

The Design of
OS/2

H. M. Deitel
Nova University

M. S. Kogan
IBM Corporation

A ••
ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts • Menlo Park, California • New York
Don Mills, Ontario • Wokingham, England • Amsterdam • Bonn

Sydney • Singapore • Tokyo • Madrid • San Juan • Milan • Paris

Sponsoring Editor: Keith Wollman
Electronic Production Administrator: Beth Perry
Text Designer: Herb Caswell
Technical Art Consultant: Joe Vetere
Illustrators: Tech-Graphics
Cover Designer: Peter Blaiwas
Manufacturing Coordinator: Judy Sullivan

Library of Congress Cataloging-in-Publication Data

Deitel, Harvey M., 1945-
The design of OS/2 I H.M. Deitel, M.S. Kogan.

p. cm.
Includes bibliographical references and index.
ISBN 0-201-54889-5
I. OS/2 (Computer operating system)

QA76.76.063D455 1992
005.4'469-dc20

I. Kogan, M.S. (Michael S.) II. Title.

91-17015
CIP

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Addison-Wesley was
aware of a trademark claim, the designations have been printed in initial caps or all caps.

The programs and applications presented in this book have been included for their instructional
value. They are not guaranteed for any particular purpose. The publisher and the authors do not
offer any warranties or representations, nor do they accept any liabilities with respect to the pro­
grams or applications.

Copyright© 1992 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher. Printed in the United States of
America.

This manuscript represents the opinions of the authors only, and in no way expresses any view or
opinion of the IBM Corporation.

2 3 4 5 6 7 8 9 10-D0-9594939291

To the designers, implementors, and testers of OS/2:
For bringing edge-of-the-art distributed computing
capabilities to the desktop of the 1990s

To Dean Edward Simco:
For his indefatigable efforts in creating and nurturing the
Center for Computer and lnformation Sciences at Nova University

Foreword

It is a pleasure to write these opening comments for Deitel and Kogan's, The Design of
OS/2. We at IBM believe strongly that the new 32-bit OS/2 2.0 will have an important
place in the market for personal computers, workstations, and network servers. The book
clearly and thoroughly explains the architecture of the operating system in a manner.ap­
propriate both for technical professionals who want to understand OS/2's internal struc­
ture, and for software developers considering investing in OS/2 applications
development. It provides insights into why various key design decisions were made.

Dr. Michael Kogan is the chief architect of OS/2 2.0; Dr. Harvey Deitel is the author
of one of the world's most widely used operating systems textbooks. Their combined
experience covers every major current IBM operating system, as well as the UNIX sys­
tem, networking, multimedia, and open systems. Dr. Kogan, through his position at IBM,
is well apprised of IBM architectural trends. Dr. Deitel consults in the open systems arena
with activities related to open operating systems, object orientation, OSI protocols, and
international computing and communications standards.

Why OS/2?

Computer systems are evolving rapidly, and OS/2 is designed to support these changes.
There are radical changes in hardware, from older systems supported by modest 8- or
16-bit microprocessors, to newer high-powered 32-bit microprocessors such as the Intel
8Q386 and 80486. RISC systems and multiprocessing systems offer the potential for
massive increases in net processing power.

Radical changes in user support also are demanded. The personal computers of the
early to mid-1980s tended to be standalone systems. In the 1990s, personal computers
will be networked in local and wide area networks. OS/2 is designed to support mission­
critical applications-that is, applications that must function continuously and reliably
to support key activities of businesses and other organizations. OS/2 is designed to en­
hance personal productivity. End users working in OS/2 environments can get more
done because of the ease of use, high performance, high reliability, information accessi­
bility, and system integrity provided by OS/2.

v

vi Foreword

The shift in application development toward object-orientation is gaining momen­
tum. To become more productive software developers need to reuse components, to de­
velop prototypes more rapidly, and to implement polished and tuned applications faster.
OS/2 provides an environment conducive to object-oriented systems development.

The following sections briefly describe OS/2 2.0 and its capabilities. As you read
this book, you will come to understand what is "under the hood," and how these capabil­
ities are implemented.

The Integration Platform

We call OS/2 2.0 the "integration platform" because you can run your existing DOS
applications, DOS extender (such as the popular Windows) applications, and OS/2 1.3
applications on OS/2 2.0, and they will run more efficiently on the same hardware than
they do under their originally intended operating systems. You can also run the new,
high-performance 32-bit applications designed to take advantage of 32-bit architectures.
Applications run better from the standpoint of performance, integrity, and usability,
translating into productivity gains.

Protected Multitasking

OS/2 2.0 represents the evolution of DOS into the world of protected multitasking. It
uses the protection mechanisms of the 80386/80486 architecture to ensure robust opera­
tion. It runs many applications simultaneously without the danger of misbehaved appli­
cations destroying one another or the operating system-precisely what is needed in
mission-critical application environments. An application may not access the private
data of other applications. This level of protection is facilitated by the fact that OS/2
applications execute in separate address spaces; DOS extender applications, on the other
hand, share a single address space. An errant DOS application may destroy a DOS
extender's kernel, thus requiring a reboot, and work may be lost; the OS/2 kernel is pro­
tected from errant applications. OS/2 can run multiple versions of the same software
simultaneously, making it ideal as an application developer's platform. Its multitasking
capabilities make it appropriate as a network server. It uses preemptive scheduling, so it
offers good responsiveness to applications of differing characteristics. Priorities are cal­
culated dynamically, so OS/2 can multitask timing-critical applications in both the fore­
ground and the background.

Mission-Critical Systems

OS/2 has many features that support mission-critical business applications. It provides
protected multitasking, processes, threads, interprocess communication, and virtual
memory, as well as reliability/availability/service (RAS) features that help to isolate
software problems and to ensure robust operation.

Applications

There are already 2500 OS/2 software applications announced or available, including
300 Presentation Manager applications. Popular software packages are available, such as
Lotus 1-2-3, DBase, WordPerfect, and many others. Many 32-bit OS/2 applications have
appeared, and hundreds more are under development. OS/2 2.0 is a critical platform for

Foreword vii

IBM's Systems Application Architecture (SAA), our plan for integrating the IBM main­
frame, minicomputer, workstation, and personal computer product lines. OS/2 2.0 is de­
signed for machines based on Intel's 32-bit 80386/80486 architecture. In particular,
80386-based systems have proliferated, creating the installed base needed to attract the
resources of the independent software vendors. With the appearance of 32-bit OS/2,
major user organizations and independent software vendors are making substantial
commitments to developing OS/2 applications. OS/2 2.0 provides a powerful base for
future growth; 32-bit applications provide dramatic performance improvements over
their 16-bit counterparts. Our PMREXX application, for example, demonstrated a 60
percent improvement when used in the 32-bit programming environment.

Memory Management and Virtual Memory

OS/2 2.0's virtual memory model provides 4-gigabyte addressing. The large, flat, paged
32-bit memory model frees the application developer from the memory constraints of
the 16-bit segmented model, and from the complexity of managing memory in the 16-bit
environment. The 32-bit paging model achieves better utilization of memory and higher
performance. The DOS extenders that use virtual memory are typically constrained to a
small virtual space; Windows 3.0 applications, for example, share a virtual memory no
larger than four times the size of physical memory. In OS/2 2.0, each application has a
512MB virtual memory limit, so the key memory limit is the available disk space. DOS
extenders generally use the segmented memory model, in which each piece of memory
can only be as large as 64KB; in OS/2 2.0, memory objects can be as large as they need
to be (up to the limits of virtual memory). OS/2 runs multiple DOS applications, each
with more real memory and far more virtual memory than is available through DOS ex­
tenders such as Windows, and each protected from the others to ensure more robust
operation. DOS applications can use the DOS Protected Mode Interface (DPMI) to
access up to 512MB of extended memory.

Productivity and Ease of Use

OS/2 2.0 provides numerous productivity and ease-of-use improvements. It provides a
graphical installation procedure, and it uses an object-oriented, graphical user interface
with the drag-and-drop environment implemented consistently across the entire system.
Local area network requestor capabilities are integrated into the shell. Intelligent font
technology is employed. OS/2 2.0 supports a great variety of printers. It provides an on­
line, interactive tutorial, and includes various utilities, games, and productivity applica­
tions to help the user become familiar with the system quickly. Extensive on-line help
capabilities are provided. In a typical OS/2 environment, the operating system manages
the environment transparently to the user. OS/2 worries about the network, and deter­
mines whether it has the latest software updates and data updates. The user does not see
all that activity. Rather, the user sees only the graphical user interface, which will con­
tinue to be enhanced.

Workplace Model

OS/2 2.0 implements the SAA Common User Access Workplace model, which uses the
desktop metaphor of how people work. It derives from our Office Vision system, and

viii Foreword

works in the object-oriented paradigm. The Workplace model provides an intuitive user
interface for managing any objects, including programs, files, and devices.

Presentation Manager

Given that we can run Windows applications out of the box, why do we encourage the
development of Presentation Manager (PM) applications? PM applications offer better in­
tegration with the Workplace model. Threads can be used to maximize the advantages of
multitasking, and to increase system responsiveness. PM applications can take advantage
of the capabilities of the OS/2 Database Manager and Communications Manager. In gen­
eral, PM applications can use the more powerful capabilities provided in OS/2 2.0 for
interprocess communication, tasking, semaphores, multithreading, and graphics. The
High-Performance File System (HPFS) offers greater data integrity, minimizes disk frag­
mentation, exploits SCSI performance features, uses sophisticated input/output caching
algorithms, and supports huge disks and long filenames. Finally, OS/2 2.0 uses installable
file systems, which makes it easy to support new kinds of media, such as CD-ROM.

Portability

The popularity of flat, 32-bit virtual address spaces across many platforms facilitates
porting OS/2 to those platforms. This portability enables OS/2 to compete effectively
with UNIX in the workstation marketplace. Porting to RISC platforms is underway. The
32-bit API is portable to multiprocessor architectures, as well as to uniprocessor
architectures.

Multimedia

OS/2 2.0's exploitation of the 80386/80486 architecture is important for high-performance
applications, such as speech synthesis and recognition, full-motion color video with sound,
and the integration of these technologies under the rubric of multimedia. OS/2 is a particu­
larly strong system for multimedia applications. It encapsulates system resources, freeing
the developer from having to control them directly, and it offers powerful graphics capa­
bilities. Multitasking supports the multiple data streams common in multimedia applica­
tions. OS/2 2.0 supports the notion of fast threads specifically for multimedia applications.
Multimedia also demands the manipulation of huge objects such as bitmaps; this capability
is facilitated by the large, flat, 32-bit virtual addressing model.

Object Orientation

Through extended attributes, OS/2 provides file-system support for object-oriented
capabilities, and we are enhancing support for object-orientation. The motivation for this
support is clear. Object orientation enables developers to write collaborative software
without having a detailed understanding of all components. It yields reusability of sub­
stantial functions, dramatically improving the productivity of developers working on so­
phisticated new applications-surely a source of excitement in our industry. Projects
underway emphasize the use of object-oriented programming techniques and of other
edge-of-the-art technologies (such as multimedia, expert systems, and visual pro­
gramming) to create applications useful across a wide range of hardware and operating

Foreword ix

system platforms. These efforts focus on developing applications by combining reusable
software objects. Their work products will become available on OS/2, AIX, UNIX, and
Macintosh systems, among others, ensuring wide distribution.

Networking and Distributed Computing

IBM has endorsed the Distributed Computing Environment (DCE) of the Open Software
Foundation. DCE supports heterogeneous, multivendor distributed computing. IBM's
SAA is being extended to include DCE. OS/2 is a key SAA system and will support
DCE. In particular, OS/2 will include remote procedure calls (RPCs), the distributed
naming service (in conformance with OSI's X.500 standard), the time service, the secu­
rity service, the threads service, and the distributed file system. OS/2 provides many fea­
tures that support networked environments, DCE, and cooperative processing. Perhaps
most crucial is OS/2's support of key networking standards, such as SNA, TCP/IP, and
OSI. OS/2 LAN support includes key local area networking standards, such as token
ring and Ethernet, and wide area networking standards, such as X.25.

Overview of the Book

Deitel and Kogan describe the evolution of personal-computer operating systems
through the early years of DOS and its various versions, and the development of OS/2
through its 16-bit and 32-bit versions. They discuss the microprocessor architectures,
hardware system architectures, and operating system architectures of the IBM-com­
patible, personal computing marketplace. They explain how protected multitasking is
implemented, and provide insights into the relationships between threads and processes.
A detailed discussion of memory management is presented, including explanations of
the segmented model of OS/2 l.X and the flat model of OS/2 2.0. The various interpro­
cess communication mechanisms are considered, including shared memory, semaphores,
signals, queues, and pipes. The 1/0 management chapter explains the notions of files,
devices, installable file systems, device drivers, and Dev Help services. With all the
attention on graphical user interfaces today, the reader will appreciate the discussion of
the Presentation Manager and windowing concepts. The book's highly detailed treat­
ment of providing compatibility for DOS, Windows 3.0, and OS/2 1.3 is superb. The
communications features of OS/2-including OSI, X.25, LANs, SNA, and TCP/IP-are
covered in depth. The book concludes with a look to the future, considering such im­
portant topics as open systems, competition and cooperation between OS/2 and UNIX,
IBM's Systems Application Architecture, multiprocessing, security, and multimedia.
Deitel and Kogan have written a clear, thorough, well-illustrated, frank, and insightful
analysis of the architecture of OS/2 2.0. Their work is an important contribution to the
operating systems literature.

James A. Cannavino
IBM Vice President and
General Manager, Personal Systems

Pref ace

The goal of this work is to provide insights into the design decisions and philosophies of
the OS/2 operating system. We discuss the motivation, architecture, and realization of
OS/2 in the personal computing marketplace. The designs of the major components of
OS/2 are described. Each area bridges operating systems theory to the design and imple­
mentation of OS/2. Where appropriate, a comparison of the technical aspects of OS/2
and UNIX is provided. The evolution of personal computer operating systems from
DOS through 16-bit OS/2 and 32-bit OS/2 is presented.

Chapter I recounts the history and evolution of the DOS and OS/2 operating sys­
tems. It sets the stage as we illustrate how the OS/2 development teams reconciled real­
world development constraints with providing the functionality and performance
demanded by a maturing PC industry.

Chapter 2 describes the microprocessor architectures on which the DOS and OS/2
systems execute. We consider the 8088/8086 processor family, the 80286, the 80386,
and 80486 CISC-style processors. Looking towards the future, we consider RISC-style
processors such as the Intel 80860 and the IBM POWER architecture used in IBM
System/6000 workstations.

Chapter 3 presents the hardware system architectures of the personal computer sys­
tems that use the processors discussed in Chapter 2. We consider key personal computer
bus architectures-the original Industry Standard Architecture (ISA), the Micro Channel
Architecture, and the Extended Industry Standard Architecture (EISA). Uniprocessor
and multiprocessor configurations are discussed. The programming tools available for
the various hardware architectures are described, and the evolution of these is traced
across the operating system platforms.

Chapter 4 overviews the architectures of 16-bit and 32-bit OS/2 systems and pro­
grams. A discussion of the DOS system gives the technical foundations of the precursor
to the OS/2 system.

Chapters 5 through 10 describe the architecture and design of the major components
of the 16-bit and 32-bit OS/2 systems. When a component provides the same functional-

xi

xii Preface

ity in both the 16-bit and 32-bit systems, a single discussion is rendered and differences
in the two versions of the component are noted where significant (as in Chapter 5 on
multitasking). When the 16-bit and 32-bit versions of a single component are substan­
tially different, separate treatments of the component are presented for each version (as
in Chapter 6 on memory management). Each major component is discussed in terms of
its API calls, internal algorithms, and data structures. These specify the behavior and
content of 16-bit OS/2 and 32-bit OS/2.

Chapter 5 discusses OS/2 multitasking. The overall architecture, internal data struc­
tures, and major algorithms that compose the OS/2 task manager, dispatcher, and sched­
uler are detailed.

Chapter 6 describes OS/2 memory management. Both the segmented 16-bit memory
model and the paged 32-bit memory model are discussed.

Chapter 7 deals with interprocess communication issues in the multitasking environ­
ment. Shared memory, semaphores, signals, pipes, queues, and exceptions are examined in
both the 16-bit and 32-bit OS/2 systems.

Chapter 8 describes the I/O components of OS/2. The architectures for devices, file
systems, and device drivers are elaborated along with their respective APis or interfaces.

Chapter 9 describes the presentation management aspects of OS/2. The roles of the
keyboard, mouse, and screen devices are examined and analyzed with respect to OS/2's
session management architecture. The function and design of the graphical user inter­
face of OS/2, as provided by the Presentation Manager, are also described.

Chapter 10 explores issues in providing compatibility. Both the 16-bit and 32-bit
versions of OS/2 provide DOS compatibility. The 32-bit version also provides Windows
3.0 compatibility and 16-bit OS/2 compatibility.

Chapter 11 examines the role of OS/2 in the communications arena. IBM's System
Application Architecture and the ISO Open Systems Interconnection reference model
are described, as well as OS/2 Extended Edition and LAN Manager. The role of OS/2 in
networked workstation and multiuser environments is also considered.

Chapter 12 discusses future issues for OS/2. We examine the technical requirements
placed on OS/2 to support open systems, RISC architectures, multiprocessor platforms,
and multimedia.

It is a pleasure to acknowledge the people who helped us throughout the writing,
review, and production phases of this project. Thanks to the individuals in IBM man­
agement, communications, and legal areas for their support in this endeavor. We are also
grateful for the comments of many IBM OS/2 designers, testers, planners, and developers.

The book was reviewed by many people, including
Jack Boyce (IBM Corporation) Byron Pazey (Consultant)
Glenn Brew (IBM Corporation) Raymond Pedrizetti (Microsoft Corporation)
Ross Cook (IBM Corporation) Dr. Freeman Rawson (IBM Corporation)
Greg Gruse (CITRIX) Dr. Edward Simco (Nova University)
Edward Iacobucci (CITRIX) Dr. Raisa Szabo (Nova University)
Dr. Edward Lieblein (Nova University) Raymond Westwater (Future Ware)
Jim Macon (IBM Corporation)

xiii

Iris Boshell took dictation of major portions of the first draft of the manuscript.
Our efforts were encouraged by IBM managers including Lee Reiswig, Tommy

Steele, Roy Clauson, Oscar Fleckner, Janis Walkow, and Shon Saliga. We are especially
grateful to James Cannavino for taking the time out of an incredibly busy schedule to
prepare the foreword to the book.

Special thanks are due to Ross Cook of IBM for many insights into the intriguing
subtleties of the operating system design process, and to Glenn Brew of IBM for serving
as a constant technical sounding board, for his friendship, and for his encouragement.

Thanks to Barbara Deitel for handling the development of the manuscript from the
author's side, and for coordinating the production of the book with Addison Wesley.
Her tireless efforts enabled us to concentrate on preparing the technical material.

Framingham, Massachusetts
Delray Beach, Florida

H.M.D.
M.S.K.

Contents

ILLUSTRATIONS xxi

ABOUT THE AUTHORS xxv

CHAPTER 1
HISTORICAL BACKGROUND 1

1.1 Introduction 3
1.2 DOS History 3
1.3 DOS Limitations 6
1.4 OS/2 History 10
1.5 The Evolving Market 14
1.6 OS/2 1.2 16
1.7 OS/2 1.3 17
1.8 Windows 3.0 17
1.9 OS/2 2.0 19
1.10 The 1990s 21

Summary 21

CHAPTER2
MICROPROCESSOR ARCHITECTURES 25

2.1 Introduction 28
2.2 Intel 8088/8086 28
2.3 Intel 80286 32
2.4 Intel 80386 42
2.5 Intel 80486 52
2.6 RISC Processors 53

Summary 53

xv

xvi Contents

CHAPTER3
HARDWARE ARCHITECTURES 59

3.1 Introduction 61
3.2 IBM PC 61
3.3 IBM PC/AT 62
3.4 AT 80386 63
3.5 Micro Channel Architecture 63
3.6 IBMPS/2 64
3.7 Extended Industry System Architecture 66
3.8 Cache Systems 66
3.9 Multiprocessor Systems 68
3.10 Multiprocessor System Interconnection 69

Summary 71

CHAPTER4
OPERATING SYSTEM ARCHITECTURES 75

4.1 Introduction 77
4.2 DOS System 77
4.3 DOSAPI 78
4.4 DOS Programs 80
4.5 OS/2 1.X System 86
4.6 OS/21.XAPI 93
4.7 OS/2 1.X Programs 94
4.8 OS/2 2.X System 94
4.9 OS/2 2.XAPI 98
410 OS/2 2.X Programs 98

Summary 99

CHAPTERS
MULTITASKING 105

5.1 Introduction 107
5.2 Processes 108
5.3 Threads 112
5.4 Scheduling 115
5.5 Kernel Architecture 118
5.6 Multitasking API 135

Summary 135

CHAPTERS
MEMORY MANAGEMENT 141

6.1 Introduction 143

Contents xvii

6.2 OS/2 l .X Memory Management 144
6.3 OS/2 2.X Memory Management 163
6.4 Segmented vs. Flat Memory Model 189
6.5 Memory Management API 189
6.6 Dynamic Linking API 189

Summary 189

CHAPTER 7
INTERPROCESS COMMUNICATION 197

7.1 Introduction 199
7.2 Shared Memory 199
7.3 Semaphores 200
7.4 Signals 216
7.5 Queues 218
7.6 Pipes 219
7.7 Exceptions 222
7.8 System Integrity Issues 227

Summary 228

CHAPTER 8
1/0 MANAGEMENT 231

8.1 Introduction 233
8.2 Devices 233
8.3 Installable File System Architecture 233
8.4 File System Name Space 234
8.5 File System Objects 235
8.6 File System API 235
8.7 OS/2 l .X File System Drivers 238
8.8 OS/2 2.X File System Drivers 240
8.9 Device Drivers 241
8.10 Hardware Device Structure 241
8.11 Hardware Device Attributes 242
8.12 Hardware Device Independence 244
8.13 OS/2 1.X Device Drivers 245
8.14 Device Driver Structure 245
8.15 Device Driver Header 248
8.16 Device Attribute Flags 248
8.17 Request Packets 249
8.18 Strategy Commands 249
8.19 DevHelp Services 251
8.20 OS/2 2.X Device Drivers 254

Summary 256

xviii Contents

CHAPTER9
PRESENTATION MANAGEMENT 261

9.1 Introduction 263
9.2 Session Management 263
9.3 Presentation Manager 267
9.4 Windows Architecture 268
9.5 Message Architecture 271
9.6 Graphics Architecture 274
9.7 Resources 274
9.8 Application Data Exchange 276
9.9 Multitasking Issues 276

Summary 278

CHAPTER 10
COMPATIBILITY 281

10.1 Introduction 283
10.2 DOS Compatibility 283
10.3 80286 DOS Compatibility 283
10.4 80386 DOS Compatibility 290
10.5 OS/2 2.X Windows 3.X Compatibility 300
10.6 OS/2 2.X 16-Bit Compatibility 301
10.7 Hybrid System Strategies 301
10.8 Memory Model Coexistence 301
10.9 LDTTiling 303
10.10 Thunks 307

Summary JlO

CHAPTER 11
COMMUNICATIONS 315

11.1 Introduction 317
11.2 Networks 317
11.3 Open Systems Interconnection 318
11.4 OSI Reference Model 319
11.5 X.25 321
11.6 LANs322
11.7 System Network Architecture 324
11.8 TCP/IP 326
11.9 Network Coexistence 327
11.10 OS/2 Extended Edition 329
11.11 Multiuser OS/2 331

Summary 332

Contents xix

CHAPTER 12
THE FUTURE 337

12.1 Introduction 339
12.2 Open Systems 339
12.3 Open UNIX 340
12.4 Systems Application Architecture 342
12.5 System Portability 345
12.6 Multiprocessor Systems 345
12.7 Security 346
12.8 Multimedia 349

Summary 349

BIBLIOGRAPHY 353

INDEX 361

Illustrations

Fig. 1.1 DOS system structure. 4
Fig. 1.2 DOS memory map. 7
Fig. 1.3 DOS system call. 9
Fig. 1.4 DOS system extensions. 10
Fig. 1.5 Software development process. 12
Fig. 2.1 8088 segment registers. 28
Fig. 2.2 8088 address calculation. 29
Fig. 2.3 8088 address aliasing. 29
Fig. 2.4 8088 register set. 30
Fig. 2.5 80286 segment descriptor. 33
Fig. 2.6 80286 selector format. 34
Fig. 2.7 80286 protected-mode address translation. 34
Fig. 2.8 80286 access rights information. 36
Fig. 2.9 80286 privilege levels and the ring protection model. 37
Fig. 2.10 80286 call gate descriptor. 39
Fig. 2.11 80286 call gate control transfer. 39
Fig. 2.12 80386 register set. 43
Fig. 2.13 80386 control registers. 44
Fig. 2.14 80386 segment descriptor. 45
Fig. 2.15 80386 linear address. 47
Fig. 2.16 80386 paged linear address translation. 48
Fig. 2.17 80386 page table entry (PTE). 48
Fig. 2.18 80386 address translation. 50
Fig. 2.19 Multiple v86 mode address spaces. 51
Fig. 3.1 IBM PC system architecture. 61
Fig. 3.2 IBM PC/ AT system architecture. 63
Fig. 3.3 IBM PS/2 system architecture. 65
Fig. 3.4 Cache memory subsystem. 67

xxi

xxii Illustrations

Fig. 3.5 Loosely-coupled multiprocessor. 69
Fig. 3.6 Tightly-coupled multiprocessor. 70
Fig. 3.7 Relationship between processor coupling and memory access. 70
Fig. 3.8 Uniform-memory-access multiprocessor (UMA). 71
Fig. 3.9 Nonuniform-memory-access multiprocessor (NUMA). 72
Fig. 4.1 DOS system structure. 77
Fig. 4.2 DOS device chain. 78
Fig. 4.3 DOS system call. 79
Fig. 4.4 Program development process. 81
Fig. 4.5 DOS (EXE) executable file. 82
Fig. 4.6 Example of segment-relative fixup. 83
Fig. 4.7 Small-model program. 84
Fig. 4.8 DOS example program (static linking). 85
Fig. 4.9 OS/2 system structure. 86
Fig.4.10 Dynamic linking. 90
Fig. 4.11 OS/2 file system architecture. 91
Fig. 4.12 Device driver interfaces. 91
Fig. 5.1 DOS versus OS/2 multitasking. 107
Fig. 5.2 Process layout. 108
Fig. 5.3 Process hierarchy. 110
Fig. 5.4 Thread layout. 112
Fig. 5.5 Multilevel priority structure. 116
Fig. 5.6 Multitasking kernel components. 119
Fig. 5.7 Per-task data area (PTDA). 121
Fig. 5.8 Thread control block (TCB). 122
Fig. 5.9 Layout of 16-bit PTDA and TCB. 122
Fig. 5.10 Layout of 32-bit PTDA, TCB, and TSD. 123
Fig. 5.11 Thread state transitions. 128
Fig. 5.12 Interrupt table. 129
Fig. 5.13 ProcBlock calling sequence. 134
Fig. 6.1 16-bit virtual address spaces. 145
Fig. 6.2 16-bit memory sharing. 148
Fig. 6.3 16-bit handle table entry (HTE). 152
Fig. 6.4 16-bit virtual memory management data structures. 155
Fig. 6.5 16-bit executable file format. 156
Fig. 6.6 16-bit physical memory map. 158
Fig. 6.7 16-bit arena header. 159
Fig. 6.8 16-bit arena physical layout. 160
Fig. 6.9 16-bit swapper data structures. 162
Fig. 6.10 32-bit virtual address spaces. 164
Fig. 6.11 32-bit arena structures. 171
Fig. 6.12 32-bit arena record. 172
Fig. 6.13 32-bit arena layout for three processes. 173
Fig. 6.14 32-bit object record. 174

Illustrations xxiii

Fig. 6.15 32-bit context record. 175
Fig. 6.16 Private-address, private-storage object. 176
Fig. 6.17 Private-address, shared-storage object. 177
Fig. 6.18 Shared-address, shared-storage object. 178
Fig. 6.19 Shared-address, private-storage object. 178
Fig. 6.20 Page table entry (PTE). 182
Fig. 6.21 Page frame (PF) array entry. 182
Fig. 6.22 Free and idle page frame lists. 183
Fig. 6.23 Virtual page (VP) structure. 184
Fig. 6.24 Page structures for initially allocated committed page. 184
Fig. 6.25 Page structures after page fault. 187
Fig. 6.26 Page structures for idle page. 188
Fig. 7.1 RAM semaphore structure. 204
Fig. 7.2 System semaphore tables. 206
Fig. 7.3 System semaphore structure. 207
Fig. 7.4 Fast-safe RAM semaphore structure. 208
Fig. 7.5 Private semaphore structures. 212
Fig. 7.6 Shared semaphore structures. 213
Fig. 7.7 Mutual-exclusion (mutex) semaphore structure. 213
Fig. 7.8 Event semaphore structure. 215
Fig. 7.9 Muxwait semaphore structure. 215
Fig. 7.10 IPC queue. 218
Fig. 7.11 Anonymous pipe. 220
Fig. 7.12 Named pipe (three-channel full duplex). 221
Fig. 7.13 Per-thread exception chain. 226
Fig. 8.1 File and device 1/0 subsystem. 234
Fig. 8.2 File and path management file system data structures. 237
Fig. 8.3 Device driver file structure. 246
Fig. 8.4 OS/2 l .X device driver interfaces. 247
Fig. 8.5 Device driver header. 248
Fig. 8.6 Device driver attribute flags. 249
Fig. 8.7 Device driver request packet format. 249
Fig. 8.8 OS/2 2.0 extended device driver interfaces. 255
Fig. 8.9 Request list. 256
Fig. 9.1 Session structure. 263
Fig. 9.2 OS/2 1.0 session and process hierarchy. 264
Fig. 9.3 Full-screen user-l/O subsystem architecture. 265
Fig. 9.4 16-bit OS/2 session and process hierarchy with the PM. 266
Fig. 9.5 OS/2 2.0 session and process hierarchy. 267
Fig. 9.6 Window hierarchy. 270
Fig. 9.7 Standard window with menu bar and scroll bars. 271
Fig. 9.8 PM message architecture. 272
Fig. 9.9 PM application message loop processing. 273
Fig. 9.10 PM device-independent graphics architecture. 274

xx iv Illustrations

Fig. 10.l 16-bit physical memory layout with DOS compatibility. 287
Fig. 10.2 16-bit memory tiling. 289
Fig. 10.3 MVDM architecture. 293
Fig. 10.4 Virtual DOS machine memory layout. 295
Fig. 10.5 32-bit model for physical and virtual device drivers. 299
Fig. 10.6 Coexistence strategies for 16-bit and 32-bit APL 302
Fig. 10.7 0:32 and 16: 16 address conversion. 304
Fig. 10.8 LDT tiling. 305
Fig. 10.9 LDT tiling with 16-bit private code packing. 307
Fig. 11.1 OSI reference model. 319
Fig. 11.2 X.25 architecture. 322
Fig. 11.3 IEEE 802 LAN standards. 323
Fig. 11.4 IBM SNA architecture. 325
Fig. 11.5 TCP/IP architecture. 326
Fig. 11.6 Comparison of OSI, SNA, and TCP/IP. 329
Fig. 11.7 OS/2 protocol stacks. 331
Fig. 12. l Components of the IBM Systems Application Architecture. 343
Fig. 12.2 Orange Book security levels. 347

Table 1.1 DOS evolution. 6
Table 1.2 OS/2 evolution. 20
Table 3.1 PS/2 product line. 65
Table 4.1 OS/2 API content. 94
Table 5.1 Multitasking API calls. 136
Table 6.1 Memory object types. 147
Table 6.2 Memory management APL 190
Table 6.3 Dynamic linking APL 190
Table 7.1 OS/2 l .X semaphores APL 203
Table 7.2 OS/2 l .X semaphore model usage. 209
Table 7.3 OS/2 2.X semaphores APL 211
Table 7.4 OS/2 1.X signals APL 217
Table 7.5 OS/2 Queueing APL 219
Table 7.6 OS/2 pipes APL 222
Table 7.7 16-bit exceptions. 223
Table 7.8 32-bit exceptions. 225
Table 7.9 OS/2 exceptions APL 227
Table 8.1 File System API . 239
Table 8.2 Device driver strategy commands. 251
Table 8.3 Dev Help functions. 253
Table 8.4 32-bit Dev Help functions. 257
Table 10.l Segmented- and flat-model programming environments. 302

xxv

ABOUT THE AUTHORS

Dr. Harvey M. Deitel has 30 years experience in the computer field. He participated in
the research and development of several large-scale operating systems and in the design
and implementation of numerous commercial systems. His current research is in the
areas of open systems and open systems interconnection (OSI)-the emerging interna­
tional standards in computer networking. He received the Bachelor of Science and
Master of Science Degrees from the Massachusetts Institute of Technology where he did
extensive development work on the Multics operating system. He received the Doctor of
Philosophy Degree from Boston University where his dissertation research examined the
problems of developing very large-scale structured software systems.

Dr. Deitel has been interested in operating systems since 1963. He worked on the
pioneering teams that developed IBM's OS, IBM's TSS, and M.I.T. 's Multics; these
systems led to today's MYS, VM, and UNIX operating systems. He has consulted for
Epson, Advanced Computer Techniques Corporation, Computer Usage Corporation,
Harbridge House, American Express, IBM Systems Development Division, IBM
Advanced Systems Development Division, IBM Thomas J. Watson Research Center,
M.l.T.'s Project MAC, Microsoft, Apple, Digital Equipment Corporation, Sun
Microsystems, and the Corporation for Open Systems International (COS).

Dr. Deitel is the former chairman of the Computer Science Department at Boston
College where he developed and implemented the graduate program in computer sci­
ence. He currently serves as Full Professor of Computer Science and Full Professor of
Computer Information Systems at Nova University in Fort Lauderdale, Florida, where
he has been involved in the implementation of Nova's Master of Science Program in
Computer Science at IBM's Entry Systems Division in Boca Raton. He has received
numerous teaching commendations, and has been rated nationally among the top
computing educators in the country.

Dr. Deitel is a member of several professional honoraries including Tau Beta Pi
(engineering), Eta Kappa Nu (electrical engineering), Sigma Xi (scientific research), and
Beta Gamma Sigma (management). He holds the CDP certification of the Institute for
the Certification of Computer Professionals, and is a member of various professional so­
cieties including the Association for Computing Machinery, and the Computer Society
of the Institute of Electrical and Electronics Engineers.

Dr. Deitel's publications include Absentee Computations in a Multiple-Access
Computer System, MAC-TR-52, Advanced Research Projects Agency, Department of
Defense, 1968; Introduction to Computer Programming, Prentice-Hall, 1977; Structured
Software Development, Ph.D. dissertation published by University Microfilms, 1980;
Operating Systems (with H. Lorin of the IBM Systems Research Institute), Addison­
Wesley, 1980, "Functions of Operating Systems," (with H. Lorin) Software World, Vol.
12, No. 2, 1981, "Computers and Communications: Improving the Employability of
Persons with Handicaps," Journal for Vocational Needs Education, 1984; An
Introduction to Operating Systems, Addison-Wesley, 1990 (Second Edition); VAX-11
BASIC, Prentice-Hall, 1985; Computers and Data Processing (with B. Deitel),
Academic Press, 1985; An Introduction to Information Processing (with B. Deitel),

xxvi About the Authors

Academic Press, 1986, Microsoft Macintosh BASIC (with P. Deitel), Prentice-Hall,
1988; Microsoft IBM QuickBASIC (with P. Deitel), Prentice-Hall, 1989.

Dr. Deitel is currently writing four other books including: C Programming (with P.
Deitel) (Prentice Hall), SPARC System Software and the Sun Operating System: UNIX
System V Release 4 (Addison Wesley), SunNET: Sun's Approach to Distributed
Computing (Addison Wesley), and the third edition of his book, Operating Systems
(Addison Wesley)-now considered a classic in the field of computer science-whose
previous editions have been used in 1000 universities in more than 100 countries
throughout the world.

Dr. Deitel's current research is in the area of open systems interconnection (OSI)­
the emerging worldwide standards for computer networking. He is the series editor of
the Open Systems Series sponsored by the Corporation for Open Systems International
(COS) and published by Addison-Wesley. This series includes advanced texts on key as­
pects of OSI and the Integrated Services Digital Network (ISDN). He is currently writ­
ing the lead text, Open Systems Interconnection, for this series. He has given operating
system seminars at the International Congress Center in West Berlin. His books have
been translated into Japanese, Chinese, Spanish, and Russian.

Dr. Michael S. Kogan has 10 years of experience in the computer field. In 1984, he
received the Bachelor of Science degree in Computer Science and Mathematics from
Emory University in Atlanta, Georgia. At Emory he work in Berkeley UNIX and CP/M
environments on VAX and 8080-based systems. In 1986, he earned the Master of
Science degree in Computer Science from Nova University in Ft. Lauderdale, Florida. In
1991, he received the Doctor of Science degree in Computer Science at Nova
University. His dissertation examined the motivation and design of 32-bit OS/2.

In 1984, Dr. Kogan joined IBM in Boca Raton, where he developed and tested sev­
eral products in the IBM Engineering/Scientific software series. This experience includ­
ed the testing of a DOS-based FORTRAN compiler, and the development and testing of
DOS device drivers for hardware cards used to interface with engineering devices. He
led the effort to redesign the device driver architecture of XENIX 2.0 for the 80286
processor, and developed and tested several XENIX device drivers.

In 1985, he was drafted into the OS/2 project. He was a lead developer for two and
one half years during the design, development, and testing of the 16-bit versions of
OS/2. He had responsibilities in many areas of the 16-bit system including device
drivers, memory management, debugging, queues, DOS compatibility, and system
initialization. This was followed by another two and one half years as the principal
architect of the 32-bit version of OS/2.

Dr. Kogan has published articles on OS/2 in the IBM Systems Journal (Ko88) and in
IBM Personal Systems Developer (Ko90)(Ko90a)(Ko90b). Several of these articles have
been reprinted in other publications worldwide. Dr. Kogan is also credited with numerous
software inventions, and has several patents pending for technologies he developed for
the 32-bit OS/2 system. He frequently represents IBM internationally in a consulting
capacity to IBM customers who are moving to the OS/2 platform.

1
Historical Background

Nothing endures but change.

Heraclitus

It is always good when a man has two irons in the fire.

Francis Beaumont and John Fletcher

That's a better hardware base [the PS/2] than what UNIX
started with, and there's a good possibility that OS/2 will be

better than UNIX.

Dan Bricklin

1.1 Introduction
1.2 DOS History
1.3 DOS Limitations

Outline

1.3.1 Memory Management
1.3.2 I/0 Management
1.3.3 Multitasking
1.3.4 System Extendibility
1.3.5 Graphical User Interface

1.4 OS/2 History
1.4.1 IBM-Microsoft Joint Development
1.4.2 Multisite Development
1.4.3 OS/2 1.0
1.4.4 OS/2 1.1

1.5 The Evolving Market
1.5.1 Microsoft Windows
1.5.2 DOS Expanded Memory
1.5.3 DOS Extended Memory
1.5.4 DOS Extenders
1.5.5 Intel 80386
1.5.6 DOS Multitaskers

1.6 OS/2 1.2
1.7 OS/2 1.3
1.8 Windows 3.0
1.9 OS/2 2.0

1.10 The 1990s
Summary

1.2 DOS History 3

1.1 INTRODUCTION

This chapter reviews the history of personal computers and operating systems. It traces
the evolution of personal computer hardware from the original IBM Personal Computer
to the latest IBM PS/2, and examines how this process has affected the content and de­
sign of DOS and OS/2.

Before 1980 most computers were mainframes and minicomputers, large computing
resources that were mainly job- and transaction-processing systems. Operating system
technology had evolved from its early simplistic control program stages to sophisticated
multiprogrammed virtual memory systems such as VM, MYS, and later versions of
UNIX. In the era of large, centralized computing resources, computer time was expen­
sive, learning was time consuming, assistance was difficult to obtain, and computing re­
sources were scarce. Users rarely had opportunities to interact privately with a local
computing resource.

The advent of the microprocessor and of inexpensive, off-the-shelf computer
components enabled the creation of the first microcomputer systems. The Altair, a prim­
itive computer kit based on the Intel 8080, was one of the most popular early systems.
The Altair was surpassed by the Apple I and II computers created by Steve Jobs and
Steve Wozniak. The Apples used the MOS Technology 6502 chip and included a key­
board and display. Also gaining acceptance were microcomputer systems configured
with the Intel 8080 and Zilog Z80 processors. Besides the Apple, which had its own pro­
prietary operating system, the Intel and Zilog systems principally ran the CP/M operat­
ing system. CP/M was primarily designed for 8-bit single-user microcomputers that had
floppy-disk drives.

At this point, during the late 1970s, IBM decided to spin off an independent busi­
ness unit (IBU) to investigate the potential of an IBM microcomputer system. In the late
1970s, IBM used IBU s to respond rapidly to new opportunities, and granted them
considerable freedom within IBM's business processes. An IBU is similar to a venture
capital operation that attempts to exploit evolving technologies. The IBU ultimately
became the current Entry Systems Division (ESD) of the IBM Corporation, which is re­
sponsible for personal computer hardware and operating system development.

1.2 DOS HISTORY

The DOS era of microcomputer operating system technology began when the first IBM
Personal Computer (PC) was designed. The first IBM PC went beyond the current 8-bit
technology available and used the then-new 16-bit Intel 8088 processor. This choice was
made because the current 8-bit systems were being eclipsed by the newer 16-bit systems,
and the 16-bit system architecture provided a base for more robust software. The 8088 and
8086 processors are functionally identical, but the 8088 was used in the IBM PC since it
was cheaper to configure in hardware. The 8088 processor could address up to lMB of
memory; few designers could envision using all that memory in a desktop personal com­
puter in 1979. IBM also chose the 8088 microprocessor because porting software from
existing 8080-based systems to the 8088 would be relatively straightforward.

4 Historical Background

With the hardware for the first PC under development, IBM sought to adapt existing soft­
ware for the system. Developing a new operating system and software tools would have taken
too long. IBM contracted Microsoft, at the time a new company, to provide a BASIC in­
terpreter, assembler, and link editor for the machine. IBM chose Microsoft because of Bill
Gates's experience in writing the most popular BASIC interpreter to date for the Altair systems.

Since many CP/M-based programs were available, IBM initially attempted to
interest Digital Research, Inc. (DRI) in providing a 16-bit version of the CP/M operat­
ing system for the IBM PC. However, DRI did not foresee the success of the 8088
microprocessor and declined to participate in the venture. IBM then approached
Microsoft and, after explaining the requirements, asked Microsoft whether it was inter­
ested in providing the operating system software as well as the tools. The main con­
cern of both IBM and Microsoft at the time was whether Microsoft had the resources
to develop both the software tools and the operating system in the time required.
Realizing that writing a new system was not feasible due to the schedules, Microsoft
acquired from Seattle Computing Products a CP/M clone called SCP-DOS. With the
SCP-DOS technology as a base, Microsoft predicted that it could complete the operat­
ing system, and the original operating system agreement between IBM and Microsoft
was established.

In 1981, the first version of the DOS operating system, 1.0, was shipped for IBM
PCs. The system supported PCs with up to 256KB RAM, two 180KB floppy-disk
drives, and included a Basic Input Output System (BIOS) built into the system ROM.
DOS 1.0 was similar to CP/M in the way it managed the diskette devices and files, and
it provided the base platform for the first 8088 DOS applications. Since the primary data
structure used by the DOS file system to map file blocks to diskette addresses was the
file allocation table (FAT), the DOS file system became known as the FAT file system.
Figure 1.1 illustrates the DOS system structure.

In 1982, IBM began shipping PCs with 360KB floppy disk drives. Since the new
diskette medium had a format different from that of the 180KB diskettes, DOS had to

DOS application

DOS system

Device drivers

ROM BIOS

Hardware

Fig. 1.1 DOS system structure.

1.2 DOS History 5

be updated. IBM shipped DOS 1.1 when the new diskette drives became available in
1982.

IBM next enhanced its PC line in 1983 with the addition of the IBM PC/XT. The
PC/XT had a hard disk that could store far more data than could traditional floppy
diskettes. This development illustrates how mainframe technology was becoming less
expensive and more widely available in the PC market. The IBM PC/XT also included a
new system board that allowed 640KB of memory to be installed.

At this point, a trend emerged that continues to this day in the computer industry:
The hardware drives the software. The addition of a hard disk to the PC was a problem
for DOS 1.1, since the FAT file system was written for floppy-disk systems in which a
single 360KB diskette could contain a maximum of 64 files. This limitation had to be
removed; even the smallest hard disks could hold lOMB of data.

Responding to this requirement, the DOS team at Microsoft explored different hard­
disk and file-allocation strategies to select one that would enable DOS software to ex­
ploit future improvements in storage technology. Merely extending the limit of 64 files
per disk would yield too many files to manage in a single file space, so the Microsoft
team chose a hierarchical file-management approach similar to the one found in UNIX.
They implemented this approach to support both diskettes and hard drives.

Another requirement for the next version of DOS was an architecture for extending
the system to support different peripheral devices. This support took the form of device
drivers, user-installable program modules that interface the DOS system and applica­
tions to devices. The version of DOS that included the hierarchical FAT file system,
support for hard disks, and a device-driver model for extending the system was shipped
as DOS 2.0 in 1983.

IBM's next PC enhancements involved providing faster systems with larger hard
disks. The Intel 80286 chip was selected for the next-generation IBM PC, the PC/AT.
The 80286 has two modes of operation called real mode and protected mode. In real
mode, the 80286 functions as a fast 8088. In protected mode, the 80286 allows up to
16MB of memory to be addressed and provides features that support a protected multi­
tasking environment. These protection features allow an operating system to separate the
memory spaces associated with different programs. However, since the 80286 was not
designed to allow existing DOS applications to run in protected mode, they could nei­
ther be executed concurrently, nor use more than lMB of memory. Therefore, DOS
applications used the 80286 as a fast 8088. Other operating systems-such as Intel's
RMX or Microsoft's XENIX-used the protected mode of the 80286, but neither of
these systems was considered to be a mainstream desktop system due to a lack of appli­
cations compared to the number of DOS applications.

The PC/AT was also the first PC to use l.2MB 5.25-inch diskette drives. Since sev­
eral modifications to DOS 2.0 were necessary for the PC/AT hardware, DOS 3.0 was
not released until August 1984. DOS 3.1 was released in 1985 to provide support for PC
local-area networks (LANs). Another update to the system (DOS 3.2) was made for sup­
porting 3.5-inch diskettes in 1986. Table 1.1 shows the evolution of the DOS operating
system.

6 Historical Background

Year Version System contents

1981 1.0 IBM PC
5.25" 180KB diskette
Single task
Single user

1982 1.1 5.25" 360KB diskette

1983 2.0 IBMPC/XT
Hard disk
FAT file system
Device drivers

1984 2.1 IBM PC Jr.

1984 3.0 IBM PC AT
80286/80287 real mode
5.25" 1.2MB diskette

1985 3.1 IBM PC network

1986 3.2 IBM PC Convertible
3.5" 720KB diskette

1987 3.3 IBMPS/2
80386/80387 real mode
3.5" l.4MB diskette

1989 4.0 User shell
LIM expanded memory
More user memory

Table 1.1 DOS evolution.

1.3 DOS LIMIT A TIO NS

Between 1983 and 1985, IBM, Microsoft, and most application developers began to be
aware of certain limitations of DOS and the 8088 environment. These limitations were
in the areas of memory management, 1/0 management, multitasking, system extendibil­
ity, and graphical user interfaces.

1.3.1 Memory Management

The lMB address space, which seemed large in 1980, became a major limitation for
larger DOS programs. Applications such as spreadsheets and database systems allowed
users to create large volumes of data that needed to be in memory to be processed. The
lack of memory became known as the 640KB barrier, since only 640KB of the 8088 ad­
dress space mapped RAM. The memory at addresses from 640KB to lMB in the PC
mapped the system ROMs and memory-mapped 1/0 devices such as the display buffer.
The DOS system used from 50KB to 60KB, and device drivers also consumed a portion of

1.3 DOS Limitations 7

the 640KB address space. Thus, application software had less than 640KB available of the
lMB memory addressable by an 8088. Figure 1.2 illustrates the DOS memory layout.

One of the mechanisms DOS applications developers devised to relieve this memo­
ry constraint was the overlay scheme. Overlays allowed portions of a program not cur­
rently needed to reside on a secondary-storage device, usually a hard disk. Since DOS
contains only a primitive memory manager, DOS applications had to provide their own
overlay management, further increasing their size and complexity.

These memory integrity problems were exacerbated by the behavior of terminate-and­
stay-resident (TSR) modules. TSRs are loaded like any other DOS program but stay resident
in memory after terminating. A TSR is accessed after terminating by either a hardware or a
software interrupt. TSRs that monitor keystrokes by intercepting keyboard interrupts are
called hot-key pop-up applications. The DOS print spooler is a TSR that intercepts timer
and printer interrupts to allow the simultaneous queueing and printing of files.

Since TSRs can never be guaranteed that the memory needed will be available when
they are invoked, they must allocate when they are loaded all the memory they will ever
need. Also, since TSRs are not aware of one another's existence and resource require­
ments, they can easily cause the system to behave unpredictably. For example, their be­
havior may depend on the order in which they are loaded.

The 8088 processor provides no memory-protection features, since it was designed
to run one application at a time. All 8088 programs execute using actual physical­
memory addresses with no distinction between accessing the DOS system's memory or
application memory. This lack of protection allows programs to modify one another and
the system inadvertently, often causing the system to hang. In a protected system, illegal
memory accesses are trapped by the hardware. The operating system is given control; it
usually terminates the offending application.

1MB

640KB

0

Fig. 1.2 DOS memory map.

ROM BIOS

DOS
application

arena

COMMAND. COM

System extensions

DOS system

Interrupt vectors

8 Historical Background

1.3.2 1/0 Management

Another area in which the DOS environment is limited is I/O control. Any application
•. 1 may read from or write to any 1/0 device without having access granted by DOS.

Although this limitation is really a shortcoming of the 8088/8086 processor, rather than
one of DOS, it is still an integrity problem. Application program errors can cause the
system to hang, or, even more serious, can cause data on a secondary storage unit to be
destroyed inadvertently.

Another I/0 problem is that applications have the capability of disabling interrupts to
the 8088/8086 processor with a single instruction. If an application disables interrupts and
executes a spin loop, the system will remain in the loop forever. Even intermittent dis­
abling of the interrupts to the system can cause applications to behave incorrectly. For
example, if an application disables interrupts while a TSR print spooler is using timer tick
interrupts to pace its spooling, the spooler will not receive interrupts to continue moving
data to the printer. Disabling interrupts can also disrupt communications applications that
depend on receiving periodic interrupts for maintaining communications sessions.

1.3.3 Multitasking

DOS was designed to run one application at a time; it is a single-task or single-thread
environment. Even in a single-user, one-program-at-a-time environment, there are re­
quirements for being able to multiprogram the system. A common scenario is using a
TSR print spooler to print a file in the background while the user is editing another file
from the keyboard. Since DOS provides no multitasking services, programs that require
multitasking must do it themselves. However, there is a catch-since DOS is not reen­
trant, only one program can correctly use the DOS system services at a time. Therefore,
competing applications and TSRs can inadvertently both enter DOS, confuse it, and dis­
rupt the system.

A major benefit of building multitasking into the system, instead of into the appli­
cations, is that the system can allocate the processor more efficiently than can the appli­
cations. When one application attempts to do 1/0, it will block, and the system scheduler
can resume another application until the I/O is completed. In the DOS environment, an
application that requests 1/0 typically spins in a loop waiting for the device status to
indicate that the 1/0 is complete. This is called polling, and wastes many processor cy­
cles that could be spent on other tasks. Since each DOS application that needs to multi­
task has to do it itself, putting together two DOS applications that need to multitask
frequently results in unpredictable behavior.

1.3.4 System Extendibility

DOS applications request DOS system services by issuing software interrupts, an 8088-
specific form of transferring control between routines. An interrupt causes a transfer of
control to an address that is retrieved from an interrupt vector table (IVT) based on the
interrupt number invoked. The main difference between a software interrupt and a hard­
ware interrupt is that the software interrupt is caused by the synchronous execution of an

1.3 DOS Limitations 9

INT instruction rather than by an external hardware-device interrupt request. Figure 1.3
illustrates how the DOS system services are invoked using software interrupts.

Since DOS and BIOS system services are routed through software interrupts, the
application requesting the service must pass as a parameter information that specifies
which service is desired. Since the information that binds the application with a specific
service is hard coded into the application, this is called a statically linked interface. DOS
and BIOS software interrupt requests specify the software interrupt number and the
function code of the service. Thus, there are two levels of decode for each static link.
The software interrupt number is decoded by the processor, and the function code is
decoded by the software providing the service.

Because all DOS and BIOS (device) services are accessed through the 8088 inter­
rupt mechanism, the memory in which the interrupt-vector table resides is not protected
from applications and TSRs. Thus, any application or TSR can hook an interrupt and
intercept program control when an interrupt is invoked. The result is that the system can
be extended by hooking interrupts, but, as more extensions are loaded (usually in the
form of TSRs or device drivers), the system's behavior becomes increasingly unpre­
dictable. Also, the order in which the extensions are loaded can change the semantics of
the system's behavior. Figure 1.4 illustrates a DOS system with two TSRs loaded.

1.3.5 Graphical User Interface

DOS is packaged with a line-oriented command processor; thus, users must learn DOS
commands before they can use the system. New users often find DOS overwhelmingly
complex; they complain about the lack of an intuitive paradigm that would make using
the system easier. The Apple Macintosh computers were the first microcomputers to ex­
ploit successfully the graphical user interface (GUI) technology developed by Xerox at

DOS application

INT 21 IRET

DOS system

IVT (interrupt vector table)

Fig. 1.3 DOS system call.

10 Historical Background

DOS application

INT 21

TSR 1 TSR 2

IRET INT 21 INT INT

DOS

ROM BIOS

i IRET

Hardware

Fig. 1.4 DOS system extensions. (0512 Programmer's Guide, E. Iacobucci,
Copyright 1988. McGraw-Hill Publishing Company. Reprinted by permission.)

its Palo Alto Research Center (PARC) in the 1970s. This GUI technology allows users
to interact with the system via a user-friendly pointing device such as a mouse, and visu­
al display keys or icons that parallel the user's tasks. More advanced GUls provide a
device-independent programming model that applications use for user 1/0 functions.
This model enables these applications to take advantage of whatever user 1/0 devices
are attached to the system, regardless of the devices' particular physical characteristics.
GUls often provide a what-you-see-is-what-you-get (WYSIWYG) capability for display­
ing graphical information on a variety of output devices.

1.4 OS/2 HISTORY

The need for a more robust version of DOS to provide solutions to these shortcomings
was recognized by both IBM and Microsoft, and each company initiated projects devot­
ed to this end. IBM undertook several projects to extend the functionality of DOS while
providing compatibility for current DOS applications by using the protected mode of the
80286. Microsoft began DOS 4.0 (not the one that was shipped in 1989) or MT-DOS
(for multitasking DOS), a project to define a real-mode multitasking environment that
could run on 80286 and 8088/8086 systems. Although none of these projects led to re­
leased products in the PC market, both companies learned about the limitations of DOS
and of the 80286 architecture and the scope of independent development efforts.

1.4 OS/2 History 11

1.4.1 IBM-Microsoft Joint Development

In 1985, IBM and Microsoft signed an agreement to define and ship the operating sys­
tem that would extend the capabilities of DOS. Under the agreement, both companies
would jointly design, develop, and own the resulting product. By 1990 the practice of
software companies joining forces to define and develop products had become common
in the computer industry. Alliances among computer companies such as Open Software
Foundation and UNIX International, and many smaller joint projects among applications
developers, are now leading the computer software industry into an era of open systems.
Emerging software standards will lead to greater software portability and, thus, to better
software productivity. Chapter 12 discusses the open-systems platform and the role it
will play in the future.

To understand why IBM and Microsoft worked together, we must explore the goals
of the product they desired to create and the attributes of both companies' development
methodologies. Both companies realized that, if two different advanced DOS systems
were developed, the software market would be confused about which was the "right"
one. So it made sense for IBM and Microsoft to combine their efforts, and to create a
single industry-standard operating system that was endorsed by the two leading compa­
nies in the PC market.

IBM has traditionally been known as a hardware company, although it writes most
of the software marketed for its larger systems. IBM is by far the largest computer com­
pany and wields the most influence in the computer industry. IBM projects are typically
large, comprising many layers of management, staff, and technical personnel in the
product organization. On the other hand, Microsoft became the leading independent
software vendor (ISV) during the 1980s. Microsoft has led the PC software industry in
the development of DOS, Windows, and a variety of programming tools. Microsoft also
is a leader in applications software for both the Apple Macintosh and the IBM PC sys­
tems. Unlike those at IBM, most Microsoft projects are implemented by a small core
team of programmers who manage themselves, with extra staff added as needed.
Therefore, the combination of the companies created a good team in the design, devel­
opment, and testing areas.

To facilitate both companies participating in the design and development of the sys­
tem, they constructed a software-development process to describe the methodology for
building the product. Figure 1.5 illustrates the general process framework.

1.4.2 Multisite Development

An interesting part of the IBM and Microsoft relationship is that OS/2 was designed, de­
veloped, and tested by physically distant partners. Within IBM, there are many sites that
work on OS/2 and contribute to the content of the standard and extended editions. The
IBM site at Boca Raton, Florida is the sister to Microsoft's site in Redmond,
Washington. Together, these two sites are responsible for most of the OS/2 Standard
Edition (SE) content and testing. The IBM site at Austin, Texas provides most of the
communications and database content for OS/2 Extended Edition (EE). The IBM site at
Hursley in the United Kingdom provided the initial releases of the graphics API

12 Historical Background

Problem reports

l 1
Product System
objectives design

Planning Design Development Testing ~ ~

System
externals

l
+system

Source
distribution

code
control

t'

User requirements Finished
Developer requirements product Building and
Market requirements Manufacturing integration

Fig. 1.5 Software development process.

(application programming interface) for the Presentation Manager (PM) and software
for supporting IBM's video hardware. The IBM site at Cary, North Carolina provides
dialog-management functions for the PM.

All these sites contributing code to a single system created a major problem in
source-code control. In a typical single-site development project, a server machine run­
ning source-control software is used to ensure the integrity of the source code. The soft­
ware performs its function by assigning owners to source files, forcing owners to check
files out for editing, and to check the files back in when done. However, source-code
control is much more complex when a common set of source files must be available to
several remote sites that are thousands of miles apart. The solution used in the develop­
ment of OS/2 is to organize, at each remote site, build groups that enforce a build pro­
cess for maintaining a virtual single-server image of the OS/2 source code. The build
process describes how code is integrated into the system and how the system source­
code integrity is maintained across the remote development sites.

The build group implements remote system builds, tracks the build process, maintains
backups of all versions of the system, and provides database services to the other develop­
ment organizations. A database system that facilitates entry of problem reports, design
changes, and routing of these items to their appropriate owners is a requirement. All
changes to the system and the reasons for the changes are tracked online, so the status of
any particular change to the system can be tracked from creation to system integration.
This approach allows the system design process to be perceived as a sequence of in­
cremental changes and fixes. Although there are other methodologies, this approach re­
duces the risk of introducing large numbers of errors into the system at any one time.

1.4 OS/2 History 13

1.4.3 OS/2 1.0

The time frame for the development of the initial OS/2 system was from 1985 to 1987.
During its design and development, OS/2 assumed many names, including DOS 5, DOS
286, Big DOS, and CP/DOS. The major requirements for OS/2 were these:

Break the 640KB physical memory barrier; support up to 16MB of physical
memory.

Utilize virtual memory to extend the physical memory resource of a system.

Provide a protected multitasking environment.

Provide an extendible, flexible system application program interface (API)
architecture.

Provide a graphical user interface (OS/2 1.1).

Support DOS application binary compatibility to encourage migration from
DOS to OS/2.

Remarkably, OS/2 was originally supposed to run on both the 80286 and the 8088
systems. However, the designers simplified the product to work on only the 80286, since
meeting the memory-management requirements for supporting both processors was not
realistically feasible. As a result, a subset of the OS/2 API, called the family AP/ (FAP/),
was developed. OS/2 applications that used only FAPI functions could run on DOS, as
well as on OS/2. At this time (early 1985), it was not yet clear what the 80386 would be
or when it would be delivered, but Intel assured IBM and Microsoft that protected-mode
80286 programs would run on the 80386, as would DOS programs, if certain guidelines
were followed.

From 1985 through 1987, IBM and Microsoft developed OS/2 from the MT-DOS
and DOS 3.2 source-code bases. Early prototyping involving the mode-switching capa­
bilities of the 80286 convinced designers that a system could be constructed that multi­
tasked protected-mode applications while running a single DOS application in the
foreground. At this stage, it was known that OS/2 on an 80286 would not be able to run
multiple DOS applications, or to run a DOS application in the background. CP/DOS 1.0
was nearly complete by late 1986; at that time, however, the next generation of IBM
PCs, called PS/2s, was nearing availability, and IBM elected to support the new PS/2
family of computers before shipping OS/2 1.0.

The PS/2 family of PCs was introduced in April 1987. These PCs were of a form
factor different from that of the original PC and PC-AT, had 3.5-inch instead of 5.25-
inch diskette drives, and used a new bus design called the Micro Channel Architecture.
(Chapter 3 discusses the Micro Channel Architecture.) The PS/2 family initially includ­
ed 8088/8086 systems (Model 25), 16-bit Micro Channel 80286 systems (models 50,
50Z, and 60), and a 32-bit Micro Channel system (Model 80). (Chapter 3 describes the
PS/2 product line in more detail.) DOS 3.3 was also shipped to enable DOS applications
to work on the PS/2 family. OS/2 1.0 Standard Edition was announced in April 1987,
when the PS/2s became available; it was shipped in December 1987.

14 Historical Background

As is true of most new operating systems, OS/2 initially lacked an applications base.
Furthermore, OS/2 1.0 did not include the Presentation Manager (PM) GUI. Software
developers were tentative about beginning OS/2 application development without the GUI.
The DOS compatibility of OS/2 did not allow most communications applications to run,
and the Extended Edition of OS/2 that provides communications and database support was
not available. Therefore the industry did not immediately migrate to the OS/2 platform.

1.4.4 OS/2 1.1

From the time OS/2 1.0 was shipped until late 1988, IBM and Microsoft concentrated on
completing the initial release of the Presentation Manager. PM provides a graphical user
interface with device-independent graphics in a protected multitasking environment.
OS/2 1.1 was delivered in November 1988.

1.5 THE EVOLVING MARKET

The DOS world was not standing still while OS/2 was being developed. DOS applica­
tion vendors came up with their own ways to extend DOS and to break the 640KB
physical-memory barrier. The use of special memory-mapping hardware, and later the
80386, played major roles in extending the memory-management and multitasking capa­
bilities of the DOS environment. Due to concerns about the cost of rewriting DOS appli­
cations for OS/2 and the limited size of the initial OS/2 market, many developers opted
to use these techniques to extend the life of their current DOS products, instead of
immediately porting to OS/2. However, these short-term DOS add-on technologies
required DOS applications to perform more complex memory-management and multi­
tasking strategies, resulting in an evolution of more DOS-based limitations.

1.5.1 Microsoft Windows

Prior to and during the development of OS/2, Microsoft designed a graphical user inter­
face for the DOS environment called Windows, which was announced in late 1983.
Microsoft hoped that Windows would become the standard graphical user interface for
DOS systems. However, Windows was not actually shipped until late 1985, and no com­
mercial Windows applications existed when it shipped. By late 1987, Windows 2.0 had
been released, and some DOS developers were beginning to migrate their products to
the Windows platform.

1.5.2 DOS Expanded Memory

One method of allowing DOS applications to access more than 640KB is called expand­
ed memory. Expanded memory works by using a special memory card that bank switch­
es its memory into the 8088 address space through a technique called windowing (not to
be confused with GUis that manage windows on the screen). Bank switching involves
mapping a portion of the memory on a hardware card into a window of the processor's
address space under control of application software.

1.5 The Evolving Market 15

Expanded memory could be used by existing DOS applications with relatively few
modifications and gave the user a solution for relieving the 640KB memory limitation.
The expanded memory standard, the Lotus/Intel/Microsoft Expanded Memory
Specification (LIM EMS), evolved while OS/2 1.0 was being developed. The LIM 3.2
specification allows up to 32MB of expanded memory to be addressed through 16KB
address windows in the DOS address space. The LIM 4.0 specification added a 256KB
code window. Since DOS applications had to do their own expanded-memory manage­
ment, expanded memory was clearly not a long-term solution to the problem of the
640KB barrier; however, it did provide programmers with enough relief from memory
concerns that they could create applications with better performance in the short term.

1.5.3 DOS Extended Memory

Similar to expanded memory is extended memory. Extended memory in general refers to
memory that can be added to a personal computer above the lMB physical-memory
boundary that originated with 8088-based personal computers. Extended-memory cards
do not have any special bank-switching hardware. A specification analogous to LIM
EMS, called Extended Memory Specification (XMS), describes the software interface to
the DOS-based memory-extending software.

1.5.4 DOS Extenders

DOS extenders utilize the XMS technology to allow DOS applications to run in pro­
tected mode and to take advantage of more than 640KB of memory. Although this is
transparent to the application user, the program still utilizes real-mode DOS and BIOS
for system and 1/0 services. Extenders provide interfaces that allow programs to switch
the processor between real mode and protected mode for DOS and BIOS function calls,
and to manage extended memory.

1.5.5 Intel 80386

By late 1987, the 80386 had been shipped, and software vendors were eager to exploit
the chip's new features. Significant on the 80386 are its virtual 8086 mode (a special
mode for emulating 8088 and 8086 environments), a true 32-bit programming model,
and a paged memory-management unit (PMMU). The virtual 8086 and paging features
of the 80386 made the task of writing a DOS multitasker-a system that manages multi­
ple virtual 8086 machines and multitasks them-more feasible than it had been on
80286 machines. The 80386 paging capability also allowed DOS multitaskers to emu­
late expanded-memory support using extended memory. This resulted in a DOS plat­
form that could run multiple DOS applications that use more than 640KB of memory
concurrently.

1.5.6 DOS Multitaskers

DOS multitaskers support the concurrent execution of regular DOS applications, DOS
extender-based applications, and applications that use expanded memory. Examples of

16 Historical Background

DOS multitaskers are Quarterdeck DesqView and Windows 386 (later Windows 3.0).
Since these systems are all based on the nonreentrant, real-mode DOS and BIOS, and
rely on mode switching between real mode and protected mode, many complications can
arise in the multitasking environment. The complications occur because DOS multi­
taskers and extenders leave the management of memory and the control of mode switch­
ing in applications instead of in a protected kernel. The Virtual Control Program
Interface (VCPI) was developed by a consortium of vendors, including Lotus and
Quarterdeck, to address these problems. VCPI specifies an interface that allows EMS
emulators, DOS extenders, and DOS multitaskers to coexist correctly in an unprotected
environment.

While these DOS add-on technologies that exploit the features of the 80386 were
being developed and used by DOS applications, OS/2 was not so quick to exploit the
features of the 80386 for several reasons. The investment in the 80286 version was sub­
stantial. To keep system memory requirements down and to meet performance goals, the
programmers had to write virtually the entire kernel in 80286 assembler code, instead of
in a high-level programming language. Although the 16-bit OS/2 system and applica­
tions would run as they were on an 80386, redesigning the system and rec~ding it to ex­
ploit the 80386 32-bit programming model and the virtual 8086 DOS compatibility
feature was a nontrivial task.

In fact, the task was not feasible, given the limited resources that IBM and
Microsoft were able to devote to the project at that time, since both companies had com­
mitted to shipping OS/2 1.0 in 1987 and OS/2 1.1 with the Presentation Manager in
1988.

By mid-1989, the PC market had several solutions to the limitations of DOS:

Expanded memory

DOS extenders

DOS multitaskers

16-bit OS/2

A factor that inhibited acceptance of OS/2 was the lack of applications. In early
1989, after OS/2 1.1 was shipped with the PM, few applications targeted for OS/2 1.0
were available, and no PM applications were available until mid-1989. Another factor
was that the DOS multitaskers provided capabilities that the OS/2 DOS compatibility
environment lacked, such as expanded memory support and multitasking of DOS appli­
cations. Also, the hardware requirements for OS/2 were larger than were those for DOS
extender-based systems, and people began to question how well 16-bit OS/2 could run
on an 8MHz 80286 AT-class computer.

1.6 OS/2 1.2

From the end of 1988 through the middle of 1989, IBM and Microsoft worked on finish­
ing the 16-bit OS/2 system. The OS/2 1.2 system was completed by late 1989; it con­
tained the High-Performance File System (HPFS). Recall how DOS 2.0 came out with

1.8 Windows3.0 17

the hierarchical FAT file system to overcome shortcomings inherited from CP/M. Now,
OS/2 needed a new file system that could manage large volumes of disk space more effi­
ciently than could the FAT file system inherited from DOS. In OS/2 1.0, the FAT file
system limited each drive unit to 32MB of storage-a hard disk that could contain
90MB had to be partitioned into three logical drive units. With hard disks available in
sizes approaching a gigabyte, and with optical media on the horizon, this restriction
clearly needed to be lifted. Also, the FAT file system was designed for a single-user sin­
gle-process environment, and OS/2 needed a more robust file system to support the
multitasking server environment. OS/2 1.2 relieved the 32MB per volume restriction for
the FAT file system and also provided HPFS.

Another improvement in OS/2 1.2 was in the area of the DOS environment.
Although OS/2 1.2 made available more memory for DOS applications, it still neither
provided compatibility for many DOS communications applications, nor exploited any
of the features of the 80386.

At about the same time as OS/2 1.2 was shipped, DOS 4.0 was released to provide
support for FAT-based hard-disk partitions larger than 32MB, more memory to DOS
programs, a simple user shell interface, and EMS emulation support on an 80386.

1.7 OS/2 1.3

IBM recognized in 1989, that the OS/2 1.2 product needed to use less memory and to
run even faster if it was to meet the commitment of supporting low-end 80286 machines.
Therefore, IBM continued to enhance the 16-bit OS/2 1.2 from late 1989 through 1990
to produce OS/2 1.3. This version basically is the same as 1.2, but it runs in less memory
and is faster, especially when used in a local area network environment. OS/2 1.3 can
run on an 80286 machine with 2MB of memory. OS/2 1.3 became generally available in
October 1990.

In September of 1990, IBM and Microsoft also announced a change in their develop­
ment relationship: The companies decided to discontinue the policy of splitting develop­
ment responsibility for OS/2 across sites. IBM became solely responsible for the
development of 16-bit and 32-bit OS/2, while Microsoft continued work on advanced
OS/2 kernel technology and the Windows system. As in the previous development agree­
ment, both companies retain rights to OS/2. Ultimately, the new arrangement allows
future OS/2 development to proceed faster than previously.

1.8 WINDOWS 3.0

Microsoft continued enhancing the Windows product while participating in OS/2 devel­
opment. The Win386 release of Windows essentially added the capability of running
multiple DOS applications on an 80386 processor. Win386 also ran existing Windows
2.0 real-mode applications. Win386 was viewed as a stopgap product that would maintain
Microsoft's revenue stream until OS/2 caught on. However, Microsoft announced plans
to enhance Win386 to provide a third-generation version of Windows that would inte­
grate a graphical user interface with DOS multitasker and extender technology. The

18 Historical Background

announcement of Microsoft's plans for Windows caused further confusion in the PC mar­
ket concerning what platforms users and programs should migrate toward. Windows
popularity was on the rise due to the promises of the unreleased Windows 3.0, and many
developers could not afford to build both Windows and PM versions of their applications.

Windows 3.0 became generally available in June 1990 and soon achieved tremen­
dous sales volumes. The product's success can be attributed to two major factors. First,
the extravagant marketing blitz by Microsoft for Windows 3.0 had positioned the prod­
uct as the stepping stone between DOS and OS/2. The Windows 3.0 marketing effort by
Microsoft dwarfed the marketing and exposure given OS/2 by IBM and Microsoft com­
bined. Second, there was no other product that exploited all the DOS capabilities of the
80386 while providing a graphical user interface. For these two reasons, many users
migrated to Windows, and many application vendors gave up their commitment to PM
development in favor of Windows 3.0 development, to maximize short-term profits.

Since VCPI was not compatible with the Windows 3.0 environment, DOS multi­
tasker and extender programs could not run under Windows 3.0. To reconcile the differ­
ences in VCPI and Windows, Microsoft introduced the DOS Protected Mode Interface
(DPMJ) standard. It also provided mechanisms for allowing VCPI programs to run in
the Windows environment.

Some interesting technical comparisons can be made between Windows 3.0 and
OS/2 1.3. Both systems provide support for up to 16MB of memory on 80286 and 80386
platforms. The user shell of Windows 3.0 looks and feels like a modified OS/2 1.2 user
shell. To run a single DOS application and a single protected-mode application,
Windows 3.0 requires 3MB to 4MB of memory and an 80386 processor, whereas OS/2
1.3 requires 3MB of memory and an 80286 processor.

Both products use protected mode, but Windows 3.0 does not exploit any of the fea­
tures for protecting the system from applications, and applications from one another.
Thus, any Windows 3.0 application can destroy any other Windows 3.0 application and
crash the system. Furthermore, since the 16-bit protected-mode API of Windows 3.0
runs on top of real-mode DOS and BIOS, it is easy to write a program that passes a bad
pointer to DOS or BIOS, and that therefore hangs the system. Thus, the Windows 3.0
program model is built on the same technology as DOS extender architectures, and has
similar shortcomings. On the other hand, OS/2 1.3 is completely protected from applica­
tions programs. The Windows-DOS API, compared to the OS/2-PM API, is inferior in
many ways-in memory management, in file-system support and 1/0 controls, in inter­
process communication, in the windowing architecture, and in the graphics power and
versatility (Pe90).

Another difference in these products, at the design level, is that Windows trades
integrity and protection for DOS compatibility, whereas OS/2 does not. The result is
that Windows experiences more system crashes due to poorly behaved DOS applica­
tions. Functionally, the only advantage of Windows 3.0 over OS/2 1.3 is the capability
of multitasking DOS applications when running on an 80386. Except for this capabili­
ty, Windows 3.0 represents a regression in operating-system technology, compared to
OS/2 1.3.

1.9 OS/2 2.0 19

With these drawbacks in mind, it is interesting to theorize why application vendors
and users rushed to the Windows 3.0 platform. The multitasking DOS capability and
graphical user interface in a DOS environment are the major functional factors that mo­
tivated users to migrate to Windows 3.0. However, the major marketing campaign by
Microsoft that made Windows 3.0 appear to be more of a DOS-like product than OS/2,
and the low price (the product was free, in many cases) of Windows 3.0, also were con­
tributing factors in placing Windows 3.0 on the desktops of many users. This migration
occurred without the availability of Windows 3.0 applications that would take advantage
of the 16-bit Windows 3.0 protected-mode API and even though Windows 3.0 did not
provide any system protection or integrity, a key issue in a multitasking system.

The large marketing push also caused application vendors to plan ports of their
DOS software to the Windows 3.0 16-bit API, so as to maximize short-term profits.
Many application vendors even gave up previous commitments to OS/2 PM application
development, begun in 1988, so that they could concentrate on Windows. This behavior
is confusing, especially when we consider that porting applications to Windows is about
as difficult as is porting to the PM, that the performance of 16-bit Windows applications
is similar to that of their 16-bit OS/2 PM counterparts, and that the Windows environ­
ment is much more fragile than the OS/2 environment. Furthermore, the shift in applica­
tion development strategies came after most developers began working with OS/2.
However, we must expect the vendors to migrate their applications to the market with
the largest expected volumes.

1.9 05/2 2.0

While OS/2 1.2 development was drawing to a close, Microsoft and IBM were also de­
signing the 32-bit version of OS/2 that would finally

Exploit the features of the 80386 and 80486 processors.

Provide a demand-paged system with a 32-bit programming model that is
portable to other 32-bit processor architectures.

Multitask DOS applications in a protected environment.

Provide 16-bit OS/2 application binary compatibility.

Provide Windows 3.0 application binary compatibility in a protected environ­
ment.

OS/2 2.0 lays the foundation for the 32-bit operating environment of the future. Like its
predecessors, it provides system and application protection for 16-bit and 32-bit protected­
mode applications. The major design goals for the 32-bit programming model were to break
the 64KB barrier associated with Intel's previous segmented 16-bit processors, and to pro­
vide a portable 32-bit programming model for the future. Since the system is demand
paged, OS.2 2.0 can run in a configuration with 3MB to 4MB of memory. The multiple
DOS application support is a protected implementation so that DOS applications cannot
breach the system's integrity and cause failures. Windows 3.0 application compatibility

20 Historical Background

encourages users who run Windows 3.0 on an 80386 platform to upgrade to OS/2 2.0.
Table 1.2 summarizes the evolution of the OS/2 system through the OS/2 2.0 release.

The 64KB barrier broken by OS/2 2.0 is one inherited from the original 8088 family
of processors. Since a 16-bit processor can naturally address only 64KB of memory at a
time, programmers had to manage memory in terms of segments that could be up to
64KB long. This made programs sensitive to the underlying addressing scheme of the
processor, and nonportable to anything but Intel processors. The 64KB barrier was an
even larger problem for 16-bit OS/2 applications than it was for DOS applications, since
OS/2 runs applications in protected mode. In protected mode, the instruction for chang­
ing the segment to be addressed runs more than eight times slower than in real mode­
so 16-bit OS/2 applications incur a large performance penalty to pay for their protection.

Date Version System Contents

1987 1.0 SE Initial 16-bit system
Multitasking
Memory management
Protection
Dynamic linking
16-bit API
DOS environment

1988 1.0EE Communications
SNA
X.25/APPC/LU 6.2
LANManager

Database
Query Manager
SQL

1988 1.1 SE Presentation Manager (PM)

1989 1.1 EE Remote Database

1989 1.2 SE High Performance
File System (HPFS)
Installable File System
Better DOS environment

1990 1.2 EE Exploit PM
TCP/IP and Ethernet support

1990 1.3 SE Faster/smaller
Intelligent fonts

1991 1.3 EE
1991 2.0SE Initial 32-bit system

Demand paging
Portable 32-bit API
Multiple DOS sessions
Windows 3.X compatibility
Workplace shell

Table 1.2 OS/2 evolution.

Summary 21

Furthermore, the 64KB barrier requires both DOS and 16-bit OS/2 applications to have
code to deal with segmented memory addressing, which makes them highly nonportable
to a processor architecture where their required type of segmentation is not available in
the hardware.

1.10 THE 1990s

Where does this evolution of operating systems leave the user? What choices are there?
The answers depend on available hardware platforms and on the user's requirements.
IBM and Microsoft have stated that systems with less than 4MB of memory are
DOS/Windows systems, and that the remainder are OS/2 systems. But this distinction
fails to clarify what users should do, especially since OS/2 2.0 can also run in the same
environment and perform more functions reliably.

Hardware generally has been made available before the software that could exploit
it. How to ensure the migration of software to newer hardware platforms where better
price/performance is achieved is one of the most difficult problems facing the computer
industry. Thus far, the solution for the DOS world has been for each microprocessor to
provide binary compatibility for the processor of the previous generation. However, this
solution prevents software from truly becoming open enough to migrate to any platform.

The creation of standards for source-code portability for a given operating system
across different platforms is an initial requirement if the operating system and its
applications are to migrate across different hardware architectures. The OS/2 2.0 32-bit
programming model, like UNIX, is designed to be portable across almost any platform,
whether uniprocessor or multiprocessor. This portability will enable 32-bit OS/2 pro­
grams to penetrate platforms other than Intel-based systems when the underlying operat­
ing system is enabled on other processor platforms, such as RISC-based systems.

The trend in hardware systems toward workstation configurations that contain a
generic workhorse processor attached to large amounts of memory and DASD illustrates
that hardware is quickly becoming a commodity rather than a technology. This distinc­
tion is evident every time one company puts out a system that achieves a certain perfor­
mance level, and another company quickly assembles a system offering the same
components, but with a slightly higher clock rate and at a slightly lower price. Portable
software will hasten recognition of the trend to turn hardware into a commodity and will
demonstrate that the true technology of the future lies in software. This core issue is ad­
dressed by architectures such as SAA and open systems. In Chapter 12, these issues and
others are explored with respect to the future of OS/2, and with respect to the PC/work­
station operating system market.

SUMMARY

This chapter described the history of personal computers and of personal computer oper­
ating systems. DOS is the most popular single-user, single-tasking personal computer oper­
ating system. OS/2 is an advanced single-user, multitasking personal computer operating
system that exploits advanced hardware platforms and meets the needs of the future.

22 Historical Background

TERMINOLOGY

bank switching
Basic Input Output System (BIOS)
binary compatibility
build group
build process
demand paging
device driver
disabling interrupt
DOS
DOS 1.0
DOS 2.0
DOS 3.0
DOS 3.1
DOS 3.2
DOS 3.3
DOS 4.0
DOS evolution
DOS Protected Mode Interface (DPMI)
DOS system service
dynamic linking
expanded memory
extended memory
Extended Memory Specification (XMS)
external device interrupt
family API (FAPI)
FAT file system
file allocation table (FAT)
graphical user interface (GUI)
hardware interrupt
High-Performance File System (HPFS)
hot-key pop-up application
IBMPC/XT
IBM Personal Computer
IBM PS/2
independent software vendor (ISV)
INT instruction
INT21
Intel 80286
Intel 8086/8088 processors
interrupt-vector table (IVT)
IRET
Lotus/Intel/Microsoft

Expanded Memory
Specification (LIM EMS)

Micro Channel Architecture
Microsoft
Microsoft Windows
migration
mode switching
MT-DOS
multiprogramming
multitasking
open systems
OS/2
OS/2 1.2
OS/2 Extended Edition
OS/2 Standard Edition
overlay
paged memory management unit (PMMU)
PC/AT
polling
Presentation Manager (PM)
protected mode
protection
real mode
real-mode multitasking
ROM BIOS
segmentation
segmented memory addressing
single-task environment
single-thread environment
16-bit OS/2
640KB barrier
64KB barrier
software interrupt
source-code portability
statically linked interface
synchronous execution
terminate-and-stay-resident (TSR) module
32-bit API
32-bit OS/2
Virtual Control Program Interface (VCPI)
virtual 8086 mode
Windows 3.0

Exercises 23

EXERCISES

1.1 Describe the strategy IBM used to bring its PC to market quickly.

1.2 Discuss the layered architecture of the DOS system as shown in Fig. 1.1. Such layered archi­
tectures have become popular and effective designs for today's increasingly complex systems.
Give several pros and cons for using the layered approach to designing operating systems. As you
read this text, watch for the use of layering in OS/2.

1.3 What first motivated designers to include a UNIX-like hierarchical file system in an early
version of DOS?

1.4 Discuss the problems inherent in real-mode multitasking systems.

1.5 What capabilities were provided in the Intel 80286 to support a protected multiprogramming
environment? Given these capabilities, why were most 80286s initially used as fast 8088/8086s?

1.6 Describe the limitations of DOS that motivated IBM and Microsoft to begin development of
OS/2.

1.7 What software technique did DOS application developers use to relieve the 640KB memory
constraint? Give several disadvantages of this scheme.

1.8 How do terminate-and-stay-resident modules (TSR) work? What is a hot-key pop-up appli­
cation? What problems do TSRs present to the application developer?

1.9 DOS applications can disable interrupts with a single instruction. Describe a scenario using
this capability that might cause the system to hang (i.e., to deadlock).

1.10 Discuss several benefits of building multitasking into the operating system, rather than hav -
ing applications do multitasking themselves.

1.11 Explain the operation of the software-interrupt mechanism.

1.12 What does it mean to hook an interrupt? Why is this possible in the DOS environment? Give
several examples of software that might hook interrupts. What serious problem might develop in a
system in which interrupt hooking is commonly used?

1.13 What is a statically linked interface?

1.14 What major requirements did the design of OS/2 have to address?

1.15 Given the numerous limitations of DOS that motivated the development of OS/2, why was
it considered so important to be able to run existing DOS applications under OS/2?

1.16 Why was the family API (FAPI) developed?

1.17 From the early stages in the development of OS/2, it was known that OS/2 on the 80286
would not be able to multitask DOS applications or to run them in the background. At the time,
this limitation was not viewed as a serious problem from a marketing standpoint. Give several rea­
sons why marketing specialists believed that users would not be concerned about the lack of these
capabilities. Give several reasons why users would indeed like to multitask DOS applications and
to run them in the background.

1.18 What short-term hardware techniques were developed to relieve DOS 's 640KB memory
barrier? From the applications developers' standpoint, what key problem did these techniques
have in common?

1.19 Discuss the factors that tended to inhibit the broader acceptance of early versions of OS/2.

1.20 What considerations motivated the development of the High-Performance File System (HPFS)?

24 Historical Background

1.21 One factor that tended to confuse the applications development marketplace in 1990 was
that the Windows and Presentation Manager application programming interfaces (APis) were dif­
ferent. Given the obvious advantages of a common interface, why do you suppose the APis are
indeed different?

1.22 What factors motivated the development of OS/2 1.3?

1.23 Compare and contrast Windows 3.0 and OS/2 1.3 with regard to memory requirements,
processor requirements, and product capabilities.

1.24 What key capabilities was 32-bit OS/2 2.0 designed to provide?

1.25 What issues hinder the portability of 16-bit OS/2 programs?

1.26 Why do 16-bit OS/2 applications incur a large performance penalty to pay for their protection?

1.27 The OS/2 2.0 system, like UNIX, is designed to be portable across a wide variety of plat­
forms. What kinds of standards facilitate such portability?

1.28 Argue that compatibility with widely used hardware and software is an important con­
sideration for designers of new operating systems. Explain how the design of OS/2 reflects the
importance of compatibility issues.

2
Microprocessor
Architectures

"Now! Now!" cried the Queen. "Faster! Faster!'

Lewis Carroll

Our life is frittered away by detail Simplify, simplify.

Henry Thoreau

Addresses are given to us to conceal our whereabouts.

Saki (H. H. Munro)

25

Outline

2.1 Introduction
2.2 Intel 8088/8086

2.2.1 Memory Architecture
2.2.2 Register Set
2.2.3 Interrupts and Exceptions
2.2.4 Input/Output
2.2.5 Analysis

2.3 Intel 80286
2.3.1 Memory Architecture
2.3.2 Descriptors
2.3.3 Descriptor Tables
2.3.4 Selectors
2.3.5 Address Translation
2.3.6 Protection
2.3. 7 Type Checking
2.3.8 Limit Checking
2.3.9 Privilege Levels

2.3.10 Protected Data Access
2.3.11 Protected Control Transfers
2.3.12 Parameter Validation
2.3.13 Protected Instructions
2.3.14 Interrupts, Exceptions, and Faults
2.3.15 Input/Output
2.3.16 Analysis

2.4 Intel 80386
2.4.1 Register Set
2.4.2 Memory Architecture
2.4.3 Segmentation
2.4.4 Paging
2.4.5 Page Protection
2.4.6 Virtual 8086 Mode
2.4. 7 Virtual I/O
2.4.8 Analysis

26

2.5 Intel 80486
2.6 RISC Processors

Summary

27

28 Microprocessor Architectures

2.1 INTRODUCTION

This chapter describes the processor architectures on which the DOS and OS/2 systems
execute. The various microprocessors and their memory organizations are described and
analyzed with respect to their capabilities for supporting systems and applications software.

2.2 INTEL 8088/8086

The Intel 8088 is a 16-bit general-purpose microprocessor used in early IBM PCs and
compatibles. The 8088 and 8086 are architecturally identical chips, except that the 8088
has an 8-bit external data bus and the 8086 has a 16-bit external data bus. Throughout
this book, references to the 8088 include the 8086. The 8088 is capable of developing
20-bit physical addresses for a maximum of lMB of memory addressability.

2.2.1 Memory Architecture

The memory architecture of the 8088 is a segmented model. Since a 16-bit processor
with 16-bit registers is capable of addressing only 64KB using a direct addressing
scheme, the segmented model was designed to allow access to lMB of memory. Each
physical location of memory is addressed by two 16-bit values-a segment and an offset.
The segment value denotes the start of a 64KB region, and the offset value is the num­
ber of bytes from the beginning of the 64KB segment to the byte being addressed.
Memory locations are described by logical addresses in the segment:offset format or
16:16 format. Segment values are loaded into one of four segment registers that point to
the beginning of the four currently addressable memory segments. Figure 2.1 illustrates
the four segment registers.

When a memory location is accessed, the value in the segment register is used to
determine the 20-bit base physical address of the segment, and the offset value is the
distance in bytes from the segment base address to the desired memory location. The
system calculates the base physical address by shifting the value in a segment register to
the left 4 bits, effectively multiplying the segment value by 16. The offset is then added
to the base segment address, resulting in a final physical address that is a 20-bit value

- 16 bits - Code

cs segment

Stack
segment

.....- SS

Data. DS
segment

Extra ES
segment

Fig. 2.1 8088 segment registers.

2.2

Off

Segment

Physical
address

set l+- 16 bits ---+J

l +-16 bits --+ J ooooJ

1..-- 20 bits ----.[

Fig. 2.2 8088 address calculation.

INTEL 8088/8086 29

1MB

1
..... Memory location

..... ----------------.......

0

ranging from 0 to lMB + 64KB. References to the memory between lMB and JMB +
64KB are wrapped by hardware to the lower 64KB of physical memory in 8088-based
systems. Figure 2.2 illustrates the 8088 address calculation.

Due to the nature of the address computation, the segment values are 16-byte or
paragraph granular. A paragraph on the 8088 is 16 bytes. Since addresses are calculated
arithmetically, segments can overlap, and there can be more than one combination of
segment:offset for each byte in the lMB of storage. Figure 2.3 illustrates this aspect of
8088 addressing, called aliasing.

2.2.2 Register Set

The 8088 register set consists of general registers, special registers, and segment regis­
ters. Figure 2.4 illustrates the 8088 register set.

The AX, BX, ex, DX, SI, and DI registers are used to contain the operands of logi­
cal and arithmetic operations. These registers can be used in most simple instructions,
and each one also has a specialized role in some of the more complex instructions avail­
able. The AX register is used as an accumulator by default in many instructions. The BX
register is used as a base-addressing register, the ex register is used as a counter in loop
operations, and the DX register is used in 1/0 operations. The SI and DI registers can be

Segment: offset

1000H:11H

1001H:1H

Physical
address

10011 H

10011 H

= 10011H: = 64KB + 17

Fig. 2.3 8088 address aliasing.

1MB

~""'"""~"'"'"'"'~"'"'°' 128KB + 16
128KB

19'!9~~~~~ 64KB + 16
64KB

30 Microprocessor Architectures

General registers

-16bits _.

AX

BX

ex
DX

SI

DI

BP

SP

Accumulator

Base*

Count

Data, 1/0

Source index*

Destination index*

Base pointer*

Stack pointer

*can be used as an index (offset) register.

Fig. 2.4 8088 register set.

Special registers

-16bits _.

IP

FLAGS

Instruction pointer

Status flags

used as source and target offsets with special string instructions to perform memory-to­
memory transfers of data. The BX, SI, DI, and BP registers are the only registers that
can be used as index or offset operands of general address calculations.

As previously stated, the segment registers establish the four 64KB segments the
8088 currently addresses. Each segment register has a special usage. The CS segment
register determines the base address of the segment containing the currently executing
sequence of instructions, called a code segment. The 8088 fetches all instructions from
this code segment using as an offset the contents of the IP register. The CS:IP register
combination forms the instruction counter and is changed implicitly as the result of
control-transfer instructions such as CALL, JMP, interrupts, and exceptions. When a
transfer occurs without the CS register changing, the transfer is called "near," since the
reference is to a location within the current code segment. When a transfer occurs and
CS is reloaded, the transfer is called "far," since the transfer is to a location not in the
current code segment.

The 8088 uses a stack to facilitate subroutine linkages, parameter passing, and the
creation of local activation records. The SS register always contains the base address of
the current stack, and the SP register points to the top of the stack. The stack is refer­
enced implicitly by PUSH, POP, CALL, and other control-transfer operations. Unlike
CS, the SS register can be loaded explicitly, allowing programmers to define stacks dy­
namically. The BP register is usually used as a stack-frame base pointer for accessing
activation records and dynamically allocated local data on the stack. When BP is used as
the index register in an address calculation, the current stack segment is used in the
address calculation by default.

The DS and ES registers allow the specification of data segments. Typically, the DS
register is used to reference an application's default data segment, and ES is used for
other data references outside the scope of the default data segment. Most instructions
that reference memory use the DS register by default to select the segment to be
addressed, allowing the instructions to be encoded more efficiently.

2.2 INTEL 8088/8086 31

The FLAGs register contains the status flags or condition codes. These flags allow
the results of one instruction to influence later instructions by preserving the status of
arithmetic and logical operations. The status flags are carry, parity, auxiliary, zero, sign,
and trap.

2.2.3 Interrupts and Exceptions

Interrupts and exceptions are two mechanisms used to interrupt program execution.
Exceptions are synchronous events that are the responses of the processor to conditions
detected during the execution of an instruction, such as attempts to divide by 0 or to exe­
cute an invalid opcode. Interrupts are asynchronous events triggered by external devices
requiring attention. Another class of interrupts, called software interrupts, facilitates in­
tentional synchronous control transfers using the interrupt mechanism. Software inter­
rupts are executed using the INT instruction.

The 8088 uses the stack and the interrupt vector table (!VT) to effect a control
transfer when an exception, interrupt, or software interrupt occurs. The IVT table begins
at physical address zero; it consists of an array of addresses in the segment:offset for­
mat. When an exception, interrupt, or software interrupt occurs, the 8088 saves the cur­
rent instruction pointer (CS:IP) and the contents of the FLAGs register on top of the
current stack, then indexes into the IVT based on the interrupt or exception number to
find the new address from which to continue execution. An interrupt handler is called
when an interrupt or an exception occurs. When the interrupt or exception has been
completed, the IRET instruction is used by the handler to return control to the original
point of the interrupt.

2.2.4 Input/Output

The 8088 allows 1/0 to be performed using one of two techniques: a separate !10-
address space with specific 1/0 instructions, or memory-mapped 110 using general­
purpose instructions. The 8088 I/0 address space is divided into ports that can be 8, 16,
32, or 64 bits wide. That is, each port can map an 1/0 device internal register that can
range in size from 8 to 64 bits. Using the IN and OUT instructions, 8088 programs read
and write ports in the 1/0 address space. Memory-mapped 1/0 is used by connecting the
peripheral devices to respond like normal memory components. Memory-mapped
devices can then be accessed using regular instructions such as MOV. An example of a
memory-mapped device is the video RAM associated with the display.

2.2.5 Analysis

Since the 8088 does not provide memory protection or 1/0 protection, it is not appropri­
ate as a multitasking platform. Due to the segmented memory addressing scheme, source
code written for the 8088 is portable only to systems with exactly the same segment
semantics and addressing scheme. The segmented memory model and small register set
add a level of complexity to the development of programs and programming tools to
support the 8088.

32 Microprocessor Architectures

2.3 INTEL 80286

The 80286 microprocessor is used in the IBM PC/AT and compatible systems. The
80286 has two modes of operation, called real mode and protected mode. In real mode,
the 80286 behaves like a fast 8088, and is compatible with all systems and applications
that run on the 8088.

When protected mode is enabled, the 80286 provides an architecture that supports
virtual addressing, memory protection, 1/0 protection, and access to 16MB of physical
memory. As in the 8088, the maximum segment size is 64KB, so the 16MB of physical
memory must still be accessed in 64KB chunks. The instructions and register set used
by applications running in protected mode are identical to those used in real mode; vari­
ous system registers not available to applications are used by the operating system to im­
plement the operating system's functions and policies.

2.3.1 Memory Architecture

The 80286 is put into protected mode by setting the protected mode bit in the Machine
Status Word (MSW), a system register of the 80286. Once put into protected mode, the
80286 cannot be reset to real-mode operation without special external circuitry on the
system board. Mode switching an 80286 from protected mode to real mode is described
in more detail in Chapter 10.

2.3.2 Descriptors

When the 80286 runs in protected mode, the memory model is different from the real
mode 8088 memory model. On the 8088, the segment values are directly related to the
real storage address that the segment occupies. The virtual addressing of the 80286
disassociates the addresses referenced by a program from the actual addresses available
in primary storage. The addresses used in protected mode are called virtual addresses.
The addresses available in primary storage are called real addresses or physical
addresses. To map virtual addresses to physical addresses as a program executes, the
80286 uses a construct called a descriptor to implement direct segment translation.

A descriptor is 8 bytes and contains what the base physical address of the segment
is, what the segment size or limit is, how the segment can be accessed, and what privi­
lege is required to access the segment. Figure 2.5 shows the information in an 80286
data segment descriptor.

The segment base address is the 24-bit physical address where the segment begins.
Since this base address is not visible to the running program, an operating system may
relocate segments dynamically in physical memory. This relocation is transparent to a
program using virtual addresses.

The segment limit field in the descriptor denotes the size of the segment. An impor­
tant feature of the Intel segmentation scheme is that segments are variable in size and
can be grown and shrunk dynamically. This feature allows an operating system to pro­
vide a segmented memory model in which memory objects can be dynamically resized.

2.3

------16 bits------

Reserved (0)
1------~----------1+6

Access rights J Base address (B16-23)
>------~-----------<+4

Base address (B0-15)
>------------------<+2

Limit

15 0

INTEL 80286 33

Fig. 2.5 80286 segment descriptor. (Reprinted by permission of Intel Corporation,
Copyright/Intel Corporation 1983.)

The remaining information in the descriptor is called access rights information, and
describes how the segment can be referenced. Both of these fields are discussed further
in Section 2.3.6.

2.3.3 Descriptor Tables

The 80286 architecture groups descriptors into descriptor tables, which are arrays of de­
scriptor entries. A descriptor table is a special variable-length segment that can contain up
to 8192 entries for a maximum size of 64KB. There are two primary descriptor tables in
the 80286 architecture, the global descriptor table (GDT) and the local descriptor table
(LDT). There can only be one GDT in an 80286 system, whereas there may be multiple
LDTs. Although the 80286 does not prohibit a system with multiple GDTs, switching and
managing multiple GDTs under system software control is not realistic. Furthermore, the
80286 has a multitasking model that uses a single descriptor table (GDT) for the system
resources, and a descriptor table (LDT) for each 80286 task's resources. An 80286 task is
not the same as an OS/2 process, since OS/2 does not use the 80286 multitasking model.
Chapter 5 describes the differences in the 80X86 and OS/2 multitasking models with
respect to context switching and process management. The 80286 version of OS/2 puts in
the GDT descriptors for segments that are global to all processes.

Descriptors for segments that are owned or accessed on a per-process basis are put
into an LDT associated with each process. The GDT and LDT segments are located by
the 80286 using two special registers called the GDTR and LDTR. These registers store
the base address and limits of the descriptor tables.

2.3.4 Selectors

Unlike addressing on the 8088, the segment values on the 80286 no longer represent ac­
tual locations in physical storage; rather, they are indices into a descriptor table, and are
called selectors. On the 80286, 16:16 addresses in protected mode are virtual addresses
in selector:offset format. Figure 2.6 illustrates the format of a selector.

Selectors are 16-bit values, but not all 16 bits are used as an index into a descriptor
table. The table-indicator bit designates whether the index should reference the GDT or
LDT. The remaining bits are used for protection information, as discussed in Section 2.3.6.

34 Microprocessor Architectures

------16 bits-----+

Index

15

Index= descriptor-table index
Tl =descriptor-table indicator
RPL = reauestor orivileae level

3 2 1 0

Fig. 2.6 80286 selector format. (Reprinted by permission of Intel Corporation,
Copyright/Intel Corporation 1983.)

2.3.5 Address Translation

When a 16:16 memory reference occurs, the descriptor table is used in the address
calculation to determine a 24-bit base segment address that is added to the offset of the
target address. Figure 2.7 illustrates the address translation through a descriptor table in
protected mode.

If a selector that references an invalid segment descriptor is loaded into a segment
register, the 80286 raises a general protection fault that the operating system handles.
Illegal memory accesses after the loading of a valid selector can also trigger a general
protection fault. Although applications are aware of selectors, they do not have direct

1 16-bit
[Selector Offset ~tr J offset +

24-bit
'---+ Descriptor

Base address

Descriptor table

...... ... ,..
i-

...... -,.

Physical memory

16MB

0

Segment
limit

Fig. 2.7 80286 protected-mode address translation. (Reprinted by permission of
Intel Corporation, Copyright/Intel Corporation 1983.)

2.3 INTEL 80286 35

access to the descriptor tables. The descriptor tables are maintained by the operating sys­
tem on behalf of executing programs.

Since the descriptor tables of the 80286 are maintained in memory, it would seem
that memory access would be a slow operation, since the contents of a descriptor would
have to be examined on each memory access. To provide fast address translation, the
80286 maintains a hidden descriptor cache for each segment register. When a segment
register is loaded with a valid selector, the descriptor is read into the on-chip segment­
register cache automatically. Subsequent memory access operations within the segment
proceed without the descriptor table needing to be referenced. To maintain the integrity
of the descriptor cache, the operating system must be careful not to change the contents
of a descriptor that is in use, since the 80286 will not reload the cache until the segment
register is reloaded.

2.3.6 Protection

The concept of protection is key in multiprogrammed virtual-addressing systems. The
operating system must be protected from errant applications, and applications must be
protected from one another. The 80286 provides a protection model that allows an oper­
ating system to isolate itself from user applications, to isolate user applications from one
another, and to validate memory accesses. Whenever memory is referenced, the memory
management unit (MMU) hardware on the 80286 checks the reference to verify that it
satisfies the protection criteria. Since these checks are made before an instruction that
references memory completes, any protection violation occurring during the checks will
cause the 80286 to raise an exception.

The 80286 privilege levels are used to protect critical system code and data from
less trusted code. When applied to procedures, privilege is the degree to which the pro­
cedure can be trusted not to make a mistake that might affect other procedures. When
applied to data, privilege is the degree of protection that the data should have from less
trusted procedures. The system uses LDTs to isolate each task or process segment by
allocating an LDT for each one and by switching LDTs when tasks or processes are
switched.

Since the segment is the unit of protection, the natural place in which to store the
protection information is the segment descriptor. The access-rights information in the
segment descriptor contains the protection information for each segment. When a selec­
tor referencing a segment is loaded into a segment register, the processor loads not only
the base physical address and limit of the segment into the descriptor cache, but also the
protection information. Figure 2.8 illustrates the access rights portion of a segment de­
scriptor.

The accessed bit is reset each time that a selector is loaded into a segment register.
It is set whenever the segment is read or written, and can be used by an operating system
to monitor segment usage.

The present bit in the descriptor tells whether the segment is in memory. If a pro­
gram loads a selector to a segment that is marked not present, then a segment not­
present fault is raised. The present bit and a segment-not-present fault are used by

36 Microprocessor Architectures

I P I DPL I Type I W I A I
P = present bit
DPL = descriptor privilege level
Type= descriptor/segment type
W = writable bit
A = accessed bit

Fig. 2.8 80286 access rights information. (Reprinted by permission of Intel
Corporation, Copyright/Intel Corporation 1983.)

operating systems to manage virtual memory. Chapter 6 describes how 16-bit OS/2 uses
the segment-not-present fault mechanism to extend the physical memory resource.

2.3.7 Type Checking

The type field of a descriptor distinguishes among different descriptor formats, and
specifies the intended use of a segment. For instance, the type field indicates whether the
descriptor is for a code segment, a data segment, or a special segment used by the sys­
tem. The segment type checking occurs both when a selector is loaded into a segment
register and during memory references. The type checking ensures that the CS register
can be loaded only with the selector of a code segment, and that only selectors of
writable data segments are loaded into SS.

The writable bit in the access rights information indicates whether a data segment is
read-only. For code segments, this bit means execute-only, which prevents the contents
of a code segment from being read.

2.3.8 Limit Checking

The segment-limit field in the descriptor denotes the size of the segment. Since 80286
segments are variable sized, they support byte-granular protection checks. If a program
attempts to access an offset beyond the limit of a segment, a general protection fault is
raised. When a general protection fault occurs, the invalid memory access is reported
with byte-level accuracy. Limit checking is useful for detecting programming errors
such as array subscripts that are out of the boundary of the array and invalid pointer cal­
culations.

2.3.9 Privilege Levels

The 80286 has a four-level protection scheme that an operating system can use to define
how the system and programs are protected from one another. Privilege value 0 repre­
sents the greatest privilege and the most trust; privilege value 3 represents the least trust.
The privilege model can also be thought of as comprising rings of protection, in which
the center ring is for segments containing the system software, and the outer rings are
for segments of less trusted user software. An operating system may use as many or as
few of the protection levels as needed in the system architecture. Figure 2.9 illustrates
the ring protection model.

2.3

Task A

[f] =Code segment

@] = Data segment
Level 3

INTEL 80286 37

Task B

Fig. 2.9 80286 privilege levels and the ring protection model. (Reprinted by per­
mission of Intel Corporation, Copyright/Intel Corporation 1983.)

Privilege levels are found in three areas of 80286 architecture. Descriptors contain a
field, called the descriptor privilege level (DPL), that indicates the privilege level re­
quired to access the segment. Selectors contain a field called the requestor privilege
level (RPL). The RPL represents the privilege level of a procedure that supplies a selec­
tor as a parameter. The 80286 also internally tracks the current privilege level (CPL).
The CPL is usually equal to the DPL of the currently executing code segment. The CPL
value changes when control is transferred to code segments with different DPLs.

The 80286 determines the right of a procedure to access segments by comparing the
CPL with the privilege levels (DPL and RPL) of the segments to be accessed. The privi­
lege level access checks occur when a selector is loaded into a segment register. If the
checks fail, the instruction loading the selector into a segment register does not complete
and a general protection fault is raised.

2.3.10 Protected Data Access

When a program loads the selector of a data segment into a segment register, the 80286
checks to see whether the program has access to the desired segment by comparing
privilege levels. The privilege check is successful if the CPL is numerically less than or
equal to the DPL of the segment (CPL_DPL). That is, if the processor is currently run­
ning at a privilege level (CPL) that is the same or more trusted than that of the data be­
ing accessed (DPL), the access is valid. Therefore, a procedure can access only data that
are at the same or a less trusted privilege level.

The segments addressable by a program or task change when the CPL changes by
executing a protected control transfer. When executing at ring 0 (CPL == 0), data seg­
ments at all privilege levels are accessible; when executing at ring 1 (CPL= 1), data
segments with DPL == 1 and higher are accessible; and so forth.

38 Microprocessor Architectures

2.3.11 Protected Control Transfers

The 80286 accomplishes control transfers using the JMP, CALL, and RET instructions
(interrupts and exceptions are discussed separately). There are three flavors of control
transfer that differ based on the "distance" of the transfer.

Control transfers within a single segment require no change in privilege level and
are called near transfers since the transfer is within the current code segment. The near
variant of the CALL or JMP instruction is used with an offset in the current code seg­
ment as an operand.

Transfers between code segments are called far transfers and require the CS register
to be reloaded with the selector of the transfer target. If a far transfer is to another code
segment at the same privilege level as the source code segment, the far variant of the
CALL or JMP instruction is used, specifying the selector of the target code segment and
the offset in the target code segment to which control should be transferred. When the
CALL or JUMP instruction is issued, the 80286 checks to see whether the DPL of the
target code segment is equal to the CPL (the DPL of the current code segment). The
80286 also performs a type check on the target descriptor to make sure the latter is a
code descriptor, and a limit check to ensure that the target offset is actually within the
target code segment.

If a control transfer is between segments at different privilege levels, a special
80286 protection construct called a gate must be used as the operand of the CALL
instruction to execute a far call across privilege levels. A gate is represented by a special
descriptor, called a gate descriptor. There are four types of gate descriptors, called call
gates, trap gates, interrupt gates, and task gates. This section describes the general gate
mechanism using call gates. The call gate's two main functions are to define an entry
point to a procedure and to specify the privilege level of the entry point.

To understand why a construct such as a gate is necessary, we can imagine an
80286 operating system implemented at ring 0 with an application running at ring 3.
According to the rules of protection, the application at ring 3 has no way to call the op­
erating system for trusted system services such as system calls, since the target code de­
scriptor has a DPL that is numerically less (more trusted) than that of the requestor. We
need a construct allowing the operating system to make a protected entry point available
to the less trusted code of the application.

Call gate descriptors are used in CALL instructions the same way as are code seg­
ment descriptors, except the selector operand references a gate descriptor, and the offset
operand is ignored. When the 80286 executes the CALL instruction and recognizes that
the target descriptor is a gate instead of a code segment, the call is executed according to
gate semantics. Figure 2.10 illustrates the contents of a call gate.

The call gate contains a unique identifier in the type field of the access rights byte
to identify to the 80286 that it is a gate descriptor. The gate contains the selector:ojfset
of the entry point to the desired procedure and a DPL that is the privilege level of the
gate, not of the target code segment. The gate DPL determines what privilege levels can
use the gate for a control transfer. For instance, in the example of an operating system at
ring 0 attempting to provide a protected entry point for ring 3 applications, a call gate of

2.3 INTEL 80286 39

------ 16 bits------

Reserved (0)

P J DPLl Tvpel oo J ooo l
Code selector

Offset

15

Count
+6

+4

+2

0

Fig. 2.10 80286 call gate descriptor. (Reprinted by permission of Intel Corporation,
Copyright/Intel Corporation 1983.)

DPL = 3 is inserted into one of the descriptor tables and contains the selector:off~et of
the protected ring 0 entry point. Figure 2.11 illustrates the indirect control transfer
through a call gate.

To guarantee system integrity, the 80286 architecture provides for a different stack
at each privilege level. This provision is necessary so that a trusted procedure does not
have to rely on the caller to provide sufficient stack space. Also, the trusted system code
should not run on a stack that can be accessed by less-trusted code. The 80286 maintains
pointers to the privilege-level stacks in a structure called a task state segment (TSS). The
TSS is the 80286 data structure used for maintaining a task and the data associated with
that task. The TSS contains an entire register set for the currently executing task, includ­
ing the stack pointers for privilege levels 0, 1, and 2, it is located by the tasking register
(TR). Although OS/2 does not use the TSS for representing OS/2 processes, a TSS must

Call [Selector

~

toe U
gate

Code
selec
from

0 J

16-bit
offset

Gate descriptor

I 24-bit
Code descriptor

Base address

Descriptor table

Fig. 2.11 80286 call gate control transfer.

16MB

Target
procedure

.....

Physical memorv0

Code
segment
limit

40 Microprocessor Architectures

be used to facilitate ring transitions. Chapter 5 describes the OS/2 system's minimal
dependency on the TSS construct with respect to process management and context
switching.

When a control transfer between privilege levels occurs using a call gate, the 80286
automatically switches from the current stack to the more privileged stack by accessing
the TSS. However, there is a requirement to copy the parameters from the original stack
to the more privileged stack, so the trusted code can validate them and perform its trust­
ed service. It is here that the count field in the call gate descriptor comes into play. The
80286 automatically copies the parameters from the target stack to the new stack based
on the count field in the gate descriptor. During the transfer, all protection checks are ac­
tive when the new stack selector is loaded and when the parameters are copied. This ca­
pability allows the operating system to make transparent to the caller whether the call
instruction goes through a gate to more privileged code or directly to a code segment at
the same privilege level.

2.3.12 Parameter Validation

An important part of the implementation of operating system calls is the validation of
pointer parameters passed into the system by application programs. The operating sys­
tem must verify that each pointer parameter is to valid application memory, not to sys­
tem memory, to prevent application programs from inadvertently or maliciously
destroying system integrity. If an application attempts to access a system address by
passing a pointer to system addresses as a parameter to a system call, the pointer is
called a Trojan horse. The pointer's action parallels that of the soldiers during the
Trojan war who concealed themselves in a wooden horse that they presented as a gift to
the enemy. The enemy soldiers took the horse into their camp, allowing the concealed
soldiers to attack them. Any protection system must account for Trojan horses, prevent­
ing less trusted code from passing a parameter to a trusted data object. To assist trusted
code in validating pointers and avoiding Trojan horses the 80286 provides the requestor
privilege level (RPL) and an instruction called ARPL.

The RPL field of a selector indicates to the 80286 the privilege level of the original
supplier of the pointer. For an access to be valid, the RPL must be numerically less than
or equal to the DPL of the selected segment, indicating greater or equal privilege of the
originator (RPL_DPL). In other words, the original caller had to be able to access the se­
lected segment. The privilege-level check verifies that the maximum of the RPL and the
CPL is less than or equal to the DPL.

An example of a Trojan horse scenario on an 80286 is a ring 3 procedure calling a
ring 2 procedure using a call gate, which passes a selector to a ring 2 segment with
RPL = 2 as a parameter. The ring 2 procedure must have some way of determining the
validity of the data selector with respect to the originator's privilege level. The ring 2
procedure could simply insert the caller's privilege level into the RPL portion of the
selector, but this policy would cause the originating caller's RPL to be lost if the selec­
tor was passed subsequently to a ring 0 procedure. Therefore, the 80286 provides the
ARPL instruction to allow more trusted code to adjust the RPL field of a data selector

2.3 INTEL 80286 41

before that field is used to be the maximum of the selector's RPL and the caller's CPL.
This adjustment stamps the selector with the minimum privilege, and assures the trusted
code that a Trojan horse cannot be passed in.

In this example, a ring 2 procedure is passed a selector that has RPL = 2. When the
ring 2 procedure stamps the selector with the ARPL instruction, it alters the RPL of the
selector to RPL = 3, the minimum privilege (numerically greater) of the CPL and RPL.
If the ring 2 procedure then passes the selector as a parameter to a ring 0 procedure, the
ARPL instruction will result in restamping of the selector with RPL = 3, since the orig­
inal RPL = 3 and the caller's CPL= 2. If the ring 0 procedure executing with CPL= 0
attempts to access the ring 2 segment using the passed selector, the access will cause a
general protection fault, since the maximum of the RPL and CPL (3) is greater than the
DPL (2) of the selected segment.

2.3.13 Protected Instructions

Since some instructions have the capability of affecting the entire protected system, the
80286 provides protection to ensure that only trusted procedures with appropriate privi­
leges execute these instructions. Two classes of protected instructions exist: privileged
instructions used by an operating system, and sensitive instructions used for 1/0 opera­
tions. Privileged instructions can be executed at only privilege level 0. Sensitive instruc­
tions are categorized in Section 2.3.15.

2.3.14 Interrupts, Exceptions, and Faults

Interrupts and exceptions in protected mode on the 80286 are similar to those found in
real mode on the 80286, except that the IVT is replaced by a descriptor table called the
interrupt descriptor table (IDT). Unlike the IVT, the IDT can reside anywhere in physi­
cal memory and is located by the IDTR register. The IDT may consist of trap, interrupt,
and task gates. When an interrupt or exception occurs, the number of the interrupt is
used as an index into the IDT to select a gate that determines the target of the control
transfer.

Trap and interrupt gates are similar to call gates, except that they contain no count
field. The difference between interrupt and trap gates is that interrupt gates transfer control
to the target code with external interrupts disabled, whereas trap gates transfer control with
external interrupts enabled. Interrupt and trap gates also have a privilege level field associ­
ated with them that allows the system to control access to the interrupt and exception
routines.

For example, assume an operating system with applications at privilege level 3 and
the system at privilege level 0. All interrupt and fault handling is performed by the system
at privilege level 0. If an interrupt occurs while CPL = 3 and the interrupt gate descriptor
has DPL = 0 and a selector to a ring 0 interrupt handling procedure, a general protection
fault will occur, since the caller (the interrupted code) does not have sufficient privilege to
access the gate. Therefore, interrupts and traps that may occur at less trusted privilege lev­
els need to have the DPLs in their gate descriptors set to the minimum trusted (numerically
greatest) privilege level to support potentially less trusted clients.

42 Microprocessor Architectures

A fault uses the same mechanism as an exception or interrupt, except that a fault is
caused by synchronous execution of an instruction and the instruction is restartable. A
fault is a special case of an interrupt or exception. The segment-not-present fault is usu­
ally used by operating systems that swap segments to secondary storage. The general
protection fault occurs when a protection violation occurs. The operating system deter­
mines whether faults result in program termination.

2.3.15 Input/Output

The 80286 has the same 1/0 capabilities in protected mode as exist in real mode or on an
8088. However, the 1/0 instructions used for accessing the ports in the 80286 1/0 ad­
dress space are protected; they are called sensitive instructions. The 80286 has a field in
the FLAGs register called the input/output protection level (/OPL) field. The IOPL field
defines the privilege necessary to execute the sensitive 1/0 instructions, and other in­
structions that manipulate the processor's interrupt flag, such as CLI and STI. If a task
attempts to use sensitive instructions and is running at a privilege level numerically
greater (less trusted) than the system's IOPL, its behavior is considered a protection vio­
lation, and a general protection fault occurs.

2.3.16 Analysis

The 80286 protected model provides the functions necessary to implement a multitasking
virtual memory operating system. Due to the 64KB limitations in the addressing ar­
chitecture, programming the 80286 is nontrivial, and source code is relatively nonportable.
Since large 80286 programs must change segment registers often, and since this operation
is slow due to the protection checks (compared to loading a segment register in real mode),
performance of a protected 80286 system is usually not as good as is that of an equivalent
nonprotected real-mode or 8088 system. However, the 80286 can be used to break the
lMB barrier associated with the 8088 and to provide rudimentary segmented virtual mem­
ory management. Although 80286 protected mode applications use the same instructions
as do 8088 applications, due to the difference in segment semantics and to errata on most
80286 chips in the field, it is not feasible to run 8088 real-mode programs in protected
mode on the 80286 to take advantage of more than lMB of memory.

2.4 INTEL 80386

The 80386 microprocessor is used in some IBM PS/2 and AT-compatible systems. Like
the 80286, the 80386 has a real mode and a protected mode; it also has another mode
called virtual 8086 mode. In real mode, the 80386 behaves like a fast 8088. Therefore,
in real mode, the 80386 is compatible with all systems and applications that run on the
8088. In protected mode, the 80386 is compatible with protected mode software written
for the 80286. Virtual 8086 mode is designed to allow 8086/8088 programs and, systems
to run in a protected-mode environment.

The 80386 register set and protected mode addressing architecture have stretched the
80286 to 32 bits to support 32-bit arithmetic, segments up to 4GB in size, and physical

2.4 INTEL 80386 43

memory configurations of up to 4GB. The 80386 provides a paged architecture
underneath the segmented model to enable more efficient usage of physical memory in
systems with large memories.

There are two versions of the 80386 processor; the 80386DX and the 80386SX.
From the software perspective, the two versions are architecturally equivalent. In the re­
mainder of this book, we shall specify the type of 80386 only where it is significant to
the discussion. The difference between the two 80386 chips lies in the external connec­
tions: The 80386DX has 32-bit external data and addressing paths, whereas the
80386SX has a 16-bit external data path and 24-bit external addressing path. Therefore,
the 80386SX can be used to provide 80386 function and performance in a 16-bit bus
architecture, such as those found in 80286-based computers, whereas the 80386DX
requires a 32-bit bus architecture. Although the 80386 32-bit memory architecture sup­
ports up to 4GB of physical memory addressing, 80386SX systems are limited to l 6MB
of physical memory because of the smaller external bus architecture.

2.4.1 Register Set

The general register set of the 80286 has been extended to 32 bits to support 32-bit arith­
metic and addressing operations. This extension allows software to provide significantly
higher performance than is possible on 16-bit architectures. Figure 2.12 illustrates the
80386 register set.

Unlike in the 80286, any of the general registers can be used as the offset portion of
a memory address calculation. Although the registers are each 32 bits, the 16-bit por­
tions of the registers used by 8088/8086 and 80286 programs can be accessed in real
mode, protected mode, and virtual 8086 mode. The segment registers are the same as the
80286, except for the addition of two more segment registers, FS and GS. The FLAGs
register has been extended to provide a flag bit to indicate virtual 8086 mode operation.

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

General registers

-32 bits -

AX

BX

ex
DX

SI

DI

BP

SP

Special registers Segment registers

-32 bits - .-32 bits+

cs
SS

OS

ES

FS

GS

Fig. 2.12 80386 register set. (Reprinted by permission of Intel Corporation,
Copyright/Intel Corporation 1986.)

44 Microprocessor Architectures

In the past, breakpoint debugging had to be implemented by software, but the 80386
contains debugging registers that facilitate the implementation of hardware debugging
breakpoints. The 80386 retains the same memory management system registers as found
on the 80286: the GDTR, LDTR, IDTR, and TR.

The 80386 contains a new set of system registers called control registers. Figure
2.13 illustrates the 80386 CRO, CRl, CR2, and CR3 control registers.

Like the MSW on the 80286, CRO contains the system control flags; it also contains
a new flag for indicating whether paging is enabled in the system. CR3 is used to locate
the paging directory structure and is also called the page directory base register
(PDBR). CR2 is used when paging is enabled to indicate the linear address of a page
fault. The control registers and paging are discussed in Section 2.4.4.

The 80386 also contains a set of test registers used for testing the translation looka­
side buffer (TLB), a cache used for storing paging information. The TLB is discussed in
Section 2.4.4.

2.4.2 Memory Architecture

The 80386 provides segmented and paged virtual address translation. When protected
mode is enabled, 32-bit segmented address translation occurs by default. Addresses
resulting from segmented address translation are physical addresses, as on the 80286,
unless paging is enabled. If paging is enabled, the addresses generated by segmented
address translation are called linear addresses. The linear addresses are then further
translated by the paging unit to create physical addresses. Neither of these translations is
visible to applications programmers, but both allow system programmers great flexibili­
ty in designing different memory models.

2.4.3 Segmentation

Segmented address translation occurs in the protected mode of the 80386, whether or
not paging is enabled, so we shall discuss segmentation without regard for paging and
its associated address translation and structures. The segmented memory architecture of
the 80386 uses exactly the same constructs as are used on the 80286 to facilitate virtual

CR3

CR2

CR1

CRO

------ 32 bits ------

Page directory base register (PDBR)

Page fault linear address

Reserved (0)

PG I Reserved (0) J MSW

PG = paging enable bit
MSW = m;ir.hinP. stlltus wnrrl

Fig. 2.13 80386 control registers. (Reprinted by permission of Intel Corporation,
Copyright/Intel Corporation 1986.)

2.4 INTEL 80386 45

memory addressing and protection. The 80386 uses the same descriptors, descriptor ta­
bles, associated system registers, and protection mechanism as does the 80286. All the
"32-bitness" of the segmentation on the 80386 results from the redefinition of reserved
fields in the descriptors to support 32-bit addressing. Since the 80286 required these
fields to be 0, all 80286 system and application code that correctly zeros the reserved
fields in descriptors runs on the 80386 without any changes. As we shall see, 32-bit ad­
dressing does occur, but the high-order 8 bits of physical addresses generated by the
80386 will always be 0. Therefore, when 80286 code is being run, physical addresses
larger than 16MB are not generated by the 80386, and the system effectively is a fast
80286 running in protected mode.

As in the 80286, a segment descriptor is 8 bytes and contains the base address of the
segment, the segment size or limit, and access information that describes what the seg­
ment type is and how it can be used. Figure 2.14 illustrates the contents of an 80386 seg­
ment descriptor.

The high 2 bytes of the segment descriptor that were reserved on the 80286 are used
to extend the basic descriptor definition on the 80386. There is a 32-bit segment base ad­
dress, a 24-bit segment limit field, and several new access bits. A segment's base
address can be anywhere in the 4GB range.

The 24-bit segment limit specifies the size of the segment using one of two meth­
ods, depending on the setting of the granularity bit. If the granularity bit is clear, the
limit is defined in units of 1 byte up to a maximum of lMB. If the granularity bit is set,
the limit is defined in units of 4KB up to a maximum of 4GB. Notice that an 80286 sys­
tem running on the 80386 will always have this bit clear, so limits are interpreted as 16-
bit and byte granular.

The interpretation of the bit labeled "default/big" (D/B) in Fig. 2.14 depends on
whether the descriptor type indicates a code or a data segment. If the descriptor is for a
code segment, then the bit is called the default bit or D-bit. If the descriptor is for a data
segment, the bit is called big bit or B-bit. To understand the purpose of these bits, we
must examine how the 80386 deals with providing 16-bit and 32-bit semantics with
essentially the same instruction set as is used on the 80286.

When running on the 80286, operands such as registers and address offsets are 16
bits. On an 80386, however, each of these entities can be 32 bits as well. So that it can

Base address (B24-31[GI01BJoIAvLILimit (B16-23)

Access rights l Base address (B16-23)

Base address (B0-15)

Limit (B0-15)

G = granularity bit
D/B = default/big bit
AVL =available for system

Fig. 2.14 80386 segment descriptor. (Reprinted by permission of Intel Corporation,
Copyright/Intel Corporation 1986.)

46 Microprocessor Architectures

track in which mode the 80386 is running, the 80386 maintains internally a default
operand and address state. When the 80386 runs in real mode or in virtual 8086 mode,
this state is 16 bit by default, enabling 8088/8086 program execution. When the 80386 is
in protected mode, the default operand and address size are determined by the D-bit in
the descriptor of the segment that the processor is executing currently. Therefore, when
the 80386 is running a code segment with the D-bit clear, 80286 semantics are applied
when instructions are executing, resulting in the use of 16-bit registers, operands, and
addresses. By "16-bit addresses" here, we mean 16-bit address offsets, instead of 32-bit
address offsets, being the default during segmented address translation. If the D-bit is
set, the 80386 defaults to using the 32-bit registers, operands, and address offsets when
an instruction is executed. Special instruction prefixes, called overrides, are available in
all processor modes when the default semantics of an instruction must be changed
temporarily.

The B-bit also plays a large role in the interpretation of the instruction stream. When
the selector of a data segment descriptor is used in the SS register to set up a stack, the
B-bit in the descriptor is used to determine the default size of the stack pointer. If the B-bit
is clear, the 80386 applies 80286 16-bit stack semantics-stacks are no larger than 64KB
and have a 16-bit stack pointer, the SP register. If the B-bit is set, the 80386 supports 32-
bit stacks larger than 64K and uses a 32-bit stack pointer, the ESP register. The B-bit also
allows the 80386 to apply the correct stack semantics when executing an instruction that
implicitly references the stack, such as PUSH, POP, and CALL.

The protection mechanisms of the 80386 are identical to those found on the 80286.
The same four-privilege-level protected architecture and rules apply. However, the
80386 defines gate descriptors with a different type than 80286 gate descriptors, so that
it can apply different semantics when executing gated control transfers. The difference
between 80286 and 80386 gate descriptors is that 80386 descriptors contain a full 16:32
target address, and the count of stack parameters to transfer during the transition is inter­
preted as 4-byte words. Another difference during gated transfers is that the new stack
pointer retrieved from the TSS needs to have 32 bits of offset, instead of the 16 bits
found in the TSS on an 80286. To facilitate this, the 80386 defines an 80386 TSS that
contains a 32-bit version of the task state information. However, note that a 32-bit TSS
is not needed if the 80386 is running an 80286 operating system and applications, since
no 32-bit gated transitions will occur.

2.4.4 Paging

Paging is a technique of managing virtual memory as fixed-length blocks (called pages),
as opposed to variable-length segments in segmented systems. The 80386 uses a paged
architecture to provide a mechanism for managing the allocation of physical memory in
a system with large segments. Since the 80386 allows segments to be much larger than
64KB, managing the physical memory resource without paging can be difficult, since
the segment must reside in physically contiguous memory. Also, swapping large vari­
able-length segments to secondary storage can cause a virtual memory system to

2.4 INTEL 80386 47

perform poorly. Therefore, the paging mechanism of the 80386 allows segments to
reside in physically discontiguous memory, and allows virtual memory to be managed in
terms of small, fixed-length blocks.

In previous sections, we referred to the 32-bit address that is the result of a seg­
mented address translation as a physical address. On the 80386, however, this address is
called a linear address. If the 80386 does not have paging enabled, the linear address is
the same as the physical address. However, if the paging mechanism is enabled by the
paging bit in CRO being set, then the linear address is not equal to the physical address.
Rather, the 32-bit linear address is translated by the paging unit on the 80386 into a final
32-bit physical address.

With paging enabled, the 80386 divides physical memory into 4KB units of con­
tiguous addresses called page frames. A linear address is actually an ordered tuplet that
specifies a page table, a page frame within that page table, and an offset within the page
frame. Figure 2.15 illustrates the format of a linear address.

The 80386 paging unit performs dynamic address translation using a two-level
direct mapping. The structure used by the paging unit to map addresses is called the
page table. A page table is itself a page and contains lK 32-bit entries that are page
specifiers. Two levels of page tables are used to address a page of memory. The first
level is a page table, called a page directory, that is located by the CR3 register. The
page directory addresses up to lK page tables of the second level. A page table of the
second level addresses up to lK page frames. Therefore, each page table can map
4MB of physical memory, and a page directory can map lK * 4MB = 4GB of physical
memory. Figure 2.16 shows how the 80386 converts a linear address into a physical
address.

Page table entries have the same format regardless of whether they are in the first or
second level. Since each page in the system is on a 4KB boundary, each page table entry
(PTE) uses only the high-order 20 bits to designate a page. The remaining 12 bits of a
page specifier are used to signify the page attributes. Figure 2.17 illustrates the format of
a page table entry.

The present bit indicates whether a PTE can be used in address translation. If the
present bit is not on in either set of page tables for an entry when an address translation
occurs, the 80386 raises a page fault. The fault handler can bring the required page into

Virtual page number Displacement
I

31 22 21 1211 0
~, -D-i-re-c-to_r_y~,~~Pa_g_e~~,~0-ff_s_e_t~I

t t
Specifies Specifies
page table page frame

Fig. 2.15 80386 linear address.

48 Microprocessor Architectures

[Dir I Page Offset l 4GB

Page directory Page table

~ Page table r-. ~ Page frame

~ -_f -
.....

}
Page
frame

~

.....
~

~

CR3

Page directory base
register

0

Fig. 2.16 80386 paged linear address translation. (Reprinted by permission of Intel
Corporation, Copyright/Intel Corporation 1986.)

physical memory and restart the faulting instruction. This can occur twice for a given
memory access if the page table is also not present.

The accessed bit and the dirty bit are used to profile the usage of a page frame. The
80386 sets the accessed bit whenever a memory reference attempts to read or write to an
address mapped by a P'TE. The dirty bit is set only when the write is to an address mapped by
a P'TE. The 80386 does not clear either of these bits. Typically, an operating system uses these
bits and resets them to age the pages in the system and to determine which pages should be
swapped out of physical memory when the demand for physical memory exceeds the avail­
able resources. In Chapter 6, we explain how 32-bit OS/2 uses these bits to age pages.

31 121110 0

IPageframeaddress(B31 ... 12)1Av iool olAI oolU(sl R/WI Pl

P = present bit
R/W = read/write bit
U/S=user/supervisor bit
A = accessed bit
D =dirty bit
AV= available for system
Page frame address= virtual page number

Fig. 2.17 80386 page table entry (PTE). (Reprinted by permission of Intel
Corporation, Copyright/Intel Corporation 1986.)

2.4 INTEL80386 49

2.4.5 Page Protection

The read/write bit and the user/supervisor bit are used for page-level protection. The
user/supervisor bit specifies which privilege levels are allowed access to a page. If the
user/supervisor bit is clear, the page is a supervisor page; if it is set, the page is a user
page. The current privilege level (CPL) is used to determine whether the 80386 is cur­
rently running at the user or supervisor privilege level. If the CPL is 0, 1, or 2, the 80386
is executing at supervisor privilege level. If the CPL is 3, the CPU is executing at user
privilege level. When the 80386 is executing at supervisor privilege level, all pages are
addressable; when it is executing at user privilege level, only user pages are addressable.

The read/write bit determines the access type of a given page. If the read/write bit is
clear, the page may only be read; if it is set, the page can be read or written. When the
80386 is executing at supervisor level, all pages are both readable and writable. When it
is executing at user level, attempts to access a supervisor page or to write a read-only
page result in a page fault. Since read-only supervisor pages can be written when run­
ning at privilege levels 0, 1, or 2, operating systems that use privilege level 1 or 2 for
user pages cannot implement copy-on-write algorithms to optimize performance.
Chapter 6 examines copy-on-write pages in more detail.

Since the page tables are in physical memory, a reference to a memory location re­
quires memory cycles to bring the address information from the paging data structures
to the 80386 processor for address translation. To increase the performance of this criti­
cal operation, the 80386 uses a four-way associative cache called the translation looka­
side buffer (TLB) to store the most recently used page table data on-chip. The existence
of this cache implies that system programmers must include instructions that flush the
cache whenever the contents of page tables are changed. They can flush the cache by
reloading CR3, the page directory base register (PDBR = CR3). The TLB is similar in
concept to the segment descriptor cache for increasing descriptor lookup performance
during segmented address translation. Figure 2.18 illustrates 80386 memory addressing
with segmentation and paging.

Since the 80386 provides both segmentation and paging, two methods of combining
them are used to construct system memory models. The flat architecture is used to exe­
cute software that does not use segments, but rather relies on a large flat address space
that can be addressed using 32-bit pointers. Although this effectively disables segmenta­
tion, the segment translation of protected mode cannot physically be disabled. However,
we can achieve the same effect by loading the segment registers with selectors for de­
scriptors that map the entire 32-bit linear address space. Once loaded, the segment regis­
ters do not need to be changed, and the 32-bit offsets are used to address the entire
address space. Because each task is provided with its own page tables, each task gets a
unique protected 32-bit linear address space.

Contrasted with the flat architecture is a memory model that utilizes the full seg­
mented capabilities of the 80386. The 80386 supports segments smaller than a page,
segments that span pages, and packing of small segments on a single page. A segmented
system can be constructed using several combinations of the descriptor tables and page
tables to provide address isolation for individual tasks. Since access to memory is

50 Microprocessor Architectures

Segmented address Linear address Physical memory

[Selector J Offset]-+$-+[Dir J Page Offset 4GB

Page directory Page table

~ ~ Page frame Page table i-.

~_tj • ~ Descriptor ~
}

Page
frame

.....
~

CR3 J
Descriptor table Page directory base

register

0

Fig. 2.18 80386 address translation.

through segments, the system could conceivably have a single linear address space
shared among tasks that have their own LDT, or a linear address space for each task.

2.4.6 Virtual 8086 Mode

The 80386 virtual 8086 mode supports execution of 8086 or 8088 programs in a pro­
tected-mode environment. Virtual 8086 mode enables system software to emulate an
8086 environment with a virtual machine. The 80386 hardware provides an encapsulat­
ed virtual 8086 environment, while system software controls the external interfaces of
the virtual machine, such as 1/0 devices, interrupts, and exceptions.

The 80386 executes in virtual 8086 mode (called v86 mode) when the virtual ma­
chine (VM) bit in the EFLAGS register is set. Paging does not have to be enabled for
v86 mode to be entered, but the 80386 must be in protected mode. The 80386 leaves
v86 mode and returns to protected mode when an interrupt or exception occurs. When
the 80386 is in v86 mode, loading the segment registers causes the 80386 to use 8088-
style address formation, resulting in addresses in the range of 0 to lMB. In addition, the
80386 allows a system to trap the execution of sensitive instructions in order to allow
system software to virtualize 1/0 devices and interrupts.

When the 80386 is in v86 mode, the 8088 address calculation generates 20-bits of
significant address information. However, 32 bits of address are actually generated with
the unused bits set to 0. Therefore, the linear addresses calculated during v86 mode
execution (which are always in the range of 0 to lMB) can be mapped using page tables
to any 32-bit physical address. Without paging enabled, only one v86 mode task can run

2.4 INTEL 80386 51

effectively, since there is only one unique range of addresses from 0 to lMB that the
v86 mode task can use. If paging is enabled, however, the system software can provide a
separate linear address space for each v86 mode task, supporting an environment in
which multiple encapsulated v86 mode tasks can run concurrently. Figure 2.19 illus­
trates multiple v86 address spaces.

Paging has several other uses when a v86 mode environment is being provided.
Paging can allow to exist multiple v86 mode environments that are larger than the size
of the available physical address space. Another use is to map a single copy of the 8086
system code or the ROM BIOS code that is common to all v86 tasks into the address
space of the virtual machines. Paging also can be used to redirect or trap references to
memory-mapped 1/0 devices using the page protection attributes and page faults.
Emulation of expanded memory using extended memory also can be provided by
utilization of the paging feature.

Since the 80386 does not use descriptors for address calculations when executing in
v86 mode, it also does not use the segment protection mechanisms while executing in
v86 mode. A v86 virtual machine can be encapsulated and protected by use of an
independent address space for each virtual machine, and use of the user/supervisor bit of
PTEs to protect the system software that is located in each v86 task's address space.
When the 80386 executes in v86 mode, CPL is set to 3, so an executing v86 mode task
receives user-level page privileges.

When the system is in v86 mode, instructions that alter the state of the EFLAGS
register (such as INT, IRET, CLI, and STI) are sensitive to the system's 1/0 privilege

Offset 1-- 16 bits -I
Segment l--16bits -loooole

4GB ----------------
'
~ - -I

Accessible in : '
protected mode: :- -:

' '
I : I

1MB1------~' ' '
r-: !

v86 mode
address
spaces

r---'

~~n;r~~s 10000000000001- 20 bits --I--.

0 1
'------,1--~

Fig. 2.19 Multiple v86 mode address spaces.

Multiple
linear
address
spaces

52 Microprocessor Architectures

level (IOPL). The I/0 address-space instructions IN and OUT, which are normally
sensitive to IOPL are not sensitive to IOPL in v86 mode. Since the CPL is always 3 in
v86 mode, setting IOPL to less than 3 causes the execution of sensitive instructions to
generate general protection faults. It is up to the v86 mode emulation software to deter­
mine a policy for handling sensitive instructions when emulating DOS INT-style system
calls or virtualizing the state of the v86 task's interrupt flag.

2.4.7 Virtual 1/0

Most 8086 programs and systems were designed to execute on single-task 8086 systems
and to use the hardware devices directly. However, when a user attempts to run these
programs concurrently, this use of the actual devices can disrupt system operation.
Therefore the 80386 provides mechanisms that allow the system software to control the
I/0 occurring in v86 tasks in a transparent manner. Virtual I/O refers to the capability of
providing to each virtual machine virtual devices that respond transparently like the real
devices that the v86 task believes it is using. The system software can emulate or virtu­
alize the hardware devices for the v86 mode tasks.

We have already seen how the paging mechanism can be used to virtualize memory­
mapped I/0 devices. There also exists a mechanism for trapping accesses to the I/0
address space. Port-based I/0 in v86 mode differs from protected mode only in that the
protection mechanism does not consult IOPL when executing the IN and OUT I/O
instructions. Instead, a special map contained in a v86 task's TSS, called an l/0-
permission bitmap, specifies which I/O port addresses are valid for that v86 task. Each
v86 task may have its own bitmap or may share a global map describing the I/O address
space for v86 tasks. When a v86 program executes an IN or OUT instruction, the
bitmap is consulted to see if the port is valid for the v86 task. If the port address is not
valid in the bitmap, a general protection fault is raised by the 80386. Using this type of
protection, system software can provide virtual I/0 services for v86 tasks, or can permit
a v86 task to have direct access to a particular piece of hardware.

2.4.8 Analysis

The 80386 contains the functions necessary to provide a 32-bit protected multitasking
environment. Just as important is the virtual 8086 mode feature that allows an 80386
operating system to provide a protected environment for the concurrent execution of
8086 systems and programs. The 32-bit programming model allows systems to break the
64KB barrier associated with 80286 systems and defines the 32-bit programming plat­
form for the future.

2.5 INTEL 80486

The 80486 is an 80386-compatible 32-bit processor. Functionally, both the 80386 and
80486 are identical, except for several changes in the latter to enhance performance.
Throughout this book, references to the 80386 include the 80486 unless specified other­
wise. The 80486 has an 8KB on-chip cache for storing frequently used instructions and

Summary 53

data. The 80486 also integrates the 80387 numeric coprocessor onto the 80486 chip.
From the perspective of system software, the 80486 is a fast 80386 with an on-chip
cache and 80387. The 80486 allows the page-level protection to be configured in a way
different from on an 80386. Recall that read-only pages may be written by code running
in supervisor mode. This prohibits system software from using lazy page allocation
strategies such as copy-on-write pages (see Chapter 6). The 80486 has a write-protect
(WP) hit defined in the CRO control register that allows a system to protect read-only
pages from supervisor mode access. The 80486 also achieves pipelined instruction
execution; this allows the processor to process instructions in parallel, and in most cases,
it increases processor performance.

2.6 RISC PROCESSORS

The fundamental goal of reduced-instruction-set computing (RISC) architectural designs
is to maximize the effective speed of a processor design. RISC does this by performing
most functions in software. The only functions remaining in hardware are those whose
inclusion in the instruction set yields a net gain in performance when used by programs
written in a high-level language (HLL). The 80286, 80386, and 80486 processors are
complex-instruction-set computing (CISC) architectures. RISC processors have simple
hardwired instruction sets with little microcode, singleccycle instruction execution, fixed
instruction length, simple addressing modes, and deep pipelined architectures. Although
not all RISC processors adhere to these guidelines, most on the market do. For the pur­
pose of studying RISC as a hardware platform, a RISC processor is treated as a generic
32-bit or 64-bit processor with a large number of registers and a high-performance virtu­
al memory system (usually paged). RISC programming is always done in high-level lan­
guages, and the compilers and linkers are responsible for optimizing the use of the
hardware.

There are many popular RISC chips on the market today, including SPARC, MIPS,
AMD 29000, the Intel 80860 and 80960, and the IBM POWER architecture used in the
RISC System/6000. Most of these architectures conform to most of the tenets of RISC
design. However, the major drawback of these chips is their lack of support for 8088
compatibility. Although it is feasible to simulate the entire 8088 instruction set with a
RISC engine, protected concurrent execution of DOS applications and of extended DOS
applications such as those found in the Windows 3.0 environment is difficult without ex­
tra hardware support.

SUMMARY

The Intel family of microprocessors includes the segmented 8086/8088, 80286, 80386,
and 80486. Each of these processors includes a common mode, called real mode, that is
used by the DOS operating system. Real mode supports 16-bit execution and a lMB ad­
dress space that is divided into 64KB segments. Real mode provides no virtual memory
capability or protection mechanisms; it is suitable for small single-user, single-task op­
erating systems such as DOS.

54 Microprocessor Architectures

The 80286, 80386, and 80486 provide another mode, called protected mode, which
provides support for virtual memory, program, and system isolation. These features en­
able these processors to access up to 16MB (80286) or 4GB (80386 and 80486) of phys­
ical memory while providing protection mechanisms that meet the needs of multitasking
virtual-memory operating systems, such as OS/2 and UNIX.

The 80386 and 80486 provide a virtual 8086 mode, which allows multiple 8086
programs to be run within a protected environment.

RISC processors provide generic 32-bit and 64-bit platforms that can address large
amounts of memory using reduced-instruction-set technology.

TERMINOLOGY

accessed bit
access right
aliasing
ARPL instruction
associative mapping
asynchronous events
AX register
B-bit
big bit
BX register
call gate
call gate descriptor
CALL instruction
code segment
complex-instruction-set

computing (CISC)
control registers
copy-on-write pages
current privilege level (CPL)
ex register
D-bit
default bit
descriptor privilege level (DPL)
descriptor table
DI register
direct mapping
dirty bit
DX register
exception
far transfer
fault
flat address space

flat architecture
gate
gate descriptor
general protection fault
general register
global descriptor table (GDT)
global-descriptor-table register (GDTR)
granularity bit
input/output protection level (IOPL)
Intel 8088
Intel 80386
Intel 80486
interrupt
interrupt descriptor table (IDT)
interrupt handler
interrupt gates
interrupt vector table (IVT)
I/O address space
I/0-permission bitmap
I/0 protection
IRET instruction
JMP instruction
linear addresses
local descriptor table (LDT)
local-descriptor-table register (LDTR)
machine status word (MSW)
memory management unit (MMU)
memory-mapped 1/0
memory protection
near transfer
offset
page directory

page directory base register (PDBR)
page frame
page-not-present exception
page table
page table entry (PTE)
paging
paragraph granular
physical address
ports
privilege value fault
privileged instructions
protected mode
protection
read/write bit
real address
real mode
reduced-instruction-set computing (RISC)
requestor privilege level (RPL)
RET instruction
rings of protection
segment
segment base address
segment descriptor
segment limit field
segment-not-present fault
segment:offset format
segment register

EXERCISES

Questions pertaining to the 8088:

segmented model
selector:offset format
sensitive instruction
SI register
16:16 format
software interrupt
special register
stack
supervisor page
synchronous event
task gate
task state segment (TSS)
tasking register (TR)

Exercises 55

32-bit linear address space
translation lookaside buffer (TLB)
trap gate
Trojan horse
user page
user/supervisor bit
virtual address
virtual addressing
virtual 8086 mode
virtual 1/0
virtual machine (VM)
virtual memory
write-protect bit

2.1 Describe the 16: 16 segment: offset logical addressing scheme of the 8088 microprocessor.
Show precisely how a typical physical memory address is calculated from a logical memory
address.

2.2 What does it mean for 8088 segment values to be 16-byte or paragraph granular? Explain the
concept of 8088 address aliasing.

2.3 Distinguish between near transfers and far transfers.

2.4 Discuss the usage of each of the registers (including segment registers) in the 8088 's register
set.

2.5 Distinguish among the 8088's notions of interrupts, exceptions, and software interrupts.
Which are synchronous events and which are asynchronous? Explain how the 8088 uses the inter­
rupt vector table (IVT) to route interrupts, exceptions, and software interrupts to appropriate han­
dler routines. How does the handler return control after handling an event?

56 Microprocessor Architectures

2.6 Discuss each of the two ways the 8088 performs I/0-namely, the use of the I/0 address
space with specific I/0 instructions, and the use of memory-mapped I/0 with general-purpose
instructions.

Questions pertaining to the 80286:

2.7 Explain the 80286's notions of real mode and protected mode.

2.8 How does the 80286 distinguish between segments that are global to all tasks and segments
that are local to particular tasks?

2.9 Explain the following statement: "Unlike in the addressing scheme on the 8088, the segment
values on the 80286 do not represent actual locations in physical storage." Specify what these seg­
ment values do represent.

2.10 Describe in detail how virtual address translation occurs in 80286 protected mode.

2.11 Why are descriptor tables in an 80286 system maintained by the operating system instead
of being made directly accessible to executing programs?

2.12 The descriptor tables of the 80286 are maintained in memory, so we might expect memory
access to be a slow operation, since the contents of a descriptor would have to be examined on
each memory access. What special hardware does the 80286 use to speed up memory references?
What assumption about a program's memory reference pattern makes the use of such hardware
worthwhile?

2.13 Explain the importance of protection in the 80286. Describe how protection is im­
plemented.

2.14 When applied to procedures, what does "privilege" mean? When applied to data, what does
"privilege" mean?

2.15 When a program loads a selector to a segment that is marked as not present, then a
segment-not-present fault is raised. A fault is not fatal; it merely indicates to the operating system
that some action needs to be taken before a program can resume normal execution. What actions
must the operating system take in response to a segment-not-present fault?

2.16 How is the segment limit field used in error checking? What error is explicitly tested for by
examination of the segment limit field? What kinds of program errors might be detected with this
check?

2.17 Explain the 80286's ring protection model.

2.18 Describe how the 80286 enables an indirect transfer through a call gate.

2.19 Distinguish between privileged instructions and sensitive instructions.

2.20 Discuss the differences between trap gates and interrupt gates.

2.21 How is the input/output protection level (IOPL) field of the FLAGs register used in con­
junction with sensitive instructions?

2.22 What aspects of the 80286 addressing architecture make programming the 80286 nontrivial
and hinder 80286 source-code portability?

Questions pertaining to the 80386 and the 80486:

2.23 Discuss each of the 80386 modes of operation: real mode, protected mode, and virtual 8086
mode.

Exercises 57

2.24 The 80386 allows for segmented addressing either with or without paging enabled. Explain
both addressing schemes.

2.25 Explain the use of the granularity bit in the 80386.

2.26 How does the 80386 provide both 16-bit and 32-bit semantics with essentially the same
instruction set as is used by the 80286? '

2.27 What problems of segmentation make the use of paging in addition to segmentation attractive?

2.28 Explain 80386 paged linear address translation.

2.29 Explain 80386 memory addressing with segmentation and paging.

2.30 Discuss the notions of virtual 8086 mode, virtual machines, virtual I/O, and virtual devices
as they are used in the 80386.

2.31 How does the 80486 differ from the 80386?

2.32 Explain the fundamental differences between CISC architectures and RISC architectures.

3
Hardware Architectures

"The question is," said Humpty Dumpty, "which is to
be master - that's all."

Lewis Carroll

What's going to happen in the next decade is that we'll figure
out how to make parallelism work.

David Kuck
quoted in TIME, March 28, 1988

... In a new channel,fair and evenly.

William Shakespeare
Henery IV, Part I

59

3.1 Introduction
3.2 IBMPC
3.3 IBM PC/ AT
3.4 AT 80386
3.5 Micro Channel Architecture
3.6 IBMPS/2

Outline

3.7 Extended Industry System Architecture
3.8 Cache Systems
3.9 Multiprocessor Systems

3.10 Multiprocessor System Interconnection
Summary

60

3.2 IBMPC 61

3.1 INTRODUCTION

This chapter explores the system configurations found in personal computers in order to
lay a foundation for understanding how the OS/2 system is designed and implemented.

Most PC hardware architectures are uniprocessor systems that consist of a main
processor, memory, and peripheral devices attached to a single shared hus. The bus con­
nects the units in a system and defines the medium for data exchange in a computer. A
bus typically is composed of data lines for sending data, address lines for sending
addresses, and control lines for sending interrupts and for operating the bus.

The system is built on a system planar or motherboard. The motherboard contains
slots or connectors for adding cards that extend the functionality of the system. There
are various ways these components can be configured, as well as various bus technolo­
gies. This chapter surveys PC hardware architectures from the original IBM PC to the
latest systems.

3.2 IBM PC

The original IBM PC, also called the PC-1, contains an 8088 microprocessor that is
driven by a 4.7MHz clock. The 8088 and peripherals are configured on a bus that allows
20 bits of addressing and 8 bits of data to be transferred at about 2MB per second. Only
a single transfer can occur on the bus at any one time, requiring software to pace and
serialize access to the bus by the 8088 and the peripheral devices. The planar contains
several bus-extension slots for adding peripheral attachment cards, such as serial and
parallel ports, hard disk controllers, communications cards, and memory. The IBM PC
supports 16 different interrupt levels for interrupt-driven I/0, and a DMA controller to
allow devices to steal cycles from the 8088 during large I/0 transfers. DMA is described
further in Chapter 8. Figure 3.1 shows the layout of the IBM PC system.

System planar

Bus
controller

Interrupt
controller

8088

ROM RAM

OMA
controller

Fig. 3.1 IBM PC system architecture.

System bus

Expansion cards

Empty
slots

62 Hardware Architectures

Since the 8088 does not support any floating-point arithmetic operations, the 8087
numeric coprocessor can be added optionally to the IBM PC to enhance performance of
floating-point operations. The 8087 is closely tied to the 8088-the 8088 is called the
master, and the 8087 is called the slave since it operates only on behalf of the 8088.

The system read-only memory (ROM), video buffer (VRAM), and other memory­
mapped devices are mapped into the 8088 address space in the range from 640KB to
lMB. The system ROM contains the power-on self-test (POST) and BIOS. POST is ex­
ecuted each time the PC is started. The BIOS is a set of routines accessed by software
interrupt in real mode that can be used by operating systems to provide a level of hard­
ware device independence.

The first IBM PCs provided up to 256KB of RAM on the planar, which could be
expanded to 640KB by attachment of memory cards. The IBM PC/XT planar was fur­
ther enhanced to support up to 512KB. Access times for planar memory are generally
shorter than are access times for memory that is attached to the bus via a memory card
(bus-attached memory).

The IBM PC is configured using switches called dip switches, which are small tog­
gles the size of a pencil tip. When the PC display is set up or memory is added, dip
switches must be set to indicate the configuration on the planar and on the expansion
card.

3.3 IBM PC/AT

The IBM PC/AT is similar to the IBM PC, but it contains an 80286 processor that is
driven by a 6MHz clock. The 80286 uses the 80287 numeric coprocessor to perform
floating-point operations. Since the PC/AT utilizes the 80286, it can be configured with
up to 16MB of memory.

The system bus is wider than that on the PC-1 to allow 24 bits of addressing and 16
bits of data to be transferred on the bus at rates up to 4MB per second. The bus architec­
ture is extended in an upward-compatible fashion so that 8-bit expansion cards that
could be added to the IBM PC can still be used in an IBM PC/AT. This bus architecture
is known as the Industry Standard Architecture (ISA) because it has become the standard
bus of IBM compatibles and clones. Figure 3.2 illustrates an IBM PC/AT with an ISA
bus configuration.

Whereas the original IBM PC/ATs came with 512KB on the planar, later models
provided 640KB on the system board. Since the 80286 and the PC/AT system allow
more than lMB of memory to be attached, the AT system allows memory cards to be
added to the system using the bus. As on the PC-1, bus-attached RAM is slower than the
RAM on the planar.

Memory cards for the IBM PC/AT are configured with dip switches like expansion
cards on a PC-1, but the PC/AT planar has no dip switches. Instead, the system configu­
ration information is saved in a 64KB CMOS RAM that is powered by a small lithium
battery.

Although the ISA bus allows expansion cards with intelligent processors that can
access all of installable system memory, these cards must access system memory under

3.5

System planar

Bus
controller

Interrupt
controller

80288

DMA
controller

Fig. 3.2 IBM PC/AT system architecture.

Micro Channel Architecture

System bus (ISA)

Expansion cards

Empty
slots

63

direct control of the processor or the DMA controller. For example, the IBM PC LAN
card contains an 80186 processor to perform NETBIOS-level network services.
Although the 80186 on the LAN card contains its own memory, which is not visible to
the main processor, it can transfer data between its memory and the system's memory
only by using the system's DMA controller.

3.4 AT 80386

While IBM does not have any 80386 PCs based on the ISA bus, Compaq and many
other vendors have produced a class of PCs called AT 80386 machines. These PCs use
the 80386 as the main processor and the 80287 or the 80387 numeric coprocessor for
floating-point operations. The bus in this class of machine is the same as the ISA bus,
but special extended connectors for memory cards allow one or two 32-bit memory
cards to be attached to the system. The 16-bit memory cards used in 80286 AT machines
can usually be installed in most machines of the 80386 AT class. However, none of the
80386 AT-class machines provide 32-bit I/O capabilities.

3.5 MICRO CHANNEL ARCHITECTURE

When IBM staff began designing its first 80386-based PC, they realized that the 16-bit
ISA architecture had several limitations that inhibited performance and decreased quali­
ty. These problems were in the areas of system configuration, interrupt sharing, bus
sharing, and 32-bit I/O. To overcome these problems, IBM created the Micro Channel
Architecture.

Since many hardware problems on PCs were directly related to incorrect dip-switch
settings, IBM wanted to provide a self-configuring system. With the large number of ex­
pansion cards in the market, IBM could not provide such a system without changing the

64 Hardware Architectures

extension card and bus architecture. The Micro Channel requires extension cards to have
special registers and identifiers that are used when configuring the system.

Interrupt sharing, which occurs when two different expansion cards have 1/0
devices that use the same interrupt level, is difficult to implement on the ISA bus since it
uses edge-triggered interrupts. An edge-triggered interrupt is equivalent to a pulse sent
down the bus on an interrupt line. If the processor or interrupt controller is not ready for
the pulse, the interrupt can be lost and a system crash may result. The Micro Channel
Architecture supports interrupt sharing with level-triggered interrupts. In a level-trig­
gered system, an interrupt causes a specific interrupt line on the bus to be held at an
interrupt level. Only when the software interrupt handlers clear the interrupting device is
the interrupt line released. Therefore, the Micro Channel Architecture provides a much
more reliable environment for interrupt sharing.

As previously described, the ISA bus does not support generic bus sharing. To allow
intelligent devices attached to the bus to take over or master the bus, IBM had to make sig­
nificant changes in the bus architecture. The Micro Channel Architecture provides a func­
tion called bus arbitration that regulates access to the bus by extension cards and by the
main processor. Different arbitration levels are assigned to components on the bus. When
a bus arbitration cycle occurs, the "winning" device is awarded exclusive access to the bus
for a period of time. Devices that attach to the Micro Channel and arbitrate to take over the
bus are called bus masters. Bus master support also allows multiprocessor configurations
of the Micro Channel to be created by the addition of bus master adapters containing a
processor and its support chips.

Since the Micro Channel Architecture is intended to support 16-bit and 32-bit sys­
tems, it comes in both 16-bit and 32-bit versions. Both versions of the Micro Channel
Architecture have the same functions, but the 16-bit bus contains a 24-bit address path
and 16-bit data path like the ISA bus, and the 32-bit bus provides a 32-bit address path
and 32-bit data path. The Micro Channel is capable of transferring data at rates from
20MB to 40MB per second, which is much faster than the ISA bus transfer rate.

As a result of the improvements to the ISA to form the Micro Channel Architecture,
it was necessary for IBM to alter the form factor of the system. The form factor
describes the size of the extension cards and the shape of the connector used to attach
the cards to the bus. As we shall see, since PS/2s include far more devices on the planar,
there is not much reason to provide the capability to attach old ISA cards to the system,
although many people thought that this capability was necessary to preserve their invest­
ment in extension cards.

3.6 IBM PS/2

The IBM PS/2 machines are available in various models based on the processor type,
clock speed, and bus technology. There are both 16-bit 80286-based PS/2s, and 32-bit
80386-based and 80486-based PS/2s. Table 3.1 summarizes the PS/2 product line.

Figure 3.3 illustrates the PS/2 Model 80 system architecture. Unlike that of the PC-1
and PC/AT, the PS/2 planar includes a Video Graphic Array (VGA) display controller,

3.7 Extended Industry System Architecture

Model

30
50/50Z
55
57
60
65
70
70-A21

70-B21

80
80-A21

80-B21

90

95

Table 3.1

Memory
controller

Bus
controller

Interrupt
controller

80386

Processor Clock rate

80286 lOMHz
80286 lOMHz
80386 sx 16MHz
80386SLC 25MHz
80286 lOMHz
80386 sx 16-20 MHz
80386 16-20 MHz
80386 25MHz

80486 25MHz

80386 16--20 MHz
80386 25MHz

80486 25MHz

80486 25-50MHz

80486 25-50MHz

PS/2 product line.

System planar

Fig. 3.3 IBM PS/2 system architecture.

Bus Chassis

ISA Desk
MC Desk
MC Desk
MC Desk
MC Floor
MC Floor
MC Desk
MC Desk

MC Desk

MC Floor
MC Floor

MC Floor

MC Desk

MC Floor

Notes

Multimedia system

Processor card
Processor card
External cache

Processor card
External cache

Processor card
External cache

Processor card
External cache

Processor bus
External cache

Processor bus
External cache

Expansion Cards

Disk
controller

65

66 Hardware Architectures

diskette controller, serial controller, and parallel controller. Except for Models 90 and 95,
PS/2s have nonuniform memory access speeds depending on whether memory is on the
planar or is attached via the bus. The planar architecture of Models 90 and 95 is different
from that of the other PS/2s. The processor, external cache, and DMA controller exist on a
special hardware card called the processor complex. This reorganization of the planar al­
lows the processor to be upgraded by changing the processor complex, and also provides an
environment that facilitates consistent memory subsystem speeds. Models 90 and 95 also
use a more advanced display controller called the Extended Graphics Array (XGA), which
provides video modes supporting 1024- by 768-pixel resolution and VGA compatibility.

3.7 EXTENDED INDUSTRY SYSTEM ARCHITECTURE

Since the Micro Channel Architecture was introduced by IBM, many other hardware
vendors were reluctant to begin copying an IBM proprietary architecture in their prod­
ucts. Since these companies had mostly ISA-based products, they decided to create an
extension of the ISA that would not be owned by a single company, and that would meet
the same requirements met by the Micro Channel Architecture. The new extended ISA
architecture (EISA), describes a bus architecture similar to, but not compatible with, the
Micro Channel Architecture.

EISA provides for optional self-configuring systems and shared interrupts, 32-bit
I/0, and the capability of adding bus master devices to the system. EISA transfers data
at rates up to 33MB per second. The main difference between EISA and the Micro
Channel Architecture is the shape of the connectors of extension cards. The Micro
Channel Architecture uses a connector that is totally different from that found on ISA
systems, whereas EISA uses a connector similar to that used by ISA.

3.8 CACHE SYSTEMS

Several models of the 80386 and 80486 PS/2s, EISA systems, and 80386 ATs are driven
by 20MHz to 33MHz clocks, resulting in a large mismatch between the speed of the
processor and the mean memory access time. So that wait states do not have to be added
to the bus cycles to match the processor and memory speeds, these systems make use of
an external cache to allow the 80386 to sustain its high performance. A cache subsystem
is usually composed of a small amount of fast memory in the form of static RAM
(SRAM), a large amount of slow memory in the form of dynamic RAM (DRAM), and a
cache controller. Static RAM is faster but more expensive than dynamic RAM. Figure
3.4 illustrates a cache subsystem.

In a cached system, main memory is used to store all the data, but some of the data is
replicated in the cache. When the main processor accesses memory, the cache is checked
for the data first. If the data is not in the cache, a cache miss occurs, and the cache con­
troller fetches the data from main memory for the processor and retains the data in the
cache. If the data is found in the cache, a cache hit occurs, and the processor receives the
data quickly, since the data is in the static RAM cache. The cache-hit ratio is the percentage

3.8 Cache Systems

r--------------------------------------,
'

'

Cache
controller

Main
memory
(DRAM)

L--------------------------------------

67

Fig. 3.4 Cache memory subsystem. (Reprinted by permission of Intel Corporation,
Copyright/Intel Corporation 1987.)

of accesses that are cache hits; its value is affected by the size of the cache and the algo­
rithm used to allocate cache blocks. Common cache algorithms are the fully associative,
direct-mapped, and set-associative cache. Each has its own characteristic methods for
attempting to provide a balance among hit rate, performance, and cost.

Since two copies of the same data can exist at once at the same address in cache
systems, the cache controller must have a system for maintaining the integrity of the
cache and of memory. To prevent stale data from being used, cache controllers use
schemes called write-through and write-back to update the cache during memory write
operations.

In a write-through cache, the cache controller copies the data to be written to main
memory immediately after it is written to the cache. The result is that main memory al­
ways contains correct data. In a write-through cache, any block of data in the cache can
be overwritten without loss of data.

In a write-back cache, information is retained by the cache controller in the cache
that indicates whether the data has been written and is more recent than the data in main
memory. Before any data in the cache is overwritten, this information is checked, and
the controller writes the data to main memory before overwriting the block. Write-back
caching is faster than write-through caching, since the number of times a changed mem­
ory block must be copied to main memory is usually less than the number of memory
write operations. However, write-back caches are more complex and must write all al­
tered data in the cache to main memory before any I/0 device accesses main memory.

Although write-through caches and write-back caches eliminate stale data in main
memory, if caches are used in a system where more than one device has access to main
memory, a new stale data problem is introduced. For example, if a bus master device on
the Micro Channel writes data to main memory, the 80386 cache may now contain stale
data. A system that prevents the stale data problem in this situation is said to maintain
cache coherency. Four methods of maintaining cache coherency are bus watching, hard­
ware transparency, noncacheable memory, and cache flushing.

With bus watching, also called snooping, the cache controller watches the system
address lines on the bus to see whether another bus master writes to main memory. If the

68 Hardware Architectures

main memory altered by the bus master also exists in the processor cache, then the con­
troller invalidates the cache entry.

Hardware transparency ensures cache consistency by making sure that all accesses
to memory mapped by a cache are routed through the cache, or by broadcasting all
cache writes to all other caches that share the main memory.

Noncacheable memory allows certain accesses of selected memory addresses, such
as those for memory-mapped I/0 buffers, to bypass the cache. Cache flushing causes all
data in a cache to be written to main memory. In this technique, the operating system
must flush the cache before any device I/0 occurs to main memory.

In most cached architectures on PCs and PS/2s, a combination of these four strate­
gies is applied. Since the PS/2 uses direct memory access (DMA) to overlap disk and
main processor cycles, the cache controller must also monitor DMA write operations to
main memory in order to maintain cache coherency.

3.9 MULTIPROCESSOR SYSTEMS

As we saw in systems built around the Intel 80X86 series of processors, an auxiliary
processor called a floating-point coprocessor was used to perform floating-point opera­
tions for the main processor. This configuration is not a multiprocessor; the floating­
point processor is called a "coprocessor" since it is performing only functions needed by
a single 80X86 processor, and since it does not run without the 80X86 processor to tell
it what operations to perform.

Another type of configuration that appears to be a multiprocessor configuration is a
general-purpose processor used on an extension card to drive an intelligent device. For
example, a RISC processor on a graphics card might be used to perform graphics opera­
tions, instead of the main processor performing the operations. In this configuration, the
RISC processor is called a dedicated processor or a peripheral processor.

Multiprocessor systems are characterized by having multiple processors used in
parallel to achieve a greater system throughput than can be achieved by a uniprocessor
configuration. Multiprocessor systems have the common traits of being able to execute
multiple instruction streams and to manipulate multiple data streams in parallel. Some
people recognize any system with multiple processors as being a multiprocessor ma­
chine; however, by "multiprocessor systems," we mean a configuration in which the
multiple processors work to increase the general computing power of a system.
Multiprocessor systems also usually have the capability of losing a processor and allow­
ing the system to continue operation. The development of multiprocessing hardware re­
quires a multithreaded, multitasking operating system that is designed to have minimum
code and data serialization.

A multiprocessor system in which all of the processors are of the same type is
called a homogeneous system. A system in which at least one processor is different is
called a heterogeneous system. For example, a system composed of an Intel 80486 and
an Intel 80860 is a heterogeneous system; a system composed of several 80486s is a
homogeneous system.

3.10 Multiprocessor System Interconnection 69

Multiprocessor systems are also classified by the way they are treated by an operating
system. There are two primary models for operating system distribution in a multiprocessor
environment: master/slave and peer. In a master/slave system, one processor is the master
and the rest are slaves. The master processor governs I/0 and system resources while
assigning computational jobs to the slave processors. In a peer processor system, each pro­
cessor either runs a copy of the same operating system or actually runs the same operating
system. In both cases, all processors are capable of 1/0 processing and job scheduling.
Operating system distribution in a multiprocessor system is discussed in Chapter 6.

3.10 MULTIPROCESSOR SYSTEM INTERCONNECTION

A key issue in the architecture of multiprocessor systems is what processor interconnec­
tion scheme is used. How the processors are interconnected determines how memory is
accessed, and how I/0 is performed. The coupling of a system describes how closely as­
sociated the processors are connected. A loosely coupled multiprocessor system consists
of several processors connected by an internal (bus) or external communications link. A
loosely coupled multiprocessor is almost analogous to a network of processors, and
communication between processors is usually done by message passing since none of
the processors share memory. Another classification of loosely coupled systems is called
no-remote-memory-access (NORMA) multiprocessors (Te87). NORMA configurations
are distinguished by the characteristic that no processor can access another processor's
memory. NORMA systems constitute the loosest coupling possible, and are the easiest
to build in configurations with large numbers of processors. Figure 3.5 illustrates the in­
terconnection scheme of a loosely coupled system.

A tightly coupled multiprocessor consists of several processors that share memory
and 1/0 devices. Since all the processors can access main memory, interprocessor com­
munication is done by shared memory. Typically, tightly coupled multiprocessor sys­
tems have some hardware support for locking shared memory, so that processor

Memory

Bus

Communications link
Memory

Bus

1/0
devices

1/0
devices

Fig. 3.5 Loosely coupled multiprocessor. (Reprinted from Harvey M. Deitel,
Operating Systems, 2nd Edition, Copyright 1990, Addison-Wesley Publishing Co.,
Inc. Reading, MA. Reprinted by permission.)

70 Hardware Architectures

Processor Processor · · · Processor

Shared
memory

Shared bus

Fig. 3.6 Tightly coupled multiprocessor.

1/0
devices

contention can be resolved. These systems are also called symmetric multiprocessors. In
symmetric-multiprocessor systems, each processor runs the same operating system.
Figure 3.6 illustrates the interconnection scheme of a tightly coupled system.

There are two types of tightly coupled systems, based on the memory access charac­
teristics of the system. A system in which each processor has uniform access times to a
shared memory is called a uniform-memory-access (UMA) multiprocessor. If each pro­
cessor has a nonuniform memory access time-perhaps due to a local memory associated
with each processor that is faster than the main shared memory-then the system is a
nonuniform-memory-access (NUMA) multiprocessor. The UMA, NUMA, and NORMA
designations were defined during research on the Mach operating system at
Carnegie-Mellon University (Te87). Figure 3.7 illustrates how coupling relates to memory
access.

The shared bus is an interconnection approach similar to the Micro Channel
Architecture and EISA that is used on most UMA systems. Processors can be added to
the system via attachment to the bus. If the processors have local memories on their ex­
tension cards but can also share main memory, the configuration is classified as falling
between UMA and NUMA. If the processor extension cards can access only the local
memory on their cards, the configuration is classified as NORMA, and the bus acts as an
internal network.

In a typical UMA system, each processor has a cache. Caches cause problems in
multiprocessor configurations since the hardware does not always guarantee cache co­
herency between processors. Furthermore, in a UMA composed of 80486s, each 80486
has its own translation lookaside buffer (TLB) for virtual address translation. Operating

Tightly coupled Loosely coupled

UMA +----NUMA----• NORMA

Small number .. 1111 ___ Medium number----+ Large number
of processors of processors of processors

Fig. 3.7 Relationship between processor coupling and memory access. (Reprinted
from A. Tevanian, Jr. "Architecture-Independent Virtual Memory Management for
Parallel and Distributed Environments: The Mach Approach." Copyright 1987. PhD
thesis at Carnegie-Mellon University. Reprinted by permission.)

Summary 71

systems supporting multiprocessing environments must take into account TLB and
cache coherency between processors. Since the 80486 provides no capability to connect
the processors such that TLB coherency is ensured by the hardware, this task must be
performed by the operating system using a software-based interprocessor-communica­
tion scheme. As described in Section 3.8, cache coherency can be maintained in a UMA
configuration if each processor snoops the bus for memory write transactions.
Alternatively, a memory write to the shared memory can cause a cache invalidate signal
to be sent to each processor, so that each processor can check for local stale data and can
flush its cache if necessary. Figure 3.8 illustrates a UMA configuration.

UMA configurations work well for small numbers of processors; however, due to
bus contention and cache flushing, nonuniform memory access times can result.
Therefore we say that UMA architectures do not scale up to configurations with more
processors. NUMA configurations typically attempt to avoid these problems by associat­
ing a local memory with each processor. The local memory can be accessed quickly by
the local processor, but a performance penalty is incurred if the local memory is
accessed by a nonlocal processor. In some NUMA systems, the local memory is
addressable by only the local processor. Keeping cache contents consistent is more diffi­
cult in NUMA systems, leading most such systems to provide no cache consistency or to
have no caches at all. In such cases, however, the local memory behaves in some ways
like a cache. Figure 3.9 illustrates a NUMA configuration.

SUMMARY

fhe original IBM PC is based on the 8088 processor and is a single-bus uniprocessor
system. The IBM PC/ AT was the first PC to use the 80286 processor. The bus structure
of the IBM PC/ AT is known as the Industry Standard Architecture (ISA).

The IBM PS/2 line of systems uses a bus structure called the Micro Channel
Architecture. The Micro Channel Architecture comprises a 32-bit bus that supports both

80486

Cache

80486 80486

Cache Cache

Processor/memory bus

Shared
memory

80486

Cache

Fig. 3.8 Uniform-memory-access multiprocessor (UMA).

1/0
bus

72 Hardware Architectures

80486

Local
memory

Shared
memory

80486

Local
memory

Shared bus

Local
bus

Fig. 3.9 Nonuniform-memory-access multiprocessor (NUMA).

80486

Local
memory

1/0
bus

uniprocessor and multiprocessor configurations, and a technique called bus mastering. The
PS/2 line of computers includes systems based on the 8086, 80286, 80386, and 80486.

The Extended Industry Standard Architecture (EISA) is a bus architecture that com­
petes with high-end Micro Channel systems and provides many of the same features.
However, peripheral device adapter cards designed for the EISA and Micro Channel
systems are not interchangeable.

Since systems with fast processors can run much faster than the memory they ac­
cess, cache subsystems are used to improve performance of interactions between the
processor and memory. A cache is a high-speed memory buffer between the processor
and memory that is used to minimize the number of times a processor must access main
memory. An algorithm is used to control the contents of the cache, and to ensure the in­
tegrity and coherency of the cache. Bus snooping, hardware transparency, cache flush­
ing, and noncacheable memory are techniques used to maintain cache coherency. When
a cache contains incorrect data or is not kept in a coherent state, we say that it contains
stale data.

Multiprocessor systems use clusters of processors that run in parallel to increase
throughput and performance. Multiprocessor systems are described by the coupling be­
tween the processors and by the way resources such as memory, 1/0 devices, and buses
are shared.

TERMINOLOGY

address line
AT 80386 machines
BIOS
bus
bus arbitration
bus-attached memory

bus master
bus master devices
bus sharing
bus snooping
bus watching
cache coherency

cache controller
cache flushing
cache hit
cache-hit ratio
cache miss
contention
control line
coprocessor
coupling
cycle stealing
data line
dedicated processor
dip switch
direct memory access (DMA)
DMA controller
dynamic RAM (DRAM)
edge-triggered interrupt
Extended Graphics Array (XGA)
Extended Industry Standard

Architecture (EISA)
floating-point coprocessor
form factor
fully associative
hardware transparency
heterogeneous multiprocessor
homogeneous multiprocessor
Industry Standard Architecture (ISA)
interrupt level
interrupt sharing
level-triggered interrupt
loosely coupled multiprocessor
master
master/slave multiprocessor

EXERCISES

Exercises 73

message massing
Micro Channel Architecture
motherboard
multiprocessor
noncachable memory
nonuniform-memory-access

(NUMA) multiprocessor
nonuniform memory-access speed
no-remote-memory-access

(NORMA) multiprocessor
parallel controller
peripheral processor
planar
power-on self-test (POST)
serial controller
set-associative cache
shared bus
shared memory
slave
snooping
static RAM (SRAM)
system ROM
tightly coupled multiprocessor
translation lookaside buffer (TLB)
uniform-memory-access

(UMA) multiprocessor
uniprocessor
Video Graphic Array (VGA)
virtual address translation
wait state
write-back cache
write-through cache

3.1 Discuss the functions of each of the lines typically included on a bus (data lines, address
lines, and control lines).

3.2 Compare access times for planar memory to access times for bus-attached memory.

3.3 Describe the IBM PC system architecture.

3.4 Describe the IBM PC/AT system architecture.

3.5 What is the significance of the AT 80386 machines?

3.6 Discuss the limitations of the 16-bit ISA bus architecture that led IBM to introduce the
Micro Channel Architecture.

74 Hardware Architectures

3.7 Compare and contrast edge-triggered interrupts with level-triggered interrupts.

3.8 Why is interrupt sharing difficult on the ISA bus?

3.9 Explain the notions of bus arbitration and bus mastering associated with the Micro Channel
Architecture.

3.10 Describe the IBM PS/2 system architecture.

3.11 Explain the notion of nonuniform memory access speeds in the context of the PS/2.

3.12 What was the primary motivation for the creation of the Extended Industry Standard
Architecture (EISA) bus?

3.13 Describe the architecture of a typical cache memory subsystem used with an 80386.

3.14 Discuss the notions of cache miss, cache hit, and cache-hit ratio.

3.15 Explain the operation of write-through caches and write-back caches. Which is faster?
Explain your answer.

3.16 Discuss each of the following methods of maintaining cache coherency: bus watching,
hardware transparency, noncacheable memory, and cache flushing.

3.17 Why is a processor-coprocessor configuration fundamentally different in nature from a
multiprocessor configuration?

3.18 Is using a RISC processor on a graphics card to perform graphics operations instead of hav­
ing the main processor performing the operations, considered a multiprocessor configuration?
Explain your answer.

3.19 What attributes characterize a multiprocessor system?

3.20 Distinguish between homogeneous multiprocessors and heterogeneous multiprocessors.

3.21 Distinguish between master/slave multiprocessing and peer multiprocessing.

3.22 Describe the architecture of a typical loosely coupled multiprocessor system. How is com­
munication between the processors accomplished in such a system?

3.23 Describe the architecture of a typical tightly coupled multiprocessor system. How is com­
munication between the processors accomplished in such a system?

3.24 What kind of hardware support is typically provided in a tightly coupled multiprocessor to
resolve processor contention over shared memory?

3.25 Distinguish among UMA, NUMA, and NORMA multiprocessors.

3.26 How can cache coherency be maintained in a UMA multiprocessor?

4
Operating System

Architectures

Within the Entry Systems Division, we really are dealing with
systems software, the operating system, database management,
communications We have no concept of a plan that would

have our customers dependent on us for a very high percentage
of the applications that they use.

William C. Lowe

Protection is not a principle, but an expedient.

Benjamin Disraeli

"If seven maids with seven mops
Swept it for half a year,

Do you suppose," the Walrus said,
"That they could get it clear?"

Lewis Carroll

The most general definition of beauty . .. Multeity in Unity.

Samuel Taylor Coleridge

75

Outline

4.1 Introduction
4.2 DOS System
4.3 DOS API
4.4 DOS Programs

4.4.1 Memory Models
4.5 OS/2 l .X System

4.5.1 System Structure
4.5.2 Multitasking
4.5.3 Memory Management
4.5.4 Dynamic Linking
4.5.5 I/0
4.5.6 Presentation Manager
4.5. 7 DOS Compatibility

4.6 OS/2 l .X API
4.7 OS/2 1.X Programs
4.8 OS/2 2.X System

4.8.1 Memory Management
4.8.2 Paging
4.8.3 Multitasking
4.8.4 Dynamic Linking
4.8.5 OS/2 1.X Compatibility
4.8.6 DOS Compatibility

4.9 OS/2 2.X API
4.10 OS/2 2.X Programs

Summary

76

4.2 DOS System 77

4.1 INTRODUCTION

This chapter describes the overall architecture of the 16-bit and 32-bit OS/2 systems. To
provide the reader with a background for the OS/2 content, we first review the overall ar­
chitecture of the DOS system. Each system is described with respect to the structure and
layering of the system, the architecture and content of the application-program interface
(AP/), and the structure and tools used to construct programs and the system itself.

4.2 DOS SYSTEM

The DOS system is a single-user, single-task system: It is designed to allow one program
at a time to use the processor and device resources. Therefore, DOS is the simplest type of
operating system; it is a sequential one. Due to the lack of protection in the 8088 architec­
ture, DOS does not provide any hardware enforced separation between the operating sys­
tem and the running program. Both the DOS system and the programs can access all
facilities in the machine, including special instructions, ROM BIOS routines, and the actu­
al 1/0 ports that control the peripheral devices. Both the system and its programs execute
using physical memory addresses and have the capability of altering each other.

As we saw in Chapter I, the DOS system is composed of the DOS kernel, which
provides all the system supervisor functions, and device drivers, which provide a layer
of software between the system and the actual hardware. The system also requires a
shell that allows users to start programs and to interact with the system. The shell pro­
vided with DOS Versions 1.0 through 3.3 is called COMMAND.COM, and it is a primi­
tive command-line-oriented program. DOS 4.0 introduced a simple text-oriented
user-interface shell to make the system easier for novice users not familiar with the com­
mand shell. Figure 4.1 illustrates the layering of the DOS system.

User she/I

DOS AP/

~oM B108

8 ities

Fig. 4.1 DOS system structure.

78 Operating System Architectures

DOS supports two types of devices-block devices, such as the disk and diskette
drives, and character devices, such as the keyboard, printer, and serial devices. DOS
maintains a data structure called the device chain that maps the logical device names
onto the appropriate device driver that services each device. Block devices are designat­
ed by a letter in the alphabet followed by a colon-A:, B:, through Z:. Character devices
are designated by names up to eight characters long, followed by a colon, such as PRN:
and LPTI: for printer devices, and COMJ: for serial devices. Figure 4.2 illustrates the
DOS device chain.

The DOS device chain can be extended by the addition of a device driver to the sys­
tem. Device drivers for devices that are not supported by the basic DOS system are in­
stalled when the system is started. Device drivers manipulate their respective devices by
utilizing the ROM BIOS subroutines or by directly accessing the device hardware. ROM
BIOS routines are accessed by the software interrupt mechanism.

4.3 DOS API

An executing program makes service requests of the DOS kernel by calling an applica­
tion program inte1face (APJ), or by making a system call. The term "API" can refer to a
collection of system call routines, or to a single system call routine. The API is also con­
ceived as the boundary between applications and the operating system, providing a level
of information hiding. The DOS kernel provides the DOS API to DOS programs. The
DOS API contains functions for rudimentary memory management, file and device I/0,
and program loading and termination.

Since the DOS API does not contain functions for graphics or mouse control, many
DOS programs use a combination of ROM BIOS routines and direct hardware access for
managing a graphic display or mouse. Therefore, the ROM BIOS routines should be
considered part of the DOS API, since many DOS programs bypass the DOS I/0 inter­
faces and use the lower-level code.

When a system call or a call to a subroutine in a library or program is used, a set of
calling conventions describes how routines call each other. The conventions, also called
linkage conventions, define rules for subroutine names, instructions for transferring con­
trol between routines, and conventions for register usage in the linkage between the rou­
tines. Calling conventions are usually invisible to a programmer using a high-level

NULL

Device
drivers

Fig. 4.2 DOS device chain.

ROM BIOS

Hardware

Device
chain

4.3 DOSAPI 79

language, but system programmers and designers pay attention to the required functions
and performance of the calling conventions because the latter have a significant effect
on the overall structure and performance of the system.

The calling conventions for the DOS API require the requestor to place the parame­
ters in registers, including a special parameter that denotes by an ordinal number the
specific system call requested. The program then issues a software interrupt instruction
that causes the program's execution to transfer control to the DOS kernel. The DOS ker­
nel dispatches the system call by looking up the system call number provided in the
parameters in a table and calling the appropriate routine. After the routine completes,
control returns to the requesting program with a return code that indicates the status of
the requested operation.

Most early DOS programs were written in BASIC and assembler. However, by
1984, high-level languages (HLLs) such as C were preferred by most programmers.
Since most HLLs use a stack for parameter passing and CALL instructions for control
transfers, they cannot directly invoke the DOS API, since the API uses registers for pa­
rameter passing and software interrupts for control transfer. Therefore, most HLLs pro­
vide bindings that move system call parameters from the stack to the registers and that
issue the software interrupt. This mismatch in calling convention models degrades appli­
cation performance, since each system call takes slightly longer to execute. As we shall
see in Section 4.4, these bindings are packaged in a library and are linked into the pro­
gram when it is created. Figure 4.3 illustrates a DOS system call with a binding layer.

DOS application

DOS system

Fig. 4.3 DOS system call.

Application written in HLL
(parameters on stack)

Call Ret

Binding routines
(move parameters from
stack to registers)

Call

DOS system call
dispatcher

Ret

DOS kernel
service routines

80 Operating System Architectures

4.4 DOS PROGRAMS

A DOS program is a collection of code and data segments that is stored in an executable
(EXE) file on a secondary storage medium. When a program is executed, its code and
data objects are loaded into memory by the operating system loader, and the address of
the initial routine within the code object is loaded into the instruction pointer of the pro­
cessor. Most programs include a stack, a last-in-first-out (LIFO) data object used for
temporary memory allocations. Due to the 8088 memory architecture, DOS memory
objects are segments.

A program is specified in a source file using a programming language. Regardless
of in what programming language a program is written, the program must be translated
into machine instructions executable by the processor of the target system, and format­
ted into an executable file. Assembler language is used to specify programs using
machine instructions, whereas a high-level language such as C or FORTRAN allows
programmers to specify a program without having to understand the underlying machine
language. High-level language programs are translated into machine instructions by
compilers.

Due to the complex nature of programs, it is often useful to organize a program into
separate program modules. Each program module contains a collection of code and data
dedicated to a specific function of the program. By separating the components of a pro­
gram in this fashion, programmers are better able to minimize errors and to make a
program readable and maintainable. To enable programs to be developed in this fashion,
the DOS and OS/2 development systems provide a two-step architecture that allows a
program specified in multiple source files to be compiled separately, and then to be
combined into an executable file by a tool called a link editor. The intermediate file cre­
ated by a high-level language compiler or assembler is called an object (OBJ) file. Since
all language translators use the same intermediate file format, the link editor is not pro­
gramming-language specific, but rather is system specific. The link editor collects object
files and combines them into a single system specific EXE file. Figure 4.4 illustrates the
program development process.

So that tested subroutine modules can be reused, and so that programs can specify a
minimum number of instructions for their tasks, library (LIB) files are supported by
most development systems. A library is a collection of subroutines created using a li­
brarian, a tool that collects single OBJ files into a library. When a reference to a subrou­
tine in a library is made by a program, the compiler stores the external reference in the
OBJ file. When the link editor is invoked, it resolves these external references to their
locations either in another OBJ file or in a library.

There are two types of libraries that differ in the way they are linked or bound to
programs. Static link libraries are linked into the final executable load module when the
program is created. Dynamic link libraries (DLLs) are not linked into the final exe­
cutable module, but instead are bound dynamically to the calling program when the pro­
gram is loaded into memory or when they are loaded explicitly by an already executing
program. When dynamic link libraries are used, the program load modules tend to be
smaller and the delayed binding allows libraries and systems to be extended without

<:'-<,

4.4

Object
(OBJ) file

Object
(OBJ) file

Librarian

Library
(LIB) file

Fig. 4.4 Program development process.

Source
file

DOS Programs

Source
file

Compiler/translator

Link editor

Executable
(EXE) file

81

requiring the programs to be recompiled and relinked. DOS supports only static link
libraries, but both OS/2 and Windows 3.0 support dynamic link libraries. Like programs,
libraries contain code and data-however, they do not contain an initial routine address,
since they are called by programs. A library subroutine usually runs using the stack of
the calling routine. Examples of libraries are the run-time libraries that come with pro­
gramming languages and the system libraries or bindings that operating systems provide
to allow programs to access their APis.

The formats for intermediate object modules and for DOS executable modules were
defined during the development of DOS. The Intel Object Module Format (OMF) de­
scribes the format of the object or OBJ files, and the DOS Technical Reference provided
by IBM describes the DOS executable file format for executable or EXE files. The OMF
is defined based on the characteristics of the 8086 processor, and supports multiple seg­
ments and all the addressing modes of the 8086. Therefore, the object module format ex­
hibits the trait of processor architectural dependence. However, the EXE format is
defined based on the characteristics both of the processor and of the DOS loader and
memory environment. Therefore, the EXE format also exhibits the trait of operating sys­
tem architectural dependence.

The OMF defines an object module to be a series of records that describe the mem­
ory objects of a source file in terms of logical segments. When a source file is com­
piled, the object module produced contains the logical code and data segments that
represent the program. The object module also contains records that describe whether
the symbols in the module are public, external, or hidden. A public definition of a
symbol in an object module implies that the symbol can be referenced by other object
modules when the modules are linked. Public definitions are used for global program
data and routines that are used in multiple object modules of a program. An external
symbol is used in an object module to denote a reference to a symbol in another object
module. The extern keyword of the C programming language causes the compiler to

82 Operating System Architectures

generate external definitions in an object module. If a symbol is defined as hidden, it
can be referenced only within the object module in which it is defined. The static key-

• 1 word of the C programming language causes the compiler to place hidden definitions in
an object module.

All address references within the logical segments are unknown at the time that the
object module is created. Therefore, fixup records, which describe the locations that
have unknown addresses and the types of those unknown addresses, are inserted into the
object module. Addresses within a segment (near or short) are called self-relative, and
addresses of other segments (far) are called segment-relative.

The DOS linker combines logical segments into physical segments and resolves
self-relative fixups. The linker accepts as input object modules and library modules, and
produces a DOS format executable file.

When the linker combines logical segments into physical segments, the addresses of
the self-relative fixups can be resolved since they are relative to the base address of the
segment. Since the base addresses of the physical segments are unknown when the
object modules are linked, the segment-relative fixups are propagated into the exe­
cutable file for relocation by the system loader. The ordering of the logical segments
within physical segments is controlled using group directives in the object module.

The DOS system defines the format of executable modules loaded by the DOS load­
er. Figure 4.5 illustrates a simple DOS EXE file. Contained in an executable file are the
segments of the program, the stack pointer (SS:SP), and the instruction pointer (CS:IP)
of the starting point. The linker determines what to put in the starting point field of the
EXE file from the input object modules. An object module may have a special main
record indicating that it contains the starting point for code execution. Only a single OBJ
can have this information when a program is linked, and the information is retained in

1MB
ROM BIOS

640KB
FOO.EXE

EXE header
Free memory

Code segment DOS
ES

Data segment loader SP

Extra segment DS=SS

Code segment
CS:IP

COMMAND. COM

DOS
0

Fig. 4.5 DOS executable (EXE) file.

4.4 DOS Programs 83

the executable file. Typically, the starting point is in the run-time library, since it must
be initialized before the main entry point of the program defined by the programmer.

As previously mentioned, when a DOS program is linked, all references from the
object modules that are input to the linker, except the references to segment addresses,
are resolved. For the remaining segment-relative fixups, the linker inserts a relocation or
fixup record into the EXE header that identifies (to the DOS loader) locations within the
EXE file that contain addresses dependent on where the image is loaded into memory.
For example, if a program executes the instructions in Fig. 4.6 to set the DS register to
address the data segment DGROUP, the value of DGROUP to insert into the MOY in­
struction is not known until the program is loaded into memory.

Therefore, DOS programs are relocatable on a segment basis. Note that there are no
references to other program or to library modules in a DOS EXE file. When the program
is linked, all self-relative fixups in the OBJ files being linked that reference code or data
within the program are resolved.

4.4.1 Memory Models

Since there are many ways to use multiple segments in a program, the programming lan­
guages for 8086 environments need a model for how a program's segments are speci­
fied. Assembler programs have complete control over which instructions and variety of
segmentation are used in applications. Most high-level languages have no concept of
segmentation, so they have to be extended to allow programmers to optimize segment
usage in programs. Therefore, there are several program models available based on their
segment usage: small model, medium model, compact model, large model, and huge
model. Each programming model requires a unique version of the program-language
,·un-time library for linking the application.

A small-model program is similar to a compact-model program, except that the
code is contained in a separate segment. Therefore, a small-model program can contain
at most 64KB of code and at most 64KB of data and stack. Figure 4.7 illustrates the seg­
ments of a small-model program.

Code segment

MOV AX, DGROUP
MOV DS,AX

Code ends

Fig. 4.6 Example of segment-relative fixup.

; fixup here
; load segment register

84 Operating System Architectures

Code segment Data segment (DGROUP)
64KB 64KB

IP SP
Stack

Free memory
consumed by

Code stack and heap

Heap

Data
cs 0 DS =SS 0

Fig. 4.7 Small-model program.

A program written in the C language must have an initial routine called main. When
the program is loaded, a routine within the C run-time system called startup is called by the
DOS loader after the program is loaded into memory. This routine initializes the C run-time
library, loads the DS and SS segment registers to point to the data and stack segments, and
then calls the program's main routine. The data segment is also called the automatic data
segment or DGROUP. Since a small-model program contains only a single code segment
and a single data segment, it does not make any intersegment (far) references.

Let us consider how a DOS program written in C is constructed using the programming
tools. The example in Fig 4.8 shows a program composed of two separate C source mod­
ules that are compiled and then are linked together statically by the DOS link editor.

Assume that the program to be constructed is called MAIN.EXE and consists of a
main routine that calls a subroutine named Joo. The program uses the small memory
model since less than 64KB of code and less than 64KB of data are necessary. However,
the program is divided into two source files, MAIN.C and FOO.C. MAIN.C contains the
main routine and FOO.C contains the Joo subroutine. Since these routines are in dif­
ferent modules, the C source code in the file MAIN.Chas an extern statement to tell the
compiler that the address of subroutine Joo will be resolved later by the link editor.
Figure 4.8 illustrates the example program.

Compiling MAIN.C produces an object module called MAIN.OBJ, which contains
an intermediate representation of the logical segments that represent the contents of
MAIN.C. So that the linker can later process the CALL instruction generated by the C
compiler to execute subroutine Joo, a fix up record is inserted into MAIN.OBJ ref­
erencing the call instruction. Since the call instruction is to a target within the code seg­
ment, the type of the fixup is self-relative. The MAIN.OBJ object file also contains an
external definition record for the reference to the name of subroutine Joo.

When FOO.C is compiled, file FOO.OBJ is created. Besides the contents of the log­
ical segments, FOO.OBJ has a public definitions record with the name of the subroutine
Joo. Without the public definitions record, the linker would treat subroutine Joo as hid­
den, and would abort any attempted fixup resolution to subroutine Joo. When the link
editor links the two object files and the C run-time library into an executable image, it
combines the contents of the logical segments in the two object files and matches the

4.4

MAIN.C extern foo();
main()
{

foo();

MAIN.OBJ

C compiler

DOS linker

foo()
{
}

DOS Programs

FOO.C

FOO.OBJ

---C run-time
'-----------~-----------' library

EXE header

Code segment

~
Data segment

Fig. 4.8 DOS example program (static linking).

85

external definitions in MAIN.OBJ with the public definitions in FOO.OBJ. Then, the
fixup for the call instruction to subroutine Joo is replaced by the correct offset within the
physical code segment created by the linker.

The other programming models-medium, large, and huge-allow more than 64KB
of code and/or data to be used in different combinations. The medium model allows for
more than a single code segment. Therefore, all code pointers in the medium model are
of the far type and use segment-relative fixups, since they must contain both segment
and offset values (a 16:16 or far pointer). The compiler generates the code from each C
source file into a unique code segment, and uses the CALL FAR instruction when ref­
erencing a routine in another segment. Since the address of a segment is not known until
the program is loaded into memory, only the offset portion of the CALL FAR instruc­
tion can be fixed up by the linker. The linker leaves a segment-relative fixup record in
the final EXE file, to tell the DOS loader that there is a reference to a segment address
that needs to be fixed up before the starting point is called. The compact model allows a
program to have a single code segment and multiple data segments.

The large model allows data items as well as code items to be in separate segments,
and all data pointers become far pointers by default. However, none of these program­
ming models can minimize, as well as can an assembler program, the number of times
that segment registers must be reloaded. This inefficiency occurs because programs code
in languages that allow freeform pointer arithmetic and casting (like C) can have multi­
ple levels of pointer aliases. This makes sophisticated flow analysis during program op­
timization difficult and, in many cases, infeasible. Therefore, languages for the Intel
segmented architecture usually provide limited optimization of segment loading for far
pointers.

86 Operating System Architectures

4.5 OS/2 1.X SYSTEM

"OS/2 l.X" is used in this book to indicate the 16-bit versions of the OS/2 system. OS/2
is a single-user, multitasking operating system. It performs centralized resource manage­
ment for sharing the processor, main and secondary memory, mass-storage devices, 1/0
devices such as the keyboard, display, and mouse, and communications interfaces. OS/2
provides architectural relief for the 640KB memory limitation of the DOS/8088 environ­
ment. OS/2 1.X also provides support for running a DOS application in order to provide
backward compatibility for users migrating to OS/2 from DOS. The Sections 4.5.1
through 4.5.7 give an overview of the structure and major functions of the system.

4.5.1 System Structure

The OS/2 system is composed of the kernel, device drivers, dynamic link libraries, and
application programs. Figure 4.9 illustrates the structure of the OS/2 system.

The kernel is the heart of the system; it contains the control program that runs with
supervisor privileges. As in DOS, the kernel uses device drivers to access the system's
hardware resources. The most critical portions of the system-such as multitasking,
memory management, interprocess communication, DOS compatibility, and 1/0-reside
in the kernel. The architecture and content of the kernel are analyzed throughout this
book as the system is exposed component by component.

Many of the system's APis are located in the kernel, but some APis are located in
dynamic link libraries-shared libraries that can be used to extend the functionality of
the system. As we shall see in Section 4.5.4, the location of APis is transparent to
applications, so designers can move and extend functions as requirements dictate.

Fig. 4.9 OS/2 system structure.

4.5 OS/2 1.X System 87

4.5.2 Multitasking

The OS/2 multitasking architecture provides the capability to execute programs concur­
rently in a protected environment. It defines the model used for sharing the system's re­
sources. The model consists of a hierarchy of multitasking objects called sessions,
processes, and threads. The session is at the top of the hierarchy, and the thread is at the
bottom. The session is the unit of user 1/0 device sharing. Processes are analogous to
programs, and are the unit of sharing for such resources as memory, files, semaphores,
queues, and threads. A thread is the basic unit of execution, and a single process may
have multiple threads that execute concurrently within it.

Each session contains a logical video buffer, logical keyboard, logical mouse, and
one or more processes that are said to be running in or attached to the session. The logi­
cal devices are per-session representations of the actual devices. Processes running in
the session perform their user 1/0 on the session's logical devices. Only one session at a
time has its logical devices mapped onto the actual devices; this session is called the
foreground session. The other sessions are in the background. Users can change the cur­
rent foreground session by issuing the commands to switch between sessions with the
keyboard or mouse. Sessions are used to provide an infrastructure for program manage­
ment and user 1/0 device sharing.

A process is the basic unit of resource management in OS/2. A process is created by
the invocation of a particular program. Programs are invoked by issuance of a
DosExecPgm system call with the name of an executable program file as a parameter.
Each process has its own memory, threads, and file system and interprocess
communication (!PC) data structures. When a process is created, it contains one thread,
or sequential execution path. The thread is the unit of processor dispatching, and each
thread has its own scheduling priority. A thread can create a new thread within a process
by calling DosCreateThread. All threads within a process share all the process's
resources, including the address space. The multithread process model helps the system
to achieve a high degree of parallelism, concurrent execution, and interactivity. Since
threads are less expensive to create and maintain than are processes, the cost of achiev­
ing concurrency is significantly lower than is possible in a single-thread process system
such as UNIX.

OS/2 is a preemptive, priority-based, multitasking system. The scheduler deter­
mines what is the highest-priority thread in the system and runs that thread for a time­
s/ice. At the expiration of a timeslice, the thread is preempted by the system, and the
scheduler determines whether another thread is ready to run. The scheduler implements
a multilevel priority scheme with dynamic priority variation and round-robin scheduling
within a priority level. Dynamic priority variation changes the priority of threads based
on their activity to improve overall performance and responsiveness. Round-robin dis­
patching within a priority level ensures that all threads at a common priority level have
an equal chance to execute.

OS/2 is interrupt driven to allow the processor to be used while 1/0 is occurring. If
an interrupt occurs while a thread is executing, and another thread of higher priority be­
comes ready to run, the original thread will be preempted to allow the higher priority

88 Operating System Architectures

thread to run. However, OS/2 does not provide complete preemption. A thread can be
preempted only when it is running in user code. If the thread has issued a system call
and is running OS/2 kernel code, the thread will not be preempted until it exits the ker­
nel, unless it is running in the highest priority class.

4.5.3 Memory Management

OS/2 l .X presents a segmented memory model that takes advantage of the 80286
processor's virtual memory capabilities. Since the system runs in 80286 protected mode
(except for the DOS environment), the system and applications can use up to 16MB of
physical memory, a significant breakthrough of the 640KB barrier associated with
DOS/8088 systems. However, each segment is limited to 64KB due to the 16-bit archi­
tecture of the 80286. The OS/2 l .X segmented memory model is also known as the
16:16 memory model since a 16-bit selector to a segment must be specified, as well as a
16-bit offset into that segment, to address a single byte of memory.

The memory protection features of the 80286 described in Chapter 2 are used to iso­
late the system memory from user memory, and to protect individual processes from one
another. The memory segments that make up the system are mapped into privilege level
0 of the 80286's ring architecture, the highest privilege level. Executing at ring 0 is also
known as executing in supervisor mode. The system is mapped by the 80286 GDT to
make it accessible from every process. Since the system is mapped at ring 0 and pro­
cesses are mapped at rings 2 and 3, the system is protected from the processes.

Each process is allocated its own LDT for mapping the process's address space into
physical memory. Memory allocated by the process is mapped into the LDT at privilege
level 2 or 3. When a thread context switch occurs between threads in different processes,
the OS/2 kernel switches process address spaces by switching LDTs. Since each process
has its own LDT, processes are protected from one another.

The OS/2 memory manager supports sharing of memory among processes. Shared
memory is a powerful form of interprocess communication, and plays a large role in the
architecture of shared libraries and subsystems. There are two varieties of shared memo­
ry: named and anonymous. Named shared memory is accessed by a name, whereas in
anonymous shared memory, access is controlled directly by processes. Both named and
anonymous shared memory are implemented by a common virtual address in the address
space of different processes that maps a single physical memory segment. Instance
memory is used to provide to each process a unique copy of a data segment. Like shared
memory, instance memory is mapped at the same virtual address in each process's
address space.

OS/2 also manages memory such that more memory can be allocated than the ma­
chine actually has. This service, called memory overcommit, allows the user to continue
running programs in a memory-constrained environment. Segments that are not actively
being used can be swapped out to the swap file on a secondary storage medium to make
room in physical memory for more segments. When a segment that is swapped out is
referenced, the system swapper brings the segment into memory and restarts the opera­
tion that referenced the segment. Since all the memory used by a segment must be

4.5 OS/2 1.X System 89

physically contiguous, OS/2 also moves segments in physical memory to maximize the
amount of free space available. This segment motion is called compaction. Code seg­
ments and read-only segments can be discarded rather than swapped, since they can be
reloaded on demand from their original disk images. This type of memory management
is called demand segment swapping. Since segments are of variable length and the per­
formance of personal computer secondary storage media is relatively poor, the system
swapping policy is to allow applications to continue running when physical memory is
overcommitted, rather than to attempt to provide large amounts of virtual memory on
the secondary storage media.

4.5.4 Dynamic Linking

Dynamic linking allows the binding of code and data references to be delayed until the
program is actually loaded or until the program specifically requests the operating sys­
tem to link dynamically to a dynamic link library (DLL). The former type of dynamic
linking is called load-time dynamic linking, whereas the latter is called run-time dynamic
linking. There are two types of executable modules in the OS/2 environment: EXE mod­
ules for programs and DLL modules containing shared libraries. Both module types use
the OS/2 segmented executable file format, but they are distinguished by a special bit in
the executable file header.

Dynamic linking requires imports and exports of code and data objects across EXE
or DLL modules. The OS/2 linker allows the programmer to specify that an external ref­
erence is in another executable module; this causes the linker to create an import record
in the import table of the EXE header that describes the external reference by module
name and object name, or ordinal number. When the OS/2 loader attempts to load an
EXE into memory following a DosExecPgm request, or to load a DLL as the result of a
reference in an EXE or a DosLoadModule request, it attempts to resolve a module's im­
ports. It attempts resolution by loading the module(s) that export the desired import ref­
erences, and performing fixups on the dynamic link references in the module being
loaded. The program loading process continues until the program or library is ready to
execute. If the system loader is unable to resolve a load-time dynamic link request, the
program or library load is aborted. If necessary, one or more DLL may be loaded and
fixed up so that loading of an EXE or a DLL can be completed. Figure 4.10 illustrates
how dynamic linking could be used for linkage between the main and Joo routines in the
example cited earlier.

Whereas an EXE file typically only imports dynamic links, a DLL file usually im­
ports and exports dynamic links. If an EXE attempts to import a dynamic link and there
is no corresponding exported dynamic link, the program load fails. In general, the dy­
namic link mechanism can be likened to an external reference that exists in a different
program module. All dynamic links use 16:16 far addresses, since they resolve linkages
across segments in different program modules.

Dynamic linking is also a powerful mechanism for providing linkages to shared code
and data objects in a multitasking virtual memory environment. It provides an extendible
and flexible foundation for meeting the criteria of API abstraction and information hiding.

90 Operating System Architectures

MAIN.EXE

EXE header
import MYLIB.FOO

Code segment CALL FAR

RET FAR

Data segment

Fig. 4.10 Dynamic linking.

MYLIB.DLL

EXE header
export FOO

Code segment

Data segment

Another benefit of dynamic linking is that EXE files are not as large, since commonly
used routines can be placed in a DLL instead of being replicated in each EXE that uses
them. This results in saved disk space and potentially faster program loading. Dynamic
linking is described further in Chapter 6 with respect to memory management, and in
Chapter 7 with respect to interprocess communication and resource sharing.

4.5.5 1/0

As in DOS, devices in OS/2 are categorized as either block devices or character devices,
and the same naming conventions are used. In fact, the system uses a similar device
chain for managing the devices and their names. However, the user 1/0 devices-such
as the display, keyboard, and mouse-are accessed differently from in DOS. Reentrant
subsystems with well-defined APis allow concurrently executing processes to share the
user 1/0 devices. The block devices are accessed using the file system API as in DOS,
and the other character devices are accessed by APis.

OS/2 supports the FAT file system used by DOS, and consequently can read and
write DOS files. Although this capability is desirable from compatibility and migration
standpoints, the FAT file system was not originally designed to support many concur­
rent 1/0 requests from different processes on large block devices. Therefore, OS/2 pro­
vides an alternative file system, called the High Performance File System (HPFS). To
provide an architecture in which programs are transparent to the type of file system,
OS/2 has an installable file system (IFS). The system has facilities for installing multiple
file systems, and a standard file system API to which all installable file systems adhere
to. Figure 4.11 illustrates the OS/2 file system architecture.

OS/2 device drivers are significantly different from DOS device drivers. Like the
kernel, they run in the most privileged execution state, privilege level 0. Device drivers
have two main entry points: a strategy routine that receives requests from the kernel,
and an interrupt routine that is called when a hardware interrupt occurs. Since the strate­
gy routine and interrupt routine may both need access to the same structures, the device
driver must carefully serialize access to shared structures and manage race conditions
between the strategy and interrupt routines. Strategy routine requests are made in the

4.5

Ring 3

Ring 0

Application
programs

File system API

File system router

Device drivers

Fig. 4.11 OS/2 file system architecture.

05/2 1.X System 91

form of request packets that describe the operation. Device drivers perform the request­
ed operation using a combination of the hardware and a set of system services created
specially for device drivers called device-help (DevHelp) routines. Figure 4.12 illustrates
the interfaces of device drivers.

When a request to a device driver's strategy routine occurs, it is made within the
context of the currently running thread. The strategy routine either satisfies the request
immediately and returns, or initiates an 1/0 request that will complete on a hardware in­
terrupt notification and blocks the requesting thread. When the strategy routine blocks
the requesting thread, the system dispatches another thread to run. When the original
thread's interrupt occurs, notifying the device driver that the I/O is complete, the inter­
rupt routine is not able to assume that it is running in the context of the requesting
thread. Thus, the system must provide services that allow device drivers to maintain
global data that can be accessed in any context. This facility also allows device drivers
to service multiple requests concurrently and to perform overlapping I/0 operations.
Chapter 8 provides a more detailed description of the OS/2 I/0 architecture.

Kernel

Request
packets

Strategy routine

IN
OUT

Device :driver
'

Hardware

Fig. 4.12 Device driver interfaces.

Device help services

DevHelp
requests

Interrupt routine

IN
OUT

Interrupts

92 Operating System Architectures

4.5.6 Presentation Manager

The Presentation Manager (PM) is the graphical user interface for OS/2. It provides an
environment for graphical applications to share the video display in a windowed envi­
ronment. PM programs have a common user interface composed of windows, scroll
bars, dialog boxes, pull-down menus, and other desktop controls that are accessed
through the keyboard, mouse, or other user input devices. The user interface of PM
applications is easier to learn and more consistent than are traditional user interfaces
such as command lines or application-specific interfaces.

The PM consists of a large API that contains functions for managing windows and
performing graphic operations on a device-independent presentation space. The PM
maps the applications' requests to alter the presentation space into device-dependent
operations on the actual output device, whether that device is a video display or high­
resolution printer. This strategy allows all PM programs to be transparent to the specific
characteristics and nuances of the actual output device. The PM accomplishes this task
with the assistance of special PM device drivers that are different from the base system's
device drivers.

When OS/2 is started, the system executes the user shell, a PM program called the
desktop manager. The desktop manager provides an icon-oriented interface that allows
users to start programs, to switch between programs, and to manage programs as groups.
The desktop manager represents each program in the system with a name or icon. The
desktop manager and all other PM programs share a single session called the PM ses­
sion. Programs that do not use the PM API for their user I/0 are called full-screen pro­
grams, and they each run in their own session. Chapter 9 gives a complete treatment of
session management and the PM architecture.

4.5.7 DOS Compatibility

One of the most critical features of OS/2 is the capability to run DOS programs. This
facility allows users migrating to OS/2 from DOS to continue running their current pro­
grams. It helps customers to preserve their investments in DOS software while migrat­
ing to OS/2. DOS compatibility also permits OS/2 users to draw on the large
applications base of DOS programs, until there are comparable OS/2 programs avail­
able. However, capturing the unprotected DOS environment in a system such as OS/2
that provides traditional resource management is a difficult problem. This task is even
more difficult since the 80286 architecture does not provide the ability to run 8088 real­
mode programs in the protected-mode environment.

The goal of OS/2's DOS environment for 80286-based systems is to allow a sin­
gle DOS application to run in the foreground while OS/2 programs continue to run in
the background. Thus, DOS programs do not benefit from the multitasking features
of OS/2. When the DOS environment is moved to the background by the user, its
execution is frozen. The DOS environment exists in a special session called the DOS
session.

4.6 OS/2 1.X API 93

OS/2 uses a technique known as mode switching to support the concurrent execution
of the DOS environment in real mode, and OS/2 programs in protected mode. Because the
80286 was designed to switch easily into protected mode from real mode, but not from pro­
tected mode to real mode, this mode switch back to real mode from protected mode is
accomplished with the assistance of extra circuitry provided on 80286-class machines.

Due to the presence of mode switching, certain critical parts of the OS/2 kernel and
device drivers must be accessible in both real mode and protected mode. These include
device and interrupt management, mode and context switching, and anything that must
be accessed at interrupt time. Code that can run in either real or protected mode is called
bimodal code. Bimodal code enables OS/2 to minimize the amount of mode switching
that is done on performance-critical paths, such as device and interrupt handling.
However, bimodal code must reside in the physical memory addresses below 640KB to
be addressable in both real and protected modes. The challenge of partitioning the sys­
tem into bimodal and protected-mode code so that as much of the lower 640KB would
be available to DOS applications was one of the most difficult in the design of the sys­
tem. For instance, although the file system is used by DOS applications, it resides in
memory above lMB, and the system mode switches to protected mode to service DOS
application file system requests. Chapter 10 describes the architecture for DOS compati­
bility in much greater detail.

4.6 OS/2 1.X API

Dynamic linking is at the center of the OS/2 API architecture. Because it uses dynamic
linking as the linkage for system calls, OS/2 has the flexibility to extend and relocate
system functions without requiring programs to be recompiled and relinked. Also, the
location of an API is transparent to the requestor, so API routines can be in the OS/2
kernel or in a DLL module. This capability has allowed OS/2 to be extended by commu­
nications and database products.

The OS/2 API calling conventions specify that all API parameters are placed on the
stack, and the CALL FAR instruction is used to transfer control to an API service rou­
tine. Since this model parallels the linkage architecture found in most high-level lan­
guages, APls can be invoked directly instead of requiring a library of bindings. Each
API preserves the state of the registers except AX, which is used for return codes. Also,
it is the API routine's responsibility to remove the requestor's parameters from the stack
on completion of service.

The OS/2 API is composed of several APls that are grouped according to the ser­
vices they provide. The prefixes of the names of the functions within an API indicate the
portion of the OS/2 API to which the functions belong. The base system API is called
the Dos AP/. The keyboard, mouse, and video subsystem APls used by full-screen pro­
grams are called the Kbd, Mou, and Via AP Is, respectively. The PM API is distinguished
from the base system API by the prefixes Win for window management, and Gpi for
graphics management. Table 4.1 summarizes the names of the OS/2 APis and the type
of functionality contained in each APL

94 Operating System Architectures

Category API name

DOS (base) DosXXX

KBD (base) KbdXXX

VIO (base) VioXXX

MOU (base) MouXXX

WIN (PM) WinXXX

GPI (PM) GpiXXX

Table 4.1 OS/2 API content.

4. 7 OS/2 1.X Programs

Functions

Multitasking, interprocess communication, memory
management, dynamic linking, file system, exceptions,
signals, session management

Logical keyboard management

Logical video management

Logical mouse management

Window management and I/0

Presentation graphics

Similar to the DOS programs, 16-bit OS/2 programs are collections of relocatable seg­
ments containing code and data. Also, the same variety of language memory models
found in DOS applications are available to support the different flavors of segmenta­
tion in OS/2. The major difference between DOS and OS/2 with regard to program
structure and development is the usage of selectors for segment fixups, dynamic link­
ing, and the different API functions in OS/2. The OMF used by the OS/2 development
tools is the same as that on the 8086, since the instruction sets and addressing modes
are virtually identical. OS/2 uses an enhanced executable file format that provides
support for dynamic linking and demand loading of segments from EXE and DLL
modules.

4.8 OS/2 2.X SYSTEM

"OS/2 2.X" is the general moniker used in this book to reference the 32-bit versions of
the OS/2 system. At the time this book was published, OS/2 2.0 was the first and only
32-bit version of the OS/2 system. OS/2 2.0 is targeted for the Intel 80386 and 80486
computer systems. It uses the paging feature of the 80386 to provide a demand-paged,
virtual memory environment that supports a new 32-bit portable programming model.
OS/2 2.0 provides binary compatibility for OS/2 l .X applications and dynamic link
libraries. The DOS compatibility environment is enhanced to take advantage of the vir­
tual 8086 mode of the 80386, enabling multiple DOS sessions to run concurrently and in
the background. In general, the system has the same content as do the OS/2 l.X systems,
but it is scaled up to 32 bits and has an architecture designed to allow applications,
dynamic link libraries, and ultimately the system itself to be portable to other processor
platforms.

4.8 OS/2 2.X System 95

OS/2 2.0 also provides greater ease of use in the areas of installation and the user
shell. It features a PM-based installation program, and the capability of performing in­
stallations across a local area network. A new user shell called the workplace shell pro­
vides an object-oriented environment that seamlessly integrates programs and data so
that the system is intuitively easy to use. Sections 4.8. l through 4.8.6 describe the major
enhancements compared to the 16-bit version of the system.

4.8.1 Memory Management

The overriding goal in the design of the 32-bit programming environment is to provide
an architecture that allows applications, subsystems, and the system itself to be portable
to processing platforms other than the uniprocessor Intel 80X86-based machines. This
requirement led to the development of a new memory model called the flat model, which
enables processes to view memory as a large linear address space addressable by 32-bit
offsets, rather than as a collection of segments, as in OS/2 1.X systems. The flat model
is an architecture that is easily portable to most processor architectures, since all that the
hardware must provide is a base register capable of addressing a large, paged linear
address space and an offset register for indexing into the address space. The flat model
effectively hides all segmentation from the programmer, resulting in a portable program­
ming model with much higher performance than a segmented system could provide. The
flat memory model is also known as the 0:32 memory model, since only the 32-bit offset
into the process's address space is used to develop the address of a single byte of memo­
ry. OS/2 2.0 was not designed to be a 386-specific OS/2, but 32-bit OS/2 is implemented
on the 80386 and 80486 platform.

In the flat model, the basic unit of allocation and sharing is a 4KB page, and mem­
ory is divided not into segments, but rather into memory objects that consist of one or
more 4KB pages. Memory objects are not relocatable (as segments are in OS/2 l.X), are
allocated in units of 4KB, can be larger than 64KB, and are aligned on page boundaries
in the process address space. A major difference between memory objects in the flat
model and segments in the 16-bit segmented model is memory protection. In the 16-bit
segmented model, protection exists on a per-segment basis. However, in the flat model
all an application's memory objects exist within a single large segment, so the Intel seg­
ment protection semantics are bypassed and 80386 page-level protection is used to man­
age the memory in the process's address space. To provide each process with a unique
address space, OS/2 2.0 allocates a different set of page tables for each address space,
instead of allocating an LDT per process like OS/2 l.X.

The high performance of applications, subsystems, and the system using the flat
model is derived from several areas. In the segmented or 16-bit model, segment registers
had to be reloaded with selectors every time a different 64KB block of memory needed
to be accessed. These selector load operations are expensive in protected mode on
80X86 processors due to the checking that must occur to provide segment protection. In
the flat model, a 32-bit offset relative to the base of the process address space is used to
address any byte of memory without reloading any selectors. In fact, 32-bit programs
and subsystems do not use or know about the segment registers. Performance is also

96 Operating System Architectures

increased by the use of the 32-bit registers and arithmetic that the 32-bit Intel architec­
ture provides.

4.8.2 Paging

The paging feature of the 80386 is used not only to support the flat model and multiple
DOS address spaces, but also to allow OS/2 to provide memory overcommitment differ­
ent from that offered by OS/2 1.X. In OS/2 1.X, segment swapping is used to keep the
system running in memory-stressed conditions; due to the I/O performance of most
fixed disks, however, segment swapping does not perform well enough to provide gen­
eral-purpose virtual memory on demand. However, since the 80386 provides paging,
storage can be virtualized on fixed disk media at a much lower I/0 cost, because the size
of a page is not variable. Also, the system can do a better job of tracking memory usage,
since memory aging algorithms operate on a page granularity, instead of a segment
granularity, resulting in better memory utilization. Therefore, OS/2 2.0 is a demand­
paged, virtual memory system and is designed so that the system will run acceptably in
nominally overcommitted situations.

4.8.3 Multitasking

The multitasking architecture of 32-bit OS/2 is essentially the same as that of 16-bit
OS/2, except for increased limits on the number of threads and processes supported,
and enhancements to the multitasking APL The 32-bit system supports up to 4095 pro­
cesses instead of 255, and 4095 threads instead of 512. The multitasking API is
enhanced to allow better control of thread creation and termination. Also, the system's
timeslice management uses dynamic times/icing to maximize processor utilization for
applications.

4.8.4 Dynamic Linking

OS/2 2.0 provides dynamic linking, but the elimination of segmentation in the flat
model is propagated to the dynamic link model of the system. Instead of all dynamic
links being far, all objects are near, and objects do not require segment register reloading
when an API or dynamically linked object is referenced. Therefore, the cost of making
dynamic links and API calls is significantly less than the cost of making the comparable
calls in OS/2 l .X.

4.8.5 OS/2 1.X Compatibility

OS/2 2.0 runs all OS/2 l.X application and dynamic link library executable files without
change. To provide this portability, the OS/2 designers had to come up with an ar­
chitecture in which 16-bit and 32-bit modules could coexist. The difficulty of this task
lies in the differences in the segmented and flat memory models. The major requirement
for laying a foundation in which both models can coexist is a high-performance mecha­
nism for converting 16-bit addresses to 32-bit addresses, and vice versa. Once this

4.8 OS/2 2.X System 97

problem is solved, the task of servicing a 16-bit API call with a 32-bit routine, or vice
versa, becomes a feasible task. The technique used to deal with address conversions
between the segmented and flat models is called LDT tiling.

The rest of the 16-bit compatibility requires a layer of procedures that takes 16-bit
API requests, converts them into 32-bit API requests, issues the requests, and completes
the API return conditions with 16-bit semantics. The name of a routine that does this
function for a single API is called a thunk or, more specifically, a l 6-to-32 thunk.
Thunks can also be created to go in the opposite direction, from 32-bit semantics to 16-
bit semantics-these thunks are called 32-to-16 thunks. Thunks are merely tools that al­
low us to build one type of API (16 or 32) from the other when both APis are needed in
one system. Thunks are not APis. Chapter 10 describes LDT tiling and thunks in more
detail, and discusses other compatibility issues.

4.8.6 DOS Compatibility

OS/2 2.0 provides DOS 5.0 compatibility using the virtual 8086 mode of the 80386 pro­
cessor, and uses paging to provide more than one DOS compatibility environment. The
DOS environment is more DOS compatible than is the environment offered with OS/2
1.X, due to the ability to encapsulate the entire DOS environment in a virtual DOS
machine (VDM). This virtual DOS machine gives the system far better protection than is
offered by the OS/2 l .X DOS compatibility environment. In OS/2 l .X, an errant DOS
application could conceivably hang the entire system. In OS/2 2.0, an errant DOS appli­
cation can hang only its own DOS session, and the hung DOS session can be terminated
from the desktop manager.

DOS applications can be run full screen, windowed, or iconized in the background.
In addition to being better protected, providing better compatibility, and allowing more
DOS sessions, the OS/2 2.0 DOS environment leaves applications approximately
620KB in which to execute-more space than is available in DOS. Both EMS and XMS
expanded memory support are provided using the paging feature of the 80386 for emula­
tion. Since the DOS environments are swappable, starting many DOS sessions does not
drive up system memory requirements.

The DOS environment in OS/2 2.0 allows specific versions of DOS to be booted
into VDMs, enabling DOS version-dependent applications to run. It also provides DPMI
server functions, enabling DPMI-based DOS extenders and their applications to run, in­
cluding Windows 3.0 and its applications.

The OS/2 2.0 DOS support provides an extendible OEM architecture that allows the
environment to be tailored to emulate any DOS environment. At the heart of this ex­
tendibility is an architecture that uses a virtual device driver (VDD). The OS/2 1.X bi­
modal device-driver architecture is changed to move all low-level DOS support into
virtual device drivers and out of the physical device drivers. Due to the 80386 virtual
8086 mode, all interrupt processing is done in protected mode, so the need for bimodal
device drivers no longer exists. The OS/2 2.X device driver architecture distinguishes
between physical device drivers (PDDs) for basic device support, and VDDs for virtual
devices in the DOS environments.

98 Operating System Architectures

4.9 OS/2 2.X API

OS/2 2.0 provides the dynamically linked 32-bit API to allow flat-model applications to
use the OS/2 system services. The 32-bit API has been designed so that applications and
subsystems that use and provide 32-bit APis will be portable to any future OS/2 2.X
platform.

The major differences in the API architecture between OS/2 l.X and OS/2 2.0 are
that there are no 64KB restrictions, and API pointers are of the 0:32 format. The API
calling conventions are different to allow support of the dynamic linking in the flat
model environment and the 32-bit register set. Also, the basic word size exploited by the
API is the 4-byte double word, instead of the 2-byte word found in OS/2 l .X. Many of
the API names are changed to be more consistent than they are in the OS/2 l .X APL

Several areas of the API have been enhanced to provide greater functionality and
portability. The multitasking API provides better thread management in the areas of cre­
ation and termination, and the system supports up to 4095 processes and 4095 threads.
The memory management API has functions similar to those of its 16-bit counterpart,
but it manages memory objects composed of pages instead of segments. The semaphores
portion of the interprocess communications API are portable and are more reliable than
their 16-bit counterparts. The exception management API provides the capability of han­
dling exceptions on a per-thread, instead of a per-process, basis, and is also machine
independent. The keyboard, mouse, and video APis from the 16-bit API have no
counterparts in the 32-bit API, since they are extremely device dependent. Instead,
32-bit programs use the PM for managing their user 1/0.

4.10 OS/2 2.X PROGRAMS

The overall program-development process and architecture for 80386/80486 32-bit OS/2
systems are similar to those for 16-bit OS/2 and DOS, but the definition of memory ob­
jects and the addressing capabilities of the 32-bit architecture are different. This differ­
ence leads to enhancements in the programming languages and OMF to support fixups
with 32-bit offsets, and to the definition of an EXE format that supports a demand­
paged, dynamically linked environment.

The OMF in the 32-bit environment is extended to support 32-bit offset fixups
called 0:32 fixups, and to allow memory objects larger than 64KB. Since the OMF is
different from the one used in 16-bit OS/2 or DOS, the compilers that generate the OMF
are significantly different from their 16-bit counterparts.

The proliferation of memory models to allow various flavors of segmentation in 16-
bit OS/2 does not occur in the 32-bit flat addressing environment. Instead, all the mem­
ory models are replaced by the flat model. The flat model is the equivalent of a
small-model program that can have up to 4GB of code and data simultaneously address­
able using 32-bit offsets.

The link editor for 32-bit OS/2 is significantly different from that for 16-bit OS/2 or
DOS. The 32-bit OS/2 link editor deals in memory objects and creates executable files
suitable for the demand-paged environment. The link editor combines objects in

Terminology 99

different object files, and relocates all objects relative to a fixed absolute base in the
EXE file emitted. The EXE image is the equivalent of a single large segment that con­
tains the memory objects of the program, so there are no fixups remaining in a 32-bit
EXE file except those for dynamic links external to the EXE. Since dynamic links in
32-bit OS/2 provide linkage to memory objects instead of to segments, each dynamic
link is represented by a self-relative fixup rather than by a segment-relative fixup, as in
16-bit OS/2 dynamic linking.

Since EXE files are guaranteed to load at the same base address in the I in ear
address space, the linker performs the internal self-relative fixups and then discards
them. However, since DLLs must remain relocatable, the link editor retains the fixup
information for relocating the DLL's memory objects.

The EXE format used in 32-bit OS/2 reflects the requirements of the demand-paged
environment. In a demand-paged system, pages are loaded and reloaded into memory di­
rectly from executable files. For this mechanism to be efficient, the EXE files are orga­
nized into pages instead of segments, and all the fixup information within the EXE files
is organized on a page basis instead of a segment basis. Another important property of
EXE formats for demand-paged systems is the reduction of the number of fixups in the
pages of an EXE file; a page with no fixups is called a pure page, since it can be loaded
directly into memory without processing by the system's loader.

SUMMARY

This chapter described the overall architecture of the DOS, OS/2 1.X, and OS/2 2.X sys­
tems. The structure of the systems and their content were elaborated, and their API and
program functionality explained.

TERMINOLOGY

anonymous shared memory
application programming

interface (API)
automatic data segment
background session
bimodal code
binding
block device
calling convention
character device
code segment
COMMAND.COM
COM:l
compaction
compact model
context switch

data segment
demand paged virtual memory
demand segment swapping
desktop manager
device chain
device drivers
device help (DevHelp)
device independent presentation space
dispatching
Dos API
DOS box
DOS compatibility
DOS device chain
DOS session
dynamic link library (DLL)
dynamic linking

100 Operating System Architectures

EXE file
executable (EXE) file
exports
external definition record
FAT file system
file system router
fixup record
flat model
foreground session
global shared memory
graphical user interface (GUI)
High-Performance File System (HPFS)
import
information hiding
installable file system (IFS)
instance shared memory
instruction pointer (CS:IP)
Intel Object Module Format (OMF)
interprocess communication (IPC)
interrupt routine
INT 21
kernel
LDT
LTD tiling
librarian
library (LIB) file
linear address space
link editor
linkage convention
loader
load-time dynamic linking
logical device
logical keyboard
logical mouse
logical segments
logical video buffer
LPTl:
medium model
memory
memory overcommit
memory protection
mode switching
named shared memory

object (OBJ) file
OS/2 APis
OS/2 1.X
OS/2 2.X
page
paging
physical device driver (PDD)
physical segments
presentation manager (PM)
PRN:
process
process address space
protected mode
public definitions record
pure page
queue
real mode
return code
ring 0
round-robin scheduling
run-time library
scheduling priority
segment
segment register
segment-relative addresses
segment-relative fixup
segment swapping
self-relative address
self-relative fixup
semaphore
session
single-user multitasking
640KB barrier
16-bit OS/2
16:16 memory model
16-to-32 thunk
shared library
shared memory
small model program
software interrupt
shell
stack
stack pointer (SS:SP)

static link libraries
strategy routine
supervisor mode
swap file
swapper

32-to- l 6 thunk
thread
thunk
times lice
user shell

Exercises 101

system call
system library
32-bit flat addressing

environment

virtual device driver (VDD)
virtual DOS machine
virtual 8086 mode
0:32 memory model

32-bit OS/2

EXERCISES

Questions pertaining to the DOS system:

4.1 Discuss the layered architecture of the DOS system as presented in Fig. 4.1.

4.2 Distinguish between block devices and character devices.

4.3 Describe the organization of the DOS device chain.

4.4 How do DOS programs typically manage a graphic display or a mouse, given that the DOS
API does not contain functions for these purposes?

4.5 Why is it that most high-level languages cannot directly invoke DOS API calls?

4.6 List several advantages of using dynamic linking instead of static linking.

4.7 What do we mean when we say that the OMF exhibits the trait of processor architectural
dependence and the EXE format exhibits the trait of operating system architectural dependence?

4.8 Distinguish between self-relative addresses and segment-relative addresses.

4.9 Briefly describe each of the following program models: compact model, small model, medium
model, large model, and huge model.

Questions pertaining to the OS/2 l .X system:

4.10 Indicate the new capabilities OS/2 offers compared to DOS.

4.11 Many of the APis are located in the kernel, but some APis are located in dynamic link
shared libraries. Why are both locations used?

4.12 Define the OS/2 notions of sessions, processes, and threads.

4.13 What are logical devices? What logical devices are available?

4.14 Distinguish between foreground and background sessions.

4.15 How are processes and threads related? How do threads provide a lower-overhead form of
parallelism than is possible with processes?

4.16 Describe briefly how OS/2's preemptive, priority-based multitasking operates.

4.17 Under what circumstances will OS/2 not preempt a running thread?

4.18 Compare and contrast OS/2 1.X memory management with DOS memory management.

102 Operating System Architectures

4.19 When a thread context switch occurs between threads in different processes, how does
OS/2 switch process address spaces? How is protection between address spaces ensured?

4.20 Distinguish among named shared memory, anonymous shared memory, global shared
memory, and instance shared memory.

4.21 Describe OS/2 notion of memory overcommit. How does OS/2 enable processes to run
even though not all their segments are in physical memory at once?

4.22 Explain how dynamic linking operates. Discuss the advantages that dynamic linking provides.

4.23 Why are I/O devices-such as the display, keyboard, and mouse-accessed in OS/2 differ­
ently from in DOS?

4.24 Why does OS/2 have an installable file-system (IFS) architecture?

4.25 Discuss the architecture of OS/2 device drivers. In particular, explain the functions per­
formed by the various device-driver routines.

4.26 Why does the presentation manager use device drivers different from the base system's
device drivers?

4.27 Why is DOS compatibility such an important feature of OS/2?

4.28 Why is it that DOS programs do not benefit from the multitasking environment of OS/2?

4.29 Discuss the OS/2 technique of mode switching. What limitation of the 80286 with regard to
mode switching was corrected with the use of additional hardware on PC/AT-class machines?

4.30 What is bimodal code? What performance advantage does it offer? In what physical memo­
ry addresses must bimodal code reside? Explain your answer.

Questions pertaining to the OS/2 2.X system:

4.31 Describe the key new capabilities offered by OS/2 2.X systems over OS/2 1.X systems.

4.32 What capability of the 80386 processor enables OS/2 2.X to run multiple DOS sessions
concurrently and in the background?

4.33 Comment on the following statement and indicate its importance in defining OS/2 as a
UNIX competitor: "The overriding goal in the design of the 32-bit programming environment is to
provide an architecture that allows applications, subsystems, and the system itself to be portable to
processing platforms other than the single-processor, Intel 80X86 machines."

4.34 What is the significance of the flat model? Why is it appropriate to call the flat model the
0:32 memory model?

4.35 How does OS/2 2.X provide each process with a unique address space?

4.36 Discuss several reasons for the high performance of OS/2 2.X applications, subsystems,
and the system using the flat model compared to the memory model used in OS/2 1.X systems.

4.37 How does OS/2 2.X support memory overcommit?

4.38 Why is the cost of making dynamic links and API calls in OS/2 2.X systems significantly
lower than the costs in OS/2 1.X systems?

4.39 What challenges did the designers of OS/2 2.X face in enabling OS/2 1.X applications and
dynamic link library executable files to run without change? What are LDT tiling and thunks?

4.40 Distinguish between OS/2 2.X's physical device drivers and virtual device drivers.

Exercises 103

4.41 What are the major differences between the AP! architectures of OS/2 2.X and OS/2 l .X?

4.42 Compare the 32-bit flat model to the 16-bit compact model.

4.43 How does an API encapsulate the hardware and the operating system? Could two different
operating systems offer identical APis? What would be advantages and disadvantages of such an
approach?

5
Multitasking

It was surprising that Nature had gone tranquilly on with her
golden process in the midst of so much devilment.

The Red Badge of Courage
Stephen Crane

I claim not to have controlled events, but confess plainly that
events have controlled me.

Abraham Lincoln

Learn to labor and to wait.

Henry Wadsworth Longfellow

105

Outline

5.1 Introduction
5.2 Processes

5.2.1 Process Virtual Address Space
5.2.2 Process Creation
5.2.3 Process Termination
5.2.4 Process Control

5.3 Threads
5.3.l Thread Creation
5.3.2 Thread Termination
5.3.3 Thread Control
5.3.4 Process and Thread Information

5.4 Scheduling
5.5 Kernel Architecture

5.5.1 User Mode
5.5.2 Kernel Mode
5.5.3 Kernel Process Context
5.5.4 Kernel Thread Context
5.5.5 Context Switching
5.5.6 System Calls

5.5.6.1 DLL APis
5.5.6.2 Kernel APis

5.5.7 Interrupts
5.5.8 Exceptions
5.5.9 Timeslicing

5.5.10 ProcBlock/ProcRun
5.5.11 Voluntary Preemption

5.6 Multitasking APis
Summary

106

5.1 Introduction 107

5.1 INTRODUCTION

This chapter describes the multitasking aspects of the OS/2 system. In any multitasking
operating system, the hardware is managed as a shared resource to be distributed among
concurrently executing entities. The architecture that describes how these concurrent
entities are created, terminated, and managed is called the tasking or multitasking
model. The multitasking model describes how resources-such as the processor, memo­
ry, files, devices, and interprocess communications structures-are shared in the OS/2
system.

Perhaps the most important resource that is shared in a multitasking environment is
the processor. The operating system shares the processor among concurrently executing
entities using a technique known as times/icing. An operating system that provides
timeslicing switches between programs, enabling each program to run for a short period
of time called a timeslice or quantum. This technique results in the processor resource
being shared among the programs.

The DOS operating system is not a multitasking system; it runs only one application
at a time. However, DOS applications can do their own timeslicing by taking over the
system timer and dividing up the processor time among different programs that are
specifically known to them. In an unprotected environment such as DOS, it is difficult
for multiple applications that do their own timeslicing to coexist without resource con­
flicts occurring.

In the OS/2 system, multitasking services are built into the system. This centralized
tasking scheme allows all applications to take advantage of the multitasking functions of
the operating system. Figure 5.1 illustrates the difference between multitasking in DOS
and OS/2.

As we saw in Chapter 4, the multitasking hierarchy of OS/2 consists of sessions,
processes, and threads. Sessions are described more completely in Chapter 9. This chap­
ter concentrates on the description of processes, threads, and scheduling, and examines
the kernel architecture that supports the multitasking of processes and threads. This
chapter deals with both the 16-bit and 32-bit versions of OS/2. For the most part, the

Multitasker
Timer ticks

OS/2 kernel
DOS kernel

Fig. 5.1 DOS versus OS/2 multitasking.

108 Multitasking

multitasking architectures of both 16-bit and 32-bit OS/2, of OS/2 1.X, and of OS/2 2.X
are identical. Where they differ significantly, the differences are explained.

5.2 PROCESSES

A process is the basic unit of programming and resource sharing in OS/2. A process cor­
responds to a program and is created when a program is loaded. A process is the central
abstraction for the sharing of resources, such as processors, memory, files, and interpro­
cess communication data structures. Each process is assigned a unique process identifier
(PID) by the kernel. The 16-bit version of OS/2 provides support for up to 255 pro­
cesses; the 32-bit version provides support for up to 4095 processes. Figure 5.2 illus­
trates the structure of an OS/2 process.

The system maintains many resources on a per-process basis. The primary resources
contained in a process are the memory domain and the threads of execution. A thread
provides a sequence of instructions with an instance of execution. All processes are cre­
ated with one thread and have the capability of creating more threads. The threads with­
in a process all share the process's resources and have access to one another. Although
memory and threads are the main features within a process, the system also tracks many
other resources on a process basis, such as signal handlers, open files, and interprocess
communication features such as semaphores, queues, and pipes.

5.2.1 Process Virtual Address Space

The per-process memory domain is called the process virtual address space. Since each
process receives its own unique process virtual address space, the memory accessible by
each process is protected from other processes. Also, the system is protected from appli­
cation processes, since it is not accessible by user-level code within the process virtual
address space. In other words, a process cannot access memory in another process, and a

Process

Thread 1 File

Process
handles

Thread 2
virtual Pipes

address Serna-
phores

space
Signal

Thread N handlers

Fig. 5.2 Process layout.

5.2 Processes 109

process cannot access the system's memory. This scheme is known as memory protec­
tion and is a key feature in any multitasking virtual memory operating system. Memory
protection allows the OS/2 system to provide an architecture with much more integrity
than is found in DOS or any of the extended DOS environments.

The process virtual address space is implemented differently in the 16-bit and 32-bit
versions of OS/2 because of their different memory models. The process virtual address
space in 16-bit OS/2 is represented as a collection of segments mapped by a local de­
scriptor table (LDT). The system switches LDTs when switching between processes. A
process can access only memory that is mapped by its own LDT. In 32-bit OS/2, the
process virtual address space is a single large segment (on the order of 512MB) that rep­
resents a flat linear address space. Each process virtual address space is mapped by a
per-process set of page tables. When processes are switched, the page tables that map
the process virtual address space are switched, effectively changing process virtual
address spaces. In either case, each process has a unique protected virtual address space
that maps all the memory it can access.

Chapter 6 discusses the management of the process virtual address space, such as
the switching of address spaces, the allocation and deallocation of memory objects with­
in address spaces, and the sharing of memory objects across address spaces. Memory
management is described there in detail.

5.2.2 Process Creation

Processes are created using DosExecPgm. DosExecPgm services requests by creating a
process, loading an executable program file into the process virtual address space, and
calling the entry point specified in the program file. The name of the executable file and
a set of execution flags are the parameters required by DosExecPgm. For example, call­
ing DosExecPgm with the parameter FOO.EXE causes the program in the executable
file FOO.EXE to be loaded into a new process virtual address space and starts that pro­
gram running. All processes are initially created with a single thread. However, the ini­
tial thread may create other threads within the process and also may create other
processes. DosExecPgm returns to its caller the PID for the created process.

The loading of an executable program file into a process's virtual address space is
performed by the program loader component of the OS/2 kernel. To load an executable
file into the process's memory, the program loader must resolve any dynamic link imports
that the program contains. As we saw in Chapter 4 when we described dynamic linking,
these imports are references to routines and data items outside the program module itself.
These references are either to the kernel or to dynamic link libraries that provide APis.

When the program loader detects an external reference in a program (EXE) module
or dynamic link library (DLL) module to an API in the kernel, the reference can be
resolved immediately. However, if an external reference is to code or data in a DLL, that
DLL must be loaded into the process's virtual address space before the original external
reference can be resolved. Therefore, program loading is a recursive mechanism that
usually ends up loading several DLLs to load just one executable (EXE) file. After all
the necessary DLLs have been loaded, then the optional initialization entry point in each

110 Multitasking

DLL is called so that it can initialize any structures necessary for the operation of that
DLL. Once all the external references within the original executable program file and its
imported DLLs are resolved, the new process and its first thread are ready to be dis­
patched according to the execution flags passed into the DosExecPgm request. Chapter 6
further explains the role of the program loader with respect to memory management, and
describes the sharing of DLLs among processes.

OS/2 processes have a hierarchical structure. The process that calls DosExecPgm to
create another process is called the parent process, and the created or spawned process
is called the child process. Processes that share the same parent are called sibling pro­
cesses. Therefore, as processes are created, they form a process tree. Figure 5.3 illus­
trates the hierarchical nature of processes.

In Fig. 5.3, process A is at the root of the process tree. Processes B, C, and D are
children of the parent process A and have a sibling relationship with one another.
Processes E and F are children of process B, and grandchildren of process A. The pro­
cess hierarchy enables processes to control their children and descendants.

The execution flags provided as a parameter to DosExecPgm allow the parent pro­
cess to control the execution of each child process. They specify whether a new child
process should be run synchronously or asynchronously relative to the parent, and
whether a child is being traced by a debugger. When a child process is executed syn­
chronously, the parent process is suspended during the DosExecPgm request until the
child process terminates. In the case of a child being executed asynchronously, both the
parent process and the child process execute concurrently.

5.2.3 Process Termination

A process is terminated when its last thread dies. Termination is accomplished by a call
to DosExit. DosExit can be called to terminate a single thread or to terminate all the
threads in the process.

Bis the
parent of
E and F.

Fig. 5.3 Process hierarchy.

A is the root.
A is the parent of
B, C, and D.

E and Fare
siblings and
are the children
of Band are the
grandchildren
of A.

B, C, and D
are siblings,
and are the
children of A.

5.2 Processes 111

When a process dies, it may be necessary to notify the process itself or the DLLs
referenced by this process that the process is ending. An EXE or DLL needing process
termination notification can call DosExitList to register a process-termination (exitlist)
handler. The kernel maintains a list of exitlist procedures that have been registered for
notification when the process is being terminated. During process termination, the ker­
nel calls each of the exitlist handlers for the terminating process using the context of
thread I in the process. After the exitlist handlers have been called, the system
reclaims any other process resources managed by the kernel, such as memory and
semaphores.

The 32-bit version of OS/2 provides alternatives for process termination notifica­
tion. A thread executing in an EXE or a DLL can register a process termination excep­
tion handler. Also, 32-bit DLLs can have a termination routine, as well as an
initialization routine, that is called when a process releases a DLL. Exception handling
is discussed in more detail in Section 5.5.8 and in Chapter 7.

Another way for a process to be terminated is via the DosKillProcess call.
DosKillProcess can be used to send a notification indicating process termination to a
single process or to a process and its descendants. In 16-bit OS/2 system, signals are
used to send asynchronous events between processes. In 32-bit OS/2, the signals have
been integrated into the exception management architecture as asynchronous exceptions.
In both systems, signals and asynchronous exceptions are used to notify a process of the
Ctrl-C and Ctrl-BREAK keyboard sequences (SIGINTR and SIGBREAK), process
termination requests (SIGTERM), or application-defined events sent using the signals or
exceptions APL When a signal is received by a process in the 16-bit system, one of three
alternatives occurs: The process can choose to ignore a signal, to take the default action,
or to handle a signal by providing a signal handler. In the case of the termination signal,
SIGTERM, the default action is to terminate the process. For example, in Fig. 5.3, pro­
cess A can kill process B and B's children (processes E and F) by invoking
DosKillProcess with the PID of process B. The handling of exceptions and signals is
discussed in more detail in Chapter 7.

5.2.4 Process Control

Process identifiers (P!Ds) are used to indicate which process is to be controlled. In the
16-bit system, the DosGetPID call is used to get the PID of the cmrent process. In 32-bit
OS/2, the priority is stored in the thread information block (TIB), a system-provided per­
thread data area in the process address space. Chapters 6 and 7 explain the role of the
TIB and the way it is accessed. In both versions of the system, DosGetPPID is used to
get the PID of the current process's parent.

Process execution can be synchronized using a function called DosWaitChild in
OS/2 2.X, and one called DosCWait in OS/2 l.X. DosWaitChild allows a parent process
to wait for the termination of a specific child process or for the termination of all its
descendants (the entire process subtree). For example, in Fig. 5.3, process A executes
child processes B, C, and D asynchronously. At some later time, process A may wish to
wait until one of the child processes has terminated and also to acquire the exit status of

112 Multitasking

the child's termination. Alternatively, process A could wait until all its descendants have
terminated before resuming execution.

For debugging a process, a special function-called DosDebug in OS/2 2.X and
DosPTrace in OS/2 1.X-is provided to permit a parent to trace the execution of a child
process. The parent process is usually a debugger program that creates the child process
being debugged by calling DosExecPgm with the execution control flags that indicate
the process is to be traced. The debugger program then issm:s DosDebug or DosPTrace
requests to access and modify the child process's context.

5.3 THREADS

Threads are the dispatchable units within an OS/2 process. In other words, processes do
not really run, but threads do. A thread provides within a process a piece of code with an
execution instance. Each process in the system has a least one thread. From the user's
perspective, a thread's context consists of a register set, a stack, and an execution prior­
ity. Figure 5.4 illustrates the context of a thread.

Threads share all the resources owned by the process that creates them. All the
threads within a process share the same virtual address space, open file handles,
semaphores, and queues. Each thread is in one of three states: running, ready to run, or
blocked. Only a single thread in the system is actually in the running state on unipro­
cessor hardware platforms. The running thread is the ready-to-run thread that is current­
ly selected to run according to the OS/2 priority scheme. Threads that are in the blocked
state are awaiting the completion of an event.

When OS/2 switches between threads, it automatically saves the context of the cur­
rent running thread and restores the context of another thread that is ready to run. The
16-bit version of OS/2 supports up to 512 threads; the 32-bit version supports up to 4095
threads. The 16-bit system has limitations on the number of threads that can run within a
process (on the order of 50 threads per process) due to the segmented nature of the 16-
bit kernel. The 32~bit system allows as many threads as the user desires within a pro­
cess, up to the limit of the number of threads available in the system.

There are several advantages to a multithread process model over the traditional sin­
gle-thread process model found in systems such as UNIX. Since threads share the pro­
cess's resources, thread creation is far less expensive than process creation, and threads
within a process enjoy a tightly coupled environment. When a thread is created, the

Thread

Fig. 5.4 Thread layout.

5.3 Threads 113

system does not have to create a new virtual address space or to load a program file,
resulting in an inexpensive additional concurrent execution path. If a system with a sin­
gle-thread process model requires two concurrent execution paths, two processes must
be created, their execution must be synchronized, and any resource sharing between the
processes must be managed. In contrast, in the OS/2 multithreaded process model, a sin­
gle process with two threads is used, and the threads naturally share the process address
space and resources. In addition to the lower cost for creation and termination of threads
compared to that for processes, any synchronization needed between the execution of
the threads is less expensive than that between processes, since the threads already share
the process virtual address space. Chapter 7 discusses the different approaches used in
OS/2 for interthread communication, regardless of whether or not the threads are in the
same process.

Another benefit of a multithread process model is that multiple threads promote a
greater overlapping of I/O requests. A multithreaded system is able to be more interac­
tive than is a single-threaded one, due to the greater level of concurrency achieved. For
instance, programs usually dedicate a single thread to servicing requests from the user
interface while other threads actually perform the work requested by the user. Multiple
threads better support an environment where parallel applications can execute with a far
better performance than is possible in a single-thread process model.

All these benefits accrue on both uniprocessor and multiprocessor hardware
architectures. In a multiprocessor environment, the multithreaded architecture also pro­
motes parallelism, in which many portions of a program can execute concurrently on
different processors. Chapter 12 discusses issues relevant to implementing the multi­
thread process model on different multiprocessor architectures.

5.3.1 Thread Creation

Threads are created by a call to DosCreateThread. In 16-bit OS/2, the requestor must al­
locate a stack for the thread, and must pass to DosCreateThread the address of the stack
and the address of the code the thread is to execute. In 32-bit OS/2, the system allocates
the stack and dynamically resizes it as necessary during the thread's life.
DosCreateThread returns a thread ID (TID) that is similar to a PID. Each thread in the
system can be uniquely identified by a PID:TID pair. Unlike processes, threads are not
hierarchical. All threads in a process have a sibling relationship with one another and
remain part of that process until they terminate.

The thread that is created when a process is created with DosExecPgm is called
thread I, and it has some special properties that other threads within the process do not
have. Thread 1 receives all signals sent to the process, is used for exitlist processing
when the process dies, and also is used for per-process DLL initialization during pro­
gram and library loading. In other words, each of these special per-process entry points
executes using the context of thread 1. As a result, if thread 1 terminates, then all other
threads in the process are terminated. Otherwise, another thread could potentially hang
the process, since the process would be unable to receive the SIGTERM signals or to
perform existlist handling during termination.

114 Multitasking

5.3.2 Thread Termination

A thread is terminated by a call to DosExit. DosExit can be used to terminate the cur­
rent thread or all threads in a process. Whereas there is no function in the multitasking
API of the 16-bit system for killing another thread that is analogous to DosKillProcess,
the 32-bit system provides DosKillThread for terminating another thread in the current
process. Neither is there a mechanism for handling thread termination in the 16-bit sys­
tem that is analogous to the exitlist mechanism for process termination. However, the
32-bit system does provide a process termination exception that is sent to all threads of
a process during process termination. Per-thread process termination exception han­
dlers can be registered using the 32-bit exception management API discussed further in
Chapter 7.

The 32-bit system also provides the DosW aitThread call, which allows a thread to
wait explicitly on the termination of a specific or nonspecific thread within the process.
DosWaitThread is useful when the threads within a process have a master/slave relation­
ship with each other, in which the master dispatches slave threads to perform tasks.

5.3.3 Thread Control

There are several functions in the multitasking API for controlling thread operation. The
DosEnterCritSec and DosExitCritSec calls allow threads within a process to disable
thread switching within that process. This facility is useful when threads in a process
need to execute concurrently code that accesses data shared by the threads. The region
of code that must be managed carefully is called a critical section. Critical sections
require that each thread executing the code has mutually exclusive access to that code.
Using the critical section functions around the critical section guarantees mutual exclu­
sion for threads within a process. However, since the critical section calls totally disable
thread switching within the process, they may negatively affect interactive response if
the critical section is too long. There are other mechanisms better suited to synchroniz­
ing thread execution, such as the semaphores discussed in Chapter 7.

Another method of controlling threads within a process is to allow one thread to
suspend the execution of another thread, and to resume execution at a later time.
Suspension and resumption can be accomplished using the DosSuspendThread and
DosResumeThread calls, respectively. Both calls take a TID as a parameter to indicate
which thread should be suspended or resumed. A thread can suspend or resume only a
thread that is within the same process.

5.3.4 Process and Thread Information

The 16-bit system provides several special memory objects called information segments,
or infosefis. The system contains two infosegs: a filobal infosefi shared by all processes,
and a local infoseg for each process. The global infoseg contains system-wide informa­
tion that is used by all processes, such as the date, time, and other system configuration
parameters. The local infosegs contain per-process information such as the process's
priority, current thread ID, and current thread priority, as well as the address of the

5.4 Scheduling 115

process's environment information. A process requests the system to map the infosegs
into its address space by calling DosGetlnfoSeg.

The 32-bit system does not use the infoseg architecture of the 16-bit system, except
that it provides compatibility to 16-bit OS/2 applications. Chapter 10 discusses in more
detail the 16-bit OS/2 compatibility issues. Since most of the information from the in­
fosegs is already available via existing API functions, and the infoseg architecture is ma­
chine dependent, the infosegs are not continued in the 32-bit architecture. However,
there exists a requirement for per-process and per-thread data structures that contain crit­
ical data that processes and their threads need to access quickly. The process informa­
tion block (PIB) is a per-process memory object allocated within each process's virtual
address space that contains per-process data, such as the process ID, process default pri­
ority, and module information. The thread information block (TIB) is allocated on a per­
thread basis within the process virtual address space. It contains all the information
pertaining to a thread in a process, such as the thread stack base and stack limit, the
thread priority, and the thread ID. A thread can access its information blocks by calling
DosGet/ nfoB locks.

5.4 SCHEDULING

All threads in the system compete for processor time. To determine which threads
should run, OS/2 implements a multilevel priority architecture with dynamic priority
variation and round-robin scheduling within a priority level. Each thread has its own
execution priority, and high-priority threads that are ready to run are dispatched before
low-priority threads that are ready to run. Processes also have a priority; however, this
priority does not enter into the calculations of which threads should run next. The pro­
cess priority is merely the default priority for threads that are created by that process. A
thread may change the priority of any or all threads within the current process using
DosSetPrty. A thread can also change the default priority of threads in other processes,
regardless of whether they are related in the process hierarchy.

In the 16-bit system, DosGetPrty is used to query the priority of a thread or process.
In OS/2 2.X, however, DosGetPrty does not exist, since the priority information has
been moved into the thread information block. Chapter 6 provides more information on
accessing the thread information block.

There are four priority classes in the OS/2 system: time critical, server, regular, and
idle. The server class is also called the fixed-high priority class. Each priority class is fur­
ther divided into 31 priority levels. Figure 5.5 illustrates the priority classes and levels.

Threads in the highest, or time-critical, priority class, have timing restraints. An ex­
ample of a time-critical thread is a thread that waits for data to come from a device driv­
er monitoring a high-speed communications device. The system guarantees that there is
a maximum interrupt disable time of 400 microseconds, and that time-critical threads
are dispatched within 6 milliseconds of becoming ready to run. These timing criteria
ensure that the system can respond rapidly to the needs of time-critical threads, and also
be flexible enough to allow a user to switch between programs quickly. Most threads in
the system are in the regular priority class.

116 Multitasking

31 High priority

Time 30
critical Round robin
priority
class

0 Low priority

31 High priority

Server
30

priority Round robin
class

0 Low priority

31 High priority

Regular 30
priority Round robin
class

0 Low priority

31 High priority

Idle 30

priority Round robin
class

0 Low priority

Fig. 5.5 Multilevel priority structure. (Adapted from OS/2 Programmer's Guide, E.
Iacobucci, Copyright 1988, McGraw-Hill Publishing Company. Reprinted by permission.)

The server priority class is used for programs that run on a server environment that
need to execute before regular-priority-class programs on the server. The server class
ensures that client programs relying on the server processor do not suffer performance
degradation due to a regular-class program running locally on the server itself.

Threads in the idle priority class will run only when there is nothing to run in time­
critical, server, or regular priority class. Typically, idle-class threads are daemon threads
that run in the background. A daemon thread is one that intermittently awakens to per­
form some chores, and then goes back to being blocked.

The scheduling algorithm is round-robin within the same priority level. For exam­
ple, if five threads have the same priority, the system will run each of the five, one after
another, by giving each one a timeslice. The timeslicing is driven by a system clock, and
the user can configure the timeslices from 32 to 248 milliseconds by using the

5.4 Scheduling 117

TIMESLICE keyword in the CONFIG.SYS file. A thread runs for its entire timeslice
unless an interrupt occurs that results in making another thread of a higher priority class
ready to run. In such cases, the running thread is preempted. Otherwise, a thread runs for
the length of its timeslice, unless it calls the kernel and blocks.

The 32-bit version of OS/2 implements optional dynamic times/icing that maxi­
mizes utilization of the processor for threads running in user mode. Dynamic timeslicing
reduces the number of interrupts the system processes to implement timeslicing by using
the number of ready-to-run threads as a heuristic in the scheduling algorithm.

Since a thread can be preempted at any time due to an interrupt or timeslice end,
threads that are sharing resources with threads in the same process or with threads in
other processes must protect critical sections where these shared resources are manipu­
lated. They can implement protection by using one of the interprocess communication
constructs, such as semaphores. Chapter 7 explores several mechanisms for providing
interprocess communication and critical section management.

Dynamic priority variation is the scheduler's ability to adjust the priorities of
threads in the regular class to ensure that all threads get a chance to run, and that the sys­
tem provides as interactive a response as possible. These priority adjustments are called
priority boosts. Dynamic priority variation can be enabled or disabled by the user when
the system is started.

The process that is running in the foreground has the locus of control of the user in­
put devices (mouse and keyboard). This is also called the input focus, and only one pro­
cess in the system can be in the foreground at a time. Processes that are not in the
foreground are said to be in the background. So that the system will be responsive to the
user's requests, all the threads of the foreground process receive a boost in priority.
Then, the actual thread in the foreground process that performs the user 1/0 receives an
additional priority boost. This priority adjustment is called the foreground boost.

When a thread becomes ready to run as the result of an 1/0 operation completing,
the thread receives an //0 boost from the scheduler. Since the thread went from the run­
ning to the blocked state when it issued its 1/0 request, this boost assists the thread in
getting rescheduled quickly so that it can continue execution. An 1/0 boost changes a
thread's priority to be the highest level within that thread's priority class.

The third boost is called the starvation boost; it is applied to threads in the regular
priority class that are in the ready-to-run state and that have not run recently. The
amount of time a thread waits until the scheduler considers it starved can be configured
by the user using the MAXWAIT keyword in the CONFIG.SYS file. The starvation
boost causes the priority of a thread to be boosted out of its current class to a level just
below the time-critical priority class.

When a thread receives either an 1/0 boost or a starvation boost, the thread's priori­
ty is adjusted, and the timeslice also is adjusted to a minimum timeslice quantum that
can be configured using the TIMESLICE keyword in the CONFIG.SYS file. The mini­
mum timeslice value can be set from 32 to 248 milliseconds, and must be less than or
equal to the regular timeslice configuration parameter. A boosted thread retains its boost
priority until it runs for a single timeslice; then, the priority and timeslice are reset to
their original values.

118 Multitasking

5.5 KERNEL ARCHITECTURE

The kernel is the OS/2 control program, or supervisor. It contains the nucleus of func­
tions for multitasking, interprocess communications, memory management, interrupt
management, device 1/0, and DOS compatibility. In this section, we focus on the gen­
eral architecture of the kernel in the 16-bit and 32-bit versions of OS/2, and on the mul­
titasking portion of the kernel.

The 16-bit and 32-bit OS/2 systems have different kernels that reflect their architec­
tural differences. Since the 16-bit system is targeted for the 80286 processor, the 16-bit
kernel is segmented and is highly sensitive to 64KB restrictions in the management of
its data structures. It is written in assembler to be fast as possible, while using a minimal
amount of memory. Since the 16-bit kernel is written in assembler, all subroutine link­
ages in the kernel use registers for passing parameters. Because applications pass pa­
rameters on API requests using the stack, the kernel must take the parameters off the
stack and put them in registers before calling the kernel functions for implementing the
APis. A component called the system call interpreter is used to move the API parame­
ters from stacks to registers and to call the kernel routine for implementing the API, so
that there is no need for a separate piece of code for dispatching each API request.

Reflecting the segmented nature of the system, the routines in the 16-bit kernel are
grouped into segments that are mapped by the global descriptor table (GDT). Mapping the
kernel and its segments using the GDT ensures that the kernel is accessible at all times
because the GDT is present in the context of all processes. However, the kernel segments
are protected from applications since they are mapped at privilege level 0, the most trusted
privilege level in the protected ring architecture of the 80286. Like 16-bit applications, the
kernel must reload segment registers when establishing addressability to different seg­
ments. Most of the segments that compose the 16-bit kernel reside permanently in memory.

The 32-bit kernel reflects the linear nature of the 32-bit flat memory model. The 32-
bit kernel is written in C for portability, although it contains portions that must be writ­
ten in assembler on any architecture. Since it uses C, the 32-bit kernel routines use
stack-based linkages for passing parameters within the kernel. Thus, no system call in­
terpreter is necessary for moving the users' parameters to the registers during a kernel
API request. Since the 32-bit kernel is flat, segment registers do not have to be loaded to
establish addressability to different memory objects, resulting in better performance
since segment register loading is a relatively slow operation.

Like the 16-bit kernel, the 32-bit kernel also is mapped into the GDT at privilege
level 0. However, since the 32-bit system is paged instead of segmented, portions of the
kernel that are not used frequently are swappable instead of resident. Frequently execut­
ed portions of the 32-bit kernel reside permanently in memory.

Logically, the kernel can be viewed as a top half and a bottom half The API inter­
faces, worker routines, and most of their associated components compose the top half.
When a thread is executing in the top half of the kernel, it has access to the kernel data
structures and to the context of the current process and thread executing. When a thread
in the top half of the kernel blocks, it usually waits on the bottom half to be unblocked.

The bottom half of the kernel is the collection of routines for handling hardware in­
terrupts and faults that are unrelated to the current process and thread executing. Also in

5.5 Kernel Architecture 119

the bottom half are routines provided by the kernel needed to assist the interrupt and
fault handlers in completing their services. Since the activities serviced by the bottom
half of the kernel occur asynchronously, the bottom half cannot rely on a specific pro­
cess or thread context to be mapped. Routines that access data shared by the top and bot­
tom halves must serialize their access to the shared data in a mutually exclusive fashion
to guarantee the data's integrity.

Both the 16-bit and 32-bit kernels are organized into components. Each component
has a set of routines for system call service, called worker routines. When a system call
is dispatched, the worker routine from the appropriate component is called to service the
request. The worker routine uses the kernel interfaces provided by the kernel compo­
nents to validate parameters; it then performs the system call request. During a system
call, the kernel either completes the request immediately or blocks the requesting thread
awaiting an event, such as completion of I/O or the availability of a required resource.

The kernel components involved in the management of multitasking are the tasking
manager, the dispatcher, the scheduler, the interrupt manager, and the trap manager. The
tasking manager provides the process and thread API routines, and manages the kernel
data structures that represent processes and threads. The dispatcher manages the opera­
tional loop that drives the system, context switching, and blocking and unblocking of
threads. The scheduler manages thread priorities, thread states, and processor usage, and
also chooses the next thread to run when the dispatcher switches contexts. The dispatcher
and the scheduler work together in determining when to context switch and which thread
to run. The interrupt and trap managers are responsible for routing and for handling hard­
ware interrupts and exceptions. Figure 5.6 illustrates the multitasking components.

5.5.1 User Mode

Since the OS/2 system is protected, a distinction is made between the state of a thread
running in the kernel and that of one running in an application. When a thread is running
code from a program or dynamic link library, the thread is said to be in user mode. A
thread that is running in user mode runs at privilege level 2 or 3, executes within the
domain of the process's virtual address space, and can be preempted. The process's vir­
tual address space is also called its user space.

While running in user mode or user space, a thread can access memory only within
its own process's virtual address space. It is unable to access memory in another pro­
cess's virtual address space, unless memory sharing has been set up by the memory

API

API worker routines

Tasking manager

Dispatcher Scheduler
Interrupt Trap
manager manager

Fig. 5.6 Multitasking kernel components.

120 Multitasking

manager. A thread in user mode is also unable to access memory belonging to the sys­
tem. If a thread attempts to access memory addresses within its address space that have
not been mapped by the memory manager, a general protection fault is raised, and the
errant thread and process are terminated. In the 32-bit version of OS/2, general protec­
tion faults can be handled in user mode by setting of an exception handler. Protection is
implemented using the protection and memory mapping hardware of the processor. The
implementation of the process virtual address space in both the 16-bit and 32-bit sys­
tems is explained in Chapter 6.

5.5.2 Kernel Mode

A thread that is running code in the top half of the OS/2 kernel is in kernel mode. A
thread makes the transition from user mode to kernel mode during API requests to the
kernel and potentially during interrupt processing. A thread that enters the kernel has
two options: it either completes the operation and attempts to exit the kernel, or blocks
awaiting some resource's availability or event to complete an operation (e.g., I/0).
When running in kernel mode, a thread executes at privilege level 0, and is not pre­
emptible. An interrupt may cause control to transfer temporarily for interrupt service,
but control is always returned to the thread in kernel mode. A thread running in kernel
mode has access to all the memory in the system-all of the process virtual address
spaces, as well as the kernel's code and data areas. The aggregate of these memory areas
is called the system virtual address space, or kernel space.

The OS/2 kernel architecture makes further distinctions among user mode, kernel
mode, and the privilege level architecture. It is possible for a thread to be executing at
privilege level 0 but not be in kernel mode. A thread officially enters kernel mode when
a special entry point in the dispatcher named EnterKMode is called. EnterKMode saves
the state of the thread and sets a global flag in the kernel named lnDOS. Actually, a
thread is not preemptible if it is executing at privilege level 0 or if lnDOS is set indicat­
ing that the thread is in kernel mode. An example of a thread executing at privilege level
0 that is not in kernel mode arises when an interrupt occurs while a thread is in user
mode-the interrupt handling occurs in interrupt mode. A thread that is in kernel mode
returns to whatever mode it was in previously by calling the dispatcher routine
ExitKMode. The only time that a context switch can occur is when a thread exits kernel
mode. The logic of this constraint is described later in this chapter, where the opera­
tional loop of the system is discussed.

5.5.3 Kernel Process Context

The data structure used by the kernel to track each process in the system is called the
per-task data area (PTDA). Each PTDA is allocated, when a process is created, by a call
to DosExecPgm; each PTDA uses fixed memory within the kernel space. Figure 5.7
illustrates some of the major fields of a PTDA.

The PTDA contains the PID of the process and links to the parent, sibling, and first
child processes, a pointer to the process virtual address space, a list of open file handles
and semaphores, a pointer to the chain of threads within the process, and a pointer to the
current thread within the process that is running. Also in the PTDA are the default process

5.5

Parent PTDA link
First child PTDA link
Sibling PTDA link
TCB chain head
Thread count
Current thread pointer
Priorty

Kernel Architecture

Process virtual address space pointer
Module table pointer
File system information

Current/default drive
Current directory
Open file table

Critical section counts
Exception vectors (16-bit)
Signal vectors (16-bit)
Semaphores
Code page information

Fig. 5.7 Per-task data area (PTDA).

121

priority, signal and exception handling information, and a link to the module table entry
(MTE) that describes the executable file loaded into the process virtual address space.
MTEs are described in more detail in Chapter 7, in the discussion of the program loader.

When a thread is in kernel mode, the PTDA for the current process is always
mapped by a global kernel variable so that kernel routines always have access to the
PTDA of the current process. In the 16-bit system each PTDA is a segment, and the cur­
rent PTDA is always mapped by having the SS register loaded with the selector of the
PTDA. In the 32-bit system, each PTDA is a flat memory object accessible by a 32-bit
offset relative to the kernel's system virtual address space~the current PTDA is
accessible through a global kernel variable that contains the offset of the current PTDA.

5.5.4 Kernel Thread Context

The data structure used by the kernel to track each thread in the system is called the
thread control block (TCB). Each TCB is allocated either by a call to DosCreateThread
when a thread is created, or by a call to DosExecPgm when the initial thread is created
during process creation. Like the PTDAs, TCBs use fixed memory and reside within the
kernel space. The TCBs for each process are linked in a chain, with the head of the
chain in the PTDA. Figure 5.8 illustrates the layout of a TCB.

The primary structure in each TCB is the kernel stack, which is used when the
thread is running at privilege level 0 or in kernel mode. Each thread in the system must
have its own kernel stack for two reasons. First, since a thread may block while in the
kernel, a place is needed for saving the blocked state information, as well as the local
data already allocated as the thread made its way to the point where it had to block.
Second, since there are special cases where a thread voluntarily yields the processor
while in kernel mode, the top half of the kernel must be reusable. Voluntary preemption
and yielding are discussed later in this chapter.

122 Multitasking

TCB chain link
Forced action vector
User stack information (32-bit)
TSO link (32-bit)
1/0 information
NPX information
Thread state
Priority
Scheduler queue links
Processor usage counts
Exception information (32-bit)

(TSO portion in 32-bits)
TCB link (32-bit)
Kernel stack

Fig. 5.8 Thread control block (TCB).

When a thread makes the transition from user mode to kernel mode through a gate,
the 80X86 gate hardware automatically switches from the user stack to the kernel stack.
Therefore, the gated architecture of the 80X86 processors supports a natural, stack­
based implementation of dynamic linking. The pointer to the kernel stack for the current
thread is maintained in the task state segment (TSS), which is accessed by the processor
when privilege level transitions occur. The kernel stack is used to preserve the state of
the user's context when EnterKMode is called, and to provide local storage during ker­
nel processing. Also contained in each TCB is information for controlling 1/0; schedul­
ing information, such as priorities and processor usage fields; and forced-action flags
that indicate pending actions that the thread must perform when exiting the kernel.

In the 16-bit version of the system, the TCBs belonging to a process are allocated in
the same segment as the PTDA. When a new thread is created, the PTDA segment is re­
sized and the new TCB is allocated. Figure 5.9 illustrates the layout of PTDAs and
TCBs in the 16-bit system.

SS:O----------~

SP

PTDA
current thread

Fig. 5.9 Layout of 16-bit PTDA and TCB.

5.5 Kernel Architecture 123

Allocating the TCBs in the same segment as the PTDA has several interesting rami­
fications. Since the current PTDA segment is always addressable by the SS segment reg­
ister, the current thread's TCB is always addressable by loading of an offset
register-typically, the current running thread is always addressable by SS:BP. Also, the
links in the chain of TCBs need to be only 16-bit fields, since they are relative to the
base of the PTDA segment. However, there is a cost for this quick access to the current
thread's TCB: Since the maximum segment size on an 80286 is 64KB, there is a limita­
tion of approximately 50 threads per process. Also, in potential future versions of the
l 6-bit system, any growth in the TCB or kernel stack will decrease the number of
threads available per process.

The 32-bit version of the system does not have this limitation, since the TCBs are
allocated out of the kernel space as flat memory objects addressable using a 32-bit offset
relative to the base of the system virtual address space (like PTDAs in the 32-bit sys­
tem). Therefore, the links in the chain of TCBs within a process are 32-bit offset fields.
Since the 32-bit kernel is written in 32-bit C, the kernel stacks are larger than in the 16-
bit version, since the code is 32-bit granular instead of 16-bit granular, and high-level
languages such as C use the stack for local storage. Therefore, the 32-bit system divides
the TCB into a fixed portion called the TCB and a swappable portion called the thread
swappable data (TSD). The TSDs primarily contain the kernel stacks, and can be
swapped out when a thread is in the blocked state. Figure 5.10 illustrates the layout of
PTDAs, TCBs, and TSDs in the 32-bit system.

5.5.5 Context Switching

Context switching refers to the mechanism used by the kernel to stop running one thread
and to start running another. The OS/2 dispatcher implements a policy of context
switching only when a thread attempts to exit the kernel (ExitKMode) or when a thread
in the kernel blocks waiting on an event or resource. Therefore, the ExitKMode routine

Current _..., ________ --,

process PTDA
current thread

TCB

TCB

TCB

Fig. 5.10 Layout of 32-bit PTDA, TCB, and TSO.

TSD

Ken:foT stagk

TSD

124 Multitasking

becomes the single locus of control for forced actions that a thread must perform, such
as context switching, signal dispatching, and termination.

A global flag variable called ReSched is shared between the dispatcher and the sched­
uler. ReSched indicates whether there is potentially a thread of priority higher than that of
the current thread that has been made ready to run. Part of the ExitKMode routine called
whenever a thread attempts to exit kernel mode checks the ReSched flag. If the ReSched
flag is set, the SchedNext routine of the dispatcher is called to switch out the current run­
ning thread in order to run the highest-priority ready thread in the system. SchedNext is the
actual context switch routine of the system, and is the only place that a thread switch
occurs in the kernel. It is called only from ExitKMode and from ProcBlock; the latter rou­
tine is used when a thread in the kernel blocks and gives up the processor.

The thread that is currently running when SchedNext is invoked is called the outgo­
ing thread, and the thread to which SchedNext ultimately switches is called the incoming
thread. Only outgoing threads call SchedNext, and only incoming threads return from
SchedNext. We now look in more detail at how the SchedNext routine performs the con­
text switch.

SchedNext begins execution by calling the GetNextRunner routine in the scheduler
component to determine the highest-priority thread that should be the new running
(incoming) thread. If the outgoing thread is the same as the incoming thread, SchedNext
merely returns, and the current thread continues executing. If the outgoing thread is dif­
ferent from the incoming thread, SchedNext performs a context switch.

If GetNextRunner indicates that there are no threads in the system that are ready to
run, it executes a loop known as the idle loop. The idle loop is executed when all threads
in the system are blocked on some external event. This implies that there is no background
activity and that there are no user requests occurring via keyboard or mouse-the entire
system is waiting. The idle loop exists within SchedNext, and consists of polling the
ReSched flag with interrupts enabled. When an interrupt occurs that makes a blocked
thread ready to run, the thread running in the idle loop will exit, will call GetNextRunner
again, and will continue executing SchedNext to switch in the ready-to-run thread.

Once a new thread to run has been selected, SchedNext determines whether the out­
going thread is within the same process as the incoming thread, or is within a different pro­
cess. If the incoming and outgoing threads are in different processes, SchedNext must
switch the process context (PTDAs, process virtual address spaces, etc.) and the thread con­
text. If both threads are within the same process, only the thread context must be switched.

The actual switching of the process context entails changing the current PTDA, and
calling the memory manager to switch process virtual address spaces. Switching a thread
context entails setting the current thread variable in the current PTDA, changing kernel
stacks, and resuming execution at a known place in SchedNext at which all threads re­
sume running when they are outgoing. Since the task-state segment (TSS) of the system
contains the address of the current thread's kernel stack, it also must be edited during a
context switch to ensure that future privilege level transitions by the running thread use
the proper kernel stack.

An interesting caveat in the OS/2 context switching model is that there is no explicit
"save/restore" instruction or routine used to save all the registers from one thread and

5.5 Kernel Architecture 125

restore the registers for another. Although the TSS construct of the 80X86 tasking archi­
tecture provides this function, OS/2 does not utilize it except for the minimum of having
a single TSS for supporting privilege level transitions. The TSS switching feature of
80X86 processors provides a mechanism for performing a save/restore for the entire reg­
ister set in a single instruction. Since this set includes all segment registers on 80286
architectures, and also the paging registers on the 80386 and 80486, the TSS switch is
slow due to flushing of the segment register caches, flushing of the translation lookaside
buffer used for page translation, and the protection checks that occur as the segment reg­
isters are reloaded.

When contrasted with the OS/2 context switch model, this overhead is not required
for several reasons. The thread's user mode register set is saved on the kernel stack
when the thread enters kernel mode, and is restored when a thread exits kernel mode.
Within SchedNext, only the process virtual address space needs to be switched (and only
in the process switch case), since both the outgoing and incoming threads are executing
in the system virtual address space. Also, all threads resume execution in SchedNext at a
fixed point where known values are loaded into the registers-the threads do not rely on
any saved state lo resume their execution in the kernel, since they are on the kernel stack
already. This results in much faster context switching compared to the TSS switching
model. It also uses less memory, since the TSS model requires a TSS to be allocated and
managed for each thread in the system.

5.5.6 System Calls

System calls, or API function requests, are used by threads running in user mode to ac­
cess services provided by the operating system. Traditionally, most operating systems
place all the system calls in the kernel. This implementation makes the system-and,
consequently, its API-difficult to change without changing the kernel. So that the sys­
tem and its API are more flexible and extendible, OS/2 system calls are implemented us­
ing dynamic linking. This implementation allows OS/2 APis functions to reside in either
a dynamic link library or the kernel transparently to the requesting thread.

All 16-bit and 32-bit OS/2 API requests are made by pushing the parameters on the
user mode thread stack, then issuing a CALL instruction to transfer control to the target
API routine. The address of the target API routine is a dynamic link that is resolved ei­
ther when a process is created and loaded into the process virtual address space, or at
run time using the dynamic linking API functions. In the 16-bit system, all addresses
and dynamic links are segmented 16: 16 virtual addresses, and the control transfer occurs
using the far variety of the CALL instruction. In the 32-bit system, all addresses and dy­
namic links are flat 0:32 virtual addresses, and the control transfer utilizes the near vari­
ety of the CALL instruction.

5.5.6.1 DLLAP!s

OS/2 DLLs are loaded into the process virtual address space when the process is creat­
ed, and potentially while the process's threads are executing in user mode (at run time).
Therefore, DLLs are effectively attached to the process, and the threads within the

126 Multitasking

process can make use of the DLLs API functions. Since DLLs are mapped into user space,
their code and data are swappable, instead of being fixed in the kernel. Also, a DLL can
easily access the API parameters on the thread's user stack, since it is running in the
requestor's context. Since a thread that has called an API in a DLL runs in user mode, a
thread executing in a DLL can be preempted. For DLLs to be shared among processes,
they must be reentrant. DLLs make use of interprocess communication constructs, such as
semaphores and shared memory, to ensure their integrity. A DLL with integrity is one that
can be shared by processes, yet not allow any process to hinder any other process. In this
environment, an errant or malicious process can cause only its own termination. Chapter 7
discusses issues related to interprocess communication, memory sharing, and parameter
validation that must be considered to guarantee this level of integrity.

An example of an API that is implemented in a DLL instead of in the OS/2 kernel is
the queueing API, which provides functions for managing queues between processes.
Since the queueing API can be implemented without requiring the protection or nonpre­
emptive execution state of the kernel, it is a DLL that uses other functions in the API to
provide services. The queueing code and data are swappable and can be preempted,
resulting in more efficient memory and processor utilization. Since the dynamic linkage
to the queueing API is transparent, the queueing API can be freely migrated to the ker­
nel, or perhaps to another DLL module, without requestors having to change. However,
some APis require functions that exist only in the kernel, or have special performance or
protection requirements. We now discuss the implementation of kernel system calls and
APis.

5.5.6.2 Kernel AP!s

In both 16-bit and 32-bit OS/2 systems, the kernel's code and data are mapped into the
system virtual address space at privilege level 0 using global descriptor table (GDT) se­
lectors. This mapping makes the kernel and its API automatically accessible to all pro­
cesses, since there is only one GDT in the system. However, since it is mapped at
privilege level 0, it cannot be accessed directly by a thread running in user mode (privi­
lege level 3) without a general protection fault occurring.

OS/2 uses the call gate mechanism employed on the 80X86 processors for transfer­
ring control from threads running in user mode to an API implemented in the kernel. For
each API implemented by the OS/2 kernel, a call gate is allocated in the GDT. Recall
from Chapter 2 that a call gate has a privilege level, and has a target address field within
its descriptor. The call gates for the OS/2 kernel APis have privilege level 3, so that they
are accessible to threads running in user mode executing CALL FAR instructions. The
target address within the gate descriptor points to the entry point at privilege level 0 for
the APL

Other traditional operating systems that employ static linking in their API calling
conventions typically vector all API requests through a single call gate, along with an
extra parameter called the system call number. Although, at first glance, this mechanism
seems simpler than the call gate-per-API model, it implies that the requestor must have a
layer of bindings statically linked into its code to put in place the static link or system
call number. It also implies that the kernel must have a dispatch mechanism to fan out

5.5 Kernel Architecture 127

the API calls to the worker routines, rather than having them called directly from the call
gate entry point. This prohibits API functions from being called directly from applica­
tion code, slows performance, and restricts API extendibility and flexibility.

In any operating system, several events occur during the processing of a system call
in the kernel. The application initiates transfer of control to the kernel using a trap or
service call instruction. The kernel copies the user parameters from the user space to the
kernel space to prevent them from being altered while the system call executes. The ker­
nel then saves the user mode context and dispatches the system call to the proper kernel
routine. The kernel routine responsible for the API validates the parameters, performs its
service, and then exits with the return status. When the system call service routine com­
pletes, the kernel restores the user mode context, and transfers control back to the re­
questor with the return status.

In OS/2, the call gate mechanism is used for most of these steps. When the thread in
user mode issues the CALL FAR instruction to a call gate in the GDT, the processor
switches automatically from the thread's user stack to the kernel stack, and copies the
parameters from the user stack to the kernel stack using the count parameter in the gate
descriptor. Several necessary steps are thus accomplished~control has been transferred
to an entry point in the system virtual address space, the processor is executing at the
most trusted privilege level, and the requestor's parameters have been copied from user
space to kernel space.

EnterKMode is then called to save the user context on the thread stack, and official­
ly to stamp the thread as being in kernel mode. Note that there is a state where a thread
is running at privilege level 0 but is not yet in kernel mode. The entry point then branch­
es to the worker routine that validates the API parameters and performs the API func­
tion. After the worker routine completes, the thread then calls ExitKMode to restore the
user-mode context and subsequently to return to user mode with the RET FAR instruc­
tion. Figure 5.11 illustrates the sequence of operations for a kernel system call.

When a system call is serviced in the kernel, the thread may either block awaiting
some resource or event, or complete service without waiting. If the thread must stop to
wait on some resource, it calls the ProcBlock routine of the dispatcher. ProcBlock
moves a thread from the running state to the blocked state, and calls SchedNext to force
a context switch. The ProcRun routine is used to wake up a blocked thread. ProcRun
moves one or more threads to the ready-to-run state and sets the ReSched flag to force a
dispatch cycle when the current thread exits the kernel. ProcBlock and ProcRun are dis­
cussed in more detail later in this chapter.

When the system call worker routine completes its service, the thread attempts to
return to the calling code. The thread calls ExitKMode to exit kernel mode and to restore
the user mode context. However, ExitKMode is the focal point of context switching pol­
icy; before restoring the user mode context and returning, it checks to see whether there
are any per-process forced actions. Examples of forced actions are pending signals and
exceptions, critical sections, and trace events used for debugging programs. After the
process's forced actions have been serviced, the ReSched flag is tested to see whether a
reschedule cycle is pending, indicating that another thread may be a better candidate to
run. Note that interrupts must be disabled while the ReSched flag is tested, since it can

128 Multitasking

Privilege level 2 and 3

Privilege level 0

Interrupt

IRET

Fig. 5.11 Th read state transitions.

ProcRun

', Context switch
------------possible

----- ~:~

be set during an interrupt. If ReSched is set, SchedNext is called to perform a context
switch. When a thread is ultimately scheduled and exits the kernel, the user mode con­
text is restored from the kernel stack, and control is transferred back to the requestor
using the RET FAR instruction.

You might wonder, if a thread executing in kernel mode is nonpreemptible, how can
there be another thread that is a better candidate to run? Although the kernel is nonpre­
emptible, it is interruptible. Interrupts from external devices such as clocks, disk drives,
and communications controllers can occur, and these interrupts usually result in comple­
tion of 1/0 service for another thread that is not in the current context. An interrupt oc­
curring while a thread is in kernel mode causes a control transfer to a device interrupt
handler. The handler often calls ProcRun to notify a blocked thread that the thread's re­
quest is complete and to make it ready to run. Since the interrupted code was executing in
privilege level 0, and privilege level 0 and kernel mode are nonpreemptible, control reverts
to the thread originally executing in kernel mode. When the thread exits the kernel,
ExitKMode detects the set ReSched flag to indicate that a reschedule cycle is necessary.

5.5 Kernel Architecture 129

Another interesting aspect of the system call mechanism is how threads executing
32-bit API requests within the flat model move to privilege level 0 from user mode.
Since the 32-bit dynamic link is implemented with a CALL NEAR using a 0:32 pointer,
and the 80X86 architecture requires a CALL FAR to use a call gate, a layer of stub rou­
tines is provided for each API function. The stub routines are near entry points that
make a CALL FAR to a call gate in the GDT on behalf of the requestor. There is a two­
line stub routine for each 32-bit API serviced by the kernel. The stub routines are invisi­
ble to users of the API, and are mapped into the process virtual address space within one
of the system's DLLs.

5.5. 7 Interrupts

Interrupts are special kinds of control transfers that are used to handle asynchronous events
external to the processor. The 80X86 processor architectures provide both maskable and
nonmaskable interrupts. Maskable interrupts can be inhibited by software that controls the
interrupt flag of the processor flags. The CLI and STI instructions are used for enabling
and disabling maskable interrupts. The interrupt controller used in all PC architectures is
the Intel 8259 chip. The 8259 receives eight levels of interrupts. It assigns priorities to
them, and dispatches them to the host processor according to how it is programmed. Most
PCs have two of these chips, providing 15 levels of external interrupts. When a hardware
interrupt occurs, the 8259 begins an interrupt cycle with the host 80X86 processor, and
holds further interrupts on the active interrupt level and levels of lower priority until the
processor sends an end-of-interrupt (EOI) command to the 8259.

In OS/2, interrupts refer specifically to external hardware interrupt service requests
from devices. The interrupt manager, a component of the kernel, is responsible for han­
dling the interrupt controller, managing interrupt handlers, and dispatching interrupt re­
quests. The addresses of interrupt handlers registered by the kernel and device drivers
are saved by the interrupt manager in an interrupt table. Since the PS/2 and EISA com­
puter architectures allow multiple devices to have a single interrupt level, the table may
have multiple handlers for each interrupt level. Figure 5.12 illustrates the interrupt table.

Interrupt level Interrupt handler addresses

0 J J -,.

1 J I I
2 J .L

14 J -,.
15 J

Fig. 5.12 Interrupt table.

130 Multitasking

Like system calls, the protected-mode interrupt mechanism of the 80X86 processors
uses gates to facilitate privilege level transitions during interrupt service. The interrupt
descriptor table (IDT) contains interrupt or trap gates for each interrupt and exception
serviced by the system. Since hardware interrupts can occur while the system is in both
user mode and kernel mode, the privilege level of the hardware interrupt gate descriptors
is 3. Each gate descriptor points to a stub of code that saves the interrupt number and
vectors to the interrupt manager's dispatch routine.

When an interrupt occurs, control is transferred through the IDT to the interrupt
manager's dispatch routine with interrupts disabled. The registers of the interrupted con­
text are saved, and the system switches into interrupt mode by switching from the cur­
rent thread kernel stack to a global system interrupt stack. Interrupt mode is the bottom
half of the kernel; it runs using a systemwide interrupt stack, since the bottom half
should not alter the top half's current kernel stack, and it cannot rely on any specific
process or thread to be currently running.

Once the system has entered interrupt mode, the interrupt manager's dispatch rou­
tine then uses the number of the interrupt as an index into the interrupt table, and calls
all the interrupt handlers chained together for that interrupt level. The dispatch cycle fin­
ishes when an interrupt handler indicates that it has serviced the interrupt.

Before the dispatch routine prepares to return to the interrupted context, a critical
part of the code for enforcing the system's preemption policy is executed. If the inter­
rupted context was executing code at privilege level 0, then the interrupted thread was
running in kernel mode or at privilege level 0. In this case, since kernel mode and privi­
lege level 0 are nonpreemptible, the interrupted context is resumed directly by restora­
tion of the registers and return of control to the interrupted point.

If the interrupted context was executing at privilege level 2 or 3, however, then the
interrupted thread was executing in user mode. Since user mode is preemptible, the dis­
patcher checks the ReSched flag to see whether another thread is potentially ready to
run. If the ReSched flag is set and the interrupted context indicates user mode, the inter­
rupt dispatch routine calls EnterKMode immediately, followed by ExitKMode, to force a
preemptive rescheduling cycle. The interrupt manager does not perform the context
switch itself. The ReSched flag gets set when an interrupt handler issues a ProcRun for a
blocked thread awaiting an interrupt.

Having a single global interrupt stack also allows the interrupt manager to identify
and manage nested interrupts. A nested interrupt can occur after an interrupt handler
sends an EOI command to the 8259 after clearing the interrupt at the original device. At
this point, the interrupt handler can enable maskable interrupts, and the interrupt dis­
patch routine can be reentered before the current interrupt dispatch cycle completes. The
code that performs preemption control at the end of the dispatch cycle also recognizes a
nested interrupt when examining the interrupted context, and returns to the previous
interrupt mode context even though the ReSched flag is set. Nested interrupts are an
important feature that allows an operating system to be more responsive to interrupts
and reduces interrupt dispatch latency. So that the requirements for interrupt dispatch

5.5 Kernel Architecture 131

latency are met, the maximum time that interrupts can be disabled in any portion of the
system is 400 microseconds.

5.5.8 Exceptions

Exceptions are internal processor events that cause a special type of control transfer. On
80X86 processors, exceptions are dispatched the same way as interrupts, but there is no
involvement with an external interrupt controller. Exceptions are assigned reserved
interrupt numbers by the processor, and are delivered using trap or interrupt gates in the
system's IDT.

Exceptions are further classified in the 80X86 architecture into faults, traps, and
aborts. A fault is an exception that is reported before or during the instruction that will
cause the exception. The state saved during the control transfer references the instruc­
tion that causes the fault, allowing instruction to be potentially restarted. Examples of
faults include page faults, segment-not-present faults, and divide-by-zero or invalid­
opcode exceptions. Traps are reported immediately after the instruction that causes
them. A typical trap would be the use of the INT 3 breakpoint instruction for debugging
a program. An abort is an exception that does not permit the precise location of the error
to be reported; it is used to report nonrecoverable system errors.

The OS/2 trap manager, a component of the kernel, provides exception handlers for
the 80X86 exceptions, and services for routing exceptions to the appropriate kernel or
user exception handlers. The trap manager registers its exception handlers by initializing
the appropriate IDT gate descriptors to point directly to the trap manager's low-level
trap handlers. These trap handlers save the exception context and call an exception dis­
patching routine in the trap manager.

OS/2 divides the exceptions into those that can be handled by threads in user mode,
called user exceptions, and those handled by the system. System exceptions are handled
by the kernel and are routed directly to their components by the trap manager. Note that
it is possible for the current thread to block during the handling of a system exception
such as a page fault when swap I/O must be done before the thread can continue execu­
tion. User exceptions such as divide by zero, invalid opcode, and boundary check have
default actions that are taken by the system if the user thread does not handle them.
Typically, the default action in user exceptions is to terminate the process.

A difference between 16-bit and 32-bit OS/2 is that the 16-bit system maintains user
exception handlers on a per-process basis, whereas the 32-bit system provides user excep­
tion handling on a per-thread basis. The general protection fault exception, which is raised
when a protection violation occurs, cannot be handled by users in 16-bit OS/2 and results
in process termination. However, 32-bit OS/2 allows users to handle general protection
faults, since the latter are useful in lazy parameter validation schemes. Lazy parameter val­
idation is discussed further in Chapter 7, with respect to exception management.

When an exception occurs, control is transferred through the IDT to the trap man­
ager dispatch routine, with interrupts disabled and the trap number identified. The trap

132 Multitasking

manager dispatch routine calls EnterKMode to preserve the thread's user context, and
then dispatches the thread to the appropriate trap handler according to the trap type. The
trap handler either blocks by calling ProcBlock, or completes and returns to the trap
manager dispatch routine. The trap manager dispatch routine then calls ExitKMode to re­
store the user context and to resume execution. Unlike interrupts, exceptions are handled
on the kernel stack of the thread that caused the exception. They are handled there
because the current thread caused the exception. Also, unlike interrupts, exceptions do
not nest, so the amount of stack space required is limited.

Exceptions that can be potentially handled by user mode threads are routed to a spe­
cial trap handler called the user exception dispatcher, which implements the exception
APis and user exception routing. User exceptions are not dispatched immediately.
Instead, the user exception dispatcher builds an exception stack frame on the current
thread's user mode stack that will simulate an exception in the current thread when that
thread returns to user mode. When the trap manager dispatch routine finally calls
ExitKMode to restore the thread's context, the thread will resume automatically in the
context of the user exception handler the next time it is scheduled. If the exception was
not handled by a user handler, the kernel processes the default action. If the default
action is process termination, a bit is set in the process's force flags that forces the pro­
cess to terminate itself the next time one of its threads exits the kernel.

5.5.9 Timeslicing

The timeslicing function of the system provides an environment where each thread runs
for a short time and is then preempted for a rescheduling cycle. The length of time each
thread gets to run is called a times/ice, and the timeslice value is configured when the
system is started. Since OS/2 implements preemption in user mode, a thread is not al­
ways permitted to run for a complete timeslice. This section describes how the scheduler
and dispatcher components interact to provide the basic timeslicing function.

The timeslice is counted using a real-time clock external to the processor. OS/2 uses
ticks from the clock to calculate timeslice intervals. A timeslice can be anywhere from
34 milliseconds to 9999 milliseconds. However, the clock is set to a tick granularity
finer than the timeslice, so that other timer services can be provided to applications.

The scheduler manages the states and priorities of threads and calculates real-time
processor usage. Timer ticks are recorded when the clock device interrupts the proces­
sor. The clock interrupt causes the system to enter interrupt mode and to dispatch the
interrupt to the clock device driver interrupt handler. The clock interrupt handler calls
the scheduler entry point for recording timer ticks, SchedClock. SchedClock calls the
routine SchedTick for timeslice accounting, and various other components of the kernel
that rely on real-time aging algorithms.

SchedTick adds the elapsed time to the current thread's processor usage field, and
checks to see whether the thread has run for a timeslice. If the thread has completed a
timeslice, SchedTick sets the ReSched flag, resulting in a forced rescheduling cycle oc-

5.5 Kernel Architecture 133

curring the next time the thread exits the kernel. In either case, SchedTick returns to the
clock interrupt handler, which ultimately returns to the interrupt dispatcher.

As in all interrupts, the interrupt dispatcher checks whether the interrupted context
was in interrupt mode (i.e., resulting in a nested interrupt), kernel mode, or user mode. If it
was in interrupt mode or kernel mode, the interrupted context is restored directly, since
these are nonpreemptible modes. Ultimately, when the thread finishes running nonpre­
emptible code and exits the kernel, the forced reschedule cycle (timeslice) occurs. If the
interrupted context is user mode, then the interrupt dispatcher calls EnterKMode followed
by ExitKMode to force a reschedule. In this scenario, the preemption is called a timeslice.

5.5.10 ProcBlock/ProcRun

The low-level dispatcher routines responsible for moving a thread from the running state
to the blocked state, and from the blocked state to the ready-to-run state, are called
ProcBlock and ProcRun, respectively. Threads executing in kernel mode either com­
plete their service or block awaiting a resource or an external interrupt. Threads can also
block when they incur page faults or segment-not-present faults, waiting for the I/0 to
load the memory.

The ProcBlock routine requires three parameters: an event identifier, a timeout
value, and flags. The event identifier is a token that represents the event on which the
blocked thread is waiting. OS/2 maps the event identifiers onto system virtual addresses.
Typically, a thread calling ProcBlock uses the address of a major data structure related
to the block request. The timeout value allows a thread to specify the maximum amount
of time that the thread should block waiting on the event. The flags parameter specifies
whether the block is interruptible by signals. Because both the timeout and flags
parameters are used, blocked threads are prevented from being blocked forever.

ProcBlock is allowed to be called only in kernel mode (top half), never in interrupt
mode (bottom half). When a thread in kernel mode calls ProcBlock, the thread is moved
into the blocked state, is inserted on the appropriate timeout and block queues, and exe­
cutes SchedNext to force another thread to be run. The timeout value is aged by
SchedClock, discussed previously in this chapter. If a thread's timeout occurs before
ProcRun is issued on the event, the thread is moved automatically into the ready state,
and the ReSched flag is set.

The ProcRun routine requires one parameter: an event identifier. Since event identi­
fiers are mapped onto system virtual addresses, they are not unique. Therefore, ProcRun
must wake up all threads blocked on a given event identifier. This requirement is a side
effect of using system virtual addresses for event identifiers. Multiple threads waiting on
a single event cannot be distinguished from multiple threads waiting on different events
using the same address for the event identifier. Therefore, ProcRun marks all the threads
waiting on the event as ready, sets ReSched, and returns to the caller. ProcRun can be
called in kernel mode, but is most often called from interrupt mode.

The use of system virtual addresses for mapping event identifiers leads to other side
effects in the system. Since more than a single thread can be blocked using a single

134 Multitasking

event identifier, when a thread awakens and returns from ProcBlock, it must check
whether the intended event has occurred. Also, since ProcRun can be called at interrupt
time, interrupts must be disabled before the condition of the event is checked. The man­
agement of the state of the interrupt flag during calls to ProcBlock is critical, since the
state is used to guarantee mutually exclusive access to data and code shared by the top
half and bottom half of the kernel. Figure 5 .13 illustrates how ProcB lock is called.

If all threads awaken, race conditions arise in the kernel, because all the awakened
threads are rescheduled according to priority. All the awakened threads, except for the one
that finds its event satisfied, will be rescheduled long enough for their conditions to be
checked and for ProcBlock to be called again. This practice is avoided where possible by
careful selection of event identifiers by the system, but it cannot be avoided in some cases.
The mapping of events to system virtual addresses also has the potential to cause logic and
correctness problems to occur in unexpected areas. In Chapter 7, we shall examine the
effect this race condition has on the performance of 16-bit semaphores.

An interesting comparison to the UNIX system can be made in this area. The
ProcBlock and ProcRun routines closely parallel the UNIX sleep and wakeup routines.
Both systems use addresses for event identifiers; both suffer from the same side effects.
However, the 32-bit version of OS/2 introduces a different architecture that uses unique
event identifiers and allows the caller of ProcRun to request single or multiple thread
wakeup. This distinction enables the system to wake up a single thread of highest prior­
ity among a group of threads blocked on an event identifier. The capability to wake up
multiple threads when that is the intention also is retained. This capability allows the
system to eliminate race conditions and wasted processor cycles, and to provide a
consistent wake-up time no matter how many threads block on an event.

The 32-bit dispatcher uses a hash table to store and search event block ids so that
the performance of ProcBlock and ProcRun is consistent no matter how many threads in
the system are blocked. Each hash entry contains a pointer to a list of TCBs blocked on
one or more event ids. There can be more than one event id in the same hash entry, since
more than one unique event id can be hashed to the same value. The list of TCBs
blocked on an event id is sorted in order of priority.

5.5.11 Voluntary Preemption

Since a thread running in kernel mode is not preemptible, it would seem that a thread in
the kernel could continue running and effectively exclude other threads from running.
This situation is especially problematic given the existence of time-critical threads.
Although most system calls and kernel services complete rapidly or block the requesting

Disable interrupts
While (need to block)

ProcBlock (Event, Timeout, Flags)

Fig. 5.13 ProcBlock calling sequence.

Summary 135

thread, there arc a few situations in which large lists must be searched, or long
sequences of instructions must be executed, in order to complete the service. For
instance, in the 16-bit system, the memory manager performs compaction, an expensive
process in which segments are copied between areas of physical memory.

OS/2 guarantees that a time-critical thread that is made ready to run will be dis­
patched within 4 milliseconds. To ensure that ready time-critical threads will get a
chance to run within 4 milliseconds, the kernel implements a type of voluntary preemp­
tion called a yield. So that this criterion is met, there is a secondary version of the
RcSchcd flag, called the TCRcSchcd (for time-critical) flag. The TCRcSchcd flag is set
whenever a thread in the time-critical class moves to the ready state. In specific areas in
the kernel where an operation may take longer than 4 milliseconds, the code is written to
call periodically a dispatcher interface named TCYicld. TCYield examines the state of
the TCReSchcd flag and forces a context switch if TCRcSched is set by calling a special
entry point in the SchedNcxt routine.

Since the yielding thread can potentially own resources, it is important that execu­
tion return to the yielding thread after the time-critical thread has run. To ensure this re­
turn, TCYicld boosts the priority of the yielding thread to a priority level just below the
lowest time-critical priority. Note that these critical sections of code in the kernel that
can potentially yield the processor must be written to be reentrant, and are in effect
small sections of coarsely preernptible code in the kernel. Full preemption, instead of
voluntary preemption, would require the entire kernel to be written such that a preemp­
tion cycle could occur at any time, not just at specifically defined points where it is nec­
essary. A symmetric multiprocessor version of the kernel would have to be reentrant and
to allow concurrent execution of multiple threads in the kernel.

In the example of copying 64KB of memory, the 16-bit memory-manager code that
performs the operation is written to copy as much of the segment as is possible in 4 milli­
seconds, to call TCYicld to allow time-critical threads to run, then to continue the opera­
tion after the time-critical threads have run.

5.6 Multitasking API

Table 5.1 lists the 16-bit and 32-bit multitasking API calls.

SUMMARY

This chapter presented OS/2' s multitasking architecture. The basic elements of the
architecture are processes and threads; they are managed by the multitasking APL The
scheduling model that threads use in OS/2 is a multilevel priority scheme with round­
robin scheduling within a priority level. The kernel contains most of the critical portions
of the system, and the multitasking components that provide the system's concurrency
features. The task manager, scheduler, dispatcher, and interrupt manager work together
to provide the fundamental multitasking functions of context switching, dispatching, and
scheduling.

136 Multitasking

16-bit API name 32-bit API name

DosCreateThread DosCreateThread

DosCWait DosWaitChild

NIA DosWaitThread

DosEnterCritSec DosEnterCritSec

DosExecPgm DosExecPgm

DosExit DosExit

DosExitList DosExitList

DosGetlnfoSeg DosGetlnfoBlocks

DosGetPrty NIA
DosKillProcess DosKillProcess

NIA DosKillThread

DosSetPrty DosSetPriority

DosGetPID NIA
DosGetPPID DosGetPPID

DosPTrace DosDebug

DosResumeThread DosResumeThread

DosSuspendThread DosSuspendThread

DosGetEnv NIA
DosScanEnv DosScanEnv

Table 5.1 Multitasking API calls.

TERMINOLOGY

API requests
asynchronous 1/0 operation
blocked
blocking
CALL FAR instruction
call gate
child process
clock device-driver interrupt handler
context
context switching
critical section
daemon thread
device interrupt handler
device 1/0

Description

Create a thread
" Wait for child process termination

Wait for thread termination

Disable thread switching within process

Create child process and load program

Terminate thread/process

Register process termination handler

Get process/thread info

Get execution priority

Send termination signal to process

Kill thread within process

Set execution priority

Get process/thread IDs

Get parent process ID

Debug program/process

Resume a thread

Suspend a thread

Get process environment

Scan process environment

dispatcher
DOS compatibility
DosCreateThread
DosCWait
DosKillProcess
DosExecPgm
DosExit
DosExit AP!
DosPTrace
dynamic link import
dynamic link library
dynamic priority variation
EnterKMode
event

ExitKMode
exception
exception handler
exitlist procedure
external reference
fault
flat linear address space
file handle
foreground
foreground boost
general protection fault
idle loop
idle priority class
incoming thread
inDOS
input focus
1/0 boost
interprocess communication
interrupt
interrupt descriptor table (IDT)
interrupt dispatch latency
interrupt management
interrupt manager
interrupt mode
interrupt table
kernel
kernel mode
kernel space
kernel stack
maskable interrupt
massive parallelism
massively parallel
master/slave relationship
memory management
memory protection
module table entry (MTE)
multilevel priority architecture
multitasking
multitasking API
multithread process model
nested interrupt
open file handle
outgoing thread
page table

Terminology 137

parent process
per-task data area (PTDA)
priority boost
privilege level 0
process
process ID (PID)
process termination handler
process virtual address space
program
program loader
queue
ready
reentrant
regular priority class
ReSched
resume
round-robin scheduling
SchedNext
scheduling algorithm
scheduler
segment-not-present fault
semaphore
sess10n
sibling process
SIGBREAK
SIGCTRLC
signal
signal handler
SIG TERM
single-thread process model
stack-based calling convention
stack-based linkage
starvation boost
supervisor
suspend
system call interpreter
system clock
system interrupt stack
system timer
system virtual address space
tasking manager
task state segment (TSS)
thread
thread control block (TCB)

138 Multitasking

thread ID (TID)
thread 1
thread swappable data (TSD)
thread termination
time-critical priority class
time-critical thread
time slice
timeslicing
translation lookaside buffer (TLB)
trap

EXERCISES

trap dispatcher
trap manager
unblocking
user exception
user exception dispatcher
user space
user stack
worker routine
yield

5.1 Explain how, even though DOS is not a multitasking operating system, it is still possible for
applications to provide their own multitasking.

5.2 What are the primary resources contained by a process?

5.3 Why can a process not access another process's memory or the system's memory?

5.4 How are processes created in OS/2?

5.5 Explain OS/2's hierachical process structure. Discuss the notions of parent, child, and sib­
ling processes, and of the root of the process tree.

5.6 What do we mean when we say that a child process runs synchronously relative to its parent?
What do we mean when we say that a child process runs asynchronously relative to its parent?

5.7 How are processes terminated in OS/2?

5.8 What is an exitlist handler? How does the kernel know which handlers are associated with a
particular process?

5.9 What is a signal? In what three ways may a process respond to a signal?

5.10 Is it true that OS/2 processes do not run? Explain your answer.

5.11 Explain the various thread states (i.e., running, ready, and blocked), and describe the vari­
ous transitions that may occur between thread states.

5.12 List advantages to the multithread process model over the traditional single-thread process
model found in systems such as UNIX and MVS.

5.13 How does the multithread process model promote greater overlapping of I/O requests?

5.14 Why is OS/2's multithread process model important in the context of multiprocessor sys­
tems?

5.15 Unlike processes, OS/2 threads are not hierarchical. What implication does this have for the
relationships among the threads of a process?

5.16 Discuss the special significance of thread 1.

5.17 How does OS/2 guarantee mutually exclusive access to shared data among the threads of a
process?

5.18 What do we mean when we say that a set of threads within a process have a master/slave
relationship?

Exercises 139

5.19 Describe OS/2's multilevel priority architecture. Explain dynamic priority variation and
round-robin scheduling.

5.20 Is it possible for a thread's execution to be postponed indefinitely? Explain your answer.

5.21 An OS/2 thread may set its own priority. In some operating systems, allowing individual
activities to control their own destiny in this manner is frowned on. Why is such a capability rea­
sonable in OS/2?

5.22 Distinguish among time-critical threads, regular-priority-class threads, and idle-priority­
class threads.

5.23 What guarantees does the system give to time-critical threads?

5.24 In OS/2, timeslicing is driven by a system clock and can be configured by the user.
Values for the quantum may be set between 34 milliseconds and 9999 milliseconds. What are
the consequences of selecting far too large a quantum? What are the consequences of selecting
far too small a quantum? How might a user tune the quantum to an appropriate value for a given
system?

5.25 Define each of the following terms in the context of OS/2 multitasking: foreground, input
focus, background, foreground boost, 1/0 boost, starvation boost.

5.26 What are the key functions performed by the OS/2 kernel?

5.27 Describe the functions of each of the following kernel components involved in the manage­
ment of multitasking: the tasking manager, the dispatcher, the scheduler, the interrupt manager,
and the trap manager.

5.28 Explain how the dichotomy between user mode and kernel mode helps to ensure protection
in OS/2's multitasking environment.

5.29 What might cause a general protection fault? How does the system typically respond to
such a condition?

5.30 What is kernel mode? Under what circumstances might a thread make the transition from
user mode to kernel mode?

5.31 Why do you suppose threads running in kernel mode are not preemptible?

5.32 How might a thread be executing at privilege level 0, yet not be in kernel mode?

5.33 When can context switches occur?

5.34 In the operating systems literature, the data structure that serves as a central depository for
all information about a process is called the process control block (PCB). What data structure in
OS/2 corresponds to the PCB?

5.35 How is the PTDA of the current process located in 16-bit OS/2? How is the PTDA of the
current process located in 32-bit OS/2?

5.36 What is the idle loop?

5.37 Distinguish between process context switching and thread context switching. What opera­
tions are performed to accomplish each type of context switch?

5.38 Can a thread that has called an API in a dynamic link library, and is currently executing in
that dynamic link library, be preempted? Explain your answer.

5.39 Describe the sequence of events that occurs in OS/2 from the initiation of a system call
request by an application, through the processing of the system call by the kernel, to the resump­
tion of the application.

140 Multitasking

5.40 What do we mean when we say that, in OS/2, although the kernel is nonpreemptible, it is
interruptible?

5.41 What is a maskable interrupt? What does it mean to enable or disable maskable interrupts?

5.42 Describe the communications that occur between an Intel 8259 controller and a host 80X86
processor when an interrupt occurs.

5.43 Why does the OS/2 interrupt table potentially have multiple interrupt handlers per interrupt
level?

5.44 How might a nested interrupt occur?

5.45 Distinguish among the three exception types on the 80X86 architecture: faults, traps, and
aborts.

5.46 Under what circumstances might the current thread block during the handling of a system
exception?

5.47 Why are exceptions, unlike interrupts, handled on the kernel stack of the thread that caused
them?

5.48 Explain how OS/2 implements timeslicing.

5.49 How is 32-bit OS/2's algorithm for thread-wakeup superior to UNIX's algorithm?

5.50 Discuss the operation of OS/2's voluntary preemption technique, called a yield. How does
the yield capability help to ensure rapid response to the needs of time-critical threads?

5.51 Give an example of an application that is inherently parallel. Explain why programming
such an application with multiple threads is more natural than is programming it with a single
thread.

5.52 In what sense are all the threads of a process identical? In what sense are they different?

6
Memory Management

The fancy is indeed no other than a mode of memory
emancipated from the order of time and space.

Samuel Taylor Coleridge

'Tis in my memory lock' d,
And you yourself shall keep the key of it.

William Shakespeare

A great memory does not make a philosopher,
any more than a dictionary can be called a grammar.

John Henry, Cardinal Newman

141

Outline

6.1 Introduction
6.2 OS/2 1.X Memory Management

6.2.1 Memory Model
6.2.2 Memory Objects
6.2.3 OS/2 1.X Memory Management API
6.2.4 OS/2 1.X Memory Management Kernel

6.2.4.1 Virtual Memory Management
6.2.4.2 Loader
6.2.4.3 Physical Memory Management
6.2.4.4 Segment Swapping

6.3 OS/2 2.X Memory Management
6.3.1 Memory Model
6.3.2 Memory Objects
6.3.3 OS/2 2.X Memory Management API

6.3.3.1 Private Memory
6.3.3.2 Shared Memory
6.3.3.3 Memory Object Control
6.3.3.4 Memory Suballocation
6.3.3.5 Dynamic Linking

6.3.4 OS/2 2.X Memory Management Kernel
6.3.4.1 Virtual Memory Management
6.3.4.2 Loader
6.3.4.3 Page Management
6.3.4.4 Page Aging
6.3.4.5 Page Swapping

6.4 Segment Versus Flat Memory Model
6.5 Memory Management API
6.6 Dynamic Linking API

Summary

142

6.1 Introduction 143

6.1 INTRODUCTION

This chapter describes the memory management aspects of OS/2. We begin with a look at
the terminology necessary to understand OS/2 memory management. Physical memory is
primary memory, or the range of real addresses within a computer. For example, the DOS
system allows a program to access physical addresses in the range from OKB to 640KB.
OS/2 systems allow far more physical storage to be accessed than do DOS systems.

A major feature of most multitasking systems such as OS/2 is to utilize virtual
memory. The key to virtual memory is that it allows the addresses referenced in a run­
ning program to be disassociated from the addresses available in primary storage. A pro­
cessor's memory management unit (MMU) provides this feature, which is called
address translation. The MMU translates virtual addresses into physical addresses as
instructions are executed. The range of virtual addresses available is called the virtual
address space; the range of physical addresses available is called the physical address
space. Virtual memory systems have the characteristic of allowing a program or process
to be independent of its actual position in physical memory, whether all or part of that
program or process is in physical memory. The address translation between virtual and
physical addresses occurs at run time and must be extremely fast-otherwise, the perfor­
mance of the system would be degraded severely. Another attribute of virtual memory
systems is that the range of the virtual address space can be independent of the range of
real memory. In other words, the virtual address space can be far larger than the real
address space. Typically, secondary storage media, such as disks, are used as swapping
devices for saving the portions of a program that are not resident in physical memory at
the time that the program is running.

In a multitasking, virtual memory system, protection is another major feature usu­
ally provided by the memory management unit of the processor. There are two forms of
protection that are required in a multitasking system. The first is protection among the
processes in the system, which allows each process to have an isolated memory envi­
ronment in which to run. This memory environment is called the process virtual address
space, as we saw in Chapter 5. By allocating a process virtual address space to each pro­
cess, we protect the individual processes in the system from one another. The archi­
tecture of the process virtual space defines what the memory model of a system is, or
how memory looks to the processes in the system. The second type of protection pro­
vides isolation of the system from the user processes. In the implementation of this pro­
tection scheme, the system virtual address space encompasses the kernel memory and all
the process virtual address spaces. The system virtual address space is accessible only
by a thread running in kernel mode.

Relating these factors to what we discussed in Chapter 5, a thread running in user
mode can access only memory mapped by its own process virtual address space; it can­
not access memory within another process's virtual address space unless memory shar­
ing between the processes has been set up. A thread in user mode also cannot access
kernel memory. However, a thread in kernel mode can access all process virtual address
spaces and kernel memory. In summation, both kinds of protection are necessary in any
multitasking system to guarantee the integrity of concurrent applications.

144 Memory Management

The memory management component of the system is responsible for allocating
process virtual address spaces and for setting up the required hardware structures to
enable processes to be protected from one another and from the system. The memory
management API allows threads within a process to manipulate the contents of the pro­
cess virtual address space. It also provides functions for manipulating memory objects
within the process virtual address space. OS/2 provides functions for object allocation,
deallocation, and sharing.

6.2 OS/2 1.X MEMORY MANAGEMENT

In this section, we describe the motivations for the architecture of 16-bit OS/2 memory
management. The 16-bit OS/2 version targets the 80286 processor platforms. The main
goals with respect to memory management in 16-bit OS/2 are to break the 640KB
barrier associated with DOS systems and to provide a protected environment for
multitasking. Another major goal is to allow applications to allocate more memory than
physically is present in the computer. Finally, a powerful memory sharing capability is
necessary to permit multiple processes to communicate through shared memory and to
support dynamic link libraries.

6.2.1 Memory Model

When the 80286 processor is placed in protected mode, it provides virtual segmented
addressing. The addresses within the virtual address space of the processor are not
contiguous because they are divided into variable-sized portions called segments.
Segments can have sizes from 1 to 64KB. Each segment must be mapped by a descriptor
or a general protection fault will occur when the memory is accessed. The OS/2 memory
model for 80286 processor systems is called the segmented memory model.

Unlike in real-mode DOS systems, segment arithmetic cannot be performed on the
protected mode virtual segmented addresses. Segment arithmetic occurs when a DOS
program takes advantage of the fact that a single memory location can be addressed
using different segment:offset combinations or aliases. Recall from Chapter 2 that, on an
8088 architecture, the values loaded into the segment registers are directly related to the
generated physical address. In the 80286 environment of 16-bit OS/2, the segment val­
ues are specific selectors that map descriptors, and each segment can be addressed only
by a unique selector. Therefore, the segment protection of the 80286 automatically pro­
hibits segment arithmetic. Segment protection is accomplished using the protection ring
architecture discussed in Chapter 2. Segment swapping allows more physical memory
than is available in the computer to be allocated by applications.

The system address space is common to all processes and is mapped by the GDT at
privilege level 0. Each process has an LDT that represents its process virtual address
space. A process can access only memory mapped by the GDT or by its own LDT.
Because each process has its own LDT, the process virtual address spaces are encapsu­
lated and isolated. Threads running in user mode cannot access the descriptors in the
LDT or the GDT. Furthermore, each LDT's descriptors are divided into private and

6.2 OS/2 1.X Memory Management 145

shared descriptors, in order to differentiate between addresses (not storage) private to a
process and addresses that are shared across processes. Figure 6.1 illustrates the usage of
the descriptor tables for the system and process virtual address spaces.

6.2.2 Memory Objects

Memory objects in 16-bit OS/2 are segments. A segment is from 1 to 64KB, is physi­
cally contiguous, and is addressable via a 16-bit selector value in combination with a 16-
bi t offset. This fully qualified virtual address is also called a 16: 16 address
(selector:offset). Segments are also relocatable in physical memory and are swappable.
Since there are only four segment registers available on the 80286 processor, all the seg­
ments within a process's virtual address space cannot be addressed simultaneously. To
establish addressability to a segment, a thread must load a segment register with the se­
lector for that segment.

Segments are classified according to type of virtual address, type of storage, and
what kind of segment it really is. Segments can be fixed, movable, swappable, and dis­
cardable. Most of the kernel itself is fixed memory, and only the kernel can allocate
fixed memory. Fixed memory never moves, is never swapped, and is resident in physi­
cal memory. Memory that is movable can be relocated. However, this relocation is
transparent to applications, since segments are relocatable through their descriptor
tables. Swappable segments are those that can be swapped to disk if physical memory is

GDT

LDT

1
l

Fig. 6.1 16-bit virtual address spaces.

Process
virtual
address
spaces

System
virtual
address
space

146 Memory Management

in short supply. Discardable segments are those that can be reloaded from their exe­
cutable files when they are referenced during execution. Examples of discardable seg­
ments are application code segments and data segments that are read-only. Unless
segment swapping or segment motion is disabled when the system is started, all applica­
tion data segments are swappable and moveable.

Segments can share their virtual addresses, their contents, or both. Each process vir­
tual address space has separate shared and private selector regions within the LDT.
Actually, the selectors are interleaved within an LDT to allow the smallest LDT size
possible. Selectors that map to descriptors in the private part of the LDT are called
private selectors; those that map to descriptors in the shared portion of the LDT are
called shared selectors. The selector type is independent of whether the contents of the
segment are shared. Therefore, there are four possible combinations of the virtual­
address-space and storage-type attributes.

Segments with private addresses and private storage are those allocated by the
memory management API, and read-write data segments that are loaded from exe­
cutable files. Segments with private addresses and shared contents are executable code
and read-only data segments. Thus, executable EXE code and read-only data segments
can be shared by all processes that are running the same EXE.

Shared address segments are managed differently from private address segments
since they can be accessed by multiple processes concurrently. Whereas the 80286 hard­
ware places no constraints on whether processes map shared segments using the same
LDT descriptor, OS/2 shared segments are mapped at the same address in all processes.
Thus, all processes use the same virtual address when accessing shared addresses.

Since code segments have fixups to other segments that must be resolved when the
code segments are loaded into memory, these fixups must be valid in all contexts in which
the code segment will be used. Placing all shared segments and EXE code segments at the
same address in all contexts meets this criterion. The same address is provided in each pro­
cess's context by use of the same LDT selector/descriptor pair for the shared segments.
Thus, OS/2 divides an LDT into private and shared descriptors, and reserves shared
descriptors in all LDTs when a shared segment is allocated by any process.

Shared addresses with shared storage segments are shared segments. In other words,
there is a single physical segment that is referenced in the context of multiple processes.
Shared memory is allocated either at run time using the shared memory APis, or at load
time when a dynamic link library's code and global data segments are loaded. Shared
address private storage segments are called instance segments. Instance segments are
mapped using shared addresses; however, a different copy of the segment exists for each
process in physical memory. Instance segments are allocated by dynamic link libraries
when they are loaded, and contain per-process data defined by the library. Table 6.1
illustrates the possible combinations of segment types.

6.2.3 OS/2 1.X Memory Management API

This section describes the functions of the 16-bit OS/2 memory management APL

6.2

Address type

Private

Private

Shared

OS/2 1.X Memory Management

Storage type Origin

Private EXE read-write data or private
memory API

Shared EXE code or EXE read-only data

Private DLL instance read-write data

Shared Shared DLL code, DLL read-only data,
DLL shared data, or shared­
memory API

Table 6.1 Memory object types.

6.2.3.1 Private Memory

147

Private memory is allocated by a call to DosAllocSeg. DosAllocSeg allows the requestor
to allocate a segment of up to 64KB, and returns an LDT selector to the allocated seg­
ment. Allocation flags that are supplied during requests allow the requestor to determine
whether the memory is to be private, or is to be shared through the give-get mechanism
(discussed in Section 6.2.3.2). A segment is freed by a call to DosFreeSeg.

DosReallocSeg allows the requestor to change the size of a segment. Private seg­
ments can be grown or shrunk, whereas shared segments are usually only grown. If a
shared segment is of the give-get variety, its size can be reduced if a special bit was set
in the allocation flags when the segment was created by DosAllocSeg. A segment reallo­
cation request can cause a segment to be relocated in physical memory.

Since segments have a maximum size of 64KB, a special type of construct, called a
huge segment, exists in 16-bit OS/2 to allow a memory object larger than 64KB to be
allocated. DosAllocHuge allows a huge object to be constructed. A huge object consists
of a series of LDT selectors, each of which maps a segment of the huge object. The LDT
selectors for a huge object are mathematically related by a value called the huge incre­
ment or huge shift factor. The huge increment is applied to one of the LDT selectors that
maps a portion of a huge object, allowing applications to address different 64KB por­
tions of the huge object. The huge-segment arithmetic is reminiscent of segment-value
arithmetic in DOS. The huge increment must be determined by a call to
DosGetHugeShift. DosReallocHuge supports resizing of huge objects.

6.2.3.2 Shared Memory

The shared memory API provides functions for manipulating global shared segments.
Global shared segments use shared LDT addresses and shared storage. As the section on
16-bit memory objects explained, in the traditional shared memory scheme, a single
copy of a segment is shared within the context of multiple processes. There are several
ways to manage global shared memory. The first method is named shared memory.
Named shared memory is created by issuance of a DosAllocShrSeg request. One of the
parameters in the request to create the named shared segment is a name in the

148 Memory Management

\SHAREMEM\XXX format. This name is entered into the name space of the file system
using an entry in the directory \SHAREMEM. Since any name in the file system name
space is global to all processes, any process that knows the name of the segment can
gain access to that segment by calling DosGetShrSeg. DosGetShrSeg causes the named
shared segment to be mapped into the requesting process's LDT, and returns the selector
for accessing the segment. Recall that the selector for a given shared segment is the
same in all processes. Named shared memory is typically used between loosely coupled
peer processes as an interprocess communication mechanism.

Another type of global shared memory is called give-get shared memory. Give-get
shared memory is allocated using DosAllocSeg with the giveable and getable flags set in
the allocation flags as an input parameter. If the giveable flag is set, the segment may be
given to another process by a call to DosGiveSeg. If the getable flag is set, the segment
may be gotten by another process a by call to DosGetSeg. This strategy allows a process
either to give addressability to a segment to another process, or a process to get address­
ability to a segment in another process. For example, if process A allocates some shared
memory that is giveable, it specifies the PID of process B to give that segment to pro­
cess B when invoking DosGiveSeg. This specification establishes a mapping in process
B's process address space (LDT). Conversely, if the segment was getable, process B
could get access to process A's segment by calling the DosGetSeg API and providing
the selector of the segment in process A's context. In both cases, the process gaining
access to the shared segment must become aware of the selector for addressing the seg­
ment through an interprocess communication mechanism. Give-get shared memory is
typically used by closely coupled peer processes that need to pass data to each other.
Figure 6.2 illustrates 16-bit memory sharing.

s
s
s
p

s

Process A
LDT

Fig. 6.2 16-bit memory sharing.

Physical

o~---~

Process B
LDT

s
s
s
p

s

6.2 OS/2 1.X Memory Management 149

DosFreeSeg is used for freeing all segments in the system, whether they are shared
or private. For each shared segment, the system maintains a usage count that represents
the number of times a segment has been shared. Each time a segment is freed, the usage
count is decremented. The actual shared segments are freed when their usage count
reaches 0. When a process terminates, the system automatically frees any allocated
memory that has not already been deallocated.

6.2.3.3 Memory Suhallocation

Since the system must track each segment that is allocated, it is expensive to allocate a
segment for small memory objects (1 byte to 2KB). Allocating a segment for every
small object can slow down the process, since segment management is performed by
kernel APis, and the process must continually reload segment registers to change ad­
dressability to each small segment. When the size of a segment is smaller than the size
of the data structures that the system maintains for that segment, memory as a resource
is not being used in an optimal fashion. Allocating a segment for each small object need­
ed also causes the LDT selectors that compose the process virtual address space to be
consumed excessively. Furthermore, allocating a segment for each object requires seg­
ment registers to be loaded whenever the segment is addressed, a slow operation com­
pared to accessing memory within a segment that is already addressed.

To reduce this overhead and fragmentation, OS/2 provides a memory-suballocation
subsystem that provides management for memory objects within a segment. The mem­
ory-suballocation subsystem runs in user mode and resides in a dynamic link library.
Therefore, the memory-suballocation API functions are extremely fast compared to the
kernel API functions, and run preemptibly. A segment that is suballocated in this fash­
ion is also known as a heap. DosSuhSet initializes a segment for use as a memory pool.
Memory objects allocated from the pool are of variable length and are byte-granular.
Memory is allocated from the heap using DosSuhAlloc, and is deallocated using
DosSubFree. Since the memory objects reside within the same segment, access is much
faster because a segment register does not have to be reloaded to address different
objects in the memory pool. A memory pool or heap can be used with private or shared
segments. Since the suballocation APls are serialized, a heap can be accessed concur­
rently by multiple threads in different processes.

6.2.3.4 Dynamic Linking

DosExecPgm is used to load programs, as described in Chapter 5. The memory for a
program or a library that is allocated while the latter is being loaded is called load-time
memory. Memory that is allocated while a program or library is being executed using an
API is called run-time memory. When an executable (EXE) file is loaded into memory,
segments are allocated for the contents of the executable file and for the segments of any
associated dynamic link libraries (DLLs). The only time that instance data can be allo­
cated is when a DLL is being loaded.

Dynamic linking occurs at load time and at run time. Chapter 5 described how load­
time dynamic linking occurs when a process is created using DosExecPgm. However,

150 Memory Management

there are several functions in the memory management API that allow a process explic­
itly to load or attach to a specific DLL module at run time. DosLoadModule loads a se­
lected DLL and any resources it needs to complete its load at run time. The process
loading or attaching to the library is returned a handle to the loaded module. Generally,
handles are used by user processes to specify system-managed objects in API calls.
Once a process has loaded a module, the handle can be used on subsequent
DosGetProcAddr calls to retrieve the address of entry points within the module. When
the process has finished using the library, DosFreeModule is invoked with the module
handle to notify the system that the process has finished using the module.

6.2.4 OS/2 1.X Memory Management Kernel

The OS/2 kernel provides most of the memory management functions. The memory man­
agement portion of the kernel consists of four components: the virtual memory manager,
the loader, the physical memory manager, and the swapper. The virtual memory manager
is responsible for providing the memory management API, and for handling the descriptor
table for mapping virtual memory to physical memory. The loader is responsible for pro­
gram loading, dynamic linking, and demand loading of segments from executable files and
dynamic link libraries. The physical memory manager is responsible for the management
of physical memory resources and of compaction to reclaim physical memory fragments.
The swapper extends the physical memory resource by storing currently unneeded seg­
ments in a swap file and restoring them when they are referenced.

6.2.4.1 Virtual Memory Management

The virtual memory manager is responsible for providing the memory management API
used by processes to manipulate segments within their process virtual address spaces. It
is also responsible for the management of the descriptor tables, of shared addresses, and
of memory-overcommit accounting. Finally, the virtual memory manager maintains data
structures representing user segments and handles segment-not-present faults.

6.2.4.1.1 Overcommit Accounting Overcommit accounting is necessary to ensure
that the system always has enough memory to run, and that the total allocated resources
do not exceed the size of the swap file. The 80286 has four segment registers, and each
segment register can map a single 64KB segment at a time. Since a single instruction
can cause an access of two more segments at a time, such as a call through a call gate
between privilege levels, a total of 6 x 64KB, or 372KB, of physical memory must be
available in order to guarantee that a process can run. So that a process does not thrash
the system attempting to load its segments into memory when it exits the kernel, a spe­
cial routine is used to load all the process's segments atomically. Fixed kernel memory
and locked user segments in the system reduce the amount of memory available for a
process to run. Fixed kernel allocations and long-term locks fail if the total memory
remaining is too small for a single process to run.

6.2.4.1.2 Descriptor Management The 80286 descriptor tables are managed by the
virtual memory manager. The GDT is used to map the system virtual addresses to physi­
cal memory. The GDT contains the descriptors for the kernel's code and data, for the

6.2 OS/2 1.X Memory Management 151

device drivers' code and data, and for the call gates to the kernel. Free GDT descriptors
are linked into a free list using the fields of the descriptor fields that are unused when a
descriptor is invalid. The kernel provides simple functions for allocating and freeing
GDT descriptors when necessary.

Each process virtual address space is mapped by an LDT. Each LDT is a segment
that is grown dynamically as the size of the largest LDT in the system increases. Each
LDT maps all the segments allocated at load time and run time on behalf of a given pro­
cess. When context switches occur between processes, the dispatcher calls the virtual
memory manager to switch LDTs. Figure 6.1 illustrates the descriptor tables.

The LDT is divided into private and shared selectors (or descriptors). In OS/2 1.0,
the shared and private selectors are interleaved in a ratio of one shared selector to one
private selector (I: I). However, OS/2 1.1 changed this ratio to three shared selectors to
one private selector (3: I). Shared and instance objects are allocated at common shared
addresses in the process virtual address spaces, because processes tend to need more
shared virtual addresses than they do private virtual addresses. The selector type is inde­
pendent of whether the segment contents are shared. The private selectors within an
LDT are used to map segments that are private to a process, including code and data
segments from the EXE file and API-allocated private segments. Even though EXE code
and read-only objects are private, they are shared with each instance of the same pro­
gram. Since a process can dynamically attach to a shared library, shared selectors are
used to map segments from dynamic link libraries. Code, global shared data, and
instance data segments are mapped using shared selectors. Shared selectors are also used
for API-allocated shared memory, both named and give-get.

As stated previously, all shared segments, whether code or data, occur at the same
virtual address in all process virtual address spaces. This single address simplifies the
task of tracking shared memory usage in different processes. The virtual memory man­
ager uses a systemwide bitmap for handling the reservation of shared selectors across all
LDTs in the system. Each bit in the bitmap corresponds to a descriptor or selector in the
LDT. The bits for the private selectors in the bitmap are set to indicate that the selectors
are not available, and the bits representing shared selectors are clear to indicate that
these selectors are free. When a shared segment is allocated, a slot for the shared de­
scriptor is found by consultation with the system LDT bitmap, and the descriptor is re­
served across all processes by setting of the entry in the bitmap. Private LDT descriptors
are managed in the same way as GDT descriptors. Free LDT descriptors within an LDT
are linked in a free list using the fields of the descriptor that are unused when the
descriptor is invalid.

Dividing the LDT into shared and private descriptors reduces virtual memory con­
sumption. If each process's code were mapped using shared selectors, then every time a
process was started, the system would have to update and grow every LDT in the system
to accommodate the new segments. This strategy would force each LDT to be larger
than necessary. Splitting the process virtual address space into private and shared
addresses eliminates this side effect. However, another side effect is introduced by the
sharing of memory at the same virtual address in all contexts. If a single process uses
many shared objects or segments, it can consume shared address space in another pro­
cess's LDT.

152 Memory Management

Code segments from executable files and dynamic link libraries always share their
contents or storage. For this scheme to work, the virtual memory manager must ensure
that the same selector is available in all contexts for mapping the shared code. For
shared libraries, the LDT bitmap reserves selectors across processes. However, this
mechanism does not work for code from an executable file, since it is mapped using pri­
vate selectors. The system guarantees that the same private selectors are available each
time a given process is loaded, since the LDT is empty at the time a program is loaded.

6.2.4.1.3 Object Management The major data structure that is used by the virtual
memory manager for tracking system objects and user segments is called the handle
table. Each memory object in the system is assigned a 16-bit handle. The handle of a
memory object is an index into the virtual memory manager's handle table. A handle
selects a handle table entry (HTE) that represents the memory object. Each HTE con­
tains permanent information on segments, indicating whether they are present in physi­
cal memory, in the swap file, or in an executable file or dynamic link library. Figure 6.3
illustrates the contents of a handle table entry.

The handle table has a semaphore associated with it that is used to serialize access
to the handle table when it is grown. The only times that two different threads try to
modify the handle table concurrently are when one thread tries to access an object in
interrupt mode while another thread is accessing it in kernel mode during a system call,
or while a thread in kernel mode has voluntarily yielded the processor. This is due to the
nonpreemptible nature of the OS/2 kernel.

Each HTE has a flags field that indicates whether the object is shared or private, and
whether it is moveable, fixed, swappable, or discardable. The flags also indicate whether
the memory object must reside in physical memory above or below IMB. The latter
indicator is significant with respect to how the system provides DOS compatibility. It
allows the virtual memory manager to be flexible enough to allocate memory so that the
memory is addressable when the processor is in real mode running a DOS application.
Another bit in the HTE flags is used to indicate when an operafon is in progress for the
object. This bit is used as a per-object semaphore for allowing a thread to gain owner­
ship of a handle for the duration of an operation on a specific memory object. If an oper­
ation is in progress when a thread attempts to access a handle, it blocks using the
address of the HTE as a block identifier.

In addition to the HTE flags, each HTE also contains the physical address of an object
when that object is present in physical memory and is mapped by a descriptor. The selec­
tor field in the HTE indicates the descriptor used to map the segment. The lock count field

------- 32 bits-------

Handle flags PhysAddr (low)

PhysAddrJ
(high) Lock count Primary selector

Fig. 6.3 16-bit handle table entry (HTE).

6.2 OS/2 1.X Memory Management 153

indicates the number of outstanding locks on the object. Locks are used by the kernel and
device drivers to fix discardable or swappable memory segments in physical memory.
Some of the fields for physical address in HTEs are overlapped by other information when
an object is not present, as we shall describe in a moment. Locks are discussed in more
detail in Chapter 8. Some of the fields in HTEs are overlapped by other information when
an object is not present, as we shall also examine now.

Each object in the system has an owner field that identifies from where the memory
object came. In other words, the owner field indicates whether the segment is a discard­
able one that can be reloaded from an EXE or DLL module, or is a swappable API­
allocated one that resides on the swap file. If the memory object is discardable, the
owner is the handle to the MTE of the module that contains the segment. If it is swap­
pable, the owner is a handle to the PTDA of the process.

There are two prinicipal types of memory objects mapped by the handle table: sys­
tem objects and user objects. System objects are always present and fixed, and have spe­
cial reserved handle values for their owner fields. Examples of system objects are
PTDAs, MTEs, and LDTs. Each PTDA has an HTE that contains its physical address,
and a special owner value that tells the virtual memory manager that the system object is
a PTDA. A different owner-field value (handle) is reserved for MTEs, LDTs, and other
system-object classes.

System objects are mapped dynamically; in other words, they are not allocated per­
manent descriptor mappings, and are not accessible until they are mapped explicitly.
The distinction between an object and a segment in 16-bit OS/2 is that an object does
not necessarily have a descriptor mapping it, whereas a segment is always mapped.
Since there are so many system objects, allocating to each system object a permanent
descriptor would cause a huge growth in the GDT, and would result in a significant
reduction in the number of GDT selectors available for other purposes. Therefore, each
system object is mapped by an HTE to a physical address, instead of being mapped by a
descriptor, to conserve GDT selectors. This mapping strategy also allows references to
these system objects to use 16-bit memory object handles instead of 24-bit physical
addresses or 32-bit 16: 16 virtual addresses, resulting in a memory savings in kernel data
structures. These fixed objects are dynamically mapped and unmapped by the virtual
memory manager whenever they need to be accessed.

For example, if an MTE needs to be addressed, the MTE handle is passed to a map­
ping routine called MemMapMTE, which allocates a GDT descriptor that maps the phys­
ical address contained in the HTE for the MTE. When the MTE no longer needs to be
addressed, MemUnmapMTE is called to deallocate the descriptor mapping. Any refer­
ences to the MTE in other kernel data structures use the 16-bit memory-object handle
for that MTE.

User objects also are mapped by the handle table. User objects are either API-allo­
cated segments or segments that reside in an EXE or DLL file. Note that user objects are
called segments since they always have a virtual memory mapping in an LDT. The
owner field of a user object is either an MTE handle or a PTDA handle, based on
whether the segment comes from an EXE or DLL file, or whether it is allocated by an
API request. The rest of the contents of the HTE of a user memory object depend on

154 Memory Management

whether or not the segment is present in physical memory. In the case of system objects,
segments are always present. User objects, however, can be present or not present.

Figure 6.4 illustrates the 16-bit virtual memory management data structures for
three segments. Segment A is a discardable segment that resides in the EXE file of the
process when it is not in memory. Segment B is a swappable segment that resides in the
swap file when not in memory. Segment C is a swappable present segment in physical
memory.

If a segment is present, the HTE's physical address field contains the 24-bit physi­
cal address of the segment in physical memory. Although, at first glance, this address
appears redundant, since the present descriptor also contains the physical address, it is
needed because the memory manager may be called in real mode as the result of an
interrupt occuring while a DOS application is running, and because the owner field is
saved by the physical memory manager to save space. Chapter 10 discusses in more
detail the requirements of the DOS compatibility component on the kernel.

The lock field in the HTE is valid for counting locks that are made by device drivers
or other portions of the kernel for I/0 operations that require the object to be fixed. A
lock forces a segment to be fixed, and prevents the segment from being moved or
swapped until it is unlocked. A present segment also has a descriptor allocated to it, and
the descriptor points to the physical memory that is allocated by the physical memory
manager. The selector field of the HTE indicates which descriptor was allocated for the
segment. In Fig. 6.4, segment C is a present swappable segment.

If a segment is not present, the HTE is used to store information that can be used to
determine how to reload the segment when a segment-not-present fault occurs. If a seg­
ment is not present, the descriptor contains the memory handle of the HTE that repre­
sents the memory object. When a segment-not-present fault occurs, the virtual memory
manager uses the memory handle in the faulting descriptor to get to the permanent in­
formation for the memory object. If the object is swapped (segment B in Fig 6.4), the
physical address field is overlaid with a swap!D that is passed to the swapper for loading
in the image from the swap file. If the segment is discarded (segment A in Fig. 6.4), the
physical address is overlaid with the MTE handle of the originating module, and the
MTE handle and selector are passed to the loader so that it can demand load the segment
from the module.

All the allocation of physical memory occurs as a result of segment-not-present
faults. This style of physical memory resource commitment is called lazy segment allo­
cation. Postponing physical memory allocation until the latest possible moment results
in a reduction in the number of 1/0 operations that occur when segments are demand
loaded from their load modules or from the swap file. The following example illustrates
the events that occur when an application allocates a segment by invoking DosAllocSeg.
From the virtual memory manager's perspective, this is an allocation request for swap­
pable allocate-on-demand memory. An HTE is allocated for the segment, as is an LDT
descriptor. Overcommit accounting is performed to ensure that the system can satisfy
the request with swap space at a later time. The descriptor is marked not present and is
filled with the memory object handle for the allocated HTE. The selector allocated is
returned to the thread requesting the memory. When the thread attempts to use the

PTDA1
Gia
pro
dat

bal { EXE1 MTE handle

Pe
thr
da

A

B

c

~ess LDT handle

:·' { TCB 1

TCB 2

LDT

Segment A
discarded

Segment B
swapped

Segment C
present

MTE(EXE1) File name

~ Open file pointer

Import data

Export data

DLL 1 MTE handle
Module {

table DLL2 MTE handle

Ref count

S•gmeo{ Segment 1

table Segment 2

~ HTEA

State = discarded

Owner= EXE1
MTE handle

SwaplD = 0

.... Selector= A

Physical memory

Arena header

Owner= PTDA handle
Handle = HTE C

Segment C
contents

Fig. 6.4 16-bit virtual memory management data structures.

EXE1 file
--,.

EXE header

STE1
Flags

Size

File location

Handle Segment A
....... f-.,

contents
Selector= A

...._-

HTE B

State = swapped SCT Swap file

Owner= PTDA handle Segment B

SwaplD = SCT index f----. SCTE ... contents

...... Selector= B

HTE C

State = present

Base address

Selector= C

156 Memory Management

selector by loading the latter into a segment register, a segment-not-present fault occurs,
causing the segment-not-present fault handler to be called in the virtual memory manag­
er. The segment-not-present fault handler then calls the physical memory manager to
allocate physical storage for the object. After the physical storage is allocated, the physi­
cal address returned by the physical memory manager is inserted into the HTE and the
descriptor, and the object owner and handle are saved by the physical memory manager.
The faulting instruction is restarted, and the process continues.

6.2.4.2 Loader

The loader is responsible for program loading and for the management of dynamic link­
ing APL It manages the EXE and DLL modules that are loaded into memory, as well as
the segments from these modules. Although both EXE and DLL modules are "exe­
cutable files," EXEs are programs, whereas DLLs are shared libraries. The loader also
provides for demand loading of segments from DLLs and EXEs. The OS/2 loader prere­
solves at load time all external references that might be called during execution. Figure
6.5 illustrates the file format for 16-bit executable files.

The primary data structure used to track modules and their segments is called the
module table entry (MTE). Every load module in the system, whether it is an EXE or a
DLL module, has an MTE that describes it. As mentioned previously, from the view­
point of the virtual memory manager, an MTE is a system object that contains the mem­
ory representation of the executable file control information. When the loader allocates
an MTE, the virtual memory manager allocates a handle table entry and physical memo­
ry for the MTE, since the latter is a fixed system object. Therefore, MTEs are referenced
using a 16-bit handle, and are dynamically mapped into the system virtual address space
when accessed.

When a process is created with DosExecPgm, the loader allocates an MTE, stores
the MTE handle in the PTDA of the new process, and maps the MTE into memory. The
loader then reads the executable header from the module being loaded into the MTE. All
the MTEs in the system are linked in a graph. Since an EXE usually contains references
to DLLs, all the DLL modules that are loaded as a result of loading of an EXE module

EXE file header
Import data
Export data
Module table
Segment table
Segment 1
Segment 1 fixups
Segment 2
Segment 2 fixups

Fig. 6.5 16-bit executable file format.

6.2 OS/2 1.X Memory Management 157

are lin~(ed together. Thus, the MTEs that represent EXE files are head pointers or roots
into the system's graph of MTEs.

Each MTE also contains a reference count of the number of times each program
module is loaded. During the program load process, the loader first scans the MTEs in
the system to see whether the module is already loaded. If it is, then the new process
attaches to the module by incrementing the reference count in the MTE and calling the
virtual memory manager to attach the module's segments to the new process. Figure 6.4
contains an illustration of an MTE.

The MTE also contains the module file name and an open file pointer for accessing
the load file. The import data contain information on references to other modules; the
export data contain the module's public definitions. The module table portion of an
MTE contains MTE handles of the modules that have been loaded to resolve this mod­
ule's dynamic link imports.

The portion of the MTE that maps the segments of a module is called the segment
tahle. The segment table contains segment tahle entries (STEs). Each STE contains the
flags that describe the attributes of the segment, the size of the segment, a file offset into
the load module from which the segment can be loaded, the virtual memory handle for
the segment, and the selector used to map the segment. Figure 6.4 contains an illustra­
tion of an STE.

When DosExecPgm is called, the loader calls multitasking to allocate a process with
an LDT and a PTDA. Next, the loader reads the EXE header to determine the size of the
MTE; this step is necessary because the MTE is of variable length, depending on the
size of the load module. Once the size of the MTE is known, the loader calls the virtual
memory manager to allocate an MTE as a system object. Once the MTE object is
mapped, the loader then calls the file system to read the MTE into memory from the
load module file. The next step in program loading is to load the DLLs referenced by the
import table. If these DLLs are already loaded for another process, then the EXE's MTE
is linked to the MTE of the loaded DLL.

The last portion of program loading is to process the segments in the segment table.
The loader allocates virtual memory for each segment, and the descriptors are marked
not present. If the load module is being attached to only the new process, the virtual
memory manager attaches the segments to the process virtual address space by editing
the LDT. Segments that are required by the user to be loaded when the program is load­
ed are called preload segments. The default alternative to a preload segment is a demand
load segment that is loaded when a thread accesses the descriptor and causes a segment­
not-present fault.

Demand loading occurs when the loader is called by the virtual memory manager
during a segment-not-present fault to load in a segment that resides in an EXE or DLL
module. Recall from Section 6.2.4.1 that, when a segment-not-present fault occurs, the
descriptor for the segment contains the handle for the object. In the case of a demand­
loadable object, the handle table entry indicates that the segment resides in a load mod­
ule and contains the MTE handle of the originating module. The segment-not-present
fault handler allocates physical memory for the segment based on the size in the descrip­
tor, sets the base address field in the faulting descriptor, then passes the MTE handle and

158 Memory Management

the faulting selector to the loader. From this information, the loader can map the appro­
priate MTE, and can search the segment table for the segment allocated to the same
selector. Once the correct STE is found, the loader calls the file system to load the seg­
ment from the load module into physical memory. The loader then performs any neces­
sary fixups on the segment, validates the descriptor, and returns to the faulting
instruction.

To provide preload segments, the loader calls a virtual memory manager interface
that simulates a segment-not-present fault for the preload segments. This fault causes the
loader to demand load the segments before the module's entry point is executed. The
simulated-fault approach is used, since the virtual memory manager is already prepared
to perform lazy allocation of the physical memory for segments.

6.2.4.3 Physical Memory Management

The physical memory manager manages the system's physical memory resource. It con­
sists of two components: the physical allocator and the compactor. The physical alloca­
tor manages free and allocated blocks of physical memory in the system's physical
address space. So that free blocks that are small and fragmented within the physical
address space can be reclaimed, compaction is implemented. The compactor runs only
as a result of a request for allocation of physical memory.

Figure 6.6 illustrates the physical memory layout of the system. The system is par­
titioned into those portions that are necessary for DOS compatibility, and those that are
not. The 1 MB boundary is a critical mark, since physical addresses above 1 MB can be
accessed only when the processor is in protected mode. Portions of the system that must
be accessed while a DOS program is running must be in contiguous memory below
IMB, since the system runs DOS applications in real mode. However, in OS/2 1.3, the
DOS environment can be swapped when it is moved to the background. Chapter 10 dis­
cusses the memory requirements of the DOS environment in more detail.

The main data structure used by the physical memory manager to track physical
memory is called an arena header. Each arena header describes a free or in-use physical
memory block. There are two double-linked lists of arena headers in the system: one
that links all arena headers, and one that links all arena headers for free blocks. The free

16MB

1MB + 64KB
1MB

640KB

0

Free

High kernel
Device drivers

ROM BIOS

DOS
environment

Low kernel

Fig. 6.6 16-bit physical memory map.

6.2 OS/2 1.X Memory Management 159

list is used by the physical allocator when satisfying allocation requests, and the in-use
list is used by the compactor when attempting to reclaim free space by copying seg­
ments around physical memory. The physical arena refers to all the free and allocated
physical memory and arena lists. Figure 6.7 illustrates the layout of an arena header.

Each arena header contains a next and a previous field, a next-free and a previous­
free field, the size of the object, the handle table entry of the object, the owner of the
object, a lock count for the object, some flags, and a timestamp. The timestarnp indicates
the last time that the object was accessed.

The handle and owner fields that are in the arena header are kept there on behalf of
the virtual memory manager for two reasons. When a segment is present in memory and
is mapped by a descriptor and a handle table entry, the owner and handle must be saved
by the physical memory manager for later use by the virtual memory manager when the
segment is swapped out or discarded. Recall that there is no room in an HTE for this in­
formation if a segment is present. The second reason is that they are needed by the com­
pactor to tell the virtual memory manager which descriptors to update when a segment is
moved in physical memory. From the HTE, the virtual memory manager can find all the
descriptors in all contexts that map a given physical block.

The arena headers arc linked using 32-bit physical pointers, and are physicaJly lo­
cated adjacent to the physical block that they describe. When the arena is traversed, the
32-bit physical address link fields are converted to 16: 16 virtual addresses using GDT
selectors reserved by the physical memory manager. Effectively, each arena header is in
its own segment, since a segment register must be reloaded when a link is traversed.
Furthermore, none of the arena headers have permanent descriptors to map them, so the
dynamic GDT mapping occurs between links also. The layout of the arena data struc­
tures in physical memory is illustrated in Fig. 6.8.

Compared to placing the arena headers in a table, this approach at first appears
nonoptimal. Placing the arena headers in a table would still require 32-bit link fields un­
less the table were restricted to 64KB (a single segment). More complex descriptor man­
agement would be needed for setting up the table, as weJI as logic to deal with growing
and shrinking the table dynamically. However, there are also positive side effects associ­
ated with placing the arena headers throughout physical memory. Translating any virtual

--- 32 bits---~

Next

Previous

Next free

Previous free

Size

Handle I Owner

Flags l LockCount

LRU timestamp

Fig. 6.7 16-bit arena header.

160 Memory Management

Physical memory

High

£Limit
Descriptor table

Segment

.....-
Arena header

Segment _L_Limit

Arena header

Free

Arena header

Low

Fig. 6.8 16-bit arena physical layout.

address into the address of an arena structure is simple, since the beginning of the arena
structure is located directly beside and below the segment in physical memory.
Subtracting the size of an arena header from the base address in a descriptor yields the
physical address of the arena header for the segment.

We now describe a typical physical memory allocation scenario. A thread running
in user mode attempts to access a segment allocated with DosAllocSeg, but a segment­
not-present fault occurs. The virtual memory manager handles the fault and checks the
handle table entry to determine whether the segment is allocate on demand, discarded,
or swapped. The physical allocator is called to allocate physical memory for the seg­
ment, and employs afirst}it allocation strategy. The physical allocator scans the free list
of arena headers, searching for a block big enough to service the request. If a free block
is found that can fulfill the request, the arena header is removed from the free list. The
handle and owner of the segment previously stored in the HTE for the segment are
passed to the physical allocator as parameters of the allocation request, and are placed in
the allocated arena header. The physical address of the allocated block is returned to the
virtual memory manager. The virtual memory manager then completes the transaction
by updating the descriptor with the allocated base address. If the segment is discarded or
swapped, the loader or swapper is called to swap the segment into memory: if the seg­
ment is allocate on demand, no segment loading is necessary. Finally, the virtual memo­
ry manager validates the descriptor by setting the present bit; it then restarts the original
faulting instruction.

The scenario changes if the physical allocator fails to find an arena header on the
free list for a block large enough to satisfy the physical allocation request. Since the
allocation and freeing of small segments can cause fragmentation in the physical address

6.2 OS/2 1.X Memory Management 161

space, there may exist enough free physical storage to satisfy the request, but it may not
be in contiguous blocks. So that enough free physical storage to satisfy the request can
be created, the compactor portion of the physical memory manager is called. The com­
pactor attempts to reclaim free storage by moving (copying) physical blocks and thus
creating a free block large enough to satisfy the allocation request. If the compactor fails
to reclaim enough storage to satisfy the request, it either discards or swaps out enough
segments to create a large-enough block. Physical memory allocations can potentially
block, and also can drive the compaction and swapping of segments in the system.

Compaction is needed because variable-length segments can fragment physical
memory. To reduce this fragmentation and to reclaim physical memory, the compactor
performs segment motion. A segment can be moved invisibly to the processes using it,
since the segment is referenced via a descriptor. The compactor interacts with the virtual
memory manager to update the base address field of the descriptors referencing moved
segments. The compactor executes only as a result of a physical allocation request; it is
serialized to move only one segment at a time. Since copying of segments can be a
lengthy operation, when the compactor is copying large segments, it yields the processor
using the TCYield interface discussed in Chapter 5. Compaction can be disabled when
the system is started.

Segments are aged in a least recently used (LRU) fashion to determine the best can­
didate for swapping or discarding. The timestamp field of an arena header is used to
record the age of a segment, and is initialized with the time at which a physical alloca­
tion occurs. Approximately four times per second, the SchedClock routine (discussed in
Chapter 5) calls the physical memory manager to age swappable segments in the GDT.
Swappable segments in the GDT can be allocated by device drivers and file systems.
Whenever a process is being context switched out, one-quarter of the process's LDT is
aged before the new LDT is switched in. Segments are aged by scanning the segment
descriptors and checking the accessed bit to see whether the segment has been refer­
enced since the last time its age was recorded. If the accessed bit is set, the time is
recorded in the timestamp field of the arena header for the segment, and the accessed bit
is reset. The timestamp field of an arena header is also reset whenever a segment is
swapped in.

When the compactor determines that a swap out or discard operation is necessary to
satisfy an allocation request, it constructs an ordered list of the oldest segments in the
system. The compactor then discards or swaps out the segments on the list until enough
free storage is available to satisfy the original physical allocation request. If the swap
file is full and cannot be grown, the system attempts to find enough discardable seg­
ments to create sufficient free storage.

6.2.4.4 Segment Swapping

OS/2 implements segment swapping; it does not use program swapping, as used in
UNIX systems. Compaction is not a complete solution, since it does not allow more
physical memory to be allocated than exists in the computer. Swapping does soften the
physical memory barrier, and does allow programs to use more memory than is present.
A situation in which memory is 25 percent overcommitted usually performs acceptably.

162 Memory Management

However, the relatively slow disk speeds on most 80286 systems (on the order of 20 to
80 milliseconds) prevent true demand segment swapping from being feasible in heavily
overcommitted situations. Like compaction, swapping can be disabled when the system
is started.

There are basically two routines in the swapper, called SwapOut and Swapln.
SwapOut is called only as a result of an allocation request, as described in the previous
section. Swapln is called as the result of a segment-not-present fault on a swapped-out
segment. Swapping occurs on a thread different from the thread that causes the fault.
The swapper thread is a special kernel thread that executes at privilege level 0.

The major data structure of the swapper is called the swap control table (SCT). The
SCT is composed of swap control table entries (SCTEs). Each SCTE contains flags de­
scribing the segment and the offset in the swap file of the segment. The size of a seg­
ment that is swapped out is maintained in the not-present descriptor(s) for the segment.
Figure 6.9 illustrates the swapper data structures.

When SwapOut is called, the swapper allocates an SCTE for the segment and writes
the segment to the swap file. The index into the SCT for the allocated entry is called the
swap!D and is stored by the virtual memory manager in the handle table entry for the seg­
ment. The virtual memory manager marks the descriptor not present, and puts, into the
descriptor the handle to the segment, so that the segment can be located later. During a
segment-not-present fault, the virtual memory manager calls Swapln and provides the
swapID of the desired segment and an address into which the swapper can read the seg­
ment.

The swap file is managed by the file system rather than by the swapper. Some sys­
tems allow the swapper to perform direct I/O to the swap device for better performance,
but this approach also has drawbacks. The swapper must have intimate knowledge of the
layout of the physical swap device (usually a disk), and growing the swap file without
reformatting the swap device is difficult. The OS/2 approach keeps the swapper simple
and allows the file system to manage the swap disk. Under the FAT file system, it can
lead to some swap file fragmentation at a physical level, but the HPFS file system sup­
ports a physically contiguous swap file. Even on a FAT system, the user can move the
swap file to its own partition, resulting in a contiguous swap file.

Swap file

Fig. 6.9 16-bit swapper data structures.

Swap
control table

1+----1 SwaplD

6.3 OS/2 2.X Memory Management 163

Since the swapping of small segments in an overcommitted system can lead to ex­
cessive performance overhead, a swap cache is used to reduce the number of disk opera­
tions for swapping. The swap cache resides in a fixed buffer on the order of 16KB.
When SwapOut is called with a small segment, the swapper merely copies the segment
into the swap cache. When the swap cache is full, it is written to the swap file in a single
operation. Each small segment still retains its own swapID and SCTE.

6.3 OS/2 2.X MEMORY MANAGEMENT

The primary motivation behind the design of OS/2 2.X is to ensure portability. For OS/2
2.X to compete with other high-end workstation operating system platforms such as
UNIX, OS/2's 32-bit applications, its dynamic link libraries, and the OS/2 2.X system
itself must be retargetable to other processor platforms. This requirement is especially
significant given the current trend toward generic RISC processor engines in work­
stations. This design goal represents a major departure from the design philosophy of
OS/2 1.X, which emphasizes exploitation of the 80286 processor.

The memory model of an operating system is key in providing the capability for
applications, dynamic link libraries, and the system to be recompiled when a new pro­
cessor architecture is being retargeted. The initial implementation of OS/2 2.X is tar­
geted at the 80386 processor and 80486 processors. It takes full advantage of the
capabilities of these processors that are common with most 32-bit processor engines,
and makes use of features specific to the Intel processors only in areas of DOS and 16-
bit OS/2 compatibility (see Chapter 10).

OS/2 2.X defines a 32-bit memory model that is designed to be portable to any 32-
bit uniprocessor or multiprocessor architecture including RISC platforms. Another
major design goal of the memory model for OS/2 2.X is to provide memory objects that
are greater than 64KB or larger than physical memory. The 16-bit version of OS/2
allows segments up to only 64KB, forcing applications to add logic for managing the
segmented virtual address space. OS/2 2.X provides all the same memory sharing and
memory allocation functions as does 16-bit OS/2.

6.3.1 Memory Model

The main features of the 80386 and 80486 processors are paged virtual memory and 32-
bit-wide segments, which are up to 4GB in size. A weakness with the Intel segmentation
scheme is that its memory architecture combines addressing and protection in a unique
way that is different from the scheme used by most processors. Segmentation also forces
applications to have code that implements processor-dependent addressing. A seg­
mented virtual address space is not contiguous and, therefore, provides an unnatural
memory addressing model. However, a 32-bit segment can be used to simulate a large,
flat 32-bit virtual address space that is contiguous. The flat 32-bit virtual address space
is a common feature on many processors, and it is portable.

In 80286 addressing, a segmented virtual address (selector:offset) is translated by a
descriptor into a physical address. However, on the 80386 with paging enabled, another

164 Memory Management

level of address translation exists between the descriptor mapping and physical memory;
it is called the linear address space (see Chapter 2). On the 80386, a segmented virtual
address (16:16 or 16:32) is translated by descriptors into a 32-bit (flat) linear address,
which in turn is mapped to a 32-bit physical address by page tables. If a pair of code and
data descriptors is created that maps the entire linear address space, and is loaded into
the segment registers and never changed, the virtual address space is "flattened" and
segmentation is masked from applications. This memory model is called the flat memory
model, and is used in 32-bit OS/2.

Since segments on the 80386 have 32-bit sizes, any byte within the linear address
space can be accessed using only a 32-bit linear address without changing the segment
registers. In the flat model, a linear address is a virtual address. A flat model virtual ad­
dress is also called a 0:32 address, since the segment value is never changed and the off­
set value is a 32-bit offset. In addition to being portable, the flat model provides superior
performance over any segmented model, since it does not require segment registers to be
reloaded every time addressability to a different memory object needs to be established.

The system virtual address space is mapped by a pair of GDT code and data
descriptors with limit fields of 4GB. When a thread is executing in kernel mode or at
privilege level 0, the segment registers contain selectors for the entire 32-bit linear
address space.

The process virtual address space is mapped by a pair of GDT code and data
descriptors with limit fields of 512MB. The 512MB limit is due to the implementation
of 16-bit OS/2 compatibility and will be removed in future versions. The segment limit
of the process virtual address space is used to protect the system memory from threads
running in user mode. The system provides an independent 5 l 2MB linear address space
to each process by giving each process its own set of page tables. Like the 16-bit process
virtual address spaces, the 32-bit process virtual address space is partitioned into private
and shared regions that grow toward each other. Page tables, rather than LDTs, are used
to provide the same level of sharing found in the 16-bit system. Although LDTs are not
used for the flat model, they are used for providing compatibility for 16-bit OS/2 appli­
cations and are discussed in Chapter 10. Figure 6.10 illustrates the virtual address spaces
present in the flat model of OS/2 2.X.

4GB

512MB

0

System region

Shared region

' \~,'

Unallocated
A

/:\

Private region

Fig. 6.10 32-bit virtual address spaces.

Per­
process
virtual
address
space

System
virtual
address
space

6.3 05/2 2.X Memory Management 165

6.3.2 Memory Objects

The smallest memory unit in the flat model is a page (4KB on the 80386), compared to a
byte in the 16-bit segmented model. Thus, the flat model is page-granular. A memory
object is not a segment in the flat model, but rather is a range of contiguous linear pages
within the process virtual address space. The base address of a memory object is aligned
on a page boundary, and the size of a memory object is a multiple of the page size.
Unlike in the segmented system, all memory objects are addressable simultaneously. No
segment registers need to be loaded, which results in optimal performance for an 80386
in protected mode. Also, since no application logic is tied to a processor-dependent
memory model, the portability requirement is met. Memory objects in the flat model are
nonrelocatable, and the pages that compose memory objects are swappable.

The use of paging allows memory objects to be larger than 64KB, and larger than
physical memory; it also allows more efficient swapping and memory overcommit algo­
rithms. Paging also allows sparse ohjects to be allocated. Sparse objects have some
pages that are present and some pages that are invalid. Since the flat model "flattens" the
segmented architecture, page-level protection is used to provide separation of code and
data within a process virtual address space. Each page is assigned the read-only or read­
write attribute. Although the granularity of memory protection is a page, rather than a
byte as in the segmented model, illegal memory accesses by flat-model programs are re­
ported with byte-granular accuracy.

As in the 16-bit system, there are basically four types of objects that are classified
according to the attributes of virtual address type, storage type, and the type of pages
that back that storage. Besides the method of addressing memory objects and the
attributes of pages, the memory object types in the OS/2 32-bit flat model are equivalent
to those found in the 16-bit segmented model.

Pages are also classified according to whether they are fixed, resident, swappahle,
discardable, invalid, or guard. Fixed and resident pages exist only in kernel space and
are always present in physical memory. Swappable and discardable pages are allocated
by applications and by dynamic link libraries. Invalid pages are not mapped. Accessing
an invalid page causes a fault that is the equivalent of a general protection fault in the
16-bit system. Pages are also classified according to whether they are read-only (code
pages), or read-write (data pages), and whether they are accessible from user or supervi­
sor (kernel) mode. When a memory object is allocated, all the pages have the same
attributes. However, page attributes can be changed dynamically using a function of the
memory management APL

Sparse objects are a natural subset of page-granular memory objects. A sparse
object consists of pages that have varying attributes. The flat model API allows an appli­
cation to reserve linear memory without physical memory. The virtual address space for
the object is reserved and the pages are set to invalid. Linear pages that have been
reserved and set invalid are said to be uncommitted. When the application needs to uti­
lize some uncommitted but reserved pages, it can dynamically request the system to
commit the pages for usage. When a page is committed, the system then reserves physi­
cal or swap memory for backing up that page, and the page is accessible by the

166 Memory Management

requestor. If an application accesses an uncommitted page, the result is the same as a
general protection fault in 16-bit OS/2, since the page is invalid.

A guard page is a special type of committed page used to allow user thread stacks to
grow dynamically. Thread stacks are sparse objects with a guard page between the stack
pages that have been committed and those that are uncommitted. When an instruction
causes the guard page to be accessed, the system removes the guard attribute from the
faulting page, resulting in a regular committed page. Then, an exception is generated
that allows the thread to commit the next page in the stack as a guard page, and then to
resume the faulting instruction. The use of guard pages, user thread stack growth, and
the associated exceptions are discussed further in Chapter 7.

As in the 16-bit segmented model, there are both private and shared virtual address­
es, and private and shared storage. Instead of the private and shared addresses being
defined by different descriptors in an LDT, they are represented by contiguous regions
in the process virtual address space that grow toward each other. The level of sharing in
the segmented system is achieved using a set of page tables, instead of an LDT, for each
process virtual address space.

API-allocated objects and EXE read-write data objects are private-address and
private-storage objects. Private addresses and shared storage are used for mapping EXE
code and read-only objects, as in the 16-bit system. Shared-address objects also have the
classifications found in the 16-bit system. Shared-address objects are mapped at the
same virtual address in all processes. Analogous to reserving shared LDT descriptors in
the 16-bit segmented model, the linear pages representing objects in the shared address
region are reserved across all processes to allow shared objects to reside at the same
address in all contexts. Shared objects with shared storage are allocated using the shared
memory API or during the load-time allocation of dynamic link libraries' shared code
and data objects. Instance data objects also exist in which there is a shared address with
a private storage copy of the object for each process that has attached to it for dynamic
link libraries. As in the 16-bit system, instance objects are used by DLLs for per-process
data structures.

6.3.3 OS/2 2.X Memory Management API

This section describes the functions of the 32-bit OS/2 memory management APL

6.3.3.J Private Memory

Private memory is allocated using DosAllocMem. DosAllocMem allows the requestor lo
allocate an object up to the size of available memory in the process virtual address
space, and returns a 32-bit offset to the start of the allocated memory object. The memo­
ry allocation granularity of the system is a 4KB page. All memory objects are aligned on
linear page boundaries, and their sizes are rounded up to the closest multiple of 4KB.

Memory objects allocated with DosAllocMem are composed of swappable pages.
Allocation flags that are supplied during requests allow the requestor to determine the
memory object's attributes, such as read-only, read-write, committed, decommitted, or
guard. All the pages within an object have the same attributes when the object is

6.3 OS/2 2.X Memory Management 167

allocated. If the pages are not committed when the object is allocated, the system
reserves only linear address space, creating a sparse object. If uncommitted pages are
accessed by a user-mode thread, a protection fault is generated.

Private memory is deallocated by a call to DosFreeMem. The base address of a
valid memory object is the only valid parameter accepted by DosFreeMem. Since flat
memory objects are not relocatable, there is no memory object reallocation API, as there
is in the 16-bit system. Since movement of objects within the address space does not
occur, applications use sparse objects and commit pages dynamically in situations where
data structures or memory pools must be extended.

6.3.3.2 Shared Memory

Shared-memory objects are allocated from the shared address region of the process vir­
tual address space. As in the 16-bit system, the shared-memory APis provide support for
both named and give-get shared memory. Both APl-allocated shared-memory types use
shared addresses and shared storage. The functions of the 32-bit shared-memory API are
similar to those of the 16-bit shared-memory API, but there are some differences. The
API performs operations on flat memory objects that are referenced by a 0:32 virtual
address, instead of segments that are referenced by a 16: 16 virtual address. Also, the
API function names refer to memory objects, instead of to segments.

The previous paragraph stated that the 16-bit and 32-bit APis are similar but not
identical. All shared memory-whether it is named or give-get-is allocated using the
DosAllocSharedMem function. Allocation flags passed to DosAllocSharedMem indicate
whether the shared object is giveable or gelable, and whether the pages are initially
committed or uncommitted. An object-name parameter can be used optionally to create
a named shared-memory object. Give-get shared objects are unnamed; attempting to cre­
ate one with a name results in an error. Also, API-allocated shared-memory objects can
be allocated as sparse (uncommitted) objects, and contain swappable pages.

Named shared-memory objects are accessed by processes other than the creator by a
call to DosGetNamedSharedMem. Giveable shared objects are given to other processes
using DosGiveSharedMem, and getable shared objects can be mapped into a process's
virtual address space by a call to DosGetSharedMem. Since each process has its own set
of page tables for mapping the shared-memory object, each process that attaches to the
shared memory can set its own attributes for the pages in the shared object.
DosFreeMem is used to free shared memory-objects as well as private memory objects.
Except for the basic shared memory allocation API, the shared-memory APis are the
same as the 16-bit versions.

6.3.3.3 Memory Object Control

Each page within a flat-model memory object can have its own set of attributes.
DosQueryMem allows a thread to query the attributes of a linearly contiguous range of
pages within a process virtual address space. DosQueryMem accepts a base address pa­
rameter and size that define the region of pages to be queried. This memory manage­
ment API is the only one that accepts an address range that is not entirely within a single
memory object. DosQueryMem scans the region of pages beginning at the base address

168 Memory Management

until the entire range of pages is scanned, a page with a nonmatching set of attributes is
encountered, or the first page of a memory object is encountered. DosQueryMem returns
the attributes of the pages in the region and the size of the region scanned. Therefore, all
the pages ultimately scanned in a single request have the same attributes. Attributes re­
turned indicate whether the range of pages is committed, free (never allocated and there­
fore invalid), reserved (uncommitted), read-only, execute-only, read-write, or guard.

DosSetMem performs the complementary function of setting the attributes of a
range of pages within a memory object. DosSetMem can be used to create a sparse ob­
ject by committing and decommitting pages within a memory object. It also can be used
to change the page type. Both DosQueryMem and DosSetMem can be used on shared
and private memory objects. When a shared page is committed, it is committed in all
contexts that have attached to it. The page access protection applied to a committed page
in another context is the same access protection as that specified when the object was
originally allocated or attached to that context. A page in a shared object cannot be de­
committed unless a control flag is set when the object is allocated that explicitly allows
pages to be decommitted.

6.3.3.4 Memory Suballocation

The memory suballocation API also exists in the 32-bit system to manage small memory
objects, which are less than one page (4KB). Since the granularity of allocation in the flat­
model system is a page, a page is the minimum-sized object that can be allocated. If an
application requires many small memory objects smaller than one page, a heap or memory
suballocation pool should be used to divide a large object into many small ones. This strat­
egy prevents fragmentation of the process virtual address space and waste of system
resources, which would occur if whole pages were used for each small object.

The memory suballocation API in 32-bit OS/2 is similar in basic function to its 16-
bit counterpart, but has several added features. Since the flat model supports memory
objects larger than 64KB, a suballocation pool can be arbitrarily large. Also, the pro­
grammer has the option of using sparse heaps, in which the pages within the heap object
are committed dynamically by the suballocation API as needed. This dynamic commit­
ment is in contrast to requiring all the pages in the heap to be committed at all times.
Although the 16-bit version has always provided serialization of threads so that shared
heaps are supported, serialization is an option for increasing performance when the heap
is a private one.

DosSubSetMem is used to initialize a heap inside a memory object. When
DosSubSetMem is called, flags are provided that tell the suballocator whether the object
is sparse, or whether serialized access to the heap is required. The flags also indicate
whether the heap is being created for the first time, or whether another process is attach­
ing to a shared heap. Unlike in the 16-bit version of suballocation, if a shared heap is be­
ing used, all processes must attach to the shared memory in which the heap resides, and
must call DosSubSetMem to notify the system. Also contained in the flags is a bit that
allows a current heap to be grown.

DosSubAllocMem is used for allocating memory from the heap, and DosSubFreeMem
is used to free memory allocated from the heap. DosSubUnsetMem allows the memory

6.3 OS/2 2.X Memory Management 169

suballocator to clean up the resources used to manage the heap. Like the 16-bit memory­
suballocation API, the 32-bit version resides in a DLL and runs in user mode.

6.3.3.5 Dynamic Linking

The 32-bit dynamic linking APis are essentially the same as the 16-bit versions.
DosExecPgm is used to load programs, as described in Chapter 5, and the program load­
er performs all load-time memory allocations. As in the 16-bit system, dynamic linking
occurs at both load time and run time.

The 32-bit run-time dynamic linking API is a flat-model analogue of the 16-bit ver­
sion. DosLoadModule loads a selected DLL and any other modules it needs to complete
its load at run time. The process loading or attaching to the library is returned a 32-bit
handle to the loaded module. Once a process has loaded a module, the handle may be
used on subsequent DosQueryProcAddr requests to retrieve the address of entry points
within the module. When the process has finished using the shared library, it calls
DosFreeModule, supplying the handle to notify the system that the process has finished
using the module.

6.3.4 OS/2 2.X Memory Management Kernel

The 32-bit kernel is based on the flat memory model, rather than the segmented model
of the 16-bit kernel. Also, a greater percentage of the 32-bit kernel is swappable than of
the 16-bit kernel, due to paging. The kernel consists of basically the same memory man­
agement components: the virtual memory manager, loader, physical memory manager,
and swapper. However, the physical memory manager is replaced by the page manager
and the swapper is replaced by the page swapper. The virtual memory manager is
responsible for implementing the memory management API, kernel memory allocators,
descriptor table management, virtual address space management and object manage­
ment. The loader is responsible for program loading, dynamic linking, and demand load­
ing of pages from executable and dynamic link library files. The page manager controls
the paged physical memory resource, and the page tables that map linear addresses onto
physical addresses. The page swapper is used to extend the physical memory resource so
that more physical memory can be allocated than exists in a machine.

6.3.4.1 Virtual Memory Management

The OS/2 2.X virtual memory manager provides the flat-model memory management
APis. As described in the API section, these APis have the equivalent functions of the
segmented APis, but they are for flat memory objects. The virtual memory manager pro­
vides kernel memory allocators, which are used to manage kernel memory. It also per­
forms descriptor management to map the system virtual address space and the process
virtual address spaces to linear memory. The virtual memory manager maintains regions
of linear address space for the private and shared regions within a process, and for the
system region that contains the system memory. Object records are used for tracking
system and user memory objects that are mapped into the address spaces. When allocat­
ing an object, the virtual memory manager calls the page manager to reserve page tables

170 Memory Management

for the virtual memory. The page manager is also called when virtual pages are commit­
ted and uncommitted, and during context switch operations.

6.3.4.1.1 Kernel Memory Allocators Kernel memory allocators are used to manage
kernel memory and to reduce fragmentation of memory within the kernel. They are used
by most kernel components such as multitasking and interprocess communication. There
are three kernel memory allocation interfaces-the block management package (BMP),
the resident heap, and the swappable heap. The BMP routines manage kernel memory
pools of fixed-length objects. The use of the BMP reduces fragmentation within the ker­
nel by allowing objects to be packed within a page. The BMP also supports sparse
arrays, where pages within a large array are committed and decommitted dynamically.
Memory pages are fixed once they are allocated and committed through the BMP. The
BMP provides initialization, allocation, free, query, and set interfaces for other kernel
components to use.

The resident heap is used for managing variable-length kernel memory objects with­
in the kernel. All objects allocated from the resident heap are packed into fixed pages.
The resident heap manager provides UNIX-like malloc and free style interfaces for allo­
cation and deallocation of memory. The swappable heap is used to manage variable­
length kernel memory objects that can be swapped. The kernel components that use
swappable kernel memory must deal with the fact that they can be preempted when at­
tempting to access that memory. The swappable heap manager also provides interfaces,
called smalloc and sfree, similar to those of the resident heap manager. There are sepa­
rate read-write and read-only versions of both the resident and the swappable heaps.

6.3.4.1.2 Descriptor Management The descriptor management performed by the vir­
tual memory manager is much simpler than that of the 16-bit version of OS/2. The GDT
is used to map the process and system virtual address spaces to linear memory.
However, no LDTs are necessary in the 32-bit system, although they exist for 16-bit
OS/2 compatibility. The usage of LDTs in the 32-bit system is described further in
Chapter 10.

The system address space maps the current process virtual address space and the sys­
tem memory region, which contains the kernel's code and data. The current process virtual
address space is a subset of the system virtual address space. The system is protected from
the user-mode threads using segment-limit protection. If a user-mode thread attempts to
use an address past the limit of the process virtual address space (512MB), a general pro­
tection fault occurs. Since each address space has both a code and a data segment alias,
separation of read-only (code) and read-write objects within the process virtual address
space is implemented using page-level protection attributes instead of segment attributes.

The system and process virtual address spaces are mapped using four descriptors to
emulate two large segments. The first pair of descriptors, one code and one data, is
privilege level 0 with a limit of 4GB. These two descriptors are loaded into the segment
registers when a thread is in kernel mode, and represent the system virtual address
space. The other pair of descriptors, also code and data, is privilege level 3 and has lim­
its of 512MB. This pair of descriptors is loaded into the segment registers when a thread
is executing in user mode. The limitation of 512MB for each process virtual address

6.3 OS/2 2.X Memory Management 171

space is due to the 16-bit OS/2 compatibility implementation; it is discussed further in
Chapter 10. Figure 6.10 illustrates the 32-bit virtual address spaces.

Only the one pair of user space GDT descriptors is used for all processes in the sys­
tem. Descriptors point to linear memory, and the linear memory is in tum mapped to the
physical memory by page tables. Since each process has its own linear address space,
only one set of descriptors is needed. Because a separate linear address space defined by
page tables is provided for each process, processes are encapsulated and are protected
from one another. During a context switch, the page manager switches the per-process
page tables and flushes the TLB; no segment register reloading is necessary.

6.3.4.1.3 Linear Address Management In the 32-bit version of OS/2, arenas are
used by the virtual memory manager to manage regions of linear address space. Arenas
are similar to the physical arena used to manage physical memory found in 16-bit OS/2.
However, in the 32-bit system an arena represents a contiguous subset of virtual (instead
of physical) address space, and there are several arenas in the system. There are three
arena types: the system arena, the shared arena, and the per-process private arenas.
Figure 6.11 illustrates the arenas in the system.

The system arena maps the range of system linear addresses above the process vir­
tual address space. The system arena is backed by a single set of page tables that is
shared in the context of all processes. System memory objects are accessible only by a
thread in kernel mode or privilege level 0, and are mapped into the system arena.

Each process has its own private arena that is used for mapping private objects,
such as API-allocated data and EXE code. The private arena maps the private addresses
of a process much as do the private selectors in a process's LDT in the 16-bit system.
The private arena begins at the low addresses in each process virtual address space, and
is guaranteed to contain a minimum of 64MB of available private address space when a
process is created. Since the private arena starts at the low addresses, EXE code is
guaranteed to be loaded at the same virtual address in all process contexts. Therefore, if
the same program is loaded into multiple processes, the EXE code is loaded into the
same private virtual address in each context, and a single copy of the code is shared.
Recall that EXE code is a private-address, shared-storage memory object.

4GB }-System
System arena

512MB ,__ _____ __, page tables

Shared arena

Unallocated

Private arena
per process

o'-r-----~

Fig. 6.11 32-bit arena structures.

Per-process
page tables

172 Memory Management

The shared arena maps shared-address objects such as DLL code and data in the
process virtual address spaces. The shared arena is shared by all processes and is analo­
gous to the shared LDT selectors in the 16-bit system. Using a single shared arena
ensures that all shared address memory objects have the same virtual addresses in all
process contexts. The shared arena begins at the top of the process virtual address space
and grows toward lower addresses and the private arena. The minimum size of the
shared arena is 64MB of shared address space.

Each process has its own set of page tables that maps the private and shared arenas.
This strategy allows per-process instance shared objects and per-process selective access
to the memory objects in the shared arena.

The private and shared arenas grow toward each other. The 64MB minimum arena
size guarantee serves several purposes. Since shared objects have the same address in all
contexts, growth of the shared arena can restrict the maximum possible size of a new
process's private arena. Also, a process with a large amount of private memory can po­
tentially prevent from being loaded a future process that dynamically links to a huge
amount of shared memory, since the shared arena cannot grow "lower" than the largest
private arena. This side effect also occurs in the 16-bit system, and is handled by setting
of the ratio of shared memory to private memory at 3: 1 (shared selectors to private
selectors). The 32-bit arena implementation guarantees a large amount of shared and pri­
vate virtual address space, and lets float the ratio of shared to private memory, depend­
ing on the dynamics and requirements of the processes in the system.

An arena is represented by a circular double-linked list of arena records sorted in
ascending order of base virtual address. Arena records serve a purpose similar to that
served by arena headers in the 16-bit system, but are much more specialized than their
counterparts. Arena records are allocated out of a fixed sparse array managed by the
BMP. So that space in data structures that reference arena records is conserved, a maxi­
mum of 64K arena records exist in the system. This allows each arena record to be
accessed by a 16-bit handle, which is an index into the array of arena records. As a
result of the 16-bit handle, instead of a 32-bit linear address, being used, there is large
memory savings in structures that reference or link to arena records, including the arena
records themselves. Figure 6.12 illustrates the layout of an arena record.

Since arena records are double linked, each arena record has a previous and a next
link that together form a 16-bit handle to an arena record. The flags in the arena record

------- 32 bits-------

Previous I Next

Flags I Virtual page number
(base linear address)

Size

Object handle l Context handle or
PTDA handle

Fig. 6.12 32-bit arena record.

6.3 OS/2 2.X Memory Management 173

indicate the type of arena record and the disposition of the fields within the record. The
virtual page number field of the arena record indicates the base linear address of the
allocated region, and the size represents the size of the allocated region in 4KB pages.
The object handle and context/PTDA handle fields are used to cross-link the arena
record with the data structures representing the memory object allocated at the base vir­
tual address. This linkage is described in more detail in Sections 6.3.4.1.4 and 6.3.4.1.5.

Each arena record maps allocated linear memory-there are no arena records for
unallocated linear memory. Free regions are represented by consecutive arena records
that are not contiguous; that is, the base linear address plus the size of the nth record is
less than the base linear address of the n+ 1st record. The calculation for finding free
space is efficient and results in fewer arena records. Figure 6.13 illustrates the layout of
the private and shared arenas for three processes.

There are three types of arena records that are differentiated using the arena flags
field: regular, sentinel, and arena boundary. Regular arena records represent allocated
linear address space. Each private arena in the system is headed by an arena sentinel
record that is referenced by each PTDA. The last regular record in each private arena is
linked back to the start sentinel. The start sentinel also contains the highest private
address used and points to the arena boundary record that represents the beginning of the
shared arena. If the the base virtual address and size of the arena boundary record are

- 512M B

Double
link

_Single
- link

Shared
arena

' '

448MB

Low
shared

---------------~----------------~--l----------- High
: : , private

A

A
-~---~----~--~--------- ------ 64MB

A ' A

AS AS

--- 0
Process A

private
arena

Process B
private
arena

Fig. 6.13 32-bit arena layout for three processes.

Process C
private
arena

174 Memory Management

varied, the boundary between the private and shared arenas is moved dynamically as
necessary. The arena boundary record also is the head of the shared arena, and the last
regular record in the shared arena is linked to the arena boundary. When the virtual
memory manager must determine whether a virtual address is in the shared or private
arena, the address is compared to the virtual address values represented by the sentinel
for the private arena and the arena boundary.

6.3.4.1.4 Object Management The system object table is used to track memory
objects and their attributes. Like the arena records, object records are also managed
using the BMP. The system supports a maximum of 64K object records, and each object
is referenced using a 16-bit handle which is an index into the system object table array.
Each object record is cross-linked with an associated arena record that represents the
virtual address space of the memory object. Figure 6.14 illustrates the layout of an
object record.

Each object record contains an arena record handle, which links the object to the
arena record that maps the linear address space occupied by the memory object. The ob­
ject flags indicate the type of object, the way the object was allocated, and the initial at­
tributes assigned to the pages within the object. Each object is associated with an owner,
as in the 16-bit system. If the object is defined by a load module and is shared, the
record contains the MTE handle of the module. The object chain field is used to track
shared objects in the shared arena that are accessed in multiple contexts. The object
semaphore is used to serialize operations on the object, and the lock count fields denote
outstanding long-term and short-term locks on the object. Locks are counted on a per­
object basis. Lock requests force pages within a record to be fixed until the object is
unlocked. There are both long-term and short-term locks. Device drivers use short-term
locks on memory objects for some 1/0 operations.

In the flat model, memory objects are allocated with page granularity. However,
since system objects such as PTDAs and MTEs are substantially smaller than the 4KB
page size, it would be a waste to allocate an entire page for each of these small struc­
tures. Also, these objects require 32-bit addresses where they are referenced by other
structures. To overcome the problem of fragmentation due to small structures and exces­
sive data structure sizes, the virtual memory manager defines pseudo objects. A pseudo
object has an object handle just like a regular object; however, the object record flags
have a bit set, indicating the object is a pseudo object. The object record for a pseudo

~------- 32 bits -------

Arena record handle Object chain

Object flags Object owner

MTE handle Semaphore

Lock counts

Fig. 6.14 32-bit object record.

6.3 OS/2 2.X Memory Management 175

object contains the object's 32-bit linear address, and is not linked to a corresponding
arena record. Pseudo objects in the 32-bit system perform the same roles as that of sys­
tem objects in the 16-bit system. Pseudo objects enable objects smaller than a page to be
packed on pages to reduce fragmentation, and allow these objects to be referenced using
a 16-bit memory object handle to reduce data structure sizes.

Most internal virtual memory management functions receive a virtual address as in­
put that the virtual memory manager needs to validate and then convert into an object
record. The virtual memory manager uses a bitmap associated with each arena to indi­
cate which virtual pages within the arena contain the first page of an object. The bitmap
for each private arena is in the process's PTDA. When a virtual address is input, the vir­
tual memory manager determines whether the address resides in the current process's
private arena or the shared arena. The virtual page number is broken out of the virtual
address and is used as an index into the appropriate arena bitmap. The bitmap is then
scanned in reverse to find a bit that is set, indicating the beginning of an object. That bit
in the bitmap is then used as an index and converted into a virtual page number that rep­
resents the base virtual address of an object.

In the next step, the virtual memory manager searches the arena records in the selected
arena for a record with a matching base virtual address. Since performing this search
sequentially results in inconsistent and nonoptimal performance, a hash table is used to
speed the search. The arena records within an arena are linked into a hash table using the
hash field of the arena record. The hash algorithm takes advantage of the fact that arena
records are linked in ascending order, and provides fast, consistent search times. Once an
arena record is found that contains the base virtual address of the object, the virtual memory
manager verifies that the original input address actually is within a valid object.

So that an object in the shared arena can be mapped into multiple contexts at the
same address, another record is required to iterate these references. The data structure
that provides this information is called the context record. Like arena and object records,
context records are managed by the BMP as a large sparse array. There are a maximum
of 64K context records in the system, and a context record is referenced by a 16-bit han­
dle that is an index into the context array. As is true of arena and object records, this
scheme reduces the size of structures that link and reference context records. Context
records are chained from a shared arena record that represents an object's linear address
in all contexts. Each context record contains a PTDA handle and a link to the next con­
text record. It also contains flags to indicate the initial permissions of the object's pages
in each context. Figure 6.15 illustrates the layout of a context record.

-16bits---

Next context

PTDA handle

Context flags

Fig. 6.15 32-bit context record.

176 Memory Management

6.3.4.1.5 Arena-Object Linkages There are four user object types, depending on the
address-type and storage-type attributes. This section describes how arena records,
object records, and context records are linked together for the four basic types of memo­
ry objects.

The first category of object is private-address, private-storage objects. They are
mapped into the private arena, are read-write objects, and use private storage. Thus, only
a single copy of the data exists, and it is referenced by only one process. Both load-time
EXE read-write memory objects and API-allocated private objects (i.e., those allocated
by DosAllocMem at run-time) are in this class. They are mapped into the private arena
by an arena record, and are represented by an object record that is cross-linked to the
arena record. Figure 6.16 illustrates the linkage of the data structures for a private
address-private storage object allocated by DosAllocMem.

In Fig. 6.16, the object record owner field contains the handle to the PTDA of the
process that allocated the memory. If the memory object had been allocated as the result
of loading the process's EXE, the owner would be the MTE handle of the originating
module. The MTE handle field references the MTE of the EXE that contains the pro­
gram loaded by the process.

The next object category is private-address, shared-storage objects, such as EXE
code and EXE read-only objects. These objects are shared by linkage of arena records in
different private arenas to a single object record. Each private arena into which the read­
only object is mapped has an arena record that indicates the linear address space where
it is allocated. Since only EXE load-time allocations fit into this category, the same
address is available in all private arenas for mapping these objects. Figure 6.17 illus­
trates the data structures for private-address, shared-storage objects.

A
Private arena

}PTE'

Fig. 6.16 Private-address, private-storage object.

6.3 OS/2 2.X Memory Management 177

MTE handle

J Different
A private

arenas

}PTE•

Fig. 6.17 Private-address, shared-storage object.

The arena records in different private arenas are chained to the same object record
that represents the object using the link field in the arena record. Since there are many
processes using the memory object but only one object record, the memory object is
freed when the MTE is freed, not when the process is freed. Therefore, the MTE
becomes the owner and the object record contains an MTE handle instead of a PTDA
handle. Each arena record contains a PTDA handle that leads to the page tables for that
process. The page tables in the different processes that map a private-address, shared­
storage object are mapped to shared page frames.

The third object category is shared-address, shared-storage objects. In this category
are DLL read-write data, DLL read-only or code objects, and API-allocated shared
memory objects. They are mapped into the shared arena by an arena record that contains
a context chain to iterate the multiple process contexts that share the memory. A single
object record is used, since there is only a single object in the system that is being
shared. Figure 6.18 illustrates the data structures for shared-address, shared-storage
objects.

The fourth type of object is the shared-address, private-storage object. The only
type of memory object in this class is DLL read-write instance data. This object is
mapped in the shared arena, and there is a copy of the object for each process that refer­
ences it. Instance objects are mapped into the shared arena by an arena record, and there
is one object record per instance. The object records for the instances are linked using
the object chain field of the object record. Each object record points back to the shared
arena record that maps the linear address space. Also, each object record contains the
handle of the MTE for loading the instance data from the DLL. Figure 6.19 illustrates
the linkage of data structures for a shared-address, private-storage object.

178 Memory Management

Shared arena

Fig. 6.18 Shared-address, shared-storage object.

6.3.4.2 Loader

The loader is responsible for program loading, the dynamic linking API, and the demand
loading of pages from EXE and DLL modules for the page manager. It manages loaded
modules and the memory objects within loaded modules. The loader supports a 32-bit
executable file format different from the 16-bit format. The 32-bit executable files are

Page

Object
chain

0

Shared arena

Page

Fig. 6.19 Shared-address, private-storage object.

MTE handles

0

}Pm
Page

6.3 OS/2 2.X Memory Management 179

organized into pages instead of segments, and the fixup information is organized on a
per-page basis. The linker relocates 32-bit EXE files to a base address of 64KB instead
of 0, and reserves the first 64KB of the virtual address space to contain invalid pages.
This scheme allows null pointer (0) references to be trapped by applications and
libraries. As a result of 32-bit EXEs being relocated by the linker to a fixed base
address, the EXEs have no fixups in them except for external dynamic link references. A
file thus can have more pure pages-pages with no fixups-that can be read directly
into memory when referenced. However, 32-bit DLL files retain most of their fixup
records, so that they can be relocated in the shared region at load time. The 32-bit load
module format supports 0:32 fixups for 32-bit dynamic linking.

As in the 16-bit loader, MTEs are used to track modules and modules' memory ob­
jects. MTEs are allocated from the kernel swappable heap and are mapped by pseudo-ob­
ject records. MTEs are linked into a graph with executable file MTEs as head pointers into
the graph. Each MTE contains a reference count to indicate how many processes have
loaded a program module. The MTE also has a module filename, open file pointer, import
data, export data, and a module table, much the same as in the 16-bit system. However,
instead of a segment table, the 32-bit MTE has an object table that contains each object's
attributes, such as flags, size, the block number in which the object can be found, and a
handle to the memory object. The block number for the object is used by the loader to
determine the executable file offset from which the object can be retrieved.

During DosExecPgm requests, the loader calls the multitasking component to allo­
cate a process with an empty process virtual address space. The executable file header is
read into memory to determine the size of the MTE, and then the virtual memory man­
ager is called to allocate an MTE pseudo object. The file system is called to read the
executable file header into the MTE in memory. The loader then processes the DLL
references made in the import table section of the MTE. If a DLL module is already
loaded for another process, the DLL is attached to the process by a call to the virtual
memory manager. Otherwise, the loader loads the referenced DLL. In either case, the
MTE for the EXE is ultimately linked into the MTE graph.

When the loader allocates the virtual memory for each object, it passes the MTE
handle and the block number of the object within the executable file to the virtual mem­
ory manager allocation routine. The MTE handle is saved by the virtual memory man­
ager inside the object record, and the block number is passed on by the virtual memory
manager to the page manager so that the correct page can be found in the executable file
when a page fault occurs. The page table entries that are allocated for each object are
marked not-present, and the preload pages of the module are touched after they are allo­
cated by the loader, to force preloading of pages.

The loader component also performs demand paging on behalf of the page manager
during page faults. When a page fault occurs, the loader is passed an MTE handle, a
block number, and the virtual address of a page frame into which to load the page. The
MTE handle is used by the loader to determine from which module to load the page. The
block number indexes the executable page table map, a page map in the 32-bit exe­
cutable file header that tells the loader where in the executable file this object is stored.
The relative page number indicates where within the object the page is found. From

180 Memory Management

there, the loader can call the file system to load the page into memory, perform any fix­
ups necessary, and then return to the faulting instruction. Demand paging from the exe­
cutable file allows the system to provide fast program loading.

6.3.4.3 Page Management

The page manager manages the physical memory resource, which is divided into page
frames when paging is enabled. It is also responsible for the overcommit calculations
and the management of the secondary storage provided by the swapper. Unlike in 16-bit
OS/2, the overcommit calculation occurs in the physical memory management layer, in­
stead of in the virtual memory management layer. The overriding policy of the page
manager is to postpone commitment of actual physical memory as long as possible, via a
lazy allocation scheme. In a lazy allocation scheme, physical memory pages are allo­
cated only as the result of a page fault. The scheme is called lazy because physical mem­
ory allocation is postponed until the last possible moment. This scheme results in
postponement of I/0 operations for the demand loading of pages from load modules and
the swap file, and potentially results in a reduction in the number of I/Os necessary to
keep the system running.

The page manager provides interfaces for allocating and deallocating pages,
committing and uncommitting pages, attach and detach operations for sharing pages,
and lock and unlock operations for fixing pages in physical memory (pinning).
Internally, the page manager maintains both hardware-specific data structures for sup­
porting paged address translation, and system data structures for tracking the contents
and disposition of the paged memory resource. The principal data structures are the page
tables, the page frame array, and the virtual page structures. The page tables are used to
map linear addresses to physical addresses, and to provide selective access to shared
pages. A virtual page structure exists for each committed page in the system. The page
frame array contains entries for each physical page of memory in the system.

There are four types of pages: fixed, swappable, discardable, and invalid. Fixed
pages are the same as resident pages: They never move, and they are always mapped by
a page table. Swappable, discardable, and invalid pages are similar to their 16-bit seg­
ment counterparts. Pages also can be read-only or read-write, and can be accessed by the
user or supervisor (kernel).

6.3.4.3.1 Page Tables The paging mechanism of the 80386 processor was discussed
in Chapter 2. As mentioned there, the page size for the 80386 is 4KB, and the hardware
data structure for converting 32-bit linear addresses into 32-bit physical addresses is
called the page table (PT). Each page table contains 1024 (lK) 32-bit page table entries
(PTEs), each of which maps a 4KB page of physical memory. A page table is a page
itself and is 4KB. A single page table can map 4MB (lK * 4KB per page) of memory.
The CR3 control register of the 80386 points to the system page directory, the top-level
page table in the system. The lK PTEs of the page directory are also called page direc­
tory entries (PDEs), since they map page tables in the two-level page address transla­
tion. Since each entry in the page directory maps 4MB of memory, the processor can
map 4GB (lK * 4MB per page table) of linear memory to physical memory at a time.

6.3 OS/2 2.X Memory Management 181

Multiple independent linear address spaces can be implemented via provision of a set of
page tables for each 4GB linear address space, and via switching of page directory con­
tents when context switching is performed between linear address spaces. Whenever a
PTE is changed or a linear address space is switched, the 80386 translation lookaside
buffer (TLB) cache must be flushed by reloading of CR3. Figure 2.16 in Chapter 2 illus­
trates the 80386 paging data structures.

The page tables representing the system region are shared. When the system is start­
ed, enough linear memory is reserved for the system page tables to map the maximum
size of the system arena. Each process has its own set of page tables that maps the pro­
cess virtual address space in the range from the 0 to 512MB. So that all the page tables
of the system can be addressed, linear address space in the system arena is reserved for
page tables for 256 512MB processes (128MB of system linear address space). Each
512MB process requires 128 page tables, each of which maps 4MB of linear memory.
This setup results in 512KB of linear memory reserved for the page tables of each pro­
cess. Each process's PTDA contains variables that point to the page tables that map the
private and shared arenas for that process, and that indicate how many page tables are
actually in use at the shared and private ends of the 5 l 2MB process virtual address
space. The process page tables can also be thought of as a sparse array of per-process
page tables, where each entry contains the memory for a single process's page tables.
When a process is created, one of the 256 blocks of linear memory is allocated for the
new process's page tables. All interfaces of the page manager exported to the virtual
memory manager and loader accept a PTDA parameter that indicates on which set of
page tables the page manager should operate. The parameter is ignored by the page man­
ager for linear addresses in the system arena.

Rather than allocate a page directory for each process, the OS/2 page manager uses
a single directory for the entire system, since each process usually is much smaller than
512MB. Having a page directory for each process would add an unnecessary overhead
to the amount of memory used by the system. When a single page directory is used, the
page tables being used by a process are copied in and out of the page directory when a
context switch occurs. This single directory results in memory savings, since there is no
need for a directory for each process. Since most processes use relatively few of the
available page tables, the operation of copying the in-use shared and private page table
addresses is fast. The TLB is flushed after the context switch, since its contents may rep­
resent invalid mappings.

The OS/2 page manager allows page tables to be swappable like normal page
frames. However, the system must keep track of how many PTEs within a page table are
in use by the page manager, and how many of the in-use PTEs are currently present.
When the present count of the number of PTEs in a page table falls to 0, the page table
can be swapped. If the number of PTEs in use falls to 0, the page table is freed.

6.3.4.3.2 Page Table Entries Each committed page in the system may be referenced
by one or more PTEs. Multiple PTEs referencing the same page may be independently
marked present or not present. The PTE contains different information, depending on
whether the page is present. If the page is present, the PTE contains a physical page

182 Memory Management

31

Frame

12 0

P: present
R/W: readable/writeable
U/S: user/supervisor
WT: write transparent (cache)
CD: cache disable
A: accessed
D: dirty
PG: pageable
Frame: if oresent. PF index; else. VP index

Fig. 6.20 Page table entry (PTE).

number and the attributes of the page in a format defined by the 80386. Figure 6.20
illustrates the definition of a PTE.

If a page is present, the attributes defined by the 80386 indicate whether the page is
read-only or read-write, whether the page has been accessed (referenced) or dirtied
(written), and how the page should be treated with respect to caching. Most pages are set
up for transparent, write-through caching. However, pages representing memory­
mapped 1/0 devices must be disabled from the hardware external caching scheme. Note
that the cache bits in the 80386 PTEs are for external cache control, not for the internal
translation lookaside buffer on the processor. If a page is not present, the page manager
defines the content of the unused 31 bits of the PTE to contain information for determin­
ing a course of action on a page fault. Since the PTE is not large enough to contain all
the information for processing a page during a page fault, the page manager uses the vir­
tual page data structure to represent each committed page of memory. Not-present PTEs
for valid pages contain pointers to virtual page structures.

6.3.4.3.3 Page Frames Each page of physical memory in the system is represented by a
page frame (PF). The PFs are stored in an array indexed by physical PF number. Each PF
contains flags that indicate what type of physical memory constitutes it, and whether it is
eligible for page replacement. For example, the PF may be fast (planar) or slow (channel­
attached) memory, and may be above the lMB or 16MB physical memory addresses.
Figure 6.21 illustrates the contents of a PF array.

A page frame can have one of three states: in use, idle, and free. A PF is in use if
there are any present PTEs in the system that reference the frame. A PF for an in-use
page contains a pointer to the associated (virtual page) structure (explained in

---------- 32 bits ______ .._

VP index

Lock counts T PF reference count

File offset I Flags

Fig. 6.21 Page frame (PF) array entry.

6.3 05/2 2.X Memory Management 183

Section 6.3.4.3.4), long- and short-term lock counts, and a reference count that indicates
the number of present PTEs that point to the page frame. The file offset field of a PF
contains a swap/D or loader block number of the page for finding the page on disk when
the page is in use.

The next type of PF is a.free page frame. When the system is started, all the fixed
pages representing the system are mapped as present and in use. However, the rest of the
pages are marked as free and available for paging. The PF free list is a doubly linked list
with fast PFs at one end and slow PFs at the other. When a PF is allocated, the page
manager attempts to allocate fast memory before slow memory. Also, when a PF is
freed, fast frames are placed on the fast end of the list, and slow frames are placed on the
slow end of the list.

When the system is in an overcommitted situation and the free PF resource decreas­
es below a low-water mark, the page ager begins aging pages in the system. As a result
of page aging, PFs that contain data that have not been used recently change from the in­
use state to the idle state. A page frame is idle if no PTEs reference a PF, but the data
inside the page are reclaimable. A reclaimable PF is still linked to a valid virtual page
structure (see Section 6.3.4.3.4). All the idle PFs in the system are on a doubly linked
list called the idle list. The page ager makes sure that no PTEs reference a PF before
marking the PF idle. Figure 6.22 illustrates the free list and the idle list.

The idle list contains idle PFs, which are dirty or clean, and are reclaimable if a PTE
is faulted on that indirectly references the page through a virtual page structure. The idle
list is doubly linked and is accessed by the LRU or MRU (most-recently-used) end.
When the page manager allocates a PF to satisfy a page allocation request as a result of
a page fault, the page manager first attempts to allocate a free PF. If there are no free
PFs, a PF is allocated (stolen) from the idle list. If the page is dirty, then the contents
must be swapped out before the PF is stolen to satisfy the request. Discardable pages are
never dirty, since they are code or read-only data pages.

6.3.4.3.4 Virtual Pages Whenever the virtual memory manager allocates a committed
page, a virtual page (VP) is allocated. The VP structure is necessary, since the page
manager allows more pages to be committed than can be held simultaneously in physical
memory. The page manager extends the physical memory resource of the system by
demand loading discardable pages from load modules, and by swapping pages to the
swap file. The VP structure also stores the permanent information for each page that
describes the disposition of a page, regardless of whether that page is in memory. A VP

Free PFs

Slow ------------------ Fast

Dirty and clean reclaimable idle PFs
(linked to VPs)

MRU ------------------ LRU

Fig. 6.22 Free and idle page frame lists.

184 Memory Management

------- 32 bits-------

Frame pointer l Flags J
Object-relative page number l Object handle J
PTE reference count J

Fig. 6.23 Virtual page (VP) structure.

is an extension of the contents of a not-present PTE, since a not-present PTE is not large
enough to contain all the necessary information.

At any time, the disposition of an allocated committed page is one of allocate-on­
demand, in physical memory, or on disk. If a page is on disk, it is either swapped in the
swap file or demand loadable from a load module. Allocate-on-demand disposition im­
plies that a PF is to be allocated when the page is referenced. A VP exists independent
of whether a PF has been allocated to satisfy an allocation or commit request.
Overcommit accounting is performed when a VP for committed swappable memory is
allocated, since the system guarantees backing store for the request. Figure 6.23 illus­
trates the contents of a VP structure.

Each VP contains a reference count of the number of present and not-present PTEs
that reference the VP. The VP contains an object handle and an object-relative page
number passed in by the virtual memory manager; these data are used to enumerate all
references to the page and to process page faults. The flags in the VP indicate the state
of the page, the action to be taken on the page for page faults, and the contents of the
frame field of the VP. The flags also provide bits used for per-VP semaphores to serial­
ize access to each VP.

When a page in a memory object is committed, a PTE and a VP are allocated. The
PTE for the page is set to not-present and contains the VP index, which is a pointer to
the VP. The VP flags indicate whether the page is allocate-on-demand, swapped, dis­
carded, swappable-on-write, copy-on-write, dirty, or idle. Figure 6.24 illustrates the lay­
out of the page data structures for an initially allocated committed page.

Page table y VP J
Fig. 6.24 Page structures for initially allocated committed page.

6.3 OS/2 2.X Memory Management 185

When a thread accesses the virtual address mapped by the PTE, a page fault occurs
and the system immediately processes the VP referenced in the PTE. The VP flags de­
termine the source of the data for the page, if there are any. The page is loaded from the
swap file, loaded from a load module, or supplied by the page manager.

The frame value within the VP has different meanings depending on whether the
page is present. If a page is present, the frame value contains the physical page number,
which is also the PF array index of the corresponding PF. When the page is present, the
frame value for locating the page contents when the page is not present is stored in the
associated PF. If the page is not present, the VP frame field contains either a swapID or
a loader block number, depending on whether the page is swapped or discarded. If it is
neither swapped nor discarded, the page is allocate-on-demand and the frame field has a
flag indicating whether the page should be zero-initialized.

6.3.4.3.S Overcommit Calculations The page manager is also responsible for over­
commit calculations. Overcommit calculations are made when a swappable or fixed page
is committed-when a VP is allocated for swappable or fixed memory. Discardable pages
are not part of the overcommit calculation, since they are not swapped. If the total number
of swappable committed pages in the system exceeds the size of the swap file, then the
system attempts to grow the swap file. If the swap file cannot be grown, the allocation
fails. Page tables are included in the overcommit calculation.

6.3.4.3.6 Page Operations Page table allocation occurs when the virtual memory
manager calls the page manager to allocate or reserve linear pages for an object. If an
object is allocated and linear address space is merely reserved (not committed) for it,
then the PTEs are marked invalid, and page tables are allocated to map them. Accessing
an invalid page causes the current thread to receive a general protection fault, which
results in process termination if the fault is not handled by the faulting thread. If fixed
memory is committed, a VP and a PF are allocated, and they are cross-linked. A PTE is
allocated and marked present, and it points to the PF. Except for fixed allocations and
lock requests, all PF allocations occur during page faults.

If a swappable or discardable page is committed, a VP is allocated, a PTE is allo­
cated and marked not present, and the PTE is pointed to the VP. The VP reference count
is set to 1, and the VP frame contains the loader block number passed in by the loader
when memory was allocated if the object is initially discarded. The VP also stores the
handle of the object in which the page is located. No physical memory is allocated until
the VP is referenced by a page fault.

Page sharing occurs when the virtual memory manager calls the page manager to at­
tach one page to another page. Page sharing allows multiple PTEs to reference the same
VP. Attach requests are honored by copying of the contents of the source PTE to the tar­
get PTE and incrementing of the VP count. If the original PTE referenced a present
page, then the PF reference count is incremented also. Attach requests commonly occur
when the virtual memory manager services shared memory API requests and shared
module load requests.

When a page is deallocated, the PTE is zeroed out, and the VP reference count is
decremented. If the PTE references a present page, the PF reference count is decremented

186 Memory Management

also. If the VP reference count falls to 0, both the VP and the PF can be freed. However,
if the PF reference count falls to 0 and the VP reference count is still greater than 0, then
not-present PTEs still reference the virtual page. In this situation, the PF is in the idle
state, and can be ultimately stolen or reclaimed.

6.3.4.3. 7 Page Faults Page faults are handled by the page manager page fault
handler. When a fault occurs, the 80386 hardware provides the system with the virtual
address that was faulted on. The virtual address is used to look up the PTE that caused
the fault. If the page is valid, the PTE contains a link to the VP that describes the page's
disposition and state. If the VP is linked to a PF, then the page is reclaimed from the idle
list. If the page is not reclaimable, then a PF must be allocated, and must be filled with
the data as specified in the VP flags.

When a PF is needed, the page manager first attempts to allocate a PF from the
fast end of the free list. If a free PF exists, the PF immediately satisfies the requests
and is cross-linked to the faulting VP. If there are no free PFs available, as is common
in a memory-stressed system, the page manager steals a PF from the LRU end of the
idle list. When a PF is stolen, it is effectively stolen from one VP and linked to the
faulting VP.

For a PF steal to be performed, the flags in the VP associated with the PF to be
stolen are checked to determine how the page should be stolen. If the page to be stolen is
a clean swappable page with a valid image on the swap file, or is a discardable page,
then it can be stolen without further processing. If it is a swappable page that has been
written to since the last write to the swap file, it is dirty and must be swapped out before
the PF can be stolen. The PF steal is completed when the link between the old VP and
PF is severed, and a link between the faulting VP and the PF is established.

Once the faulting VP is linked to a PF, the page's data are loaded as specified in the
flags of the faulting VP. If the page is a new swappable page, it is zeroed out. If the VP
flags indicate that the VP is swapped, then the VP contains the swapID and the swapper
is called with the swapID to bring in the page. If the VP flags indicate that the VP is a
discarded loader page, then the VP link to the object record is used to obtain the MTE
handle of the originating module. The MTE handle, loader block number, and a linear
address for loading the page are passed to the loader to demand load the page. After the
contents of the page have been loaded, the faulting PTE is marked present and contains
the physical page number of the allocated PF. The VP frame field is saved in the file off­
set field of the PF, and then is set to reference the allocated PF. The PF reference count
is set to 1, and ultimately the faulting instruction is restarted, resuming the thread at the
start of the faulting instruction. Figure 6.25 illustrates the layout of the page data struc­
tures after a page fault has caused a page to be allocated.

The page manager uses copy-on-write and swap-on-write for optimizing page
allocation. When the virtual memory manager commits a swappable page that originates
in an executable module (i.e., private EXE data), it requests the page manager to allocate
the pages swap-on-write. The page manager allocates a VP for the page and sets the VP
flags to indicate that the page is discarded (can be reclaimed from an executable mod­
ule), but that the page should be made swappable when written to. The PTE for the page

6.3 OS/2 2.X Memory Management 187

PF

VP

Page table

Fig. 6.25 Page structures after page fault.

is set to read-only. When the page is written to, a page fault occurs and the page manag­
er changes the page to a swappable page, performs overcommit accounting, and changes
the PTE to read-write. This postpones reservation of space on the swap device until the
page is made swappable during a page fault.

Copy-on-write is used for managing multiple copies of a page in multiple contexts.
When the virtual memory manager needs to allocate a new copy of an existing read­
write page (i.e., attaching to some instance data in a DLL), it sets the copy-on-write
attribute when it calls the page manager to commit or create the copy. The page manager
allocates a VP for each copy-on-write page, and sets the PTE for the page to point to the
original page. However, the allocation of the PF for the new copy of the original page is
delayed as long as possible. All PTEs that reference a copy-on-write page are set to pre­
sent and read-only. When a copy-on-write page is written to, a page fault occurs, since
the PTE is marked read-only. If the VP referenced by the faulting PTE is copy-on-write,
the page fault handler allocates a PF, copies the contents of the original PF to the new
PF, links the VP and PTE to the new PF, marks the PTE present, and restarts the faulting
instruction. Thus, the actual allocation of a PF for the original request to allocate a copy
of a page is delayed until the page is written to.

Recall from Chapter 2 that the 80386 allows any page to be written (even if the
page is marked read-only) if the access is made in supervisor mode. Since the 80386 de­
fines supervisor mode to be privilege levels 0, 1, and 2, a read-only page can be written
to be a thread running at privilege level 2. Since OS/2 allows user-mode threads to exe­
cute with 1/0 privilege at privilege level 2, a copy-on-write or swap-on-write page can
be written to inadvertently by a thread running at privilege level 2. Therefore, the page
manager does not implement copy-on-write or swap-on-write on the 80386. However,
the 80486 allows read-only page protection in all rings, enabling copy-on-write and
swap-on-write to be performed on an 80486.

6.3.4.4 Page Aging

A special thread called the page ager exists for aging pages in the system so that the
system can replace page frames on an LRU basis. The page ager thread is a kernel
thread and runs at privilege level 0. The ager thread is blocked until the system's idle

188 Memory Management

and free page count reaches a low-water mark, which indicates that the system is run­
ning low on memory resources. At this time, the page ager's priority is increased until
the page ager ultimately is allowed to run. It implements a single-hand clock algorithm,
in which it examines the present PTEs of processes. As stated previously, present PTEs
contain the physical PF number of the present page, which is also an index into the PF
array for the corresponding physical page information.

If a scanned PTE is present, the ager examines the accessed and dirty bits to see
whether this page has been accessed since the last time the page ager scanned it. If the
page has not been accessed, then the PTE is marked not present, and is pointed to the
appropriate VP referenced by the PF, and the reference count in the PF entry is decre­
mented. If the PF reference count falls to 0, then the page is linked onto the idle list. If
the page is dirty and is swap-on-write, then it is marked swappable. Read-only pages are
never dirty or swap-on-write. Figure 6.26 illustrates the page data structure when a page
has been idled.

So that the number of PTEs scanned by the ager is minimized, the count per-page
table of the number of present pages is used when each process's page tables are
scanned. This is a global aging scheme, in that processes do not page against them­
selves, but rather page against the working set of the entire system.

6.3.4.5 Page Swapping

Page swapping is executed on the context of the faulting thread, unlike in 16-bit OS/2,
where there is a separate kernel swapper thread used for swap 1/0. The swap file is man­
aged by the file system, and the swap manager uses a bitmap to manage space within the
swap file. Each bit in the bitmap corresponds to a disk frame (DF) in the swap file. The
index in the bitmap of a DF is used as a swapID when a page is marked swappable. The
32-bit swapper also implements multiple swap outs, or group paging. When it is time to
allocate a page from the idle list, and the LRU page on the idle list is dirty, the page's
contents must be swapped out before the frame can be stolen to satisfy the current

PF

Page table

VP

Fig. 6.26 Page structures for idle page.

Summary 189

request. In this situation, the page allocation routine looks for more dirty pages on the
idle list that need to be swapped out, and swaps out several pages at a time. This strategy
takes advantage of the scatter-gather disk hardware that exists to support 1/0 in a paged
environment.

6.4 SEGMENTED VERSUS FLAT MEMORY MODEL

The performance of the flat memory model is far better than that of the segmented mem­
ory model, since segment registers do not need to be loaded when a new memory object
is addressed. Also, the flat memory model allows objects to be larger than 64KB, and
lends itself more easily to a portable environment, whereas the segmented model forces
nonportable programming constructs on application programmers. Both models have the
equivalent level of memory protection. However, the flat model uses page-granular pro­
tection; while the segmented model uses byte-granular protection. Another difference in
the memory models is the type of pointer used in API calls for returning data to the
requestor. If the 32-bit system had used a segmented model, API pointers would have
been 16:32 pointers with a selector and a 32-bit offset. When pushed on the stack, a
pointer parameter would require 64 bits, leading to slower API performance and larger
user thread stacks. Also, validating pointers would require segment register loads, further
slowing down the system.

6.5 MEMORY MANAGEMENT API

Table 6.2 summarizes the 16-bit and 32-bit memory management API calls.

6.6 DYNAMIC LINKING API

Table 6.3 summarizes the 16-bit and 32-bit dynamic linking API calls.

SUMMARY

This chapter explained the architecture, APis, and design of OS/2 16-bit and 32-bit
memory management. The 16-bit version of OS/2 uses a segmented memory model that
results in the system having a segmented API and process virtual address space. Due to
the segment size limitation of 64KB, 16-bit OS/2 programs tend to be dependent on the
memory architecture of the 80286 processor. The 32-bit version of OS/2 uses a flat
memory model that provides a large, contiguous process virtual address space that can
be addressed naturally using offset pointers. As a result, the 32-bit system and programs
can be ported to any 32-bit architecture that supports large, flat, paged virtual address
spaces. Both systems provide virtual memory solutions for protecting memory and for
extending the physical resources of a system using secondary storage devices as swap
media.

190 Memory Management

16-bit API name 32-bit API name

DosAllocSeg DosAllocM em

DosAllocShrSeg DosAllocSharedMem

DosGetShrSeg DosGetNamedSharedMem

DosGetSeg DosGetSharedMem

DosGiveSeg DosGiveSharedMem

DosReallocSeg NIA

DosFreeSeg DosFreeMem

DosAllocHuge NIA

DosGetHugeShift NIA

DosReallocHuge NIA

DosCreateCSAlias NIA

DosMemAvail NIA

DosSizeSeg NIA

DosSubSet DosSubSetMem

DosSubAlloc DosSubAllocMem

DosSubFree DosSubFreeMem

NIA DosSubUnsetMem

NIA DosQueryMem

NIA DosSetMem

Table 6.2 Memory management API.

16-bit API name 32-bit API name

DosLoadM odule DosLoadM odule

DosFreeM odule DosFreeModule

DosGetProcAddr DosQueryProcAddr

DosGetModHandle DosQueryModuleHandle

DosGetModName DosQueryM oduleName

DosQAppType DosQueryAppType

DosGetResource DosGetResource

Table 6.3 Dynamic linking API.

Description

Allocate memory

Allocate shared memory

Access shared memory

Get shared memory

Give shared memory

Reallocate memory

Free memory

Allocate huge memory

Get huge shift count

Reallocate huge memory

Create code alias

Query system memory

Get segment size

Initialize heap

Allocate heap memory

Free heap memory

Uninitialize heap

Query process memory

Set process memory

Description

Load DLL module

Free DLL module

Resolve fixup to DLL

Query module handle

Query module name

Query application type

Get application resource

TERMINOLOGY

allocate-on-demand page
arena boundary record
arena header
arena record
arena sentinel record
block management package (BMP)
call gate
committed page
compaction
compactor
context record
copy-on-write page
demand loading
demand-load segments
demand paging
descriptor
dirty page
discardable page
discardable segment
disk frame (DF)
DLLmodule
DLL read-write instance data objects
dynamic linking
dynamic link
80286 descriptor tables
EXE code segment
EXE module
export data
FAT file system
fault
fixed page
fixed segment
fix up
flat memory model
flush cache
fragment
fragmentation
free
free list
free page frame
give-get mechanism
give-get shared memory

global aging scheme
global infoseg

Terminology 191

global shared segment
group paging
guard page
handle table
handle table entry
heap
HPFS file system
huge increment
huge segment
huge shift factor
idle list
idle page
idle page frame
import data
import table
infoseg
instance segment
in-use page frame
invalid page
lazy allocation scheme
least recently used (LRU)
loader
load-time memory
local infoseg
long-term lock
LRU page replacement
LRU segment replacement
malloc
memory management unit (MMU)
memory overcommit
module table entry (MTE)
movable segment
named shared memory
object record
open file pointer
page ager
page directory
page directory entry (PDE)
page fault
page frame (PF)

192 Memory Management

page frame array
page frame array entry
page frame array structure
page frame free list
page manager
page manager page fault handler
page swapper
page table
page table entry (PTE)
page table map
physical allocator
physical arena
physical memory manager
pinning pages
preload segment
private-address, private-storage object
private address shared storage object
private arena
private sector
privilege level 0
process virtual address space
protection ring architecture
pseudo object
PTDA
read-only page
read-write page
real address space
regular arena record
resident heap
resident page
run-time memory
segment
segment arithmetic
segment motion
segment-not-present fault
segment protection
segment register
segment swapping
segment table
segment table entry (STE)

EXERCISES

segmented memory model
Sfree
shared-address, private-storage

read-write objects
shared-address, shared-storage

read-write object
shared arena
shared memory
shared sector
shared segment
short-term lock
single-hand clock algorithm
16-bit handle
Smalloc
swap cache
swap control table (SCT)
swap control-table entry (SCTE)
swap file
swap file fragmentation
swapID
swap-on-write
swap-on-write page
swappable heap
swappable-on-write page
swappable page
swappable segment
swapper
system arena
system virtual address space
32-bit linear address space
thread information block (TIB)
translation lookaside buffer

(TLB) cache
uncommitted page
virtual address space
virtual memory manager
virtual page (VP)
virtual page structure
0:32 address

6.1 What is the key aspect of virtual memory that makes the latter fundamentally different from
physical memory?

Exercises 193

6.2 Explain the notions of virtual address space and real address space.

6.3 What relationship, if any, exists between the size of a system's virtual address space and the
size of that system's real address space?

6.4 Can one process reference portions of another process's virtual address space?

6.5 What address spaces can a thread in kernel mode access?

Questions pertaining to OS/2 I .X systems:

6.6 What are the main goals of memory management in 16-bit OS/2 systems?

6.7 Explain the architecture of the segmented memory model.

6.8 Can threads running in user mode access descriptors in the LDT or GDT? Explain your
answer.

6.9 Why are not all segments in a process virtual address space simultaneously addressable?
How is addressability to a segment established?

6.10 Distinguish among fixed segments, movable segments, swappable segments, and discard­
able segments.

6.11 What are private selectors and shared selectors?

6.12 How are instance segments mapped and allocated?

6.13 Private segments can be grown or shrunk, but shared segments are usually only grown.
Explain why shared segments are not shrunk.

6.14 Explain the notion of a huge segment.

6.15 How is named shared memory accessed?

6.16 What is give-get shared memory?

6.17 What kind of shared memory is appropriate for interprocess communication between loose­
ly coupled peer processes? What kind of shared memory is appropriate for passing data between
closely coupled peer processes? Explain your answers.

6.18 What technique is used to allocate small memory objects? What is a heap?

6.19 What are infosegs? What kinds of information appear in the global infoseg? What kinds of
information appear in local infosegs?

6.20 Distinguish between load-time memory and run-time memory.

6.21 Explain the operation of each of the main components of the memory management portion
of the kernel-namely, the virtual memory manager, the loader, the physical memory manager,
and the swapper.

6.22 What is overcommit accounting?

6.23 All shared objects, whether code or data, occur at the same virtual address in all process
virtual address spaces. Why are they placed in this way?

6.24 Why does dividing the LDT into shared and private descriptors (selectors) reduce virtual
memory consumption?

6.25 What is the handle table? What is the significance of the flag indicating "above or below
lMB" in each handle table entry?

6.26 Under what circumstances will two different threads try to access an object?

6.27 What is lazy segment allocation?

194 Memory Management

6.28 Explain the relationship between loader and module table entries (MTEs).

6.29 Discuss how program loading is accomplished.

6.30 Distinguish between preload segments and demand-load segments.

6.31 When a segment-not-present fault occurs, what does the descriptor for the segment
contain?

6.32 Discuss the operation of the two components of the physical memory manager-namely,
the physical allocator and the compactor.

6.33 Under what circumstances can physical memory above lMB be accessed?

6.34 Describe how arena headers are used to track free and in-use memory blocks.

6.35 Effectively, each arena header is in its own segment. Why is this so?

6.36 Give positive and negative side effects of placing arena headers throughout physical memory.

6.37 Describe a typical physical memory allocation scenario. Indicate situations in which the
compactor and the swapper will be needed.

6.38 Why can segments be moved invisibly to the processes that reference them?

6.39 How is LRU aging of segments implemented to determine the best candidate for swapping?

Questions pertaining to OS/2 2.X systems:

6.40 The primary motivation behind the design of OS/2 2.X is to ensure portability. List several
aspects of OS/2 2.X memory management that facilitate portability across a wide variety of
platforms.

6.41 List several aspects of segmentation that detract from the portability of OS/2 2.X.

6.42 Why does the flat memory model provide performance superior to that of the segmented
memory model?

6.43 Discuss each of the following page attributes: fixed, resident, swappable, discardable,
invalid, and guard.

6.44 Distinguish between committed pages and uncommitted pages.

6.45 How is memory suballocation implemented?

6.46 Describe each of the kernel memory allocation interfaces: the block management package
(BMP), the resident heap, and the swappable heap.

6.47 Discuss each of the following arena types: the system arena, the shared arena, and the pri­
vate arena.

6.48 Discuss each of the following object types: private-address, private-storage objects; pri­
vate-address, shared-storage objects; shared-address, shared-storage read-write objects; and
shared-address, private-storage read-write objects.

6.49 Discuss the use of each of the following key data structures by the page manager: the page
table, the page frame array, and the virtual page structure.

6.50 Why is the TLB flushed after a context switch?

6.51 Discuss each of the states in which a page frame may be: in-use, idle, and free.

6.52 Describe how the page ager operates to increase the number of free page frames. In particu­
lar, discuss the single-hand clock algorithm used.

6.53 Trace the complete processing of a page fault.

6.54 Distinguish between copy-on-write pages and swap-on-write pages.

6.55 Explain OS/2's notion of group paging.

Exercises 195

6.56 Compare and contrast the flat memory model of OS/2 2.X and the segmented memory
model of OS/2 l .X.

7
Interprocess

Communication

Many shall run to and fro, and knowledge shall be increased.

Daniel 12:2

A person with one watch knows what time it is; a person with
two watches is never sure.

Proverb

The path of duty lies in what is near, and man seeks for it in
what is remote.

Mencius

197

Outline

7.1 Introduction
7 .2 Shared Memory
7 .3 Semaphores

7 .3.1 OS/2 l .X Semaphores
7 .3.2 OS/2 1.X Semaphore API

7.3.2.1 RAM Semaphores
7 .3.2.2 System Semaphores
7.3.2.3 MuxWait Semaphores
7.3.2.4 Fast-Safe RAM Semaphores

7.3.3 OS/2 2.X Semaphore Models
7.3.3.1 Semaphore Handles
7.3.3.2 Mutual Exclusion Semaphores
7 .3.3.3 Event Semaphores
7.3.3.4 MuxWait Semaphores

7.4 Signals
7.5 Queues
7.6 Pipes

7 .6.1 Anonymous Pipes
7 .6.2 Named Pipes

7. 7 Exceptions
7.7.1 OS/2 l.X Exception Architecture
7. 7 .2 OS/2 2.X Exception Architecture

7.8 System Integrity Issues
Summary

198

7.2 Shared Memory 199

7 .1 INTRODUCTION

OS/2 is a multitasking operating system. The existence of multiple processes and asyn­
chronous concurrent threads implies the need for mechanisms to allow processes to ex -
change data and to synchronize the execution of their threads. Interprocess
communication primitives provide these basic features for data sharing and thread syn­
chronization. This chapter describes various aspects of interprocess communication
(/PC) in the 16-bit and 32-bit OS/2 systems.

The IPC facilities of the OS/2 system are organized into a tiered hierarchy based on
the complexity of the IPC mechanism. The simplest IPC mechanisms are shared memo­
ry, semaphores, signals, and exceptions. These constructs are classified as simple con­
structs, since the processes that use them must communicate with one another explicitly.
More abstract IPC mechanisms higher in the hierarchy are built out of the low-level
mechanisms. Queues and named pipes are examples of higher-level abstractions that
allow processes to exchange data and to synchronize their execution. However, the
usage of low-level IPC constructs, such as shared memory and semaphores, is masked
from the users of queues and named pipes. The highest-level abstraction of IPC mecha­
nisms is the API call. Since each API function defines an abstraction and a level of
information hiding, these functions manage the usage of any necessary IPCs from
requestors. The API abstraction is often used by application programs that build their
own API functions into dynamic link libraries that are tailored to their specific needs.
Clients of the API are not sensitive to the underlying IPC usage of the dynamic link
library, that allows it to be used by multiple processes and threads.

7 .2 SHARED MEMORY

Shared memory is the simplest type of IPC mechanism. Its functions are similar in both
16-bit and 32-bit versions of OS/2. Chapter 6 described the types of shared memory that
OS/2 supports. This chapter describes shared memory in terms of its role in IPCs.

Run-time shared memory is allocated while a thread is running, whereas load-time
shared memory is allocated when a process is loaded into memory by DosExecPgm, or
when a library is loaded by DosLoadModule. There are two types of run-time shared
memory: named shared memory and give-get shared memory. Named shared memory
has the name of the shared memory registered in the file-system name space. It creates a
directory entry in the file system that allows access to the named shared memory by
loosely coupled peer processes. These peer processes can access the shared memory by
knowing the name of the memory. Chapter 6 discussed the named-shared-memory API
calls.

Give-get shared memory is anonymous; no name is associated with the memory.
Giveable memory is allocated by a process and is passed to another process explicitly by
specification of the address of the memory and the PID of the process that is being given
the memory. Conversely, gettable memory is acquired by specification of the memory
address from the process that allocated the memory. Ultimately, access is passed directly
from process to process. Chapter 6 discussed the give-get shared-memory API functions.

200 Interprocess Communication

The give-get shared-memory model is safer to use than is the named shared-memory
model, since access to the memory in the former is controlled directly by the sharing
processes.

Load-time shared memory is allocated when a process's EXE file and associated
DLLs are loaded into memory. It consists of shared code and shared data. All code in
the OS/2 system, whether it comes from an EXE file or a DLL, is shared and is reen­
trant. It is mapped at the same address in every virtual address space (as is all shared
memory) in both the 16-bit and 32-bit systems. The writer of shared code must keep in
mind that shared code accessing shared resources, such as shared data, must be able to
handle being preempted at any time.

Specifying the sharing granularity of memory is a way of classifying memory ac­
cording to how it is accessed. Thread memory (also called local memory) is memory that
consists of the thread's user stack. It is local to the thread and is mapped within the pro­
cess virtual address space. Process memory is memory mapped within the process virtu­
al address space; it is accessed and shared by the threads of the process. No API calls are
necessary to set up this sharing-it is part of the multitasking model introduced in
Chapter 5. Shared memory is accessed and shared by threads in different processes, and
is mapped into the shared portion of the process virtual address space.

Process and shared memory usually need some type of serialization if the memory
is accessed concurrently by multiple threads. In other words, if threads within a process
are all using process memory that is not their own stacks or thread local memory, then
the threads need to access that memory in a controlled fashion to guarantee the integrity
of the shared data. When multiple threads in different processes attempt to access shared
memory, the same situation arises.

Shared-address, private-storage memory objects, which are used for instance data
in dynamic link libraries, usually need no serialization unless they are being accessed by
more than one thread within the same process. Instance memory is used for per-process
data within a dynamic link library.

Although shared memory is conceptually simple, it has several weaknesses. The
protocol and layout of the shared memory must be understood by all threads accessing
that memory. Also, since there are multiple threads accessing the memory, semaphores
or flags usually are needed to control concurrent access to the shared region.

7 .3 SEMAPHORES

When multiple threads concurrently execute shared code that accesses shared data or
serially reusable shared resources, those threads need mutually exclusive access to the
shared resources. Semaphores are special protected variables with a defined set of oper­
ations that allow threads to synchronize their execution. OS/2 provides two basic types
of semaphores: mutual exclusion semaphores and event synchronization semaphores.

A critical section of code is a portion of code in which a thread accesses shared, mod­
ifiable data. Only one thread at a time can be allowed to access the modifiable data, and
that thread must exclude other threads from executing the critical section of code simul­
taneously. Threads not in the critical section continue to run. So that threads waiting to get

7.3 Semaphores 201

into the critical section are not blocked for a long time, critical sections should be as short
and fast as possible, and threads should not block within critical sections if possible.

Critical sections as described here are not to be confused with the DosEnterCritSec
and DosExitCritSec API calls (described in Chapter 5) that enable and disable thread
switching within a process. These API calls provide a coarse granularity of synchroniza­
tion that is valid only for threads within a process. Disabling thread switching within a
process can also have bad side effects on threads within a process. Semaphores provide
a more reliable and robust mechanism for managing critical sections.

A mutual exclusion semaphore is used to serialize access of threads to shared modi­
fiable data or resources. When a thread wants to enter the critical section, it requests
ownership of the semaphore. If the semaphore is unowned, then there is no thread in the
critical section; the requesting thread is given ownership of the semaphore and proceeds
to execute the critical section of code. If, while this thread is in the critical section, an­
other thread attempts to enter that critical section, the second thread's request for
semaphore ownership blocks until the first thread exits the critical section and releases
ownership of the semaphore. At the time the thread within the critical section exits, the
highest-priority thread that has blocked requesting ownership of the semaphore is awak­
ened and is given ownership of the semaphore.

Event synchronization semaphores are used when one or more threads need to wait
for a single event to occur. Event semaphores have no concept of ownership. They have
two possible states: set or clear. When a thread needs to wait for an event to occur, it
performs a wait operation on an event semaphore. If the event semaphore is in the set
state, the thread blocks until the event occurs and the semaphore is cleared. If more than
one thread is waiting on the event when the semaphore is cleared, all the threads waiting
on the event are notified that the event has occurred, and the threads are made runnable.
Another type of event synchronization is the muxwait operation; it is used when a thread
needs to wait on multiple semaphores simultaneously.

Like shared memory, semaphores also have several drawbacks for IPCs. Processes
sharing the resources must understand the semaphore semantics and the shared-memory
format. Queues and pipes are higher-level IPC abstractions that utilize semaphores and
shared memory in a way that is transparent for the requestors.

7 .3.1 OS/2 1.X Semaphores

Three types of semaphores are supported in the 16-bit OS/2 system. Each has its own
sharing, performance, and protection characteristics. OS/2 l .X offers both hardware­
based and software-based semaphores. The hardware-based semaphores are RAM and
fast-safe RAM (FSRAM) semaphores. RAM and FSRAM semaphores depend on the
hardware to provide an uninterruptible test-and-set instruction to prevent preemption
during semaphore operations. Software-based semaphores are called system
semaphores; they rely on the nonpreemptibility of kernel mode for implementing atomic
semaphore operations.

RAM and system semaphores can be used for mutual exclusion (mutex) or event
synchronization operations. FSRAM semaphores can be used only for mutex operations.

202 Interprocess Communication

The same API calls are used for manipulating RAM and system semaphores; FSRAM
semaphores use two different special API calls. RAM, FSRAM, and system semaphores
are accessed by a 32-bit semaphore handle.

If a program or library has a critical section in which it accesses some shared re­
source, and it needs to serialize concurrently executing threads accessing that shared re­
source, the DosSemRequest and DosSemClear API calls are used to provide mutually
exclusive access to the critical section. DosSemRequest receives the handle of the
semaphore being used for serializing access to the critical section, and a timeout value.
If the semaphore is unowned, there is no thread within the critical section; the requesting
thread gains ownership of the semaphore and enters the critical section. Subsequent re­
quests for the semaphore while it is owned cause threads to block or, in the case of no
timeout, to return immediately. When the thread in the critical section executes
DosSemClear to release semaphore ownership and to exit the critical section, the
highest-priority thread that blocked requesting the semaphore gains ownership of the
semaphore and is the next thread to execute the critical section. This strategy ensures
that only one thread at a time accesses the shared resource; sequential access guarantees
the integrity of the shared resource.

FSRAM semaphores use API calls different from those of system or RAM
semaphores for their mutex operations. These additional API functions are necessary to
allow the system to distinguish between RAM and FSRAM semaphores. The FSRAM
API functions, DosFSRamSemRequest and DosFSRamSemClear, have the same seman­
tics as do DosSemRequest and DosSemClear.

Event operations are used for synchronizing threads. An event semaphore has no
concept of ownership; it is in either the clear or the set state. DosSemClear clears an
event semaphore; DosSemSet sets an event semaphore. When a thread wishes to wait on
an event semaphore, it issues a DosSemWait request. If the semaphore is clear,
DosSemWait returns immediately. If the semaphore is set, DosSemWait blocks the
thread until the semaphore is cleared. When the semaphore is cleared, all threads wait­
ing on the semaphore are made runnable. A timeslice can occur between calls to
DosSemSet and DosSemWait, so a thread can miss DosSemClear operations, since the
event semaphore has a binary nature. Therefore, DosSemSetWait can be used atomically
to set-and-wait on an event semaphore. Event operations wake up all threads waiting on
a semaphore, whereas mutex operations give ownership to only one thread and make
only that thread acquiring semaphore ownership ready-to-run.

The timeout parameter used in DosSemRequest, DosFSRamSemRequest,
DosSemSetWait, and DosSemWait allows threads to control their semaphore waiting
semantics. During a mutex semaphore request operation, the timeout describes the
action to be taken when the semaphore is owned by another thread. During an event
semaphore wait operation, the timeout describes the action to be taken when the
semaphore is set. If the timeout value is 0, there is no timeout, and the API call returns
immediately if the semaphore is owned or set. If the timeout value is -1, the requesting
or waiting thread will wait indefinitely until the semaphore is cleared. Otherwise, a
timeout value is a positive number that indicates the number of milliseconds that the
thread remains blocked if the semaphore is owned or set. If a DosSemClear operation

7.3 Semaphores 203

does not occur before the timeout expires, the API call returns to the requestor or waiter
with a timed-out return code.

7 .3.2 OS/2 1.X Semaphore API

Table 7 .1 summarizes the 16-bit semaphore APL

7.3.2.1 RAM Semaphores

A RAM semaphore consists of a 32-bit double word in user memory. It can reside in
shared memory or private memory, and the system supports an unlimited number of RAM
semaphores. A RAM semaphore is a binary semaphore-it is in either the owned or
unowned state. The RAM semaphore is initialized to zero to indicate that it is unowned.
The semaphore handle to a RAM semaphore is the address of the semaphore in user mem­
ory. Therefore, since all user memory in 16-bit OS/2 is addressed through the process's
LDT, all RAM semaphore handles have an LDT selector for the high word.

The system does not save the owner of a RAM semaphore. Therefore, if a thread
terminates while owning a RAM semaphore, threads that are blocked requesting the
semaphore may remain blocked forever, depending on their timeout values. Since the
system does not retain the information of which thread owns the semaphore, the system
cannot help to notify those requesting the semaphore when the owner terminates.
Therefore, RAM semaphores are preferred for providing mutually exclusive access to a
resource shared by threads within a process, since only that process is harmed if a thread
terminates owning the semaphore. Using RAM semaphores in shared memory to pro­
vide mutually exclusive access to a resource shared by threads in different processes is
dangerous and should be avoided. RAM semaphores are also used for event

API name

DosSemC!ear

DosSemRequest

DosSemSet

DosSemSetWait

DosSemWait

DosM1p;:SemWait

DosCreateSem

DosOpenSem

DosC!oseSem

DosFSRamSemRequest

DosFSRAMSemC!ear

Description

Clear semaphore

Request semaphore ownership

Set semaphore

Set and wait on semaphore

Wait on semaphore

Wait on multiple semaphores

Create system semaphore

Open system semaphore

Close system semaphore

Request fast-safe RAM
semaphore ownership

Clear fast-safe RAM
semaphore ownership

Table 7.1 OS/2 1.X semaphores API.

204 Interprocess Communication

synchronization operations among threads within a process. RAM semaphores are fast
and are useful for threads within a process.

The RAM semaphores API runs in user mode and resides in a system DLL. The
80286 XCHG instruction is used to provide an uninterruptible atomic test-and-set opera­
tion for claiming the semaphore. Because this instruction is used, there is no need to en­
ter the kernel to protect the thread from preemption while attempting to gain ownership
of the semaphore. The kernel is called only in the case when the RAM semaphore is al­
ready owned and the thread needs to be blocked. There being no kernel call this results
in a significant performance gain when an unowned semaphore is claimed, compared to
implementing semaphore operations in the kernel. The semaphore can be requested or
cleared by any thread with addressability to the semaphore.

Figure 7 .1 illustrates how the system interprets the contents of a RAM semaphore.
The high-order word is a 16-bit value that is used for saving the event/D used when a
thread blocks, awaiting a clear operation. The low-order word consists of a wait flags
field and a busy field that indicates whether the semaphore is owned. The wait flags sig­
nify whether there are any threads in the kernel blocked on the semaphore.

When DosSemRequest is issued, the XCHG instruction is done on the owner field to
determine whether the semaphore is owned. If the semaphore is not owned, the XCHG
instruction claims ownership of the semaphore, and DosSemRequest returns. If the
semaphore is owned, the kernel is called to block the thread. Once the thread enters the
kernel, a unique eventlD for this RAM semaphore is constructed from the semaphore
handle and an internal counter, and a portion of it is saved in the high-order word of the
RAM semaphore itself. Since the eventlD used for blocking the thread can be recon­
structed from the semaphore contents, the kernel does not allocate any memory or main­
tain any block information. The wait flags are set to indicate that a thread is blocked on
the semaphore in the kernel; then, the dispatcher routine ProcBlock is used to block the
thread on the RAM semaphore.

DosSemClear clears the owner field of the RAM semaphore. DosSemClear then
checks the wait flag field of the RAM semaphore to see whether there are any threads
blocked on this RAM semaphore in the kernel. If there are threads blocked in the kernel,
the kernel is called. The kernel executes a ProcRun after regenerating the eventID using
the blockID stored in the RAM semaphore and the handle of the semaphore.
Subsequently, the wait flag field in the RAM semaphore is cleared.

Several race conditions may arise inside the path of the RAM semaphores. As men­
tioned in Chapter 5, 16-bit OS/2 has a race condition built into the dispatcher because of
the way ProcBlock and ProcRun work. Since all threads that are blocked on a given

High word Low word

Reserved for Wait
BlocklD flags

31 16 15

Fig. 7.1 RAM semaphore structure.

Owned/
busy

8 7 0

7.3 Semaphores 205

eventID are awakened when a ProcRun is issued, all the threads must check to see
whether the condition for which they went to sleep has been satisfied. In the case of
DosSemRequest, all of the threads requesting the semaphore that are blocked in the ker­
nel are blocked on the same eventID. All the blocked threads are awakened when the
semaphore is cleared by DosSemClear. However, only the highest-priority thread (the
first one dispatched) blocked in DosSemRequest will find the semaphore unowned; the
others will find the semaphore owned and will go back to sleep. This method of allocat­
ing ownership expends excess processor cycles and is a race condition.

Another race condition exists since the RAM semaphore API code runs in user mode
and kernel mode. When DosSemRequest is invoked and a RAM semaphore is unowned,
there is a chance that there may be threads blocked on the RAM semaphore in the kernel
that are at a higher priority. This situation can occur because the code in the DLL that
implements DosSemClear is preemptible. DosSemClear clears the RAM semaphore in
user mode, then calls the kernel to wake up any threads blocked on the semaphore.
Therefore, an interrupt or timeslice can occur between the time the owner field is cleared
in user mode and the time the threads blocked on the semaphore in the kernel are awak­
ened. If the clearing thread is preempted during this window by a timeslice or an interrupt,
the thread that is dispatched by the system can request and successfully gain ownership of
the semaphore, since the owner field is clear. However, the threads blocked in the kernel
may be of higher priority than the new owner; due to the race condition, however, they
effectively miss the DosSemClear and do not get an opportunity to compete fairly for the
semaphore on a priority basis. To overcome this condition, DosSemRequest checks to see
whether the wait flags in the RAM semaphore are set. If they are, it calls the kernel to give
those other threads previously blocked on the semaphore a chance to compete for the
semaphore with the current requesting thread.

The usage of RAM semaphores for events is much simpler. DosSemSet sets the
owner field of the semaphore. DosSemWait tests the owner field of the semaphore, and
returns immediately if the field is clear. Otherwise, it calls the kernel to block the thread
in much in the same way as DosSemRequest does, except that the threads do not attempt
to claim the semaphore when they are awakened. DosSemClear does the same thing as it
would for a mutex operation on a RAM semaphore: It clears the owner field and calls
the kernel to wake up any blocked threads. DosSemSetWait is an atomic set-and-wait
operation. It allows a thread to set the RAM semaphore and then to wait for the event to
occur, in a single operation. There is a chance that a semaphore could be cleared
between the. set and wait operations, causing the subsequent wait to return immediately
when a thread anticipates blocking. DosSemSetW ait allows a thread to control the situa­
tion, since the 16-bit event model does not allow the user to detect the number of clears
between set operations.

7.3.2.2 System Semaphores

The 16-bit OS/2 system supports 255 system semaphores. System semaphores exist in
kernel space and are accessed using the same API calls as are used for RAM
semaphores. However, when the API code for semaphores in user mode detects that a
handle is to a system semaphore, the API code immediately calls the kernel. Since sys­
tem semaphores are accessible only in kernel mode, they are slower than RAM

206 Interprocess Communication

semaphores. However, they are completely protected, and ownership is tracked by the
system. Each process has its own open system semaphore table in its PTDA. Open
semaphore handles, but not semaphore ownership, are inherited by child processes.

Unlike RAM semaphores, system semaphores must be created using an API call
since they reside in the kernel. DosCreateSem creates a system semaphore. Every sys­
tem semaphore must have a name, and these names are mapped within the file system
name space using a directory entry. This allows system semaphores to be accessed by
peer processes using the global name of the semaphore. DosOpenSem is used by pro­
cesses to gain access to an existing system semaphore. DosCloseSem is used to close a
semaphore; when all processes referencing a system semaphore have performed close
operations, the semaphore is freed by the system.

System semaphores use the same API calls as do RAM semaphores for mutex and
event operations, but the system semaphore has a different type of handle. This differ­
ence allows the system DLL that contains the user-mode layer of the semaphores API to
decide if the semaphore operation should be serviced in user mode or kernel mode,
depending on the type. RAM semaphore handles have an LDT selector as the high-order
word of their semaphore handle. System semaphores ensure that the LDT bit or table
indicator bit of the selector used as the high-order word of the system semaphore handle
is clear. Therefore, system and RAM semaphores can always be distinguished by a
quick test operation on the semaphore handle. Figure 7 .2 illustrates the kernel structures
for tracking system semaphores.

Process A PTDA

Open semaphore table

rll--1--------1

System
semaphore

System semaphore table

Fig. 7.2 System semaphore tables.

Process B PTDA

Open semaphore table

7.3 Semaphores 207

The system semaphore can be accessed by any thread in any process that has
opened the semaphore. The system maintains an open and close count for each system
semaphore in the system. This count is incremented when a process opens a semaphore;
it is decremented when a process closes a semaphore. When the count falls to 0, a
semaphore is freed. The system also saves the owner of a system semaphore to provide
better cleanup facilities than RAM semaphores provide. Figure 7.3 illustrates the system
semaphore data structure.

When a process terminates while owning a system semaphore, since in this case the
system knows the owner of the semaphore, the system performs deadlock recovery, so
that threads blocked on the semaphore do not wait forever. This deadlock recovery
mechanism is called owner died notification. When a process terminates while owning a
system semaphore, the owner died notification is sent to the thread that next acquires the
semaphore through DosSemRequest. The blocked threads are awakened, and they return
from their pending DosSemRequest calls with an error code indicating that the
semaphore owner has died. This implies to the blocked requestors that the resource pro­
tected by the semaphore is corrupted and that the threads should close the semaphore so
that it can be released.

So that the fatal owner died recovery cycle can be prevented, a system semaphore
can be cleaned up during the exitlist processing that occurs when a process dies. Exitlist
processing occurs before the owner died notification is sent, to allow the semaphore to
be cleared and the resource potentially restored. Since exitlist handling is performed on
the context of thread 1 of a process, the system allows thread 1 to claim ownership of a
system semaphore during execution of an exitlist handler even if another thread in the
terminating process owned the semaphore. The semaphore can then be cleared and the
shared resource can be restored so that operations on the shared resource can continue.
In this case, the exitlist handling avoids the owner died notification by cleaning up the
semaphore and shared resource.

There are two types of system semaphores: exclusive and nonexclusive. Exclusive
system semaphores are used for mutex operations among threads in different processes.
Exclusive semaphores are owned by a thread, not by a process, and can be cleared only
by the thread that owns them except during the execution of an exitlist handler. They are
counting semaphores in that the system provides a count that indicates how many times
the semaphore has been requested. The thread that owns the semaphore may request the
semaphore recursively. Each request operation increments the request count; each clear
operation decrements the request count. Recursive request and clear operations must
nest, and the semaphore is not clear until the count falls to 0.

------- 16 bits-------

Owner

Flags t Reference count

Request count Name pointer

Fig. 7.3 System semaphore structure.

·I

208 Interprocess Communication

Nonexclusive system semaphores are used for thread event signaling among threads
that are in different processes. Since nonexclusive semaphores can be requested only
once, subsequent requests by the owner cause the thread to block. Any thread in any
process that has opened the semaphore can clear the semaphore.

Since system semaphores also rely on the dispatcher's ProcBlock and ProcRun rou­
tines for low-level block and unblock primitives, the race condition encountered in the
RAM semaphores API also arises for system semaphores.

7.3.2.3 MuxWait Semaphores

Muxwait semaphores give threads the capability to wait until one or moff semaphores
are cleared. A muxwait list consists of up to 16 semaphore handles. DosMuxSemWait
allows a thread to wait on all the semaphores in a muxwait list. When one of the
semaphores in the muxwait list is cleared, DosMuxSemWait returns. After a clear opera­
tion, threads muxwaiting run even though the semaphore may be reset before the awak­
ened thread actually runs. Threads that are part of a muxwait condition have wakeup
priority over threads that are waiting on the same semaphore from a single
DosSemRequest or DosSemWait operation. Muxwait semaphores have the same race
conditions as those associated with the other 16-bit semaphores.

7.3.2.4 Fast-Safe RAM Semaphores

A fast-safe RAM semaphore (FSRAM) is a modified RAM semaphore. It is designed to
give the performance of RAM semaphores with the protection of system semaphores.
FSRAM semaphores are similar to RAM semaphores in that they exist in user space and
their API is implemented in both user mode and kernel mode. However, the owner of
the semaphore and a request count are maintained by the system in the user-provided
FSRAM semaphore structure. Figure 7.4 illustrates the FSRAM semaphore structure.

Like that of a RAM semaphore, the semaphore handle of a FSRAM semaphore is the
address of the structure. However, DosSemClear and DosSemRequest are not used for
FSRAM semaphores, since these semaphores' handles cannot be distinguished from those
of RAM semaphores. Therefore, there are different API functions for requesting and clear­
ing FSRAM semaphores-namely, DosFSRamSemRequest and DosFSRamSemClear.
These two calls are identical to DosSemRequest and DosSemClear for RAM semaphores,
except that DosFSRamSemRequest retains the unique PID:TID values of the thread that
owns the semaphore in the FSRAM semaphore data structure.

------- 32 bits-------

Length I Owner data

Owner (PID:TID)

RAM semaphore

Reference count J
Fig. 7.4 Fast-safe RAM semaphore structure.

7.3 Semaphores 209

If a process terminates while one of its threads owns the FSRAM semaphore, its ex­
itlist handler can look at the FSRAM semaphore and detect whether the semaphore is
owned by a thread in the terminating process. If a thread in the terminating process does
own the semaphore, the exitlist handler can clear the semaphore and restore the shared re­
source, allowing other threads blocked on the resource to continue running. The owner of
a FSRAM semaphore may request and clear the semaphore multiple times, since there is a
request count built into the semaphore structure. FSRAM semaphores are used only for
mutex operations and have semantics that are equivalent to exclusive system semaphores.

Since the FSRAM semaphore API code runs in user mode, it needs some method of
atomically setting several fields in the FSRAM structure. Since it cannot do this task in a
single instruction, some other means must be used to ensure atomic semaphore opera­
tions in a preemptible environment. Therefore, the code for the FSRAM semaphores
API resides in a special type of code segment called an IOPL segment. As pointed out in
Chapter 2, IOPL on an 80286 is the privilege level necessary to use the trusted 1/0 in­
structions such as IN, OUT, CLI, and STI. OS/2 sets IOPL to be privilege level 2. This
setting allows any code segment at privilege level 2 to execute the CLI and STI instruc­
tions that enable and disable interrupts. The FSRAM semaphore code disables interrupts
while claiming semaphore ownership to prevent any interrupt or timeslice from occur­
ring while the semaphore is being taken. When this practice is used, any segments that
need to be addressed in the section of code with interrupts disabled must be loaded into
the segment registers beforehand. Otherwise, a segment-not-present fault may occur if
the segment is swapped, and the critical section of code may be reentered by another
thread while the swap 1/0 occurs. IOPL is strictly an 80X86 feature; it is not portable to
other architectures. For certain special cases, it allows the flexibility needed to provide
high performance without calling the kernel.

Like the other semaphore models in the 16-bit version of OS/2, FSRAM
semaphores also use the ProcBlock and ProcRun primitives of the dispatcher to block
and run threads. Therefore, the same race conditions found in the rest of the 16-bit
semaphore APis arise for FSRAM semaphores also. Table 7 .2 summarizes the uses of
the different types of 16-bit OS/2 semaphores.

7 .3.3 OS/2 2.X Semaphore Models

The OS/2 2.X semaphore models are all completely protected and portable. The 32-bit
semaphores reside in kernel space and are manipulated using kernel API calls. There are
no RAM semaphores in the 32-bit version of OS/2, since they are not portable to

Usage
Mutual exclusion

Threads in the same process Threads in different processes
RAM semaphore FSRAM semaphore or exclusive system

semaphore

Event signaling RAM semaphore Nonexclusive system semaphore

Table 7.2 OS/2 1.X semaphore model usage.

210 Interprocess Communication

multiprocessor architectures. RAM semaphores are not portable because they are
mapped in user memory, and, depending on the multiprocessor architecture, they may
not be naturally addressable by all processors. Therefore, RAM semaphores are not
carried forward into the 32-bit semaphore architecture. All 32-bit semaphores are
software-based and rely on kernel mode for providing atomic nonpreemptible
semaphore operations. The 32-bit OS/2 semaphore architecture provides two semaphore
classes with different sharing, protection, and performance characteristics: private
semaphores and shared semaphores.

There are 64K private semaphores allowed per process in the system. They are used
for semaphore operations among threads within a process. Private semaphores have no
names and are accessed by handle. There also are 64K shared semaphores allowed in the
system. They are used for semaphore operations among threads in different processes.
Shared semaphores may be named or unnamed. If they are named, the names are entered
into the file system name space, as in 16-bit OS/2. Unnamed, shared semaphores are ac­
cessed by handle.

The 16-bit semaphores API is overloaded, since the same API calls are used for
both mutex and event semaphore operations. The 32-bit semaphores API, in contrast, is
not overloaded. The private and shared semaphore classes are further divided into three
semaphore types: mutual exclusion semaphores, event semaphores, and muxwait
semaphores. Mutual exclusion (mutex) semaphores are used for managing critical sec­
tions, event semaphores are used for thread synchronization, and muxwait semaphores
are used for constructing compound semaphore conditions. Each semaphore type has its
own set of API functions for creating, opening, closing, querying, and operating on a
semaphore. The APis are named for the semaphore type on which they operate-private
or shared semaphores.

The mutex semaphores API allows a thread to gain ownership and release owner­
ship of a mutex semaphore. A mutex semaphore is created using DosCreateMutexSem.
If the semaphore is private, there is no name parameter to DosCreateMutexSem.
However, if the created semaphore is shared, there may optionally be a name parameter,
which is entered into the file system name space with a directory entry.
DosCreateMutexSem returns to the created semaphore a semaphore handle that is used
on subsequent API requests. If the semaphore is shared, other processes obtain access to
the semaphore by issuing DosOpenMutexSem API requests. If the semaphore is named,
the name is used as an input parameter. Otherwise, the semaphore is anonymous, and the
handle returned from the create API is used as an input parameter for identifying the
semaphore. The semaphore handle is returned to the caller of DosOpenMutexSem. So
that recursive code is supported, a semaphore can be opened up to 64K times. In the
case of a private semaphore, it is not necessary to open the semaphore at all, since once
the semaphore is created, it is accessible by all threads within the process. However,
nested open and close operations are supported in both the private and the shared cases.
A mutex semaphore is closed using DosCloseMutexSem. When the number of close
operations is equal to the number of open operations, the system frees the semaphore.
Process termination closes all private semaphores, and decrements reference counts for

7.3 Semaphores 211

all shared semaphores. A mutex semaphore can be queried by invocation of
DosQueryMutexSem. The create, open, close, and query operations described for mutex
semaphores are the same, but there are different names for event and muxwait
semaphores. DosRequestMutexSem is used to request ownership, and
DosReleaseMutexSem is used to release ownership, of a mutex semaphore. Table 7.3
summarizes the 32-bit semaphores APL

The event semaphore API calls are used for thread synchronization. The termino­
logy used in the 32-bit event semaphores is different from that used for 16-bit events.
DosResetEventSem is similar to the 16-bit DosSemSet, and is used to initialize an event
semaphore before waiting for the event to occur begins. DosPostEventSem is similar to
the 16-bit DosSemClear and is used to signal that an event has occurred or has been
posted. DosWaitEventSem is used to wait on an event to be posted; it is similar to the
16-bit DosSemWait. Thus, the 32-bit event semaphores use the terms reset and post to
mean the same as set and clear mean in the 16-bit event model.

The muxwait semaphores API allow a thread to wait on a list of semaphores to be
posted or released. They are similar to the 16-bit DosMuxSemWait API function, but
provide a richer muxwait semaphore type. The muxwait API allows a thread to define a
muxwait semaphore with a list of up to 64 muxwait events. Entries in a muxwait list can
be added and deleted dynamically using the DosAddMuxWaitSem and
DosDeleteMuxWaitSem API calls. A muxwait list can contain event or mutex exclusion
semaphores, but cannot contain both. Private and shared semaphores may be mixed in a
muxwait list if the muxwait semaphore is private. DosWaitMuxWaitSem is used for a
thread to wait on a muxwait semaphore.

API name Description

DosCreateXXXSem Create semaphore
(XXX = Mutex, Event, or MuxWait)

DosOpenXXXSem Open semaphore

DosCloseXXXSem Close semaphore

DosQueryXXXSem Query semaphore state

DosRequestMutexSem Request/wait mutex semaphore

DosReleaseMutexSem Release mutex semaphore

DosPostEventSem Post event semaphore

DosResetEventSem Reset event semaphore

DosWaitEventSem Wait event semaphore

DosAddMuxWaitSem Add semaphore to muxwait list

DosDeleteMuxWaitSem Delete semaphore from muxwait list

DosWaitMuxWaitSem Wait for muxwait list

Table 7.3 OS/2 2.X semaphores API.

212 Interprocess Communication

7.3.3.l Semaphore Handles

All 32-bit semaphores are accessed by 32-bit semaphore handles. The kernel uses the
semaphore handle to differentiate between private and shared semaphores, and to locate
the associated semaphore data structure during semaphore API requests. Except for the
semaphore-creation API calls, all the semaphore API calls require the kernel to translate
a semaphore handle to a kernel-space semaphore structure. Due to its frequent use, this
operation significantly affects the performance of the 32-bit semaphores APL Therefore,
the internal semaphore data structures used by the kernel to track instances of private
and shared semaphores are important. Since the limits on the number of semaphores
allowed are determined by class (private or shared) instead of by type (mutex, event, or
muxwait), there are two semaphore handle spaces. The high-order bit (bit 31) in the
semaphore handle is used to indicate whether the semaphore is private or shared.

Since private semaphores are accessed by threads only within a process, the kernel
uses a per-process array of semaphore structures for mapping semaphore handles into
semaphore structures. The semaphore handle of a private semaphore has the private bit
set in the high word of the handle, and the low word of the handle is an index into the
per-process private semaphore array. The private semaphore array contains pointers to
the actual semaphore structure for each private semaphore. Only the actual semaphore
structure is sensitive to the type of semaphore. Figure 7.5 illustrates the mapping of pri­
vate semaphore handles to the internal semaphore data structure. Each private
semaphore has an open count that indicates how many times the private semaphore has
been opened by the threads in the process.

Shared semaphore handles are accessed by threads in different processes. The ker­
nel must track which processes have access to each shared semaphore, and how many
times each process has opened the shared semaphore. The kernel allocates a per-process
bitmap that is used to track which shared semaphores are in use by each process. The
semaphore handle of a shared semaphore has the shared-private bit set to shared in the
high word, and an index into the per-process open shared semaphore bitmap in the low­
order word. The bitmap index is used to verify that a process has access to a semaphore,
and also is used as an index into the system's shared semaphore array. The actual
semaphore data structure is pointed to by an entry in the shared semaphore array, and
each shared semaphore structure has an open queue for tracking the number of opens

Semaphore
handle

Private

Per-process
private
semaphore
array

Array index

Semaphore
structllre

(open count)

Fig. 7.5 Private semaphore structures.

7.3

Semaphore
handle

Shared

Per-process
shared
semaphore
bitmaps

Shared
semaphore
array

Semaphores

Bitmap index

00100000000···

Semaphore
structure

PID --+ PID
open count open count

Fig. 7.6 Shared semaphore structures.

213

performed by each process. Figure 7.6 illustrates the data structures used for shared
semaphores in the 32-bit kernel.

7.3.3.2 Mutual-Exclusion Semaphores

M utex semaphores are used for serializing access to shared data structures or for managing
critical sections in programs and shared libraries. They have performance characteristics
that are similar to those of 16-bit FSRAM semaphores, and they are protected. Each mutex
semaphore has a request count, like that used in the exclusive 16-bit system semaphore
model. Therefore, a thread that owns a mutex semaphore can recursively call
OosRequestMutexSem and DosReleaseMutexSem in a nested fashion. Each mutex
semaphore has a field for flags, a muxwait queue for muxwait events, a request count indi­
cating the number of requests, an open count or open queue indicating the number of
opens, and an owner. Figure 7.7 illustrates the 32-bit mutex semaphore structure.

Mutex semaphores can be recovered when the owner dies by use of a process termi­
nation exception handler (explained later in this chapter) or an exitlist handler. If the
semaphore is not recovered during process termination, then the system closes the

-------- 32 bits _______ ._

Flags l Owner

MuxWait queue

Open queue/count

Name pointer

Request count J
Fig. 7.7 Mutual-exclusion (mutex) semaphore structure.

214 Interprocess Communication

semaphore for the terminating process and returns the owner died return code to all
threads blocked in the DosRequestMutexSem API call. The threads receiving the owner
died return code from DosRequestMutexSem then perform deadlock recovery by closing
the semaphore and the resource. As part of the owner died termination processing, the
system closes all semaphore references for the terminating process.

Unlike the 16-bit semaphores, all the 32-bit semaphores utilize the 32-bit single
wakeup mechanism in the dispatcher, which was described in Chapter 5. This mecha­
nism ensures that there are no race conditions when the system wakes up the highest-pri­
ority thread that has blocked waiting for mutex semaphore ownership. When
DosReleaseMutexSem is called, only the single highest-priority thread that has blocked
on the semaphore by calling DosRequestMutexSem is made runnable. The
DosQueryMutexSem can be used to determine the semaphore owner.

When a process terminates while owning a mutex semaphore, the system performs
deadlock recovery so that threads blocked on the semaphore do not wait forever. The
deadlock recovery mechanism is called owner died notification. When a process termi­
nates while owning a system semaphore, the owner died notification is sent to all
threads blocked on the semaphore. The blocked threads are awakened, and they return
from their pending DosRequestMutexSem calls with an error code indicating that the
semaphore owner died. This error code indicates to the blocked requcstors that the
resource protected by the semaphore is corrupted and that the threads should close the
semaphore so that it can be released. As in the 16-bit system, the owner died recovery
cycle can be avoided, and the semaphore and shared resource can be restored by use of
exitlist handlers. The exitlist handlers manage the condition of a process that terminates
while owning a mutex semaphore. In the 32-bit system, a process termination exception
handler also can be used to manage termination conditions. The 32-bit exception man­
agement and process termination exception are described later in this chapter.

7.3.3.3 Event Semaphores

Event semaphores are used for signaling events and synchronizing thread execution.
Whereas the 16-bit event semaphores are binary, the 32-bit event semaphores are count­
ing semaphores. The system retains the number of times an event has been signaled or
posted, and returns this post count when the semaphore is reset or queried. When a
thread wishes to set an event semaphore so that a subsequent wait operation will block
the thread until the event is posted, DosResetEventSem is called. When a thread wishes
to signal an event, it invokes DosPostEventSem. DosWaitEventSem is used to block a
thread waiting for an event to be posted. When DosPostEventSem is called to signal the
event, all threads blocked on the event by calling DosWaitEventSem are made runnable.
The awakened threads remain runnable even if the event semaphore is reset before they
are dispatched. If a thread calls DosWaitEventSem and the event has been posted
already, the thread returns immediately without blocking. Figure 7.8 illustrates the event
semaphore data structure.

The post count maintained by the system for each event semaphore enables the com­
municating threads to detect exactly how many post operations occur between reset opera­
tions. The binary nature of 16-bit event semaphores creates the possibility that clear (post)

7.3 Semaphores 215

._ _______ 32 bits --------

Flags I Post count

MuxWait queue

Open queue/count

Name pointer

Fig. 7.8 Event semaphore structure.

operations can be missed. A timeslice may occur between DosSemSet and subsequent
DosSemWait calls, allowing the event to be cleared (posted) by another thread before the
original thread waits. Since there is no count of clear (post) operations in the 16-bit events,
it is not known how many clear (post) operations occur before a thread waits on the event.
Therefore, the 16-bit system provides DosSemSetWait to atomically allow a thread to set
an event and to block on it. With the addition of the post count, the 32-bit event
semaphores API does not require an atomic reset-and-wait operation.

7.3.3.4 MuxWait Semaphors

The muxwait semaphore architecture provides a special compound semaphore model
that allows lists of events or mutex semaphores to be waited on in a single operation.
DosCreateMuxWaitSem is used to create a muxwait semaphore. A muxwait semaphore
can be private or shared, and is composed of a list of either event or mutex semaphore
handles called a muxwait list. Shared muxwait semaphores can have only shared
semaphores in the muxwait list. Private muxwait semaphores can have private and
shared semaphores of the same type in the muxwait list. Figure 7 .9 illustrates the data
structure used for a muxwait semaphore.

Each muxwait semaphore contains a flags field, a count of the number of
semaphores in the muxwait list, the muxwait list itself (composed of semaphore
records), an open count or queue, and a wait count. Muxwait semaphores have an at­
tribute set when they are created that describes whether the semantics of the muxwait
semaphore are wait-any or wait-all. Depending on whether the muxwait list contains
mutex or event semaphores, the semantics of DosWaitMuxWaitSem are different. The
wait-any attribute implies that a thread blocking on a muxwait semaphore will wait until

-------- 32 bits --------

Flags I Semaphore record count

Semaphore record chain

Open queue/count

Name pointer

Wait count J
Fig. 7.9 Muxwait semaphore structure.

ii
'!. I:
I.'

1!

216 Interprocess Communication

any one of the semaphores is released or posted. Wait-all implies that the thread will
wait until all semaphores in the muxwait list are released or posted.

With mutex semantics, the wait-any attribute will cause threads to block until any
one of the mutex semaphores in the muxwait list is released. Ownership of the released
semaphore is given to the highest-priority blocked thread in a DosWaitMuxWaitSem re­
quest. DosWaitMuxWaitSem returns the semaphore handle of the released semaphore
after a successful wait-any request. If a thread is blocked in the wait-all condition, the
thread will return only when all the semaphores in the muxwait list are released. The
thread does not incrementally take ownership of the semaphores in the muxwait list.
This averts any indefinite postponement or deadlock conditions that may occur when a
thread attempts to claim multiple resources. Only when all semaphores in the muxwait
list are released does the thread claim ownership of the muxwait semaphore. As in the
16-bit system, threads waiting on muxwait semaphores have wakeup priority over
threads blocked in a single mutex operation.

The kernel prevents race conditions between single mutex semaphore
DosRequestMutexSem requests, and between DosWaitMuxWaitSem requests on a
muxwait semaphore that have the same mutex semaphore in its muxwait list. To prevent
race conditions, the kernel detects when mutex semaphores are part of muxwait op­
erations, and gives muxwait operations priority over single semaphore operations when
the semaphore is released. If the owner of one of the semaphores within a muxwait list
dies while owning a mutex semaphore, DosWaitMuxWaitSem returns with the owner
died return code. Then, DosQueryMutexSem can be used to find the semaphore within
the muxwait list that has been corrupted.

The event semantics for DosWaitMuxWaitSem are different. With event muxwait
semaphores, the wait-any attribute will cause threads to block on a
DosWaitMuxWaitSem operation until any one of the event semaphores in the muxwait
list is posted. When the post occurs, all threads waiting on the muxwait event are made
runnable. DosWaitMuxWaitSem returns the semaphore handle of the posted semaphore
after a wait-any request. If the wait-all attribute is used with an event muxwait list, the
threads remain blocked in DosWaitMuxWaitSem until all the event semaphores in the
muxwait list are simultaneously in the posted state. In this case, if one of the events in
the list is posted and then is reset immediately, and then the other event semaphores in
the list are posted, the muxwait semaphore remains in the reset state, since one of the
semaphores is not posted.

7.4 SIGNALS

Signals are used for asynchronous event notification between processes. To the process
that receives a signal, a signal is a simulated external interrupt to the flow of instruction
execution. A signal is sent to a process by direct user keyboard interaction or by the ac­
tions of asynchronous processes. Signals are an archaic leftover from the command-line­
oriented interfaces of the UNIX and DOS command shells. Since most OS/2 programs are
PM programs that do not utilize the command-line interface architecture, and there are

7.4 Signals 217

better constructs for performing interprocess communications, signals do not play a large
role in 16-bit OS/2 applications. Signals exist mainly as an aid to tty-style and text-based
applications being ported to 16-bit OS/2 from the DOS and UNIX environments.

Another by product of the 16-bit OS/2 signals implementation is that the source code
that uses the signals architecture is not portable to other processor architectures. The signal
handler calling conventions require applications to code some of their signal handlers
using assembler, and the context in which signal handlers run is poorly defined. Therefore,
signals were not continued in the 32-bit version of OS/2. The signal functions that were
needed were integrated into the portable 32-bit exception architecture. The UNIX system
integrates all exceptions and signals into a single, large, signal mechanism.

The signals available in the OS/2 16-bit system are break (SIGBREAK), interrupt
(SIGINTR), termination (SIGTERM), and user-defined flag events. SIGBREAK and SIG­
INTR occur when the ctrl-BREAK or ctrl-C key sequences are typed on the keyboard.
SIGTERM is sent to a process when DosKillProcess is called with the target process's PID.
DosSendSignal sends SIGBREAK or SIGINTR to another process. DosFlagProcess sends
a user-defined flag signal to another process. DosHoldSignal can be used to disable signals
in critical sections. Signals can be sent to a single process or to an entire process tree.

The kernel maintains a signal vector and signal dispositions within each PTDA in
the system. A process's signal disposition describes how a given signal should be han­
dled when received. The disposition can be to take a default action, to ignore the signal,
or to handle the signal by calling a user-supplied signal handler. The default action for
all signals is forced process termination. When a process is created, all signals are set to
take the default action of termination. DosSetSigHandler allows a process to change the
state of a signal's disposition, or to set a signal handler. Table 7.4 summarizes the sig­
nals API in 16-bit OS/2.

Signals are applied to a process or to a process tree, as described in Chapter 5. Since
a process can consist of more than a single thread, and the signal architecture is built on
the process model, OS/2 must define a protocol for signals that takes into account a pro­
cess with multiple threads. Any thread in a process can issue any of the signal API re­
quests and thus alter that process's signal vectors and disposition. This ability follows
from the process architecture, which allows the threads of a process to share the pro­
cess's resources. OS/2 defines the first thread of a process, thread 1, as the thread that
receives signals. Therefore, thread 1 must be the last thread in a process to die, ensuring
that the signals are handled.

API name Description

DosHoldSignal Disable signal dispatching

DosSetSigHandler Register signal handler

DosSendSignal Send signal

DosFlagProcess Send signal flag

Table 7.4 OS/2 1.X signals API.

218 Interprocess Communication

As described in Chapter 5, signals are dispatched when a thread exits kernel mode,
not at the time the signal is "sent." It is during the ExitKMode routine that the kernel
consults the process force flags to see whether any signals need to be handled when the
thread is dispatched. If the exiting thread is thread 1, the kernel dispatches the signal
after checking to make sure that there is not a hold-signal condition from a
DosHoldSignal API call. If the signal disposition indicates that a user signal handler
exists, the signal is dispatched via building of an 80286 interrupt frame on the thread I
user stack, followed by return to user mode at the address of the signal handler. The sig­
nal handler can return to the interrupt instruction by executing an IRET instruction.

7.5 QUEUES

Queues are a form of peer-process interprocess communication. The queueing model of
OS/2 is a mailbox scheme in which multiple processes may write to the queue and a sin­
gle owner process may read the queue. The process that owns the queue is usually called
the server process; the processes that write to the queue are called client processes. A
return receipt function enables processes that write to the queue to detect that their ele­
ment has been read from the queue by the owner. The queueing functions are nearly
identical in the 16-bit and 32-bit OS/2 systems.

Queues are created by a call to DosCreateQueue. Each queue has a unique name
within the file system name space, mapped by a directory entry that allows peer pro­
cesses to access the queue by name in the DosOpenQueue API call. A queue is closed
by a call to DosCloseQueue. A queue is deleted by the system when all processes
referencing that queue have closed the queue or terminated.

When a queue is created, it can be defined to use different element-ordering
schemes based on the needs of the application. A FIFO queue implements elements that
come and go in first-in-first-out protocol. A LIFO queue is similar to a stack, since ele­
ments are read from the queue in last-in-first-out order. A priority queue allows each
element to be assigned a priority that is used to order the queue elements. Like most
OS/2 objects, queues are accessed using a queue handle returned by DosCreateQueue or
DosOpenQueue. Figure 7.10 illustrates several processes using a queue.

Client process A
DosOpenOueue
DosWriteOueue

Client process B
DosOpenOueue ---~
DosWriteOueue

Client process C
DosOpenOueue
DosWriteOueue

Fig. 7.10 IPC queue.

Element Element Element

Server process

DosCreateOueue
~ DosReadOueue

7.6 Pipes 219

DosReadQueue and DosWriteQueue are used for reading elements from and writing
elements to a queue. The messages passed through a queue are actually 4-byte queue
elements whose contents are defined by the communicating processes. They are chained
together to form a queue by the queueing subsystem. Usually, these 4-byte elements are
pointers to shared memory elements. If shared memory is used for passing messages
through a queue, the sharing of the memory containing the elements must be established by
the communicating processes, not by the queueing subsystem. Usually, named shared mem­
ory is used for queue elements, and the name of the shared memory parallels the name of
the queue. Since shared memory is involved, queues cannot be used across a network.

DosPeekQueue can be used to take a look at the next element to be read from the
queue without removing that element. DosPurgeQueue allows a queue owner to clear all
the elements from a queue. DosQueryQueue can be used by owners and clients to find
out what the status of the queue is. Table 7.5 summarizes the OS/2 queueing API calls.

The queueing API calls reside in a system DLL. They run in user mode, are pre­
emptible, and use the memory suballocation API to manage queue and element data
structures in shared memory. Fast-safe RAM semaphores are used for serializing access
to the shared memory representing queue and element structures. The queueing DLL
registers an exitlist handler each time a process attaches to it, so that it can clean up per­
process queue resources and semaphores during process termination.

7.6 PIPES

A pipe is a data connection between two processes. OS/2 provides two different types of
pipes in both the 16-bit and 32-bit systems: anonymous and named pipes.

7 .6.1 Anonymous Pipes

An anonymous pipe or unnamed pipe is a FIFO file. The origins of anonymous pipes lie
with the UNIX system and its command line shell architecture. Anonymous pipes are
used to pass data between filters, which are utility programs such as more and sort that

16-bit API name 32-bit API name Description

DosCreateQueue DosCreateQueue Create queue

DosOpenQueue DosOpenQueue Open queue

DosCloseQueue DosCloseQueue Close queue

DosPeekQueue DosPeekQueue Peek queue

DosPurgeQueue DosPurgeQueue Purge queue

DosQueryQueue DosQueryQueue Query queue

DosReadQueue DosReadQueue Read queue

DosWriteQueue DosWriteQueue Write queue

Table 7.5 05/2 Queueing API.

220 Interprocess Communication

read standard input, to process the data, and to write to standard output. The command
interpreter can set up a chain of filters that are connected by pipes, so that the filters are
not aware they are reading and writing pipes instead of files. This strategy allows data to
be redirected transparently between files and filter processes due to the convention of
using the standard 1/0 streams.

In OS/2, an anonymous pipe is a FIFO character stream between two related pro­
cesses. Anonymous pipes can be accessed only by processes that are descendants of the
creating process. There are no directory entries associated with anonymous pipes, and
the pipes are not in the file system name space. Open pipes are passed between related
processes using the process creation inheritance mechanism. When a process creates
another process, the child inherits the parent's open file table. This inheritance scheme
allows a child to gain access to pipes created by the parent. Data in pipes are accessed
sequentially. Pipes have one reading end and one writing end; thus, they are half-duplex.
Pipes are accessed using file system APls. Figure 7 .11 illustrates two processes
communicating over an anonymous pipe.

Anonymous pipes are created using DosCreatePipe. DosCreatePipe creates the
pipe structures and allocates two file descriptors from the open file table in the PTDA of
the requesting process. One is the read descriptor and one is the write descriptor. The
read and write descriptors may subsequently be used in DosRead and DosWrite calls to
perform file 1/0 on the pipe. They may also be used in DosClose when they are finished
being used. DosDupHandle is used to manipulate the descriptors within the open file
table of a process. DosDupHandle is used in combination with open-file-handle inheri­
tance mechanism to set up filters among parent and child processes. The system per­
forms 1/0 synchronization when 1/0 is performed to pipes. A DosRead request on a pipe
blocks until the pipe has data or until the writer dies. A DosWrite request to a pipe
blocks if there is not enough room in the pipe for the data, or until the reader dies.

7.6.2 Named Pipes

Named pipes allow message data streams to be passed between peer processes. They are
helpful in the client-server computing environment, where processes may be remotely
connected by a network. Named pipes provide local and remote network transparency

Parent process Child process
Dos W rite(Stdout) DosRead(Stdin)

Open file table Data flow
Open file table

......
...JAJBlCJAlBJ CjAj · · · JAJ~ --..

Fig. 7.11 Anonymous pipe.

7.6 Pipes 221

through the network redirector, as described in Chapter 11. Named pipes provide basic
connection and data transfer services, as well as functions for remote procedure calls
and transaction processing. They can be accessed by peer processes, not just by pro­
cesses within a process hierarchy. They can be multiplexed, allowing a single named
pipe to have multiple instances. Using multiple instances, multiple paths can be set up
for different sets of requestors on a single pipe. A named pipe can run full- or half­
duplex. That is, a named pipe can be bidirectional and have a single handle used for
reading and writing operations. Named pipes can also be accessed transparently using
the DosOpen, DosRead, DosWrite, and DosClose file system API calls.

The creator of a named pipe is typically called a server process. The server provides
service for clients using the named pipe as a medium of data exchange. Named pipes are
created using the DosCreateNPipe call. Their names are taken from the file system
name space. A directory entry is created for each named pipe that allows peer processes
to access the named pipe by using the name. DosCreateNPipe returns the pipe handle
for accessing the pipe. It also sets the pipe mode and number of instances. The capabili­
ty of having multiple instances of a pipe allows a server to service more than one client
using a single named pipe.

The use of named pipes is best described by an example interchange between a
server and a client process. Once the server creates the named pipe, it calls
DosConnectNPipe to listen for a client attempting to access the named pipe. When a
client process calls DosOpen using the name of the named pipe, it is connected to the
named pipe, and the server process is notified that a client has established a connection
with the named pipe instance. If there are no pipe instances available when a client pro­
cess issues DosOpen, DosWaitNPipe can be used by the client to wait for the next
instance to become available. Figure 7.12 illustrates a named pipe with three instances.

1/0 is performed across pipes with DosRead and DosWrite using the handle of the
named pipe. The pipe can be configured to perform blocking 110 or nonblocking 110
when it is created. DosPeekNPipe is used to support peek operations by the server pro­
cess on the contents of the pipe. DosTransactNPipe is the equivalent of a Dos Write fol­
lowed by a DosRead across a named pipe. Although the separate DosWrite and
DosRead operations perform the same actions as does DosTransactNPipe, in a situation
where the named pipe represents a connection across a network, combining the two
operations into one provides a significant performance savings. This savings is the rea­
soning behind the DosCallNPipe API function. This function is the equivalent of a

Fig. 7.12 Named pipe (three-channel full duplex).

Server
process

222 Interprocess Communication

DosOpen, DosWrite, DosRead, and DosClose sequence of operations on a named pipe.
It causes almost exactly the same actions as occur when a remote procedure call is
issued to a process running on another machine. The named pipe API calls (see Table
7.6) are basically the same in the 16-bit and 32-bit OS/2 systems.

7.7 EXCEPTIONS

Exceptions are used to deliver synchronous events caused by the current thread of
execution. In this section, the 16-bit and 32-bit OS/2 exception architectures are
described separately, since they are so different.

7.7.1 OS/2 1.X Exception Architecture

Chapter 2 described the 80286 exception architecture. Under OS/2, the exceptions that
can occur on an 80286 are further classified into system exceptions and user exceptions.
System exceptions are handled by the kernel. User exceptions can be handled by the ap­
plications that cause them; if a user exception is not handled, the kernel takes a default
action of terminating the process that caused the exception. Table 7. 7 illustrates the
80286 exceptions and classifies them according to system or user types.

The kernel maintains an exception vector in each PTDA for handling the user
exceptions. The user-handleable exceptions for 16-bit OS/2 are divide overflow, over­
flow, bound, invalid opcode, numeric coprocessor (NPX) not available, and NPX error.

16-bit API name 32-bit API name Description

DosMkPipe DosCreatePipe Create anonymous pipe

DosMakeNmPipe DosCreateNPipe Create named pipe

DosConnectNmPipe DosConnectNPipe Connect named pipe

DosD isC onnectN mPipe DosDisConnectNPipe Disconnect named pipe

DosWaitNmPipe DosWaitNPipe Wait named pipe

DosPeekNmPipe DosPeekNPipe Peek named pipe

Do~QNmPHandState DosQueryNPHState Query named pipe handle state

DosQNmPipelnfo DosQueryNPipelnfo Query pipe information

DosQNmPipeSemState DosQueryNPipeSemState Query Named Pipe Semaphore
State

DosSetNmPHandlnfo DosSetNPHState Set named pipe handle state

DosSetNmPipeSem DosSetNPipeSem Attach semaphore to named
pipe

DosCal/NmPipe DosCallNPipe RPC transaction

DosTransactNmPipe DosTransactNPipe Write/read transaction

Table 7.6 OS/2 pipes API.

7.7 Exceptions 223

Exception description Type

Divide by zero User

Single step System

Nonmaskable interrupt (NMI) System

Breakpoint System

INTO overflow System

Bound range exceeded User

Invalid opcode User

NPX not available User

Double fault System

NPX error User

Invalid TSS System

Segment not-present System

Stack overrun System

General protection fault System

Table 7.7 16-bit exceptions.

Debugged processes rarely cause exceptions-most exceptions are the result of error
conditions. Usually, these error conditions are fatal, so the default action for a user
exception is to terminate the process immediately. However, there are cases when a pro­
cess needs notification that an exception has occurred. For example, a process comput­
ing a mathematical limit may use an algorithm that indicates that it is completed when a
divide-by-zero operation occurs. Also the NPX exceptions are used by floating-point
emulation libraries when a coprocessor is not present. A process can register an excep­
tion handler using the DosSetVec API call. The exception handler address is provided to
DosSetVec, and the address of the handler previously installed in the PTDA exception
vector is returned. The exception vectors for a process are shared by all threads in the
process, and are used regardless of which thread causes an exception.

As Chapter 5 described, when an exception occurs, the kernel trap manager builds
an exception frame on the stack of the thread that caused the exception, and then
resumes thread execution in user mode at the exception handler address stored in the
PTDA. To the exception handler, the stack frame looks like the thread has been inter­
rupted, thereby requiring an IRET instruction to return to the point of the interruption.
The exception handler runs within the context of the thread that caused the exception.
Since there is only a single set of exception vectors in each PTDA for the threads of a
process, multiple threads in the same process may inadvertently corrupt the contents of
the exception vectors. If each thread is executing an API that uses different DLLs, and
both DLLs attempt to register a handler for the same exception, the last one to register
sets the exception vector for the exception. If the first thread then causes the exception,
the wrong handler will be executed. This shortcoming in the 16-bit exception

224 Interprocess Communication

architecture is addressed in the 32-bit architecture. However, it is not too critical, since
the limited user handleable exceptions are rarely encountered.

The system trap manager handles most of the system exceptions. The most important
system exceptions are the general protection fault and the segment-not-present exception.
The segment-not-present exception is passed to the virtual memory manager so that the
segment can be brought into memory. A GP fault can occur in any situation in which the
segment protection semantics of the 80286 are violated. When a GP fault occurs, the sys­
tem terminates the process and prints the fault information on the screen for debugging.

A major shortcoming of the 16-bit exception architecture is that GP faults cannot be
handled by the process. This restriction has side effects on API parameter passing and
parameter validation. If a process calls a kernel API and passes a bad address as a
parameter, the kernel detects the fault and terminates the process without returning from
the APL Another option would be to detect the bad parameter and to return a return code
from the API to the requestor, but this option is not supported. Since the process is ter­
minated, the requestor has no opportunity to perform resource cleanup except during an
exitlist handler. The thread that causes the fault is not necessarily aware of what other
threads in the process are doing, and can cause resource cleanup and rollback problems
for other threads. For example, if one thread is updating a remote database while another
thread causes a forced termination of the process, the transaction with the remote
database can be left in an indeterminate state. Although th.e exitlist handler for the
remote transaction API' s DLL does get a chance to clean up, its options are limited due
to the overhead of tracking the states of the threads that use it.

Following the example set by the kernel APis, APis implemented in DLLs perform
practically no address parameter validation. If a DLL API is passed an invalid address
parameter, the DLL uses the address in good faith and causes a GP fault. Although this
algorithm for treating invalid addresses makes the behavior of the kernel and DLL API
calls consistent, it is undesirable.

Ideally, the entire API should be changed such that all API requests are guaranteed
to return. When invalid pointers were passed to a kernel API, a bad parameter error code
would be returned. If GP faults could be handled by user-mode threads, a DLL API
could perform lazy parameter validation by registering a GP fault exception handler, and
handling the exceptions caused when invalid address parameters are passed in. Although
it is riot necessarily obvious at first, there is an underlying assumption that any 80286
GP fault must be restartable. Unfortunately, many of the 80286 chips shipped to date
have an erratum that causes the CX register to be corrupted during a GP fault. This cor­
ruption effectively prevents the system from restarting instructions that cause GP faults.
Since 16-bit OS/2 is targeted for the 80286 processor, the design of the system had to
take into account all the errata inherent in the 80286. The 80286 dependencies of the 16-
bit OS/2 exception architecture also prohibit portability.

7.7.2 05/2 2.X Exception Architecture

The 32-bit exception architecture is portable, is machine independent, and provides the
fundamental building blocks for resource recovery. The 32-bit exception architecture

7.7 Exceptions 225

carefully defines the exception handler context and handles exceptions on a per-thread
basis. GP faults can be handled by user-mode threads to provide better lazy parameter
validation in DLLs. The exceptions are generalized into machine-independent categories
that can be implemented on any architecture. Support for user-defined exceptions and
system-reserved exceptions allow applications to define their own exceptions also.

Two new guard page exceptions exist to allow dynamic growth of user stacks. Also,
the functions for dealing with the SIGINTR and SIGBREAK signals from the 16-bit sig­
nal API are integrated into exception management. A new exception, called the process
termination exception, is used by threads to handle individual thread termination.
Unwind operations allow a thread to backtrack and to unwind exception handlers that
have been registered during nonlocal goto operations. The 32-bit exception architecture
supports frame-based language strategies, in which an exception handler is set for each
activation frame on the user stack. This allows better resource cleanup in nonlocal
branching (goto) operations such as longjump and setjump in the C language. Table 7.8
lists the 32-bit OS/2 exceptions.

Exception description

Divide by zero

Debug

Nonmaskable interrupt (NMI)

Breakpoint

INTO overflow

Bound range exceeded

Invalid opcode

NPX not available

Double fault

NPX error

Invalid TSS

Segment not present

Stack overrun

General protection fault

Page fault

Guard page fault

Guard page allocation fault

Process termination

SIG BREAK

SIGINTR

SIG TERM

Table 7.8 32-bit exceptions.

Type

User

System

System

System

System

User

User

User

System

User

System

System

System

User

System

User

User

User

User

User

User

226 Interprocess Communication

For each thread in the system, there is a chain of exception handlers in user space that is
headed by a pointer in the thread information block (TIB). DosSetExceptionHandler and
DosUnsetExceptionHandler are used for the registration and deregistration of exception han­
dlers on a thread's exception chain. When an exception occurs, control transfers to the kernel
trap manager. The kernel trap manager determines whether the exception is handled by a
user mode thread or the system. If the exception is a user exception, the trap manager trans­
fers control to the user-mode exception dispatcher. The user-mode exception dispatcher then
processes the exception handler chain based off the TIB by calling each exception handler.
Figure 7.13 illustrates the per-thread exception chain.

When each exception handler is called, the exception dispatcher passes to the han­
dler information that describes the exception. Since the exception architecture is
portable, exception handlers can be written in high-level languages without any machine
dependence. However, there is also a machine-specific structure attached to the excep­
tion handler information that allows machine-specific operations if they are desired. The
exception handler either handles the exception or does not handle the exception, and
then returns to the exception dispatcher. If the exception was handled, it is restarted at
the address specified by the exception handler. If it was not handled, the exception dis­
patcher continues processing the exception chain until it has exhausted all exception
handlers. If none of the exception handlers handles the exception, then the default sys­
tem action for the exception is taken. The default action for all exceptions except guard
page exceptions is process termination. The exception dispatcher also supports nesting
of exceptions in case an exception handler causes another exception.

DosRaiseException raises an exception in the context of the current thread.
DosUnwindException unwinds exception handlers on the thread exception handler chain up
to a certain point. The unwind causes each exception handler to be called with an indicator
that an unwind request is being processed. DosSendSignalException is used for sending the
SIGIN1R and SIGBREAK signal exceptions to other processes. These signal exceptions are
fielded as exceptions, not as signals. The DosSetSignalExceptionFocus enables a process to
receive the signal exceptions.

Thread
information

block

Exception
chain head

Exception Exception Exception
--- record i--- record ---~i record

Exception
handler

Exception
handler

Exception
handler

Fig. 7.13 Per-thread exception chain.

7.8 System Integrity Issues 227

As a result of the addition of the process termination exception and the unwind
operations, process termination is much more robust than in the 16-bit system. When a
single thread dies by calling DosExit, it receives the process termination exception, fol­
lowed by an unwind operation. This process termination exception is of the synchronous
variety. If a thread causes a forced termination of the entire process, then all threads in
the process receive a process termination exception followed by an unwind exception,
and then the process exitlist handlers are called. This type of delivery of the process ter­
mination exception is called asynchronous, since it is not caused by the threads receiv -
ing the exception, except for one. Asynchronous delivery gives 32-bit DLLs the ability
to provide much better resource cleanup in forced-termination situations. The process
termination exception also provides to DLLs the ability to ensure that critical operations
in independent threads are completed. Handling of the process termination exception
allows the termination of an individual thread to be deferred. Since the GP fault to be
handled by user-mode exception handlers, fewer involuntary forced termination situa­
tions are encountered. Table 7.9 summarizes the OS/2 exception APls.

7 .8 SYSTEM INTEGRITY ISSUES

Protection and security are two different system integrity issues. Security is discussed in
Chapter 11. This section examines protection from the standpoint of interprocess com­
munications. For instance, any device driver can totally destroy the system, since it has
addressability to the kernel memory space. However, this possibility is more a security
issue than a protection issue, since in a secure system only a user with permission to al­
ter the system configuration files could load a device driver. Protection and integrity de­
scribe how the system prevents from occurring deadlock situations, such as a thread
waiting on an event that will never occur. In the DOS system, there is almost no protec­
tion. If a DOS application disables interrupts and goes into a spin loop, the system
hangs. If an application destroys the memory containing an interrupt vector, control is
transferred to an unknown location when the interrupt occurs. Since the DOS system is
not protected, faults do not occur, and protection violations usually result in the system
crashing.

16-bit API name

DosSetVec

NIA

NIA
NIA
NIA

NIA

NIA

32-bit API name

DosS etExceptionH and/er

DosUnsetExceptionHandler

DosRaiseException

DosU nwindException

DosSendSignalException

DosSetSignalExceptionF ocus

DosAcknowledge Signal Exception

Table 7.9 OSl2 exceptions API.

Description

Register exception handler

Deregister exception handler

Raise exception

Unwind exception handlers

Raise signal exception in another
process
Enable process to receive signal
exceptions

Acknowledge signal exception

228 Interprocess Communication

In the protected environment of OS/2 with multiple processes and threads concur­
rently executing and sharing resources, a more sophisticated means of deadlock recov­
ery exists. The underlying theme for protection revolves around the process model. If a
process accidentally or maliciously causes errors, the errors affect only that process.
Processes that are hung can be shut down from the user interface. Also, termination han­
dlers exist to allow DLLs to do resource housekeeping during termination. Properly de­
bugged libraries and programs in OS/2 do not deadlock the system. An improperly
debugged program can harm only itself, and an improperly debugged library can harm
only its client processes.

There are several categories of integrity breaches that can cause an OS/2 process to
execute some kind of recovery scheme. If a signal arrives and the signal handler does
not return to the interrupted code, a critical section can perhaps be interrupted. This
could cause a semaphore to be in an owned state even though the owner died. Another
possible situation is that a process can kill another process using DosKil!Process. In 16-
bit OS/2, a process can incur a GP fault or a nonrecoverable exception. A process can
also fail to release a semaphore due to a coding error. However, all these situations can
be avoided using the appropriate interprocess communication constructs and the right
combination of termination housekeeping and resource cleanup. Having exitlist and pro­
cess termination exception handlers allows semaphores to be cleaned up and ensure that
threads are never blocked waiting for conditions that will never occur. However, if these
handlers do not exist, the threads that are blocked will be notified using the owner died
logic of the 16-bit system semaphores or the 32-bit semaphores discussed previously.
This notification allows recovery and cleanup to occur, so that the processes can be ter­
minated gracefully without the loss of data.

SUMMARY

This chapter described the OS/2 interprocess communication features. Shared memory is
one of the simple IPC constructs, as are semaphores, signals, and exceptions.
Anonymous pipes, named pipes, and queues are more complex IPC structures. IPC
mechanisms are used by DLLs and programs to facilitate sharing of data resources and
integrity management. OS/2 provides a rich set of IPC constructs; selecting the correct
mix of such constructs is critical to writing successful programs for the OS/2 system.

TERMINOLOGY
anonymous pipe
asynchronous concurrent threads
asynchronous event notification
atomic set-and-wait operation
binary semaphore
blocking 1/0
client-server computing

counting semaphore
critical section
data sharing
deadlock
deadlock recovery
event ID
event semaphore

event signaling
event synchronization semaphore
exception
exception dispatcher
exception handler
exception vector
exclusive system semaphore
exitlist handler
fast-safe RAM (FSRAM)
filter
general protection (GP) fault
give-get shared memory
graceful process termination
guard page
guard page exception
hardware-based semaphore
inheritance mechanism of

process creation
instance memory
interprocess communication (IPC)
IOPL segment
kernel mode
kernel trap manager
load-time shared memory
local memory
LTD selector
more filter
mutual exclusion (mutex)
mutual exclusion semaphore
mutually exclusive access to

shared resources
muxwait
muxwait list
muxwait semaphores
named pipe
named shared memory
network redirector
nonblocking I/O
nonexclusive system semaphore
numeric coprocessor (NPX)
open file handle inheritance
open file table
open system semaphore table
owner died logic

Terminology

owner died notification
owner died return code
peek operation

229

peer-process interprocess communication
per-process open shared

semaphore bitmap
per-task data area (PTDA)
pipe handle
pipe mode
post a signal
private semaphore
queue
race condition
RAM semaphore
remote procedure call (RPC)
reset
run-time shared memory
segment-not-present exception
segment-not-present fault
semaphore
semaphore handle
server process
shared address private memory
shared memory
shared semaphore
SIG BREAK
signal
signal handler
SIGINTR
SIG TERM
16-bit event semaphore
software-based semaphore
sort filter
synchronous event
system exception
system semaphore
system trap manager
test-and-set instruction
thread exception handler chain
thread memory
thread l
thread synchronization
transaction processing
unnamed pipe

~
ij
lj
I.;

~ ,•

230 Interprocess Communication

unwind operation
user exception
user mode

EXERCISES

user-mode exception dispatcher
XCHG instruction

7.1 Discuss the notions of run-time shared memory, load-time shared memory, named shared
memory, and give-get shared memory.

7.2 Distinguish among thread memory, process memory, and shared memory.

7.3 Give several weaknesses of shared memory.

7 .4 Explain the notions of critical section and mutual exclusion.

7.5 Distinguish between mutual exclusion semaphores and event synchronization semaphores.
Describe a muxwait operation.

7.6 Discuss the usage of each of the three types of semaphores that are supported in 16-bit OS/2:
RAM semaphores, fast-safe RAM (FSRAM) semaphores, and system semaphores.

7.7 Distinguish between binary semaphores and counting semaphores.

7.8 What instruction is used on the 80286 to claim a RAM semaphore? What attribute of this
instruction eliminates the need to enter the kernel to protect the thread from preemption while
attempting to gain ownership of a semaphore?

7 .9 Describe several race conditions that may develop with the use of RAM semaphores.

7.10 Explain the use of owner died notification. How is this mechanism useful in deadlock recovery?

7.11 Distinguish between exclusive system semaphores and nonexclusive system semaphores.

7.12 Why are there no RAM semaphores in the 32-bit version of OS/2?

7.13 Distinguish between 32-bit OS/2 private semaphores and shared semaphores.

7.14 Explain the use of mutual exclusion semaphores, event semaphores, and muxwait
semaphores in 32-bit OS/2.

7.15 How does 32-bit OS/2 prevent deadlocks between threads awaiting muxwait semaphores?

7.16 What are signals? Why were signals omitted from 32-bit OS/2? How is signal processing
performed in 16-bit OS/2?

7.17 How are queues used for peer-process communication among client and server processes?

7.18 Distinguish between named pipes and anonymous (unnamed) pipes. Which processes may
access an anonymous pipe? When would a read operation from a pipe block? When would a write
operation to a pipe block?

7.19 Explain the use of named pipes to establish communication among remote processes in a
networked environment.

7.20 List several advantages of named pipes over anonymous pipes.

7.21 Describe an example interchange over a named pipe between a client and a server process.

7.22 Discuss the respective exception architectures of 16-bit and 32-bit OS/2. Why is the 32-bit
architecture superior?

8
1/0 Management

I can only assume that a "Do Not File" document is
filed in a "Do Not File" file.

Senator Frank Church
Senate Intc11igence Subcommittee Hearing, 1975

Gather up the ji'agments that remain, that nothing be lost.

John 6:12

A form of government that is not the result of a long sequence of
shared experiences, efforts, and endeavors can never take root.

Napoleon Bonaparte

A fair request should be followed by the deed in silence.

Dante

... the latter, in search of the hard latent value with which it
alone is concerned, sniffs round the mass as instinctively and

unerringly as a dog suspicious of some buried bone.

William James

231

Outline

8.1 Introduction
8.2 Devices
8.3 Installable File System Architecture
8.4 File System Name Space
8.5 File System Objects
8.6 File System API
8. 7 OS/2 l .X File System Drivers
8.8 OS/2 2.X File System Drivers
8.9 Device Drivers

8.10 Hardware Device Structure
8.11 Hardware Device Attributes
8.12 Hardware Device Independence
8.13 OS/2 l .X Device Drivers
8.14 Device Driver Structure
8.15 Device Driver Header
8.16 Device Attribute Flags
8.17 Request Packets
8.18 Strategy Commands
8.19 DevHelp Services
8.20 OS/2 2.X Device Drivers

Summary

232

8.3 Installable File System Architecture 233

8.1 INTRODUCTION

This chapter describes file and device 1/0 management in OS/2. OS/2 I/0 can be divided
into two categories: system 110 and user 110. Processes use system I/Oto perform file­
level l/O to secondary storage devices managed by file systems, and to perform devicc­
level 1/0 to devices managed by device drivers. System 1/0 is programmed using the file
system AP/. Processes utilize user 1/0 to interact with the user by employing the key­
board, mouse, and display. User 1/0 is programmed using the keyboard (KBD), mouse
(MOU), and video (V/0) subsystems, or the Presentation Manager (PM). This chapter
concentrates on the file system and device driver architectures. The discussion in this
chapter describes the device driver model that supports the user-1/0 device subsystems
at the lowest level. Chapter 9 describes how processes interact with the user I/O devices
and the associated subsystems.

8.2 DEVICES

OS/2 has two types of devices: block devices and character devices. Block devices usu­
ally have random access characteristics and transfer blocks of data between devices and
memory. Block devices comprise secondary storage media, such as hard disks, diskettes,
and optical disk devices. Character devices transfer sequential streams of characters to
and from devices such as the serial port, keyboard, or parallel port.

Each device in the OS/2 system has a name that is used to access it via the file sys­
tem APL Device names depend on whether the device is a block or a character device.
Character device names have up to seven characters, such as COM: and LPT:. Block de­
vices can be partitioned into one or more logical block units, also called logical drives.
Logical drives are named using the letters of the alphabet-A:, B:, through Z:. File sys­
tems manage the storage of files on logical block devices. Block device drivers manage
the mapping of logical block devices to physical drives, and the low-level I/O on behalf
of file systems. Data structures similar in function to the device chain of DOS (discussed
in Chapter 4) are used to link the logical drive unit letters and character device names to
the device drivers that support them.

8.3 INSTALLABLE FILE SYSTEM ARCHITECTURE

OS/2 has an installable file system (IFS) architecture, introduced in Version 1.2, that al­
lows the coexistence of multiple file systems. Since each logical block unit can have its
own file system, different file systems are usually used for block devices that have
different characteristics. For example, write-once-read-many (WORM) and CD/ROM
devices need file systems different from those used by random access hard disks.

Each file system supports the management of file system objects, such as files and
directories, in a hierarchical fashion. File system objects and devices are managed and
accessed by processes using a common file system APL Since the file system API is not
sensitive to any of the file system naming conventions, each file system can have its

234 1/0 Management

own name structure for the file system objects it supports. Figure 8.1 illustrates the in­
stallable file system architecture.

The OS/2 kernel installable file system router routes file system API requests to the
appropriate file system based on the logical unit addressed by the requesting process.
Each file system is called a file system driver (FSD). FSDs service file system API re­
quests by issuing 1/0 requests to the device drivers. System services are available for
FSDs in the form of file system helper (FSHelp) functions.

The device manager is responsible for the mapping of logical block units to block
device drivers and file system drivers. It also provides routines used by file system drivers
and the rest of the kernel for issuing device driver requests. The volume manager provides
control for supporting removable block media, such as diskettes. It ensures that the correct
volume is mounted on removable media block devices by invoking the responsible device
driver to manage the state of the removable media. For example, the volume manager
ensures that the correct diskette is in a diskette drive, and detects when the diskette drive
door has been opened and closed, so that it can perform volume verification.

8.4 FILE SYSTEM NAME SPACE

The file system name space is the domain of named objects in the system. It is used to
ensure the uniqueness of object names for objects that are addressed through the file sys­
tem APL The file system name space is used for naming files and directories, as well as
for naming non-file-system objects such as semaphores, shared memory, queues, and

File 1/0 Device 1/0 requests
requests (DosDevloct/J

User mode ~ . ~
------;----------File system APl---------­
Kernel mode'----~~-----~------'

FSHelp

Device/volume manager

Device drivers

Hardware

Fig. 8.1 File and device 1/0 subsystem.

8.6 File System API 235

named pipes. Since each of these named objects must be able to guarantee that its name
is unique, the names are taken from the file system name space.

The 16-bit and 32-bit versions of OS/2 provide both the FAT file system and the
high performance file system (HPFS). The file system name space of the FAT file sys­
tem uses the traditional 8.3 naming format, with up to eight characters in a file name fol­
lowed by an optional three-character suffix. Also, FAT file system names are not case
sensitive-they use only uppercase characters. HPFS allows names to be up to 256 char­
acters in length, and supports case preservation of file names. The file system name
space is used in conjunction with security access models to associate access permissions
with objects that are mapped in the file system name space.

8.5 FILE SYSTEM OBJECTS

The most common file system objects are files and directories. Files contain user data.
Directories contain files and other directories. Files and directories have attributes such
as size, time of creation, and time of last update, as well as extended attributes that can
be manipulated by user programs. Files and directories are managed in a hierarchical
fashion: A tree represents a file system's directory structure. The topmost directory in a
directory tree is the root directory, signified by the "\"character. Since each block unit
is managed by a file system, each has its own directory tree and root directory.

The kernel tracks the current logical block unit, also called the current drive, of
each process in that process's PTDA. Associated with each logical drive is a current
directory, which maintains the process's position within the directory tree for each logi­
cal drive unit. Therefore, each process is always "at" a location in a directory tree based
off the current logical block unit (or drive). Using the file system API, a process can tra­
verse directory structures by changing the current directory or logical drive.

Pathnames describe the location of a file in the hierarchical directory structure.
Pathnames can be absolute or relative. Absolute pathnames are valid no matter where in
the directory tree a process is. For example, D :\TMP\MYFILE is the absolute pathname
for file MYFILE in the TMP directory on logical drive D:. There are some special direc­
tory names associated with all file systems. Relative pathnames are specified by using
special directory names for the current directory, signified by the "."character, and for
the parent directory, signified by the" .. " character sequence. Relative pathnames
describe the location of a file relative to a process's current directory and logical drive.
The PATH and DPATH configuration commands are used to specify a search path used
by OS/2 when executable files are loaded and when data files are opened. The LIBPATH
configuration command is used to locate dynamic link library files.

8.6 FILE SYSTEM API

The file system API is used for file and device 1/0. DosOpen is used for opening both
files and devices. DosOpen takes the name of the file or device as a parameter, along
with other parameters that tell the system how the device or file is being used. The open
mode tells the system the desired access mode and sharing mode for the file. The access
mode specifies the type of access needed by the process performing the open-it indi­
cates whether read-write, read-only, or write-only access to the file is desired. The

236 1/0 Management

sharing mode specifies the type of access to the file that other processes may have. For
example, a sharing mode of deny-write prevents other processes from opening the file
for write access, but still allows them to read it.

In the case of opening a device, the open mode specifies whether the device should
be opened exclusively for the requesting process. The exclusive open mode is used so
that a process can ensure that it is the only process accessing the device at a given time.
Another input parameter is the open flag. The open flag tells DosOpen what action to
take based on whether the file exists. The open flag specifies whether DosOpen should
fail if the file does not exist, or whether the file should be created. The open flag also
specifies whether the file should be opened or replaced if it already exists.

DosOpen returns a handle that the process uses to access the file or device in subse­
quent file system API requests. File and device handles are 16 bits in OS/2 l.X, and are
32 bits in OS/2 2.X. DosOpen also returns information that reports the action taken
based on the open flag. Once a file is open, it is accessible by all threads within the pro­
cess that opened it.

DosRead and DosWrite are used for reading from and writing to open files and de­
vices. In the 16-bit system, single I/O transfers can be up to 64KB. The 32-bit system
supports I/O transfers of more than 64KB. For each process that opens a file, the system
maintains a logical file pointer. The logical file pointer indicates where in the file the
next DosRead or DosWrite operation will occur. The logical file pointer can be changed
by issuance of DosSetFilePtr requests. A file is closed by a call to DosClose.

The system maintains an open file table for each process in its PTDA. When a file
is opened, a descriptor is allocated from the open file table of the process. The index of
the allocated descriptor is returned to the user in the form of a file handle that is used in
subsequent file system API requests for accessing the file. Unlike shared memory ad­
dresses and 32-bit semaphore handles, handles to files are not reserved across all pro­
cesses. Therefore, if two processes both open the same file, each may use a different file
handle to access the file. Each open file table entry points to a system file table (SFT)
entry that contains information specific to each logical open reference to a file. The SFT
contains the per-process logical file pointer associated with the open file, the file size,
time and date of the last modification, and a pointer to a master file table (MFT) entry.
An MFT is allocated for each unique open file in the system, and is used for controlling
file sharing and file locking. Each PTDA also contains a current drive structure (CDS)
array used for tracking the per-process current drive and directory information. The
SFTs, MFTs, and CDSs also contain links to file-system-specific information. Figure
8.2 illustrates the file-system-independent data structures for two processes.

In Fig. 8.2, each process has opened a unique file, and both processes have opened a
file that is being shared, for a total of three unique open file instances. For each logical
open there is an SFT, and for each unique file open there is a single MFT. The shared
file has a single MFT that is referenced by two SFTs. Thus, each process has its own
logical file pointer into the shared file, but access according to the open sharing mode
and file locks is controlled by the MFT.

DosDupHandle can be used to manipulate the location of descriptors inside the open
file table. It is usually used when filters and pipes are being set up between two pro­
cesses, so that the standard input and standard output file descriptors can be redirected

8.6 File System API 237

PTDA 1 System file table

Openl_~~--i~~~ I~
file ster file table
table ~

~

~ I MFTE I
PTDA2 -~
Openl__~"'l---+~~~-.~
:~~,. ~ MFTE I

CDS array

ABC · · · Z CDS

Fig. 8.2 File and path management file system data structures.

from the keyboard and screen to pipes, files, and devices. DosDupHandle can also be
used to force a child process to share a logical file pointer with that process's parent pro­
cess. DosDupHandle creates multiple references to a single SFT within a process or
across processes.

If two processes have a file open with write access, they must synchronize their ac­
cess to the file. Although each process usually has its own logical file pointer, it is pos­
sible for one process to update a portion of the file while another process is trying to
read that same portion. Problems can occur if the processes do not manage their access
carefully. To enable processes to share portions of a file in a controlled fashion, the
DosSetFileLocks API call allows a process to obtain exclusive access to a specific re­
gion of a file.

Devices are also accessed using DosOpen with a device name instead of a file name.
Device 1/0 requests are then issued by invocation of DosRead or DosWrite. The
DosDev/OCtl system call is used to communicate directly with the device driver that mon­
itors and controls the device. DosDev/OCtl is used to perform functions whose protocols
do not fit the file 1/0 model. The operations and protocol are determined by the device
driver and the requesting applications. For example, issuing DosOpen in the E: logical
block device enables a process to issue low-level disk 1/0 commands directly to the device
driver. This type of interface is used, for example, by the disk formatting utility. Similarly,
the serial and printer device drivers can be accessed directly using DosDev/OCtl. The user
1/0 subsystems for keyboard, mouse, and video shield their requestors from the device
driver interfaces by performing DosDev/OCtl requests on behalf of high-level user 1/0
requests. The role of these subsystems is discussed in Chapter 9.

DosQueryCurrentDisk and DosQueryCurrentDir are used to query the process's cur­
rent logical drive and directory. The complementary functions DosSetCurrentDisk and

238 1/0 Management

DosSetCurrentDir are used to change the current logical drive and directory. A file's open
mode can be quel)ed and set at run time by a call to the DosQueryFileMode and
DosSetFileMode API functions. The DosFindFirst, DosFindNext, and DosFindClose calls
are used to scan and search directories for files that have matching attributes. Table 8.1
summarizes the file system API calls for both the 16-bit and the 32-bit systems. The calls
for the two systems are similar in function, but some of the 32-bit API function names
have been altered to be more consistent with the rest of the system APL

8.7 OS/2 1.X FILE SYSTEM DRIVERS

File system drivers are trusted modules that run at privilege level 0 in kernel mode. They
are loaded when the system is started. The two primary FSDs that are shipped with OS/2
l.X are the FAT file system and HPFS. The FAT file system is the same as that in the
DOS system, except for enhancements for supporting partitions larger than 32MB.
Providing the FAT file system in OS/2 allows users to migrate from DOS-based systems
to OS/2 without having to convert file formats. Although the FAT file system does not
provide caching, the disk device driver does provide disk block caching for logical block
units managed by the FAT file system. However, if the system swap file is located on a
FAT partition, 1/0 requests from the swapper are not cached.

HPFS is a highly cached file system that supports the multitasking environment of
OS/2 and large disk volumes of up to 2GB. It performs overlapped 1/0 operations and
attempts to keep files contiguous on the secondary storage media to maximize system
performance. HPFS reduces 1/0 operations by managing a write-behind cache (optional­
ly write-through), and a read-ahead cache. HPFS provides its own cache management,
since it has more information than does the disk device driver on how the file system
data are organized on the block media. Therefore, the disk device driver does not pro­
vide caching for logical block units managed by HPFS. Like the FAT file system, HPFS
provides an interface for swapper 1/0 that does not perform caching.

Since the DOS environment uses the OS/2 file system, DOS applications can access
files transparently on a logical drive managed by HPFS. HPFS also allows long file
object names up to 254 characters. Programs that support long file names can run on ei­
ther the FAT or HPFS environments. For compatibility with applications that rely on the
FAT 8.3 naming convention, FSDs support a superset of the FAT's 8.3 name format.

The OS/2 FSDs maintain a standard set of information, called attributes, on file ob­
jects. Examples of a file's standard attributes are the name, file size, and the time and
date of creation, last access, and last write. HPFS and the file system API allow applica­
tions to attach additional information, called extended attributes, to file objects.
Extended attributes can be used to store application-specific notes about file objects, or
to append additional data to the file in the form of extents. A file's extended attributes
effectively become part of the file, and are accessed when the file is opened. If a file is
copied or deleted, the extended attributes are copied or deleted with the file. Extended
attributes are not accessible to DOS programs.

FSDs implement the file system API for the logical block units to which they are at­
tached. The IFS router component of the OS/2 kernel dispatches file system API

8.7 OS/2 1.X File System Drivers 239

16-Bit API Name 32-Bit API Name Description

DosBufReset DosResetBuff"er Flush file(s) cache buffers
DosChDir DosSetCurrentDir Set current directory
DosChgFilePtr DosSetFilePtr Move file 1/0 pointer
DosClose DosClose Close file or device
DosDelete DosDelete Delete file
DosDev/OCt/2 DosDev/OCtl Device-level 1/0 request
DosDupHandle DosDupHandle Duplicate file handle
DosEditName DosEditName Search/edit file object names
DosFile/O NIA Multiple file-level 1/0 requests
DosFileLocks DosSetFileLocks Lock/unlock range of file
DosFindClose DosFindClose Close find handle
DosFindFirst DosFindFirst Find first matching file object
DosFindNext DosFindNext Find next matching file object
DosFSAttach DosFSAttach Attach/detach device to FSD
DosFSCtl DosFSCtl File system I/O control
DosMkDir DosCreateDir Create directory
DosMove DosMove Move file
DosNewSize DosNewSize Change file size
DosOpen DosOpen Open file or device
DosQCurDir DosQueryCurrentDir Get current directory
DosQCurDisk DosQueryCurrentDisk Get current logical drive
DosQFilelnfo DosQueryFilelnfo Get file information
DosQFileM ode DosQueryFileMode Get file mode
DosQFSAttach DosQueryFSAttach Query attached FS information
DosQFS/nfo DosQueryFSI nfo Query file system information
DosQHan<lI'ype DosQueryHType Query handle type
DosQPath/nfo DosQueryPathlnfo Get file or directory info
DosQSyslnfo DosQuerySysl nfo Get system information
DosQVerify DosQueryVerify Query verify setting
DosRead DosRead Read from file or device
DosReadAsync NIA Asynchronous read
DosRmDir DosDeleteDir Delete directory
DosSearchPath DosSearchPath Search path for file name
DosSelectDisk DosSetDefaultDisk Set default drive
DosSetFHandState DosSetFHState Set file handle state
DosSetFilelnfo DosSetFilelnfo Set file information
DosSetFileMode DosSetFileMode Set file mode
DosSetFS/nfo DosSetFS/nfo Set file system information
DosSetMaxFH DosSetMaxFH Set max# of open file handles
DosSetPathlnfo DosSetPathlnfo Set file or subdir attributes
DosSetVerify DosSetVerify Enable file write verify
Dos Write Dos Write Write to a file or device
DosWriteAsync NIA Asynchronous write

Table 8.1 File System API.

240 1/0 Management

requests to the correct FSD, based on the drive being accessed. FSDs run in kernel
mode, and call block device drivers via the device manager to carry out their I/0 opera­
tions. When a thread issues a file system 1/0, the request may have to be broken up into
several I/0 requests if the data are not contiguous on the block media. The I/0 interface
presented by 16-bit device drivers allows each thread to make a single I/0 request
between a contiguous range of logical sectors on a logical block unit, and a physically
contiguous buffer. Usually, the device driver blocks the requesting thread until the I/0
completes. Although each thread can perform only a single I/O transaction at a time,
multiple I/0 requests from different threads can be overlapped concurrently.

The FSHelp interface is used by FSDs to access system services provided by the
kernel. FSHelp functions are invoked by placement of a function number and parameters
in registers, then a call to the FSHelp entry point provided to the FSD when it is in­
stalled. Thus, FSHelp is a statically linked, kernel-level interface.

8.8 OS/2 2.X FILE SYSTEM DRIVERS

The 32-bit version of OS/2 enhances the I/0 architecture of the 16-bit system to exploit
intelligent I/0 subsystem hardware, and to perform I/O in the demand-paged environ­
ment. Intelligent I/0 subsystems are programmable at a higher level of abstraction than
are existing I/0 devices. They are used to offload I/0 device handling from the operat­
ing system, thus enhancing performance. Some intelligent devices also include support
for executing 1/0 command chains, and for managing hardware-based I/0 caches.
Modifications to the I/O architecture are also needed to deal with the paged environ­
ment, in which physical memory buffers are not contiguous.

Cache management has been added to the FAT file system, so the disk device driver
no longer performs any caching. Since the file system has more knowledge about the
layout of data on block devices, it can perform caching algorithms more effectively than
can the disk device driver. Providing caching in the file system also eliminates read re­
quests to the disk device driver when data are in the cache, reducing I/Q path lengths.
The file system can also more accurately perform cache heuristics, such as read-ahead
and lazy write. File systems also have the capability to manage 1/0 caches located on
intelligent I/0 subsystems, and to preload anticipated data into an external cache.

Many intelligent 1/0 subsystems support 110 command chaining. Devices that sup­
port command chaining allow multiple commands to be submitted to the device for pro­
cessing at a time. For file systems, command chaining minimizes the path length for
accessing files that are discontiguous on the secondary storage media. Command chain­
ing can also reduce the number of interrupts processed by the system for a set of 1/0
operations.

A paged memory environment poses a problem for devices that rely on DMA for
data transfers. Most existing DMA devices assume that physical memory is contiguous.
In the paged environment, however, 1/0 buffers that are contiguous in the virtual
address space are usually composed of discontiguous physical pages. Scatter-gather 110
is a mechanism for transferring blocks of data to and from a buffer whose pages are
physically discontiguous. A gather-write operation writes a physically discontiguous I/0

8.10 Hardware Device Structure 241

buffer to a contiguous range of sectors on the secondary medium. A scatter-read opera­
tion reads a contiguous range of sectors from the secondary medium to a physically
discontiguous 1/0 buffer. 1/0 buffer addresses are supplied to devices that support scat­
ter-gather 1/0 using scatter-gather lists.

Both the FAT file system and HPFS provide interfaces for performing page swap­
per 110. The page swapper 1/0 interfaces support a contiguous swap file, and 1/0 opera­
tions that are not cached. The page swapper can request multiple page-in and page-out
operations to occur in a single command in a specific sequence.

Whereas the implementation of the FSDs uses 16-bit code, the FAT and HPFS
FSDs both use an extended device driver interface to manage intelligent 1/0 devices,
and the paged environment. If a block device does not support intelligent l/O or the
paged environment, the existing 16-bit device driver interfaces are used. The extended
interface supports 1/0 command chains, scatter-gather 1/0, and a better 1/0 dispatching
model that optimizes asynchronous 1/0 and allows a single thread to issue multiple
chained 1/0 requests before blocking.

8.9 DEVICE DRIVERS

Device drivers are device dependent modules that provide the low-level 1/0 support for
a device. They are trusted modules-they run at privilege level 0 and have access to the
kernel. Device drivers must be reentrant to support overlapped asynchronous 1/0 opera­
tions requested by the kernel. To support the OS/2 multitasking model, device drivers
relinquish control of the processor when forced to wait for 1/0 operations to complete.
Device drivers are loaded and initialized when the system is started. There are two types
of device drivers in the system: base device drivers, which are included with the system,
and installable device drivers, which the user can install through CONFIG.SYS when
the system is started.

The OS/2 device driver model is a segmented 16-bit model, and the device driver
interfaces are accessed using register-based calling conventions. Thus, most device
drivers are written in assembler to meet performance requirements in this environment.
The same device driver model is used in the 16-bit and 32-bit versions of OS/2. There
are some differences in the implementations due to the different DOS compatibility
architectures of 16-bit and 32-bit OS/2, and to the need to support intelligent 1/0 devices
in the paged environment. Chapter 10 describes the influence on device drivers of DOS
compatibility requirements.

8.10 HARDWARE DEVICE STRUCTURE

Each hardware device in a personal computer has a controller that is interfaced to the
system bus. The controller is attached to the actual peripheral device, and operates the
device on behalf of the system. For example, the keyboard controller is connected to the
keyboard, and the disk controller is attached to a hard disk drive. The main processor
operates devices by programming their controllers. For example, the hard disk drive is
connected to the hard disk controller, which is programmed by the main processor. Each

242 1/0 Management

controller contains internal registers used to program the device. Command operations,
status operations, and data transfers with the device are initiated by programming of the
controller through its registers.

The granularity of data transfer between a device and the processor determines
whether the device is a character or block device. For example, the asynchronous port
transfers one or several bytes at a time in a stream-clearly, this is a character device.
The hard disk transfers data one or more sectors at a time. Since each sector is a block of
512 or more bytes, the hard disk is classified as a block device.

The data access characteristics of a device determine whether that device is sequen­
tial or random access. Character devices-such as the asynchronous communications
port, the keyboard, and the mouse-are sequential, since their data are transferred as a
stream of characters or events that are ordered as they are generated. The hard disk is a
random access device-any specified sector can be accessed directly without having to
read sequentially from a starting point. Therefore, the disk device driver can order the
requests for data transfers to and from the disk according to an algorithm that optimizes
disk access performance (De90). However, not all character devices are accessed
sequentially, and not all block devices are accessed randomly.

Controllers also contain device buffers for data transfer. For example, the hard disk
controller contains the registers for programming hard disk operations, and a disk buffer.
When a read operation occurs, the processor programs the controller to perform a read
from the hard disk. The controller initiates the operation, and reads the data to the disk
buffer within the controller. The data in the disk buffer are later transferred across the
bus to the memory location specified in the read request to the device driver.

Another example is the video controller. The video controller has a video RAM
(VRAM) buffer that is scanned by the video hardware for the images to be placed on the
screen. The video controller is programmed via accessing of the video controller's inter­
nal registers. However, 1/0 to the video buffer is performed by execution of memory
write operations to the video buffer. The video hardware picks up the contents of the
video buffer, and traces them on the display screen. A final example is the keyboard
controller, which is programmed via its internal registers, and which contains a special
data register for transferring data typed on the keyboard.

8.11 HARDWARE DEVICE ATTRIBUTES

There are three major attributes that can be used to describe any hardware device:

Device addressing

Device control and status

Data transfer

Each of these attributes is independent of the others. Devices can have any
combination of these attributes.

Device addressing describes how a device is addressed by the main processor. It de­
pends on how the controller for the device is connected to the bus, and on the nature of

8.11 Hardware Device Attributes 243

the device. The two methods of device addressing used in personal computers are mem­
ory mapping and //0 mapping. Memory-mapped devices have their controller's registers
mapped into the memory address space of the processor. Thus, processor-initiated mem­
ory operations to and from the memory-mapped range of addresses actually cause
accesses to the internal registers and buffers of a memory-mapped device's controller.
1/0-mapped devices are addressed through the 1/0 port architecture of the Intel proces­
sors. They are programmed by using the 1/0 instructions described in Chapter 2.

Device control and status describes how the processor communicates with the
device controller to determine the current status of the device, and to initiate operations
or control the device. There are two major protocols: polled and interrupt driven. A
polled device is one in which the system must periodically check whether the device
needs servicing. Polled devices are not suitable for multitasking, since the operating sys­
tem must dedicate processor cycles to determine whether the device needs servicing.
Polled devices provide synchronous 1/0. Interrupt-driven devices are more appropriate
for multitasking. With interrupt-driven devices, the system is notified by an interrupt
when a device needs servicing. This notification scheme allows the system to perform
other tasks while 1/0 operations are in progress, without having to poll devices for status
intermittently. When an interrupt occurs, the system stops what it is doing and services
the device. Since the system continues to run between interrupts, interrupt-driven 1/0
operations are classified as asynchronous.

Data transfer refers to the strategy employed by a device for moving data from
the device to memory, and vice versa. There are three primary device data transfer
strategies:

Programmed 1/0

Direct memory access (DMA)

Bus mastering

Programmed l/O is used when data are moved between the device and memory
under control of the processor. The processor executes 1/0 instructions that move the
data between the device and memory using the processor as an intermediary. Since the
data transfer occurs under processor instruction control, the processor cannot perform
other tasks while the data are being transferred. An example of a programmed 1/0
device is the ST-506 hard disk controller used in PC/ATs. To perform a disk read, the
controller is programmed to read the data from the disk into the buffer on the disk con­
troller. At the completion of this operation, the disk controller interrupts the processor to
notify the latter that the data are ready for transfer. The processor executes the REP INS
instruction, which causes the processor to read repeatedly from an 1/0 port to a main
memory address until the transfer is complete. The REP INS instruction causes the data
to be read from the disk controller, moved across the bus into the processor, and then
moved by the processor across the bus to memory.

Direct memory access (DMA) is a technique in which a special DMA controller is
programmed to move data directly between devices and memory, without any interac­
tion from the processor. DMA operations are initiated by the processor, but do not

244 1/0 Management

require the processor for the data transfer. Instead, the processor can continue executing
instructions while the DMA controller performs the data transfer. The DMA controller
moves the data across the bus by stealing bus cycles from the processor. When the trans­
fer is.complete, the DMA controller interrupts the processor to notify the processor of
the transfer status. Since the processors in today's systems have prefetch instruction
queues to maximize instruction fetch performance, they can continue executing instruc­
tions while DMA transfers occur. Thus, DMA allows a low-level form of hardware par­
allelism. In most personal computers, a DMA controller is included on the system
planar. The DMA controller provides multiple channels that are dedicated to DMA
devices in the system.

Bus mastering is a special protocol that allows multiple controllers with their own
associated DMA controller to compete for bus cycles. The bus must arbitrate among
those bus masters that are attempting to use the bus resource. Bus master data transfer is
similar to DMA data transfer, except that a DMA controller on the bus master device,
the system DMA controller, is used for data transfer. The Micro Channel Architecture
described in Chapter 3 provides bus arbitration to support an environment in which bus
master, programmed I/0, and DMA data transfers can coexist.

8.12 HARDWARE DEVICE INDEPENDENCE

'DOS device drivers utilize ROM BIOS to access the actual hardware device, instead of
directly programming the hardware. ROM BIOS is built into the system planar, and
insulates DOS device drivers from the underlying hardware architecture and device con­
troller dependencies. This insulation is useful when an engineering change to a compo­
nent of the hardware system occurs between production runs of a computer. If a
controller has a slightly different interface, the ROM BIOS is altered to support the new
part, and DOS continues to run on the system without any changes.

ROM BIOS is mapped into the 640KB to lMB range of the PC address space.
ROM BIOS also has an associated ROM BIOS data area at physical address 400H, used
to store device information accessed by the ROM BIOS routines. ROM BIOS is accessi­
ble in only real mode, and is not reentrant. ROM BIOS is suitable for the DOS environ­
ment, but its lack of reentrancy and its real-mode dependencies render it unusable for a
protected-mode operating system.

When the PS/2 systems were developed, IBM saw a need for a new type of BIOS,
called advanced BIOS (AB/OS). ABIOS supports real-mode, protected-mode, and
bimodal operating environments. It is reentrant and extendable. To differentiate between
the two BIOS modules in the system ROMs, the developers renamed the original real­
mode BIOS compatibility BIOS (CB/OS). OS/2 device drivers have the options of
programming directly to the hardware, or of using ABIOS.

The development of intelligent 110 subsystems capable of independent operation led
to the definition of IBM's Subsystem Control Block (SCB) architecture. Intelligent I/0
subsystems usually are bus masters; they have their own processors, local memories,
and DMA controllers. Although ABIOS relieves the restrictions of the original CBIOS,
it is not designed to run optimally in an environment with intelligent 1/0 subsystems.

8.14 Device Driver Structure 245

The SCB architecture is used on IBM's intelligent SCSI adapters, and on the PS/2
Models 90 and 95.

The SCB architecture is an interface used by device drivers on the main processor
for accessing intelligent 1/0 processors in a device-independent fashion. It frees the
main processor from the burden of staging 1/0 operations that generate interrupts. The
SCB architecture raises the level of device abstraction, so work for completing multiple
related requests is offloaded from the main processor. It also provides the capability of
addressing and programming intelligent 1/0 subsystems in a uniform way.

SCBs are used for communication between the main processor and 1/0 processors.
SCB 1/0 operations are issued by allocation of an SCB, and transmission of that SCB to
the local memory of an intelligent 1/0 subsystem. The 1/0 subsystem then performs the
operations described in the SCB without interrupting the main processor until the opera­
tions are complete. SCBs can also be chained, allowing a list of 1/0 operations to be
submitted to an 1/0 subsystem in a single request. The SCB architecture also supports
scatter-gather 1/0 transfers for environments that have paging enabled.

8.13 OS/2 1.X DEVICE DRIVERS

In OS/2 I .X, only one DOS application is supported by the DOS compatibility envi­
ronment, and it runs in real mode. Furthermore, the DOS environment runs only when it
is in the foreground-it is suspended when in the background. When the DOS environ­
ment is in the foreground, other OS/2 programs can run in the background in protected
mode. The system mode switches between real mode and protected mode as necessary.
However, so that mode switching is minimized, portions of the OS/2 system and the
OS/2 l .X device drivers need to be able to run in real mode and in protected mode.
Code that is executable in both real mode and protected mode is bimodal code; the OS/2
l.X device drivers are bimodal device drivers.

Since bimodal code and the data it accesses must be addressable in both real mode
and protected mode, bimodal code is loaded in physical memory addresses below lMB.
Recall from Chapter 6 that the 16-bit system takes special care to load device drivers
and portions of the kernel into low physical memory, so that they can be executed in real
mode. The system is partitioned to minimize the amount of low memory taken from the
DOS environment, yet to provide acceptable performance in critical operations such as
interrupt management and context switching.

Since a device driver for an interrupt-driven device can initiate an 1/0 request in one
mode and have the request complete in the opposite mode, buffer transfer addresses are
converted to physical addresses by the device driver. The physical addresses are con­
verted to virtual addresses sensitive to the processor mode when the device driver
accesses memory.

8.14 DEVICE DRIVER STRUCTURE

OS/2 device drivers are packaged in specialized EXE files. They contain at least one
code segment and one data segment, and are loaded into low physical memory. A device

246 1/0 Management

driver can also contain other segments that are loaded into high memory, above the IMB
boundary. Figure 8.3 illustrates the device driver file structure.

Each device driver has a special set of entry points used by the OS/2 system to re­
quest service. The strategy routine is the main entry point for requests from the kernel.
The kernel passes a pointer to a request packet that describes the request to the strategy
routine. The request packet pointer is referenced by the ES.BX registers when the strat­
egy routine is called. Strategy routines run in kernel mode, and on the stack of the re­
questing thread. The strategy routine can be thought of as the top half of the device
driver, the same way that there is a top half of the OS/2 kernel. The strategy routine ei­
ther completes the request and returns the packet to the kernel, or blocks the thread until
the request is completed. This routine allows other threads to continue running while a
device is busy when a request is made.

Each interrupt-driven device also usually has a hardware interrupt handler associat­
ed with it. The interrupt handler is called by the interrupt manager when an external
hardware interrupt on a specific interrupt level occurs. Usually, when the device driver
is initialized, it registers a hardware interrupt handler if it needs one. The interrupt han­
dler is responsible for clearing the interrupt controller hardware, and for checking the
status of the interrupting device. It runs in interrupt mode on the interrupt stack of the
system (see Chapter 5). This stack corresponds to the bottom half of the device driver in
the top-half-bottom-half model. Access to structures shared by the strategy routine and
the hardware interrupt handler must be serialized, since interrupts can occur during the
strategy routine. Device drivers synchronize the top-half and bottom-half by enabling or
disabling the 80X86 interrupt flag.

In the 16-bit system, use of interrupt mode implies that the processor is in either
real mode or protected mode due to the mode switching architecture of the DOS envi­
ronment. Therefore, request packets and 1/0 buffer transfer addresses provided in the re­
quest packets must not be sensitive to the processor mode. Furthermore, interrupt-driven
device drivers save 1/0 buffer addresses as physical addresses, since a request may com­
plete in the context of a process other than the one that initiated it.

EXE header

Device driver header

Data segment

Code segment

Initialization code
(discarded)

Optional extra
code and/or data

segments

Fig. 8.3 Device driver file structure.

8.14 Device Driver Structure 247

Some devices have timing constraints. For instance, for diskette operations, the
diskette drive must be accelerated to full speed before the next step of the operation can
occur. Since it takes a known time interval to bring the disk to full speed, the device
driver needs to set a timer handler. A timer handler is used for devices that need to per­
form intermittent services, such as accessing polled devices or accelerating the diskette
drive motor. Timer handlers are registered by device drivers as needed, and run in inter­
rupt mode.

Device drivers request system services to assist in performing requests in the form
of Device Help (DevHelp) functions. DevHelp is a statically linked interface that allows
device drivers to call a special set of kernel routines available to device drivers.
DevHelp and the associated functions are described in detail in Section 8.19. Figure 8.4
illustrates the logical components of a device driver.

In 16-bit OS/2, ROM BIOS software interrupt services are provided by the device
drivers that service the respective devices. If a device driver provides ROM BIOS sup­
port, it registers an entry point for BIOS service-called a ROM BIOS handler-when it
is initialized. When DOS applications running on the 16-bit system make BIOS
requests, the appropriate device driver ROM BIOS handler is called in real mode-also
called DOS Mode in OS/2 publications. Since ROM BIOS is not reentrant, and the sys­
tem multitasks protected-mode applications in the background while a DOS application
is in the foreground, the system must provide a means of preventing preemption of a
DOS application that has entered ROM BIOS. The kernel provides the
DevHelp(ROMCritSection) function to allow a device driver to indicate that it is about
to use ROM BIOS code, and to disable preemption temporarily until the DOS applica­
tion exits ROM BIOS. The final device driver entry point is the inter-device-driver com­
munications handler. It is used for private communication between device drivers, and
has no mode restrictions.

Communications
with other

device drivers

OS/2 Kernel

Device/volume manager Device help

Request DevHelp
packets requests

1--;:::======"=====::::;--;::===========;----1 ROM BIOS
Strategy routine ROM BIOS handler
(kernel mode) (DOS mode) ___ .,.requests from

DOS programs

Inter-Device driver
communication

handler

Device Driver

Timer routine
(interrupt mode)

Timer
ticks

Hardware

Interrupt
handler

(interrupt mode)

Hardware
interrupts

Fig. 8.4 OS/2 1.X device driver interfaces.

248 1/0 Management

8.15 DEVICE DRIVER HEADER

Each device driver has a device driver header at the start of the first segment in the
device driver executable image (Fig. 8.5). Therefore, the device driver data segment is
always the first segment of the device driver executable file image.

The header has a field used for chaining together the device drivers, similar to the
device chain described in Chapter 4. The header contains fields used to locate the strate­
gy and inter-device-driver communication entry points, and the name of the device. For
character devices, the name is an 8-byte ASCII string. For block devices, the name is the
number of logical block units supported by the block device driver.

8.16 DEVICE ATTRIBUTE FLAGS

The device attribute flags are part of the device driver header (Fig. 8.6). They determine
which commands are serviced by the device driver strategy routine. The flags determine
whether the device is block or character, and whether the device driver provides inter­
device-driver communication support. The flags also specify whether a block device is
for fixed media, such as hard disks, or for removable media, such as diskettes. This
distinction is important, since the file system makes specific strategy requests based on
whether the device medium is removable. The flags also determine whether the device
driver supports open and close strategy commands. They thus allow the device driver
writer to choose whether the device driver should be called when device level DosOpen
and DosClose requests are made to the device name. The flags have a function-level
field that describes the earliest version of OS/2 that the device driver supports. Other
bits in the flags indicate whether the device is the system null device, standard output
device, standard input device, or clock device.

8.17 REQUEST PACKETS

Requests packets are used by the OS/2 kernel to communicate the parameters of a
request to a device driver strategy routine (Fig. 8.7). Request packets are resident in

Next device driver pointer DWORD

Device attributes flags WORD

Offset to strategy routine WORD

Offset to IDC entry point WORD

Name or blocks units 8 BYTES

Reserved(O) 8 BYTES

Fig. 8.5 Device driver header.

8.18 Strategy Commands 249

CHR IDC IBM SHR OPN 0 Level 0 0 0 CLK NUL SCR KBD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Fig. 8.6 Device driver attribute flags.

kernel memory, and are variable in length depending on the command issued. Request
packets contain the command information for processing by the strategy routine.

The request packet is divided into two sections: a static portion and a variable­
length portion. The static portion contains the length of the packet, the block unit for
which the packet is intended (if it is for a block device driver), the specific command
number, and a field for returning status to the system. Also, there is a queue linkage
field used for linking request packets. The variable-length portion of the request packet
provides the command-specific data.

Since request packets need to be addressable in both real mode and protected mode in
the 16-bit OS/2 system, they are allocated special tiled virtual addresses. If an address is
tiled, it means that a single virtual address in real mode and protected mode accesses the
same physical memory location. For example, the ROM BIOS data area is a tiled region of
memory. It exists at virtual address 40:0, or physical address 400H in real mode. To make
this a tiled data region, the descriptor for selector 40 in the GDT has a base address of
400H. Therefore, any reference to virtual address 40:0 will result in accessing of physical
address 400H, regardless of whether the access is in real mode or protected mode. Chapter
10 describes tiling and DOS compatibility issues in more detail.

8.18 STRATEGY COMMANDS

The device driver strategy routine is called for the first time when the device driver is
being installed by the system. The request packet command code indicates that this
request is an initialization request, and the strategy routine dispatches to the code that
handles the initialization of the device driver. The initialization routine runs in a special

Length

Block unit
Command

Status
Reserved

Queue linkage
Command-

specific
data

Fig. 8.7 Device driver request packet format.

,--,

I-

·I__,

Static
request
packet
header

250 1/0 Management

mode called initialization mode, because the system is not fully initialized and cannot
support all operations that the driver can perform. Initialization mode executes at privi­
lege level 3 so that device drivers can use several of the system API functions, for tasks
such as accessing files or printing status messages on the console. Initialization routines
usually prepare the device for I/0, register an interrupt handler if necessary, and initial­
ize device driver data structures. The initialization routine is passed the address of the
DevHelp router as part of its initialization of command-specific data. This address is
saved by the device driver so that it can be used later when the device driver makes calls
to other DevHelp services.

In general, most strategy routine commands, except the initialization command, are
called in kernel mode. The strategy routine then dispatches (through a table based on the
command number specified in the request packet) to the code that is used to handle the
command. Strategy requests either are completed immediately and returned to the kernel,
or are blocked until the operation can complete. For random access devices such as hard
disks, request packets can be queued by the strategy routine, and ordered into the most ef­
ficient combination of disk accesses. The strategy routine runs on the kernel stack of the
requesting thread and is not preemptible, since it runs in kernel mode. Thus, the strategy
routine has critical sections only where data that can be modified by the interrupt handler
are accessed. Access to these data must be serialized using CL/ and ST/ instructions.

Depending on the nature of the device, most of the commands serviced by a strategy
routine, except for read and write, can be processed immediately. If the block device is
busy, read and write request packets are linked onto a device service queue, and the re­
questing thread is blocked until the I/0 completes. The request packet for the read and
write operations contains the physical address of a locked I/0 buffer, the starting sector
number, and the count of sectors to be transferred. Physical addresses are used due to
the 16-bit mode switching environment. Since 1/0 interrupt-driven operations can be
started in protected mode and completed in real mode, or vice versa, the addresses
stored by the device driver need to be independent of the processor mode. Furthermore,
the addresses stored by a device driver that services an interrupt-driven device need to
be accessible in the context of any process, since often a process other than the requestor
is running when a queued request is completed. Although GDT virtual addresses in the
kernel space are not process sensitive, they cannot be used by bimodal interrupt handlers
executing in real mode without mode switching.

Therefore, the file systems lock the segment containing the I/O buffer to obtain a
physical address for read and write commands. Locking of the memory is necessary
since the device driver stores physical addresses and cannot determine whether the
memory is moved or swapped. The physical address is converted to a processor mode­
dependent system virtual address that is usable in any process context by the device
driver using the DevHelp(PhysToVirt) function.

The kernel uses the generic IOCtl to pass user DosDev/OCtl API requests to device
drivers. DosDev/OCtl is used for device-level I/0, and the interface between applications
and a device driver's JOCtl routine is defined by the device driver. The generic IOCtl request
packet contains the user's parameters from the DosDev!OCtl call in the variable-length

8.19 DevHelp Services 251

portion of the request packet. Since the format of the IOCTL request packet is not known by
the kernel, the kernel cannot lock the addresses before the packet is presented to the device
driver. The device driver must lock any referenced segments using DevHelp(Lock), which
returns a physical address that can be used at interrupt time in the context of any process.
After the 1/0 operation is complete, the device driver unlocks the segment by calling
DevHelp(Unlock). Table 8.2 summarizes the device driver strategy commands.

8.19 DEVHELP SERVICES

DevHelp services are provided by the kernel to assist device drivers in servicing
request packets. They are called indirectly through the address passed to a device driver
in the latter's initialization routine. The DevHelp functions use register-based parame­
ters. The calling conventions for DevHelp services require a static linkage to functions

Command Description Device type

Initialization Initialize device driver. Block/char

Media check Check if removable media changed. Block

Build BPB Build BPB for new media. Block

Read(input) Read from device. Block/char

Nondestructive read Peek data from device (no wait). Char

Input status Check input queue status. Char

Input flush Flush input queue. Char

Write(output) Write to device. Block/char

Write with verify Write to device w/verify (format). Block/char

Output status Check output queue status. Char

Output flush Flush output queue. Char

Device open Device-level DosOpen request. Block/char

Device close Device-level DosClose request. Block/char

Removable media Check if media is removable. Block

Generic IOCtl DosDev/OCtl request. Block/char

Reset media Reset driver media status. Block

Get logical drive map Get logical-physical drive map. Block

Set logical drive map Set logical-physical drive map. Block

Partitionable hard disks Query number of hard disks supported. Block

Get logical unit map Get hard disk-logical unit mapping. Block

Get device support Get device and volume information. Block

Table8.2 Device driver strategy commands.

252 1/0 Management

in the kernel through the DevHelp router. The device driver places the number of the
service in one register, and the parameters for the service in other registers, and then
indirectly calls DevHelp using the DevHelp router address. DevHelp functions are
mode sensitive. That is, whether a device driver can call a specific DevHelp function is
determined by the current mode of the device driver-kernel mode, interrupt mode,
DOS mode, or initialization mode. For instance, since there is no real thread context at
interrupt time, a device driver cannot call DevHelp(Block) at interrupt time to put a
thread to sleep.

The DevHelp services are divided into the following categories:

Process management

Semaphore management

Request queue and request packet management

Character queue management

Memory management

Interrupt management

Timer services

System services

The process management DevHelp functions allow device drivers to control multi­
tasking. The functions Block, Run, Yield, and TCYield, are analogous to the functions
described in Chapter 5. The semaphore management DevHelp functions allow access to
16-bit semaphores. The request-queue and request-packet management DevHelp ser­
vices provide routines for managing request packets, and for managing queues of
request packets. The character queue management DevHelp calls allow character
queues to be managed for supporting asynchronous and keyboard devices.

The interrupt management DevHelp services provide functions for setting and unset­
ting hardware and software interrupt handlers, and for managing the programmable inter­
rupt controller. The timer services DevHelp functions allow device drivers to register timer
handlers and to modify the frequency at which they are called. System services DevHelp is
a general category for other DevHelp services that fall into miscellaneous areas, such as
retrieving system variables, switching modes, and accessing ABIOS services.

Memory management is perhaps the most important DevHelp service provided by
the system. The memory management DevHelp services provide segmented 16-bit mem­
ory management functions for virtual and physical address translation, lock and unlock
operations, memory allocation and deallocation functions, and descriptor management
services. Table 8.3 summarizes the DevHelp functions for the OS/2 1.X systems. The
calling mode in which each DevHelp is accessible is included, using the following
abbreviations:

I: interrupt mode

K: kernel mode

S: system initialization mode

D: DOS (real) mode

8.19

Name

Process management

Block

Run

Yield

TC Yield

Del' Done

Description

Block thread on event

Unblock thread(s) on event

Yield processor if ReSched set

Yield to time-critical (TCReSched)

Device 1/0 complete

16-bit semaphore management

SemRequest

SemC/car

SemHandle

Claim semaphore

Release semaphore

Get semaphore handle

Request packet and queue management

PushReqPacket

Pul/ReqPacket
Pul/Particufar

SortReqPacket

AllocReqPacket

FreeReqPackct

Add request packet (RP) to list

Remove next RP from list

Remove specific RP from list

Insert RP in sorted order to list

Get request packet

Free request packet

Character queue management

Queue/nit

QueueFlush

Queue Write

QueueRead

Interrupt management

EOI

SetROMVector

Set!RQ

UnSet/RQ

Timer services

SetTimer

ResetTimer

TickCount

System Services

GetDOSVar

SendEvent

ROMCritSection

AttachDD

Initialize character queue

Clear character queue

Put character in queue

Get character from queue

Send end-of-interrupt

Set software interrupt handler

Set hardware interrupt handler

Unset hardware interrupt handler

Set timer handler

Unset timer handler

Modify timer handler frequency

Access system variable

Send signal event

ROM BIOS critical section

Attach to a device driver (IDC)

Table 8.3 DevHelp functions.

DevHelp Services

Modes

K,D

K,I,D

K

K

K,D

K,l,D

K,I

K

K,I

K,I

K

K

K

K,I,D,S

K,l,D

K,I,D

K,I,D

I,S

K,S

K,S

K,I,S

K,S

K,I,S

K,I,D,S

K,S

K,I

D

K,S

(continued)

253

254 1/0 Management

(continued)

Name

lnterna/Error

RealToProt

ProtToReal

Register PDD

RegisterStackUsage

Description

Halt system and signal error

Switch processor to protected mode

Switch processor to real mode

Register PDD (32-bit only)

Indicate kernel stack usage

16-bit memory management

Lock

Unlock
PhysToVirt

VirtToPhys

PhysToUVirt

AllocPhys

FreePhys

AllocGDTSelector
PhysToGDTSelector

UnPhysToVirt

Lock segment

Unlock segment

Create virtual to physical mapping
in system virtual address space (GDT)

Convert virtual address to physical

Create virtual to physical mapping

in process virtual address space (LDT)
Allocate physical memory

Free physical memory

Allocate GDT descriptor(s)

Map GDT descriptor to physical address

Invalidate PhysToVirt mapping
VerifyAccess Check memory accessibility

Table 8.3 DevHelp functions.

8.20 05/2 2.X DEVICE DRIVERS

Modes

K,I,D,S

K,I

K,I

s
s

K,S

K,S
K,I,S

K,S
K,S

K,S

K,S

s
K,l,D,S

K,1,S

K

The 16-bit device driver model of OS/2 1.X is enhanced in OS/2 2.0 to provide support
for intelligent I/O devices, command chaining, and scatter-gather I/0, and to allow OS/2
2.X DOS compatibility. In OS/2 2.X, the 80386 virtual 8086 mode and paging are used
to manage multiple concurrently executing DOS environments, called virtual DOS ma­
chines. Since the virtual 8086 mode is a subset of protected mode, the OS/2 2.X DOS
compatibility does not use the 80386 real mode. Thus, bimodal code is not necessary for
device drivers, since they are always called in protected mode. Bimodal 16-bit device
drivers continue to be supported in the 32-bit system, but are called in only protected
mode.

The 16-bit device driver model was changed for OS/2 2.X, so that DOS device sup­
port would be separated from OS/2 device support. This division resulted in two types
of device drivers: physical device drivers (PDDs) and virtual device drivers (VDDs).
PDDs are the same as existing OS/2 1.X device drivers without their bimodal code and
ROM BIOS support. VDDs utilize a new 32-bit driver model, and provide virtual DOS
device I/O emulation. VDDs interact with PDDs when they need to perform actual I/O
on behalf of a virtual DOS machine by calling the PDDs' VDD handler. Thus, the 32-bit
system has fewer requirements regarding low ryhysical memory addresses, no bimodal
code is needed, and the system and device drivers no longer use mode switching to sup­
port a bimodal environment. Existing bimodal device drivers that provide ROM BIOS

8.20 OS/2 2.X Device Drivers 255

support still run on the 32-bit system, but their ROM BIOS handlers are never called,
and they do not provide any DOS support. Chapter 10 provides more detail on DOS
compatibility and its relationship to the rest of the system. Figure 8.8 illustrates the
structure of the device driver interfaces for OS/2 2.0.

The device driver architecture has also been enhanced to provide a new extended
strategy interface. It provides an alternative 1/0 model for FSDs that supports intelligent
1/0 devices, command chaining, scatter-gather 1/0, and a better asynchronous 1/0
model. An FSD determines whether a block device driver supports the extended strategy
interface by calling the device driver's old strategy routine. If the device driver supports
the extended strategy interface, the address of the extended strategy entry point is
returned. The extended strategy interface supports four operations:

Read

Write

Write with verify

Pre fetch

The read, write, and write-with-verify operations are similar to their counterparts in
the old strategy interface, but they support chained operations and use scatter-gather lists
for addressing 1/0 buffers. The prefetch command allows an FSD to manage the con­
tents of an external cache associated with a block device, such as the IMB cache on the
IBM SCSI disk controller. The prefetch command can be used by an FSD implementing
a read-ahead heuristic. It causes data to be read from the disk to the cache without any
system bus or memory activity.

When an 1/0 request is executed in the 32-bit system, the file system locks the
pages of the 1/0 buffer, and generates scatter-gather lists containing physical addresses
for the pages of the 1/0 buffer. The buffer must be locked, since the scatter-gather list

Request lists
from file
systems

OS/2 kernel

Device/volume manager

Request
packets

Strategy routine
(kernel mode)

Device help

DevHelp
requests

Extended strategy
routine

VDD handler
Virtual device

1+---+- driver requests

Physical device driver
~~~~~~~ ~~~~~~ 

Inter-device driver 
communications 

handler 

Hardware 

Hardware 
interrupts 

Fig. 8.8 OS/2 2.0 extended device driver interfaces. 



256 1/0 Management 

contains physical addresses that are not updated if the pages are discarded or swapped. 
FSDs then issue requests to the extended strategy interface using request lists instead of 
request packets. Request lists are composed of request list entries that describe each 
operation in a command chain. Each request list entry contains the scatter-gather list for 
the 1/0 buffer, the starting logical block number, and the count of logical blocks to be 
transferred. Figure 8.9 illustrates the format of a request list. 

The extended strategy interface queues incoming requests on per-device service 
queues, and then immediately returns to the caller without blocking. This allows the re­
questor, usually an FSD, to determine when the thread should be blocked. Consequently, a 
single thread can initiate multiple chained 1/0 requests before blocking. Each request list 
contains 1/0 notification fields that enable the device driver to call the requestor when the 
request list or specific request entry is complete. The notification routine usually unlocks 
the memory and unblocks the requesting thread. The extended strategy interface provides 
FSDs with a faster and more flexible 1/0 model for performing asynchronous 1/0. 

The DevHelp services are extended in OS/2 2.0 to support the paged memory envi­
ronment (Table 8.4). Functions are provided for locking memory, managing scatter­
gather page lists, and performing address translation. Also, the DevHelp(Block) and 
DevHelp(Run) interfaces to the dispatcher support single-wakeup thread dispatching, as 
described in Chapter 5. 

SUMMARY 

This chapter described OS/2 file and device 1/0 management. The architecture of file 
systems, the file system API, and the use of device drivers by file systems was 
explained. The device driver architecture was described in terms of the entry points sup­
ported by device drivers, the operations they perform, the interfaces the device drivers 
have with other components of the system, and the way that device drivers operate. 

Device driver 
service queue 

st Request Ii 
entry head er 

...... 

{ 

Request list count 
List notification routine 
List control flags 
Logical block unit 
Request list status 

Request length 
Command code 
Request priority 
Request status 
Request notification routine 

'
1 Starting block number 

pecific __, Request-s 
informa ti on 

Fig. 8.9 Request list. 

Block count 
Request control flags 
Scatter/gather list count 
Scatter/gather entry 1 

Scatter/gather entry 

'' 
Request list header 

f-- ~=~~=~t list Request I ist entry 1 

Scatter/gather list 1 

I= Request list entry 2 

Scatter/gather list 2 

Request list entry 3 

Scatter/gather list 3 

1- Request list entry 

'--' 



Name Description 

32-Bit Memory Management 

VMA!loc Allocate memory 

VMSetMem 

VMFree 

VMLock 

VMUnlock 

VMProcessToG/ohal 

VMGfohalToProcess 

VirtToLin 

LinToGDTSelector 

FreeGDTSelcctor 

GetDescln{o 

LinToPageList 

PageListToLin 

PageListToGDTSelector 

Miscellaneous 

Set memory attributes 

Free memory 

Lock linear address range 

Unlock linear address range 

Create system mapping of process 
memory 

Create process mapping of system 
memory 

Convert virtual to linear address 

Map selector to linear address 

Free GOT selector 

Return descriptor information 

Build pagelist from linear address 

Map pagelist to linear address 

Map selector to pagelist 

RegisterPDD Register POD VDD handler 

Table 8.4 32-bit DevHelp functions. 

Terminology 257 

Modes 

K,S 

K.S 
K,S 

K,S 

K,S 

K 

K 

K 

K 

K 

K 

K 

K 

K 

s 

The OS/2 device driver model is more sophisticated and richer than is the DOS de­
vice driver model. Its two-layer architecture is similar to that found in UNIX systems. 
However, the DevHelp interface provides a much more robust feature set than is provid­
ed in most UNIX systems, and is consistent across all OS/2 releases. 

TERMINOLOGY 

absolute path name 
access mode 
advanced BIOS (ABIOS) 
" '\' character 
base device driver 
bimodal code 
bimodal device driver 
block device 
bottom half of the device driver 
bus arbitration 
bus mastering 
character device 
character queue management 

clock device 
COM: 
compatibility BIOS (CBIOS) 
controller 
current directory 
current drive 
current logical block unit 
cycle stealing 
data transfer 
deny-write sharing mode 
device addressing 
device attribute flags 
device control and status 



258 1/0 Management 

device driver 
device driver header 
device help (DevHelp) functions 
device manager 
device name 
direct memory access (DMA) 
directory 
directory tree 
DOS mode 
DPATH configuration command 
dynamic link library files 
8:3 naming format 
extended attribute 
extended strategy interface 
extent 
FAT file system 
file system 
file system API 
file system driver (FSD) 
file system helper (FSHelp) 
file system name space 
file system object 
file 
filter 
FSHelp interface 
gather write 
handle 
hardware interrupt handler 
high performance file system (HPFS) 
initialization mode 
installable device driver 
installable file system (IFS) architecture 
installable file system (IFS) router 
intelligent 1/0 subsystem 
inter-device-driver 

communications handler 
interrupt-driven device 
interrupt management 
1/0 command chaining 
1/0-mapped device 
1/0 mapping 
keyboard (KBD) 
LIBP ATH configuration command 
logical block units 

logical driver 
logical file pointer 
long file object name 
LPT: 
master file table (MFT) 
memory management 
memory-mapped device 
memory mapping 
mouse (MOU) 
open file table 
open mode 
page swapper 1/0 
parallel port 
parent directory 
PATH configuration command 
pathname 
"." character 
" .. "character sequence 
physical device driver (PDD) 
pipe 
polled device 
Presentation Manager (PM) 
process management 
programmed 1/0 
read-only access 
read-write access 
request list 
request list entry 
request packet 
request queue and request 

packet management 
ROM BIOS 
root directory 
scatter-gather 1/0 
scatter-gather list 
scatter read 
semaphore management 
serial port 
sharing mode 
standard input device 
standard output device 
strategy routine 
Subsystem Control Block 

(SCB) architecture 



system file table (SFT) 
system I/O 
system null device 
system service 
tiled virtual address 
timer handler 
timer service 

EXERCISES 

8.1 Distinguish between system 1/0 and user 1/0. 

Exercises 259 

top half of the device driver 
user I/O 
video (VIO) 
video RAM (VRAM) 
virtual device driver (VDD) 
volume manager 
write-only access 

8.2 Differentiate between block devices and character devices. Give several examples of each, 
and discuss the naming conventions used for each. 

8.3 Discuss the notion of the installable file system (IFS) architecture. Explain the purpose of 
each of the following in the context of IFS: file system API, IFS router, file system driver, file 
system helper (FSHelp) functions, device manager, and volume manager. 

8.4 Explain the organization of the file system's directory structure. Distinguish between abso­
lute path names and relative path names. 

8.5 It is possible for one process to update a portion of a file while another process is trying to 
read it. How do processes deal with this situation to avoid indeterminate results? 

8.6 What techniques are used in the high performance file system (HPFS) to achieve better per­
formance in an OS/2 environment than is possible with the FAT file system? 

8.7 In OS/2 2.X, cache management has been added to the FAT file system. Discuss several 
ways in which this addition improves performance. 

8.8 Explain how 1/0 command chaining is performed. Discuss several ways in which it 
improves performance. 

8.9 Why does a paged memory environment pose a problem for most existing DMA devices? 
How is this problem handled in OS/2? 

8.10 Why must OS/2 device drivers be reentrant? 

8.11 Why do OS/2 device drivers relinquish control of the processor when forced to wait for I/O 
operations to complete? 

8.12 Distinguish between memory-mapped devices and 1/0-mapped devices. 

8.13 What problem associated with polled devices makes them inappropriate for multitasking 
environments? How do interrupt-driven devices solve this problem? 

8.14 Explain each of the following device data transfer strategies: programmed I/0, direct mem­
ory access (DMA), and bus mastering. 

8.15 In what sense does DMA allow a low-level form of hardware parallelism? 

8.16 How are DOS device drivers insulated from the underlying hardware architecture and 
device controller dependencies? 

8.17 List several ways in which advanced BIOS (ABIOS) differs from compatibility BIOS 
(CBI OS). 



260 1/0 Management 

8.18 What motivated the development of Subsystem Control Block (SCB) architecture? How is 
a typical SCB I/O operation performed? How are performance improvements realized, compared 
to with the use of ABIOS? 

8.19 Why is bimodal code loaded in physical memory addresses below lMB? 

8.20 Discuss the functions performed by the top half of a device driver, and those performed by 
the bottom half of a device driver. Explain what an inter-device-driver communications handler is. 

8.21 Why must the 16-bit OS/2 system provide a means of preventing preemption of a DOS 
application that has entered ROM BIOS? 

8.22 Explain what a tiled virtual address is. Give an example of a data area that is a tiled area of 
memory. 

8.23 What is initialization mode? Why does initialization mode execute at privilege level 3? 

8.24 Why do the addresses stored by a device driver that services an interrupt-driven device 
need to be accessible in the context of any process? 

8.25 Give a brief example of a function that is performed by each of the following categories of 
DevHelp services: process management, semaphore management, request queue and request pack­
et management, character queue management, memory management, interrupt management, timer 
services, and system services. 

8.26 Why does OS/2 2.X DOS compatibility not use 80386 real mode? 

8.27 Distinguish between physical device drivers (PDDs) and virtual device drivers (VDDs). 

8.28 What is the extended strategy interface? What operations does it support? What is the oper­
ation of the prefetch command? How does this command improve performance? 

8.29 When an 1/0 request is executed in the 32-bit system, why does the file system lock the 
pages of the I/0 buffer? 



9 
Presentation Management 

One picture is worth more than ten thousand words. 

Chinese proverb 

Seeing is believing. 

Proverb 

Nothing ever becomes real till it is experienced- even a 
proverb is no proverb to you till your l(fe has illustrated it. 

John Keats 

261 



9.1 Introduction 
9.2 Session Management 
9.3 Presentation Manager 
9.4 Windows Architecture 
9.5 Message Architecture 
9.6 Graphics Architecture 
9.7 Resources 
9.8 Application Data Exchange 
9.9 Multitasking Issues 

Summary 

Outline 

262 



9.2 Session Management 263 

9.1 INTRODUCTION 

This chapter describes the presentation management in the OS/2 system. It discusses the 
role of sessions, and the way applications access the user 1/0 devices. It also explains 
the windowing and graphics architecture of the OS/2 Presentation Manager (PM). 

9.2 SESSION MANAGEMENT 

Sessions, or screen groups, are managed by the session manager, a component of OS/2. 
Each session contains a logical keyboard, a logical mouse, a logical display, and a col­
lection of processes that share the logical user 1/0 devices. Figure 9.1 illustrates the 
structure of a session. The user shell allows users to start and stop applications, and to 
select the foreground session. The OS/2 user initiates session switching using the hot 
key or mouse device, and then tells the OS/2 user shell which session to activate. When 
sessions are switched, the user-1/0 subsystems switch logical device contexts, by chang­
ing the per-session, logical-to-physical user 1/0 device mappings. We shall find it is 
easiest to understand OS/2 session management by examining the evolution of OS/2 
user 1/0. 

OS/2 1.0 did not provide the PM. Although it has the capability for graphics, OS/2 
1.0 is basically a text-mode system. It provides three different types of sessions: full 
screen, DOS, and detached. Full-screen sessions are used to run OS/2 protected-mode or 
DOS programs. The per-session logical user 1/0 devices are managed for full-screen 
sessions by the video, keyboard, and mouse subsystems. Because applications are run in 
separate sessions, the user is given the appearance of multiple full-screen consoles, one 
per application. The single DOS full-screen session contains the 16-bit DOS environ­
ment. The DOS compatibility component provides the logical user 1/0 devices for the 
DOS application(s) running in the DOS environment. A single detached session con­
tains background processes that have been detached. Processes in the detached session 
run without the user 1/0 devices. Typically, programs that wake up occasionally to per­
form minimal housekeeping duties are run in the detached session. 

Fig. 9.1 Session structure. 

Logical 
video 
buffer 

Session 

Processes 

Keyboard 
queue 

Mouse 
event 
queue 



264 Presentation Management 

Figure 9.2 illustrates the session and process hierarchy in OS/2 1.0. The user shell 
runs in the topmost session of the hierarchy. The user shell in OS/2 1.0 is called the pro­
gram selector. It is a text-mode application that provides two text-mode windows, one for 
starting programs, and one for switching among active programs. When the user shell starts 
a program, it calls DosStartSession to run a program in a new child session. Descendants of 
a process are inherited automatically by the session in which the process is running. The 
DosSelectSession API call is used by the user shell to switch the active foreground session. 
The Ctrl-Esc and Alt-Esc keyboard sequences are reserved for use as user-shell hot keys. 
The Ctrl-Esc sequence returns the session with the user shell to the foreground, so that the 
user can start new programs or switch between running programs. The Alt-Esc sequence is 
used to toggle between active sessions. An OS/2 text-mode command processor, similar to 
COMMAND.COM of DOS, is provided; it is called CMD.EXE. 

OS/2 full-screen sessions run OS/2 full-screen programs. They are characterized by 
their use of the video, keyboard, and mouse subsystems for their user 1/0. Each of these 
subsystems provides per-session logical user 1/0 devices for full-screen sessions. Each 
subsystem resides in a dynamic link library, and its API functions run in user mode. The 
subsystem converts API requests into DosDev!OCtl requests to the appropriate device 
drivers. DosWrite API requests to standard output are routed to the video subsystem, and 
DosRead API requests from standard input are routed to the keyboard subsystem. C ap­
plications can use either the OS/2 full-screen user 1/0 functions, or the C run-time-library 
standard 1/0 functions. The C standard 1/0 library functions use DosRead and Dos Write, 
which are ultimately serviced by the keyboard and video subsystems unless standard input 

CMD.EXE 

\, I SORT.EXE 

' 

' ' ' ' ' 

, 
, 

' 
' ' 

---------
' Program selector ' 

Text mode ' 
Start programs ' , 
Switch programs , , 

,': = Session 

~ = Process 

Fig. 9.2 OS/2 1.0 session and process hierarchy. 

Detached 
processes 



9.2 Session Management 265 

or standard output has been redirected to a file or device. The user I/O subsystems are 
replaceable on a per-session basis. System extensions can register with the individual sub­
systems to handle requests on a per-session basis, enabling each session ultimately to have 
its own user I/0 device management. Figure 9.3 illustrates the user 1/0 subsystem archi­
tecture for OS/2 1.0. 

The video subsystem API calls are named using the VIO prefix. Thus, full-screen 
programs are also called VIO applications. The video subsystem provides BIOS-level 
output functions for full-screen programs, the equivalent of TTY-style text output to 
CGA, EGA, and VGA devices. It maintains a logical video buffer for each session in the 
system, and switches logical video buffers when the session manager switches sessions. 
It uses the video device driver to map the logical video buffer in the process virtual ad­
dress space onto the physical video buffer when a session is switched into the fore­
ground. The video API runs in user mode in an IOPL segment, which enables it to 
access the video controller directly from user mode. Therefore, the video subsystem runs 
entirely at privilege levels 2 and 3, and accesses the video buffer directly by writing to 
the video RAM. It provides capabilities for font loading, for setting the mode of the dis­
play, and for cursor shape and positioning. It also enables applications to access the log­
ical video buffer directly. Thus, applications can perform their own graphics. 

The keyboard subsystem API calls are named using the Kbd prefix. The keyboard 
subsystem provides BIOS-level keyboard support for full-screen programs. It manages a 
logical keyboard queue for each session, and converts keyboard API requests into 
DosDevIOCtl calls to the keyboard device driver. 

The mouse subsystem API calls are named using the Mou prefix. The mouse sub­
system provides BIOS-level mouse support for full-screen programs. It manages a 

User shell Full-screen 
programs 

Video Keyboard Mouse 

Session 
manager 

DosDev/OCt/ requests 

Device drivers 

Hardware 

Fig. 9.3 Full-screen user-1/0 subsystem architecture. 



266 Presentation Management 

logical mouse event queue for each session, and converts mouse API requests into 
DosDev!OCtl calls to the mouse device driver. 

The PM was introduced in OS/2, Version 1.1; it is the graphical user interface used 
in all subsequent OS/2 releases. It uses several new session types, the main one being 
the PM session. The PM session contains the user shell, and programs that use the 
graphical user interface. It contains all PM applications, including a graphic user shell 
that consists of the desktop manager, the task manager, and the file manager. 
Subsessions are used within the PM session to manage processes that share the PM ses­
sion's user I/0 devices. The PM manages the sharing of logical user I/0 devices among 
programs, and organizes them into windows on the display. It provides a device­
independent message-based user I/O model for PM programs. PM also allows text-mode 
OS/2 full-screen programs to run inside of a standard window using windowed sessions. 
Only text-mode full-screen applications can run in a windowed session. These applica­
tions are also called VIO windowable applications. Full-screen applications that access 
the logical video buffer directly can be run only in full-screen sessions. Figure 9.4 illus­
trates the session and process hierarchy with the PM. 

In OS/2 2.0, several new session types were added because of the extended support for 
DOS applications. Since OS/2 2.0 supports multiple DOS applications, each DOS applica­
tion is run in its own session. These sessions can contain text or graphics, and can be full 

--­
~------~ 

,' PM 

Desktop manager 
Graphics mode 
Start programs 
Switch programs 

' ' 
' ' ' 

CMD.EXE 

' ' ' 

\I SORT.EXE I / 
Full screen 

.... - _, 

' ' 

--- ---

--- ---
(I WordPerfect 5.01 ',; ( .DOS ; i' 

•, . . , , environment , \ ..... 
' ',,, __ ~ull screen _____ , ',, ___ ~ull screen ___ ,-' 

_; = Session 

c===:J = Process 

Fig. 9.4 16-bit OS/2 session and process hierarchy with the PM. 

' ' ' ' 
' ' ' 

Detached 
processes 



9.3 Presentation Manager 267 

screen or windowed. DOS full-screen sessions run DOS programs in full-screen mode, and 
use the DOS compatibility component to provide the per-session logical user I/0 devices. 
Chapter 10 describes how support for DOS application user I/O is implemented. DOS win­
dowed sessions allow DOS applications to run in the PM session within a standard window. 
Figure 9.5 illustrates the OS/2 session and process hierarchy in the OS/2 2.0 system. 

OS/2 2.0 also introduces a new object-oriented user shell, called the workplace 
shell. The workplace shell allows users to interact seamlessly with applications and data 
files using intuitive drag-and-drop operations. The object model allows users to perform 
work without having to understand hierarchical file system layouts, and allows programs 
to participate in an object-oriented action paradigm. The workplace shell can also be 
configured to look like the DOS shell, the Windows user interface, or the OS/2 l .X 
desktop manager, to ease user migration. 

9.3 PRESENTATION MANAGER 

The PM is the graphical user interface of OS/2. It extends the functionality of the base 
user I/0 services to include a windowed user interface and device-independent graphic 
presentations. In a graphical user interface environment, the screen becomes a source of 
user input. Users use the mouse and keyboard to manipulate intuitive graphic controls 

, , 
' 

,' 

,' PM 

Workplace shell 
Object-oriented 
Drag-and-drop 

operations 
Intuitive desktop 

,, ...... " 
, 
'~----~ 

---

---

: (I WordPerfect 5.0 I'~; (I DOS Program I') ( 
' ',,, Full screen ---' '',,, Full screen _ _,-' ' -..... _______ ..... 

\\~I _s_o_RT_.E_x_E_~I, ,'/ 
..... ---... 

_'; = Session 
Full screen 

~ = Process 

Fig. 9.5 OS/2 2.0 session and process hierarchy. 

' ' ' ' ' 

Detached 
processes 

---
_, 



268 Presentation Management 

displayed on the screen. Examples of these controls are pull-down menus, dialog boxes, 
icons, buttons, and scroll bars. The PM allows programs to have a consistent user inter­
face, since the controls for these programs are built into the PM, not into the user pro­
grams. The PM is the strategic user interface of IBM's Systems Application Architecture 
(SAA). It conforms to the Common User Access (CUA) specification of SAA, and the 
PM API implements the presentation functions of the SAA Common Programming 
Interface (CPI). SAA, CUA, and CPI are discussed in more detail in Chapter 12. The 
PM architecture contains essentially the same functions in the 16-bit and 32-bit versions 
of OS/2, except where noted in this chapter. 

The PM API is divided into two functional groups: the windows AP! and the graph­
ics AP!. The windows API was derived from the windowing architecture of Microsoft 
Windows. The graphics API integrates technologies from the IBM Graphics Data 
Display Manager (GDDM), the IBM 3270 Graphics Control Program (GCP), and the 
Microsoft Windows Graphics Device Interface (GD!). Although these technologies form 
the foundation for the PM's architecture, the PM integrates them into the OS/2 protected 
multitasking environment. The PM is an extension to the base OS/2 architecture, and 
runs on top of the OS/2 kernel in the PM session. The PM is a collection of dynamic 
link libraries and executable programs that runs in user mode. The PM API is object ori­
ented. Like the base system, it uses handles to manipulate objects such as messages, 
message queues, and windows. 

The PM session contains the user shell, called the desktop manager, and PM pro­
grams. The PM session is displayed in graphics mode, and can support most all-points­
addressable (APA) display devices. Most text-mode full-screen programs can be run in the 
PM session using a standard window, except for those that directly write to the logical 
video buffer. These programs cannot be run in the PM session, since the PM manages the 
sharing of the session's logical video buffer among programs in the PM session. 

The PM user I/O model consolidates the mouse, keyboard, and display devices. The 
user I/0 interfaces for full-screen programs are called procedural, since applications call 
the system and wait on user input. The PM uses an event-driven, message-based 110 ar­
chitecture to connect the user interface to PM applications. It translates user events into 
messages that are routed to per-application message queues, which are then later pro­
cessed by functions that manage windows. Examples of messages are keyboard and 
mouse input, window modifications, and window repainting. Windows receive mes­
sages from the windows API, and perform output using the graphics APL The PM does 
not manage a logical video buffer for each window. Each window is responsible for 
redrawing itself when the PM indicates that the window needs to be redrawn. Since 
graphical information takes large amounts of memory to store, this scheme achieves a 
significant savings. 

9.4 WINDOWS ARCHITECTURE 

Windows provide a means of sharing, subdividing, and organizing the screen. A window 
is a rectangular area used to receive user input, and to display output. A windowed user 
interface is commonly compared to a "messy desktop," in which windows are similar to 



9.4 Windows Architecture 269 

papers and files on a desktop. They may be overlapped, obscured, resized, and moved to 
the foreground. 

The PM windows architecture is an object-oriented programming (OOP) architec­
ture. A window is an object that is used as the focus for user input, and as the frame for 
user output. Each window is associated with a window procedure (WinProc) that man­
ages all messages coming to that window. The window procedure determines how the 
window responds to messages, and paints the window's contents on the display. In OOP 
terminology, window procedures are methods that are applied to objects (windows). 
Methods are applied to windows by messages being sent to the message queue of the 
thread that created the window. The messages in the queue are dispatched by the thread 
to the correct window procedure using a callback mechanism. Message routing and the 
callback mechanism are discussed further in Section 9.5. 

The window class determines which window procedure is used to process messages 
coming to a window. The window-class mechanism allows a group of windows to share 
a single window procedure. Therefore, windows that have the same style and contents 
will differ only in the data processed by the window procedure. The class mechanism 
also supports object inheritance. This facility allows a new window to be created based 
on an existing window without the entire original window procedure being incorporated 
in the new one. Creating new window classes based on existing window classes is 
called window subclassing. A window class can be private or public. Private window 
classes are usable only by a specific PM program, whereas public window classes can 
be shared among PM programs. The PM provides several system-defined window class­
es for built-in window types, such as the standard window, menus, scroll bars, and dia­
log boxes. 

Like all PM objects, windows are accessed using handles that are assigned when 
windows are created. The coordinate space of a window ranges from ±32KB, and its ori­
gin (0,0) is lower left. Windows have a hierarchical relationship, and are located relative 
to the origin of their parent windows. 

The window hierarchy describes how the windows on the desktop are related to one 
another. The windows have a parent/child relationship similar to that used for processes. 
At the top of the hierarchy is the desktop window. It is the topmost window in the PM 
session, and it occupies the entire screen (it looks like the background). The PM user 
shell-the desktop manager-provides two windows that are children of the desktop 
window. The program manager window allows the user to organize and start programs. 
The task manager window allows the user to switch between running programs. Figure 
9.6 illustrates the PM window hierarchy. 

Children of the desktop window are called top-level windows or main windows. 
They are created by applications, and can be overlapped, obscured, or minimized. 
Operations by the user affect only the main window that is active (in the foreground). 
Only one main window is active at a time on the screen. The top-level windows are 
child windows of the desktop window, and can create subordinate windows of their own 
in the parent/child fashion. Child windows are completely contained within a parent 
window. They are always clipped to be displayed within the parent. They remain in the 
same position relative to the parent unless moved. Also, if a parent is minimized, 



270 Presentation Management 

, ________ J __________ , 
: Top-level (main) , 
: application window : 

Desktop window 

, ____________ ] ___________________________ _ 

Frame window Top-level (main) 

~-----------~ I 
Sibling windows : Title Client System Min/max 

I application window 

l_ ""-::::: ]:~:::::: :m'_"_" _____ ""'10"' _ 
' ' 
: Child window(s) : 
' ' , __ --- ------ ----- --· 

________ ] _________ _ 

Top-level (main) 
application window 

Fig. 9.6 Window hierarchy. (Adapted from "Programming the OS/2 Presentation 
Manager," Copyright 1989 by Charles Petzold. Reprinted with permission of 
Microsoft Press.) 

maximized, hidden, or destroyed, so are its children windows. Windows that share the 
same parent are sibling windows. Siblings can overlap on the screen. 

Control windows are used to receive user input from the screen. They are provided 
by several predefined window classes in the PM. Their messages are handled by win­
dow procedures inside the PM. However, the messages for control windows come 
through the message queue for the application that created the window. Examples of 
control windows are the title bar, system menu icon, minimize-maximize buttons, and 
sizing borders. The 32-bit version of PM contains support for more controls, such as 
spinbuttons, notebooks, and sliders. 

A standard window is a collection of several windows that as a unit provides a con­
sistent user interface for applications. The top-level window of a standard window is 
called the frame window. The frame window has several children: the control windows 
and the client window. The frame window is the parent and the owner of the control 
windows and the client window. The client window is the portion of the standard win­
dow that is defined by the application. The class of the client window is registered by 
the application, and messages to the client window are handled by the window proce­
dure defined for the class. Figure 9.7 illustrates a standard window with menu bar and 
scroll bars. 

Window ownership is used to manage message routing between windows. When the 
control windows of the standard window are activated by the user, they send the mes­
sage to the owning frame window for processing. The frame window performs the 
actions determined by the messages, such as minimizing the window or resizing its bor­
der. Owners are not required, and are rarely used, for client windows. 

Window redrawing is performed by window procedures when they receive the 
WM_PAINT message from PM. This message is sent to a window whenever a part of a 



9.5 Message Architecture 271 

System menu icon 

Menu 
bar 

Pull- --+-+--­

down 
menu 

Sizing 
borders 

Title bar 

Window title 

Client window area Horizontal scroll bar 

Fig. 9.7 Standard window with menu bar and scroll bars. 

Minimize 
min/max 
buttons 

Vertical 
scroll bar 

window is invalid on the display as a result of user actions. For example, if a window is 
minimized and then maximized, the window must be repainted, since the PM does not 
save the contents of the window. If a window is overlapped by another window and then 
is brought back to the foreground, portions of the window must be restored by the win­
dow procedure. Since window procedures redraw windows on demand, the PM does not 
have to save the graphical data contained in a window, resulting in a substantial memory 
savings. 

9.5 MESSAGE ARCHITECTURE 

As stated previously, the PM has an event-driven, message-based 1/0 architecture. That 
is, messages are delivered to programs as a result of events occurring at the user inter­
face. All input consists of messages delivered to window procedures. Window proce­
dures are effectively message filters that perform work on windows. Figure 9.8 
illustrates the overall PM message architecture. 

The keyboard and mouse device drivers place input event messages in the system 
input queue in order of occurrence when the PM session is in the foreground. The sys­
tem input queue is used to manage the delivery of synchronous and asynchronous mes­
sages to application message queues. It serializes events so that they are presented in 
correct sequence to applications. Each PM application has a message queue for receiv­
ing user interface event messages. The message queue is associated with the thread that 
creates it. It receives all messages going to windows created by the thread that created 
the message queue. The message router component of the PM moves messages from the 



272 Presentation Management 

r-----------------------------------------------------------------------------, 
' 

' 

PM 
application 

Application 
message 

queue 

PM 
application 

Application 
message 

queue 

PM 
system 

input 
queue 

--- .......... -;.· 

PM 
application 

Application 
message 

queue 

PM session 

' ' 
L ----------------------------------

_________________________________ J 

B--

Fig. 9.8 PM message architecture. 

system input queue to the correct application message queues. Keyboard messages are 
routed to the window with the keyboard focus, and mouse messages are routed to the 
active window. Also, messages can be generated by the PM itself and placed in an appli­
cation's message queue. 

Messages have a simple structure. Each message contains the handle of the window 
that receives the message, the message type, and the data of the message. If the message 
contains large numbers of data, it contains pointers to the message data. Since messages 
and their data can be passed between processes, the data is located in give-get shared 
memory (described in Chapter 6). Examples of messages follow: 

WM_CREATE (create window) 

WM_SIZE (resize window) 

WM_ CHAR (route keyboard input to window) 

WM_PAINT (redraw window) 

After initializing itself, creating a message queue, defining window classes, and cre­
ating the main window, each PM application executes an application message loop that 
processes messages arriving at the message queue. The message loop is actually a spin 
loop in which the application calls WinGetMsg to retrieve a message from the queue, 
and then calls WinDispatchMsg to dispatch the message to the proper window. This loop 



9.5 Message Architecture 273 

drives message delivery to window procedures from the application message queue. 
WinGetMsg removes messages from the application message queue, and blocks if there 
are no messages. It returns the WM _QUIT message when there are no more messages. 
WinDispatchMsg causes the window dispatcher component of the PM to look up the tar­
get window, and to call the correct window procedure for the message. WinDispatchMsg 
does not return until after the message is processed by the invoked window procedures. 
If a window procedure does not handle the message, it calls WinDefWindowProc for 
default window message processing. Figure 9.9 illustrates the application message loop. 

Not all messages arrive at window procedures through the message queue. Window 
procedures can also be called directly by the PM and by other window procedures. The 
message queue is used for queued messages, such as keyboard input, mouse input, timer 
messages, and menu selections. However, nonqueued messages also exist, such as those 
sent to a window when it is created or destroyed. Because both queued and nonqueued 
messages come to window procedures, a window procedure can be called directly, even 
while the thread that created the window is blocked in WinGetMsg. Also, messages can 
generate more messages. Thus, window procedures must be reentrant. 

WinSendMsg is used to call a window procedure directly with a message. Using it is 
similar to hand delivering the mail. For example, if a window procedure receives a mes­
sage and wants to send that message to one of its sibling or child windows, it calls 
WinSendMsg. WinSendMsg does not return to the caller until the target window proce­
dure finishes processing the message. WinSendMsg is used for sending a message di­
rectly to a window procedure. 

WinPostMsg is used to put a message into a message queue associated with a spe­
cific window. If a window procedure calls WinPostMsg, the call is similar to putting a 
letter in a mailbox for later delivery. The message is placed into the message queue 
associated with the target window, and WinPostMsg returns immediately. WinPostMsg 
is used for sending a message asynchronously to a window procedure. 

PM application 

WinGetMsg 

Message 
loop 

Window 
procedures 

WinDispatchMsg 

WindowsAPI 

Application 
message 

queue 
Window 
message 
dispatcher 

Fig. 9.9 PM application message loop processing. 

Call WinProc(Msg) 



274 Presentation Management 

9.6 GRAPHICS ARCHITECTURE 

There are two principle types of graphics technologies used today: raster graphics and 
vector graphics. Raster graphics utilizes bitmapped images on all-points-addressable 
(APA) graphical output devices. Vector graphics are constructed using lines and pat­
terned areas. The PM is fundamentally a vector graphics system, but it can display 
graphics on both vector-based and raster-based hardware. The PM also contains some 
raster functions for bitmaps that are supported for only raster output devices. When 
using vector-based output devices, the PM translates graphics commands into device­
specific vector commands. When using raster-based output devices, the PM translates 
graphics commands into pixels using simulations. 

The graphics architecture of the PM utilizes two basic constructs: presentation 
spaces and device contexts. A presentation space defines an abstract output device, and 
is used to assemble graphics for outputting to a given device. The graphics API allows 
high-resolution graphics and text to be mixed in a presentation space. It provides func­
tions for constructing graphics objects built out of graphics primitives such as lines, pat­
terned areas, text, and images. The graphics API also provides operations for graphical 
transformations such as scaling and inversion. The graphics engine component of the 
PM is responsible for mapping device-independent presentation spaces onto device-spe­
cific device contexts. In OS/2 2.0, a 32-bit version of the graphics engine is used to in­
crease the performance and responsiveness of graphic operations. Figure 9.10 illustrates 
the PM device-independent graphics architecture. 

A presentation space defines a device-independent output device. Associated with the 
presentation space are fonts for text output, and a device context that provides the device­
dependent information for the output of the graphics drawn in the presentation space. The 
presentation space coordinate system is measured in pixels, and the origin is lower left in 
the presentation space. The PM API provides mechanisms that allow windowed graphics 
to be displayed correctly no matter what the current dimensions of the window are. 

Device contexts define the characteristics of unique output devices. Each window 
can have a unique device context. The default device context for a window is the dis­
play. An application paints a window by allocating a presentation space that is linked to 
a device context, writing to the presentation space using the graphics API, and then deal­
locating the presentation space. 

Presentation drivers are used by the graphics engine to map device-independent 1/0 
requests to specific. output devices. Presentation drivers are not the same as device 
drivers-they are 16-bit dynamic-link libraries that run at ring 2 using IOPL segments. 
Presentation drivers exist for displays, printers and plotters. Depending on the nature of 
the output device, a presentation driver may have a corresponding device driver compo­
nent that it uses for performing 1/0 to the device. 

9.7 RESOURCES 

Resources are graphical user interface objects such as icons, menus, dialog boxes, 
bitmaps, strings, and fonts. They are read-only data and are stored in the EXE or DLL 



9.7 

PM application 

Message 
loop 

WinProcs 

Graphics API (GPI) 

Presentation 
spaces and 

1+-----1 objects 
~---~ 

Graphics engine 

Simulations 

Fig. 9.10 PM device-independent graphics architecture. 

Resources 275 

files of PM applications. Since resources are read-only data, they are discardable, and 
can be shared by multiple instances of a given PM program. Resources are created 
using either resource editors or resource scripts. A resource script is a text file that 
contains information for defining resources. It may also contain references to other 
files that contain resources created by resource editors. The PM toolkit provides a 
resource compiler and three resource editors: the dialog box editor, font editor, and 
icon editor. The resource compiler converts resource scripts into a binary image that is 
appended to EXE or DLL files that use the resources. Applications are not sensitive to 
resource formats, since the PM provides API functions for loading, processing, and dis­
playing resources. 

Metafiles are supported by the PM for storing pictures. The Mixed Object Document 
Control Architecture (MODCA) interchange standard is used to store metafiles in the 
PM environment. Each metafile contains graphics instructions for creating pictures on a 
device-independent graphics device. 

Bitmaps are arrays of data organized into rows and columns in which the bits corre­
spond to the pixels of a raster-based graphics device. Bitmaps are highly device depen­
dent because pixel resolution varies across graphics devices. Therefore, some level of 
device-dependence is inherent in a bitmap. Bitmaps are manipulated using bit-blt opera­
tions. The GpiBitBlt API call can be used for transferring portions of bitmaps, and per­
forming transformations on them. The icon editor provided with the PM toolkit can also 



276 Presentation Management 

be used to make bitmaps. Bitmaps are accessed by handles like most PM objects, and 
are stored in binary format like other resources. 

Dialog boxes are pop-up windows that receive input from the user. They usually 
contain radio buttons, entry fields, icons, text, list boxes, check boxes, and push buttons 
as controls that allow the user to input the information. They can be built from templates 
using the dialog editor and resource compiler provided with the PM toolkit. List boxes 
are variants of dialog boxes that are used when an application has a set of selectable 
items too large for the client area of a window. 

9.8 APPLICATION DATA EXCHANGE 

There are two primary mechanisms used for data exchange between PM applications: 
the clipboard and dynamic data exchange (DDE). The clipboard is a temporary storage 
area for user-initiated data transfers between PM applications. Clipboard operations are 
usually specified on the edit menu of a PM application. Four basic operations are 
defined for the clipboard: mark, cut, copy, and paste. The mark operation is used to 
delineate an area of data in a window that the user desires to transfer to another applica­
tion. The marked area is either cut or copied to the clipboard. If it is cut, it is deleted 
from the source application. The copy operation moves a copy of the data from the 
source application to the clipboard. A paste operation is used to place the contents of the 
clipboard into a destination PM application window. Both text and graphics data can be 
transferred using the clipboard. However, both the source and destination application 
must understand the format of the data being transferred. The clipboard can hold only 
one item at a time, and access to the clipboard is serialized by the PM API functions 
used by applications to access it. 

The dynamic data exchange protocol defines how applications can access one an­
other's data. It is intended for use by future PM applications for linking documents, 
spreadsheets, and graphical data. For example, if a word processor imports a graphical 
file from another application, it does not need to retrieve the file-instead, it can have 
only a DDE link to that file. 

9.9 MULTITASKING ISSUES 

PM and Microsoft Windows share the same basic windowing and message passing 
architecture, but they exist in different environments. OS/2 is a preemptive, timeslicing, 
multitasking environment, whereas Windows is a nonpreemptive, nontimeslicing, 
single-tasking environment based on the DOS operating system. In the Windows 
environment, a program runs until its message queue is empty; only then does Windows 
switch to another program with a nonempty message queue. Therefore, all Windows 
applications but one are always suspended in the WinGetMsg API function. This setup 
presents a problem if a program takes too long to process a message. For example, if the 
user clicks on the recalculation option when working with a large spreadsheet, other 
applications are postponed until the message that initiated the recalculation is processed. 
In fact, WinDispatchMsg also does not return until the message is processed. It does not 



9.9 Multitasking 277 

return because multitasking is performed by applications that are not aware of one 
another in the Windows environment. 

At first glance, it appears that the multitasking features of OS/2 solve this problem, 
since multiple applications can process their message queues concurrently. However, 
processing of long messages by a PM application can still affect other applications in the 
OS/2 environment due to the PM's use of the message-based architecture. When the 
PM's window architecture and messaging architecture were inherited from the original 
Microsoft Windows system, other underlying problems existed that were not apparent in 
the single-tasking Windows environment. 

To illustrate the problems in the OS/2 environment, we can assume that a PM pro­
gram with a single thread takes a long time to process a message. It could be a spread­
sheet attempting to do a recalculation, or a word processor generating a large document. 
Recall that a window procedure always executes in the context of the thread that created 
the message queue and the window. Thus, the window procedure does not read a new 
message from the message queue until it finishes processing the previous message. 

If the user attempts to use the keyboard to switch applications while a long message 
is being processed, the thread that must process the keyboard message for the window is 
still working on the previous message. Furthermore, the mouse cannot be used to switch 
to a different program, because the keyboard and mouse input are serialized through the 
PM system event queue. These messages are serialized so that type-ahead and mouse­
ahead operations work correctly. Therefore, keyboard and mouse messages are routed to 
application message queues one at a time. Even if another program could get a keyboard 
or mouse message delivered to its message queue, the PM sends a message to the win­
dow losing the focus. In this case, the window losing the focus cannot process the mes­
sage because it is still processing the previous long message. If a message takes longer 
than a 0.1 second to be processed, system responsiveness to the user is reduced. If a 
window procedure enters an infinite loop while processing a message, the system is 
effectively hung. 

Therefore, the problems associated with PM programs that take a long time to pro­
cess their messages originate from two sources: the program is single-threaded, and 
messages are not interrupts. It is important to realize that messages do not preemptively 
interrupt a thread and start its execution somewhere else. Window procedures receive 
messages only as a result of calls to WinSendMsg, WinDispatchMsg, and WinPostMsg. 
A window procedure can be called recursively, but not as a result of new messages 
arriving. Rather, recursive calls are the result of a window procedure sending messages 
that result in messages coming back to it. 

The OS/2 multithread process model solves all these problems. By dedicating a sin­
gle thread to servicing the user interface, and using other threads as workers for time­
intensive operations, an application can be assured that user messages will be processed 
promptly. The threads used by a PM application for completing time-intensive opera­
tions are called non-message-queue threads, since they are not associated with a mes­
sage queue. Therefore, they cannot create windows, send messages, or call functions 
that cause window procedures to be invoked. However, non-message-queue threads can 
utilize the base OS/2 APL 



278 Presentation Management 

SUMMARY 

This chapter described the user 1/0 in the OS/2 system. It discussed the role of sessions, 
and the way full-screen applications access the user 1/0 devices. It described the evolu­
tion of the OS/2 session and process hierarchy from the 16-bit system through the cur­
rent 32-bit system. The design of OS/2' s graphical user interface, the Presentation 
Manager, was described with respect to window management, device independence, and 
the message-based 1/0 architecture. 

TERMINOLOGY 

all-points-addressable (APA) display 
device 

Alt-Esc sequence 
application message loop 
application message queue 
bit-blt operations 
bitmap 
button 
callback mechanism 
client window 
clipboard 
clipped 
common user access (CUA) 
control window 
copy 
Ctrl-Esc sequence 
cut 
desktop manager 
desktop window 
detached session 
device context 
device-independent graphics 
device-independent presentation space 
dialog box 
dialog box editor 
DosDevIOCtl 
DOS full-screen session 
DosRead 
DosSelectSession 
DOS session 
DosStartSession 
DOS windowed session 
DosWrite 
dynamic data exchange (DDE) 
edit menu 

event-driven, message-based 1/0 
architecture 

font editor 
foreground session 
frame window 
full-screen session 
GpiBitBlt 
graphical user interface (GUI) 
Graphics Data Display Manager (GDDM) 
graphics engine 
graphics mode 
hot key 
IBM Graphics Data Display Manager 

(GDDM) 
IBM 3270 Graphics Control Program 

(GCP) 
icon 
icon editor 
KBD subsystem 
keyboard queue 
keyboard (KBD) subsystem 
logical display 
logical keyboard 
logical mouse 
logical mouse event queue 
logical video buffer 
main window 
mark 
message-based, event-driven architecture 
message queue 
message router 
method 
Microsoft Windows 
Microsoft Windows Graphics Device 

Interface (GDI) 



minimize-maximize buttons 
Mixed Object Document Control 

Architecture (MODCA) 
mouse 
mouse device driver 
mouse event queue 
mouse (MOU) subsystem 
non-message-queue threads 
nonqueued message 
object 
object inheritance 
object-oriented programming (OOP) 
paste 
PM session 
presentation driver 
presentation management 
presentation manager (PM) 
presentation space 
private window class 
program manager 
program selector 
public window class 
pull-down menu 
queued message 
raster graphics 
resource 
resource compiler 
resource editor 
resource script 
SAA common programming interface 

(CPI) 
screen group 
scroll bar 
session 
session hierarchy 
session management 
session manager 
session and process hierarchy 
sibling window 

EXERCISES 

sizing border 
standard window 
subsession 

Exercises 279 

system-defined window class 
system input queue 
system menu icon 
system menu window 
systems application architecture (SAA) 
task manager 
title bar window 
top-level window 
user shell 
vector graphics 
video (VIO) subsystem 
VIO application 
VIO windowable application 
window 
window class 
window dispatcher 
window hierarchy 
window management 
window ownership 
window procedure (WinProc) 
window redrawing 
window subclassing 
windowed session 
window API 
WinDejWindowProc 
WinDispatchMsg 
WinGetMsg 
WinPostMsg 
WinProc 
WinSendMsg 
WM_ CHAR message 
WM CREATE 
WM _PAINT message 
WM _QUIT message 
WM _SIZE message 

9.1 Explain the notion of a session. Discuss the structure of a typical session. 

9.2 Discuss the types of sessions in OS/2 LO-namely, full-screen sessions, DOS sessions, and 
detached sessions. 



280 Presentation Management 

9.3 Briefly describe the functions of the video, keyboard, and mouse subsystems. 

9.4 How does the PM help to ensure that programs have consistent user interfaces? 

9.5 In what sense is the PM strategically important to IBM? 

9.6 Explain the notions of events, messages, and message queues in the context of the PM's 
event-driven, message-based I/0 architecture. 

9.7 Discuss the object-oriented nature of the PM. In particular, consider each of the following: 
window procedures, windows, messages, message queues, window classes, object inheritance, and 
window subclassing. 

9.8 Briefly explain each of the following types of windows: desktop window, top-level (or main) 
window, sibling window, control window, standard window, frame window, and client window. 

9.9 Distinguish between queued messages and nonqueued messages. 

9.10 Explain the two principal types of graphics technologies-namely, raster graphics and vec­
tor graphics. 

9.11 Discuss the PM notions of presentation space, device context, graphics engine, and presen­
tation driver. 

9.12 In the context of the PM, what are resources? 

9.13 Discuss the operation of the two primary mechanisms used for data exchange between PM 
applications-namely, the clipboard and dynamic data exchange (DDE). 

9.14 Compare and contrast the environments in which the PM and Microsoft Windows operate. 

9.15 Explain how the processing of a long message can cause problems in the PM. From what 
two sources do these problems originate? 



10 
Compatibility 

E pluribus unus. 
(One composed of many.) 

Virgil 

For there is no friend like a sister 
In calm or stormy weather; 

To cheer one on the tedious way, 
To fetch one if one goes astray, 
To lift one if one totters down, 

To strengthen whilst one stands. 

Christina Rossetti 
Goblin Market 

Can two walk together, except they be agreed? 

Amos3:3 

281 



Outline 

10.1 Introduction 
10.2 DOS Compatibility 
10.3 80286 DOS Compatibility 

10.3.1 Mode Switching 
10.3.2 System Structure 
10.3.3 Tiled Memory 
10.3.4 Analysis 

10.4 80386 DOS Compatibility 
10.4.l Multiple Virtual DOS Machines 
10.4.2 VDM Management 
10.4.3 8086 Emulation 
10.4.4 Virtual Device Drivers 
10.4.5 Virtual Interrupt Management 
10.4.6 Virtual DevHelp Services 

10.5 OS/2 2.X Windows 3.0 Compatibility 
10.6 OS/2 2.X 16-Bit Compatibility 
10.7 Hybrid System Strategies 
10.8 Memory Model Coexistence 
10.9 LDT Tiling 

10.10 Thunks 
Summary 

282 



10.3 80286 DOS Compatibility 283 

10.1 INTRODUCTION 

This chapter describes compatihility in the OS/2 system. "Compatibility" refers to the 
capability of an operating system to run applications developed for previous versions of 
the system, or for other operating systems. Providing compatibility for existing software 
protects customers' investments in software when the customers migrate to an operating 
system of higher functionality and performance. The retention and reuse of the existing 
code base encourages users to migrate to the new, more powerful system. 

There are two principal types of compatibility: binary compatibility and source 
compatibility. Binary compatibility is the capability of running existing applications 
without modification. Systems that provide source compatibility allow existing applica­
tion source code to be recompiled for a new system without changes. Binary compatibil­
ity is more desirable than is source compatibility, since it does not require applications 
to be recompiled and redistributed. Furthermore, most software developers do not ship, 
in standard user distributions, source code and tools for building their products. 

OS/2 provides binary compatibility for DOS applications on both the I 6-bit and 32-
bit versions of the system. The I 6-bit system allows a single DOS application to run 
with OS/2 protected-mode applications, and the 32-bit version allows multiple DOS ap­
plications to coexist with OS/2 protected-mode applications. The 32-bit system also pro­
vides binary compatibility for Windows 3.0 applications, and for existing OS/2 16-bit 
applications and dynamic-link libraries. 

10.2 DOS COMPATIBILITY 

This section describes what the characteristics of DOS applications are, and what it 
means to be DOS compatihle. DOS applications execute in the real mode of Intel 80X86 
processors, and can address up to LMB of physical memory. They perform segment 
arithmetic on the segment register values, and assume that segmented addresses are 
directly related to the physical addresses generated by the processor. DOS and BIOS 
services are accessed using the software interrupt mechanism of the 8086. DOS applica­
tions have full control of the machine, and can access the hardware directly since there 
is no protection. DOS can be extended using terminate-and-stay-resident modules, 
device drivers, and other DOS add-on technologies. DOS programs that use EMS and 
XMS to access more than 640KB of memory must manage the extra memory explicitly, 
further complicating the memory management duties already necessary due to the 16-bit 
segmented addressing scheme of the 8086. 

10.3 80286 DOS COMPATIBILITY 

There are two primary strategies used for providing DOS application compatibility with 
a protected-mode host operating system on the 80286 platform: 

Run DOS applications in protected mode. 

Run DOS applications in real mode using mode switching. 



284 Compatibility 

The first alternative makes it difficult for the protected-mode host operating system 
and the DOS environment to coexist. When DOS applications access the segment regis­
ters with real-mode semantics in protected mode, they generate general protection faults 
unless a descriptor that maps the desired memory exists. These faults occur because 
DOS and its applications believe that the segment register values are directly related to 
the physical addresses generated. In protected mode, however, the segment-register val­
ues are selectors, which are indices into descriptor tables. When DOS is emulated in 
protected mode on an 80286, these faults are serviced by the host operating system. The 
fault is processed by allocation of the descriptor that maps the desired memory that the 
DOS application intended to access, and restarting of the DOS application at the point of 
the fault. 

There are several problems with this approach. Due to an 80286 erratum, the con­
tents of the ex register are destroyed when a general protection fault occurs. Therefore, 
instructions that cause general protection faults cannot be restarted on many 80286 pro­
cessors. Although this problem can be circumvented by replacement of the defective 
80286 chips, this solution is not desirable due to another limitation. When a DOS ap­
plication generates a fault, the host system must allocate and initialize a specific descrip­
tor based on the address that the DOS application tried to access. Since there is no way 
to predict the addresses that a DOS application might need, the DOS application's ad­
dressing conflicts with the management of descriptors for the protected-mode portion of 
the host system. Therefore, descriptors cannot be dedicated to the protected-mode host 
operating system and its applications while a DOS application is running. 

Another variation on this alternative entails the use of a special test instruction 
called LOADALL, which allows the entire register set, including the hidden segment de­
scriptor caches, to be initialized in one instruction. LOADALL can be used to set any 
descriptor to perform the desired DOS access in protected mode, but the segment map­
pings it establishes are valid only until the segment registers are touched. However, the 
LOADALL alternative cannot be used on 80286 processors with the erratum that de­
stroys the ex register on general protection faults. Thus, running DOS applications in 
protected mode on an 80286 is neither realistic nor feasible. 

The second approach is to run DOS applications in real mode, and to emulate the 
DOS system using the protected-mode host operating system. This approach allows 
DOS applications to run in real mode in low memory (0 to lMB) physical addresses, 
just like they do under DOS in real mode. The protected-mode host operating system 
and its applications are loaded in the high memory (1 to 16MB) physical address 
range. Part of the host system runs in both real mode and protected mode, and is load­
ed into low memory with the DOS application. The low memory used by the DOS 
application is not moved or swapped by the protected-mode operating system while a 
DOS application is running. The host operating system switches between real mode 
and protected mode to emulate DOS services, and multitasks the protected-mode pro­
grams. Since the 80286 processor does not support a mode switch from protected 
mode to real mode, such a switch must be done by external hardware, as described in 
the following section. 



10.3 80286 DOS Compatibility 285 

10.3.1 Mode Switching 

Switching an 80286 from real mode to protected mode is accomplished simply via set­
ting of the protected-mode flag in the machine status word. However, the 80286 is not 
designed to switch from protected mode to real mode. This capability should have been 
built into the 80286 as a special instruction executable only at privilege level 0 in pro­
tected mode. The only way to switch an 80286 processor from protected mode to real 
mode is to cause the 80286 to reset. Reseting the 80286 and resuming execution in real 
mode requires external hardware support. 

The 80286 can be reset on a PC/AT using the keyboard controller. The keyboard 
controller is connected to the reset line. Issuing a special command to the keyboard con­
troller causes the reset line of the 80286 to be toggled. This operation effectively quickly 
turns the 80286 off, and then on, causing the 80286 to be restarted. When the power is 
dropped to the reset pin of the 80286, the RAM of the system is refreshed while the pro­
cessor is being reset. This refresh operation ensures that the contents of memory are pre­
served during the reset operation. 

The PS/2 introduced a faster method of resetting the 80286 without using the key­
board controller. A special I/0 port in 80286-based PS/2s is used to reset the 80286 with 
an 1/0 instruction. This method is faster than is using the keyboard controller, since the 
controller must decode and process the command to reset the 80286. An 80286 can also 
be mode switched by a triple fault. To cause such a fault, the operating system must 
cause a fault, force the fault handler to cause a double fault, and have the double fault 
handler cause yet a third fault. Compared to the other alternatives, this process is a slow 
one. Mode switching from protected mode to real mode on an 80386 requires just one 
special instruction executable at privilege level 0, and is faster than the preceding meth­
ods since it does not require a reset. 

When an 80286 is reset or is turned on, it immediately begins executing instructions 
at the top of memory in real mode. Mapped into the top of memory of all personal com­
puters is a small stub of code that branches into the system ROMs. Once in the system 
ROMs, the power-on self-test (POST) routine begins executing. POST normally tests the 
memory and devices present in the system, initializes ROM BIOS, and calls BIOS to 
read and execute the bootstrap sector from the media in the boot device. To support 
mode switching, POST must be able to differentiate between when the system has been 
turned on, and when the system has been intentionally reset for a mode switch to real 
mode. In the case of a mode switch, POST must stop executing, and branch to a prepro­
grammed location so that the system can continue executing in real mode. 

To support this, a CMOS RAM chip that retains its contents without power is used 
to maintain the shutdown status of the 80286. POST checks the shutdown status in the 
CMOS RAM to determine whether a mode switch is in progress, or whether the system 
was just turned on. If the shutdown code indicates that power was just turned on, the 
normal POST cycle is executed, and the standard boot cycle occurs. If the shutdown 
code indicates a mode switch from protected mode to real mode, it dispatches directly to 
an address saved in the CMOS RAM chip. 



286 Compatibility 

Although Intel did not provide a mode switch capability on the 80286, the designers 
of the IBM PC/AT-the first PC to use the 80286-recognized the need for mode 
switching. They invented and provided the rudimentary mode switching support through 
the keyboard controller, POST, and CMOS RAM architecture. Were it not for the fore­
sight of these designers, mode switching on an 80286 would not be possible. 

10.3.2 System Structure 

The 16-bit version of OS/2 uses the mode switching strategy to implement DOS com­
patibility on an 80286. The most recent version of the system, OS/2 1.3, provides com­
patibility for DOS 4.0. It provides the capability to execute one DOS application in real 
mode. The DOS application runs in the foreground; it is frozen when it is in the back­
ground. OS/2 cannot run DOS applications in the background since excessive mode 
switching could disrupt protected-mode applications. Also, the 80286 architecture does 
not allow OS/2 to virtualize the devices used by DOS applications. Therefore, the DOS 
application does not get hardware interrupts in the background under OS/2, which is 
why applications such as communications programs may not run in the 16-bit DOS 
compatibility environment. OS/2 allows protected-mode applications to run in the back­
ground while the DOS application is running in the foreground. The system switches 
between real and protected-mode as needed while the DOS application is in the fore­
ground. 

Since mode switching is a relatively slow operation, OS/2 attempts to minimize the 
mode switching on critical paths, such as interrupt management and context switching. 
OS/2 also attempts to maximize the amount of memory available to DOS applications 
below lMB by partitioning the system in an intelligent fashion. Figure 10. l illustrates 
the 16-bit OS/2 physical memory layout with DOS compatibility installed. 

The system's physical memory is divided into two areas: low memory, below lMB 
and high memory, above lMB. All OS/2 applications and most of the kernel are loaded 
into high memory and executed in protected mode only. The DOS application is loaded 
into low memory. Also loaded into low memory are the portions of OS/2 that need to 
run in both protected mode and real mode. Code that runs in both protected mode and 
real mode is called bimodal code. The bimodal portions of OS/2 loaded into low memo­
ry in the following: 

Device management 

Interrupt management 

Mode switching 

Context switching 

Device drivers 

Memory management, the file system, and most of the OS/2 kernel are in high 
memory to reduce the impact on DOS application memory. This strategy leaves approx­
imately 520KB for DOS applications under OS/2 1.3. Also in low memory is a stub 
DOS kernel used to route requests for DOS services from DOS applications to the 



10.3 

16MB 

1MB + 64KB 

1MB 

640KB 

0 

OS/2 applications 

High OS/2 kernel 

OS/2 device drivers 

ROM BIOS and 
memory-mapped 
devices 

DOS applications 

Command.Com 
Stub DOS kernel 

Low OS/2 kernel 

Interrupt vectors 

80286 DOS Compatibility 

Protected-mode code 

:=f- Bimodal code 

Real mode code 

} Bimodal code 

Fig. 10.1 16-bit physical memory layout with DOS compatibility. 

287 

protected-mode kernel in high memory. Therefore, all DOS file 1/0 is emulated by 
switching to protected mode, calling the file system in high memory, performing the 
1/0, and switching back to real mode. This overhead is acceptable, since file 1/0 is slow 
compared to the performance of a mode switch. Since the file system is in high memory, 
more memory is available in low memory for DOS applications. 

The region from lMB to lMB + 64KB is known as the A20 wrap area. Due to the 
segmented scheme for generating 20-bit physical addresses on an 8088, it is possible for 
a DOS program to generate physical addresses in the range from lMB to lMB + 64KB. 
On an 8088 system, these addresses wrap to the low 64KB of physical memory. 
However, 80286 physical addresses are 24 bits. The twenty-first address line of the 
80286 is called the A20 line, and its setting determines whether real-mode programs 
wrap low physical memory, or directly access the range from lMB to lMB + 64KB. 
When an 80286 is started, the A20 line is disabled, causing the 80286 to emulate the 
8088 environment. When the 80286 is switched to protected mode, the A20 line is en­
abled, since the protected mode of the 80286 generates 24-bit physical addresses. 
However, the A20 wrap area can be addressed in real mode if the A20 line is enabled 
manually. OS/2 can thus use the memory in the A20 wrap area for bimodal code by 
managing the state of the A20 line. When running a DOS application in real mode, OS/2 
disables the A20 line to force the 8088 segment wrapping semantics on DOS ap­
plications. When accessing bimodal code in the range from IMB to IMB + 64KB in real 
mode, the OS/2 kernel enables the A20 line. 

The DOS system services are emulated by the OS/2 system. The DOS system does 
not run in low memory-only a DOS application does. A stub DOS kernel is used for 



288 Compatibility 

applications that jump directly into DOS without calling INT 21. DOS services are em­
ulated by the low part of the kernel if possible; otherwise, the system switches to 
protected mode to perform the operation. Since DOS applications use the OS/2 file 
system, they benefit automatically from the installable file system architecture. Thus, 
DOS applications can access FAT files and HPFS files, and can share file resources with 
protected-mode programs. 

DOS applications also use the ROM BIOS services by executing software inter­
rupts. BIOS requests are emulated by real-mode code in the device drivers and the ker­
nel. As we saw in Chapter 8, DevHelp(SetROMVector) is used by 16-bit physical device 
drivers to hook BIOS software interrupts. The device driver then either emulates the 
BIOS functions, or uses BIOS to provide the function. When BIOS is used, the device 
driver calls DevHelp(ROMCritSection) to tell the system to delay context switching un­
til the BIOS request is complete. It is necessary to prevent preemption when the DOS 
environment is executing BIOS, since background protected-mode programs can poten­
tially issue requests to the same device. These requests cannot proceed when BIOS is 
being used, since BIOS is not reentrant, and the device drivers compete with BIOS to 
program the same hardware. 

Since the system multitasks protected-mode applications in the background when a 
DOS application is in the foreground, and since mode switching is performed so that all 
these programs apparently can run concurrently, interrupt-driven device drivers may get 
in one mode interrupts for requests that were started in the other mode. For example, a 
background protected-mode application may make a device driver request, and the 
thread may be blocked until an interrupt occurs. Since the system is multitasking 
between the DOS application in the foreground and real-mode and protected-mode pro­
grams in the background, the interrupt for the 1/0 request can occur when the processor 
is in real mode. To make the buffer addresses used in device 1/0 requests accessible in 
both modes, interrupt-driven device drivers save the buffer addresses as physical 
addresses instead of mode-sensitive virtual addresses. The physical addresses are con­
verted to virtual addresses by the device driver at interrupt time using 
DevHelp(PhysToVirt). When the device driver is done using the temporary mapping, it 
calls DevHelp(UnPhysToVirt). 

Device driver interrupt handlers also may need to access memory above lMB in real 
mode at interrupt time to transfer data from requests initiated in protected mode. On 
PC/ AT architectures, a special Intel test instruction, called LOAD ALL, is used by 
DevHelp(PhysToVirt) to establish a mapping to memory above lMB in real mode. 
However, while the LOADALL instruction is in effect, the segment registers cannot be 
altered. On fast mode-switching architectures, such as any PS/2 or 80386 machine, 
DevHelp(PhysToVirt) switches to protected mode to access the memory above lMB, and 
DevHelp(UnPhysToVirt) switches back to real mode to complete service of the interrupt. 

Interrupt table shadowing is used to detect when DOS applications hook hardware 
interrupts. The OS/2 protected-mode interrupt manager detects changes to the interrupt 
vector table made by DOS applications when the system switches from real mode to 
protected mode. If the hooks placed into the interrupt vector table are not in conflict 



10.3 80286 DOS Compatibility 289 

with devices owned by protected-mode applications and device drivers, the interrupt 
manager restores the state of the interrupt vector table when the processor switches back 
to real mode. If there are any conflicts, however, the DOS application is not allowed to 
hook the interrupt when the system switches back to real mode. 

10.3.3 Tiled Memory 

Another mechanism used for optimizing access to memory objects used by bimodal 
code is tiled memory. Tiling lets bimodal code execute correctly regardless of the pro­
cessor mode. It allows the same virtual address to access the same physical memory 
regardless of whether the processor is in real mode or protected mode. This is done by 
reserving specific selectors, and setting the base address within the descriptors to be the 
selector* 16. For example, the ROM BIOS data area is mapped into the physical memory 
of a personal computer at 400H. Therefore, the real-mode virtual address of physical 
memory 400H is 40:0. Tiling the ROM BIOS data area results in virtual address 40:0 
accessing physical address 400H in protected mode also. Tiling achieves this result by 
allocating the GDT descriptor referenced by selector 40, and setting the base address in 
the descriptor to physical address 400H. Thus, subsequent uses of the address 40:0 in 
real mode and protected mode cause physical address 400H to be accessed. Figure 10.2 
illustrates tiling. 

Tiled memory objects and the bimodal code that accesses them are in low physical 
memory. Tiled objects include the following: 

Protected mode J H 1 Selector/segment value 
ode 

Descriptor 
table ---------------

Segment 
(64KB) 

Seg*16 
Sel*16 --------------

Physical memory 

Fig. 10.2 16-bit memory tiling. 



290 Compatibility 

Low kernel code and data segments 

ROM BIOS data area 

Device driver request packets 

The device driver code and data segments that exist in low memory are not tiled. 
The kernel sets the segment registers to the correct values for the current mode before 
the strategy and interrupt entry points are called. 

10.3.4 Analysis 

The successful coexistence of the DOS application with the protected-mode applications 
of OS/2 is a significant achievement on the 80286 architecture. Incorporating compati­
bility for an unprotected system such as DOS within a protected system is difficult, 
especially since the 80286 was never intended to support protection. 

Due to the 80286 architecture, DOS compatibility is limited. The system cannot pro­
tect itself from ill-behaved DOS applications, since there is no protection from real mode. 
Only a single DOS application can run in the foreground, and some DOS communications 
applications do not run in the compatibility environment since they do not get interrupts in 
the background. There is no XMS, EMS, VCPI, or DPMI support, since these all conflict 
with the management of memory above 1 MB by the protected-mode OS/2 kernel. 

10.4 80386 DOS COMPATIBILITY 

The 80386 provides features that overcome the DOS compatibility limitations of the 
80286 architecture. The 80386 incorporates virtual 8086 (v86) mode to allow 8086-
based systems and applications to run in a protected environment. Running in virtual 
8086 mode is equivalent to running in protected mode with real-mode instruction and 
addressing semantics at privilege level 3. Therefore, v86 mode enables a DOS environ­
ment to be encapsulated, and thus to coexist with a protected-mode system and applica­
tions without the problems of mode switching and system integrity. Applications 
running in v86 mode cannot directly access supervisor functions or perform 1/0 without 
causing general protection faults. These general protection faults are then serviced by 
the protected-mode operating system. Memory-mapped and 1/0 mapped device 1/0 can 
be trapped by the underlying protected-mode operating system, and can be emulated. 

Software and hardware interrupts in v86 mode cause the 80386 to switch to protect­
ed mode. Therefore, the system never uses real mode. The address space accessible 
when the processor is running in v86 mode corresponds exactly to that of an 8086 with 
the same real-mode semantics for processing the values placed in segment registers. The 
v86 mode feature provides fast switches between protected mode and virtual 8086 
mode. 

The paging feature of the 80386 processor allows multiple virtual 8086 address 
spaces to coexist. Each virtual 8086 mode task can be allocated its own linear address 
space by allocation of one page table per v86 task. Paging also enables the emulation of 
EMS and XMS. Thus, the 80386 supports true DOS multitasking without the use of real 



10.4 80386 DOS Compatibility 291 

mode. A protected operating system such as OS/2 can provide DOS multitasker func­
tionality without compromising its system integrity. 

Each v86-mode task effectively has its own virtual PC. It has its own v86 virtual 
address space and virtual devices, and it performs virtual I/0. Whether DOS applica­
tions running in v86 mode receives real or virtual interrupts is a policy decision, made 
by the protected-mode operating system that provides the compatibility. Real interrupts 
are delivered when the interrupt occurs, whereas virtual interrupts are delayed until the 
intended v86 mode task is the current running task. If v86-mode tasks are given only 
virtual interrupts, then they can also be paged. If they are given real interrupts, however, 
they cannot be paged, since the interrupt handler may be paged out. It is too complex 
and slow to have the system block to bring in pages for a DOS application's interrupt 
handler at interrupt time. Furthermore, if real interrupts are delivered to a v86-mode 
task, the v86-mode task can breach the integrity of the system. 

There are two approaches to DOS compatibility on the 80386 utilizing v86 mode. 
The first is running DOS in a v86-mode task. DOS is loaded into a v86-mode address 
space, and provides all DOS services for the DOS application running in the v86-mode 
task. The host operating system provides emulation services to provide a virtual PC en­
vironment in which DOS and its applications can run. The v86-mode task emulates de­
vice level hardware 1/0 and BIOS-level I/O services. This approach allows for absolute 
DOS compatibility. However, it does not allow the host operating system to control 
polling in the DOS kernel, resulting in wasted processor cycles. Also, the memory taken 
up by the DOS kernel uses memory in the v86-mode address space that could be used by 
DOS applications. This approach also makes file sharing with the host operating system 
difficult, since direct hardware and BIOS I/O to the block devices that contain the files 
must be intercepted and routed through the network redirector interface. 

The second approach to providing DOS compatibility on an 80386 using v86 mode 
is to emulate DOS in a v86 task. All DOS application interfaces are emulated using the 
host operating system, and virtual hardware and BIOS support are provided for each 
v86-mode task. This approach allows the host operating system to control the DOS envi­
ronment completely. It allows the system to reduce polling and wasted processor cycles 
caused by the DOS kernel and its applications. More memory is available for DOS ap­
plications, since the DOS kernel is not mapped within the v86-mode address space. 
Since DOS I/0 requests are serviced by direct DOS emulation, instead of via trapping of 
BIOS and hardware 1/0 requests generated by the DOS kernel, this approach achieves 
better performance than does the alternative of running DOS. This performance advan­
tage is due to a reduction in the number of traps between v86 mode and protected mode. 
However, the system must be revised when the contents of the DOS system changes. 

10.4.1 Multiple Virtual DOS Machines 

OS/2 2.0 uses multiple virtual DOS machine (MVDM) technology on the 80386 to provide 
DOS compatibility. Each DOS application runs in a virtual DOS machine (VDM) in v86 
mode. A VDM is a v86-mode variant of an OS/2 single-thread process. Each VDM exe­
cutes a DOS application and emulates the functions of DOS in a virtual PC environment. 



292 Compatibility 

VDMs run within their own sessions, and can be multitasked with OS/2 protected-mode 
programs. DOS text and graphics applications can run in either full screen sessions or 
windowed sessions using a standard PM window. MVDM architecture uses the DOS emu­
lation approach, and is compatible with DOS 5.0. However, since the PC hardware and 
BIOS emulation is so complete, MVDM technology also has the capability of booting the 
actual DOS operating system into a DOS environment. This facility gives users the capa­
bility of running DOS applications that are DOS version specific. 

The MVDM architecture provides a protected execution environment for DOS appli­
cations, to prevent ill-behaved DOS applications from disrupting the system. The paging 
feature of the 80386 is used to emulate EMS and XMS, and DOS applications are paged 
with OS/2 applications. Since the DOS emulation approach is used for DOS compatibility, 
a large amount of application memory is available to DOS applications. Also, the emula­
tion layers provide compatibility for DOS communications and NetBIOS applications. 

The MVDM architecture is layered, allowing the virtual DOS environment to be 
custom-tailored and extended. It also does not allow DOS applications to access the 
block devices directly, since these devices are managed by the OS/2 file systems. 
However, DOS applications benefit from the OS/2 installable file system environment, 
and can access and share files on both FAT and HPFS logical drives. 

The MVDM kernel extends the existing OS/2 kernel to support virtual DOS machines. 
It runs entirely in protected mode, and uses the dispatcher's EnterKMode!ExitKMode ser­
vices for dispatching VDMs in the same fashion as regular OS/2 processes. Figure 10.3 
illustrates the MVDM architecture. 

As Fig. 10.3 shows, the MVDM kernel consists of the following major components: 
VDM management, DOS emulation, 8086 emulation, and virtual device drivers (VDDs). 
VDM management is responsible for creating and terminating VDMs. It manages sys­
tem resources for all VDMs and provides virtual device helper (VD Help) services for 
virtual device drivers. 

The DOS emulation component emulates the function of DOS on a per-VDM basis. 
Each VDM effectively has its own DOS and virtual PC. DOS services either are pro­
vided directly by the stub virtual DOS kernel loaded into each VDM, or are routed to the 
OS/2 protected-mode kernel. The DOS emulation component also provides compatibili­
ty for undocumented DOS interfaces. 

The 8086 emulation component is responsible for 8086 instruction decoding. It con­
trols the per-VDM I!O permission map (/OPM) that is used for specifying the I/O ports 
a VDM can access. The per-VDM IOPM structure is defined by the 80386, and is 
mapped into the system TSS when a VDM is being executed. The 8086 emulation com­
ponent provides routing services for traps caused by software interrupts and virtual I/0 
device accesses, to allow the latter to be emulated correctly. 

VDDs are used to emulate DOS devices at the hardware and BIOS level on a per­
VDM basis. They use VDHelp functions to obtain services from the system. VDDs use 
protected-mode physical device drivers (PDDs) to access the hardware. VDDs simulate 
virtual hardware interrupts at task time into VDMs, instead of allowing VDMs to get 
hardware interrupts at interrupt time. 



10.4 80386 DOS Compatibility 293 

DOS application 

: v86-mode trap 

MVDM kernel OS/2 kernel 
---------- ------ - - - - - ... 

[ DOS 1 : i Installable J emulation J ' \1.' file system 
~ 

l l Trap J management 

J Memory/taskl 

r 8086 Virtual DOS machine J -"\management 
emulation (VDM) manager 
~ 

J Hardware j 
[Virtual device helpers] 

linterrupt manager 

j i 

~ 

Virtual J 
interrupt manager 

~ I I 
l L -1 Physical device driversJ Virtual device drivers [ 

J ....... 

+ 
Hardware 

Fig. 10.3 MVDM architecture. (Adapted from OS/2 Notebook, Copyright 1990, 
Microsoft Corporation. Reprinted by permission of Microsoft Press.) 

10.4.2 VDM Management 

The VDM manager is responsible for the creation, termination, and control of virtual 
DOS machines. It loads and initializes virtual device drivers, provides VDHelp functions 
for virtual device drivers, and accesses system resources for VDMs. The VDM manager 
provides a compatible DOS environment that supports a standard hardware configura­
tion. It utilizes the installable, customizable virtual device driver layer to perform the 
virtual I/0 and BIOS services for the VDMs. VDM management also calls the virtual 
device driver VDM-creation entry points when VDMs are created. 



294 Compatibility 

VDM creation supports per-VDM configurations. For example, each VDM can 
have its own CONFIG.SYS that describes how it should be configured. When a VDM is 
created, the VDM manager calls the OS/2 kernel to create a process and the associated 
structures, such as a PTDA, TCB, and TSD. It then calls memory management to create 
an arena for the VDM, and creates an I/0 permission map for the VDM. The 8086 
emulation component is initialized for the VDM, and all the VDD per-VDM initializa­
tion entry points are called. The last part of VDM creation is to call DOS emulation to 
initialize the DOS device drivers and the DOS arena, and to load the COMMAND.COM 
shell or whatever program the user specifies through the configuration. 

VDM termination occurs when a DOS application running in a VDM terminates, or 
when the VDM is terminated by the user through interaction with the desktop manager. 
When a VDM terminates, the VDD per-VDM termination handlers are called so that 
they can clean up their per-VDM data structures. The VDM manager then calls normal 
process cleanup routines in the OS/2 kernel for reclaiming resources used by the VDM, 
such as files. VDMs are also terminated by the MVDM kernel when invalid operations 
occur in a VDM. 

The session manager notifies the VDM manager when screen switches occur. The 
VDM manager notifies the mouse, keyboard, and video VDDs to allow them to reset 
their virtual-to-real device mappings. When a VDM is switched, the VDM manager is 
also responsible for changing the IOPM for the process. The OS/2 memory manager ed­
its the page directory to context switch VDM address spaces. 

The VDM process address space, or v86 address space, is similar to a regular flat 
model 32-bit program that has a special 4MB private arena. When a VDM runs in user 
mode, it is in v86 mode. Each VDM has 4MB of linear address space that are mapped 
by a single page table. This 4MB linear address space for each VDM is reserved in the 
system arena. The current VDM is mapped at linear addresses 0 to 4MB by editing of 
the page table entry for that range of addresses into the page directory. Page 0 of each 
VDM contains the interrupt vector table, ROM BIOS data area, DOS communications 
area, and the virtual DOS kernel stub. Figure 10.4 illustrates the VDM process address 
space. 

The A20 wrap area in Fig. 10.4 is used to emulate the behavior of real-mode appli­
cations accessing addresses between lMB and lMB + 64KB. On an 8086, it is possible 
to generate physical addresses between lMB and lMB + 64KB using real-mode virtual 
addresses (e.g., FFFFH:FFFFH). However, since an 8086 has only 20 bits of address 
lines, some of these addresses wrap into the first 64KB of physical memory. In a VDM, 
the wrapping of these addresses is emulated by the page table entries for the range be­
tween lMB and lMB + 64KB being set to be the same as the page table entries for the 
first 64KB of the VDM. 

The memory between the top of the A20 wrap area and 4MB is the per-VDM mem­
ory area. It is used for per-VDM data allocated by the VDM kernel, and also for per­
VDM instance data allocated by the VDDs. It is not accessible to applications running in 
v86 mode, since it is out of the v86-mode address space. This memory is used for main­
taining the virtual video buffer, and for emulating expanded memory. 



10.4 

4GB 

512MB 

4MB 

1MB + 64KB 

1MB 

640KB 

4KB 

0 

OS/2 kernel 
MVDM kernel 

Virtual device drivers 

Per-VDM DPMI memory 

Per-VDM data 

A20 wrap area 

ROM BIOS and 
memory-mapped 1/0 devices 

DOS application memory 

Command.COM 

DOS device drivers 
VDD assigned memory 

Virtual DOS kernel stub 

DOS communications area 

ROM BIOS data area 
Interrupt-vector table 

Fig. 10. 4 Virtual DOS machine memory layout. 

80386 DOS Compatibility 

Accessible in 
protected mode 

Virtual 8086 mode 
process virtual 
address space 

295 

VDM events are used by VDDs to sequence and control the execution of VDMs. 
There are two kinds of events: global events and local events. Global events are called 
the next time any OS/2 process runs. Local events are called when a specific VDM is 
dispatched. The events are implemented in a manner similar to the force flags described 
in Chapter 5 for regular OS/2 processes. The VDM kernel and VDDs run in kernel 
mode, except when receiving hardware interrupts from physical device drivers. When 
they need to set local and global event handlers, they call VDHelp interfaces in the 
MVDM kernel to register the event handlers. The ExitKMode routine of the dispatcher 
detects the presence of registered event handlers and processes them before dispatching 
to user (v86) mode. Event handlers are commonly used by VDDs to simulate interrupts 
into VDMs at task time. 

10.4.3 8086 Emulation 

The 8086 emulation component manages communication between the VDM 8086 in­
struction stream and the virtual device drivers. It controls the execution flow of VD Ms 
with respect to 1/0-sensitive instructions, and provides routing of software interrupts and 
1/0 instruction traps to VDDs. All exceptions, traps, and faults caused in v86 mode are 
routed to the 8086 emulation component by the OS/2 kernel trap manager. The 8086 



296 Compatibility 

emulation component enables virtual device drivers to emulate BIOS-level and hard­
ware-level 1/0 in a VDM. 

IOPL is the minimum privilege level needed to use 1/0-sensitive instructions in pro­
tected mode. It was discussed in Chapter 2 with respect to the protected-mode architec­
ture of Intel's 80X86 processors. 1/0-sensitive instructions, or IOPL-sensitive 
instructions, are those that can alter the state of the interrupt flag: IN, OUT, CLI, STI, 
POPF, PUSHF, INT, and IRET. If the current privilege level is numerically greater than 
the IOPL, a general protection fault occurs when 1/0-sensitive instructions are executed. 
IOPL for OS/2 applications is set at privilege level 2. The privilege level for an applica­
tion running in v86 mode is 3. IN and OUT instructions are not I/0 sensitive in v86 
mode since the IOPM in the TSS is used to manage access to I/0 ports in v86 mode. 

The IOPL policy for v86 mode has several ramifications on the design of DOS 
compatibility. If IOPL is set less than 3, 1/0-sensitive instructions cause general protec­
tion faults. Therefore, with IOPL less than 3, 1/0-sensitive instructions must be emu­
lated, and the interrupt flag must be virtualized on a per-VDM basis. However, large 
numbers of 1/0-sensitive instructions in BASIC programs can cause an excessive 
amount of trapping for providing emulation. Trapping from v86 mode to protected mode 
at ring 0 is expensive compared to most operations. It is most comparable to a kernel 
system call for protected-mode OS/2 applications. If IOPL is set to 3, 1/0-sensitive in­
structions work without trapping when executed in v86 mode. However, this allows 
DOS applications to access the real interrupt flag of the system. If a DOS application 
disables interrupts and goes into a spin loop, it could potentially hang the entire system 
unless preventative measures are enforced. 

MVDM uses IOPL set to 3 to provide the best performance possible. This setting 
reduces the trapping overhead, but lets VDMs disable interrupts, a potential integrity 
problem for the whole system. To make sure that a DOS application does not disable in­
terrupts and go into a spin loop and hang the system, OS/2 uses a watchdog timer. A 
watchdog timer is set with a duration interval; as long as the timer is primed before that 
interval expires, the timer does not interrupt. If the watchdog timer interrupts, the system 
terminates the DOS application. Therefore, setting IOPL to 3 allows the system to 
achieve maximum performance, and using the watchdog timer prevents DOS applica­
tions from taking down the system or disrupting protected-mode applications. 

IOPL is set to 0 for a single VDM only when that VDM needs to have the interrupt 
flag virtualized. For example, when some VDD needs to simulate a hardware interrupt 
into a VDM, it must be able to detect when the VDM can be interrupted. Therefore, 
IOPL is decreased to less than 3, so that the interrupt flag can be virtualized for a VDM, 
and the system can detect when the interrupts are enabled in that VDM. IOPL is in­
creased back to 3 when the simulated interrupt is delivered to the VDM. 

The software interrupt instructions, INT, INTO, and INT 3, need special handling 
since the interrupt vector table is never used by the 80386 while executing in v86 mode. 
All software and hardware interrupts cause the 80386 to switch to protected mode when 
it is in v86 mode. Therefore, the 8086 emulation component provides a function called 
software interrupt reflection to route these interrupts to VDMs as appropriate. 



10.4 80386 DOS Compatibility 297 

If IOPL is less than 3, the software interrupt instructions cause general protection 
faults, and are routed to the 8086 emulation component through the general-protection­
fault handler. If IOPL is set to 3, the software interrupt instructions cause control to vec­
tor through the IDT. If the gate descriptor for an interrupt in the IDT has privilege level 
3, control is passed to 8086 emulation from the interrupt handler at privilege level 0. If 
the gate descriptor's privilege level is less than 3, a general protection fault occurs, and 
the interrupt is routed to 8086 emulation through the fault handler. 

Software interrupt reflection occurs as follows. A software interrupt causes the 
80386 to enter protected mode at privilege level 0. When the system detects that the 
software interrupt occurred in v86 mode, either through the general-protection-fault han­
dler or through an interrupt handler mapped by the IDT, control is transferred to the 
8086 emulation component. The INTO and INT 3 software interrupts are routed to the 
8086 emulation component through the IDT by setting the descriptors for their interrupts 
to privilege level 3. If either of these instructions occurs while IOPL is less than 3, it is 
routed to the 8086 emulation component through the general-protection-fault handler. 
All other software interrupts are always routed to 8086 emulation through the general­
protection-fault handler. 

Once control comes to the 8086 emulation component, the MVDM kernel enters 
kernel mode. The 8086 emulation component then decodes the instruction causing the 
control transfer, and determines the type of the interrupt. It locates the destination of the 
interrupt by scanning the interrupt vector table in the VDM's memory. It builds a simu­
lated interrupt stack frame on the v86-mode stack, and calls ExitKMode to dispatch the 
VDM. When the VDM runs, it begins running in the interrupt handler, with the IRET 
frame on the stack looking like an interrupt occurred. 

There are two ways that a VDD can hook a software interrupt. In some cases, the 
VDD wants to get control before the interrupt is reflected in the VDM. In this case, a 
prerej?ection hook is used. In other cases, the VDD wants to allow any interrupt han­
dlers installed by DOS applications to be able to handle the interrupt before the VDD. In 
this case, the VDD uses a postrejlection hook. The VDD sets a postreflection hook by 
placing a breakpoint in the return address portion of the IRET stack frame on the v86-
mode stack. When the interrupt handler in the DOS application executes the IRET in­
struction to complete interrupt service, it causes a fault, and control ultimately vectors to 
the VDD that placed the hook. 

VDM breakpoints are used by the 8086 emulation component to control execution 
flow when in v86 mode. The ARPL instruction is inserted into the VDM's interrupt vector 
table and interrupt stack frames when VDM breakpoints are set. Execution of the ARPL 
instruction in v86 mode causes a general protection fault, and the system ultimately vec­
tors to the 8086 emulation component. VDM breakpoints are used to transition from v86 
mode in a VDM to the MVDM kernel running in kernel mode. VDM breakpoints are not 
like events. Events occur in the dispatch cycle from protected mode to v86 mode. 
Breakpoints occur in v86 mode, and return control to the protected-mode MVDM kernel. 

Protected instructions, such as LGDT and LLDT, are reflected back to the VDM 
that originated them as invalid opcode exceptions. The same policy is used for invalid 



298 Compatibility 

v86-mode and real-mode instructions. Other valid exceptions and traps generated by a 
VDM are routed through the IDT and then reflected to the VDM. 

10.4.4 Virtual Device Drivers 

Virtual device drivers virtualize hardware and ROM BIOS services on a per-VDM basis. 
They provide support for the direct manipulation of memory-mapped I/0 devices, and 
the direct programming of I/O ports. They also emulate ROM BIOS software interrupt 
services, and support the direct manipulation of the ROM BIOS data area by DOS 
applications. VDDs provide these services by intercepting hardware and software inter­
rupts, and maintaining a virtual hardware state for each VDM. VDDs use VDHelp ser­
vices to hook BIOS interrupts, to trap I/O port and memory-mapped I/0 device accesses, 
and to access system services. 

VDDs are trusted modules that execute in protected mode at ring 0. They are flat 
0:32 modules, usually written in a high-level language such as C. VDDs use the 32-bit 
executable format that is designed for OS/2 2.0. They are distinguished from EXEs and 
DLLs by a special bit in the executable header, and are loaded when the system is start­
ed. Each VDD contains a code object, a data object, and an instance data object. The 
code and data are shared across all VDM contexts and are mapped into the system arena. 
The instance data object is used for per-VDM memory, and is mapped at the same 
address in each VDM. VDDs are protected from DOS applications running in a VDM 
since they are not mapped into the v86-mode-accessible portion of the VDM address 
space. VDDs are responsible for preventing VDMs from corrupting one another and the 
system. The memory used by VDDs can be swappable or fixed, and private (per VDM) 
or shared (global). 

The architecture of existing OS/2 device drivers changes because of the VDD archi­
tecture. Device drivers, as they were known in the 16-bit version of OS/2, no longer 
need to be bimodal since the system never executes in real mode. Therefore, they are 
called in only protected mode on OS/2 2.0. Also, the BIOS and DOS interrupt support 
necessary in existing 16-bit device drivers is no longer needed since this support is pro­
vided by VDDs. Furthermore, the tiling of objects, allowing them to be accessed in real 
mode and protected mode using the same virtual address, is not required. Therefore, 
existing 16-bit device drivers have a modified architecture called physical device drivers 
(PDDs). PDDs provide support for protected-mode applications, and also provide ser­
vices for VDDs using a private VDD-PDD interface. Because PDDs are used for actual 
I/O, VDDs remain independent of the physical hardware underlying the virtual DOS 
implementation. Figure 10.5 illustrates the VDD-PDD model. 

The VDD has several simple interfaces. The VDD initialization routine is called 
when the VDD is loaded as the system is started. There is a per-VDM initialization rou­
tine called by the VDM manager when a VDM is created by a user. The per-VDM ini­
tialization routine usually initializes the virtual device and the virtual ROM BIOS state; 
hooks any necessary software interrupts, I/O ports, or memory-mapped addresses; and 
allocates per-VDM memory. When a VDD is called by a PDD at interrupt time, it is 
executing in interrupt mode on the interrupt stack of the system. However, VDDs do not 



10.4 80386 DOS Compatibility 299 

Virtual device driver Physical device driver 

VDM event 
Strategy routine 

Initialization IOCtl 
handler open/close read/write 

Virtual 1/0 Timer 
trap handler 

handler 
PDD VDD 

interface interface 
..... 

Software- ....- Hardware-
interrupt interrupt 
handler handler 

O : 32 Protected-Mode Code 16: 16 Protected-Mode Code 

Fig. 10.5 32-bit model for physical and virtual device drivers. (Adapted from OS/2 
Notebook, Copyright 1990, Microsoft Corporation. Reprinted by permission of 
Microsoft Press.) 

process interrupts in interrupt mode; rather, they defer processing of interrupts until task 
time. The trap and event handlers of a VDD are called in kernel mode running on the 
thread stack for that VDM. 

10.4.5 Virtual Interrupt Management 

The virtual interrupt management services component is responsible for simulating 
hardware interrupts into VDMs. It performs services similar to software interrupt reflec­
tion, but the routing and source of the interrupts is external to the VDM. Each VDM is 
provided with a virtual programmable interrupt controller (VPIC) device by the VPIC 
VDD. As stated previously, VDMs receive hardware interrupts not at interrupt time, but 
rather at task time. Hardware interrupts are routed to a VDD from a PDD when they are 
received in interrupt mode. Typically, the VDD calls VDHelp to set a global event han­
dler so that the VDD can process the interrupt at task time, and then returns to the PDD 
to finish regular interrupt processing. The next time a process attempts to exit kernel 
mode, the global event handler set by the VDD is called. The VDD then calls VPIC ser­
vices through VDHelp to simulate a hardware interrupt into the VDM for which the in­
terrupt was targeted, using a local event handler. 

The local event causes the VPIC to get control before the VDM is dispatched. If in­
terrupts are disabled in the target VDM, VPIC virtualizes the interrupt flag to determine 
when the VDM can receive the simulated interrupt. In this case, the VPIC sets IOPL to 0 
and dispatches the VDM. When the interrupts are finally enabled in the VDM, a trap 
occurs because IOPL is less than 3 (IOPL-sensitive instructions are being emulated). 
VPIC receives control, restores IOPL to 3, and then simulates the interrupt into the 



300 Compatibility 

VDM using a mechanism similar to software interrupt reflection. An IRET stack frame 
is built to simulate an interrupt on the v86 mode stack. VPIC then exits the kernel, caus­
ing a dispatch cycle to occur. The next time the VDM runs, it executes the interrupt rou­
tine. When the VDM runs its interrupt routine, the V86 mode stack has an IRET frame 
pointing to the interrupted instruction, and the VDM's VPIC device and interrupting vir­
tual device look like they have just been interrupted. 

10.4.6 Virtual DevHelp (VDHelp) Services 

The services of the virtual device helper (VD Help) are used by VDDs to gain access to 
the MVDM kernel and other OS/2 system services. Unlike the 16-bit DevHelp and 
FSHelp interfaces, VDHelp is dynamically linked using the 32-bit dynamic linking 
model. VDHelp is accessed using stack-based parameter passing just like 32-bit APls. It 
provides functions that allow VDDs to register for the following: 

Software and hardware interrupts 

Specific 1/0 traps 

Page faults to memory-mapped 1/0 devices 

Memory management 

PDD-VDD communication 

VDM state control 

VDM event and breakpoint management 

Virtual interrupt management 

VDDs can use VDHelp to hook page faults to memory-mapped 1/0 devices. They 
do so by calling the memory manager, so that, when a page fault occurs on certain virtu­
al addresses in a v86 mode address space, control is routed to the VDD emulating the 
memory-mapped device. Memory can be allocated in either a global or a per-VDM 
instance context, and aliasing and mapping services are available to allow EMS emula­
tion. Also, there are page management features to enable the virtual-video device driver 
to perform lazy page copying of the video buffer data during VDM context switching. 

10.5 OS/2 2.X WINDOWS 3.X COMPATIBILITY 

The 32-bit version of OS/2 provides binary compatibility for Windows 3.X real-, and 
standard-mode applications. The compatibility is not implemented with a compatibility 
layer that maps Windows 3.X application requests into OS/2 PM requests; instead, a 
special VDM is provided that emulates a DPMI server. Loaded into the VDM is a spe­
cial version of the Windows 3.X kernel that directly services the requests of Windows 
3.X applications running in the VDM. Unlike in Windows 3.X, ill-behaved or defective 
Windows 3.X applications cannot disrupt the entire system, since the Windows environ­
ment is encapsulated. OS/2 2.X provides an environment with better protection, memory 
management, and integration for Windows 3.X applications. 



10.8 Memory Model Coexistence 301 

10.6 OS/2 2.X 16-BIT COMPATIBILITY 

The 32-bit OS/2 system can run 16-bit OS/2 EXEs and DLLs. It provides support for the 
entire 16-bit API, including support for loading 16-bit EXEs and DLLs and any as­
sociated file formats that the API supports. This support is needed to encourage the mi­
gration of users running 16-bit OS/2 on 80386-based computers to the 32-bit OS/2 
platform. Also, since OS/2 is such a large system, it is impossible to convert the entire 
system to a 32-bit system in the first release. Therefore, the system is a hybrid of 16-bit 
and 32-bit code internally. Such a hybrid system requires that 16-bit and 32-bit code 
coexist. The system also provides support for calling 16-bit APis from 32-bit modules. 
This support is needed since all user-supplied DLLs may not be available in 32-bit for­
mat when the product is initially shipped. 

10.7 HYBRID SYSTEM STRATEGIES 

There are basically three methods that allow a 32-bit API and a 16-bit API to coexist. 
The first alternative is to have separate 16-bit and 32-bit subsystems. This alternative is 
difficult to implement because usually some kind of interlock is needed between the 16-
bit and 32-bit functions, since they perform similar actions and manipulate the same re­
sources. The second approach is to use a 16-bit system that provides a 32-bit API by 
mapping the 32-bit API onto a 16-bit APL The third approach is to use a 32-bit system 
that provides 16-bit compatibility by mapping the 16-bit API onto a 32-bit APL Figure 
10.6 illustrates two of these coexistence strategies. 

OS/2 2.0 uses all three alternatives. The kernel is mostly 32 bit, with 16-bit inter­
faces for compatibility with 16-bit functions. Much of the Presentation Manager and 
utility programs are 16-bit. Therefore, most of the 32-bit PM API is mapped onto the 
16-bit APL The intermediate code that provides this mapping functionality is called a 
thunk. Thunks make the transition between 16-bit and 32-bit code, and can map one API 
function onto another transparently. There are two types of thunks: 16-to-32 and 32-to-
16. The 16-to-32 thunks are used to provide compatibility for a 16-bit API function by 
mapping it to a new 32-bit API function. The 32-to-16 thunks are used to implement 32-
bit API functions using existing 16-bit API functions. Thunks minimize the impact on 
the system of providing compatibility. Thunks require coexistence of 16-bit and 32-bit 
memory objects within a single process virtual address space that is used by both 16-bit 
and 32-bit code. Thunks are discussed in more detail in Section 10.10. 

10.8 MEMORY MODEL COEXISTENCE 

The differences in the flat and segmented programming environments of the 32-bit and 16-
bit systems are summarized in Table 10.1. OS/2 provides a hybrid of the flat and segment­
ed memory models that is used as a foundation for the coexistence of 16-bit and 32-bit 
code. Each process is given its own 512MB linear address space. Each process also has an 
LDT to map the 512MB process virtual address space whether the process was created 



302 Compatibility 

32----•16 16----•32 

16-bit EXE 32-bit EXE 32-bit EXE 16-bit EXE 
or DLL or DLL or DLL or DLL 

32-bit 16-bit API 
ts reques 

API 
ts reques 

it API 16-b 
req uests 

32-bit API 

32-bit th u n ks 

16-bit 

itAPI 32-b 
req uests 

t' 

16-bit API 

16-bit thunks 

32-bit API 
ts reques 

API 
ts t' reques 

16-bit API 32-bit API 

16-bit code 32-bit code 

Fig. 10.6 Coexistence strategies for 16-bit and 32- bit API. 

Function 16-bit segmented model 32-bit flat model 

Process virtual LDT per process Linear address space 
address space per process 

Code segment D-bit off for 16-bit D-bit on for 32-bit 
descriptor( s) registers and operands registers and operands 

Data/Stack segment B-bit off for 16-bit stack B-bit on for 32-bit 
descriptor( s) pointer in stack operations stack pointer in stack 

operations 

Virtual addresses 16: 16 selector:offset 0: 32 linear address 
Memory objects Byte-granular segments Page-granular range of 

up to 64KB linear pages 

Dynamic linking Far call model Near call model 
API parameters 16-bit WORD 32-bit DWORD 
API parameter and WORD alignment DWORD alignment 
structure alignment 

Table 10.1 Segmented- and flat-model programming environments. 



10.9 LDT Tiling 303 

using the 16-bit or 32-bit version of DosExecPgm, and whether or not a 16-bit or 32-bit 
EXE module was loaded. When a process runs 32-bit code, it executes using the flat­
model address space. When a process is running 16-bit code, it executes using LDT selec­
tors that map the flat address space. Therefore, memory objects in this hybrid model can 
coexist in one process virtual address space, and are addressable by both 16-bit and 32-bit 
code. It is important to realize that processes and threads are not 16 bit or 32 bit; they 
merely execute 16-bit or 32-bit code at any instance. All memory objects, including 16-bit 
segments in the hybrid model, take advantage of paging instead of swapping. 

There is also a difference in the granularity of memory objects and memory protec­
tion between the two memory models. The 80386 allows 16-bit segments to be packed 
on a page, since 16-bit programs access memory through the LDT. Accessing memory 
through the LDT results in byte-granular memory access with limit protection. However, 
32-bit code accesses memory one page at a time, since the flat model is page granular. 
Therefore, if 16-bit segments are packed on partial pages in OS/2 2.0, 32-bit code can 
access all the segments packed on a single page. This problem is a significant one in 
shared objects. Therefore, small segments use an entire linear and physical page. As a 
result, 16-bit modules with many small segments can fragment the linear address space 
and waste virtual and physical storage. This waste is due to the disparity of memory 
object granularity between the two memory models. Later in this chapter several strate­
gies for reducing this fragmentation are described. 

The 80386 converts addresses between 16: 16 and 0:32 by determining the descrip­
tor base address, and adding a 16-bit offset. It converts a 16: 16 address to a 0:32 address 
in software by examining the LDT and extracting the base address from the descriptor 
for the segment. Unless the LDT is mapped into the process address space, the kernel 
must be called to convert a 16: 16 address to a 0:32 address. However, the LDT can be 
mapped into the process virtual address space as read-only data, allowing the conversion 
to occur in user mode without a call to the kernel. 

The 80386 converts between 0:32 and 16: 16 addresses by having a descriptor map the 
correct region of linear address space. The base address in descriptors under OS/2 2.0 with 
paging enabled is a linear address. The 80386 converts a 0:32 address to a 16: 16 address in 
software by creating a segment alias to the specific region addressed. The kernel is 
required for creating and destroying aliases, since the LDT must be modified. 

This approach to converting between 16: 16 and 0:32 addresses in software emulates 
the method used by the 80386 when translating addresses. However, due to the overhead 
of calling the kernel to manage aliases in the latter case, an alternative scheme that pro­
vides fast address translation without the kernel is required to build a mapping layer that 
provides 16-bit compatibility with acceptable performance. 

10.9 LDT TILING 

LDT tiling is a technique invented by the OS/2 design team, and used to establish an arith­
metic relationship between 0:32 and 16: 16 virtual addresses. It is similar to the tiling used 
in the DOS compatibility support of the 16-bit system, but tiles two different types of 



304 Compatibility 

virtual addresses, instead of a 16:16 virtual address and a physical address. An LDT can 
contain 8192 descriptors, and each descriptor can map a maximum of 64KB per segment. 
Thus, an LDT can map 512MB of process virtual address space. This technique is the 
cause of the 512MB limitation on process virtual address spaces in OS/2 2.0. 

In a tiled LDT, the base linear address of every 16-bit segment is the selector index 
* 64KB. Each LDT selector is thus forced to map a specific 64KB portion of the 32-bit 
process virtual address space. Regions mapped by contiguous selectors are contiguous 
within the process virtual address space. Therefore, each tiled memory object has 16: 16 
and 0:32 addresses that are related by an arithmetic function. Memory objects are tiled 
when allocated-that is, when their virtual addresses are selected by the virtual memory 
manager. Figure 10. 7 illustrates the relationship between 16: 16 and 0:32 virtual ad­
dresses that results from LDT tiling. 

Tiled objects are allocated on 64KB linear boundaries within the process virtual ad­
dress space, and have related descriptors in the LDT that map each 64KB increment of 
each object. Each tiled object reserves 64KB of linear memory, since a 16-bit segment 
can be as large as 64KB. Also, 64KB of linear memory must be reserved for each tiled 
object, since any 16-bit segment can be reallocated up to its maximum 64KB size. 
Figure 10.8 illustrates a tiled virtual address space. 

In Fig. 10.8, three 16-bit segments are depicted: A, B, and C. Segment A is 100 
bytes. Therefore, 64KB is reserved for the tiled object, and a single page is committed. 
As Fig. 10.8 shows, part of the linear page on which segment A exists is wasted; that is, 
this partial page cannot be allocated as part of another memory object, and must be 
swapped with segment A, since OS/2 2.0 performs page swapping. Segment B is 5KB, 
and requires two committed pages to satisfy the allocation. Once again, the partial page 
not used by segment B is wasted. Segment C is a full 64KB and requires 16 pages of 
committed memory. 

LDT management in the 32-bit system is different from that in the 16-bit system as 
a result of the LDT tiling algorithm. Unlike the 16-bit system, in which private and 
shared selectors are interleaved within the LDT in a 3: 1 ratio, in the 32-bit system the 

Flat-model 
O: 32 process 
virtual address 

31 29 28 

Selector index 

32 --7 161 add RPL 
and Tl 

16: 16 process Selector index Tl RPL 

16 15 

Offset 

116 --7 32 
remove 
RPL and Tl 

Offset 

0 

Segmented-model I I I 
virtual address ~------~--~---~---------~ 

31 19 18 17 16 15 0 

Fig. 10.7 0:32 and 16:16 address conversion. 



10.9 LDT Tiling 305 

Process virtual 
address space 

LDT 

Base 
address Limit 

20000H 64K - 1 17 

10000H 5119 F 

o ~~~-~-~-~ 0 +-----~ __ o:__L _ _:_99 _ _J 7 

Fig. 10.8 LDT tiling. 

private selectors are allocated from the low end of the LDT, and the shared LDT are 
allocated from the high end. This allocation scheme is necessary because the LDT 
descriptor allocation strategy must parallel the allocation strategy of the flat process vir­
tual address space. This change in LDT management is transparent to 16-bit applica­
tions, since they do not rely on specific LDT selector values. 

Allocating the selectors from the top and bottom of the LDT is not feasible in the 
16-bit system since it requires every LDT to be 64KB. However, since the 32-bit envi­
ronment is paged, there is no penalty for this LDT management strategy. LDTs are 
sparse objects in the 32-bit system. Therefore, a minimal LDT uses 8KB-one page for 
the private descriptors at the bottom, and one page for the shared descriptors at the top. 

All user memory objects that need to be addressable by both 16-bit and 32-bit code 
are tiled memory objects. All 16-bit segment allocations, whether made at load time or 
at run time, are tiled. Any 32-bit memory objects that can potentially be passed to 16-bit 
routines need to be tiled. Since OS/2 2.0 is not all 32 bits internally, all 32-bit objects 
are tiled by default. This default setting is used because 32-bit applications cannot deter­
mine whether a 32-bit API is serviced by thunking to 16-bit code. Therefore, all 32-bit 
memory object allocations have a tile option to tell the system whether the object needs 
to be tiled. This facility allows forward compatibility with 32-bit OS/2 systems that sup­
port the use of memory above the 5 l 2MB limit currently enforced. For load-time al­
locations, there is a tile bit in the executable file header that tells the loader whether 
EXE or DLL objects need to be tiled. There is a tile flag available on the 32-bit memory 
management API calls that allows the program requesting memory at run time to indi­
cate whether or not objects need to be tiled. 

Support for a system that provides more than 512MB of process virtual address 
space and retains 16-bit compatibility requires that the entire system be 32-bits 



306 Compatibility 

internally. Only then can the system guarantee that 32-bit memory objects never will be 
passed to 16-bit code as a result of a 32-bit API being implemented using a 16-bit APL 
If an object is not tiled, it cannot be addressed by 16-bit code. Nontiled objects are not 
addressable through the LDT. Therefore, the system must be entirely 32-bit internally to 
extend the 512MB limit and thus to support nontiled objects. 

There is a slight difference between the way 16-bit and 32-bit memory allocations 
are made. This difference lies in how the limits are set inside the tiled descriptors. When 
a 16-bit segment is allocated, the descriptor that maps the segment has a limit that is 
byte granular. In other words, the descriptor limit is based on the size specified by the 
16-bit requestor. However, when a 32-bit application allocates a memory object that is 
tiled, the descriptor limit in the tiled descriptor is always page granular. This granularity 
is used because all 32-bit memory objects are page granular, and their size is always a 
multiple of the page size. 

There are several problems associated with the LDT tiling approach. Any 32-bit 
memory object larger than 64KB crosses 64KB linear boundaries. When an object that 
crosses a 64KB boundary is passed to 16-bit code, the 16-bit code cannot address the en­
tire object with a single selector. For compatibility to be maintained, the 16-bit code 
needs to be able to run without being changed. Therefore, the 32-to-16 thunks ensure 
that objects passed to 16-bit API functions are addressable. This mechanism is detailed 
in Section 10.10. Tiling also fails for 16-bit applications that use GDT selectors in 16-bit 
API calls. This situation is rare, since GDT selectors for user data can be provided only 
by device drivers using special private interfaces. There is no way for a 16-bit applica­
tion adhering to the 16-bit API to allocate a segment mapped by the GDT. Another 
problem with tiling is the fragmentation of the address space by 16-bit applications with 
many small segments, which wastes virtual and physical memory. The 80386 supports 
packing of segments on partial pages, but packing breaks the LDT tiling arithmetic algo­
rithm, and poses a threat to system integrity and protection. 

The system does provide an optimization to overcome fragmentation for private 16-
bit code segments by packing them into a special region of the tiled address space. Since 
code objects are read-only, they can be packed onto a single page without posing any 
protection problems. If all private packed objects for a process are isolated in the bottom 
of the linear address space, the address conversion algorithm does not suffer much 
degradation, and tiling still works for the rest of the address space. Figure 10.9 illus­
trates LDT tiling with private code packing. 

When a 16-bit EXE is loaded by a call to DosExecPgm, the executable code objects 
from the load module are packed into the low end of the private region. LDT selectors at 
the low end of the LDT are used to map packed objects. This area of the process virtual 
address space is not tiled. The thread information block has the linear address of the top 
of the packed area. The LDT tiling address conversion algorithm is modified to account 
for packed objects. When a 0:32 address is converted to a 16:16 address, if the address is 
in the packed region, the LDT is searched for a selector that maps the region. When a 
1~,;J6 address is converted to a 0:32 address, the base address from the descriptor is used 
to create 32-bit address. Both translations require a read-only alias to the LDT to be 



10.10 

Thread 
information 
block 

Packed boundry 

Tiled 
region 

..... ~ 
-..r-

Packed_ 
region 

~ 

192KB 

128KB 

64KB 

2KB 

0 

Process virtual 
address space 

Tiled segment C 

l 
i---Unused-

~ 
Code segment B 

Code segment A 

30000H 

20000H 

10000H 

SOOH 

0 

Fig. 10.9 LDT tiling with 16-bit private code packing. 

Thunks 307 

LDT 
Base 

address Limit 

20000H 64K-1 17 

SOOH 2K-1 F 

0 2K-1 7 

mapped into the process virtual address space to allow the conversions to run in user 
mode without calling the kernel. 

This approach saves physical and virtual memory, but degrades the performance of 
pointer conversion. The extra comparison to test whether a memory object is in the 
packed region is not significant, but searching the LDT when converting 0:32 to 16: 16 is 
relatively slow. However, this path is not executed unless a 32-bit API call is thunked to 
a 16-bit API call, and code pointers are used as parameters in the API call. This situation 
occurs rarely since code is usually not passed as a parameter in API requests. Processes 
that originate from 32-bit EXE modules have no packed area in their process virtual 
address space. 

10.10 THUNKS 

Thunks are the intermediate code mapping technology used to implement an API func­
tion of one model using an analogous API function in the other model. They are trans­
parent to requestors of the API function being mapped, and to the API function being 
used to map the request. Thunks also allow 32-bit applications to call 16-bit APis di­
rectly. Thunks that implement 32-bit API calls are not built into each 32-bit application, 
but rather are part of the system. Therefore, applications that use 32-bit API functions 
that are thunked to 16-bit API functions will benefit transparently from performance in­
creases as more of the system is converted to 32-bit in the future. Thunks depend on 
LDT tiling to provide an architecture for efficient address conversion between the two 
memory models. 

There are two types of thunks: 16-to-32 and 32-to-16. The 16-to-32 thunks are used 
to provide compatibility for a 16-bit API function by mapping it to a new 32-bit API 



308 Compatibility 

function. They are relatively straightforward to implement, since the 32-bit addressing 
model is more powerful than is the 16-bit model. The 32-to- l 6 thunks are used to imple­
ment 32-bit API functions using existing 16-bit API functions. The 32-to-16 thunks arc 
a bit more difficult to implement because 16-bit code has difficulty dealing with memo­
ry objects that span 64KB linear boundaries in the tiled environment. A 32-bit applica­
tion can create memory objects that span 64KB linear boundaries. Although it is valid to 
pass one of these objects to a 32-bit API function, the 32-to- l 6 thunk that implements 
the 32-bit API must deal with alignment issues, so that the 16-bit API being used to ser­
vice the 32-bit API can access the data properly. Both types of thunks exist in OS/2 2.0. 
The ensuing material about thunks is valid for both types of thunks, but the 32-to- l 6 
case is discussed in more detail. 

Thunks must deal with several differences between the 16-bit and 32-bit memory 
environments: 

Dynamic linking models 

Pointer-parameter conversion 

Stack management 

64KB restrictions on 16-bit applications 

The 32-bit dynamic linking model uses near calls, and the 16-bit dynamic linking 
model uses far calls. If a 32-bit application makes a near CALL to a 16-bit segment, a 
general protection fault usually occurs when the 16-bit code executes the RETF instruc­
tion to return to the 32-bit code. This fault occurs because the near CALL pushes EIP on 
the stack, and the 16-bit RETF interprets the return address as a 16: 16 CS:IP. If a 32-bit 
application directly executes a far CALL to a 16-bit segment, a 48-bit CS:EIP return ad­
dress is pushed on the stack, since the far CALL is made from a 32-bit segment. Since 
48 bits are pushed on the stack, instead of 16 bits, the parameters for the 16-bit code are 
shifted on the stack, thus breaking compatibility. Also, the RETF executed to return to 
the caller pops only 32 of the 48 bits off the stack. A 16-bit far call can be made from a 
32-bit code segment to a 16-bit code segment, but only from within the first 64KB of the 
32-bit segment, since the 16-bit code does not update the high-order word of EIP prop­
erly. Therefore, the thunks in OS/2 use a simulated indirect call to make the transition 
between 16-bit and 32-bit code. 

When a thunk needs to transition to the opposite model, it executes a far jump to a 
stub code segment of the target model. In the case of 32-bit code calling 16-bit code, the 
32-bit thunk executes a far JMP instruction to a 16-bit stub segment. The stub segment 
executes a far call to the 16-bit API function used to implement the 32-bit API function. 
The 16-bit API completes service, executes a RETF back to the 16-bit code stub, and the 
stub executes a far JMP back to the instruction following the original jump in the 32-bit 
code. This approach has no problems with 64KB boundaries, and is transparent to both 
the 32-bit API caller and the 16-bit API being called by the thunk. 

The parameter sizes for the 16-bit and 32-bit models are also different. The 16-bit 
system uses 16-bit word parameters; the 32-bit system uses 32-bit double words. Thunks 
must convert between 16-bit words and 32-bit double words by either zero-extending a 



10.10 Thunks 309 

16-bit word to a double word, or truncating a double word to a word. Structure parame­
ters also need to be converted by the thunk layer. Structures in the 32-bit model are 
aligned on double-word boundaries, instead of on word boundaries as in the 16-bit sys­
tem. Therefore, the structures that are passed input and output parameters to API func­
tions must be realigned and converted to match the model of the API being used to 
service the request. Furthermore, pointers imbedded in structures are also sensitive to a 
given calling model, and must be converted. Thunks convert the structures between the 
two models and understand the semantics of the parameters for each API that is being 
thunked. 

The stack addressing between the two models is also different. The 16-bit API runs 
using 16-bit-wide stacks that have 16-bit stack pointers. The 32-bit API runs using 32-
bit-wide stacks that have 32-bit stack pointers. Furthermore, 16-bit stacks cannot be 
larger than 64KB, whereas 32-bit stacks have no 64KB restriction on size. Thus, the 
thunk must construct the correct stack frames and convert between stacks when using 
one API call to implement another. 

Pointer conversion is managed using the LDT tiling mechanism described earlier in 
this chapter. However, the problem associated with LDT tiling is the inability of 16:16 
code to deal with objects that cross 64KB linear boundaries using a single selector. If a 
32-bit application passes a converted pointer to an object that crosses a 64KB linear 
boundary to 16-bit code, the 16-bit code usually generates a general protection fault 
when trying to access the entire object, or accesses the wrong data depending on the 
access semantics. Although LDT tiling has benefits in the areas of speed and symmetry, 
it does not deal gracefully with the problem of crossing 64KB boundaries. 

The 32-to- l 6 thunks in OS/2 implement several strategies, depending on the size of 
the memory object, for dealing with the 64KB boundary problem. Small objects-those 
smaller than 129 bytes-can be copied to an aligned temporary buffer on the stack with­
out much performance penalty. However, copying large objects that straddle 64KB lin­
ear boundaries is not a feasible option, since it would be too slow. For large objects, 
OS/2 thunks use a feature called linear address aliasing. Linear address aliasing takes 
the address of an object that spans a 64KB boundary, and the size of the object, and pro­
ceeds to create another linear address on a new 64KB boundary that maps the same 
physical memory. It asks the virtual memory manager to create an alias in the process's 
arena, and calls the page manager to copy the page table entries from the original object 
that straddles a 64KB linear boundary to the new object that does not. This process is 
effectively the same as allocating a tiled segment whose contents are defined by an 
object that crosses a 64KB boundary. The new linear address is 64KB aligned, and has 
an associated new tiled descriptor. However, since aliasing must be done by the kernel, 
it is relatively slow compared to the LDT tiling arithmetic address conversion. Thunks 
must free aliases when the latter are no longer being used. 

Due to guarantees provided by the language tools for 32-bit applications, few cases 
require aliasing. Statically allocated load-time objects smaller than 64KB are guaranteed 
not to cross 64KB linear boundaries, as are memory objects that are dynamically allo­
cated using the C run-time library (i.e., malloc and free). Stack objects, or automatic ob­
jects in the C language, can cross a 64KB linear boundary, but they are handled by the 



310 Compatibility 

thunk layer. Furthermore, if an application directly calls DosAllocMem, creates an object 
that straddles 64KB linear boundaries, and passes an offset from that object into a 32-bit 
API that is thunkcd to a 16-bit API such that the boundary condition is created, then the 
thunk handles the boundary condition. 

There are also 16-bit restrictions based on stack space. The 32-bit API allows stacks 
to be larger than 64KB. The 16-bit API requires stacks to fit within a 64KB segment. In 
OS/2 2.0, stack objects are tiled. HoweYer, the 64KB boundary can cause serious prob­
lems when a stack pointer is converted from one model to the other. The problem is that, 
as the stack grows in memory toward a 64KB linear boundary, if the stack pointer is 
converted to a 16: 16 address, the stack pointer is already near the bottom or end of the 
stack, leaving insufficient stack space to complete the service. Therefore, if the stack 
pointer is within 4KB of a 64KB linear boundary, the stack pointer is bumped down to 
the next 64KB boundary before it is converted to 16-bits. This strategy ensures the 16-
bit code has plenty of stack space. The thunk layer is optimized so that the stack is 
bumped only once per call, even if execution flows between several API functions that 
are implemented using thunks. 

The following describes the sequence of operations that occur in a typical 32-to-16 
thunk. First, the stack is bumped down to the next 64KB linear boundary if necessary. 
Then, for each input parameter, the parameter is converted to 16 bits, and is put in the 
stack frame in preparation for calling a 16-bit API function. The conversion of the con­
tents of a stack frame is done by the LDT tiling formula, by copying for small objects 
that cross 64KB boundaries, or by aliasing for large objects that cross 64KB boundaries. 
The stack pointer is then converted to 16 bits, and the simulated indirect call is used to 
invoke the 16-bit API function. After returning from the 16-bit API function, each out­
put parameter is converted to the correct 32-bit syntax specified by the 32-bit API func­
tion. The stack is then restored, and the 32-bit API function completes and returns the 
return code to the 32-bit requestor. 

The 16-to-32 bit thunks are significantly simpler than are 32-to-16 thunks, since there 
are no 64KB boundary problems. However, the 16-to-32 thunks must simulate segment 
protection semantics in software, since the 32-bit memory model provides page-granular 
protection. Otherwise, flat-model code could inadvertently or maliciously corrupt memory 
after converting 16: 16 pointer parameters to 0:32. Therefore, before pointers are converted 
from 16-bit to 32-bit, protection checking is simulated by the thunk. 

Thunk creation and coding can be automated. Within the OS/2 project, a thunk com­
piler was used to generate the code for the thunks used by the system. The thunk compiler 
us6s a C-like high-level language to describe API functions and the relationship between 
functions. This language describes parameters, types, and conversions that are applied, and 
tells the compiler how to generate code to map one API function using another. 

SUMMARY 

This chapter described compatibility in OS/2. It discussed the technologies used to pro­
vide DOS compatibility on the 80286 and 80386 platforms. It also examined Windows 
3.0 compatibility, and explained how 16-bit OS/2 applications run on 32-bit OS/2. 



TERMINOLOGY 

application base 
A20 line 
A20 wrap area 
bimodal code 
bimodal device driver model 
binary compatibility 
compatibility 
Dev Help(PhysToVirt) 
DevH elp( ROMCritSection) 
DevH elp(SetROMVector) 
DevHelp(UnPhysToVirt) 
DosAllocMem 
DOS compatibility 
DOS emulation 
double fault 
8086 emulation 
80386 DOS compatibility 
80386 OS/2 1.X binary compatibility 
80286 DOS compatibility 
ExitKMode 
far call 
flat addressing 
global event 
hook (a software or hardware interrupt) 
interrupt table shadowing 
interrupt vector table 
l/O permission map (IOPM) 
LDT tiling 
linear address aliasing 
LOAD ALL 
local event 
migration 
mode switching 
multiple virtual DOS machine (MVDM) 

technology 
near call 

EXERCISES 

Exercises 311 

OS/2 protected-mode interrupt manager 
per-VDM memory area 
physical device driver (PDD) 
postreflection hook 
power-on self-test (POST) 
prereflection hook 
protection 
retention 
reuse 
segmented addressing 
shutdown status 
16-to-32 thunk 
software interrupt reflection 
source compatibility 
32-to-16 thunk 
thread information block (TIB) 
thunk 
tile bit 
tile flag 
tile option 
tiled memory 
triple fault 
VDM breakpoint 
VDM event 
VDM management 
VDMmanager 
v86 address space 
virtual device driver (VDD) 
virtual device helper (VDHelp) services 
virtual DOS machine (VDM) 
virtual 8086 (v86) mode 
virtual programmable interrupt controller 

(VPIC) 
virtualization of DOS devices 
watchdog timer 

10.1 Define "compatibility" in the context of OS/2. 

10.2 Distinguish between binary compatibility and source compatibility. Discuss the advantages 
and disadvantages of each. Explain why a software vendor might be reluctant to distribute the 
source code of its products. 



312 Compatibility 

10.3 What does it mean to be "DOS compatible"? 

10.4 How is the 80286 switched from real mode to protected mode? How is it switched from 
protected mode to real mode? What PS/2 capability facilitates switching the 80286 from protected 
mode to real mode? 

10.5 Why is it not possibfe for OS/2 to run DOS applications in the background? 

10.6 What is the A20 wrap area? 

10.7 Explain the technique of interrupt table shadowing. 

10.8 What is tiled memory? What memory objects are normally tiled? 

10.9 What are the limitations of DOS compatibility under the 80286 architecture? 

10.10 What features make the 80386 architecture superior to that of the 80286 for providing 
DOS compatibility? 

10.11 Discuss OS/2 2.0's multiple virtual DOS machine (MVDM) technology. Consider protec­
tion, support of extended memory options, accessing of block devices, and other key issues. 

10.12 Explain the functions of the major components of the MVDM kernel, including VDM 
management, DOS emulation, 8086 emulation, and virtual device drivers (VDDs). 

10.13 Discuss the operation of the VDM manager. 

10.14 Distinguish between global and local VDM events. 

10.15 Explain the notion of software interrupt reflection as used in the 8086 emulation compo­
nent of the MVDM architecture. 

10.16 Explain what it means to "hook a software interrupt." Distinguish between prereflection 
hook and postreflection hook. 

10.17 Why is it not necessary for OS/2 device drivers to be bimodal? 

10.18 Why do VDMs receive hardware interrupts not at interrupt time, but rather at task time? 

10.19 How is Windows 3.X compatibility implemented in OS/2 2.X? 

10.20 The 32-bit OS/2 system provides three means for 32-bit APis and 16-bit APis to coexist. 
Describe each of these techniques. 

10.21 The memory model of 16-bit OS/2 allows for byte-granular memory access. In 32-bit 
OS/2, memory is accessed one page at a time, and is said to be page granular. Thus, when com­
patibility is implemented, multiple 16-bit segments could be packed on a single page. What prob­
lem would this packing create? How does 32-bit OS/2 reconcile this problem? What additional 
problem does the solution create? 

10.22 Explain the technique of LDT tiling. Describe how LDT tiling affects the maximum size 
of virtual address spaces in OS/2. Discuss several significant problems associated with LDT 
tiling. 

10.23 Explain why the following statement is true: "Applications that use 32-bit API functions 
thunked to 16-bit API functions will benefit transparently from performance increases as more of 
the OS/2 system is converted to 32-bit in the future." 

10.24 Why are 32-to-16 thunks more difficult to implement than are 16-to-32 thunks? 

10.25 Discuss the differences between the 16-bit and 32-bit memory environments with which 
thunks must deal. In particular, consider dynamic linking models, pointer-parameter conversion, 
stack management, and the 64KB restrictions on 16-bit applications. 



10.26 

10.27 

10.28 

Exercises 313 

Explain the notion of linear address aliasing used with OS/2 thunks. 

Describe the sequence of operations that occurs in a typical 32-to- l 6 thunk. 

In the context of the MVDM architecture, describe a scenario in which a simulated inter-
rupt must be delayed because the VDM's interrupts are disabled. Keep in mind that, since IOPL = 
3, the VDM uses the real IF of the system. Also. remember that VDMs run in the background, and 
that VD Os can block when servicing I/0 traps. 





11 
Communications 

Live in fragments no longer. Only connect. 

Edward Morgan Forster 

Conversation is but carving! 
Give no more to every guest, 

Than he's able to digest. 
Give him always of the prime, 

And but little at a time. 
Carve to all but just enough, 

Let them neither starve nor stuff; 
And that you may have your due, 
Let your neighbor carve for you. 

Jonathan Swift 

315 



Outline 

11.1 Introduction 
11.2 Networks 
11.3 Open Systems Interconnection 
11.4 OSI Reference Model 
11.5 X.25 
11.6 LANs 
11.7 Systems Network Architecture 
11.8 TCP/IP 
11.9 Network Coexistence 

11.10 OS/2 Extended Edition 
11.11 Multiuser OS/2 

Summary 

316 



11.2 Networks 317 

11.1 INTRODUCTION 

This chapter describes communications in the OS/2 system. An overview of the signifi­
cant network architectures-OS/, SNA, and TCP/IP-and the strategies for their coexis­
tence sets the foundation for discussion of the communications role played by OS/2 
workstations. OS/2's conformance to key network standards is described in the context of 
the distributed single-user workstation environment. This chapter also examines multi­
user OS/2, a low-cost alternative to networks for sharing processing resources. 

11.2 NETWORKS 

Networks enable computer users to communicate with one another and to share comput­
ing resources. Data-communication systems range from small networks that intercon­
nect terminals and computers in a single building, to networks that are distributed 
worldwide. 

Networks are composed of nodes, typically intermediate nodes, end-user nodes, and 
gateways. Intermediate nodes form the backbone of the network for passing data 
between systems. End-user nodes are points at which users access the network. Multiple 
networks can be connected using a gateway. Gateways provide protocol translation and 
interfacing between networks of disparate architectures, and are needed for internetwork 
service. The network topology describes the interconnection scheme of the nodes that 
compose a network, and the access points available to users. 

There arc two principal types of data communication network technologies in gen­
eral use today: circuit-switched and packet-switched networks. The telephone system is 
a circuit-switched network. Circuit-switched networks are connection-oriented-that is, 
a private transmission path or connection must be established between users before data 
can flow back and forth over the circuit, exactly as in a telephone call. In the telephone 
network, connections are established using dedicated private channels and trunk lines. 

Packet-switched network technology transfers blocks of data, called packets, across 
the network. Packet-switched networks are used to connect digital devices, such as host 
computers, communication controllers, terminals, workstations, and printers. Depending 
on the scope of the network topology, packet-switched networks range from wide area 
networks (WAN s) distributed over large geographical areas, to local area networks 
(LANs) distributed over relatively small areas. On a packet-switched network, packets 
from multiple users share the same distribution and transmission facilities. The packets 
are stored and forwarded at each network node, along with other packets that share the 
same communication links. 

There arc two types of connection modes in packet-switched networks: connection­
oriented and connectionless. In connection-oriented mode, a virtual-circuit connection 
must be established between the source and destination before packets arc transferred be­
tween them. The packets must be transmitted and received sequentially between the source 
and the destination. In connectionless mode, packets are routed across all connections and 
may arrive out of order. These packets are also known as datagrams. Connectionless data­
gram transmission is analogous to transmission of mail in the postal system. 



318 Communications 

As computer technology proliferated in the 1960s and 1970s, major packet-switched 
networks were created to allow international access to the data stored on computer sys­
tems. Networks, such as Tymshare's TYMNET and GTE's TELENET, were created to 
serve this need. Both of these networks are based on X.25, a worldwide standard packet­
s witched network architecture. 

The ARPAnet network was an experiment funded by the Advanced Research 
Projects Agency (ARPA) of the Department of Defense (DOD). The goal of ARP Anet 
was to connect major computer resources in universities, laboratories, and companies 
across the United States. ARPAnet was a packet-switched X.25-accessible network that 
developed and advanced the state of packet-switching technology. ARP Anet was a pio­
neer of internetwork connection and routing technology. GTE's TELENET network 
grew out of the ARP Anet research, as did the TCP/IP protocols. 

11.3 OPEN SYSTEMS INTERCONNECTION 

The development of packet-switching technology and the existence of many disparate 
network architectures led to communication problems among these different systems. 
The International Standards Organization (ISO) proposed the Open Systems 
Interconnection (OSI) reference model in 1978 to describe the external behavior of open 
systems. In the context of OSI, an open system is a collection of equipment-such as 
peripherals, computers, terminals and applications-that obeys a standard set of proto­
cols when communicating with other open systems. Note that the OSI reference model 
standard describes the external behavior of open systems, but does not describe the 
internal behavior. 

OSI will play an important role in the future of the computer industry. The move­
ment toward standardization will allow a high degree of interoperability between exist­
ing systems, even if these systems are supplied by different vendors. Furthermore, 
equipment and hardware will become more of a commodity in the future, resulting in 
more economical equipment and a greater variety of options for users. Interoperability 
allows users greater access to networks and open systems. OSI is also playing an impor­
tant role because of the U.S.government's adoption of OSI in the Government OSI 
Profile (GOSIP) that outlines the requirements for government systems procurement. 

OSI is a layered network architecture, a concept that originated with IBM's Systems 
Network Architecture (SNA) in 1974. IBM staff realized that the problem of allowing 
systems to communicate required a two-part solution that would ensure that: 

The data delivered by users would arrive at the destination correctly and in a 
timely fashion. 

The data delivered to the end user at the destination would be recognizable and 
in proper form. 

Low-level or network-level protocols handle the delivery of data between nodes on 
a network, and user-level protocols handle the syntax and semantics of the data so that 
those data are recognizable by end-user programs. Thus, end users see a transparent pipe 



11.4 OSI Reference Model 319 

for network communication, freeing end-user programs from details about the under­
lying network media connecting the distributed systems. 

11.4 OSI REFERENCE MODEL 

The OSI reference model is a layered architecture with seven layers. The layers group 
together similar functions, and are organized so that interactions across layer boundaries 
are minimized. Each layer is effectively shielded from details of the layers below it, and 
each layer provides services to the layer above it. The layers implement their services to 
the layers above by using and extending the services of the layers below. Of the seven 
layers of the OSI reference model, layers l, 2, and 3 are network service related, and 
layers 5, 6, and 7 are end user related. Layer 4 is usually grouped with the user-level 
protocols, but actually shields layers 5 and 6 from the specifics of the network-level pro­
tocols. Figure 11. l illustrates the OSI reference model showing two end-user nodes and 
an intermediate node. 

In Fig. 11. l, the end-user nodes could potentially be on networks with different 
physical media connecting them. The intermediate node serves as a network gateway 
and routing node, as part of the backbone of the network. 

Protocols allow communication between corresponding layers in connected open 
systems. Different protocol options may be used in each layer without affecting the layer 
definition. Thus, a protocol stack refers to a cut through the layers for a specific choice 
of protocols. Each layer provides service access points (SAPs) to the layer above. A 

Higher­
level 
protocols 

Network 
services 

End user A 

I 
Application layer 

Presentation layer 

Session layer 

Transport layer 

Network layer 

Data link layer 

Physical layer 

User node A 

-- - - - - -

.... .... ....- ·~ 

Fig. 11.1 OSI reference model. 

End user B 

I 
Application layer 

Presentation layer 

Session layer 

Transport layer 
--------

Network layer Network layer 

Data link layer Data link layer 

Physical layer .... .... Physical layer ....- -,. 

Intermediate node User node B 



320 Communications 

service access point is analogous to an API interface to the protocols provided by a 
layer. Each layer implements its protocols by adding control information to outgoing 
data as the data move down the layers of the source end-user node. Each layer processes 
data arriving from lower layers by analyzing and stripping the control information added 
to the data when they were sent, and then propagates the data up the layers at the desti­
nation end-user node. 

Layer 1 of the OSI reference model is the physical layer. It describes how bits enter 
the physical medium and how they are received. The following are examples of stan­
dards used for the physical layer: 

RS232-C (CCITT V.24) 

CCITTV.35 

CCITT X.21 

ISDN 

RS232-C is used for asynchronous communications. CC/TT V.35 describes point-to­
point connections across a coaxial connection. CC/TT X.21 is used throughout Europe 
for supporting X.25 packet-switched networks. /SDN (Integrated Services Digital 
Network) describes the digital physical medium for the next generation of the world's 
telephone networks. 

Layer 2 of the reference model is the data link layer, which ensures that blocks and 
frames are transferred reliably and without error across the physical medium. A data link 
is established across the physical media, and is used by the layers above layer 2. WAN s 
use high-level data link control (HDLC), as their protocol for data link control. X.25 
packet-switched networks use LAPB, a subset of HDLC. IBM SNA networks use syn­
chronous data link control (SDLC), a precursor and proper subset of HDLC. LANs use 
the IEEE 802.2 standard that describes how LANs accommodate the OSI data link and 
physical layers. 802.2 provides logical link control for LANs, and supports several 
major LAN architectures in the following standards: 802 .3 for Ethernet and the IBM PC 
Network, 802.4 for token bus, and 802.5 for token ring. Together, the physical and 
data link layers provide point-to-point error-free communication between two nodes on 
a network. 

Layer 3 of the reference model is the network layer. It is the topmost layer of the 
network-specific protocols in the OSI reference model. The network layer performs 
source and destination routing within a network, and also provides internetwork routing. 
The network layer provides flow control and congestion control across nodes; it uses the 
data link layer for moving blocks. In circuit-switched systems, the network layer pro­
vides path management and virtual circuits using HDLC or SDLC interfaces from the 
data link layer. In packet-switched systems such as X.25, the network layer primarily 
provides packet addressing and routing. 

Layer 4 of the OSI reference model is the transport layer; it ensures reliable, se­
quenced exchange of data between end users. The transport layer is the lowest layer of 
the upper-level user protocols. It shields the upper layers from details of network 
connections. It provides flow control and buffering to free the upper layers from 



11.5 X.25 321 

addressing issues such as network performance, error control, and reliability. The trans­
port layer also can provide error recovery and detection and multiplexing functions. 

The OS/ transport protocol (OSI TP) specification has five classes, TPO-TP4, that 
are based on the reliability of the network layer. The different classes provide varying 
amounts of error recovery, error detection, and multiplexing based on whether these ca­
pabilities are present in the underlying network-specific layers being used by the trans­
port layer. The standard transport layer supported in most OSI environments is TP4. 
which is the functional equivalent of the TCP transport protocol used in TCP/IP net­
works (see Section 11.5). 

Layer 5 of the OSI reference model is the session layer. A session is a conversation 
between two end users. Sessions must first be established by one user calling the other 
to create a connection. Hence, session protocols are connection oriented. Once the ses­
sion is established, the two users can transfer data, and can disconnect the session when 
the conversation is over. The OSI session management specification provides for data 
control and transfer using an established session, and for the organization and synchro­
nization of data flowing over the session connection. NetBIOS is an example of a 
session-level protocol. 

Layer 6 of the reference model is the presentation layer. The presentation layer man­
ages and transforms the syntax of data units exchanged between end users. It provides a 
high-level data interchange abstraction for network applications running in layer 7. An 
example of a presentation layer function is providing EBCDIC/ASCII transparency for a 
terminal emulator that provides a connection across the network. Since the presentation 
layer presents a format-independent data stream to applications, the terminal emulator 
program does not have to be concerned about the data format. Other presentation layer 
functions are the OS/2 and DOS network redirector and device sharing capabilities. The 
OS/2 network redirector is described in Section 11.7. 

Layer 7 of the reference model is the application layer. Whereas the presentation 
layer manages the syntax of the data, the application layer interprets the semantics of the 
data exchanged between end users and applications. Layer 7 defines application service 
elements (ASEs) and application control service elements (ACSEs), which define appli­
cation protocols used by distributed programs. OSI specifies many application protocols 
that are used by distributed network applications, including 

X.400 Message Handling 

X.500 Directory Services 

File Transfer, Access, and Management (FTAM) 

Virtual Terminal (VT) 

Distributed Transaction Processing (DTP) 

11.5 X.25 

The X.25 specification is a three-layer network-level interface for packet-switched 
WANs. It describes how data terminal equipment (DTE) and data circuit-terminating 



322 Communications 

equipment (DCE) are connected. An example of DTE is a terminal. Host computers or 
communications controllers are typical DCEs. DTE connections are provided by the in­
terconnection of DCEs. The network manages the connection between DCEs. The X.25 
interface regulates data flow between DTEs and DCEs. The three layers of the X.25 
specification correspond closely to OSI reference model layers 1, 2, and 3. Figure 11.2 
illustrates the architecture of X.25. 

The X.25 specification provides an interface for programs to user DTEs. X.25 is an 
interface specification; it is not a protocol. The network or packet-level X.25 layer pro­
vides virtual circuit and datagram services across logical channels. The multiplexing of 
data from the logical channels onto one data link saves network resources. It provides 
channel connect and disconnect procedures, as well as packet-level data transfer and 
error checking. It uses the link access procedures balanced (LAPE) protocol for data 
link control. LAPE is a subset of HDLC and is used to provide a data link between 
DCEs and DTEs. This single data link supports the data transferred between all the logi­
cal channels defined by the packet layer. The physical layer of X.25 systems is 
described by the X.21 specification for point-to-point synchronous circuit transmissions. 
X.21 provides a physical connection between DTEs and DCEs. 

11.6 LANS 

Networks within a building, a campus, or a set of buildings no more than several kilo­
meters from end to end are classified as LANs. IEEE standard 802.2 describes the rela­
tionship of LANs to OSI layers 1 and 2. It has been adopted as a standard protocol for 

DTE 

t 
- - - - - -X.25 API- - - - - -

Network 
(packet) 

Data link 
(frame) 

Physical 

X.25 

I 
LAPS 

I 
X.21 

Logical channels 

Single data link 

Point-to-point 
synchronous 

DCE 

Fig. 11.2 X.25 architecture. (Reprinted from M. Schwartz, Telecommunications 
Networks: Protocols, Modeling and Analysis, Copyright 1987, Addison-Wesley 
Publishing Co., Reading, MA. Reprinted by permission.) 



11.6 LANs 323 

data link control and physical layers. IEEE 802.2 divides the data link control layer into 
two parts: the logical link control (LLC) and medium access control (MAC) sublayers. 
Figure 11.3 illustrates the IEEE 802.2 LAN standard. 

The LLC sublayer defines the 802.2 interface. It constitutes the upper portion of 
layer 2. It uses the services of the MAC sublayer to provide services to the network 
layer above. The data link control model is independent of the physical medium and of 
the MAC. It defines the protocol used to manage one or more logical connections, called 
link stations, through a single physical medium. There are two types of LLC: connection 
oriented and connectionless. In connection-oriented service, error recovery is based on a 
subset of HDLC. In connectionless service, there is no error recovery-it must be sup­
plied by the upper layers. Thus, 802.2 and TP4 dovetail into the OSI LAN strategy nice­
ly, since 802.2 connectionless mode does not provide error recovery, but TP4 at the 
transport level does. 

The MAC sublayer standard covers layer 1 and part of layer 2 in the OSI reference 
model. It is responsible for maintaining the rules of protocol of the network. It performs 
the framing, addressing, timing, and error detection for link stations at the logical level. 
Popular MAC types include 

802.3 (CSMA/CD) 

802.4 (token bus) 

802.5 (token ring) 

802.6 (metropolitan area networks) 

The 802.3 standard describes carrier sense, multiple access with collision detection 
(CSMA!CD) LANs such as Ethernet and the original IBM PC Network. Ethernet was 
invented by Xerox, DEC, and Intel. When a node on a CSMA/CD network needs to 
send data, it listens for a window in which a packet can be sent. Once a packet is sent, it 
either arrives at a destination or collision with another packet. The sending node is 

Upper 
layers 

- - - - - - - - - - --~-------------~ 

802.2 logical link control (LLC) 

Data link 
(layer2) 

802.3 

Fig. 11.3 IEEE 802 LAN standards. 

802.4 802.5 



324 Communications 

notified of the collision and implements a collision detection strategy, usually to resend 
the packet. Control of access to CSMA/CD networks is similar to what happens when 
people are talking at a party. If several people start talking at once (collision), they stop, 
wait, and then restart talking. 

CSMA/CD is a random access network scheme with a contention-based access 
mechanism, so large amounts of network traffic can degrade network performance, since 
collision rates can increase quickly. Thus, it is inappropriate for real-time systems such 
as those used in factory automation, because it lacks predictable, deterministic responses 
under heavy loads. 

The 802.5 standard describes the token ring, developed by IBM Research in Zurich, 
Switzerland. A node on a token ring network accesses the physical medium when it has a 
token. A token is a bit pattern that permits a node to transmit data on the network. The 
token ring mechanism effectively provides a type of decentralized polling, where the 
polling token is passed among peer workstations. Token ring strategies provide more con­
sistent performance during periods of heavy network traffic than do CSMA/CD networks. 

The 802.4 standard describes the MAC protocol for token bus networks. The token 
bus is similar to the token ring, except that the nodes are connected using a bus topology 
instead of a ring topology. 802.6 describes access for metropolitan area networks 
(MANs), such as those used for cable television (CATV). 

11.7 SYSTEMS NETWORK ARCHITECTURE 

IBM's earliest projects in data communications connected host computers and terminals 
in master/slave hierarchies. As users required greater access to host computers and 
printers, specialized computers called communication controllers were developed. 
Communication controllers offload communication handling duties from host computers 
shared by multiple users, and connect different host computer resources. As users' needs 
for data communication and access continued to grow, IBM recognized the need for a 
network architecture that would lay the foundation for connecting current and future 
components to IBM networks. This recognition led to the development of a layered 
communication architecture in which network-specific and user-specific tasks were 
separated. IBM's Systems Network Architecture (SNA), introduced in 1974, was the 
first layered network architecture. Portions of SNA are used in the OSI definition, but 
the two standards are not the same. SNA is a proprietary IBM architecture originally 
based on a centralized network model; it now includes a distributed peer-to-peer net­
work model. Chapter 12 describes the role of SNA within IBM's Systems Application 
Architecture (SAA). 

The major architectural components of SNA networks are logical units (LUs), phys­
ical units (PUs), and system service control points (SSCPs). PUs, LUs, and SSCPs are 
network addressable units (NAUs). LUs are intermediaries used by end users and pro­
grams for accessing the network. End users transfer data across an LU-to-LU connection 
using sessions. Each node in the network is a physical unit. Examples of physical units 
are processors, communication controllers, printers, and workstations. Multiple logical 
units can map to a single physical unit at a given node. SSCP is used to manage network 



11.7 Systems Network Architecture 325 

resources, to coordinate LU-to-LU sessions, and to manage subsets of PUs and LUs 
called domains. Figure 11.4 illustrates the layers of the IBM SNA architecture. 

At the top of the SNA architecture is the LU services manager, also called the trans­
action manager. It is used by applications and end users for accessing the network. End­
user programs that use the transaction manager to establish LU-to-LU sessions are called 
transaction programs (TPs). Multiple transaction programs can share a single logical unit. 

The next layer in the SNA architecture is the presentation services layer. It per­
forms data transformation, encoding and compression of data, and display formatting. 
The presentation service layer of SNA is comparable but not identical to the OSI presen­
tation layer. Other layers of the SNA architecture are also similar to layers of the OSI 
reference model. 

Below the presentation services layer is the data .flow control layer, which performs 
sequencing and multiplexing of user messages across active sessions. The transmission 
control layer provides end-to-end flow control, called session pacing in SNA termino­
logy. It is the bottommost layer of the user-level services that insulates the user-level 
protocols from the network. The data flow control layer and the transmission control 
layer together are almost comparable to the OSI session and transport layers. 

The path control layer has a role similar to the OSI network layer. It performs rout­
ing and congestion control for network traffic and data flow between NAUs. Path con­
trol multiplexes LU sessions at a node across a given single path, and uses SDLC frames 
between adjacent nodes to transmit data. SNA data streams can also be routed over X.25 
packet-switched networks. The data link control and physical layers of SNA are similar 

End users 

Transaction services 
LU services manager 

Presentation services 

Data flow control 

Transmission control 

Path control 

Synchronous data link 
control (SDLC) 
and physical 

User-level 
services 

} 
Net~ork-level 
services 

Fig. 11.4 IBM SNA architecture. (Courtesy of International Business Machines 
Corporation.) 



326 Communications 

to layers 1 and 2 of the OSI model. They provide error-free transmission of data units 
across physical connections. SDLC manages synchronous information transfer between 
nodes joined by telecommunication links. 

In the early 1980s, IBM recognized that the future of SNA, and of networking in 
general, lay in peer-to-peer distributed computing, instead of in the centralized network 
model from which SNA evolved. To meet future requirements, IBM developed LU6.2, 
an architecture for distributed peer-to-peer computing. LU6.2 provides a model that is 
independent of processor type or operating system. The Advanced Program-to-Program 
Communication (APPC) facility is an interface that enables programs on any SNA node 
supporting LU6.2 to communicate and to exchange data. APPC and LU6.2 are imple­
mented across all significant IBM architectures from mainframes to workstations. SNA 
and APPC/LU6.2 play a key role in the Common Communications Architecture (CCA) 
portion of IBM's SAA. 

11.8 TCP/IP 

TCP/IP is a set of protocols that evolved to connect universities, laboratories, and com­
panies over ARP Anet. It is a four-layer network architecture that primarily focuses on 
internetwork connections. Figure 11.5 shows the four layers of the TCP/IP architecture. 

At the lowest layer of TCP/IP are data link and physical layers that correspond to 
those found in the OSI reference model. TCP/IP systems support X.25, 802.2, and many 
other physical media. 

The layer above the data link layer of TCP/IP is the internet layer. It is similar to 
the network layer of the OSI reference model. It is actually a subset of the OSI network 
layer that has been enhanced to provide internetwork routing and addressing. However, 
the network layer does not provide reliable connection services; rather, it depends on the 
transport layer to provide reliable connections, error detection, and error recovery. 
Another protocol used in the internet layer is the internet control message protocol 
(ICMP), used for internetwork control messages. 

Application 

Transport 

Internet 

Data link and 
physical 

Applications 

-- - - -- - - APls -- -- - -- -- -- -- -

TCP 

UDP 

IP ICMP 

Ethernet, token ring 

Fig. 11.5 TCP/IP architecture. (From OS/2 Notebook, Copyright 1990, Microsoft 
Corporation. Reprinted by permission of Microsoft Press.) 



11.9 Network Coexistence 327 

The third layer of the TCP/IP architecture is the transport layer. Two major proto­
cols are used in the transport layer: transport control protocol (TCP) and user datagram 
protocol (UDP). TCP is the equivalent of the OSI transport protocol implemented to 
class 4 (TP4), since it provides error detection and recovery. It is used in packet­
switched networks in which network-level data are not guaranteed to be delivered reli­
ably and in sequence, as in the IP environment. 

TCP provides connection-oriented data transfer between users. Data are delivered 
reliably and in sequence, despite the shortcomings of IP. Like any other connection-ori­
ented protocol, TCP has three phases: connection, data transfer, and disconnection. TCP 
transfers stream-oriented data. For example, TCP is used by upper-layer protocols for 
virtual terminal andfile transfer. Data are delivered continuously by upper layers, and 
are blocked by TCP into segments for transmission over the network. The other major 
protocol in the transport layer, UDP, is used for connectionless datagram service with no 
reliability guaranteed across IP links. 

The fourth and uppermost layer in TCP/IP is the application layer. Many applica­
tion protocols are defined that are used by applications running on TCP/IP systems. 
These are some of the more prevalent protocols: 

TELNET (terminal emulation protocol) 

FTP (file transfer protocol) 

SMTP (simple mail transfer protocol) 

X/Windows (distributed window management) 

NFS (network file system) 

Kerberos (user authentification) 

Many of these protocols depend on sockets, a basic interprocess communication 
mechanism originally created in the Berkeley UNIX distributions. Sockets provide an 
IPC abstraction independent of the underlying network and protocols. Sockets are simi­
lar to OS/2's named pipes or NetBIOS 's interprocess communication mechanisms. 
However, sockets are a low-level API that require processor-specific information such 
as knowledge of addressing and byte ordering. Application protocols constructed over 
sockets must manage processor-specific information for end-user programs. 

Sockets are implemented on TCP/IP systems using the TCP, UDP, ICMP, and IP 
protocols. There are three types of sockets: stream sockets, datagram sockets, and raw 
sockets. Sockets are usually programmed in the stream or datagram modes. Stream sock­
ets are used for virtual circuit connections. Datagram sockets are used for connectionless 
transmissions. Sun Microsystems's Network File System (NFS) is built on datagram 
sockets and UDP. FTP and TELNET are built on stream sockets and TCP. 

11.9 NETWORK COEXISTENCE 

Network coexistence is concerned with how SNA and TCP/IP-two disparate network­
ing schemes-can be used together and internetworked with OSI. There are two main is­
sues in connecting disparate networks and OSI: coexistence and migration. Coexistence 



328 Communications 

allows an existing system to support intemetworking with another system by integrating 
OSI support and allowing both types of applications to coexist. Migration implies that 
users leave their current system to move to OSI. Most vendors consider OSI essential 
for the future. Vendors are adding OSI support incrementally to proprietary architec­
tures, and are allowing the two to coexist. Thus, vendors are putting themselves in a po­
sition to exploit OSI as more OSI products become available, while providing support 
for installed bases. 

There are two main coexistence strategies used in most systems: stack based and 
service based. Stack-based strategies have dual protocol stacks on a single system. For 
instance, to allow SNA and TCP/IP to coexist, a system might support SNA and TCP/IP 
protocol suites simultaneously. An application gateway can be used as a bridge to con­
nect the two protocol stacks. However, the stack-based approach is expensive and has 
poor performance due to the massive protocol conversion that must occur. These re­
strictions prohibit stack-based strategies from providing end-to-end transmission, and 
limit them to message support only. 

The service-based coexistence strategy is built on bridges and routers. It is a layer­
oriented mapping of two networks. For example, to enable OSI applications to run on a 
TCP/IP network, we might choose to map the OSI transport layer onto the TCP/IP pro­
tocol stack by emulating the OSI TP4 protocol using TCP/IP. This approach is the trans­
port bridge. Other types of layer-oriented coexistence strategies exist; for example, 
service tunnels or routers essentially perform the same actions as do transport bridges at 
the network layer or data link layer. 

It is interesting to compare and contrast the functionality of OSI, SNA, TCP and IP, 
and to take a look at how these schemes coexist today. SNA is a full-function network 
that has had many years to evolve. It provides connectivity, a high degree of network 
management, predictable performance, and reliability. It has a large installed base, and 
is a platform for transaction processing and distributed applications through IBM and 
IBM-connected systems. 

OSI is an open architecture backed by many international organizations. Networks 
that conform to OSI have a high degree of interoperability. This interoperability allows 
users to choose among hardware and software products custom-tailored to their needs. 
IBM provides support for OSI in X.25-based WAN and 802.2-based LAN environ­
ments. It allows both SNA and OSI to coexist. 

OSI and TCP/IP are a bit different. OSI is significantly richer than TCP/IP, espe­
cially at the application layer. However, TCP/IP has a huge installed base. As described 
earlier in this section, OSI applications can be supported on TCP/IP systems using router 
and bridge technology. Usually, OSI and TCP/IP coexist using gateway architectures. 
Many parts of TCP/IP are similar to parts of OSI. For example, the IP protocol of 
TCP/IP is similar to the layer 3 internet network protocol used in OSI. The TCP protocol 
is similar to TP class 4 of the OSI transport layer. The TELNET application protocol is 
similar to the OSI VTP protocol, and the file transfer protocol of TCP/IP is similar to the 
FT AM protocol of OSI. Also, SMTP (simple mail transfer protocol) of TCP/IP is similar 
to the OSI X.400 and X.500 protocols. Although these application protocols perform 
similar functions, they are slightly different in implementation. Both OSI and TCP/IP 



11.10 OS/2 Extended Edition 329 

networks can share data links and coexist at physical levels. Figure 11.6 compares OSI, 
SNA, and TCP/IP. 

11.10 OS/2 EXTENDED EDITION 

This section examines how OS/2 fits into the role of open systems, and how it supports 
OSI, SNA, and TCP/IP network interconnection. IBM's OS/2 Extended Edition (EE) in­
cludes the Communications Manager (CM) and the Database Manager (DM). The CM 
provides SNA, LAN, and TCP/IP access and connectivity. Other products, such as 
Microsoft's LAN Manager and Novell Netware, address similar LAN networking needs. 

The CM provides three categories of functions: SNA support, LAN support, and 
TCP/IP support. The SNA support includes 

3270 terminal emulation, file transfer, and printer access 

Emulator high-level language AP! (EHLLAPI) 

Asynchronous communications driver interface (ACDI) 

APPC/LU6.2 

X.25 

SNA gateway 

The CM provides application programs for 3270 terminal emulation, file transfer, 
and remote printing. These programs use the EHLLAPI, which is designed to allow ap­
plications to access the 3270 data stream. A single workstation can have multiple VM 
and MVS sessions running at a time. The ACDI API provides access to serial 
communications. APPC/LU6.2, the strategic peer-to-peer distributed programming 

OSI SNA TCP/IP 

Application SNA 
applications 

TCP 
applications 

Presentation Presentation 

Session Data flow 
control 

Transport Transmission 
control 

TCP 

IP internetwork 
Path 

Network control Network 

Data link and Data link and Data link and 
physical physical physical 

Fig. 11.6 Comparison of OSI, SNA, and TCP/IP. 



330 Communications 

interface, enables OS/2 applications to communicate with applications running on any 
LU6.2 system. 

The CM provides X.25 support that allows SNA data streams and non-SNA X.25 
DTE application data streams to be multiplexed across X.25 packet-switched networks. 
X.25 is another strategic part of SNA playing the role of defining how SNA systems 
connect with packet-switched WANs. 

The SNA gateway effectively turns a server on the LAN into a multiplexing node 
that performs communications controller tasks for workstations on the LAN. It allows 
terminal emulation and APPC programs running on workstations attached to the LAN to 
access the host system in a transparent fashion. The connectivity of the SNA portion of 
the CM allows EHLLAPI programs, APPC/LU6.2 programs, and X.25 programs to be 
distributed over a coaxial attachment, channel-attached to a host, or attached to the host 
via a LAN using the SNA gateway feature. The APPC/LU6.2, EHLLAPI, and X.25 in­
terfaces are mapped to 802.2 LAN interfaces when running in a LAN-connected envi­
ronment, and are mapped to a SDLC data link control protocol when running in a 
coaxial-connected environment. 

OS/2 LAN support is packaged in two portions: the LAN requestor and the LAN 
server. The LAN requestor is included in the OS/2 EE, but the server program is packaged 
separately. The LAN requestor allows OS/2 workstations to access files, devices, and pro­
grams on a variety of LAN architectures. OS/2 workstations can communicate with DOS, 
UNIX, VM, and MVS environments. The LAN requestor shipped with OS/2 EE provides 

LAN requestor program 

Network redirector 

LAN API 

802.2 LLC API 

Network device drivers 

The LAN requestor program is a network application that uses the LAN API and 
OS/2 system services to provide a PM interface for a workstation on the LAN. It allows 
the user to log in to the network, and thus to access shared resources such as files, print­
ers, named pipes, and messaging services. The network redirector is an installable file 
system that supports redirection of file-level and device-level 1/0 across the network. 
Network device drivers that are included with the LAN requestor are 802.2-compliant 
and support Ethernet, token ring, and IBM PC Network media. 

The LAN API provides services for distributed applications to perform distributed 
interprocess communications for client-server applications, to execute administration 
and security tasks, and to manage access to network resources. The LAN API provides 
support for NetBIOS, a layer 5 session management interface, which is mapped onto the 
802.2 protocol stack at the data link layer. The LAN API includes two other interprocess 
communication mechanisms: mails lots, and named pipes from the OS/2 base. Both of 
these interprocess communication mechanisms are mapped onto the NetBIOS interface. 
The network redirector file system driver uses NetBIOS sessions to send local 1/0 re­
quests to a remote file server or print server. 



11.11 Multiuser OS/2 331 

The LAN server program is similar to the LAN requestor program, but it has file 
and device server software that services requests from requestors. Otherwise, the 
components of the LAN server and requestor are identical. A system running as a server 
can also be used concurrently as an SNA gateway, an administration machine, and a 
requestor machine. The LAN server also supports superserver configurations with two 
80386 or 80486 processors. The LAN server dedicates one of the processors to the net­
work and file system support, while the other processor runs the base OS/2 system. 

The CM also provides TCP/IP support. It allows a LAN user to interoperate with 
systems in a TCP/IP network. The sockets API is supported on the OS/2 TCP/IP stack, 
and the TCP/IP stack is mapped onto the 802.2 LAN interfaces. The TCP/IP stack has 
its own data link on the LAN provided through the 802.2 layer. There is no support for 
allowing NetBIOS applications to run on top of the TCP/IP stack. However, such sup­
port probably will be implemented in the future. Of the TCP/IP API and protocols sup­
ported, OS/2 TCP/IP support provides sockets, FTP, TELNET, SMTP, X/Windows, Sun 
NFS, Apollo NCS, RPC, and Kerberos. Figure 11.7 illustrates the OS/2 protocol stacks 
for LAN, TCP/IP, and SNA. 

11.11 MULTIUSER OS/2 

Configuring workstations into a LAN can be expensive for small businesses. Therefore, 
there is a need for low-cost multiuser solutions that allow OS/2 users to share resources 
and to communicate. Several multiuser products have been developed that allow multi­
ple users to share a single workstation. 

An example is CITRIX Multiuser. It supports up to 64 users sharing a single 80386 
or 80486 OS/2 system, using primarily asynchronous communications. Each user logs 

OS/2 LAN EE TCP/IP EE SNA 

' ' 3270 terminal emulation 
Network applications ' APPC applications ' 
Network program : 

: FTP EHLLAPI 
, SMTP APPC 

Redirector : TELENET 

7 

6 

Mailslots 
, NFS 
: X/Windows 

Named pipes : RPC/REXEC 
NetBIOS : Sockets SNA gateway 

5 

4 
: LU 0, 1,2,3,6.2 

Netbeui/DLC :TCP UDP PU 1,2 

' 
' 3 : IP ICMP X.25 

2 802.2 SDLC (802.2 if LAN-attached) 

802.3 
802.5 OFT 

Fig. 11.7 OS/2 protocol stacks. 



332 Communications 

into an OS/2 session using a terminal or computer running a terminal emulation pro­
gram. Users run OS/2 text-mode applications and can communicate with one another. 
The Multiuser software incorporates security functions that perform log in, access con­
trol list functions, system object permission management, and security auditing. 

This solution is a good alternative for the small business, since each user does not 
need a LAN-configured workstation. If the business later decides to invest in a LAN, the 
users connected by the Multiuser software can access resources on the network without 
replacing the terminal connections. Due to the performance of asynchronous 
communications, most multiuser OS/2 products support only text-mode applications. 
However, there are many text-based OS/2 applications that meet the needs of these low­
end multiuser environments. 

SUMMARY 

This chapter described communication in the OS/2 system. The evolution and salient 
features of the primary network architectures-OSI, SNA, and TCP/IP-were 
explained. Strategies for coexistence of the major network architectures were described. 
The role of OS/2 in providing connectivity to these platforms was discussed, including 
the content of OS/2 Extended Edition. OS/2 can handle concurrent LAN access, SNA 
terminal emulation and file transfer, and TCP/IP access on a single physical connection. 

TERMINOLOGY 

Advanced Program-to-Program 
Communication (APPC) 

Advanced Research Projects Agency 
(ARPA) 

application control service element 
(ACSE) 

application gateway 
application layer 
application service element (ASE) 
ARP Anet 
asynchronous communication driver 

interface (ACDI) 
backbone 
balanced link access procedures 
Berkeley UNIX 
bridge 
buffering 
carrier sense, multiple access with 

collision detection (CSMA/CD) 
CCITT V.35 
CCITT X.21 

centralized network model 
circuit-switched network 
CITRIX Multiuser 
coexistence 
collision 
Common Communications Architecture 

(CCA) of SAA 
communication controller 
Communications Manager (CM) 
congestion control 
connection 
connection oriented 
connectionless 
contention-based access 
data circuit terminating equipment (DCE) 
data flow control layer 
data link layer 
data terminal equipment (DTE) 
data transfer 
Database Manager (DM) 
datagram 



datagram socket 
Department of Defense (DOD) 
disconnection 
Distributed Transaction Processing (DTP) 
domain 
dual protocol stacks 
Emulator High-Language API (EHLLAPI) 
end-user node 
error detection and recovery 
Ethernet 
file server 
file transfer 
File Transfer, Access, and Management 

(FTAM) 
flow control 
frame 
FTP (file transfer protocol) 
gateway 
Government OSI Profile (GOSIP) 
high-level data link control (HDLC) 
host computer 
IBM PC network 
IEEE 802.3 
IEEE 802.4 
IEEE 802.5 
IEEE 802.6 
Integrated Services Digital Network 

(ISDN) 
interconnection scheme 
intermediate node 
International Standards Organization 

(ISO) 
internet control message protocol (ICMP) 
internet layer 
internetwork routing and addressing 
interoperability 
Kerberos (user authentification) 
LAN Manager 
LAN requestor 
LAN server 
LAPB 
layered network architecture 
link station 
local area network (LAN) 

Terminology 333 

logical link control (LLC) 
logical unit (LU) 
LU services manager 
LU6.2 
mails lot 
master/slave hierarchies 
medium access control (MAC) 
metropolitan area network (MAN) 
migration 
multiplexing 
multiuser OS/2 
named pipe 
NetBIOS 
network 
network addressable unit (NAU) 
Network File System (NFS) 
network layer 
network-level protocols 
network redirector 
network topology 
node 
Novell Netware 
open system 
Open Systems Interconnection (OSI) 

reference model 
OSI transport protocol (OSI TP) 
OS/2 Extended Edition (EE) 
OS/2 network redirector 
packet 
packet addressing 
packet-switched network 
path control layer 
peer-to-peer distributed computing 
physical layer 
physical unit (PU) 
presentation layer 
presentation services layer 
print server 
protocol stack 
raw socket 
router 
routing 
RS232-C (CCITT V.24) 
service access point (SAP) 



334 Communications 

service-based coexistence strategy 
service tunnel 
session layer 
session pacing 
simple mail transfer protocol (SMPT) 
socket 
store and forward 
stream socket 
superserver 
synchronous data link control (SDLC) 
system service control point (SSCP) 
Systems Application Architecture (SAA) 
Systems Network Architecture (SNA) 
TCP/IP 
TCP transport protocol 
TELENET (GTE) 
TELNET (terminal emulation protocol) 
3270 terminal emulation 
token 
token bus 

EXERCISES 

token ring 
TP4 
transaction manager 
transaction program (TP) 
transmission control layer 
transport bridge 
transport control protocol (TCP) 
transport layer 
TYMNET 
user datagram protocol (UDP) 
user-level protocol 
virtual circuit 
virtual terminal 
Virtual Terminal (VT) 
wide area network (WAN) 
X.500 Directory Services 
X.400 Message Handling 
X.25 
X Window 

11.1 Explain the use in networks of intermediate nodes, end-user nodes, and gateways. 

11.2 Distinguish between circuit-switched networks and packet-switched networks. 

11.3 In the context of packet-switched networks, explain the notions of virtual circuits and 
datagrams. 

11.4 Define the term "open system." 

11.5 Distinguish between network-level protocols and user-level protocols. 

11.6 Explain the notion of a layered architecture, such as that used in SNA and OSI. Describe 
the advantages and disadvantages of such a structuring approach. 

11.7 What is a protocol stack? 

11.8 List the seven layers of the OSI reference model. Briefly describe the function of each 
layer. 

11.9 In the context of X.25, define data terminal equipment (DTE), data circuit terminating 
equipment (DCE), link access procedure balanced (LAPE), and X.21. 

11.10 Explain the functions of the two sublayers of the data link layer: logical link control 
(LLC) and media access control (MAC). 

11.11 Briefly discuss the operation of the CSMA/CD, token bus, and token ring local area net­
working schemes. 

11.12 Explain the functions performed by the major architectural components of SNA net­
works-namely, logical units (LUs), physical units (PUs), and system service control points 
(SSCPs). 



Exercises 335 

11.13 Discuss the functions of the layers of the TCP/IP network architecture. 

11.14 Explain the notion of sockets as developed for the Berkeley UNIX distributions. Indicate 
the differences among stream sockets, datagram sockets, and raw sockets. 

11.15 

11.16 

Distinguish between stack-based and service-based coexistence strategies. 

Compare and contrast OSI and TCP/IP. 

11.17 Discuss the capabilities of the OS/2 Communications Manager (CM). Consider SNA sup­
port, LAN support, and TCP/IP support. 

11.18 Compare the use of a multiuser OS/2 system such as CITRIX Multiuser with LAN-based 
workstations as a means of enabling users to share resources and communicate with one another. 
Explain the advantages and disadvantages of each approach. Describe an environment where each 
might be appropriate. 





12 
The Future 

Pressure from the user community is forcing manufacturers to 
shy away from proprietary architectures and look more toward 

open systems. This gives vendors two options: Research and 
develop now and lead the industry, or be led by the 

competition later. 

Computerworld, April 30, 1990, p. 122 

Standards make it easier for purchasers to experiment with 
equipment embodying new technology and reduce the risk of 
committing to a technology that quickly becomes obsolete. 

Robert B. Reich 
"The Quiet Path to Technological Preeminence," 

Scientific American, October 1989 

Nothing endures but change. 

Heraclitus 

We had better wait and see. 

H. H. Asquith 

337 



12.1 Introduction 
12.2 Open Systems 
12.3 Open UNIX 

Outline 

12.4 Systems Application Architecture 
12.5 System Portability 
12.6 Multiprocessor Systems 
12.7 Security 

12. 7 .1 Security Mechanisms 
12. 7 .2 Security Assurance Measures 
12. 7 .3 OS/2 Security 

12.8 Multimedia 
Summary 

338 



12.2 Open Systems 339 

12.1 INTRODUCTION 

This chapter describes issues significant to the future of OS/2. Open systems and the 
Systems Application Architecture (SAA) are described, and the role OS/2 will play in 
these environments is explained. Other key issues-such as system portability, multi­
processing, multimedia, and security-also are discussed. The current state of the per­
sonal computer and workstation markets is analyzed, and OS/2 's future evolution is 
plotted based on current trends and requirements. 

12.2 OPEN SYSTEMS 

The relatively new movement in the computer industry toward standardization of inter­
faces, and of the systems that provide these interfaces, is called open systems. The need 
to connect disparate systems in distributed environments led to the development of the 
OSI communication standards described in Chapter 11. Another factor that contributes 
to the movement toward open systems is the drive to standardize existing implementa­
tions of the UNIX operating system. Open systems attempt to satisfy the following 
goals: 

Maximal portability of applications, data, and users 

Increased functionality 

Vendor independence 

Interoperability 

Lower costs 

Simpler product acquisition 

Coherent network design 

An environment in which custom tailoring is still available through vendor­
specific value-added services 

These goals have led to standards work in the areas of communications, operating 
systems, programming languages, and user interfaces. Standards can be classified into 
four types of specifications: 

Formal standards 

De facto standards 

Standard implementations 

Proprietary implementations 

Formal standards are developed by organizations such as /SO, CCITT, ANSI, and 
IEEE. These standards are developed by an open consensus process that produces a 
specification that defines the standard. Although formal standard definitions are impor­
tant to interoperability, a process for testing system conformance is also required. The 
Corporation for Open Systems (COS) is a nonprofit alliance of major vendors and users, 



340 The Future 

chartered to speed the introduction of interoperable, multivendor products under OSI 
and other formal standards. IBM is a major COS member. 

De facto standards describe implementations with large installed bases that become 
standards as a result of their prevalence. TCP/IP and SNA are examples of de facto stan­
dards. Standard implementations are based on specifications developed by the open pro­
cess, and produce implementations that can be ported to different architectures. For 
example, the Open Software Foundation (OSF) produces specifications and standard im­
plementations of the UNIX system. UNIX International also produces specifications that 
describe a standard implementation of the UNIX system, but does not produce an imple­
mentation. Proprietary implementations include vendor value-added elements, such as 
intemetworking with proprietary network architectures. Proprietary implementations are 
normally owned, controlled, and defined by a single vendor. 

Open systems have interfaces and functionality that conform to available standards; 
such systems can be manufactured free of proprietary constraints. They are based on 
formal international standards, and these standards are developed by a consensus pro­
cess that is open to all participants. The open consensus process ensures that open sys­
tems architectures are not proprietary and do not serve the interests of only a specific 
vendor. This definition of "open systems" is generally accepted in the UNIX communi­
ty, since it implicitly requires a standard open operating system as a basis for the open 
environment. An alternative definition for "open system" that most vendors also recog­
nize originates with the OSI standard's definition of "open system." According to OSI, 
an open system is one in which the external interfaces conform to formal standards. In 
this definition, since open systems are defined based on external standards, proprietary 
internal architectures are not an issue, and an open operating system is not required as a 
basis for interoperability. 

12.3 OPEN UNIX 

The UNIX operating system is viewed as nonproprietary and vendor independent, since 
any vendor can purchase a source code license and port the system to its hardware. This 
view of UNIX comes from its unique evolution. UNIX was developed by AT&T Bell 
Laboratories. It was originally written in assembler, but was rewritten in the C pro­
gramming language before it was widely distributed. The rewritten version enabled it to 
be ported to many different environments. AT&T was originally prohibited from com­
peting in the computer industry, but it was able to distribute the source of UNIX to 
many schools and companies. Many ports to different processor architectures followed, 
each with its own enhancements. 

By the late 1980s, over 100 different versions of the UNIX system existed, and the 
market was extremely fragmented. Among the major variants of the UNIX system were 
AT&T System V, Berkeley UNIX 4.3, Microsoft XENIX, Sun Microsystems SunOS, and 
IBM AIX. Due to the differences in these implementations, and to the movement toward 
OSI communication standards, people became interested in standardizing the UNIX oper­
ating system and related non-operating-system interfaces. Thus, the UNIX market sees 
open operating systems technology as a critical component to the open systems strategy. 



12.3 Open UNIX 341 

The IEEE POSIX standard includes a standard UNIX interface definition, and is 
based on AT&T System V and assorted enhancements drawn from the most popular 
implementations. POSIX also includes the X/Windows standard definition that describes 
the base architecture used to support graphical user interfaces. Currently, the IEEE is 
reviewing two graphical user interface proposals based on X/Windows, one by UNIX 
International and the other by the Open Software Foundation. 

Another standards body that plays a large role in defining UNIX standards is 
X!Open. Originally, a consortium of European vendors founded X/Open in 1984 to pool 
their resources in specifying a common application environment (CAE) based on de 
facto and formal standards. Most major UNIX vendors are in X/Open, directly or indi­
rectly. X/Open publishes the XI Open Portability Guide, a specification that describes the 
common application environment. It incorporates formal standards as they are defined, 
and combines existing formal standards with de facto standards to produce an open sys­
tems definition. 

In an attempt to produce a standard UNIX definition that meets the requirements of 
the existing major implementations, AT&T designed UNIX System V, Release 4. AT&T 
chose Sun Microsystems as its partner for producing the system. This agreement upset 
other major UNIX vendors, since they were in competition with Sun and AT&T, and 
thought that the evolution of standard UNIX needed to be a more open process. Their 
concern led to the formation of the Open Software Foundation ( OSF) to define a rival 
standard UNIX. 

The OSF was formed in 1988 to provide a source of open UNIX systems technol­
ogy. IBM, DEC, and Hewlett-Packard (HP) are some of the major members of OSF. 
OSFI I is the first UNIX implementation delivered by OSF. It uses Carnegie-Mellon 
University's Mach operating system for the base system kernel. Additional components 
of the system are provided by the members of OSF. Most members of OSF choose to 
integrate technology developed by OSF into their own proprietary UNIX implementa­
tions, rather than to offer the OSF standard implementation as a whole. OSF uses the 
Motif graphical user interface based on X/Windows for standard access to applications. 

OSF addresses the needs of interconnecting open systems with the distributed com­
puting environment (DCE). DCE complements and enhances the upper OSI layers to 
help application developers and users attain a transparent heterogeneous distributed 
operating environment. DCE integrates technology for remote procedure calls, distribut­
ed directory services, security, and distributed file services. 

In response to the OSF consortium, AT&T and Sun formed UNIX International, a 
consortium of UNIX vendors that promotes UNIX System V, Release 4 as the standard 
open operating system. Like OSF, UNIX International uses an open process whereby 
members can influence the System V definition. However, AT&T owns the System V 
standard, and documents that standard in the System V Interface Definition (SVID ). 
UNIX International unlike OSF, does not produce an implementation. Licensing and 
conformance testing of products based on System Vis performed by AT&T. UNIX 
International addresses the needs of interconnecting open systems with Sun 
Microsystem's Open Network Computing (ONC). ONC addresses goals similar to those 
met by DCE, and embraces many of the same standards. 



342 The Future 

Thus, there are two principal standard UNIX implementations-those of UNIX 
International and those of OSF. Both implementations have similar technical goals, both 
consortia are members of X/Open, and both systems are based on common standards. 

The X Consortium is devoted to continued development of X/Windows. 
X/Windows was developed at MIT with funding from IBM and DEC, and has become 
popular as the base technology used by graphical user interfaces on most UNIX systems. 
DEC, IBM, HP, and Sun are leading members of the X Consortium. The X Consortium 
produces a definition of X/Windows that is used by both OSF and UNIX International. 

AIX is IBM's entry into the UNIX market. AIX has been ported to the System 370, 
the RT/PC, the System 6000, and the PS/2. The contents of AIX are defined by an IBM 
document called the Family Definition Specification. AIX supports X/Windows, 
OSF/Motif, Sun NFS, TCP/IP, Ethernet, and OSI connectivity. It is based on AT&T's 
System V, and contains enhancements from Berkeley UNIX and OSF/1. AIX is not a 
part of SAA, since it does not yet implement all the required SAA elements. 

12.4 SYSTEMS APPLICATION ARCHITECTURE 

The objective of the Systems Application Architecture (SAA) is to tie together IBM's 
multiple architectures in a manner that ensures consistency across platforms. SAA is a 
set of software interfaces, conventions, and protocols that provides a framework for de­
veloping integrated applications consistent across SAA platforms. It addresses the mar­
ket's largest installed base, and opens up IBM interfaces that were previously 
considered proprietary. SAA is IBM's internal open systems path. It represents the 
largest implementation of the open systems philosophy that exists today. 

SAA compliance makes software independent of the system on which that software 
originated, as long as it is running on an SAA platform. Conversely, UNIX is machine 
independent, but UNIX application software is dependent on a specific standard imple­
mentation of the UNIX system. The benefits of SAA are similar to those of open sys­
tems. The portability of applications from the developer and end-user view is a key part 
of SAA. Also, SAA provides for consistency in environments across systems, and con­
nectivity that enables distributed cooperative processing environments. SAA further im­
proves connectivity by defining an environment in which applications can run across 
IBM's disparate systems without being sensitive to the underlying operating system. 
This is in direct contrast to the philosophy espoused by the open UNIX market, in which 
a standard open operating system is considered critical to the success of open systems 
across disparate platforms. 

SAA is composed of a base foundation, and an interface framework that describes 
how the base is accessed by applications. The base foundation consists of system control 
programs, application enablers, and communications. System control programs are 
operating systems, such as VM, MYS, OS/2 Extended Edition, and OS/400. Application 
enablers are tools such as compilers and database management systems, that assist 
developers in application development. The communications portion of the SAA base 
provides functions that connect applications, systems, networks, and devices. Figure 
12. l illustrates the SAA architecture components. 



12.4 

Common 
user 
access 
(CUA) 

Systems Application Architecture 343 

Applications 

Common programming interface (CPI) 

Application enablers 

~J l~ 
Communications 

1~~J 
System control programs 

Common 
communications 
support 
(CCS) 

Fig. 12.1 Components of the IBM Systems Application Architecture. (Adapted from 
APPC Introduction to LU6.2, A. Berson, Copyright 1990, McGraw-Hill Publishing 
Company. Reprinted by permission.) 

Outside the SAA foundation, a framework of interfaces is defined that specifies 
how applications access services provided by the base. The SAA interfaces are divided 
into three categories: common user access (CUA), common programming interface 
(CPI), and common communications support (CCS). CUA allows users to interface with 
the computer in a consistent manner, regardless of the system. It specifies panels, key­
board layouts, graphical user interface interactions, and controls. CPI details program­
ming language specifications (such as ANSI C) that are implemented across SAA 
environments. The CCS portion of the SAA interfaces defines common architectures 
and protocols that interconnect SAA systems. It also provides for the interconnection of 
non-IBM systems using OSI and TCP/IP protocols. 

SNA's LU6.2 is the strategic peer-to-peer distributed application protocol used by 
IBM systems within SAA. CCS also provides for token ring LANs based on the IEEE 
802.2 standard, and for WANs connected using X.25 or SDLC data link protocols. OSI 
is the strategic vehicle in SAA for connecting non-IBM systems. The OS/ 
Communications Subsystem (OS//CS) program, supported on SAA platforms, supports 
the government's GOSIP requirements for procuring open systems. The integration of 
SNA and OSI Jets users retain the rich functionality and network management services 
of SNA, while allowing them to take advantage of new OSI applications. SNA, TCP/IP, 
and OSI are integrated up to the data link layer within the SAA CCS definition. 
Different protocol stacks for each of these network architectures coexist above the data 
link layer. Also, application layer protocol translation programs, or application gate­
ways, provide the necessary translation for allowing distributed applications to coexist 
across SNA and non-SNA systems. 



344 The Future 

SAA common applications are written to the CPI and CUA interfaces. As more 
common applications become network distributed, they rely more on the CCS compo­
nent of SAA. Common applications run in all SAA environments with the same user 
interface. CUA, CPI, and CCS work together so that the underlying SAA foundation 
does not obstruct consistency, connectivity, or interoperability. 

It is interesting to compare IBM's SAA interoperability strategy, and the open 
UNIX strategy described in the previous section. IBM's approach to open systems and 
interoperability is the synthesis of vision and practicality. IBM embraces OSI, but is 
not abandoning the strategic SNA platform with its huge installed base. The IBM 
approach allows the retention of rich SNA functionality, while acknowledging the 
desirability and usefulness of the OSI standards. SAA does not require a common oper­
ating system, as the UNIX open systems market does, but instead relies on the common 
interfaces to the SAA base functions to shield applications from the nature of the oper­
ating system. This difference between SAA and UNIX-based open systems is the fun­
damental one. 

SAA, like OSI, defines an open system to be one that provides the external inter­
faces specified by formal standards. As long as the system conforms to these external in­
terfaces, the internal implementation used does not matter. Therefore, in the SAA and 
OSI definitions of an open system, whether or not the core operating system is propri­
etary is not an issue. However, in the UNIX market, in which there are so many variants 
of the UNIX operating system, UNIX vendors realize that it is critical to standardize a 
single version of UNIX for their open system platforms. Thus, UNIX vendors link the 
standard operating system to the open systems issue, by taking the position that a single 
open operating system is critical to the success of open systems. On the other hand, 
SAA and OSI take the standpoint that, as long as the external interfaces defined by for­
mal standards are obeyed, it does not matter what operating system is used. Ultimately, 
the two different philosophies have enough in common that they will be able to coexist 
and to further the strategy of open systems. 

OS/2 is the strategic SAA operating system platform for IBM's PS/2 systems. OS/2 
is classified as an open system, since it provides connectivity to SNA, TCP/IP, OSI, and 
DCE environments. Although it can run applications across these heterogenous environ­
ments, it is not yet available for other architectures. A key issue for OS/2 will be how to 
handle the evolution and migration of OS/2 to other processor platforms. Unlike for 
UNIX systems, there is a single standard for OS/2 systems. However, UNIX vendors 
view OS/2 as proprietary, since the system design process is not open, OS/2 is not yet 
portable to most architectures, and OS/2 is not UNIX. As open as UNIX is, there is still 
not a single standard UNIX implementation on which all vendors agree. The portability 
of 32-bit OS/2 should give that system the momentum needed to break through the pro­
prietary barriers envisioned by UNIX vendors. It is possible that, in the future, IBM 
may sell source licenses to 32-bit OS/2, and enable vendors to port 32-bit OS/2 to their 
own architectures. However, IBM must be careful to ensure that OS/2 remains a stan­
dard implementation that meets the requirements of open systems. The 32-bit OS/2 sys­
tem qualifies as a workstation operating system. It provides the connectivity and 



12.6 Multiprocessor Systems 345 

functions of both SAA and open systems environments, and will clearly play a major 
role in the future. 

12.5 SYSTEM PORTABILITY 

The proliferation of RISC architectures as fast, generic processing engines has fueled 
the growth of the workstation marketplace. Systems based on the MIPS RISC processor, 
the IBM POWER architecture, and Sun's SPARC processor are leading the way into 
open systems in the workstation marketplace. Both IBM and Microsoft have announced 
that OS/2 will support RISC platforms in the future. The key to providing this support is 
to finish the task of making the 32-bit OS/2 system portable, and to allow it to migrate 
from the Intel processor platforms. Several alternatives are being explored for enabling 
the base system to be portable to other architectures, such as Microsoft's NT system, the 
Mach system embraced by OSF, and AIX. Regardless of the technology used, applica­
tions based on the OS/2 2.0 API are source retargetable, since they are based on the cur­
rent portable 32-bit APL 

OS/2 2.0 is the first release of 32-bit OS/2 technology. Most of the OS/2 2.0 kernel 
is 32-bit code, and about 60 percent of it is written in the C language. The utilities, the 
window management portion of the PM, and the device drivers are still 16-bit code. For 
OS/2 to be independent of the Intel 80X86 processor platform, these components must 
be converted to 32-bit code. This task entails converting the rest of the kernel to 32-bit 
C, and isolating machine-dependent portions of the kernel into separate modules. A 32-
bit flat-model device-driver architecture is needed to support development of device 
drivers in C that are portable across different architectures. Portions of the PM, and the 
utilities, also need to be converted. 

Moving OS/2 to a non-Intel platform may require the removal of the DOS compati­
bility, Windows 3.X compatibility, and 16-bit OS/2 compatibility features. Although 
many RISC architectures can simulate an 8086 in real mode, and thus some simple DOS 
applications, this ability does not allow 16-bit OS/2 and 16-bit protected-mode Windows 
3.X applications to run on a RISC processor. However, DOS compatibility, 16-bit com­
patibility, and Windows compatibility may be retained through use of an 80X86 as a 
coprocessor in the RISC environment. 

12.6 MULTIPROCESSOR SYSTEMS 

OS/2 already provides some multiprocessing support. The existing coprocessor scheme 
for LAN superservers allows the network code of the operating system to be run on an 
80386 or 80486 coprocessor. It uses a tightly coupled master/slave relationship between 
the processor running the OS/2 system and the processor running the network code. 
However, it is the evolution of OS/2 toward symmetric multiprocessing (SMP) platforms 
that has interesting implications for the future. 

On an SMP platform, any processor can execute kernel and user code, and multi­
threaded processes can run on one or more processors. SMP platforms were described in 



346 The Future 

detail in Chapter 3. They can maintain compatibility with uniprocessor programs devel­
oped for the same processor. They require efficient shared memory interprocess commu­
nications in hardware, and provisions for processor interlock to resolve resource 
contention. In an SMP system, peer processing allows processes to be less tightly cou­
pled and less reliant on one another. 

There are several technical issues significant to the evolution of a portable OS/2 to 
an SMP platform. The kernel must be reentrant, since it can be executed by more than 
one thread at a time on different processors. The kernel may optionally be preemptible, 
depending on the requirements of the implementation. Other work is necessary in pro­
cess and thread scheduling, and in memory management. Furthermore, arbitration of 
resource conflicts between processors must be supplied, as well as shared I/0 manage­
ment capabilities. The MP version of OS/2 must be able to maintain memory and cache 
integrity across a variety of memory architectures. It will do so by using systemwide 
tables in shared memory, and coding the kernel to use memory resource locks when 
accessing shared structures and performing shared I/O. The technical requirements for 
supporting SMP systems are being addressed in the effort to make the underlying OS/2 
system portable. 

12.7 SECURITY 

Security is important to the future of OS/2 from the perspectives of open systems and 
distributed environments. Security guidelines have been developed by the National 
Computer Security Center (NCSC) of the Department of Defense (DOD) in the rainbow 
series of documents. Since each of the documents has a cover of a different color, the 
series uses the term "rainbow," and color names are used as the informal names of the 
documents. The series includes the Trusted Computer System Evaluation Criteria or 
Orange Book, the Trusted Network Interpretation or Red Book, and the Green Book on 
password management guidelines. A Blue Book provides guidelines on magnetic reso­
nance and electrical emissions; a Yellow Book describes how to apply the Orange Book. 

The Orange Book contains security standards that specify how manufacturers pro­
duce trusted computer systems. It provides criteria used to evaluate the level of trust as­
signed a system, and also is used as a basis in government procurement specifications. 
The Red Book applies the standards of the Orange Book to network distributed environ­
ments. Network security services and mechanisms are also defined in the OS/ security 
architecture. 

Security, according to the Orange Book, is provided in two components: security 
mechanisms and security assurance measures. Security mechanisms implement controls 
that guarantee a trusted environment. Security assurance measures provide a certain level 
of assurance that security mechanisms are designed and implemented correctly. Seven 
levels of trust are defined by the Orange Book specification. They are identified using let­
ters and numbers as follows: Dl, Cl, C2, Bl, B2, B3, Al. Level Dl is the lowest level 
(no security), and level Al is the highest level. Levels Cl, C2, and Bl define the re­
quirements for security mechanisms, and levels B2, B3, and Al define the requirements 
for security assurance measures. Figure 12.2 illustrates the Orange Book security levels. 



12.7 

Most trusted 

Least trusted 

Fig. 12.2 Orange Book security levels. 

12.7.1 Security Mechanisms 

A1 

83 

B2 

B1 

C2 

C1 

01 

} 
Security 
assurance 
mechanisms 

Security 
mechanisms 

Security 347 

Security mechanisms are implemented in levels C 1 through B 1 in the security standard. 
At the C levels, discretionary access control (DAC) is required to provide controlled ac­
cess to objects by named users or groups at the discretion of the owner. DAC is speci­
fied by the creator of an object, and allows the creator to specify what users or groups 
have a need to access that object. Examples of DAC are the user/group-style permis­
sions of the OS/2 LAN environment and UNIX systems, and the more sophisticated 
access control lists (ACLs) found in CITRIX Multiuser. ACLs allow a finer granularity 
of control than do the basic user/group-style permissions. 

Accountability is another security mechanism required by the Orange Book. 
Ensuring accountability consists of providing means for user identification and 
authorization. Accountability is typically provided using passwords or physical identifi­
cation devices such as badge readers. Accountability also requires that the system to be 
able to provide an audit trail of security-related events. 

Object reuse is a security mechanism that ensures that residual data are cleared 
from system-provided objects before the objects are reused. Examples of object reuse 
are clearing of memory buffers, disk storage, or registers when they are assigned to a 
new user. Discretionary access control, accountability, and object reuse are required at 
the Cl and C2 levels. 

Beyond the Cl and C2 levels, security labels and mandatory access control (MAC) 
are required by the Orange Book. Security labels, or sensitivity labels, are maintained by 
the system for each object and user. The labels represent a hierarchy of security levels that 
are designated using labels-for example, top secret, secret, classified, and unclassified. 

Mandatory access control restricts access to files and system objects through levels 
and compartments. It relies on security labels to be assigned to objects and users. MAC 
implements security controls based on the security label hierarchy. Users can access ob­
jects only at or below their security level. Users cannot access objects at higher levels 
even if the ACL or DAC mechanism says the access is valid. MAC supersedes DAC, 
since it does not allow the creator of an object a choice in applying security mecha­
nisms to that object. In a MAC environment, users also cannot modify objects at lower 



348 The Future 

security levels. This prevents a high-level user from making trusted data accessible to 
users that do not have sufficient privilege to access those data. Thus, the altering of 
even low-security-risk data must use a system-enforced security procedure. Mandatory 
access control is called "mandatory," since its mechanism for preventing trusted data 
from becoming accessible is a policy of the system, not a policy of the user that created 
the object. The B 1 security level requires sensitivity labels on all objects and mandatory 
access control. 

12.7.2 Security Assurance Measures 

The security assurance measures are enforced in security levels B2, B3, and Al accord­
ing to the Orange Book specification. There are several criteria that are described in the 
security assurance measures: 

System architecture criteria 

System integrity criteria 

Security testing criteria 

The system architecture criteria require protection between the system and applica -
tions, and among applications. The system integrity criteria require a means to validate 
the hardware and microcode of the system itself. The security testing criteria require 
mechanisms to be tested to conform with the system security documentation. These 
three criteria are defined differently on the various levels. Level B 1 requires an informal 
model of security policies to be documented. Levels B2 and B3 require system 
restructuring to meet modularity specifications, and formal modeling of the security sys­
tem. Due to the modularity requirements, it is nearly impossible to retrofit B2 and B3 
security into existing operating system architectures. The modularity requirements also 
usually hamper the performance of the system, requiring redesign of an existing system 
and tradeoffs between security and performance. The A 1 level requires a mathematically 
proven model of the security architecture. 

12.7 .3 OS/2 Security 

The existing 16-bit OS/2 system is single user, so security was not a major consideration 
in its design. The LAN support for 16-bit OS/2 systems has user and group permissions 
for file system objects and devices that are shared across the network. The CITRIX 
Multiuser system provides discretionary access control using access control lists. The 
32-bit system has parameters reserved in API functions that grant access to shared sys­
tem objects, such as semaphores, files, and shared memory. The reserved parameters are 
for access control lists, which will be supported in a future version of the 32-bit system 
when security is provided in the base system. Future versions of the 32-bit OS/2 system 
will ultimately progress to the C 1, C2, and, at least, B 1 levels of security compliance. 
Thus, OS/2 will be an appropriate candidate in government procurements that demand 
increased security. 



Terminology 349 

12.8 MULTIMEDIA 

Multimedia technology is the integration of television-quality audio and visual capabili­
ties on the personal computer and workstation platforms. With the advent of new tech­
nology such as CD/ROM, musical instrument digital interface (MIDI), and digital video 
interactive (DV/), multimedia technology is becoming available on general-purpose 
low-cost systems. The Interactive Multimedia Association (IMA) was founded in 1988 
as a trade group specializing in video disk technology. It has evolved to a membership 
of over 170 companies, including IBM, Sony, NCR, Phillips, Intel, Apple, Lotus, and 
Macromind. The IMA is developing multimedia specifications for hardware and soft­
ware architectures, based on existing and evolving standards. 

Multimedia applications place real-time sequencing requirements on operating sys­
tems, because they must be able to perform audio and visual 1/0 quickly to provide real­
istic presentations. Audio and video data must be sequenced and synchronized so that 
audio data sound right, visual data look right, and their combined presentation has the 
desired effect for the user. Multimedia applications can integrate digital video, digital 
audio, animation, images, and special effects into multimedia presentations. 

IBM has announced multimedia extensions for the 32-bit OS/2 platform that will 
enable a new class of applications to be developed. OS/2 2.X is the ideal environment 
for multimedia applications because of its protected multitasking environment, high­
performance memory management and IPC mechanisms, and overall system integrity. 

SUMMARY 

This chapter described issues that will affect the future of OS/2. The open systems mar­
ket and SAA architectures will play a significant role in defining how OS/2 intercon­
nects to other systems. OS/2 will also be portable to other architectures, and will support 
symmetrical multiprocessing architectures. Security qualification of OS/2 is an im­
portant future requirement that will enable OS/2 to participate in government procure­
ment. Multimedia applications will take advantage of the flexible and robust foundation 
of OS/2, and will allow users to interact with the system using integrated audio and vi­
sual media of television quality. 

TERMINOLOGY 
access control list (ACL) 
accountability 
ANSI 
application enabler 
application gateway 
AT&T Bell Laboratories 
AT&T System V 
audit trail 
authorization 
base foundation 

Berkeley 4.3BSD 
Blue Book 
Carnegie-Mellon University's Mach 
CCITT 
CD/ROM 
CITRIX Multiuser 
common application environment (CAE) 
common communications support (CCS) 
common programming interface (CPI) 
common user access (CUA) 



350 The Future 

conformance 
Corporation for Open Systems (COS) 
de facto standard 
digital video interactive (DVI) 
discretionary access control (DAC) 
DOD security level 
Family Definition Specification 
GOS IP 
Green Book 
IBMAIX 
IEEE POSIX standard 
Interactive Multimedia Association (IMA) 
interface framework 
International Standards Organization 

(ISO) 
mandatory access control (MAC) 
master/slave relationship 
Microsoft XENIX 
motif graphical user interface 
multimedia 
multiprocessor 
musical instrument digital interface 

(MIDI) 
National Computer Security Center 

(NCSC) 
object reuse 
open consensus process 
Open Software Foundation (OSF) 
open system 
Orange Book 

EXERCISES 

OSF/l 
OSI Communications Subsystem 

(OSI/CS) 
OSI security architecture 
portability 
processor interlock 
Red Book 
resource contention 
RISC 
security assurance measure 
security label 
security mechanism 
symmetric multiprocessing (SMP) 
system control program 
System V Interface Definition (SVID) 
Systems Application Architecture (SAA) 
tightly coupled 
Trusted Computer System Evaluation 

Criteria 
Trusted Network Interpretation 
UNIX 
UNIX International 
UNIX operating system 
UNIX System V, Release 4 (SVR4) 
X Consortium 
X/Open 
XI Open Portability Guide 
XPG/3 
X Windows 
Yellow Book 

12.1 Discuss the advantages and disadvantages of the open systems approach. 

12.2 Briefly explain each of the following types of standards: formal standards, de facto stan­
dards, implementation standards, and proprietary implementation standards. 

12.3 Why has UNIX evolved to such a special position of prominence in the open systems 
arena? 

12.4 Explain the roles played by each of the following consortia in the open UNIX arena: UNIX 
International, the Open Software Foundation, and X/Open. 

12.5 Discuss IBM's Systems Application Architecture (SAA). 

12.6 Explain the function of each of the following SAA interfaces: common user access (CUA), 
common programming interface (CPI), and common communications support (CCS). 



Exercises 351 

12.7 Argue why SAA may be called IBM's "internal open systems approach." Explain how 
SAA provides for connecting to external open systems. Say how crucial you believe SAA's role 
will be in the worldwide open systems arena. 

12.8 What is the fundamental difference between SAA and UNIX-based open systems? 

12.9 How does OS/2 fit into IBM's SAA strategy? 

12.10 What are the keys to increasing the portability of OS/2? 

12.11 How does porting OS/2 to RISC platforms affect OS/2's compatibility features? 

12.12 Describe the sequence of steps that would be used to port OS/2 to other processors (other 
than Intel 80X86 series) once OS/2 has been converted to 32-bit code and has been restructured. 

12.13 What features does OS/2 already provide in support of multiprocessing? 

12.14 What technical issues are significant to the evolution of a portable OS/2 to a symmetric 
multiprocessing platform? 

12.15 Distinguish between security mechanisms and security assurance measures. 

12.16 What discretionary access control (DAC) mechanisms are provided by OS/2 and CITRIX 
Multiuser? 

12.17 In the context of Orange Book security, explain the notions of accountability, object 
reuse, security labels, and mandatory access control (MAC). 

12.18 Discuss each of the following criteria described in the Orange Book security assurance 
measures: system architecture criteria, system integrity criteria, and security testing criteria. 

12.19 What is multimedia technology? What demands do multimedia applications place on the 
operating system environment? 





Bibliography 

(An84) Anderson, J., "Irresistible DOS 3.0," PC Tech Journal, Vol. 2, No. 6, December 1984, 
pp. 74-87. 

(An87) Anderson, J., "Twilight of DOS," PC Tech Journal, Vol. 5, No. 8, August 1987, pp. 
180-193. 

(An90) Andleigh, P. K., UNIX System Architecture, Englewood Cliffs, NJ: Prentice-Hall, 1990. 

(Ar83) Archer, R., "The IBM PC XT and DOS 2.00," Byte, November 1983, pp. 294-304. 

(Ar87) Armbrust, S., and T. Forgeron, "Multiple Tasks," PC Tech Journal, Vol. 5, No. 11, 
November 1987, pp. 90-106. 

(Ar87a) Armbrust, S., "Porting to OS/2," PC Tech Journal, Vol. 5, No. 11, November 1987, pp. 
140-148. 

(Ba86) Bach, M. J., The Design of the UNIX Operating System, Englewood Cliffs, NJ: 
Prentice-Hall, 1986. 

(Be86) Beley, J., and B. Preppernau (Eds.), MS-DOS Technical Reference Encyclopedia, 
Redmond, WA: Microsoft Press, 1986. 

(Be90) Berson, A., APPC: Introduction to LU6.2, New York: McGraw-Hill, 1990. 

(Br87) Brown, E.; E. Knorr; and C. Bermant, "Personal Systems Revealed," PC World, August 
1987, pp. 212-223. 

(Bu83) Burton, K., "Anatomy of a Colossus, Part II," PC Magazine, Vol. 1, No. 10, February 
1983,pp. 317-330. 

(Ca90) Cashin, J., "Open Systems Market Sees OSI Gain Speed," Software Magazine, 
February 1990, pp. 71-74. 

353 



354 Bibliography 

(Ca91) Cashin, J., "OSF's DCE Attempts To Add OSI Services," Software Magazine, March 
1991, pp. 87-90. 

(Ch88) Chang, P. Y., and W. W. Myre, "OS/2 EE Database Manager Overview and Technical 
Highlights," IBM Systems Journal, Vol. 27, No. 2, 1988, pp. 105-118. 

(Ch87) Chester, J. A., "IBM and OS/2 Take on the Clones," Infosystems, Vol. 34, No. 8, 
August 1987, pp. 34-36. 

(Ch91) Chiong, J., "UNIX Can Play a Key Role in Network Management," Computer 
Technology Review, January 1991, pp. 29-33. 

(Ch89) Christopher, K. W.; B. A. Feigenbaum; and S. 0. Saliga, The New DOS 4.0, New York: 
John Wiley & Sons, 1989. 

(Cl89) Clouse, R., "Security Technology: Standards for Trusted Systems," Unisphere, July 
1989, pp. 43-45. 

(Cl85) Claff, W. J., "Moving from the 8088 to the 80286," Byte, Vol. 10, No. 11, 1985. 

(Cl84) Clune, T.; R. Malloy; and G. M. Vose, "The IBM PC AT," Byte, October 1984, pp. 
107-111. 

(Co90) Conklin, D., OS/2 Notebook, Redmond, WA.: Microsoft Press, 1990. 

(Co88a) Cook, R. L.; F. L. Rawson III; J. A. Tunkel; and R. L. Williams, "Writing an Operating 
System/2 Application," IBM Systems Journal, Vol. 27, No. 2, 1988, pp. 134-157. 

(Cu83) Curren, L., and R. S. Shuford, "IBM's Estridge," Byte, November 1983. 

(Da89) Davis, S. R., and W. L. Rosch, "386 Multitasking Environments," PC Magazine, Vol. 
8, No. 4, February 1989, pp. 94-140. 

(De90) Deitel, H. M., Operating Systems, Second Edition, Reading, MA: Addison-Wesley, 
1990. 

(De86) Derfler, F. J., Jr., and W. Stallings, "The IBM Token Ring LAN," PC Magazine, March 
1986, pp. 197-206. 

(Du87) Duncan, R., "Character-Oriented Display Services Using OS/2's VIO Subsystem," 
Microsoft Systems Journal, Vol. 2, No. 4, September 1987, pp. 23-33. 

(Du87a) Duncan, R., "Porting MS-DOS Assembly Language Programs to the OS/2 Envi­
ronment," Microsoft Systems Journal, Vol. 2, No. 3, July 1987, pp. 9-17. 

(Du87b) Duncan, R., "OS/2 Multitasking: Exploiting the Protected Mode of the 80286," 
Microsoft Systems Journal, Vol. 2, No. 2, May 1987, pp. 27-36. 

(Du87c) Duncan, R., "OS/2 Inter-Process Communication: Semaphores, Pipes, and Queues," 
Microsoft Systems Journal, Vol. 2, No. 2, May 1987, pp. 37-50. 

(Du88) Duncan, R., "An Examination of the Dev Help API," Microsoft Systems Journal, Vol. 3, 
No. 2, March 1988, pp. 39-55. 



Bibliography 355 

(Du89) Duncan, R., "Taking a Realistic Look at DOS 4.0," PC Magazine, Vol. 8, No. 1, 
January 1989, pp. 329-334. 

(Du89a) Duncan, R., "Comparing DOS and OS/2 File Systems," PC Magazine, Vol. 8, No. 3, 
February 1989, pp. 321-332. 

(Du83) Dunford, C., "Interrupts and the IBM PC, Part I," PC Tech Journal, Vol. 1, No. 3, 
November/December 1983, pp. 173-199. 

(Ed89) Edelstein, H. A., "OS/2 Meets SQL," PC Tech Journal, Vol. 7, No. 2, February 1989, 
pp. 62-75. 

(Fa86) Fawcette, J. E., "80386: The Megabyte Manager, PC World, February 1986, pp. 
238-243. 

(Fi83) Field, T., "Installable Device Drivers for PC-DOS 2.0, Byte, November 1983, pp. 188-196. 

(Fi85) Finger, A., "IBM PC AT," Byte, May 1985, pp. 270--277. 

(Fl87) Fleig, C. P., "The Well-Connected PC," PC World, August 1987, pp. 192-199. 

(Fo86) Foard, R. M., "Multitasking Methods," PC Tech Journal, Vol. 4, No. 3, March 1986, 
pp. 49--60. 

(Ge88) Geary, M., "Converting Windows Applications for Microsoft OS/2 Presentation 
Manager," Microsoji Systems Journal, Vol. 3, No. 1, January 1988, pp. 9-30. 

(Ge87) Getts, J., "A PC Geneology," PC World, August 1987, pp. 200--205. 

(Gi87) Gillman, J., "Compatibility and Transition for MS-DOS Programs," Microsoft Systems 
Journal, Vol. 2, No. 2, May 1987, pp. 19-26. 

(Gr84) Greenberg, K., and K. Koessel, "AT: The PC's Powerful Partner," PC World, De­
cember 1984, pp. 234-250. 

(Gr86) Greenberg, K., "A Candid Conversation with William Lowe," PC World, March 1986, 
pp. 137-143. 

(Gr88) Greenberg, R. M., "Design Concepts and Considerations in Building an OS/2 Dynamic­
Link Library," Microsoft Systems Journal, Vol. 3, No. 3, May 1988, pp. 27-48. 

(Gr84a) Greene, B., "The Evolution of the iAPX 286," PC Tech Journal, Vol. 2, No. 6, 1984, 
pp. 118-136. 

(Gr91) Grimshaw, M., "LAN Interconnections Technology," Telecommunications, February 
1991, pp. 25-32. 

(Gu88) Guttman, M., "Building a Foundation for Presentation Manager," Computerworld 
Focus, June 1988, pp. 31-33. 

(Ha87) Hansen, M., and L. Sargent, "Increase the Performance of Your Programs with a Math 
Coprocessor," Microsoft Systems Journal, Vol. 2, No. 3, July 1987, pp. 59-69. 

(He88) Heller, V., "OS/2 Virtual Memory Management," Byte, Vol. 13, No. 4, April 1988, pp. 
227-233. 



356 Bibliography 

(Hi90) Hindin, E. M., "LAN APis-Getting in Touch with Network Resources," Data 
Communications, February 1990, pp. 89-95. 

(Ho84) Hoffman, T. V., "Analyzing the Advanced Technology," PC Tech Journal, Vol. 2, No. 
6, December 1984, pp. 40-56. 

(Ho90) Holliday, J.E., "Thunking 16-Bit Controls for 32-Bit Applications," IBM Personal 
Systems Developer, Summer 1990, pp. 44-54. 

(Ho87) Hoskins, J., IBM Personal System/2: A Business Perspective, New York: John Wiley 
and Sons, 1987. 

(Ia88) Iacobucci, E., OS/2 Programmer's Guide, Berkeley, CA: Osborne Mcgraw-Hill, 1988. 

(IB84) IBM Corporation, DOS Version 3.00 Technical Reference: IBM, May 1984. 

(IB85) IBM Corporation, Disk Operating System Version 3.10 User's Guide: IBM, 1985. 

(IB86) IBM Corporation, IBM RT Personal Computer Technology: IBM, 1986. 

(IB86a) IBM Corporation, Disk Operating System Version 3.20 Reference: IBM, February 1986. 

(IB87) IBM Corporation, Operating System/2 Standard Edition Users Reference: IBM, 1987. 

(IB87a) IBM Corporation, Operating System/2 Technical Reference, First Edition, Volume 1: 
IBM, 1986, 1987. 

(IB87b) IBM Corporation, Operating System/2 Technical Reference, First Edition, Volume 2: 
IBM, 1986, 1987. 

(IB87c) IBM Corporation, IBM Personal System/2 Customer Reference Guide: IBM, April 
1987. 

(IB88) IBM Corporation, Systems Application Architecture An Overview, Third Edition, File 
Number GC26-4341: IBM, February 1988. 

(IB89) IBM Corporation, OS/2 1.2 Control Program Programming Reference: IBM, 1989. 

(IB89a) IBM Corporation, OS/2 1.2 I!O Subsystems and Device Support Guide: IBM, 1989. 

(IB89b) IBM Corporation, OS/2 1.2 Programming Guide: IBM, 1989. 

(ln83) Intel Corporation, iAPX 286 Programmer's Reference Manual: Intel, 1983. 

(In86) Intel Corporation, 80386 Programmer's Reference Manual: Intel, 1986. 

(In87) Intel Corporation, 80386 Hardware Reference Manual: Intel, 1987. 

(In89) Intel Corporation, i486 Microprocessor: Intel, 1989. 

(ln89a) Intel Corporation, i860 64-bit Microprocessor Programmer's Reference Manual: Intel, 
1989. 

(In91) Intel Corporation, An Introduction to the DOS Protected Mode 1nte1face: Intel, 
1989-91. 

(Ke88) Kessler, A., "OS/2 LAN Manager Provides a Platform for Server-Based Network 
Applications," Microsoft Systems Journal, Vol. 3, No. 2, March 1988, pp. 29-38. 



Bibliography 357 

(Ki88) Killen, M., IBM: The Making (Jl the Common View, Orlando, FL: Harcourt Brace 
Jovanovich, 1988. 

(Ki90) Kirk, M. J., "Open Operating Systems," British Telecommunication Engineering, Vol. 
8, January 1990, pp. 234-243. 

(Ko88) Kogan, M. S., and F. L. Rawson, Ill, "The Design of Operating System/2," IBM 
Systems Journal, Vol. 27, No. 2, 1988, pp. 90-104. 

(Ko90) Kogan, M. S., "OS/2 2.0 Overview," IBM Personal Systems Developer, Spring 1990, 
pp. 16-22. 

(Ko90a) Kogan, M. S., "OS/2 2.0 32-Bit API," IBM Personal Systems Developer, Spring 1990, 
pp. 23-30. 

(Ko90b) Kogan, M. S., and R. Tycast, "OS/2 2.0 Tools and Program Development," IBM 
Personal Systems Developer, Spring 1990, pp. 31-35. 

(Ko85) Kolod, M., "IBM PC Disk Performance and the Interleave Factor," Byte, 1985, pp. 
283-290. 

(Kr88) Krantz, J. I.; A. M. Mizell; and R.L. Williams, OS/2 Features, Functions, and Ap­
plications, New York: John Wiley & Sons, 1988. 

(La88) Lammers, S. (Ed.), The MS-DOS Encyclopedia, Redmond, WA: Microsoft Press, 1988. 

(La83) Larson, C., "MS-DOS 2.0: An Enhanced 16-bit Operating System," Byte, November 
1983, pp. 285-290. 

(Le89) Leffler, S.; M. McKusick; M. Karels; and J. Quarterman, The Design and 
Implementation of" the 4.3BSD UNIX Operating System, Reading, MA: Addison­
Wesley, 1989. 

(Le88) Letwin, G., Inside OS/2, Redmond, WA: Microsoft Press, 1988. 

(Le88a) Letwin, G., "Dynamic Linking in OS/2," Byte, Vol. 13, No. 4, April 1988, pp. 273-280. 

(Le82) Lemmons, P., and T., Roger, "Upward Migration: A Comparison of CP/M-86 and MS­
DOS, Byte, July 1982, pp. 330-356. 

(Le87) LePage, R., "The Road to MS-DOS," Macworld, August 1987, pp. 108-113. 

(Li88) Linnell, D., "SAA: IBM's Road Map to the Future," PC Tech Journal, Vol. 6, No. 4, 
April 1988, pp. 86-105. 

(Li89a) Linnell, D., "Cooperative Communications," PC Tech Journal, Vol. 7, No. 2, February 
1989, pp. 52-61. 

(Lu84) Luhn, R., and R. Cook, "80286: Intel's Multitask Master," PC World, Vol. 2, No. 12, 
1984, 248-254. 

(Ma84) Machrone, B., "IBM Nurtures a Network," PC Magazine, Vol. 3, No. 22, November 
1984, pp 135-141. 



358 Bibliography 

(Ma88) Malloy, R., "DOS 4.0," Byte, IBM Special Edition, Fall 1988, pp. 75-78. 

(Ma85) Marrin, K., "Realtime and Multiuser Operating Systems Target IBM PC AT," Com­
puter Design, December 1985, pp. 135-143. 

(Ma86) Mashey, J. R., "What's All the Fuss About RISC?," Unix Review, February 1986, pp. 
37-50. 

(Mi84) Miller, H., "3.00 and Counting," PC World, Vol. 2, No. 11, 1984. 

(Mi90) Miller, M. J., "OS/2: The Right Stuff?," Infoworld, Vol. 12, No. 13, 1990, pp. 51-57. 

(Mi86) Mirecki, T., "Expandable Memory, PC Tech Journal, February 1986, pp. 66-82. 

(Mi88) Mizell, A. M., "Understanding Device Drivers in Operating System/2," IBM, 1988. 

(Mo91) Moad, J., "Where IS Stands on OS/2," Datamation, January 15, 1991, pp. 30-33. 

(Mo89) Morris, R.R., and W. E. Brooks, "UNIX Versus OS/2: A Graphic Comparison," PC 
Tech Journal, Vol. 7, No. 2, February 1989, pp. 106-118. 

(Mo88) Morrow, G., "The IBM Micro Channel I/0 Bus," Micro/Systems Journal, Vol. 4, No. 2, 
February 1988, pp. 18-26. 

(Ne88) Newcom, K., "The Micro Channel Versus the AT Bus," Byte, IBM Special Issue, Vol. 
13, No. 11, Fall 1988, pp. 91-98. 

(No83) Norton, P., Inside the IBM PC, Bowie, MD: Robert J. Brady, 1983. 

(No84d) Norton, P., "The Dissection of DOS 3.0," PC Magazine, Vol. 3, No. 21, October 30, 
1984, pp. 105-107. 

(Om85) O'Malley, C., "What You Should Know About MS-DOS," Personal Computing, Au­
gust, 1985, pp. 43-51. 

(Or91) Orfali, R., Harkey, D., Client-Server Programming with OS/2 Extended Edition, New 
York: Van Nostrand Reinhold, 1991. 

(Pa83) Paterson, T., "An Inside Look at MS-DOS," Byte, June 1983, pp. 230-252. 

(Pa85) Patterson, D., "Reduced Instruction Set Computers," Communications of the ACM, Vol. 
28, No. 1, 1985, pp. 8-21. 

(Pa90) Padovano, M., "Federal UNIX Means Secure UNIX. Here's How.," Systems Integra­
tion, September 1990, p. 27. 

(Pa90a) Panza, R., "Open SNA," Interoperability, Fall 1990, pp. 25-31. 

(Pe86) Petzold, C., "Enlarging the Dimensions of Memory," PC Magazine, January, 1986, pp. 
120-136. 

(Pe88) Petzold, C., "The Graphics Programming Interface: A Guide to OS/2 Presentation 
Spaces," Microsoft Systems Journal, Vol. 3, No. 3, May 1988, pp. 9-18. 

(Pe88a) Petzold, C., "Utilizing OS/2 Multithread Techniques in Presentation Manager Ap­
plications," Microsoft Systems Journal, Vol. 3, No. 2, March 1988, pp. 11-27. 



Bibliography 359 

(Pe88b) Petzold, C., "Multiple Threads Make Better OS/2 Programs," PC Magazine, Vol. 7, 
No. 12, June, 1988, pp. 289-307. 

(Pe88c) Petzold, C., "Exploring the OS/2 .EXE File," PC Magazine, Vol. 7, No. 9, May, 1988, 
pp. 329-341. 

(Pe88d) Petzold, C., "Introducing the OS/2 Presentation Manager," PC Magazine, Vol. 7, No. 
13, July 1988, pp. 379-394. 

(Pe89) Petzold, C., Programming the OS/2 Presentation Manager, Redmond, WA: Microsoft 
Press, 1989. 

(Pe90) Petzold, C., "Computing in the 1990s: Why Windows 3.0 Is Only a Short-Term So­
lution," PC Magazine, November27, 1990, pp. 469-472. 

(Ph84) Phraner, R., "The Future of UNIX on the IBM PC," Byte, 1984, pp. 59-63. 

(Qu88) Quirk, K., "Model 80 Flagship," PC Tech Joumal, Vol. 6, No. 4, April 1988, pp. 
62-73. 

(Re84) Redmond, W. J., "Managing Memory: A Guided Tour of DOS 2.0 Memory Man­
agement," PC Tech Journal, August 1984, pp. 42-62. 

(Re90) Reinhold, A.; E. Burgdorf; C. Cobleigh; and R. Kressman, "TCP/IP," IBM 
Telecommunications System Bulletin, December 1990. 

(Ro88) Rosch, W. L., "IBM's PS/2 Model 80-111: A Dream Deferred," PC Magazine, Vol. 7, 
No. 8, April 26, 1988, pp. 93-100. 

(Ro90) Rose, M. T., "Transition and Coexistence Strategies for TCP/IP to OSI," IEEE Journal 
on Selected Areas in Communications, Vol. 8, No. 1, 1990, pp. 57-66. 

(Ro84) Roskos, E., "Writing Device Drivers for MS-DOS 2.0," Byte, February 1984. 

(Ru84) Rubin, C., and K. Strehlo, "Why So Many Computers Look Like the IBM Standard," 
Personal Computing, March 1984, pp. 52-65, 182-189. 

(Ru88) Ruddell, K., "Using OS/2 Semaphores to Coordinate Concurrent Threads of Execu­
tion," Microsoft Systems Journal, Vol. 3, No. 3, May 1988, pp. 19-26. 

(Sc72) Schroeder, M. D., and J. H. Saltzer, "A Hardware Architecture for Implementating 
Protection Rings," Communications of the ACM, Vol. 15, No. 3, March 1972, pp. 
157-170. 

(Sc88) Schmitt, D. A., "Family Ties," PC Tech Journal, Vol. 6, No. 6, June 1988, pp. 
124-132. 

(Sc88a) Schmitt, D. A., "Converting DOS Programs to OS/2 Protected Mode," Micro/Systems 
Journal, Vol. 4, No. 3, March 1988, pp. 24-34. 

(Sc87) Schwartz, M., Telecommunications Networks: Protocols, Modeling and Analysis, 
Reading, MA: Addison-Wesley, 1987. 

(Se88) Seybold, A., "OS/2 Represents Future of Micro Operating Systems," High Technology 
Business, July 1988, pp. 58-59. 



360 Bibliography 

(Sh85) Shiell, J., and J. Markoff, "IBM PC Family BIOS Comparison," Byte, November 1985. 

(So87a) Somerson, P., "Personal System/2 Gives Life to a Smarter, More Agile DOS," PC 
Magazine, May, 1987, pp. 48-51. 

(So87b) Somerson, P., "DOS Lives," PC Magazine, July 1987, pp. 175-182. 

(St89) Stephenson, W. D., "Open Systems Interconnection (OSI)," IBM Telecommunications 
System Bulletin, September 1989. 

(Ta82) Taylor, R., and P. Lemmons, "Upward Migration Part 2: A Comparison of CP/M-86 
and MS-DOS," Byte, July 1982. 

(Te87) Tevanfan, A., "Architecture-Independent Virtual Memory Management for Parallel and 
Distributed Environments: The Mach Approach," Pittsburgh, PA: Carnegie-Mellon 
University, 1987. 

(Ti90) Tillman, M. A., and D. Yen, "SNA and OSI: Three Stategies for Interconnection," 
Communications of the ACM, Vol. 33, No. 2, 1990, pp. 214-224. 

(Tr88) Tropp, W., and S. Wright, "The DOS-UNIX Union," PC Tech Journal, Vol. 6, No.l, 
January 1988, pp. 78-91. 

(Ty90) Tyler, J. G., "Multiple Virtual DOS Machines: A Better DOS," IBM Personal Systems 
Developer, Spring 1990, pp. 36-44. 

(Ut86) Uttal, B., "Inside the Deal that Made Bill Gates $350,000,000," Fortune, July 21, 1986, 
pp. 23-33. 

(Va87) Valigra, L., "OS/2: Turning Off the Car to Change Gears," Microsoft Systems Journal, 
Vol. 2, No. 2, May 1987, pp. 61-66. 

(Ve87) Vellon, M., "The OS/2 Windows Presentation Manager: Microsoft Windows on the 
Future," Microsoft Systems Journal, Vol. 2, No. 2, May 1987, pp. 13-18. 

(Vi87) Vigorita, H., "Memory Addressing on the Intel 80386," Micro/Systems Journal, Vol. 3, 
No. 6, November/December 1987, pp. 18-21. 

(Wa84) Waite, M.; J. Angermeyer; and M. Noble, "Climbing Around in the DOS Directory 
Tree," PC Magazine, Vol. 3, No. 11, June, 1984, pp. 275-288. 

(We86) Weinreich, M., "A First Look at the 80386," Micro/Systems Journal, Septem-
ber/October 1986, pp. 34-37. 

(We84) Wells, P., "The 80286 Microprocessor," Byte, November 1984, pp. 231-242. 

(Wh87) White, E., and R. Gtehail, "Microsoft's New DOS," Byte, June 1987, pp. 116-126. 

(Wh90) Whitten, N., Managing Software Development Projects, New York: John Wiley & 
Sons, 1990. 



ABIOS, 252 
Absolute pathnames, 235 
Abstraction, 199 
Access bit, 45, 48, 161, 188 
Access control list, 332, 347, 348 
Access mode, 235 
Access permissions, 235 
Access rights, 33, 38 
Access-rights information, 35 
Accountability, 347 
Accumulator, 29 
Activation frame, 225 
Activation records, 30 
Active window, 272 
Address calculation, 30, 34, 51 
Address lines, 61, 67 
Address space, 7, 49, 51, 87, 95 
Address translation, 34, 47, 49, 143 
Addressing, 323 
Addressing mode, 81 
Addressing scheme, 20 
Advanced BIOS (ABIOS), 244 
Advanced Program-to-Program 

Communication (APPC), 326, 330 
Advanced Research Projects Agency 

(ARPA), 318 
Age the page, 48 
Alias, 303, 309, 310 
Aliasing, 29, 300 
Allocate-on-demand memory, 154 
All points addressable (APA), 268, 274 
Altair, 3, 4 

Index 

361 

Alt-Esc, 264 
AMD 29000, 53 
Animation, 349 
Anonymous pipe, 219, 220, 222 
Anonymous shared memory, 88 
ANSI, 339 
ANSI C, 343 
API, 86 
API abstraction, 89, 199 
API call, 96 
API calling conventions, 98 
API function requests, 125 
API pointer, 98 
Apollo NCS, 331 
APPC, 20 
APPC/LU6.2, 329 
Apple, 3, 349 
Apple Macintosh, 9, 11 
Application control service elements (ACEs), 

321 
Application enablers, 342, 343 
Application gateway, 328, 343 
Application layer, 321, 327 
Application message loop, 272, 273 
Application message queue, 273, 277 
Application program, 86 
Application program interface 

(API), 11, 12, 13, 77, 78 
Application service elements (ASEs), 321 
Arbitration levels, 64 
Arbitration of resource conflicts, 346 
Arena, 171, 175,294 



362 Index 

Arena boundary record, 173, 174 
Arena header, 158, 159, 172 
Arena record, 172 
Arena record handle, 17 4 
Arena sentinel record, 173 
Arena structure, 160, 171 
ARPAnet, 318, 326 
ARPL instruction, 40, 297 
Assembler, 4, 79, 80, 85, 118, 217, 241, 340 
Associative cache, 49 
Asynchronous, 110, 119 
Asynchronous communication 320, 331, 

332 
Asynchronous communications 

driver interface (ACDI), 329 
Asynchronous concurrent threads, 199 
Asynchronous delivery, 227 
Asynchronous event notification, 216 
Asynchronous events, 31, 111, 129 
Asynchronous 1/0, 241, 255, 256 
Asynchronous message, 271 
Asynchronous processes, 216 
AT-compatible systems, 42 
AT 80386 machines, 63 
AT&T, 341, 342 
AT&T Bell Laboratories, 340 
AT&T System V, 340 
Atomic nonpreemptible 

semaphore operations, 210 
Atomic set-and-wait operation, 205, 215 
Atomic test-and-set operation, 204 
Attributes, 238 
A20 line, 287 
A20 wrap area, 287, 294 
Audio, 349 
Audit trail, 34 7 
Authorization, 347 
Automatic data segment, 84 
Automatic semaphore operations, 201 
Auxiliary flag, 31 
Auxiliary processor, 68 
AX register, 29, 93 
B-bit, 45, 46 
Backbone, 317, 319 
Background session, 87, 94, 97, 

116, 117, 124,245,286 
"\'' character, 235 
Backward compatibility, 86 
Badge reader, 347 
Bank switches, 14 
Bank switching, 14 
Base address, 30, 45, 289 

Base address of the segment, 45, 82 
Base-addressing register, 29 
Base device driver, 241 
Base foundation of SAA, 342 
Base physical address, 28 
Base register, 95 
Base segment address, 34 
BASIC, 4, 79, 296 
Basic Input Output System (BIOS), 4, 296 
Berkeley 4.3, 340 
Berkeley UNIX, 327, 342 
Big bit, 45 
Big DOS, 13 
Bimodalcode,93,245,254,286,287,289 
Bimodal device driver, 97, 245 
Bimodal interrupt handler, 250 
Bimodal operating environment, 244 
Binary compatibility, 13, 19, 21, 94, 283, 300 
Binary image, 275 
Binary semaphore, 203 
Bindings, 79, 81, 93 
BIOS (Basic 1/0 System), 9, 18, 62, 244, 

265,283,288,291,292,293 
BIOS function calls, 15 
Bit-bit operation, 275 
Bitmap, 52, 175, 212, 274, 275, 276 
Block,8, 119,208 
Block device, 78, 90, 233, 242, 248, 250, 292 
Block device driver, 233, 234, 240, 248, 249, 

255 
Block management package (BMP), 170 
Block media, 240 
Blocked, 112 
Blocked state, 121, 123, 127, 133 
Blocked thread, 124, 127, 128, 130,205 
BlockID,204 
Blocking, 119 
Blocking device, 240 
Blocking I/0, 221 
BMP, 172, 174, 175 
Boost priority, 117 
Boosted thread, 117 
Boot, 97 
Boot cycle, 285 
Boot device, 285 
Booting, 292 
Bottom half of the device driver, 246 
Bottom halfof the kernel, 118, 119, 130 
Bound, 80, 222 
Bound range exceeded exception, 223, 225 
Boundary condition, 310 
Breakpoint, 300 



Breakpoint, exception, 44, 223, 225, 297 
Bridge, 328 
Buffer address, 288 
Buffering, 320 
Build groups, 12 
Build process, 12 
Bus, 13,61,62,64,66,242 
Bus arbitration, 64, 244 
Bus architecture, 62, 64, 66 
Bus-attached memory, 62 
Bus-attached RAM, 62 
Bus contention, 71 
Bus cycle, 66, 244 
Bus-extension slots, 61 
Bus master device, 66, 67 
Bus mastering, 243, 244 
Bus master, 64, 67, 68, 244 
Bus sharing, 63, 64 
Bus technologies, 61 
Bus topology, 324 
Bus watching, 67 
Button, 268 
BX register, 29 
Byte granular, 45, 306 
Byte-granular memory access, 303 
Byte-granular protection, 189 
Byte ordering, 327 

C, 79, 80, 81, 82, 84, 118, 123, 
225,298,309,340,345 

C run-time library, 84, 309 
Cache,35,44,52,66,67, 70,346 
Cache algorithms, 67 
Cache block, 67 
Cache coherency, 67, 68, 70, 71 
Cache consistency, 68, 71 
Cache controller, 66, 67, 68 
Cache direct-mapped, 67 
Cache flushing, 67, 68, 71 
Cache hit, 66, 67 
Cache hit ratio, 66 
Cache management, 240 
Cache memory subsystem, 67 
Cache miss, 66 
Cache subsystem, 66 
Cache system, 67 
Caching, 238 
Caching algorithm, 240 
Caching heuristic, 240 
CALL FAR instruction, 85, 93, 126, 127, 129 
Call gate, 38, 127, 129 
Call gate descriptor, 40 

Index 363 

Call gate entry point, 127 
Call gate mechanism, 126, 127 
CALL instruction, 30, 38, 46, 79, 84, 125 
CALL NEAR instruction, 129 
Callback mechanism, 269 
Calling conventions, 78 
Cards, 61 
Carnegie-Mellon University's Mach, 70, 341 
Carrier-sense, multiple access with collision 

detection (CSMA/CD), 323 
Carry flag, 31 
Casting, 85 
CCITT, 339 
CCITT V.35, 320 
CCITT X.21, 320 
CCS, 344 
CD/ROM, 233, 349 
Centralized network model, 326 
CGA, 265 
Chain of threads within the process, 120 
Channel, 244 
Channel connect, 322 
Character device, 78, 90, 233, 242, 248 
Character queue management DevHelp, 252 
Check box, 276 
Child process, 110, 111, 112, 120, 220, 237 
Child session, 264 
Circuit-switched network, 317 
Circuit-switched systems, 320 
CITRIX Multiuser, 331, 347, 348 
Clear, 201, 211 
CLI,42,51, 129,209,250,296 
Client processes, 218, 228 
Client program, 116 
Client-server computing, 220, 330 
Client window, 270 
Clipboard, 276 
Clipped, 269 
Clock, 116, 127, 132 
Clock device, 248 
Clock interrupt, 132 
Clock rate, 21 
Clock speed, 64 
Clones, 62 
CM, 330, 331 
CMD.EXE, 264 
CMOS RAM, 62, 285, 286 
Coaxial connection, 320 
Code object, 298 
Code segment, 30, 36, 85, 152, 245 
Coexistence, 327 
Collision detection, 324 



364 Index 

COM:,233 
Command chaining, 254, 255, 256 
COMMAND.COM, 77, 264, 294 
Command interpreter, 220 
Committed page, 165, 168, 184 
Common application environment (CAB), 

341 
Common communications architecture 

(CCA), 326 
Common communications support (CCS), 

343 
Common programming interface (CPI), 268, 

343 
Common user access (CUA), 268, 343 
Communication, 20, 342 
Communication card, 61 
Communication controller, 317, 324, 

330 
Communication interface, 86 
Communication Manager (CM), 329 
Communication program, 286 
COMl:, 78 
Compact model, 83 
Compaction, 89, 135, 150, 158, 161 
Compactor, 158, 159, 161 
Compartment, 347 
Compaq, 63 
Compatibility, 86, 90, 92, 97, 115, 163, 

283,286 
Compatibility BIOS (CBIOS), 244 
Compiler, 53, 80, 82, 98, 342 
Complex-instruction-set computing (CISC), 

53 
Concurrency, 87, 113 
Concurrent execution, 52, 87, 93 
Condition codes, 31 
CONFIG.SYS, 241, 294 
Conformance, 339 
Conformance testing, 341 
Congestion control, 320, 325 
Connection, 321 
Connection mode, 317 
Connection-oriented, 317, 323, 327 
Connection phase, 327 
Connectionless, 317, 323 
Connectionless datagramservice, 327 
Connectivity, 344, 345 
Connector, 61, 63 
Consensus process, 339 
Contention, 70, 324 
Context, 91, 112, 118, 119, 217 
Context r~cord, 175 

Context switch, 33, 88, 120, 124, 125, 
127, 128, 130, 161, 171, 181, 286, 
294 

Context switching, 119, 123, 124, 127, 170, 
181,245,287 

Contiguous blocks, 161 
Control, 92, 276, 343 
Control information, 320 
Control lines, 61 
Control registers, 44 
Control-transfer instructions, 30 
Control transfers, 79 
Control window, 270 
Controller, 241, 242 
Coprocessor, 53, 62, 62, 68, 223, 345 
Copy, 276 
Copy-on-write, 49, 186, 187 
Copy-on-write page, 49, 53 
Corporation for Open Systems (COS), 339 
Count field, 40 
Counter, 29 
Counting semaphore, 214 
Coupling,69 
CP/DOS, 13 
CP/DOS 1.0, 13 
CPI, 344 
CPL, 38, 41, 51 
CP/M, 3, 4, 17 
CRO, 44, 47, 53 
CRl, 44 
CR2,44 
CR3, 44, 47, 49 
Create window, 272 
Critical path, 286 
Critical section, 114, 117, 127, 200, 201, 202, 

209,210,213,217,228,250 
CS:EIP, 308 
CS:IP register combination, 30 
CS register, 38 
CS segment register, 30 
Crash, 18, 64 
Ctrl-Break, 111, 217 
Ctrl-C, 111, 217 
Ctrl-Esc, 264 
CUA,344 
Current code segment, 38 
Current directory, 235 
Current drive, 235 
Current drive structure (CDS), 236 
Current instruction pointer (CS:IP), 31, 82, 

308 
Cu:i:renWogical block unit, 235 



Current logical drive, 238 
Current privilege level (CPL), 37 
Current stack segment, 30 
Cut, 276 
ex register, 29, 224, 284 

D-bit, 45, 46 
Daemon thread, 116 
DASD,21 
Data area, 289 
Data circuit-terminating equipment (DCE), 

321,322 
Data compression, 325 
Data flow control layer, 325 
Data object, 298 
Data lines, 61 
Data link, 320 
Data link control area, 323 
Data link layer, 320, 326, 328, 343 
Data segment, 36, 37, 80, 81, 84, 245 
Data segment descriptor, 46 
Data serialization, 68 
Data sharing, 199 
Data terminal equipment (DTE), 321, 330 
Data transfer, 242, 243, 327 
Database, 20 
Database Manager (DM), 329 
Database system, 6, 12 
Datagram, 317, 322 
Datagram socket, 327 
DCE, 341, 344 
DDE link, 276 
De facto standards, 339, 340, 341 
Deadlock, 216, 227, 228 
Deadlock recovery, 207, 214, 228 
Debug exception, 225 
Debugger, 110, 112 
Debugging programs, 127 
DEC, 323, 341, 342 
Decentralized polling, 324 
Dedicated processor, 68 
Default action, 131 
Default bit, 45 
Default data segment, 30 
Defective 80286 chip, 284 
Delayed binding, 80 
Demand load segment, 157 
Demand loading, 157, 183 
Demand loading of segments, 94, 156 
Demand paged, 19 
Demand paged virtual memory, 94, 96 
Demand paging, 20, 179, 180 

Index 365 

Demand segment swapping, 89 
Deny-write, 236 
Department of Defense (DOD), 318, 346 
Deregister exception handler, 227 
Descendant, 11 l 
Descriptor, 32, 35, 49, 51, 144, 284, 289 
Descriptor base address, 303 
Descriptor cache, 35 
Descriptor management, 150, 170 
Descriptor privilege level (DPL), 37 
Descriptor table, 33, 34, 35, 150, 284 
Desktop control, 92 
Desktop manager, 92, 97, 266, 267, 268, 269, 

294,345 
Desktop window, 269 
Detached session, 263 
DevHelp, 250, 251, 252, 256, 257, 300 
DevHelp functions, 253, 254 
DevHelp router, 250, 252 
DevHelp(Block), 252, 256 
DevHelp(Lock), 251 
DevHelp(PhysToVirt), 250, 288 
DevHelp(ROMCritSection), 247, 288 
DevHelp(Run), 256 
DevHelp(SetROMVector ), 288 
DevHelp(Unlock), 251 
DevHelp(UnPhysToVirt), 288 
Device, 237 
Device abstraction, 245 
Device addressing, 242 
Device attribute flags, 248 
Device chain, 78, 248 
Device chain of DOS, 233 
Device context, 274 
Device control and status, 242, 243 
Device driver, 5, 6, 77, 78, 86, 90, 91, 93, 

115, 154,227,233,234,241,244,245,250, 
283,286, 289, 345 

Device driver file structure, 246 
Device driver header, 248 
Device driver request packet, 290 
Device driver strategy commands, 251 
Device driver strategy routine, 248, 249 
Device handle, 236 
Device-Help (DevHelp), 91, 247 
Device independence, 62 
Device-independent graphics, 14 
Device-independent 1/0, 274 
Device independent presentation space, 92 
Device-independent programming model, 10 
Device 1/0, 68, 78, 118, 288 
Device 1/0 management, 233 



366 Index 

Device-level I/0, 250, 330 
Device management, 286 
Device manager, 234 
Device service queue, 250 
DGROUP, 84 
DI register, 29 
Dialog box, 92, 268, 274, 276 
Dialog box editor, 275, 276 
Dialog-management, 12 
Digital audio, 349 
Digital Research, Inc. (DRI), 4 
Digital video interactive (DVI, 349 
Dip switches, 62, 63 
Direct mapping, 47 
Direct memory access (DMA), 68, 243 
Directories, 233, 234, 235 
Directory tree, 235 
Dirty bit, 48, 188 
Dirty page, 182, 183, 186, 188, 189 
Disable interrupt, 227, 296 
Disable signals, 217 
Disable thread switching, 114, 201 
Disabling interrupts, 8, 209 
Discardable page, 165, 180, 183, 185, 186 
Discardable segment, 146, 153, 154, 161 
Disconnection phase, 327 
Discontiguous memory, 47 
Discretionary access control (DAC), 347, 348 
Disk, 78 
Disk access performance, 242 
Disk block caching, 238 
Disk buffer, 242 
Disk controller, 241, 243 
Disk device driver, 240 
Disk frame (DF), 188 
Diskette,4,66, 77,233,234,248 
Dispatch, 91 
Dispatch cycle, 127, 130, 300 
Dispatch routine, 130 
Dispatcher, 119, 123, 124, 130, 209, 214 
Display, 31, 274 
Display buffer, 6 
Display formatting, 325 
Distributed computing environment (DCE), 

341 
Distributed cooperative processing, 342 
Distributed directory services, 341 
Distributed file services, 341 
Distributed interprocess communication, 330 
Distributed peer-to-peer network model, 324 
Distributed programs, 321 
Distributed transaction processing (DTP), 321 

Divide by 0 exception, 31, 131, 223, 225 
Divide overflow, 222 
DLL, 90, 94, 110, 111, 147, 

150, 156, 178,205,274,305 
DLL API, 125, 224 
DLL module, 89, 93, 126 
DLL read-write instance data, 177 
DMA controller, 61, 63, 66, 240, 243, 244 
DMA transfer, 244 
Document, 276, 277 
Domain, 325 
DOS, 3, 9, 77, 107, 144, 216, 217, 227, 246, 

283,290 
DOS 1.1, 5 
DOS 2.0, 16 
DOS 3.2, 13 
DOS 4.0, 10, 77, 286 
DOS 5, 13, 292 
DOS 5.0 compatibility, 97, 286 
DOS 286, 13 
DOS API, 78, 93 
DOS arena, 294 
DOS commands, 9 
DOS compatibility, 18, 86, 92, 97, 118, 241, 

249,354,263,283,290,303,345 
DOS device chain, 78 
DOS device driver, 90, 294 
DOS emulation, 292, 294 
DOS environment, 20 
DOS evolution, 6 
DOS executable (EXE) file, 82 
DOS extenders, 15, 16, 97 
DOS file I/0, 287 
DOS INT-style system calls, 52 
DOS interrupt support, 298 
DOS kernel, 77, 79, 291 
DOS link editor, 84 
DOS linker, 82 
DOS loader, 81, 83, 84 
DOS memory layout, 7 
DOS mode, 247 
DOS multitasker, 15, 16 
DOS multitasking, 290 
DOS Protected Mode Interface (DPMI), 18 
DOS session, 92, 97 
Dos shell, 267 
DOS system call, 79 
DOS system structure, 77 
DOS Technical Reference, 81 
DOS-to-OS/2 migration, 92 
Dos windowed session, 267 
DoaAddMuxWaitSem, 211 



DosAllocHuge, 147, 190 
DosAllocMem, 166, 176, 190, 310 
DosAllocSeg, 147, 148, 154, 160, 190 
DosAl/ocSharedMem, 167, 190 
DosAl/ocShrSeg, 147, 190 
DosCallNmPipe, 222 
DosCallNPipe, 221, 222 
DosC!ose, 220, 221, 222, 236, 248 
DosCloseEventSem, 211 
DosCloseMutexSem, 210 
DosCloseMuxWaitSem, 211 
DosCloseQueue, 218, 219 
DosCloseSem, 203, 206 
DosConnectNmPipe, 222 
DosConnectNPipe, 221, 222 
DosCreateCSAlias, 190 
DosCreateEventSem, 211 
DosCreateMutexSem, 210 
DosCreateMuxWaitSem, 211, 215 
DosCreateNPipe, 221, 222 
DosCreatePipe, 220, 222 
DosCreateQueue, 218, 219 
DosCreateSem, 203, 206 
DosCreateThread, 87, 113, 121, 136 
DosCW ait, 111, 136 
DosDehug, 112, 136 
DosDeleteMuxWaitSem, 211 
DosDev!OCtl, 237, 250, 264, 265, 266 
DosDisConnectNmPipe, 222 
DosDisConnectNPipe, 222 
DosDupHandle, 220, 236, 237 
DosEnterCritSec, 114, 136, 201 
DosExecPgm, 87, 89, 109, 110, 112, 113, 

120, 121, 136, 149, 156, 157, 169, 179, 
199,303, 306 

DosExit, 110, 114, 136, 227 
DosExitCritSec, 114, 201 
DosExitList, 111, 136 
DosFindClose, 238 
DosFindFirst, 238 
DosFindNext, 238 
DosFlagProcess, 217 
DosFreeMem, 167, 190 
DosFreeModule, 150, 169, 190 
DosFreeSeg, 147, 149, 190 
DosFSRamSemClear, 202, 203, 208 
DosFSRamSemRequest, 202, 203, 208 
DosGetEnv, 136 
DosGetHugeShift, 147, 190 
DosGetlnfoBlocks, 115, 136 
DosGetlnfoSeg, 115, 136 
DosGetModHandle, 190 

Index 367 

DosGetModName, 190 
DosGetNamedSharedMem, 167, 190 
DosGetPJD, 111, 136 
DosGetPPJD, 111, 136 
DosGetProcAddr, 150, 190 
DosGetPrty, 115, 136 
DosGetResource, 190 
DosGetSeg, 148, 190 
DosGetSharedMem, 167, 190 
DosGetShrSeg, 148, 190 
DosGiveSeg, 148, 190 
DosGiveSharedMem, 167, 190 
DosHoldSignal, 217, 218 
DosKillProcess, 11 I, I 14, 136, 217, 228 
DosKillThread, 114, 136 
DOSLoadModule, 89, 150, 169, 190, 199 
DosMakeNmPipe, 222 
DosMemAvail, 190 
DosMkPipe, 222 
DosMuxSemWait, 203, 208, 211 
DosOpen,221,222,235,236,237,248 
DosOpenEventSem, 211 
DosOpenMutexSem, 210 
DosOpenMuxWaitSem, 211 
DosOpenQueue, 218, 219 
DosOpenSem, 203, 206 
DosPeekNmPipe, 222 
DosPeekNPipe, 221, 222 
DosPeekQueue, 219 
DosPostEventSem, 211, 214 
DosPTrace, 112, 136 
DosPurgeQueue, 219 
DosQAppType, 190 
DosQNmPHandState, 222 
DosQNmPipelnfo, 222 
DosQNmPipeSemState, 222 
DosQueryCurrentDir, 237 
DosQueryCurrentDisk, 237 
DosQueryEventSem, 211 
DosQueryFileMode, 238 
DosQueryMem, 167, 168, 190 
DosQueryModuleHandle, 190 
DosQueryModuleName, 190 
DosQueryMutexSem, 211, 214, 216 
DosQueryMuxWaitSem, 211 
DosQueryNPHState, 222 
DosQueryNPipelnfo, 222 
DosQueryNPipeSemState, 222 
DosQueryProcAddr, 169, 190 
DosQueryQueue, 219 
DosRaiseException, 226, 227 
DosRead,220,221,222,236,237,264 



368 Index 

DosReadQueue, 219 
DosReallocHuge, 147, 190 
DosReallocSeg, 147, 190 
DosReleaseMutexSem, 211, 213, 214 
DosRequestMutexSem, 211, 213, 214, 216 
DosResetEventSem, 211, 214 
DosResumeThread, 114, 136 
DosScanEnv, 136 
DosSelect Session, 264 
DosSemClear, 202, 203, 204, 205, 208, 211 
DosSemRequest, 202, 203, 204, 205, 207, 208 
DosSemSet, 202, 203, 205, 211, 215 
DosSemSetWait, 202, 203, 215 
DosSemWait, 202, 203, 205, 208, 215 
DosSendSignal, 217 
DosSendSigna!Exception, 226, 227 
DosSetCurrentDir, 238 
DosSetCurrentDisk, 237 
DosSetFileMode, 238 
DosSetSigna!ExceptionFocus, 226, 227 
DosSetExceptionHandler, 226, 227 
DosSetFilePtr, 236 
DosSetMem, 168, 190 
DosSetNmPHandlnfo, 222 
DosSetNmPipeSem, 222 
DosSetNPHState, 222 
DosSetNPipeSem, 222 
DosSetPriority, 136 
DosSetPrty, 115, 136 
DosSetSigHandler, 217 
DosSetVec, 223, 227 
DosSizeSeg, 190 
DosStartSession, 264 
DosSubAlloc, 149, 190 
DosSubAllocMem, 168, 190 
DosSubFree, 149, 190 
DosSubFreeMem, 168, 190 
DosSubSet, 149, 190 
DosSubSetMem, 168, 190 
DosSubUnsetMem, 168, 190 
DosSuspendThread, 114, 136 
DosTransactNmPipe, 222 
DosTransactNPipe, 221, 222 
DosUnSetExceptionHandler, 226, 227 
DosUnwindException, 226, 227 
DosWait, 111 
DosWaitChild, 136 
DosWaitEventSem, 211, 214 
DosWaitMuxWaitSem, 211, 215, 216 
DosWaitNmPipe, 222 
DosWaitNPipe, 221, 222 
DosWaitThread, 114, 136 

DosWrite, 220, 221, 222, 236, 237, 264 
DosWriteQueue, 219 
Double fault exception, 223, 225, 285 
Double-linked list, 158 
DPATH configuration command, 235 
DPL, 38 
DPMI, 290, 300 
Drag-and-drop, 267 
DS register, 83, 84 
Dual protocol stacks, 328 
DX register, 29 
Dynamic data exchange (DDE), 276 
Dynamic link, 96 
Dynamic link API, 178, 189 
Dynamic link imports, 109, 157 
Dynamic link libraries (DLLs), 80, 81, 86, 89, 

96, 109, 119, 125, 144, 146, 149, 199,200 
Dynamic linking, 20, 89, 90, 93, 94, 96, 98, 

122, 125, 149, 169,308 
Dynamic links, 99 
Dynamic priority variation, 87, 115, 117 
Dynamic RAM (DRAM), 66 
Dynamic timeslicing, 96, 117 

EBCDIC/ASCII transparency, 321 
Edge-triggered interrupts, 64 
Edit menu, 276 
EFLAGS register, 50, 51 
EGA,265 
8.3 naming format, 235 
8086 emulation, 292, 295, 297 
8087 numeric coprocessor, 62 
8088 address aliasing, 29 
8088 address calculation, 29 
8088 compatibility, 53 
8088 microprocessor, 61 
8088 register set, 30 
8088 segment registers, 28 
8088 segment wrapping, 287 
80186 processor, 63 
80286 ring architecture, 88 
80286 selector format, 34 
80386 DOS compatibility, 290 
80386 page-level protection, 95 
80386 register set, 43 
80386 virtual 8086 mode, 97 
80386DX, 43 
80386SX, 43 
80387 numeric coprocessor, 53, 62, 63 
80X86, 95, 125 
80X86 gate hardware, 122 
80X86 interrupt flag, 246 



EISA, 66, 70, 129 
El'viS,97,283,290,292,300 
El'v1S emulators, 16 
Enable maskable interrupts, 130 
Emulating expanded memory, 294 
Emulation, 97 
Emulator High-level Language API 

(EHLLAPI), 329, 329, 330 
Encapsulated, 144 
End-of-interrupt (EOI) command, 129, 130 
End-user node, 317, 319, 320 
Enhanced-mode, 300 
EnterKMode, 120, 122, 130, 131, 133, 292 
Entry field, 276 
Entry point, 109 
Entry point to a procedure, 38 
Entry Systems Division (ESD), 3 
Error checking, 322 
Error detection, 321, 323, 326, 327 
Error recovery, 321, 323, 326, 327 
ES:BX, 246 
ESP register, 46 
Ethernet, 20, 320, 323, 330 
Event, 112 
Event completion, 112 
Event-driven, message-based 

I/0 architecture, 268 
Event handler, 299 
Event identifier, 133, 134, 204, 205 
Event operations, 206 
Event semaphore, 202, 210, 211, 214, 215, 

216 
Event signaling, 209 
Event synchronization semaphores, 200, 201 
Exception, 30, 31, 41, 42, 50, 94, 98, 111, 

119, 131, 199, 217, 222, 223 
Exception API, 227 
Exception architecture, 222, 224 
Exception chain, 226 
Exception dispatcher, 226 
Exception frame, 223 
Exception handler, 120, 223, 225, 226, 227 
Exception handling, 111, 114 
Exception management, 98, 225 
Exception management API, 114 
Exception stack frame, 132 
Exception vector, 222, 223 
Exclusive open mode, 236 
Exclusive system semaphore, 207, 209 
EXE file, 80, 90, 94, 99, 146, 147, 149, 151, 

154, 156, 166, 178,200,245,274,305 
EXE header, 83, 89 

EXE module, 89 
EXE offset, 98 

Index 369 

Executable (EXE) file, 80, 96, 121, 156 
Executable image, 84 
Executable program file, 109 
Execution control flags, 112 
Execution flags, 109 
Execution priority, 112, 115 
ExitKMode, 120, 123, 124, 127, 128, 130, 

131, 132, 133, 218, 292, 295, 297 
Exitlist, 114, 228 
Exitlist handler, 207, 209, 213, 219, 224, 227 
Exitlist processing, 113 
Expanded memory, 14, 51, 294 
Expanded-memory management, 15 
Expanded memory support, 97 
Expansion card, 62, 63 
Export data, 179 
Exports, 89 
Extended attributes, 235, 238 
Extended edition of OS/2, 11 
Extended memory, 15, 16, 51 
Extended memory specification (XMS), 15 
Extended strategy interface, 255, 256 
Extendibility, 8 
Extension card, 64, 68 
Extents, 238 
Extern, 81, 84 
External, 81 
External addressing path, 43 
External cache, 65, 66, 240, 255 
External data bus, 28 
External data path, 43 
External definition record, 84 
External reference, 89, 110, 156 

Factory automation, 324 
Family APl (FAPI), 13 
Family Definition Specification, 342 
Far CALL, 125, 308 
Far calls, 308 
Far Jl'v1P, 308 
Far pointer, 85 
(far) references, 84 
Far transfer, 30, 38 
Fast-safe RAJ'v1 (FSRAJ'v1) semaphores, 201, 

208,219 
FAT 8.3 naming convention, 238 
FAT file system, 4, 5, 6, 17, 90, 162, 235, 

238,240,241,288,292 
FAT partition, 238 
Fault, 41, 131, 295, 308 



370 Index 

Fault handler, 47, 119, 285 
Faulting instruction, 48, 156 
Faulting thread, 185 
Fetch performance, 244 
FIFO character stream, 220 
FIFO file, 219 
FIFO queue, 218 
File,348 
File allocation table (FAT), 4 
File descriptor, 220 
File handle, 236 
File 1/0, 237, 240 
File-level I/0, 330 
File lock, 236 
File locking, 236 
File manager, 266 
File objects, 238 
File sharing, 236 
File system, 18, 91, 94, 180, 233, 286, 287, 

292 
File system API, 233, 234, 235, 239 
File system directory structure, 235 
File system driver (FSD), 234, 238 
File system helper (FSHelp), 234 
File system name space, 220, 234, 235 
File system naming conventions, 233 
File system objects, 233, 234, 235 
File transfer, 327 
Files, 233, 234, 235 
Filter, 219, 220, 236 
First-fit allocation strategy, 160 
Fixed-high priority class, 115 
Fixed instruction length, 53 
Fixed media, 248 
Fixed page, 165, 180, 185 
Fixed segment, 145 
Fixup,98, 146, 158, 179, 180 
Fixup records, 82, 83 
FLAGs register, 31 
Flat address space, 49, 303 
Flat architecture, 49 
Flat memory model, 164, 169, 189 
Flat memory object, 121, 123 
Flat model, 95, 96, 98, 129, 164, 304, 310, 

345 
Flat 0:32 virtual addresses, 125 
Floating-point, 63 
Floating point arithmetic, 62 
Floating-point coprocessor, 68 
Floppy-disk drive, 3 
Floppy diskette, 5 
Flow control, 320 

Flush the cache, 49, 71 
Font, 274 
Font editor, 275 
Force flag, 295 
Forced-termination, 227 
Foreground boost, 117 
Foreground session, 87, 117, 245, 263, 264, 

269,271,286 
Form factor, 13, 64 
Formal international standards, 340, 344 
Formal standards, 339, 341 
FORTRAN, 80 
Forward compatibility, 305 
Four-privilege-level protected architecture, 46 
Fragment, 150 
Fragmentation, 149, 160, 168, 170, 174, 175, 

303,306 
Frame window, 270 
Frames, 320 
Framing, 323 
Free, 170, 309 
Free block, 158, 161 
Free list, 151, 160, 183, 186 
Free page count, 188 
Free page frame, 182, 183 
FS,43 
FSD, 240, 241, 255 
FSHelp, 240, 300 
FSRAM semaphore, 202, 209, 213 
FT AM (File Transfer, Access, and 

Management), 321, 328 
FTP (file transfer protocol), 327, 331 
Full-duplex, 221 
Full-screen programs, 92 
Full screen session, 263 
Fully associative cache, 67 

Gate, 38, 122 
Gate descriptor, 38, 46, 126, 130, 297 
Gated control transfers, 46 
Gates, Bill, 4 
Gateway, 317, 319, 328 
Gather-write, 240 
GDT, 88, 118, 127, 129, 144, 150, 153, 159, 

161, 164, 170,250 
GDT descriptor, 289 
General protection fault, 296, 309 
General-protection-fault handler, 297 
General protection (GP) fault 

exception, 34, 36, 37, 41, 42, 
52, 120, 126, 144, 165, 166, 
170, 185,224,225,284,290 



General registers, 29, 43 
Generic bus sharing, 64 
Generic IOCtl, 250 
GetNextRunner, 124 
Give-get, 147 
Give-get shared memory, 148, 167, 199, 200, 

272 
Global aging scheme, 188 
Global data, 91 
Global data segment, 146 
Global descriptor table (GOT), 33, 118, 126 
Global event, 295 
Global event handler, 299 
Global interrupt stack, 130 
Global map, 52 
Global program data, 81 
Global shared segments, 147 
GDTR, 33, 44 
Government OSI Profile (GOSIP), 3 I 8, 343 
GP fault, 224, 227, 228 
GP fault exception handler, 224 
Gpi, 93 
GpiBitBlt, 275 
Granularity, 306 
Granularity bit, 45 
Granularity of memory object, 303 
Graphical data, 276 
Graphical file, 276 
Graphical user interface (GUI), 6, 9, 13, 19, 

92,341,342,343 
Graphics, 18, 78 
Graphics API, 268, 274 
Graphics card, 68 
Graphics data display manager (GDDM), 268 
Graphics engine, 274 
Graphics mode, 268 
Graphics object, 274 
Group directives, 82 
Group paging, 188 
GS,43 
GTE, 318 
Guard page, 166 
Guard page allocation fault exception, 225 
Guard page exception, 225 

Half-duplex, 220, 221 
Handle, 150, 152, 236, 276 
Handle a signal, 21 7 
Handle table, 152, 153 
Handle table entry (HTE), 152, 

156, 157, 159, 160, 162 
Hang the entire system, 296 

Hard disk, 5, 6, 17, 233, 248 
Hard disk controller, 61, 241 
Hard disk drive, 241 

Index 371 

Hardware interrupt, 8, 90, 119 
Hardware interrupt handler, 246 
Hardware transparency, 67, 68 
Hardwired instruction set, 53 
Hash algorithm, 175 
Hash entry, 134 
Hash table, 175 
HDLC, 322, 323 
Heap, 149, 168, 179 
Heterogenous environment, 344 
Heterogenous system, 68 
Hewlett-Packard (HP), 341, 342 
Hidden,81,82,84 
Hidden descriptor cache, 35 
Hidden segment descriptor cache, 284 
Hierarchical directory structure, 235 
Hierarchical file-management, 5 
High-level data link control (HDLC), 320 
High-level language (HLL), 53, 79 
High memory, 286, 287 
High-performance file system (HPFS), 16, 20, 

235 
High-resolution graphics, 274 
High-resolution printer, 92 
High-speed communications device, 115 
Homogenous system, 68 
Hook, 288 
Hook a software interrupt, 297, 298 
Hook an interrupt, 9, 289 
Hook BIOS interrupt, 298 
Hook hardware interrupts, 288 
Hook page fault, 300 
Host computer, 317, 322, 324 
Host operating system, 284 
Hot key, 263, 264 
Hot-key-popup application, 7 
Housekeeping, 228 
HPFS file system, 162, 238, 241, 288, 292 
HTE, 153, 154, 159 
Huge increment, 147 
Huge model, 83 
Huge object, 147 
Huge segment, 147 
Huge shift factor, 147 
Hung system, 277 
Hybrid model, 303 

IBM, 10,21, 341, 342,349 
IBMAIX, 340 



372 Index 

IBM compatibles, 62 
IBM Graphics Data Display Manager 

(GDDM),268 
IBM POWER, 345 
IBM PC Jr., 6 
IBM PC LAN, 63 
IBM PC network, 6, 320, 323, 330 
IBM PC/AT, 6, 31, 62, 63 
IBM PC/XT, 5, 6, 62 
IBM Personal Computer (PC), 3, 6, 11, 61 
IBM POWER architecture, 53 
IBM PS/2, 3, 6, 42, 64 
IBM Research in Zurich, Switzerland, 324 
IBM 3270 Graphics Control Program (GCP), 

268 
Icon,268,274,276 
Icon editor, 275 
Icon-oriented interface, 92 
Idle list, 183, 186, 188, 189 
Idle loop, 124 
Idle page frame, 182 
Idle priority class, 116 
IDT, 130, 131,297 
IDTR register, 41, 44 
IEEE, 339, 341 
IEEE 802.2, 320, 322, 323, 326, 328, 330, 

331,343 
IEEE 802.3, 320 
IEEE 802.4, 320, 324 
IEEE 802.5, 320, 324 
IEEE 802.6, 324 
IEEE POSIX standard, 341 
Ignore a signal, 217 
Image, 274, 349 
Import data, 179 
Import record, 89 
Import table, 89, 157, 179 
Imports, 89 
Incoming thread, 124, 125 
Indefinite postponement, 216 
Independent business unit(IBU), 3 
Independent software vendor (ISV), 11 
IN instruction, 31, 52, 209 
Index, 30 
Index register, 30 
Indirect call, 310 
lnDOS, 120 
Industry standard architecture (ISA), 62 
Infinite loop, 277 
Information hiding, 78, 89, 199 
Information segments, 114 
Infoseg, 114, 115 

Inheritance , 220, 269 
Initialization mode, 250, 252 
Initialization request, 249 
Input focus, 117 
Input output protection level (IOPL), 42, 

296 
Input/output, 42 
Installable file system (IFS) architecture, 20, 

90,233,234,288,292 
Installable file system (IFS) router, 234, 

238 
Instance data, 200 
Instance data object, 298 
Instance memory, 88 
Instance segment, 146 
Instruction counter, 30 
Instruction prefixes, 46 
Instruction streams, 68 
Integrity, 19 
Integrity breaches, 228 
Intel, 288, 323, 349 
Intel 8080, 3 
Intel 8086, 283, 290, 345 
Intel8088,3,5, 13,20,28,32,62, 77,80, 144 
Intel 80286, 5, 10, 13, 17, 32, 33, 37, 38, 41, 

44,52,62, 118, 125, 144, 145, 146,290 
Intel80386, 13, 15, 18, 19,20,42,44,63,66, 

94,95, 125, 163, 182, 186,285,288,292, 
331, 345 

Intel 80486, 19, 52, 66, 68, 71, 94, 95, 125, 
163, 187, 331, 345 

Intel 80860, 53, 68 
Intel 80960, 53 
Intel 80X86-based machines, 95 
Intel 80X86 series of processors, 68, 345 
Intel 8259, 129, 130 
Intel object module format (OMF), 81 
Intel processors, 20 
Intel segment protection, 95 
Intel segmented architecture, 85 
Intelligent fonts, 20 
Intelligent I/0 subsystem, 240, 244, 245 
Intel's RMX, 5 
Interactive Multimedia Association (IMA), 

349 
Inter-device-driver communication, 248 
Inter-device-driver communications handler, 

247 
Interface framework of SAA, 342 
Interface specification, 322 
Intermediate file format, 80 
Intermediate node, 317, 319 



International Standards Organization 
(ISO), 318 

Internet control message protocol 
(ICMP), 326, 327 

Internet layer, 326 
Internetwork connection, 318, 326 
Internetwork routing, 320 
Internetwork routing and addressing, 326 
Internetworking, 328, 340 
Interoperability, 318, 328, 339, 340 
Interpreter, 4 
Interprocess communication (IPC), 18, 69, 86, 

87,88,90,94,98, 108, 117, 118, 126, 148, 
199,217,218,228,327,349 

Interrupt, 7, 8, 30, 31, 41, 42, 50, 61, 90, 117, 
129,205,209,245,277,292 

Interrupt controller, 129, 246 
Interrupt descriptor table (IDT), 41, 130 
Interrupt dispatch latency, 130 
Interrupt driven, 87 
Interrupt driven devices 243, 250 
Interrupt-driven 1/0, 61 
Interrupt entry point, 290 
Interrupt flag, 52, 129, 296, 299 
Interrupt gate, 38, 41 
Interrupt handler, 31, 64, 129, 130, 246, 297 
Interrupt levels, 61, 130 
Interrupt line, 64 
Interrupt management, 118, 286 
Interrupt management DevHelp, 252 
Interrupt manager, 119, 129, 130, 289 
Interrupt manager's dispatch routine, 130 
Interrupt mode, 130, 133, 152, 246, 299 
Interrupt number, 8, 130 
Interrupt processing, 120 
Interrupt routine, 90 
Interrupt sharing, 63, 64 
Interrupt stack, 246, 298 
Interrupt stack frame, 297 
Interrupt table, 129, 130 
Interrupt table shadowing, 288 
Interrupt vector table (IVT), 8, 31, 227, 288 

289,294,296 
Interrupted code, 228 
Interrupted context, 130 
Interrupts disabled, 41, 130 
Interrupts enabled, 41, 124 
Interthread communication, 113 
IN, 296 
INT, 296 
INT instruction, 9, 31, 51 
INT 3, 296, 297 

Index 373 

INT 3 breakpoint instruction, 131 
INT 21, 287 
INTO, 296, 297 
INTO overflow exception, 223, 225 
In-use page frame, 182 
Invalid-opcode exception, 131, 222, 223, 225 
Invalid page, 165, 180, 185 
Invalid TSS exception, 223, 225 
Inversion, 274 
1/0, 90 
1/0-address space, 31, 42, 52 
I/O address space instruction, 52 
I/0 boost, 117 
I/O buffer, 240, 250, 255 
I/O buffer address, 246 
1/0 cache, 240 
I/0 command chain, 240 
I/0 control, 8, 18 
I/0 device, 8, 50 
I/O device sharing, 87 
I/O instruction, 24 3 
I/0 instruction trap, 295 
I/0 management, 6, 8 
I/0-mapped device, 243 
1/0-mapping, 243 
1/0 notification field, 256 
I/O operations, 29 
1/0 path length, 240 
I/0 permission bit map, 52 
1/0 permission map (IOPM), 292, 294 
1/0 port, 77, 243, 285, 292, 296, 298 
1/0 port address, 52 
I/0 privilege level (IOPL), 51, 52 
I/0 processing, 69 
I/0 processor, 245 
I/0 protection, 31 
I/0 request, 91 
I/O sensitive instructions, 295, 296, 299 
I/0 subsystem architecture, 265 
I/0 trap, 300 
IOPL, 52, 209, 299 
IOPL segment, 209, 265, 274 
IOPL-sensitive instruction, 296 
IP register, 30, 327 
IPC, 218, 327 
IRET, 296 
lRET frame, 297, 300 
IRET instruction, 31, 32, 51, 218, 223 
ISA bus, 64 
ISDN (Integrated Services Digital 

Network), 320 
ISO, 339 



374 Index 

IVT, 41 

IMP, 30, 38 
Job scheduling, 69 

Kbd,83,265 
Kerberos (user authentification), 327, 331 
Kernel, 77, 79,86,88,90,93, 107, 108, 109, 

117, 126, 286 
Kernel memory, 169 
Kernel memory allocators, 170 
Kernel mode, 120, 121, 122, 125, 127, 128, 

130, 133, 143, 152, 171, 205, 208, 210, 
238,246,250,299 

Kernel process context, 120 
Kernel space, 120, 123, 127,205, 209, 250 
Kernel stack, 121, 122, 123, 124, 125, 127, 

128, 132 
Kernel system call, 127 
Kernel thread context, 121 
Kernel trap manager, 223, 226, 295 
Keyboard, 78, 117,233,237 
Keyboard (KBD), 233 
Keyboard controller, 241, 242, 285 
Keyboard focus, 272 
Keyboard input, 273 
Keyboard layout, 343 
Keyboard subsystem, 264 

LAN,5 
LAN API, 330 
LAN manager, 20 
LAN requestor, 330, 331 
LAN server, 330, 331 
LAN superserver, 345 
Language tool, 309 
LAPB, 320 
Large model, 83 
Last-in-first-out (LIFO) data object, 80 
Layer, 319 
Layer I, 320 
Layer 2, 320 
Layer 3, 320, 328 
Layer4, 320 
Layer 5, 321 
Layer 6, 321 
Layer 7, 321 
Layered network architecture, 318, 319 
Layering of the DOS system, 77 
Lazy allocation, 180 
Lazy page allocation, 53 
Lazy page copying, 300 

Lazy parameter validation, 131, 224, 225 
Lazy segment allocation, 154 
Lazy write, 240 
LDGT, 297 
LDT, 50, 88, 95, 144, 146, 148, 151, 153, 

166,203,301 
LDT bitmap, 151, 152 
LDT selector, 147, 206, 304, 306 
LDT tiling, 97, 303, 304, 305, 306, 309, 310 
LDT tiling with private code packing, 306 
LDTR, 33, 44 
Least recently used (LRU), 161 
Level-triggered interrupts, 64 
LIBP ATH configuration command, 235 
Librarian, 80 
Library, 80 
Library (LIB) files, 80 
Library of bindings, 93 
LIFO queue, 218 
LIM expanded memory, 61 
Limit checking, 36 
Limit protection, 303 
Line,274 
Line-oriented command processor, 9 
Linear address, 44, 47, 50 
Linear address aliasing, 309 
Linear address space, 50, 51, 95, 164, 181, 

301 
Link access procedures balanced (LAPB), 322 
Link editor, 4, 80, 98 
Link stations, 323 
Linkage conventions, 78 
Linker,53, 82, 83, 84, 85,89 
List box, 276 
Lithium battery, 62 
LLDT, 297 
Load file, 157 
Load time, 305 
Load-time dynamic linking, 89 
Load-time memory, 149 
Load-time shared memory, 199, 200 
LOADALL, 284, 288 
Loader,80,81,82,83,84,89, 150, 156, 157, 

160, 178 
Loader block number, 183 
Loading, 78 
Local area network (LAN), 17, 95, 317 
Local descriptor table (LDT), 33, 109 
Local event, 295 
Local infoseg, 114 
Local memory, 71, 200 
Lock, 150, 180 



Lock count, 152, 159, 174, 183 
Lock field, 154 
Locked I/0 buffer, 250 
Locking memory, 256 
Logical block number, 256 
Logical block unit, 233, 234, 240, 248 
Logical device, 87 
Logical device name, 78 
Logical display, 263 
Logical drive, 235 
Logical driver, 233 
Logical file pointer, 236, 237 
Logical keyboard, 87, 263 
Logical keyboard management, 94 
Logical keyboard queue, 265 
Logical link control (LLC), 320, 323 
Logical mouse, 87, 263 
Logical mouse event queue, 266 
Logical mouse management, 94 
Logical sector, 240 
Logical segment, 81, 82, 84 
Logical units (LUs), 324 
Logical video buffer, 87, 265, 268 
Logical video management, 94 
Long file object names, 238 
Longjump, 225 
Loop operations, 29 
Loosely-coupled multiprocessor, 69 
Lotus, 16, 349 
Lotus/Intel/Microsoft expanded memory 

specification (LIM EMS), 15 
Low memory, 286 
Lower layers, 320 
LPT:, 233 
LPTl:, 78 
LRU, 183, 186, 187, 188 
LU services manager, 325 
LU6.2, 20, 326, 330, 343 
LU-to-LU session, 325 

Mach, 70, 341 
Machine status word (MSW), 32 
Macintosh, 9, 11 
Macromind, 349 
Magnetic resonance and electrical emission, 

346 
Mail, 317 
Mailbox, 218, 273 
Mailslots, 330 
Main, 84 
Main window, 269 
Mainframes, 3 

Index 375 

Malloc, 170,309 
Mandatory access control (MAC), 347 
Mark, 276 
Maskable interrupts, 129 
Master, 62 
Master file table (MFT) entry, 236 
Master/slave, 69 
Master/slave hierarchies, 324 
Master-slave relationship, 114 
Master the bus, 64 
Maximum interrupt disable time, 115 
Maximum segment size, 32 
MAXW AIT keyword in the CONFIG.SYS 

file, 117 
Medium access control (MAC), 323 
Medium model, 83 
MemMapMTE, 153 
Memory, 61 
Memory addressability, 28 
Memory addressing, 49 
Memory aging algorithms, 96 
Memory allocation, 160 
Memory architecture, 28, 32, 44 
Memory card, 62, 63 
Memory handle, 154 
Memory management, 6, 20, 78, 86, 88, 90, 

94,95, 118, 124,346 
Memory management API, 189 
Memory management DevHelp, 252 
Memory management unit (MMU), 35, 143 
Memory-mapped devices 31, 52, 62, 243 
Memory-mapped I/0 , 3 I 
Memory-mapped 1/0 buffer, 68 
Memory-mapped l/0 device, 6, 51, 182, 298, 

300 
Memory mapping, 243 
Memory-mapping hardware, 14, 120 
Memory object, 95, 98, 99, 109, 145, 147, 153 
Memory object handle, 153, 154 
Memory overcommit, 88 
Memory pool, 149 
Memory protection, 7, 31, 32, 95, 109, 189 
Memory sharing, 126, 148 
Memory-stressed condition, 96 
Memory suballocation, 149 
Memory suballocation API, 168, 219 
Memory tiling, 289 
Memory-to-memory transfers of data, 30 
MemUnmapMTE, 153 
Menu,274 
Menu bar, 271 
Message, 268 



376 Index 

Message-based architecture, 277 
Message-based I/0 architecture, 271 
Message passing, 69, 276 
Message queue, 268, 269, 271, 272, 276, 277 
Message router component , 271 
Message routing, 269 
Metafile, 275 
Method, 269 
Metropolitan Area Network (MAN), 323, 324 
Micro Channel Architecture, 13, 63, 64, 66, 

67, 70,244 
Microcode, 53 
Microprocessor, 3 
Microsoft, 4, 10, 21 
Microsoft's LAN Manager, 329 
Microsoft's XENIX, 5, 340 
Microsoft Windows, 14, 268, 276, 277 
Microsoft Windows Graphics 

Device Interface (GDI), 268 
Migration, 13, 90, 327, 328 
Minicomputers, 3 
Minimize-maximize button, 270 
MIPS, 53 
MIPS RISC, 345 
MIT, 342 
Mixed Object Document Control Architecture 

(MODCA), 275 
Mode-sensitive virtual address, 288 
Mode-switching, 13, 16, 32, 93, 245, 246, 
250,254,283,285,286,288,290 
Model 25, 13 
Model 50, 13 
Model 50Z, 13 
Model 60, 13 
Model 80, 13 
Model 90, 66 
Module name, 89 
Module table entry (MTE), 121 
More, 219 
Most trusted privilege level, 127 
Motherboard, 61 
Motif, 341, 342 
Mou,93,265 
Mouse, 10, 78, 117,237 
Mouse (MOU), 233 
Mouse-ahead, 277 
Mouse device driver, 266 
Mouse input, 273 
Mouse message, 272 
Mouse subsystem, 263 
MOY, 31 
MRU (most-recently-used), 183 

MSW,44 
MT-DOS, 10, 13 
MTE, 153, 158, 174, 177, 179 
MTE handle, 154, 156, 157, 174, 179, 186 
MTE pseudo object, 179 
Multilevel priority structure, 116 
Multimedia, 339, 349 
Multimedia extensions, 349 
Multiple DOS sessions, 20, 94 
Multiple instruction streams, 68 
Multiple virtual DOS machine (MVDM), 

291 
Multiplexing, 321, 325 
Multiprocessing, 339 
Multiprocessor, 64, 68, 113, 163, 210 
Multiprocessor system, 69 
Multiprogram, 8 
Multiprogramming, 35 
Multitasking, 6, 8, 14, 16, 19, 20, 31, 86, 87, 

94, 96, 107, 118, 119, 199, 238, 241, 243, I 
276,277 

Multitasking API, 96, 98 
Multitasking API calls, 136 
Multitasking DOS, 10, 42 
Multitasking model, 107 
Multitasking operating system, 68 
Multithread process model, 87, 112, 113 
Multithreaded operating system, 68 
MultiuserOS/2, 317, 332 
Musical instrument digital interface (MIDI), 

349 
Mutex, 202, 206 
Mutex operation, 205, 207 
Mutex semaphore, 210, 213, 214, 215, 216 
Mutual exclusion (mutex), 114, 201, 209 
Mutual exclusion semaphores, 200, 201, 210, 

211 
Mutually exclusive access, 114, 200 
Muxwait, 201 
Muxwait list, 208, 211, 215, 216 
Muxwait semaphore, 208, 210, 211, 215 
MVDM, 292, 293, 296 
MVDM kernel, 295, 297, 300 
MYS, 3, 329, 330, 342 

Named pipe, 199, 219, 220, 221, 222, 235, 
327,330 

Named shared memory, 88, 147, 167, 199, 
200 

Named shared segment, 148 
National Computer Security Center (NCSC), 

346 



NCR, 349 
NCS, 331 
Near CALL, 125, 308 
Near transfer, 30, 38 
Nested interrupt, 130 
NetBIOS, 63, 292, 321, 327, 330 
Network, 317 
Network addressable units (NAUs), 

324 
Network device driver, 330 
Network File System (NFS), 327, 331 
Network redirector, 291, 321, 330 
Network layer, 320, 326, 328 
Network management, 343 
Network-level protocols, 318, 319 
Network performance, 324 
Network redirector, 221 
Network topology, 317 
Network traffic, 324 
NFS (network file system), 327 
No remote memory access (NORMA) 

multiprocessors, 69, 70 
Node, 317 
Nonblocking I/O, 221 
Noncacheable memory, 67, 68 
Nonexclusive system semaphore, 209 
Nonlocal goto operation, 225 
Nonmaskable interrupt (NMI) exception, 223, 

225 
Nonmaskable interrupts, 129 
Non-message-queue thread, 277 
Nonportable, 20, 21, 42 
Nonportable programming constructs, 189 
Nonpreemptible, 130, 132, 276 
Nonpreemptible OS/2 kernel, 152 
Nonproprietary, 340 
Nonprotected real-mode, 42 
Nonqueued message, 273 
Nonrecoverable exception, 228 
Nonreentrant, 16 
Nontiled object, 306 

(NUMA) multiprocessor, 70 
Not-present PTE, 184 
Notebook, 270 
Novell Netware, 329 
NPX error, exception 222, 223, 225 
NPX not available exception, 223, 225 
Nucleus, 118 
Null pointer (0) reference, 179 
NUMA, 70 
Numeric coprocessor (NPX) not available, 

222 

Index 377 

Object, 269 
Object (OBJ) file, 80, 82, 83, 84 
Object handle, 184 
Object inheritance, 269 
Object management, 152, 174 
Object module. 81, 82, 84 
Object module fonnat, 81 
Object name, 89 
Object oriented, 268 
Object-oriented action paradigm, 267 
Object-oriented environment, 95 
Object-oriented programming (OOP), 260 
Object record, 174, 179 
Object-relative page number, 184 
Object reuse, 347 
Object table, 179 
Offset, 28, 30, 34, 38, 47 
Offset register, 95, 123 
OMF,98 
On-chip cache, 52, 53 
Open consensus process, 339, 340 
Open count, 212 
Open file handle, 112, 120 
Open-file-handle inheritance, 220 
Open file pointer, 157, 179 
Open file table, 220, 236 
Open flag, 236 
Open mode, 235 
Open Network Computing (ONC), 341 
Open operating system, 340, 342 
Open shared semaphore bitmap, 212 
Open Software Foundation (OSF), 11, 340, 

341,342 
Open system semaphore table, 206 
Open systems, 11, 21, 318, 339, 340, 344, 

345,346 
Open Systems Interconnection (OSI) 

reference model, 318 
Operating system architectural dependence, 

81 
Operational loop of the system, 120 
Optical disk, 233 
Optical media, 17 
Orange Book, 346, 347, 348 
Ordinal number, 79, 89 
OSF/l, 341, 342 
OSI,317,324,326,327,328,339,340,343, 

344 
OSI Communications Subsystem (OSI/CS), 

343 
OSI reference model, 319 
OSI security architecture, 346 



378 Index 

OSI transport protocol (OSI TP), 321 
OS/2, 3, 81 
OS/2 1.0, 13, 16 
OS/2 1.0 Standard Edition, 13 
OS/2 1.1, 13, 14, 16 
OS/2 1.3, 286 
OS/2 l .X, 86, 95 
OS/2 1.X API, 93 
OS/2 l.X memory management API, 146 
OS/2 1.2, 16, 17, 19 
OS/2 1.3, 17, 18 
OS/2 2.0, 19, 20, 21 
OS/2 2.X, 94 
OS/400, 342 
OS/2 context switch model, 125 
OS/2 device driver, 90 
OS/2 dispatcher, 123 
OS/2 evolution, 20 
OS/2 Extended Edition (EE), 11, 329, 330, 

342 
OS/2 file system architecture, 91 
OS/2 history, 10 
OS/2 1/0 architecture, 91 
OS/2 kernel. 93, 286, 292 
OS/2 LAN, 347 
OS/2 linker, 89 
OS/2 memory manager, 88 
OS/2 multithreaded process model, 113 
OS/2 process, 33 
OS/2 protected-mode application, 283 
OS/2 standard edition (SE), 11 
OS/2 system structure, 86 
OUT instruction, 31, 52, 209, 296 
Outgoing thread, 124, 125 
Output devices, 10 
Overcommit, 180, 183 
Overcommit accounting, 150, 154, 184 
Overcommit calculations, 185 
Overcommitment, 96 
Overflow, 222 
Overlapped asynchronous 1/0, 241 
Overlapping 1/0, 91, 113, 238 
Overlay, 7 
Overrides, 46 
Owner died notification, 207, 214 
Owner died recovery cycle, 207 
Owner died tennination processing, 214 

Packet, 317, 323 
Packet addressing, 320 
Packet-switched network, 317, 320, 327 
Packet-switched WAN, 330 

Packet-switching, 318 
Page,46,95,98,99 
Page ager, 183, 187 
Page boundaries, 95 
Page directory, 47, 180, 181, 294 
Page directory base register (PDBR), 44, 49 
Page directory entries (PDEs), 180 
Page fault, 300 
Page fault, exception 44, 51, 131, 179, 180, 

182, 183, 184, 185, 186, 187, 225 
Page fault handler, 186 
Page frame (PF), 47, 179, 181, 182 
Page frame array, 180 
Page-granular, 165, 306 
Page-granular protection, 189, 310 
Page granularity, 96 
Page-in, 241 
Page-level protection, 49, 53, 165 
Page manager, 169, 178, 179, 180, 181, 182, 

183, 185, 187,309 
Page-out, 241 
Page protection attributes, 51 
Page replacement, 182 
Page sharing, 185 
Page structure, 187, 188 
Page swapper, 160 
Page swapper 1/0, 241 
Page swapping, 188 
Pagetable,47,48,49,50, 95, 109, 164, 166, 

171, 180, 181, 185, 188,290,294 
Page table allocation, 185 
Page table entry (PTE), 47, 48, 180, 182, 294 
Page table map, 179 
Page translation, 125 
Paged architecture, 43 
Paged linear address translation, 48 
Paged memory management unit (PMMU), 15 
Paged virtual address translation, 44 
Paging, 15,44,46,49,50,51,52,94,96,97, 

245,290,292,303 
Paging data structures, 49 
Paging enabled, 303 
Paging registers, 125 
Paint a window, 274 
Paragraph granular, 29 
Parallel applications, 113 
Parallel controller, 66 
Parallel port, 61, 233 
Parallelism, 87, 113 
Parameter passing, 30, 79 
Parameter validation, 126 
Parameters, 79 



Parent directory, 235 
Parent process, 110, 111, 112, 120, 220, 237 
Parity flag, 31 
Passing parameters, 118 
Password, 347 
Paste, 276 
PATH, 235 
Path control layer, 325 
Path management, 320 
Pathnames, 235 
Patterned area, 27 4 
PC-I, 61, 62, 64 
PC/AT, 5, 64, 288 
PC/XT, 5 
PDD, 299 
PDD-VDD communication, 300 
Peer, 69 
Peer-processes, 148, 218 
Peer processing, 346 
Peer-to-peer distributed application protocol, 

343 
Peer-to-peer distributed computing, 326 
Peer workstation, 324 
Pending signal, 127 
Performance, 307, 328 
"."character, 235 
" .. "character, 235 
Peripheral device, 31, 61, 77 
Peripheral processor, 68 
Per-process entry points, 113 
Per-process information, 114 
Personal computer, 61, 339 
Per-task data area (PTDA), 120, 121 
Per-VDM memory area, 294 
PF array, 188 
PF free list, 183 
PF reference count, 185, 186, 188 
Physical address space, 143 
Physical addresses, 28, 32, 44, 47, 153, 250, 

283 
Physical allocator, 15 8, 160 
Physical arena, 159 
Physical device driver (PDD), 97, 254, 298 
Physical identification device, 347 
Physical layer, 320, 326 
Physical media, 319, 320 
Physical medium, 320 
Physical memory, 13, 48, 143 
Physical-memory barrier, 14 
Physical memory manager, 150, 154, 156, 

158, 159, 161 
Physical memory map, 158 

Physical segments, 82 
Physical units (PUs)324 
Physical video buffer, 265 
Picture, 275 
PIO, 109, Ill, 113, 199,217 
Pinning, 180 

Index 379 

Pipe, 108,201,219,220,236,237 
Pipe handle, 221, 222 
Pipe mode, 221 
Pipelined architecture, 53 
Pipelined instruction execution, 53 
Pipes API, 222 
Pixel, 274, 275 
Pixel resolution, 275 
Planar, 61, 62, 64, 66 
Plotter, 274 
PM,20,98,276,330,345 
PMAPI, 93 
PM device-independent graphics architecture, 

274 
PM object, 276 
PM session, 92, 266 
PM system event queue, 277 
PM toolkit, 275 
Point-to-point synchronous circuit 

transmission, 322 
Pointer, 309 
Pointer aliases, 85 
Pointer arithmetic, 85 
Pointer conversion, 307, 309 
Pointer-parameter conversion, 308 
Polled device, 243, 247 
Polling, 8, 124 
POP, 30,46 
Pop-up window, 276 
POPF, 296 
Port, 19, 31, 340 
Port address, 52 
Port-based I/0, 52 
Portable, 19,21,31,94,95,98, 189,209,210, 

344,346 
Portable programming model, 95 
Portability, 11, 20, 21, 96, 98, 118, 163, 224, 

339 
Porting, 3, 19 
Post, 211 
POST (power-on self-test), 286 
Post count, 214 
Postal system, 317 
Postreflection hook, 297 
POWER architecture, 53 
Power-on-self-test (POST), 62, 285 



380 Index 

Preemptible, 130, 346 
Preemptible thread, 120 
Preemption, 88, 117, 132, 134, 135, 247, 276, 

288 
Preemption policy, 130 
Preemptive multitasking system, 87 
Preemptive rescheduling cycle, 130 
Prefetch instruction queue, 244 
Preload segment, 157, 158 
Prereflection hook, 297 
Present bit, 35, 47 
Present swappable segment, 154 
Presentation driver, 274 
Presentation graphics, 94 
Presentation layer, 321 
Presentation management, 263 
Presentation manager (PM), 12, 14, 16, 20, 

92,263,267,301 
Presentation services layer, 325 
Presentation space, 274 
Primary memory, 143 
Print server, 330 
Print spooler, 7, 8 
Printer, 7, 78, 92, 274, 317 
Printer device, 78 
Printer device driver, 237 
Priority, 87 
Priority boosts, 117 
Priority classes, 115 
Priority levels, 115 
Priority queue, 218 
Private address private storage object, 176 
Private address shared storage object, 176, 

177 
Private arena, 171, 175, 294 
Private channel, 317 
Private code packing, 306, 307 
Private memory, 147, 166, 203 
Private segment, 147, 151 
Private selector, 146, 152, 304 
Private semaphore, 210, 212 
Private semaphore array, 212 
Private window class, 269 
Privilege, 35 
Privilege level 0, 90, 118, 120, 121, 126, 128, 

129, 130, 144, 162, 164, 170, 171, 187,238, 
241. 285, 297 

Privilege level 2, 119, 130, 187, 209, 265, 296 
Privilege level 3, 119, 126, 130, 170, 290, 297 
Privilege level architecture, 120 
Privilege level transitions, 124, 125 
Privilege levels, 36, 37, 38 

Privileged instruction, 41 
PRN:, 78 
Problem report, 12 
ProcBlock, 124, 127, 131, 133, 204, 

209 
ProcBlock calling sequence, 134 
Process,33, 39,87,96, 108, 112 
Process address space, 95, 111 
Process control, 111 
Process creation, 109, 220 
Process hierarchy, 110, 221, 264 
Process identifier (PID), 108, 111, 115 
Process information block (PIB), 115 
Process layout, 108 
Process management, 33 
Process management DevHelp, 252 
Process memory, 200 
Process subtree, 111 
Process termination, 110, 111, 114, 185,210, 

213,217,227 
Process termination exception, 114, 225 
Process-termination (exitlist) handler, 111 
Process-termination notification, 111 
Process tree, 110, 217 
Process virtual address space, 108, 109, 119, 

120, 121, 125, 143, 170 
Processes, 107 
Processor architecture, 28, 66 
Processor architecture dependence, 81 
Processor cache, 68 
Processor card, 65 
Processor complex, 66 
Processor coupling, 70 
Processor graphics array (XGA), 66 
Processor interlock, 346 
Processor modes, 46 
Processor usage, 119, 122 
Processor utilization, 96 
ProcRun, 127, 128, 130. 133, 134, 204, 205, 

209 
Productivity, 11 
Program development process, 81 
Program file, 109 
Program loader, 109, 110 
Program manager, 269 
Program module, 80 
Program selector, 264 
Programmed I/0, 243, 244 
Proprietary implementation, 340 
Proprietary standards, 339 
Protected data access, 37 
Protected instruction, 41 



Protected mode, 5, 15, 18, 20, 32, 41, 43, 44, 
46,52,93,95, 144,284 

Protected-mode address translation, 34 
Protected-mode application, 283, 289 
Protected-mode interruptmanager, 288 
Protected mode physical device drivers 

(PDDs), 292 
Protected mode, 5, 15, 18, 20, 32, 41, 43, 44, 

46 
Protected multitasking, 5, 13, 14, 349 
Protection, 19, 20, 33, 35, 36, 77, 120, 143, 

227 
Protection check, 42 
Protection fault, 167 
Protection mechanism, 46 
Protection ring architecture, 144 
Protection violation, 42 
Protocol, 318, 319, 320, 322, 343 
Protocol stack, 319, 328, 343 
Pseudo object, 174, 175, 179 
PS/2, 13,64,66,68, 129,245,285,288,342, 

344 
PS/2 model 80, 64 
PS/2 product line. 65 
PS/2 system architecture, 65 
PTDA, 294 
PTDA handle, 177 
PTDA segment, 122, 123, 124, 153, 156, 174, 

175, 176, 181,217,222,235,236 
PTE,48,51, 181, 183, 185, 187, 188,206 
Public, 81 
Public definitions record, 84, 85 
Public window class, 269 
Pull-down menu, 92, 268 
Pure page, 99, 179 
PUSH, 30, 46 
Push button, 276 
PUSHF, 296 

Quantum, 107, 117 
Quarterdeck, 16 
Quarterdeck DesqView, 16 
Query manager, 20 
Queue,87, 108, 112, 126, 199,201,218,234 
Queue handle, 218 
Queued message, 273 
Queueing, 126 
Queueing API, 126 

Race conditions, 90, 134, 204, 205, 209, 214, 
216 

Raise exception, 227 

Index 381 

RAM,6,62 
RAM semaphore, 201, 202, 203, 204, 205, 

206, 209, 210 
Random access, 242 
Random access network scheme, 324 
Raster device, 275 
Raster graphics, 27 4 
Raw socket 327 
Read-ahead, 255 
Read-ahead cache, 238 
Read-only access, 235 
Read-only memory (ROM), 62 
Read-only object, 166 
Read-write access, 235 
Read/write bit, 49 
Ready to run, 112, 117, 128, 130 
Real address, 32 
Real device, 52 
Real interrupt, 291 
Real interrupt flag, 296 
Realmode,5,6, 15,20,32,41,43,46,62,93, 

244,245,247,284,287,288,345 
Real-mode DOS, 18 
Real mode multitasking, 10 
Real storage address, 32 
Real-time clock, 132 
Real-time sequencing requirements, 349 
Real-time system, 324 
Real-time traffic, 324 
Recalculation, 276, 277 
Reclaimable PF, 183 
Recovery, 228 
Recursive call, 277 
Redraw window, 272 
Reduced-instruction-set computing (RISC), 

53 
Reentrant, 90, 126, 135, 200, 244, 247, 273, 

288,346 
Reference count, 179, 183, 184, 210 
Refresh system RAM, 285 
Register an event handler, 295 
Register-based calling convention, 241 
Register exception handler, 227 
Register set, 39, 112 
Registration of exception handlers, 226 
Regular arena record, 173 
Regular priority class, 115 
Relative pathname, 235 
Reliable connection, 326 
Reliability, 321 
Relocatable, 83 
Relocatable segment, 94 



382 Index 

Relocation, 82 
Remote database, 20 
Remote development, 12 
Remote procedure call (RPC), 221, 222, 331, 

341 
Removeable block media, 234 
Removable media, 248 
REP INS instruction, 243 
Request count, 208, 209, 213 
Request list, 256 
Request list entry, 256 
Request packet, 91, 246, 248, 249, 250 
Request-queue and request-packet 

management Dev Help, 252 
Requestor privilege level (RPL), 37, 40 
ReSched, 124, 127, 128, 130, 132, 135 
Reschedule cycle, 127, 128 
Reset, 211 
Reset line, 285 
Reset operations, 214 
Resetting the 80286, 285 
Resident heap, 170 
Resident page, 165 
Resize window, 272 
Resource, 274, 275 
Resource compiler, 275, 276 
Resource contention, 346 
Resource editor, 275 
Resource script, 275 
Resource sharing, 90 
Resume, 114 
RET, 38 
RET FAR instruction, 127, 128 
RETF instruction, 308 
Return code, 79 
Return receipt, 218 
Ring, 187 
Ring 0, 38, 41, 88, 296, 298 
Ring 2, 40, 41, 88, 274 
Ring 3, 38, 40, 88 
Ring architecture, 88 
Ring architecture of the 80286, 118 
Ring protection model, 37 
Ring topology, 324 
Ring transition, 40 
Rings of protection, 36 
RISC, 21, 163, 345 
RISC processor, 68 
RISC System/6000, 53 
ROM BIOS, 51, 77, 78, 244, 247, 285, 289 
ROM BIOS data area, 290, 294 
ROM BIOS handler, 247, 255 

Root directory, 235 
Root of the process tree, 110 
Round-robin scheduling, 87, 115, 116 
Route keyboard input to window, 272 
Router, 328 
Routing, 318, 320, 325 
Routing of interrupt, 299 
RPL,41 
RS232-C (CCITT V.24), 320 
RT/PC, 342 
Run-time dynamic linking, 89 
Run-time libraries, 81, 83 
Run-time memory, 149 
Run-time shared memory, 199 
Runnable thread, 214 
Running, 112 
Running state, 127 
Runtime, 305 

SAA, 21, 326 
SAA common application, 344 
Scatter-gather disk hardware, 189 
Scatter-gather I/0, 240, 245, 254, 255 
Scatter-gather list, 241, 255, 256 
Scatter-read, 241 
SchedClock, 132, 133, 161 
SchedNext, 124, 125, 127, 128, 133, 135 
SchedTick, 132 
Scheduler, 8, 87, 117, 119, 124, 132 
Scheduling, 107, 115, 122 
Scheduling algorithm, 116, 117 
Scheduling priority, 87 
SCP-DOS,4 
Screen group, 263 
Screen switch, 294 
Scroll bar, 92, 268, 271 
SCSI, 245, 255 
SCTE, 163 
SDLC data link control protocol, 330, 343 
Secondary storage, 80, 238 
Secret, 347 
Sector, 242, 250 
Security, 227, 339, 341, 346 
Security assurance measures, 346, 347, 348 
Security auditing, 332 
Security label, 347 
Security mechanism, 346, 347 
Segment, 20, 28, 30, 32, 49, 80, 82, 95, 98, 

99, 121, 144 
Segment address translation, 44, 47, 49 
Segment alias, 303 
Segment arithmetic, 283 



Segment base address, 32 
Segment descriptor, 35 
Segment descriptor cache, 49 
Segment fixups, 94 
Segment granularity, 96 
Segment limit field, 32, 36, 45 
Segment-limit protection, 170 
Segment motion, l 46, 161 
Segment-not-present exception, 223, 224, 225 
Segment-not-present fault, 35, 42, 131, 150, 

154, 156, 158, 160, 162,209 
Segment:offset format, 28, 29 
Segment protection, 51, 95 
Segment register, 28, 29, 35, 37, 42, 49, 50, 

95, 125, 145, 150, 159, 171, 189,209,283, 
290 

Segment register cache, 35 
Segment-relative addresses, 82 
Segment-relative fixup, 83, 85 
Segment swapping, 96, 144, 146, 161 
Segment table, 157 
Segment table entry (STE), 157 
Segment-value arithmetic in DOS, 147 
Segmentation, 49, 83, 95, 96, 163 
Segmented address, 283 
Segmented addressing, 283 
Segmented- and flat-model programming 

environment, 302 
Segmented descriptor, 45 
Segmented memory addressing, 21, 31 
Segmented memory model, 31, 88, 144, 189 
Segmented model, 28, 43, 96, 164, 169, 304 
Segmented virtual address, 164 
Segmented virtual memory management, 42 
Selector, 33, 35, 37, 38, 49, 95, 121, 144, 148, 

289 
Selector:offset format, 33, 38, 39, 144 
Self-configuring system, 63, 66 
Self-relative, 84 
Self-relative addresses, 82 
Self-relative fixup, 82 
Semantics, 318, 321 
Semaphore, 87, 98, 108, 111, 112, 114, 117, 

120, 126, 152, 174, 199,200,201,222,228, 
234,348 

Semaphore API, 203 
Semaphore handle, 202, 203, 206, 212, 236 
Semaphore management DevHelp, 252 
Sensitive instruction, 41, 42, 50, 52 
Sensitivity label, 347 
Sequencing, 325 
Sequential access, 242 

Serial controller, 66 
Serial device, 78 
Serial port, 61, 233 
Serialization, 200 

Index 383 

Serialize access to shared structures, 90 
Serializing access to a critical section, 202 
Server, 12, 116, 330 
Server priority class, 116 
Server process, 218 
Service access points (SAPs), 319, 320 
Service tunnel, 328 
Session, 87, 107, 263, 332 
Session group, 263 
Session hierarchy, 264 
Session layer, 321 
Session management, 94 
Session manager, 294 
Session pacing, 325 
Session structure, 263 
Set,211 
Set associative cache, 67 
Set state, 201, 202 
Setjump, 225 
Sfree, 170 
Shared address object, 166 
Shared-address, private-memory object, 200 
Shared-address, private-storage object, 177 
Shared-address, shared-storage object, 177, 

178 
Shared arena, 171, 172, 173 
Shared bus, 61, 70 
Shared code, 200 
Shared descriptor, 145 
Shared interrupts, 66 
Shared libraries, 86, 88, 89, 156 
Shared memory, 69, 71, 88, 126, 144, 147, 

199,200,203,219,234,236,348 
Shared memory object, 167 
Shared resource, 107, 202 
Shared segment, 146, 147, 151 
Shared selector, 146, 151, 304 
Shared semaphore, 210, 211, 212 
Shared semaphore array, 212 
Shared semaphore structure, 213 
\SHAREMEM, 148 
Sharing mode, 235 
Shell, 18, 77 
Shutdown status, 285 
SI register, 29 
Sibling process, 110, 120 
Sibling window, 270 
SIGBREAK, 111, 217, 225, 226 



384 Index 

Sign flag, 31 
Signal, 94, 111, 113, 127, 199, 228 
Signal dispatching, 124 
Signal disposition, 217, 218 
Signal handler, 108, 111, 218, 228 
Signal vector, 217 
Signaling events, 214 
SIGINTR, 111, 217, 225, 226 
SIGTERM, 111, 113, 217, 225 
Single-cycle instruction execution, 53 
Single-hand clock algorithm, 188 
Single step exception, 223 
Single-task system, 77 
Single-thread environment, 8 
Single-thread process model, 112 
640KB barrier, 6 
64KB barrier, 19, 52, 144 
64KB restriction, 98, 118, 308 
16-bit address offsets, 46 
16-bit addresses, 46 
16-bit API, 20, 98 
16-bit bus, 43 
16-bit data path, 64 
16-bit OS/2, 16, 96, 345 
l(:i-bit segmented model, 95 
16:16 addresses, 89, 145 
16:16 format, 28 
16:16 memory model, 88 
16:16 memory reference, 34 
16-to-32 thunk, 97, 301, 307 
Sizing border, 270 
Slave, 62 
Sleep, 134, 205 
Slider, 270 
Slot, 61 
Small model, 83 
Smalloc, 170 
SMTP (simple mail transfer protocol), 327, 

328,331 
SNA, 20, 317, 320, 325, 327, 328, 330, 340, 

343,344 
SNA gateway, 329, 330, 331 
Snooping, 67 
Snoops the bus, 71 
Socket, 327 
Socket API, 331 
Software development process, 11 
Software interrupt, 7, 8, 9, 31, 62, 78, 79, 283, 

292,295,296,298 
Software interrupt reflection, 296, 297, 300 
Sort, 219 
Source-code control, 12 

Source code license, 340 
Source-code portability, 21 
Source compatibility, 283 
Source file, 81 
SP register, 46 
SPARC, 53 
Sparse object, 165 
Spawned process, 110 
Special effects, 349 
Special instructions, 77 
Special registers, 29 
Special segment, 36 
Spin button, 270 
Spinloop,8,227,296 
Spooler, 7 
Spooling,8 
Spreadsheet, 6, 276, 277 
SQL,20 
SS:BP, 123 
SS segment register, 84, 121, 123 
Stack, 30, 31, 46, 79, 80, 81, 83, 93, 112, 113, 

118,223,246 
Stack addressing, 309 
Stack-based linkages, 118 
Stack for parameter passing, 300 
Stack frame, 297, 310 
Stack-frame base pointer, 30 
Stack handler, 223 
Stack management, 308 
Stack overrun exception, 223, 225 
Stack pointer (SS:SP), 82 
Stack pointer, 39, 46, 309, 310 
Stack segment, 84 
Stack to local activation records, 30 
Stale data, 67, 71 
Standard edition, 11 
Standard implementations, 339 
Standard input device, 248 
Standard input file, 236 
Standard output device, 248 
Standard output file, 236 
Standard window, 268, 270 
Startup, 84 
Starvation boost, 117 
Static keyword, 82 
Static link libraries, 80, 81 
Static linkage, 251 
Static linking, 85, 126 
Static portion, 249 
Static RAM (SRAM), 66 
Statically linked interface, 9, 240 
Status flags, 31 



STE, 158 
Steal cycles, 61 
Stealing bus cycles, 244 
ST-506 hard disk controller, 243 
STI,42,51, 129,209,296 
STI instruction, 250 
Store and forward, 317 
Strategy entry point, 290 
Strategy routine, 90, 91, 246, 249, 250, 255 
Stream socket, 327 
String, 274 
Stub routines, 129, 130 
Stub virtual DOS kernel, 292 
Sublayer, 323 
Subroutine linkages, 30 
Subsystem Control Block (SCB), 244 
Sun Microsystems, 327, 340, 341, 342 
Sun NFS, 331 
SunOS, 340 
Sun's SPARC, 345 
Super-server, 331, 345 
Supervisor, 77, 118 
Supervisor mode, 53, 88, 187 
Supervisor page, 49 
Supervisor privilege level, 49 
Supervisor privileges, 86 
Suspend, 110, 114 
Swap cache, 163 
Swap control table (SCT), 162 
Swap device, 162, 187 
Swap file, 88, 150, 152, 153, 154, 162, 180, 

183, 185, 188, 241 
Swap I/O, 131, 188, 209 
Swap-on-write, 186, 188 
Swap-on-write page, 187 
SwapID, 154, 162, 163, 183, 185, 186, 188 
Swapln, 162 
SwapOut, 162, 163 
Swappable, 298 
Swappable heap, 170 
Swappable page, 165, 166, 180, 185, 186, 187 
Swappable segment, 145, 154, 161 
Swapped-out segment, 162 
Swapper, 88, 150, 154, 160, 162, 180, 186, 

238 
Swapper I/0, 238 
Swapper data structures, 162 
Swapping, 143, 144, 146, 161, 303 
Symmetric multiprocessing (SMP), 345, 346 
Symmetric multiprocessor, 70, 135 
Synchronization, 113, 201 
Synchronizing thread execution, 214 

Index 385 

Synchronous, 110 
Synchronous data link control (SDLC), 320, 

325 
Synchronous events, 31, 222 
Synchronous execution, 8, 42 
Synchronous I/O, 243 
Syntax, 318, 321 
System address, 170 
System arena, 171, 181,294 
System architecture criteria, 348 
System board, 5, 32, 62 
System bus, 62 
System call, 38, 78, 79, 125, I 27 
System call interpreter, 118 
System call number, 126 
System clock, 63, 116 
System configuration parameters, 114 
System control flags, 44 
System control programs, 342, 343 
System crash, 18, 64, 227 
System DLL, 204, 206 
System exception, 131, 222, 224 
System extendibility, 6 
System file table (SFT) entry, 236 
System-1/0, 233 
System input queue, 271 
System integrity, 227, 290, 306, 348, 349 
System interrupt stack, 130 
System libraries, 81 
System loader, 82 
System memory region, 170 
System menu icon, 270 
System mode, 245 
System null device, 248 
System object, 153, 156, 157, 175 
System object table, 17 4 
System planar, 244 
System-reserve exception, 225 
System ROM, 4, 6, 62, 285 
System semaphore, 201, 202, 205, 206, 207 
System semaphore structure, 207 
System service control points (SSCPs), 324 
System services DevHelp, 252 
System 6000, 342 
System software, 52 
System swapfile, 238 
System testing, 348 
System 370, 342 
System timer, 107 
System trap manager, 224 
System V, 342 
System V Interface Definition (SVID), 341 



386 Index 

System virtual address space, 120, 121, 125, 
126 

Systems Application Architecture (SAA), 
268,324,339,342,343 

Systems Network Architecture (SNA), 318, 
324 

Target address, 34 
Task, 50, 51 
Task gate, 38, 41 
Task manager, 266 
Task manager window, 269 
Task state information, 46 
Task-state segment (TSS), 39, 122, 124, 296 
Tasking, 107 
Tasking manager, 119 
Tasking register (TR), 39 
TCB, 122, 123, 134, 294 
TCP transport protocol, 321 
TCP/IP, 20, 317, 313, 321, 326, 327, 328, 

331,340,343,344 
TCReSched, 135 
TCYield, 135, 161 
TELENET (GTE), 318, 331 
TELNET (terminal emulation protocol), 327 
Terminal, 317, 322 
Terminal emulation program, 332 
Terminal emulator, 321, 330 
Terminate-and-stay-resident module, 7, 283 
Terminating process, 209 
Termination, 42 
Termination housekeeping, 228 
Termination signal, 111 
Test-and-set instruction, 201, 204 
Test-mode application, 264 
Test-mode windows, 264 
Text-mode application, 332 
32-bit address offsets, 46 
32-bit address path, 64 
32-bit addressing, 45 
32-bit API, 20, 98 
32-bit bus, 43, 64 
32-bit data path, 64 
32-bit dynamic linking, 300 
32-bit flat addressing, 98 
32-bit flat memory model, 118 
32-bit granular, 123 
32-bit 1/0, 63, 66 
32-bit linear address space, 49 
32-bit offsets, 49, 98, 121 
32-bit OS/2, 77, 96 
32-bit pointer, 49 

32-bit portable programming model, 94 
32-bit processor architectures, 19 
32-bit programming model, 19, 21, 52 
32-bit protected multitasking, 52 
3270 terminal emulation, 329 
32-to-16 thunk, 97, 301, 308, 309, 310 
Thrash, 150 
Thread, 1, 87, 91, 96, 107, 109, 111, 112, 113, 

207 
Thread context switch, 88 
Thread control, 114 
Thread control block (TCB), 121, 122 
Thread creation, 96, 112, 113 
Thread ID (TID), 113, 114 
Thread information block (TIB), 111, 115, 

226,306,307 
Thread kernel stack, 130 
Thread layout, 1 I 2 
Thread management, 98 
Thread memory, 200 
Thread 1, 217, 218 
Thread priority, 114, 119 
Thread scheduling, 346 
Thread stack, 127, 299 
Thread states, 119 
Thread swappable data (TSD), 123 
Thread switching, 114, 201 
Thread synchronization, 199, 210, 211 
Thread termination, 114 
Thunk,97,301,305,307,308,309,310 
Thunk compiler, 310 
Thunk line, 317 
Tick granularity, 132 
TID, 114 
Tightly-coupled, 346 
Tightly-coupled multiprocessor, 69, 70 
Tightly coupled master/slave relationship, 345 
Tile bit, 305 
Tile flag, 305 
Tile option, 305 
Tiled address space, 306 
Tiled descriptor, 309 
Tiled memory, 289, 305 
Tiled virtual addresses, 249 
Tiling, 298 
Time-critical priority class, 115, 117 
Time-critical thread, 115, 134, 135 
Time restraints, 115 
Timeout parameter, 202 
Timeout value, 133, 202 
Timer, 7 
Timer handler, 247 



Timer message, 273 
Timer services DevHelp, 252 
Timer tick interrupt, 8 
Timeslice, 87, 96, 107, 116, 117, 132, 133, 

202,205, 209 
Timeslice end, 117 
TIMESLICE keyword in the CONFIG.SYS 

file, 117 
Timeslicing, 107, 116, 132, 276 
Timestamp, 150, 161 
Timing, 323 
Timing constraints, 247 
TLB, 71 
TLB coherency, 7 l 
Token,324 
Token bus, 320, 323, 324 
Token ring, 320, 323, 324, 330 
Tool, 80, 84 
Top half of the device driver, 246 
Top half of the kernel, 118, 120, 121 
Top-level window, 269 
Top of the stack, 30 
Top secret, 347 
TPO~TP4,321,323,328 

TR,44 
Trace events, 127 
Transaction manager, 325 
Transaction processing, 3, 221 
Transaction program (TP), 325 
Translation lookaside buffer (TLB), 44, 49, 

70, 125, 181, 182 
Transmission control layer, 325 
Transport bridge, 328 
Transport control protocol (TCP), 327 
Transport layer, 320, 327 
Trap, 50, 51, 127, 131, 292, 299 
Trap gate, 38, 130 
Trap flag, 31 
Trap handler, 299 
Trap manager, 119, 131, 223, 224 
Trap manager dispatch routine, 131 
Trapping, 291, 296 
Tree, 235 
TRS print spooler, 8 
Trusted Computer System Evaluation 

Criteria, 346 
Trusted Network Interpretation, 346 
Trusted environment, 346 
TSD, 294 
TSS,46,292 
TSS switch, 125 
24-bit address path, 64 

TYMNET, 318 
Tymshare, 318 
Type-ahead, 277 
Type checking, 36 

UDP, 327 
UMA, 70, 71 
Unblock, 256 

Index 387 

Unblocking of threads, 119 
Uncommitted page, 165, 167 
Uniform memory access (UMA) 

multiprocessor, 70 
Uniprocessor, 61, 68, 95, 112, 113, 163 
UNIX,21, 112, 134, 163, 170,216,217,219, 

330,339,340,342,344,347 
UNIX International, 11, 340, 34 J, 342 
UNIX System V Release 4 (SVR4), 341 
Unlock, 180, 256 
Unnamed pipe, 219 
Unowned semaphore, 204 
Unprotected environment, 16, 107 
Unprotected system, 290 
Unwind exception handlers, 225, 227 
Unwind operation, 225, 227 
Upper OSI layers, 341 
Upward-compatible, 62 
User context, 127 
User datagram protocol (UDP), 327 
User-defined exception, 225 
User exception, 131, 222 
User exception handler, 132 
User identification, 347 
User interface, 339 
User interface event message, 271 
User-level protocols, 318, 319 
User memory, 210 
User mode, 119, 120, 122, 125, 126, 129, 130, 

205,208,209,219 
User mode context, 127, 128 
User-mode exception dispatcher, 132, 

226 
User mode stack, 132 
User-mode thread, 167, 225 
User mode thread stack, 125 
User object, 153, 154 
User page, 49 
User privilege level, 49 
User shell, 6, 18, 95, 266, 268 
User space, 119, 126, 127,208,226 
User stack, 122, 126, 127, 131, 200, 

225 
User/supervisor bit, 49, 51 



388 Index 

Variable-length portion, 249 
Variable-length segments, 46 
VCPI, 18, 290 
VDD, 97, 294, 295, 299 
VDD handler, 254 
VDD keyboard, 294 
VDD mouse, 294 
VDHelp, 292, 293, 295, 299 
VDM, 296, 299 
VDM address spaces, 294 
VDM breakpoint, 297 
VDM context switching, 300 
VDM 8086 instruction stream, 295 
VDM event, 295, 300 
VDM kernel, 295 
VDM management, 292 
VDM manager, 293, 298 
Vector graphics, 274 
V86 address space, 294 
V86 mode, 50, 51, 294, 296 
V86-mode stack, 297, 300 
V86 task, 52 
V86 virtual machine, 51 
Vendorindependence,339 
VGA, 265 
Video (VIO), 237 
Video API, 98 
Video buffer (VRAM), 62, 300 
Video controller, 242, 265 
Video disk, 349 
Video device driver, 265 
Video display, 92 
Video graphic array (VGA) display controller, 

64 
Video RAM (VRAM), 31, 242 
Video (VIO) subsystem, 233, 264 
Video VDD, 294 
VIO, 265 
VioAPI, 93 
VIO applications, 265 
VIO windowable application, 266 
Virtual address, 32, 153, 250 
Virtual address space, 108, 112, 113, 143, 301 
Virtual address translation, 70 
Virtual addressing, 32 
Virtual circuit, 317, 320, 322, 327 
Virtual control program interface (VCPI), 16 
Virtual device, 52 
Virtual device driver (VDD), 97, 254, 292, 

293,295,296,298,299 
Virtual device helper (VDHelp) 292, 300 
Virtual DOS kernel stub, 294 

Virtual DOS machine (VDM), 97, 254, 291, 
292,293,295 

Virtual 8086 address space, 290 
Virtual 8086 (v86) mode, 15, 42, 43, 46, 50, 

94,97,290 
Virtual hardware interrupt, 292 
Virtual interrupt, 291, 300 
Virtual interrupt management, 299 
Virtual I/O, 52, 291, 293 
Virtual I/O device, 292 
Virtual I/O services, 52 
Virtual machine, 50, 51, 52 
Virtual machine (VM) bit, 50 
Virtual memory, 3, 13, 42, 46, 47, 96, 143 
Virtual memory manager, 150, 152, 153, 156, 

157, 158, 159, 162, 169, 179,224,309 
Virtual page (VP), 183 
Virtual page structure, 180, 182, 183, 184 
Virtual PC, 291 
Virtual programmable interrupt controller 

(VPIC), 299 
Virtual single-server image, 12 
Virtual terminal (VT), 321, 327 
Virtual-to-real device mapping 294 
Virtual video buffer, 294 
Virtual-video device driver, 300 
Visual I/O, 349 
VM, 3, 329, 330 
Volume, 234 
Volume manager, 234 
Volume verification, 234 
Voluntary preemption, 121, 134, 135 
VP, 184, 185 
VP reference count, 185, 186 
VTP protocol, 328 

Wait-all, 215 
Wait-any, 215 
Wait flag, 204 
Wait operation, 201 
Wait states, 66 
Wakeup, 134 
Wake up a thread, 134 
Wake up blocked thread, 133 
Watchdog timer, 296 
What-you-see-is-what-you-get 

(WYSIWYG), 10 
Wide area network (WAN), 317, 320, 321 
Win, 93 
WinDejWindowProc, 273 
WinDispatchMsg, 272, 273, 276, 277 
Window, 11, 14, 92, 268, 269 



Window API, 268 
Window class, 269, 272 
Window dispatcher, 273 
Window handle, 272 
Window hierarchy, 269, 270 
Window management, 345 
Window management and I/0, 94 
Window procedure (WinProc), 271, 273, 277 
Window redrawing, 270 
Window repainting, 268 
Window subclassing, 269 
Windowed session, 266 
Windowing, 14, 18 
Windows API, 268 
Windows 2.0, 17 
Windows 3.0, 16, 17, 18, 19, 53, 81, 97 
Windows 3.1, 300 
Windows 3.X, 300, 345 
Windows 386, 16 
WinGetMsg, 272, 273, 276 
WinPostMsg, 273, 277 
WinSendMsg, 273, 277 
Win386, 17 
WM_ CHAR, 272 
WM_ CREATE, 272 
WM_PAINT,270,272 
WM _QUIT, 273 
WM _SIZE, 272 
Word processor, 276, 276 
Workplace shell, 95, 267 
Worker routines, 119 

Index 389 

Workstation, 21, 317, 339 
Write-back cache, 67 
Write-behind cache, 238 
Write-once-read-many (WORM), 233 
Write-only access, 235 
Write-protect (WP) bit, 53 
Write-through cache, 67, 182, 238 
Writable bit, 36 

X Consortium, 342 
XCHG Instruction, 204 
XENIX, 5 
X.400 Message Handling services, 321, 328 
X.500 Directory Services, 321, 328 
XMS, 15,97,283,290,292 
X/Open, 341, 342 
X!Open Portability Guide, 341 
X.21, 322 
X.25,20,318,320,321,322,325,326, 328, 

330,343 
X/Windows (distributed window 

management), 327, 331, 341, 342 

Yield, 135 
Yielding, 121 

0:32 fixups, 98 
0:32 format, 98 
0:32 memory model, 95 
Zero flag, 31 
Zilog Z80 processor, 3 





9 780201 548891 

ISBN 0-201-54889-5 


