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Foreword

It is a pleasure to write these opening comments for Deitel and Kogan’s, The Design of
0S/2. We at IBM believe strongly that the new 32-bit OS/2 2.0 will have an important
place in the market for personal computers, workstations, and network servers. The book
clearly and thoroughly explains the architecture of the operating system in a manner ap-
propriate both for technical professionals who want to understand OS/2’s internal struc-
ture, and for software developers considering investing in OS/2 applications
development. It provides insights into why various key design decisions were made.

Dr. Michael Kogan is the chief architect of OS/2 2.0; Dr. Harvey Deitel is the author
of one of the world’s most widely used operating systems textbooks. Their combined
experience covers every major current IBM operating system, as well as the UNIX sys-
tem, networking, multimedia, and open systems. Dr. Kogan, through his position at IBM,
is well apprised of IBM architectural trends. Dr. Deitel consults in the open systems arena
with activities related to open operating systems, object orientation, OSI protocols, and
international computing and communications standards.

Why 0S/2?

Computer systems are evolving rapidly, and OS/2 is designed to support these changes.
There are radical changes in hardware, from older systems supported by modest 8- or
16-bit microprocessors, to newer high-powered 32-bit microprocessors such as the Intel
80386 and 80486. RISC systems and multiprocessing systems offer the potential for
massive increases in net processing power.

Radical changes in user support also are demanded. The personal computers of the
early to mid-1980s tended to be standalone systems. In the 1990s, personal computers
will be networked in local and wide area networks. OS/2 is designed to support mission-
critical applications—that is, applications that must function continuously and reliably
to support key activities of businesses and other organizations. OS/2 is designed to en-
hance personal productivity. End users working in OS/2 environments can get more
done because of the ease of use, high performance, high reliability, information accessi-
bility, and system integrity provided by OS/2.

\"
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The shift in application development toward object-orientation is gaining momen-
tum. To become more productive software developers need to reuse components, to de-
velop prototypes more rapidly, and to implement polished and tuned applications faster.
0S/2 provides an environment conducive to object-oriented systems development.

The following sections briefly describe OS/2 2.0 and its capabilities. As you read
this book, you will come to understand what is “under the hood,” and how these capabil-
ities are implemented.

The Integration Platform

We call OS/2 2.0 the “integration platform” because you can run your existing DOS
applications, DOS extender (such as the popular Windows) applications, and OS/2 1.3
applications on OS/2 2.0, and they will run more efficiently on the same hardware than
they do under their originally intended operating systems. You can also run the new,
high-performance 32-bit applications designed to take advantage of 32-bit architectures.
Applications run better from the standpoint of performance, integrity, and usability,
translating into productivity gains.

Protected Multitasking

0S/2 2.0 represents the evolution of DOS into the world of protected multitasking. It
uses the protection mechanisms of the 80386/80486 architecture to ensure robust opera-
tion. It runs many applications simultaneously without the danger of misbehaved appli-
cations destroying one another or the operating system—precisely what is needed in
mission-critical application environments. An application may not access the private
data of other applications. This level of protection is facilitated by the fact that OS/2
applications execute in separate address spaces; DOS extender applications, on the other
hand, share a single address space. An errant DOS application may destroy a DOS
extender’s kernel, thus requiring a reboot, and work may be lost; the OS/2 kernel is pro-
tected from errant applications. OS/2 can run multiple versions of the same software
simultaneously, making it ideal as an application developer’s platform. Its multitasking
capabilities make it appropriate as a network server. It uses preemptive scheduling, so it
offers good responsiveness to applications of differing characteristics. Priorities are cal-
culated dynamically, so OS/2 can multitask timing-critical applications in both the fore-
ground and the background.

Mission-Critical Systems

0OS/2 has many features that support mission-critical business applications. It provides
protected multitasking, processes, threads, interprocess communication, and virtual
memory, as well as reliability/availability/service (RAS) features that help to isolate
software problems and to ensure robust operation.

Applications

There are already 2500 OS/2 software applications announced or available, including
300 Presentation Manager applications. Popular software packages are available, such as
Lotus 1-2-3;;DBase, WordPerfect, and many others. Many 32-bit OS/2 applications have
appeared, and hundreds more are under development. OS/2 2.0 is a critical platform for
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IBM’s Systems Application Architecture (SAA), our plan for integrating the IBM main-
frame, minicomputer, workstation, and personal computer product lines. OS/2 2.0 is de-
signed for machines based on Intel’s 32-bit 80386/80486 architecture. In particular,
80386-based systems have proliferated, creating the installed base needed to attract the
resources of the independent software vendors. With the appearance of 32-bit OS/2,
major user organizations and independent software vendors are making substantial
commitments to developing OS/2 applications. OS/2 2.0 provides a powerful base for
future growth; 32-bit applications provide dramatic performance improvements over
their 16-bit counterparts. Our PMREXX application, for example, demonstrated a 60
percent improvement when used in the 32-bit programming environment.

Memory Management and Virtual Memory

0S/2 2.0’s virtual memory model provides 4-gigabyte addressing. The large, flat, paged
32-bit memory model frees the application developer from the memory constraints of
the 16-bit segmented model, and from the complexity of managing memory in the 16-bit
environment. The 32-bit paging model achieves better utilization of memory and higher
performance. The DOS extenders that use virtual memory are typically constrained to a
small virtual space; Windows 3.0 applications, for example, share a virtual memory no
larger than four times the size of physical memory. In OS/2 2.0, each application has a
512MB virtual memory limit, so the key memory limit is the available disk space. DOS
extenders generally use the segmented memory model, in which each piece of memory
can only be as large as 64KB; in OS/2 2.0, memory objects can be as large as they need
to be (up to the limits of virtual memory). OS/2 runs multiple DOS applications, each
with more real memory and far more virtual memory than is available through DOS ex-
tenders such as Windows, and each protected from the others to ensure more robust
operation. DOS applications can use the DOS Protected Mode Interface (DPMI) to
access up to 512MB of extended memory.

Productivity and Ease of Use

0S/2 2.0 provides numerous productivity and ease-of-use improvements. It provides a
graphical installation procedure, and it uses an object-oriented, graphical user interface
with the drag-and-drop environment implemented consistently across the entire system.
Local area network requestor capabilities are integrated into the shell. Intelligent font
technology is employed. OS/2 2.0 supports a great variety of printers. It provides an on-
line, interactive tutorial, and includes various utilities, games, and productivity applica-
tions to help the user become familiar with the system quickly. Extensive on-line help
capabilities are provided. In a typical OS/2 environment, the operating system manages
the environment transparently to the user. OS/2 worries about the network, and deter-
mines whether it has the latest software updates and data updates. The user does not see
all that activity. Rather, the user sees only the graphical user interface, which will con-
tinue to be enhanced.

Workplace Model

0S/2 2.0 implements the SAA Common User Access Workplace model, which uses the
desktop metaphor of how people work. It derives from our OfficeVision system, and
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works in the object-oriented paradigm. The Workplace model provides an intuitive user
interface for managing any objects, including programs, files, and devices.

Presentation Manager

Given that we can run Windows applications out of the box, why do we encourage the
development of Presentation Manager (PM) applications? PM applications offer better in-
tegration with the Workplace model. Threads can be used to maximize the advantages of
multitasking, and to increase system responsiveness. PM applications can take advantage
of the capabilities of the OS/2 Database Manager and Communications Manager. In gen-
eral, PM applications can use the more powerful capabilities provided in OS/2 2.0 for
interprocess communication, tasking, semaphores, multithreading, and graphics. The
High-Performance File System (HPFS) offers greater data integrity, minimizes disk frag-
mentation, exploits SCSI performance features, uses sophisticated input/output caching
algorithms, and supports huge disks and long filenames. Finally, OS/2 2.0 uses installable
file systems, which makes it easy to support new kinds of media, such as CD-ROM.

Portability

The popularity of flat, 32-bit virtual address spaces across many platforms facilitates
porting OS/2 to those platforms. This portability enables OS/2 to compete effectively
with UNIX in the workstation marketplace. Porting to RISC platforms is underway. The
32-bit API is portable to multiprocessor architectures, as well as to uniprocessor
architectures.

Multimedia

08/2 2.0’s exploitation of the 80386/80486 architecture is important for high-performance
applications, such as speech synthesis and recognition, full-motion color video with sound,
and the integration of these technologies under the rubric of multimedia. OS/2 is a particu-
larly strong system for multimedia applications. It encapsulates system resources, freeing
the developer from having to control them directly, and it offers powerful graphics capa-
bilities. Multitasking supports the multiple data streams common in multimedia applica-
tions. OS/2 2.0 supports the notion of fast threads specifically for multimedia applications.
Multimedia also demands the manipulation of huge objects such as bitmaps; this capability
is facilitated by the large, flat, 32-bit virtual addressing model.

Object Orientation

Through extended attributes, OS/2 provides file-system support for object-oriented
capabilities, and we are enhancing support for object-orientation. The motivation for this
support is clear. Object orientation enables developers to write collaborative software
without having a detailed understanding of all components. It yields reusability of sub-
stantial functions, dramatically improving the productivity of developers working on so-
phisticated new applications—surely a source of excitement in our industry. Projects
underway emphasize the use of object-oriented programming techniques and of other
edge-of-the-art technologies (such as multimedia, expert systems, and visual pro-
gramming) to create applications useful across a wide range of hardware and operating
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system platforms. These efforts focus on developing applications by combining reusable
software objects. Their work products will become available on OS/2, AIX, UNIX, and
Macintosh systems, among others, ensuring wide distribution.

Networking and Distributed Computing

IBM has endorsed the Distributed Computing Environment (DCE) of the Open Software
Foundation. DCE supports heterogeneous, multivendor distributed computing. IBM’s
SAA is being extended to include DCE. OS/2 is a key SAA system and will support
DCE. In particular, OS/2 will include remote procedure calls (RPCs), the distributed
naming service (in conformance with OSI’s X.500 standard), the time service, the secu-
rity service, the threads service, and the distributed file system. OS/2 provides many fea-
tures that support networked environments, DCE, and cooperative processing. Perhaps
most crucial is OS/2’s support of key networking standards, such as SNA, TCP/IP, and
OSI. OS/2 LAN support includes key local area networking standards, such as token
ring and Ethernet, and wide area networking standards, such as X.25.

Overview of the Book

Deitel and Kogan describe the evolution of personal-computer operating systems
through the early years of DOS and its various versions, and the development of OS/2
through its 16-bit and 32-bit versions. They discuss the microprocessor architectures,
hardware system architectures, and operating system architectures of the IBM-com-
patible, personal computing marketplace. They explain how protected multitasking is
implemented, and provide insights into the relationships between threads and processes.
A detailed discussion of memory management is presented, including explanations of
the segmented model of OS/2 1.X and the flat model of OS/2 2.0. The various interpro-
cess communication mechanisms are considered, including shared memory, semaphores,
signals, queues, and pipes. The I/O management chapter explains the notions of files,
devices, installable file systems, device drivers, and DevHelp services. With all the
attention on graphical user interfaces today, the reader will appreciate the discussion of
the Presentation Manager and windowing concepts. The book’s highly detailed treat-
ment of providing compatibility for DOS, Windows 3.0, and OS/2 1.3 is superb. The
communications features of OS/2—including OSI, X.25, LANs, SNA, and TCP/IP—are
covered in depth. The book concludes with a look to the future, considering such im-
portant topics as open systems, competition and cooperation between OS/2 and UNIX,
IBM’s Systems Application Architecture, multiprocessing, security, and multimedia.
Deitel and Kogan have written a clear, thorough, well-illustrated, frank, and insightful
analysis of the architecture of OS/2 2.0. Their work is an important contribution to the
operating systems literature.

James A. Cannavino
IBM Vice President and
General Manager, Personal Systems






Preface

The goal of this work is to provide insights into the design decisions and philosophies of
the OS/2 operating system. We discuss the motivation, architecture, and realization of
0S/2 in the personal computing marketplace. The designs of the major components of
0S/2 are described. Each area bridges operating systems theory to the design and imple-
mentation of OS/2. Where appropriate, a comparison of the technical aspects of OS/2
and UNIX is provided. The evolution of personal computer operating systems from
DOS through 16-bit OS/2 and 32-bit OS/2 is presented.

Chapter 1 recounts the history and evolution of the DOS and OS/2 operating sys-
tems. It sets the stage as we illustrate how the OS/2 development teams reconciled real-
world development constraints with providing the functionality and performance
demanded by a maturing PC industry.

Chapter 2 describes the microprocessor architectures on which the DOS and OS/2
systems execute. We consider the 8088/8086 processor family, the 80286, the 80386,
and 80486 CISC-style processors. Looking towards the future, we consider RISC-style
processors such as the Intel 80860 and the IBM POWER architecture used in IBM
System/6000 workstations.

Chapter 3 presents the hardware system architectures of the personal computer sys-
tems that use the processors discussed in Chapter 2. We consider key personal computer
bus architectures—the original Industry Standard Architecture (ISA), the Micro Channel
Architecture, and the Extended Industry Standard Architecture (EISA). Uniprocessor
and multiprocessor configurations are discussed. The programming tools available for
the various hardware architectures are described, and the evolution of these is traced
across the operating system platforms.

Chapter 4 overviews the architectures of 16-bit and 32-bit OS/2 systems and pro-
grams. A discussion of the DOS system gives the technical foundations of the precursor
to the OS/2 system.

Chapters 5 through 10 describe the architecture and design of the major components
of the 16-bit and 32-bit OS/2 systems. When a component provides the same functional-

xi
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ity in both the 16-bit and 32-bit systems, a single discussion is rendered and differences
in the two versions of the component are noted where significant (as in Chapter 5 on
multitasking). When the 16-bit and 32-bit versions of a single component are substan-
tially different, separate treatments of the component are presented for each version (as
in Chapter 6 on memory management). Each major component is discussed in terms of
its API calls, internal algorithms, and data structures. These specify the behavior and
content of 16-bit OS/2 and 32-bit OS/2.

Chapter 5 discusses OS/2 multitasking. The overall architecture, internal data struc-
tures, and major algorithms that compose the OS/2 task manager, dispatcher, and sched-
uler are detailed.

Chapter 6 describes OS/2 memory management. Both the segmented 16-bit memory
model and the paged 32-bit memory model are discussed.

Chapter 7 deals with interprocess communication issues in the multitasking environ-
ment. Shared memory, semaphores, signals, pipes, queues, and exceptions are examined in
both the 16-bit and 32-bit OS/2 systems.

Chapter 8 describes the I/O components of OS/2. The architectures for devices, file
systems, and device drivers are elaborated along with their respective APIs or interfaces.

Chapter 9 describes the presentation management aspects of OS/2. The roles of the
keyboard, mouse, and screen devices are examined and analyzed with respect to OS/2’s
session management architecture. The function and design of the graphical user inter-
face of OS/2, as provided by the Presentation Manager, are also described.

Chapter 10 explores issues in providing compatibility. Both the 16-bit and 32-bit
versions of OS/2 provide DOS compatibility. The 32-bit version also provides Windows
3.0 compatibility and 16-bit OS/2 compatibility.

Chapter 11 examines the role of OS/2 in the communications arena. IBM's System
Application Architecture and the ISO Open Systems Interconnection reference model
are described, as well as OS/2 Extended Edition and LAN Manager. The role of OS/2 in
networked workstation and multiuser environments is also considered.

Chapter 12 discusses future issues for OS/2. We examine the technical requirements
placed on OS/2 to support open systems, RISC architectures, multiprocessor platforms,
and multimedia.

It is a pleasure to acknowledge the people who helped us throughout the writing,
review, and production phases of this project. Thanks to the individuals in IBM man-
agement, communications, and legal areas for their support in this endeavor. We are also
grateful for the comments of many IBM OS/2 designers, testers, planners, and developers.

The book was reviewed by many people, including

Jack Boyce (IBM Corporation) Byron Pazey (Consultant)

Glenn Brew (IBM Corporation) Raymond Pedrizetti (Microsoft Corporation)
Ross Cook (IBM Corporation) Dr. Freeman Rawson (IBM Corporation)
Greg Gruse (CITRIX) Dr. Edward Simco (Nova University)
Edward Iacobucci (CITRIX) Dr. Raisa Szabo (Nova University)

Dr. Edward Lieblein (Nova University) Raymond Westwater (FutureWare)
Jim Macon (IBM Corporation)
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Iris Boshell took dictation of major portions of the first draft of the manuscript.

Our efforts were encouraged by IBM managers including Lee Reiswig, Tommy
Steele, Roy Clauson, Oscar Fleckner, Janis Walkow, and Shon Saliga. We are especially
grateful to James Cannavino for taking the time out of an incredibly busy schedule to
prepare the foreword to the book.

Special thanks are due to Ross Cook of IBM for many insights into the intriguing
subtleties of the operating system design process, and to Glenn Brew of IBM for serving
as a constant technical sounding board, for his friendship, and for his encouragement.

Thanks to Barbara Deitel for handling the development of the manuscript from the
author’s side, and for coordinating the production of the book with Addison Wesley.
Her tireless efforts enabled us to concentrate on preparing the technical material.

Framingham, Massachusetts H.M.D.
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It is always good when a man has two irons in the fire.

Francis Beaumont and John Fletcher

That’s a better hardware base [the PS/2] than what UNIX
started with, and there’s a good possibility that OS/2 will be
better than UNIX.

Dan Bricklin
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1.1 INTRODUCTION

This chapter reviews the history of personal computers and operating systems. It traces
the evolution of personal computer hardware from the original IBM Personal Computer
to the latest IBM PS/2, and examines how this process has affected the content and de-
sign of DOS and OS/2.

Before 1980 most computers were mainframes and minicomputers, large computing
resources that were mainly job- and transaction-processing systems. Operating system
technology had evolved from its early simplistic control program stages to sophisticated
multiprogrammed virtual memory systems such as VM, MVS, and later versions of
UNIX. In the era of large, centralized computing resources, computer time was expen-
sive, learning was time consuming, assistance was difficult to obtain, and computing re-
sources were scarce. Users rarely had opportunities to interact privately with a local
computing resource.

The advent of the microprocessor and of inexpensive, off-the-shelf computer
components enabled the creation of the first microcomputer systems. The Altair, a prim-
itive computer kit based on the Intel 8080, was one of the most popular early systems.
The Altair was surpassed by the Apple I and II computers created by Steve Jobs and
Steve Wozniak. The Apples used the MOS Technology 6502 chip and included a key-
board and display. Also gaining acceptance were microcomputer systems configured
with the Intel 8080 and Zilog Z80 processors. Besides the Apple, which had its own pro-
prictary operating system, the Intel and Zilog systems principally ran the CP/M operat-
ing system. CP/M was primarily designed for 8-bit single-user microcomputers that had
floppy-disk drives.

At this point, during the late 1970s, IBM decided to spin off an independent busi-
ness unit (IBU) to investigate the potential of an IBM microcomputer system. In the late
1970s, IBM used IBUs to respond rapidly to new opportunities, and granted them
considerable freedom within IBM’s business processes. An IBU is similar to a venture
capital operation that attempts to exploit evolving technologies. The IBU ultimately
became the current Entry Systems Division (ESD) of the IBM Corporation, which is re-
sponsible for personal computer hardware and operating system development.

1.2 DOS HISTORY

The DOS era of microcomputer operating system technology began when the first IBM
Personal Computer (PC) was designed. The first IBM PC went beyond the current 8-bit
technology available and used the then-new 16-bit Intel 8088 processor. This choice was
made because the current 8-bit systems were being eclipsed by the newer 16-bit systems,
and the 16-bit system architecture provided a base for more robust software. The 8088 and
8086 processors are functionally identical, but the 8088 was used in the IBM PC since it
was cheaper to configure in hardware. The 8088 processor could address up to 1MB of
memory; few designers could envision using all that memory in a desktop personal com-
puter in 1979. IBM also chose the 8088 microprocessor because porting software from
existing 8080-based systems to the 8088 would be relatively straightforward.
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With the hardware for the first PC under development, IBM sought to adapt existing soft-
ware for the system. Developing a new operating system and software tools would have taken
too long. IBM contracted Microsoft, at the time a new company, to provide a BASIC in-
terpreter, assembler, and link editor for the machine. IBM chose Microsoft because of Bill
Gates’s experience in writing the most popular BASIC interpreter to date for the Altair systems.

Since many CP/M-based programs were available, IBM initially attempted to
interest Digital Research, Inc. (DRI) in providing a 16-bit version of the CP/M operat-
ing system for the IBM PC. However, DRI did not foresee the success of the 8088
microprocessor and declined to participate in the venture. IBM then approached
Microsoft and, after explaining the requirements, asked Microsoft whether it was inter-
ested in providing the operating system software as well as the tools. The main con-
cern of both IBM and Microsoft at the time was whether Microsoft had the resources
to develop both the software tools and the operating system in the time required.
Realizing that writing a new system was not feasible due to the schedules, Microsoft
acquired from Seattle Computing Products a CP/M clone called SCP-DOS. With the
SCP-DOS technology as a base, Microsoft predicted that it could complete the operat-
ing system, and the original operating system agreement between IBM and Microsoft
was established.

In 1981, the first version of the DOS operating system, 1.0, was shipped for IBM
PCs. The system supported PCs with up to 256KB RAM, two 180KB floppy-disk
drives, and included a Basic Input Output System (BIOS) built into the system ROM.
DOS 1.0 was similar to CP/M in the way it managed the diskette devices and files, and
it provided the base platform for the first 8088 DOS applications. Since the primary data
structure used by the DOS file system to map file blocks to diskette addresses was the
file allocation table (FAT), the DOS file system became known as the FAT file system.
Figure 1.1 illustrates the DOS system structure.

In 1982, IBM began shipping PCs with 360KB floppy disk drives. Since the new
diskette medium had a format different from that of the 180KB diskettes, DOS had to

DOS application

DOS system

I Device drivers |

| RoOmBIOS |

| Hardware I

Fig. 1.1 DOS system structure.
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be updated. IBM shipped DOS 1.1 when the new diskette drives became available in
1982.

IBM next enhanced its PC line in 1983 with the addition of the IBM PC/XT. The
PC/XT had a hard disk that could store far more data than could traditional floppy
diskettes. This development illustrates how mainframe technology was becoming less
expensive and more widely available in the PC market. The IBM PC/XT also included a
new system board that allowed 640KB of memory to be installed.

At this point, a trend emerged that continues to this day in the computer industry:
The hardware drives the software. The addition of a hard disk to the PC was a problem
for DOS 1.1, since the FAT file system was written for floppy-disk systems in which a
single 360KB diskette could contain a maximum of 64 files. This limitation had to be
removed; even the smallest hard disks could hold 10MB of data.

Responding to this requirement, the DOS team at Microsoft explored different hard-
disk and file-allocation strategies to select one that would enable DOS software to ex-
ploit future improvements in storage technology. Merely extending the limit of 64 files
per disk would yield too many files to manage in a single file space, so the Microsoft
team chose a hierarchical file-management approach similar to the one found in UNIX.
They implemented this approach to support both diskettes and hard drives.

Another requirement for the next version of DOS was an architecture for extending
the system to support different peripheral devices. This support took the form of device
drivers, user-installable program modules that interface the DOS system and applica-
tions to devices. The version of DOS that included the hierarchical FAT file system,
support for hard disks, and a device-driver model for extending the system was shipped
as DOS 2.0 in 1983.

IBM’s next PC enhancements involved providing faster systems with larger hard
disks. The Intel 80286 chip was selected for the next-generation IBM PC, the PC/AT.
The 80286 has two modes of operation called real mode and protected mode. In real
mode, the 80286 functions as a fast 8088. In protected mode, the 80286 allows up to
16MB of memory to be addressed and provides features that support a protected multi-
tasking environment. These protection features allow an operating system to separate the
memory spaces associated with different programs. However, since the 80286 was not
designed to allow existing DOS applications to run in protected mode, they could nei-
ther be executed concurrently, nor use more than 1MB of memory. Therefore, DOS
applications used the 80286 as a fast 8088. Other operating systems—such as Intel’s
RMX or Microsoft’s XENIX—used the protected mode of the 80286, but neither of
these systems was considered to be a mainstream desktop system due to a lack of appli-
cations compared to the number of DOS applications.

The PC/AT was also the first PC to use 1.2MB 5.25-inch diskette drives. Since sev-
eral modifications to DOS 2.0 were necessary for the PC/AT hardware, DOS 3.0 was
not released until August 1984. DOS 3.1 was released in 1985 to provide support for PC
local-area networks (LANs). Another update to the system (DOS 3.2) was made for sup-
porting 3.5-inch diskettes in 1986. Table 1.1 shows the evolution of the DOS operating
system.



6 Historical Background

Year Version System contents
1981 1.0 IBM PC
5.25" 180KB diskette
Single task
Single user
1982 1.1 5.25" 360KB diskette
1983 2.0 IBM PC/XT
Hard disk
FAT file system
Device drivers
1984 2.1 IBM PC Jr.
1984 3.0 IBM PC AT
80286/80287 real mode
5.25" 1.2MB diskette
1985 3.1 IBM PC network
1986 32 IBM PC Convertible
3.5" 720KB diskette
1987 33 IBM PS/2
80386/80387 real mode
3.5" 1.4MB diskette
1989 4.0 User shell
LIM expanded memory

More user memory

Table 1.1 DOS evolution.

1.3 DOS LIMITATIONS

Between 1983 and 1985, IBM, Microsoft, and most application developers began to be
aware of certain limitations of DOS and the 8088 environment. These limitations were
in the areas of memory management, I/O management, multitasking, system extendibil-
ity, and graphical user interfaces.

1.3.1 Memory Management

The 1MB address space, which seemed large in 1980, became a major limitation for
larger DOS programs. Applications such as spreadsheets and database systems allowed
users to create large volumes of data that needed to be in memory to be processed. The
lack of memory became known as the 640KB barrier, since only 640KB of the 8088 ad-
dress space mapped RAM. The memory at addresses from 640KB to 1MB in the PC
mapped the system ROMs and memory-mapped I/O devices such as the display buffer.
The DOS system used from S0KB to 60KB, and device drivers also consumed a portion of
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the 640KB address space. Thus, application software had less than 640KB available of the
IMB memory addressable by an 8088. Figure 1.2 illustrates the DOS memory layout.

One of the mechanisms DOS applications developers devised to relieve this memo-
ry constraint was the overlay scheme. Overlays allowed portions of a program not cur-
rently needed to reside on a secondary-storage device, usually a hard disk. Since DOS
contains only a primitive memory manager, DOS applications had to provide their own
overlay management, further increasing their size and complexity.

These memory integrity problems were exacerbated by the behavior of terminate-and-
stay-resident (TSR) modules. TSRs are loaded like any other DOS program but stay resident
in memory after terminating. A TSR is accessed after terminating by either a hardware or a
software interrupt. TSRs that monitor keystrokes by intercepting keyboard interrupts are
called hot-key pop-up applications. The DOS print spooler is a TSR that intercepts timer
and printer interrupts to allow the simultaneous queueing and printing of files.

Since TSRs can never be guaranteed that the memory needed will be available when
they are invoked, they must allocate when they are loaded all the memory they will ever
need. Also, since TSRs are not aware of one another’s existence and resource require-
ments, they can easily cause the system to behave unpredictably. For example, their be-
havior may depend on the order in which they are loaded.

The 8088 processor provides no memory-protection features, since it was designed
to run one application at a time. All 8088 programs execute using actual physical-
memory addresses with no distinction between accessing the DOS system’s memory or
application memory. This lack of protection allows programs to modify one another and
the system inadvertently, often causing the system to hang. In a protected system, illegal
memory accesses are trapped by the hardware. The operating system is given control; it
usually terminates the offending application.

1™MB

640KB ROM BIOS

DOS
application
arena

COMMAND. COM

System extensions

DOS system

Interrupt vectors

Fig. 1.2 DOS memory map.
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1.3.2 1/0 Management

Another area in which the DOS environment is limited is I/O control. Any application
may read from or write to any [/O device without having access granted by DOS.
Although this limitation is really a shortcoming of the 8088/8086 processor, rather than
one of DOS, it is still an integrity problem. Application program errors can cause the
system to hang, or, even more serious, can cause data on a secondary storage unit to be
destroyed inadvertently.

Another I/O problem is that applications have the capability of disabling interrupts to
the 8088/8086 processor with a single instruction. If an application disables interrupts and
executes a spin loop, the system will remain in the loop forever. Even intermittent dis-
abling of the interrupts to the system can cause applications to behave incorrectly. For
example, if an application disables interrupts while a TSR print spooler is using timer tick
interrupts to pace its spooling, the spooler will not receive interrupts to continue moving
data to the printer. Disabling interrupts can also disrupt communications applications that
depend on receiving periodic interrupts for maintaining communications sessions.

1.3.3 Multitasking

DOS was designed to run one application at a time; it is a single-task or single-thread
environment. Even in a single-user, one-program-at-a-time environment, there are re-
quirements for being able to multiprogram the system. A common scenario is using a
TSR print spooler to print a file in the background while the user is editing another file
from the keyboard. Since DOS provides no multitasking services, programs that require
multitasking must do it themselves. However, there is a catch—since DOS is not reen-
trant, only one program can correctly use the DOS system services at a time. Therefore,
competing applications and TSRs can inadvertently both enter DOS, confuse it, and dis-
rupt the system.

A major benefit of building multitasking into the system, instead of into the appli-
cations, is that the system can allocate the processor more efficiently than can the appli-
cations. When one application attempts to do I/O, it will block, and the system scheduler
can resume another application until the I/O is completed. In the DOS environment, an
application that requests I/O typically spins in a loop waiting for the device status to
indicate that the 1/O is complete. This is called polling, and wastes many processor cy-
cles that could be spent on other tasks. Since each DOS application that needs to multi-
task has to do it itself, putting together two DOS applications that need to multitask
frequently results in unpredictable behavior.

1.3.4 System Extendibility

DOS applications request DOS system services by issuing software interrupts, an 8088-
specific form of transferring control between routines. An interrupt causes a transfer of
control to an address that is retrieved from an interrupt vector table (IVT) based on the
interrupt number invoked. The main difference between a software interrupt and a hard-
ware interrupt is that the software interrupt is caused by the synchronous execution of an
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INT instruction rather than by an external hardware-device interrupt request. Figure 1.3
illustrates how the DOS system services are invoked using software interrupts.

Since DOS and BIOS system services are routed through software interrupts, the
application requesting the service must pass as a parameter information that specifies
which service is desired. Since the information that binds the application with a specific
service is hard coded into the application, this is called a statically linked interface. DOS
and BIOS software interrupt requests specify the software interrupt number and the
function code of the service. Thus, there are two levels of decode for each static link.
The software interrupt number is decoded by the processor, and the function code is
decoded by the software providing the service.

Because all DOS and BIOS (device) services are accessed through the 8088 inter-
rupt mechanism, the memory in which the interrupt-vector table resides is not protected
from applications and TSRs. Thus, any application or TSR can hook an interrupt and
intercept program control when an interrupt is invoked. The result is that the system can
be extended by hooking interrupts, but, as more extensions are loaded (usually in the
form of TSRs or device drivers), the system’s behavior becomes increasingly unpre-
dictable. Also, the order in which the extensions are loaded can change the semantics of
the system’s behavior. Figure 1.4 illustrates a DOS system with two TSRs loaded.

1.3.5 Graphical User Interface

DOS is packaged with a line-oriented command processor; thus, users must learn DOS
commands before they can use the system. New users often find DOS overwhelmingly
complex; they complain about the lack of an intuitive paradigm that would make using
the system easier. The Apple Macintosh computers were the first microcomputers to ex-
ploit successfully the graphical user interface (GUI) technology developed by Xerox at

DOS application

INT 21 IRET

—— DOS system

IVT (interrupt vector table)

Fig. 1.3 DOS system call.
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| DOS application

a
IRET  |INT 21 INT INT
v
| DOS
\4
|  ROMBIOS
IRET

| Hardware

Fig. 1.4 DOS system extensions. (0S/2 Programmer’s Guide, E. lacobucci,
Copyright 1988. McGraw-Hill Publishing Company. Reprinted by permission.)

its Palo Alto Research Center (PARC) in the 1970s. This GUI technology allows users
to interact with the system via a user-friendly pointing device such as a mouse, and visu-
al display keys or icons that parallel the user’s tasks. More advanced GUIs provide a
device-independent programming model that applications use for user I/O functions.
This model enables these applications to take advantage of whatever user I/O devices
are attached to the system, regardless of the devices’ particular physical characteristics.
GUIs often provide a what-you-see-is-what-you-get (WYSIWYG) capability for display-
ing graphical information on a variety of output devices.

1.4 0S/2 HISTORY

The need for a more robust version of DOS to provide solutions to these shortcomings
was recognized by both IBM and Microsoft, and each company initiated projects devot-
ed to this end. IBM undertook several projects to extend the functionality of DOS while
providing compatibility for current DOS applications by using the protected mode of the
80286. Microsoft began DOS 4.0 (not the one that was shipped in 1989) or MT-DOS
(for multitasking DOS), a project to define a real-mode multitasking environment that
could run on 80286 and 8088/8086 systems. Although none of these projects led to re-
leased products in the PC market, both companies learned about the limitations of DOS
and of the 80286 architecture and the scope of independent development efforts.
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1.4.1 IBM-Microsoft Joint Development

In 1985, IBM and Microsoft signed an agreement to define and ship the operating sys-
tem that would extend the capabilities of DOS. Under the agreement, both companies
would jointly design, develop, and own the resulting product. By 1990 the practice of
software companies joining forces to define and develop products had become common
in the computer industry. Alliances among computer companies such as Open Software
Foundation and UNIX International, and many smaller joint projects among applications
developers, are now leading the computer software industry into an era of open systems.
Emerging software standards will lead to greater software portability and, thus, to better
software productivity. Chapter 12 discusses the open-systems platform and the role it
will play in the future.

To understand why IBM and Microsoft worked together, we must explore the goals
of the product they desired to create and the attributes of both companies’ development
methodologies. Both companies realized that, if two different advanced DOS systems
were developed, the software market would be confused about which was the “right”
one. So it made sense for IBM and Microsoft to combine their efforts, and to create a
single industry-standard operating system that was endorsed by the two leading compa-
nies in the PC market.

IBM has traditionally been known as a hardware company, although it writes most
of the software marketed for its larger systems. IBM is by far the largest computer com-
pany and wields the most influence in the computer industry. IBM projects are typically
large, comprising many layers of management, staff, and technical personnel in the
product organization. On the other hand, Microsoft became the leading independent
software vendor (ISV) during the 1980s. Microsoft has led the PC software industry in
the development of DOS, Windows, and a variety of programming tools. Microsoft also
is a leader in applications software for both the Apple Macintosh and the IBM PC sys-
tems. Unlike those at IBM, most Microsoft projects are implemented by a small core
team of programmers who manage themselves, with extra staff added as needed.
Therefore, the combination of the companies created a good team in the design, devel-
opment, and testing areas.

To facilitate both companies participating in the design and development of the sys-
tem, they constructed a software-development process to describe the methodology for
building the product. Figure 1.5 illustrates the general process framework.

1.4.2 Multisite Development

An interesting part of the IBM and Microsoft relationship is that OS/2 was designed, de-
veloped, and tested by physically distant partners. Within IBM, there are many sites that
work on OS/2 and contribute to the content of the standard and extended editions. The
IBM site at Boca Raton, Florida is the sister to Microsoft’s site in Redmond,
Washington. Together, these two sites are responsible for most of the OS/2 Standard
Edition (SE) content and testing. The IBM site at Austin, Texas provides most of the
communications and database content for OS/2 Extended Edition (EE). The IBM site at
Hursley in the United Kingdom provided the initial releases of the graphics API
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(application programming interface) for the Presentation Manager (PM) and software
for supporting IBM’s video hardware. The IBM site at Cary, North Carolina provides
dialog-management functions for the PM.

All these sites contributing code to a single system created a major problem in
source-code control. In a typical single-site development project, a server machine run-
ning source-control software is used to ensure the integrity of the source code. The soft-
ware performs its function by assigning owners to source files, forcing owners to check
files out for editing, and to check the files back in when done. However, source-code
control is much more complex when a common set of source files must be available to
several remote sites that are thousands of miles apart. The solution used in the develop-
ment of OS/2 is to organize, at each remote site, build groups that enforce a build pro-
cess for maintaining a virtual single-server image of the OS/2 source code. The build
process describes how code is integrated into the system and how the system source-
code integrity is maintained across the remote development sites.

The build group implements remote system builds, tracks the build process, maintains
backups of all versions of the system, and provides database services to the other develop-
ment organizations. A database system that facilitates entry of problem reports, design
changes, and routing of these items to their appropriate owners is a requirement. All
changes to the system and the reasons for the changes are tracked online, so the status of
any particular change to the system can be tracked from creation to system integration.
This approach allows the system design process to be perceived as a sequence of in-
cremental changes and fixes. Although there are other methodologies, this approach re-
duces the risk of introducing large numbers of errors into the system at any one time.
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1.43 0S/21.0

The time frame for the development of the initial 0S/2 system was from 1985 to 1987.
During its design and development, OS/2 assumed many names, including DOS 5, DOS
286, Big DOS, and CP/DOS. The major requirements for OS/2 were these:

*  Break the 640KB physical memory barrier; support up to 16MB of physical
memory.

= Utilize virtual memory to extend the physical memory resource of a system.
= Provide a protected multitasking environment.

= Provide an extendible, flexible system application program interface (API)
architecture.

= Provide a graphical user interface (OS/2 1.1).

*  Support DOS application binary compatibility to encourage migration from
DOS to OS/2.

Remarkably, OS/2 was originally supposed to run on both the 80286 and the 8088
systems. However, the designers simplified the product to work on only the 80286, since
meeting the memory-management requirements for supporting both processors was not
realistically feasible. As a result, a subset of the OS/2 API, called the family API (FAPI),
was developed. OS/2 applications that used only FAPI functions could run on DOS, as
well as on OS/2. At this time (early 1985), it was not yet clear what the 80386 would be
or when it would be delivered, but Intel assured IBM and Microsoft that protected-mode
80286 programs would run on the 80386, as would DOS programs, if certain guidelines
were followed.

From 1985 through 1987, IBM and Microsoft developed OS/2 from the MT-DOS
and DOS 3.2 source-code bases. Early prototyping involving the mode-switching capa-
bilities of the 80286 convinced designers that a system could be constructed that multi-
tasked protected-mode applications while running a single DOS application in the
foreground. At this stage, it was known that OS/2 on an 80286 would not be able to run
multiple DOS applications, or to run a DOS application in the background. CP/DOS 1.0
was nearly complete by late 1986; at that time, however, the next generation of IBM
PCs, called PS/2s, was nearing availability, and IBM elected to support the new PS/2
family of computers before shipping OS/2 1.0.

The PS/2 family of PCs was introduced in April 1987. These PCs were of a form
factor different from that of the original PC and PC-AT, had 3.5-inch instead of 5.25-
inch diskette drives, and used a new bus design called the Micro Channel Architecture.
(Chapter 3 discusses the Micro Channel Architecture.) The PS/2 family initially includ-
ed 8088/8086 systems (Model 25), 16-bit Micro Channel 80286 systems (models 50,
50Z, and 60), and a 32-bit Micro Channel system (Model 80). (Chapter 3 describes the
PS/2 product line in more detail.) DOS 3.3 was also shipped to enable DOS applications
to work on the PS/2 family. OS/2 1.0 Standard Edition was announced in April 1987,
when the PS/2s became available; it was shipped in December 1987.
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As is true of most new operating systems, OS/2 initially lacked an applications base.
Furthermore, OS/2 1.0 did not include the Presentation Manager (PM) GUIL Software
developers were tentative about beginning OS/2 application development without the GUI
The DOS compatibility of OS/2 did not allow most communications applications to run,
and the Extended Edition of OS/2 that provides communications and database support was
not available. Therefore the industry did not immediately migrate to the OS/2 platform.

1.44 0S/211

From the time OS/2 1.0 was shipped until late 1988, IBM and Microsoft concentrated on
completing the initial release of the Presentation Manager. PM provides a graphical user
interface with device-independent graphics in a protected multitasking environment.
0S/2 1.1 was delivered in November 1988.

1.5 THE EVOLVING MARKET

The DOS world was not standing still while OS/2 was being developed. DOS applica-
tion vendors came up with their own ways to extend DOS and to break the 640KB
physical-memory barrier. The use of special memory-mapping hardware, and later the
80386, played major roles in extending the memory-management and multitasking capa-
bilities of the DOS environment. Due to concerns about the cost of rewriting DOS appli-
cations for OS/2 and the limited size of the initial OS/2 market, many developers opted
to use these techniques to extend the life of their current DOS products, instead of
immediately porting to OS/2. However, these short-term DOS add-on technologies
required DOS applications to perform more complex memory-management and multi-
tasking strategies, resulting in an evolution of more DOS-based limitations.

1.5.1 Microsoft Windows

Prior to and during the development of OS/2, Microsoft designed a graphical user inter-
face for the DOS environment called Windows, which was announced in late 1983.
Microsoft hoped that Windows would become the standard graphical user interface for
DOS systems. However, Windows was not actually shipped until late 1985, and no com-
mercial Windows applications existed when it shipped. By late 1987, Windows 2.0 had
been released, and some DOS developers were beginning to migrate their products to
the Windows platform.

1.5.2 DOS Expanded Memory

One method of allowing DOS applications to access more than 640KB is called expand-
ed memory. Expanded memory works by using a special memory card that bank switch-
es its memory into the 8088 address space through a technique called windowing (not to
be confused with GUIs that manage windows on the screen). Bank switching involves
mapping a portion of the memory on a hardware card into a window of the processor’s
address space under control of application software.
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Expanded memory could be used by existing DOS applications with relatively few
modifications and gave the user a solution for relieving the 640KB memory limitation.
The expanded memory standard, the Lotus/Intel/Microsoft Expanded Memory
Specification (LIM EMS), evolved while OS/2 1.0 was being developed. The LIM 3.2
specification allows up to 32MB of expanded memory to be addressed through 16KB
address windows in the DOS address space. The LIM 4.0 specification added a 256KB
code window. Since DOS applications had to do their own expanded-memory manage-
ment, expanded memory was clearly not a long-term solution to the problem of the
640KB barrier; however, it did provide programmers with enough relief from memory
concerns that they could create applications with better performance in the short term.

1.5.3 DOS Extended Memory

Similar to expanded memory is extended memory. Extended memory in general refers to
memory that can be added to a personal computer above the 1MB physical-memory
boundary that originated with 8088-based personal computers. Extended-memory cards
do not have any special bank-switching hardware. A specification analogous to LIM
EMS, called Extended Memory Specification (XMS), describes the software interface to
the DOS-based memory-extending software.

1.5.4 DOS Extenders

DOS extenders utilize the XMS technology to allow DOS applications to run in pro-
tected mode and to take advantage of more than 640KB of memory. Although this is
transparent to the application user, the program still utilizes real-mode DOS and BIOS
for system and I/O services. Extenders provide interfaces that allow programs to switch
the processor between real mode and protected mode for DOS and BIOS function calls,
and to manage extended memory.

1.5.5 Intel 80386

By late 1987, the 80386 had been shipped, and software vendors were eager to exploit
the chip’s new features. Significant on the 80386 are its virtual 8086 mode (a special
mode for emulating 8088 and 8086 environments), a true 32-bit programming model,
and a paged memory-management unit (PMMU). The virtual 8086 and paging features
of the 80386 made the task of writing a DOS multitasker—a system that manages multi-
ple virtual 8086 machines and multitasks them—more feasible than it had been on
80286 machines. The 80386 paging capability also allowed DOS multitaskers to emu-
late expanded-memory support using extended memory. This resulted in a DOS plat-
form that could run multiple DOS applications that use more than 640KB of memory
concurrently.

15.6 DOS Multitaskers

DOS multitaskers support the concurrent execution of regular DOS applications, DOS
extender-based applications, and applications that use expanded memory. Examples of
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DOS multitaskers are Quarterdeck DesqView and Windows 386 (later Windows 3.0).
Since these systems are all based on the nonreentrant, real-mode DOS and BIOS, and
rely on mode switching between real mode and protected mode, many complications can
arise in the multitasking environment. The complications occur because DOS multi-
taskers and extenders leave the management of memory and the control of mode switch-
ing in applications instead of in a protected kernel. The Virtual Control Program
Interface (VCPI) was developed by a consortium of vendors, including Lotus and
Quarterdeck, to address these problems. VCPI specifies an interface that allows EMS
emulators, DOS extenders, and DOS multitaskers to coexist correctly in an unprotected
environment.

While these DOS add-on technologies that exploit the features of the 80386 were
being developed and used by DOS applications, OS/2 was not so quick to exploit the
features of the 80386 for several reasons. The investment in the 80286 version was sub-
stantial. To keep system memory requirements down and to meet performance goals, the
programmers had to write virtually the entire kernel in 80286 assembler code, instead of
in a high-level programming language. Although the 16-bit OS/2 system and applica-
tions would run as they were on an 80386, redesigning the system and regoding it to ex-
ploit the 80386 32-bit programming model and the virtual 8086 DOS compatibility
feature was a nontrivial task.

In fact, the task was not feasible, given the limited resources that IBM and
Microsoft were able to devote to the project at that time, since both companies had com-
mitted to shipping OS/2 1.0 in 1987 and OS/2 1.1 with the Presentation Manager in
1988.

By mid-1989, the PC market had several solutions to the limitations of DOS:

*  Expanded memory
*  DOS extenders

= DOS multitaskers
= 16-bit 0S/2

A factor that inhibited acceptance of OS/2 was the lack of applications. In early
1989, after OS/2 1.1 was shipped with the PM, few applications targeted for OS/2 1.0
were available, and no PM applications were available until mid-1989. Another factor
was that the DOS multitaskers provided capabilities that the OS/2 DOS compatibility
environment lacked, such as expanded memory support and multitasking of DOS appli-
cations. Also, the hardware requirements for OS/2 were larger than were those for DOS
extender-based systems, and people began to question how well 16-bit OS/2 could run
on an 8MHz 80286 AT-class computer.

1.6 0S/21.2

From the end of 1988 through the middle of 1989, IBM and Microsoft worked on finish-
ing the 16-bit OS/2 system. The OS/2 1.2 system was completed by late 1989; it con-
tained the High-Performance File System (HPFS). Recall how DOS 2.0 came out with
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the hierarchical FAT file system to overcome shortcomings inherited from CP/M. Now,
0S/2 needed a new file system that could manage large volumes of disk space more effi-
ciently than could the FAT file system inherited from DOS. In OS/2 1.0, the FAT file
system limited each drive unit to 32MB of storage—a hard disk that could contain
90MB had to be partitioned into three logical drive units. With hard disks available in
sizes approaching a gigabyte, and with optical media on the horizon, this restriction
clearly needed to be lifted. Also, the FAT file system was designed for a single-user sin-
gle-process environment, and OS/2 needed a more robust file system to support the
multitasking server environment. OS/2 1.2 relieved the 32MB per volume restriction for
the FAT file system and also provided HPFS.

Another improvement in OS/2 1.2 was in the area of the DOS environment.
Although OS/2 1.2 made available more memory for DOS applications, it still neither
provided compatibility for many DOS communications applications, nor exploited any
of the features of the 80386.

At about the same time as OS/2 1.2 was shipped, DOS 4.0 was released to provide
support for FAT-based hard-disk partitions larger than 32MB, more memory to DOS
programs, a simple user shell interface, and EMS emulation support on an 80386.

1.7 0S/213

IBM recognized in 1989, that the OS/2 1.2 product needed to use less memory and to
run even faster if it was to meet the commitment of supporting low-end 80286 machines.
Therefore, IBM continued to enhance the 16-bit OS/2 1.2 from late 1989 through 1990
to produce OS/2 1.3. This version basically is the same as 1.2, but it runs in less memory
and is faster, especially when used in a local area network environment. OS/2 1.3 can
run on an 80286 machine with 2MB of memory. OS/2 1.3 became generally available in
October 1990.

In September of 1990, IBM and Microsoft also announced a change in their develop-
ment relationship: The companies decided to discontinue the policy of splitting develop-
ment responsibility for OS/2 across sites. IBM became solely responsible for the
development of 16-bit and 32-bit OS/2, while Microsoft continued work on advanced
0S/2 kernel technology and the Windows system. As in the previous development agree-
ment, both companies retain rights to OS/2. Ultimately, the new arrangement allows
future OS/2 development to proceed faster than previously.

1.8 WINDOWS 3.0

Microsoft continued enhancing the Windows product while participating in OS/2 devel-
opment. The Win386 release of Windows essentially added the capability of running
multiple DOS applications on an 80386 processor. Win386 also ran existing Windows
2.0 real-mode applications. Win386 was viewed as a stopgap product that would maintain
Microsoft’s revenue stream until OS/2 caught on. However, Microsoft announced plans
to enhance Win386 to provide a third-generation version of Windows that would inte-
grate a graphical user interface with DOS multitasker and extender technology. The
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announcement of Microsoft’s plans for Windows caused further confusion in the PC mar-
ket concerning what platforms users and programs should migrate toward. Windows
popularity was on the rise due to the promises of the unreleased Windows 3.0, and many
developers could not afford to build both Windows and PM versions of their applications.

Windows 3.0 became generally available in June 1990 and soon achieved tremen-
dous sales volumes. The product’s success can be attributed to two major factors. First,
the extravagant marketing blitz by Microsoft for Windows 3.0 had positioned the prod-
uct as the stepping stone between DOS and OS/2. The Windows 3.0 marketing effort by
Microsoft dwarfed the marketing and exposure given OS/2 by IBM and Microsoft com-
bined. Second, there was no other product that exploited all the DOS capabilities of the
80386 while providing a graphical user interface. For these two reasons, many users
migrated to Windows, and many application vendors gave up their commitment to PM
development in favor of Windows 3.0 development, to maximize short-term profits.

Since VCPI was not compatible with the Windows 3.0 environment, DOS multi-
tasker and extender programs could not run under Windows 3.0. To reconcile the differ-
ences in VCPI and Windows, Microsoft introduced the DOS Protected Mode Interface
(DPMI) standard. It also provided mechanisms for allowing VCPI programs to run in
the Windows environment.

Some interesting technical comparisons can be made between Windows 3.0 and
0S/2 1.3. Both systems provide support for up to 16MB of memory on 80286 and 80386
platforms. The user shell of Windows 3.0 looks and feels like a modified OS/2 1.2 user
shell. To run a single DOS application and a single protected-mode application,
Windows 3.0 requires 3MB to 4MB of memory and an 80386 processor, whereas OS/2
1.3 requires 3MB of memory and an 80286 processor.

Both products use protected mode, but Windows 3.0 does not exploit any of the fea-
tures for protecting the system from applications, and applications from one another.
Thus, any Windows 3.0 application can destroy any other Windows 3.0 application and
crash the system. Furthermore, since the 16-bit protected-mode API of Windows 3.0
runs on top of real-mode DOS and BIOS, it is easy to write a program that passes a bad
pointer to DOS or BIOS, and that therefore hangs the system. Thus, the Windows 3.0
program model is built on the same technology as DOS extender architectures, and has
similar shortcomings. On the other hand, OS/2 1.3 is completely protected from applica-
tions programs. The Windows-DOS API, compared to the OS/2-PM API, is inferior in
many ways—in memory management, in file-system support and I/O controls, in inter-
process communication, in the windowing architecture, and in the graphics power and
versatility (Pe90).

Another difference in these products, at the design level, is that Windows trades
integrity and protection for DOS compatibility, whereas OS/2 does not. The result is
that Windows experiences more system crashes due to poorly behaved DOS applica-
tions. Functionally, the only advantage of Windows 3.0 over OS/2 1.3 is the capability
of multitasking DOS applications when running on an 80386. Except for this capabili-
ty, Windows 3.0 represents a regression in operating-system technology, compared to
0S/2 1.3.
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With these drawbacks in mind, it is interesting to theorize why application vendors
and users rushed to the Windows 3.0 platform. The multitasking DOS capability and
graphical user interface in a DOS environment are the major functional factors that mo-
tivated users to migrate to Windows 3.0. However, the major marketing campaign by
Microsoft that made Windows 3.0 appear to be more of a DOS-like product than OS/2,
and the low price (the product was free, in many cases) of Windows 3.0, also were con-
tributing factors in placing Windows 3.0 on the desktops of many users. This migration
occurred without the availability of Windows 3.0 applications that would take advantage
of the 16-bit Windows 3.0 protected-mode API and even though Windows 3.0 did not
provide any system protection or integrity, a key issue in a multitasking system.

The large marketing push also caused application vendors to plan ports of their
DOS software to the Windows 3.0 16-bit API, so as to maximize short-term profits.
Many application vendors even gave up previous commitments to OS/2 PM application
development, begun in 1988, so that they could concentrate on Windows. This behavior
is confusing, especially when we consider that porting applications to Windows is about
as difficult as is porting to the PM, that the performance of 16-bit Windows applications
is similar to that of their 16-bit OS/2 PM counterparts, and that the Windows environ-
ment is much more fragile than the OS/2 environment. Furthermore, the shift in applica-
tion development strategies came after most developers began working with OS/2.
However, we must expect the vendors to migrate their applications to the market with
the largest expected volumes.

1.9 0S/22.0

While OS/2 1.2 development was drawing to a close, Microsoft and IBM were also de-
signing the 32-bit version of OS/2 that would finally

= Exploit the features of the 80386 and 80486 processors.

*  Provide a demand-paged system with a 32-bit programming model that is
portable to other 32-bit processor architectures.

= Multitask DOS applications in a protected environment.
*  Provide 16-bit OS/2 application binary compatibility.

= Provide Windows 3.0 application binary compatibility in a protected environ-
ment.

0S/2 2.0 lays the foundation for the 32-bit operating environment of the future. Like its
predecessors, it provides system and application protection for 16-bit and 32-bit protected-
mode applications. The major design goals for the 32-bit programming model were to break
the 64KB barrier associated with Intel’s previous segmented 16-bit processors, and to pro-
vide a portable 32-bit programming model for the future. Since the system is demand
paged, OS.2 2.0 can run in a configuration with 3MB to 4MB of memory. The multiple
DOS application support is a protected implementation so that DOS applications cannot
breach the system’s integrity and cause failures. Windows 3.0 application compatibility
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encourages users who run Windows 3.0 on an 80386 platform to upgrade to OS/2 2.0.
Table 1.2 summarizes the evolution of the OS/2 system through the OS/2 2.0 release.

The 64KB barrier broken by OS/2 2.0 is one inherited from the original 8088 family
of processors. Since a 16-bit processor can naturally address only 64KB of memory at a
time, programmers had to manage memory in terms of segments that could be up to
64KB long. This made programs sensitive to the underlying addressing scheme of the
processor, and nonportable to anything but Intel processors. The 64KB barrier was an
even larger problem for 16-bit OS/2 applications than it was for DOS applications, since
0OS/2 runs applications in protected mode. In protected mode, the instruction for chang-
ing the segment to be addressed runs more than eight times slower than in real mode—
so 16-bit OS/2 applications incur a large performance penalty to pay for their protection.

Date Version System Contents

1987 1.0 SE Initial 16-bit system
Multitasking
Memory management
Protection
Dynamic linking
16-bit API
DOS environment

1988 1.0EE Communications

SNA

X.25/APPC/LU 6.2

LAN Manager

Database

Query Manager

SQL
1988 1.1SE Presentation Manager (PM)
1989 1.1 EE Remote Database

1989 1.2 SE High Performance
File System (HPFS)
Installable File System
Better DOS environment
1990 1.2 EE Exploit PM
TCP/IP and Ethernet support
1990 1.3SE Faster/smaller
Intelligent fonts

1991 1.3 EE

1991 2.0 SE Initial 32-bit system
Demand paging
Portable 32-bit API
Multiple DOS sessions
Windows 3.X compatibility
Workplace shell

Table 1.2 0S/2 evolution.
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Furthermore, the 64KB barrier requires both DOS and 16-bit OS/2 applications to have
code to deal with segmented memory addressing, which makes them highly nonportable
to a processor architecture where their required type of segmentation is not available in
the hardware.

1.10 THE 1990s

Where does this evolution of operating systems leave the user? What choices are there?
The answers depend on available hardware platforms and on the user’s requirements.
IBM and Microsoft have stated that systems with less than 4MB of memory are
DOS/Windows systems, and that the remainder are OS/2 systems. But this distinction
fails to clarify what users should do, especially since OS/2 2.0 can also run in the same
environment and perform more functions reliably.

Hardware generally has been made available before the software that could exploit
it. How to ensure the migration of software to newer hardware platforms where better
price/performance is achieved is one of the most difficult problems facing the computer
industry. Thus far, the solution for the DOS world has been for each microprocessor to
provide binary compatibility for the processor of the previous generation. However, this
solution prevents software from truly becoming open enough to migrate to any platform.

The creation of standards for source-code portability for a given operating system
across different platforms is an initial requirement if the operating system and its
applications are to migrate across different hardware architectures. The OS/2 2.0 32-bit
programming model, like UNIX, is designed to be portable across almost any platform,
whether uniprocessor or multiprocessor. This portability will enable 32-bit OS/2 pro-
grams to penetrate platforms other than Intel-based systems when the underlying operat-
ing system is enabled on other processor platforms, such as RISC-based systems.

The trend in hardware systems toward workstation configurations that contain a
generic workhorse processor attached to large amounts of memory and DASD illustrates
that hardware is quickly becoming a commodity rather than a technology. This distinc-
tion is evident every time one company puts out a system that achieves a certain perfor-
mance level, and another company quickly assembles a system offering the same
components, but with a slightly higher clock rate and at a slightly lower price. Portable
software will hasten recognition of the trend to turn hardware into a commodity and will
demonstrate that the true technology of the future lies in software. This core issue is ad-
dressed by architectures such as SAA and open systems. In Chapter 12, these issues and
others are explored with respect to the future of OS/2, and with respect to the PC/work-
station operating system market.

SUMMARY

This chapter described the history of personal computers and of personal computer oper-
ating systems. DOS is the most popular single-user, single-tasking personal computer oper-
ating system. OS/2 is an advanced single-user, multitasking personal computer operating
system that exploits advanced hardware platforms and meets the needs of the future.
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EXERCISES

1.1 Describe the strategy IBM used to bring its PC to market quickly.

1.2 Discuss the layered architecture of the DOS system as shown in Fig. 1.1. Such layered archi-
tectures have become popular and effective designs for today’s increasingly complex systems.
Give several pros and cons for using the layered approach to designing operating systems. As you
read this text, watch for the use of layering in OS/2.

1.3 What first motivated designers to include a UNIX-like hierarchical file system in an early
version of DOS?

1.4 Discuss the problems inherent in real-mode multitasking systems.

1.5 What capabilities were provided in the Intel 80286 to support a protected multiprogramming
environment? Given these capabilities, why were most 80286s initially used as fast 8088/8086s?
1.6 Describe the limitations of DOS that motivated IBM and Microsoft to begin development of
0OS/2.

1.7 What software technique did DOS application developers use to relieve the 640KB memory
constraint? Give several disadvantages of this scheme.

1.8 How do terminate-and-stay-resident modules (TSR) work? What is a hot-key pop-up appli-
cation? What problems do TSRs present to the application developer?

1.9 DOS applications can disable interrupts with a single instruction. Describe a scenario using
this capability that might cause the system to hang (i.e., to deadlock).

1.10 Discuss several benefits of building multitasking into the operating system, rather than hav-
ing applications do multitasking themselves.

1.11 Explain the operation of the software-interrupt mechanism.

1.12  What does it mean to hook an interrupt? Why is this possible in the DOS environment? Give
several examples of software that might hook interrupts. What serious problem might develop in a
system in which interrupt hooking is commonly used?

1.13 What is a statically linked interface?

1.14 What major requirements did the design of OS/2 have to address?

1.15  Given the numerous limitations of DOS that motivated the development of OS/2, why was
it considered so important to be able to run existing DOS applications under OS/2?

1.16 Why was the family API (FAPI) developed?

1.17 From the early stages in the development of OS/2, it was known that OS/2 on the 80286
would not be able to multitask DOS applications or to run them in the background. At the time,
this limitation was not viewed as a serious problem from a marketing standpoint. Give several rea-
sons why marketing specialists believed that users would not be concerned about the lack of these

capabilities. Give several reasons why users would indeed like to multitask DOS applications and
to run them in the background.

1.18 What short-term hardware techniques were developed to relieve DOS’s 640KB memory
barrier? From the applications developers’ standpoint, what key problem did these techniques
have in common?

1.19 Discuss the factors that tended to inhibit the broader acceptance of early versions of OS/2.
1.20 What considerations motivated the development of the High-Performance File System (HPFS)?
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1.21 One factor that tended to confuse the applications development marketplace in 1990 was
that the Windows and Presentation Manager application programming interfaces (APIs) were dif-
ferent. Given the obvious advantages of a common interface, why do you suppose the APIs are
indeed different?

1.22 What factors motivated the development of OS/2 1.3?

1.23 Compare and contrast Windows 3.0 and OS/2 1.3 with regard to memory requirements,
processor requirements, and product capabilities.

1.24 What key capabilities was 32-bit OS/2 2.0 designed to provide?
1.25 What issues hinder the portability of 16-bit OS/2 programs?
1.26 Why do 16-bit OS/2 applications incur a large performance penalty to pay for their protection?

1.27 The 0S/2 2.0 system, like UNIX, is designed to be portable across a wide variety of plat-
forms. What kinds of standards facilitate such portability?

1.28 Argue that compatibility with widely used hardware and software is an important con-
sideration for designers of new operating systems. Explain how the design of OS/2 reflects the
importance of compatibility issues.
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28 Microprocessor Architectures

2.1 INTRODUCTION

This chapter describes the processor architectures on which the DOS and OS/2 systems
execute. The various microprocessors and their memory organizations are described and
analyzed with respect to their capabilities for supporting systems and applications software.

2.2 INTEL 8088/8086

The Intel 8088 is a 16-bit general-purpose microprocessor used in early IBM PCs and
compatibles. The 8088 and 8086 are architecturally identical chips, except that the 8088
has an 8-bit external data bus and the 8086 has a 16-bit external data bus. Throughout
this book, references to the 8088 include the 8086. The 8088 is capable of developing
20-bit physical addresses for a maximum of 1MB of memory addressability.

2.2.1 Memory Architecture

The memory architecture of the 8088 is a segmented model. Since a 16-bit processor
with 16-bit registers is capable of addressing only 64KB using a direct addressing
scheme, the segmented model was designed to allow access to IMB of memory. Each
physical location of memory is addressed by two 16-bit values—a segment and an offset.
The segment value denotes the start of a 64KB region, and the offset value is the num-
ber of bytes from the beginning of the 64KB segment to the byte being addressed.
Memory locations are described by logical addresses in the segment:offset format or
16:16 format. Segment values are loaded into one of four segment registers that point to
the beginning of the four currently addressable memory segments. Figure 2.1 illustrates
the four segment registers.

When a memory location is accessed, the value in the segment register is used to
determine the 20-bit base physical address of the segment, and the offset value is the
distance in bytes from the segment base address to the desired memory location. The
system calculates the base physical address by shifting the value in a segment register to
the left 4 bits, effectively multiplying the segment value by 16. The offset is then added
to the base segment address, resulting in a final physical address that is a 20-bit value

<+— 16 bits —>
Code
cs » segment
Stack
segment | SS
DS > Data .
segment
Extra < ES
segment

Fig. 2.1 8088 segment registers.
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Fig. 2.2 8088 address calculation.

ranging from O to IMB + 64KB. References to the memory between 1MB and 1MB +
64KB are wrapped by hardware to the lower 64KB of physical memory in 8088-based
systems. Figure 2.2 illustrates the 8088 address calculation.

Due to the nature of the address computation, the segment values are 16-byte or
paragraph granular. A paragraph on the 8088 is 16 bytes. Since addresses are calculated
arithmetically, segments can overlap, and there can be more than one combination of
segment:offset for each byte in the 1MB of storage. Figure 2.3 illustrates this aspect of
8088 addressing, called aliasing.

2.2.2 Register Set

The 8088 register set consists of general registers, special registers, and segment regis-
ters. Figure 2.4 illustrates the 8088 register set.

The AX, BX, CX, DX, SI, and DI registers are used to contain the operands of logi-
cal and arithmetic operations. These registers can be used in most simple instructions,
and each one also has a specialized role in some of the more complex instructions avail-
able. The AX register is used as an accumulator by default in many instructions. The BX
register is used as a base-addressing register, the CX register is used as a counter in loop
operations, and the DX register is used in I/O operations. The SI and DI registers can be

1MB
Physical
Segment: offset address 128KB + 16
VK| 1000H:11H 10011H B{ 128KB
. A

NBY  1001H:1H 10011H 64KB + 16
64KB

Bl - 10011H: = 64KB + 17
0

Fig. 2.3 8088 address aliasing.
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General registers Special registers
<— 16 bits —» <— 16 bits —»
AX Accumulator Instruction pointer
BX Base*
CcX Count Status flags
DX Data, I/0
SI Source index*
DI Destination index*
BP Base pointer*
SP Stack pointer

* can be used as an index (offset) register.

Fig. 2.4 8088 register set.

used as source and target offsets with special string instructions to perform memory-to-
memory transfers of data. The BX, SI, DI, and BP registers are the only registers that
can be used as index or offset operands of general address calculations.

As previously stated, the segment registers establish the four 64KB segments the
8088 currently addresses. Each segment register has a special usage. The CS segment
register determines the base address of the segment containing the currently executing
sequence of instructions, called a code segment. The 8088 fetches all instructions from
this code segment using as an offset the contents of the IP register. The CS:IP register
combination forms the instruction counter and is changed implicitly as the result of
control-transfer instructions such as CALL, JMP, interrupts, and exceptions. When a
transfer occurs without the CS register changing, the transfer is called “near,” since the
reference is to a location within the current code segment. When a transfer occurs and
CS is reloaded, the transfer is called “far,” since the transfer is to a location not in the
current code segment.

The 8088 uses a stack to facilitate subroutine linkages, parameter passing, and the
creation of local activation records. The SS register always contains the base address of
the current stack, and the SP register points to the top of the stack. The stack is refer-
enced implicitly by PUSH, POP, CALL, and other control-transfer operations. Unlike
CS, the SS register can be loaded explicitly, allowing programmers to define stacks dy-
namically. The BP register is usually used as a stack-frame base pointer for accessing
activation records and dynamically allocated local data on the stack. When BP is used as
the index register in an address calculation, the current stack segment is used in the
address calculation by default.

The DS and ES registers allow the specification of data segments. Typically, the DS
register is used to reference an application’s default data segment, and ES is used for
other data references outside the scope of the default data segment. Most instructions
that reference memory use the DS register by default to select the segment to be
addressed, allowing the instructions to be encoded more efficiently.
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The FLAGs register contains the status flags or condition codes. These flags allow
the results of one instruction to influence later instructions by preserving the status of
arithmetic and logical operations. The status flags are carry, parity, auxiliary, zero, sign,
and trap.

2.2.3 Interrupts and Exceptions

Interrupts and exceptions are two mechanisms used to interrupt program execution.
Exceptions are synchronous events that are the responses of the processor to conditions
detected during the execution of an instruction, such as attempts to divide by O or to exe-
cute an invalid opcode. Interrupts are asynchronous events triggered by external devices
requiring attention. Another class of interrupts, called software interrupts, facilitates in-
tentional synchronous control transfers using the interrupt mechanism. Software inter-
rupts are executed using the INT instruction.

The 8088 uses the stack and the interrupt vector table (IVT) to effect a control
transfer when an exception, interrupt, or software interrupt occurs. The IVT table begins
at physical address zero; it consists of an array of addresses in the segment:offset for-
mat. When an exception, interrupt, or software interrupt occurs, the 8088 saves the cur-
rent instruction pointer (CS:IP) and the contents of the FLAGs register on top of the
current stack, then indexes into the IVT based on the interrupt or exception number to
find the new address from which to continue execution. An interrupt handler is called
when an interrupt or an exception occurs. When the interrupt or exception has been
completed, the IRET instruction is used by the handler to return control to the original
point of the interrupt.

2.2.4 Input/Output

The 8088 allows I/O to be performed using one of two techniques: a separate I/0-
address space with specific 1/O instructions, or memory-mapped I/0O using general-
purpose instructions. The 8088 I/O address space is divided into ports that can be 8, 16,
32, or 64 bits wide. That is, each port can map an I/O device internal register that can
range in size from 8 to 64 bits. Using the IN and OUT instructions, 8088 programs read
and write ports in the I/O address space. Memory-mapped 1/O is used by connecting the
peripheral devices to respond like normal memory components. Memory-mapped
devices can then be accessed using regular instructions such as MOV. An example of a
memory-mapped device is the vidleo RAM associated with the display.

2.2.5 Analysis

Since the 8088 does not provide memory protection or I/O protection, it is not appropri-
ate as a multitasking platform. Due to the segmented memory addressing scheme, source
code written for the 8088 is portable only to systems with exactly the same segment
semantics and addressing scheme. The segmented memory model and small register set
add a level of complexity to the development of programs and programming tools to
support the 8088.
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2.3 INTEL 80286

The 80286 microprocessor is used in the IBM PC/AT and compatible systems. The
80286 has two modes of operation, called real mode and protected mode. In real mode,
the 80286 behaves like a fast 8088, and is compatible with all systems and applications
that run on the 8088.

When protected mode is enabled, the 80286 provides an architecture that supports
virtual addressing, memory protection, I/O protection, and access to 16MB of physical
memory. As in the 8088, the maximum segment size is 64KB, so the 16MB of physical
memory must still be accessed in 64KB chunks. The instructions and register set used
by applications running in protected mode are identical to those used in real mode; vari-
ous system registers not available to applications are used by the operating system to im-
plement the operating system’s functions and policies.

2.3.1 Memory Architecture

The 80286 is put into protected mode by setting the protected mode bit in the Machine
Status Word (MSW), a system register of the 80286. Once put into protected mode, the
80286 cannot be reset to real-mode operation without special external circuitry on the
system board. Mode switching an 80286 from protected mode to real mode is described
in more detail in Chapter 10.

2.3.2 Descriptors

When the 80286 runs in protected mode, the memory model is different from the real
mode 8088 memory model. On the 8088, the segment values are directly related to the
real storage address that the segment occupies. The virtual addressing of the 80286
disassociates the addresses referenced by a program from the actual addresses available
in primary storage. The addresses used in protected mode are called virtual addresses.
The addresses available in primary storage are called real addresses or physical
addresses. To map virtual addresses to physical addresses as a program executes, the
80286 uses a construct called a descriptor to implement direct segment translation.

A descriptor is 8 bytes and contains what the base physical address of the segment
is, what the segment size or limit is, how the segment can be accessed, and what privi-
lege is required to access the segment. Figure 2.5 shows the information in an 80286
data segment descriptor.

The segment base address is the 24-bit physical address where the segment begins.
Since this base address is not visible to the running program, an operating system may
relocate segments dynamically in physical memory. This relocation is transparent to a
program using virtual addresses.

The segment limit field in the descriptor denotes the size of the segment. An impor-
tant feature of the Intel segmentation scheme is that segments are variable in size and
can be grown and shrunk dynamically. This feature allows an operating system to pro-
vide a segmented memory model in which memory objects can be dynamically resized.
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+——————— 16 bits ————»

Reserved (0) 6
+
Access rights J Base address (B16-23) 4
Base address (B0-15)
+2
Limit
15 0

Fig. 2.5 80286 segment descriptor. (Reprinted by permission of Intel Corporation,
Copyright/Intel Corporation 1983.)

The remaining information in the descriptor is called access rights information, and
describes how the segment can be referenced. Both of these fields are discussed further
in Section 2.3.6.

2.3.3 Descriptor Tables

The 80286 architecture groups descriptors into descriptor tables, which are arrays of de-
scriptor entries. A descriptor table is a special variable-length segment that can contain up
to 8192 entries for a maximum size of 64KB. There are two primary descriptor tables in
the 80286 architecture, the global descriptor table (GDT) and the local descriptor table
(LDT). There can only be one GDT in an 80286 system, whereas there may be multiple
LDTs. Although the 80286 does not prohibit a system with multiple GDTs, switching and
managing multiple GDTs under system software control is not realistic. Furthermore, the
80286 has a multitasking model that uses a single descriptor table (GDT) for the system
resources, and a descriptor table (LDT) for each 80286 task’s resources. An 80286 task is
not the same as an OS/2 process, since OS/2 does not use the 80286 multitasking model.
Chapter 5 describes the differences in the 80X86 and OS/2 multitasking models with
respect to context switching and process management. The 80286 version of OS/2 puts in
the GDT descriptors for segments that are global to all processes.

Descriptors for segments that are owned or accessed on a per-process basis are put
into an LDT associated with each process. The GDT and LDT segments are located by
the 80286 using two special registers called the GDTR and LDTR. These registers store
the base address and limits of the descriptor tables.

2.3.4 Selectors

Unlike addressing on the 8088, the segment values on the 80286 no longer represent ac-
tual locations in physical storage; rather, they are indices into a descriptor table, and are
called selectors. On the 80286, 16:16 addresses in protected mode are virtual addresses
in selector:offset format. Figure 2.6 illustrates the format of a selector.

Selectors are 16-bit values, but not all 16 bits are used as an index into a descriptor
table. The table-indicator bit designates whether the index should reference the GDT or
LDT. The remaining bits are used for protection information, as discussed in Section 2.3.6.



34 Microprocessor Architectures

< 16 bits >
Index |TI|RPLI
15 3210

Index = descriptor-table index
Tl = descriptor-table indicator
RPL = reauestor privileae level

Fig. 2.6 80286 selector format. (Reprinted by permission of Intel Corporation,
Copyright/Intel Corporation 1983.)

2.3.5 Address Translation

When a 16:16 memory reference occurs, the descriptor table is used in the address
calculation to determine a 24-bit base segment address that is added to the offset of the
target address. Figure 2.7 illustrates the address translation through a descriptor table in
protected mode.

If a selector that references an invalid segment descriptor is loaded into a segment
register, the 80286 raises a general protection fault that the operating system handles.
Illegal memory accesses after the loading of a valid selector can also trigger a general
protection fault. Although applications are aware of selectors, they do not have direct

16MB
1 16-bit _ >
Selectorl Offset | Sffoet rﬁ) '.
| Segment
limit
_ 24-bit
» Descriptor > —
Base address

0

Descriptor table .
Physical memory

Fig. 2.7 80286 protected-mode address translation. (Reprinted by permission of
Intel Corporation, Copyright/Intel Corporation 1983.)
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access to the descriptor tables. The descriptor tables are maintained by the operating sys-
tem on behalf of executing programs.

Since the descriptor tables of the 80286 are maintained in memory, it would seem
that memory access would be a slow operation, since the contents of a descriptor would
have to be examined on each memory access. To provide tast address translation, the
80286 maintains a hidden descriptor cache for each segment register. When a segment
register is loaded with a valid selector, the descriptor is read into the on-chip segment-
register cache automatically. Subsequent memory access operations within the segment
proceed without the descriptor table needing to be referenced. To maintain the integrity
of the descriptor cache, the operating system must be careful not to change the contents
of a descriptor that is in use, since the 80286 will not reload the cache until the segment
register is reloaded.

2.3.6 Protection

The concept of protection is key in multiprogrammed virtual-addressing systems. The
operating system must be protected from errant applications, and applications must be
protected from one another. The 80286 provides a protection model that allows an oper-
ating system to isolate itself from user applications, to isolate user applications from one
another, and to validate memory accesses. Whenever memory is referenced, the memory
management unit (MMU) hardware on the 80286 checks the reference to verify that it
satisfies the protection criteria. Since these checks are made before an instruction that
references memory completes, any protection violation occurring during the checks will
cause the 80286 to raise an exception.

The 80286 privilege levels are used to protect critical system code and data from
less trusted code. When applied to procedures, privilege is the degree to which the pro-
cedure can be trusted not to make a mistake that might affect other procedures. When
applied to data, privilege is the degree of protection that the data should have from less
trusted procedures. The system uses LDTs to isolate each task or process segment by
allocating an LDT for each one and by switching LDTs when tasks or processes are
switched.

Since the segment is the unit of protection, the natural place in which to store the
protection information is the segment descriptor. The access-rights information in the
segment descriptor contains the protection information for each segment. When a selec-
tor referencing a segment is loaded into a segment register, the processor loads not only
the base physical address and limit of the segment into the descriptor cache, but also the
protection information. Figure 2.8 illustrates the access rights portion of a segment de-
scriptor.

The accessed bit is reset each time that a selector is loaded into a segment register.
It is set whenever the segment is read or written, and can be used by an operating system
to monitor segment usage.

The present bit in the descriptor tells whether the segment is in memory. If a pro-
gram loads a selector to a segment that is marked not present, then a segment not-
present fault is raised. The present bit and a segment-not-present fault are used by
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[P]oPL] Type [W][A]

P = present bit

DPL = descriptor privilege level
Type = descriptor/segment type
W = writable bit

A = accessed bit

Fig. 2.8 80286 access rights information. (Reprinted by permission of Intel
Corporation, Copyright/Intel Corporation 1983.)

operating systems to manage virtual memory. Chapter 6 describes how 16-bit OS/2 uses
the segment-not-present fault mechanism to extend the physical memory resource.

2.3.7 Type Checking

The type field of a descriptor distinguishes among different descriptor formats, and
specifies the intended use of a segment. For instance, the type field indicates whether the
descriptor is for a code segment, a data segment, or a special segment used by the sys-
tem. The segment type checking occurs both when a selector is loaded into a segment
register and during memory references. The type checking ensures that the CS register
can be loaded only with the selector of a code segment, and that only selectors of
writable data segments are loaded into SS.

The writable bit in the access rights information indicates whether a data segment is
read-only. For code segments, this bit means execute-only, which prevents the contents
of a code segment from being read.

2.3.8 Limit Checking

The segment-limit field in the descriptor denotes the size of the segment. Since 80286
segments are variable sized, they support byte-granular protection checks. If a program
attempts to access an offset beyond the limit of a segment, a general protection fault is
raised. When a general protection fault occurs, the invalid memory access is reported
with byte-level accuracy. Limit checking is useful for detecting programming errors
such as array subscripts that are out of the boundary of the array and invalid pointer cal-
culations.

2.3.9 Privilege Levels

The 80286 has a four-level protection scheme that an operating system can use to define
how the system and programs are protected from one another. Privilege value O repre-
sents the greatest privilege and the most trust; privilege value 3 represents the least trust.
The privilege model can also be thought of as comprising rings of protection, in which
the center ring is for segments containing the system software, and the outer rings are
for segments of less trusted user software. An operating system may use as many or as
few of the protection levels as needed in the system architecture. Figure 2.9 illustrates
the ring protection model.
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Task A
Program

= Code segment
@ = Data segment

Level 3

Fig. 2.9 80286 privilege levels and the ring protection model. (Reprinted by per-
mission of Intel Corporation, Copyright/Intel Corporation 1983.)

Privilege levels are found in three areas of 80286 architecture. Descriptors contain a
field, called the descriptor privilege level (DPL), that indicates the privilege level re-
quired to access the segment. Selectors contain a field called the requestor privilege
level (RPL). The RPL represents the privilege level of a procedure that supplies a selec-
tor as a parameter. The 80286 also internally tracks the current privilege level (CPL).
The CPL is usually equal to the DPL of the currently executing code segment. The CPL
value changes when control is transferred to code segments with different DPLs.

The 80286 determines the right of a procedure to access segments by comparing the
CPL with the privilege levels (DPL and RPL) of the segments to be accessed. The privi-
lege level access checks occur when a selector is loaded into a segment register. If the
checks fail, the instruction loading the selector into a segment register does not complete
and a general protection fault is raised.

2.3.10 Protected Data Access

When a program loads the selector of a data segment into a segment register, the 80286
checks to see whether the program has access to the desired segment by comparing
privilege levels. The privilege check is successful if the CPL is numerically less than or
equal to the DPL of the segment (CPL_DPL). That is, if the processor is currently run-
ning at a privilege level (CPL) that is the same or more trusted than that of the data be-
ing accessed (DPL), the access is valid. Therefore, a procedure can access only data that
are at the same or a less trusted privilege level.

The segments addressable by a program or task change when the CPL changes by
executing a protected control transfer. When executing at ring 0 (CPL = 0), data seg-
ments at all privilege levels are accessible; when executing at ring 1 (CPL = 1), data
segments with DPL = 1 and higher are accessible; and so forth.
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2.3.11 Protected Control Transfers

The 80286 accomplishes control transfers using the JMP, CALL, and RET instructions
(interrupts and exceptions are discussed separately). There are three flavors of control
transfer that differ based on the “distance” of the transfer.

Control transfers within a single segment require no change in privilege level and
are called near transfers since the transfer is within the current code segment. The near
variant of the CALL or JMP instruction is used with an offset in the current code seg-
ment as an operand.

Transfers between code segments are called far transfers and require the CS register
to be reloaded with the selector of the transfer target. If a far transfer is to another code
segment at the same privilege level as the source code segment, the far variant of the
CALL or JMP instruction is used, specifying the selector of the target code segment and
the offset in the target code segment to which control should be transferred. When the
CALL or JUMP instruction is issued, the 80286 checks to see whether the DPL of the
target code segment is equal to the CPL (the DPL of the current code segment). The
80286 also performs a type check on the target descriptor to make sure the latter is a
code descriptor, and a limit check to ensure that the target offset is actually within the
target code segment.

If a control transfer is between segments at different privilege levels, a special
80286 protection construct called a gate must be used as the operand of the CALL
instruction to execute a far call across privilege levels. A gate is represented by a special
descriptor, called a gate descriptor. There are four types of gate descriptors, called call
gates, trap gates, interrupt gates, and task gates. This section describes the general gate
mechanism using call gates. The call gate’s two main functions are to define an entry
point to a procedure and to specify the privilege level of the entry point.

To understand why a construct such as a gate is necessary, we can imagine an
80286 operating system implemented at ring O with an application running at ring 3.
According to the rules of protection, the application at ring 3 has no way to call the op-
erating system for trusted system services such as system calls, since the target code de-
scriptor has a DPL that is numerically less (more trusted) than that of the requestor. We
need a construct allowing the operating system to make a protected entry point available
to the less trusted code of the application.

Call gate descriptors are used in CALL instructions the same way as are code seg-
ment descriptors, except the selector operand references a gate descriptor, and the offset
operand is ignored. When the 80286 executes the CALL instruction and recognizes that
the target descriptor is a gate instead of a code segment, the call is executed according to
gate semantics. Figure 2.10 illustrates the contents of a call gate.

The call gate contains a unique identifier in the type field of the access rights byte
to identify to the 80286 that it is a gate descriptor. The gate contains the selector:offset
of the entry point to the desired procedure and a DPL that is the privilege level of the
gate, not of the target code segment. The gate DPL determines what privilege levels can
use the gate for a control transfer. For instance, in the example of an operating system at
ring 0 attempting to provide a protected entry point for ring 3 applications, a call gate of



23 INTEL 80286 39

<+——+—— 16 bits ——————>»

Reserved (0)
+6
P|oPL| Type] 00 | 000 | count | ,
Code selector
+2
Offset
15 0

Fig. 2.10 80286 call gate descriptor. (Reprinted by permission of Intel Corporation,
Copyright/Intel Corporation 1983.)

DPL = 3 is inserted into one of the descriptor tables and contains the selector:offset of
the protected ring 0 entry point. Figure 2.11 illustrates the indirect control transfer
through a call gate.

To guarantee system integrity, the 80286 architecture provides for a different stack
at each privilege level. This provision is necessary so that a trusted procedure does not
have to rely on the caller to provide sufficient stack space. Also, the trusted system code
should not run on a stack that can be accessed by less-trusted code. The 80286 maintains
pointers to the privilege-level stacks in a structure called a task state segment (TSS). The
TSS is the 80286 data structure used for maintaining a task and the data associated with
that task. The TSS contains an entire register set for the currently executing task, includ-
ing the stack pointers for privilege levels 0, 1, and 2, it is located by the tasking register
(TR). Although OS/2 does not use the TSS for representing OS/2 processes, a TSS must

16MB
o]
Call [Selector ' 0 '
............... Code
o5 Targer | segmen
offset procedure mi

Gate descriptor j————————ep (el __
Code T
selector .
24-bit
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Fig. 2.11 80286 call gate control transfer.
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be used to facilitate ring transitions. Chapter 5 describes the OS/2 system’s minimal
dependency on the TSS construct with respect to process management and context
switching.

When a control transfer between privilege levels occurs using a call gate, the 80286
automatically switches from the current stack to the more privileged stack by accessing
the TSS. However, there is a requirement to copy the parameters from the original stack
to the more privileged stack, so the trusted code can validate them and perform its trust-
ed service. It is here that the count field in the call gate descriptor comes into play. The
80286 automatically copies the parameters from the target stack to the new stack based
on the count field in the gate descriptor. During the transfer, all protection checks are ac-
tive when the new stack selector is loaded and when the parameters are copied. This ca-
pability allows the operating system to make transparent to the caller whether the call
instruction goes through a gate to more privileged code or directly to a code segment at
the same privilege level.

2.3.12 Parameter Validation

An important part of the implementation of operating system calls is the validation of
pointer parameters passed into the system by application programs. The operating sys-
tem must verify that each pointer parameter is to valid application memory, not to sys-
tem memory, to prevent application programs from inadvertently or maliciously
destroying system integrity. If an application attempts to access a system address by
passing a pointer to system addresses as a parameter to a system call, the pointer is
called a Trojan horse. The pointer’s action parallels that of the soldiers during the
Trojan war who concealed themselves in a wooden horse that they presented as a gift to
the enemy. The enemy soldiers took the horse into their camp, allowing the concealed
soldiers to attack them. Any protection system must account for Trojan horses, prevent-
ing less trusted code from passing a parameter to a trusted data object. To assist trusted
code in validating pointers and avoiding Trojan horses the 80286 provides the requestor
privilege level (RPL) and an instruction called ARPL.

The RPL field of a selector indicates to the 80286 the privilege level of the original
supplier of the pointer. For an access to be valid, the RPL must be numerically less than
or equal to the DPL of the selected segment, indicating greater or equal privilege of the
originator (RPL_DPL). In other words, the original caller had to be able to access the se-
lected segment. The privilege-level check verifies that the maximum of the RPL and the
CPL is less than or equal to the DPL.

An example of a Trojan horse scenario on an 80286 is a ring 3 procedure calling a
ring 2 procedure using a call gate, which passes a selector to a ring 2 segment with
RPL = 2 as a parameter. The ring 2 procedure must have some way of determining the
validity of the data selector with respect to the originator’s privilege level. The ring 2
procedure could simply insert the caller’s privilege level into the RPL portion of the
selector, but this policy would cause the originating caller’s RPL to be lost if the selec-
tor was passed subsequently to a ring 0 procedure. Therefore, the 80286 provides the
ARPL instruction to allow more trusted code to adjust the RPL field of a data selector
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before that field is used to be the maximum of the selector’s RPL and the caller’s CPL.
This adjustment stamps the selector with the minimum privilege, and assures the trusted
code that a Trojan horse cannot be passed in.

In this example, a ring 2 procedure is passed a selector that has RPL = 2. When the
ring 2 procedure stamps the selector with the ARPL instruction, it alters the RPL of the
selector to RPL = 3, the minimum privilege (numerically greater) of the CPL and RPL.
If the ring 2 procedure then passes the selector as a parameter to a ring O procedure, the
ARPL instruction will result in restamping of the selector with RPL = 3, since the orig-
inal RPL = 3 and the caller’s CPL = 2. If the ring 0 procedure executing with CPL =0
attempts to access the ring 2 segment using the passed selector, the access will cause a
general protection fault, since the maximum of the RPL and CPL (3) is greater than the
DPL (2) of the selected segment.

2.3.13 Protected Instructions

Since some instructions have the capability of affecting the entire protected system, the
80286 provides protection to ensure that only trusted procedures with appropriate privi-
leges execute these instructions. Two classes of protected instructions exist: privileged
instructions used by an operating system, and sensitive instructions used for I/O opera-
tions. Privileged instructions can be executed at only privilege level 0. Sensitive instruc-
tions are categorized in Section 2.3.15.

2.3.14 Interrupts, Exceptions, and Faults

Interrupts and exceptions in protected mode on the 80286 are similar to those found in
real mode on the 80286, except that the IVT is replaced by a descriptor table called the
interrupt descriptor table (IDT). Unlike the IVT, the IDT can reside anywhere in physi-
cal memory and is located by the IDTR register. The IDT may consist of trap, interrupt,
and task gates. When an interrupt or exception occurs, the number of the interrupt is
used as an index into the IDT to select a gate that determines the target of the control
transfer.

Trap and interrupt gates are similar to call gates, except that they contain no count
field. The difference between interrupt and trap gates is that interrupt gates transfer control
to the target code with external interrupts disabled, whereas trap gates transfer control with
external interrupts enabled. Interrupt and trap gates also have a privilege level field associ-
ated with them that allows the system to control access to the interrupt and exception
routines.

For example, assume an operating system with applications at privilege level 3 and
the system at privilege level 0. All interrupt and fault handling is performed by the system
at privilege level 0. If an interrupt occurs while CPL = 3 and the interrupt gate descriptor
has DPL = 0 and a selector to a ring O interrupt handling procedure, a general protection
fault will occur, since the caller (the interrupted code) does not have sufficient privilege to
access the gate. Therefore, interrupts and traps that may occur at less trusted privilege lev-
els need to have the DPLs in their gate descriptors set to the minimum trusted (numerically
greatest) privilege level to support potentially less trusted clients.
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A fault uses the same mechanism as an exception or interrupt, except that a fault is
caused by synchronous execution of an instruction and the instruction is restartable. A
fault is a special case of an interrupt or exception. The segment-not-present fault is usu-
ally used by operating systems that swap segments to secondary storage. The general
protection fault occurs when a protection violation occurs. The operating system deter-
mines whether faults result in program termination.

2.3.15 Input/Output

The 80286 has the same I/O capabilities in protected mode as exist in real mode or on an
8088. However, the I/O instructions used for accessing the ports in the 80286 1/O ad-
dress space are protected; they are called sensitive instructions. The 80286 has a field in
the FLAGs register called the input/output protection level (IOPL) field. The IOPL field
defines the privilege necessary to execute the sensitive I/O instructions, and other in-
structions that manipulate the processor’s interrupt flag, such as CLI and STI. If a task
attempts to use sensitive instructions and is running at a privilege level numerically
greater (less trusted) than the system’s IOPL, its behavior is considered a protection vio-
lation, and a general protection fault occurs.

2.3.16 Analysis

The 80286 protected model provides the functions necessary to implement a multitasking
virtual memory operating system. Due to the 64KB limitations in the addressing ar-
chitecture, programming the 80286 is nontrivial, and source code is relatively nonportable.
Since large 80286 programs must change segment registers often, and since this operation
is slow due to the protection checks (compared to loading a segment register in real mode),
performance of a protected 80286 system is usually not as good as is that of an equivalent
nonprotected real-mode or 8088 system. However, the 80286 can be used to break the
IMB barrier associated with the 8088 and to provide rudimentary segmented virtual mem-
ory management. Although 80286 protected mode applications use the same instructions
as do 8088 applications, due to the difference in segment semantics and to errata on most
80286 chips in the field, it is not feasible to run 8088 real-mode programs in protected
mode on the 80286 to take advantage of more than 1MB of memory.

2.4 INTEL 80386

The 80386 microprocessor is used in some IBM PS/2 and AT-compatible systems. Like
the 80286, the 80386 has a real mode and a protected mode; it also has another mode
called virtual 8086 mode. In real mode, the 80386 behaves like a fast 8088. Therefore,
in real mode, the 80386 is compatible with all systems and applications that run on the
8088. In protected mode, the 80386 is compatible with protected mode software written
for the 80286. Virtual 8086 mode is designed to allow 8086/8088 programs and, systems
to run in a protected-mode environment.

The 80386 register set and protected mode addressing architecture have stretched the
80286 to 32 bits to support 32-bit arithmetic, segments up to 4GB in size, and physical
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memory configurations of up to 4GB. The 80386 provides a paged architecture
underneath the segmented model to enable more efficient usage of physical memory in
systems with large memories.

There are two versions of the 80386 processor; the 80386DX and the 80386SX.
From the software perspective, the two versions are architecturally equivalent. In the re-
mainder of this book, we shall specify the type of 80386 only where it is significant to
the discussion. The difference between the two 80386 chips lies in the external connec-
tions: The 80386DX has 32-bit external data and addressing paths, whereas the
80386SX has a 16-bit external data path and 24-bit external addressing path. Therefore,
the 80386SX can be used to provide 80386 function and performance in a 16-bit bus
architecture, such as those found in 80286-based computers, whereas the 80386DX
requires a 32-bit bus architecture. Although the 80386 32-bit memory architecture sup-
ports up to 4GB of physical memory addressing, 80386SX systems are limited to 16 MB
of physical memory because of the smaller external bus architecture.

2.4.1 Register Set

The general register set of the 80286 has been extended to 32 bits to support 32-bit arith-
metic and addressing operations. This extension allows software to provide significantly
higher performance than is possible on 16-bit architectures. Figure 2.12 illustrates the
80386 register set.

Unlike in the 80286, any of the general registers can be used as the offset portion of
a memory address calculation. Although the registers are each 32 bits, the 16-bit por-
tions of the registers used by 8088/8086 and 80286 programs can be accessed in real
mode, protected mode, and virtual 8086 mode. The segment registers are the same as the
80286, except for the addition of two more segment registers, FS and GS. The FLAGs
register has been extended to provide a flag bit to indicate virtual 8086 mode operation.

General registers Special registers Segment registers
<«— 32 bits —» <— 32 bits —» <32 bits »

EAX AX EIP IP CS

EBX BX EFLAGS FLAGS SS

ECX CX DS

EDX DX ES

ESI Si FS

EDI DI GS

EBP BP

ESP SP

Fig. 2.12 80386 register set. (Reprinted by permission of Intel Corporation,
Copyright/Intel Corporation 1986.)
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In the past, breakpoint debugging had to be implemented by software, but the 80386
contains debugging registers that facilitate the implementation of hardware debugging
breakpoints. The 80386 retains the same memory management system registers as found
on the 80286: the GDTR, LDTR, IDTR, and TR.

The 80386 contains a new set of system registers called control registers. Figure
2.13 illustrates the 80386 CRO, CR1, CR2, and CR3 control registers.

Like the MSW on the 80286, CRO contains the system control flags; it also contains
a new flag for indicating whether paging is enabled in the system. CR3 is used to locate
the paging directory structure and is also called the page directory base register
(PDBR). CR2 is used when paging is enabled to indicate the linear address of a page
fault. The control registers and paging are discussed in Section 2.4.4.

The 80386 also contains a set of test registers used for testing the translation looka-
side buffer (TLB), a cache used for storing paging information. The TLB is discussed in
Section 2.4.4.

2.4.2 Memory Architecture

The 80386 provides segmented and paged virtual address translation. When protected
mode is enabled, 32-bit segmented address translation occurs by default. Addresses
resulting from segmented address translation are physical addresses, as on the 80286,
unless paging is enabled. If paging is enabled, the addresses generated by segmented
address translation are called linear addresses. The linear addresses are then further
translated by the paging unit to create physical addresses. Neither of these translations is
visible to applications programmers, but both allow system programmers great flexibili-
ty in designing different memory models.

2.4.3 Segmentation

Segmented address translation occurs in the protected mode of the 80386, whether or
not paging is enabled, so we shall discuss segmentation without regard for paging and
its associated address translation and structures. The segmented memory architecture of
the 80386 uses exactly the same constructs as are used on the 80286 to facilitate virtual

<+——————— 32 bits —m——>

CR3 | Page directory base register (PDBR)

CR2 | Page fault linear address
CR1 Reserved (0)
CRO | PG| Reserved (0) MSwW

PG = paging enable bit
MSW = machine status word

Fig. 2.13 80386 control registers. (Reprinted by permission of Intel Corporation,
Copyright/Intel Corporation 1986.)
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memory addressing and protection. The 80386 uses the same descriptors, descriptor ta-
bles, associated system registers, and protection mechanism as does the 80286. All the
“32-bitness” of the segmentation on the 80386 results from the redefinition of reserved
fields in the descriptors to support 32-bit addressing. Since the 80286 required these
fields to be 0, all 80286 system and application code that correctly zeros the reserved
fields in descriptors runs on the 80386 without any changes. As we shall see, 32-bit ad-
dressing does occur, but the high-order 8 bits of physical addresses generated by the
80386 will always be 0. Therefore, when 80286 code is being run, physical addresses
larger than 16MB are not generated by the 80386, and the system effectively is a fast
80286 running in protected mode.

As in the 80286, a segment descriptor is 8 bytes and contains the base address of the
segment, the segment size or limit, and access information that describes what the seg-
ment type is and how it can be used. Figure 2.14 illustrates the contents of an 80386 seg-
ment descriptor.

The high 2 bytes of the segment descriptor that were reserved on the 80286 are used
to extend the basic descriptor definition on the 80386. There is a 32-bit segment base ad-
dress, a 24-bit segment limit field, and several new access bits. A segment’s base
address can be anywhere in the 4GB range.

The 24-bit segment limit specifies the size of the segment using one of two meth-
ods, depending on the setting of the granularity bit. If the granularity bit is clear, the
limit is defined in units of 1 byte up to a maximum of 1MB. If the granularity bit is set,
the limit is defined in units of 4KB up to a maximum of 4GB. Notice that an 80286 sys-
tem running on the 80386 will always have this bit clear, so limits are interpreted as 16-
bit and byte granular.

The interpretation of the bit labeled “default/big” (D/B) in Fig. 2.14 depends on
whether the descriptor type indicates a code or a data segment. If the descriptor is for a
code segment, then the bit is called the default bit or D-bit. If the descriptor is for a data
segment, the bit is called big bit or B-bit. To understand the purpose of these bits, we
must examine how the 80386 deals with providing 16-bit and 32-bit semantics with
essentially the same instruction set as is used on the 80286.

When running on the 80286, operands such as registers and address offsets are 16
bits. On an 80386, however, each of these entities can be 32 bits as well. So that it can

Base address (B24-31)|G|D/B|0]AVL|Limit (B16-23)
Access rights Base address (B16-23)
Base address (B0-15)
Limit (BO-15)

G = granularity bit
D/B = default/big bit
AVL = available for system

Fig. 2.14 80386 segment descriptor. (Reprinted by p\ermission of Intel Corporation,
Copyright/Intel Corporation 1986.)
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track in which mode the 80386 is running, the 80386 maintains internally a default
operand and address state. When the 80386 runs in real mode or in virtual 8086 mode,
this state is 16 bit by default, enabling 8088/8086 program execution. When the 80386 is
in protected mode, the default operand and address size are determined by the D-bit in
the descriptor of the segment that the processor is executing currently. Therefore, when
the 80386 is running a code segment with the D-bit clear, 80286 semantics are applied
when instructions are executing, resulting in the use of 16-bit registers, operands, and
addresses. By “16-bit addresses” here, we mean 16-bit address offsets, instead of 32-bit
address offsets, being the default during segmented address translation. If the D-bit is
set, the 80386 defaults to using the 32-bit registers, operands, and address offsets when
an instruction is executed. Special instruction prefixes, called overrides, are available in
all processor modes when the default semantics of an instruction must be changed
temporarily.

The B-bit also plays a large role in the interpretation of the instruction stream. When
the selector of a data segment descriptor is used in the SS register to set up a stack, the
B-bit in the descriptor is used to determine the default size of the stack pointer. If the B-bit
is clear, the 80386 applies 80286 16-bit stack semantics—stacks are no larger than 64KB
and have a 16-bit stack pointer, the SP register. If the B-bit is set, the 80386 supports 32-
bit stacks larger than 64K and uses a 32-bit stack pointer, the ESP register. The B-bit also
allows the 80386 to apply the correct stack semantics when executing an instruction that
implicitly references the stack, such as PUSH, POP, and CALL.

The protection mechanisms of the 80386 are identical to those found on the 80286.
The same four-privilege-level protected architecture and rules apply. However, the
80386 defines gate descriptors with a different type than 80286 gate descriptors, so that
it can apply different semantics when executing gated control transfers. The difference
between 80286 and 80386 gate descriptors is that 80386 descriptors contain a full /6:32
target address, and the count of stack parameters to transfer during the transition is inter-
preted as 4-byte words. Another difference during gated transfers is that the new stack
pointer retrieved from the TSS needs to have 32 bits of offset, instead of the 16 bits
found in the TSS on an 80286. To facilitate this, the 80386 defines an 80386 TSS that
contains a 32-bit version of the task state information. However, note that a 32-bit TSS
is not needed if the 80386 is running an 80286 operating system and applications, since
no 32-bit gated transitions will occur.

2.4.4 Paging

Paging is a technique of managing virtual memory as fixed-length blocks (called pages),
as opposed to variable-length segments in segmented systems. The 80386 uses a paged
architecture to provide a mechanism for managing the allocation of physical memory in
a system with large segments. Since the 80386 allows segments to be much larger than
64KB, managing the physical memory resource without paging can be difficult, since
the segment must reside in physically contiguous memory. Also, swapping large vari-
able-length segments to secondary storage can cause a virtual memory system to
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perform poorly. Therefore, the paging mechanism of the 80386 allows segments to
reside in physically discontiguous memory, and allows virtual memory to be managed in
terms of small, fixed-length blocks.

In previous sections, we referred to the 32-bit address that is the result of a seg-
mented address translation as a physical address. On the 80386, however, this address is
called a linear address. If the 80386 does not have paging enabled, the linear address is
the same as the physical address. However, if the paging mechanism is enabled by the
paging bit in CRO being set, then the linear address is not equal to the physical address.
Rather, the 32-bit linear address is translated by the paging unit on the 80386 into a final
32-bit physical address.

With paging enabled, the 80386 divides physical memory into 4KB units of con-
tiguous addresses called page frames. A linear address is actually an ordered tuplet that
specifies a page table, a page frame within that page table, and an offset within the page
frame. Figure 2.15 illustrates the format of a linear address.

The 80386 paging unit performs dynamic address translation using a two-level
direct mapping. The structure used by the paging unit to map addresses is called the
page table. A page table is itself a page and contains 1K 32-bit entries that are page
specifiers. Two levels of page tables are used to address a page of memory. The first
level is a page table, called a page directory, that is located by the CR3 register. The
page directory addresses up to 1K page tables of the second level. A page table of the
second level addresses up to 1K page frames. Therefore, each page table can map
4MB of physical memory, and a page directory can map 1K * 4MB = 4GB of physical
memory. Figure 2.16 shows how the 80386 converts a linear address into a physical
address.

Page table entries have the same format regardless of whether they are in the first or
second level. Since each page in the system is on a 4KB boundary, each page table entry
(PTE) uses only the high-order 20 bits to designate a page. The remaining 12 bits of a
page specifier are used to signify the page attributes. Figure 2.17 illustrates the format of
a page table entry.

The present bit indicates whether a PTE can be used in address translation. If the
present bit is not on in either set of page tables for an entry when an address translation
occurs, the 80386 raises a page fault. The fault handler can bring the required page into

Virtual page number Displacement
I 1
T 1 I 1
31 22 21 1211 0
I Directory | Page | Offset

T T

Specifies Specifies
page table page frame

Fig. 2.15 80386 linear address.



48 Microprocessor Architectures

| Dir I Page ’ Offset 4GB

Page directory Page table

Page table Page frame Page
-[ ® > . frame

v

CR3

Page directory base
register

0

Fig. 2.16 80386 paged linear address translation. (Reprinted by permission of Intel
Corporation, Copyright/Intel Corporation 1986.)

physical memory and restart the faulting instruction. This can occur twice for a given
memory access if the page table is also not present.

The accessed bit and the dirty bit are used to profile the usage of a page frame. The
80386 sets the accessed bit whenever a memory reference attempts to read or write to an
address mapped by a PTE. The dirty bit is set only when the write is to an address mapped by
a PTE. The 80386 does not clear either of these bits. Typically, an operating system uses these
bits and resets them to age the pages in the system and to determine which pages should be
swapped out of physical memory when the demand for physical memory exceeds the avail-
able resources. In Chapter 6, we explain how 32-bit OS/2 uses these bits to age pages.

31 12 1110 0
Page frame address (B31...12)|Av | 00| D] A[ 00| urs| R P]

P = present bit

R/W = read/write bit

U/S=user/supervisor bit

A = accessed bit

D = dirty bit

AV = available for system

Page frame address = virtual page number

Fig. 2.17 80386 page table entry (PTE). (Reprinted by permission of Intel
Corporation, Copyright/Intel Corporation 1986.)
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2.4.5 Page Protection

The read/write bit and the user/supervisor bit are used for page-level protection. The
user/supervisor bit specifies which privilege levels are allowed access to a page. If the
user/supervisor bit is clear, the page is a supervisor page; if it is set, the page is a user
page. The current privilege level (CPL) is used to determine whether the 80386 is cur-
rently running at the user or supervisor privilege level. If the CPL is 0, 1, or 2, the 80386
is executing at supervisor privilege level. If the CPL is 3, the CPU is executing at user
privilege level. When the 80386 is executing at supervisor privilege level, all pages are
addressable; when it is executing at user privilege level, only user pages are addressable.

The read/write bit determines the access type of a given page. If the read/write bit is
clear, the page may only be read; if it is set, the page can be read or written. When the
80386 is executing at supervisor level, all pages are both readable and writable. When it
is executing at user level, attempts to access a supervisor page or to write a read-only
page result in a page fault. Since read-only supervisor pages can be written when run-
ning at privilege levels 0, 1, or 2, operating systems that use privilege level 1 or 2 for
user pages cannot implement copy-on-write algorithms to optimize performance.
Chapter 6 examines copy-on-write pages in more detail.

Since the page tables are in physical memory, a reference to a memory location re-
quires memory cycles to bring the address information from the paging data structures
to the 80386 processor for address translation. To increase the performance of this criti-
cal operation, the 80386 uses a four-way associative cache called the translation looka-
side buffer (TLB) to store the most recently used page table data on-chip. The existence
of this cache implies that system programmers must include instructions that flush the
cache whenever the contents of page tables are changed. They can flush the cache by
reloading CR3, the page directory base register (PDBR = CR3). The TLB is similar in
concept to the segment descriptor cache for increasing descriptor lookup performance
during segmented address translation. Figure 2.18 illustrates 80386 memory addressing
with segmentation and paging.

Since the 80386 provides both segmentation and paging, two methods of combining
them are used to construct system memory models. The flat architecture is used to exe-
cute software that does not use segments, but rather relies on a large flat address space
that can be addressed using 32-bit pointers. Although this effectively disables segmenta-
tion, the segment translation of protected mode cannot physically be disabled. However,
we can achieve the same effect by loading the segment registers with selectors for de-
scriptors that map the entire 32-bit linear address space. Once loaded, the segment regis-
ters do not need to be changed, and the 32-bit offsets are used to address the entire
address space. Because each task is provided with its own page tables, each task gets a
unique protected 32-bit linear address space.

Contrasted with the flat architecture is a memory model that utilizes the full seg-
mented capabilities of the 80386. The 80386 supports segments smaller than a page,
segments that span pages, and packing of small segments on a single page. A segmented
system can be constructed using several combinations of the descriptor tables and page
tables to provide address isolation for individual tasks. Since access to memory is
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Fig. 2.18 80386 address translation.

through segments, the system could conceivably have a single linear address space
shared among tasks that have their own LDT, or a linear address space for each task.

2.4.6 Virtual 8086 Mode

The 80386 virtual 8086 mode supports execution of 8086 or 8088 programs in a pro-
tected-mode environment. Virtual 8086 mode enables system software to emulate an
8086 environment with a virtual machine. The 80386 hardware provides an encapsulat-
ed virtual 8086 environment, while system software controls the external interfaces of
the virtual machine, such as I/O devices, interrupts, and exceptions.

The 80386 executes in virtual 8086 mode (called v86 mode) when the virtual ma-
chine (VM) bit in the EFLAGS register is set. Paging does not have to be enabled for
v86 mode to be entered, but the 80386 must be in protected mode. The 80386 leaves
v86 mode and returns to protected mode when an interrupt or exception occurs. When
the 80386 is in v86 mode, loading the segment registers causes the 80386 to use 8088-
style address formation, resulting in addresses in the range of O to 1MB. In addition, the
80386 allows a system to trap the execution of sensitive instructions in order to allow
system software to virtualize I/O devices and interrupts.

When the 80386 is in v86 mode, the 8088 address calculation generates 20-bits of
significant address information. However, 32 bits of address are actually generated with
the unused bits set to 0. Therefore, the linear addresses calculated during v86 mode
execution (which are always in the range of 0 to 1MB) can be mapped using page tables
to any 32-bit physical address. Without paging enabled, only one v86 mode task can run

;
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effectively, since there is only one unique range of addresses from 0 to IMB that the
v86 mode task can use. If paging is enabled, however, the system software can provide a
separate linear address space for each v86 mode task, supporting an environment in
which multiple encapsulated v86 mode tasks can run concurrently. Figure 2.19 illus-
trates multiple v86 address spaces.

Paging has several other uses when a v86 mode environment is being provided.
Paging can allow to exist multiple v86 mode environments that are larger than the size
of the available physical address space. Another use is to map a single copy of the 8086
system code or the ROM BIOS code that is common to all v86 tasks into the address
space of the virtual machines. Paging also can be used to redirect or trap references to
memory-mapped I/O devices using the page protection attributes and page faults.
Emulation of expanded memory using extended memory also can be provided by
utilization of the paging feature.

Since the 80386 does not use descriptors for address calculations when executing in
v86 mode, it also does not use the segment protection mechanisms while executing in
v86 mode. A v86 virtual machine can be encapsulated and protected by use of an
independent address space for each virtual machine, and use of the user/supervisor bit of
PTEs to protect the system software that is located in each v86 task’s address space.
When the 80386 executes in v86 mode, CPL is set to 3, so an executing v86 mode task
receives user-level page privileges.

When the system is in v86 mode, instructions that alter the state of the EFLAGS
register (such as INT, IRET, CLI, and STI) are sensitive to the system’s I/O privilege

Accessible in
protected mode
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- Multiple
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Offset |<— 16 bits —>| address
v86 mode spaces
Segment | <— 16 bits —*|0000|® 23:;228
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Fig. 2.19 Multiple v86 mode address spaces.
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level (IOPL). The I/O address-space instructions IN and OUT, which are normally
sensitive to IOPL are not sensitive to IOPL in v86 mode. Since the CPL is always 3 in
v86 mode, setting IOPL to less than 3 causes the execution of sensitive instructions to
generate general protection faults. It is up to the v86 mode emulation software to deter-
mine a policy for handling sensitive instructions when emulating DOS INT-style system
calls or virtualizing the state of the v86 task’s interrupt flag.

2.4.7 Virtual 1/O

Most 8086 programs and systems were designed to execute on single-task 8086 systems
and to use the hardware devices directly. However, when a user attempts to run these
programs concurrently, this use of the actual devices can disrupt system operation.
Therefore the 80386 provides mechanisms that allow the system software to control the
I/O occurring in v86 tasks in a transparent manner. Virtual I/O refers to the capability of
providing to each virtual machine virtual devices that respond transparently like the real
devices that the v86 task believes it is using. The system software can emulate or virtu-
alize the hardware devices for the v86 mode tasks.

We have already seen how the paging mechanism can be used to virtualize memory-
mapped I/O devices. There also exists a mechanism for trapping accesses to the I/O
address space. Port-based I/O in v86 mode differs from protected mode only in that the
protection mechanism does not consult IOPL when executing the IN and OUT 1/0O
instructions. Instead, a special map contained in a v86 task’s TSS, called an 1/0-
permission bitmap, specifies which 1/O port addresses are valid for that v86 task. Each
v86 task may have its own bitmap or may share a global map describing the I/O address
space for v86 tasks. When a v86 program executes an IN or OUT instruction, the
bitmap is consulted to see if the port is valid for the v86 task. If the port address is not
valid in the bitmap, a general protection fault is raised by the 80386. Using this type of
protection, system software can provide virtual I/O services for v86 tasks, or can permit
a v86 task to have direct access to a particular piece of hardware.

2.4.8 Analysis

The 80386 contains the functions necessary to provide a 32-bit protected multitasking
environment. Just as important is the virtual 8086 mode feature that allows an 80386
operating system to provide a protected environment for the concurrent execution of
8086 systems and programs. The 32-bit programming model allows systems to break the
64KB barrier associated with 80286 systems and defines the 32-bit programming plat-
form for the future.

2.5 INTEL 80486

The 80486 is an 80386-compatible 32-bit processor. Functionally, both the 80386 and
80486 are identical, except for several changes in the latter to enhance performance.
Throughout this book, references to the 80386 include the 80486 unless specified other-
wise. The 80486 has an 8KB on-chip cache for storing frequently used instructions and
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data. The 80486 also integrates the 80387 numeric coprocessor onto the 80486 chip.
From the perspective of system software, the 80486 is a fast 80386 with an on-chip
cache and 80387. The 80486 allows the page-level protection to be configured in a way
different from on an 80386. Recall that read-only pages may be written by code running
in supervisor mode. This prohibits system software from using lazy page allocation
strategies such as copy-on-write pages (see Chapter 6). The 80486 has a write-protect
(WP) bit defined in the CRO control register that allows a system to protect read-only
pages from supervisor mode access. The 80486 also achieves pipelined instruction
execution; this allows the processor to process instructions in parallel, and in most cases,
it increases processor performance.

2.6 RISC PROCESSORS

The fundamental goal of reduced-instruction-set computing (RISC) architectural designs
is to maximize the effective speed of a processor design. RISC does this by performing
most functions in software. The only functions remaining in hardware are those whose
inclusion in the instruction set yields a net gain in performance when used by programs
written in a high-level language (HLL). The 80286, 80386, and 80486 processors are
complex-instruction-set computing (CISC) architectures. RISC processors have simple
hardwired instruction sets with little microcode, single-cycle instruction execution, fixed
instruction length, simple addressing modes, and deep pipelined architectures. Although
not all RISC processors adhere to these guidelines, most on the market do. For the pur-
pose of studying RISC as a hardware platform, a RISC processor is treated as a generic
32-bit or 64-bit processor with a large number of registers and a high-performance virtu-
al memory system (usually paged). RISC programming is always done in high-level lan-
guages, and the compilers and linkers are responsible for optimizing the use of the
hardware.

There are many popular RISC chips on the market today, including SPARC, MIPS,
AMD 29000, the Intel 80860 and 80960, and the IBM POWER architecture used in the
RISC System/6000. Most of these architectures conform to most of the tenets of RISC
design. However, the major drawback of these chips is their lack of support for 8088
compatibility. Although it is feasible to simulate the entire 8088 instruction set with a
RISC engine, protected concurrent execution of DOS applications and of extended DOS
applications such as those found in the Windows 3.0 environment is difficult without ex-
tra hardware support.

SUMMARY

The Intel family of microprocessors includes the segmented 8086/8088, 80286, 80386,
and 80486. Each of these processors includes a common mode, called real mode, that is
used by the DOS operating system. Real mode supports 16-bit execution and a 1IMB ad-
dress space that is divided into 64KB segments. Real mode provides no virtual memory
capability or protection mechanisms; it is suitable for small single-user, single-task op-
erating systems such as DOS.



54 Microprocessor Architectures

The 80286, 80386, and 80486 provide another mode, called protected mode, which
provides support for virtual memory, program, and system isolation. These features en-
able these processors to access up to 16MB (80286) or 4GB (80386 and 80486) of phys-
ical memory while providing protection mechanisms that meet the needs of multitasking
virtual-memory operating systems, such as OS/2 and UNIX.

The 80386 and 80486 provide a virtual 8086 mode, which allows multiple 8086
programs to be run within a protected environment.

RISC processors provide generic 32-bit and 64-bit platforms that can address large

amounts of memory using reduced-instruction-set technology.
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segmented model
selector:offset format
sensitive instruction

SI register

16:16 format

software interrupt
special register

stack

supervisor page
synchronous event

task gate

task state segment (TSS)
tasking register (TR)
32-bit linear address space
translation lookaside buffer (TLB)
trap gate

Trojan horse

user page
user/supervisor bit
virtual address

virtual addressing
virtual 8086 mode
virtual I/O

virtual machine (VM)
virtual memory
write-protect bit

2.1 Describe the 16:16 segment:offset logical addressing scheme of the 8088 microprocessor.
Show precisely how a typical physical memory address is calculated from a logical memory
address.

2.2 What does it mean for 8088 segment values to be 16-byte or paragraph granular? Explain the
concept of 8088 address aliasing.
2.3 Distinguish between near transfers and far transfers.

2.4 Discuss the usage of each of the registers (including segment registers) in the 8088 s register
set.

2.5 Distinguish among the 8088’s notions of interrupts, exceptions, and software interrupts.
Which are synchronous events and which are asynchronous? Explain how the 8088 uses the inter-
rupt vector table (IVT) to route interrupts, exceptions, and software interrupts to appropriate han-
dler routines. How does the handler return control after handling an event?
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2.6 Discuss each of the two ways the 8088 performs I/O—namely, the use of the I/O address
space with specific I/O instructions, and the use of memory-mapped I/O with general-purpose
instructions.

Questions pertaining to the 80286:
2.7 Explain the 80286’s notions of real mode and protected mode.

2.8 How does the 80286 distinguish between segments that are global to all tasks and segments
that are local to particular tasks?

2.9 Explain the following statement: “Unlike in the addressing scheme on the 8088, the segment
values on the 80286 do not represent actual locations in physical storage.” Specify what these seg-
ment values do represent.

2.10 Describe in detail how virtual address translation occurs in 80286 protected mode.

2.11 Why are descriptor tables in an 80286 system maintained by the operating system instead
of being made directly accessible to executing programs?

2.12 The descriptor tables of the 80286 are maintained in memory, so we might expect memory
access to be a slow operation, since the contents of a descriptor would have to be examined on
each memory access. What special hardware does the 80286 use to speed up memory references?
What assumption about a program’s memory reference pattern makes the use of such hardware
worthwhile?

2.13 Explain the importance of protection in the 80286. Describe how protection is im-
plemented.

2.14 When applied to procedures, what does “privilege” mean? When applied to data, what does
“privilege” mean?

2.15 When a program loads a selector to a segment that is marked as not present, then a
segment-not-present fault is raised. A fault is not fatal; it merely indicates to the operating system
that some action needs to be taken before a program can resume normal execution. What actions
must the operating system take in response to a segment-not-present fault?

2.16 How is the segment limit field used in error checking? What error is explicitly tested for by
examination of the segment limit field? What kinds of program errors might be detected with this
check?

2.17 Explain the 80286’s ring protection model.

2.18 Describe how the 80286 enables an indirect transfer through a call gate.
2.19 Distinguish between privileged instructions and sensitive instructions.
2.20 Discuss the differences between trap gates and interrupt gates.

2.21 How is the input/output protection level (IOPL) field of the FLAGs register used in con-
junction with sensitive instructions?

2.22  What aspects of the 80286 addressing architecture make programming the 80286 nontrivial
and hinder 80286 source-code portability?

Questions pertaining to the 80386 and the 80486:

2.23 Discuss each of the 80386 modes of operation: real mode, protected mode, and virtual 8086
mode.
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2.24 The 80386 allows for segmented addressing either with or without paging enabled. Explain
both addressing schemes.

2.25 Explain the use of the granularity bit in the 80386.

2.26 How does the 80386 provide both 16-bit and 32-bit semantics with essentially the same
instruction set as is used by the 80286? '

2.27 What problems of segmentation make the use of paging in addition to segmentation attractive?
2.28 Explain 80386 paged linear address translation.
2.29 Explain 80386 memory addressing with segmentation and paging.

2.30 Discuss the notions of virtual 8086 mode, virtual machines, virtual I/O, and virtual devices
as they are used in the 80386.

2.31 How does the 80486 differ from the 803867
2.32 Explain the fundamental differences between CISC architectures and RISC architectures.
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“The question is,” said Humpty Dumpty, “which is to
be master — that’s all.”

Lewis Carroll

What's going to happen in the next decade is that we’ll figure
out how to make parallelism work.

David Kuck
quoted in TIME, March 28, 1988

... In a new channel, fair and evenly.

William Shakespeare
Henery IV, Part 1
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3.1 INTRODUCTION

This chapter explores the system configurations found in personal computers in order to
lay a foundation for understanding how the OS/2 system is designed and implemented.

Most PC hardware architectures are uniprocessor systems that consist of a main
processor, memory, and peripheral devices attached to a single shared bus. The bus con-
nects the units in a system and defines the medium for data exchange in a computer. A
bus typically is composed of data lines for sending data, address lines for sending
addresses, and control lines for sending interrupts and for operating the bus.

The system is built on a system planar or motherboard. The motherboard contains
slots or connectors for adding cards that extend the functionality of the system. There
are various ways these components can be configured, as well as various bus technolo-
gies. This chapter surveys PC hardware architectures from the original IBM PC to the
latest systems.

3.2 IBMPC

The original IBM PC, also called the PC-1, contains an 8088 microprocessor that is
driven by a 4.7MHz clock. The 8088 and peripherals are configured on a bus that allows
20 bits of addressing and 8 bits of data to be transferred at about 2MB per second. Only
a single transfer can occur on the bus at any one time, requiring software to pace and
serialize access to the bus by the 8088 and the peripheral devices. The planar contains
several bus-extension slots for adding peripheral attachment cards, such as serial and
parallel ports, hard disk controllers, communications cards, and memory. The IBM PC
supports 16 different interrupt levels for interrupt-driven I/O, and a DMA controller to
allow devices to steal cycles from the 8088 during large 1/O transfers. DMA is described
further in Chapter 8. Figure 3.1 shows the layout of the IBM PC system.

E — Expansion cards
System planar i Empty

Bus ROM RAM Diskette slots

1
:
'
'
' controller
controller l | |
A

Interrupt

8087 3

controller L J System bus
8088 Keyboard DM'? " : Display
i controller | LCOMIOTET| » | adapter

Fig. 3.1 IBM PC system architecture.
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Since the 8088 does not support any floating-point arithmetic operations, the 8087
numeric coprocessor can be added optionally to the IBM PC to enhance performance of
floating-point operations. The 8087 is closely tied to the 8088—the 8088 is called the
master, and the 8087 is called the slave since it operates only on behalf of the 8088.

The system read-only memory (ROM), video buffer (VRAM), and other memory-
mapped devices are mapped into the 8088 address space in the range from 640KB to
IMB. The system ROM contains the power-on self-test (POST) and BIOS. POST is ex-
ecuted each time the PC is started. The BIOS is a set of routines accessed by software
interrupt in real mode that can be used by operating systems to provide a level of hard-
ware device independence.

The first IBM PCs provided up to 256KB of RAM on the planar, which could be
expanded to 640KB by attachment of memory cards. The IBM PC/XT planar was fur-
ther enhanced to support up to 512KB. Access times for planar memory are generally
shorter than are access times for memory that is attached to the bus via a memory card
(bus-attached memory).

The IBM PC is configured using switches called dip switches, which are small tog-
gles the size of a pencil tip. When the PC display is set up or memory is added, dip
switches must be set to indicate the configuration on the planar and on the expansion
card.

3.3 IBM PC/AT

The IBM PC/AT is similar to the IBM PC, but it contains an 80286 processor that is
driven by a 6MHz clock. The 80286 uses the 80287 numeric coprocessor to perform
floating-point operations. Since the PC/AT utilizes the 80286, it can be configured with
up to 16MB of memory.

The system bus is wider than that on the PC-1 to allow 24 bits of addressing and 16
bits of data to be transferred on the bus at rates up to 4MB per second. The bus architec-
ture is extended in an upward-compatible fashion so that 8-bit expansion cards that
could be added to the IBM PC can still be used in an IBM PC/AT. This bus architecture
is known as the Industry Standard Architecture (ISA) because it has become the standard
bus of IBM compatibles and clones. Figure 3.2 illustrates an IBM PC/AT with an ISA
bus configuration.

Whereas the original IBM PC/ATs came with 512KB on the planar, later models
provided 640KB on the system board. Since the 80286 and the PC/AT system allow
more than 1MB of memory to be attached, the AT system allows memory cards to be
added to the system using the bus. As on the PC-1, bus-attached RAM is slower than the
RAM on the planar.

Memory cards for the IBM PC/AT are configured with dip switches like expansion
cards on a PC-1, but the PC/AT planar has no dip switches. Instead, the system configu-
ration information is saved in a 64KB CMOS RAM that is powered by a small lithium
battery.

Although the ISA bus allows expansion cards with intelligent processors that can
access all of installable system memory, these cards must access system memory under
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Fig. 3.2 IBM PC/AT system architecture.

direct control of the processor or the DMA controller. For example, the IBM PC LAN
card contains an 80186 processor to perform NETBIOS-level network services.
Although the 80186 on the LAN card contains its own memory, which is not visible to
the main processor, it can transfer data between its memory and the system’s memory
only by using the system’s DMA controller.

3.4 AT 80386

While IBM does not have any 80386 PCs based on the ISA bus, Compaq and many
other vendors have produced a class of PCs called AT 80386 machines. These PCs use
the 80386 as the main processor and the 80287 or the 80387 numeric coprocessor for
floating-point operations. The bus in this class of machine is the same as the ISA bus,
but special extended connectors for memory cards allow one or two 32-bit memory
cards to be attached to the system. The 16-bit memory cards used in 80286 AT machines
can usually be installed in most machines of the 80386 AT class. However, none of the
80386 AT-class machines provide 32-bit I/O capabilities.

3.5 MICRO CHANNEL ARCHITECTURE

When IBM staff began designing its first 80386-based PC, they realized that the 16-bit
ISA architecture had several limitations that inhibited performance and decreased quali-
ty. These problems were in the areas of system configuration, interrupt sharing, bus
sharing, and 32-bit [/O. To overcome these problems, IBM created the Micro Channel
Architecture.

Since many hardware problems on PCs were directly related to incorrect dip-switch
settings, IBM wanted to provide a self-configuring system. With the large number of ex-
pansion cards in the market, IBM could not provide such a system without changing the
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extension card and bus architecture. The Micro Channel requires extension cards to have
special registers and identifiers that are used when configuring the system.

Interrupt sharing, which occurs when two different expansion cards have 1/0
devices that use the same interrupt level, is difficult to implement on the ISA bus since it
uses edge-triggered interrupts. An edge-triggered interrupt is equivalent to a pulse sent
down the bus on an interrupt line. If the processor or interrupt controller is not ready for
the pulse, the interrupt can be lost and a system crash may result. The Micro Channel
Architecture supports interrupt sharing with level-triggered interrupts. In a level-trig-
gered system, an interrupt causes a specific interrupt line on the bus to be held at an
interrupt level. Only when the software interrupt handlers clear the interrupting device is
the interrupt line released. Therefore, the Micro Channel Architecture provides a much
more reliable environment for interrupt sharing.

As previously described, the ISA bus does not support generic bus sharing. To allow
intelligent devices attached to the bus to take over or master the bus, IBM had to make sig-
nificant changes in the bus architecture. The Micro Channel Architecture provides a func-
tion called bus arbitration that regulates access to the bus by extension cards and by the
main processor. Different arbitration levels are assigned to components on the bus. When
a bus arbitration cycle occurs, the “winning” device is awarded exclusive access to the bus
for a period of time. Devices that attach to the Micro Channel and arbitrate to take over the
bus are called bus masters. Bus master support also allows multiprocessor configurations
of the Micro Channel to be created by the addition of bus master adapters containing a
processor and its support chips.

Since the Micro Channel Architecture is intended to support 16-bit and 32-bit sys-
tems, it comes in both 16-bit and 32-bit versions. Both versions of the Micro Channel
Architecture have the same functions, but the 16-bit bus contains a 24-bit address path
and 16-bit data path like the ISA bus, and the 32-bit bus provides a 32-bit address path
and 32-bit data path. The Micro Channel is capable of transferring data at rates from
20MB to 40MB per second, which is much faster than the ISA bus transfer rate.

As a result of the improvements to the ISA to form the Micro Channel Architecture,
it was necessary for IBM to alter the form factor of the system. The form factor
describes the size of the extension cards and the shape of the connector used to attach
the cards to the bus. As we shall see, since PS/2s include far more devices on the planar,
there is not much reason to provide the capability to attach old ISA cards to the system,
although many people thought that this capability was necessary to preserve their invest-
ment in extension cards.

3.6 IBM PS/2

The IBM PS/2 machines are available in various models based on the processor type,
clock speed, and bus technology. There are both 16-bit 80286-based PS/2s, and 32-bit
80386-based and 80486-based PS/2s. Table 3.1 summarizes the PS/2 product line.
Figure 3.3 illustrates the PS/2 Model 80 system architecture. Unlike that of the PC-1
and PC/AT, the PS/2 planar includes a Video Graphic Array (VGA) display controller,
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Model Processor Clock rate Bus Chassis Notes
30 80286 10 MHz ISA Desk
50/50Z 80286 10 MHz MC Desk
55 80386 SX 16 MHz MC Desk
57 80386SL.C 25 MHz MC Desk Multimedia system
60 80286 10 MHz MC Floor
65 80386 SX 16-20 MHz MC Floor
70 80386 16-20 MHz MC Desk Processor card
70-A21 80386 25 MHz MC Desk Processor card
External cache
70-B21 80486 25 MHz MC Desk Processor card
External cache
80 80386 1620 MHz MC Floor
80-A21 80386 25 MHz MC Floor Processor card
External cache
80-B21 80486 25 MHz MC Floor Processor card
External cache
90 80486 25-50 MHz MC Desk Processor bus
External cache
95 80486 25-50 MHz MC Floor Processor bus
External cache
Table 3.1 PS/2 product line.
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Fig. 3.3 IBM PS/2 system architecture.
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diskette controller, serial controller, and parallel controller. Except for Models 90 and 95,
PS/2s have nonuniform memory access speeds depending on whether memory is on the
planar or is attached via the bus. The planar architecture of Models 90 and 95 is different
from that of the other PS/2s. The processor, external cache, and DMA controller exist on a
special hardware card called the processor complex. This reorganization of the planar al-
lows the processor to be upgraded by changing the processor complex, and also provides an
environment that facilitates consistent memory subsystem speeds. Models 90 and 95 also
use a more advanced display controller called the Extended Graphics Array (XGA), which
provides video modes supporting 1024- by 768-pixel resolution and VGA compatibility.

3.7 EXTENDED INDUSTRY SYSTEM ARCHITECTURE

Since the Micro Channel Architecture was introduced by IBM, many other hardware
vendors were reluctant to begin copying an IBM proprietary architecture in their prod-
ucts. Since these companies had mostly ISA-based products, they decided to create an
extension of the ISA that would not be owned by a single company, and that would meet
the same requirements met by the Micro Channel Architecture. The new extended ISA
architecture (EISA), describes a bus architecture similar to, but not compatible with, the
Micro Channel Architecture.

EISA provides for optional self-configuring systems and shared interrupts, 32-bit
I/O, and the capability of adding bus master devices to the system. EISA transfers data
at rates up to 33MB per second. The main difference between EISA and the Micro
Channel Architecture is the shape of the connectors of extension cards. The Micro
Channel Architecture uses a connector that is totally different from that found on ISA
systems, whereas EISA uses a connector similar to that used by ISA.

3.8 CACHE SYSTEMS

Several models of the 80386 and 80486 PS/2s, EISA systems, and 80386 ATs are driven
by 20MHz to 33MHz clocks, resulting in a large mismatch between the speed of the
processor and the mean memory access time. So that wait states do not have to be added
to the bus cycles to match the processor and memory speeds, these systems make use of
an external cache to allow the 80386 to sustain its high performance. A cache subsystem
is usually composed of a small amount of fast memory in the form of static RAM
(SRAM), a large amount of slow memory in the form of dynamic RAM (DRAM), and a
cache controller. Static RAM is faster but more expensive than dynamic RAM. Figure
3.4 illustrates a cache subsystem.

In a cached system, main memory is used to store all the data, but some of the data is
replicated in the cache. When the main processor accesses memory, the cache is checked
for the data first. If the data is not in the cache, a cache miss occurs, and the cache con-
troller fetches the data from main memory for the processor and retains the data in the
cache. If the data is found in the cache, a cache hit occurs, and the processor receives the
data quickly, since the data is in the static RAM cache. The cache-hit ratio is the percentage
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Fig. 3.4 Cache memory subsystem. (Reprinted by permission of Intel Corporation,
Copyright/Intel Corporation 1987.)

of accesses that are cache hits; its value is affected by the size of the cache and the algo-
rithm used to allocate cache blocks. Common cache algorithms are the fully associative,
direct-mapped, and set-associative cache. Each has its own characteristic methods for
attempting to provide a balance among hit rate, performance, and cost.

Since two copies of the same data can exist at once at the same address in cache
systems, the cache controller must have a system for maintaining the integrity of the
cache and of memory. To prevent stale data from being used, cache controllers use
schemes called write-through and write-back to update the cache during memory write
operations.

In a write-through cache, the cache controller copies the data to be written to main
memory immediately after it is written to the cache. The result is that main memory al-
ways contains correct data. In a write-through cache, any block of data in the cache can
be overwritten without loss of data.

In a write-back cache, information is retained by the cache controller in the cache
that indicates whether the data has been written and is more recent than the data in main
memory. Before any data in the cache is overwritten, this information is checked, and
the controller writes the data to main memory before overwriting the block. Write-back
caching is faster than write-through caching, since the number of times a changed mem-
ory block must be copied to main memory is usually less than the number of memory
write operations. However, write-back caches are more complex and must write all al-
tered data in the cache to main memory before any I/O device accesses main memory.

Although write-through caches and write-back caches eliminate stale data in main
memory, if caches are used in a system where more than one device has access to main
memory, a new stale data problem is introduced. For example, if a bus master device on
the Micro Channel writes data to main memory, the 80386 cache may now contain stale
data. A system that prevents the stale data problem in this situation is said to maintain
cache coherency. Four methods of maintaining cache coherency are bus watching, hard-
ware transparency, noncacheable memory, and cache flushing.

With bus watching, also called snooping, the cache controller watches the system
address lines on the bus to see whether another bus master writes to main memory. If the
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main memory altered by the bus master also exists in the processor cache, then the con-
troller invalidates the cache entry.

Hardware transparency ensures cache consistency by making sure that all accesses
to memory mapped by a cache are routed through the cache, or by broadcasting all
cache writes to all other caches that share the main memory.

Noncacheable memory allows certain accesses of selected memory addresses, such
as those for memory-mapped 1/O buffers, to bypass the cache. Cache flushing causes all
data in a cache to be written to main memory. In this technique, the operating system
must flush the cache before any device I/O occurs to main memory.

In most cached architectures on PCs and PS/2s, a combination of these four strate-
gies is applied. Since the PS/2 uses direct memory access (DMA) to overlap disk and
main processor cycles, the cache controller must also monitor DMA write operations to
main memory in order to maintain cache coherency.

3.9 MULTIPROCESSOR SYSTEMS

As we saw in systems built around the Intel 80X86 series of processors, an auxiliary
processor called a floating-point coprocessor was used to perform floating-point opera-
tions for the main processor. This configuration is not a multiprocessor; the floating-
point processor is called a “coprocessor” since it is performing only functions needed by
a single 80X86 processor, and since it does not run without the 80X86 processor to tell
it what operations to perform.

Another type of configuration that appears to be a multiprocessor configuration is a
general-purpose processor used on an extension card to drive an intelligent device. For
example, a RISC processor on a graphics card might be used to perform graphics opera-
tions, instead of the main processor performing the operations. In this configuration, the
RISC processor is called a dedicated processor or a peripheral processor.

Multiprocessor systems are characterized by having multiple processors used in
parallel to achieve a greater system throughput than can be achieved by a uniprocessor
configuration. Multiprocessor systems have the common traits of being able to execute
multiple instruction streams and to manipulate multiple data streams in parallel. Some
people recognize any system with multiple processors as being a multiprocessor ma-
chine; however, by “multiprocessor systems,” we mean a configuration in which the
multiple processors work to increase the general computing power of a system.
Multiprocessor systems also usually have the capability of losing a processor and allow-
ing the system to continue operation. The development of multiprocessing hardware re-
quires a multithreaded, multitasking operating system that is designed to have minimum
code and data serialization.

A multiprocessor system in which all of the processors are of the same type is
called a homogeneous system. A system in which at least one processor is different is
called a heterogeneous system. For example, a system composed of an Intel 80486 and
an Intel 80860 is a heterogeneous system; a system composed of several 80486s is a
homogeneous system.
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Multiprocessor systems are also classified by the way they are treated by an operating
system. There are two primary models for operating system distribution in a multiprocessor
environment: master/slave and peer. In a master/slave system, one processor is the master
and the rest are slaves. The master processor governs I/O and system resources while
assigning computational jobs to the slave processors. In a peer processor system, each pro-
cessor either runs a copy of the same operating system or actually runs the same operating
system. In both cases, all processors are capable of I/O processing and job scheduling.
Operating system distribution in a multiprocessor system is discussed in Chapter 6.

3.10 MULTIPROCESSOR SYSTEM INTERCONNECTION

A key issue in the architecture of multiprocessor systems is what processor interconnec-
tion scheme is used. How the processors are interconnected determines how memory is
accessed, and how I/O is performed. The coupling of a system describes how closely as-
sociated the processors are connected. A loosely coupled multiprocessor system consists
of several processors connected by an internal (bus) or external communications link. A
loosely coupled multiprocessor is almost analogous to a network of processors, and
communication between processors is usually done by message passing since none of
the processors share memory. Another classification of loosely coupled systems is called
no-remote-memory-access (NORMA) multiprocessors (Te87). NORMA configurations
are distinguished by the characteristic that no processor can access another processor’s
memory. NORMA systems constitute the loosest coupling possible, and are the easiest
to build in configurations with large numbers of processors. Figure 3.5 illustrates the in-
terconnection scheme of a loosely coupled system.

A tightly coupled multiprocessor consists of several processors that share memory
and I/O devices. Since all the processors can access main memory, interprocessor com-
munication is done by shared memory. Typically, tightly coupled multiprocessor sys-
tems have some hardware support for locking shared memory, so that processor

1/0
Memory devices
N
Processor yem i Bus ,
Communications link = 110
Memory devices
Processor v } Bus |

Fig. 3.5 Loosely coupled multiprocessor. (Reprinted from Harvey M. Deitel,
Operating Systems, 2nd Edition, Copyright 1990, Addison-Wesley Publishing Co.,
Inc. Reading, MA. Reprinted by permission.)
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Fig. 3.6 Tightly coupled multiprocessor.

contention can be resolved. These systems are also called symmetric multiprocessors. In
symmetric-multiprocessor systems, each processor runs the same operating system.
Figure 3.6 illustrates the interconnection scheme of a tightly coupled system.

There are two types of tightly coupled systems, based on the memory access charac-
teristics of the system. A system in which each processor has uniform access times to a
shared memory is called a uniform-memory-access (UMA) multiprocessor. If each pro-
cessor has a nonuniform memory access time—perhaps due to a local memory associated
with each processor that is faster than the main shared memory—then the system is a
nonuniform-memory-access (NUMA) multiprocessor. The UMA, NUMA, and NORMA
designations were defined during research on the Mach operating system at
Carnegie—Mellon University (Te87). Figure 3.7 illustrates how coupling relates to memory
access.

The shared bus is an interconnection approach similar to the Micro Channel
Architecture and EISA that is used on most UMA systems. Processors can be added to
the system via attachment to the bus. If the processors have local memories on their ex-
tension cards but can also share main memory, the configuration is classified as falling
between UMA and NUMA. If the processor extension cards can access only the local
memory on their cards, the configuration is classified as NORMA, and the bus acts as an
internal network.

In a typical UMA system, each processor has a cache. Caches cause problems in
multiprocessor configurations since the hardware does not always guarantee cache co-
herency between processors. Furthermore, in a UMA composed of 80486s, each 80486
has its own translation lookaside buffer (TLB) for virtual address translation. Operating

Tightly coupled <« -» Loosely coupled

UMA <4———— NUMA ——> NORMA

Small number Medium number N Large number
of processors of processors of processors

Fig. 3.7 Relationship between processor coupling and memory access. (Reprinted
from A. Tevanian, Jr. “Architecture-Independent Virtual Memory Management for
Parallel and Distributed Environments: The Mach Approach.” Copyright 1987. PhD
thesis at Carnegie-Mellon University. Reprinted by permission.)
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systems supporting multiprocessing environments must take into account TLB and
cache coherency between processors. Since the 80486 provides no capability to connect
the processors such that TLB coherency is ensured by the hardware, this task must be
performed by the operating system using a software-based interprocessor-communica-
tion scheme. As described in Section 3.8, cache coherency can be maintained in a UMA
configuration if each processor snoops the bus for memory write transactions.
Alternatively, a memory write to the shared memory can cause a cache invalidate signal
to be sent to each processor, so that each processor can check for local stale data and can
flush its cache if necessary. Figure 3.8 illustrates a UMA configuration.

UMA configurations work well for small numbers of processors; however, due to
bus contention and cache flushing, nonuniform memory access times can result.
Therefore we say that UMA architectures do not scale up to configurations with more
processors. NUMA configurations typically attempt to avoid these problems by associat-
ing a local memory with each processor. The local memory can be accessed quickly by
the local processor, but a performance penalty is incurred if the local memory is
accessed by a nonlocal processor. In some NUMA systems, the local memory is
addressable by only the local processor. Keeping cache contents consistent is more diffi-
cult in NUMA systems, leading most such systems to provide no cache consistency or to
have no caches at all. In such cases, however, the local memory behaves in some ways
like a cache. Figure 3.9 illustrates a NUMA configuration.

SUMMARY

T'he original IBM PC is based on the 8088 processor and is a single-bus uniprocessor
system. The IBM PC/AT was the first PC to use the 80286 processor. The bus structure
of the IBM PC/AT is known as the Industry Standard Architecture (ISA).

The IBM PS/2 line of systems uses a bus structure called the Micro Channel
Architecture. The Micro Channel Architecture comprises a 32-bit bus that supports both

80486 80486 80486 80486

I I .
ICache l B:achej Cache
| | |

Processor/memory bus

1
Shared l')/Ss

memory

Device

Fig. 3.8 Uniform-memory-access multiprocessor (UMA).
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Fig. 3.9 Nonuniform-memory-access multiprocessor (NUMA).

uniprocessor and multiprocessor configurations, and a technique called bus mastering. The
PS/2 line of computers includes systems based on the 8086, 80286, 80386, and 80486.

The Extended Industry Standard Architecture (EISA) is a bus architecture that com-
petes with high-end Micro Channel systems and provides many of the same features.
However, peripheral device adapter cards designed for the EISA and Micro Channel
systems are not interchangeable.

Since systems with fast processors can run much faster than the memory they ac-
cess, cache subsystems are used to improve performance of interactions between the
processor and memory. A cache is a high-speed memory buffer between the processor
and memory that is used to minimize the number of times a processor must access main
memory. An algorithm is used to control the contents of the cache, and to ensure the in-
tegrity and coherency of the cache. Bus snooping, hardware transparency, cache flush-
ing, and noncacheable memory are techniques used to maintain cache coherency. When
a cache contains incorrect data or is not kept in a coherent state, we say that it contains
stale data.

Multiprocessor systems use clusters of processors that run in parallel to increase
throughput and performance. Multiprocessor systems are described by the coupling be-
tween the processors and by the way resources such as memory, I/O devices, and buses
are shared.
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3.1 Discuss the functions of each of the lines typically included on a bus (data lines, address

lines, and control lines).

3.2 Compare access times for planar memory to access times for bus-attached memory.

3.3 Describe the IBM PC system architecture.

3.4 Describe the IBM PC/AT system architecture.
3.5 What is the significance of the AT 80386 machines?
3.6 Discuss the limitations of the 16-bit ISA bus architecture that led IBM to introduce the

Micro Channel Architecture.
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3.7 Compare and contrast edge-triggered interrupts with level-triggered interrupts.
3.8 Why is interrupt sharing difficult on the ISA bus?

3.9 Explain the notions of bus arbitration and bus mastering associated with the Micro Channel
Architecture.

3.10 Describe the IBM PS/2 system architecture.
3.11 Explain the notion of nonuniform memory access speeds in the context of the PS/2.

3.12 What was the primary motivation for the creation of the Extended Industry Standard
Architecture (EISA) bus?

3.13 Describe the architecture of a typical cache memory subsystem used with an 80386.
3.14 Discuss the notions of cache miss, cache hit, and cache-hit ratio.

3.15 Explain the operation of write-through caches and write-back caches. Which is faster?
Explain your answer.

3.16 Discuss each of the following methods of maintaining cache coherency: bus watching,
hardware transparency, noncacheable memory, and cache flushing.

3.17 Why is a processor—coprocessor configuration fundamentally different in nature from a
multiprocessor configuration?

3.18 Is using a RISC processor on a graphics card to perform graphics operations instead of hav-
ing the main processor performing the operations, considered a multiprocessor configuration?
Explain your answer.

3.19 What attributes characterize a multiprocessor system?
3.20 Distinguish between homogeneous multiprocessors and heterogeneous multiprocessors.
3.21 Distinguish between master/slave multiprocessing and peer multiprocessing.

3.22 Describe the architecture of a typical loosely coupled multiprocessor system. How is com-
munication between the processors accomplished in such a system?

3.23 Describe the architecture of a typical tightly coupled multiprocessor system. How is com-
munication between the processors accomplished in such a system?

3.24 What kind of hardware support is typically provided in a tightly coupled multiprocessor to
resolve processor contention over shared memory?

3.25 Distinguish among UMA, NUMA, and NORMA multiprocessors.

3.26 How can cache coherency be maintained in a UMA multiprocessor?
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Within the Entry Systems Division, we really are dealing with
systems software, the operating system, database management,
communications. . . . We have no concept of a plan that would
have our customers dependent on us for a very high percentage
of the applications that they use.

William C. Lowe

Protection is not a principle, but an expedient.

Benjamin Disraeli

“If seven maids with seven mops
Swept it for half a year,
Do you suppose,” the Walrus said,
“That they could get it clear?”

Lewis Carroll

The most general definition of beauty . . . Multeity in Unity.
Samuel Taylor Coleridge
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4.1 INTRODUCTION

This chapter describes the overall architecture of the 16-bit and 32-bit OS/2 systems. To
provide the reader with a background for the OS/2 content, we first review the overall ar-
chitecture of the DOS system. Each system is described with respect to the structure and
layering of the system, the architecture and content of the application-program interface
(API), and the structure and tools used to construct programs and the system itself.

4.2 DOS SYSTEM

The DOS system is a single-user, single-task system: It is designed to allow one program
at a time to use the processor and device resources. Therefore, DOS is the simplest type of
operating system; it is a sequential one. Due to the lack of protection in the 8088 architec-
ture, DOS does not provide any hardware enforced separation between the operating sys-
tem and the running program. Both the DOS system and the programs can access all
facilities in the machine, including special instructions, ROM BIOS routines, and the actu-
al I/O ports that control the peripheral devices. Both the system and its programs execute
using physical memory addresses and have the capability of altering each other.

As we saw in Chapter 1, the DOS system is composed of the DOS kernel, which
provides all the system supervisor functions, and device drivers, which provide a layer
of software between the system and the actual hardware. The system also requires a
shell that allows users to start programs and to interact with the system. The shell pro-
vided with DOS Versions 1.0 through 3.3 is called COMMAND.COM, and it is a primi-
tive command-line-oriented program. DOS 4.0 introduced a simple text-oriented
user-interface shell to make the system easier for novice users not familiar with the com-
mand shell. Figure 4.1 illustrates the layering of the DOS system.

User shell
DOS AP|
DOS kerne/

Dev‘\ce driverg

Hardware

Application programs

Fig. 4.1 DOS system structure.
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DOS supports two types of devices—block devices, such as the disk and diskette
drives, and character devices, such as the keyboard, printer, and serial devices. DOS
maintains a data structure called the device chain that maps the logical device names
onto the appropriate device driver that services each device. Block devices are designat-
ed by a letter in the alphabet followed by a colon—A:, B:, through Z:. Character devices
are designated by names up to eight characters long, followed by a colon, such as PRN:
and LPT1I: for printer devices, and COM: for serial devices. Figure 4.2 illustrates the
DOS device chain.

The DOS device chain can be extended by the addition of a device driver to the sys-
tem. Device drivers for devices that are not supported by the basic DOS system are in-
stalled when the system is started. Device drivers manipulate their respective devices by
utilizing the ROM BIOS subroutines or by directly accessing the device hardware. ROM
BIOS routines are accessed by the software interrupt mechanism.

4.3 DOS API

An executing program makes service requests of the DOS kernel by calling an applica-
tion program interface (API), or by making a system call. The term “API” can refer to a
collection of system call routines, or to a single system call routine. The API is also con-
ceived as the boundary between applications and the operating system, providing a level
of information hiding. The DOS kernel provides the DOS API to DOS programs. The
DOS API contains functions for rudimentary memory management, file and device I/O,
and program loading and termination.

Since the DOS API does not contain functions for graphics or mouse control, many
DOS programs use a combination of ROM BIOS routines and direct hardware access for
managing a graphic display or mouse. Therefore, the ROM BIOS routines should be
considered part of the DOS API, since many DOS programs bypass the DOS I/O inter-
faces and use the lower-level code.

When a system call or a call to a subroutine in a library or program is used, a set of
calling conventions describes how routines call each other. The conventions, also called
linkage conventions, define rules for subroutine names, instructions for transferring con-
trol between routines, and conventions for register usage in the linkage between the rou-
tines. Calling conventions are usually invisible to a programmer using a high-level

[NULL |-»{ CON J-»{ ScN |»{ PRN | COM |»{A:>B:[pfci>z:|  Device

| chain
Bfi://iacri iKeybozﬁ[ Screen rParaIIeI | Serial I Diskette l Disk | .- J
B ROM BIOS |
v
| Hardware |

Fig. 4.2 DOS device chain.
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language, but system programmers and designers pay attention to the required functions
and performance of the calling conventions because the latter have a significant effect
on the overall structure and performance of the system.

The calling conventions for the DOS API require the requestor to place the parame-
ters in registers, including a special parameter that denotes by an ordinal number the
specific system call requested. The program then issues a software interrupt instruction
that causes the program’s execution to transfer control to the DOS kernel. The DOS ker-
nel dispatches the system call by looking up the system call number provided in the
parameters in a table and calling the appropriate routine. After the routine completes,
control returns to the requesting program with a return code that indicates the status of
the requested operation.

Most early DOS programs were written in BASIC and assembler. However, by
1984, high-level languages (HLLs) such as C were preferred by most programmers.
Since most HLLs use a stack for parameter passing and CALL instructions for control
transfers, they cannot directly invoke the DOS API, since the API uses registers for pa-
rameter passing and software interrupts for control transfer. Therefore, most HLLs pro-
vide bindings that move system call parameters from the stack to the registers and that
issue the software interrupt. This mismatch in calling convention models degrades appli-
cation performance, since each system call takes slightly longer to execute. As we shall
see in Section 4.4, these bindings are packaged in a library and are linked into the pro-
gram when it is created. Figure 4.3 illustrates a DOS system call with a binding layer.

Application written in HLL
(parameters on stack)

a

Call Ret
v

Binding routines
(move parameters from
stack to registers)

DOS application ~jni2if T ReTT
DOS system v
DOS system call
dispatcher
A
Call Ret
v
DOS kernel

service routines

Fig. 4.3 DOS system call.
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4.4 DOS PROGRAMS

A DOS program is a collection of code and data segments that is stored in an executable
(EXE) file on a secondary storage medium. When a program is executed, its code and
data objects are loaded into memory by the operating system loader, and the address of
the initial routine within the code object is loaded into the instruction pointer of the pro-
cessor. Most programs include a stack, a last-in-first-out (LIFO) data object used for
temporary memory allocations. Due to the 8088 memory architecture, DOS memory
objects are segments.

A program is specified in a source file using a programming language. Regardless
of in what programming language a program is written, the program must be translated
into machine instructions executable by the processor of the target system, and format-
ted into an executable file. Assembler language is used to specify programs using
machine instructions, whereas a high-level language such as C or FORTRAN allows
programmers to specify a program without having to understand the underlying machine
language. High-level language programs are translated into machine instructions by
compilers.

Due to the complex nature of programs, it is often useful to organize a program into
separate program modules. Each program module contains a collection of code and data
dedicated to a specific function of the program. By separating the components of a pro-
gram in this fashion, programmers are better able to minimize errors and to make a
program readable and maintainable. To enable programs to be developed in this fashion,
the DOS and OS/2 development systems provide a two-step architecture that allows a
program specified in multiple source files to be compiled separately, and then to be
combined into an executable file by a tool called a link editor. The intermediate file cre-
ated by a high-level language compiler or assembler is called an object (OBJ) file. Since
all language translators use the same intermediate file format, the link editor is not pro-
gramming-language specific, but rather is system specific. The link editor collects object
files and combines them into a single system specific EXE file. Figure 4.4 illustrates the
program development process.

So that tested subroutine modules can be reused, and so that programs can specify a
minimum number of instructions for their tasks, library (LIB) files are supported by
most development systems. A library is a collection of subroutines created using a /i-
brarian, a tool that collects single OBJ files into a library. When a reference to a subrou-
tine in a library is made by a program, the compiler stores the external reference in the
OBJ file. When the link editor is invoked, it resolves these external references to their
locations either in another OBJ file or in a library.

There are two types of libraries that differ in the way they are linked or bound to
programs. Static link libraries are linked into the final executable load module when the
program is created. Dynamic link libraries (DLLs) are not linked into the final exe-
cutable module, but instead are bound dynamically to the calling program when the pro-
gram is loaded into memory or when they are loaded explicitly by an already executing
program. When dynamic link libraries are used, the program load modules tend to be
smaller and the delayed binding allows libraries and systems to be extended without
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Fig. 4.4 Program development process.

requiring the programs to be recompiled and relinked. DOS supports only static link
libraries, but both OS/2 and Windows 3.0 support dynamic link libraries. Like programs,
libraries contain code and data—however, they do not contain an initial routine address,
since they are called by programs. A library subroutine usually runs using the stack of
the calling routine. Examples of libraries are the run-time libraries that come with pro-
gramming languages and the system libraries or bindings that operating systems provide
to allow programs to access their APIs.

The formats for intermediate object modules and for DOS executable modules were
defined during the development of DOS. The Intel Object Module Format (OMF) de-
scribes the format of the object or OBJ files, and the DOS Technical Reference provided
by IBM describes the DOS executable file format for executable or EXE files. The OMF
is defined based on the characteristics of the 8086 processor, and supports multiple seg-
ments and all the addressing modes of the 8086. Therefore, the object module format ex-
hibits the trait of processor architectural dependence. However, the EXE format is
defined based on the characteristics both of the processor and of the DOS loader and
memory environment. Therefore, the EXE format also exhibits the trait of operating sys-
tem architectural dependence.

The OMF defines an object module to be a series of records that describe the mem-
ory objects of a source file in terms of logical segments. When a source file is com-
piled, the object module produced contains the logical code and data segments that
represent the program. The object module also contains records that describe whether
the symbols in the module are public, external, or hidden. A public definition of a
symbol in an object module implies that the symbol can be referenced by other object
modules when the modules are linked. Public definitions are used for global program
data and routines that are used in multiple object modules of a program. An external
symbol is used in an object module to denote a reference to a symbol in another object
module. The extern keyword of the C programming language causes the compiler to
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generate external definitions in an object module. If a symbol is defined as hidden, it
can be referenced only within the object module in which it is defined. The static key-
word of the C programming language causes the compiler to place hidden definitions in
an object module.

All address references within the logical segments are unknown at the time that the
object module is created. Therefore, fixup records, which describe the locations that
have unknown addresses and the types of those unknown addresses, are inserted into the
object module. Addresses within a segment (near or short) are called self-relative, and
addresses of other segments (far) are called segment-relative.

The DOS linker combines logical segments into physical segments and resolves
self-relative fixups. The linker accepts as input object modules and library modules, and
produces a DOS format executable file.

When the linker combines logical segments into physical segments, the addresses of
the self-relative fixups can be resolved since they are relative to the base address of the
segment. Since the base addresses of the physical segments are unknown when the
object modules are linked, the segment-relative fixups are propagated into the exe-
cutable file for relocation by the system loader. The ordering of the logical segments
within physical segments is controlled using group directives in the object module.

The DOS system defines the format of executable modules loaded by the DOS load-
er. Figure 4.5 illustrates a simple DOS EXE file. Contained in an executable file are the
segments of the program, the stack pointer (SS:SP), and the instruction pointer (CS:IP)
of the starting point. The linker determines what to put in the starting point field of the
EXE file from the input object modules. An object module may have a special main
record indicating that it contains the starting point for code execution. Only a single OBJ
can have this information when a program is linked, and the information is retained in

1MB
ROM BIOS
640KB
FOO.EXE
EXE header Free memory
Code segment
DOS > Extra segment — ES
Data segment loader
Extra segment Data segment |- DS=SS
Code segment cs:Ip
COMMAND. COM
DOS
0

Fig. 4.5 DOS executable (EXE) file.
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the executable file. Typically, the starting point is in the run-time library, since it must
be initialized before the main entry point of the program defined by the programmer.

As previously mentioned, when a DOS program is linked, all references from the
object modules that are input to the linker, except the references to segment addresses,
are resolved. For the remaining segment-relative fixups, the linker inserts a relocation or
fixup record into the EXE header that identifies (to the DOS loader) locations within the
EXE file that contain addresses dependent on where the image is loaded into memory.
For example, if a program executes the instructions in Fig. 4.6 to set the DS register to
address the data segment DGROUP, the value of DGROUP to insert into the MOV in-
struction is not known until the program is loaded into memory.

Therefore, DOS programs are relocatable on a segment basis. Note that there are no
references to other program or to library modules in a DOS EXE file. When the program
is linked, all self-relative fixups in the OBJ files being linked that reference code or data
within the program are resolved.

4.4.1 Memory Models

Since there are many ways to use multiple segments in a program, the programming lan-
guages for 8086 environments need a model for how a program’s segments are speci-
fied. Assembler programs have complete control over which instructions and variety of
segmentation are used in applications. Most high-level languages have no concept of
segmentation, so they have to be extended to allow programmers to optimize segment
usage in programs. Therefore, there are several program models available based on their
segment usage: small model, medium model, compact model, large model, and huge
model. Each programming model requires a unique version of the program-language
cun-time library for linking the application.

A small-model program is similar to a compact-model program, except that the
code is contained in a separate segment. Therefore, a small-model program can contain
at most 64KB of code and at most 64KB of data and stack. Figure 4.7 illustrates the seg-
ments of a small-model program.

Code segment

MOV AX, DGROUP ; fixup here
MOV DS, AX ; load segment register
Code ends

Fig. 4.6 Example of segment-relative fixup.
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Code segment Data segment (DGROUP)
64KB Stack 64KB
IP— SP—p =
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Data
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Fig. 4.7 Small-model program.

A program written in the C language must have an initial routine called main. When
the program is loaded, a routine within the C run-time system called startup is called by the
DOS loader after the program is loaded into memory. This routine initializes the C run-time
library, loads the DS and SS segment registers to point to the data and stack segments, and
then calls the program’s main routine. The data segment is also called the automatic data
segment or DGROUP. Since a small-model program contains only a single code segment
and a single data segment, it does not make any intersegment (far) references.

Let us consider how a DOS program written in C is constructed using the programming
tools. The example in Fig 4.8 shows a program composed of two separate C source mod-
ules that are compiled and then are linked together statically by the DOS link editor.

Assume that the program to be constructed is called MAIN.EXE and consists of a
main routine that calls a subroutine named foo. The program uses the small memory
model since less than 64KB of code and less than 64KB of data are necessary. However,
the program is divided into two source files, MAIN.C and FOO.C. MAIN.C contains the
main routine and FOO.C contains the foo subroutine. Since these routines are in dif-
ferent modules, the C source code in the file MAIN.C has an extern statement to tell the
compiler that the address of subroutine foo will be resolved later by the link editor.
Figure 4.8 illustrates the example program.

Compiling MAIN.C produces an object module called MAIN.OBJ, which contains
an intermediate representation of the logical segments that represent the contents of
MAIN.C. So that the linker can later process the CALL instruction generated by the C
compiler to execute subroutine foo, a fixup record is inserted into MAIN.OBJ ref-
erencing the call instruction. Since the call instruction is to a target within the code seg-
ment, the type of the fixup is self-relative. The MAIN.OBJ object file also contains an
external definition record for the reference to the name of subroutine foo.

When FOO.C is compiled, file FOO.OBJ is created. Besides the contents of the log-
ical segments, FOO.OBJ has a public definitions record with the name of the subroutine
foo. Without the public definitions record, the linker would treat subroutine foo as hid-
den, and would abort any attempted fixup resolution to subroutine foo. When the link
editor links the two object files and the C run-time library into an executable image, it
combines the contents of the logical segments in the two object files and matches the
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MAIN.C | extern  fool); foo() FOO.C
main() {
{ }
foo();
}

' '

| C compiler |

MAIN.0B. 00,081

| DOS linker |¢——— C run-time

* library

EXE header
Code segment
CALL
main() RET v foo()

&
<

Data segment

Fig. 4.8 DOS example program (static linking).

external definitions in MAIN.OBJ with the public definitions in FOO.OBJ. Then, the
fixup for the call instruction to subroutine foo is replaced by the correct offset within the
physical code segment created by the linker.

The other programming models—medium, large, and huge—allow more than 64KB
of code and/or data to be used in different combinations. The medium model allows for
more than a single code segment. Therefore, all code pointers in the medium model are
of the far type and use segment-relative fixups, since they must contain both segment
and offset values (a 16:16 or far pointer). The compiler generates the code from each C
source file into a unique code segment, and uses the CALL FAR instruction when ref-
erencing a routine in another segment. Since the address of a segment is not known until
the program is loaded into memory, only the offset portion of the CALL FAR instruc-
tion can be fixed up by the linker. The linker leaves a segment-relative fixup record in
the final EXE file, to tell the DOS loader that there is a reference to a segment address
that needs to be fixed up before the starting point is called. The compact model allows a
program to have a single code segment and multiple data segments.

The large model allows data items as well as code items to be in separate segments,
and all data pointers become far pointers by default. However, none of these program-
ming models can minimize, as well as can an assembler program, the number of times
that segment registers must be reloaded. This inefficiency occurs because programs code
in languages that allow freeform pointer arithmetic and casting (like C) can have multi-
ple levels of pointer aliases. This makes sophisticated flow analysis during program op-
timization difficult and, in many cases, infeasible. Therefore, languages for the Intel
segmented architecture usually provide limited optimization of segment loading for far
pointers.
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45 0S/2 1.X SYSTEM

“0S/2 1.X” is used in this book to indicate the 16-bit versions of the OS/2 system. OS/2
is a single-user, multitasking operating system. It performs centralized resource manage-
ment for sharing the processor, main and secondary memory, mass-storage devices, I/O
devices such as the keyboard, display, and mouse, and communications interfaces. OS/2
provides architectural relief for the 640KB memory limitation of the DOS/8088 environ-
ment. OS/2 1.X also provides support for running a DOS application in order to provide
backward compatibility for users migrating to OS/2 from DOS. The Sections 4.5.1
through 4.5.7 give an overview of the structure and major functions of the system.

45.1 System Structure

The OS/2 system is composed of the kernel, device drivers, dynamic link libraries, and
application programs. Figure 4.9 illustrates the structure of the OS/2 system.

The kernel is the heart of the system; it contains the control program that runs with
supervisor privileges. As in DOS, the kernel uses device drivers to access the system’s
hardware resources. The most critical portions of the system—such as multitasking,
memory management, interprocess communication, DOS compatibility, and I/O—reside
in the kernel. The architecture and content of the kernel are analyzed throughout this
book as the system is exposed component by component.

Many of the system’s APIs are located in the kernel, but some APIs are located in
dynamic link libraries—shared libraries that can be used to extend the functionality of
the system. As we shall see in Section 4.5.4, the location of APIs is transparent to
applications, so designers can move and extend functions as requirements dictate.

cer shell/desktop ma"ager
0S/2 AP|

O\l“am'\c link ”brar/e
s

OS/Z kerne/

pevice driv(.;.,'s

Hardware

Application programs

Fig. 4.9 0S/2 system structure.
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4.5.2 Multitasking

The OS/2 multitasking architecture provides the capability to execute programs concur-
rently in a protected environment. It defines the model used for sharing the system’s re-
sources. The model consists of a hierarchy of multitasking objects called sessions,
processes, and threads. The session is at the top of the hierarchy, and the thread is at the
bottom. The session is the unit of user I/O device sharing. Processes are analogous to
programs, and are the unit of sharing for such resources as memory, files, semaphores,
queues, and threads. A thread is the basic unit of execution, and a single process may
have multiple threads that execute concurrently within it.

Each session contains a logical video buffer, logical keyboard, logical mouse, and
one or more processes that are said to be running in or attached to the session. The logi-
cal devices are per-session representations of the actual devices. Processes running in
the session perform their user I/O on the session’s logical devices. Only one session at a
time has its logical devices mapped onto the actual devices; this session is called the
foreground session. The other sessions are in the background. Users can change the cur-
rent foreground session by issuing the commands to switch between sessions with the
keyboard or mouse. Sessions are used to provide an infrastructure for program manage-
ment and user I/O device sharing.

A process is the basic unit of resource management in OS/2. A process is created by
the invocation of a particular program. Programs are invoked by issuance of a
DosExecPgm system call with the name of an executable program file as a parameter.
Each process has its own memory, threads, and file system and interprocess
communication (IPC) data structures. When a process is created, it contains one thread,
or sequential execution path. The thread is the unit of processor dispatching, and each
thread has its own scheduling priority. A thread can create a new thread within a process
by calling DosCreateThread. All threads within a process share all the process’s
resources, including the address space. The multithread process model helps the system
to achieve a high degree of parallelism, concurrent execution, and interactivity. Since
threads are less expensive to create and maintain than are processes, the cost of achiev-
ing concurrency is significantly lower than is possible in a single-thread process system
such as UNIX.

OS/2 is a preemptive, priority-based, multitasking system. The scheduler deter-
mines what is the highest-priority thread in the system and runs that thread for a time-
slice. At the expiration of a timeslice, the thread is preempted by the system, and the
scheduler determines whether another thread is ready to run. The scheduler implements
a multilevel priority scheme with dynamic priority variation and round-robin scheduling
within a priority level. Dynamic priority variation changes the priority of threads based
on their activity to improve overall performance and responsiveness. Round-robin dis-
patching within a priority level ensures that all threads at a common priority level have
an equal chance to execute.

0S/2 is interrupt driven to allow the processor to be used while I/O is occurring. If
an interrupt occurs while a thread is executing, and another thread of higher priority be-
comes ready to run, the original thread will be preempted to allow the higher priority
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thread to run. However, OS/2 does not provide complete preemption. A thread can be
preempted only when it is running in user code. If the thread has issued a system call
and is running OS/2 kernel code, the thread will not be preempted until it exits the ker-
nel, unless it is running in the highest priority class.

4.5.3 Memory Management

0S/2 1.X presents a segmented memory model that takes advantage of the 80286
processor’s virtual memory capabilities. Since the system runs in 80286 protected mode
(except for the DOS environment), the system and applications can use up to 16MB of
physical memory, a significant breakthrough of the 640KB barrier associated with
DOS/8088 systems. However, each segment is limited to 64KB due to the 16-bit archi-
tecture of the 80286. The OS/2 1.X segmented memory model is also known as the
16:16 memory model since a 16-bit selector to a segment must be specified, as well as a
16-bit offset into that segment, to address a single byte of memory.

The memory protection features of the 80286 described in Chapter 2 are used to iso-
late the system memory from user memory, and to protect individual processes from one
another. The memory segments that make up the system are mapped into privilege level
0 of the 80286’s ring architecture, the highest privilege level. Executing at ring 0 is also
known as executing in supervisor mode. The system is mapped by the 80286 GDT to
make it accessible from every process. Since the system is mapped at ring 0 and pro-
cesses are mapped at rings 2 and 3, the system is protected from the processes.

Each process is allocated its own LDT for mapping the process’s address space into
physical memory. Memory allocated by the process is mapped into the LDT at privilege
level 2 or 3. When a thread context switch occurs between threads in different processes,
the OS/2 kernel switches process address spaces by switching LDTs. Since each process
has its own LDT, processes are protected from one another.

The OS/2 memory manager supports sharing of memory among processes. Shared
memory is a powerful form of interprocess communication, and plays a large role in the
architecture of shared libraries and subsystems. There are two varieties of shared memo-
ry: named and anonymous. Named shared memory is accessed by a name, whereas in
anonymous shared memory, access is controlled directly by processes. Both named and
anonymous shared memory are implemented by a common virtual address in the address
space of different processes that maps a single physical memory segment. Instance
memory is used to provide to each process a unique copy of a data segment. Like shared
memory, instance memory is mapped at the same virtual address in each process’s
address space.

0S/2 also manages memory such that more memory can be allocated than the ma-
chine actually has. This service, called memory overcommit, allows the user to continue
running programs in a memory-constrained environment. Segments that are not actively
being used can be swapped out to the swap file on a secondary storage medium to make
room in physical memory for more segments. When a segment that is swapped out is
referenced, the system swapper brings the segment into memory and restarts the opera-
tion that referenced the segment. Since all the memory used by a segment must be
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physically contiguous, OS/2 also moves segments in physical memory to maximize the
amount of free space available. This segment motion is called compaction. Code seg-
ments and read-only segments can be discarded rather than swapped, since they can be
reloaded on demand from their original disk images. This type of memory management
is called demand segment swapping. Since segments are of variable length and the per-
formance of personal computer secondary storage media is relatively poor, the system
swapping policy is to allow applications to continue running when physical memory is
overcommitted, rather than to attempt to provide large amounts of virtual memory on
the secondary storage media.

4.5.4 Dynamic Linking

Dynamic linking allows the binding of code and data references to be delayed until the
program is actually loaded or until the program specifically requests the operating sys-
tem to link dynamically to a dynamic link library (DLL). The former type of dynamic
linking is called load-time dynamic linking, whereas the latter is called run-time dynamic
linking. There are two types of executable modules in the OS/2 environment: EXE mod-
ules for programs and DLL modules containing shared libraries. Both module types use
the OS/2 segmented executable file format, but they are distinguished by a special bit in
the executable file header.

Dynamic linking requires imports and exports of code and data objects across EXE
or DLL modules. The OS/2 linker allows the programmer to specify that an external ref-
erence is in another executable module; this causes the linker to create an import record
in the import table of the EXE header that describes the external reference by module
name and object name, or ordinal number. When the OS/2 loader attempts to load an
EXE into memory following a DosExecPgm request, or to load a DLL as the result of a
reference in an EXE or a DosLoadModule request, it attempts to resolve a module’s im-
ports. It attempts resolution by loading the module(s) that export the desired import ref-
erences, and performing fixups on the dynamic link references in the module being
loaded. The program loading process continues until the program or library is ready to
execute. If the system loader is unable to resolve a load-time dynamic link request, the
program or library load is aborted. If necessary, one or more DLL may be loaded and
fixed up so that loading of an EXE or a DLL can be completed. Figure 4.10 illustrates
how dynamic linking could be used for linkage between the main and foo routines in the
example cited earlier.

Whereas an EXE file typically only imports dynamic links, a DLL file usually im-
ports and exports dynamic links. If an EXE attempts to import a dynamic link and there
is no corresponding exported dynamic link, the program load fails. In general, the dy-
namic link mechanism can be likened to an external reference that exists in a different
program module. All dynamic links use 16:16 far addresses, since they resolve linkages
across segments in different program modules.

Dynamic linking is also a powerful mechanism for providing linkages to shared code
and data objects in a multitasking virtual memory environment. It provides an extendible
and flexible foundation for meeting the criteria of API abstraction and information hiding.
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MAIN.EXE MYLIB.DLL
EXE header EXE header
import MYLIB.FOO export FOO
Code segment CALL FAR Code segment
main() P RET FAR - foo()
Data segment Data segment

Fig. 4.10 Dynamic linking.

Another benefit of dynamic linking is that EXE files are not as large, since commonly
used routines can be placed in a DLL instead of being replicated in each EXE that uses
them. This results in saved disk space and potentially faster program loading. Dynamic
linking is described further in Chapter 6 with respect to memory management, and in
Chapter 7 with respect to interprocess communication and resource sharing.

455 1/0

As in DOS, devices in OS/2 are categorized as either block devices or character devices,
and the same naming conventions are used. In fact, the system uses a similar device
chain for managing the devices and their names. However, the user I/O devices—such
as the display, keyboard, and mouse—are accessed differently from in DOS. Reentrant
subsystems with well-defined APIs allow concurrently executing processes to share the
user 1/O devices. The block devices are accessed using the file system API as in DOS,
and the other character devices are accessed by APIs.

OS/2 supports the FAT file system used by DOS, and consequently can read and
write DOS files. Although this capability is desirable from compatibility and migration
standpoints, the FAT file system was not originally designed to support many concur-
rent I/O requests from different processes on large block devices. Therefore, OS/2 pro-
vides an alternative file system, called the High Performance File System (HPFS). To
provide an architecture in which programs are transparent to the type of file system,
0S/2 has an installable file system (IFS). The system has facilities for installing multiple
file systems, and a standard file system API to which all installable file systems adhere
to. Figure 4.11 illustrates the OS/2 file system architecture.

0S/2 device drivers are significantly different from DOS device drivers. Like the
kernel, they run in the most privileged execution state, privilege level 0. Device drivers
have two main entry points: a strategy routine that receives requests from the kernel,
and an interrupt routine that is called when a hardware interrupt occurs. Since the strate-
gy routine and interrupt routine may both need access to the same structures, the device
driver must carefully serialize access to shared structures and manage race conditions
between the strategy and interrupt routines. Strategy routine requests are made in the
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Fig. 411 0S/2 file system architecture.

form of request packets that describe the operation. Device drivers perform the request-
ed operation using a combination of the hardware and a set of system services created
specially for device drivers called device-help (DevHelp) routines. Figure 4.12 illustrates
the interfaces of device drivers.

When a request to a device driver’s strategy routine occurs, it is made within the
context of the currently running thread. The strategy routine either satisfies the request
immediately and returns, or initiates an I/O request that will complete on a hardware in-
terrupt notification and blocks the requesting thread. When the strategy routine blocks
the requesting thread, the system dispatches another thread to run. When the original
thread’s interrupt occurs, notifying the device driver that the I/O is complete, the inter-
rupt routine is not able to assume that it is running in the context of the requesting
thread. Thus, the system must provide services that allow device drivers to maintain
global data that can be accessed in any context. This facility also allows device drivers
to service multiple requests concurrently and to perform overlapping I/O operations.
Chapter 8 provides a more detailed description of the OS/2 I/O architecture.

Kernel
l Device help services
Request 1 DevHelp
v packets requests

Strategy routine :
Device driver

| Interrupt routine
IN IN '
v OUT v OUT
L Hardware

Interrupts

Fig. 4.12 Device driver interfaces.



92 Operating System Architectures

4.5.6 Presentation Manager

The Presentation Manager (PM) is the graphical user interface for OS/2. It provides an
environment for graphical applications to share the video display in a windowed envi-
ronment. PM programs have a common user interface composed of windows, scroll
bars, dialog boxes, pull-down menus, and other desktop controls that are accessed
through the keyboard, mouse, or other user input devices. The user interface of PM
applications is easier to learn and more consistent than are traditional user interfaces
such as command lines or application-specific interfaces.

The PM consists of a large API that contains functions for managing windows and
performing graphic operations on a device-independent presentation space. The PM
maps the applications’ requests to alter the presentation space into device-dependent
operations on the actual output device, whether that device is a video display or high-
resolution printer. This strategy allows all PM programs to be transparent to the specific
characteristics and nuances of the actual output device. The PM accomplishes this task
with the assistance of special PM device drivers that are different from the base system’s
device drivers.

When OS/2 is started, the system executes the user shell, a PM program called the
desktop manager. The desktop manager provides an icon-oriented interface that allows
users to start programs, to switch between programs, and to manage programs as groups.
The desktop manager represents each program in the system with a name or icon. The
desktop manager and all other PM programs share a single session called the PM ses-
sion. Programs that do not use the PM API for their user I/O are called full-screen pro-
grams, and they each run in their own session. Chapter 9 gives a complete treatment of
session management and the PM architecture.

4.5.7 DOS Compatibility

One of the most critical features of OS/2 is the capability to run DOS programs. This
facility allows users migrating to OS/2 from DOS to continue running their current pro-
grams. It helps customers to preserve their investments in DOS software while migrat-
ing to OS/2. DOS compatibility also permits OS/2 users to draw on the large
applications base of DOS programs, until there are comparable OS/2 programs avail-
able. However, capturing the unprotected DOS environment in a system such as OS/2
that provides traditional resource management is a difficult problem. This task is even
more difficult since the 80286 architecture does not provide the ability to run 8088 real-
mode programs in the protected-mode environment.

The goal of 0OS/2’s DOS environment for 80286-based systems is to allow a sin-
gle DOS application to run in the foreground while OS/2 programs continue to run in
the background. Thus, DOS programs do not benefit from the multitasking features
of OS/2. When the DOS environment is moved to the background by the user, its
execution is frozen. The DOS environment exists in a special session called the DOS
session.
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0S/2 uses a technique known as mode switching to support the concurrent execution
of the DOS environment in real mode, and OS/2 programs in protected mode. Because the
80286 was designed to switch easily into protected mode from real mode, but not from pro-
tected mode to real mode, this mode switch back to real mode from protected mode is
accomplished with the assistance of extra circuitry provided on 80286-class machines.

Due to the presence of mode switching, certain critical parts of the OS/2 kernel and
device drivers must be accessible in both real mode and protected mode. These include
device and interrupt management, mode and context switching, and anything that must
be accessed at interrupt time. Code that can run in either real or protected mode is called
bimodal code. Bimodal code enables OS/2 to minimize the amount of mode switching
that is done on performance-critical paths, such as device and interrupt handling.
However, bimodal code must reside in the physical memory addresses below 640KB to
be addressable in both real and protected modes. The challenge of partitioning the sys-
tem into bimodal and protected-mode code so that as much of the lower 640KB would
be available to DOS applications was one of the most difficult in the design of the sys-
tem. For instance, although the file system is used by DOS applications, it resides in
memory above 1MB, and the system mode switches to protected mode to service DOS
application file system requests. Chapter 10 describes the architecture for DOS compati-
bility in much greater detail.

4.6 0S/21.X API

Dynamic linking is at the center of the OS/2 API architecture. Because it uses dynamic
linking as the linkage for system calls, OS/2 has the flexibility to extend and relocate
system functions without requiring programs to be recompiled and relinked. Also, the
location of an API is transparent to the requestor, so API routines can be in the OS/2
kernel or in a DLL module. This capability has allowed OS/2 to be extended by commu-
nications and database products.

The OS/2 API calling conventions specify that all API parameters are placed on the
stack, and the CALL FAR instruction is used to transfer control to an API service rou-
tine. Since this model parallels the linkage architecture found in most high-level lan-
guages, APIs can be invoked directly instead of requiring a library of bindings. Each
API preserves the state of the registers except AX, which is used for return codes. Also,
it is the API routine’s responsibility to remove the requestor’s parameters from the stack
on completion of service.

The OS/2 API is composed of several APIs that are grouped according to the ser-
vices they provide. The prefixes of the names of the functions within an API indicate the
portion of the OS/2 API to which the functions belong. The base system API is called
the Dos API. The keyboard, mouse, and video subsystem APIs used by full-screen pro-
grams are called the Kbd, Mou, and Vio APIs, respectively. The PM API is distinguished
from the base system API by the prefixes Win for window management, and Gpi for
graphics management. Table 4.1 summarizes the names of the OS/2 APIs and the type
of functionality contained in each API.
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Category APl name Functions

DOS (base) DosXXX Multitasking, interprocess communication, memory
management, dynamic linking, file system, exceptions,
signals, session management

KBD (base) KbdXXX Logical keyboard management
VIO (base) VioXXX Logical video management
MOU (base) MouXXX Logical mouse management
WIN (PM) WinXXX Window management and I/O
GPI (PM) GpiXXX Presentation graphics

Table 4.1 0S/2 API content.

4.7 0S/2 1.X Programs

Similar to the DOS programs, 16-bit OS/2 programs are collections of relocatable seg-
ments containing code and data. Also, the same variety of language memory models
found in DOS applications are available to support the different flavors of segmenta-
tion in OS/2. The major difference between DOS and OS/2 with regard to program
structure and development is the usage of selectors for segment fixups, dynamic link-
ing, and the different API functions in OS/2. The OMF used by the OS/2 development
tools is the same as that on the 8086, since the instruction sets and addressing modes
are virtually identical. OS/2 uses an enhanced executable file format that provides
support for dynamic linking and demand loading of segments from EXE and DLL
modules.

4.8 0S/2 2. X SYSTEM

“0OS/2 2.X” is the general moniker used in this book to reference the 32-bit versions of
the OS/2 system. At the time this book was published, OS/2 2.0 was the first and only
32-bit version of the OS/2 system. OS/2 2.0 is targeted for the Intel 80386 and 80486
computer systems. It uses the paging feature of the 80386 to provide a demand-paged,
virtual memory environment that supports a new 32-bit portable programming model.
0S/2 2.0 provides binary compatibility for OS/2 1.X applications and dynamic link
libraries. The DOS compatibility environment is enhanced to take advantage of the vir-
tual 8086 mode of the 80386, enabling multiple DOS sessions to run concurrently and in
the background. In general, the system has the same content as do the OS/2 1.X systems,
but it is scaled up to 32 bits and has an architecture designed to allow applications,
dynamic link libraries, and ultimately the system itself to be portable to other processor
platforms.
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0OS/2 2.0 also provides greater ease of use in the areas of installation and the user
shell. It features a PM-based installation program, and the capability of performing in-
stallations across a local area network. A new user shell called the workplace shell pro-
vides an object-oriented environment that seamlessly integrates programs and data so
that the system is intuitively easy to use. Sections 4.8.1 through 4.8.6 describe the major
enhancements compared to the 16-bit version of the system.

4.8.1 Memory Management

The overriding goal in the design of the 32-bit programming environment is to provide
an architecture that allows applications, subsystems, and the system itself to be portable
to processing platforms other than the uniprocessor Intel 80X86-based machines. This
requirement led to the development of a new memory model called the flat model, which
enables processes to view memory as a large linear address space addressable by 32-bit
offsets, rather than as a collection of segments, as in OS/2 1.X systems. The flat model
is an architecture that is easily portable to most processor architectures, since all that the
hardware must provide is a base register capable of addressing a large, paged linear
address space and an offset register for indexing into the address space. The flat model
effectively hides all segmentation from the programmer, resulting in a portable program-
ming model with much higher performance than a segmented system could provide. The
flat memory model is also known as the 0:32 memory model, since only the 32-bit offset
into the process’s address space is used to develop the address of a single byte of memo-
ry. OS/2 2.0 was not designed to be a 386-specific OS/2, but 32-bit OS/2 is implemented
on the 80386 and 80486 platform.

In the flat model, the basic unit of allocation and sharing is a 4KB page, and mem-
ory is divided not into segments, but rather into memory objects that consist of one or
more 4KB pages. Memory objects are not relocatable (as segments are in OS/2 1.X), are
allocated in units of 4KB, can be larger than 64KB, and are aligned on page boundaries
in the process address space. A major difference between memory objects in the flat
model and segments in the 16-bit segmented model is memory protection. In the 16-bit
segmented model, protection exists on a per-segment basis. However, in the flat model
all an application’s memory objects exist within a single large segment, so the Intel seg-
ment protection semantics are bypassed and 80386 page-level protection is used to man-
age the memory in the process’s address space. To provide each process with a unique
address space, OS/2 2.0 allocates a different set of page tables for each address space,
instead of allocating an LDT per process like OS/2 1.X.

The high performance of applications, subsystems, and the system using the flat
model is derived from several areas. In the segmented or 16-bit model, segment registers
had to be reloaded with selectors every time a different 64KB block of memory needed
to be accessed. These selector load operations are expensive in protected mode on
80X86 processors due to the checking that must occur to provide segment protection. In
the flat model, a 32-bit offset relative to the base of the process address space is used to
address any byte of memory without reloading any selectors. In fact, 32-bit programs
and subsystems do not use or know about the segment registers. Performance is also
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increased by the use of the 32-bit registers and arithmetic that the 32-bit Intel architec-
ture provides.

4.8.2 Paging

The paging feature of the 80386 is used not only to support the flat model and multiple
DOS address spaces, but also to allow OS/2 to provide memory overcommitment differ-
ent from that offered by 0OS/2 1.X. In OS/2 1.X, segment swapping is used to keep the
system running in memory-stressed conditions; due to the I/O performance of most
fixed disks, however, segment swapping does not perform well enough to provide gen-
eral-purpose virtual memory on demand. However, since the 80386 provides paging,
storage can be virtualized on fixed disk media at a much lower I/O cost, because the size
of a page is not variable. Also, the system can do a better job of tracking memory usage,
since memory aging algorithms operate on a page granularity, instead of a segment
granularity, resulting in better memory utilization. Therefore, OS/2 2.0 is a demand-
paged, virtual memory system and is designed so that the system will run acceptably in
nominally overcommitted situations.

4.8.3 Multitasking

The multitasking architecture of 32-bit OS/2 is essentially the same as that of 16-bit
08S/2, except for increased limits on the number of threads and processes supported,
and enhancements to the multitasking API. The 32-bit system supports up to 4095 pro-
cesses instead of 255, and 4095 threads instead of 512. The multitasking API is
enhanced to allow better control of thread creation and termination. Also, the system’s
timeslice management uses dynamic timeslicing to maximize processor utilization for
applications.

4.8.4 Dynamic Linking

0S/2 2.0 provides dynamic linking, but the elimination of segmentation in the flat
model is propagated to the dynamic link model of the system. Instead of all dynamic
links being far, all objects are near, and objects do not require segment register reloading
when an API or dynamically linked object is referenced. Therefore, the cost of making
dynamic links and API calls is significantly less than the cost of making the comparable
calls in OS/2 1.X.

4835 0S/2 1.X Compatibility

0S/2 2.0 runs all OS/2 1.X application and dynamic link library executable files without
change. To provide this portability, the OS/2 designers had to come up with an ar-
chitecture in which 16-bit and 32-bit modules could coexist. The difficulty of this task
lies in the differences in the segmented and flat memory models. The major requirement
for laying a foundation in which both models can coexist is a high-performance mecha-
nism for converting 16-bit addresses to 32-bit addresses, and vice versa. Once this
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problem is solved, the task of servicing a 16-bit API call with a 32-bit routine, or vice
versa, becomes a feasible task. The technique used to deal with address conversions
between the segmented and flat models is called LDT tiling.

The rest of the 16-bit compatibility requires a layer of procedures that takes 16-bit
API requests, converts them into 32-bit API requests, issues the requests, and completes
the API return conditions with 16-bit semantics. The name of a routine that does this
function for a single API is called a thunk or, more specifically, a 16-t0-32 thunk.
Thunks can also be created to go in the opposite direction, from 32-bit semantics to 16-
bit semantics—these thunks are called 32-t0-16 thunks. Thunks are merely tools that al-
low us to build one type of API (16 or 32) from the other when both APIs are needed in
one system. Thunks are not APIs. Chapter 10 describes LDT tiling and thunks in more
detail, and discusses other compatibility issues.

4.8.6 DOS Compatibility

0S/2 2.0 provides DOS 5.0 compatibility using the virtual 8086 mode of the 80386 pro-
cessor, and uses paging to provide more than one DOS compatibility environment. The
DOS environment is more DOS compatible than is the environment offered with OS/2
1.X, due to the ability to encapsulate the entire DOS environment in a virtual DOS
machine (VDM). This virtual DOS machine gives the system far better protection than is
offered by the OS/2 1.X DOS compatibility environment. In OS/2 1.X, an errant DOS
application could conceivably hang the entire system. In OS/2 2.0, an errant DOS appli-
cation can hang only its own DOS session, and the hung DOS session can be terminated
from the desktop manager.

DOS applications can be run full screen, windowed, or iconized in the background.
In addition to being better protected, providing better compatibility, and allowing more
DOS sessions, the OS/2 2.0 DOS environment leaves applications approximately
620KB in which to execute—more space than is available in DOS. Both EMS and XMS
expanded memory support are provided using the paging feature of the 80386 for emula-
tion. Since the DOS environments are swappable, starting many DOS sessions does not
drive up system memory requirements.

The DOS environment in OS/2 2.0 allows specific versions of DOS to be booted
into VDM, enabling DOS version-dependent applications to run. It also provides DPMI
server functions, enabling DPMI-based DOS extenders and their applications to run, in-
cluding Windows 3.0 and its applications.

The OS/2 2.0 DOS support provides an extendible OEM architecture that allows the
environment to be tailored to emulate any DOS environment. At the heart of this ex-
tendibility is an architecture that uses a virtual device driver (VDD). The OS/2 1.X bi-
modal device-driver architecture is changed to move all low-level DOS support into
virtual device drivers and out of the physical device drivers. Due to the 80386 virtual
8086 mode, all interrupt processing is done in protected mode, so the need for bimodal
device drivers no longer exists. The OS/2 2.X device driver architecture distinguishes
between physical device drivers (PDDs) for basic device support, and VDDs for virtual
devices in the DOS environments.
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49 0S/22.X API

0S/2 2.0 provides the dynamically linked 32-bit API to allow flat-model applications to
use the OS/2 system services. The 32-bit API has been designed so that applications and
subsystems that use and provide 32-bit APIs will be portable to any future OS/2 2.X
platform.

The major differences in the API architecture between OS/2 1.X and OS/2 2.0 are
that there are no 64KB restrictions, and API pointers are of the 0:32 format. The API
calling conventions are different to allow support of the dynamic linking in the flat
model environment and the 32-bit register set. Also, the basic word size exploited by the
API is the 4-byte double word, instead of the 2-byte word found in OS/2 1.X. Many of
the API names are changed to be more consistent than they are in the OS/2 1.X API.

Several areas of the API have been enhanced to provide greater functionality and
portability. The multitasking API provides better thread management in the areas of cre-
ation and termination, and the system supports up to 4095 processes and 4095 threads.
The memory management API has functions similar to those of its 16-bit counterpart,
but it manages memory objects composed of pages instead of segments. The semaphores
portion of the interprocess communications API are portable and are more reliable than
their 16-bit counterparts. The exception management API provides the capability of han-
dling exceptions on a per-thread, instead of a per-process, basis, and is also machine
independent. The keyboard, mouse, and video APIs from the 16-bit API have no
counterparts in the 32-bit API, since they are extremely device dependent. Instead,
32-bit programs use the PM for managing their user I/O.

4.10 OS/2 2.X PROGRAMS

The overall program-development process and architecture for 80386/80486 32-bit OS/2
systems are similar to those for 16-bit OS/2 and DOS, but the definition of memory ob-
jects and the addressing capabilities of the 32-bit architecture are different. This differ-
ence leads to enhancements in the programming languages and OMF to support fixups
with 32-bit offsets, and to the definition of an EXE format that supports a demand-
paged, dynamically linked environment.

The OMF in the 32-bit environment is extended to support 32-bit offset fixups
called 0:32 fixups, and to allow memory objects larger than 64KB. Since the OMF is
different from the one used in 16-bit OS/2 or DOS, the compilers that generate the OMF
are significantly different from their 16-bit counterparts.

The proliferation of memory models to allow various flavors of segmentation in 16-
bit OS/2 does not occur in the 32-bit flat addressing environment. Instead, all the mem-
ory models are replaced by the flat model. The flat model is the equivalent of a
small-model program that can have up to 4GB of code and data simultaneously address-
able using 32-bit offsets.

The link editor for 32-bit OS/2 is significantly different from that for 16-bit OS/2 or
DOS. The 32-bit OS/2 link editor deals in memory objects and creates executable files
suitable for the demand-paged environment. The link editor combines objects in
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different object files, and relocates all objects relative to a fixed absolute base in the
EXE file emitted. The EXE image is the equivalent of a single large segment that con-
tains the memory objects of the program, so there are no fixups remaining in a 32-bit
EXE file except those for dynamic links external to the EXE. Since dynamic links in
32-bit OS/2 provide linkage to memory objects instead of to segments, each dynamic
link is represented by a self-relative fixup rather than by a segment-relative fixup, as in
16-bit OS/2 dynamic linking.

Since EXE files are guaranteed to load at the same base address in the linear
address space, the linker performs the internal self-relative fixups and then discards
them. However, since DLLs must remain relocatable, the link editor retains the fixup
information for relocating the DLL’s memory objects.

The EXE format used in 32-bit OS/2 reflects the requirements of the demand-paged
environment. In a demand-paged system, pages are loaded and reloaded into memory di-
rectly from executable files. For this mechanism to be efficient, the EXE files are orga-
nized into pages instead of segments, and all the fixup information within the EXE files
is organized on a page basis instead of a segment basis. Another important property of
EXE formats for demand-paged systems is the reduction of the number of fixups in the
pages of an EXE file; a page with no fixups is called a pure page, since it can be loaded
directly into memory without processing by the system’s loader.

SUMMARY

This chapter described the overall architecture of the DOS, OS/2 1.X, and OS/2 2.X sys-
tems. The structure of the systems and their content were elaborated, and their API and
program functionality explained.

TERMINOLOGY
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32-bit OS/2

EXERCISES

Questions pertaining to the DOS system:

4.1 Discuss the layered architecture of the DOS system as presented in Fig. 4.1.
4.2 Distinguish between block devices and character devices.

4.3 Describe the organization of the DOS device chain.

4.4 How do DOS programs typically manage a graphic display or a mouse, given that the DOS
API does not contain functions for these purposes?

4.5 Why is it that most high-level languages cannot directly invoke DOS API calls?
4.6 List several advantages of using dynamic linking instead of static linking.

4.7 What do we mean when we say that the OMF exhibits the trait of processor architectural
dependence and the EXE format exhibits the trait of operating system architectural dependence?

4.8 Distinguish between self-relative addresses and segment-relative addresses.

4.9 Briefly describe each of the following program models: compact model, small model, medium
model, large model, and huge model.

Questions pertaining to the OS/2 1.X system:
4.10 Indicate the new capabilities OS/2 offers compared to DOS.

4.11 Many of the APIs are located in the kernel, but some APIs are located in dynamic link
shared libraries. Why are both locations used?

4.12 Define the OS/2 notions of sessions, processes, and threads.
4.13 'What are logical devices? What logical devices are available?
4.14 Distinguish between foreground and background sessions.

4.15 How are processes and threads related? How do threads provide a lower-overhead form of
parallelism than is possible with processes?

4.16 Describe briefly how OS/2’s preemptive, priority-based multitasking operates.
4.17 Under what circumstances will OS/2 not preempt a running thread?
4.18 Compare and contrast OS/2 1.X memory management with DOS memory management.
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4.19 When a thread context switch occurs between threads in different processes, how does
0S/2 switch process address spaces? How is protection between address spaces ensured?

4.20 Distinguish among named shared memory, anonymous shared memory, global shared
memory, and instance shared memory.

4.21 Describe OS/2 notion of memory overcommit. How does OS/2 enable processes to run
even though not all their segments are in physical memory at once?

4.22 Explain how dynamic linking operates. Discuss the advantages that dynamic linking provides.

4.23 Why are I/O devices—such as the display, keyboard, and mouse—accessed in OS/2 differ-
ently from in DOS?

4.24 Why does OS/2 have an installable file-system (IFS) architecture?

4.25 Discuss the architecture of OS/2 device drivers. In particular, explain the functions per-
formed by the various device-driver routines.

4.26 Why does the presentation manager use device drivers different from the base system’s
device drivers?

4.27 Why is DOS compatibility such an important feature of OS/2?
4.28 Why is it that DOS programs do not benefit from the multitasking environment of OS/2?

4.29 Discuss the OS/2 technique of mode switching. What limitation of the 80286 with regard to
mode switching was corrected with the use of additional hardware on PC/AT-class machines?

4.30 What is bimodal code? What performance advantage does it offer? In what physical memo-
ry addresses must bimodal code reside? Explain your answer.

Questions pertaining to the OS/2 2.X system:
4.31 Describe the key new capabilities offered by OS/2 2.X systems over OS/2 1.X systems.

4.32 What capability of the 80386 processor enables OS/2 2.X to run multiple DOS sessions
concurrently and in the background?

4.33 Comment on the following statement and indicate its importance in defining OS/2 as a
UNIX competitor: “The overriding goal in the design of the 32-bit programming environment is to
provide an architecture that allows applications, subsystems, and the system itself to be portable to
processing platforms other than the single-processor, Intel 80X86 machines.”

4.34 What is the significance of the flat model? Why is it appropriate to call the flat model the
0:32 memory model?

4.35 How does OS/2 2.X provide each process with a unique address space?

4.36 Discuss several reasons for the high performance of OS/2 2.X applications, subsystems,
and the system using the flat model compared to the memory model used in OS/2 1.X systems.

4.37 How does OS/2 2.X support memory overcommit?

4.38 Why is the cost of making dynamic links and API calls in OS/2 2.X systems significantly
lower than the costs in OS/2 1.X systems?

4.39 What challenges did the designers of OS/2 2.X face in enabling OS/2 1.X applications and
dynamic link library executable files to run without change? What are LDT tiling and thunks?

4.40 Distinguish between OS/2 2.X’s physical device drivers and virtual device drivers.
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4.41 What are the major differences between the API architectures of OS/2 2.X and OS/2 1.X?
4.42 Compare the 32-bit flat model to the 16-bit compact model.

4.43 How does an API encapsulate the hardware and the operating system? Could two different
operating systems offer identical APIs? What would be advantages and disadvantages of such an
approach?
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It was surprising that Nature had gone tranquilly on with her
golden process in the midst of so much devilment.

The Red Badge of Courage
Stephen Crane

I claim not to have controlled events, but confess plainly that
events have controlled me.

Abraham Lincoln

Learn to labor and to wait.

Henry Wadsworth Longfellow
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5.1 INTRODUCTION

This chapter describes the multitasking aspects of the OS/2 system. In any multitasking
operating system, the hardware is managed as a shared resource to be distributed among
concurrently executing entities. The architecture that describes how these concurrent
entities are created, terminated, and managed is called the tasking or multitasking
model. The multitasking model describes how resources—such as the processor, memo-
ry, files, devices, and interprocess communications structures—are shared in the OS/2
system.

Perhaps the most important resource that is shared in a multitasking environment is
the processor. The operating system shares the processor among concurrently executing
entities using a technique known as timeslicing. An operating system that provides
timeslicing switches between programs, enabling each program to run for a short period
of time called a timeslice or quantum. This technique results in the processor resource
being shared among the programs.

The DOS operating system is not a multitasking system; it runs only one application
at a time. However, DOS applications can do their own timeslicing by taking over the
system timer and dividing up the processor time among different programs that are
specifically known to them. In an unprotected environment such as DOS, it is difficult
for multiple applications that do their own timeslicing to coexist without resource con-
flicts occurring.

In the OS/2 system, multitasking services are built into the system. This centralized
tasking scheme allows all applications to take advantage of the multitasking functions of
the operating system. Figure 5.1 illustrates the difference between multitasking in DOS
and OS/2.

As we saw in Chapter 4, the multitasking hierarchy of OS/2 consists of sessions,
processes, and threads. Sessions are described more completely in Chapter 9. This chap-
ter concentrates on the description of processes, threads, and scheduling, and examines
the kernel architecture that supports the multitasking of processes and threads. This
chapter deals with both the 16-bit and 32-bit versions of OS/2. For the most part, the

P, P, Py P, P, P
A .
Ti ticks
Multitasker ;: imer ti .
0S/2 kernel
DOS kernel

Fig. 5.1 DOS versus 0S/2 multitasking.
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multitasking architectures of both 16-bit and 32-bit OS/2, of OS/2 1.X, and of OS/2 2.X
are identical. Where they differ significantly, the differences are explained.

5.2 PROCESSES

A process is the basic unit of programming and resource sharing in OS/2. A process cor-
responds to a program and is created when a program is loaded. A process is the central
abstraction for the sharing of resources, such as processors, memory, files, and interpro-
cess communication data structures. Each process is assigned a unique process identifier
(PID) by the kernel. The 16-bit version of OS/2 provides support for up to 255 pro-
cesses; the 32-bit version provides support for up to 4095 processes. Figure 5.2 illus-
trates the structure of an OS/2 process.

The system maintains many resources on a per-process basis. The primary resources
contained in a process are the memory domain and the threads of execution. A thread
provides a sequence of instructions with an instance of execution. All processes are cre-
ated with one thread and have the capability of creating more threads. The threads with-
in a process all share the process’s resources and have access to one another. Although
memory and threads are the main features within a process, the system also tracks many
other resources on a process basis, such as signal handlers, open files, and interprocess
communication features such as semaphores, queues, and pipes.

5.2.1 Process Virtual Address Space

The per-process memory domain is called the process virtual address space. Since each
process receives its own unique process virtual address space, the memory accessible by
each process is protected from other processes. Also, the system is protected from appli-
cation processes, since it is not accessible by user-level code within the process virtual
address space. In other words, a process cannot access memory in another process, and a

Process

Thread 1 File

P handles
rocess Thread 2
rea
virtual
address Sema-
phores

space Signal

Thread N handlers

Fig. 5.2 Process layout.
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process cannot access the system’s memory. This scheme is known as memory protec-
tion and is a key feature in any multitasking virtual memory operating system. Memory
protection allows the OS/2 system to provide an architecture with much more integrity
than is found in DOS or any of the extended DOS environments.

The process virtual address space is implemented differently in the 16-bit and 32-bit
versions of OS/2 because of their different memory models. The process virtual address
space in 16-bit OS/2 is represented as a collection of segments mapped by a local de-
scriptor table (LDT). The system switches LDTs when switching between processes. A
process can access only memory that is mapped by its own LDT. In 32-bit OS/2, the
process virtual address space is a single large segment (on the order of 512MB) that rep-
resents a flat linear address space. Each process virtual address space is mapped by a
per-process set of page tables. When processes are switched, the page tables that map
the process virtual address space are switched, effectively changing process virtual
address spaces. In either case, each process has a unique protected virtual address space
that maps all the memory it can access.

Chapter 6 discusses the management of the process virtual address space, such as
the switching of address spaces, the allocation and deallocation of memory objects with-
in address spaces, and the sharing of memory objects across address spaces. Memory
management is described there in detail.

5.2.2 Process Creation

Processes are created using DosExecPgm. DosExecPgm services requests by creating a
process, loading an executable program file into the process virtual address space, and
calling the entry point specified in the program file. The name of the executable file and
a set of execution flags are the parameters required by DosExecPgm. For example, call-
ing DosExecPgm with the parameter FOO.EXE causes the program in the executable
file FOO.EXE to be loaded into a new process virtual address space and starts that pro-
gram running. All processes are initially created with a single thread. However, the ini-
tial thread may create other threads within the process and also may create other
processes. DosExecPgm returns to its caller the PID for the created process.

The loading of an executable program file into a process’s virtual address space is
performed by the program loader component of the OS/2 kernel. To load an executable
file into the process’s memory, the program loader must resolve any dynamic link imports
that the program contains. As we saw in Chapter 4 when we described dynamic linking,
these imports are references to routines and data items outside the program module itself.
These references are either to the kernel or to dynamic link libraries that provide APIs.

When the program loader detects an external reference in a program (EXE) module
or dynamic link library (DLL) module to an API in the kernel, the reference can be
resolved immediately. However, if an external reference is to code or data in a DLL, that
DLL must be loaded into the process’s virtual address space before the original external
reference can be resolved. Therefore, program loading is a recursive mechanism that
usually ends up loading several DLLs to load just one executable (EXE) file. After all
the necessary DLLs have been loaded, then the optional initialization entry point in each
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DLL is called so that it can initialize any structures necessary for the operation of that
DLL. Once all the external references within the original executable program file and its
imported DLLs are resolved, the new process and its first thread are ready to be dis-
patched according to the execution flags passed into the DosExecPgm request. Chapter 6
further explains the role of the program loader with respect to memory management, and
describes the sharing of DLLs among processes.

OS/2 processes have a hierarchical structure. The process that calls DosExecPgm to
create another process is called the parent process, and the created or spawned process
is called the child process. Processes that share the same parent are called sibling pro-
cesses. Therefore, as processes are created, they form a process tree. Figure 5.3 illus-
trates the hierarchical nature of processes.

In Fig. 5.3, process A is at the root of the process tree. Processes B, C, and D are
children of the parent process A and have a sibling relationship with one another.
Processes E and F are children of process B, and grandchildren of process A. The pro-
cess hierarchy enables processes to control their children and descendants.

The execution flags provided as a parameter to DosExecPgm allow the parent pro-
cess to control the execution of each child process. They specify whether a new child
process should be run synchronously or asynchronously relative to the parent, and
whether a child is being traced by a debugger. When a child process is executed syn-
chronously, the parent process is suspended during the DosExecPgm request until the
child process terminates. In the case of a child being executed asynchronously, both the
parent process and the child process execute concurrently.

5.2.3 Process Termination

A process is terminated when its last thread dies. Termination is accomplished by a call
to DosExit. DosExit can be called to terminate a single thread or to terminate all the
threads in the process.

A is the root.
A is the parent of
B, C, and D.
Bis the
parent of
EandF B,C,and D
are siblings,
and are the
children of A.

E and F are
siblings and
are the children
of B and are the
grandchildren
of A.

Fig. 5.3 Process hierarchy.
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When a process dies, it may be necessary to notify the process itself or the DLLs
referenced by this process that the process is ending. An EXE or DLL needing process
termination notification can call DosExitList to register a process-termination (exitlist)
handler. The kernel maintains a list of exitlist procedures that have been registered for
notification when the process is being terminated. During process termination, the ker-
nel calls each of the exitlist handlers for the terminating process using the context of
thread 1 in the process. After the exitlist handlers have been called, the system
reclaims any other process resources managed by the kernel, such as memory and
semaphores.

The 32-bit version of OS/2 provides alternatives for process termination notifica-
tion. A thread executing in an EXE or a DLL can register a process termination excep-
tion handler. Also, 32-bit DLLs can have a termination routine, as well as an
initialization routine, that is called when a process releases a DLL. Exception handling
. 1s discussed in more detail in Section 5.5.8 and in Chapter 7.

~ Another way for a process to be terminated is via the DosKillProcess call.
DosKillProcess can be used to send a notification indicating process termination to a
single process or to a process and its descendants. In 16-bit OS/2 system, signals are
used to send asynchronous events between processes. In 32-bit OS/2, the signals have
been integrated into the exception management architecture as asynchronous exceptions.
In both systems, signals and asynchronous exceptions are used to notify a process of the
Ctrl-C and Ctrl-BREAK keyboard sequences (SIGINTR and SIGBREAK), process
termination requests (SIGTERM), or application-defined events sent using the signals or
exceptions API. When a signal is received by a process in the 16-bit system, one of three
alternatives occurs: The process can choose to ignore a signal, to take the default action,
or to handle a signal by providing a signal handler. In the case of the termination signal,
SIGTERM, the default action is to terminate the process. For example, in Fig. 5.3, pro-
cess A can kill process B and B’s children (processes E and F) by invoking
DosKillProcess with the PID of process B. The handling of exceptions and signals is
discussed in more detail in Chapter 7.

5.2.4 Process Control

Process identifiers (PIDs) are used to indicate which process is to be controlled. In the
16-bit system, the DosGetPID call is used to get the PID of the current process. In 32-bit
0OS/2, the priority is stored in the thread information block (TIB), a system-provided per-
thread data area in the process address space. Chapters 6 and 7 explain the role of the
TIB and the way it is accessed. In both versions of the system, DosGetPPID is used to
get the PID of the current process’s parent.

Process execution can be synchronized using a function called DosWaitChild in
0S/2 2.X, and one called DosCWait in OS/2 1.X. DosWaitChild allows a parent process
to wait for the termination of a specific child process or for the termination of all its
descendants (the entire process subtree). For example, in Fig. 5.3, process A executes
child processes B, C, and D asynchronously. At some later time, process A may wish to
wait until one of the child processes has terminated and also to acquire the exit status of
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the child’s termination. Alternatively, process A could wait until all its descendants have
terminated before resuming execution.

For debugging a process, a special function—called DosDebug in OS/2 2.X and
DosPTrace in OS/2 1.X—is provided to permit a parent to trace the execution of a child
process. The parent process is usually a debugger program that creates the child process
being debugged by calling DosExecPgm with the execution control flags that indicate
the process is to be traced. The debugger program then issues DosDebug or DosPTrace
requests to access and modify the child process’s context.

5.3 THREADS

Threads are the dispatchable units within an OS/2 process. In other words, processes do
not really run, but threads do. A thread provides within a process a piece of code with an
execution instance. Each process in the system has a least one thread. From the user’s
perspective, a thread’s context consists of a register set, a stack, and an execution prior-
ity. Figure 5.4 illustrates the context of a thread.

Threads share all the resources owned by the process that creates them. All the
threads within a précess share the same virtual address space, open file handles,
semaphores, and queues. Each thread is in one of three states: running, ready to run, or
blocked. Only a single thread in the system is actually in the running state on unipro-
cessor hardware platforms. The running thread is the ready-to-run thread that is current-
ly selected to run according to the OS/2 priority scheme. Threads that are in the blocked
state are awaiting the completion of an event.

When OS/2 switches between threads, it automatically saves the context of the cur-
rent running thread and restores the context of another thread that is ready to run. The
16-bit version of OS/2 supports up to 512 threads; the 32-bit version supports up to 4095
threads. The 16-bit system has limitations on the number of threads that can run within a
process (on the order of 50 threads per process) due to the segmented nature of the 16-
bit kernel. The 32-bit system allows as many threads as the user desires within a pro-
cess, up to the limit of the number of threads available in the system. '

There are several advantages to a multithread process model over the traditional sin-
gle-thread process model found in systems such as UNIX. Since threads share the pro-
cess’s resources, thread creation is far less expensive than process creation, and threads
within a process enjoy a tightly coupled environment. When a thread is created, the
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Fig. 5.4 Thread layout.
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system does not have to create a new virtual address space or to load a program file,
resulting in an inexpensive additional concurrent execution path. If a system with a sin-
gle-thread process model requires two concurrent execution paths, two processes must
be created, their execution must be synchronized, and any resource sharing between the
processes must be managed. In contrast, in the OS/2 multithreaded process model, a sin-
gle process with two threads is used, and the threads naturally share the process address
space and resources. In addition to the lower cost for creation and termination of threads
compared to that for processes, any synchronization needed between the execution of
the threads is less expensive than that between processes, since the threads already share
the process virtual address space. Chapter 7 discusses the different approaches used in
0OS/2 for interthread communication, regardless of whether or not the threads are in the
same process.

Another benefit of a multithread process model is that multiple threads promote a
greater overlapping of I/O requests. A multithreaded system is able to be more interac-
tive than is a single-threaded one, due to the greater level of concurrency achieved. For
instance, programs usually dedicate a single thread to servicing requests from the user
interface while other threads actually perform the work requested by the user. Multiple
threads better support an environment where parallel applications can execute with a far
better performance than is possible in a single-thread process model.

All these benefits accrue on both uniprocessor and multiprocessor hardware
architectures. In a multiprocessor environment, the multithreaded architecture also pro-
motes parallelism, in which many portions of a program can execute concurrently on
different processors. Chapter 12 discusses issues relevant to implementing the multi-
thread process model on different multiprocessor architectures.

5.3.1 Thread Creation

Threads are created by a call to DosCreateThread. In 16-bit OS/2, the requestor must al-
locate a stack for the thread, and must pass to DosCreateThread the address of the stack
and the address of the code the thread is to execute. In 32-bit OS/2, the system allocates
the stack and dynamically resizes it as necessary during the thread’s life.
DosCreateThread returns a thread ID (TID) that is similar to a PID. Each thread in the
system can be uniquely identified by a PID:TID pair. Unlike processes, threads are not
hierarchical. All threads in a process have a sibling relationship with one another and
remain part of that process until they terminate.

The thread that is created when a process is created with DosExecPgm is called
thread 1, and it has some special properties that other threads within the process do not
have. Thread 1 receives all signals sent to the process, is used for exitlist processing
when the process dies, and also is used for per-process DLL initialization during pro-
gram and library loading. In other words, each of these special per-process entry points
executes using the context of thread 1. As a result, if thread 1 terminates, then all other
threads in the process are terminated. Otherwise, another thread could potentially hang
the process, since the process would be unable to receive the SIGTERM signals or to
perform existlist handling during termination.
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5.3.2 Thread Termination

A thread is terminated by a call to DosExit. DosExit can be used to terminate the cur-
rent thread or all threads in a process. Whereas there is no function in the multitasking
API of the 16-bit system for killing another thread that is analogous to DosKillProcess,
the 32-bit system provides DosKillThread for terminating another thread in the current
process. Neither is there a mechanism for handling thread termination in the 16-bit sys-
tem that is analogous to the exitlist mechanism for process termination. However, the
32-bit system does provide a process termination exception that is sent to all threads of
a process during process termination. Per-thread process termination exception han-
dlers can be registered using the 32-bit exception management API discussed further in
Chapter 7.

The 32-bit system also provides the DosWaitThread call, which allows a thread to
wait explicitly on the termination of a specific or nonspecific thread within the process.
DosWaitThread is useful when the threads within a process have a master/slave relation-
ship with each other, in which the master dispatches slave threads to perform tasks.

5.3.3 Thread Control

There are several functions in the multitasking API for controlling thread operation. The
DosEnterCritSec and DosExitCritSec calls allow threads within a process to disable
thread switching within that process. This facility is useful when threads in a process
need to execute concurrently code that accesses data shared by the threads. The region
of code that must be managed carefully is called a critical section. Critical sections
require that each thread executing the code has mutually exclusive access to that code.
Using the critical section functions around the critical section guarantees mutual exclu-
sion for threads within a process. However, since the critical section calls totally disable
thread switching within the process, they may negatively affect interactive response if
the critical section is too long. There are other mechanisms better suited to synchroniz-
ing thread execution, such as the semaphores discussed in Chapter 7.

Another method of controlling threads within a process is to allow one thread to
suspend the execution of another thread, and to resume execution at a later time.
Suspension and resumption can be accomplished using the DosSuspendThread and
DosResumeThread calls, respectively. Both calls take a TID as a parameter to indicate
which thread should be suspended or resumed. A thread can suspend or resume only a
thread that is within the same process.

5.3.4 Process and Thread Information

The 16-bit system provides several special memory objects called information segments,
or infosegs. The system contains two infosegs: a global infoseg shared by all processes,
and a local infoseg for each process. The global infoseg contains system-wide informa-
tion that is used by all processes, such as the date, time, and other system configuration
parameters. The local infosegs contain per-process information such as the process’s
priority, current thread ID, and current thread priority, as well as the address of the
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process’s environment information. A process requests the system to map the infosegs
into its address space by calling DosGetlnfoSeg.

The 32-bit system does not use the infoseg architecture of the 16-bit system, except
that it provides compatibility to 16-bit OS/2 applications. Chapter 10 discusses in more
detail the 16-bit OS/2 compatibility issues. Since most of the information from the in-
fosegs is already available via existing API functions, and the infoseg architecture is ma-
chine dependent, the infosegs are not continued in the 32-bit architecture. However,
there exists a requirement for per-process and per-thread data structures that contain crit-
ical data that processes and their threads need to access quickly. The process informa-
tion block (PIB) is a per-process memory object allocated within each process’s virtual
address space that contains per-process data, such as the process ID, process default pri-
ority, and module information. The thread information block (TIB) is allocated on a per-
thread basis within the process virtual address space. It contains all the information
pertaining to a thread in a process, such as the thread stack base and stack limit, the
thread priority, and the thread ID. A thread can access its information blocks by calling
DosGetlnfoBlocks.

5.4 SCHEDULING

All threads in the system compete for processor time. To determine which threads
should run, OS/2 implements a multilevel priority architecture with dynamic priority
variation and round-robin scheduling within a priority level. Each thread has its own
execution priority, and high-priority threads that are ready to run are dispatched before
low-priority threads that are ready to run. Processes also have a priority; however, this
priority does not enter into the calculations of which threads should run next. The pro-
cess priority is merely the default priority for threads that are created by that process. A
thread may change the priority of any or all threads within the current process using
DosSetPrty. A thread can also change the default priority of threads in other processes,
regardless of whether they are related in the process hierarchy.

In the 16-bit system, DosGetPrty is used to query the priority of a thread or process.
In OS/2 2.X, however, DosGetPrty does not exist, since the priority information has
been moved into the thread information block. Chapter 6 provides more information on
accessing the thread information block.

There are four priority classes in the OS/2 system: time critical, server, regular, and
idle. The server class is also called the fixed-high priority class. Each priority class is fur-
ther divided into 31 priority levels. Figure 5.5 illustrates the priority classes and levels.

Threads in the highest, or time-critical, priority class, have timing restraints. An ex-
ample of a time-critical thread is a thread that waits for data to come from a device driv-
er monitoring a high-speed communications device. The system guarantees that there is
a maximum interrupt disable time of 400 microseconds, and that time-critical threads
are dispatched within 6 milliseconds of becoming ready to run. These timing criteria
ensure that the system can respond rapidly to the needs of time-critical threads, and also
be flexible enough to allow a user to switch between programs quickly. Most threads in
the system are in the regular priority class.
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Fig. 5.5 Multilevel priority structure. (Adapted from OS/2 Programmer’s Guide, E.
lacobucci, Copyright 1988, McGraw-Hill Publishing Company. Reprinted by permission.)

The server priority class is used for programs that run on a server environment that
need to execute before regular-priority-class programs on the server. The server class
ensures that client programs relying on the server processor do not suffer performance
degradation due to a regular-class program running locally on the server itself.

Threads in the idle priority class will run only when there is nothing to run in time-
critical, server, or regular priority class. Typically, idle-class threads are daemon threads
that run in the background. A daemon thread is one that intermittently awakens to per-
form some chores, and then goes back to being blocked.

The scheduling algorithm is round-robin within the same priority level. For exam-
ple, if five threads have the same priority, the system will run each of the five, one after
another, by giving each one a timeslice. The timeslicing is driven by a system clock, and
the user can configure the timeslices from 32 to 248 milliseconds by using the
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TIMESLICE keyword in the CONFIG.SYS file. A thread runs for its entire timeslice
unless an interrupt occurs that results in making another thread of a higher priority class
ready to run. In such cases, the running thread is preempted. Otherwise, a thread runs for
the length of its timeslice, unless it calls the kernel and blocks.

The 32-bit version of OS/2 implements optional dynamic timeslicing that maxi-
mizes utilization of the processor for threads running in user mode. Dynamic timeslicing
reduces the number of interrupts the system processes to implement timeslicing by using
the number of ready-to-run threads as a heuristic in the scheduling algorithm.

Since a thread can be preempted at any time due to an interrupt or timeslice end,
threads that are sharing resources with threads in the same process or with threads in
other processes must protect critical sections where these shared resources are manipu-
lated. They can implement protection by using one of the interprocess communication
constructs, such as semaphores. Chapter 7 explores several mechanisms for providing
interprocess communication and critical section management.

Dynamic priority variation is the scheduler’s ability to adjust the priorities of
threads in the regular class to ensure that all threads get a chance to run, and that the sys-
tem provides as interactive a response as possible. These priority adjustments are called
priority boosts. Dynamic priority variation can be enabled or disabled by the user when
the system is started.

The process that is running in the foreground has the locus of control of the user in-
put devices (mouse and keyboard). This is also called the input focus, and only one pro-
cess in the system can be in the foreground at a time. Processes that are not in the
foreground are said to be in the background. So that the system will be responsive to the
user’s requests, all the threads of the foreground process receive a boost in priority.
Then, the actual thread in the foreground process that performs the user I/O receives an
additional priority boost. This priority adjustment is called the foreground boost.

When a thread becomes ready to run as the result of an I/O operation completing,
the thread receives an I/0 boost from the scheduler. Since the thread went from the run-
ning to the blocked state when it issued its I/O request, this boost assists the thread in
getting rescheduled quickly so that it can continue execution. An I/O boost changes a
thread’s priority to be the highest level within that thread’s priority class.

The third boost is called the starvation boost, it is applied to threads in the regular
priority class that are in the ready-to-run state and that have not run recently. The
amount of time a thread waits until the scheduler considers it starved can be configured
by the user using the MAXWAIT keyword in the CONFIG.SYS file. The starvation
boost causes the priority of a thread to be boosted out of its current class to a level just
below the time-critical priority class.

When a thread receives either an I/O boost or a starvation boost, the thread’s priori-
ty is adjusted, and the timeslice also is adjusted to a minimum timeslice quantum that
can be configured using the TIMESLICE keyword in the CONFIG.SYS file. The mini-
mum timeslice value can be set from 32 to 248 milliseconds, and must be less than or
equal to the regular timeslice configuration parameter. A boosted thread retains its boost
priority until it runs for a single timeslice; then, the priority and timeslice are reset to
their original values.
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5.5 KERNEL ARCHITECTURE

The kernel is the OS/2 control program, or supervisor. It contains the nucleus of func-
tions for multitasking, interprocess communications, memory management, interrupt
management, device I/O, and DOS compatibility. In this section, we focus on the gen-
eral architecture of the kernel in the 16-bit and 32-bit versions of OS/2, and on the mul-
titasking portion of the kernel.

The 16-bit and 32-bit OS/2 systems have different kernels that reflect their architec-
tural differences. Since the 16-bit system is targeted for the 80286 processor, the 16-bit
kernel is segmented and is highly sensitive to 64KB restrictions in the management of
its data structures. It is written in assembler to be fast as possible, while using a minimal
amount of memory. Since the 16-bit kernel is written in assembler, all subroutine link-
ages in the kernel use registers for passing parameters. Because applications pass pa-
rameters on API requests using the stack, the kernel must take the parameters off the
stack and put them in registers before calling the kernel functions for implementing the
APIs. A component called the system call interpreter is used to move the API parame-
ters from stacks to registers and to call the kernel routine for implementing the API, so
that there is no need for a separate piece of code for dispatching each API request.

Reflecting the segmented nature of the system, the routines in the 16-bit kernel are
grouped into segments that are mapped by the global descriptor table (GDT). Mapping the
kernel and its segments using the GDT ensures that the kernel is accessible at all times
because the GDT is present in the context of all processes. However, the kernel segments
are protected from applications since they are mapped at privilege level 0, the most trusted
privilege level in the protected ring architecture of the 80286. Like 16-bit applications, the
kernel must reload segment registers when establishing addressability to different seg-
ments. Most of the segments that compose the 16-bit kernel reside permanently in memory.

The 32-bit kernel reflects the linear nature of the 32-bit flat memory model. The 32-
bit kernel is written in C for portability, although it contains portions that must be writ-
ten in assembler on any architecture. Since it uses C, the 32-bit kernel routines use
stack-based linkages for passing parameters within the kernel. Thus, no system call in-
terpreter is necessary for moving the users’ parameters to the registers during a kernel
API request. Since the 32-bit kernel is flat, segment registers do not have to be loaded to
establish addressability to different memory objects, resulting in better performance
since segment register loading is a relatively slow operation.

Like the 16-bit kernel, the 32-bit kernel also is mapped into the GDT at privilege
level 0. However, since the 32-bit system is paged instead of segmented, portions of the
kernel that are not used frequently are swappable instead of resident. Frequently execut-
ed portions of the 32-bit kernel reside permanently in memory.

Logically, the kernel can be viewed as a top half and a bottom half. The API inter-
faces, worker routines, and most of their associated components compose the top half.
When a thread is executing in the top half of the kernel, it has access to the kernel data
structures and to the context of the current process and thread executing. When a thread
in the top half of the kernel blocks, it usually waits on the bottom half to be unblocked.

The bottom half of the kernel is the collection of routines for handling hardware in-
terrupts and faults that are unrelated to the current process and thread executing. Also in
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the bottom half are routines provided by the kernel needed to assist the interrupt and
fault handlers in completing their services. Since the activities serviced by the bottom
half of the kernel occur asynchronously, the bottom half cannot rely on a specific pro-
cess or thread context to be mapped. Routines that access data shared by the top and bot-
tom halves must serialize their access to the shared data in a mutually exclusive fashion
to guarantee the data’s integrity.

Both the 16-bit and 32-bit kernels are organized into components. Each component
has a set of routines for system call service, called worker routines. When a system call
is dispatched, the worker routine from the appropriate component is called to service the
request. The worker routine uses the kernel interfaces provided by the kernel compo-
nents to validate parameters; it then performs the system call request. During a system
call, the kernel either completes the request immediately or blocks the requesting thread
awaiting an event, such as completion of I/O or the availability of a required resource.

The kernel components involved in the management of multitasking are the tasking
manager, the dispatcher, the scheduler, the interrupt manager, and the trap manager. The
tasking manager provides the process and thread API routines, and manages the kernel
data structures that represent processes and threads. The dispatcher manages the opera-
tional loop that drives the system, context switching, and blocking and unblocking of
threads. The scheduler manages thread priorities, thread states, and processor usage, and
also chooses the next thread to run when the dispatcher switches contexts. The dispatcher
and the scheduler work together in determining when to context switch and which thread
to run. The interrupt and trap managers are responsible for routing and for handling hard-
ware interrupts and exceptions. Figure 5.6 illustrates the multitasking components.

5.5.1 User Mode

Since the OS/2 system is protected, a distinction is made between the state of a thread
running in the kernel and that of one running in an application. When a thread is running
code from a program or dynamic link library, the thread is said to be in user mode. A
thread that is running in user mode runs at privilege level 2 or 3, executes within the
domain of the process’s virtual address space, and can be preempted. The process’s vir-
tual address space is also called its user space.

While running in user mode or user space, a thread can access memory only within
its own process’s virtual address space. It is unable to access memory in another pro-
cess’s virtual address space, unless memory sharing has been set up by the memory
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Fig. 5.6 Multitasking kernel components.
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manager. A thread in user mode is also unable to access memory belonging to the sys-
tem. If a thread attempts to access memory addresses within its address space that have
not been mapped by the memory manager, a general protection fault is raised, and the
errant thread and process are terminated. In the 32-bit version of OS/2, general protec-
tion faults can be handled in user mode by setting of an exception handler. Protection is
implemented using the protection and memory mapping hardware of the processor. The
implementation of the process virtual address space in both the 16-bit and 32-bit sys-
tems is explained in Chapter 6.

5.5.2 Kernel Mode

A thread that is running code in the top half of the OS/2 kernel is in kernel mode. A
thread makes the transition from user mode to kernel mode during API requests to the
kernel and potentially during interrupt processing. A thread that enters the kernel has
two options: it either completes the operation and attempts to exit the kernel, or blocks
awaiting some resource’s availability or event to complete an operation (e.g., I/O).
When running in kernel mode, a thread executes at privilege level 0, and is not pre-
emptible. An interrupt may cause control to transfer temporarily for interrupt service,
but control is always returned to the thread in kernel mode. A thread running in kernel
mode has access to all the memory in the system—all of the process virtual address
spaces, as well as the kernel’s code and data areas. The aggregate of these memory areas
is called the system virtual address space, or kernel space.

The OS/2 kernel architecture makes further distinctions among user mode, kernel
mode, and the privilege level architecture. It is possible for a thread to be executing at
privilege level O but not be in kernel mode. A thread officially enters kernel mode when
a special entry point in the dispatcher named EnterKMode is called. EnterKMode saves
the state of the thread and sets a global flag in the kernel named /nDOS. Actually, a
thread is not preemptible if it is executing at privilege level O or if /InDOS is set indicat-
ing that the thread is in kernel mode. An example of a thread executing at privilege level
0 that is not in kernel mode arises when an interrupt occurs while a thread is in user
mode—the interrupt handling occurs in interrupt mode. A thread that is in kernel mode
returns to whatever mode it was in previously by calling the dispatcher routine
ExitKMode. The only time that a context switch can occur is when a thread exits kernel
mode. The logic of this constraint is described later in this chapter, where the opera-
tional loop of the system is discussed.

5.5.3 Kernel Process Context

The data structure used by the kernel to track each process in the system is called the
per-task data area (PTDA). Each PTDA is allocated, when a process is created, by a call
to DosExecPgm; each PTDA uses fixed memory within the kernel space. Figure 5.7
illustrates some of the major fields of a PTDA.

The PTDA contains the PID of the process and links to the parent, sibling, and first
child processes, a pointer to the process virtual address space, a list of open file handles
and semaphores, a pointer to the chain of threads within the process, and a pointer to the
current thread within the process that is running. Also in the PTDA are the default process
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Fig. 5.7 Per-task data area (PTDA).

priority, signal and exception handling information, and a link to the module table entry
(MTE) that describes the executable file loaded into the process virtual address space.
MTEs are described in more detail in Chapter 7, in the discussion of the program loader.
When a thread is in kernel mode, the PTDA for the current process is always
mapped by a global kernel variable so that kernel routines always have access to the
PTDA of the current process. In the 16-bit system each PTDA is a segment, and the cur-
rent PTDA is always mapped by having the SS register loaded with the selector of the
PTDA. In the 32-bit system, each PTDA is a flat memory object accessible by a 32-bit
offset relative to the kernel’s system virtual address space—the current PTDA is
accessible through a global kernel variable that contains the offset of the current PTDA.

5.5.4 Kernel Thread Context

The data structure used by the kernel to track each thread in the system is called the
thread control block (TCB). Each TCB is allocated either by a call to DosCreateThread
when a thread is created, or by a call to DosExecPgm when the initial thread is created
during process creation. Like the PTDAs, TCBs use fixed memory and reside within the
kernel space. The TCBs for each process are linked in a chain, with the head of the
chain in the PTDA. Figure 5.8 illustrates the layout of a TCB.

The primary structure in each TCB is the kernel stack, which is used when the
thread is running at privilege level O or in kernel mode. Each thread in the system must
have its own kernel stack for two reasons. First, since a thread may block while in the
kernel, a place is needed for saving the blocked state information, as well as the local
data already allocated as the thread made its way to the point where it had to block.
Second, since there are special cases where a thread voluntarily yields the processor
while in kernel mode, the top half of the kernel must be reusable. Voluntary preemption
and yielding are discussed later in this chapter.
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When a thread makes the transition from user mode to kernel mode through a gate,
the 80X86 gate hardware automatically switches from the user stack to the kernel stack.
Therefore, the gated architecture of the 80X86 processors supports a natural, stack-
based implementation of dynamic linking. The pointer to the kernel stack for the current
thread is maintained in the task state segment (TSS), which is accessed by the processor
when privilege level transitions occur. The kernel stack is used to preserve the state of
the user’s context when EnterKMode is called, and to provide local storage during ker-
nel processing. Also contained in each TCB is information for controlling I/O; schedul-
ing information, such as priorities and processor usage fields; and forced-action flags
that indicate pending actions that the thread must perform when exiting the kernel.

In the 16-bit version of the system, the TCBs belonging to a process are allocated in
the same segment as the PTDA. When a new thread is created, the PTDA segment is re-
sized and the new TCB is allocated. Figure 5.9 illustrates the layout of PTDAs and
TCBs in the 16-bit system.
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Fig. 5.9 Layout of 16-bit PTDA and TCB.



5.5 Kernel Architecture 123

Allocating the TCBs in the same segment as the PTDA has several interesting rami-
fications. Since the current PTDA segment is always addressable by the SS segment reg-
ister, the current thread’s TCB is always addressable by loading of an offset
register—typically, the current running thread is always addressable by SS:BP. Also, the
links in the chain of TCBs need to be only 16-bit fields, since they are relative to the
base of the PTDA segment. However, there is a cost for this quick access to the current
thread’s TCB: Since the maximum segment size on an 80286 is 64KB, there is a limita-
tion of approximately 50 threads per process. Also, in potential future versions of the
16-bit system, any growth in the TCB or kernel stack will decrease the number of
threads available per process.

The 32-bit version of the system does not have this limitation, since the TCBs are
allocated out of the kernel space as flat memory objects addressable using a 32-bit offset
relative to the base of the system virtual address space (like PTDAs in the 32-bit sys-
tem). Therefore, the links in the chain of TCBs within a process are 32-bit offset fields.
Since the 32-bit kernel is written in 32-bit C, the kernel stacks are larger than in the 16-
bit version, since the code is 32-bit granular instead of 16-bit granular, and high-level
languages such as C use the stack for local storage. Therefore, the 32-bit system divides
the TCB into a fixed portion called the TCB and a swappable portion called the thread
swappable data (TSD). The TSDs primarily contain the kernel stacks, and can be
swapped out when a thread is in the blocked state. Figure 5.10 illustrates the layout of
PTDAs, TCBs, and TSDs in the 32-bit system.

5.5.5 Context Switching

Context switching refers to the mechanism used by the kernel to stop running one thread
and to start running another. The OS/2 dispatcher implements a policy of context
switching only when a thread attempts to exit the kernel (FxitKMode) or when a thread
in the kernel blocks waiting on an event or resource. Therefore, the ExitKMode routine
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Fig. 5.10 Layout of 32-bit PTDA, TCB, and TSD.
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becomes the single locus of control for forced actions that a thread must perform, such
as context switching, signal dispatching, and termination.

A global flag variable called ReSched is shared between the dispatcher and the sched-
uler. ReSched indicates whether there is potentially a thread of priority higher than that of
the current thread that has been made ready to run. Part of the ExitKMode routine called
whenever a thread attempts to exit kernel mode checks the ReSched flag. If the ReSched
flag is set, the SchedNext routine of the dispatcher is called to switch out the current run-
ning thread in order to run the highest-priority ready thread in the system. SchedNext is the
actual context switch routine of the system, and is the only place that a thread switch
occurs in the kernel. It is called only from ExitKMode and from ProcBlock, the latter rou-
tine is used when a thread in the kernel blocks and gives up the processor.

The thread that is currently running when SchedNext is invoked is called the outgo-
ing thread, and the thread to which SchedNext ultimately switches is called the incoming
thread. Only outgoing threads call SchedNext, and only incoming threads return from
SchedNext. We now look in more detail at how the SchedNext routine performs the con-
text switch.

SchedNext begins execution by calling the GetNextRunner routine in the scheduler
component to determine the highest-priority thread that should be the new running
(incoming) thread. If the outgoing thread is the same as the incoming thread, SchedNext
merely returns, and the current thread continues executing. If the outgoing thread is dif-
ferent from the incoming thread, SchedNext performs a context switch.

If GetNextRunner indicates that there are no threads in the system that are ready to
run, it executes a loop known as the idle loop. The idle loop is executed when all threads
in the system are blocked on some external event. This implies that there is no background
activity and that there are no user requests occurring via keyboard or mouse—the entire
system is waiting. The idle loop exists within SchedNext, and consists of polling the
ReSched flag with interrupts enabled. When an interrupt occurs that makes a blocked
thread ready to run, the thread running in the idle loop will exit, will call GetNextRunner
again, and will continue executing SchedNext to switch in the ready-to-run thread.

Once a new thread to run has been selected, SchedNext determines whether the out-
going thread is within the same process as the incoming thread, or is within a different pro-
cess. If the incoming and outgoing threads are in different processes, SchedNext must
switch the process context (PTDAs, process virtual address spaces, etc.) and the thread con-
text. If both threads are within the same process, only the thread context must be switched.

The actual switching of the process context entails changing the current PTDA, and
calling the memory manager to switch process virtual address spaces. Switching a thread
context entails setting the current thread variable in the current PTDA, changing kernel
stacks, and resuming execution at a known place in SchedNext at which all threads re-
sume running when they are outgoing. Since the task-state segment (T'SS) of the system
contains the address of the current thread’s kernel stack, it also must be edited during a
context switch to ensure that future privilege level transitions by the running thread use
the proper kernel stack.

An interesting caveat in the OS/2 context switching model is that there is no explicit
“save/restore” instruction or routine used to save all the registers from one thread and
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restore the registers for another. Although the TSS construct of the 80X86 tasking archi-
tecture provides this function, OS/2 does not utilize it except for the minimum of having
a single TSS for supporting privilege level transitions. The TSS switching feature of
80X86 processors provides a mechanism for performing a save/restore for the entire reg-
ister set in a single instruction. Since this set includes all segment registers on 80286
architectures, and also the paging registers on the 80386 and 80486, the TSS switch is
slow due to flushing of the segment register caches, flushing of the translation lookaside
buffer used for page translation, and the protection checks that occur as the segment reg-
isters are reloaded.

When contrasted with the OS/2 context switch model, this overhead is not required
for several reasons. The thread’s user mode register set is saved on the kernel stack
when the thread enters kernel mode, and is restored when a thread exits kernel mode.
Within SchedNext, only the process virtual address space needs to be switched (and only
in the process switch case), since both the outgoing and incoming threads are executing
in the system virtual address space. Also, all threads resume execution in SchedNext at a
fixed point where known values are loaded into the registers—the threads do not rely on
any saved state to resume their execution in the kernel, since they are on the kernel stack
already. This results in much faster context switching compared to the TSS switching
model. It also uses less memory, since the TSS model requires a TSS to be allocated and
managed for each thread in the system.

5.5.6 System Calls

System calls, or API function requests, are used by threads running in user mode to ac-
cess services provided by the operating system. Traditionally, most operating systems
place all the system calls in the kernel. This implementation makes the system—and,
consequently, its API—difficult to change without changing the kernel. So that the sys-
tem and its API are more flexible and extendible, OS/2 system calls are implemented us-
ing dynamic linking. This implementation allows OS/2 APIs functions to reside in either
a dynamic link library or the kernel transparently to the requesting thread.

All 16-bit and 32-bit OS/2 API requests are made by pushing the parameters on the
user mode thread stack, then issuing a CALL instruction to transfer control to the target
API routine. The address of the target API routine is a dynamic link that is resolved ei-
ther when a process is created and loaded into the process virtual address space, or at
run time using the dynamic linking API functions. In the 16-bit system, all addresses
and dynamic links are segmented 16:16 virtual addresses, and the control transfer occurs
using the far variety of the CALL instruction. In the 32-bit system, all addresses and dy-
namic links are flat 0:32 virtual addresses, and the control transfer utilizes the near vari-
ety of the CALL instruction.

5.5.6.1 DLL APIs

OS/2 DLLs are loaded into the process virtual address space when the process is creat-
ed, and potentially while the process’s threads are executing in user mode (at run time).
Therefore, DLLs are effectively attached to the process, and the threads within the
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process can make use of the DLLs API functions. Since DLLs are mapped into user space,
their code and data are swappable, instead of being fixed in the kernel. Also, a DLL can
casily access the API parameters on the thread’s user stack, since it is running in the
requestor’s context. Since a thread that has called an API in a DLL runs in user mode, a
thread executing in a DLL can be preempted. For DLLs to be shared among processes,
they must be reentrant. DLLs make use of interprocess communication constructs, such as
semaphores and shared memory, to ensure their integrity. A DLL with integrity is one that
can be shared by processes, yet not allow any process to hinder any other process. In this
environment, an errant or malicious process can cause only its own termination. Chapter 7
discusses issues related to interprocess communication, memory sharing, and parameter
validation that must be considered to guarantee this level of integrity.

An example of an API that is implemented in a DLL instead of in the OS/2 kernel is
the queueing API, which provides functions for managing queues between processes.
Since the queueing API can be implemented without requiring the protection or nonpre-
emptive execution state of the kernel, it is a DLL that uses other functions in the API to
provide services. The queueing code and data are swappable and can be preempted,
resulting in more efficient memory and processor utilization. Since the dynamic linkage
to the queueing API is transparent, the queueing API can be freely migrated to the ker-
nel, or perhaps to another DLL module, without requestors having to change. However,
some APIs require functions that exist only in the kernel, or have special performance or
protection requirements. We now discuss the implementation of kernel system calls and
APIs.

5.5.6.2 Kernel APIs

In both 16-bit and 32-bit OS/2 systems, the kernel’s code and data are mapped into the
system virtual address space at privilege level 0 using global descriptor table (GDT) se-
lectors. This mapping makes the kernel and its API automatically accessible to all pro-
cesses, since there is only one GDT in the system. However, since it is mapped at
privilege level 0, it cannot be accessed directly by a thread running in user mode (privi-
lege level 3) without a general protection fault occurring.

0OS/2 uses the call gate mechanism employed on the 80X86 processors for transfer-
ring control from threads running in user mode to an API implemented in the kernel. For
each API implemented by the OS/2 kernel, a call gate is allocated in the GDT. Recall
from Chapter 2 that a call gate has a privilege level, and has a target address field within
its descriptor. The call gates for the OS/2 kernel APIs have privilege level 3, so that they
are accessible to threads running in user mode executing CALL FAR instructions. The
target address within the gate descriptor points to the entry point at privilege level O for
the API.

Other traditional operating systems that employ static linking in their API calling
conventions typically vector all API requests through a single call gate, along with an
extra parameter called the system call number. Although, at first glance, this mechanism
seems simpler than the call gate-per-API model, it implies that the requestor must have a
layer of bindings statically linked into its code to put in place the static link or system
call number. It also implies that the kernel must have a dispatch mechanism to fan out
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the API calls to the worker routines, rather than having them called directly from the call
gate entry point. This prohibits API functions from being called directly from applica-
tion code, slows performance, and restricts API extendibility and flexibility.

In any operating system, several events occur during the processing of a system call
in the kernel. The application initiates transfer of control to the kernel using a trap or
service call instruction. The kernel copies the user parameters from the user space to the
kernel space to prevent them from being altered while the system call executes. The ker-
nel then saves the user mode context and dispatches the system call to the proper kernel
routine. The kernel routine responsible for the API validates the parameters, performs its
service, and then exits with the return status. When the system call service routine com-
pletes, the kernel restores the user mode context, and transfers control back to the re-
questor with the return status.

In OS/2, the call gate mechanism is used for most of these steps. When the thread in
user mode issues the CALL FAR instruction to a call gate in the GDT, the processor
switches automatically from the thread’s user stack to the kernel stack, and copies the
parameters from the user stack to the kernel stack using the count parameter in the gate
descriptor. Several necessary steps are thus accomplished—control has been transferred
to an entry point in the system virtual address space, the processor is executing at the
most trusted privilege level, and the requestor’s parameters have been copied from user
space to kernel space.

EnterKMode is then called to save the user context on the thread stack, and official-
ly to stamp the thread as being in kernel mode. Note that there is a state where a thread
is running at privilege level O but is not yet in kernel mode. The entry point then branch-
es to the worker routine that validates the API parameters and performs the API func-
tion. After the worker routine completes, the thread then calls ExitKMode to restore the
user-mode context and subsequently to return to user mode with the RET FAR instruc-
tion. Figure 5.11 illustrates the sequence of operations for a kernel system call.

When a system call is serviced in the kernel, the thread may either block awaiting
some resource or event, or complete service without waiting. If the thread must stop to
wait on some resource, it calls the ProcBlock routine of the dispatcher. ProcBlock
moves a thread from the running state to the blocked state, and calls SchedNext to force
a context switch. The ProcRun routine is used to wake up a blocked thread. ProcRun
moves one or more threads to the ready-to-run state and sets the ReSched flag to force a
dispatch cycle when the current thread exits the kernel. ProcBlock and ProcRun are dis-
cussed in more detail later in this chapter.

When the system call worker routine completes its service, the thread attempts to
return to the calling code. The thread calls ExitKMode to exit kernel mode and to restore
the user mode context. However, ExitKMode is the focal point of context switching pol-
icy; before restoring the user mode context and returning, it checks to see whether there
are any per-process forced actions. Examples of forced actions are pending signals and
exceptions, critical sections, and trace events used for debugging programs. After the
process’s forced actions have been serviced, the ReSched flag is tested to see whether a
reschedule cycle is pending, indicating that another thread may be a better candidate to
run. Note that interrupts must be disabled while the ReSched flag is tested, since it can
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Fig. 5.11 Thread state transitions.

be set during an interrupt. If ReSched is set, SchedNext is called to perform a context
switch. When a thread is ultimately scheduled and exits the kernel, the user mode con-
text is restored from the kernel stack, and control is transferred back to the requestor
using the RET FAR instruction.

You might wonder, if a thread executing in kernel mode is nonpreemptible, how can
there be another thread that is a better candidate to run? Although the kernel is nonpre-
emptible, it is interruptible. Interrupts from external devices such as clocks, disk drives,
and communications controllers can occur, and these interrupts usually result in comple-
tion of I/O service for another thread that is not in the current context. An interrupt oc-
curring while a thread is in kernel mode causes a control transfer to a device interrupt
handler. The handler often calls ProcRun to notify a blocked thread that the thread’s re-
quest is complete and to make it ready to run. Since the interrupted code was executing in
privilege level 0, and privilege level 0 and kernel mode are nonpreemptible, control reverts
to the thread originally executing in kernel mode. When the thread exits the kernel,
ExitKMode detects the set ReSched flag to indicate that a reschedule cycle is necessary.
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Another interesting aspect of the system call mechanism is how threads executing
32-bit API requests within the flat model move to privilege level 0 from user mode.
Since the 32-bit dynamic link is implemented with a CALL NEAR using a 0:32 pointer,
and the 80X86 architecture requires a CALL FAR to use a call gate, a layer of stub rou-
tines is provided for each API function. The stub routines are near entry points that
make a CALL FAR to a call gate in the GDT on behalf of the requestor. There is a two-
line stub routine for each 32-bit API serviced by the kernel. The stub routines are invisi-
ble to users of the API, and are mapped into the process virtual address space within one
of the system’s DLLs.

5.5.7 Interrupts

Interrupts are special kinds of control transfers that are used to handle asynchronous events
external to the processor. The 80X86 processor architectures provide both maskable and
nonmaskable interrupts. Maskable interrupts can be inhibited by software that controls the
interrupt flag of the processor flags. The CLI and STI instructions are used for enabling
and disabling maskable interrupts. The interrupt controller used in all PC architectures is
the Intel 8259 chip. The 8259 receives eight levels of interrupts. It assigns priorities to
them, and dispatches them to the host processor according to how it is programmed. Most
PCs have two of these chips, providing 15 levels of external interrupts. When a hardware
interrupt occurs, the 8259 begins an interrupt cycle with the host 80X86 processor, and
holds further interrupts on the active interrupt level and levels of lower priority until the
processor sends an end-of-interrupt (EOI) command to the 8259.

In OS/2, interrupts refer specifically to external hardware interrupt service requests
from devices. The interrupt manager, a component of the kernel, is responsible for han-
dling the interrupt controller, managing interrupt handlers, and dispatching interrupt re-
quests. The addresses of interrupt handlers registered by the kernel and device drivers
are saved by the interrupt manager in an interrupt table. Since the PS/2 and EISA com-
puter architectures allow multiple devices to have a single interrupt level, the table may
have multiple handlers for each interrupt level. Figure 5.12 illustrates the interrupt table.

Interrupt level Interrupt handler addresses
0 — ]
1 —> — ]
2 — ]

E ——

Fig. 5.12 Interrupt table.
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Like system calls, the protected-mode interrupt mechanism of the 80X86 processors
uses gates to facilitate privilege level transitions during interrupt service. The interrupt
descriptor table (IDT) contains interrupt or trap gates for each interrupt and exception
serviced by the system. Since hardware interrupts can occur while the system is in both
user mode and kernel mode, the privilege level of the hardware interrupt gate descriptors
is 3. Each gate descriptor points to a stub of code that saves the interrupt number and
vectors to the interrupt manager’s dispatch routine.

When an interrupt occurs, control is transferred through the IDT to the interrupt
manager’s dispatch routine with interrupts disabled. The registers of the interrupted con-
text are saved, and the system switches into interrupt mode by switching from the cur-
rent thread kernel stack to a global system interrupt stack. Interrupt mode is the bottom
half of the kernel; it runs using a systemwide interrupt stack, since the bottom half
should not alter the top half’s current kernel stack, and it cannot rely on any specific
process or thread to be currently running.

Once the system has entered interrupt mode, the interrupt manager’s dispatch rou-
tine then uses the number of the interrupt as an index into the interrupt table, and calls
all the interrupt handlers chained together for that interrupt level. The dispatch cycle fin-
ishes when an interrupt handler indicates that it has serviced the interrupt.

Before the dispatch routine prepares to return to the interrupted context, a critical
part of the code for enforcing the system’s preemption policy is executed. If the inter-
rupted context was executing code at privilege level 0, then the interrupted thread was
running in kernel mode or at privilege level 0. In this case, since kernel mode and privi-
lege level O are nonpreemptible, the interrupted context is resumed directly by restora-
tion of the registers and return of control to the interrupted point.

If the interrupted context was executing at privilege level 2 or 3, however, then the
interrupted thread was executing in user mode. Since user mode is preemptible, the dis-
patcher checks the ReSched flag to see whether another thread is potentially ready to
run. If the ReSched flag is set and the interrupted context indicates user mode, the inter-
rupt dispatch routine calls EnterKMode immediately, followed by ExitKMode, to force a
preemptive rescheduling cycle. The interrupt manager does not perform the context
switch itself. The ReSched flag gets set when an interrupt handler issues a ProcRun for a
blocked thread awaiting an interrupt.

Having a single global interrupt stack also allows the interrupt manager to identify
and manage nested interrupts. A nested interrupt can occur after an interrupt handler
sends an EOI command to the 8259 after clearing the interrupt at the original device. At
this point, the interrupt handler can enable maskable interrupts, and the interrupt dis-
patch routine can be reentered before the current interrupt dispatch cycle completes. The
code that performs preemption control at the end of the dispatch cycle also recognizes a
nested interrupt when examining the interrupted context, and returns to the previous
interrupt mode context even though the ReSched flag is set. Nested interrupts are an
important feature that allows an operating system to be more responsive to interrupts
and reduces interrupt dispatch latency. So that the requirements for interrupt dispatch
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latency are met, the maximum time that interrupts can be disabled in any portion of the
system is 400 microseconds.

5.5.8 Exceptions

Exceptions are internal processor events that cause a special type of control transfer. On
80X86 processors, exceptions are dispatched the same way as interrupts, but there is no
involvement with an external interrupt controller. Exceptions are assigned reserved
interrupt numbers by the processor, and are delivered using trap or interrupt gates in the
system’s IDT.

Exceptions are further classified in the 80X86 architecture into faults, traps, and
aborts. A fault is an exception that is reported before or during the instruction that will
cause the exception. The state saved during the control transfer references the instruc-
tion that causes the fault, allowing instruction to be potentially restarted. Examples of
faults include page faults, segment-not-present faults, and divide-by-zero or invalid-
opcode exceptions. Traps are reported immediately after the instruction that causes
them. A typical trap would be the use of the INT 3 breakpoint instruction for debugging
a program. An abort is an exception that does not permit the precise location of the error
to be reported; it is used to report nonrecoverable system errors.

The OS/2 trap manager, a component of the kernel, provides exception handlers for
the 80X86 exceptions, and services for routing exceptions to the appropriate kernel or
user exception handlers. The trap manager registers its exception handlers by initializing
the appropriate IDT gate descriptors to point directly to the trap manager’s low-level
trap handlers. These trap handlers save the exception context and call an exception dis-
patching routine in the trap manager.

0S/2 divides the exceptions into those that can be handled by threads in user mode,
called user exceptions, and those handled by the system. System exceptions are handled
by the kernel and are routed directly to their components by the trap manager. Note that
it is possible for the current thread to block during the handling of a system exception
such as a page fault when swap I/O must be done before the thread can continue execu-
tion. User exceptions such as divide by zero, invalid opcode, and boundary check have
default actions that are taken by the system if the user thread does not handle them.
Typically, the default action in user exceptions is to terminate the process.

A difference between 16-bit and 32-bit OS/2 is that the 16-bit system maintains user
exception handlers on a per-process basis, whereas the 32-bit system provides user excep-
tion handling on a per-thread basis. The general protection fault exception, which is raised
when a protection violation occurs, cannot be handled by users in 16-bit OS/2 and results
in process termination. However, 32-bit OS/2 allows users to handle general protection
faults, since the latter are useful in lazy parameter validation schemes. Lazy parameter val-
idation is discussed further in Chapter 7, with respect to exception management.

When an exception occurs, control is transferred through the IDT to the trap man-
ager dispatch routine, with interrupts disabled and the trap number identified. The trap
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manager dispatch routine calls EnterKMode to preserve the thread’s user context, and
then dispatches the thread to the appropriate trap handler according to the trap type. The
trap handler either blocks by calling ProcBlock, or completes and returns to the trap
manager dispatch routine. The trap manager dispatch routine then calls ExitKMode to re-
store the user context and to resume execution. Unlike interrupts, exceptions are handled
on the kernel stack of the thread that caused the exception. They are handled there
because the current thread caused the exception. Also, unlike interrupts, exceptions do
not nest, so the amount of stack space required is limited.

Exceptions that can be potentially handled by user mode threads are routed to a spe-
cial trap handler called the user exception dispatcher, which implements the exception
APIs and user exception routing. User exceptions are not dispatched immediately.
Instead, the user exception dispatcher builds an exception stack frame on the current
thread’s user mode stack that will simulate an exception in the current thread when that
thread returns to user mode. When the trap manager dispatch routine finally calls
ExitKMode to restore the thread’s context, the thread will resume automatically in the
context of the user exception handler the next time it is scheduled. If the exception was
not handled by a user handler, the kernel processes the default action. If the default
action is process termination, a bit is set in the process’s force flags that forces the pro-
cess to terminate itself the next time one of its threads exits the kernel.

5.5.9 Timeslicing

The timeslicing function of the system provides an environment where each thread runs
for a short time and is then preempted for a rescheduling cycle. The length of time each
thread gets to run is called a timeslice, and the timeslice value is configured when the
system is started. Since OS/2 implements preemption in user mode, a thread is not al-
ways permitted to run for a complete timeslice. This section describes how the scheduler
and dispatcher components interact to provide the basic timeslicing function.

The timeslice is counted using a real-time clock external to the processor. OS/2 uses
ticks from the clock to calculate timeslice intervals. A timeslice can be anywhere from
34 milliseconds to 9999 milliseconds. However, the clock is set to a tick granularity
finer than the timeslice, so that other timer services can be provided to applications.

The scheduler manages the states and priorities of threads and calculates real-time
processor usage. Timer ticks are recorded when the clock device interrupts the proces-
sor. The clock interrupt causes the system to enter interrupt mode and to dispatch the
interrupt to the clock device driver interrupt handler. The clock interrupt handler calls
the scheduler entry point for recording timer ticks, SchedClock. SchedClock calls the
routine SchedTick for timeslice accounting, and various other components of the kernel
that rely on real-time aging algorithms.

SchedTick adds the elapsed time to the current thread’s processor usage field, and
checks to see whether the thread has run for a timeslice. If the thread has completed a
timeslice, SchedTick sets the ReSched flag, resulting in a forced rescheduling cycle oc-
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curring the next time the thread exits the kernel. In either case, SchedTick returns to the
clock interrupt handler, which ultimately returns to the interrupt dispatcher.

As in all interrupts, the interrupt dispatcher checks whether the interrupted context
was in interrupt mode (i.e., resulting in a nested interrupt), kernel mode, or user mode. If it
was in interrupt mode or kernel mode, the interrupted context is restored directly, since
these are nonpreemptible modes. Ultimately, when the thread finishes running nonpre-
emptible code and exits the kernel, the forced reschedule cycle (timeslice) occurs. If the
interrupted context is user mode, then the interrupt dispatcher calls EnterKMode followed
by ExitKMode to force a reschedule. In this scenario, the preemption is called a timeslice.

5.5.10 ProcBlock/ProcRun

The low-level dispatcher routines responsible for moving a thread from the running state
to the blocked state, and from the blocked state to the ready-to-run state, are called
ProcBlock and ProcRun, respectively. Threads executing in kernel mode either com-
plete their service or block awaiting a resource or an external interrupt. Threads can also
block when they incur page faults or segment-not-present faults, waiting for the I/O to
load the memory.

The ProcBlock routine requires three parameters: an event identifier, a timeout
value, and flags. The event identifier is a token that represents the event on which the
blocked thread is waiting. OS/2 maps the event identifiers onto system virtual addresses.
Typically, a thread calling ProcBlock uses the address of a major data structure related
to the block request. The timeout value allows a thread to specify the maximum amount
of time that the thread should block waiting on the event. The flags parameter specifies
whether the block is interruptible by signals. Because both the timeout and flags
parameters are used, blocked threads are prevented from being blocked forever.

ProcBlock is allowed to be called only in kernel mode (top half), never in interrupt
mode (bottom half). When a thread in kernel mode calls ProcBlock, the thread is moved
into the blocked state, is inserted on the appropriate timeout and block queues, and exe-
cutes SchedNext to force another thread to be run. The timeout value is aged by
SchedClock, discussed previously in this chapter. If a thread’s timeout occurs before
ProcRun is issued on the event, the thread is moved automatically into the ready state,
and the ReSched flag is set.

The ProcRun routine requires one parameter: an event identifier. Since event identi-
fiers are mapped onto system virtual addresses, they are not unique. Therefore, ProcRun
must wake up all threads blocked on a given event identifier. This requirement is a side
effect of using system virtual addresses for event identifiers. Multiple threads waiting on
a single event cannot be distinguished from multiple threads waiting on different events
using the same address for the event identifier. Therefore, ProcRun marks all the threads
waiting on the event as ready, sets ReSched, and returns to the caller. ProcRun can be
called in kernel mode, but is most often called from interrupt mode.

The use of system virtual addresses for mapping event identifiers leads to other side
effects in the system. Since more than a single thread can be blocked using a single
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event identifier, when a thread awakens and returns from ProcBlock, it must check
whether the intended event has occurred. Also, since ProcRun can be called at interrupt
time, interrupts must be disabled before the condition of the event is checked. The man-
agement of the state of the interrupt flag during calls to ProcBlock is critical, since the
state is used to guarantee mutually exclusive access to data and code shared by the top
half and bottom half of the kernel. Figure 5.13 illustrates how ProcBlock is called.

If all threads awaken, race conditions arise in the kernel, because all the awakened
threads are rescheduled according to priority. All the awakened threads, except for the one
that finds its event satisfied, will be rescheduled long enough for their conditions to be
checked and for ProcBlock to be called again. This practice is avoided where possible by
careful selection of event identifiers by the system, but it cannot be avoided in some cases.
The mapping of events to system virtual addresses also has the potential to cause logic and
correctness problems to occur in unexpected areas. In Chapter 7, we shall examine the
effect this race condition has on the performance of 16-bit semaphores.

An interesting comparison to the UNIX system can be made in this area. The
ProcBlock and ProcRun routines closely parallel the UNIX sleep and wakeup routines.
Both systems use addresses for event identifiers; both suffer from the same side effects.
However, the 32-bit version of OS/2 introduces a different architecture that uses unique
event identifiers and allows the caller of ProcRun to request single or multiple thread
wakeup. This distinction enables the system to wake up a single thread of highest prior-
ity among a group of threads blocked on an event identifier. The capability to wake up
multiple threads when that is the intention also is retained. This capability allows the
system to eliminate race conditions and wasted processor cycles, and to provide a
consistent wake-up time no matter how many threads block on an event.

The 32-bit dispatcher uses a hash table to store and search event block ids so that
the performance of ProcBlock and ProcRun is consistent no matter how many threads in
the system are blocked. Each hash entry contains a pointer to a list of TCBs blocked on
one or more event ids. There can be more than one event id in the same hash entry, since
more than one unique event id can be hashed to the same value. The list of TCBs
blocked on an event id is sorted in order of priority.

5.5.11 Voluntary Preemption

Since a thread running in kernel mode is not preemptible, it would seem that a thread in
the kernel could continue running and effectively exclude other threads from running.
This situation is especially problematic given the existence of time-critical threads.
Although most system calls and kernel services complete rapidly or block the requesting

Disable interrupts
While (need to block)
ProcBlock (Event, TimeOut, Flags)

Fig. 5.13 ProcBlock calling sequence.
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thread, there are a few situations in which large lists must be searched, or long
sequences of instructions must be executed, in order to complete the service. For
instance, in the 16-bit system, the memory manager performs compaction, an expensive
process in which segments are copied between areas of physical memory.

0S/2 guarantees that a time-critical thread that is made ready to run will be dis-
patched within 4 milliseconds. To ensure that ready time-critical threads will get a
chance to run within 4 milliseconds, the kernel implements a type of voluntary preemp-
tion called a yield. So that this criterion is met, there is a secondary version of the
ReSched flag, called the TCReSched (for time-critical) flag. The TCReSched flag is set
whenever a thread in the time-critical class moves to the ready state. In specific areas in
the kernel where an operation may take longer than 4 milliseconds, the code is written to
call periodically a dispatcher interface named TCYield. TCYield examines the state of
the TCReSched flag and forces a context switch if TCReSched is set by calling a special
entry point in the SchedNext routine.

Since the yielding thread can potentially own resources, it is important that execu-
tion return to the yielding thread after the time-critical thread has run. To ensure this re-
turn, TCYield boosts the priority of the yielding thread to a priority level just below the
lowest time-critical priority. Note that these critical sections of code in the kernel that
can potentially yield the processor must be written to be reentrant, and are in effect
small sections of coarsely preemptible code in the kernel. Full preemption, instead of
voluntary preemption, would require the entire kernel to be written such that a preemp-
tion cycle could occur at any time, not just at specifically defined points where it is nec-
essary. A symmetric multiprocessor version of the kernel would have to be reentrant and
to allow concurrent execution of multiple threads in the kernel.

In the example of copying 64KB of memory, the 16-bit memory-manager code that
performs the operation is written to copy as much of the segment as is possible in 4 milli-
seconds, to call TCYield to allow time-critical threads to run, then to continue the opera-
tion after the time-critical threads have run.

5.6 Multitasking API
Table 5.1 lists the 16-bit and 32-bit multitasking API calls.

SUMMARY

This chapter presented OS/2’s multitasking architecture. The basic elements of the
architecture are processes and threads; they are managed by the multitasking API. The
scheduling model that threads use in OS/2 is a multilevel priority scheme with round-
robin scheduling within a priority level. The kernel contains most of the critical portions
of the system, and the multitasking components that provide the system’s concurrency
features. The task manager, scheduler, dispatcher, and interrupt manager work together
to provide the fundamental multitasking functions of context switching, dispatching, and
scheduling.
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16-bit APl name

32-bit APl name

Description

DosCreateThread DosCreateThread Create a thread

DosCWait DosWaitChild Wait for child process termination
N/A DosWaitThread Wait for thread termination
DosEnterCritSec DosEnterCritSec Disable thread switching within process
DosExecPgm DosExecPgm Create child process and load program
DosExit DosExit Terminate thread/process

DosExitList DosExitList Register process termination handler
DosGetlnfoSeg DosGetInfoBlocks Get process/thread info

DosGetPrty N/A Get execution priority

DosKillProcess DosKillProcess Send termination signal to process
N/A DosKillThread Kill thread within process

DosSetPrty DosSetPriority Set execution priority

DosGetPID N/A Get process/thread IDs

DosGetPPID DosGetPPID Get parent process ID

DosPTrace DosDebug Debug program/process
DosResumeThread ~ DosResumeThread Resume a thread

DosSuspendThread  DosSuspendThread  Suspend a thread

DosGetEnv N/A Get process environment
DosScanEnv DosScanEnv Scan process environment

Table 5.1 Multitasking API calls.

TERMINOLOGY

API requests

asynchronous I/O operation

blocked
blocking

CALL FAR instruction

call gate
child process

clock device-driver interrupt handler

context

context switching

critical section
daemon thread

device interrupt handler

device I/O

dispatcher

DOS compatibility
DosCreateThread
DosCWait
DosKillProcess
DosExecPgm
DosExit

DosExit API
DosPTrace

dynamic link import
dynamic link library
dynamic priority variation
EnterKMode

event



ExitKMode

exception

exception handler

exitlist procedure

external reference

fault

flat linear address space
file handle

foreground

foreground boost

general protection fault
idle loop

idle priority class
incoming thread

inDOS

input focus

I/O boost

interprocess communication
interrupt

interrupt descriptor table (IDT)
interrupt dispatch latency
interrupt management
interrupt manager
interrupt mode

interrupt table

kernel

kernel mode

kernel space

kernel stack

maskable interrupt
massive parallelism
massively parallel
master/slave relationship
memory management
memory protection
module table entry (MTE)
multilevel priority architecture
multitasking

multitasking API
multithread process model
nested interrupt

open file handle

outgoing thread

page table

Terminology

parent process

per-task data area (PTDA)
priority boost

privilege level 0

process

process 1D (PID)

process termination handler
process virtual address space
program

program loader

queue

ready

reentrant

regular priority class
ReSched

resume

round-robin scheduling
SchedNext

scheduling algorithm
scheduler
segment-not-present fault
semaphore

session

sibling process
SIGBREAK

SIGCTRLC

signal

signal handler

SIGTERM

single-thread process model
stack-based calling convention
stack-based linkage
starvation boost

supervisor

suspend

system call interpreter
system clock

system interrupt stack
system timer

system virtual address space
tasking manager

task state segment (TSS)
thread

thread control block (TCB)
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thread ID (TID) trap dispatcher
thread 1 trap manager
thread swappable data (TSD) unblocking
thread termination user exception
time-critical priority class user exception dispatcher
time-critical thread user space
timeslice user stack
timeslicing worker routine
translation lookaside buffer (TLB) yield

trap

EXERCISES

5.1 Explain how, even though DOS is not a multitasking operating system, it is still possible for
applications to provide their own multitasking.

5.2 What are the primary resources contained by a process?
5.3 Why can a process not access another process’s memory or the system’s memory?
5.4 How are processes created in OS/2?

5.5 Explain OS/2’s hierachical process structure. Discuss the notions of parent, child, and sib-
ling processes, and of the root of the process tree.

5.6 What do we mean when we say that a child process runs synchronously relative to its parent?
What do we mean when we say that a child process runs asynchronously relative to its parent?

5.7 How are processes terminated in OS/2?

5.8 What is an exitlist handler? How does the kernel know which handlers are associated with a
particular process?

5.9 What is a signal? In what three ways may a process respond to a signal?
5.10 Is it true that OS/2 processes do not run? Explain your answer.

5.11 Explain the various thread states (i.e., running, ready, and blocked), and describe the vari-
ous transitions that may occur between thread states.

5.12 List advantages to the multithread process model over the traditional single-thread process
model found in systems such as UNIX and MVS.

5.13 How does the multithread process model promote greater overlapping of I/O requests?

5.14 Why is OS/2’s multithread process model important in the context of multiprocessor sys-
tems?

5.15 Unlike processes, OS/2 threads are not hierarchical. What implication does this have for the
relationships among the threads of a process?

5.16 Discuss the special significance of thread 1.

5.17 How does OS/2 guarantee mutually exclusive access to shared data among the threads of a
process?

5.18 What do we mean when we say that a set of threads within a process have a master/slave
relationship?
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5.19 Describe OS/2’s multilevel priority architecture. Explain dynamic priority variation and
round-robin scheduling.

5.20 Is it possible for a thread’s execution to be postponed indefinitely? Explain your answer.
5.21 An OS/2 thread may set its own priority. In some operating systems, allowing individual

activities to control their own destiny in this manner is frowned on. Why is such a capability rea-
sonable in OS/2?

5.22 Distinguish among time-critical threads, regular-priority-class threads, and idle-priority-
class threads.

5.23 What guarantees does the system give to time-critical threads?

5.24 In OS/2, timeslicing is driven by a system clock and can be configured by the user.
Values for the quantum may be set between 34 milliseconds and 9999 milliseconds. What are
the consequences of selecting far too large a quantum? What are the consequences of selecting
far too small a quantum? How might a user tune the quantum to an appropriate value for a given
system?

5.25 Define each of the following terms in the context of OS/2 multitasking: foreground, input
focus, background, foreground boost, I/O boost, starvation boost.

5.26 What are the key functions performed by the OS/2 kernel?

5.27 Describe the functions of each of the following kernel components involved in the manage-
ment of multitasking: the tasking manager, the dispatcher, the scheduler, the interrupt manager,
and the trap manager.

5.28 Explain how the dichotomy between user mode and kernel mode helps to ensure protection
in OS/2’s multitasking environment.

5.29 What might cause a general protection fault? How does the system typically respond to
such a condition?

5.30 What is kernel mode? Under what circumstances might a thread make the transition from
user mode to kernel mode?

5.31 Why do you suppose threads running in kernel mode are not preemptible?
5.32 How might a thread be executing at privilege level 0, yet not be in kernel mode?
5.33 When can context switches occur?

5.34 In the operating systems literature, the data structure that serves as a central depository for
all information about a process is called the process control block (PCB). What data structure in
0S/2 corresponds to the PCB?

5.35 How is the PTDA of the current process located in 16-bit OS/2? How is the PTDA of the
current process located in 32-bit OS/2?
5.36  What is the idle loop?

5.37 Distinguish between process context switching and thread context switching. What opera-
tions are performed to accomplish each type of context switch?

5.38 Can a thread that has called an API in a dynamic link library, and is currently executing in
that dynamic link library, be preempted? Explain your answer.

5.39 Describe the sequence of events that occurs in OS/2 from the initiation of a system call
request by an application, through the processing of the system call by the kernel, to the resump-
tion of the application.
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5.40 What do we mean when we say that, in OS/2, although the kernel is nonpreemptible, it is
interruptible?
5.41 What is a maskable interrupt? What does it mean to enable or disable maskable interrupts?

5.42 Describe the communications that occur between an Intel 8259 controller and a host 80X86
processor when an interrupt occurs.

5.43 Why does the OS/2 interrupt table potentially have multiple interrupt handlers per interrupt
level?

5.44 How might a nested interrupt occur?

5.45 Distinguish among the three exception types on the 80X86 architecture: faults, traps, and
aborts.

5.46 Under what circumstances might the current thread block during the handling of a system
exception?

5.47 Why are exceptions, unlike interrupts, handled on the kernel stack of the thread that caused
them?

5.48 Explain how OS/2 implements timeslicing.
5.49 How is 32-bit OS/2’s algorithm for thread-wakeup superior to UNIX’s algorithm?

5.50 Discuss the operation of OS/2’s voluntary preemption technique, called a yield. How does
the yield capability help to ensure rapid response to the needs of time-critical threads?

5.51 Give an example of an application that is inherently parallel. Explain why programming
such an application with multiple threads is more natural than is programming it with a single
thread.

5.52 In what sense are all the threads of a process identical? In what sense are they different?
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The fancy is indeed no other than a mode of memory
emancipated from the order of time and space.

Samuel Taylor Coleridge

"Tis in my memory lock’d,
And you yourself shall keep the key of it.
William Shakespeare

A great memory does not make a philosopher,
any more than a dictionary can be called a grammar.

John Henry, Cardinal Newman

141



6.1
6.2

6.3

6.4
6.5
6.6

Outline

Introduction

0S/2 1.X Memory Management

6.2.1 Memory Model

6.2.2 Memory Objects

6.2.3 OS/2 1.X Memory Management API

6.2.4 OS/2 1.X Memory Management Kernel
6.2.4.1 Virtual Memory Management
6.2.4.2 Loader
6.2.4.3 Physical Memory Management
6.2.4.4 Segment Swapping

0S/2 2.X Memory Management

6.3.1 Memory Model

6.3.2 Memory Objects

6.3.3 OS/2 2.X Memory Management API
6.3.3.1 Private Memory
6.3.3.2 Shared Memory
6.3.3.3 Memory Object Control
6.3.3.4 Memory Suballocation
6.3.3.5 Dynamic Linking

6.3.4 OS/2 2.X Memory Management Kernel
6.3.4.1 Virtual Memory Management
6.3.4.2 Loader
6.3.4.3 Page Management
6.3.4.4 Page Aging
6.3.4.5 Page Swapping

Segment Versus Flat Memory Model

Memory Management API

Dynamic Linking API

Summary

142



6.1 Introduction 143

6.1 INTRODUCTION

This chapter describes the memory management aspects of OS/2. We begin with a look at
the terminology necessary to understand OS/2 memory management. Physical memory is
primary memory, or the range of real addresses within a computer. For example, the DOS
system allows a program to access physical addresses in the range from OKB to 640KB.
0OS/2 systems allow far more physical storage to be accessed than do DOS systems.

A major feature of most multitasking systems such as OS/2 is to utilize virtual
memory. The key to virtual memory is that it allows the addresses referenced in a run-
ning program to be disassociated from the addresses available in primary storage. A pro-
cessor’s memory management unit (MMU) provides this feature, which is called
address translation. The MMU translates virtual addresses into physical addresses as
instructions are executed. The range of virtual addresses available is called the virtual
address space; the range of physical addresses available is called the physical address
space. Virtual memory systems have the characteristic of allowing a program or process
to be independent of its actual position in physical memory, whether all or part of that
program or process is in physical memory. The address translation between virtual and
physical addresses occurs at run time and must be extremely fast—otherwise, the perfor-
mance of the system would be degraded severely. Another attribute of virtual memory
systems is that the range of the virtual address space can be independent of the range of
real memory. In other words, the virtual address space can be far larger than the real
address space. Typically, secondary storage media, such as disks, are used as swapping
devices for saving the portions of a program that are not resident in physical memory at
the time that the program is running.

In a multitasking, virtual memory system, protection is another major feature usu-
ally provided by the memory management unit of the processor. There are two forms of
protection that are required in a multitasking system. The first is protection among the
processes in the system, which allows each process to have an isolated memory envi-
ronment in which to run. This memory environment is called the process virtual address
space, as we saw in Chapter 5. By allocating a process virtual address space to each pro-
cess, we protect the individual processes in the system from one another. The archi-
tecture of the process virtual space defines what the memory model of a system is, or
how memory looks to the processes in the system. The second type of protection pro-
vides isolation of the system from the user processes. In the implementation of this pro-
tection scheme, the system virtual address space encompasses the kernel memory and all
the process virtual address spaces. The system virtual address space is accessible only
by a thread running in kernel mode.

Relating these factors to what we discussed in Chapter 5, a thread running in user
mode can access only memory mapped by its own process virtual address space; it can-
not access memory within another process’s virtual address space unless memory shar-
ing between the processes has been set up. A thread in user mode also cannot access
kernel memory. However, a thread in kernel mode can access all process virtual address
spaces and kernel memory. In summation, both kinds of protection are necessary in any
multitasking system to guarantee the integrity of concurrent applications.
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The memory management component of the system is responsible for allocating
process virtual address spaces and for setting up the required hardware structures to
enable processes to be protected from one another and from the system. The memory
management API allows threads within a process to manipulate the contents of the pro-
cess virtual address space. It also provides functions for manipulating memory objects
within the process virtual address space. OS/2 provides functions for object allocation,
deallocation, and sharing.

6.2 0S/2 1. X MEMORY MANAGEMENT

In this section, we describe the motivations for the architecture of 16-bit OS/2 memory
management. The 16-bit OS/2 version targets the 80286 processor platforms. The main
goals with respect to memory management in 16-bit OS/2 are to break the 640KB
barrier associated with DOS systems and to provide a protected environment for
multitasking. Another major goal is to allow applications to allocate more memory than
physically is present in the computer. Finally, a powerful memory sharing capability is
necessary to permit multiple processes to communicate through shared memory and to
support dynamic link libraries.

6.2.1 Memory Model

When the 80286 processor is placed in protected mode, it provides virtual segmented
addressing. The addresses within the virtual address space of the processor are not
contiguous because they are divided into variable-sized portions called segments.
Segments can have sizes from 1 to 64KB. Each segment must be mapped by a descriptor
or a general protection fault will occur when the memory is accessed. The OS/2 memory
model for 80286 processor systems is called the segmented memory model.

Unlike in real-mode DOS systems, segment arithmetic cannot be performed on the
protected mode virtual segmented addresses. Segment arithmetic occurs when a DOS
program takes advantage of the fact that a single memory location can be addressed
using different segment:offset combinations or aliases. Recall from Chapter 2 that, on an
8088 architecture, the values loaded into the segment registers are directly related to the
generated physical address. In the 80286 environment of 16-bit OS/2, the segment val-
ues are specific selectors that map descriptors, and each segment can be addressed only
by a unique selector. Therefore, the segment protection of the 80286 automatically pro-
hibits segment arithmetic. Segment protection is accomplished using the protection ring
architecture discussed in Chapter 2. Segment swapping allows more physical memory
than is available in the computer to be allocated by applications.

The system address space is common to all processes and is mapped by the GDT at
privilege level 0. Each process has an LDT that represents its process virtual address
space. A process can access only memory mapped by the GDT or by its own LDT.
Because each process has its own LDT, the process virtual address spaces are encapsu-
lated and isolated. Threads running in user mode cannot access the descriptors in the
LDT or the GDT. Furthermore, each LDT’s descriptors are divided into private and
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shared descriptors, in order to differentiate between addresses (not storage) private to a
process and addresses that are shared across processes. Figure 6.1 illustrates the usage of
the descriptor tables for the system and process virtual address spaces.

6.2.2 Memory Objects

Memory objects in 16-bit OS/2 are segments. A segment is from | to 64KB, is physi-
cally contiguous, and is addressable via a 16-bit selector value in combination with a 16-
bit offset. This fully qualified virtual address is also called a 16:16 address
(selector:offset). Segments are also relocatable in physical memory and are swappable.
Since there are only four segment registers available on the 80286 processor, all the seg-
ments within a process’s virtual address space cannot be addressed simultaneously. To
establish addressability to a segment, a thread must load a segment register with the se-
lector for that segment.

Segments are classified according to type of virtual address, type of storage, and
what kind of segment it really is. Segments can be fixed, movable, swappable, and dis-
cardable. Most of the kernel itself is fixed memory, and only the kernel can allocate
fixed memory. Fixed memory never moves, is never swapped, and is resident in physi-
cal memory. Memory that is movable can be relocated. However, this relocation is
transparent to applications, since segments are relocatable through their descriptor
tables. Swappable segments are those that can be swapped to disk if physical memory is

GDT
System
virtual
LOT —_— address
space
Process
| virtual
—T address
spaces

-
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Fig. 6.1 16-bit virtual address spaces.
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in short supply. Discardable segments are those that can be reloaded from their exe-
cutable files when they are referenced during execution. Examples of discardable seg-
ments are application code segments and data segments that are read-only. Unless
segment swapping or segment motion is disabled when the system is started, all applica-
tion data segments are swappable and moveable.

Segments can share their virtual addresses, their contents, or both. Each process vir-
tual address space has separate shared and private selector regions within the LDT.
Actually, the selectors are interleaved within an LDT to allow the smallest LDT size
possible. Selectors that map to descriptors in the private part of the LDT are called
private selectors; those that map to descriptors in the shared portion of the LDT are
called shared selectors. The selector type is independent of whether the contents of the
segment are shared. Therefore, there are four possible combinations of the virtual-
address-space and storage-type attributes.

Segments with private addresses and private storage are those allocated by the
memory management API, and read-write data segments that are loaded from exe-
cutable files. Segments with private addresses and shared contents are executable code
and read-only data segments. Thus, executable EXE code and read-only data segments
can be shared by all processes that are running the same EXE.

Shared address segments are managed differently from private address segments
since they can be accessed by multiple processes concurrently. Whereas the 80286 hard-
ware places no constraints on whether processes map shared segments using the same
LDT descriptor, OS/2 shared segments are mapped at the same address in all processes.
Thus, all processes use the same virtual address when accessing shared addresses.

Since code segments have fixups to other segments that must be resolved when the
code segments are loaded into memory, these fixups must be valid in all contexts in which
the code segment will be used. Placing all shared segments and EXE code segments at the
same address in all contexts meets this criterion. The same address is provided in each pro-
cess’s context by use of the same LDT selector/descriptor pair for the shared segments.
Thus, OS/2 divides an LDT into private and shared descriptors, and reserves shared
descriptors in all LDTs when a shared segment is allocated by any process.

Shared addresses with shared storage segments are shared segments. In other words,
there is a single physical segment that is referenced in the context of multiple processes.
Shared memory is allocated either at run time using the shared memory APIs, or at load
time when a dynamic link library’s code and global data segments are loaded. Shared
address private storage segments are called instance segments. Instance segments are
mapped using shared addresses; however, a different copy of the segment exists for each
process in physical memory. Instance segments are allocated by dynamic link libraries
when they are loaded, and contain per-process data defined by the library. Table 6.1
illustrates the possible combinations of segment types.

6.2.3 0S/2 1.X Memory Management API

This section describes the functions of the 16-bit OS/2 memory management API.
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Address type Storage type Origin
Private Private EXE read-write data or private
memory API
Private Shared EXE code or EXE read-only data
Shared Private DLL instance read-write data
Shared Shared DLL code, DLL read-only data,
DLL shared data, or shared-
memory API
Table 6.1 Memory object types.

6.2.3.1 Private Memory

Private memory is allocated by a call to DosAllocSeg. DosAllocSeg allows the requestor
to allocate a segment of up to 64KB, and returns an LDT selector to the allocated seg-
ment. Allocation flags that are supplied during requests allow the requestor to determine
whether the memory is to be private, or is to be shared through the give-get mechanism
(discussed in Section 6.2.3.2). A segment is freed by a call to DosFreeSeg.

DosReallocSeg allows the requestor to change the size of a segment. Private seg-
ments can be grown or shrunk, whereas shared segments are usually only grown. If a
shared segment is of the give-get variety, its size can be reduced if a special bit was set
in the allocation flags when the segment was created by DosAllocSeg. A segment reallo-
cation request can cause a segment to be relocated in physical memory.

Since segments have a maximum size of 64KB, a special type of construct, called a
huge segment, exists in 16-bit OS/2 to allow a memory object larger than 64KB to be
allocated. DosAllocHuge allows a huge object to be constructed. A huge object consists
of a series of LDT selectors, each of which maps a segment of the huge object. The LDT
selectors for a huge object are mathematically related by a value called the Auge incre-
ment or huge shift factor. The huge increment is applied to one of the LDT selectors that
maps a portion of a huge object, allowing applications to address different 64KB por-
tions of the huge object. The huge-segment arithmetic is reminiscent of segment-value
arithmetic in DOS. The huge increment must be determined by a call to
DosGetHugeShift. DosReallocHuge supports resizing of huge objects.

6.2.3.2 Shared Memory

The shared memory API provides functions for manipulating global shared segments.
Global shared segments use shared LDT addresses and shared storage. As the section on
16-bit memory objects explained, in the traditional shared memory scheme, a single
copy of a segment is shared within the context of multiple processes. There are several
ways to manage global shared memory. The first method is named shared memory.
Named shared memory is created by issuance of a DosAllocShrSeg request. One of the
parameters in the request to create the named shared segment is a name in the
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\SHAREMEM\XXX format. This name is entered into the name space of the file system
using an entry in the directory \SHAREMEM. Since any name in the file system name
space is global to all processes, any process that knows the name of the segment can
gain access to that segment by calling DosGetShrSeg. DosGetShrSeg causes the named
shared segment to be mapped into the requesting process’s LDT, and returns the selector
for accessing the segment. Recall that the selector for a given shared segment is the
same in all processes. Named shared memory is typically used between loosely coupled
peer processes as an interprocess communication mechanism.

Another type of global shared memory is called give-get shared memory. Give-get
shared memory is allocated using DosAllocSeg with the giveable and getable flags set in
the allocation flags as an input parameter. If the giveable flag is set, the segment may be
given to another process by a call to DosGiveSeg. If the getable flag is set, the segment
may be gotten by another process a by call to DosGetSeg. This strategy allows a process
either to give addressability to a segment to another process, or a process to get address-
ability to a segment in another process. For example, if process A allocates some shared
memory that is giveable, it specifies the PID of process B to give that segment to pro-
cess B when invoking DosGiveSeg. This specification establishes a mapping in process
B’s process address space (LDT). Conversely, if the segment was getable, process B
could get access to process A’s segment by calling the DosGetSeg API and providing
the selector of the segment in process A’s context. In both cases, the process gaining
access to the shared segment must become aware of the selector for addressing the seg-
ment through an interprocess communication mechanism. Give-get shared memory is
typically used by closely coupled peer processes that need to pass data to each other.
Figure 6.2 illustrates 16-bit memory sharing.
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Fig. 6.2 16-bit memory sharing.
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DosFreeSeg is used for freeing all segments in the system, whether they are shared
or private. For each shared segment, the system maintains a usage count that represents
the number of times a segment has been shared. Each time a segment is freed, the usage
count is decremented. The actual shared segments are freed when their usage count
reaches 0. When a process terminates, the system automatically frees any allocated
memory that has not already been deallocated.

6.2.3.3 Memory Suballocation

Since the system must track each segment that is allocated, it is expensive to allocate a
segment for small memory objects (1 byte to 2KB). Allocating a segment for every
small object can slow down the process, since segment management is performed by
kernel APIs, and the process must continually reload segment registers to change ad-
dressability to each small segment. When the size of a segment is smaller than the size
of the data structures that the system maintains for that segment, memory as a resource
is not being used in an optimal fashion. Allocating a segment for each small object need-
ed also causes the LDT selectors that compose the process virtual address space to be
consumed excessively. Furthermore, allocating a segment for each object requires seg-
ment registers to be loaded whenever the segment is addressed, a slow operation com-
pared to accessing memory within a segment that is already addressed.

To reduce this overhead and fragmentation, OS/2 provides a memory-suballocation
subsystem that provides management for memory objects within a segment. The mem-
ory-suballocation subsystem runs in user mode and resides in a dynamic link library.
Therefore, the memory-suballocation API functions are extremely fast compared to the
kernel API functions, and run preemptibly. A segment that is suballocated in this fash-
ion is also known as a heap. DosSubSet initializes a segment for use as a memory pool.
Memory objects allocated from the pool are of variable length and are byte-granular.
Memory is allocated from the heap using DosSubAlloc, and is deallocated using
DosSubFree. Since the memory objects reside within the same segment, access is much
faster because a segment register does not have to be reloaded to address different
objects in the memory pool. A memory pool or heap can be used with private or shared
segments. Since the suballocation APIs are serialized, a heap can be accessed concur-
rently by multiple threads in different processes.

6.2.3.4 Dynamic Linking

DosExecPgm is used to load programs, as described in Chapter 5. The memory for a
program or a library that is allocated while the latter is being loaded is called load-time
memory. Memory that is allocated while a program or library is being executed using an
API is called run-time memory. When an executable (EXE) file is loaded into memory,
segments are allocated for the contents of the executable file and for the segments of any
associated dynamic link libraries (DLLs). The only time that instance data can be allo-
cated is when a DLL is being loaded.

Dynamic linking occurs at load time and at run time. Chapter 5 described how load-
time dynamic linking occurs when a process is created using DosExecPgm. However,
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there are several functions in the memory management API that allow a process explic-
itly to load or attach to a specific DLL module at run time. DosLoadModule loads a se-
lected DLL and any resources it needs to complete its load at run time. The process
loading or attaching to the library is returned a handle to the loaded module. Generally,
handles are used by user processes to specify system-managed objects in API calls.
Once a process has loaded a module, the handle can be used on subsequent
DosGetProcAddr calls to retrieve the address of entry points within the module. When
the process has finished using the library, DosFreeModule is invoked with the module
handle to notify the system that the process has finished using the module.

6.2.4 0S/2 1.X Memory Management Kernel

The OS/2 kernel provides most of the memory management functions. The memory man-
agement portion of the kernel consists of four components: the virtual memory manager,
the loader, the physical memory manager, and the swapper. The virtual memory manager
is responsible for providing the memory management API, and for handling the descriptor
table for mapping virtual memory to physical memory. The loader is responsible for pro-
gram loading, dynamic linking, and demand loading of segments from executable files and
dynamic link libraries. The physical memory manager is responsible for the management
of physical memory resources and of compaction to reclaim physical memory fragments.
The swapper extends the physical memory resource by storing currently unneeded seg-
ments in a swap file and restoring them when they are referenced.

6.2.4.1 Virtual Memory Management

The virtual memory manager is responsible for providing the memory management API
used by processes to manipulate segments within their process virtual address spaces. It
is also responsible for the management of the descriptor tables, of shared addresses, and
of memory-overcommit accounting. Finally, the virtual memory manager maintains data
structures representing user segments and handles segment-not-present faults.

6.2.4.1.1 Overcommit Accounting Overcommit accounting is necessary to ensure
that the system always has enough memory to run, and that the total allocated resources
do not exceed the size of the swap file. The 80286 has four segment registers, and each
segment register can map a single 64KB segment at a time. Since a single instruction
can cause an access of two more segments at a time, such as a call through a call gate
between privilege levels, a total of 6 x 64KB, or 372KB, of physical memory must be
available in order to guarantee that a process can run. So that a process does not thrash
the system attempting to load its segments into memory when it exits the kernel, a spe-
cial routine is used to load all the process’s segments atomically. Fixed kernel memory
and locked user segments in the system reduce the amount of memory available for a
process to run. Fixed kernel allocations and long-term locks fail if the total memory
remaining is too small for a single process to run.

6.2.4.1.2 Descriptor Management The 80286 descriptor tables are managed by the
virtual memory manager. The GDT is used to map the system virtual addresses to physi-
cal memory. The GDT contains the descriptors for the kernel’s code and data, for the
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device drivers’ code and data, and for the call gates to the kernel. Free GDT descriptors
are linked into a free list using the fields of the descriptor fields that are unused when a
descriptor is invalid. The kernel provides simple functions for allocating and freeing
GDT descriptors when necessary.

Each process virtual address space is mapped by an LDT. Each LDT is a segment
that is grown dynamically as the size of the largest LDT in the system increases. Each
LDT maps all the segments allocated at load time and run time on behalf of a given pro-
cess. When context switches occur between processes, the dispatcher calls the virtual
memory manager to switch LDTs. Figure 6.1 illustrates the descriptor tables.

The LDT is divided into private and shared selectors (or descriptors). In OS/2 1.0,
the shared and private selectors are interleaved in a ratio of one shared selector to one
private selector (1:1). However, OS/2 1.1 changed this ratio to three shared selectors to
one private selector (3:1). Shared and instance objects are allocated at common shared
addresses in the process virtual address spaces, because processes tend to need more
shared virtual addresses than they do private virtual addresses. The selector type is inde-
pendent of whether the segment contents are shared. The private selectors within an
LDT are used to map segments that are private to a process, including code and data
segments from the EXE file and API-allocated private segments. Even though EXE code
and read-only objects are private, they are shared with each instance of the same pro-
gram. Since a process can dynamically attach to a shared library, shared selectors are
used to map segments from dynamic link libraries. Code, global shared data, and
instance data segments are mapped using shared selectors. Shared selectors are also used
for API-allocated shared memory, both named and give-get.

As stated previously, all shared segments, whether code or data, occur at the same
virtual address in all process virtual address spaces. This single address simplifies the
task of tracking shared memory usage in different processes. The virtual memory man-
ager uses a systemwide bitmap for handling the reservation of shared selectors across all
LDTs in the system. Each bit in the bitmap corresponds to a descriptor or selector in the
LDT. The bits for the private selectors in the bitmap are set to indicate that the selectors
are not available, and the bits representing shared selectors are clear to indicate that
these selectors are free. When a shared segment is allocated, a slot for the shared de-
scriptor is found by consultation with the system LDT bitmap, and the descriptor is re-
served across all processes by setting of the entry in the bitmap. Private LDT descriptors
are managed in the same way as GDT descriptors. Free LDT descriptors within an LDT
are linked in a free list using the fields of the descriptor that are unused when the
descriptor is invalid.

Dividing the LDT into shared and private descriptors reduces virtual memory con-
sumption. If each process’s code were mapped using shared selectors, then every time a
process was started, the system would have to update and grow every LDT in the system
to accommodate the new segments. This strategy would force each LDT to be larger
than necessary. Splitting the process virtual address space into private and shared
addresses eliminates this side effect. However, another side effect is introduced by the
sharing of memory at the same virtual address in all contexts. If a single process uses
many shared objects or segments, it can consume shared address space in another pro-
cess’s LDT.
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Code segments from executable files and dynamic link libraries always share their
contents or storage. For this scheme to work, the virtual memory manager must ensure
that the same selector is available in all contexts for mapping the shared code. For
shared libraries, the LDT bitmap reserves selectors across processes. However, this
mechanism does not work for code from an executable file, since it is mapped using pri-
vate selectors. The system guarantees that the same private selectors are available each
time a given process is loaded, since the LDT is empty at the time a program is loaded.

6.2.4.1.3 Object Management The major data structure that is used by the virtual
memory manager for tracking system objects and user segments is called the handle
table. Each memory object in the system is assigned a 16-bit handle. The handle of a
memory object is an index into the virtual memory manager’s handle table. A handle
selects a handle table entry (HTE) that represents the memory object. Each HTE con-
tains permanent information on segments, indicating whether they are present in physi-
cal memory, in the swap file, or in an executable file or dynamic link library. Figure 6.3
illustrates the contents of a handle table entry.

The handle table has a semaphore associated with it that is used to serialize access
to the handle table when it is grown. The only times that two different threads try to
modify the handle table concurrently are when one thread tries to access an object in
interrupt mode while another thread is accessing it in kernel mode during a system call,
or while a thread in kernel mode has voluntarily yielded the processor. This is due to the
nonpreemptible nature of the OS/2 kernel.

Each HTE has a flags field that indicates whether the object is shared or private, and
whether it is moveable, fixed, swappable, or discardable. The flags also indicate whether
the memory object must reside in physical memory above or below 1MB. The latter
indicator is significant with respect to how the system provides DOS compatibility. It
allows the virtual memory manager to be flexible enough to allocate memory so that the
memory is addressable when the processor is in real mode running a DOS application.
Another bit in the HTE flags is used to indicate when an operat’on is in progress for the
object. This bit is used as a per-object semaphore for allowing a thread to gain owner-
ship of a handle for the duration of an operation on a specific memory object. If an oper-
ation is in progress when a thread attempts to access a handle, it blocks using the
address of the HTE as a block identifier.

In addition to the HTE flags, each HTE also contains the physical address of an object
when that object is present in physical memory and is mapped by a descriptor. The selec-
tor field in the HTE indicates the descriptor used to map the segment. The lock count field

* 32 bits >
Handle flags PhysAddr (low)
leisg:)dr Lock count Primary selector

Fig. 6.3 16-bit handle table entry (HTE).
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indicates the number of outstanding locks on the object. Locks are used by the kernel and
device drivers to fix discardable or swappable memory segments in physical memory.
Some of the fields for physical address in HTEs are overlapped by other information when
an object is not present, as we shall describe in a moment. Locks are discussed in more
detail in Chapter 8. Some of the fields in HTEs are overlapped by other information when
an object is not present, as we shall also examine now.

Each object in the system has an owner field that identifies from where the memory
object came. In other words, the owner field indicates whether the segment is a discard-
able one that can be reloaded from an EXE or DLL module, or is a swappable API-
allocated one that resides on the swap file. If the memory object is discardable, the
owner is the handle to the MTE of the module that contains the segment. If it is swap-
pable, the owner is a handle to the PTDA of the process.

There are two prinicipal types of memory objects mapped by the handle table: sys-
tem objects and user objects. System objects are always present and fixed, and have spe-
cial reserved handle values for their owner fields. Examples of system objects are
PTDAs, MTEs, and LDTs. Each PTDA has an HTE that contains its physical address,
and a special owner value that tells the virtual memory manager that the system object is
a PTDA. A different owner-field value (handle) is reserved for MTEs, LDTs, and other
system-object classes.

System objects are mapped dynamically; in other words, they are not allocated per-
manent descriptor mappings, and are not accessible until they are mapped explicitly.
The distinction between an object and a segment in 16-bit OS/2 is that an object does
not necessarily have a descriptor mapping it, whereas a segment is always mapped.
Since there are so many system objects, allocating to each system object a permanent
descriptor would cause a huge growth in the GDT, and would result in a significant
reduction in the number of GDT selectors available for other purposes. Therefore, each
system object is mapped by an HTE to a physical address, instead of being mapped by a
descriptor, to conserve GDT selectors. This mapping strategy also allows references to
these system objects to use 16-bit memory object handles instead of 24-bit physical
addresses or 32-bit 16:16 virtual addresses, resulting in a memory savings in kernel data
structures. These fixed objects are dynamically mapped and unmapped by the virtual
memory manager whenever they need to be accessed.

For example, if an MTE needs to be addressed, the MTE handle is passed to a map-
ping routine called MemMapMTE, which allocates a GDT descriptor that maps the phys-
ical address contained in the HTE for the MTE. When the MTE no longer needs to be
addressed, MemUnmapMTE is called to deallocate the descriptor mapping. Any refer-
ences to the MTE in other kernel data structures use the 16-bit memory-object handle
for that MTE.

User objects also are mapped by the handle table. User objects are either API-allo-
cated segments or segments that reside in an EXE or DLL file. Note that user objects are
called segments since they always have a virtual memory mapping in an LDT. The
owner field of a user object is either an MTE handle or a PTDA handle, based on
whether the segment comes from an EXE or DLL file, or whether it is allocated by an
API request. The rest of the contents of the HTE of a user memory object depend on
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whether or not the segment is present in physical memory. In the case of system objects,
segments are always present. User objects, however, can be present or not present.

Figure 6.4 illustrates the 16-bit virtual memory management data structures for
three segments. Segment A is a discardable segment that resides in the EXE file of the
process when it is not in memory. Segment B is a swappable segment that resides in the
swap file when not in memory. Segment C is a swappable present segment in physical
memory.

If a segment is present, the HTE’s physical address field contains the 24-bit physi-
cal address of the segment in physical memory. Although, at first glance, this address
appears redundant, since the present descriptor also contains the physical address, it is
needed because the memory manager may be called in real mode as the result of an
interrupt occuring while a DOS application is running, and because the owner field is
saved by the physical memory manager to save space. Chapter 10 discusses in more
detail the requirements of the DOS compatibility component on the kernel.

The lock field in the HTE is valid for counting locks that are made by device drivers
or other portions of the kernel for I/O operations that require the object to be fixed. A
lock forces a segment to be fixed, and prevents the segment from being moved or
swapped until it is unlocked. A present segment also has a descriptor allocated to it, and
the descriptor points to the physical memory that is allocated by the physical memory
manager. The selector field of the HTE indicates which descriptor was allocated for the
segment. In Fig. 6.4, segment C is a present swappable segment.

If a segment is not present, the HTE is used to store information that can be used to
determine how to reload the segment when a segment-not-present fault occurs. If a seg-
ment is not present, the descriptor contains the memory handle of the HTE that repre-
sents the memory object. When a segment-not-present fault occurs, the virtual memory
manager uses the memory handle in the faulting descriptor to get to the permanent in-
formation for the memory object. If the object is swapped (segment B in Fig 6.4), the
physical address field is overlaid with a swaplD that is passed to the swapper for loading
in the image from the swap file. If the segment is discarded (segment A in Fig. 6.4), the
physical address is overlaid with the MTE handle of the originating module, and the
MTE handle and selector are passed to the loader so that it can demand load the segment
from the module.

All the allocation of physical memory occurs as a result of segment-not-present
faults. This style of physical memory resource commitment is called lazy segment allo-
cation. Postponing physical memory allocation until the latest possible moment results
in a reduction in the number of I/O operations that occur when segments are demand
loaded from their load modules or from the swap file. The following example illustrates
the events that occur when an application allocates a segment by invoking DosAllocSeg.
From the virtual memory manager’s perspective, this is an allocation request for swap-
pable allocate-on-demand memory. An HTE is allocated for the segment, as is an LDT
descriptor. Overcommit accounting is performed to ensure that the system can satisfy
the request with swap space at a later time. The descriptor is marked not present and is
filled with the memory object handle for the allocated HTE. The selector allocated is
returned to the thread requesting the memory. When the thread attempts to use the
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selector by loading the latter into a segment register, a segment-not-present fault occurs,
causing the segment-not-present fault handler to be called in the virtual memory manag-
er. The segment-not-present fault handler then calls the physical memory manager to
allocate physical storage for the object. After the physical storage is allocated, the physi-
cal address returned by the physical memory manager is inserted into the HTE and the
descriptor, and the object owner and handle are saved by the physical memory manager.
The faulting instruction is restarted, and the process continues.

6.24.2 Loader

The loader is responsible for program loading and for the management of dynamic link-
ing APL. It manages the EXE and DLL modules that are loaded into memory, as well as
the segments from these modules. Although both EXE and DLL modules are “exe-
cutable files,” EXEs are programs, whereas DLLs are shared libraries. The loader also
provides for demand loading of segments from DLLs and EXEs. The OS/2 loader prere-
solves at load time all external references that might be called during execution. Figure
6.5 illustrates the file format for 16-bit executable files.

The primary data structure used to track modules and their segments is called the
module table entry (MTE). Every load module in the system, whether it is an EXE or a
DLL module, has an MTE that describes it. As mentioned previously, from the view-
point of the virtual memory manager, an MTE is a system object that contains the mem-
ory representation of the executable file control information. When the loader allocates
an MTE, the virtual memory manager allocates a handle table entry and physical memo-
ry for the MTE, since the latter is a fixed system object. Therefore, MTEs are referenced
using a 16-bit handle, and are dynamically mapped into the system virtual address space
when accessed.

When a process is created with DosExecPgm, the loader allocates an MTE, stores
the MTE handle in the PTDA of the new process, and maps the MTE into memory. The
loader then reads the executable header from the module being loaded into the MTE. All
the MTEs in the system are linked in a graph. Since an EXE usually contains references
to DLLs, all the DLL modules that are loaded as a result of loading of an EXE module

EXE file header
Import data
Export data MTE
Module table
Segment table
Segment 1
Segment 1 fixups
Segment 2
Segment 2 fixups

Fig. 6.5 16-bit executable file format.
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are linked together. Thus, the MTEs that represent EXE files are head pointers or roots
into the system’s graph of MTEs.

Each MTE also contains a reference count of the number of times each program
module is loaded. During the program load process, the loader first scans the MTEs in
the system to see whether the module is already loaded. If it is, then the new process
attaches to the module by incrementing the reference count in the MTE and calling the
virtual memory manager to attach the module’s segments to the new process. Figure 6.4
contains an illustration of an MTE.

The MTE also contains the module file name and an open file pointer for accessing
the load file. The import data contain information on references to other modules; the
export data contain the module’s public definitions. The module table portion of an
MTE contains MTE handles of the modules that have been loaded to resolve this mod-
ule’s dynamic link imports.

The portion of the MTE that maps the segments of a module is called the segment
table. The segment table contains segment table entries (STEs). Each STE contains the
flags that describe the attributes of the segment, the size of the segment, a file offset into
the load module from which the segment can be loaded, the virtual memory handle for
the segment, and the selector used to map the segment. Figure 6.4 contains an illustra-
tion of an STE.

When DosExecPgm is called, the loader calls multitasking to allocate a process with
an LDT and a PTDA. Next, the loader reads the EXE header to determine the size of the
MTE; this step is necessary because the MTE is of variable length, depending on the
size of the load module. Once the size of the MTE is known, the loader calls the virtual
memory manager to allocate an MTE as a system object. Once the MTE object is
mapped, the loader then calls the file system to read the MTE into memory from the
load module file. The next step in program loading is to load the DLLs referenced by the
import table. If these DLLs are already loaded for another process, then the EXE’s MTE
is linked to the MTE of the loaded DLL.

The last portion of program loading is to process the segments in the segment table.
The loader allocates virtual memory for each segment, and the descriptors are marked
not present. If the load module is being attached to only the new process, the virtual
memory manager attaches the segments to the process virtual address space by editing
the LDT. Segments that are required by the user to be loaded when the program is load-
ed are called preload segments. The default alternative to a preload segment is a demand
load segment that is loaded when a thread accesses the descriptor and causes a segment-
not-present fault.

Demand loading occurs when the loader is called by the virtual memory manager
during a segment-not-present fault to load in a segment that resides in an EXE or DLL
module. Recall from Section 6.2.4.1 that, when a segment-not-present fault occurs, the
descriptor for the segment contains the handle for the object. In the case of a demand-
loadable object, the handle table entry indicates that the segment resides in a load mod-
ule and contains the MTE handle of the originating module. The segment-not-present
fault handler allocates physical memory for the segment based on the size in the descrip-
tor, sets the base address field in the faulting descriptor, then passes the MTE handle and
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the faulting selector to the loader. From this information, the loader can map the appro-
priate MTE, and can search the segment table for the segment allocated to the same
selector. Once the correct STE is found, the loader calls the file system to load the seg-
ment from the load module into physical memory. The loader then performs any neces-
sary fixups on the segment, validates the descriptor, and returns to the faulting
instruction.

To provide preload segments, the loader calls a virtual memory manager interface
that simulates a segment-not-present fault for the preload segments. This fault causes the
loader to demand load the segments before the module’s entry point is executed. The
simulated-fault approach is used, since the virtual memory manager is already prepared
to perform lazy allocation of the physical memory for segments.

6.2.4.3 Physical Memory Management

The physical memory manager manages the system’s physical memory resource. It con-
sists of two components: the physical allocator and the compactor. The physical alloca-
tor manages free and allocated blocks of physical memory in the system’s physical
address space. So that free blocks that are small and fragmented within the physical
address space can be reclaimed, compaction is implemented. The compactor runs only
as a result of a request for allocation of physical memory.

Figure 6.6 illustrates the physical memory layout of the system. The system is par-
titioned into those portions that are necessary for DOS compatibility, and those that are
not. The IMB boundary is a critical mark, since physical addresses above 1MB can be
accessed only when the processor is in protected mode. Portions of the system that must
be accessed while a DOS program is running must be in contiguous memory below
IMB, since the system runs DOS applications in real mode. However, in OS/2 1.3, the
DOS environment can be swapped when it is moved to the background. Chapter 10 dis-
cusses the memory requirements of the DOS environment in more detail.

The main data structure used by the physical memory manager to track physical
memory is called an arena header. Each arena header describes a free or in-use physical
memory block. There are two double-linked lists of arena headers in the system: one
that links all arena headers, and one that links all arena headers for free blocks. The free
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Fig. 6.6 16-bit physical memory map.
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list is used by the physical allocator when satistying allocation requests, and the in-use
list is used by the compactor when attempting to reclaim free space by copying seg-
ments around physical memory. The physical arena refers to all the free and allocated
physical memory and arena lists. Figure 6.7 illustrates the layout of an arena header.

Each arena header contains a next and a previous field, a next-free and a previous-
free field, the size of the object, the handle table entry of the object, the owner of the
object, a lock count for the object, some flags, and a timestamp. The timestamp indicates
the last time that the object was accessed.

The handle and owner fields that are in the arena header are kept there on behalf of
the virtual memory manager for two reasons. When a segment is present in memory and
is mapped by a descriptor and a handle table entry, the owner and handle must be saved
by the physical memory manager for later use by the virtual memory manager when the
segment is swapped out or discarded. Recall that there is no room in an HTE for this in-
formation if a segment is present. The second reason is that they are needed by the com-
pactor to tell the virtual memory manager which descriptors to update when a segment is
moved in physical memory. From the HTE, the virtual memory manager can find all the
descriptors in all contexts that map a given physical block.

The arena headers are linked using 32-bit physical pointers, and are physically lo-
cated adjacent to the physical block that they describe. When the arena is traversed, the
32-bit physical address link fields are converted to 16:16 virtual addresses using GDT
selectors reserved by the physical memory manager. Effectively, each arena header is in
its own segment, since a segment register must be reloaded when a link is traversed.
Furthermore, none of the arena headers have permanent descriptors to map them, so the
dynamic GDT mapping occurs between links also. The layout of the arena data struc-
tures in physical memory is illustrated in Fig. 6.8.

Compared to placing the arena headers in a table, this approach at first appears
nonoptimal. Placing the arena headers in a table would still require 32-bit link fields un-
less the table were restricted to 64KB (a single segment). More complex descriptor man-
agement would be needed for setting up the table, as well as logic to deal with growing
and shrinking the table dynamically. However, there are also positive side effects associ-
ated with placing the arena headers throughout physical memory. Translating any virtual
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address into the address of an arena structure is simple, since the beginning of the arena
structure is located directly beside and below the segment in physical memory.
Subtracting the size of an arena header from the base address in a descriptor yields the
physical address of the arena header for the segment.

We now describe a typical physical memory allocation scenario. A thread running
in user mode attempts to access a segment allocated with DosAllocSeg, but a segment-
not-present fault occurs. The virtual memory manager handles the fault and checks the
handle table entry to determine whether the segment is allocate on demand, discarded,
or swapped. The physical allocator is called to allocate physical memory for the seg-
ment, and employs a first-fit allocation strategy. The physical allocator scans the free list
of arena headers, searching for a block big enough to service the request. If a free block
is found that can fulfill the request, the arena header is removed from the free list. The
handle and owner of the segment previously stored in the HTE for the segment are
passed to the physical allocator as parameters of the allocation request, and are placed in
the allocated arena header. The physical address of the allocated block is returned to the
virtual memory manager. The virtual memory manager then completes the transaction
by updating the descriptor with the allocated base address. If the segment is discarded or
swapped, the loader or swapper is called to swap the segment into memory: if the seg-
ment is allocate on demand, no segment loading is necessary. Finally, the virtual memo-
ry manager validates the descriptor by setting the present bit; it then restarts the original
faulting instruction.

The scenario changes if the physical allocator fails to find an arena header on the
free list for a block large enough to satisfy the physical allocation request. Since the
allocation and freeing of small segments can cause fragmentation in the physical address
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space, there may exist enough free physical storage to satisfy the request, but it may not
be in contiguous blocks. So that enough free physical storage to satisfy the request can
be created, the compactor portion of the physical memory manager is called. The com-
pactor attempts to reclaim free storage by moving (copying) physical blocks and thus
creating a free block large enough to satisfy the allocation request. If the compactor fails
to reclaim enough storage to satisfy the request, it either discards or swaps out enough
segments to create a large-enough block. Physical memory allocations can potentially
block, and also can drive the compaction and swapping of segments in the system.

Compaction is needed because variable-length segments can fragment physical
memory. To reduce this fragmentation and to reclaim physical memory, the compactor
performs segment motion. A segment can be moved invisibly to the processes using it,
since the segment is referenced via a descriptor. The compactor interacts with the virtual
memory manager to update the base address field of the descriptors referencing moved
segments. The compactor executes only as a result of a physical allocation request; it is
serialized to move only one segment at a time. Since copying of segments can be a
lengthy operation, when the compactor is copying large segments, it yields the processor
using the TCYield interface discussed in Chapter 5. Compaction can be disabled when
the system is started.

Segments are aged in a least recently used (LRU) fashion to determine the best can-
didate for swapping or discarding. The timestamp field of an arena header is used to
record the age of a segment, and is initialized with the time at which a physical alloca-
tion occurs. Approximately four times per second, the SchedClock routine (discussed in
Chapter 5) calls the physical memory manager to age swappable segments in the GDT.
Swappable segments in the GDT can be allocated by device drivers and file systems.
Whenever a process is being context switched out, one-quarter of the process’s LDT is
aged before the new LDT is switched in. Segments are aged by scanning the segment
descriptors and checking the accessed bit to see whether the segment has been refer-
enced since the last time its age was recorded. If the accessed bit is set, the time is
recorded in the timestamp field of the arena header for the segment, and the accessed bit
is reset. The timestamp field of an arena header is also reset whenever a segment is
swapped in.

When the compactor determines that a swap out or discard operation is necessary to
satisfy an allocation request, it constructs an ordered list of the oldest segments in the
system. The compactor then discards or swaps out the segments on the list until enough
free storage is available to satisfy the original physical allocation request. If the swap
file is full and cannot be grown, the system attempts to find enough discardable seg-
ments to create sufficient free storage.

6.2.4.4 Segment Swapping

0S/2 implements segment swapping; it does not use program swapping, as used in
UNIX systems. Compaction is not a complete solution, since it does not allow more
physical memory to be allocated than exists in the computer. Swapping does soften the
physical memory barrier, and does allow programs to use more memory than is present.
A situation in which memory is 25 percent overcommitted usually performs acceptably.
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However, the relatively slow disk speeds on most 80286 systems (on the order of 20 to
80 milliseconds) prevent true demand segment swapping from being feasible in heavily
overcommitted situations. Like compaction, swapping can be disabled when the system
is started.

There are basically two routines in the swapper, called SwapOut and Swapln.
SwapOut is called only as a result of an allocation request, as described in the previous
section. Swapln is called as the result of a segment-not-present fault on a swapped-out
segment. Swapping occurs on a thread different from the thread that causes the fault.
The swapper thread is a special kernel thread that executes at privilege level 0.

The major data structure of the swapper is called the swap control table (SCT). The
SCT is composed of swap control table entries (SCTEs). Each SCTE contains flags de-
scribing the segment and the offset in the swap file of the segment. The size of a seg-
ment that is swapped out is maintained in the not-present descriptor(s) for the segment.
Figure 6.9 illustrates the swapper data structures.

When SwapOut is called, the swapper allocates an SCTE for the segment and writes
the segment to the swap file. The index into the SCT for the allocated entry is called the
swapID and is stored by the virtual memory manager in the handle table entry for the seg-
ment. The virtual memory manager marks the descriptor not present, and puts, into the
descriptor the handle to the segment, so that the segment can be located later. During a
segment-not-present fault, the virtual memory manager calls Swapln and provides the
swaplD of the desired segment and an address into which the swapper can read the seg-
ment.

The swap file is managed by the file system rather than by the swapper. Some sys-
tems allow the swapper to perform direct 1/O to the swap device for better performance,
but this approach also has drawbacks. The swapper must have intimate knowledge of the
layout of the physical swap device (usually a disk), and growing the swap file without
reformatting the swap device is difficult. The OS/2 approach keeps the swapper simple
and allows the file system to manage the swap disk. Under the FAT file system, it can
lead to some swap file fragmentation at a physical level, but the HPFS file system sup-
ports a physically contiguous swap file. Even on a FAT system, the user can move the
swap file to its own partition, resulting in a contiguous swap file.

Swap
control table

Swap file

A

SwaplD

Fig. 6.9 16-bit swapper data structures.
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Since the swapping of small segments in an overcommitted system can lead to ex-
cessive performance overhead, a swap cache is used to reduce the number of disk opera-
tions for swapping. The swap cache resides in a fixed buffer on the order of 16KB.
When SwapOut is called with a small segment, the swapper merely copies the segment
into the swap cache. When the swap cache is full, it is written to the swap file in a single
operation. Each small segment still retains its own swapID and SCTE.

6.3 0S/2 2.X MEMORY MANAGEMENT

The primary motivation behind the design of OS/2 2.X is to ensure portability. For OS/2
2.X to compete with other high-end workstation operating system platforms such as
UNIX, OS/2’s 32-bit applications, its dynamic link libraries, and the OS/2 2.X system
itself must be retargetable to other processor platforms. This requirement is especially
significant given the current trend toward generic RISC processor engines in work-
stations. This design goal represents a major departure from the design philosophy of
0S/2 1.X, which emphasizes exploitation of the 80286 processor.

The memory model of an operating system is key in providing the capability for
applications, dynamic link libraries, and the system to be recompiled when a new pro-
cessor architecture is being retargeted. The initial implementation of OS/2 2.X is tar-
geted at the 80386 processor and 80486 processors. It takes full advantage of the
capabilities of these processors that are common with most 32-bit processor engines,
and makes use of features specific to the Intel processors only in areas of DOS and 16-
bit OS/2 compatibility (see Chapter 10).

0S/2 2.X defines a 32-bit memory model that is designed to be portable to any 32-
bit uniprocessor or multiprocessor architecture including RISC platforms. Another
major design goal of the memory model for OS/2 2.X is to provide memory objects that
are greater than 64KB or larger than physical memory. The 16-bit version of OS/2
allows segments up to only 64KB, forcing applications to add logic for managing the
segmented virtual address space. OS/2 2.X provides all the same memory sharing and
memory allocation functions as does 16-bit OS/2.

6.3.1 Memory Model

The main features of the 80386 and 80486 processors are paged virtual memory and 32-
bit-wide segments, which are up to 4GB in size. A weakness with the Intel segmentation
scheme is that its memory architecture combines addressing and protection in a unique
way that is different from the scheme used by most processors. Segmentation also forces
applications to have code that implements processor-dependent addressing. A seg-
mented virtual address space is not contiguous and, therefore, provides an unnatural
memory addressing model. However, a 32-bit segment can be used to simulate a large,
flat 32-bit virtual address space that is contiguous. The flat 32-bit virtual address space
is a common feature on many processors, and it is portable.

In 80286 addressing, a segmented virtual address (selector:offset) is translated by a
descriptor into a physical address. However, on the 80386 with paging enabled, another
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level of address translation exists between the descriptor mapping and physical memory;
it is called the linear address space (see Chapter 2). On the 80386, a segmented virtual
address (16:16 or 16:32) is translated by descriptors into a 32-bit (flat) linear address,
which in turn is mapped to a 32-bit physical address by page tables. If a pair of code and
data descriptors is created that maps the entire linear address space, and is loaded into
the segment registers and never changed, the virtual address space is “flattened” and
segmentation is masked from applications. This memory model is called the flat memory
model, and is used in 32-bit OS/2.

Since segments on the 80386 have 32-bit sizes, any byte within the linear address
space can be accessed using only a 32-bit linear address without changing the segment
registers. In the flat model, a linear address is a virtual address. A flat model virtual ad-
dress is also called a 0:32 address, since the segment value is never changed and the off-
set value is a 32-bit offset. In addition to being portable, the flat model provides superior
performance over any segmented model, since it does not require segment registers to be
reloaded every time addressability to a different memory object needs to be established.

The system virtual address space is mapped by a pair of GDT code and data
descriptors with limit fields of 4GB. When a thread is executing in kernel mode or at
privilege level 0, the segment registers contain selectors for the entire 32-bit linear
address space.

The process virtual address space is mapped by a pair of GDT code and data
descriptors with limit fields of 512MB. The 512MB limit is due to the implementation
of 16-bit OS/2 compatibility and will be removed in future versions. The segment limit
of the process virtual address space is used to protect the system memory from threads
running in user mode. The system provides an independent 512MB linear address space
to each process by giving each process its own set of page tables. Like the 16-bit process
virtual address spaces, the 32-bit process virtual address space is partitioned into private
and shared regions that grow toward each other. Page tables, rather than LDTs, are used
to provide the same level of sharing found in the 16-bit system. Although LDTs are not
used for the flat model, they are used for providing compatibility for 16-bit OS/2 appli-
cations and are discussed in Chapter 10. Figure 6.10 illustrates the virtual address spaces
present in the flat model of OS/2 2.X.

4GB : ]
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Fig. 6.10 32-bit virtual address spaces.



6.3 0S/2 2.X Memory Management 165

6.3.2 Memory Objects

The smallest memory unit in the flat model is a page (4KB on the 80386), compared to a
byte in the 16-bit segmented model. Thus, the flat model is page-granular. A memory
object is not a segment in the flat model, but rather is a range of contiguous linear pages
within the process virtual address space. The base address of a memory object is aligned
on a page boundary, and the size of a memory object is a multiple of the page size.
Unlike in the segmented system, all memory objects are addressable simultaneously. No
segment registers need to be loaded, which results in optimal performance for an 80386
in protected mode. Also, since no application logic is tied to a processor-dependent
memory model, the portability requirement is met. Memory objects in the flat model are
nonrelocatable, and the pages that compose memory objects are swappable.

The use of paging allows memory objects to be larger than 64KB, and larger than
physical memory; it also allows more efficient swapping and memory overcommit algo-
rithms. Paging also allows sparse objects to be allocated. Sparse objects have some
pages that are present and some pages that are invalid. Since the flat model “flattens” the
segmented architecture, page-level protection is used to provide separation of code and
data within a process virtual address space. Each page is assigned the read-only or read-
write attribute. Although the granularity of memory protection is a page, rather than a
byte as in the segmented model, illegal memory accesses by flat-model programs are re-
ported with byte-granular accuracy.

As in the 16-bit system, there are basically four types of objects that are classified
according to the attributes of virtual address type, storage type, and the type of pages
that back that storage. Besides the method of addressing memory objects and the
attributes of pages, the memory object types in the OS/2 32-bit flat model are equivalent
to those found in the 16-bit segmented model.

Pages are also classified according to whether they are fixed, resident, swappable,
discardable, invalid, or guard. Fixed and resident pages exist only in kernel space and
are always present in physical memory. Swappable and discardable pages are allocated
by applications and by dynamic link libraries. Invalid pages are not mapped. Accessing
an invalid page causes a fault that is the equivalent of a general protection fault in the
16-bit system. Pages are also classified according to whether they are read-only (code
pages), or read-write (data pages), and whether they are accessible from user or supervi-
sor (kernel) mode. When a memory object is allocated, all the pages have the same
attributes. However, page attributes can be changed dynamically using a function of the
memory management APL

Sparse objects are a natural subsct of page-granular memory objects. A sparse
object consists of pages that have varying attributes. The flat model API allows an appli-
cation to reserve linear memory without physical memory. The virtual address space for
the object is reserved and the pages are set to invalid. Linear pages that have been
reserved and set invalid are said to be uncommitted. When the application needs to uti-
lize some uncommitted but reserved pages, it can dynamically request the system to
commit the pages for usage. When a page is committed, the system then reserves physi-
cal or swap memory for backing up that page, and the page is accessible by the
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requestor. If an application accesses an uncommitted page, the result is the same as a
general protection fault in 16-bit OS/2, since the page is invalid.

A guard page is a special type of committed page used to allow user thread stacks to
grow dynamically. Thread stacks are sparse objects with a guard page between the stack
pages that have been committed and those that are uncommitted. When an instruction
causes the guard page to be accessed, the system removes the guard attribute from the
faulting page, resulting in a regular committed page. Then, an exception is generated
that allows the thread to commit the next page in the stack as a guard page, and then to
resume the faulting instruction. The use of guard pages, user thread stack growth, and
the associated exceptions are discussed further in Chapter 7.

As in the 16-bit segmented model, there are both private and shared virtual address-
es, and private and shared storage. Instead of the private and shared addresses being
defined by different descriptors in an LDT, they are represented by contiguous regions
in the process virtual address space that grow toward each other. The level of sharing in
the segmented system is achieved using a set of page tables, instead of an LDT, for each
process virtual address space.

API-allocated objects and EXE read-write data objects are private-address and
private-storage objects. Private addresses and shared storage are used for mapping EXE
code and read-only objects, as in the 16-bit system. Shared-address objects also have the
classifications found in the 16-bit system. Shared-address objects are mapped at the
same virtual address in all processes. Analogous to reserving shared LDT descriptors in
the 16-bit segmented model, the linear pages representing objects in the shared address
region are reserved across all processes to allow shared objects to reside at the same
address in all contexts. Shared objects with shared storage are allocated using the shared
memory API or during the load-time allocation of dynamic link libraries’ shared code
and data objects. Instance data objects also exist in which there is a shared address with
a private storage copy of the object for each process that has attached to it for dynamic
link libraries. As in the 16-bit system, instance objects are used by DLLs for per-process
data structures.

6.3.3 0S/2 2.X Memory Management API

This section describes the functions of the 32-bit OS/2 memory management APIL.

6.3.3.1 Private Memory

Private memory is allocated using DosAllocMem. DosAllocMem allows the requestor to
allocate an object up to the size of available memory in the process virtual address
space, and returns a 32-bit offset to the start of the allocated memory object. The memo-
ry allocation granularity of the system is a 4KB page. All memory objects are aligned on
linear page boundaries, and their sizes are rounded up to the closest multiple of 4KB.
Memory objects allocated with DosAllocMem are composed of swappable pages.
Allocation flags that are supplied during requests allow the requestor to determine the
memory object’s attributes, such as read-only, read-write, committed, decommitted, or
guard. All the pages within an object have the same attributes when the object is
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allocated. If the pages are not committed when the object is allocated, the system
reserves only linear address space, creating a sparse object. If uncommitted pages are
accessed by a user-mode thread, a protection fault is generated.

Private memory is deallocated by a call to DosFreeMem. The base address of a
valid memory object is the only valid parameter accepted by DosFreeMem. Since flat
memory objects are not relocatable, there is no memory object reallocation API, as there
is in the 16-bit system. Since movement of objects within the address space does not
occur, applications use sparse objects and commit pages dynamically in situations where
data structures or memory pools must be extended.

6.3.3.2 Shared Memory

Shared-memory objects are allocated from the shared address region of the process vir-
tual address space. As in the 16-bit system, the shared-memory APIs provide support for
both named and give-get shared memory. Both API-allocated shared-memory types use
shared addresses and shared storage. The functions of the 32-bit shared-memory API are
similar to those of the 16-bit shared-memory API, but there are some differences. The
API performs operations on flat memory objects that are referenced by a 0:32 virtual
address, instead of segments that are referenced by a 16:16 virtual address. Also, the
API function names refer to memory objects, instead of to segments.

The previous paragraph stated that the 16-bit and 32-bit APIs are similar but not
identical. All shared memory—whether it is named or give-get—is allocated using the
DosAllocSharedMem function. Allocation flags passed to DosAllocSharedMem indicate
whether the shared object is giveable or getable, and whether the pages are initially
committed or uncommitted. An object-name parameter can be used optionally to create
a named shared-memory object. Give-get shared objects are unnamed; attempting to cre-
ate one with a name results in an error. Also, API-allocated shared-memory objects can
be allocated as sparse (uncommitted) objects, and contain swappable pages.

Named shared-memory objects are accessed by processes other than the creator by a
call to DosGetNamedSharedMem. Giveable shared objects are given to other processes
using DosGiveSharedMem, and getable shared objects can be mapped into a process’s
virtual address space by a call to DosGetSharedMem. Since each process has its own set
of page tables for mapping the shared-memory object, each process that attaches to the
shared memory can set its own attributes for the pages in the shared object.
DosFreeMem is used to free shared memory-objects as well as private memory objects.
Except for the basic shared memory allocation API, the shared-memory APIs are the
same as the 16-bit versions.

6.3.3.3 Memory Object Control

Each page within a flat-model memory object can have its own set of attributes.
DosQueryMem allows a thread to query the attributes of a linearly contiguous range of
pages within a process virtual address space. DosQueryMem accepts a base address pa-
rameter and size that define the region of pages to be queried. This memory manage-
ment API is the only one that accepts an address range that is not entirely within a single
memory object. DosQueryMem scans the region of pages beginning at the base address
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until the entire range of pages is scanned, a page with a nonmatching set of attributes is
encountered, or the first page of a memory object is encountered. DosQueryMem returns
the attributes of the pages inﬂthe region and the size of the region scanned. Therefore, all
the pages ultimately scanned in a single request have the same attributes. Attributes re-
turned indicate whether the range of pages is committed, free (never allocated and there-
fore invalid), reserved (uncommitted), read-only, execute-only, read-write, or guard.

DosSetMem performs the complementary function of setting the attributes of a
range of pages within a memory object. DosSetMem can be used to create a sparse ob-
ject by committing and decommitting pages within a memory object. It also can be used
to change the page type. Both DosQueryMem and DosSetMem can be used on shared
and private memory objects. When a shared page is committed, it is committed in all
contexts that have attached to it. The page access protection applied to a committed page
in another context is the same access protection as that specified when the object was
originally allocated or attached to that context. A page in a shared object cannot be de-
committed unless a control flag is set when the object is allocated that explicitly allows
pages to be decommitted.

6.3.3.4 Memory Suballocation

The memory suballocation API also exists in the 32-bit system to manage small memory
objects, which are less than one page (4KB). Since the granularity of allocation in the flat-
model system is a page, a page is the minimum-sized object that can be allocated. If an
application requires many small memory objects smaller than one page, a heap or memory
suballocation pool should be used to divide a large object into many small ones. This strat-
egy prevents fragmentation of the process virtual address space and waste of system
resources, which would occur if whole pages were used for each small object.

The memory suballocation API in 32-bit OS/2 is similar in basic function to its 16-
bit counterpart, but has several added features. Since the flat model supports memory
objects larger than 64KB, a suballocation pool can be arbitrarily large. Also, the pro-
grammer has the option of using sparse heaps, in which the pages within the heap object
are committed dynamically by the suballocation API as needed. This dynamic commit-
ment is in contrast to requiring all the pages in the heap to be committed at all times.
Although the 16-bit version has always provided serialization of threads so that shared
heaps are supported, serialization is an option for increasing performance when the heap
is a private one.

DosSubSetMem is used to initialize a heap inside a memory object. When
DosSubSetMem is called, flags are provided that tell the suballocator whether the object
is sparse, or whether serialized access to the heap is required. The flags also indicate
whether the heap is being created for the first time, or whether another process is attach-
ing to a shared heap. Unlike in the 16-bit version of suballocation, if a shared heap is be-
ing used, all processes must attach to the shared memory in which the heap resides, and
must call DosSubSetMem to notify the system. Also contained in the flags is a bit that
allows a current heap to be grown.

DosSubAllocMem is used for allocating memory from the heap, and DosSubFreeMem
is used to free memory allocated from the heap. DosSubUnsetMem allows the memory
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suballocator to clean up the resources used to manage the heap. Like the 16-bit memory-
suballocation API, the 32-bit version resides in a DLL and runs in user mode.

6.3.3.5 Dynamic Linking

The 32-bit dynamic linking APIs are essentially the same as the 16-bit versions.
DosExecPgm is used to load programs, as described in Chapter 5, and the program load-
er performs all load-time memory allocations. As in the 16-bit system, dynamic linking
occurs at both load time and run time.

The 32-bit run-time dynamic linking API is a flat-model analogue of the 16-bit ver-
sion. DosLoadModule loads a selected DLL and any other modules it needs to complete
its load at run time. The process loading or attaching to the library is returned a 32-bit
handle to the loaded module. Once a process has loaded a module, the handle may be
used on subsequent DosQueryProcAddr requests to retrieve the address of entry points
within the module. When the process has finished using the shared library, it calls
DosFreeModule, supplying the handle to notify the system that the process has finished
using the module.

6.3.4 0S/2 2.X Memory Management Kernel

The 32-bit kernel is based on the flat memory model, rather than the segmented model
of the 16-bit kernel. Also, a greater percentage of the 32-bit kernel is swappable than of
the 16-bit kernel, due to paging. The kernel consists of basically the same memory man-
agement components: the virtual memory manager, loader, physical memory manager,
and swapper. However, the physical memory manager is replaced by the page manager
and the swapper is replaced by the page swapper. The virtual memory manager is
responsible for implementing the memory management API, kernel memory allocators,
descriptor table management, virtual address space management and object manage-
ment. The loader is responsible for program loading, dynamic linking, and demand load-
ing of pages from executable and dynamic link library files. The page manager controls
the paged physical memory resource, and the page tables that map linear addresses onto
physical addresses. The page swapper is used to extend the physical memory resource so
that more physical memory can be allocated than exists in a machine.

6.3.4.1 Virtual Memory Management

The OS/2 2.X virtual memory manager provides the flat-model memory management
APIs. As described in the API section, these APIs have the equivalent functions of the
segmented APIs, but they are for flat memory objects. The virtual memory manager pro-
vides kernel memory allocators, which are used to manage kernel memory. It also per-
forms descriptor management to map the system virtual address space and the process
virtual address spaces to linear memory. The virtual memory manager maintains regions
of linear address space for the private and shared regions within a process, and for the
system region that contains the system memory. Object records are used for tracking
system and user memory objects that are mapped into the address spaces. When allocat-
ing an object, the virtual memory manager calls the page manager to reserve page tables
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for the virtual memory. The page manager is also called when virtual pages are commit-
ted and uncommitted, and during context switch operations.

6.3.4.1.1 Kernel Memory Allocators Kernel memory allocators are used to manage
kernel memory and to reduce fragmentation of memory within the kernel. They are used
by most kernel components such as multitasking and interprocess communication. There
are three kernel memory allocation interfaces—the block management package (BMP),
the resident heap, and the swappable heap. The BMP routines manage kernel memory
pools of fixed-length objects. The use of the BMP reduces fragmentation within the ker-
nel by allowing objects to be packed within a page. The BMP also supports sparse
arrays, where pages within a large array are committed and decommitted dynamically.
Memory pages are fixed once they are allocated and committed through the BMP. The
BMP provides initialization, allocation, free, query, and set interfaces for other kernel
components to use.

The resident heap is used for managing variable-length kernel memory objects with-
in the kernel. All objects allocated from the resident heap are packed into fixed pages.
The resident heap manager provides UNIX-like malloc and free style interfaces for allo-
cation and deallocation of memory. The swappable heap is used to manage variable-
length kernel memory objects that can be swapped. The kernel components that use
swappable kernel memory must deal with the fact that they can be preempted when at-
tempting to access that memory. The swappable heap manager also provides interfaces,
called smalloc and sfree, similar to those of the resident heap manager. There are sepa-
rate read-write and read-only versions of both the resident and the swappable heaps.

6.3.4.1.2 Descriptor Management The descriptor management performed by the vir-
tual memory manager is much simpler than that of the 16-bit version of OS/2. The GDT
is used to map the process and system virtual address spaces to linear memory.
However, no LDTs are necessary in the 32-bit system, although they exist for 16-bit
OS/2 compatibility. The usage of LDTs in the 32-bit system is described further in
Chapter 10.

The system address space maps the current process virtual address space and the sys-
tem memory region, which contains the kernel’s code and data. The current process virtual
address space is a subset of the system virtual address space. The system is protected from
the user-mode threads using segment-limit protection. If a user-mode thread attempts to
use an address past the limit of the process virtual address space (512MB), a general pro-
tection fault occurs. Since each address space has both a code and a data segment alias,
separation of read-only (code) and read-write objects within the process virtual address
space is implemented using page-level protection attributes instead of segment attributes.

The system and process virtual address spaces are mapped using four descriptors to
emulate two large segments. The first pair of descriptors, one code and one data, is
privilege level 0 with a limit of 4GB. These two descriptors are loaded into the segment
registers when a thread is in kernel mode, and represent the system virtual address
space. The other pair of descriptors, also code and data, is privilege level 3 and has lim-
its of 512MB. This pair of descriptors is loaded into the segment registers when a thread
is executing in user mode. The limitation of 512MB for each process virtual address
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space is due to the 16-bit OS/2 compatibility implementation; it is discussed further in
Chapter 10. Figure 6.10 illustrates the 32-bit virtual address spaces.

Only the one pair of user space GDT descriptors is used for all processes in the sys-
tem. Descriptors point to linear memory, and the linear memory is in turn mapped to the
physical memory by page tables. Since each process has its own linear address space,
only one set of descriptors is needed. Because a separate linear address space defined by
page tables is provided for each process, processes are encapsulated and are protected
from one another. During a context switch, the page manager switches the per-process
page tables and flushes the TLB; no segment register reloading is necessary.

6.3.4.1.3 Linear Address Management In the 32-bit version of OS/2, arenas are
used by the virtual memory manager to manage regions of linear address space. Arenas
are similar to the physical arena used to manage physical memory found in 16-bit OS/2.
However, in the 32-bit system an arena represents a contiguous subset of virtual (instead
of physical) address space, and there are several arenas in the system. There are three
arena types: the system arena, the shared arena, and the per-process private arenas.
Figure 6.11 illustrates the arenas in the system.

The system arena maps the range of system linear addresses above the process vir-
tual address space. The system arena is backed by a single set of page tables that is
shared in the context of all processes. System memory objects are accessible only by a
thread in kernel mode or privilege level 0, and are mapped into the system arena.

Each process has its own private arena that is used for mapping private objects,
such as API-allocated data and EXE code. The private arena maps the private addresses
of a process much as do the private selectors in a process’s LDT in the 16-bit system.
The private arena begins at the low addresses in each process virtual address space, and
is guaranteed to contain a minimum of 64MB of available private address space when a
process is created. Since the private arena starts at the low addresses, EXE code is
guaranteed to be loaded at the same virtual address in all process contexts. Therefore, if
the same program is loaded into multiple processes, the EXE code is loaded into the
same private virtual address in each context, and a single copy of the code is shared.
Recall that EXE code is a private-address, shared-storage memory object.

4GB Svst System
51908 ystem arena page tables
Shared arena |||
Unallocated | Per-process
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0 per process

Fig. 6.11 32-bit arena structures.
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The shared arena maps shared-address objects such as DLL code and data in the
process virtual address spaces. The shared arena is shared by all processes and is analo-
gous to the shared LDT selectors in the 16-bit system. Using a single shared arena
ensures that all shared address memory objects have the same virtual addresses in all
process contexts. The shared arena begins at the top of the process virtual address space
and grows toward lower addresses and the private arena. The minimum size of the
shared arena is 64MB of shared address space.

Each process has its own set of page tables that maps the private and shared arenas.
This strategy allows per-process instance shared objects and per-process selective access
to the memory objects in the shared arena.

The private and shared arenas grow toward each other. The 64MB minimum arena
size guarantee serves several purposes. Since shared objects have the same address in all
contexts, growth of the shared arena can restrict the maximum possible size of a new
process’s private arena. Also, a process with a large amount of private memory can po-
tentially prevent from being loaded a future process that dynamically links to a huge
amount of shared memory, since the shared arena cannot grow “lower” than the largest
private arena. This side effect also occurs in the 16-bit system, and is handled by setting
of the ratio of shared memory to private memory at 3:1 (shared selectors to private
selectors). The 32-bit arena implementation guarantees a large amount of shared and pri-
vate virtual address space, and lets float the ratio of shared to private memory, depend-
ing on the dynamics and requirements of the processes in the system.

An arena is represented by a circular double-linked list of arena records sorted in
ascending order of base virtual address. Arena records serve a purpose similar to that
served by arena headers in the 16-bit system, but are much more specialized than their
counterparts. Arena records are allocated out of a fixed sparse array managed by the
BMP. So that space in data structures that reference arena records is conserved, a maxi-
mum of 64K arena records exist in the system. This allows each arena record to be
accessed by a 16-bit handle, which is an index into the array of arena records. As a
result of the 16-bit handle, instead of a 32-bit linear address, being used, there is large
memory savings in structures that reference or link to arena records, including the arena
records themselves. Figure 6.12 illustrates the layout of an arena record.

Since arena records are double linked, each arena record has a previous and a next
link that together form a 16-bit handle to an arena record. The flags in the arena record
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Size

Context handle or

Object handle PTDA handle

Fig. 6.12 32-bit arena record.
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indicate the type of arena record and the disposition of the fields within the record. The
virtual page number field of the arena record indicates the base linear address of the
allocated region, and the size represents the size of the allocated region in 4KB pages.
The object handle and context/PTDA handle fields are used to cross-link the arena
record with the data structures representing the memory object allocated at the base vir-
tual address. This linkage is described in more detail in Sections 6.3.4.1.4 and 6.3.4.1.5.

Each arena record maps allocated linear memory—there are no arena records for
unallocated linear memory. Free regions are represented by consecutive arena records
that are not contiguous; that is, the base linear address plus the size of the nth record is
less than the base linear address of the n+1st record. The calculation for finding free
space is efficient and results in fewer arena records. Figure 6.13 illustrates the layout of
the private and shared arenas for three processes.

There are three types of arena 