). FSDs service file system API re­
quests by issuing 1/0 requests to the device drivers. System services are available for 
FSDs in the form of file system helper (FSHelp) functions. 

The device manager is responsible for the mapping of logical block units to block 
device drivers and file system drivers. It also provides routines used by file system drivers 
and the rest of the kernel for issuing device driver requests. The volume manager provides 
control for supporting removable block media, such as diskettes. It ensures that the correct 
volume is mounted on removable media block devices by invoking the responsible device 
driver to manage the state of the removable media. For example, the volume manager 
ensures that the correct diskette is in a diskette drive, and detects when the diskette drive 
door has been opened and closed, so that it can perform volume verification. 

8.4 FILE SYSTEM NAME SPACE 

The file system name space is the domain of named objects in the system. It is used to 
ensure the uniqueness of object names for objects that are addressed through the file sys­
tem APL The file system name space is used for naming files and directories, as well as 
for naming non-file-system objects such as semaphores, shared memory, queues, and 

File 1/0 Device 1/0 requests 
requests (DosDevloct/J 

User mode ~ . ~ 
------;----------File system APl---------­
Kernel mode'----~~-----~------' 

FSHelp 

Device/volume manager 

Device drivers 

Hardware 

Fig. 8.1 File and device 1/0 subsystem. 
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named pipes. Since each of these named objects must be able to guarantee that its name 
is unique, the names are taken from the file system name space. 

The 16-bit and 32-bit versions of OS/2 provide both the FAT file system and the 
high performance file system (HPFS). The file system name space of the FAT file sys­
tem uses the traditional 8.3 naming format, with up to eight characters in a file name fol­
lowed by an optional three-character suffix. Also, FAT file system names are not case 
sensitive-they use only uppercase characters. HPFS allows names to be up to 256 char­
acters in length, and supports case preservation of file names. The file system name 
space is used in conjunction with security access models to associate access permissions 
with objects that are mapped in the file system name space. 

8.5 FILE SYSTEM OBJECTS 

The most common file system objects are files and directories. Files contain user data. 
Directories contain files and other directories. Files and directories have attributes such 
as size, time of creation, and time of last update, as well as extended attributes that can 
be manipulated by user programs. Files and directories are managed in a hierarchical 
fashion: A tree represents a file system's directory structure. The topmost directory in a 
directory tree is the root directory, signified by the "\"character. Since each block unit 
is managed by a file system, each has its own directory tree and root directory. 

The kernel tracks the current logical block unit, also called the current drive, of 
each process in that process's PTDA. Associated with each logical drive is a current 
directory, which maintains the process's position within the directory tree for each logi­
cal drive unit. Therefore, each process is always "at" a location in a directory tree based 
off the current logical block unit (or drive). Using the file system API, a process can tra­
verse directory structures by changing the current directory or logical drive. 

Pathnames describe the location of a file in the hierarchical directory structure. 
Pathnames can be absolute or relative. Absolute pathnames are valid no matter where in 
the directory tree a process is. For example, D :\TMP\MYFILE is the absolute pathname 
for file MYFILE in the TMP directory on logical drive D:. There are some special direc­
tory names associated with all file systems. Relative pathnames are specified by using 
special directory names for the current directory, signified by the "."character, and for 
the parent directory, signified by the" .. " character sequence. Relative pathnames 
describe the location of a file relative to a process's current directory and logical drive. 
The PATH and DPATH configuration commands are used to specify a search path used 
by OS/2 when executable files are loaded and when data files are opened. The LIBPATH 
configuration command is used to locate dynamic link library files. 

8.6 FILE SYSTEM API 

The file system API is used for file and device 1/0. DosOpen is used for opening both 
files and devices. DosOpen takes the name of the file or device as a parameter, along 
with other parameters that tell the system how the device or file is being used. The open 
mode tells the system the desired access mode and sharing mode for the file. The access 
mode specifies the type of access needed by the process performing the open-it indi­
cates whether read-write, read-only, or write-only access to the file is desired. The 
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sharing mode specifies the type of access to the file that other processes may have. For 
example, a sharing mode of deny-write prevents other processes from opening the file 
for write access, but still allows them to read it. 

In the case of opening a device, the open mode specifies whether the device should 
be opened exclusively for the requesting process. The exclusive open mode is used so 
that a process can ensure that it is the only process accessing the device at a given time. 
Another input parameter is the open flag. The open flag tells DosOpen what action to 
take based on whether the file exists. The open flag specifies whether DosOpen should 
fail if the file does not exist, or whether the file should be created. The open flag also 
specifies whether the file should be opened or replaced if it already exists. 

DosOpen returns a handle that the process uses to access the file or device in subse­
quent file system API requests. File and device handles are 16 bits in OS/2 l.X, and are 
32 bits in OS/2 2.X. DosOpen also returns information that reports the action taken 
based on the open flag. Once a file is open, it is accessible by all threads within the pro­
cess that opened it. 

DosRead and DosWrite are used for reading from and writing to open files and de­
vices. In the 16-bit system, single I/O transfers can be up to 64KB. The 32-bit system 
supports I/O transfers of more than 64KB. For each process that opens a file, the system 
maintains a logical file pointer. The logical file pointer indicates where in the file the 
next DosRead or DosWrite operation will occur. The logical file pointer can be changed 
by issuance of DosSetFilePtr requests. A file is closed by a call to DosClose. 

The system maintains an open file table for each process in its PTDA. When a file 
is opened, a descriptor is allocated from the open file table of the process. The index of 
the allocated descriptor is returned to the user in the form of a file handle that is used in 
subsequent file system API requests for accessing the file. Unlike shared memory ad­
dresses and 32-bit semaphore handles, handles to files are not reserved across all pro­
cesses. Therefore, if two processes both open the same file, each may use a different file 
handle to access the file. Each open file table entry points to a system file table (SFT) 
entry that contains information specific to each logical open reference to a file. The SFT 
contains the per-process logical file pointer associated with the open file, the file size, 
time and date of the last modification, and a pointer to a master file table (MFT) entry. 
An MFT is allocated for each unique open file in the system, and is used for controlling 
file sharing and file locking. Each PTDA also contains a current drive structure (CDS) 
array used for tracking the per-process current drive and directory information. The 
SFTs, MFTs, and CDSs also contain links to file-system-specific information. Figure 
8.2 illustrates the file-system-independent data structures for two processes. 

In Fig. 8.2, each process has opened a unique file, and both processes have opened a 
file that is being shared, for a total of three unique open file instances. For each logical 
open there is an SFT, and for each unique file open there is a single MFT. The shared 
file has a single MFT that is referenced by two SFTs. Thus, each process has its own 
logical file pointer into the shared file, but access according to the open sharing mode 
and file locks is controlled by the MFT. 

DosDupHandle can be used to manipulate the location of descriptors inside the open 
file table. It is usually used when filters and pipes are being set up between two pro­
cesses, so that the standard input and standard output file descriptors can be redirected 
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Fig. 8.2 File and path management file system data structures. 

from the keyboard and screen to pipes, files, and devices. DosDupHandle can also be 
used to force a child process to share a logical file pointer with that process's parent pro­
cess. DosDupHandle creates multiple references to a single SFT within a process or 
across processes. 

If two processes have a file open with write access, they must synchronize their ac­
cess to the file. Although each process usually has its own logical file pointer, it is pos­
sible for one process to update a portion of the file while another process is trying to 
read that same portion. Problems can occur if the processes do not manage their access 
carefully. To enable processes to share portions of a file in a controlled fashion, the 
DosSetFileLocks API call allows a process to obtain exclusive access to a specific re­
gion of a file. 

Devices are also accessed using DosOpen with a device name instead of a file name. 
Device 1/0 requests are then issued by invocation of DosRead or DosWrite. The 
DosDev/OCtl system call is used to communicate directly with the device driver that mon­
itors and controls the device. DosDev/OCtl is used to perform functions whose protocols 
do not fit the file 1/0 model. The operations and protocol are determined by the device 
driver and the requesting applications. For example, issuing DosOpen in the E: logical 
block device enables a process to issue low-level disk 1/0 commands directly to the device 
driver. This type of interface is used, for example, by the disk formatting utility. Similarly, 
the serial and printer device drivers can be accessed directly using DosDev/OCtl. The user 
1/0 subsystems for keyboard, mouse, and video shield their requestors from the device 
driver interfaces by performing DosDev/OCtl requests on behalf of high-level user 1/0 
requests. The role of these subsystems is discussed in Chapter 9. 

DosQueryCurrentDisk and DosQueryCurrentDir are used to query the process's cur­
rent logical drive and directory. The complementary functions DosSetCurrentDisk and 
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DosSetCurrentDir are used to change the current logical drive and directory. A file's open 
mode can be quel)ed and set at run time by a call to the DosQueryFileMode and 
DosSetFileMode API functions. The DosFindFirst, DosFindNext, and DosFindClose calls 
are used to scan and search directories for files that have matching attributes. Table 8.1 
summarizes the file system API calls for both the 16-bit and the 32-bit systems. The calls 
for the two systems are similar in function, but some of the 32-bit API function names 
have been altered to be more consistent with the rest of the system APL 

8.7 OS/2 1.X FILE SYSTEM DRIVERS 

File system drivers are trusted modules that run at privilege level 0 in kernel mode. They 
are loaded when the system is started. The two primary FSDs that are shipped with OS/2 
l.X are the FAT file system and HPFS. The FAT file system is the same as that in the 
DOS system, except for enhancements for supporting partitions larger than 32MB. 
Providing the FAT file system in OS/2 allows users to migrate from DOS-based systems 
to OS/2 without having to convert file formats. Although the FAT file system does not 
provide caching, the disk device driver does provide disk block caching for logical block 
units managed by the FAT file system. However, if the system swap file is located on a 
FAT partition, 1/0 requests from the swapper are not cached. 

HPFS is a highly cached file system that supports the multitasking environment of 
OS/2 and large disk volumes of up to 2GB. It performs overlapped 1/0 operations and 
attempts to keep files contiguous on the secondary storage media to maximize system 
performance. HPFS reduces 1/0 operations by managing a write-behind cache (optional­
ly write-through), and a read-ahead cache. HPFS provides its own cache management, 
since it has more information than does the disk device driver on how the file system 
data are organized on the block media. Therefore, the disk device driver does not pro­
vide caching for logical block units managed by HPFS. Like the FAT file system, HPFS 
provides an interface for swapper 1/0 that does not perform caching. 

Since the DOS environment uses the OS/2 file system, DOS applications can access 
files transparently on a logical drive managed by HPFS. HPFS also allows long file 
object names up to 254 characters. Programs that support long file names can run on ei­
ther the FAT or HPFS environments. For compatibility with applications that rely on the 
FAT 8.3 naming convention, FSDs support a superset of the FAT's 8.3 name format. 

The OS/2 FSDs maintain a standard set of information, called attributes, on file ob­
jects. Examples of a file's standard attributes are the name, file size, and the time and 
date of creation, last access, and last write. HPFS and the file system API allow applica­
tions to attach additional information, called extended attributes, to file objects. 
Extended attributes can be used to store application-specific notes about file objects, or 
to append additional data to the file in the form of extents. A file's extended attributes 
effectively become part of the file, and are accessed when the file is opened. If a file is 
copied or deleted, the extended attributes are copied or deleted with the file. Extended 
attributes are not accessible to DOS programs. 

FSDs implement the file system API for the logical block units to which they are at­
tached. The IFS router component of the OS/2 kernel dispatches file system API 
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16-Bit API Name 32-Bit API Name Description 

DosBufReset DosResetBuff"er Flush file(s) cache buffers 
DosChDir DosSetCurrentDir Set current directory 
DosChgFilePtr DosSetFilePtr Move file 1/0 pointer 
DosClose DosClose Close file or device 
DosDelete DosDelete Delete file 
DosDev/OCt/2 DosDev/OCtl Device-level 1/0 request 
DosDupHandle DosDupHandle Duplicate file handle 
DosEditName DosEditName Search/edit file object names 
DosFile/O NIA Multiple file-level 1/0 requests 
DosFileLocks DosSetFileLocks Lock/unlock range of file 
DosFindClose DosFindClose Close find handle 
DosFindFirst DosFindFirst Find first matching file object 
DosFindNext DosFindNext Find next matching file object 
DosFSAttach DosFSAttach Attach/detach device to FSD 
DosFSCtl DosFSCtl File system I/O control 
DosMkDir DosCreateDir Create directory 
DosMove DosMove Move file 
DosNewSize DosNewSize Change file size 
DosOpen DosOpen Open file or device 
DosQCurDir DosQueryCurrentDir Get current directory 
DosQCurDisk DosQueryCurrentDisk Get current logical drive 
DosQFilelnfo DosQueryFilelnfo Get file information 
DosQFileM ode DosQueryFileMode Get file mode 
DosQFSAttach DosQueryFSAttach Query attached FS information 
DosQFS/nfo DosQueryFSI nfo Query file system information 
DosQHan<lI'ype DosQueryHType Query handle type 
DosQPath/nfo DosQueryPathlnfo Get file or directory info 
DosQSyslnfo DosQuerySysl nfo Get system information 
DosQVerify DosQueryVerify Query verify setting 
DosRead DosRead Read from file or device 
DosReadAsync NIA Asynchronous read 
DosRmDir DosDeleteDir Delete directory 
DosSearchPath DosSearchPath Search path for file name 
DosSelectDisk DosSetDefaultDisk Set default drive 
DosSetFHandState DosSetFHState Set file handle state 
DosSetFilelnfo DosSetFilelnfo Set file information 
DosSetFileMode DosSetFileMode Set file mode 
DosSetFS/nfo DosSetFS/nfo Set file system information 
DosSetMaxFH DosSetMaxFH Set max# of open file handles 
DosSetPathlnfo DosSetPathlnfo Set file or subdir attributes 
DosSetVerify DosSetVerify Enable file write verify 
Dos Write Dos Write Write to a file or device 
DosWriteAsync NIA Asynchronous write 

Table 8.1 File System API. 
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requests to the correct FSD, based on the drive being accessed. FSDs run in kernel 
mode, and call block device drivers via the device manager to carry out their I/0 opera­
tions. When a thread issues a file system 1/0, the request may have to be broken up into 
several I/0 requests if the data are not contiguous on the block media. The I/0 interface 
presented by 16-bit device drivers allows each thread to make a single I/0 request 
between a contiguous range of logical sectors on a logical block unit, and a physically 
contiguous buffer. Usually, the device driver blocks the requesting thread until the I/0 
completes. Although each thread can perform only a single I/O transaction at a time, 
multiple I/0 requests from different threads can be overlapped concurrently. 

The FSHelp interface is used by FSDs to access system services provided by the 
kernel. FSHelp functions are invoked by placement of a function number and parameters 
in registers, then a call to the FSHelp entry point provided to the FSD when it is in­
stalled. Thus, FSHelp is a statically linked, kernel-level interface. 

8.8 OS/2 2.X FILE SYSTEM DRIVERS 

The 32-bit version of OS/2 enhances the I/0 architecture of the 16-bit system to exploit 
intelligent I/0 subsystem hardware, and to perform I/O in the demand-paged environ­
ment. Intelligent I/0 subsystems are programmable at a higher level of abstraction than 
are existing I/0 devices. They are used to offload I/0 device handling from the operat­
ing system, thus enhancing performance. Some intelligent devices also include support 
for executing 1/0 command chains, and for managing hardware-based I/0 caches. 
Modifications to the I/O architecture are also needed to deal with the paged environ­
ment, in which physical memory buffers are not contiguous. 

Cache management has been added to the FAT file system, so the disk device driver 
no longer performs any caching. Since the file system has more knowledge about the 
layout of data on block devices, it can perform caching algorithms more effectively than 
can the disk device driver. Providing caching in the file system also eliminates read re­
quests to the disk device driver when data are in the cache, reducing I/Q path lengths. 
The file system can also more accurately perform cache heuristics, such as read-ahead 
and lazy write. File systems also have the capability to manage 1/0 caches located on 
intelligent I/0 subsystems, and to preload anticipated data into an external cache. 

Many intelligent 1/0 subsystems support 110 command chaining. Devices that sup­
port command chaining allow multiple commands to be submitted to the device for pro­
cessing at a time. For file systems, command chaining minimizes the path length for 
accessing files that are discontiguous on the secondary storage media. Command chain­
ing can also reduce the number of interrupts processed by the system for a set of 1/0 
operations. 

A paged memory environment poses a problem for devices that rely on DMA for 
data transfers. Most existing DMA devices assume that physical memory is contiguous. 
In the paged environment, however, 1/0 buffers that are contiguous in the virtual 
address space are usually composed of discontiguous physical pages. Scatter-gather 110 
is a mechanism for transferring blocks of data to and from a buffer whose pages are 
physically discontiguous. A gather-write operation writes a physically discontiguous I/0 
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buffer to a contiguous range of sectors on the secondary medium. A scatter-read opera­
tion reads a contiguous range of sectors from the secondary medium to a physically 
discontiguous 1/0 buffer. 1/0 buffer addresses are supplied to devices that support scat­
ter-gather 1/0 using scatter-gather lists. 

Both the FAT file system and HPFS provide interfaces for performing page swap­
per 110. The page swapper 1/0 interfaces support a contiguous swap file, and 1/0 opera­
tions that are not cached. The page swapper can request multiple page-in and page-out 
operations to occur in a single command in a specific sequence. 

Whereas the implementation of the FSDs uses 16-bit code, the FAT and HPFS 
FSDs both use an extended device driver interface to manage intelligent 1/0 devices, 
and the paged environment. If a block device does not support intelligent l/O or the 
paged environment, the existing 16-bit device driver interfaces are used. The extended 
interface supports 1/0 command chains, scatter-gather 1/0, and a better 1/0 dispatching 
model that optimizes asynchronous 1/0 and allows a single thread to issue multiple 
chained 1/0 requests before blocking. 

8.9 DEVICE DRIVERS 

Device drivers are device dependent modules that provide the low-level 1/0 support for 
a device. They are trusted modules-they run at privilege level 0 and have access to the 
kernel. Device drivers must be reentrant to support overlapped asynchronous 1/0 opera­
tions requested by the kernel. To support the OS/2 multitasking model, device drivers 
relinquish control of the processor when forced to wait for 1/0 operations to complete. 
Device drivers are loaded and initialized when the system is started. There are two types 
of device drivers in the system: base device drivers, which are included with the system, 
and installable device drivers, which the user can install through CONFIG.SYS when 
the system is started. 

The OS/2 device driver model is a segmented 16-bit model, and the device driver 
interfaces are accessed using register-based calling conventions. Thus, most device 
drivers are written in assembler to meet performance requirements in this environment. 
The same device driver model is used in the 16-bit and 32-bit versions of OS/2. There 
are some differences in the implementations due to the different DOS compatibility 
architectures of 16-bit and 32-bit OS/2, and to the need to support intelligent 1/0 devices 
in the paged environment. Chapter 10 describes the influence on device drivers of DOS 
compatibility requirements. 

8.10 HARDWARE DEVICE STRUCTURE 

Each hardware device in a personal computer has a controller that is interfaced to the 
system bus. The controller is attached to the actual peripheral device, and operates the 
device on behalf of the system. For example, the keyboard controller is connected to the 
keyboard, and the disk controller is attached to a hard disk drive. The main processor 
operates devices by programming their controllers. For example, the hard disk drive is 
connected to the hard disk controller, which is programmed by the main processor. Each 
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controller contains internal registers used to program the device. Command operations, 
status operations, and data transfers with the device are initiated by programming of the 
controller through its registers. 

The granularity of data transfer between a device and the processor determines 
whether the device is a character or block device. For example, the asynchronous port 
transfers one or several bytes at a time in a stream-clearly, this is a character device. 
The hard disk transfers data one or more sectors at a time. Since each sector is a block of 
512 or more bytes, the hard disk is classified as a block device. 

The data access characteristics of a device determine whether that device is sequen­
tial or random access. Character devices-such as the asynchronous communications 
port, the keyboard, and the mouse-are sequential, since their data are transferred as a 
stream of characters or events that are ordered as they are generated. The hard disk is a 
random access device-any specified sector can be accessed directly without having to 
read sequentially from a starting point. Therefore, the disk device driver can order the 
requests for data transfers to and from the disk according to an algorithm that optimizes 
disk access performance (De90). However, not all character devices are accessed 
sequentially, and not all block devices are accessed randomly. 

Controllers also contain device buffers for data transfer. For example, the hard disk 
controller contains the registers for programming hard disk operations, and a disk buffer. 
When a read operation occurs, the processor programs the controller to perform a read 
from the hard disk. The controller initiates the operation, and reads the data to the disk 
buffer within the controller. The data in the disk buffer are later transferred across the 
bus to the memory location specified in the read request to the device driver. 

Another example is the video controller. The video controller has a video RAM 
(VRAM) buffer that is scanned by the video hardware for the images to be placed on the 
screen. The video controller is programmed via accessing of the video controller's inter­
nal registers. However, 1/0 to the video buffer is performed by execution of memory 
write operations to the video buffer. The video hardware picks up the contents of the 
video buffer, and traces them on the display screen. A final example is the keyboard 
controller, which is programmed via its internal registers, and which contains a special 
data register for transferring data typed on the keyboard. 

8.11 HARDWARE DEVICE ATTRIBUTES 

There are three major attributes that can be used to describe any hardware device: 

Device addressing 

Device control and status 

Data transfer 

Each of these attributes is independent of the others. Devices can have any 
combination of these attributes. 

Device addressing describes how a device is addressed by the main processor. It de­
pends on how the controller for the device is connected to the bus, and on the nature of 
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the device. The two methods of device addressing used in personal computers are mem­
ory mapping and //0 mapping. Memory-mapped devices have their controller's registers 
mapped into the memory address space of the processor. Thus, processor-initiated mem­
ory operations to and from the memory-mapped range of addresses actually cause 
accesses to the internal registers and buffers of a memory-mapped device's controller. 
1/0-mapped devices are addressed through the 1/0 port architecture of the Intel proces­
sors. They are programmed by using the 1/0 instructions described in Chapter 2. 

Device control and status describes how the processor communicates with the 
device controller to determine the current status of the device, and to initiate operations 
or control the device. There are two major protocols: polled and interrupt driven. A 
polled device is one in which the system must periodically check whether the device 
needs servicing. Polled devices are not suitable for multitasking, since the operating sys­
tem must dedicate processor cycles to determine whether the device needs servicing. 
Polled devices provide synchronous 1/0. Interrupt-driven devices are more appropriate 
for multitasking. With interrupt-driven devices, the system is notified by an interrupt 
when a device needs servicing. This notification scheme allows the system to perform 
other tasks while 1/0 operations are in progress, without having to poll devices for status 
intermittently. When an interrupt occurs, the system stops what it is doing and services 
the device. Since the system continues to run between interrupts, interrupt-driven 1/0 
operations are classified as asynchronous. 

Data transfer refers to the strategy employed by a device for moving data from 
the device to memory, and vice versa. There are three primary device data transfer 
strategies: 

Programmed 1/0 

Direct memory access (DMA) 

Bus mastering 

Programmed l/O is used when data are moved between the device and memory 
under control of the processor. The processor executes 1/0 instructions that move the 
data between the device and memory using the processor as an intermediary. Since the 
data transfer occurs under processor instruction control, the processor cannot perform 
other tasks while the data are being transferred. An example of a programmed 1/0 
device is the ST-506 hard disk controller used in PC/ATs. To perform a disk read, the 
controller is programmed to read the data from the disk into the buffer on the disk con­
troller. At the completion of this operation, the disk controller interrupts the processor to 
notify the latter that the data are ready for transfer. The processor executes the REP INS 
instruction, which causes the processor to read repeatedly from an 1/0 port to a main 
memory address until the transfer is complete. The REP INS instruction causes the data 
to be read from the disk controller, moved across the bus into the processor, and then 
moved by the processor across the bus to memory. 

Direct memory access (DMA) is a technique in which a special DMA controller is 
programmed to move data directly between devices and memory, without any interac­
tion from the processor. DMA operations are initiated by the processor, but do not 
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require the processor for the data transfer. Instead, the processor can continue executing 
instructions while the DMA controller performs the data transfer. The DMA controller 
moves the data across the bus by stealing bus cycles from the processor. When the trans­
fer is.complete, the DMA controller interrupts the processor to notify the processor of 
the transfer status. Since the processors in today's systems have prefetch instruction 
queues to maximize instruction fetch performance, they can continue executing instruc­
tions while DMA transfers occur. Thus, DMA allows a low-level form of hardware par­
allelism. In most personal computers, a DMA controller is included on the system 
planar. The DMA controller provides multiple channels that are dedicated to DMA 
devices in the system. 

Bus mastering is a special protocol that allows multiple controllers with their own 
associated DMA controller to compete for bus cycles. The bus must arbitrate among 
those bus masters that are attempting to use the bus resource. Bus master data transfer is 
similar to DMA data transfer, except that a DMA controller on the bus master device, 
the system DMA controller, is used for data transfer. The Micro Channel Architecture 
described in Chapter 3 provides bus arbitration to support an environment in which bus 
master, programmed I/0, and DMA data transfers can coexist. 

8.12 HARDWARE DEVICE INDEPENDENCE 

'DOS device drivers utilize ROM BIOS to access the actual hardware device, instead of 
directly programming the hardware. ROM BIOS is built into the system planar, and 
insulates DOS device drivers from the underlying hardware architecture and device con­
troller dependencies. This insulation is useful when an engineering change to a compo­
nent of the hardware system occurs between production runs of a computer. If a 
controller has a slightly different interface, the ROM BIOS is altered to support the new 
part, and DOS continues to run on the system without any changes. 

ROM BIOS is mapped into the 640KB to lMB range of the PC address space. 
ROM BIOS also has an associated ROM BIOS data area at physical address 400H, used 
to store device information accessed by the ROM BIOS routines. ROM BIOS is accessi­
ble in only real mode, and is not reentrant. ROM BIOS is suitable for the DOS environ­
ment, but its lack of reentrancy and its real-mode dependencies render it unusable for a 
protected-mode operating system. 

When the PS/2 systems were developed, IBM saw a need for a new type of BIOS, 
called advanced BIOS (AB/OS). ABIOS supports real-mode, protected-mode, and 
bimodal operating environments. It is reentrant and extendable. To differentiate between 
the two BIOS modules in the system ROMs, the developers renamed the original real­
mode BIOS compatibility BIOS (CB/OS). OS/2 device drivers have the options of 
programming directly to the hardware, or of using ABIOS. 

The development of intelligent 110 subsystems capable of independent operation led 
to the definition of IBM's Subsystem Control Block (SCB) architecture. Intelligent I/0 
subsystems usually are bus masters; they have their own processors, local memories, 
and DMA controllers. Although ABIOS relieves the restrictions of the original CBIOS, 
it is not designed to run optimally in an environment with intelligent 1/0 subsystems. 
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The SCB architecture is used on IBM's intelligent SCSI adapters, and on the PS/2 
Models 90 and 95. 

The SCB architecture is an interface used by device drivers on the main processor 
for accessing intelligent 1/0 processors in a device-independent fashion. It frees the 
main processor from the burden of staging 1/0 operations that generate interrupts. The 
SCB architecture raises the level of device abstraction, so work for completing multiple 
related requests is offloaded from the main processor. It also provides the capability of 
addressing and programming intelligent 1/0 subsystems in a uniform way. 

SCBs are used for communication between the main processor and 1/0 processors. 
SCB 1/0 operations are issued by allocation of an SCB, and transmission of that SCB to 
the local memory of an intelligent 1/0 subsystem. The 1/0 subsystem then performs the 
operations described in the SCB without interrupting the main processor until the opera­
tions are complete. SCBs can also be chained, allowing a list of 1/0 operations to be 
submitted to an 1/0 subsystem in a single request. The SCB architecture also supports 
scatter-gather 1/0 transfers for environments that have paging enabled. 

8.13 OS/2 1.X DEVICE DRIVERS 

In OS/2 I .X, only one DOS application is supported by the DOS compatibility envi­
ronment, and it runs in real mode. Furthermore, the DOS environment runs only when it 
is in the foreground-it is suspended when in the background. When the DOS environ­
ment is in the foreground, other OS/2 programs can run in the background in protected 
mode. The system mode switches between real mode and protected mode as necessary. 
However, so that mode switching is minimized, portions of the OS/2 system and the 
OS/2 l .X device drivers need to be able to run in real mode and in protected mode. 
Code that is executable in both real mode and protected mode is bimodal code; the OS/2 
l.X device drivers are bimodal device drivers. 

Since bimodal code and the data it accesses must be addressable in both real mode 
and protected mode, bimodal code is loaded in physical memory addresses below lMB. 
Recall from Chapter 6 that the 16-bit system takes special care to load device drivers 
and portions of the kernel into low physical memory, so that they can be executed in real 
mode. The system is partitioned to minimize the amount of low memory taken from the 
DOS environment, yet to provide acceptable performance in critical operations such as 
interrupt management and context switching. 

Since a device driver for an interrupt-driven device can initiate an 1/0 request in one 
mode and have the request complete in the opposite mode, buffer transfer addresses are 
converted to physical addresses by the device driver. The physical addresses are con­
verted to virtual addresses sensitive to the processor mode when the device driver 
accesses memory. 

8.14 DEVICE DRIVER STRUCTURE 

OS/2 device drivers are packaged in specialized EXE files. They contain at least one 
code segment and one data segment, and are loaded into low physical memory. A device 
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driver can also contain other segments that are loaded into high memory, above the IMB 
boundary. Figure 8.3 illustrates the device driver file structure. 

Each device driver has a special set of entry points used by the OS/2 system to re­
quest service. The strategy routine is the main entry point for requests from the kernel. 
The kernel passes a pointer to a request packet that describes the request to the strategy 
routine. The request packet pointer is referenced by the ES.BX registers when the strat­
egy routine is called. Strategy routines run in kernel mode, and on the stack of the re­
questing thread. The strategy routine can be thought of as the top half of the device 
driver, the same way that there is a top half of the OS/2 kernel. The strategy routine ei­
ther completes the request and returns the packet to the kernel, or blocks the thread until 
the request is completed. This routine allows other threads to continue running while a 
device is busy when a request is made. 

Each interrupt-driven device also usually has a hardware interrupt handler associat­
ed with it. The interrupt handler is called by the interrupt manager when an external 
hardware interrupt on a specific interrupt level occurs. Usually, when the device driver 
is initialized, it registers a hardware interrupt handler if it needs one. The interrupt han­
dler is responsible for clearing the interrupt controller hardware, and for checking the 
status of the interrupting device. It runs in interrupt mode on the interrupt stack of the 
system (see Chapter 5). This stack corresponds to the bottom half of the device driver in 
the top-half-bottom-half model. Access to structures shared by the strategy routine and 
the hardware interrupt handler must be serialized, since interrupts can occur during the 
strategy routine. Device drivers synchronize the top-half and bottom-half by enabling or 
disabling the 80X86 interrupt flag. 

In the 16-bit system, use of interrupt mode implies that the processor is in either 
real mode or protected mode due to the mode switching architecture of the DOS envi­
ronment. Therefore, request packets and 1/0 buffer transfer addresses provided in the re­
quest packets must not be sensitive to the processor mode. Furthermore, interrupt-driven 
device drivers save 1/0 buffer addresses as physical addresses, since a request may com­
plete in the context of a process other than the one that initiated it. 

EXE header 

Device driver header 

Data segment 

Code segment 

Initialization code 
(discarded) 

Optional extra 
code and/or data 

segments 

Fig. 8.3 Device driver file structure. 
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Some devices have timing constraints. For instance, for diskette operations, the 
diskette drive must be accelerated to full speed before the next step of the operation can 
occur. Since it takes a known time interval to bring the disk to full speed, the device 
driver needs to set a timer handler. A timer handler is used for devices that need to per­
form intermittent services, such as accessing polled devices or accelerating the diskette 
drive motor. Timer handlers are registered by device drivers as needed, and run in inter­
rupt mode. 

Device drivers request system services to assist in performing requests in the form 
of Device Help (DevHelp) functions. DevHelp is a statically linked interface that allows 
device drivers to call a special set of kernel routines available to device drivers. 
DevHelp and the associated functions are described in detail in Section 8.19. Figure 8.4 
illustrates the logical components of a device driver. 

In 16-bit OS/2, ROM BIOS software interrupt services are provided by the device 
drivers that service the respective devices. If a device driver provides ROM BIOS sup­
port, it registers an entry point for BIOS service-called a ROM BIOS handler-when it 
is initialized. When DOS applications running on the 16-bit system make BIOS 
requests, the appropriate device driver ROM BIOS handler is called in real mode-also 
called DOS Mode in OS/2 publications. Since ROM BIOS is not reentrant, and the sys­
tem multitasks protected-mode applications in the background while a DOS application 
is in the foreground, the system must provide a means of preventing preemption of a 
DOS application that has entered ROM BIOS. The kernel provides the 
DevHelp(ROMCritSection) function to allow a device driver to indicate that it is about 
to use ROM BIOS code, and to disable preemption temporarily until the DOS applica­
tion exits ROM BIOS. The final device driver entry point is the inter-device-driver com­
munications handler. It is used for private communication between device drivers, and 
has no mode restrictions. 

Communications 
with other 

device drivers 

OS/2 Kernel 

Device/volume manager Device help 

Request DevHelp 
packets requests 

1--;:::======"=====::::;--;::===========;----1 ROM BIOS 
Strategy routine ROM BIOS handler 
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DOS programs 

Inter-Device driver 
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(interrupt mode) 

Timer 
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Hardware 

Interrupt 
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(interrupt mode) 

Hardware 
interrupts 

Fig. 8.4 OS/2 1.X device driver interfaces. 
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8.15 DEVICE DRIVER HEADER 

Each device driver has a device driver header at the start of the first segment in the 
device driver executable image (Fig. 8.5). Therefore, the device driver data segment is 
always the first segment of the device driver executable file image. 

The header has a field used for chaining together the device drivers, similar to the 
device chain described in Chapter 4. The header contains fields used to locate the strate­
gy and inter-device-driver communication entry points, and the name of the device. For 
character devices, the name is an 8-byte ASCII string. For block devices, the name is the 
number of logical block units supported by the block device driver. 

8.16 DEVICE ATTRIBUTE FLAGS 

The device attribute flags are part of the device driver header (Fig. 8.6). They determine 
which commands are serviced by the device driver strategy routine. The flags determine 
whether the device is block or character, and whether the device driver provides inter­
device-driver communication support. The flags also specify whether a block device is 
for fixed media, such as hard disks, or for removable media, such as diskettes. This 
distinction is important, since the file system makes specific strategy requests based on 
whether the device medium is removable. The flags also determine whether the device 
driver supports open and close strategy commands. They thus allow the device driver 
writer to choose whether the device driver should be called when device level DosOpen 
and DosClose requests are made to the device name. The flags have a function-level 
field that describes the earliest version of OS/2 that the device driver supports. Other 
bits in the flags indicate whether the device is the system null device, standard output 
device, standard input device, or clock device. 

8.17 REQUEST PACKETS 

Requests packets are used by the OS/2 kernel to communicate the parameters of a 
request to a device driver strategy routine (Fig. 8.7). Request packets are resident in 

Next device driver pointer DWORD 

Device attributes flags WORD 

Offset to strategy routine WORD 

Offset to IDC entry point WORD 

Name or blocks units 8 BYTES 

Reserved(O) 8 BYTES 

Fig. 8.5 Device driver header. 
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CHR IDC IBM SHR OPN 0 Level 0 0 0 CLK NUL SCR KBD 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Fig. 8.6 Device driver attribute flags. 

kernel memory, and are variable in length depending on the command issued. Request 
packets contain the command information for processing by the strategy routine. 

The request packet is divided into two sections: a static portion and a variable­
length portion. The static portion contains the length of the packet, the block unit for 
which the packet is intended (if it is for a block device driver), the specific command 
number, and a field for returning status to the system. Also, there is a queue linkage 
field used for linking request packets. The variable-length portion of the request packet 
provides the command-specific data. 

Since request packets need to be addressable in both real mode and protected mode in 
the 16-bit OS/2 system, they are allocated special tiled virtual addresses. If an address is 
tiled, it means that a single virtual address in real mode and protected mode accesses the 
same physical memory location. For example, the ROM BIOS data area is a tiled region of 
memory. It exists at virtual address 40:0, or physical address 400H in real mode. To make 
this a tiled data region, the descriptor for selector 40 in the GDT has a base address of 
400H. Therefore, any reference to virtual address 40:0 will result in accessing of physical 
address 400H, regardless of whether the access is in real mode or protected mode. Chapter 
10 describes tiling and DOS compatibility issues in more detail. 

8.18 STRATEGY COMMANDS 

The device driver strategy routine is called for the first time when the device driver is 
being installed by the system. The request packet command code indicates that this 
request is an initialization request, and the strategy routine dispatches to the code that 
handles the initialization of the device driver. The initialization routine runs in a special 
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Fig. 8.7 Device driver request packet format. 
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mode called initialization mode, because the system is not fully initialized and cannot 
support all operations that the driver can perform. Initialization mode executes at privi­
lege level 3 so that device drivers can use several of the system API functions, for tasks 
such as accessing files or printing status messages on the console. Initialization routines 
usually prepare the device for I/0, register an interrupt handler if necessary, and initial­
ize device driver data structures. The initialization routine is passed the address of the 
DevHelp router as part of its initialization of command-specific data. This address is 
saved by the device driver so that it can be used later when the device driver makes calls 
to other DevHelp services. 

In general, most strategy routine commands, except the initialization command, are 
called in kernel mode. The strategy routine then dispatches (through a table based on the 
command number specified in the request packet) to the code that is used to handle the 
command. Strategy requests either are completed immediately and returned to the kernel, 
or are blocked until the operation can complete. For random access devices such as hard 
disks, request packets can be queued by the strategy routine, and ordered into the most ef­
ficient combination of disk accesses. The strategy routine runs on the kernel stack of the 
requesting thread and is not preemptible, since it runs in kernel mode. Thus, the strategy 
routine has critical sections only where data that can be modified by the interrupt handler 
are accessed. Access to these data must be serialized using CL/ and ST/ instructions. 

Depending on the nature of the device, most of the commands serviced by a strategy 
routine, except for read and write, can be processed immediately. If the block device is 
busy, read and write request packets are linked onto a device service queue, and the re­
questing thread is blocked until the I/0 completes. The request packet for the read and 
write operations contains the physical address of a locked I/0 buffer, the starting sector 
number, and the count of sectors to be transferred. Physical addresses are used due to 
the 16-bit mode switching environment. Since 1/0 interrupt-driven operations can be 
started in protected mode and completed in real mode, or vice versa, the addresses 
stored by the device driver need to be independent of the processor mode. Furthermore, 
the addresses stored by a device driver that services an interrupt-driven device need to 
be accessible in the context of any process, since often a process other than the requestor 
is running when a queued request is completed. Although GDT virtual addresses in the 
kernel space are not process sensitive, they cannot be used by bimodal interrupt handlers 
executing in real mode without mode switching. 

Therefore, the file systems lock the segment containing the I/O buffer to obtain a 
physical address for read and write commands. Locking of the memory is necessary 
since the device driver stores physical addresses and cannot determine whether the 
memory is moved or swapped. The physical address is converted to a processor mode­
dependent system virtual address that is usable in any process context by the device 
driver using the DevHelp(PhysToVirt) function. 

The kernel uses the generic IOCtl to pass user DosDev/OCtl API requests to device 
drivers. DosDev/OCtl is used for device-level I/0, and the interface between applications 
and a device driver's JOCtl routine is defined by the device driver. The generic IOCtl request 
packet contains the user's parameters from the DosDev!OCtl call in the variable-length 
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portion of the request packet. Since the format of the IOCTL request packet is not known by 
the kernel, the kernel cannot lock the addresses before the packet is presented to the device 
driver. The device driver must lock any referenced segments using DevHelp(Lock), which 
returns a physical address that can be used at interrupt time in the context of any process. 
After the 1/0 operation is complete, the device driver unlocks the segment by calling 
DevHelp(Unlock). Table 8.2 summarizes the device driver strategy commands. 

8.19 DEVHELP SERVICES 

DevHelp services are provided by the kernel to assist device drivers in servicing 
request packets. They are called indirectly through the address passed to a device driver 
in the latter's initialization routine. The DevHelp functions use register-based parame­
ters. The calling conventions for DevHelp services require a static linkage to functions 

Command Description Device type 

Initialization Initialize device driver. Block/char 

Media check Check if removable media changed. Block 

Build BPB Build BPB for new media. Block 

Read( input) Read from device. Block/char 

Nondestructive read Peek data from device (no wait). Char 

Input status Check input queue status. Char 

Input flush Flush input queue. Char 

Write( output) Write to device. Block/char 

Write with verify Write to device w/verify (format). Block/char 

Output status Check output queue status. Char 

Output flush Flush output queue. Char 

Device open Device-level DosOpen request. Block/char 

Device close Device-level DosClose request. Block/char 

Removable media Check if media is removable. Block 

Generic IOCtl DosDev/OCtl request. Block/char 

Reset media Reset driver media status. Block 

Get logical drive map Get logical-physical drive map. Block 

Set logical drive map Set logical-physical drive map. Block 

Partitionable hard disks Query number of hard disks supported. Block 

Get logical unit map Get hard disk-logical unit mapping. Block 

Get device support Get device and volume information. Block 

Table8.2 Device driver strategy commands. 
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in the kernel through the DevHelp router. The device driver places the number of the 
service in one register, and the parameters for the service in other registers, and then 
indirectly calls DevHelp using the DevHelp router address. DevHelp functions are 
mode sensitive. That is, whether a device driver can call a specific DevHelp function is 
determined by the current mode of the device driver-kernel mode, interrupt mode, 
DOS mode, or initialization mode. For instance, since there is no real thread context at 
interrupt time, a device driver cannot call DevHelp(Block) at interrupt time to put a 
thread to sleep. 

The DevHelp services are divided into the following categories: 

Process management 

Semaphore management 

Request queue and request packet management 

Character queue management 

Memory management 

Interrupt management 

Timer services 

System services 

The process management DevHelp functions allow device drivers to control multi­
tasking. The functions Block, Run, Yield, and TCYield, are analogous to the functions 
described in Chapter 5. The semaphore management DevHelp functions allow access to 
16-bit semaphores. The request-queue and request-packet management DevHelp ser­
vices provide routines for managing request packets, and for managing queues of 
request packets. The character queue management DevHelp calls allow character 
queues to be managed for supporting asynchronous and keyboard devices. 

The interrupt management DevHelp services provide functions for setting and unset­
ting hardware and software interrupt handlers, and for managing the programmable inter­
rupt controller. The timer services DevHelp functions allow device drivers to register timer 
handlers and to modify the frequency at which they are called. System services DevHelp is 
a general category for other DevHelp services that fall into miscellaneous areas, such as 
retrieving system variables, switching modes, and accessing ABIOS services. 

Memory management is perhaps the most important DevHelp service provided by 
the system. The memory management DevHelp services provide segmented 16-bit mem­
ory management functions for virtual and physical address translation, lock and unlock 
operations, memory allocation and deallocation functions, and descriptor management 
services. Table 8.3 summarizes the DevHelp functions for the OS/2 1.X systems. The 
calling mode in which each DevHelp is accessible is included, using the following 
abbreviations: 

I: interrupt mode 

K: kernel mode 

S: system initialization mode 

D: DOS (real) mode 



8.19 

Name 

Process management 

Block 

Run 

Yield 

TC Yield 

Del' Done 

Description 

Block thread on event 

Unblock thread(s) on event 

Yield processor if ReSched set 

Yield to time-critical (TCReSched) 

Device 1/0 complete 

16-bit semaphore management 

SemRequest 

SemC/car 

SemHandle 

Claim semaphore 

Release semaphore 

Get semaphore handle 

Request packet and queue management 

PushReqPacket 

Pul/ReqPacket 
Pul/Particufar 

SortReqPacket 

AllocReqPacket 

FreeReqPackct 

Add request packet (RP) to list 

Remove next RP from list 

Remove specific RP from list 

Insert RP in sorted order to list 

Get request packet 

Free request packet 

Character queue management 

Queue/nit 

QueueFlush 

Queue Write 

QueueRead 

Interrupt management 

EOI 

SetROMVector 

Set!RQ 

UnSet/RQ 

Timer services 

SetTimer 

ResetTimer 

TickCount 

System Services 

GetDOSVar 

SendEvent 

ROMCritSection 

AttachDD 

Initialize character queue 

Clear character queue 

Put character in queue 

Get character from queue 

Send end-of-interrupt 

Set software interrupt handler 

Set hardware interrupt handler 

Unset hardware interrupt handler 

Set timer handler 

Unset timer handler 

Modify timer handler frequency 

Access system variable 

Send signal event 

ROM BIOS critical section 

Attach to a device driver (IDC) 

Table 8.3 DevHelp functions. 

DevHelp Services 

Modes 

K,D 

K,I,D 

K 

K 

K,D 

K,l,D 

K,I 

K 

K,I 

K,I 

K 

K 

K 

K,I,D,S 

K,l,D 

K,I,D 

K,I,D 

I,S 

K,S 

K,S 

K,I,S 

K,S 

K,I,S 

K,I,D,S 

K,S 

K,I 

D 

K,S 

(continued) 
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(continued) 

Name 

lnterna/Error 

RealToProt 

ProtToReal 

Register PDD 

RegisterStackUsage 

Description 

Halt system and signal error 

Switch processor to protected mode 

Switch processor to real mode 

Register PDD (32-bit only) 

Indicate kernel stack usage 

16-bit memory management 

Lock 

Unlock 
PhysToVirt 

VirtToPhys 

PhysToUVirt 

AllocPhys 

FreePhys 

AllocGDTSelector 
PhysToGDTSelector 

UnPhysToVirt 

Lock segment 

Unlock segment 

Create virtual to physical mapping 
in system virtual address space (GDT) 

Convert virtual address to physical 

Create virtual to physical mapping 

in process virtual address space (LDT) 
Allocate physical memory 

Free physical memory 

Allocate GDT descriptor(s) 

Map GDT descriptor to physical address 

Invalidate PhysToVirt mapping 
VerifyAccess Check memory accessibility 

Table 8.3 DevHelp functions. 

8.20 05/2 2.X DEVICE DRIVERS 

Modes 

K,I,D,S 

K,I 

K,I 

s 
s 

K,S 

K,S 
K,I,S 

K,S 
K,S 

K,S 

K,S 

s 
K,l,D,S 

K,1,S 

K 

The 16-bit device driver model of OS/2 1.X is enhanced in OS/2 2.0 to provide support 
for intelligent I/O devices, command chaining, and scatter-gather I/0, and to allow OS/2 
2.X DOS compatibility. In OS/2 2.X, the 80386 virtual 8086 mode and paging are used 
to manage multiple concurrently executing DOS environments, called virtual DOS ma­
chines. Since the virtual 8086 mode is a subset of protected mode, the OS/2 2.X DOS 
compatibility does not use the 80386 real mode. Thus, bimodal code is not necessary for 
device drivers, since they are always called in protected mode. Bimodal 16-bit device 
drivers continue to be supported in the 32-bit system, but are called in only protected 
mode. 

The 16-bit device driver model was changed for OS/2 2.X, so that DOS device sup­
port would be separated from OS/2 device support. This division resulted in two types 
of device drivers: physical device drivers (PDDs) and virtual device drivers (VDDs). 
PDDs are the same as existing OS/2 1.X device drivers without their bimodal code and 
ROM BIOS support. VDDs utilize a new 32-bit driver model, and provide virtual DOS 
device I/O emulation. VDDs interact with PDDs when they need to perform actual I/O 
on behalf of a virtual DOS machine by calling the PDDs' VDD handler. Thus, the 32-bit 
system has fewer requirements regarding low ryhysical memory addresses, no bimodal 
code is needed, and the system and device drivers no longer use mode switching to sup­
port a bimodal environment. Existing bimodal device drivers that provide ROM BIOS 
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support still run on the 32-bit system, but their ROM BIOS handlers are never called, 
and they do not provide any DOS support. Chapter 10 provides more detail on DOS 
compatibility and its relationship to the rest of the system. Figure 8.8 illustrates the 
structure of the device driver interfaces for OS/2 2.0. 

The device driver architecture has also been enhanced to provide a new extended 
strategy interface. It provides an alternative 1/0 model for FSDs that supports intelligent 
1/0 devices, command chaining, scatter-gather 1/0, and a better asynchronous 1/0 
model. An FSD determines whether a block device driver supports the extended strategy 
interface by calling the device driver's old strategy routine. If the device driver supports 
the extended strategy interface, the address of the extended strategy entry point is 
returned. The extended strategy interface supports four operations: 

Read 

Write 

Write with verify 

Pre fetch 

The read, write, and write-with-verify operations are similar to their counterparts in 
the old strategy interface, but they support chained operations and use scatter-gather lists 
for addressing 1/0 buffers. The prefetch command allows an FSD to manage the con­
tents of an external cache associated with a block device, such as the IMB cache on the 
IBM SCSI disk controller. The prefetch command can be used by an FSD implementing 
a read-ahead heuristic. It causes data to be read from the disk to the cache without any 
system bus or memory activity. 

When an 1/0 request is executed in the 32-bit system, the file system locks the 
pages of the 1/0 buffer, and generates scatter-gather lists containing physical addresses 
for the pages of the 1/0 buffer. The buffer must be locked, since the scatter-gather list 
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Fig. 8.8 OS/2 2.0 extended device driver interfaces. 
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contains physical addresses that are not updated if the pages are discarded or swapped. 
FSDs then issue requests to the extended strategy interface using request lists instead of 
request packets. Request lists are composed of request list entries that describe each 
operation in a command chain. Each request list entry contains the scatter-gather list for 
the 1/0 buffer, the starting logical block number, and the count of logical blocks to be 
transferred. Figure 8.9 illustrates the format of a request list. 

The extended strategy interface queues incoming requests on per-device service 
queues, and then immediately returns to the caller without blocking. This allows the re­
questor, usually an FSD, to determine when the thread should be blocked. Consequently, a 
single thread can initiate multiple chained 1/0 requests before blocking. Each request list 
contains 1/0 notification fields that enable the device driver to call the requestor when the 
request list or specific request entry is complete. The notification routine usually unlocks 
the memory and unblocks the requesting thread. The extended strategy interface provides 
FSDs with a faster and more flexible 1/0 model for performing asynchronous 1/0. 

The DevHelp services are extended in OS/2 2.0 to support the paged memory envi­
ronment (Table 8.4). Functions are provided for locking memory, managing scatter­
gather page lists, and performing address translation. Also, the DevHelp(Block) and 
DevHelp(Run) interfaces to the dispatcher support single-wakeup thread dispatching, as 
described in Chapter 5. 

SUMMARY 

This chapter described OS/2 file and device 1/0 management. The architecture of file 
systems, the file system API, and the use of device drivers by file systems was 
explained. The device driver architecture was described in terms of the entry points sup­
ported by device drivers, the operations they perform, the interfaces the device drivers 
have with other components of the system, and the way that device drivers operate. 
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Name Description 

32-Bit Memory Management 

VMA!loc Allocate memory 

VMSetMem 

VMFree 

VMLock 

VMUnlock 

VMProcessToG/ohal 

VMGfohalToProcess 

VirtToLin 

LinToGDTSelector 

FreeGDTSelcctor 

GetDescln{o 

LinToPageList 

PageListToLin 

PageListToGDTSelector 

Miscellaneous 

Set memory attributes 

Free memory 

Lock linear address range 

Unlock linear address range 

Create system mapping of process 
memory 

Create process mapping of system 
memory 

Convert virtual to linear address 

Map selector to linear address 

Free GOT selector 

Return descriptor information 

Build pagelist from linear address 

Map pagelist to linear address 

Map selector to pagelist 

RegisterPDD Register POD VDD handler 

Table 8.4 32-bit DevHelp functions. 
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Modes 

K,S 

K.S 
K,S 

K,S 

K,S 

K 

K 

K 

K 

K 

K 

K 

K 

K 

s 

The OS/2 device driver model is more sophisticated and richer than is the DOS de­
vice driver model. Its two-layer architecture is similar to that found in UNIX systems. 
However, the DevHelp interface provides a much more robust feature set than is provid­
ed in most UNIX systems, and is consistent across all OS/2 releases. 

TERMINOLOGY 

absolute path name 
access mode 
advanced BIOS (ABIOS) 
" '\' character 
base device driver 
bimodal code 
bimodal device driver 
block device 
bottom half of the device driver 
bus arbitration 
bus mastering 
character device 
character queue management 

clock device 
COM: 
compatibility BIOS (CBIOS) 
controller 
current directory 
current drive 
current logical block unit 
cycle stealing 
data transfer 
deny-write sharing mode 
device addressing 
device attribute flags 
device control and status 
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device driver 
device driver header 
device help (DevHelp) functions 
device manager 
device name 
direct memory access (DMA) 
directory 
directory tree 
DOS mode 
DPATH configuration command 
dynamic link library files 
8:3 naming format 
extended attribute 
extended strategy interface 
extent 
FAT file system 
file system 
file system API 
file system driver (FSD) 
file system helper (FSHelp) 
file system name space 
file system object 
file 
filter 
FSHelp interface 
gather write 
handle 
hardware interrupt handler 
high performance file system (HPFS) 
initialization mode 
installable device driver 
installable file system (IFS) architecture 
installable file system (IFS) router 
intelligent 1/0 subsystem 
inter-device-driver 

communications handler 
interrupt-driven device 
interrupt management 
1/0 command chaining 
1/0-mapped device 
1/0 mapping 
keyboard (KBD) 
LIBP ATH configuration command 
logical block units 

logical driver 
logical file pointer 
long file object name 
LPT: 
master file table (MFT) 
memory management 
memory-mapped device 
memory mapping 
mouse (MOU) 
open file table 
open mode 
page swapper 1/0 
parallel port 
parent directory 
PATH configuration command 
pathname 
"." character 
" .. "character sequence 
physical device driver (PDD) 
pipe 
polled device 
Presentation Manager (PM) 
process management 
programmed 1/0 
read-only access 
read-write access 
request list 
request list entry 
request packet 
request queue and request 

packet management 
ROM BIOS 
root directory 
scatter-gather 1/0 
scatter-gather list 
scatter read 
semaphore management 
serial port 
sharing mode 
standard input device 
standard output device 
strategy routine 
Subsystem Control Block 

(SCB) architecture 



system file table (SFT) 
system I/O 
system null device 
system service 
tiled virtual address 
timer handler 
timer service 

EXERCISES 

8.1 Distinguish between system 1/0 and user 1/0. 
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top half of the device driver 
user I/O 
video (VIO) 
video RAM (VRAM) 
virtual device driver (VDD) 
volume manager 
write-only access 

8.2 Differentiate between block devices and character devices. Give several examples of each, 
and discuss the naming conventions used for each. 

8.3 Discuss the notion of the installable file system (IFS) architecture. Explain the purpose of 
each of the following in the context of IFS: file system API, IFS router, file system driver, file 
system helper (FSHelp) functions, device manager, and volume manager. 

8.4 Explain the organization of the file system's directory structure. Distinguish between abso­
lute path names and relative path names. 

8.5 It is possible for one process to update a portion of a file while another process is trying to 
read it. How do processes deal with this situation to avoid indeterminate results? 

8.6 What techniques are used in the high performance file system (HPFS) to achieve better per­
formance in an OS/2 environment than is possible with the FAT file system? 

8.7 In OS/2 2.X, cache management has been added to the FAT file system. Discuss several 
ways in which this addition improves performance. 

8.8 Explain how 1/0 command chaining is performed. Discuss several ways in which it 
improves performance. 

8.9 Why does a paged memory environment pose a problem for most existing DMA devices? 
How is this problem handled in OS/2? 

8.10 Why must OS/2 device drivers be reentrant? 

8.11 Why do OS/2 device drivers relinquish control of the processor when forced to wait for I/O 
operations to complete? 

8.12 Distinguish between memory-mapped devices and 1/0-mapped devices. 

8.13 What problem associated with polled devices makes them inappropriate for multitasking 
environments? How do interrupt-driven devices solve this problem? 

8.14 Explain each of the following device data transfer strategies: programmed I/0, direct mem­
ory access (DMA), and bus mastering. 

8.15 In what sense does DMA allow a low-level form of hardware parallelism? 

8.16 How are DOS device drivers insulated from the underlying hardware architecture and 
device controller dependencies? 

8.17 List several ways in which advanced BIOS (ABIOS) differs from compatibility BIOS 
(CBI OS). 
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8.18 What motivated the development of Subsystem Control Block (SCB) architecture? How is 
a typical SCB I/O operation performed? How are performance improvements realized, compared 
to with the use of ABIOS? 

8.19 Why is bimodal code loaded in physical memory addresses below lMB? 

8.20 Discuss the functions performed by the top half of a device driver, and those performed by 
the bottom half of a device driver. Explain what an inter-device-driver communications handler is. 

8.21 Why must the 16-bit OS/2 system provide a means of preventing preemption of a DOS 
application that has entered ROM BIOS? 

8.22 Explain what a tiled virtual address is. Give an example of a data area that is a tiled area of 
memory. 

8.23 What is initialization mode? Why does initialization mode execute at privilege level 3? 

8.24 Why do the addresses stored by a device driver that services an interrupt-driven device 
need to be accessible in the context of any process? 

8.25 Give a brief example of a function that is performed by each of the following categories of 
DevHelp services: process management, semaphore management, request queue and request pack­
et management, character queue management, memory management, interrupt management, timer 
services, and system services. 

8.26 Why does OS/2 2.X DOS compatibility not use 80386 real mode? 

8.27 Distinguish between physical device drivers (PDDs) and virtual device drivers (VDDs). 

8.28 What is the extended strategy interface? What operations does it support? What is the oper­
ation of the prefetch command? How does this command improve performance? 

8.29 When an 1/0 request is executed in the 32-bit system, why does the file system lock the 
pages of the I/0 buffer? 
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One picture is worth more than ten thousand words. 

Chinese proverb 

Seeing is believing. 

Proverb 

Nothing ever becomes real till it is experienced- even a 
proverb is no proverb to you till your l(fe has illustrated it. 

John Keats 
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9.1 INTRODUCTION 

This chapter describes the presentation management in the OS/2 system. It discusses the 
role of sessions, and the way applications access the user 1/0 devices. It also explains 
the windowing and graphics architecture of the OS/2 Presentation Manager (PM). 

9.2 SESSION MANAGEMENT 

Sessions, or screen groups, are managed by the session manager, a component of OS/2. 
Each session contains a logical keyboard, a logical mouse, a logical display, and a col­
lection of processes that share the logical user 1/0 devices. Figure 9.1 illustrates the 
structure of a session. The user shell allows users to start and stop applications, and to 
select the foreground session. The OS/2 user initiates session switching using the hot 
key or mouse device, and then tells the OS/2 user shell which session to activate. When 
sessions are switched, the user-1/0 subsystems switch logical device contexts, by chang­
ing the per-session, logical-to-physical user 1/0 device mappings. We shall find it is 
easiest to understand OS/2 session management by examining the evolution of OS/2 
user 1/0. 

OS/2 1.0 did not provide the PM. Although it has the capability for graphics, OS/2 
1.0 is basically a text-mode system. It provides three different types of sessions: full 
screen, DOS, and detached. Full-screen sessions are used to run OS/2 protected-mode or 
DOS programs. The per-session logical user 1/0 devices are managed for full-screen 
sessions by the video, keyboard, and mouse subsystems. Because applications are run in 
separate sessions, the user is given the appearance of multiple full-screen consoles, one 
per application. The single DOS full-screen session contains the 16-bit DOS environ­
ment. The DOS compatibility component provides the logical user 1/0 devices for the 
DOS application(s) running in the DOS environment. A single detached session con­
tains background processes that have been detached. Processes in the detached session 
run without the user 1/0 devices. Typically, programs that wake up occasionally to per­
form minimal housekeeping duties are run in the detached session. 

Fig. 9.1 Session structure. 
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Figure 9.2 illustrates the session and process hierarchy in OS/2 1.0. The user shell 
runs in the topmost session of the hierarchy. The user shell in OS/2 1.0 is called the pro­
gram selector. It is a text-mode application that provides two text-mode windows, one for 
starting programs, and one for switching among active programs. When the user shell starts 
a program, it calls DosStartSession to run a program in a new child session. Descendants of 
a process are inherited automatically by the session in which the process is running. The 
DosSelectSession API call is used by the user shell to switch the active foreground session. 
The Ctrl-Esc and Alt-Esc keyboard sequences are reserved for use as user-shell hot keys. 
The Ctrl-Esc sequence returns the session with the user shell to the foreground, so that the 
user can start new programs or switch between running programs. The Alt-Esc sequence is 
used to toggle between active sessions. An OS/2 text-mode command processor, similar to 
COMMAND.COM of DOS, is provided; it is called CMD.EXE. 

OS/2 full-screen sessions run OS/2 full-screen programs. They are characterized by 
their use of the video, keyboard, and mouse subsystems for their user 1/0. Each of these 
subsystems provides per-session logical user 1/0 devices for full-screen sessions. Each 
subsystem resides in a dynamic link library, and its API functions run in user mode. The 
subsystem converts API requests into DosDev!OCtl requests to the appropriate device 
drivers. DosWrite API requests to standard output are routed to the video subsystem, and 
DosRead API requests from standard input are routed to the keyboard subsystem. C ap­
plications can use either the OS/2 full-screen user 1/0 functions, or the C run-time-library 
standard 1/0 functions. The C standard 1/0 library functions use DosRead and Dos Write, 
which are ultimately serviced by the keyboard and video subsystems unless standard input 
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Fig. 9.2 OS/2 1.0 session and process hierarchy. 
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or standard output has been redirected to a file or device. The user I/O subsystems are 
replaceable on a per-session basis. System extensions can register with the individual sub­
systems to handle requests on a per-session basis, enabling each session ultimately to have 
its own user I/0 device management. Figure 9.3 illustrates the user 1/0 subsystem archi­
tecture for OS/2 1.0. 

The video subsystem API calls are named using the VIO prefix. Thus, full-screen 
programs are also called VIO applications. The video subsystem provides BIOS-level 
output functions for full-screen programs, the equivalent of TTY-style text output to 
CGA, EGA, and VGA devices. It maintains a logical video buffer for each session in the 
system, and switches logical video buffers when the session manager switches sessions. 
It uses the video device driver to map the logical video buffer in the process virtual ad­
dress space onto the physical video buffer when a session is switched into the fore­
ground. The video API runs in user mode in an IOPL segment, which enables it to 
access the video controller directly from user mode. Therefore, the video subsystem runs 
entirely at privilege levels 2 and 3, and accesses the video buffer directly by writing to 
the video RAM. It provides capabilities for font loading, for setting the mode of the dis­
play, and for cursor shape and positioning. It also enables applications to access the log­
ical video buffer directly. Thus, applications can perform their own graphics. 

The keyboard subsystem API calls are named using the Kbd prefix. The keyboard 
subsystem provides BIOS-level keyboard support for full-screen programs. It manages a 
logical keyboard queue for each session, and converts keyboard API requests into 
DosDevIOCtl calls to the keyboard device driver. 

The mouse subsystem API calls are named using the Mou prefix. The mouse sub­
system provides BIOS-level mouse support for full-screen programs. It manages a 

User shell Full-screen 
programs 

Video Keyboard Mouse 

Session 
manager 

DosDev/OCt/ requests 

Device drivers 

Hardware 

Fig. 9.3 Full-screen user-1/0 subsystem architecture. 
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logical mouse event queue for each session, and converts mouse API requests into 
DosDev!OCtl calls to the mouse device driver. 

The PM was introduced in OS/2, Version 1.1; it is the graphical user interface used 
in all subsequent OS/2 releases. It uses several new session types, the main one being 
the PM session. The PM session contains the user shell, and programs that use the 
graphical user interface. It contains all PM applications, including a graphic user shell 
that consists of the desktop manager, the task manager, and the file manager. 
Subsessions are used within the PM session to manage processes that share the PM ses­
sion's user I/0 devices. The PM manages the sharing of logical user I/0 devices among 
programs, and organizes them into windows on the display. It provides a device­
independent message-based user I/O model for PM programs. PM also allows text-mode 
OS/2 full-screen programs to run inside of a standard window using windowed sessions. 
Only text-mode full-screen applications can run in a windowed session. These applica­
tions are also called VIO windowable applications. Full-screen applications that access 
the logical video buffer directly can be run only in full-screen sessions. Figure 9.4 illus­
trates the session and process hierarchy with the PM. 

In OS/2 2.0, several new session types were added because of the extended support for 
DOS applications. Since OS/2 2.0 supports multiple DOS applications, each DOS applica­
tion is run in its own session. These sessions can contain text or graphics, and can be full 
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screen or windowed. DOS full-screen sessions run DOS programs in full-screen mode, and 
use the DOS compatibility component to provide the per-session logical user I/0 devices. 
Chapter 10 describes how support for DOS application user I/O is implemented. DOS win­
dowed sessions allow DOS applications to run in the PM session within a standard window. 
Figure 9.5 illustrates the OS/2 session and process hierarchy in the OS/2 2.0 system. 

OS/2 2.0 also introduces a new object-oriented user shell, called the workplace 
shell. The workplace shell allows users to interact seamlessly with applications and data 
files using intuitive drag-and-drop operations. The object model allows users to perform 
work without having to understand hierarchical file system layouts, and allows programs 
to participate in an object-oriented action paradigm. The workplace shell can also be 
configured to look like the DOS shell, the Windows user interface, or the OS/2 l .X 
desktop manager, to ease user migration. 

9.3 PRESENTATION MANAGER 

The PM is the graphical user interface of OS/2. It extends the functionality of the base 
user I/0 services to include a windowed user interface and device-independent graphic 
presentations. In a graphical user interface environment, the screen becomes a source of 
user input. Users use the mouse and keyboard to manipulate intuitive graphic controls 
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displayed on the screen. Examples of these controls are pull-down menus, dialog boxes, 
icons, buttons, and scroll bars. The PM allows programs to have a consistent user inter­
face, since the controls for these programs are built into the PM, not into the user pro­
grams. The PM is the strategic user interface of IBM's Systems Application Architecture 
(SAA). It conforms to the Common User Access (CUA) specification of SAA, and the 
PM API implements the presentation functions of the SAA Common Programming 
Interface (CPI). SAA, CUA, and CPI are discussed in more detail in Chapter 12. The 
PM architecture contains essentially the same functions in the 16-bit and 32-bit versions 
of OS/2, except where noted in this chapter. 

The PM API is divided into two functional groups: the windows AP! and the graph­
ics AP!. The windows API was derived from the windowing architecture of Microsoft 
Windows. The graphics API integrates technologies from the IBM Graphics Data 
Display Manager (GDDM), the IBM 3270 Graphics Control Program (GCP), and the 
Microsoft Windows Graphics Device Interface (GD!). Although these technologies form 
the foundation for the PM's architecture, the PM integrates them into the OS/2 protected 
multitasking environment. The PM is an extension to the base OS/2 architecture, and 
runs on top of the OS/2 kernel in the PM session. The PM is a collection of dynamic 
link libraries and executable programs that runs in user mode. The PM API is object ori­
ented. Like the base system, it uses handles to manipulate objects such as messages, 
message queues, and windows. 

The PM session contains the user shell, called the desktop manager, and PM pro­
grams. The PM session is displayed in graphics mode, and can support most all-points­
addressable (APA) display devices. Most text-mode full-screen programs can be run in the 
PM session using a standard window, except for those that directly write to the logical 
video buffer. These programs cannot be run in the PM session, since the PM manages the 
sharing of the session's logical video buffer among programs in the PM session. 

The PM user I/O model consolidates the mouse, keyboard, and display devices. The 
user I/0 interfaces for full-screen programs are called procedural, since applications call 
the system and wait on user input. The PM uses an event-driven, message-based 110 ar­
chitecture to connect the user interface to PM applications. It translates user events into 
messages that are routed to per-application message queues, which are then later pro­
cessed by functions that manage windows. Examples of messages are keyboard and 
mouse input, window modifications, and window repainting. Windows receive mes­
sages from the windows API, and perform output using the graphics APL The PM does 
not manage a logical video buffer for each window. Each window is responsible for 
redrawing itself when the PM indicates that the window needs to be redrawn. Since 
graphical information takes large amounts of memory to store, this scheme achieves a 
significant savings. 

9.4 WINDOWS ARCHITECTURE 

Windows provide a means of sharing, subdividing, and organizing the screen. A window 
is a rectangular area used to receive user input, and to display output. A windowed user 
interface is commonly compared to a "messy desktop," in which windows are similar to 
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papers and files on a desktop. They may be overlapped, obscured, resized, and moved to 
the foreground. 

The PM windows architecture is an object-oriented programming (OOP) architec­
ture. A window is an object that is used as the focus for user input, and as the frame for 
user output. Each window is associated with a window procedure (WinProc) that man­
ages all messages coming to that window. The window procedure determines how the 
window responds to messages, and paints the window's contents on the display. In OOP 
terminology, window procedures are methods that are applied to objects (windows). 
Methods are applied to windows by messages being sent to the message queue of the 
thread that created the window. The messages in the queue are dispatched by the thread 
to the correct window procedure using a callback mechanism. Message routing and the 
callback mechanism are discussed further in Section 9.5. 

The window class determines which window procedure is used to process messages 
coming to a window. The window-class mechanism allows a group of windows to share 
a single window procedure. Therefore, windows that have the same style and contents 
will differ only in the data processed by the window procedure. The class mechanism 
also supports object inheritance. This facility allows a new window to be created based 
on an existing window without the entire original window procedure being incorporated 
in the new one. Creating new window classes based on existing window classes is 
called window subclassing. A window class can be private or public. Private window 
classes are usable only by a specific PM program, whereas public window classes can 
be shared among PM programs. The PM provides several system-defined window class­
es for built-in window types, such as the standard window, menus, scroll bars, and dia­
log boxes. 

Like all PM objects, windows are accessed using handles that are assigned when 
windows are created. The coordinate space of a window ranges from ±32KB, and its ori­
gin (0,0) is lower left. Windows have a hierarchical relationship, and are located relative 
to the origin of their parent windows. 

The window hierarchy describes how the windows on the desktop are related to one 
another. The windows have a parent/child relationship similar to that used for processes. 
At the top of the hierarchy is the desktop window. It is the topmost window in the PM 
session, and it occupies the entire screen (it looks like the background). The PM user 
shell-the desktop manager-provides two windows that are children of the desktop 
window. The program manager window allows the user to organize and start programs. 
The task manager window allows the user to switch between running programs. Figure 
9.6 illustrates the PM window hierarchy. 

Children of the desktop window are called top-level windows or main windows. 
They are created by applications, and can be overlapped, obscured, or minimized. 
Operations by the user affect only the main window that is active (in the foreground). 
Only one main window is active at a time on the screen. The top-level windows are 
child windows of the desktop window, and can create subordinate windows of their own 
in the parent/child fashion. Child windows are completely contained within a parent 
window. They are always clipped to be displayed within the parent. They remain in the 
same position relative to the parent unless moved. Also, if a parent is minimized, 
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Fig. 9.6 Window hierarchy. (Adapted from "Programming the OS/2 Presentation 
Manager," Copyright 1989 by Charles Petzold. Reprinted with permission of 
Microsoft Press.) 

maximized, hidden, or destroyed, so are its children windows. Windows that share the 
same parent are sibling windows. Siblings can overlap on the screen. 

Control windows are used to receive user input from the screen. They are provided 
by several predefined window classes in the PM. Their messages are handled by win­
dow procedures inside the PM. However, the messages for control windows come 
through the message queue for the application that created the window. Examples of 
control windows are the title bar, system menu icon, minimize-maximize buttons, and 
sizing borders. The 32-bit version of PM contains support for more controls, such as 
spinbuttons, notebooks, and sliders. 

A standard window is a collection of several windows that as a unit provides a con­
sistent user interface for applications. The top-level window of a standard window is 
called the frame window. The frame window has several children: the control windows 
and the client window. The frame window is the parent and the owner of the control 
windows and the client window. The client window is the portion of the standard win­
dow that is defined by the application. The class of the client window is registered by 
the application, and messages to the client window are handled by the window proce­
dure defined for the class. Figure 9.7 illustrates a standard window with menu bar and 
scroll bars. 

Window ownership is used to manage message routing between windows. When the 
control windows of the standard window are activated by the user, they send the mes­
sage to the owning frame window for processing. The frame window performs the 
actions determined by the messages, such as minimizing the window or resizing its bor­
der. Owners are not required, and are rarely used, for client windows. 

Window redrawing is performed by window procedures when they receive the 
WM_PAINT message from PM. This message is sent to a window whenever a part of a 
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window is invalid on the display as a result of user actions. For example, if a window is 
minimized and then maximized, the window must be repainted, since the PM does not 
save the contents of the window. If a window is overlapped by another window and then 
is brought back to the foreground, portions of the window must be restored by the win­
dow procedure. Since window procedures redraw windows on demand, the PM does not 
have to save the graphical data contained in a window, resulting in a substantial memory 
savings. 

9.5 MESSAGE ARCHITECTURE 

As stated previously, the PM has an event-driven, message-based 1/0 architecture. That 
is, messages are delivered to programs as a result of events occurring at the user inter­
face. All input consists of messages delivered to window procedures. Window proce­
dures are effectively message filters that perform work on windows. Figure 9.8 
illustrates the overall PM message architecture. 

The keyboard and mouse device drivers place input event messages in the system 
input queue in order of occurrence when the PM session is in the foreground. The sys­
tem input queue is used to manage the delivery of synchronous and asynchronous mes­
sages to application message queues. It serializes events so that they are presented in 
correct sequence to applications. Each PM application has a message queue for receiv­
ing user interface event messages. The message queue is associated with the thread that 
creates it. It receives all messages going to windows created by the thread that created 
the message queue. The message router component of the PM moves messages from the 
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Fig. 9.8 PM message architecture. 

system input queue to the correct application message queues. Keyboard messages are 
routed to the window with the keyboard focus, and mouse messages are routed to the 
active window. Also, messages can be generated by the PM itself and placed in an appli­
cation's message queue. 

Messages have a simple structure. Each message contains the handle of the window 
that receives the message, the message type, and the data of the message. If the message 
contains large numbers of data, it contains pointers to the message data. Since messages 
and their data can be passed between processes, the data is located in give-get shared 
memory (described in Chapter 6). Examples of messages follow: 

WM_CREATE (create window) 

WM_SIZE (resize window) 

WM_ CHAR (route keyboard input to window) 

WM_PAINT (redraw window) 

After initializing itself, creating a message queue, defining window classes, and cre­
ating the main window, each PM application executes an application message loop that 
processes messages arriving at the message queue. The message loop is actually a spin 
loop in which the application calls WinGetMsg to retrieve a message from the queue, 
and then calls WinDispatchMsg to dispatch the message to the proper window. This loop 
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drives message delivery to window procedures from the application message queue. 
WinGetMsg removes messages from the application message queue, and blocks if there 
are no messages. It returns the WM _QUIT message when there are no more messages. 
WinDispatchMsg causes the window dispatcher component of the PM to look up the tar­
get window, and to call the correct window procedure for the message. WinDispatchMsg 
does not return until after the message is processed by the invoked window procedures. 
If a window procedure does not handle the message, it calls WinDefWindowProc for 
default window message processing. Figure 9.9 illustrates the application message loop. 

Not all messages arrive at window procedures through the message queue. Window 
procedures can also be called directly by the PM and by other window procedures. The 
message queue is used for queued messages, such as keyboard input, mouse input, timer 
messages, and menu selections. However, nonqueued messages also exist, such as those 
sent to a window when it is created or destroyed. Because both queued and nonqueued 
messages come to window procedures, a window procedure can be called directly, even 
while the thread that created the window is blocked in WinGetMsg. Also, messages can 
generate more messages. Thus, window procedures must be reentrant. 

WinSendMsg is used to call a window procedure directly with a message. Using it is 
similar to hand delivering the mail. For example, if a window procedure receives a mes­
sage and wants to send that message to one of its sibling or child windows, it calls 
WinSendMsg. WinSendMsg does not return to the caller until the target window proce­
dure finishes processing the message. WinSendMsg is used for sending a message di­
rectly to a window procedure. 

WinPostMsg is used to put a message into a message queue associated with a spe­
cific window. If a window procedure calls WinPostMsg, the call is similar to putting a 
letter in a mailbox for later delivery. The message is placed into the message queue 
associated with the target window, and WinPostMsg returns immediately. WinPostMsg 
is used for sending a message asynchronously to a window procedure. 
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Fig. 9.9 PM application message loop processing. 
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9.6 GRAPHICS ARCHITECTURE 

There are two principle types of graphics technologies used today: raster graphics and 
vector graphics. Raster graphics utilizes bitmapped images on all-points-addressable 
(APA) graphical output devices. Vector graphics are constructed using lines and pat­
terned areas. The PM is fundamentally a vector graphics system, but it can display 
graphics on both vector-based and raster-based hardware. The PM also contains some 
raster functions for bitmaps that are supported for only raster output devices. When 
using vector-based output devices, the PM translates graphics commands into device­
specific vector commands. When using raster-based output devices, the PM translates 
graphics commands into pixels using simulations. 

The graphics architecture of the PM utilizes two basic constructs: presentation 
spaces and device contexts. A presentation space defines an abstract output device, and 
is used to assemble graphics for outputting to a given device. The graphics API allows 
high-resolution graphics and text to be mixed in a presentation space. It provides func­
tions for constructing graphics objects built out of graphics primitives such as lines, pat­
terned areas, text, and images. The graphics API also provides operations for graphical 
transformations such as scaling and inversion. The graphics engine component of the 
PM is responsible for mapping device-independent presentation spaces onto device-spe­
cific device contexts. In OS/2 2.0, a 32-bit version of the graphics engine is used to in­
crease the performance and responsiveness of graphic operations. Figure 9.10 illustrates 
the PM device-independent graphics architecture. 

A presentation space defines a device-independent output device. Associated with the 
presentation space are fonts for text output, and a device context that provides the device­
dependent information for the output of the graphics drawn in the presentation space. The 
presentation space coordinate system is measured in pixels, and the origin is lower left in 
the presentation space. The PM API provides mechanisms that allow windowed graphics 
to be displayed correctly no matter what the current dimensions of the window are. 

Device contexts define the characteristics of unique output devices. Each window 
can have a unique device context. The default device context for a window is the dis­
play. An application paints a window by allocating a presentation space that is linked to 
a device context, writing to the presentation space using the graphics API, and then deal­
locating the presentation space. 

Presentation drivers are used by the graphics engine to map device-independent 1/0 
requests to specific. output devices. Presentation drivers are not the same as device 
drivers-they are 16-bit dynamic-link libraries that run at ring 2 using IOPL segments. 
Presentation drivers exist for displays, printers and plotters. Depending on the nature of 
the output device, a presentation driver may have a corresponding device driver compo­
nent that it uses for performing 1/0 to the device. 

9.7 RESOURCES 

Resources are graphical user interface objects such as icons, menus, dialog boxes, 
bitmaps, strings, and fonts. They are read-only data and are stored in the EXE or DLL 
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files of PM applications. Since resources are read-only data, they are discardable, and 
can be shared by multiple instances of a given PM program. Resources are created 
using either resource editors or resource scripts. A resource script is a text file that 
contains information for defining resources. It may also contain references to other 
files that contain resources created by resource editors. The PM toolkit provides a 
resource compiler and three resource editors: the dialog box editor, font editor, and 
icon editor. The resource compiler converts resource scripts into a binary image that is 
appended to EXE or DLL files that use the resources. Applications are not sensitive to 
resource formats, since the PM provides API functions for loading, processing, and dis­
playing resources. 

Metafiles are supported by the PM for storing pictures. The Mixed Object Document 
Control Architecture (MODCA) interchange standard is used to store metafiles in the 
PM environment. Each metafile contains graphics instructions for creating pictures on a 
device-independent graphics device. 

Bitmaps are arrays of data organized into rows and columns in which the bits corre­
spond to the pixels of a raster-based graphics device. Bitmaps are highly device depen­
dent because pixel resolution varies across graphics devices. Therefore, some level of 
device-dependence is inherent in a bitmap. Bitmaps are manipulated using bit-blt opera­
tions. The GpiBitBlt API call can be used for transferring portions of bitmaps, and per­
forming transformations on them. The icon editor provided with the PM toolkit can also 
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be used to make bitmaps. Bitmaps are accessed by handles like most PM objects, and 
are stored in binary format like other resources. 

Dialog boxes are pop-up windows that receive input from the user. They usually 
contain radio buttons, entry fields, icons, text, list boxes, check boxes, and push buttons 
as controls that allow the user to input the information. They can be built from templates 
using the dialog editor and resource compiler provided with the PM toolkit. List boxes 
are variants of dialog boxes that are used when an application has a set of selectable 
items too large for the client area of a window. 

9.8 APPLICATION DATA EXCHANGE 

There are two primary mechanisms used for data exchange between PM applications: 
the clipboard and dynamic data exchange (DDE). The clipboard is a temporary storage 
area for user-initiated data transfers between PM applications. Clipboard operations are 
usually specified on the edit menu of a PM application. Four basic operations are 
defined for the clipboard: mark, cut, copy, and paste. The mark operation is used to 
delineate an area of data in a window that the user desires to transfer to another applica­
tion. The marked area is either cut or copied to the clipboard. If it is cut, it is deleted 
from the source application. The copy operation moves a copy of the data from the 
source application to the clipboard. A paste operation is used to place the contents of the 
clipboard into a destination PM application window. Both text and graphics data can be 
transferred using the clipboard. However, both the source and destination application 
must understand the format of the data being transferred. The clipboard can hold only 
one item at a time, and access to the clipboard is serialized by the PM API functions 
used by applications to access it. 

The dynamic data exchange protocol defines how applications can access one an­
other's data. It is intended for use by future PM applications for linking documents, 
spreadsheets, and graphical data. For example, if a word processor imports a graphical 
file from another application, it does not need to retrieve the file-instead, it can have 
only a DDE link to that file. 

9.9 MULTITASKING ISSUES 

PM and Microsoft Windows share the same basic windowing and message passing 
architecture, but they exist in different environments. OS/2 is a preemptive, timeslicing, 
multitasking environment, whereas Windows is a nonpreemptive, nontimeslicing, 
single-tasking environment based on the DOS operating system. In the Windows 
environment, a program runs until its message queue is empty; only then does Windows 
switch to another program with a nonempty message queue. Therefore, all Windows 
applications but one are always suspended in the WinGetMsg API function. This setup 
presents a problem if a program takes too long to process a message. For example, if the 
user clicks on the recalculation option when working with a large spreadsheet, other 
applications are postponed until the message that initiated the recalculation is processed. 
In fact, WinDispatchMsg also does not return until the message is processed. It does not 
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return because multitasking is performed by applications that are not aware of one 
another in the Windows environment. 

At first glance, it appears that the multitasking features of OS/2 solve this problem, 
since multiple applications can process their message queues concurrently. However, 
processing of long messages by a PM application can still affect other applications in the 
OS/2 environment due to the PM's use of the message-based architecture. When the 
PM's window architecture and messaging architecture were inherited from the original 
Microsoft Windows system, other underlying problems existed that were not apparent in 
the single-tasking Windows environment. 

To illustrate the problems in the OS/2 environment, we can assume that a PM pro­
gram with a single thread takes a long time to process a message. It could be a spread­
sheet attempting to do a recalculation, or a word processor generating a large document. 
Recall that a window procedure always executes in the context of the thread that created 
the message queue and the window. Thus, the window procedure does not read a new 
message from the message queue until it finishes processing the previous message. 

If the user attempts to use the keyboard to switch applications while a long message 
is being processed, the thread that must process the keyboard message for the window is 
still working on the previous message. Furthermore, the mouse cannot be used to switch 
to a different program, because the keyboard and mouse input are serialized through the 
PM system event queue. These messages are serialized so that type-ahead and mouse­
ahead operations work correctly. Therefore, keyboard and mouse messages are routed to 
application message queues one at a time. Even if another program could get a keyboard 
or mouse message delivered to its message queue, the PM sends a message to the win­
dow losing the focus. In this case, the window losing the focus cannot process the mes­
sage because it is still processing the previous long message. If a message takes longer 
than a 0.1 second to be processed, system responsiveness to the user is reduced. If a 
window procedure enters an infinite loop while processing a message, the system is 
effectively hung. 

Therefore, the problems associated with PM programs that take a long time to pro­
cess their messages originate from two sources: the program is single-threaded, and 
messages are not interrupts. It is important to realize that messages do not preemptively 
interrupt a thread and start its execution somewhere else. Window procedures receive 
messages only as a result of calls to WinSendMsg, WinDispatchMsg, and WinPostMsg. 
A window procedure can be called recursively, but not as a result of new messages 
arriving. Rather, recursive calls are the result of a window procedure sending messages 
that result in messages coming back to it. 

The OS/2 multithread process model solves all these problems. By dedicating a sin­
gle thread to servicing the user interface, and using other threads as workers for time­
intensive operations, an application can be assured that user messages will be processed 
promptly. The threads used by a PM application for completing time-intensive opera­
tions are called non-message-queue threads, since they are not associated with a mes­
sage queue. Therefore, they cannot create windows, send messages, or call functions 
that cause window procedures to be invoked. However, non-message-queue threads can 
utilize the base OS/2 APL 
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SUMMARY 

This chapter described the user 1/0 in the OS/2 system. It discussed the role of sessions, 
and the way full-screen applications access the user 1/0 devices. It described the evolu­
tion of the OS/2 session and process hierarchy from the 16-bit system through the cur­
rent 32-bit system. The design of OS/2' s graphical user interface, the Presentation 
Manager, was described with respect to window management, device independence, and 
the message-based 1/0 architecture. 
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9.1 Explain the notion of a session. Discuss the structure of a typical session. 

9.2 Discuss the types of sessions in OS/2 LO-namely, full-screen sessions, DOS sessions, and 
detached sessions. 
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9.3 Briefly describe the functions of the video, keyboard, and mouse subsystems. 

9.4 How does the PM help to ensure that programs have consistent user interfaces? 

9.5 In what sense is the PM strategically important to IBM? 

9.6 Explain the notions of events, messages, and message queues in the context of the PM's 
event-driven, message-based I/0 architecture. 

9.7 Discuss the object-oriented nature of the PM. In particular, consider each of the following: 
window procedures, windows, messages, message queues, window classes, object inheritance, and 
window subclassing. 

9.8 Briefly explain each of the following types of windows: desktop window, top-level (or main) 
window, sibling window, control window, standard window, frame window, and client window. 

9.9 Distinguish between queued messages and nonqueued messages. 

9.10 Explain the two principal types of graphics technologies-namely, raster graphics and vec­
tor graphics. 

9.11 Discuss the PM notions of presentation space, device context, graphics engine, and presen­
tation driver. 

9.12 In the context of the PM, what are resources? 

9.13 Discuss the operation of the two primary mechanisms used for data exchange between PM 
applications-namely, the clipboard and dynamic data exchange (DDE). 

9.14 Compare and contrast the environments in which the PM and Microsoft Windows operate. 

9.15 Explain how the processing of a long message can cause problems in the PM. From what 
two sources do these problems originate? 
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Compatibility 

E pluribus unus. 
(One composed of many.) 

Virgil 

For there is no friend like a sister 
In calm or stormy weather; 

To cheer one on the tedious way, 
To fetch one if one goes astray, 
To lift one if one totters down, 

To strengthen whilst one stands. 

Christina Rossetti 
Goblin Market 

Can two walk together, except they be agreed? 

Amos3:3 

281 



Outline 

10.1 Introduction 
10.2 DOS Compatibility 
10.3 80286 DOS Compatibility 

10.3.1 Mode Switching 
10.3.2 System Structure 
10.3.3 Tiled Memory 
10.3.4 Analysis 

10.4 80386 DOS Compatibility 
10.4.l Multiple Virtual DOS Machines 
10.4.2 VDM Management 
10.4.3 8086 Emulation 
10.4.4 Virtual Device Drivers 
10.4.5 Virtual Interrupt Management 
10.4.6 Virtual DevHelp Services 

10.5 OS/2 2.X Windows 3.0 Compatibility 
10.6 OS/2 2.X 16-Bit Compatibility 
10.7 Hybrid System Strategies 
10.8 Memory Model Coexistence 
10.9 LDT Tiling 

10.10 Thunks 
Summary 

282 



10.3 80286 DOS Compatibility 283 

10.1 INTRODUCTION 

This chapter describes compatihility in the OS/2 system. "Compatibility" refers to the 
capability of an operating system to run applications developed for previous versions of 
the system, or for other operating systems. Providing compatibility for existing software 
protects customers' investments in software when the customers migrate to an operating 
system of higher functionality and performance. The retention and reuse of the existing 
code base encourages users to migrate to the new, more powerful system. 

There are two principal types of compatibility: binary compatibility and source 
compatibility. Binary compatibility is the capability of running existing applications 
without modification. Systems that provide source compatibility allow existing applica­
tion source code to be recompiled for a new system without changes. Binary compatibil­
ity is more desirable than is source compatibility, since it does not require applications 
to be recompiled and redistributed. Furthermore, most software developers do not ship, 
in standard user distributions, source code and tools for building their products. 

OS/2 provides binary compatibility for DOS applications on both the I 6-bit and 32-
bit versions of the system. The I 6-bit system allows a single DOS application to run 
with OS/2 protected-mode applications, and the 32-bit version allows multiple DOS ap­
plications to coexist with OS/2 protected-mode applications. The 32-bit system also pro­
vides binary compatibility for Windows 3.0 applications, and for existing OS/2 16-bit 
applications and dynamic-link libraries. 

10.2 DOS COMPATIBILITY 

This section describes what the characteristics of DOS applications are, and what it 
means to be DOS compatihle. DOS applications execute in the real mode of Intel 80X86 
processors, and can address up to LMB of physical memory. They perform segment 
arithmetic on the segment register values, and assume that segmented addresses are 
directly related to the physical addresses generated by the processor. DOS and BIOS 
services are accessed using the software interrupt mechanism of the 8086. DOS applica­
tions have full control of the machine, and can access the hardware directly since there 
is no protection. DOS can be extended using terminate-and-stay-resident modules, 
device drivers, and other DOS add-on technologies. DOS programs that use EMS and 
XMS to access more than 640KB of memory must manage the extra memory explicitly, 
further complicating the memory management duties already necessary due to the 16-bit 
segmented addressing scheme of the 8086. 

10.3 80286 DOS COMPATIBILITY 

There are two primary strategies used for providing DOS application compatibility with 
a protected-mode host operating system on the 80286 platform: 

Run DOS applications in protected mode. 

Run DOS applications in real mode using mode switching. 
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The first alternative makes it difficult for the protected-mode host operating system 
and the DOS environment to coexist. When DOS applications access the segment regis­
ters with real-mode semantics in protected mode, they generate general protection faults 
unless a descriptor that maps the desired memory exists. These faults occur because 
DOS and its applications believe that the segment register values are directly related to 
the physical addresses generated. In protected mode, however, the segment-register val­
ues are selectors, which are indices into descriptor tables. When DOS is emulated in 
protected mode on an 80286, these faults are serviced by the host operating system. The 
fault is processed by allocation of the descriptor that maps the desired memory that the 
DOS application intended to access, and restarting of the DOS application at the point of 
the fault. 

There are several problems with this approach. Due to an 80286 erratum, the con­
tents of the ex register are destroyed when a general protection fault occurs. Therefore, 
instructions that cause general protection faults cannot be restarted on many 80286 pro­
cessors. Although this problem can be circumvented by replacement of the defective 
80286 chips, this solution is not desirable due to another limitation. When a DOS ap­
plication generates a fault, the host system must allocate and initialize a specific descrip­
tor based on the address that the DOS application tried to access. Since there is no way 
to predict the addresses that a DOS application might need, the DOS application's ad­
dressing conflicts with the management of descriptors for the protected-mode portion of 
the host system. Therefore, descriptors cannot be dedicated to the protected-mode host 
operating system and its applications while a DOS application is running. 

Another variation on this alternative entails the use of a special test instruction 
called LOADALL, which allows the entire register set, including the hidden segment de­
scriptor caches, to be initialized in one instruction. LOADALL can be used to set any 
descriptor to perform the desired DOS access in protected mode, but the segment map­
pings it establishes are valid only until the segment registers are touched. However, the 
LOADALL alternative cannot be used on 80286 processors with the erratum that de­
stroys the ex register on general protection faults. Thus, running DOS applications in 
protected mode on an 80286 is neither realistic nor feasible. 

The second approach is to run DOS applications in real mode, and to emulate the 
DOS system using the protected-mode host operating system. This approach allows 
DOS applications to run in real mode in low memory (0 to lMB) physical addresses, 
just like they do under DOS in real mode. The protected-mode host operating system 
and its applications are loaded in the high memory (1 to 16MB) physical address 
range. Part of the host system runs in both real mode and protected mode, and is load­
ed into low memory with the DOS application. The low memory used by the DOS 
application is not moved or swapped by the protected-mode operating system while a 
DOS application is running. The host operating system switches between real mode 
and protected mode to emulate DOS services, and multitasks the protected-mode pro­
grams. Since the 80286 processor does not support a mode switch from protected 
mode to real mode, such a switch must be done by external hardware, as described in 
the following section. 



10.3 80286 DOS Compatibility 285 

10.3.1 Mode Switching 

Switching an 80286 from real mode to protected mode is accomplished simply via set­
ting of the protected-mode flag in the machine status word. However, the 80286 is not 
designed to switch from protected mode to real mode. This capability should have been 
built into the 80286 as a special instruction executable only at privilege level 0 in pro­
tected mode. The only way to switch an 80286 processor from protected mode to real 
mode is to cause the 80286 to reset. Reseting the 80286 and resuming execution in real 
mode requires external hardware support. 

The 80286 can be reset on a PC/AT using the keyboard controller. The keyboard 
controller is connected to the reset line. Issuing a special command to the keyboard con­
troller causes the reset line of the 80286 to be toggled. This operation effectively quickly 
turns the 80286 off, and then on, causing the 80286 to be restarted. When the power is 
dropped to the reset pin of the 80286, the RAM of the system is refreshed while the pro­
cessor is being reset. This refresh operation ensures that the contents of memory are pre­
served during the reset operation. 

The PS/2 introduced a faster method of resetting the 80286 without using the key­
board controller. A special I/0 port in 80286-based PS/2s is used to reset the 80286 with 
an 1/0 instruction. This method is faster than is using the keyboard controller, since the 
controller must decode and process the command to reset the 80286. An 80286 can also 
be mode switched by a triple fault. To cause such a fault, the operating system must 
cause a fault, force the fault handler to cause a double fault, and have the double fault 
handler cause yet a third fault. Compared to the other alternatives, this process is a slow 
one. Mode switching from protected mode to real mode on an 80386 requires just one 
special instruction executable at privilege level 0, and is faster than the preceding meth­
ods since it does not require a reset. 

When an 80286 is reset or is turned on, it immediately begins executing instructions 
at the top of memory in real mode. Mapped into the top of memory of all personal com­
puters is a small stub of code that branches into the system ROMs. Once in the system 
ROMs, the power-on self-test (POST) routine begins executing. POST normally tests the 
memory and devices present in the system, initializes ROM BIOS, and calls BIOS to 
read and execute the bootstrap sector from the media in the boot device. To support 
mode switching, POST must be able to differentiate between when the system has been 
turned on, and when the system has been intentionally reset for a mode switch to real 
mode. In the case of a mode switch, POST must stop executing, and branch to a prepro­
grammed location so that the system can continue executing in real mode. 

To support this, a CMOS RAM chip that retains its contents without power is used 
to maintain the shutdown status of the 80286. POST checks the shutdown status in the 
CMOS RAM to determine whether a mode switch is in progress, or whether the system 
was just turned on. If the shutdown code indicates that power was just turned on, the 
normal POST cycle is executed, and the standard boot cycle occurs. If the shutdown 
code indicates a mode switch from protected mode to real mode, it dispatches directly to 
an address saved in the CMOS RAM chip. 
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Although Intel did not provide a mode switch capability on the 80286, the designers 
of the IBM PC/AT-the first PC to use the 80286-recognized the need for mode 
switching. They invented and provided the rudimentary mode switching support through 
the keyboard controller, POST, and CMOS RAM architecture. Were it not for the fore­
sight of these designers, mode switching on an 80286 would not be possible. 

10.3.2 System Structure 

The 16-bit version of OS/2 uses the mode switching strategy to implement DOS com­
patibility on an 80286. The most recent version of the system, OS/2 1.3, provides com­
patibility for DOS 4.0. It provides the capability to execute one DOS application in real 
mode. The DOS application runs in the foreground; it is frozen when it is in the back­
ground. OS/2 cannot run DOS applications in the background since excessive mode 
switching could disrupt protected-mode applications. Also, the 80286 architecture does 
not allow OS/2 to virtualize the devices used by DOS applications. Therefore, the DOS 
application does not get hardware interrupts in the background under OS/2, which is 
why applications such as communications programs may not run in the 16-bit DOS 
compatibility environment. OS/2 allows protected-mode applications to run in the back­
ground while the DOS application is running in the foreground. The system switches 
between real and protected-mode as needed while the DOS application is in the fore­
ground. 

Since mode switching is a relatively slow operation, OS/2 attempts to minimize the 
mode switching on critical paths, such as interrupt management and context switching. 
OS/2 also attempts to maximize the amount of memory available to DOS applications 
below lMB by partitioning the system in an intelligent fashion. Figure 10. l illustrates 
the 16-bit OS/2 physical memory layout with DOS compatibility installed. 

The system's physical memory is divided into two areas: low memory, below lMB 
and high memory, above lMB. All OS/2 applications and most of the kernel are loaded 
into high memory and executed in protected mode only. The DOS application is loaded 
into low memory. Also loaded into low memory are the portions of OS/2 that need to 
run in both protected mode and real mode. Code that runs in both protected mode and 
real mode is called bimodal code. The bimodal portions of OS/2 loaded into low memo­
ry in the following: 

Device management 

Interrupt management 

Mode switching 

Context switching 

Device drivers 

Memory management, the file system, and most of the OS/2 kernel are in high 
memory to reduce the impact on DOS application memory. This strategy leaves approx­
imately 520KB for DOS applications under OS/2 1.3. Also in low memory is a stub 
DOS kernel used to route requests for DOS services from DOS applications to the 
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protected-mode kernel in high memory. Therefore, all DOS file 1/0 is emulated by 
switching to protected mode, calling the file system in high memory, performing the 
1/0, and switching back to real mode. This overhead is acceptable, since file 1/0 is slow 
compared to the performance of a mode switch. Since the file system is in high memory, 
more memory is available in low memory for DOS applications. 

The region from lMB to lMB + 64KB is known as the A20 wrap area. Due to the 
segmented scheme for generating 20-bit physical addresses on an 8088, it is possible for 
a DOS program to generate physical addresses in the range from lMB to lMB + 64KB. 
On an 8088 system, these addresses wrap to the low 64KB of physical memory. 
However, 80286 physical addresses are 24 bits. The twenty-first address line of the 
80286 is called the A20 line, and its setting determines whether real-mode programs 
wrap low physical memory, or directly access the range from lMB to lMB + 64KB. 
When an 80286 is started, the A20 line is disabled, causing the 80286 to emulate the 
8088 environment. When the 80286 is switched to protected mode, the A20 line is en­
abled, since the protected mode of the 80286 generates 24-bit physical addresses. 
However, the A20 wrap area can be addressed in real mode if the A20 line is enabled 
manually. OS/2 can thus use the memory in the A20 wrap area for bimodal code by 
managing the state of the A20 line. When running a DOS application in real mode, OS/2 
disables the A20 line to force the 8088 segment wrapping semantics on DOS ap­
plications. When accessing bimodal code in the range from IMB to IMB + 64KB in real 
mode, the OS/2 kernel enables the A20 line. 

The DOS system services are emulated by the OS/2 system. The DOS system does 
not run in low memory-only a DOS application does. A stub DOS kernel is used for 
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applications that jump directly into DOS without calling INT 21. DOS services are em­
ulated by the low part of the kernel if possible; otherwise, the system switches to 
protected mode to perform the operation. Since DOS applications use the OS/2 file 
system, they benefit automatically from the installable file system architecture. Thus, 
DOS applications can access FAT files and HPFS files, and can share file resources with 
protected-mode programs. 

DOS applications also use the ROM BIOS services by executing software inter­
rupts. BIOS requests are emulated by real-mode code in the device drivers and the ker­
nel. As we saw in Chapter 8, DevHelp(SetROMVector) is used by 16-bit physical device 
drivers to hook BIOS software interrupts. The device driver then either emulates the 
BIOS functions, or uses BIOS to provide the function. When BIOS is used, the device 
driver calls DevHelp(ROMCritSection) to tell the system to delay context switching un­
til the BIOS request is complete. It is necessary to prevent preemption when the DOS 
environment is executing BIOS, since background protected-mode programs can poten­
tially issue requests to the same device. These requests cannot proceed when BIOS is 
being used, since BIOS is not reentrant, and the device drivers compete with BIOS to 
program the same hardware. 

Since the system multitasks protected-mode applications in the background when a 
DOS application is in the foreground, and since mode switching is performed so that all 
these programs apparently can run concurrently, interrupt-driven device drivers may get 
in one mode interrupts for requests that were started in the other mode. For example, a 
background protected-mode application may make a device driver request, and the 
thread may be blocked until an interrupt occurs. Since the system is multitasking 
between the DOS application in the foreground and real-mode and protected-mode pro­
grams in the background, the interrupt for the 1/0 request can occur when the processor 
is in real mode. To make the buffer addresses used in device 1/0 requests accessible in 
both modes, interrupt-driven device drivers save the buffer addresses as physical 
addresses instead of mode-sensitive virtual addresses. The physical addresses are con­
verted to virtual addresses by the device driver at interrupt time using 
DevHelp(PhysToVirt). When the device driver is done using the temporary mapping, it 
calls DevHelp(UnPhysToVirt). 

Device driver interrupt handlers also may need to access memory above lMB in real 
mode at interrupt time to transfer data from requests initiated in protected mode. On 
PC/ AT architectures, a special Intel test instruction, called LOAD ALL, is used by 
DevHelp(PhysToVirt) to establish a mapping to memory above lMB in real mode. 
However, while the LOADALL instruction is in effect, the segment registers cannot be 
altered. On fast mode-switching architectures, such as any PS/2 or 80386 machine, 
DevHelp(PhysToVirt) switches to protected mode to access the memory above lMB, and 
DevHelp(UnPhysToVirt) switches back to real mode to complete service of the interrupt. 

Interrupt table shadowing is used to detect when DOS applications hook hardware 
interrupts. The OS/2 protected-mode interrupt manager detects changes to the interrupt 
vector table made by DOS applications when the system switches from real mode to 
protected mode. If the hooks placed into the interrupt vector table are not in conflict 
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with devices owned by protected-mode applications and device drivers, the interrupt 
manager restores the state of the interrupt vector table when the processor switches back 
to real mode. If there are any conflicts, however, the DOS application is not allowed to 
hook the interrupt when the system switches back to real mode. 

10.3.3 Tiled Memory 

Another mechanism used for optimizing access to memory objects used by bimodal 
code is tiled memory. Tiling lets bimodal code execute correctly regardless of the pro­
cessor mode. It allows the same virtual address to access the same physical memory 
regardless of whether the processor is in real mode or protected mode. This is done by 
reserving specific selectors, and setting the base address within the descriptors to be the 
selector* 16. For example, the ROM BIOS data area is mapped into the physical memory 
of a personal computer at 400H. Therefore, the real-mode virtual address of physical 
memory 400H is 40:0. Tiling the ROM BIOS data area results in virtual address 40:0 
accessing physical address 400H in protected mode also. Tiling achieves this result by 
allocating the GDT descriptor referenced by selector 40, and setting the base address in 
the descriptor to physical address 400H. Thus, subsequent uses of the address 40:0 in 
real mode and protected mode cause physical address 400H to be accessed. Figure 10.2 
illustrates tiling. 

Tiled memory objects and the bimodal code that accesses them are in low physical 
memory. Tiled objects include the following: 

Protected mode J H 1 Selector/segment value 
ode 

Descriptor 
table ---------------

Segment 
(64KB) 

Seg*16 
Sel*16 --------------

Physical memory 

Fig. 10.2 16-bit memory tiling. 
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Low kernel code and data segments 

ROM BIOS data area 

Device driver request packets 

The device driver code and data segments that exist in low memory are not tiled. 
The kernel sets the segment registers to the correct values for the current mode before 
the strategy and interrupt entry points are called. 

10.3.4 Analysis 

The successful coexistence of the DOS application with the protected-mode applications 
of OS/2 is a significant achievement on the 80286 architecture. Incorporating compati­
bility for an unprotected system such as DOS within a protected system is difficult, 
especially since the 80286 was never intended to support protection. 

Due to the 80286 architecture, DOS compatibility is limited. The system cannot pro­
tect itself from ill-behaved DOS applications, since there is no protection from real mode. 
Only a single DOS application can run in the foreground, and some DOS communications 
applications do not run in the compatibility environment since they do not get interrupts in 
the background. There is no XMS, EMS, VCPI, or DPMI support, since these all conflict 
with the management of memory above 1 MB by the protected-mode OS/2 kernel. 

10.4 80386 DOS COMPATIBILITY 

The 80386 provides features that overcome the DOS compatibility limitations of the 
80286 architecture. The 80386 incorporates virtual 8086 (v86) mode to allow 8086-
based systems and applications to run in a protected environment. Running in virtual 
8086 mode is equivalent to running in protected mode with real-mode instruction and 
addressing semantics at privilege level 3. Therefore, v86 mode enables a DOS environ­
ment to be encapsulated, and thus to coexist with a protected-mode system and applica­
tions without the problems of mode switching and system integrity. Applications 
running in v86 mode cannot directly access supervisor functions or perform 1/0 without 
causing general protection faults. These general protection faults are then serviced by 
the protected-mode operating system. Memory-mapped and 1/0 mapped device 1/0 can 
be trapped by the underlying protected-mode operating system, and can be emulated. 

Software and hardware interrupts in v86 mode cause the 80386 to switch to protect­
ed mode. Therefore, the system never uses real mode. The address space accessible 
when the processor is running in v86 mode corresponds exactly to that of an 8086 with 
the same real-mode semantics for processing the values placed in segment registers. The 
v86 mode feature provides fast switches between protected mode and virtual 8086 
mode. 

The paging feature of the 80386 processor allows multiple virtual 8086 address 
spaces to coexist. Each virtual 8086 mode task can be allocated its own linear address 
space by allocation of one page table per v86 task. Paging also enables the emulation of 
EMS and XMS. Thus, the 80386 supports true DOS multitasking without the use of real 
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mode. A protected operating system such as OS/2 can provide DOS multitasker func­
tionality without compromising its system integrity. 

Each v86-mode task effectively has its own virtual PC. It has its own v86 virtual 
address space and virtual devices, and it performs virtual I/0. Whether DOS applica­
tions running in v86 mode receives real or virtual interrupts is a policy decision, made 
by the protected-mode operating system that provides the compatibility. Real interrupts 
are delivered when the interrupt occurs, whereas virtual interrupts are delayed until the 
intended v86 mode task is the current running task. If v86-mode tasks are given only 
virtual interrupts, then they can also be paged. If they are given real interrupts, however, 
they cannot be paged, since the interrupt handler may be paged out. It is too complex 
and slow to have the system block to bring in pages for a DOS application's interrupt 
handler at interrupt time. Furthermore, if real interrupts are delivered to a v86-mode 
task, the v86-mode task can breach the integrity of the system. 

There are two approaches to DOS compatibility on the 80386 utilizing v86 mode. 
The first is running DOS in a v86-mode task. DOS is loaded into a v86-mode address 
space, and provides all DOS services for the DOS application running in the v86-mode 
task. The host operating system provides emulation services to provide a virtual PC en­
vironment in which DOS and its applications can run. The v86-mode task emulates de­
vice level hardware 1/0 and BIOS-level I/O services. This approach allows for absolute 
DOS compatibility. However, it does not allow the host operating system to control 
polling in the DOS kernel, resulting in wasted processor cycles. Also, the memory taken 
up by the DOS kernel uses memory in the v86-mode address space that could be used by 
DOS applications. This approach also makes file sharing with the host operating system 
difficult, since direct hardware and BIOS I/O to the block devices that contain the files 
must be intercepted and routed through the network redirector interface. 

The second approach to providing DOS compatibility on an 80386 using v86 mode 
is to emulate DOS in a v86 task. All DOS application interfaces are emulated using the 
host operating system, and virtual hardware and BIOS support are provided for each 
v86-mode task. This approach allows the host operating system to control the DOS envi­
ronment completely. It allows the system to reduce polling and wasted processor cycles 
caused by the DOS kernel and its applications. More memory is available for DOS ap­
plications, since the DOS kernel is not mapped within the v86-mode address space. 
Since DOS I/0 requests are serviced by direct DOS emulation, instead of via trapping of 
BIOS and hardware 1/0 requests generated by the DOS kernel, this approach achieves 
better performance than does the alternative of running DOS. This performance advan­
tage is due to a reduction in the number of traps between v86 mode and protected mode. 
However, the system must be revised when the contents of the DOS system changes. 

10.4.1 Multiple Virtual DOS Machines 

OS/2 2.0 uses multiple virtual DOS machine (MVDM) technology on the 80386 to provide 
DOS compatibility. Each DOS application runs in a virtual DOS machine (VDM) in v86 
mode. A VDM is a v86-mode variant of an OS/2 single-thread process. Each VDM exe­
cutes a DOS application and emulates the functions of DOS in a virtual PC environment. 
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VDMs run within their own sessions, and can be multitasked with OS/2 protected-mode 
programs. DOS text and graphics applications can run in either full screen sessions or 
windowed sessions using a standard PM window. MVDM architecture uses the DOS emu­
lation approach, and is compatible with DOS 5.0. However, since the PC hardware and 
BIOS emulation is so complete, MVDM technology also has the capability of booting the 
actual DOS operating system into a DOS environment. This facility gives users the capa­
bility of running DOS applications that are DOS version specific. 

The MVDM architecture provides a protected execution environment for DOS appli­
cations, to prevent ill-behaved DOS applications from disrupting the system. The paging 
feature of the 80386 is used to emulate EMS and XMS, and DOS applications are paged 
with OS/2 applications. Since the DOS emulation approach is used for DOS compatibility, 
a large amount of application memory is available to DOS applications. Also, the emula­
tion layers provide compatibility for DOS communications and NetBIOS applications. 

The MVDM architecture is layered, allowing the virtual DOS environment to be 
custom-tailored and extended. It also does not allow DOS applications to access the 
block devices directly, since these devices are managed by the OS/2 file systems. 
However, DOS applications benefit from the OS/2 installable file system environment, 
and can access and share files on both FAT and HPFS logical drives. 

The MVDM kernel extends the existing OS/2 kernel to support virtual DOS machines. 
It runs entirely in protected mode, and uses the dispatcher's EnterKMode!ExitKMode ser­
vices for dispatching VDMs in the same fashion as regular OS/2 processes. Figure 10.3 
illustrates the MVDM architecture. 

As Fig. 10.3 shows, the MVDM kernel consists of the following major components: 
VDM management, DOS emulation, 8086 emulation, and virtual device drivers (VDDs). 
VDM management is responsible for creating and terminating VDMs. It manages sys­
tem resources for all VDMs and provides virtual device helper (VD Help) services for 
virtual device drivers. 

The DOS emulation component emulates the function of DOS on a per-VDM basis. 
Each VDM effectively has its own DOS and virtual PC. DOS services either are pro­
vided directly by the stub virtual DOS kernel loaded into each VDM, or are routed to the 
OS/2 protected-mode kernel. The DOS emulation component also provides compatibili­
ty for undocumented DOS interfaces. 

The 8086 emulation component is responsible for 8086 instruction decoding. It con­
trols the per-VDM I!O permission map (/OPM) that is used for specifying the I/O ports 
a VDM can access. The per-VDM IOPM structure is defined by the 80386, and is 
mapped into the system TSS when a VDM is being executed. The 8086 emulation com­
ponent provides routing services for traps caused by software interrupts and virtual I/0 
device accesses, to allow the latter to be emulated correctly. 

VDDs are used to emulate DOS devices at the hardware and BIOS level on a per­
VDM basis. They use VDHelp functions to obtain services from the system. VDDs use 
protected-mode physical device drivers (PDDs) to access the hardware. VDDs simulate 
virtual hardware interrupts at task time into VDMs, instead of allowing VDMs to get 
hardware interrupts at interrupt time. 
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Fig. 10.3 MVDM architecture. (Adapted from OS/2 Notebook, Copyright 1990, 
Microsoft Corporation. Reprinted by permission of Microsoft Press.) 

10.4.2 VDM Management 

The VDM manager is responsible for the creation, termination, and control of virtual 
DOS machines. It loads and initializes virtual device drivers, provides VDHelp functions 
for virtual device drivers, and accesses system resources for VDMs. The VDM manager 
provides a compatible DOS environment that supports a standard hardware configura­
tion. It utilizes the installable, customizable virtual device driver layer to perform the 
virtual I/0 and BIOS services for the VDMs. VDM management also calls the virtual 
device driver VDM-creation entry points when VDMs are created. 



294 Compatibility 

VDM creation supports per-VDM configurations. For example, each VDM can 
have its own CONFIG.SYS that describes how it should be configured. When a VDM is 
created, the VDM manager calls the OS/2 kernel to create a process and the associated 
structures, such as a PTDA, TCB, and TSD. It then calls memory management to create 
an arena for the VDM, and creates an I/0 permission map for the VDM. The 8086 
emulation component is initialized for the VDM, and all the VDD per-VDM initializa­
tion entry points are called. The last part of VDM creation is to call DOS emulation to 
initialize the DOS device drivers and the DOS arena, and to load the COMMAND.COM 
shell or whatever program the user specifies through the configuration. 

VDM termination occurs when a DOS application running in a VDM terminates, or 
when the VDM is terminated by the user through interaction with the desktop manager. 
When a VDM terminates, the VDD per-VDM termination handlers are called so that 
they can clean up their per-VDM data structures. The VDM manager then calls normal 
process cleanup routines in the OS/2 kernel for reclaiming resources used by the VDM, 
such as files. VDMs are also terminated by the MVDM kernel when invalid operations 
occur in a VDM. 

The session manager notifies the VDM manager when screen switches occur. The 
VDM manager notifies the mouse, keyboard, and video VDDs to allow them to reset 
their virtual-to-real device mappings. When a VDM is switched, the VDM manager is 
also responsible for changing the IOPM for the process. The OS/2 memory manager ed­
its the page directory to context switch VDM address spaces. 

The VDM process address space, or v86 address space, is similar to a regular flat 
model 32-bit program that has a special 4MB private arena. When a VDM runs in user 
mode, it is in v86 mode. Each VDM has 4MB of linear address space that are mapped 
by a single page table. This 4MB linear address space for each VDM is reserved in the 
system arena. The current VDM is mapped at linear addresses 0 to 4MB by editing of 
the page table entry for that range of addresses into the page directory. Page 0 of each 
VDM contains the interrupt vector table, ROM BIOS data area, DOS communications 
area, and the virtual DOS kernel stub. Figure 10.4 illustrates the VDM process address 
space. 

The A20 wrap area in Fig. 10.4 is used to emulate the behavior of real-mode appli­
cations accessing addresses between lMB and lMB + 64KB. On an 8086, it is possible 
to generate physical addresses between lMB and lMB + 64KB using real-mode virtual 
addresses (e.g., FFFFH:FFFFH). However, since an 8086 has only 20 bits of address 
lines, some of these addresses wrap into the first 64KB of physical memory. In a VDM, 
the wrapping of these addresses is emulated by the page table entries for the range be­
tween lMB and lMB + 64KB being set to be the same as the page table entries for the 
first 64KB of the VDM. 

The memory between the top of the A20 wrap area and 4MB is the per-VDM mem­
ory area. It is used for per-VDM data allocated by the VDM kernel, and also for per­
VDM instance data allocated by the VDDs. It is not accessible to applications running in 
v86 mode, since it is out of the v86-mode address space. This memory is used for main­
taining the virtual video buffer, and for emulating expanded memory. 
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VDM events are used by VDDs to sequence and control the execution of VDMs. 
There are two kinds of events: global events and local events. Global events are called 
the next time any OS/2 process runs. Local events are called when a specific VDM is 
dispatched. The events are implemented in a manner similar to the force flags described 
in Chapter 5 for regular OS/2 processes. The VDM kernel and VDDs run in kernel 
mode, except when receiving hardware interrupts from physical device drivers. When 
they need to set local and global event handlers, they call VDHelp interfaces in the 
MVDM kernel to register the event handlers. The ExitKMode routine of the dispatcher 
detects the presence of registered event handlers and processes them before dispatching 
to user (v86) mode. Event handlers are commonly used by VDDs to simulate interrupts 
into VDMs at task time. 

10.4.3 8086 Emulation 

The 8086 emulation component manages communication between the VDM 8086 in­
struction stream and the virtual device drivers. It controls the execution flow of VD Ms 
with respect to 1/0-sensitive instructions, and provides routing of software interrupts and 
1/0 instruction traps to VDDs. All exceptions, traps, and faults caused in v86 mode are 
routed to the 8086 emulation component by the OS/2 kernel trap manager. The 8086 
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emulation component enables virtual device drivers to emulate BIOS-level and hard­
ware-level 1/0 in a VDM. 

IOPL is the minimum privilege level needed to use 1/0-sensitive instructions in pro­
tected mode. It was discussed in Chapter 2 with respect to the protected-mode architec­
ture of Intel's 80X86 processors. 1/0-sensitive instructions, or IOPL-sensitive 
instructions, are those that can alter the state of the interrupt flag: IN, OUT, CLI, STI, 
POPF, PUSHF, INT, and IRET. If the current privilege level is numerically greater than 
the IOPL, a general protection fault occurs when 1/0-sensitive instructions are executed. 
IOPL for OS/2 applications is set at privilege level 2. The privilege level for an applica­
tion running in v86 mode is 3. IN and OUT instructions are not I/0 sensitive in v86 
mode since the IOPM in the TSS is used to manage access to I/0 ports in v86 mode. 

The IOPL policy for v86 mode has several ramifications on the design of DOS 
compatibility. If IOPL is set less than 3, 1/0-sensitive instructions cause general protec­
tion faults. Therefore, with IOPL less than 3, 1/0-sensitive instructions must be emu­
lated, and the interrupt flag must be virtualized on a per-VDM basis. However, large 
numbers of 1/0-sensitive instructions in BASIC programs can cause an excessive 
amount of trapping for providing emulation. Trapping from v86 mode to protected mode 
at ring 0 is expensive compared to most operations. It is most comparable to a kernel 
system call for protected-mode OS/2 applications. If IOPL is set to 3, 1/0-sensitive in­
structions work without trapping when executed in v86 mode. However, this allows 
DOS applications to access the real interrupt flag of the system. If a DOS application 
disables interrupts and goes into a spin loop, it could potentially hang the entire system 
unless preventative measures are enforced. 

MVDM uses IOPL set to 3 to provide the best performance possible. This setting 
reduces the trapping overhead, but lets VDMs disable interrupts, a potential integrity 
problem for the whole system. To make sure that a DOS application does not disable in­
terrupts and go into a spin loop and hang the system, OS/2 uses a watchdog timer. A 
watchdog timer is set with a duration interval; as long as the timer is primed before that 
interval expires, the timer does not interrupt. If the watchdog timer interrupts, the system 
terminates the DOS application. Therefore, setting IOPL to 3 allows the system to 
achieve maximum performance, and using the watchdog timer prevents DOS applica­
tions from taking down the system or disrupting protected-mode applications. 

IOPL is set to 0 for a single VDM only when that VDM needs to have the interrupt 
flag virtualized. For example, when some VDD needs to simulate a hardware interrupt 
into a VDM, it must be able to detect when the VDM can be interrupted. Therefore, 
IOPL is decreased to less than 3, so that the interrupt flag can be virtualized for a VDM, 
and the system can detect when the interrupts are enabled in that VDM. IOPL is in­
creased back to 3 when the simulated interrupt is delivered to the VDM. 

The software interrupt instructions, INT, INTO, and INT 3, need special handling 
since the interrupt vector table is never used by the 80386 while executing in v86 mode. 
All software and hardware interrupts cause the 80386 to switch to protected mode when 
it is in v86 mode. Therefore, the 8086 emulation component provides a function called 
software interrupt reflection to route these interrupts to VDMs as appropriate. 
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If IOPL is less than 3, the software interrupt instructions cause general protection 
faults, and are routed to the 8086 emulation component through the general-protection­
fault handler. If IOPL is set to 3, the software interrupt instructions cause control to vec­
tor through the IDT. If the gate descriptor for an interrupt in the IDT has privilege level 
3, control is passed to 8086 emulation from the interrupt handler at privilege level 0. If 
the gate descriptor's privilege level is less than 3, a general protection fault occurs, and 
the interrupt is routed to 8086 emulation through the fault handler. 

Software interrupt reflection occurs as follows. A software interrupt causes the 
80386 to enter protected mode at privilege level 0. When the system detects that the 
software interrupt occurred in v86 mode, either through the general-protection-fault han­
dler or through an interrupt handler mapped by the IDT, control is transferred to the 
8086 emulation component. The INTO and INT 3 software interrupts are routed to the 
8086 emulation component through the IDT by setting the descriptors for their interrupts 
to privilege level 3. If either of these instructions occurs while IOPL is less than 3, it is 
routed to the 8086 emulation component through the general-protection-fault handler. 
All other software interrupts are always routed to 8086 emulation through the general­
protection-fault handler. 

Once control comes to the 8086 emulation component, the MVDM kernel enters 
kernel mode. The 8086 emulation component then decodes the instruction causing the 
control transfer, and determines the type of the interrupt. It locates the destination of the 
interrupt by scanning the interrupt vector table in the VDM's memory. It builds a simu­
lated interrupt stack frame on the v86-mode stack, and calls ExitKMode to dispatch the 
VDM. When the VDM runs, it begins running in the interrupt handler, with the IRET 
frame on the stack looking like an interrupt occurred. 

There are two ways that a VDD can hook a software interrupt. In some cases, the 
VDD wants to get control before the interrupt is reflected in the VDM. In this case, a 
prerej?ection hook is used. In other cases, the VDD wants to allow any interrupt han­
dlers installed by DOS applications to be able to handle the interrupt before the VDD. In 
this case, the VDD uses a postrejlection hook. The VDD sets a postreflection hook by 
placing a breakpoint in the return address portion of the IRET stack frame on the v86-
mode stack. When the interrupt handler in the DOS application executes the IRET in­
struction to complete interrupt service, it causes a fault, and control ultimately vectors to 
the VDD that placed the hook. 

VDM breakpoints are used by the 8086 emulation component to control execution 
flow when in v86 mode. The ARPL instruction is inserted into the VDM's interrupt vector 
table and interrupt stack frames when VDM breakpoints are set. Execution of the ARPL 
instruction in v86 mode causes a general protection fault, and the system ultimately vec­
tors to the 8086 emulation component. VDM breakpoints are used to transition from v86 
mode in a VDM to the MVDM kernel running in kernel mode. VDM breakpoints are not 
like events. Events occur in the dispatch cycle from protected mode to v86 mode. 
Breakpoints occur in v86 mode, and return control to the protected-mode MVDM kernel. 

Protected instructions, such as LGDT and LLDT, are reflected back to the VDM 
that originated them as invalid opcode exceptions. The same policy is used for invalid 
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v86-mode and real-mode instructions. Other valid exceptions and traps generated by a 
VDM are routed through the IDT and then reflected to the VDM. 

10.4.4 Virtual Device Drivers 

Virtual device drivers virtualize hardware and ROM BIOS services on a per-VDM basis. 
They provide support for the direct manipulation of memory-mapped I/0 devices, and 
the direct programming of I/O ports. They also emulate ROM BIOS software interrupt 
services, and support the direct manipulation of the ROM BIOS data area by DOS 
applications. VDDs provide these services by intercepting hardware and software inter­
rupts, and maintaining a virtual hardware state for each VDM. VDDs use VDHelp ser­
vices to hook BIOS interrupts, to trap I/O port and memory-mapped I/0 device accesses, 
and to access system services. 

VDDs are trusted modules that execute in protected mode at ring 0. They are flat 
0:32 modules, usually written in a high-level language such as C. VDDs use the 32-bit 
executable format that is designed for OS/2 2.0. They are distinguished from EXEs and 
DLLs by a special bit in the executable header, and are loaded when the system is start­
ed. Each VDD contains a code object, a data object, and an instance data object. The 
code and data are shared across all VDM contexts and are mapped into the system arena. 
The instance data object is used for per-VDM memory, and is mapped at the same 
address in each VDM. VDDs are protected from DOS applications running in a VDM 
since they are not mapped into the v86-mode-accessible portion of the VDM address 
space. VDDs are responsible for preventing VDMs from corrupting one another and the 
system. The memory used by VDDs can be swappable or fixed, and private (per VDM) 
or shared (global). 

The architecture of existing OS/2 device drivers changes because of the VDD archi­
tecture. Device drivers, as they were known in the 16-bit version of OS/2, no longer 
need to be bimodal since the system never executes in real mode. Therefore, they are 
called in only protected mode on OS/2 2.0. Also, the BIOS and DOS interrupt support 
necessary in existing 16-bit device drivers is no longer needed since this support is pro­
vided by VDDs. Furthermore, the tiling of objects, allowing them to be accessed in real 
mode and protected mode using the same virtual address, is not required. Therefore, 
existing 16-bit device drivers have a modified architecture called physical device drivers 
(PDDs). PDDs provide support for protected-mode applications, and also provide ser­
vices for VDDs using a private VDD-PDD interface. Because PDDs are used for actual 
I/O, VDDs remain independent of the physical hardware underlying the virtual DOS 
implementation. Figure 10.5 illustrates the VDD-PDD model. 

The VDD has several simple interfaces. The VDD initialization routine is called 
when the VDD is loaded as the system is started. There is a per-VDM initialization rou­
tine called by the VDM manager when a VDM is created by a user. The per-VDM ini­
tialization routine usually initializes the virtual device and the virtual ROM BIOS state; 
hooks any necessary software interrupts, I/O ports, or memory-mapped addresses; and 
allocates per-VDM memory. When a VDD is called by a PDD at interrupt time, it is 
executing in interrupt mode on the interrupt stack of the system. However, VDDs do not 
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Fig. 10.5 32-bit model for physical and virtual device drivers. (Adapted from OS/2 
Notebook, Copyright 1990, Microsoft Corporation. Reprinted by permission of 
Microsoft Press.) 

process interrupts in interrupt mode; rather, they defer processing of interrupts until task 
time. The trap and event handlers of a VDD are called in kernel mode running on the 
thread stack for that VDM. 

10.4.5 Virtual Interrupt Management 

The virtual interrupt management services component is responsible for simulating 
hardware interrupts into VDMs. It performs services similar to software interrupt reflec­
tion, but the routing and source of the interrupts is external to the VDM. Each VDM is 
provided with a virtual programmable interrupt controller (VPIC) device by the VPIC 
VDD. As stated previously, VDMs receive hardware interrupts not at interrupt time, but 
rather at task time. Hardware interrupts are routed to a VDD from a PDD when they are 
received in interrupt mode. Typically, the VDD calls VDHelp to set a global event han­
dler so that the VDD can process the interrupt at task time, and then returns to the PDD 
to finish regular interrupt processing. The next time a process attempts to exit kernel 
mode, the global event handler set by the VDD is called. The VDD then calls VPIC ser­
vices through VDHelp to simulate a hardware interrupt into the VDM for which the in­
terrupt was targeted, using a local event handler. 

The local event causes the VPIC to get control before the VDM is dispatched. If in­
terrupts are disabled in the target VDM, VPIC virtualizes the interrupt flag to determine 
when the VDM can receive the simulated interrupt. In this case, the VPIC sets IOPL to 0 
and dispatches the VDM. When the interrupts are finally enabled in the VDM, a trap 
occurs because IOPL is less than 3 (IOPL-sensitive instructions are being emulated). 
VPIC receives control, restores IOPL to 3, and then simulates the interrupt into the 
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VDM using a mechanism similar to software interrupt reflection. An IRET stack frame 
is built to simulate an interrupt on the v86 mode stack. VPIC then exits the kernel, caus­
ing a dispatch cycle to occur. The next time the VDM runs, it executes the interrupt rou­
tine. When the VDM runs its interrupt routine, the V86 mode stack has an IRET frame 
pointing to the interrupted instruction, and the VDM's VPIC device and interrupting vir­
tual device look like they have just been interrupted. 

10.4.6 Virtual DevHelp (VDHelp) Services 

The services of the virtual device helper (VD Help) are used by VDDs to gain access to 
the MVDM kernel and other OS/2 system services. Unlike the 16-bit DevHelp and 
FSHelp interfaces, VDHelp is dynamically linked using the 32-bit dynamic linking 
model. VDHelp is accessed using stack-based parameter passing just like 32-bit APls. It 
provides functions that allow VDDs to register for the following: 

Software and hardware interrupts 

Specific 1/0 traps 

Page faults to memory-mapped 1/0 devices 

Memory management 

PDD-VDD communication 

VDM state control 

VDM event and breakpoint management 

Virtual interrupt management 

VDDs can use VDHelp to hook page faults to memory-mapped 1/0 devices. They 
do so by calling the memory manager, so that, when a page fault occurs on certain virtu­
al addresses in a v86 mode address space, control is routed to the VDD emulating the 
memory-mapped device. Memory can be allocated in either a global or a per-VDM 
instance context, and aliasing and mapping services are available to allow EMS emula­
tion. Also, there are page management features to enable the virtual-video device driver 
to perform lazy page copying of the video buffer data during VDM context switching. 

10.5 OS/2 2.X WINDOWS 3.X COMPATIBILITY 

The 32-bit version of OS/2 provides binary compatibility for Windows 3.X real-, and 
standard-mode applications. The compatibility is not implemented with a compatibility 
layer that maps Windows 3.X application requests into OS/2 PM requests; instead, a 
special VDM is provided that emulates a DPMI server. Loaded into the VDM is a spe­
cial version of the Windows 3.X kernel that directly services the requests of Windows 
3.X applications running in the VDM. Unlike in Windows 3.X, ill-behaved or defective 
Windows 3.X applications cannot disrupt the entire system, since the Windows environ­
ment is encapsulated. OS/2 2.X provides an environment with better protection, memory 
management, and integration for Windows 3.X applications. 
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10.6 OS/2 2.X 16-BIT COMPATIBILITY 

The 32-bit OS/2 system can run 16-bit OS/2 EXEs and DLLs. It provides support for the 
entire 16-bit API, including support for loading 16-bit EXEs and DLLs and any as­
sociated file formats that the API supports. This support is needed to encourage the mi­
gration of users running 16-bit OS/2 on 80386-based computers to the 32-bit OS/2 
platform. Also, since OS/2 is such a large system, it is impossible to convert the entire 
system to a 32-bit system in the first release. Therefore, the system is a hybrid of 16-bit 
and 32-bit code internally. Such a hybrid system requires that 16-bit and 32-bit code 
coexist. The system also provides support for calling 16-bit APis from 32-bit modules. 
This support is needed since all user-supplied DLLs may not be available in 32-bit for­
mat when the product is initially shipped. 

10.7 HYBRID SYSTEM STRATEGIES 

There are basically three methods that allow a 32-bit API and a 16-bit API to coexist. 
The first alternative is to have separate 16-bit and 32-bit subsystems. This alternative is 
difficult to implement because usually some kind of interlock is needed between the 16-
bit and 32-bit functions, since they perform similar actions and manipulate the same re­
sources. The second approach is to use a 16-bit system that provides a 32-bit API by 
mapping the 32-bit API onto a 16-bit APL The third approach is to use a 32-bit system 
that provides 16-bit compatibility by mapping the 16-bit API onto a 32-bit APL Figure 
10.6 illustrates two of these coexistence strategies. 

OS/2 2.0 uses all three alternatives. The kernel is mostly 32 bit, with 16-bit inter­
faces for compatibility with 16-bit functions. Much of the Presentation Manager and 
utility programs are 16-bit. Therefore, most of the 32-bit PM API is mapped onto the 
16-bit APL The intermediate code that provides this mapping functionality is called a 
thunk. Thunks make the transition between 16-bit and 32-bit code, and can map one API 
function onto another transparently. There are two types of thunks: 16-to-32 and 32-to-
16. The 16-to-32 thunks are used to provide compatibility for a 16-bit API function by 
mapping it to a new 32-bit API function. The 32-to-16 thunks are used to implement 32-
bit API functions using existing 16-bit API functions. Thunks minimize the impact on 
the system of providing compatibility. Thunks require coexistence of 16-bit and 32-bit 
memory objects within a single process virtual address space that is used by both 16-bit 
and 32-bit code. Thunks are discussed in more detail in Section 10.10. 

10.8 MEMORY MODEL COEXISTENCE 

The differences in the flat and segmented programming environments of the 32-bit and 16-
bit systems are summarized in Table 10.1. OS/2 provides a hybrid of the flat and segment­
ed memory models that is used as a foundation for the coexistence of 16-bit and 32-bit 
code. Each process is given its own 512MB linear address space. Each process also has an 
LDT to map the 512MB process virtual address space whether the process was created 
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Fig. 10.6 Coexistence strategies for 16-bit and 32- bit API. 

Function 16-bit segmented model 32-bit flat model 

Process virtual LDT per process Linear address space 
address space per process 

Code segment D-bit off for 16-bit D-bit on for 32-bit 
descriptor( s) registers and operands registers and operands 

Data/Stack segment B-bit off for 16-bit stack B-bit on for 32-bit 
descriptor( s) pointer in stack operations stack pointer in stack 

operations 

Virtual addresses 16: 16 selector:offset 0: 32 linear address 
Memory objects Byte-granular segments Page-granular range of 

up to 64KB linear pages 

Dynamic linking Far call model Near call model 
API parameters 16-bit WORD 32-bit DWORD 
API parameter and WORD alignment DWORD alignment 
structure alignment 

Table 10.1 Segmented- and flat-model programming environments. 
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using the 16-bit or 32-bit version of DosExecPgm, and whether or not a 16-bit or 32-bit 
EXE module was loaded. When a process runs 32-bit code, it executes using the flat­
model address space. When a process is running 16-bit code, it executes using LDT selec­
tors that map the flat address space. Therefore, memory objects in this hybrid model can 
coexist in one process virtual address space, and are addressable by both 16-bit and 32-bit 
code. It is important to realize that processes and threads are not 16 bit or 32 bit; they 
merely execute 16-bit or 32-bit code at any instance. All memory objects, including 16-bit 
segments in the hybrid model, take advantage of paging instead of swapping. 

There is also a difference in the granularity of memory objects and memory protec­
tion between the two memory models. The 80386 allows 16-bit segments to be packed 
on a page, since 16-bit programs access memory through the LDT. Accessing memory 
through the LDT results in byte-granular memory access with limit protection. However, 
32-bit code accesses memory one page at a time, since the flat model is page granular. 
Therefore, if 16-bit segments are packed on partial pages in OS/2 2.0, 32-bit code can 
access all the segments packed on a single page. This problem is a significant one in 
shared objects. Therefore, small segments use an entire linear and physical page. As a 
result, 16-bit modules with many small segments can fragment the linear address space 
and waste virtual and physical storage. This waste is due to the disparity of memory 
object granularity between the two memory models. Later in this chapter several strate­
gies for reducing this fragmentation are described. 

The 80386 converts addresses between 16: 16 and 0:32 by determining the descrip­
tor base address, and adding a 16-bit offset. It converts a 16: 16 address to a 0:32 address 
in software by examining the LDT and extracting the base address from the descriptor 
for the segment. Unless the LDT is mapped into the process address space, the kernel 
must be called to convert a 16: 16 address to a 0:32 address. However, the LDT can be 
mapped into the process virtual address space as read-only data, allowing the conversion 
to occur in user mode without a call to the kernel. 

The 80386 converts between 0:32 and 16: 16 addresses by having a descriptor map the 
correct region of linear address space. The base address in descriptors under OS/2 2.0 with 
paging enabled is a linear address. The 80386 converts a 0:32 address to a 16: 16 address in 
software by creating a segment alias to the specific region addressed. The kernel is 
required for creating and destroying aliases, since the LDT must be modified. 

This approach to converting between 16: 16 and 0:32 addresses in software emulates 
the method used by the 80386 when translating addresses. However, due to the overhead 
of calling the kernel to manage aliases in the latter case, an alternative scheme that pro­
vides fast address translation without the kernel is required to build a mapping layer that 
provides 16-bit compatibility with acceptable performance. 

10.9 LDT TILING 

LDT tiling is a technique invented by the OS/2 design team, and used to establish an arith­
metic relationship between 0:32 and 16: 16 virtual addresses. It is similar to the tiling used 
in the DOS compatibility support of the 16-bit system, but tiles two different types of 



304 Compatibility 

virtual addresses, instead of a 16:16 virtual address and a physical address. An LDT can 
contain 8192 descriptors, and each descriptor can map a maximum of 64KB per segment. 
Thus, an LDT can map 512MB of process virtual address space. This technique is the 
cause of the 512MB limitation on process virtual address spaces in OS/2 2.0. 

In a tiled LDT, the base linear address of every 16-bit segment is the selector index 
* 64KB. Each LDT selector is thus forced to map a specific 64KB portion of the 32-bit 
process virtual address space. Regions mapped by contiguous selectors are contiguous 
within the process virtual address space. Therefore, each tiled memory object has 16: 16 
and 0:32 addresses that are related by an arithmetic function. Memory objects are tiled 
when allocated-that is, when their virtual addresses are selected by the virtual memory 
manager. Figure 10. 7 illustrates the relationship between 16: 16 and 0:32 virtual ad­
dresses that results from LDT tiling. 

Tiled objects are allocated on 64KB linear boundaries within the process virtual ad­
dress space, and have related descriptors in the LDT that map each 64KB increment of 
each object. Each tiled object reserves 64KB of linear memory, since a 16-bit segment 
can be as large as 64KB. Also, 64KB of linear memory must be reserved for each tiled 
object, since any 16-bit segment can be reallocated up to its maximum 64KB size. 
Figure 10.8 illustrates a tiled virtual address space. 

In Fig. 10.8, three 16-bit segments are depicted: A, B, and C. Segment A is 100 
bytes. Therefore, 64KB is reserved for the tiled object, and a single page is committed. 
As Fig. 10.8 shows, part of the linear page on which segment A exists is wasted; that is, 
this partial page cannot be allocated as part of another memory object, and must be 
swapped with segment A, since OS/2 2.0 performs page swapping. Segment B is 5KB, 
and requires two committed pages to satisfy the allocation. Once again, the partial page 
not used by segment B is wasted. Segment C is a full 64KB and requires 16 pages of 
committed memory. 

LDT management in the 32-bit system is different from that in the 16-bit system as 
a result of the LDT tiling algorithm. Unlike the 16-bit system, in which private and 
shared selectors are interleaved within the LDT in a 3: 1 ratio, in the 32-bit system the 
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Fig. 10.7 0:32 and 16:16 address conversion. 



10.9 LDT Tiling 305 

Process virtual 
address space 

LDT 

Base 
address Limit 

20000H 64K - 1 17 

10000H 5119 F 

o ~~~-~-~-~ 0 +-----~ __ o:__L _ _:_99 _ _J 7 

Fig. 10.8 LDT tiling. 

private selectors are allocated from the low end of the LDT, and the shared LDT are 
allocated from the high end. This allocation scheme is necessary because the LDT 
descriptor allocation strategy must parallel the allocation strategy of the flat process vir­
tual address space. This change in LDT management is transparent to 16-bit applica­
tions, since they do not rely on specific LDT selector values. 

Allocating the selectors from the top and bottom of the LDT is not feasible in the 
16-bit system since it requires every LDT to be 64KB. However, since the 32-bit envi­
ronment is paged, there is no penalty for this LDT management strategy. LDTs are 
sparse objects in the 32-bit system. Therefore, a minimal LDT uses 8KB-one page for 
the private descriptors at the bottom, and one page for the shared descriptors at the top. 

All user memory objects that need to be addressable by both 16-bit and 32-bit code 
are tiled memory objects. All 16-bit segment allocations, whether made at load time or 
at run time, are tiled. Any 32-bit memory objects that can potentially be passed to 16-bit 
routines need to be tiled. Since OS/2 2.0 is not all 32 bits internally, all 32-bit objects 
are tiled by default. This default setting is used because 32-bit applications cannot deter­
mine whether a 32-bit API is serviced by thunking to 16-bit code. Therefore, all 32-bit 
memory object allocations have a tile option to tell the system whether the object needs 
to be tiled. This facility allows forward compatibility with 32-bit OS/2 systems that sup­
port the use of memory above the 5 l 2MB limit currently enforced. For load-time al­
locations, there is a tile bit in the executable file header that tells the loader whether 
EXE or DLL objects need to be tiled. There is a tile flag available on the 32-bit memory 
management API calls that allows the program requesting memory at run time to indi­
cate whether or not objects need to be tiled. 

Support for a system that provides more than 512MB of process virtual address 
space and retains 16-bit compatibility requires that the entire system be 32-bits 
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internally. Only then can the system guarantee that 32-bit memory objects never will be 
passed to 16-bit code as a result of a 32-bit API being implemented using a 16-bit APL 
If an object is not tiled, it cannot be addressed by 16-bit code. Nontiled objects are not 
addressable through the LDT. Therefore, the system must be entirely 32-bit internally to 
extend the 512MB limit and thus to support nontiled objects. 

There is a slight difference between the way 16-bit and 32-bit memory allocations 
are made. This difference lies in how the limits are set inside the tiled descriptors. When 
a 16-bit segment is allocated, the descriptor that maps the segment has a limit that is 
byte granular. In other words, the descriptor limit is based on the size specified by the 
16-bit requestor. However, when a 32-bit application allocates a memory object that is 
tiled, the descriptor limit in the tiled descriptor is always page granular. This granularity 
is used because all 32-bit memory objects are page granular, and their size is always a 
multiple of the page size. 

There are several problems associated with the LDT tiling approach. Any 32-bit 
memory object larger than 64KB crosses 64KB linear boundaries. When an object that 
crosses a 64KB boundary is passed to 16-bit code, the 16-bit code cannot address the en­
tire object with a single selector. For compatibility to be maintained, the 16-bit code 
needs to be able to run without being changed. Therefore, the 32-to-16 thunks ensure 
that objects passed to 16-bit API functions are addressable. This mechanism is detailed 
in Section 10.10. Tiling also fails for 16-bit applications that use GDT selectors in 16-bit 
API calls. This situation is rare, since GDT selectors for user data can be provided only 
by device drivers using special private interfaces. There is no way for a 16-bit applica­
tion adhering to the 16-bit API to allocate a segment mapped by the GDT. Another 
problem with tiling is the fragmentation of the address space by 16-bit applications with 
many small segments, which wastes virtual and physical memory. The 80386 supports 
packing of segments on partial pages, but packing breaks the LDT tiling arithmetic algo­
rithm, and poses a threat to system integrity and protection. 

The system does provide an optimization to overcome fragmentation for private 16-
bit code segments by packing them into a special region of the tiled address space. Since 
code objects are read-only, they can be packed onto a single page without posing any 
protection problems. If all private packed objects for a process are isolated in the bottom 
of the linear address space, the address conversion algorithm does not suffer much 
degradation, and tiling still works for the rest of the address space. Figure 10.9 illus­
trates LDT tiling with private code packing. 

When a 16-bit EXE is loaded by a call to DosExecPgm, the executable code objects 
from the load module are packed into the low end of the private region. LDT selectors at 
the low end of the LDT are used to map packed objects. This area of the process virtual 
address space is not tiled. The thread information block has the linear address of the top 
of the packed area. The LDT tiling address conversion algorithm is modified to account 
for packed objects. When a 0:32 address is converted to a 16:16 address, if the address is 
in the packed region, the LDT is searched for a selector that maps the region. When a 
1~,;J6 address is converted to a 0:32 address, the base address from the descriptor is used 
to create 32-bit address. Both translations require a read-only alias to the LDT to be 
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mapped into the process virtual address space to allow the conversions to run in user 
mode without calling the kernel. 

This approach saves physical and virtual memory, but degrades the performance of 
pointer conversion. The extra comparison to test whether a memory object is in the 
packed region is not significant, but searching the LDT when converting 0:32 to 16: 16 is 
relatively slow. However, this path is not executed unless a 32-bit API call is thunked to 
a 16-bit API call, and code pointers are used as parameters in the API call. This situation 
occurs rarely since code is usually not passed as a parameter in API requests. Processes 
that originate from 32-bit EXE modules have no packed area in their process virtual 
address space. 

10.10 THUNKS 

Thunks are the intermediate code mapping technology used to implement an API func­
tion of one model using an analogous API function in the other model. They are trans­
parent to requestors of the API function being mapped, and to the API function being 
used to map the request. Thunks also allow 32-bit applications to call 16-bit APis di­
rectly. Thunks that implement 32-bit API calls are not built into each 32-bit application, 
but rather are part of the system. Therefore, applications that use 32-bit API functions 
that are thunked to 16-bit API functions will benefit transparently from performance in­
creases as more of the system is converted to 32-bit in the future. Thunks depend on 
LDT tiling to provide an architecture for efficient address conversion between the two 
memory models. 

There are two types of thunks: 16-to-32 and 32-to-16. The 16-to-32 thunks are used 
to provide compatibility for a 16-bit API function by mapping it to a new 32-bit API 
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function. They are relatively straightforward to implement, since the 32-bit addressing 
model is more powerful than is the 16-bit model. The 32-to- l 6 thunks are used to imple­
ment 32-bit API functions using existing 16-bit API functions. The 32-to-16 thunks arc 
a bit more difficult to implement because 16-bit code has difficulty dealing with memo­
ry objects that span 64KB linear boundaries in the tiled environment. A 32-bit applica­
tion can create memory objects that span 64KB linear boundaries. Although it is valid to 
pass one of these objects to a 32-bit API function, the 32-to- l 6 thunk that implements 
the 32-bit API must deal with alignment issues, so that the 16-bit API being used to ser­
vice the 32-bit API can access the data properly. Both types of thunks exist in OS/2 2.0. 
The ensuing material about thunks is valid for both types of thunks, but the 32-to- l 6 
case is discussed in more detail. 

Thunks must deal with several differences between the 16-bit and 32-bit memory 
environments: 

Dynamic linking models 

Pointer-parameter conversion 

Stack management 

64KB restrictions on 16-bit applications 

The 32-bit dynamic linking model uses near calls, and the 16-bit dynamic linking 
model uses far calls. If a 32-bit application makes a near CALL to a 16-bit segment, a 
general protection fault usually occurs when the 16-bit code executes the RETF instruc­
tion to return to the 32-bit code. This fault occurs because the near CALL pushes EIP on 
the stack, and the 16-bit RETF interprets the return address as a 16: 16 CS:IP. If a 32-bit 
application directly executes a far CALL to a 16-bit segment, a 48-bit CS:EIP return ad­
dress is pushed on the stack, since the far CALL is made from a 32-bit segment. Since 
48 bits are pushed on the stack, instead of 16 bits, the parameters for the 16-bit code are 
shifted on the stack, thus breaking compatibility. Also, the RETF executed to return to 
the caller pops only 32 of the 48 bits off the stack. A 16-bit far call can be made from a 
32-bit code segment to a 16-bit code segment, but only from within the first 64KB of the 
32-bit segment, since the 16-bit code does not update the high-order word of EIP prop­
erly. Therefore, the thunks in OS/2 use a simulated indirect call to make the transition 
between 16-bit and 32-bit code. 

When a thunk needs to transition to the opposite model, it executes a far jump to a 
stub code segment of the target model. In the case of 32-bit code calling 16-bit code, the 
32-bit thunk executes a far JMP instruction to a 16-bit stub segment. The stub segment 
executes a far call to the 16-bit API function used to implement the 32-bit API function. 
The 16-bit API completes service, executes a RETF back to the 16-bit code stub, and the 
stub executes a far JMP back to the instruction following the original jump in the 32-bit 
code. This approach has no problems with 64KB boundaries, and is transparent to both 
the 32-bit API caller and the 16-bit API being called by the thunk. 

The parameter sizes for the 16-bit and 32-bit models are also different. The 16-bit 
system uses 16-bit word parameters; the 32-bit system uses 32-bit double words. Thunks 
must convert between 16-bit words and 32-bit double words by either zero-extending a 
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16-bit word to a double word, or truncating a double word to a word. Structure parame­
ters also need to be converted by the thunk layer. Structures in the 32-bit model are 
aligned on double-word boundaries, instead of on word boundaries as in the 16-bit sys­
tem. Therefore, the structures that are passed input and output parameters to API func­
tions must be realigned and converted to match the model of the API being used to 
service the request. Furthermore, pointers imbedded in structures are also sensitive to a 
given calling model, and must be converted. Thunks convert the structures between the 
two models and understand the semantics of the parameters for each API that is being 
thunked. 

The stack addressing between the two models is also different. The 16-bit API runs 
using 16-bit-wide stacks that have 16-bit stack pointers. The 32-bit API runs using 32-
bit-wide stacks that have 32-bit stack pointers. Furthermore, 16-bit stacks cannot be 
larger than 64KB, whereas 32-bit stacks have no 64KB restriction on size. Thus, the 
thunk must construct the correct stack frames and convert between stacks when using 
one API call to implement another. 

Pointer conversion is managed using the LDT tiling mechanism described earlier in 
this chapter. However, the problem associated with LDT tiling is the inability of 16:16 
code to deal with objects that cross 64KB linear boundaries using a single selector. If a 
32-bit application passes a converted pointer to an object that crosses a 64KB linear 
boundary to 16-bit code, the 16-bit code usually generates a general protection fault 
when trying to access the entire object, or accesses the wrong data depending on the 
access semantics. Although LDT tiling has benefits in the areas of speed and symmetry, 
it does not deal gracefully with the problem of crossing 64KB boundaries. 

The 32-to- l 6 thunks in OS/2 implement several strategies, depending on the size of 
the memory object, for dealing with the 64KB boundary problem. Small objects-those 
smaller than 129 bytes-can be copied to an aligned temporary buffer on the stack with­
out much performance penalty. However, copying large objects that straddle 64KB lin­
ear boundaries is not a feasible option, since it would be too slow. For large objects, 
OS/2 thunks use a feature called linear address aliasing. Linear address aliasing takes 
the address of an object that spans a 64KB boundary, and the size of the object, and pro­
ceeds to create another linear address on a new 64KB boundary that maps the same 
physical memory. It asks the virtual memory manager to create an alias in the process's 
arena, and calls the page manager to copy the page table entries from the original object 
that straddles a 64KB linear boundary to the new object that does not. This process is 
effectively the same as allocating a tiled segment whose contents are defined by an 
object that crosses a 64KB boundary. The new linear address is 64KB aligned, and has 
an associated new tiled descriptor. However, since aliasing must be done by the kernel, 
it is relatively slow compared to the LDT tiling arithmetic address conversion. Thunks 
must free aliases when the latter are no longer being used. 

Due to guarantees provided by the language tools for 32-bit applications, few cases 
require aliasing. Statically allocated load-time objects smaller than 64KB are guaranteed 
not to cross 64KB linear boundaries, as are memory objects that are dynamically allo­
cated using the C run-time library (i.e., malloc and free). Stack objects, or automatic ob­
jects in the C language, can cross a 64KB linear boundary, but they are handled by the 
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thunk layer. Furthermore, if an application directly calls DosAllocMem, creates an object 
that straddles 64KB linear boundaries, and passes an offset from that object into a 32-bit 
API that is thunkcd to a 16-bit API such that the boundary condition is created, then the 
thunk handles the boundary condition. 

There are also 16-bit restrictions based on stack space. The 32-bit API allows stacks 
to be larger than 64KB. The 16-bit API requires stacks to fit within a 64KB segment. In 
OS/2 2.0, stack objects are tiled. HoweYer, the 64KB boundary can cause serious prob­
lems when a stack pointer is converted from one model to the other. The problem is that, 
as the stack grows in memory toward a 64KB linear boundary, if the stack pointer is 
converted to a 16: 16 address, the stack pointer is already near the bottom or end of the 
stack, leaving insufficient stack space to complete the service. Therefore, if the stack 
pointer is within 4KB of a 64KB linear boundary, the stack pointer is bumped down to 
the next 64KB boundary before it is converted to 16-bits. This strategy ensures the 16-
bit code has plenty of stack space. The thunk layer is optimized so that the stack is 
bumped only once per call, even if execution flows between several API functions that 
are implemented using thunks. 

The following describes the sequence of operations that occur in a typical 32-to-16 
thunk. First, the stack is bumped down to the next 64KB linear boundary if necessary. 
Then, for each input parameter, the parameter is converted to 16 bits, and is put in the 
stack frame in preparation for calling a 16-bit API function. The conversion of the con­
tents of a stack frame is done by the LDT tiling formula, by copying for small objects 
that cross 64KB boundaries, or by aliasing for large objects that cross 64KB boundaries. 
The stack pointer is then converted to 16 bits, and the simulated indirect call is used to 
invoke the 16-bit API function. After returning from the 16-bit API function, each out­
put parameter is converted to the correct 32-bit syntax specified by the 32-bit API func­
tion. The stack is then restored, and the 32-bit API function completes and returns the 
return code to the 32-bit requestor. 

The 16-to-32 bit thunks are significantly simpler than are 32-to-16 thunks, since there 
are no 64KB boundary problems. However, the 16-to-32 thunks must simulate segment 
protection semantics in software, since the 32-bit memory model provides page-granular 
protection. Otherwise, flat-model code could inadvertently or maliciously corrupt memory 
after converting 16: 16 pointer parameters to 0:32. Therefore, before pointers are converted 
from 16-bit to 32-bit, protection checking is simulated by the thunk. 

Thunk creation and coding can be automated. Within the OS/2 project, a thunk com­
piler was used to generate the code for the thunks used by the system. The thunk compiler 
us6s a C-like high-level language to describe API functions and the relationship between 
functions. This language describes parameters, types, and conversions that are applied, and 
tells the compiler how to generate code to map one API function using another. 

SUMMARY 

This chapter described compatibility in OS/2. It discussed the technologies used to pro­
vide DOS compatibility on the 80286 and 80386 platforms. It also examined Windows 
3.0 compatibility, and explained how 16-bit OS/2 applications run on 32-bit OS/2. 
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application base 
A20 line 
A20 wrap area 
bimodal code 
bimodal device driver model 
binary compatibility 
compatibility 
Dev Help(PhysToVirt) 
DevH elp( ROMCritSection) 
DevH elp(SetROMVector) 
DevHelp(UnPhysToVirt) 
DosAllocMem 
DOS compatibility 
DOS emulation 
double fault 
8086 emulation 
80386 DOS compatibility 
80386 OS/2 1.X binary compatibility 
80286 DOS compatibility 
ExitKMode 
far call 
flat addressing 
global event 
hook (a software or hardware interrupt) 
interrupt table shadowing 
interrupt vector table 
l/O permission map (IOPM) 
LDT tiling 
linear address aliasing 
LOAD ALL 
local event 
migration 
mode switching 
multiple virtual DOS machine (MVDM) 

technology 
near call 
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OS/2 protected-mode interrupt manager 
per-VDM memory area 
physical device driver (PDD) 
postreflection hook 
power-on self-test (POST) 
prereflection hook 
protection 
retention 
reuse 
segmented addressing 
shutdown status 
16-to-32 thunk 
software interrupt reflection 
source compatibility 
32-to-16 thunk 
thread information block (TIB) 
thunk 
tile bit 
tile flag 
tile option 
tiled memory 
triple fault 
VDM breakpoint 
VDM event 
VDM management 
VDMmanager 
v86 address space 
virtual device driver (VDD) 
virtual device helper (VDHelp) services 
virtual DOS machine (VDM) 
virtual 8086 (v86) mode 
virtual programmable interrupt controller 

(VPIC) 
virtualization of DOS devices 
watchdog timer 

10.1 Define "compatibility" in the context of OS/2. 

10.2 Distinguish between binary compatibility and source compatibility. Discuss the advantages 
and disadvantages of each. Explain why a software vendor might be reluctant to distribute the 
source code of its products. 
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10.3 What does it mean to be "DOS compatible"? 

10.4 How is the 80286 switched from real mode to protected mode? How is it switched from 
protected mode to real mode? What PS/2 capability facilitates switching the 80286 from protected 
mode to real mode? 

10.5 Why is it not possibfe for OS/2 to run DOS applications in the background? 

10.6 What is the A20 wrap area? 

10.7 Explain the technique of interrupt table shadowing. 

10.8 What is tiled memory? What memory objects are normally tiled? 

10.9 What are the limitations of DOS compatibility under the 80286 architecture? 

10.10 What features make the 80386 architecture superior to that of the 80286 for providing 
DOS compatibility? 

10.11 Discuss OS/2 2.0's multiple virtual DOS machine (MVDM) technology. Consider protec­
tion, support of extended memory options, accessing of block devices, and other key issues. 

10.12 Explain the functions of the major components of the MVDM kernel, including VDM 
management, DOS emulation, 8086 emulation, and virtual device drivers (VDDs). 

10.13 Discuss the operation of the VDM manager. 

10.14 Distinguish between global and local VDM events. 

10.15 Explain the notion of software interrupt reflection as used in the 8086 emulation compo­
nent of the MVDM architecture. 

10.16 Explain what it means to "hook a software interrupt." Distinguish between prereflection 
hook and postreflection hook. 

10.17 Why is it not necessary for OS/2 device drivers to be bimodal? 

10.18 Why do VDMs receive hardware interrupts not at interrupt time, but rather at task time? 

10.19 How is Windows 3.X compatibility implemented in OS/2 2.X? 

10.20 The 32-bit OS/2 system provides three means for 32-bit APis and 16-bit APis to coexist. 
Describe each of these techniques. 

10.21 The memory model of 16-bit OS/2 allows for byte-granular memory access. In 32-bit 
OS/2, memory is accessed one page at a time, and is said to be page granular. Thus, when com­
patibility is implemented, multiple 16-bit segments could be packed on a single page. What prob­
lem would this packing create? How does 32-bit OS/2 reconcile this problem? What additional 
problem does the solution create? 

10.22 Explain the technique of LDT tiling. Describe how LDT tiling affects the maximum size 
of virtual address spaces in OS/2. Discuss several significant problems associated with LDT 
tiling. 

10.23 Explain why the following statement is true: "Applications that use 32-bit API functions 
thunked to 16-bit API functions will benefit transparently from performance increases as more of 
the OS/2 system is converted to 32-bit in the future." 

10.24 Why are 32-to-16 thunks more difficult to implement than are 16-to-32 thunks? 

10.25 Discuss the differences between the 16-bit and 32-bit memory environments with which 
thunks must deal. In particular, consider dynamic linking models, pointer-parameter conversion, 
stack management, and the 64KB restrictions on 16-bit applications. 
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Explain the notion of linear address aliasing used with OS/2 thunks. 

Describe the sequence of operations that occurs in a typical 32-to- l 6 thunk. 

In the context of the MVDM architecture, describe a scenario in which a simulated inter-
rupt must be delayed because the VDM's interrupts are disabled. Keep in mind that, since IOPL = 
3, the VDM uses the real IF of the system. Also. remember that VDMs run in the background, and 
that VD Os can block when servicing I/0 traps. 





11 
Communications 

Live in fragments no longer. Only connect. 

Edward Morgan Forster 

Conversation is but carving! 
Give no more to every guest, 

Than he's able to digest. 
Give him always of the prime, 

And but little at a time. 
Carve to all but just enough, 

Let them neither starve nor stuff; 
And that you may have your due, 
Let your neighbor carve for you. 

Jonathan Swift 
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11.1 INTRODUCTION 

This chapter describes communications in the OS/2 system. An overview of the signifi­
cant network architectures-OS/, SNA, and TCP/IP-and the strategies for their coexis­
tence sets the foundation for discussion of the communications role played by OS/2 
workstations. OS/2's conformance to key network standards is described in the context of 
the distributed single-user workstation environment. This chapter also examines multi­
user OS/2, a low-cost alternative to networks for sharing processing resources. 

11.2 NETWORKS 

Networks enable computer users to communicate with one another and to share comput­
ing resources. Data-communication systems range from small networks that intercon­
nect terminals and computers in a single building, to networks that are distributed 
worldwide. 

Networks are composed of nodes, typically intermediate nodes, end-user nodes, and 
gateways. Intermediate nodes form the backbone of the network for passing data 
between systems. End-user nodes are points at which users access the network. Multiple 
networks can be connected using a gateway. Gateways provide protocol translation and 
interfacing between networks of disparate architectures, and are needed for internetwork 
service. The network topology describes the interconnection scheme of the nodes that 
compose a network, and the access points available to users. 

There arc two principal types of data communication network technologies in gen­
eral use today: circuit-switched and packet-switched networks. The telephone system is 
a circuit-switched network. Circuit-switched networks are connection-oriented-that is, 
a private transmission path or connection must be established between users before data 
can flow back and forth over the circuit, exactly as in a telephone call. In the telephone 
network, connections are established using dedicated private channels and trunk lines. 

Packet-switched network technology transfers blocks of data, called packets, across 
the network. Packet-switched networks are used to connect digital devices, such as host 
computers, communication controllers, terminals, workstations, and printers. Depending 
on the scope of the network topology, packet-switched networks range from wide area 
networks (WAN s) distributed over large geographical areas, to local area networks 
(LANs) distributed over relatively small areas. On a packet-switched network, packets 
from multiple users share the same distribution and transmission facilities. The packets 
are stored and forwarded at each network node, along with other packets that share the 
same communication links. 

There arc two types of connection modes in packet-switched networks: connection­
oriented and connectionless. In connection-oriented mode, a virtual-circuit connection 
must be established between the source and destination before packets arc transferred be­
tween them. The packets must be transmitted and received sequentially between the source 
and the destination. In connectionless mode, packets are routed across all connections and 
may arrive out of order. These packets are also known as datagrams. Connectionless data­
gram transmission is analogous to transmission of mail in the postal system. 
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As computer technology proliferated in the 1960s and 1970s, major packet-switched 
networks were created to allow international access to the data stored on computer sys­
tems. Networks, such as Tymshare's TYMNET and GTE's TELENET, were created to 
serve this need. Both of these networks are based on X.25, a worldwide standard packet­
s witched network architecture. 

The ARPAnet network was an experiment funded by the Advanced Research 
Projects Agency (ARPA) of the Department of Defense (DOD). The goal of ARP Anet 
was to connect major computer resources in universities, laboratories, and companies 
across the United States. ARPAnet was a packet-switched X.25-accessible network that 
developed and advanced the state of packet-switching technology. ARP Anet was a pio­
neer of internetwork connection and routing technology. GTE's TELENET network 
grew out of the ARP Anet research, as did the TCP/IP protocols. 

11.3 OPEN SYSTEMS INTERCONNECTION 

The development of packet-switching technology and the existence of many disparate 
network architectures led to communication problems among these different systems. 
The International Standards Organization (ISO) proposed the Open Systems 
Interconnection (OSI) reference model in 1978 to describe the external behavior of open 
systems. In the context of OSI, an open system is a collection of equipment-such as 
peripherals, computers, terminals and applications-that obeys a standard set of proto­
cols when communicating with other open systems. Note that the OSI reference model 
standard describes the external behavior of open systems, but does not describe the 
internal behavior. 

OSI will play an important role in the future of the computer industry. The move­
ment toward standardization will allow a high degree of interoperability between exist­
ing systems, even if these systems are supplied by different vendors. Furthermore, 
equipment and hardware will become more of a commodity in the future, resulting in 
more economical equipment and a greater variety of options for users. Interoperability 
allows users greater access to networks and open systems. OSI is also playing an impor­
tant role because of the U.S.government's adoption of OSI in the Government OSI 
Profile (GOSIP) that outlines the requirements for government systems procurement. 

OSI is a layered network architecture, a concept that originated with IBM's Systems 
Network Architecture (SNA) in 1974. IBM staff realized that the problem of allowing 
systems to communicate required a two-part solution that would ensure that: 

The data delivered by users would arrive at the destination correctly and in a 
timely fashion. 

The data delivered to the end user at the destination would be recognizable and 
in proper form. 

Low-level or network-level protocols handle the delivery of data between nodes on 
a network, and user-level protocols handle the syntax and semantics of the data so that 
those data are recognizable by end-user programs. Thus, end users see a transparent pipe 
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for network communication, freeing end-user programs from details about the under­
lying network media connecting the distributed systems. 

11.4 OSI REFERENCE MODEL 

The OSI reference model is a layered architecture with seven layers. The layers group 
together similar functions, and are organized so that interactions across layer boundaries 
are minimized. Each layer is effectively shielded from details of the layers below it, and 
each layer provides services to the layer above it. The layers implement their services to 
the layers above by using and extending the services of the layers below. Of the seven 
layers of the OSI reference model, layers l, 2, and 3 are network service related, and 
layers 5, 6, and 7 are end user related. Layer 4 is usually grouped with the user-level 
protocols, but actually shields layers 5 and 6 from the specifics of the network-level pro­
tocols. Figure 11. l illustrates the OSI reference model showing two end-user nodes and 
an intermediate node. 

In Fig. 11. l, the end-user nodes could potentially be on networks with different 
physical media connecting them. The intermediate node serves as a network gateway 
and routing node, as part of the backbone of the network. 

Protocols allow communication between corresponding layers in connected open 
systems. Different protocol options may be used in each layer without affecting the layer 
definition. Thus, a protocol stack refers to a cut through the layers for a specific choice 
of protocols. Each layer provides service access points (SAPs) to the layer above. A 
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service access point is analogous to an API interface to the protocols provided by a 
layer. Each layer implements its protocols by adding control information to outgoing 
data as the data move down the layers of the source end-user node. Each layer processes 
data arriving from lower layers by analyzing and stripping the control information added 
to the data when they were sent, and then propagates the data up the layers at the desti­
nation end-user node. 

Layer 1 of the OSI reference model is the physical layer. It describes how bits enter 
the physical medium and how they are received. The following are examples of stan­
dards used for the physical layer: 

RS232-C (CCITT V.24) 

CCITTV.35 

CCITT X.21 

ISDN 

RS232-C is used for asynchronous communications. CC/TT V.35 describes point-to­
point connections across a coaxial connection. CC/TT X.21 is used throughout Europe 
for supporting X.25 packet-switched networks. /SDN (Integrated Services Digital 
Network) describes the digital physical medium for the next generation of the world's 
telephone networks. 

Layer 2 of the reference model is the data link layer, which ensures that blocks and 
frames are transferred reliably and without error across the physical medium. A data link 
is established across the physical media, and is used by the layers above layer 2. WAN s 
use high-level data link control (HDLC), as their protocol for data link control. X.25 
packet-switched networks use LAPB, a subset of HDLC. IBM SNA networks use syn­
chronous data link control (SDLC), a precursor and proper subset of HDLC. LANs use 
the IEEE 802.2 standard that describes how LANs accommodate the OSI data link and 
physical layers. 802.2 provides logical link control for LANs, and supports several 
major LAN architectures in the following standards: 802 .3 for Ethernet and the IBM PC 
Network, 802.4 for token bus, and 802.5 for token ring. Together, the physical and 
data link layers provide point-to-point error-free communication between two nodes on 
a network. 

Layer 3 of the reference model is the network layer. It is the topmost layer of the 
network-specific protocols in the OSI reference model. The network layer performs 
source and destination routing within a network, and also provides internetwork routing. 
The network layer provides flow control and congestion control across nodes; it uses the 
data link layer for moving blocks. In circuit-switched systems, the network layer pro­
vides path management and virtual circuits using HDLC or SDLC interfaces from the 
data link layer. In packet-switched systems such as X.25, the network layer primarily 
provides packet addressing and routing. 

Layer 4 of the OSI reference model is the transport layer; it ensures reliable, se­
quenced exchange of data between end users. The transport layer is the lowest layer of 
the upper-level user protocols. It shields the upper layers from details of network 
connections. It provides flow control and buffering to free the upper layers from 
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addressing issues such as network performance, error control, and reliability. The trans­
port layer also can provide error recovery and detection and multiplexing functions. 

The OS/ transport protocol (OSI TP) specification has five classes, TPO-TP4, that 
are based on the reliability of the network layer. The different classes provide varying 
amounts of error recovery, error detection, and multiplexing based on whether these ca­
pabilities are present in the underlying network-specific layers being used by the trans­
port layer. The standard transport layer supported in most OSI environments is TP4. 
which is the functional equivalent of the TCP transport protocol used in TCP/IP net­
works (see Section 11.5). 

Layer 5 of the OSI reference model is the session layer. A session is a conversation 
between two end users. Sessions must first be established by one user calling the other 
to create a connection. Hence, session protocols are connection oriented. Once the ses­
sion is established, the two users can transfer data, and can disconnect the session when 
the conversation is over. The OSI session management specification provides for data 
control and transfer using an established session, and for the organization and synchro­
nization of data flowing over the session connection. NetBIOS is an example of a 
session-level protocol. 

Layer 6 of the reference model is the presentation layer. The presentation layer man­
ages and transforms the syntax of data units exchanged between end users. It provides a 
high-level data interchange abstraction for network applications running in layer 7. An 
example of a presentation layer function is providing EBCDIC/ASCII transparency for a 
terminal emulator that provides a connection across the network. Since the presentation 
layer presents a format-independent data stream to applications, the terminal emulator 
program does not have to be concerned about the data format. Other presentation layer 
functions are the OS/2 and DOS network redirector and device sharing capabilities. The 
OS/2 network redirector is described in Section 11.7. 

Layer 7 of the reference model is the application layer. Whereas the presentation 
layer manages the syntax of the data, the application layer interprets the semantics of the 
data exchanged between end users and applications. Layer 7 defines application service 
elements (ASEs) and application control service elements (ACSEs), which define appli­
cation protocols used by distributed programs. OSI specifies many application protocols 
that are used by distributed network applications, including 

X.400 Message Handling 

X.500 Directory Services 

File Transfer, Access, and Management (FTAM) 

Virtual Terminal (VT) 

Distributed Transaction Processing (DTP) 

11.5 X.25 

The X.25 specification is a three-layer network-level interface for packet-switched 
WANs. It describes how data terminal equipment (DTE) and data circuit-terminating 
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equipment (DCE) are connected. An example of DTE is a terminal. Host computers or 
communications controllers are typical DCEs. DTE connections are provided by the in­
terconnection of DCEs. The network manages the connection between DCEs. The X.25 
interface regulates data flow between DTEs and DCEs. The three layers of the X.25 
specification correspond closely to OSI reference model layers 1, 2, and 3. Figure 11.2 
illustrates the architecture of X.25. 

The X.25 specification provides an interface for programs to user DTEs. X.25 is an 
interface specification; it is not a protocol. The network or packet-level X.25 layer pro­
vides virtual circuit and datagram services across logical channels. The multiplexing of 
data from the logical channels onto one data link saves network resources. It provides 
channel connect and disconnect procedures, as well as packet-level data transfer and 
error checking. It uses the link access procedures balanced (LAPE) protocol for data 
link control. LAPE is a subset of HDLC and is used to provide a data link between 
DCEs and DTEs. This single data link supports the data transferred between all the logi­
cal channels defined by the packet layer. The physical layer of X.25 systems is 
described by the X.21 specification for point-to-point synchronous circuit transmissions. 
X.21 provides a physical connection between DTEs and DCEs. 

11.6 LANS 

Networks within a building, a campus, or a set of buildings no more than several kilo­
meters from end to end are classified as LANs. IEEE standard 802.2 describes the rela­
tionship of LANs to OSI layers 1 and 2. It has been adopted as a standard protocol for 
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Fig. 11.2 X.25 architecture. (Reprinted from M. Schwartz, Telecommunications 
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Publishing Co., Reading, MA. Reprinted by permission.) 
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data link control and physical layers. IEEE 802.2 divides the data link control layer into 
two parts: the logical link control (LLC) and medium access control (MAC) sublayers. 
Figure 11.3 illustrates the IEEE 802.2 LAN standard. 

The LLC sublayer defines the 802.2 interface. It constitutes the upper portion of 
layer 2. It uses the services of the MAC sublayer to provide services to the network 
layer above. The data link control model is independent of the physical medium and of 
the MAC. It defines the protocol used to manage one or more logical connections, called 
link stations, through a single physical medium. There are two types of LLC: connection 
oriented and connectionless. In connection-oriented service, error recovery is based on a 
subset of HDLC. In connectionless service, there is no error recovery-it must be sup­
plied by the upper layers. Thus, 802.2 and TP4 dovetail into the OSI LAN strategy nice­
ly, since 802.2 connectionless mode does not provide error recovery, but TP4 at the 
transport level does. 

The MAC sublayer standard covers layer 1 and part of layer 2 in the OSI reference 
model. It is responsible for maintaining the rules of protocol of the network. It performs 
the framing, addressing, timing, and error detection for link stations at the logical level. 
Popular MAC types include 

802.3 (CSMA/CD) 

802.4 (token bus) 

802.5 (token ring) 

802.6 (metropolitan area networks) 

The 802.3 standard describes carrier sense, multiple access with collision detection 
(CSMA!CD) LANs such as Ethernet and the original IBM PC Network. Ethernet was 
invented by Xerox, DEC, and Intel. When a node on a CSMA/CD network needs to 
send data, it listens for a window in which a packet can be sent. Once a packet is sent, it 
either arrives at a destination or collision with another packet. The sending node is 
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notified of the collision and implements a collision detection strategy, usually to resend 
the packet. Control of access to CSMA/CD networks is similar to what happens when 
people are talking at a party. If several people start talking at once (collision), they stop, 
wait, and then restart talking. 

CSMA/CD is a random access network scheme with a contention-based access 
mechanism, so large amounts of network traffic can degrade network performance, since 
collision rates can increase quickly. Thus, it is inappropriate for real-time systems such 
as those used in factory automation, because it lacks predictable, deterministic responses 
under heavy loads. 

The 802.5 standard describes the token ring, developed by IBM Research in Zurich, 
Switzerland. A node on a token ring network accesses the physical medium when it has a 
token. A token is a bit pattern that permits a node to transmit data on the network. The 
token ring mechanism effectively provides a type of decentralized polling, where the 
polling token is passed among peer workstations. Token ring strategies provide more con­
sistent performance during periods of heavy network traffic than do CSMA/CD networks. 

The 802.4 standard describes the MAC protocol for token bus networks. The token 
bus is similar to the token ring, except that the nodes are connected using a bus topology 
instead of a ring topology. 802.6 describes access for metropolitan area networks 
(MANs), such as those used for cable television (CATV). 

11.7 SYSTEMS NETWORK ARCHITECTURE 

IBM's earliest projects in data communications connected host computers and terminals 
in master/slave hierarchies. As users required greater access to host computers and 
printers, specialized computers called communication controllers were developed. 
Communication controllers offload communication handling duties from host computers 
shared by multiple users, and connect different host computer resources. As users' needs 
for data communication and access continued to grow, IBM recognized the need for a 
network architecture that would lay the foundation for connecting current and future 
components to IBM networks. This recognition led to the development of a layered 
communication architecture in which network-specific and user-specific tasks were 
separated. IBM's Systems Network Architecture (SNA), introduced in 1974, was the 
first layered network architecture. Portions of SNA are used in the OSI definition, but 
the two standards are not the same. SNA is a proprietary IBM architecture originally 
based on a centralized network model; it now includes a distributed peer-to-peer net­
work model. Chapter 12 describes the role of SNA within IBM's Systems Application 
Architecture (SAA). 

The major architectural components of SNA networks are logical units (LUs), phys­
ical units (PUs), and system service control points (SSCPs). PUs, LUs, and SSCPs are 
network addressable units (NAUs). LUs are intermediaries used by end users and pro­
grams for accessing the network. End users transfer data across an LU-to-LU connection 
using sessions. Each node in the network is a physical unit. Examples of physical units 
are processors, communication controllers, printers, and workstations. Multiple logical 
units can map to a single physical unit at a given node. SSCP is used to manage network 
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resources, to coordinate LU-to-LU sessions, and to manage subsets of PUs and LUs 
called domains. Figure 11.4 illustrates the layers of the IBM SNA architecture. 

At the top of the SNA architecture is the LU services manager, also called the trans­
action manager. It is used by applications and end users for accessing the network. End­
user programs that use the transaction manager to establish LU-to-LU sessions are called 
transaction programs (TPs). Multiple transaction programs can share a single logical unit. 

The next layer in the SNA architecture is the presentation services layer. It per­
forms data transformation, encoding and compression of data, and display formatting. 
The presentation service layer of SNA is comparable but not identical to the OSI presen­
tation layer. Other layers of the SNA architecture are also similar to layers of the OSI 
reference model. 

Below the presentation services layer is the data .flow control layer, which performs 
sequencing and multiplexing of user messages across active sessions. The transmission 
control layer provides end-to-end flow control, called session pacing in SNA termino­
logy. It is the bottommost layer of the user-level services that insulates the user-level 
protocols from the network. The data flow control layer and the transmission control 
layer together are almost comparable to the OSI session and transport layers. 

The path control layer has a role similar to the OSI network layer. It performs rout­
ing and congestion control for network traffic and data flow between NAUs. Path con­
trol multiplexes LU sessions at a node across a given single path, and uses SDLC frames 
between adjacent nodes to transmit data. SNA data streams can also be routed over X.25 
packet-switched networks. The data link control and physical layers of SNA are similar 
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to layers 1 and 2 of the OSI model. They provide error-free transmission of data units 
across physical connections. SDLC manages synchronous information transfer between 
nodes joined by telecommunication links. 

In the early 1980s, IBM recognized that the future of SNA, and of networking in 
general, lay in peer-to-peer distributed computing, instead of in the centralized network 
model from which SNA evolved. To meet future requirements, IBM developed LU6.2, 
an architecture for distributed peer-to-peer computing. LU6.2 provides a model that is 
independent of processor type or operating system. The Advanced Program-to-Program 
Communication (APPC) facility is an interface that enables programs on any SNA node 
supporting LU6.2 to communicate and to exchange data. APPC and LU6.2 are imple­
mented across all significant IBM architectures from mainframes to workstations. SNA 
and APPC/LU6.2 play a key role in the Common Communications Architecture (CCA) 
portion of IBM's SAA. 

11.8 TCP/IP 

TCP/IP is a set of protocols that evolved to connect universities, laboratories, and com­
panies over ARP Anet. It is a four-layer network architecture that primarily focuses on 
internetwork connections. Figure 11.5 shows the four layers of the TCP/IP architecture. 

At the lowest layer of TCP/IP are data link and physical layers that correspond to 
those found in the OSI reference model. TCP/IP systems support X.25, 802.2, and many 
other physical media. 

The layer above the data link layer of TCP/IP is the internet layer. It is similar to 
the network layer of the OSI reference model. It is actually a subset of the OSI network 
layer that has been enhanced to provide internetwork routing and addressing. However, 
the network layer does not provide reliable connection services; rather, it depends on the 
transport layer to provide reliable connections, error detection, and error recovery. 
Another protocol used in the internet layer is the internet control message protocol 
(ICMP), used for internetwork control messages. 
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The third layer of the TCP/IP architecture is the transport layer. Two major proto­
cols are used in the transport layer: transport control protocol (TCP) and user datagram 
protocol (UDP). TCP is the equivalent of the OSI transport protocol implemented to 
class 4 (TP4), since it provides error detection and recovery. It is used in packet­
switched networks in which network-level data are not guaranteed to be delivered reli­
ably and in sequence, as in the IP environment. 

TCP provides connection-oriented data transfer between users. Data are delivered 
reliably and in sequence, despite the shortcomings of IP. Like any other connection-ori­
ented protocol, TCP has three phases: connection, data transfer, and disconnection. TCP 
transfers stream-oriented data. For example, TCP is used by upper-layer protocols for 
virtual terminal andfile transfer. Data are delivered continuously by upper layers, and 
are blocked by TCP into segments for transmission over the network. The other major 
protocol in the transport layer, UDP, is used for connectionless datagram service with no 
reliability guaranteed across IP links. 

The fourth and uppermost layer in TCP/IP is the application layer. Many applica­
tion protocols are defined that are used by applications running on TCP/IP systems. 
These are some of the more prevalent protocols: 

TELNET (terminal emulation protocol) 

FTP (file transfer protocol) 

SMTP (simple mail transfer protocol) 

X/Windows (distributed window management) 

NFS (network file system) 

Kerberos (user authentification) 

Many of these protocols depend on sockets, a basic interprocess communication 
mechanism originally created in the Berkeley UNIX distributions. Sockets provide an 
IPC abstraction independent of the underlying network and protocols. Sockets are simi­
lar to OS/2's named pipes or NetBIOS 's interprocess communication mechanisms. 
However, sockets are a low-level API that require processor-specific information such 
as knowledge of addressing and byte ordering. Application protocols constructed over 
sockets must manage processor-specific information for end-user programs. 

Sockets are implemented on TCP/IP systems using the TCP, UDP, ICMP, and IP 
protocols. There are three types of sockets: stream sockets, datagram sockets, and raw 
sockets. Sockets are usually programmed in the stream or datagram modes. Stream sock­
ets are used for virtual circuit connections. Datagram sockets are used for connectionless 
transmissions. Sun Microsystems's Network File System (NFS) is built on datagram 
sockets and UDP. FTP and TELNET are built on stream sockets and TCP. 

11.9 NETWORK COEXISTENCE 

Network coexistence is concerned with how SNA and TCP/IP-two disparate network­
ing schemes-can be used together and internetworked with OSI. There are two main is­
sues in connecting disparate networks and OSI: coexistence and migration. Coexistence 
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allows an existing system to support intemetworking with another system by integrating 
OSI support and allowing both types of applications to coexist. Migration implies that 
users leave their current system to move to OSI. Most vendors consider OSI essential 
for the future. Vendors are adding OSI support incrementally to proprietary architec­
tures, and are allowing the two to coexist. Thus, vendors are putting themselves in a po­
sition to exploit OSI as more OSI products become available, while providing support 
for installed bases. 

There are two main coexistence strategies used in most systems: stack based and 
service based. Stack-based strategies have dual protocol stacks on a single system. For 
instance, to allow SNA and TCP/IP to coexist, a system might support SNA and TCP/IP 
protocol suites simultaneously. An application gateway can be used as a bridge to con­
nect the two protocol stacks. However, the stack-based approach is expensive and has 
poor performance due to the massive protocol conversion that must occur. These re­
strictions prohibit stack-based strategies from providing end-to-end transmission, and 
limit them to message support only. 

The service-based coexistence strategy is built on bridges and routers. It is a layer­
oriented mapping of two networks. For example, to enable OSI applications to run on a 
TCP/IP network, we might choose to map the OSI transport layer onto the TCP/IP pro­
tocol stack by emulating the OSI TP4 protocol using TCP/IP. This approach is the trans­
port bridge. Other types of layer-oriented coexistence strategies exist; for example, 
service tunnels or routers essentially perform the same actions as do transport bridges at 
the network layer or data link layer. 

It is interesting to compare and contrast the functionality of OSI, SNA, TCP and IP, 
and to take a look at how these schemes coexist today. SNA is a full-function network 
that has had many years to evolve. It provides connectivity, a high degree of network 
management, predictable performance, and reliability. It has a large installed base, and 
is a platform for transaction processing and distributed applications through IBM and 
IBM-connected systems. 

OSI is an open architecture backed by many international organizations. Networks 
that conform to OSI have a high degree of interoperability. This interoperability allows 
users to choose among hardware and software products custom-tailored to their needs. 
IBM provides support for OSI in X.25-based WAN and 802.2-based LAN environ­
ments. It allows both SNA and OSI to coexist. 

OSI and TCP/IP are a bit different. OSI is significantly richer than TCP/IP, espe­
cially at the application layer. However, TCP/IP has a huge installed base. As described 
earlier in this section, OSI applications can be supported on TCP/IP systems using router 
and bridge technology. Usually, OSI and TCP/IP coexist using gateway architectures. 
Many parts of TCP/IP are similar to parts of OSI. For example, the IP protocol of 
TCP/IP is similar to the layer 3 internet network protocol used in OSI. The TCP protocol 
is similar to TP class 4 of the OSI transport layer. The TELNET application protocol is 
similar to the OSI VTP protocol, and the file transfer protocol of TCP/IP is similar to the 
FT AM protocol of OSI. Also, SMTP (simple mail transfer protocol) of TCP/IP is similar 
to the OSI X.400 and X.500 protocols. Although these application protocols perform 
similar functions, they are slightly different in implementation. Both OSI and TCP/IP 
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networks can share data links and coexist at physical levels. Figure 11.6 compares OSI, 
SNA, and TCP/IP. 

11.10 OS/2 EXTENDED EDITION 

This section examines how OS/2 fits into the role of open systems, and how it supports 
OSI, SNA, and TCP/IP network interconnection. IBM's OS/2 Extended Edition (EE) in­
cludes the Communications Manager (CM) and the Database Manager (DM). The CM 
provides SNA, LAN, and TCP/IP access and connectivity. Other products, such as 
Microsoft's LAN Manager and Novell Netware, address similar LAN networking needs. 

The CM provides three categories of functions: SNA support, LAN support, and 
TCP/IP support. The SNA support includes 

3270 terminal emulation, file transfer, and printer access 

Emulator high-level language AP! (EHLLAPI) 

Asynchronous communications driver interface (ACDI) 

APPC/LU6.2 

X.25 

SNA gateway 

The CM provides application programs for 3270 terminal emulation, file transfer, 
and remote printing. These programs use the EHLLAPI, which is designed to allow ap­
plications to access the 3270 data stream. A single workstation can have multiple VM 
and MVS sessions running at a time. The ACDI API provides access to serial 
communications. APPC/LU6.2, the strategic peer-to-peer distributed programming 

OSI SNA TCP/IP 

Application SNA 
applications 

TCP 
applications 

Presentation Presentation 

Session Data flow 
control 

Transport Transmission 
control 

TCP 

IP internetwork 
Path 

Network control Network 

Data link and Data link and Data link and 
physical physical physical 

Fig. 11.6 Comparison of OSI, SNA, and TCP/IP. 



330 Communications 

interface, enables OS/2 applications to communicate with applications running on any 
LU6.2 system. 

The CM provides X.25 support that allows SNA data streams and non-SNA X.25 
DTE application data streams to be multiplexed across X.25 packet-switched networks. 
X.25 is another strategic part of SNA playing the role of defining how SNA systems 
connect with packet-switched WANs. 

The SNA gateway effectively turns a server on the LAN into a multiplexing node 
that performs communications controller tasks for workstations on the LAN. It allows 
terminal emulation and APPC programs running on workstations attached to the LAN to 
access the host system in a transparent fashion. The connectivity of the SNA portion of 
the CM allows EHLLAPI programs, APPC/LU6.2 programs, and X.25 programs to be 
distributed over a coaxial attachment, channel-attached to a host, or attached to the host 
via a LAN using the SNA gateway feature. The APPC/LU6.2, EHLLAPI, and X.25 in­
terfaces are mapped to 802.2 LAN interfaces when running in a LAN-connected envi­
ronment, and are mapped to a SDLC data link control protocol when running in a 
coaxial-connected environment. 

OS/2 LAN support is packaged in two portions: the LAN requestor and the LAN 
server. The LAN requestor is included in the OS/2 EE, but the server program is packaged 
separately. The LAN requestor allows OS/2 workstations to access files, devices, and pro­
grams on a variety of LAN architectures. OS/2 workstations can communicate with DOS, 
UNIX, VM, and MVS environments. The LAN requestor shipped with OS/2 EE provides 

LAN requestor program 

Network redirector 

LAN API 

802.2 LLC API 

Network device drivers 

The LAN requestor program is a network application that uses the LAN API and 
OS/2 system services to provide a PM interface for a workstation on the LAN. It allows 
the user to log in to the network, and thus to access shared resources such as files, print­
ers, named pipes, and messaging services. The network redirector is an installable file 
system that supports redirection of file-level and device-level 1/0 across the network. 
Network device drivers that are included with the LAN requestor are 802.2-compliant 
and support Ethernet, token ring, and IBM PC Network media. 

The LAN API provides services for distributed applications to perform distributed 
interprocess communications for client-server applications, to execute administration 
and security tasks, and to manage access to network resources. The LAN API provides 
support for NetBIOS, a layer 5 session management interface, which is mapped onto the 
802.2 protocol stack at the data link layer. The LAN API includes two other interprocess 
communication mechanisms: mails lots, and named pipes from the OS/2 base. Both of 
these interprocess communication mechanisms are mapped onto the NetBIOS interface. 
The network redirector file system driver uses NetBIOS sessions to send local 1/0 re­
quests to a remote file server or print server. 
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The LAN server program is similar to the LAN requestor program, but it has file 
and device server software that services requests from requestors. Otherwise, the 
components of the LAN server and requestor are identical. A system running as a server 
can also be used concurrently as an SNA gateway, an administration machine, and a 
requestor machine. The LAN server also supports superserver configurations with two 
80386 or 80486 processors. The LAN server dedicates one of the processors to the net­
work and file system support, while the other processor runs the base OS/2 system. 

The CM also provides TCP/IP support. It allows a LAN user to interoperate with 
systems in a TCP/IP network. The sockets API is supported on the OS/2 TCP/IP stack, 
and the TCP/IP stack is mapped onto the 802.2 LAN interfaces. The TCP/IP stack has 
its own data link on the LAN provided through the 802.2 layer. There is no support for 
allowing NetBIOS applications to run on top of the TCP/IP stack. However, such sup­
port probably will be implemented in the future. Of the TCP/IP API and protocols sup­
ported, OS/2 TCP/IP support provides sockets, FTP, TELNET, SMTP, X/Windows, Sun 
NFS, Apollo NCS, RPC, and Kerberos. Figure 11.7 illustrates the OS/2 protocol stacks 
for LAN, TCP/IP, and SNA. 

11.11 MULTIUSER OS/2 

Configuring workstations into a LAN can be expensive for small businesses. Therefore, 
there is a need for low-cost multiuser solutions that allow OS/2 users to share resources 
and to communicate. Several multiuser products have been developed that allow multi­
ple users to share a single workstation. 

An example is CITRIX Multiuser. It supports up to 64 users sharing a single 80386 
or 80486 OS/2 system, using primarily asynchronous communications. Each user logs 
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into an OS/2 session using a terminal or computer running a terminal emulation pro­
gram. Users run OS/2 text-mode applications and can communicate with one another. 
The Multiuser software incorporates security functions that perform log in, access con­
trol list functions, system object permission management, and security auditing. 

This solution is a good alternative for the small business, since each user does not 
need a LAN-configured workstation. If the business later decides to invest in a LAN, the 
users connected by the Multiuser software can access resources on the network without 
replacing the terminal connections. Due to the performance of asynchronous 
communications, most multiuser OS/2 products support only text-mode applications. 
However, there are many text-based OS/2 applications that meet the needs of these low­
end multiuser environments. 

SUMMARY 

This chapter described communication in the OS/2 system. The evolution and salient 
features of the primary network architectures-OSI, SNA, and TCP/IP-were 
explained. Strategies for coexistence of the major network architectures were described. 
The role of OS/2 in providing connectivity to these platforms was discussed, including 
the content of OS/2 Extended Edition. OS/2 can handle concurrent LAN access, SNA 
terminal emulation and file transfer, and TCP/IP access on a single physical connection. 
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EXERCISES 

token ring 
TP4 
transaction manager 
transaction program (TP) 
transmission control layer 
transport bridge 
transport control protocol (TCP) 
transport layer 
TYMNET 
user datagram protocol (UDP) 
user-level protocol 
virtual circuit 
virtual terminal 
Virtual Terminal (VT) 
wide area network (WAN) 
X.500 Directory Services 
X.400 Message Handling 
X.25 
X Window 

11.1 Explain the use in networks of intermediate nodes, end-user nodes, and gateways. 

11.2 Distinguish between circuit-switched networks and packet-switched networks. 

11.3 In the context of packet-switched networks, explain the notions of virtual circuits and 
datagrams. 

11.4 Define the term "open system." 

11.5 Distinguish between network-level protocols and user-level protocols. 

11.6 Explain the notion of a layered architecture, such as that used in SNA and OSI. Describe 
the advantages and disadvantages of such a structuring approach. 

11.7 What is a protocol stack? 

11.8 List the seven layers of the OSI reference model. Briefly describe the function of each 
layer. 

11.9 In the context of X.25, define data terminal equipment (DTE), data circuit terminating 
equipment (DCE), link access procedure balanced (LAPE), and X.21. 

11.10 Explain the functions of the two sublayers of the data link layer: logical link control 
(LLC) and media access control (MAC). 

11.11 Briefly discuss the operation of the CSMA/CD, token bus, and token ring local area net­
working schemes. 

11.12 Explain the functions performed by the major architectural components of SNA net­
works-namely, logical units (LUs), physical units (PUs), and system service control points 
(SSCPs). 
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11.13 Discuss the functions of the layers of the TCP/IP network architecture. 

11.14 Explain the notion of sockets as developed for the Berkeley UNIX distributions. Indicate 
the differences among stream sockets, datagram sockets, and raw sockets. 

11.15 

11.16 

Distinguish between stack-based and service-based coexistence strategies. 

Compare and contrast OSI and TCP/IP. 

11.17 Discuss the capabilities of the OS/2 Communications Manager (CM). Consider SNA sup­
port, LAN support, and TCP/IP support. 

11.18 Compare the use of a multiuser OS/2 system such as CITRIX Multiuser with LAN-based 
workstations as a means of enabling users to share resources and communicate with one another. 
Explain the advantages and disadvantages of each approach. Describe an environment where each 
might be appropriate. 
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The Future 

Pressure from the user community is forcing manufacturers to 
shy away from proprietary architectures and look more toward 

open systems. This gives vendors two options: Research and 
develop now and lead the industry, or be led by the 

competition later. 

Computerworld, April 30, 1990, p. 122 

Standards make it easier for purchasers to experiment with 
equipment embodying new technology and reduce the risk of 
committing to a technology that quickly becomes obsolete. 

Robert B. Reich 
"The Quiet Path to Technological Preeminence," 

Scientific American, October 1989 

Nothing endures but change. 

Heraclitus 

We had better wait and see. 

H. H. Asquith 
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12.1 INTRODUCTION 

This chapter describes issues significant to the future of OS/2. Open systems and the 
Systems Application Architecture (SAA) are described, and the role OS/2 will play in 
these environments is explained. Other key issues-such as system portability, multi­
processing, multimedia, and security-also are discussed. The current state of the per­
sonal computer and workstation markets is analyzed, and OS/2 's future evolution is 
plotted based on current trends and requirements. 

12.2 OPEN SYSTEMS 

The relatively new movement in the computer industry toward standardization of inter­
faces, and of the systems that provide these interfaces, is called open systems. The need 
to connect disparate systems in distributed environments led to the development of the 
OSI communication standards described in Chapter 11. Another factor that contributes 
to the movement toward open systems is the drive to standardize existing implementa­
tions of the UNIX operating system. Open systems attempt to satisfy the following 
goals: 

Maximal portability of applications, data, and users 

Increased functionality 

Vendor independence 

Interoperability 

Lower costs 

Simpler product acquisition 

Coherent network design 

An environment in which custom tailoring is still available through vendor­
specific value-added services 

These goals have led to standards work in the areas of communications, operating 
systems, programming languages, and user interfaces. Standards can be classified into 
four types of specifications: 

Formal standards 

De facto standards 

Standard implementations 

Proprietary implementations 

Formal standards are developed by organizations such as /SO, CCITT, ANSI, and 
IEEE. These standards are developed by an open consensus process that produces a 
specification that defines the standard. Although formal standard definitions are impor­
tant to interoperability, a process for testing system conformance is also required. The 
Corporation for Open Systems (COS) is a nonprofit alliance of major vendors and users, 
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chartered to speed the introduction of interoperable, multivendor products under OSI 
and other formal standards. IBM is a major COS member. 

De facto standards describe implementations with large installed bases that become 
standards as a result of their prevalence. TCP/IP and SNA are examples of de facto stan­
dards. Standard implementations are based on specifications developed by the open pro­
cess, and produce implementations that can be ported to different architectures. For 
example, the Open Software Foundation (OSF) produces specifications and standard im­
plementations of the UNIX system. UNIX International also produces specifications that 
describe a standard implementation of the UNIX system, but does not produce an imple­
mentation. Proprietary implementations include vendor value-added elements, such as 
intemetworking with proprietary network architectures. Proprietary implementations are 
normally owned, controlled, and defined by a single vendor. 

Open systems have interfaces and functionality that conform to available standards; 
such systems can be manufactured free of proprietary constraints. They are based on 
formal international standards, and these standards are developed by a consensus pro­
cess that is open to all participants. The open consensus process ensures that open sys­
tems architectures are not proprietary and do not serve the interests of only a specific 
vendor. This definition of "open systems" is generally accepted in the UNIX communi­
ty, since it implicitly requires a standard open operating system as a basis for the open 
environment. An alternative definition for "open system" that most vendors also recog­
nize originates with the OSI standard's definition of "open system." According to OSI, 
an open system is one in which the external interfaces conform to formal standards. In 
this definition, since open systems are defined based on external standards, proprietary 
internal architectures are not an issue, and an open operating system is not required as a 
basis for interoperability. 

12.3 OPEN UNIX 

The UNIX operating system is viewed as nonproprietary and vendor independent, since 
any vendor can purchase a source code license and port the system to its hardware. This 
view of UNIX comes from its unique evolution. UNIX was developed by AT&T Bell 
Laboratories. It was originally written in assembler, but was rewritten in the C pro­
gramming language before it was widely distributed. The rewritten version enabled it to 
be ported to many different environments. AT&T was originally prohibited from com­
peting in the computer industry, but it was able to distribute the source of UNIX to 
many schools and companies. Many ports to different processor architectures followed, 
each with its own enhancements. 

By the late 1980s, over 100 different versions of the UNIX system existed, and the 
market was extremely fragmented. Among the major variants of the UNIX system were 
AT&T System V, Berkeley UNIX 4.3, Microsoft XENIX, Sun Microsystems SunOS, and 
IBM AIX. Due to the differences in these implementations, and to the movement toward 
OSI communication standards, people became interested in standardizing the UNIX oper­
ating system and related non-operating-system interfaces. Thus, the UNIX market sees 
open operating systems technology as a critical component to the open systems strategy. 
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The IEEE POSIX standard includes a standard UNIX interface definition, and is 
based on AT&T System V and assorted enhancements drawn from the most popular 
implementations. POSIX also includes the X/Windows standard definition that describes 
the base architecture used to support graphical user interfaces. Currently, the IEEE is 
reviewing two graphical user interface proposals based on X/Windows, one by UNIX 
International and the other by the Open Software Foundation. 

Another standards body that plays a large role in defining UNIX standards is 
X!Open. Originally, a consortium of European vendors founded X/Open in 1984 to pool 
their resources in specifying a common application environment (CAE) based on de 
facto and formal standards. Most major UNIX vendors are in X/Open, directly or indi­
rectly. X/Open publishes the XI Open Portability Guide, a specification that describes the 
common application environment. It incorporates formal standards as they are defined, 
and combines existing formal standards with de facto standards to produce an open sys­
tems definition. 

In an attempt to produce a standard UNIX definition that meets the requirements of 
the existing major implementations, AT&T designed UNIX System V, Release 4. AT&T 
chose Sun Microsystems as its partner for producing the system. This agreement upset 
other major UNIX vendors, since they were in competition with Sun and AT&T, and 
thought that the evolution of standard UNIX needed to be a more open process. Their 
concern led to the formation of the Open Software Foundation ( OSF) to define a rival 
standard UNIX. 

The OSF was formed in 1988 to provide a source of open UNIX systems technol­
ogy. IBM, DEC, and Hewlett-Packard (HP) are some of the major members of OSF. 
OSFI I is the first UNIX implementation delivered by OSF. It uses Carnegie-Mellon 
University's Mach operating system for the base system kernel. Additional components 
of the system are provided by the members of OSF. Most members of OSF choose to 
integrate technology developed by OSF into their own proprietary UNIX implementa­
tions, rather than to offer the OSF standard implementation as a whole. OSF uses the 
Motif graphical user interface based on X/Windows for standard access to applications. 

OSF addresses the needs of interconnecting open systems with the distributed com­
puting environment (DCE). DCE complements and enhances the upper OSI layers to 
help application developers and users attain a transparent heterogeneous distributed 
operating environment. DCE integrates technology for remote procedure calls, distribut­
ed directory services, security, and distributed file services. 

In response to the OSF consortium, AT&T and Sun formed UNIX International, a 
consortium of UNIX vendors that promotes UNIX System V, Release 4 as the standard 
open operating system. Like OSF, UNIX International uses an open process whereby 
members can influence the System V definition. However, AT&T owns the System V 
standard, and documents that standard in the System V Interface Definition (SVID ). 
UNIX International unlike OSF, does not produce an implementation. Licensing and 
conformance testing of products based on System Vis performed by AT&T. UNIX 
International addresses the needs of interconnecting open systems with Sun 
Microsystem's Open Network Computing (ONC). ONC addresses goals similar to those 
met by DCE, and embraces many of the same standards. 
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Thus, there are two principal standard UNIX implementations-those of UNIX 
International and those of OSF. Both implementations have similar technical goals, both 
consortia are members of X/Open, and both systems are based on common standards. 

The X Consortium is devoted to continued development of X/Windows. 
X/Windows was developed at MIT with funding from IBM and DEC, and has become 
popular as the base technology used by graphical user interfaces on most UNIX systems. 
DEC, IBM, HP, and Sun are leading members of the X Consortium. The X Consortium 
produces a definition of X/Windows that is used by both OSF and UNIX International. 

AIX is IBM's entry into the UNIX market. AIX has been ported to the System 370, 
the RT/PC, the System 6000, and the PS/2. The contents of AIX are defined by an IBM 
document called the Family Definition Specification. AIX supports X/Windows, 
OSF/Motif, Sun NFS, TCP/IP, Ethernet, and OSI connectivity. It is based on AT&T's 
System V, and contains enhancements from Berkeley UNIX and OSF/1. AIX is not a 
part of SAA, since it does not yet implement all the required SAA elements. 

12.4 SYSTEMS APPLICATION ARCHITECTURE 

The objective of the Systems Application Architecture (SAA) is to tie together IBM's 
multiple architectures in a manner that ensures consistency across platforms. SAA is a 
set of software interfaces, conventions, and protocols that provides a framework for de­
veloping integrated applications consistent across SAA platforms. It addresses the mar­
ket's largest installed base, and opens up IBM interfaces that were previously 
considered proprietary. SAA is IBM's internal open systems path. It represents the 
largest implementation of the open systems philosophy that exists today. 

SAA compliance makes software independent of the system on which that software 
originated, as long as it is running on an SAA platform. Conversely, UNIX is machine 
independent, but UNIX application software is dependent on a specific standard imple­
mentation of the UNIX system. The benefits of SAA are similar to those of open sys­
tems. The portability of applications from the developer and end-user view is a key part 
of SAA. Also, SAA provides for consistency in environments across systems, and con­
nectivity that enables distributed cooperative processing environments. SAA further im­
proves connectivity by defining an environment in which applications can run across 
IBM's disparate systems without being sensitive to the underlying operating system. 
This is in direct contrast to the philosophy espoused by the open UNIX market, in which 
a standard open operating system is considered critical to the success of open systems 
across disparate platforms. 

SAA is composed of a base foundation, and an interface framework that describes 
how the base is accessed by applications. The base foundation consists of system control 
programs, application enablers, and communications. System control programs are 
operating systems, such as VM, MYS, OS/2 Extended Edition, and OS/400. Application 
enablers are tools such as compilers and database management systems, that assist 
developers in application development. The communications portion of the SAA base 
provides functions that connect applications, systems, networks, and devices. Figure 
12. l illustrates the SAA architecture components. 
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Fig. 12.1 Components of the IBM Systems Application Architecture. (Adapted from 
APPC Introduction to LU6.2, A. Berson, Copyright 1990, McGraw-Hill Publishing 
Company. Reprinted by permission.) 

Outside the SAA foundation, a framework of interfaces is defined that specifies 
how applications access services provided by the base. The SAA interfaces are divided 
into three categories: common user access (CUA), common programming interface 
(CPI), and common communications support (CCS). CUA allows users to interface with 
the computer in a consistent manner, regardless of the system. It specifies panels, key­
board layouts, graphical user interface interactions, and controls. CPI details program­
ming language specifications (such as ANSI C) that are implemented across SAA 
environments. The CCS portion of the SAA interfaces defines common architectures 
and protocols that interconnect SAA systems. It also provides for the interconnection of 
non-IBM systems using OSI and TCP/IP protocols. 

SNA's LU6.2 is the strategic peer-to-peer distributed application protocol used by 
IBM systems within SAA. CCS also provides for token ring LANs based on the IEEE 
802.2 standard, and for WANs connected using X.25 or SDLC data link protocols. OSI 
is the strategic vehicle in SAA for connecting non-IBM systems. The OS/ 
Communications Subsystem (OS//CS) program, supported on SAA platforms, supports 
the government's GOSIP requirements for procuring open systems. The integration of 
SNA and OSI Jets users retain the rich functionality and network management services 
of SNA, while allowing them to take advantage of new OSI applications. SNA, TCP/IP, 
and OSI are integrated up to the data link layer within the SAA CCS definition. 
Different protocol stacks for each of these network architectures coexist above the data 
link layer. Also, application layer protocol translation programs, or application gate­
ways, provide the necessary translation for allowing distributed applications to coexist 
across SNA and non-SNA systems. 
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SAA common applications are written to the CPI and CUA interfaces. As more 
common applications become network distributed, they rely more on the CCS compo­
nent of SAA. Common applications run in all SAA environments with the same user 
interface. CUA, CPI, and CCS work together so that the underlying SAA foundation 
does not obstruct consistency, connectivity, or interoperability. 

It is interesting to compare IBM's SAA interoperability strategy, and the open 
UNIX strategy described in the previous section. IBM's approach to open systems and 
interoperability is the synthesis of vision and practicality. IBM embraces OSI, but is 
not abandoning the strategic SNA platform with its huge installed base. The IBM 
approach allows the retention of rich SNA functionality, while acknowledging the 
desirability and usefulness of the OSI standards. SAA does not require a common oper­
ating system, as the UNIX open systems market does, but instead relies on the common 
interfaces to the SAA base functions to shield applications from the nature of the oper­
ating system. This difference between SAA and UNIX-based open systems is the fun­
damental one. 

SAA, like OSI, defines an open system to be one that provides the external inter­
faces specified by formal standards. As long as the system conforms to these external in­
terfaces, the internal implementation used does not matter. Therefore, in the SAA and 
OSI definitions of an open system, whether or not the core operating system is propri­
etary is not an issue. However, in the UNIX market, in which there are so many variants 
of the UNIX operating system, UNIX vendors realize that it is critical to standardize a 
single version of UNIX for their open system platforms. Thus, UNIX vendors link the 
standard operating system to the open systems issue, by taking the position that a single 
open operating system is critical to the success of open systems. On the other hand, 
SAA and OSI take the standpoint that, as long as the external interfaces defined by for­
mal standards are obeyed, it does not matter what operating system is used. Ultimately, 
the two different philosophies have enough in common that they will be able to coexist 
and to further the strategy of open systems. 

OS/2 is the strategic SAA operating system platform for IBM's PS/2 systems. OS/2 
is classified as an open system, since it provides connectivity to SNA, TCP/IP, OSI, and 
DCE environments. Although it can run applications across these heterogenous environ­
ments, it is not yet available for other architectures. A key issue for OS/2 will be how to 
handle the evolution and migration of OS/2 to other processor platforms. Unlike for 
UNIX systems, there is a single standard for OS/2 systems. However, UNIX vendors 
view OS/2 as proprietary, since the system design process is not open, OS/2 is not yet 
portable to most architectures, and OS/2 is not UNIX. As open as UNIX is, there is still 
not a single standard UNIX implementation on which all vendors agree. The portability 
of 32-bit OS/2 should give that system the momentum needed to break through the pro­
prietary barriers envisioned by UNIX vendors. It is possible that, in the future, IBM 
may sell source licenses to 32-bit OS/2, and enable vendors to port 32-bit OS/2 to their 
own architectures. However, IBM must be careful to ensure that OS/2 remains a stan­
dard implementation that meets the requirements of open systems. The 32-bit OS/2 sys­
tem qualifies as a workstation operating system. It provides the connectivity and 
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functions of both SAA and open systems environments, and will clearly play a major 
role in the future. 

12.5 SYSTEM PORTABILITY 

The proliferation of RISC architectures as fast, generic processing engines has fueled 
the growth of the workstation marketplace. Systems based on the MIPS RISC processor, 
the IBM POWER architecture, and Sun's SPARC processor are leading the way into 
open systems in the workstation marketplace. Both IBM and Microsoft have announced 
that OS/2 will support RISC platforms in the future. The key to providing this support is 
to finish the task of making the 32-bit OS/2 system portable, and to allow it to migrate 
from the Intel processor platforms. Several alternatives are being explored for enabling 
the base system to be portable to other architectures, such as Microsoft's NT system, the 
Mach system embraced by OSF, and AIX. Regardless of the technology used, applica­
tions based on the OS/2 2.0 API are source retargetable, since they are based on the cur­
rent portable 32-bit APL 

OS/2 2.0 is the first release of 32-bit OS/2 technology. Most of the OS/2 2.0 kernel 
is 32-bit code, and about 60 percent of it is written in the C language. The utilities, the 
window management portion of the PM, and the device drivers are still 16-bit code. For 
OS/2 to be independent of the Intel 80X86 processor platform, these components must 
be converted to 32-bit code. This task entails converting the rest of the kernel to 32-bit 
C, and isolating machine-dependent portions of the kernel into separate modules. A 32-
bit flat-model device-driver architecture is needed to support development of device 
drivers in C that are portable across different architectures. Portions of the PM, and the 
utilities, also need to be converted. 

Moving OS/2 to a non-Intel platform may require the removal of the DOS compati­
bility, Windows 3.X compatibility, and 16-bit OS/2 compatibility features. Although 
many RISC architectures can simulate an 8086 in real mode, and thus some simple DOS 
applications, this ability does not allow 16-bit OS/2 and 16-bit protected-mode Windows 
3.X applications to run on a RISC processor. However, DOS compatibility, 16-bit com­
patibility, and Windows compatibility may be retained through use of an 80X86 as a 
coprocessor in the RISC environment. 

12.6 MULTIPROCESSOR SYSTEMS 

OS/2 already provides some multiprocessing support. The existing coprocessor scheme 
for LAN superservers allows the network code of the operating system to be run on an 
80386 or 80486 coprocessor. It uses a tightly coupled master/slave relationship between 
the processor running the OS/2 system and the processor running the network code. 
However, it is the evolution of OS/2 toward symmetric multiprocessing (SMP) platforms 
that has interesting implications for the future. 

On an SMP platform, any processor can execute kernel and user code, and multi­
threaded processes can run on one or more processors. SMP platforms were described in 
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detail in Chapter 3. They can maintain compatibility with uniprocessor programs devel­
oped for the same processor. They require efficient shared memory interprocess commu­
nications in hardware, and provisions for processor interlock to resolve resource 
contention. In an SMP system, peer processing allows processes to be less tightly cou­
pled and less reliant on one another. 

There are several technical issues significant to the evolution of a portable OS/2 to 
an SMP platform. The kernel must be reentrant, since it can be executed by more than 
one thread at a time on different processors. The kernel may optionally be preemptible, 
depending on the requirements of the implementation. Other work is necessary in pro­
cess and thread scheduling, and in memory management. Furthermore, arbitration of 
resource conflicts between processors must be supplied, as well as shared I/0 manage­
ment capabilities. The MP version of OS/2 must be able to maintain memory and cache 
integrity across a variety of memory architectures. It will do so by using systemwide 
tables in shared memory, and coding the kernel to use memory resource locks when 
accessing shared structures and performing shared I/O. The technical requirements for 
supporting SMP systems are being addressed in the effort to make the underlying OS/2 
system portable. 

12.7 SECURITY 

Security is important to the future of OS/2 from the perspectives of open systems and 
distributed environments. Security guidelines have been developed by the National 
Computer Security Center (NCSC) of the Department of Defense (DOD) in the rainbow 
series of documents. Since each of the documents has a cover of a different color, the 
series uses the term "rainbow," and color names are used as the informal names of the 
documents. The series includes the Trusted Computer System Evaluation Criteria or 
Orange Book, the Trusted Network Interpretation or Red Book, and the Green Book on 
password management guidelines. A Blue Book provides guidelines on magnetic reso­
nance and electrical emissions; a Yellow Book describes how to apply the Orange Book. 

The Orange Book contains security standards that specify how manufacturers pro­
duce trusted computer systems. It provides criteria used to evaluate the level of trust as­
signed a system, and also is used as a basis in government procurement specifications. 
The Red Book applies the standards of the Orange Book to network distributed environ­
ments. Network security services and mechanisms are also defined in the OS/ security 
architecture. 

Security, according to the Orange Book, is provided in two components: security 
mechanisms and security assurance measures. Security mechanisms implement controls 
that guarantee a trusted environment. Security assurance measures provide a certain level 
of assurance that security mechanisms are designed and implemented correctly. Seven 
levels of trust are defined by the Orange Book specification. They are identified using let­
ters and numbers as follows: Dl, Cl, C2, Bl, B2, B3, Al. Level Dl is the lowest level 
(no security), and level Al is the highest level. Levels Cl, C2, and Bl define the re­
quirements for security mechanisms, and levels B2, B3, and Al define the requirements 
for security assurance measures. Figure 12.2 illustrates the Orange Book security levels. 
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Security mechanisms are implemented in levels C 1 through B 1 in the security standard. 
At the C levels, discretionary access control (DAC) is required to provide controlled ac­
cess to objects by named users or groups at the discretion of the owner. DAC is speci­
fied by the creator of an object, and allows the creator to specify what users or groups 
have a need to access that object. Examples of DAC are the user/group-style permis­
sions of the OS/2 LAN environment and UNIX systems, and the more sophisticated 
access control lists (ACLs) found in CITRIX Multiuser. ACLs allow a finer granularity 
of control than do the basic user/group-style permissions. 

Accountability is another security mechanism required by the Orange Book. 
Ensuring accountability consists of providing means for user identification and 
authorization. Accountability is typically provided using passwords or physical identifi­
cation devices such as badge readers. Accountability also requires that the system to be 
able to provide an audit trail of security-related events. 

Object reuse is a security mechanism that ensures that residual data are cleared 
from system-provided objects before the objects are reused. Examples of object reuse 
are clearing of memory buffers, disk storage, or registers when they are assigned to a 
new user. Discretionary access control, accountability, and object reuse are required at 
the Cl and C2 levels. 

Beyond the Cl and C2 levels, security labels and mandatory access control (MAC) 
are required by the Orange Book. Security labels, or sensitivity labels, are maintained by 
the system for each object and user. The labels represent a hierarchy of security levels that 
are designated using labels-for example, top secret, secret, classified, and unclassified. 

Mandatory access control restricts access to files and system objects through levels 
and compartments. It relies on security labels to be assigned to objects and users. MAC 
implements security controls based on the security label hierarchy. Users can access ob­
jects only at or below their security level. Users cannot access objects at higher levels 
even if the ACL or DAC mechanism says the access is valid. MAC supersedes DAC, 
since it does not allow the creator of an object a choice in applying security mecha­
nisms to that object. In a MAC environment, users also cannot modify objects at lower 
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security levels. This prevents a high-level user from making trusted data accessible to 
users that do not have sufficient privilege to access those data. Thus, the altering of 
even low-security-risk data must use a system-enforced security procedure. Mandatory 
access control is called "mandatory," since its mechanism for preventing trusted data 
from becoming accessible is a policy of the system, not a policy of the user that created 
the object. The B 1 security level requires sensitivity labels on all objects and mandatory 
access control. 

12.7.2 Security Assurance Measures 

The security assurance measures are enforced in security levels B2, B3, and Al accord­
ing to the Orange Book specification. There are several criteria that are described in the 
security assurance measures: 

System architecture criteria 

System integrity criteria 

Security testing criteria 

The system architecture criteria require protection between the system and applica -
tions, and among applications. The system integrity criteria require a means to validate 
the hardware and microcode of the system itself. The security testing criteria require 
mechanisms to be tested to conform with the system security documentation. These 
three criteria are defined differently on the various levels. Level B 1 requires an informal 
model of security policies to be documented. Levels B2 and B3 require system 
restructuring to meet modularity specifications, and formal modeling of the security sys­
tem. Due to the modularity requirements, it is nearly impossible to retrofit B2 and B3 
security into existing operating system architectures. The modularity requirements also 
usually hamper the performance of the system, requiring redesign of an existing system 
and tradeoffs between security and performance. The A 1 level requires a mathematically 
proven model of the security architecture. 

12.7 .3 OS/2 Security 

The existing 16-bit OS/2 system is single user, so security was not a major consideration 
in its design. The LAN support for 16-bit OS/2 systems has user and group permissions 
for file system objects and devices that are shared across the network. The CITRIX 
Multiuser system provides discretionary access control using access control lists. The 
32-bit system has parameters reserved in API functions that grant access to shared sys­
tem objects, such as semaphores, files, and shared memory. The reserved parameters are 
for access control lists, which will be supported in a future version of the 32-bit system 
when security is provided in the base system. Future versions of the 32-bit OS/2 system 
will ultimately progress to the C 1, C2, and, at least, B 1 levels of security compliance. 
Thus, OS/2 will be an appropriate candidate in government procurements that demand 
increased security. 



Terminology 349 

12.8 MULTIMEDIA 

Multimedia technology is the integration of television-quality audio and visual capabili­
ties on the personal computer and workstation platforms. With the advent of new tech­
nology such as CD/ROM, musical instrument digital interface (MIDI), and digital video 
interactive (DV/), multimedia technology is becoming available on general-purpose 
low-cost systems. The Interactive Multimedia Association (IMA) was founded in 1988 
as a trade group specializing in video disk technology. It has evolved to a membership 
of over 170 companies, including IBM, Sony, NCR, Phillips, Intel, Apple, Lotus, and 
Macromind. The IMA is developing multimedia specifications for hardware and soft­
ware architectures, based on existing and evolving standards. 

Multimedia applications place real-time sequencing requirements on operating sys­
tems, because they must be able to perform audio and visual 1/0 quickly to provide real­
istic presentations. Audio and video data must be sequenced and synchronized so that 
audio data sound right, visual data look right, and their combined presentation has the 
desired effect for the user. Multimedia applications can integrate digital video, digital 
audio, animation, images, and special effects into multimedia presentations. 

IBM has announced multimedia extensions for the 32-bit OS/2 platform that will 
enable a new class of applications to be developed. OS/2 2.X is the ideal environment 
for multimedia applications because of its protected multitasking environment, high­
performance memory management and IPC mechanisms, and overall system integrity. 

SUMMARY 

This chapter described issues that will affect the future of OS/2. The open systems mar­
ket and SAA architectures will play a significant role in defining how OS/2 intercon­
nects to other systems. OS/2 will also be portable to other architectures, and will support 
symmetrical multiprocessing architectures. Security qualification of OS/2 is an im­
portant future requirement that will enable OS/2 to participate in government procure­
ment. Multimedia applications will take advantage of the flexible and robust foundation 
of OS/2, and will allow users to interact with the system using integrated audio and vi­
sual media of television quality. 
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mandatory access control (MAC) 
master/slave relationship 
Microsoft XENIX 
motif graphical user interface 
multimedia 
multiprocessor 
musical instrument digital interface 

(MIDI) 
National Computer Security Center 

(NCSC) 
object reuse 
open consensus process 
Open Software Foundation (OSF) 
open system 
Orange Book 

EXERCISES 

OSF/l 
OSI Communications Subsystem 

(OSI/CS) 
OSI security architecture 
portability 
processor interlock 
Red Book 
resource contention 
RISC 
security assurance measure 
security label 
security mechanism 
symmetric multiprocessing (SMP) 
system control program 
System V Interface Definition (SVID) 
Systems Application Architecture (SAA) 
tightly coupled 
Trusted Computer System Evaluation 

Criteria 
Trusted Network Interpretation 
UNIX 
UNIX International 
UNIX operating system 
UNIX System V, Release 4 (SVR4) 
X Consortium 
X/Open 
XI Open Portability Guide 
XPG/3 
X Windows 
Yellow Book 

12.1 Discuss the advantages and disadvantages of the open systems approach. 

12.2 Briefly explain each of the following types of standards: formal standards, de facto stan­
dards, implementation standards, and proprietary implementation standards. 

12.3 Why has UNIX evolved to such a special position of prominence in the open systems 
arena? 

12.4 Explain the roles played by each of the following consortia in the open UNIX arena: UNIX 
International, the Open Software Foundation, and X/Open. 

12.5 Discuss IBM's Systems Application Architecture (SAA). 

12.6 Explain the function of each of the following SAA interfaces: common user access (CUA), 
common programming interface (CPI), and common communications support (CCS). 
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12.7 Argue why SAA may be called IBM's "internal open systems approach." Explain how 
SAA provides for connecting to external open systems. Say how crucial you believe SAA's role 
will be in the worldwide open systems arena. 

12.8 What is the fundamental difference between SAA and UNIX-based open systems? 

12.9 How does OS/2 fit into IBM's SAA strategy? 

12.10 What are the keys to increasing the portability of OS/2? 

12.11 How does porting OS/2 to RISC platforms affect OS/2's compatibility features? 

12.12 Describe the sequence of steps that would be used to port OS/2 to other processors (other 
than Intel 80X86 series) once OS/2 has been converted to 32-bit code and has been restructured. 

12.13 What features does OS/2 already provide in support of multiprocessing? 

12.14 What technical issues are significant to the evolution of a portable OS/2 to a symmetric 
multiprocessing platform? 

12.15 Distinguish between security mechanisms and security assurance measures. 

12.16 What discretionary access control (DAC) mechanisms are provided by OS/2 and CITRIX 
Multiuser? 

12.17 In the context of Orange Book security, explain the notions of accountability, object 
reuse, security labels, and mandatory access control (MAC). 

12.18 Discuss each of the following criteria described in the Orange Book security assurance 
measures: system architecture criteria, system integrity criteria, and security testing criteria. 

12.19 What is multimedia technology? What demands do multimedia applications place on the 
operating system environment? 
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