IBM 3270
Workstation Program

Programming
Guide

‘ 84X0390
SA23-0343-0

=]

Programming
Guide

First Edition (April 1987)

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM’s licensed program may be used. Any functionally
equivalent program may be used instead.

Publications are not stocked at the address given below. Requests for IBM
publications should be made to your IBM representative or to the IBM branch
office serving your locality.

A form for readers’ comments is provided at the back of this publication. If the
form has been removed, address comments to IBM Corporation, Department
95H/998, 11400 Burnet Road, Austin, TX 78758. IBM may use or distribute
whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

© Copyright International Business Machines Corporation 1987

Preface

This manual describes how to use the services provided by the Application
Program Interface (API) for the IBM 3270 Workstation Program (also
referred to as the workstation program).

This book consists of five parts:

e The chapters in Part 1 introduce the Application Program Interface
(API) and the two types of services you can use:

— Application program services that most application programs will
use. Described also are some supervisor services that directly
support the application program services.

— Those supervisor services that allow application programs to run
together under the multitasking capabilities of the workstation
program.

e The chapters in Part 2 tell you how to invoke the application program
services. A sample block of code is provided for each service, so that
you can see how it is used in context.

e The chapters in Part 3 describe, and tell you how to invoke, the
supervisor services. A sample block of code is provided for each
service, so that you can see how it is coded in context.

o The chapters in Part 4 contain representative sample programs using
most of the services described in Parts 2 and 3.

e Part 5 consists of appendixes with specialized information. In
particular, Appendix A provides information on scan codes and shift
states for all supported keyboards. Appendix A also contains
ASCII/ASCII-mnemonic values common to all languages and the
additional values specific to U.S. English.

You will also want to use Appendix H, “Return Codes.”

Preface 1il

Enhancements

The 3270 Workstation Program Programming Guide contains revisions to
the 3270 PC Control Program Programming Guide, and incorporates the
following new material:

o Non-3270 PC Hardware. IBM Personal Computer AT® and XT system
units, without the keyboard adapter and 3270 PC display adapter cards
installed, are supported in this release. IBM Personal Computer AT
and XT keyboard foldouts can be found at the back of this book.

® ASCII keystroke API support. The Keyboard Service API allows
applications to send and receive keys in ASCII or ASCII mnemonics.
The 3270 Emulation Services API allows you to receive keystrokes in
ASCII. Chapters 5 and 9 contain more information on ASCII keystroke
API support.

e Keystroke API Support for READ. Keystroke API support for READ
now allows you to receive keys with a NOWAIT option which prevents
you from being suspended while waiting for input on your queue.

e Qutbound Data Stream Preprocessor Option. ODSP allows the
preprocessing of a 3270 outbound data stream which can reduce the
amount of data traffic flowing through a network. See Appendix I for
more information on ODSP.

e SPIF Utility Enhancement. The SPIF utility has been enhanced to
allow you to run an application that installs an interrupt handler which
changes to its own stack and then enables interrupts. This may cause
unpredictable results on systems with an XMA card installed unless you
use the SPIF utility to update the INDIBM2.SIF file first. See the IBM
3270 Workstation Program User’s Guide and Reference for more
information about updating INDIBM2.SIF.

Prerequisites for Your Using the API

The API is written for application and system programmers who are
responsible for the design and implementation of assembler-language
programs for the IBM 3270 Personal Computer.

To use the API, you must have available the following software:

e DOS3.2

The IBM 3270 Workstation Program

The IBM Macro Assembler or an equivalent assembler written for the
Intel 8088 architecture.

v

Prerequisite knowledge needed to be able to use the information in this
manual includes:

Proficiency in the use of the IBM Personal Computer Macro Assembler
language

Knowledge of the steps required to assemble, link, and run a macro
assembler program on the IBM 3270 Personal Computer

Familiarity with the DOS function calls that can be used in a macro
assembler program

Familiarity with the IBM 3270 data stream.

Related Publications

The following books are related to the 3270 Workstation Program and its
prerequisite hardware and software:

Guide to Operations

The Guide to Operations shipped with your system unit contains
information about your work station hardware. It tells you how to set
up, use, and diagnose problems with the hardware.

3270 Personal Computer Hardware Introduction and Preinstallation
Planning?

This book contains information to help evaluate and plan for the 3270
PC hardware requirements at your site. For example, it lists the
physical dimensions and electrical requirements for all 3270 PC
hardware models.

The following items are shipped with the workstation program
diskettes:
— 3270 Workstation Program User’s Guide and Reference

This book contains information about setting up and using the

workstation program.

— 8270 Workstation Program Problem Determination Guide and
Reference

Contact your local IBM sales representative for information on how to obtain
copies of these books.

Preface V

This book explains the procedures, messages, and return codes that
will help you solve software problems.

— 3270 Workstation Program Keyboard Quick Reference Cards

These cards are keyboard-specific synopses of information from the
User’s Guide and Reference. You can use the one that relates to
your keyboard for quick reference. There are three cards in the
workstation program package:

e 3270 PC keyboard Quick Reference
e Enhanced PC keyboard Quick Reference
e AT and XT keyboard Quick Reference

— 3270 Workstation Program Keyboard Templates

The keyboard templates provided in the package assist you in using
the workstation program functions on your particular keyboard.
There are three templates in the package:

e Enhanced PC keyboard template
o AT keyboard template
o XT keyboard template

— Online tutorial diskette (Helper)

This diskette contains introductory information and practice
exercises to help in learning to use the 3270 Workstation Program.

3270 PC High Level Language Application Programming Interface
(HLLAPI)?

The diskette and book that comes in this package make it possible for
you to write application programs in BASIC, Pascal, or COBOL
languages to use the API functions provided with the 3270 Workstation
Program.

The IBM Programmer’s Guide to the Server-Requester Programming
Interface for the IBM Personal Computer and the IBM 3270 PC?

This book explains how to write PC applications that request services
from an application at an IBM System/370 type host system. In this
relationship, the PC application is called the requester and the host
application is called the server. This book also contains the return
codes that are generated at the work station if problems occur in
transmitting requests or replies.

2

Contact your local IBM sales representative for information on how to obtain
copies of these books.

vi

For information on IBM Personal Computer DOS, refer to the DOS manuals
that were shipped with the version of DOS you are using.

For information on IBM Personal Computer assembler language, use this
manual:

e IBM Personal Computer Language Series: Macro Assembler?

Provides a reference for experienced assembler language programmers
who use the IBM Personal Computer Macro assembler. Specific
information is provided on how to use the Macro assembler,
cross-reference facilities, pseudo-operations, and machine instructions.
(Includes diskette.)

For information on the IBM 3270 data stream, use this manual:

e IBM 3270 Information Display System: Data Stream Programmer’s
Reference?

Provides information for programmers who need to know what is
involved in using the 3270 data stream to produce panels or information
at displays and printers.

3 Contact your local IBM sales representative for information on how to obtain
copies of these books.

Preface Vil

Contents

Part 1. Introduction to the API

Chapter 1. Functions the API Provides i ee. 141
Overview of API Services0 it 1-2
Terms You Needto Know 1-3
Examples of Usingthe API i, 1-4
Simplifying Setup and Control of Multiple Host Sessions 14
Using the Work Station Control Functions of the IBM 3270 Personal
Computer e 1-5
Enhancing Interaction between the Operator and a Host 1-5
Extending the Workstation Program through the Use of System
Extensions e e e e e e 1-5
The Application Program Services ..,ccuiineeen... 1-5
Session Information Servicesc.coiiiiiiiiina.n 1-6
Keyboard Servicesc. .0 1-6
Window Management Servicesccuinnn.... 1-6
Host Interactive Servicesc.coiiiniiiinnennnn.n 1-6
Presentation Space Servicesttt 1-6
3270 Keystroke Emulation Servicesc..... 1-7
Copy Servicest e PR 1-7
Translate Servicet e 1-7
Operator Information Area Services 1-7
Multiple DOS Support Services 1-7
The Supervisor Servicesot 1-7
Supervisory Object Servicestiirinnnnn. 1-8
Request Servicesu i e 1-8
Task State Modifier Servicesc.c.0iiiiune.... 1-8
Semaphore Management Services un.... 1-8
Logical Timer Management Services 18
Fixed-Length Queue Management Services 1-8
Interrupt Handler Management Services 1-9
Environment Manager Servicescc.uiiineennenn.. 1-9
Using the Application Program Interface 1-9
Chapter 2. Programming Considerations 2-1
Introduction e 2-2
System Information Files 2-2
Program Information Files 2-3
Creating and Modifying Program Information Files (PIFs) 2-4
Restrictions on Running under the Workstation Program 2-5
Guidelines for Running under Multi-DOS 2-6
How Multi-DOS Affects Application Program Performance 2-7
Using the Interrupt X‘10’ Function 2-8
Tips on Writing Applications to Run in Multi-DOS 2-9
When Personal Computer Sessions Will Be Suspended 2-10
Non-3270 PC Hardware Restrictions 2-11

Determining the Type of PC Your Application Program Is Running On 2-13
Determining the Level of the Control Program or the Workstation
Program ThatIsLoaded, 2-13

Contents 1X

Part 2. Application Program Services
Conventions Used in the API Service Descriptions

Chapter 3. Coding Supervisor Services D 03 |
Introduction i e e e 3-2
Obtaining the Gate Name for the Services Your Application Program
Wil Use ...t e e e e et 3-2
Obtaining the Results of Services You Have Requested
Asynchronously e e 3-3
Creating Fixed-Length Queue Entries 3-3
Obtaining Data from a Fixed-Length Queue 3-3
Deleting Fixed-Length Queues 0. 34
Requesting the Supervisor Servicescoviivreneen.. 34
Supervisor Service X‘81’: Name Resolution 3-5
Supervisor Service X‘83’: Get Request Completion 3-7
Supervisor Service X‘04’: Create Fixed-Length Queue Entry 39
Supervisor Service X‘13’: Dequeue Data 3-12
Supervisor Service X‘06’: Delete Entry 3-15
Chapter 4. Coding Session Information Service Requests 4-1
Introduction e 4-2
Requesting the Session Information Services 4-3
Return Codes for the Session Information Services 4-4
Session Information Service X‘01: Query SessionID 4-5
Session Information Service X‘02’: Query Session Parameters 4-10
Session Information Service X‘04’: Detach SessionID 4-14
Session Information Service X‘05”: Attach SessionID 4-17
Session Information Service X‘06’: Query Windows in Environment . 4-20
Session Information Service X‘07”: Query Environment of Window .. 4-23
Session Information Service X‘08’: Query PC Session Program
Information File (PIF) Information 4-26
Session Information Service X‘0A’: Query Base Window 4-30
Session Information Service X‘0B’: Query Session Cursor 4-33
Chapter 5. Coding Keyboard Service Requests 5-1
Introduction e e e e e e 5-2
Scan Code/Shift Statesc.c.iiiiiirinernnenn 5-3
ASCIT/ASCII MNemonicCs ... cui it iie et 5-7
Keyboard Services0ttt 5.7
Requesting the Keyboard Servicesco. oot 5-8
Return Codes for the Keyboard Services 5-8
Keyboard Service X‘01’: Connect to Keyboard 5-9
Keyboard Service X‘02’: Disconnect from Keyboard 5-13
Keyboard Service X‘03": ReadInput 5-16
Keyboard Service X‘04: Write Keystroke 5-22
Keyboard Service X‘05”: DisableInput: 530
Keyboard Service X‘06’: Enable Input 5-33
Keyboard Service X‘07": Post Status Code 5-36

Chapter 6. Coding Window Management Service Requests 6-1
Introduction e e 6-2

Requesting the Window Management Services 6-5
Return Codes for the Window Management Services 6-6
Window Management Service X‘01”: Connect to Work Station Control 6-7
Window Management Service X‘02”: Disconnect from Work Station
Control e 6-11
Window Management Service X‘03”: Add Window 6-14
Window Management Service X‘04”: Change Window Position on
SN .. e e e e 6-17
Window Management Service X‘05": Change Window Size 6-21
Window Management Service X‘06’: Change Window Color 6-25
Window Management Service X‘07’: Change Window Position on
Presentation Space 6-29
Window Management Service X‘08’: Change Hidden State 6-33
Window Management Service X‘09”: Change Enlarge State 6-36
Window Management Service X‘0A’: Change Screen Background ... 6-38
Window Management Service X‘0B’: Query Window Position on
S CrEeN . .. e 6-41
Window Management Service X‘0C’: Query Window Size 6-44
Window Management Service X‘0D’: Query Window Colors 6-47
Window Management Service X‘OE’: Query Window Position on
Presentation Spacet e 6-51
Window Management Service X‘0OF’: Query Hidden State 6-54
Window Management Service X‘10": Query Enlarge State 6-57
Window Management Service X‘11": Query Screen Background Color 6-60
Window Management Service X‘12”: Query Window Names 6-63
Window Management Service X‘13™: Clear Screen 6-66
Window Management Service X‘14’: Select Active Window 6-69
Window Management Service X‘15”: Redraw Screen 6-72
Window Management Service X‘16”: Redraw Window 6-75
Window Management Service X‘17": Delete Window 6-78
Window Management Service X‘18": Query Active Window 6-81
Window Management Service X‘19”: Query Active Screen 6-84
Window Management Service X‘1A’: Query Window Attributes 6-87
Window Management Service X‘1B’: Change Window Attributes 6-92
Window Management Service X‘1C’: Select Active Screen 6-98
Chapter 7. Coding Host Interactive Service Requests 7-1
Introduction e 7-2
Requesting the Host Interactive Services 7-2
Return Codes for the Host Interactive Services 7-3
Host Interactive Service X‘01’: Connect to Host Session 7-4
Host Interactive Service X‘02": Disconnect from Host Session 7-11
Host Interactive Service X‘03": Read Structured Field 7-15
Host Interactive Service X‘04’: Write Structured Field 7-20
Host Interactive Service X‘05”: Define Buffer 7-25
Chapter 8. Coding Presentation Space Service Requests 8-1
Introduction 8-2
Requesting the Presentation Space Services 8-2
Return Codes for the Presentation Space Services 8-2
Presentation Space Service X‘01’: Define Presentation Space 8-4
Presentation Space Service X‘02": Delete Presentation Space 8-11
Presentation Space Service X‘03’: Display Presentation Space 8-14
Contents X1

Presentation Space Service X‘04’: Set Cursor Position 817
Presentation Space Service X‘05": Switch Presentation Space 8-21

Chapter 9. Coding 3270 Keystroke Emulation Service Requests . 9-1

Introduction i e 9-2
Field Attribute Definition for 3270 Keystroke Emulation 9-2
Presentation Space Format for 3270 Keystroke Emulation 94
Requesting the 3270 Keystroke Emulation Services 9-5
Return Codes for the 3270 Keystroke Emulation Services 9-5

3270 Keystroke Emulation Service X‘01’: Connect for 3270 Keystroke

Emulation i e e e 9-7
3270 Keystroke Emulation Service X‘02’: Disconnect for 3270

Keystroke Emulation i, 9-10
3270 Keystroke Emulation Service: Read Attention Identifier (AID)

Key . e e 9-13
Chapter 10. Coding Copy Service Requests 10-1
Introduction i e e e 10-2

Requesting the Copy Services 10-3
Return Codes for the Copy Services e e 10-4

Copy Service X01’: Copy Stringi .. 10-5

Copy Service X‘02: Copy Block 10-12

Copy Service X‘03’: Connect for Copy to PC Session 10-19

Copy Service X‘04’: Disconnect for Copy to PC Session 10-22

Chapter 11. Coding Translate Service Requests ceee. 11-1

Introduction i e e e 11-2
Requesting the Translate Service 11-2
Return Codes for the Translate Service 11-2

Translate Service X‘01’: Translate Data 11-4

Chapter 12. Coding Operator Information Area Service Requests 12-1

Introduction i e e e 12-2
Requesting the Operator Information Area Services 12-3
Return Codes for the Operator Information Area Services 12-3

Operator Information Area Service X‘01’: Read Operator Information

Arealmage i e 124

Operator Information Area Service X‘02’: Read Operator Information

ATea GrOUD .« ot i ittt e e e e e e 12-7

Chapter 13. Coding Multi-DOS Support Service Requests 13-1

Introductiont e e 13-2
Requesting the Multi-DOS Support Services 13-2
Return Codes for the Multi-DOS Support Services 13-3

Multi-DOS Support Service: Query Environment Size 134

Multi-DOS Support Service: Asynchronous DOS Function Requests 13-7

Multi-DOS Support Service X‘01”: Get Storage 13-12

Multi-DOS Support Service X‘02’: Free Storage 13-15

Multi-DOS Support Service X‘03”: Set Storage Allocation 13-18

Part 3. Supervisor Services
Conventions Used in the API Service Descriptions

xii

Chapter 14. Supervisor Services e et ettt . 1441

Introduction e e 14-2
Supervisory Object Creation and Deletion 14-2
Tasks e T 14-2
CompPONENtst e e 14-3
Semaphores e 14-4
Fixed-Length Queuesciiiin i innnena. 14-4
Gates ..o e e e e e e e 14-5
User Exit Tablest 14-5
The Supervisor Call Instruction (SVC) Table 14-5
Creating Objects with Names 14-5
Supervisory Object Services Your Application Program Can Use . 146
Task Requeststtt it i iieenn 14-6
Useof Wait Statesttt 14-7
Sending a Request to Another Task 14-8
Receiving a Request from Another Task 14-8
Replying to a Request from Another Task 14-9
Obtaining Request Completion from Another Task 14-9
Task Request Services Your Application Program Can Use 14-9
Task State Modifiersc.ii i, 14-10
Dispatch Cycles i i e 14-10
Task Dispatching Procedure 14-10
Task Dispatch Activity 14-11
Task Dispatcher Statesttt eiiinneeen.. 14-11
Task State Modifier Services Your Application Program Can Use . 14-12
Semaphore Managementc.uiiuuiinerneennnen.s 14-13
Considerations for Using Code Serialization Semaphores 14-13
Restrictions on the Use of Semaphores 14-13
Semaphore Management Services Your Application Program Can
USE i e e 14-14
Logical Timer Management00 iieiurnien.. 14-14
Logical Timer Management Services Your Application Program
Can Use ...t i e e e e e e 14-15
Fixed-Length Queue Managementc..u... 14-15
Fixed-Length Queue Management Services Your Application
Program Can Use00ttt 14-15
Interrupt Handler Management 14-15
Hardware Interrupt Handlers 14-16
Software Interrupt Handlers 14-17
Interrupt Handler Management Services Your Application
Program Can Use i, 14-19
Chapter 15. Coding Supervisory Object Services 15-1
Introduction e e 15-2
Requesting the Supervisory Object Services 15-3
Return Codes for the Supervisory Object Services 15-3
Supervisory Object Service X‘92’: Create Task Entry 15-4
Supervisory Object Service X‘93’: Create Component Entry 15-8
Supervisory Object Service X‘94’: Create Semaphore Entry 15-11
Supervisory Object Service X‘04’: Create Fixed-Length Queue Entry 15-14
Supervisory Object Service X‘OA’: Create Gate Entry 15-17
Supervisory Object Service X‘97’: Create User Exit Table Entry 15-21

Contents X111

Supervisory Object Service X‘OE’: Install User Exit Table Entries .. 15-24

Supervisory Object Service X‘81’: Name Resolution 15-27
Supervisory Object Service X01”: ID Resolution 15-30
Supervisory Object Service X‘06’: Delete Entry 15-32
Chapter 16. Coding Request Services ceereeeesess 16-1
Introduction e 16-2

Requesting the Request Services 16-2

Return Codes for the Request Services 16-2
Request Service X'09’: Makea Request 16-3
Request Service X‘96”: GetaRequest 16-8
Request Service X‘82": ReplytoaRequest 16-11
Request Service X‘83’: Get Request Completion 16-14
Request Service X‘12”: Send a SignaltoaTask 16-17
Chapter 17. Coding Task State Modifier Services 17-1
Introduction e e e 17-2

Requesting the Task State Modifier Services 17-2

Return Codes for the Task State Modifier Services 17-2
Task State Modifier Service X‘9C’: Query Active Task 17-3
Task State Modifier Service X‘02”: Set Task “Ready” 174
Task State Modifier Service X‘05’: Set Task “Unready” 17-7
Task State Modifier Service X‘08”: Set Task “Preemptable” 17-10
Task State Modifier Service X‘07’: Set Task “Nonpreemptable” 17-12
Task State Modifier Service X‘03’; Change Task’s Priority 17-14
Task State Modifier Service X‘95": Return to Dispatcher 17-16
Chapter 18. Coding Semaphore Management Services 1841
Introduction e 18-2

Requesting the Semaphore Management Services 18-2

Return Codes for the Semaphore Management Services 18-2
Semaphore Management Service X‘0D’: Claim a Semaphore 18-3
Semaphore Management Service X‘0A’: Release a Semaphore - 18-6
Semaphore Management Service X‘0B’: Query a Semaphore 18-8
Chapter 19. Coding Logical Timer Management Services 19-1
Introduction e 19-2

Requesting the Logical Timer Management Services 19-2

Return Codes for the Logical Timer Management Services 19-2
Logical Timer Management Service X‘85’: Get Logical Timer 19-3
Logical Timer Management Service X‘84’: Set Logical Timer 19-5
Logical Timer Management Service X‘8A’: Release Logical Timer .. 19-8

Chapter 20. Coding Fixed-Length Queue Management Services 20-1

Introduction e 20-2
Requesting the Fixed-Length Queue Management Services 20-2
Return Codes for the Fixed-Length Queue Management Services . 20-2

Fixed-Length Queue Management Service X‘0C’: Enqueue Data 20-3

Fixed-Length Queue Management Service X‘13’: Dequeue Data 20-5

Fixed-Length Queue Management Service X‘0F’: Purge Queue Data . 20-8

Chapter 21. Coding Interrupt Handler Management Services .. 21-1
Introduction i e 21-2

Xiv

Requesting the Interrupt Handler Management Services 21-2

Return Codes for the Interrupt Handler Management Services ... 21-3
Interrupt Handler Management Service X‘86’: Install a Hardware
Interrupt Handler 21-4
Interrupt Handler Management Service X‘87’: Install an Interrupt
Handler i i e e e 21-7
Interrupt Handler Management Service X‘88”: Query Interrupt Vector
Contentst e e 21-10
Interrupt Handler Management Service X‘89": Remove an Interrupt
Handler it e e e 21-12
Chapter 22. Environments and the Environment Manager 22-1
Introduction i e e 22-2
Environmentsttt e e 22-2
Stoppable Environmentsu ittty 22-2
Nonstoppable Environments 22-3
Environment Access Restrictions 22-3
Environment Management Services Your Program or System
Extension Can Use to Control Environments 22-4
Resource Managersttt iniunnnennennn 22-4
Environment Management Services Your System Extension Can
Use to Control Resource Management 22-6
Chapter 23. Coding Environment Manager Services 23-1
Introduction e 23-2
Requesting the Environment Manager Services 23-3
Return Codes for the Environment Manager Services 23-3
Environment Manager Service X‘10’: Identify Resource Manager ... 234
Environment Manager Service X‘8E’: Add Resource 23-8
Environment Manager Service X‘8B”: Delete Resource 23-12
Environment Manager Service X‘8C’: Query Resource 23-15
Environment Manager Service X‘90": Suspend/Resume Environment 23-17
Environment Manager Service X‘99: Stop/Reset Environment 23-23

Environment Manager Service X‘11’: Query Task’s Environment ID . 23-34
Environment Manager Service X‘8D": Query Environment

Characteristicsttt 23-36
Chapter 24. Coding System Extensions ce. 2441
Introduction e 24-2
How to Create a System Extension 24-3

Resident Code e 24-3
Fixed Data e e 24-4
Initialization Code e 24-4
How to Tell the Workstation Program about Your System Extension 24-5
Customization Procedure 24-5
Creating and Modifying System Information Files (SIFs) 24-9
How to Determine the Numbers to Use for Your System
Information File, 24-10
How a System Extension Is Loaded e 24-13
System Extension Messages and Return Codes 24-15
System Extension Return Codes 24-15

The System Extension Message Serviceouvee.. 24-16

Contents XV

Identifying Error Return Codes with the System Extension

MesSage ServiCe ... iv ittt e e 24-16
Requesting Error Messages with the System Extension Message

S VICE vttt e e e e e e e e e 24-17
Requesting Informational Messages with the System Extension

Message Servicevi it i e e e 24-17
Coding the System Extension Message Service to Identify Return

Codes .o e e 24-18
Coding the System Extension Message Service to Request Error

Messages . ..ot e e e e e e 24-20
Coding the System Extension Message Service to Request

Informational Messagesc.oveiiimunnenennennn.. 24-23
Managing Resourcesttt unennennn. 24-26

Design Considerations for System Extensions and the XMA Card ... 24-26

(07)37 00 11=) 117 JNE 24-27
TaSKS .t e e e e e 24-27
Fixed-Length Queuescutiuiirnninnnnnnnann. 24-217
General NOotescoiiiiiin it ittt 24-27

Part 4. Sample Programs

Chapter 25. Sample Program 100t enuen.n 25-1
Chapter 26. Sample Program 2 0., 26-1
Chapter 27. Sample Program 3 it 27-1
Chapter 28. Sample Program 4 ¢t teeveennnnns 28-1
Chapter 29. Sample Program 2 29-1

Part 5. Appendixes

Appendix A. Scan-Code/Shift-State and ASCII/ASCII-Mnemonic

Values ..ottt it ittt ettt A-1
Introductiont e e e A-2
Scan-Code/Shift-State Valuesc e A-2

Scan Code ... i e e A-2
Shift Stateo i et e e A4
ASCII/ASCII MnemoniCs ... e vt v ittt ettt ettt e et et ae e A-4
Default Scan Codes for the IBM 3270 PC Keyboard (PC Mode) A-5
Default Scan Codes for the IBM 3270 PC Keyboard (MFI Mode) A9

Default Scan Codes for the IBM Enhanced PC Keyboard (PC Mode) A-13
Default Scan Codes for the IBM Enhanced PC Keyboard (MFI Mode) A-16

Default Scan Codes for the PC XT Keyboard (PC Mode) A-19
Default Scan Codes for the IBM PC XT Keyboard (MFI Mode) A-22
Default Scan Codes for the IBM Personal Computer AT Keyboard

(PC MOdE) .ottt e e e e A-25
Default Scan Codes for the IBM Personal Computer AT Keyboard

MELMoOAE) . oo it ittt e e e ettt et e A-28
ASCII Characters Common to All Countries A-31
ASCII Mnemonics Common to All Countries A-34

xvi

Additional ASCII Characters Used by U.S. English A-37
Appendix B. Destination/Origin Structured Fields B-1
Introduction B-3
The 3270 Outbound Data Streamcc0uiunn. ... B-3
The 3270 Inbound Data Stream0c0iiiienn... B-3
Verifying That the IBM 3270 Personal Computer Interface Is
Operational B-4
The Read Partition Query Structured Field B-4
The Query Reply Structured Field B4
Query Reply ... e B-6
Input Control B-6
PC Application Program and Display Interaction B-7
Exception Handling B-8
Structured Fieldsttt B-9
Destination/Origin it B-9
Exception Condition00t B-10
X‘D0’ Structured Fields for Sending Data from the Host to the 3270
Personal Computer it B-11
The Open X‘D0’ Structured Field B-12
The Insert and Insert Data X‘D0’ Structured Fields B-15
The Close X‘D0’ Structured Field B-18
X‘DO’ Structured Fields for Sending Data from Personal Computer to
Host .. e B-20
The Open X‘DO’ Structured Field B-21
The Set Cursor and Get X‘D0’ Structured Field B-24
The Close X‘D0’ Structured Field B-28
Appendix C. Using Command Procedures for Save and Restore
andfor File Transferc.0iiitiiiininneerannnnas C-1
Introduction e C-2
Command Procedures for Save and Restore C-2
Creating an AUTOEXEC.BatFile C-3
Programmed Command Procedures C4
File Transfer Command Procedures C-6
Appendix D. Technical Notescciiiieiinneerann D-1
Introduction e D-2
3270 Limitations e D-2
3270 Data Stream Functions i, D-3
Interface Codes i D-3
Attributes e e e D-6
Commandsttt e e e D-8
Write Control Character, D9
3270 Data Stream Ordersiiiiiiineennnn.. D-11
Outbound 3270 Data Stream Structured Fields D-12
Inbound Structured Fields D-21
Transmission of Buffer Addresses D-31
Changes or Limitations to the Personal Computer Session D-34
Non-3270 PC Hardware Restrictions D-34
Personal Computer Physical Cursorc0vuun.. D-35
Personal Computer Print Spooling D-35
Control Unit Communication Session Termination D-36
Contents XVil

IBM 3270 Personal Computer Failure D-36

Color Limitationsttt D-36
Notes on All-Points-Addressable Graphics D-37
Using the Full-Screen APAMode D-37
Changing the Cursor Size or Position D-38
Personal Computer Session Screen Size D-38

Appendix E. Problem Determination Procedures and Debugging

Informationi ittt einnanenennnss E-1
Introductiont e E-2
System Error Problem Determination Procedures E-2
Dump Data Utilities00, E-3

Preparing Formatted Dump Diskettes E-3
Taking the Dump i, E-4
Using the Display Utilityc0 0., E-5
Using the Trace Command E-8
Workstation Program Loading Procedure E-9
Debugging a PC Application Program E-10
Debugging a System Extension iinnnnn. E-10
Control Blocks You Can Use during Debugging E-10
The Supervisor’'s Data Area, E-11
The Dispatcher’s Data Area, E-11
The Task Control Block 0., E-12
The Supervisor Name Table E-14
Appendix F. Presentation Space Considerations F-1
Introduction i e e F-2
Attributes e e e F-2
Field Attributes e F-3
Extended Field Attributes and Character Attributes F4
Presentation Space Character Tables F-6
- Host and Notepad Session Character Codes F-6
Personal Computer Session Character Codes F-7
Presentation Space Sizes e F-7
Distributed Function Terminal (DFT) Host Presentation Space Sizes F-7
Control Unit Terminal (CUT) Host Presentation Space Size F-8
Notepad Presentation Space Sizec.c0viienenn.. F-8 .
Personal Computer Presentation Space Size F-8

Appendix G. Calling Save, Restore, Send, and Receive from Your

Application Programc0iettirnnennsas PR G-1
Introduction e G-2
The DOS SETBLOCK Function Call G-2
The DOS EXEC Function Call G-3

The Environment String i eieiinenennn. G-3
The Command Line G-4
The File Control Blocks i, G-4
Appendix H. ReturnCodest iiensnons H-1
Introduction e H-2
Function ID X‘12": System Services Return Codes H-3

Function ID X‘13’: Environment Manager Services Return Codes .. H-11

" Function ID X‘22’ or X‘23’: DOS Subsystem Services Return Codes . H-16

xviii

Function IDs X‘24’ or X‘25’: System Loader Return Codes H-22

Function ID X‘30’: DFT Operations Return Codes H-26
Function ID X‘382’: Host Interactive Services Return Codes H-32
Function ID X46’: CUT Return Codes H-33
Function ID X‘61’: Notepad Operations Return Codes H-34
Function ID X‘62’: Keyboard Services Return Codes H-356
Function ID X‘63": Window Management Services Return Codes ... H-38
Function ID X‘64’: Copy Services Return Codes H-41
Function ID X‘67: Draw Service Return Codes H-43
Function ID X‘69’: Presentation Space Services Return Codes H-44
Function ID X‘6B’: Session Information Services Return Codes H-47
Function ID X‘6C’: Translate Services Return Codes H-49
Function ID X‘6D’: OIA Services Return Codes H-50
Function ID X‘6E’: 3270 Keystroke Emulation Services Return Codes H-51
Function ID X‘6F’: Keystroke Definition Return Codes H-52
Function ID X‘72’: Error Handler Return Codes H-53
Function ID X‘7F’: Dump Task Return Codes H-54
Function ID X‘81’: Enhanced Connectivity Router Return Codes ... H-55
Function IDs X‘Dx through Fx’: User System Extension Return
Codes ..o e e e e H-56
Return Code Error Stepsot e i e H-57
Appendix I. Outbound Data Stream Preprocessor (ODSP) Option 1I-1
Introduction e e e 12
Customizing for ODSP i, 12
Initializing ODSP 12
Using OD S P ... i e e e e 13
Entry Parameters it 14
Return Parameters 0.t nn. 14
ODSP Restrictions and Recommendations 15
Sample Program for Qutbound Data Stream Preprocessing 1.5
Indext i i it it i e i i e X-1

Contents X1X

XX

Figures

1-1.
A-l.
A2
A-3.

A4,

A-5.
A-6.
AT,

A-8.

A9
A-10.
A-11.

B-1.

B-2.

D-1.

D-3.

D-4.

D-5.

D-6.

D-7.

D-8.

D-9.
D-10.
D-11.
D-12.
D-13.
D-14.
D-15.
D-16.
D-17.
D-18.
D-19.
D-20.
D-21.
D-22.
D-23.
D-24.
D-25.
D-26.
D-27.
D-28.

D-29.
D-30.

Overview of the Application Program Interface 1.2
Default Scan Codes for IBM 3270 PC Keyboard (PC Mode) .. A-5
Default Scan Codes for IBM 3270 PC Keyboard (MFI Mode) . A-9
Default Scan Codes for IBM Enhanced PC Keyboard (PC

Mode) ... e e A-13
Default Scan Codes for IBM Enhanced PC Keyboard (MFI

Mode) ...t A-16
Default Scan Codes for IBM PC XT Keyboard (PC Mode) .. A-19

Default Scan Codes for IBM PC XT Keyboard (MFI Mode) . A-22
Default Scan Codes for IBM Personal Computer AT Keyboard

PC Mode) ...t e A-25
Default Scan Codes for IBM Personal Computer Keyboard
MFIMode) ... e e e A-28
Valid ASCII Characters Common to All Countries A-31
Valid ASCII Mnemonics Common to All Countries A-34
Additional ASCII Characters Used by U.S. English A-37
Read Partition Query Structured Field Format B-4
Query Reply Structured Field Format B-5
United States EBCDIC I/O Interface Code D-3
EBCDIC Control Character /O Codes D-5
Field Attribute Byte Bit Positions D-6
Field Attribute Character Bit Assignments D-6
The Structure of an Attribute Pair D-7
Attribute Type X‘41’ — Extended Highlighting D-7
Attribute Type X‘42° — Color D-7
Attribute Type X‘43’ — Character Set Selection D-7
3270 Data Stream Commandsccueun... D-8
Non-SNA Channel Commands D-8
Write Control Character Reset Actions D-10
3270 Data Stream Orders, D-11
Set Reply Mode Structured Field Format D-13
Erase/Reset Structured Field Format D-14
Outbound 3270DS Structured Field Format D-14
Read Partition Structured Field Format D-15
Inbound 3270 Data Streamc.00tiuii... D-17
Short Read Format D-18
Read Modified and Read Modified All Format D-18
Read Buffer Format in Field Reply Mode D-19
Read Buffer Format in Extended Field and Character Mode . D-20
Usable Area Query Reply Structured Field Format D-22
Character Sets Query Reply Structured Field Format D-23
Character Set Descriptors couiuiv.... D-24
Reply Modes Query Reply Structured Field Format D-24
DDM Query Reply Structured Field Format D-25
Auxiliary Device Query Reply Structured Field Format D-25
Document Interchange Architecture Query Reply Structured

Field Format it iininennn.. D-26
Direct Access Self-Defining Parameter D-26
Color Query Reply Structured Field Format D-27

Figures XX1

D-31.
D-32.
D-33.
D-34.
E-1.
E-2.
E-3.
F-1.
F-2.
F-3.
F-4.

F-5.
F-6.
F-7.

Highlight Query Reply Structured Field Format D-28

Implicit Partition Query Reply Structured Field Format D-29
Self-Defining Parameterscc0.vun.. D-30
Hexadecimal Representations D-33
Frequently Used Trace Buffers E-7
Dispatcher Data Address Offsets E-12
Name Table Address Offsets ou... E-14
Field Attribute Bit Positions, F-4
Field Attribute Bit Assignment F-4

Extended Field Attribute and Character Attribute Bit Positions F-5
Extended Field Attribute and Character Attribute Bit

ASSIgNMEnt e e e F5
Host and Notepad Presentation Space Character Table F-6
Personal Computer Presentation Space Character Table 7
DFT Host Presentation Space Sizes F-8
IBM 3270 Personal Computer U.S. English Keyboard FO-1
IBM 3270 Enhanced Personal Computer U.S. English

Keyboard, PCMode uiiiiirnnnnn.. FO-3
IBM 3270 Enhanced Personal Computer U.S. English

Keyboard, MFI Mode 0 iiiiiiienn.. FO-5
IBM Personal Computer AT U.S. English Keyboard FO-7
IBM Personal Computer XT U.S. English Keyboard FO-9

xxi1

Part 1. Introduction to the API

The chapters in Part 1 introduce the Application Program Interface (API)
and the two types of services you can use:

Application program services that most application programs will use.
Described also are some supervisor services that directly support the
application program services.

Those supervisor services that allow application programs to run
together under the multitasking capabilities of the workstation
program,

The chapters in this part are:

Chapter 1, “Functions the API Provides,” which contains an overview
of the API services and how you can use them.

Chapter 2, “Programming Considerations,” which introduces system
information files, describes program information files, and provides tips
and guidelines for coding programs.

Part 1. Introduction to the API

Chapter 1. Functions the API Provides

Overview of API Services i iiiniinninennnnn. 1-2
Terms You Needto Know, 1-3
Examples of Usingthe APT oo, 1-4
Simplifying Setup and Control of Multiple Host Sessions 1-4
Using the Work Station Control Functions of the IBM 3270 Personal
COmPULEr L .o e e e 1-5
Enhancing Interaction between the Operator and a Host 1-5
Extending the Workstation Program through the Use of System
ExXtensionst e e e e 1-5
The Application Program Servicesccouuiienrun... 1-5
Session Information Services, 1-6
Keyboard Servicesttt e 1-6
Window Management Servicescciueinennennennn 1-6
Host Interactive Servicesttt 1-6
Presentation Space Servicest 1-6
3270 Keystroke Emulation Servicescovnvieen.. 1-7
COopY ServICes . .ottt e e e 1-7
Translate Servicettt e e 1-7
Operator Information Area Servicescuviurnn... 1-7
Multiple DOS Support Servicesciiiiiiinnnea.. 1-7
The Supervisor Servicesiiiitiinn e, 1-7
Supervisory Object Servicesccviiiiiinnnreeee... 1-8
Request Servicesc.0iiiintiii i 1-8
Task State Modifier Servicesccuiiiinenneen. 1-8
Semaphore Management Servicesc.vueiuun.. 1-8
Logical Timer Management Services 1-8
Fixed-Length Queue Management Services 1-8
Interrupt Handler Management Services 19
Environment Manager Servicescc.iiiiininn. 19
Using the Application Program Interface 19

Chapter 1. Functions the API Provides 1-1

Overview of API Services

Overview of API Services

The Application Program Interface (API) is just what the name implies: an
interface between an application program and the IBM 3270 Workstation
Program. Your application program requests services from the workstation
program using the API. The kinds of services that your application can
request are grouped into two categories:

e Application program services

e Supervisor services.

The application program services are services that most application
programs will use. The supervisor services are services that provide
support for applications that use the multitasking capabilities of the IBM
workstation program.

Service requests to the workstation program are generated by your
application program. The supervisor processes the requests or routes the

request to the appropriate API service.

Figure 1-1 illustrates the flow of a request from an application program.

Application
Supervisor
Environment SVC
Manager Router Services
- —— -

/ Y \ \ Y 4 \
gglst] RD | PCPSM 3270 KS TRL | SESSMGR OlA MFIC | XLATE
s KEYBOA EMULATION | COPY | WSC ACCESS

Figure 1-1. Overview of the Application Program Interface

1-2

Terms You Need to Know

Terms You Need to Know

ASCII

EGA

environment

stoppable environment

nonstoppable
environment

Non-3270 PC Hardware

ODSP

presentation space

session

—

American National Standard Code for
Information Interchange. ASCII/ASCII
mnemonics can now be sent or received on the
Read Input and Write Keystroke APL

Enhanced Graphics Adapter. For more
information, see the Technical Reference
Options and Adapters manual.

A contiguous area of storage and a collection
of system resources that are managed by an
operating system to allow a program or a
system extension to run. A program or a
system extension is said to “run in an
environment.”

A type of environment that is used for running
DOS or personal computer application
programs. Stoppable environments can be
used for any program that can be removed
from the system without causing other
programs to fail. That is, programs running in
stoppable environments must not offer services
to programs running in other environments.

A type of environment used to run

system extensions. These system extensions
offer services to programs running in other
environments and need to be in the system at
all times.

IBM Personal Computer AT® and/or XT
system units without the keyboard adapter and
3270 PC display adapter cards installed.

Outbound Data Stream Preprocessor. ODSP
allows the preprocessing of a 3270 data stream,
which can reduce the amount of traffic flowing
through a network.

An area of storage that represents a logical
display. All IBM 3270 host sessions, IBM
personal computer sessions, and notepad
sessions have a presentation space. The data
contained in a presentation space, or a portion
of that data, is displayed on the screen when
that session’s window is visible on the screen.

A connection between your work station and a
host computer, personal computer, or notepad.

Chapter 1. Functions the API Provides 1-3

Examples of Using the API

system extension

window

XMA card

Examples of Using the API

Code that runs in a nonstoppable environment.
It is loaded as part of the workstation program
and starts running automatically when the
workstation program is IPLed. A system
extension may offer services that other
programs can use.

The portion of the screen through which you
view a session’s presentation space. A window
can be the same size as your full IBM 3270
Personal Computer screen or as small as one
character.

Expanded memory adapter card. The XMA
card is a hardware option card that provides
up to 2Mb of additional storage for as many as
6 PC sessions.

The Application Program Interface (API) allows an assembler-language
application program in the personal computer session to use a powerful set
of services from the workstation program.

Using these services, the application program can:

e Simplify setup and control of multiple host sessions

e Use the work station control functions of the IBM 3270 Personal

Computer

¢ Enhance interaction between the operator and a host

e [Extend the workstation program through the use of system extensions.

Simplifying Setup and Control of Multiple Host Sessions

For example, your application program can display a list of screen profiles
to the work station operator. When the operator chooses one of the screen
profiles, the program can send the necessary logon commands to each of the
host sessions defined in the profile. In this way, you can set up the work
station for use and eliminate the need for the operator to remember the

various logon procedures.

1-4

The Application Program Services

Using the Work Station Control Functions of the IBM 3270 Personal

Computer

Your application program can size and move windows, change the
foreground and background colors of windows, jump to other windows,
enlarge and hide windows, or do any of the other functions that are
available in work station control mode.

For example, your application program can translate a single key typed by
the operator into a series of work station control commands to set up the
IBM 3270 Personal Computer for data entry into a particular window on the
screen.

Enhancing Interaction between the Operator and a Host

For example, your application can log onto four host sessions and bring up
a different application on each host. Your application can present the work
station operator with a menu of functions to perform and then transform
the operator’s choice into a command to the appropriate host application.

Extending the Workstation Program through the Use of System Extensions

You can write a system extension that is loaded with the workstation
program when the system is [PLed. A system extension can perform
services for other application programs that you write, and act as a
resource manager to allocate and deallocate resources to those application
programs,

The Application Program Services

The API provides the following kinds of application program services:
e Session information services

e Keyboard services

¢ Window management services

e Host interactive services

e Presentation space services

e 3270 keystroke emulation services

e Copy services

® Translate service

Chapter 1. Functions the API Provides 1-5

The Application Program Services

e Operator information area services

® Multiple DOS support services.

Session Information Services

Keyboard Services

The session information services allow your application program to query
the workstation program to find out what sessions are currently defined,
attach and detach from these sessions, and query what the characteristics
of these sessions are.

The keyboard services allow your application program to read and write
keystroke data from a specified session, to disable and enable operator
input from the keyboard of a specified session, and to notify the
workstation program of the status of your application program’s keystroke
processing.

Window Management Services

The window management services allow your application program to use
the functions of the work station control session of the IBM 3270 Personal
Computer. Using these services, your application program can determine
the current size, position, or color of a window, and change them if desired.
You can jump to specified windows, enlarge or hide windows, or change to
a different screen profile. You can add a window, delete a window, or clear
the entire screen.

Host Interactive Services

The host interactive services allow communication between a personal
computer application program and a host application program using the
destination/origin structured field protocol. The host interactive services
also allow a personal computer application program to be notified when a
host presentation space or operator information area is updated.

Presentation Space Services

The presentation space services allow your application program to create
and delete personal computer presentation spaces, to display those personal
computer presentation spaces, and to control the position of the cursor in
those personal computer presentation spaces.

1-6

The Supervisor Services

3270 Keystroke Emulation Services

The 3270 keystroke emulation services enable you to type into a personal
computer presentation space as if it were a host presentation space.

Copy Services

The copy services allow your application program to copy data into a
personal computer window, as well as copy data from one area of a personal
computer window into another area within the same personal computer
window. The copy services also allow copying of data from and to host and
notepad sessions.

Translate Service

Data that is displayed in host and notepad presentation spaces is
represented by numbers called host/notepad character codes. Data that is
displayed in personal computer presentation spaces is represented by ASCII
codes. The translate service allows your application program to translate
the data in a buffer from one type of data representation to the other.

Note: You cannot translate graphic characters or programmed symbol set
characters.

Operator Information Area Services

The operator information area services allow your application program to
determine the current status of a session as shown on the operator
information area (OIA).

The contents of the OIA can be determined by reading:

® An image of the OIA
e A bit string that represents a group of related OIA values.

Multiple DOS Support Services
The multiple DOS support services allow your application program to query

the size in paragraphs of a specified environment, and to request DOS INT
21H function calls asynchronously.

The Supervisor Services

The API provides the following kinds of supervisor services:

e Supervisory object services
® Request services

o Task state modifier services

Chapter 1. Functions the API Provides 1-7

The Supervisor Services

Semaphore management services
Logical timer management services
Fixed-length queue management services

Interrupt handler management services

Environment manager services.

Supervisory Object Services

Request Services

The supervisory object services allow your application program to create
gates and user exit tables, and create and delete tasks, components,
semaphores, and fixed-length queues. The supervisory object services also
allow your application program to obtain the numeric ID of a supervisory

, object by specifying its alphanumeric name, or obtain the alphanumeric

name of the supervisory object by specifying its numeric ID.

The request services allow tasks and components in your application
program to request services of other tasks or components and respond to
requests from other tasks.

Task State Modifier Services

The task state modifier services allow your application program to change
the dispatch state or priority of a task.

Semaphore Management Services

The semaphore management services allow your application program to
control the access to resources and the execution of nonreentrant code.

Logical Timer Management Services

The logical timer management services allow your application program to
control time-dependent events through the use of logical timers.

Fixed-Length Queue Management Services

The fixed-length queue management services allow your application
program to pass data to other tasks or components, and to receive data from
other tasks or components, using the fixed-length queue as a “pipeline” for
the data.

1-8

Using the API

Interrupt Handler Management Services

The interrupt handler management services allow environments to share
the interrupt vector table on a cooperative basis. On hardware interrupts,
a device handler in any environment can receive control.

Environment Manager Services

The environment manager services allow a system extension to act as a
resource manager to control the allocation and deallocation of resources to
application programs. An application program has the ability to control its
own environment using the environment manager services.

Using the Application Program Interface

To use the API, your program must store the required values in the system
registers. Services that need more information than can be contained in
the system registers use a data area called a parameter list to contain the
additional information. System registers ES and DI must point to the
segment and offset addresses of the parameter list. To request an API
service, your application must issue an INT ‘7A’ instruction to signal the
workstation program that it has a request to process.

Chapter 1. Functions the API Provides 1-9

Using the API

1-10

Using the API

Chapter 2. Programming Considerations

Introduction e e 2-2
System Information Files i, 2-2
Program Information Files 0., 2-3
Creating and Modifying Program Information Files (PIFs) 2-4
Restrictions on Running under the Workstation Program 2-5
Guidelines for Running under Multi-DOS 2-6
How Multi-DOS Affects Application Program Performance 2-7
Using the Interrupt X‘10’ Function 2-8
Tips on Writing Applications to Run in Multi-DOS 29

When Personal Computer Sessions Will Be Suspended 2-10
Non-3270 PC Hardware Restrictionsccviurnnnnn. 2-11

Determining the Type of PC Your Application Program Is Running On 2-13
Determining the Level of the Control Program or the Workstation
Program That IsLoaded 2-13

Chapter 2. Programming Considerations 2-1

System Information Files

Introduction

Many application programs written for the IBM PC assume that the PC is
dedicated to running a single application program at a time. Without the
workstation program, this assumption is valid, since DOS provides a single
environment to run programs and does not provide multitasking facilities.
Some of these application programs take advantage of facilities available in
the PC that are not supported by DOS, or bypass the DOS facilities to run
more efficiently.

The Multi-DOS feature of the workstation program provides a set of
environments in which personal computer application programs can run,
and a set of supervisor services that allow you to write programs that take
advantage of this multitasking capability. To preserve the integrity of
application programs running at the same time, the workstation program
uses program information files (PIFs) and system information files (SIF's) to
keep track of the application programs and system extensions that are
running in the system.

System Information Files

System information files are used by the workstation program to allocate
system resources for system extensions as well as for PC applications. A
system extension is a module that you code. It is loaded with, and runs as
part of, the workstation program. System extensions must observe all the
rules for well-behaved programs that are described in this chapter. To
include a system extension in your system, you must answer some questions
about that system extension during customization, and you must create a
system information file for that system extension. Chapter 24, “Coding
System Extensions,” describes system extensions and discusses things you
need to know to create system information files.

There are several different system information files, which serve different
purposes. They are:

e INDIBMI1.SIF — A special system information file which must be on the
IPL disk when you initialize the workstation program. It is created
during customization. It tells the workstation program how many
system resources to allocate for all the workstation program’s system
extensions.

o INDIBM2.SIF — A special system information file which must be on the
IPL disk when you initialize the workstation program. It is shipped
with the workstation program diskettes. It tells the workstation
program how many system resources to allocate for use by programs
running in the PC sessions. If you have configured for Multi-DOS, the
workstation program will allocate this many system resources for each
PC session. This SIF may be tuned by the user to increase system
resources if the system runs short.

Program Information Files

e Individual SIFs — Every user system extension must have a system
information file to tell the workstation program how many system
resources to allocate for its use. See the IBM 3270 Workstation
Program User’s Guide and Reference for more information on system
information files.

The rest of this chapter concentrates on program information files.

Program Information Files

Program information files are used by workstation programs configured for
Multi-DOS to control the execution of personal computer application
programs. The workstation program needs to know whether or not the
application program observes the rules for well-behaved programs so that
the program does not interfere with other application programs that may be
running at the same time.

To obtain optimum performance, any application that is written to use the
API services should be well-behaved. If you have customized your system to
include the Multi-DOS option, you should create a program information file
to tell the workstation program that your application is well-behaved.

Note: If you do not have a PIF, your application will be considered
ill-behaved and may suspend when it is not active.

There are different program information files which serve different
purposes. They are:

e 3270PC.PIF — This “consolidated PIF” must be on the IPL disk when
you initialize the workstation program. It is copied to the IPL disk as
part of the customization procedure. It contains program information
for many different programs, including the 3270 PC utilities. It is read
at IPL time. It is not in the same format as an individual PIF, described
below. Program information may be added to the consolidated PIF by
using the INDSPIF utility. Refer to the IBM 3270 Workstation Program
User’s Guide and Reference for more information about the consolidated
PIF. :

e Individual PIFs — Every application COM or EXE file may have a
corresponding PIF. An individual PIF may be created by either the
INDSPIF utility or the TopView “Create Program Information” utility
(if you use TopView). The individual PIFs used by the 3270 workstation
program are compatible with the individual PIFs used by TopView.
However, TopView PIFs have a different format than 3270 PC PIFs and
require that you identify the specific interrupts your program will take
over, even if your program takes them over using DOS and BIOS. The
workstation program, however, requires you to identify the interrupts
your program takes over only if you do not use DOS and BIOS. This
means that, if you use your TopView PIF, the workstation program will
interpret your program as poorly behaved even if it is well-behaved.

See the IBM 3270 Workstation Program User’s Guide and Reference for
more information about PIF files.

Chapter 2. Programming Considerations 2-3

Creating and Modifying PIFs

All of these PIFs and SIFs may be created, read, and modified using the
INDSPIF utility, except TV.PIF. 3

When a PC application is run, the workstation program first searches to see
if there was a record for it in the consolidated PIF (3270PC.PIF). Failing to
find it there, it will look for an individual PIF. If that fails, the
workstation program will assume that the answer is “yes” to all PIF
questions and that vectors to be swapped are 00-FF.

Since the consolidated PIF and all SIFs are read at IPL time, any changes
in these files will not be reflected until the next IPL of the workstation
program. A change in an individual PIF will take effect when that program
is next loaded.

Creating and Modifying Program Information Files

(PIFs)

You use the INDSPIF utility to create and modify PIFs. The INDSPIF
utility is provided on your workstation program diskettes.

To use the INDSPIF utility, follow these steps:
1. Determine the name of the EXE or COM file you will use.

Note: If you use a BAT file to run an application, you must create a PIF
for the EXE or COM file, not for the BAT file.

2. Decide whether the module is a system extension or a personal
computer application program.

a. For system extensions, determine how many of each type of control
block are needed for the system extension to run.

b. For application programs, determine which options apply to the
application.

3. At the DOS prompt, enter the INDSPIF command by typing INDSPIF
and then pressing the Enter key.

4. On the home panel, you may enter the module name or the path name.

To create a system information file, press PF2,

a.
b. To read an existing system information file, press PF3.

o

To create a program information file, press PF4.

e

To read an existing program information file, press PF5.

e. To read existing program information from the consolidated PIF
(3270PC.PIF), press PF6.

f. To delete existing program information from the consolidated PIF
(3270PC.PIF), press PF7.

2-4

Restrictions on Running under the Workstation Program

Depending on your choice, you will see either the PIF or the SIF panel.

Complete all items on the panel. When you are done, press PF3 to save
the PIF or SIF on diskette, or press PF4 to save the program
information into the consolidated PIF.

You may then press either Home, to return to the Home panel, or Esc,
to quit the INDSPIF utility; or you may change any information on the
panel and save it again.

Restrictions on Running under the Workstation Program

A number of situations should be avoided if the application is to run on the
3270 PC in a Multi-DOS environment. In general, anything that will cause
a contention for nonshareable resources should be avoided. The most
common example is reading or writing to fixed memory addresses. An
application should only read or write to addresses within its own address
space. If an application needs to interact with the hardware, it should do
so by issuing BIOS function calls, DOS function calls, or 3270 PC API
function calls.

The following are not supported and will cause system failures:

Programming the Intel 8259 Interrupt Controller chip.
Taking over interrupts X‘50° through X‘567 or X“TA’.
Disabling interrupts for an extended period of time.
Disabling Direct Memory Access (DMA).

Jumping to hard-coded addresses in the BIOS. All BIOS calls should be
made through the interrupt mechanism.

Running two workstation program applications on the 8087 or 80287
math co-processor.

Running an application that installs an interrupt handler that changes
its own stack and then enables interrupts. This will produce
unpredictable results on systems with an XMA card installed unless you
revise the INDIBM2.SIF file. See the IBM 3270 Workstation Program
User’s Guide for more details about updating INDIBM2.SIF.

Using application hardware interrupt handlers that modify the registers
and then CALLFAR the CHAINON address.

For Uni-DOS on non-3270 PC hardware, an application is assumed to be
ill-behaved. The application will be suspended when:

— It is not the top or active window
— The WSCtrl key is pressed.

Chapter 2. Programming Considerations 2-5

Guidelines for Running underlMulti-DOS

Guidelines for Running under Multi-DOS

Programs running with Multi-DOS should observe the following rules for
optimum performance:

o The program should not write to storage reserved by BASIC. See the
Technical Reference manual for the IBM PC/XT for these locations.

Note: Since BASIC itself writes to these locations, programs written in
BASIC violate this rule.

e The program should not write to the PC’s interrupt vector table. The
DOS function calls or the supervisor interrupt handler management
services should be used to set interrupt vectors.

e The program should not write to the display refresh buffer. The BIOS
or DOS facilities should be used to write to the screen.

e The program should not reprogram the PC’s timer. On non-3270 PC
hardware, reprogramming the PC’s timer will cause host communication
failure.

o The program should not reprogram the PC’s speaker.

® The program should not communicate directly with the keyboard. The
BIOS or DOS facilities should be used to read data from the keyboard.

e The program should not wait in an idle loop until keys are pressed.

e The program should not directly poll the Asynchronous
Communications Adapter (ACA). Instead, you should write an interrupt
handler to communicate with the ACA.

e The program should not use graphics modes.
o The program should not read from, or write to, the BIOS data areas.

e For non-3270 PC hardware (XT only), if an application is intercepting
keystrokes from a PC session that is running an ill-behaved application
which takes over interrupt vector X‘9’, the first PC session will not
receive any keystrokes. It will work only if you are running a
well-behaved application.

o ANSILSYS is not supported under Multi-DOS.

e Virtual Device Interface (VDI) is not supported under Multi-DOS.

If your application program does not follow the rules listed above, the
Multi-DOS management portion of the workstation program may take
special action when the program is running.

2-6

How Multi-DOS Affects Program Performance

How Multi-DOS Affects Application Program

Performance

Following is a list of the special actions the workstation program may take
if your application program does not observe some of the rules described:

If your application program issues a function call to DOS, this request
is serialized. You may not be able to jump to another PC window until
that request is completed. You can jump to a host or notepad window,
however, as long as that window follows the PC window in an
alphabetic sequence of short names. For instance, if you are issuing
DOS function calls in a PC window with a short name of A, then the
host or notepad window you want to jump to should have a short name
of B.

If the program writes to storage reserved by BASIC, the Multi-DOS
manager saves an image of this storage before it runs the program.
Each time the program is suspended or put into a wait state, the
Multi-DOS manager saves the current contents of the storage and swaps
them with the original image of storage. Before the program is allowed
to run again, the Multi-DOS manager again swaps the original image of
storage with the image that was saved when the program was
suspended.

If the program writes to the PC’s interrupt vector table, the Multi-DOS
manager saves an image of these vectors before it runs the program.
Each time the program is suspended or put into a wait state, the
Multi-DOS manager saves the current contents of the vectors and swaps
them with the original contents of the vectors. Before the program is
allowed to run again, the Multi-DOS manager again swaps the original
contents of the vectors with the contents that were saved when the
program was suspended.

Note: The workstation program fails if any program writes directly to
interrupt vector X‘7TA’.

If the program writes to the display refresh buffer on 3270 PC hardware,
the Multi-DOS manager suspends the program any time you jump to
another PC session. For non-3270 PC hardware, the Multi-DOS
manager suspends the program when it is not in the active window.

If the program reprograms the PC’s timer, the Multi-DOS manager
suspends the program any time it is not in the active window. Jumping
to another PC window causes the timer to be reset to its default value.

Note: If you are on non-3270 PC hardware, you should not reprogram
the timer.

If the program reprograms the PC’s interrupt controller, the system
fails.

If the program communicates directly with the keyboard (that is, it
takes over interrupt X‘09’ and reads keyboard data directly), the

Chapter 2. Programming Considerations 2-7

Using the Interrupt X‘10’ Function

Multi-DOS manager suspends the program any time it is not in the
active window.

e If the program uses graphics modes, the Multi-DOS manager on 3270 PC
hardware suspends the program any time you jump to another PC
session. For non-3270 PC hardware, the Multi-DOS manager suspends
the program when it is not in the active window. Only one PC session
at a time may use graphics.

Using the Interrupt X‘10’ Function

On the PC, there are three ways of doing text output to the display screen.
You can use DOS function calls, use BIOS function calls, or write directly
to the video refresh buffer. The last method is frequently the only method
acceptable where performance is a consideration. Unfortunately, using this
method causes your application to be suspended when it is not the active
window, in order to support Multi-DOS applications. If you want to run
only on the workstation program, there is an alternative. You can do your
video output through the API. This restricts your application to the 3270
PC.

There is a way to achieve high-performance screen output on a normal PC
or on a 3270 PC with Multi-DOS without incurring performance
degradation. This also works under TopView.

To get the address of your presentation space:

1. Load ES:DI with the assumed address of the video buffer (B000:0000).
2. Load AH with X‘FE’.

3. Issue an interrupt X‘10’°.
4

The address of your presentation space will be returned in ES:DI. You
should do all your display output to the address returned.

To display your data:

1. Load ES:DI with the address of the first character in the buffer that has
been modified since the last display request.

2. Load CX with the number of sequential characters or attribute bytes
that have been modified.

Load AH with X‘FF’.
4. Issue an interrupt X‘10’.
5. Data at ES:DI for CX bytes will be displayed in your PC window.

o

These two functions allow an application to run under TopView and 3270
Workstation Program, as well as on a PC running DOS.

Note: Version 3.0 of the control program and the workstation program do
not support Top View.

Tips on Writing Applications to Run in Multi-DOS

Tips on Writing Applications to Run in Multi-DOS

Multi-DOS provides you with some powerful tools. For example, an
application may download data from a CICS system, format it, and send it
in the form of keystrokes to a customer’s spreadsheet program.

There are, however, a number of restrictions. These restrictions are
required because of the nature of existing PC software, software that was
written to run in a single-tasking environment.

You should, for example, be aware that your application can be suspended
when it is not the top window. This happens if your PIF has a “yes” for
any question, if you have no PIF, or if another PC environment has a PIF
that indicates that it swaps vectors in the range X‘00’ through X‘7F’,

This can cause problems if, for example, you lock WSCTRL, jump to
another PC session, jump back, and release the WSCTRL lock. If the other
session swaps vectors in the range X‘00’ through X‘7F’, your program is
suspended before it can jump back and release the lock. Since you are
holding the lock, no keyboard activity can occur. Since you are suspended,
you cannot release the lock. Since you are not the active session, you
cannot be resumed. This situation, known as circular waiting, is a classic
deadlock. It effectively requires the user to power off and re-IPL the system
in order to regain control.

There are two ways to solve this problem. The first is to use the Query PC
Session PIF Information service to determine whether you will be
suspended. If you will, then avoid the above sequence of calls. The second
is to claim a code serialization semaphore, issue the calls with a wait type
of “no wait,” and then release the semaphore. Since you will not be
suspended while holding the semaphore, you will be able to issue the calls,
release the semaphore, and survive. The calls will occur asynchronously.

You must be extremely careful with code serialization semaphores,
however. If you are holding a code serialization semaphore across any
segment of code that could cause a wait condition (for example, claim
semaphore, get keyboard input, do something, release semaphore), you
could also create a deadlock. If, while you are holding the semaphore, the
user presses the JUMP key, this could happen:

® The system tries to suspend you.

e Since you hold a code serialization semaphore, the system waits until
you release it to suspend you.

e You are waiting on keyboard input.

e The user cannot enter data into your session, because you are not the
active session.

The result is as in the previous example, a circular-wait condition. The
system is deadlocked, requiring a power off/on to restart.

Chapter 2. Programming Considerations 2-9

Tips on Writing Applications to Run in Multi-DOS

If you are writing programs that create tasks and then exit back to DOS,
make sure that you use a Terminate But Stay Resident call. If you do not,
then the space in which your task is running will be overlaid by the next
application to run. :

When Personal Computer Sessions Will Be Suspended

The following grid indicates when a personal computer session is
suspended. The foreground task is never suspended. Those boxes marked
with an “X” indicate when the background session(s) is suspended.

The background session is:

Well- Moderately Poorly
The foreground session is: behaved @~ well-behaved behaved
Well-behaved X X
Moderately well-behaved X X
Poorly behaved X X X

Definitions:

Foreground: If the active window (that is, the one with double borders) is a
PC window, then it is the foreground session. If a non-PC window (host or
notepad) is active, then the foreground session depends on the type of
hardware you are using:

o 3270 PC hardware: The PC window that was most recently active is
considered the foreground session.

e Non-3270 PC hardware: No PC window is considered to be the
foreground session. All PC windows are background sessions and will

be suspended if they either write directly to the screen or are poorly
behaved.

Background: Any window that is not the foreground window.

Well-behaved: A personal computer session running a program that has a
PIF in which every answer was “no”; that is, the personal computer
application does nothing bad. This might also be a personal computer
session that is running COMMAND.COM (for example, doing a DIR).

Moderately well-behaved: A personal computer session running a program
that has a PIF in which any answer was “yes,” but for which the space for
“vectors swapped” did not include vectors in the range X‘00’ through X*“TF’.

Poorly behaved: A personal computer session running a program that has
no PIF, or for which the space for “vectors swapped” did include vectors in
the range X‘00’ through X‘7F.

2-10

Non-3270 PC Hardware Restrictions

Notes:

1

If any program terminates and stays resident, then the workstation
program treats that personal computer session as though the program
were still running (that is, the program’s PIF remains in effect when
determining whether to suspend the session). For example, suppose a
program takes over an interrupt in the range of X‘80’ through X'FF’, then
terminates and stays resident. If another program is loaded, that
program is still suspended when it is not in the foreground window.
When the session is rebooted, the session is considered well-behaved
again.

If a program loads and runs another program using DOS function X‘4B’,
the program that was loaded inherits the PIF characteristics of the
loading program (for example, menu programs).

Non-3270 PC Hardware Restrictions

The following restrictions apply to non-3270 PC hardware (XT and AT).
Failure to follow these guidelines on the use of non-3270 PC hardware could
result in system failure.

An application is assumed to be ill-behaved when running in Uni-DOS
on non-3270 PC hardware.

An ill-behaved application will be suspended when:

— It is not the top or active window

— The WSCTRL key is pressed

— It uses the Input Control API to connect to the WSCTRL keyboard.
(Note that this will affect all applications that will attempt to send
Jump, ChgSc, and Enlarge keystrokes, as well as any other
keystrokes that perform functions while in WSCTRL.)

— On IPL if your PC session is not in the top window. Any program
you start in your PC window will not be completed until you make
it the active session (for example, your AUTOEXEC.BAT file).

Ill-behaved applications will run only in an active session. If an
ill-behaved application exits and stays resident in the active session,
then any other application you run in that session will be seen as
ill-behaved and will never run in the background.

On non-3270 PC hardware, ill-behaved applications will be displayed
full-screen when they are made active, even if they are sized. Even if
you sized your windows using the API, they may be forced to full-screen
and appear enlarged when active under the following conditions:

— Your application uses graphics mode
— Your application uses 40-column mode
— Your application writes directly to the screen

Chapter 2. Programming Considerations 2-11

Non-3270 PC Hardware Restrictions

— Your application runs in Uni-DOS.

When an ill-behaved application uses the work station control API, the
redraw screen and redraw window functions will not affect what is seen
on the screen. Any changes made while the application is connected to
the API will not be seen on the screen until the application disconnects
from the API.

When using work station control API, the WS Ctrl OIA will not be
displayed under the following conditions:

~ Your application uses graphics mode

— Your application uses 40-column mode

— Your application writes directly to the screen
— Your application runs in Uni-DOS.

If you are running an ill-behaved application in a PC session, the shift
state of that session may not remain as you originally set it after
jumping to other windows and back again. For instance, if you have set
Caps Lock on in this PC session and jump to another window, your
session may be in lowercase mode when you jump back to that window.
Also, applications that write directly to the display adapter registers
may not be restored properly after jumping to another window and back
again.

Input Control API is not supported for sessions running ill-behaved
applications that read port 60 directly.

Do not run PC applications that reprogram the timer. This could cause
host communication failure.

An ill-behaved application that receives keystrokes from any other
session will not work, because the application will be suspended when it
is not the active session, so the keystrokes that it would normally be
receiving will be queued up until the application becomes active. An
ill-behaved application that sends keystrokes will work as long as its
session remains active.

Use the BIOS INT 10, “Set Color Palette” call, to change the palette
colors. Otherwise, the colors will be changed in all sessions.

If you load an alternate character generator into one session, then all
your sessions will use this alternate character set.

2-12

Determining the Program Level

Determining the Type of PC Your Application Program Is

Running On

An application may perform the following test to determine whether it is
executing on a 3270 PC.

1.

Perform a function call (INT X‘10’) to the BIOS Video Routine with the
following parameters:

AH register = X‘30°
AL register = X‘00’
CX register = X‘00’
DX register = X‘00’

If the CX and DX registers are still zero (0) on return, the machine is
not a 3270 PC or a non-3270 PC with the 3270 Workstation Program

_ loaded. If the CX and/or DX registers are not zero, the following test

should be made to determine whether the machine is a 3270 PC or a

non-3270 PC with the 3270 Workstation Program loaded:

a.

b.

Read the byte at CX:DX +2.

If the value of this byte is X‘FF’, the machine is a PC without the
3270 Workstation Program loaded. If the value of this byte is not
X‘FF’, the machine is a 3270 PC or a non-3270 PC with the 3270
Workstation Program loaded.

Determining the Level of the Control Program or the
Workstation Program That Is Loaded

If the machine is a 3270 PC or a non-3270 PC, an application may determine
whether the 3270 PC Control Program or the 3270 Workstation Program is
loaded in memory, and if so what level of the program is currently resident,
by performing the following tests:

If CX:DX is not zero and not X‘C040:0220°, read the two-byte location at
address CX:DX +8.

1.

If the contents of the two-byte location at address CX:DX +8 are X‘0000’,
the following test should be performed to determine whether a
pre-Version 2.0 level of the control program is resident:

a.

Read the BIOS high memory limit at address X‘0413’.

b. Read the 8 bytes of data located 36 bytes beyond the BIOS high

memory word obtained above.

In rare instances, BIOS isolates bad high memory locations by
placing the high address limit below these locations. If the control
program or the workstation program is not loaded in memory when

Chapter 2. Programming Considerations 2-13

Determining the Program Level

this test is performed, the application may inadvertently address
these bad memory locations, which will result in a parity error.
This is a nonrecoverable condition.

c. If the data at this memory location is X‘2322272031AFA210’, then
the control program or workstation program is resident in memory.

d. If the control program is resident, the application can determine
whether Version 1.0/1.1 or Version 1.2/1.21/1.22 is resident as
follows:

1) Read the 8 bytes of data located 16 bytes beyond the BIOS high
memory limit.

2) If the data found at this location is X‘353636392D303032’, the
resident control program is Version 1.2 or 1.21 or 1.22.
Otherwise, the resident control program is Version 1.0 or 1.1.

If the contents of the two-byte location at address CX:DX +8 are not
zero (Control Program Version 2.0 and later or the workstation
program), it contains the segment address (at offset zero) where the
application will find a two-byte field containing the identifier of the
control program or workstation program in hexadecimal notation (0200
for Control Program 2.0, 0210 for Control Program 2.1, 0300 for Control
Program 3.0, and 0400 for Workstation Program 1.0). Immediately
following the identifier is a single byte indicating the specific control
program or workstation program installed:

a. X‘00° - Standard Control Program or Workstation Program
b. X‘01’ to X‘FF’ - Reserved
Following the identifier is a 27-byte field containing an ASCII text

string that identifies the type of control program or workstation
program installed (for example, “IBM 3270 PC CONTROL PROGRAM”).

2-14

Part 2. Application Program Services

This part contains information about application program services provided
by the Application Programming Interface.

Chapter 3, “Coding Supervisor Services,” describes the supervisor
services that your application program needs to use the rest of the
services described in this part of the manual.

Chapter 4, “Coding Session Information Service Requests,” describes
the session information services that your application program can use.

Chapter 5, “Coding Keyboard Service Requests,” describes the
keyboard services that your application program can use.

Chapter 6, “Coding Window Management Service Requests,” describes
the window management services that your application program can
use.

Chapter 7, “Coding Host Interactive Service Requests,” describes the
host interactive services that your application program can use.

Chapter 8, “Coding Presentation Space Service Requests,” describes
the presentation space services that your application program can use.

Chapter 9, “Coding 3270 Keystroke Emulation Service Requests,”
describes the keystroke emulator services that your application
program can use.

Chapter 10, “Coding Copy Service Requests,” describes the copy
services that your application program can use.

Chapter 11, “Coding Translate Service Requests,” describes the
translate service that your application program can use.

Chapter 12, “Coding Operator Information Area Service Requests,”
describes the operator information area services that your application
program can use.

Chapter 13, “Coding Multi-DOS Support Service Requests,” describes
the multiple DOS support services that your application program can
use to query the size in paragraphs of a specified environment, and to
request DOS INT 21H function calls asynchronously.

Part 2. Application Program Services

Conventions Used in the API Service Descriptions

The following conventions are used in the descriptions of the API services:

e Hexadecimal numbers are represented in the notation X‘nn’ for byte
values and X‘nnnn’ for word values.

e Offsets into data structures used by the API services are given as
decimal numbers.

e Bits within a byte are numbered with the high-order (leftmost) bit as bit
0 and the low-order (rightmost) bit as bit 7, as follows:

0 1 2 3 4 5 6 7

This order of bit numbering follows the IBM 360/370 convention and is the
reverse of the Intel 8088 bit-numbering convention.

Chapter 3. Coding Supervisor Services

Introduction e 3-2
Obtaining the Gate Name for the Services Your Application Program
Wil Use .. i i e e e e e 3-2
Obtaining the Results of Services You Have Requested
Asynchronously e e 3-3
Creating Fixed-Length Queue Entries 3-3
Obtaining Data from a Fixed-Length Queue 3-3
Deleting Fixed-Length Queues, 3-4
Requesting the Supervisor Servicescviivvienren.. 34
Supervisor Service X‘81": Name Resolution 3-5
Supervisor Service X‘83": Get Request Completion 3-7
Supervisor Service X‘04’: Create Fixed-Length Queue Entry 39
Supervisor Service X‘13’: Dequeue Data 3-12
Supervisor Service X‘06”: Delete Entry 3-15

Chapter 3. Coding Supervisor Services 3-1

Introduction

Introduction

This chapter describes how to code requests for supervisor services provided
by the API that are needed for the rest of the application program services
described in this part of the manual. These supervisor services are a small
subset of the supervisor services that are described in Part 3.

You use the services in this chapter to obtain the gate name for the
services your application program will use, to obtain the results of services
that you have requested asynchronously, and to create, obtain data from,
and delete fixed-length queues.

Obtaining the Gate Name for the Services Your Application Program Will

Use

A gate is a grouping of services (or requests, as is the case with the
multiple DOS support services) that perform a common function. Each gate
is assigned a name when the gate is created. The workstation program
provides the following groups of services/requests, or gates:

Services or Requests

Gate Name

Session information services SESSMGR
Keyboard services KEYBOARD
Window management services WSCTRL
Host interactive services MFIC
Presentation space services PCPSM
3270 keystroke emulation services 3270EML
Copy services COPY
Translate service XLATE
Operator information area services OIAM
Multiple DOS support services

Query environment size INDJQRY

Asynchronous DOS function INDJASY

Get storage MEMORY

Each group of services is identified to the workstation program by a 16-bit
number, called the gate ID. Before your application program can use any of
the services in a particular gate, you must obtain the gate ID that the
workstation program assigns to the gate. You do this by requesting the
Name Resolution service, specifying an alphanumeric gate name on the
request. The workstation program returns the gate ID to your application
program. You should save the gate ID in a variable, because you must
provide it as input when you request any of the services in the gate.

Introduction

Obtaining the Results of Services You Have Requested Asynchronously

Most of the application program interface services described in this part of
the manual are processed synchronously by the workstation program. That
is, when control is returned to your application program, the registers and
the parameter list contain the values assigned to them on request
completion. However, you can specify asynchronous processing of the
following services:

Keyboard service X‘04’: Write Keystroke

Host interactive service X‘01’: Connect to Host Session
Host interactive service X‘02’: Disconnect from Host Session
Host interactive service X‘03’: Read Structured Field

Host interactive service X‘04’: Write Structured Field

Host interactive service X‘05’: Define Buffer

When you specify asynchronous processing of these requests, control can be
returned to your application program before the workstation program has
completed the request. You must use the Get Request Completion service
to obtain the values in the parameter list when the request is completed.

You can also use the Get Request Completion service for request processing
of task or components. Request processing is described in Part 3.

Creating Fixed-Length Queue Entries

For some of the application program interfaces, your application program
must create a fixed-length queue.

You create a fixed-length queue by requesting the Create Fixed-Length
Queue Entry service. The workstation program uses fixed-length queues to
notify your application program about events that have occurred and that
affect the operation of your program, and also to pass keystrokes that were
typed on the keyboard to your application program for processing.

The space for the fixed-length queue must reside in your application
program’s program space. The first 10 bytes of the queue are reserved for
use by the workstation program.

You can write code that uses fixed-length queues to pass data between
programs running in the 3270 Personal Computer. The services that you
use to do this are described in Part 3.

Obtaining Data from a Fixed-Length Queue

As described above, the workstation program uses fixed-length queues to
notify your application program about events that have occurred and that
affect the operation of your program. You obtain the data on a fixed-length
queue by requesting the Dequeue Data service. The Dequeue Data service
returns the specified number of bytes of information to your application
program,

Chapter 3. Coding Supervisor Services 3-3

Introduction

You can write code that uses fixed-length queues to pass data between
programs running in the 3270 Personal Computer. The services that you
use to do this are described in Part 3.

Deleting Fixed-Length Queues

When your application program no longer needs a fixed-length queue, it
must tell the workstation program that the entry it has created for the
fixed-length queue is no longer needed. You tell the workstation program
to delete its entry for a fixed-length queue by requesting the Delete Entry
service.

The Delete Entry service can also be used to tell the workstation program
to delete its entries for other supervisory objects. Information on these
other supervisory objects is in Part 3.

Note that the workstation program will not allow you to delete objects on
which requests are still pending. For example, if a task has done a dequeue
with a “wait for data” option set, the queue it is waiting on cannot be
deleted until that request has been satisfied (that is, data is enqueued to
that queue and returned to the dequeueing task).

The supervisor services that you will need to code requests for the rest of
the services in this part of the manual are:

¢ Name Resolution: Use this service to resolve the application
interface gate name to its numeric gate ID.

o Get Request Completion: Use this service to obtain the results of
services requested asynchronously.

o Create Fixed-Length Queue Entry: Use this service to create an

entry in the SVC table for a fixed-length queue.

e Dequeue Data: Use this service to dequeue data from the specified
fixed-length queue.

e Delete Entry: Use this service to delete the entry in the SVC table for
the specified fixed-length queue.

Requesting the Supervisor Services

To request any of the supervisor services, load the registers and the
parameter list with the proper values, and use the INT 7AH instruction to
signal the workstation program that it has a request to process.

3-4

Name Resolution

Supervisor Service X‘81’: Name Resolution

Use this service to resolve the application interface gate name to its
numeric gate ID. You can also use this service for name resolution of other
supervisory objects. Refer to Chapter 15, “Coding Supervisory Object
Services,” for information about the additional uses of the Name Resolution

service.

Register Values

On Request

=
n
o

Register Definitions

X‘81

Segment address of the parameter list
Offset address of the parameter list

Request Registers:

On Completion

BH = X07

CH = X‘12’ or X‘13’
CL = Return code
DX = GateID

The contents of registers
AX, BL, ES, and DI are
unpredictable.

o The ES register contains the segment address of the parameter list.

e The DI register contains the offset address of the parameter list.

Completion Registers:

e The DX register contains the resolved name, which is the numeric
representation of the alphanumeric ASCII gate name.

Parameter List Format

Contents Contents
Offset | Length on Request on Completion
0 — 7 |8 bytes Gate name Unchanged

Chapter 8. Coding Supervisor Services 3-D

Name Resolution

Parameter Definitions
' Request Parameters:

o The gate name must be ASCII characters, and must be padded to the
right with blanks if it is less than eight characters long. The gate name
to use for a group of services is described in the introduction to each
chapter in this part of the manual.

Return Codes

The CH and CL registers contain a return code generated by the
workstation program. System return codes use a function ID of X‘12’ or
X138’ (found in the CH register). The error codes that can be received for
this service are:

Code Meaning

X‘00’ Successful completion of the request
X‘OF Invalid environment access
X2F’ Name not found

Coding Example

PARAMETER LIST FOR NAME RESOLUTION

i
i
SERVNAME DB 'KEYBOARD'

INITIALIZE REGISTERS FOR NAME RESOLUTION

~e e ~e

MOV AH,81H
MOV DI,SEG SERVNAME

AH = X'81’

SEGMENT ADDRESS OF

THE PARAMETER LIST

ES = SEGMENT ADDRESS OF
THE PARAMETER LIST

DI = OFFSET ADDRESS OF
THE PARAMETER LIST

MOV ES,DI

MOV DI,OFFSET SERVNAME

e Ne we we Ne e o~

SIGNAL WORKSTATION PROGRAM FOR NAME RESOLUTION SERVICE

~e we we

INT T7AH

3-6

Get Request Completion

Supervisor Service X‘83’: Get Request Completion

Use this service to obtain the results of the following services when they

are

Register Values
On

AH
BL

Set

Register Definitions

requested with asynchronous processing specified:

Keyboard service X‘04’; Write Keystroke

Host interactive service X‘01’: Connect to Host Session
Host interactive service X‘02’: Disconnect from Host Session
Host interactive service X‘03’: Read Structured Field

Host interactive service X‘04’: Write Structured Field

Host interactive service X‘05’: Define Buffer

Request On Completion
= X‘83’ AX = Request ID
= X‘00’ or X‘40’ BL = X‘00’ or X‘40’
CH = X12
CL = Return code
ES = Segment address of the parameter list
DI = Offset address of the parameter list

The contents of registers BH and DX are
unpredictable.

the BL register to:

X‘00’ if you want to check whether results are available (asynchronous
processing)

X‘40’ if you want to wait until results are available (synchronous
processing).

Completion Registers:

The AX register contains the request ID of the service whose results
were obtained. This is the same value that was returned in the AX
register of a previously requested service. You can determine which
previously requested service the results are for by matching the request
IDs. : :

The ES and DI registers are set to the segment and offset addresses of
the service’s parameter list, which contains the results of the service.

Chapter 3. Coding Supervisor Services 3-7

Get Request Completion

Parameter List Format

See the description of the requested service for the format of the parameter
list.

Return Codes

Code Meaning

X‘00° Successful completion of the request.
X‘09’ No results are available.

Additional return codes pertaining to the requested service may appear.
Refer to the description of the requested service for a listing of the possible
return codes.

Coding Example

~e w5 Ne

INITIALIZE REGISTERS FOR GET REQUEST COMPLETION

MOV AH,83H
MOV BL,40H ; WAIT TYPE = COMPLETION QUEUE

; SIGNAL WORKSTATION PROGRAM FOR GET REQUEST COMPLETION SERVICE
INT 7AH

3-8

Create Fixed-Length Queue Entry

Supervisor Service X‘04’: Create Fixed-Length Queue

Entry

Use this service to create an entry in the SVC table for a fixed-length

queue.
Register Values

On Request On Completion

AH = X‘0¢4 CH = X‘12’ or X‘1%’

BL = 0 = noname /1 = name CL = Return code

CX = Queue length DX = QueuelD

ES = Segment address of the parameter list

DI = Offset address of the parameter list The contents of registers
AX, BX, ES, and DI are
unpredictable.

Register Definitions

Request Registers:

The BL register indicates whether the queue has a name associated
with it.

Possible values for the BL register are :

0 = the queue has no name
1 = the queue’s name is in the parameter list

The CX register contains the number of bytes your application program
has reserved for the fixed-length queue. The queue must be greater
than 10 bytes long, because the first 10 bytes of the queue are reserved
for use by the workstation program.

The ES register contains the segment address of the parameter list.

The DI register contains the offset address of the parameter list.

Completion Registers:

The DX register contains the ID of the fixed-length queue.

Chapter 3. Coding Supervisor Services 3-9

Create Fixed-Length Queue Entry

Parameter List Format

Contents Contents
Offset | Length on Request on Completion
0 1 word Offset address of the Unchanged
queue
2 1 word Segment address of Unchanged
the queue
4 — 11 | 8 bytes Queue name Unchanged

Parameter Definitions

Return Codes

Usage Notes

Request Parameters:

e The queue name is an optional parameter and is needed only if the BL
register is set to 1 on request. The queue name can be a maximum of
eight ASCII characters and should be padded to the right with blanks if

necessary.

The CH and CL registers contain a return code generated by the

workstation program. System return codes use a function ID of X‘12’ or
X‘13’ (found in the CH register). The error codes that can be received for

this service are:

Code

X‘00°
X9or
X02’
X‘03
X471’

Meaning

Successful completion of the request.

Queue name already exists.
SVC table full.

Name table full.

Invalid queue length.

o The fixed-length queue resides in the requester’s environment.

3-10

Create Fixed-Length Queue Entry

Coding Example

7

; DEFINE PARAMETER LIST FOR CREATE QUEUE

CQQOFFS DW 0
COSEGM DW 0
8

CQONAME DB DUP(' ')

INITIALIZE FIRST 2 ENTRIES OF PARAMETER LIST

~e e~

MOV CQQOFFS,OFFSET Q ; OFFSET OF QUEUE
MOV CQSEGM,SEG Q ; SEGMENT OF QUEUE

THE USER HAS A QUEUE NAME

~e N o~

MOV BL,01H INDICATE A QNAME IS SPECIFIED

CLD ; BEGIN MOVING QNAME TO THE PARAM LIST
MOV CX,4 ; ONAME IS FOUR WORDS LONG

MOV SI,OFFSET QNAME ; SOURCE OFFSET OF QUEUE

MOV DI ,OFFSET CQQNAME;DESTINATION OFFSET IS CQQONAME

REP MOVSW ; MOVE QNAME TO PARAMETER LIST

INITIALIZE REGISTERS FOR CREATE QUEUE

~e Ne o~

MOV AH,04H

MOV CX,50 ; CX = NUMBER OF BYTES FOR QUEUE
MOV DI,SEG CQQOFFS ; ADDRESSABILITY TO
MOV ES,DI ; PARAMETER LIST

MOV DI ,OFFSET CQQOFFS; USING ES:DI

SIGNAL WORKSTATION PROGRAM FOR CREATE QUEUE SERVICE

~e ~o o~

INT 7AH

.

Chapter 3. Coding Supervisor Services 3-11

Dequeue Data

Supervisor Service X‘13’: Dequeue Data

Use this service to dequeue data from the specified fixed-length queue.

Register Values

On Request On Completion

AH = X13 CH = X‘12’ or X‘1%’

BL = Wait type CL = Return code

CX = Number of bytes DX = Number of bytes

DX = Fixed-length queue ID .

ES = Segment address of data The contents of registers

DI = Offset address of data AX, BX, ES, and DI are
unpredictable.

Register Definitions
Request Registers:

o The BL register specifies the type of wait state your application
program will go into until the request is completed. The type of wait is
specified through a bit mask. When more than one type of wait is
specified, the wait state ends when any one of the conditions is
satisfied. The bits in the wait type are as follows:

0 1 2 3 4 5 6 7

Request| Comp | Comp | Sema- | Timer | Signal | Data | Reserved
queue | queue | signal | phore

— If bit 0 is set to 1, your application program will wait until a request
queue element is in its request queue. If an RQE is already in its
request queue, the application stays dispatchable.

— If bit 1 is set to 1, your application program will wait until a request
queue element is in its completion queue. If an RQE is already in its
completion queue, the application stays dispatchable.

— If bit 2 is set to 1, your application program will wait until it receives
a ‘completion’ signal.

— If bit 3 is set to 1, your application program will wait until it receives
a ‘got semaphore’ signal.

3-12

Dequeue Data

Return Codes

— If bit 4 is set to 1, your application program will wait until it receives
a ‘timer tick’ signal.

— If bit 5 is set to 1, your application program will wait until it receives
a ‘generic’ signal.

— If bit 6 is set to 1, your application program will wait until it receives
a ‘data available’ signal.

-~ Bit 7 is reserved and must be set to 0.

Note: A wait type of “no wait” is specified by setting the wait type to
X00’.

® The CX register contains the number of bytes to be dequeued from the
specified fixed-length queue. When you are dequeueing information that
the workstation program has placed on a fixed-length queue, this number
should be X‘04’.

e The DX register contains the ID of the fixed-length queue.

e The ES and DI registers point to the beginning of a data area provided by
your application to contain the dequeued data.

Completion Registers:

e The BL register indicates the type of wait condition that was satisfied to
return control to the requesting task. The return type is specified
through a bit mask. The bits in the return type have the same meaning
as the bits in the wait type.

o The DX register contains the number of bytes remaining on the
fixed-length queue. ‘

The CH and CL registers contain a return code generated by the workstation
program. System return codes use a function ID of X‘12’ or X‘13’ (found in
the CH register). The error codes that can be received for this service are:

Code Meaning

X*00° Successful completion of the request.
X“05° Invalid index specified.

X‘09’ The fixed-length queue is empty.

X138’ Number of bytes requested is too large.
X37 Not your turn to dequeue.

Chapter 3. Coding Supervisor Services 3-13

Dequeue Data

Usage Notes

Coding Example

i
.
’
.
’
D

~e So o~

N~ Ne N

Programs running in stoppable environments cannot dequeue data from
fixed-length queues in other stoppable environments.

If you want to get control back as soon as data appears on your queue,
use a wait type of “wait for data available.”

If two or more tasks request the Dequeue Data service for the same
fixed-length queue, the supervisor processes the requests in first-in

first-out (FIFO) order.

If you use a wait type other than “wait for data available,” and another
request for data from the queue was received before your request, you
will receive a return code indicating that it is not your turn to dequeue.

DATA AREA FOR DEQUEUE

ATAAREA DB 4 DUP(0)

.

~e ~e

INITIALIZE REGISTERS FOR DEQUEUE

MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,13H

BL,02H ;
CX,0004H ;
DX, QUEUEID ;
DI,SEG DQSESSID ;
ES,DI

DI,OFFSET DQSESSID ;

DATA AREA TO RECEIVE 4 BYTES FROM THE
DEQUEUE

WAIT UNTIL INFORMATION IS AVAILABLE
DEQUEUE 4 BYTES

FIXED-LENGTH QUEUE ID IN DX

SEGMENT ADDRESS OF DATA AREA IN ES

OFFSET ADDRESS OF DATA AREA IN DI

SIGNAL WORKSTATION PROGRAM FOR DEQUEUE SERVICE

INT

.

TAH

3-14

Delete Entry

Supervisor Service X‘06’: Delete Entry

Use this service to delete the entry in the SVC table representing the
specified fixed-length queue.

Register Values

On Request On Completion
AH = X06’ CH = X12 or X‘13’
DX = Fixed-length queue ID CL = Return code

The contents of registers AX, BX,
DX, ES, and DI are unpredictable.

Register Definitions
Request Registers:

e The DX register contains the ID of the supervisory object to be deleted
from the SVC table.

Return Codes
The CH and CL registers contain a return code generated by the workstation
program. System return codes use a function ID of X‘12’ or X‘13’ (found in

the CH register). The error codes that can be received for this service are:

Code Meaning

X0’ Successful completion of the request.

X05° Invalid supervisory object ID.

Xor Specified object is in an inaccessible environment.

X+‘30° Cannot delete a task, fixed-length queue, or semaphore that has

pending requests.
X‘31’ Cannot delete a task that has timers.
X‘3F’ Cannot delete a service entry in a gate.

Usage Notes

e If requests are outstanding for the fixed-length queue entry, then the
entry will not be removed and an error indicator will be returned.

e An application program running in a stoppable environment can only
delete entries in its own environment.

e Part 3 of this manual describes additional supervisory objects the Delete
Entry service can delete that you can create in application programs.

Chapter 3. Coding Supervisor Services 3-15

Delete Entry

Coding Example

~. ~e ~e

1

INITIALIZE REGISTERS FOR DELETE AN ENTRY REQUEST

MOV
MOV

AH,06H
DX, QUES$ID

17

DX

FIXED LENGTH QUEUE ID

SIGNAL WORKSTATION PROGRAM FOR DELETE AN ENTRY SERVICE

INT

.

7AH

3-16

Delete Entry

Chapter 4. Coding Session Information Service Requests

Introduction it e e 4-2
Requesting the Session Information Services 4-3
Return Codes for the Session Information Services 4-4

Session Information Service X‘01: Query SessionID 4-5

Session Information Service X‘02’: Query Session Parameters 4-10

Session Information Service X‘04”: Detach SessionID 4-14

Session Information Service X‘05’: Attach SessionID 4-17

Session Information Service X‘06’: Query Windows in Environment 4-20

Session Information Service X‘07": Query Environment of Window 4-23

Session Information Service X‘08”: Query PC Session Program

Information File (PIF) Information ccvo.... 4-26
Session Information Service X‘0A’: Query Base Window 4-30
Session Information Service X‘0B’: Query Session Cursor 4-33

Chapter 4. Coding Session Information Service Requests 4-1

Introduction

Introduction

This chapter describes how to code requests for the session information
services provided by the APL

The session information services allow your application program to query
the workstation program to find out what sessions are currently defined, and
what the characteristics of those sessions are. The session information
services are:

® Query Session ID Service: Use this service to obtain the ID of the
session you specify. You can specify a particular session by its short or
long name, or ask for the IDs of all sessions of a particular session type.
The session types that are supported on the 3270 Personal Computer are:

— The work station control session

— Distributed function terminal (DFT) host session
— Central unit terminal (CUT) host session

— Notepad session

~ Personal computer session

A session ID is required as input for most of the remaining API services.
Your application program must request the Query Session ID service for
all sessions it will be referencing in API service requests. Typically,
obtaining the necessary session IDs is included in the initialization
portion of an application program.

® Query Session Parameters Service: Use this service to obtain the
session characteristics of a particular session. The characteristics
obtained by this service are:

— The session type

— Whether the session has base or extended attribute support (host
session only)

~ Whether the session supports programmed symbols (host session
only)

— The number of rows and columns in the session’s presentation space

— The segment and offset address of the session’s presentation space

e Attach and Detach Session ID Services: Use these services to
attach to and detach from a session. These services should be used by
system extensions that provide some service to a session. Attaching to
the session assures that the session will not be deleted until you detach
from it.

e Query Windows in Environment Service: Use this service to obtain
a list of the windows that are defined within a specified environment.

4-2

Introduction

¢ Query Environment of Window Service: Use this service to obtain
the environment ID of a specified window.

¢ Query PC Session PIF Information: Use this service to obtain a flag
that indicates the answers to questions about the Program Information
File. This is for the application program running in the specified
personal computer session.

¢ Query Base Window Service: Use this service to obtain the session
ID and short name of the base window of a particular environment. The
base window is the window that was defined at configuration time for the
specified environment. You can use this service to obtain the session ID
for the session your application program is currently running in.

® Query Session Cursor Service: Use this service to obtain the cursor
type and the row and column addresses of the specified session’s cursor
on the session’s presentation space. The possible cursor types are as
follows:
— Underscore cursor (blinking or not blinking)
An underscore cursor appears as:
— Box cursor (blinking or not blinking)
A box cursor appears as: W
— Inhibited cursor
An inhibited cursor is not displayed. When the cursor position
changes, the text in the window is not moved to keep the cursor
inside the window borders.
— Inhibited cursor with autoscroll
An inhibited cursor with autoscroll is not displayed. When the

cursor position changes, the text in the window is moved to keep the
cursor inside the window borders.

Requesting the Session Information Services

To request any of the session information services, load the registers and the
parameter list with the proper values, and use the INT 7AH instruction to
signal the workstation program that it has a request to process.

Note: Before your application can request the session information services, it
must request the Name Resolution service, using ‘SESSMGR ’ as the
gate name in the parameter list. (Remember that the gate name must be
padded to the right with blanks if it is less than eight characters.)

Chapter 4. Coding Session Information Service Requests 4-3

Introduction

Return Codes for the Session Information Services

Each session information service has two return codes associated with it, a
system return code and a session management return code. Both types of
return codes are 2-byte values made up of a function ID and an error number.
The function ID indicates the portion of the workstation program in which
the error occurred. The error number indicates the specific type of error
that has occurred. An error number of X‘00’ always indicates a successful
acceptance or completion of the request.

e System return codes:

After your application has requested a session information service, the
CH and CL registers contain a return code generated by the request
processing portion of the workstation program. The function ID is in the
CH register, and the error number is in the CL register. System return
codes use a function ID of X‘12’. The error codes that can appear are:

Code Meaning

X‘00° "Request accepted.

X05° Invalid index specified.
X7 Invalid reply specified.
X08’ Invalid wait type specified.
X‘0B’ RQE pool depleted.

X‘OF’ Invalid environment access.
X34’ Invalid gate entry.

These system return codes apply to all session information services.
e Session information services return codes:

After a requested session information service is completed, bytes 0 and 1
of the parameter list contain a return code generated by the session
management portion of the workstation program. The function ID is in
byte 1, and the error number is in byte 0. Session information return
codes use a function ID of X‘6B’. The error numbers that can appear are
specific to the service that was requested and are included in the
descriptions of each service.

See Appendix H, “Return Codes,” for more information.

4-4

Query Session ID

Session Information Service X‘01’: Query Session ID

Register Values

Use this service to obtain the session ID of the session you specify. You can
specify a session by its short or long name, or ask for the IDs of all sessions

of a particular type.

On Request
AH = X09
AL = X‘01’
BH = X80
BL = X20’
CX = X‘0000’

DX = Resolved value for SESSMGR

i

Parameter List Format

Segment address of the parameter list
Offset address of the parameter list

On Completion

CH = X12
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Contents Contents
Offset Length | on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID (X‘6B’)
2 1 byte Option code Unchanged
3 1 byte Data code Unchanged
4 1 word Offset address of Unchanged
name array
6 1 word Segment address of Unchanged
name array
8 — 15 8 bytes | Session long name Unchanged

Parameter Definitions

Request Parameters:

e To obtain the session ID of a session whose short name you

specify:

— The option code must be X‘01’,
— The data code must be the 1-character (A —Z) ASCII short name of

the session.

The session long name is ignored.

Chapter 4. Coding Session Information Service Requests 4-5

Query Session ID

o To obtain the session ID of a session whose long name you specify:

— The option code must be X‘01’,
— The data code must be X‘00°.

* — Bytes 8 through 15 must contain the long name of the session, padded
to the right with blanks if it is less than eight characters long.

e To obtain the session ID for all sessions of a specific session type:

— The option code must be X‘00’.

~ The data code must be:

X‘01’ for a work station control session.
X‘02’ for a DFT host session.

X‘03’ for a CUT host session.

X‘04’ for a notepad session.

X‘05’ for a personal computer session.

The session long name is ignored.

Name Array Format

Contents Contents
Offset Length on Request on Completion
0 1 byte Name array length | Unchanged
1 1 byte Reserved Number of matching
sessions
2 % 1 byte Reserved Short name of session 1
3 * 1 byte Reserved Type of session 1
4 * 1 byte Reserved Session ID of session 1
5 * 1 byte Reserved Reserved
6 —13* 8 bytes Reserved Long name of session 1
°
°
[]
and so on for all possible matching sessions.
* The format of the name array offsets 2 through 13 must be repeated for as many possible
sessions as can match the Query Session ID service request.

4-6

Query Session ID

Name Array Parameter Definitions
Request Parameters:

e The name array length is the number of bytes in the name array. The
name array must be at least 14 bytes long and no greater than 170 bytes
long. In addition, if you are coding this service to obtain the session ID
for all sessions of a specific type, the name array must be large enough
for all the possible matching sessions that can be returned for the session

type.
Completion Parameters:

e The number of matching sessions contains the number of sessions that
matched the request.

e The session short name is the 1-character uppercase ASCII alphabetic
name of the session (A through 7).

o The session type is one of the following:

— X‘01’ for a work station control session.
— X2’ for a DFT host session.

— X‘03% for a CUT host session.

— X‘04’ for a notepad session.

— X‘05° for a personal computer session.

e The session ID is the ID that the workstation program uses to identify
the session. You use the session ID to specify this session in any
following API service requests.

e The session long name is the 8-character ASCII name assigned to the
session when it was configured. The session long name is padded to the
right with blanks if necessary.

Chapter 4. Coding Session Information Service Requests 4-7

Query Session ID

Return Codes
e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

o Session Information Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the session management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Session
information services return codes use a function ID of X‘6B’. The error
codes that can be received for this service are:

Code Meaning

X000’ Successful completion.

X038’ The specified long name is invalid.
X09’ The session type is invalid.

X‘0B’ The specified short name is invalid.

XC’ Byte 0 of the parameter list not zero on request.

XD’ Invalid option code.

Xar’ No session has been configured for the specified session type.

X2’ The name array length is invalid.

X183’ The specified short name is not an uppercase ASCII alphabetic
character.

See Appendix H, “Return Codes,” for more information.

4-8

Query Session ID

Coding Example

’
.
’

QDRCODE
QFXNID
QDOPT
QODDATA
QDAOFF
QDASEG
ODLNAM

DB O
DB O
DB O
DB O
DW O
DW O
DB 8

MOV

MOV

MOV

DUP ('

DEFINE PARAMETER LIST FOR QUERY SESSION ID

FUNCTION

e Ne e N N Ne w

")

AX,SEG QDRCODE ;
ES,AX ;
DI,OFFSET QDRCODE ;

; INITIALIZE PARAMETER LIST FOR QUERY SESSION

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AL,01H

QDOPT, AL

AL, 00H

ODDATA, AL

QDAOFF ,OFFSET ARRAYNAME
QODASEG, SEG ARRAYNAME
ODRCODE , 00H

QFXNID,O00H

Ne Ne we me Ne ws N6 we

; THERE IS A LONG SESSION NAME

~e ws =

; SIGNAL WORKSTATION PROGRAM FOR QUERY

CLD
PUSH
MOV
MOV
MOV
MOV
MOV
REP
pPOP

MOV
MOV
MOV
MOV
MOV
MOV
MOV

INT

SET UP REGISTERS

DS
CX,4

SI,OFFSET LONGNAME
AX,SEG LONGNAME
DS,AX

DI,OFFSET QDLNAM
MOVSW

DS

Ne Ne Ne Ne Ne Ne S N Se

FOR QUERY SESSION ID

AH,09H
AL,O1H
BH, 80H
BL,20H
CX,00H
DX, SESSMGR ;
DI,OFFSET QDRCODE ;

RESOLVED VALUE FOR
OFFSET ADDRESS OF

RETURN CODE

ID

OPTION BYTE

DATA BYTE

NAMES ARRAY OFFSET

NAMES ARRAY SEGMENT ADDRESS
SESSION LONG NAME

ADDRESSABILITY TO
PARAMETER LIST
USING ES:DI

ID

OBTAIN THE SESSION ID OF
A LONG NAME SPECIFIED

DATA BYTE

ARRAY OFFSET
ARRAY SEGMENT
RETURN CODE
FUNCTION 1ID

0 ON REQUEST
0 ON REQUEST

BEGIN MOVING NAME

INTO PARAMETER LIST
NAME IS FOUR WORDS LONG
SOURCE OFFSET IN SI

SOURCE SEGMENT IN DS
DESTINATION OFFSET IN DI
MOVE SESSION NAME TO

TO PARAMETER LIST

'SESSMGR'

; PARAMETER LIST

7AH

SESSION ID SERVICE

Chapter 4. Coding Session Information Service Requests

4-9

Query Session Parameters

Session Information Service X‘02’: Query Session

Use this service to obtain the session characteristics of the session you

Parameters
specify.
Register Values
On Request
AH = X‘09
AL = X092
BH = X‘80’
BL = X290’
CX = X‘0000’

DX = Resolved value for SESSMGR
ES = Segment address of the parameter list
DI = Offset address of the parameter list

Parameter List Format

On Completion

CH = X‘12’
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Contents Contents

Offset | Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID (X‘6B’)

2 1 byte Session ID Unchanged

3 1 byte Reserved Reserved

4 1 byte Reserved Session type

5 1 byte Reserved Session characteristics

6 1 byte Reserved Rows

7 1 byte Reserved Columns

8 1 word Reserved Offset address of
presentation space

10 1 word Reserved Segment address of
presentation space

4-10

Query Session Parameters

Parameter Definitions

Request Parameters:

The session ID is the ID of the session whose characteristics you are
requesting.

Completion Parameters:

The session type byte is as follows:

— X‘01’ for a work station control session.
— X‘02’ for a DFT host session.

— X‘03’ for a CUT host session.

— X4’ for a notepad session.

-~ X‘05’ for a personal computer session.

The bits in the session characteristics byte are as follows:

0 1 2—17
EAB | PSS | Reserved

—If bit 0 (EAB) = 0, the session has base attributes.

—If bit 0 (EAB) = 1, the session has extended attributes.

- If bit 1 (PSS) = 0, the session does not support programmed symbols.
—If bit 1 (PSS) = 1, the session supports programmed symbols.

“Rows” is the hexadecimal number of rows in the session’s presentation
space.

“Columns” is the hexadecimal number of columns in the session’s
presentation space.

The offset and segment addresses of the presentation space point to the
session’s presentation space. See Appendix F for a discussion of
presentation space considerations.

Chapter 4. Coding Session Information Service Requests 4-11

Query Session Parameters

Return Codes

Usage Notes

e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

e Session Information Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the session management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Session
information services return codes use a function ID of X‘6B’. The error
codes that can be received for this service are:

Code

X‘00’
X02’
X*‘06’
X‘C’

Meaning

Successful completion.

Specified session ID is invalid.

Specified session ID not in use.

Byte 0 of the parameter list is not zero on request.

See Appendix H, “Return Codes,” for more information.

® The session ID required as input for this service can be obtained in the
following ways:

— By requesting the Query Session ID service.

— By requesting the Query Base Window service

— Or, if you defined a presentation space with the Define Presentation
Space service, the session ID would be returned

4-12

Query Session Parameters

Coding Example

.
I
.
7

QPRETNCD
QPFXNID
QPSESSID
QPRESERV
QPSESTYP
QPSESCHR
QPROWS
QPCOLS
QPPSOFF
QPPSSEG

~e e we

~e we =

~e we ~o

DB
DB

DB

DB
DB
DB
DB
DB
DwW
DW

MOov
MOV
MOV
MOV

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

OCOO0OO0OO0OOCOOOO

MOV .

INT

QPRETNCD, 00H

QPFXNID,O0H
AL,SESSID
QPSESSID,AL

AH,09H
AL,02H

BH, 80H
BL,20H
CX,0FFH
DX, SESSMGR

DI, SEG QPRETNCD

ES,DI

DI,OFFSET QPRETNCD

7AH

PARAMETER LIST FOR QUERY SESSION PARAMETERS SERVICE

RETURN CODE

FUNCTION NUMBER

SESSION ID

RESERVED

SESSION TYPE

SESSION CHARACTERISTICS
NUMBER OF ROWS

NUMBER OF COLUMNS

OFFSET OF PRESENTATION SPACE
SEGMENT OF PRESENTATION SPACE

Ne Mo e Ne Ne e Ne we Se we

INITIALIZE PARAMETER LIST FOR QUERY SESSION PARAMETERS SERVICE

; RETURN CODE MUST = O BEFORE REQUEST
; FUNCTION ID MUST = 0 BEFORE REQUEST
; SESSION ID INTO THE LIST

INITIALIZE REGISTERS FOR QUERY SESSION PARAMETERS SERVICE

RESOLVED VALUE FOR 'SESSMGR '

SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

LY TS

SIGNAL WORKSTATION PROGRAM FOR QUERY SESSION PARAMETERS SERVICE

Chapter 4. Coding Session Information Service Requests 4-13

Detach Session ID

Session Information Service X‘04’: Detach Session ID

Register Values

Use this service to detach from a currently defined session.

On Request
AH = X‘09
AL = X0¢
BH = X80
BL = X220
CX = X‘O0FF’

DX = Resolved value for SESSMGR
ES = Segment address of the parameter list
DI = Offset address of the parameter list

Parameter List Format

On Completion

CH = X12
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID (X‘6B’)
2 1 byte Session ID Unchanged
3 1 byte Reserved Reserved

Parameter Definitions

Request Parameters:

® The session ID is the ID of the session to detach from.

4-14

Detach Session ID

Return Codes

Usage Notes

e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

o Session Information Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the session management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Session
information services return codes use a function ID of X‘6B’. The error
codes that can be received for this service are:

Code Meaning

X00° Successful completion.

X02’ Specified session ID is invalid.

X*06’ Specified session ID not in use.

XC Byte 0 of the parameter list is not zero on request.
X‘14° Cannot detach from the session now.

See Appendix H, “Return Codes,” for more information.

This service should be used only by a system extension that provides a
service for some session. Attaching to a session ID by issuing an Attach
Session ID service request guarantees that the session ID you are providing
services for will not be deleted until you detach from it. However, it is
possible for the fixed-length queue or presentation space associated with the
session to be deleted. If a deletion of this type occurs before you issue a
Detach Session ID request for the session, an appropriate error code will be
issued when you request a service for the session. If this error occurs, you
should request the Detach Session ID service for the session, to make the
session ID available to some other system extension.

Chapter 4. Coding Session Information Service Requests 4-15

Detach Session ID

Coding Example

.
7

.
’

PARAMETER LIST FOR DETACH SESSION ID

I

DTRETNCD DB
DTFXNID DB
DTSESSID DB
DTRSRVD DB

~e N e

~e ~o N

~ Ne o~

.
I
7

.
7

OO OO

RETURN CODE
FUNCTION ID
SESSION ID

INITIALIZE PARAMETER LIST FOR DETACH SESSION ID

MOV
MOV
MOV
MOV

DTRETNCD, OOH
DTFXNID,O00H
AL,SESSID

DTSESSID, AL

~e we e ~e

RETURN CODE MUST
FUNCTION ID MUST
SESSION ID IN
PARAMETER LIST

0 BEFORE REQUEST
0 BEFORE REQUEST

INITIALIZE REGISTERS FOR DETACH SESSION ID

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,04H
BH,80H
BL,20H
CX,0FFH
DX ,SESSMGR ;
DI, SEG DTRETNCD ;
ES,DI ;
DI ,OFFSET DTRETNCD ;

NAME RESOLUTION FOR SESSMGR
SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR DETACH SESSION ID SERVICE

INT

.
.

7AH

4-16

Attach Session ID

Session Information Service X‘05’: Attach Session ID

Use this service to attach to a currently defined session.

Register Values

On Request
AH = X'09
AL = X‘0%’
BH = X80’
BL = X20’
CX = X‘00FF
DX =

ES =

DI =

Parameter List Format

Resolved value for SESSMGR
Segment address of the parameter list
Offset address of the parameter list

On Completion

CH = X12
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID (X‘6B’)
2 1 byte Session ID Unchanged
3 1 byte Reserved Reserved

Parameter Definitions

Request Parameters:

o The session ID is the ID of the session to attach to.

Chapter 4. Coding Session Information Service Requests 4-17

Attach Session ID

Return Codes
o System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

® Session Information Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the session management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Session
information services return codes use a function ID of X‘6B’. The error
codes that can be received for this service are:

Code Meaning

X00’ Successful completion.

X2’ Specified session ID is invalid.

X<05° Attachment limit exceeded.

X“06’ Specified session ID not in use.

X‘oC’ Byte 0 of the parameter list is not zero on request.

See Appendix H, “Return Codes,” for more information.

Usage Notes

This service should only be used by a system extension that provides a
service for some session. Attaching to a session ID guarantees that the
session ID you are providing services for will not be deleted until you
detach from it. However, it is possible for the fixed-length queue or
presentation space associated with the session to be deleted. If a deletion of
this type occurs before you issue a Detach Session ID request for the
session, an appropriate error code will be issued when you request a service
for the session. If this error occurs, you should request the Detach Session
ID service for the session, to make the session ID available to some other
system extension.

4-18

Attach Session ID

Coding Example

PARAMETER LIST FOR ATTACH SESSION ID

.~ o~

1

ATRETNCD DB
ATFXNID DB
ATSESSID DB
ATRSRVD DB

RETURN CODE
FUNCTION ID
SESSION ID

~e So ~o

[eNeoNoNeo

INITIALIZE PARAMETER LIST FOR ATTACH SESSION ID

~s o~ we

MOV ATRETNCD,O00H ; RETURN CODE MUST
MOV ATFXNID, OOH ; FUNCTION ID MUST
MOV AL,SESSID ; SESSION ID IN
MOV ATSESSID,AL ; PARAMETER LIST

0 BEFORE REQUEST
0 BEFORE REQUEST

1]

INITIALIZE REGISTERS FOR ATTACH SESSION ID

~e No

MOV AH,09H

MOV AL,O5H

MOV BH,80H

MOV BL,20H

MOV CX,OFFH

MOV DX,SESSMGR ; NAME RESOLUTION FOR SESSMGR

MOV DI, SEG ATRETNCD ; SEGMENT ADDRESS OF PARAMETER LIST
MOV ES,DI ; IN ES

MOV DI,OFFSET ATRETNCD ; OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR ATTACH SESSION ID SERVICE

~ No N

INT 7AH

.

Chapter 4. Coding Session Information Service Requests 4-19

Query Windows in Environment

Session Information Service X‘06’: Query Windows in
Environment
Use this service to obtain a list of the windows that are defined within a
specified environment. The windows in the environment are listed by their

short name. You can also use this service to obtain the ID of the currently
.active environment.

Register Values

On Request On Completion

AH = X‘'09 CH = X‘12’

AL = X‘06’ CL = Return code

BH = X80’

BL = X220’ The contents of registers
CX = X‘00FF AX, BX, DX, ES, and DI
DX = Resolved value for SESSMGR are unpredictable.

ES = Segment address of the parameter list

DI = Offset address of the parameter list

Parameter List Format

Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 - 11 byte Must be zero Function ID (X‘6B’)
2 1 byte Environment ID or Unchanged or

X‘00’ environment ID
3 1 byte Reserved Number of windows
4 - 23 |20 bytes Reserved Window short names

4-20

Query Windows in Environment

Parameter Definitions

Request Parameters:

The environment ID is the ID of the environment whose window short
names you wish to obtain. If you want to obtain the ID of the currently
active environment, specify X‘00’ in this field in the parameter list on
request.

Completion Parameters:

Return Codes

If you specified X‘00’ in byte 2 of the parameter list on request, the ID of
the currently active environment is returned.

The number of windows is the number of windows defined to belong to
the specified environment.

The window short name is the 1-character uppercase ASCII alphabetic
name of each window that belongs to the environment.

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Session Information Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the session management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Session
information services return codes use a function ID of X‘6B’. The error
codes that can be received for this service are:

Code Meaning

X400’ Successful completion.
X‘0A’ Invalid environment ID.
X‘0C’ Byte 0 of the parameter list is not zero on request.

See Appendix H, “Return Codes,” for more information.

Usage Notes

You can use the Query Environment service to obtain the environment
ID to use as input for this service.

Chapter 4. Coding Session Information Service Requests 4-21

Query Windows in Environment

Coding Example

o we e

PARAMETER LIST FOR QUERY WINDOWS

QORETNCD DB
QOFXNID DB
QOENVID DB
QONUMWIN DB
QOWNAMS DB

.
’

.
’

N Ne e

0
0
0
0
20 DUP(?)

IN ENVIRONMENT

e Ne e Ne Se

RETURN CODE
FUNCTION ID
ENVIRONMENT ID
NUMBER OF WINDOWS
WINDOW SHORT NAMES

INITIALIZE PARAMETER LIST FOR QUERY WINDOWS IN ENVIRONMENT

MOV
MOV
MOV
MOV

QQRETNCD, 00H
QQFXNID,00H
AL,ENVID
QQENVID,AL

~e Ne Ne e

RETURN CODE MUST
FUNCTION ID MUST
ENVIRONMENT ID

IN PARAMETER LIST

0 BEFORE REQUEST
0 BEFORE REQUEST

[[]

INITIALIZE REGISTERS FOR QUERY WINDOWS IN ENVIRONMENT

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H

AL,06H

BH,80H

BL, 20H

CX,O0FFH

DX, SESSMGR

DI, SEG QQRETNCD
ES,DI

DI,OFFSET QQRETNCD

.
’
.
’
.
’
.
’

NAME RESOLUTION FOR SESSMGR
SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR QUERY WINDOWS IN ENVIRONMENT SERVICE;

INT

7AH

4-22

Query Environment of Window

Session Information Service X‘07’: Query Environment

of Window

Use this service to obtain the environment ID of a specified window.

Register Values

On Request
AH = X'09
AL = X07
BH = X80
BL = X20’
CX = X‘O0FF

DX = Resolved value for SESSMGR
ES = Segment address of the parameter list

DI

Parameter List Format

= Offset address of the parameter list

On Completion

CH = X12
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID (X‘6B’)
2 1 byte Window short name Unchanged
3 1 byte Reserved Environment ID

Parameter Definitions

Request Parameters:

® The window short name is the ASCII short name of the window whose
environment ID you are requesting.

Completion Parameters:

o The environment ID is the ID of the environment that owns the

specified window.

Chapter 4. Coding Session Information Service Requests 4-23

Query Environment of Window

Return Codes
e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

® Session Information Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the session management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Session
information services return codes use a function ID of X‘6B’. The error
codes that can be received for this service are:

Code Meaning

X<00’ Successful completion.

X‘0B’ Specified short name is invalid.

X‘cC’ Byte 0 of the parameter list not zero on request.

X138’ Specified short name is not an uppercase ASCII alphabetic
character.

See Appendix H, “Return Codes,” for more information.

Usage Notes
o The window name is either:

— The short window name selected at customization time (which may
be found using the Query Base Window service), or

— The window name specified on the Define Presentation Space
service or returned by this service, if you allowed the system to
select an available window name for you.

4-24

Query Environment of Window

Coding Example

.
’

; PARAMETER LIST FOR QUERY ENVIRONMENT OF WINDOW

RETURN CODE
FUNCTION ID
WINDOW SHORT NAME
ENVIRONMENT ID

7

QIRETNCD DB
QIFXNID DB
QIWINDOW DB
QIENVID DB

oNeNeoNe]

~e Ne e e

INITIALIZE PARAMETER LIST FOR QUERY ENVIRONMENT OF WINDOW

~ e~

RETURN CODE MUST 0 BEFORE REQUEST
FUNCTION ID MUST O BEFORE REQUEST
WINDOW SHORT NAME IN

PARAMETER LIST

MOV QIRETNCD,OOH
MOV QIFXNID,O0H
MOV AL,'P’

MOV QIWINDOW,AL

~e Ne Ne N

INITIALIZE REGISTERS FOR QUERY ENVIRONMENT OF WINDOW

~e ~a =

MOV AH,09H

MOV AL,O07H

MOV BH,80H

MOV BL,20H

MOV CX,OFFH

MOV DX,SESSMGR ; NAME RESOLUTION FOR SESSMGR

MOV DI, SEG QIRETNCD ; SEGMENT ADDRESS OF PARAMETER LIST
MOV ES,DI ; IN ES

MOV DI,OFFSET QIRETNCD ; OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY ENVIRONMENT OF WINDOW SERVICE;

N we N

INT 7AH

Chapter 4. Coding Session Information Service Requests 4-25

Query PC Session PIF Information

Session Information Service X‘08’: Query PC Session
Program Information File (PIF) Information

Use this service to obtain a flag that represents the PIF for the application
program running in the specified personal computer session.

Register Values

On Request On Completion

AH = X‘09’ CH = X‘12’

AL = X‘08 CL = Return code

BH = X80’

BL = X2¢’ The contents of registers
CX = X‘O0FF’ AX, BX, DX, ES, and DI

DX = Resolved value for SESSMGR
ES = Segment address of the parameter list
DI = Offset address of the parameter list

are unpredictable.

Parameter List Format

Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID (X‘6B’)
2 1 byte Session ID Unchanged
3 1 word Reserved PC session flags

Parameter Definitions

Request Parameters:.

o The session ID is the ID of the PC session being queried.

Completion Parameters

o The bits in the PC session flags indicate the answers to questions in the

PIF for the application running in the specified session.
Chapter 2, “Programming Considerations” contains information on
creating PIFs and how they are used.

4-26

Query PC Session PIF Information

FLAGSET:

The format of the PC session flags is as follows (remember that bit 0 is
the high-order, leftmost, bit in the word and bit 15 is the low-order,
rightmost, bit in the word):

Bit 0 = 1 means that the DISPLAY question was answered “yes.”
Bit 1 = 1 means that the INTERRUPT VECTORS swapped include
vectors in the range X‘00’ through X“7F’.

Bit 2 = 1 means that the INTERRUPT VECTORS swapped include
vectors in the range X‘80° through X‘FF".

Bit 3 = 1 means that the TIMER question was answered “yes.”

Bit 4 = 1 means that the KEYBOARD question was answered “yes.”
Bit 5 is reserved.

Bit 6 is reserved.

Bit 7 is reserved.

Bit 8 = 1 means that the 8087 question was answered “yes.”

Bit 9 is reserved.

Bit 10 = 1 means that the FOREGROUND question was answered
“yes.”

Bit 11 is reserved.

Bit 12 is reserved.

Bit 13 is reserved.

Bit 14 = 1 means that the MEMORY question was answered “yes.”
Bit 15 is reserved.

For example, to test flag 1 to determine whether the session swaps
interrupt vectors in the range X‘00’ through X‘7F’, you can code:

AX,SFLFLG ; LOAD REGISTER WITH FLAGS
TEST AX,4000H ; BINARY '01000000 00000000
FLAGSET ; TEST SUCCEEDED, TAKE JUMP

; FLAG 1 IS SET

Chapter 4. Coding Session Information Service Requests 4-27

Query PC Session PIF Information

Return Codes

Usage Notes

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Session Information Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the session management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Session
information services return codes use a function ID of X‘6B’. The error
codes that can be received for this service are:

Code Meaning

X*00’ Successful completion.

X02’ Specified session ID is invalid.

X+06’ Specified session ID is not in use.

X‘0C’ Byte 0 of the parameter list is not zero on request.

See Appendix H, “Return Codes,” for more information.

An application program can request this service for its own session or
for any other PC sessmn in the same environment or any other
environment.

The use of this service is helpful if, for example, an application program
needs to know whether it will be suspended if it is not the foreground
application. Using the information obtained by this service allows the
application program to avoid situations such as jumping to another
session, becoming suspended, and being unable either to jump back or
to release a lock on the work station control session. A situation such
as this will hang the workstation program.

If you are running an application using this service in a system that is
not configured for Multi-DOS, the flag byte returned will be 00.

4-28

Query PC Session PIF Information

Coding Example

o ~e =

PARAMETER LIST FOR QUERY PC SESSION PIF INFORMATION

SFLRCVAL DB
SFLRCFNC DB
SFLSID DB
SFLFLG DW

; RETURN CODE
; FUNCTION ID
; SESSION ID

leNoNoRe)

INITIALIZE PARAMETER LIST FOR QUERY PC SESSION PIF INFORMATION

~ ~e N

MOV SFLRCVAL,OOH
MOV SFLRCNFC,O00H
MOV AL,SESSID
MOV SFLSID,AL

RETURN CODE MUST
FUNCTION ID MUST
SESSION ID IN
PARAMETER LIST

0 BEFORE REQUEST
0 BEFORE REQUEST

Ne Ne Ne e

INITIALIZE REGISTERS FOR QUERY PC SESSION PIF INFORMATION

~e we o~

MOV AH,09H

MOV AL,08H

MOV BH,80H

MOV BL,20H

MOV CX,OFFH

MOV DX,SESSMGR ; NAME RESOLUTION FOR SESSMGR

MOV DI, SEG SFLRCVAL ; SEGMENT ADDRESS OF PARAMETER LIST
MOV ES,DI ; IN ES

MOV DI,OFFSET SFLRCVAL ; OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY PC SESSION PIF INFORMATION SERVICE

~e Ne ~o

INT 7AH

Chapter 4. Coding Session Information Service Requests 4-29

Query Base Window

Session Information Service X‘0A’: Query Base Window

Register Values

Use this service to obtain the session ID and short name of the base window
of the specified environment. A base window is any window that was
defined at configuration time or created using the INDSPLIT or
INDMERGE commands.

On Request On Completion

AH = X‘09 CH = X‘12’

AL = X‘0A’ CL = Return code

BH = X80’

BL = X20’ The contents of registers
CX = X‘0O0FF’ AX, BX, DX, ES, and DI
DX = Resolved value for SESSMGR are unpredictable.

ES = Segment address of the parameter list

DI = Offset address of the parameter list

Parameter List Format

Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID (X‘6B’)
2 1 byte Environment ID Unchanged
3 1 byte Reserved Session ID
4 1 byte Reserved Window short name
5 1 byte Reserved Reserved

Parameter Definitions

Request Parameters:

® The environment ID is the ID of the environment whose base window
identity you are requesting. If this parameter is zero, the environment
ID defaults to the current environment.

Completion Parameters:

e The session ID is the ID of the session associated with the base window.

® The window short name is the one-character uppercase ASCII name of
the base window.

4-30

Query Base Window

Return Codes
e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

o Session Information Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the session management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Session
information services return codes use a function ID of X‘6B’. The error
codes that can be received for this service are:

Code Meaning

X00’ Successful completion.

XA’ Invalid environment ID.

XC’ Byte 0 of the parameter list is not zero on request.
X‘OE’ Base window is not found.

See Appendix H, “Return Codes,” for more information.

Usage Notes

e Use this service to obtain the session ID of the window you are
currently working in, if that window was not created using the Define
Presentation Space service.

"Chapter 4. Coding Session Information Service Requests 4-31

Query Base Window

Coding Example

o N we

’
QOSRETNCD
QSFXNID
QSENVID
OSSESSID
QSWINDOW
QSRESERV

~e e N

DB
DB
DB
DB
DB
DB

-

.

MOV
MOV
MOV

QOOO0O0

QSRETNCD, 00H
OSFXNID,00H
QSENVID, O

e Ne Se No N we

.
’
.
I

.
’

PARAMETER LIST FOR QUERY BASE WINDOW

RETURN CODE
FUNCTION NUMBER
ENVIRONMENT ID
SESSION ID
WINDOW SHORT NAME
RESERVED

INITIALIZE PARAMETER LIST FOR QUERY BASE WINDOW

RETURN CODE MUST 0 BEFORE REQUEST
FUNCTION ID MUST 0 BEFORE REQUEST
USE DEFAULT OF CURRENT ENVIRONMENT

; INITIALIZE REGISTERS FOR QUERY BASE WINDOW

~ ~o o~

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

INT

AH,09H

AL, OAH

BH,80H

BL, 20H

CX,0FFH

DX , SESSMGR

DI, SEG QSRETNCD
ES,DI

DI,OFFSET QSRETNCD

7AH

.
’
.
7
-
4
.
14

RESOLVED VALUE FOR 'SESSMGR '
SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY BASE WINDOW SERVICE

4-32

Query Session Cursor

Session Information Service X‘OB’: Query Session Cursor

Use this service to obtain the cursor type and the row and column
addresses of the specified session’s cursor.

Register Values

On Request On Completion

AH = X'09 CH = X12

AL = X‘0B’ CL = Return code

BH = X80

BL = X20’ The contents of registers
CX = X‘00FF’ AX, BX, DX, ES, and DI
DX = Resolved value for SESSMGR are unpredictable.

ES = Segment address of the parameter list

DI = Offset address of the parameter list

Parameter List Format

Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID (X‘6B’)
2 1 byte Session ID Unchanged
3 1 byte Reserved Cursor type
4 1 byte Reserved Row address
5 1 byte Reserved Column address

Parameter Definitions
Request Parameters:

® The session ID is the ID of the session whose cursor information you
are requesting.

Chapter 4. Coding Session Information Service Requests 4-33

Query Session Cursor

Return Codes

Completion Parameters:

The cursor type byte is as follows (where bit 0 is the high-order bit and
bit 7 is the low-order bit):

Reserved

Reserved

Reserved

Inhibited cursor with autoscroll
Reserved

Inhibited cursor

Blinking cursor

Box cursor

IO WD

The row address is the address in the session’s presentation space
representing the cursor’s row position. Row addresses start with zero.

The column address is the address in the session’s presentation space
representing the cursor’s column position. Column addresses start with
Zero.

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Session Information Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the session management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Session
information services return codes use a function ID of X‘6B’. The error
codes that can be received for this service are:

Code Meaning

X0’ Successful completion.

X02 Specified session ID is invalid.

X06° Specified session ID not in use.

XC’ Byte 0 of the parameter list is not zero on request.

See Appendix H, “Return Codes,” for more information.

4-34

Query Session Cursor

Coding Example

.
’

; PARAMETER LIST FOR QUERY SESSION

CRRETNCD
CRFXNID

CRSESSID
CRCURSOR
CRROWADD
CRCOLADD

DB
DB
DB
DB
DB
DB

ejoloNoloNe]

Ne me Ne we Ne N

CURSOR

RETURN CODE
FUNCTION ID
SESSION ID
CURSOR TYPE
ROW ADDRESS
COLUMN ADDRESS

; INITIALIZE PARAMETER LIST FOR QUERY SESSION CURSOR

MOV
MOV
MOV
MOV

CRRETNCD, 00H

CRFXNID,00H
AL, SESSID
CRSESSID,AL

~e Ne o~ o~

RETURN CODE MUST
FUNCTION ID MUST
SESSION ID IN
PARAMETER LIST

0 BEFORE REQUEST
0 BEFORE REQUEST

; INITIALIZE REGISTERS FOR QUERY SESSION CURSOR

~e ~e o~

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

INT

AH, 09H

AL, OBH

BH, 80H
BL,20H
CX,OFFH

DX , SESSMGR

ES,DI

DI, SEG CRRETNCD ;
;

DI,OFFSET CRRETNCD

7AH

NAME RESOLUTION FOR SESSMGR
SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY SESSION CURSOR SERVICE

Chapter 4. Coding Session Information Service Requests 4-35

Query Session Cursor

4-36

Chapter 5. Coding Keyboard Service Requests

Introduction e 5-2
Scan Code/Shift States 5.3
Keytop Characteristics, 5-4
Attention Identifier (AID)Keys 5-5
Work Station Control Keysc..0oiviiviiinnnnnn. 5-6
Special Keys i e e 5-6
ASCIT/ASCII Mnemonicsc.ieneenmnninnneneeennn, 5.7
Keyboard Servicest 5-7
Requesting the Keyboard Services 5-8
Return Codes for the Keyboard Services 5-8
Keyboard Service X‘01": Connect to Keyboard 59
Keyboard Service X‘02’: Disconnect from Keyboard 5-13
Keyboard Service X‘03: ReadInput 5-16
Keyboard Service X‘04": Write Keystroke 5-22
Keyboard Service X‘05”: DisableInput 5-30
Keyboard Service X‘06’: EnableInput 5-33
Keyboard Service X‘07’: Post Status Code 5-36

Chapter 5. Coding Keyboard Service Requests 9-1

Introduction

Introduction

This chapter describes how to code requests for the keyboard services
provided by the APL

The keyboard services allow your application program to read and write
keystroke data from a specified session, to disable and enable operator
input from the keyboard of a specified session, and to notify the
workstation program of the status of your application program’s keystroke
processing.

A recommended way of performing keystroke processing is for an
application program to create a separate task (using the Create Task Entry
service) that processes keystrokes in a loop until the terminating keystroke
is detected. The application program should use the Set Task Ready service
to set the task to the ready state and cause it to run.

As an example, the keystroke processing task might consist of the
following:

1. An initialization section that would perform the system functions
needed to obtain information required by the task. Some functions that
the initialization section may include are:

e Creating an input queue and if necessary an event queue
o Requesting any query services needed
o Readying the keystroke processing task.

2. A key processing section that should first connect to any sessions with
which the task will interact; it then will loop while performing the Read
Input and Write Keystroke functions as required as well as any other
actions required to process keystrokes. This section could continue to
loop until some terminating condition was detected, such as some
predefined terminating keystroke.

Note that while this task is in the process of doing a Read Input
function with a WAIT option, it will be suspended until something
appears on its input queue. This means that no other processing can be
done by this task until either a keystroke is pressed on the keyboard, or
a 4-byte item is enqueued to the task’s input queue by another task.

The task may also do a Read Input function with a NOWAIT option. In
this case, control will be returned if there is nothing on the queue and
processing can be done without pressing another keystroke or receiving
input from another task. In either case, the processing loop can detect
the value returned in the parameter list as a keystroke, continue
processing, and determine the need to terminate either by the keystroke
value or by some other mechanism. It would then avoid doing another
Read Input and set itself unready. '

Introduction

3. A cleanup section that will be be run when the task is signaled in some
way to end its processing. This section would disconnect from all
services that it had connected to and delete any items it had created,
such as the input queue. When its cleanup activities are completed,
this section could signal some controlling task that it is done, and set
itself unready. This prevents it from being dispatched again. The
controlling task could delete the key processing task prior to returning
to DOS.

Scan Code/Shift States

The Keyboard Services utilize scan codes/shift states to identify 3270 PC
keyboard events. Each keytop on the keyboard is represented by a unique
scan code byte. An additional shift state byte describes the condition of
keyboard modifying keys (that is, Upshift, Caps Lock, Alt, and Ctrl).

The scan code values are listed in Appendix A and are shown on foldouts at
the back of this book. These 3270 PC API values are not the same as those
received when reading keystrokes via standard PC keyboards (for example,
using the BIOS method). For information on the standard PC scan codes,
refer to the IBM Personal Computer Technical Reference manual.

Regardless of what keyboard you have attached, the scan codes/shift states
you either receive or send are the values for the 3270 PC keyboard. These
3270 PC API scan codes/shift states must be used in all cases involving the
use of the keyboard service API. See Appendix A of this manual for a list

of these scan code/shift state values.

Note that, internal to the workstation program, keystrokes are represented
by four bytes as indicated by bytes 8 through 11 of the Read Input
parameter list.

The 3270 PC keyboard has many more keytops than a standard PC
keyboard. However, only those 3270 PC keytops that are found on the
standard PC are available to an application using the standard PC methods
of reading keystrokes. Alternatively, all 3270 PC keytops (except the work
station control keytops) can be made available to the connecting
application via the Read Input service; the Connect to Keyboard service
with the intercept option of “All Keystrokes” is used to enable this
alternative.

The API scan codes/shift states sent by an application are processed using
the Write Keystroke service; as a result, a receiving application using
standard PC methods can expect the same results as if running on a
standard PC.

The keyboard shift state is indicated by a 1-byte value that indicates which
of the functions or characters printed on the keytop of a given position is
being sent. The shift state byte is described in Appendix A. Note that PC
sessions require the use of bits 2 and 3 of that byte to determine which of
the two shift keys was depressed, while bit 7 alone is sufficient for all other
sessions to recognize the upshifted condition.

Chapter 5. Coding Keyboard Service Requests -3

Introduction

Keytop Characteristics

Four types of keytop characteristics are used on the 3270 PC keyboard:

1.

“Make Only,” where one scan code is sent for each depression of the
key, no matter how long it is held down.

“Make/Break,” where a scan code is sent when the key is pressed
(make) and then a pair of scan codes is sent when the key is released
(break). The first of the two break scan codes is X‘F0’, which indicates
that a key is released. The second scan code is that of the key that was
released. (This second scan code is the same as that sent when the key
is pressed.)

“Typematic,” where a single scan code is sent when the key is pressed
and, if after a short time the key is not released, that same scan code is
sent every 100 milliseconds until the key is released.

“Typematic Make/Break,” which is the same as that described for
“Typematic,” except that upon release the breaking pair of scan codes is
sent just as described for the “Make/Break” type of keys.

With the workstation program loaded, the characteristics of the keyboard
are altered to match those expected by the session that is currently active.
From a keystroking perspective, there are only two types of sessions: PC
sessions (those that appear on a standard PC) and non-PC sessions (host,
notepad, and WS Ctrl). The non-PC sessions are all coded to use the host
style of keyboard characteristics, while the PC sessions expect to receive
the standard PC style.

The keytop characteristics (with API scan codes in hex) are as follows:

PC and non-PC sessions; for all cases, the following keytops are “Make
Only.” (Regardless of the active session, these keytop scan codes are
always sent to the WS Ctrl session.)

— WS Ctrl (scan code 04)
— ChgSc/Jump (scan code 03)
~ Enlarge (g+[J) (scan code 01)

PC sessions; all keytops (except those in item 1) are “Typematic
Make/Break” to match the characteristics of the PC’s keyboard.

Non-PC sessions;

~ The following keys are “Make/Break”:

Upshift, left and right (scan codes 12 and 29)
Alt, left and right (scan codes 19 and 39)

Caps Lock (scan code 14)
Ctrl (scan code 09)

Introduction

— The following keys are “Make Only”:

Key(s) Scan Code(s)
PF1 through PF24 See page FO-1
PA1 through PA3 67, 6E and 6F
Help 05

Clear 06

WS Ctrl 04

Finish 0C
ChgSc/Jump 03

Erase EOF 0B

Print 83

Copy/Auto 0A

Enlarge (o+[]) 01

Reset 11

Enter 58

Insert (A) 65

Delete (&) 6D

Home (™) 62

On the Numeric Keypad

Esc 76

NumLk 77

,/SerLk 7E

Space 84

./Del 71

Enter/+ 79

— All other keytops are “Typematic.”

Care should be taken when sending keystrokes between differing session
types (that is, reading a PC keyboard and sending the results to a non-PC
session, or vice versa), to filter the keystroke characteristics in such a way
as to match what the destination session expects. The same care should be
taken for the scan codes. For example, a host session does not expect the
Enter key to be “Make/Break” and may treat the breaking scan code as a
second Enter key. Similarly, a scan code for the Esc key has no meaning to
a host session and, if sent, will terminate a Write Keystroke request with
an X‘10’ error condition.

Attention Identifier (AID) Keys

Attention Identifier (AID) keys are those keys that, when pressed in a host
session, cause immediate host interaction. The term AID applied to these
keys is meaningful only during a host session. In a host session, AID keys
are “Make Only” and references to AID keys do not take into account
typematic or make/break characteristics.

Chapter 5. Coding Keyboard Service Requests 5-5

Introduction

The Connect to Keyboard service with the intercept option of “AID
keystrokes only” allows the API program to control host mainframe
interactions without interfering with normal data entry keystrokes.

The keytops treated as AID keys during a host session are:

PF1 through PF24
Enter (—=J)
Clear

SysRq

CrSel

Test

Attn

PA1 through PA3

Work Station Control Keys

Special Keys

Work station control keys are those keyboard keys that, when pressed, have
their scan codes routed to the WS Ctrl session or the interceptor of the WS
Ctrl session’s keystrokes. This routing occurs without regard for what
session is active at the time. These keys have no meaning to any other
session and will be rejected if their scan codes are sent to those sessions
through the Write Keystroke service.

The keytops treated as work station control keys are:

WS Ctrl (in the upper and lower shift states, but not in the control shift
or alternate shift states).

ChgSc

Jump

Enlarge (o«[])

There are some additional API scan codes used by the workstation program
that do not appear in the scan code table, but do appear in the Read Input
and Write Keystroke service requests:

o ‘F0’ is used to indicate that a make/break type key is being released and
that the next scan code to follow represents the key being released.

e ‘7F’ is sent by the workstation program to notify sessions of the current
shift state of the keyboard. The workstation program sends this scan
code whenever the real keyboard is reattached to a session; this ensures
that the session interprets the current shift state as that perceived by
the keyboard operator. This scan code occurs whenever a session is
jumped into or whenever keystrokes have been sent to a session other
than directly from the keyboard. To the session receiving it, this scan
code means “align the session shift state to match the shift state sent
with this scan code.”

5-6

Introduction

ASCII/ASCII Mnemonics

Keyboard Services

The Keyboard Services API supports an ASCII option on the Read Input
and Write Keystroke API services to allow applications to send and
receives keys in ASCII or ASCII mnemonics. The ASCII values that can be
sent or received include:

All standard ASCII characters representing keys that can be received
from the keyboard

ASCII mnemonics that represent HOST and PC keystrokes that do not
have ASCII codes. All mnemonics are two bytes, three bytes, four bytes,
or six bytes long. All mnemonics start with @.

Note: When intercepting keystrokes with ASCII, only the Make key is
returned. Shift, break, and shift alignment keys are not returned
using this option.

Appendix A contains a complete list of all ASCII values and their
corresponding characters.

The keyboard services provided by the API are:

Connect to Keyboard Service: Use this service to connect to a
session for keyboard services.

Disconnect from Keyboard Service: Use this service to disconnect
from a session for keyboard services.

Read Input Service: Use this service to read keystroke data from a
session.

Write Keystroke Service: Use this service to write keystroke data
to a session.

Disable Input Service: Use this service to disable operator input to
the session.

Enable Input Service: Use this service to reenable operator input to
the session.

Post Status Code Service: Use this service to notify the workstation
program of the status of your application program’s keystroke
processing.

Chapter 5. Coding Keyboard Service Requests 5-7

Introduction

Requesting the Keyboard Services

To request any of the keyboard services, load the registers and the
parameter list with the proper values, and use the INT 7AH instruction to
signal the workstation program that it has a request to process.

Note: Before your application can request the keyboard services, it must
request the Name Resolution service, using KEYBOARD as the gate
name in the parameter list.

Return Codes for the Keyboard Services

Each keyboard service has two return codes associated with it: a system
return code and a keyboard management return code. Both types of return
codes are 2-byte values made up of a function ID and an error number. The
function ID indicates the portion of the workstation program in which the
error occurred. The error number indicates the specific type of error that
has occurred. An error number of X‘00’ always indicates a successful
acceptance or completion of the request.

e System Return Codes:

After your application has requested a keyboard service, the CH and CL
registers contain a return code generated by the request processing
portion of the workstation program. The function ID is in the CH
register, and the error number is in the CL register. System return
codes use a function ID of X‘12’. The error codes that can appear are:

Code Meaning

X00’ Request accepted.

X05’ Invalid index specified.
X907 Invalid reply specified.
X‘08’ Invalid wait type specified.
X‘0B’ RQE pool depleted.

XOF’ Invalid environment access.
X34’ Invalid gate entry.

These system return codes apply to all keyboard services.
e Keyboard Services Return Codes:

After a requested keyboard service is completed, bytes 0 and 1 of the
parameter list contain a return code generated by the keyboard
management portion of the workstation program. The function ID is in
byte 1, and the error number is in byte 0. Keyboard services return
codes use a function ID of X‘62’. The error numbers that can appear are
specific to the service that was requested and are included in the
descriptions of each service.

See Appendix H, “Return Codes,” for more information.

Connect to Keyboard

Keyboard Service X‘01’: Connect to Keyboard

Register Values

Use this service to connect to a session for keyboard services.

On Request
AH = X‘09
AL = X0r
BH = X‘80’
BL = X20°
CX = X‘0000’

DX = Resolved value for KEYBOARD
ES = Segment address of the parameter list

DI = Offset address of the parameter list

Parameter List Format

On Completion

CH = X12
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID (X‘62’)
2 1 byte Session ID Unchanged
3 1 byte Reserved Reserved
4 1 word Event queue ID Unchanged
or zero
6 1 word Input queue ID or { Unchanged
Z€ero
8 1 byte Intercept options Unchanged
9 1 byte Reserved First connection indicator

Parameter Definitions

Request Parameters:

e The session ID is the ID of the session you want to connect to.

o The event queue ID is the ID of a fixed-length queue that the
workstation program uses to notify you when the program running in
another session has been stopped. If you intend to interact with
programs in other personal computer sessions, using this event queue is
a way of finding out when any of those programs is stopped. Use the
Create Queue service to create this fixed-length queue, and use the
Dequeue Element service to obtain the event information. This
parameter is optional and should be set to zero if not used.

Chapter 5. Coding Keyboard Service Requests 5-9

Connect to Keyboard

The event that can be reported is as follows:

Offset | Length Contents

0 1 byte Session ID

1 1 byte X‘00’ (Reserved)

2 1 byte X02’ (code)

3 1 byte X‘62’ (function ID)

This event indicates that the specified session has been
disconnected.

The input queue ID is the ID of a fixed-length queue used to receive
intercepted keystrokes typed at a session. Use the Create Queue
service to create this fixed-length queue. This parameter is optional
and should be set to zero if not used. If this parameter is set to a
nonzero value, then a valid intercept option must also be set.
Keystrokes can be intercepted from the specified session by requesting
the Read Input service.

The intercept options specify which types of keystrokes are to be
intercepted from the specified session. If this byte is nonzero, you must
also supply an input queue ID. The bits in the intercept options byte
are as follows:

0 1 2-7
AID keystrokes only All keystrokes Reserved

— Bit 0 set to 1 indicates that only keystrokes that would normally
generate an AID in a host session are to be sent to your application
program.

— Bit 1 set to 1 indicates that all keystrokes in the session are to be
sent to your application program, including AID keys.

— Bits 2 through 7 are reserved and should be set to all zeros.

Completion Parameters:

The first connection indicator is set to X‘FF’ if this is the first time a
Connect to Keyboard request has been made to this session.

— If connecting to a session defined at configuration time or by an
INDSPLIT or INDMERGE command, the workstation program has
already issued a Connect to Keyboard request for the session.
Therefore, a value of X‘FF’ indicates an error condition.

— If connecting to a session defined by your application program by a
Define Presentation Space service request, the workstation program
will not have issued a prior Connect to Keyboard request for that
session. Therefore, a value of X‘FF’ is normal.

5-10

Connect to Keyboard

Return Codes
e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

e Keyboard Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the keyboard management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Keyboard
services return codes use a function ID of X‘62’. The error codes that
can be received for this service are:

Code Meaning
X00’ Successful completion.

X‘or’ Invalid intercept option.
X<02’ Invalid session ID.

X4’ Session busy; cannot connect at this time.

X‘oC’ Byte 0 of the parameter list is not zero on request.

X112’ Request failed; an autokey record operation is in progress.
X‘14’ Request failed; an autokey playback operation is in progress.

See Appendix H, “Return Codes,” for more information.

Usage Notes

e Your application program can be connected simultaneously for
keystroke data to each of the host, notepad, work station control, and
personal computer sessions that your 3270 Personal Computer is
customized to support.

e The recommended size for input queues is 50 bytes.

e A maximum of two connections for keyboard services can be made to a
session at any one time. If your session was defined at configuration
time or by issuing an INDSPLIT or INDMERGE command, one
connection has already been made to the session by the workstation
program.

e The workstation program issues Connect to Keyboard service requests
for each configured session to provide the capability for the session to
receive and process keystrokes.

A session defined by your application program (by a Define
Presentation service request) requires that a Connect to Keyboard with
an All Keys Intercept option be issued in order to receive and process
keystrokes. Note that this implies that the application must also
provide the keystroking task for such sessions. A second Connect to
Keyboard request can be issued relative to a Define Presentation Space
session.

Chapter 5. Coding Keyboard Service Requests 9-11

Connect to Keyboard

Coding Example

~e No e

CKRETNCD
CKFXNID

CKSESSID
CKRESRV1
CKEVENTQ
CKKEYSTQ
CKOPTION
CK1STCON

~e we N

TR TS

~ N we

DB
DB
DB
DB
DW
DW
DB
DB

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

MOV
MOV
MOV
MOV
Mov
MOV
MOV
MOV
MOV

INT

QOO0 O0OO0OO0O0O0O

CKRETNCD, 00H
CKFXNID,O0H
AL,SESSID
CKSESSID,AL
CKOPTION,01000000B
AX,KEYSTQ
CKKEYSTQ, AX
AX,EVENTQ
CKEVENTQ, AX

INITIALIZE REGISTERS FOR CONNECT

AH,09H

AL,O1H

BH, 80H

BL,20H

CX,00H

DX, KEYBOARD

DI, SEG CKRETNCD
ES,DI

DI,OFFSET CKRETNCD

7AH

PARAMETER LIST FOR CONNECT TO KEYBOARD

RETURN CODE

FUNCTION NUMBER

SESSION ID

RESERVED

EVENT QUEUE ID

INPUT QUEUE ID

OPTION BYTE

FIRST CONNECTION INDICATOR

Ne Ne N e Ne Ne we e

INITIALIZE PARAMETER LIST FOR CONNECT TO KEYBOARD

RETURN CODE MUST 0 BEFORE REQUEST
FUNCTION ID MUST 0 BEFORE REQUEST
SESSION ID INTO THE LIST

OPTION = INTERCEPT ALL
KEYSTROKE QUEUE ID INTO THE LIST

EVENT QUEUE ID INTO THE LIST

Ne Ne Ne e N Ne N6 Ne o Ne

TO KEYBOARD (

; RESOLVED VALUE FOR 'KEYBOARD'

; SEGMENT ADDRESS OF PARAMETER LIST
; IN ES

; OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CONNECT TO KEYBOARD SERVICE

5-12

Disconnect from Keyboard

Keyboard Service X‘02’: Disconnect from Keyboard

Use

this service to disconnect from the session when you are finished using

the keyboard services.

Register Values

On Request On Completion

AH = X09 CH = X12

AL = X'02 CL = Return code

BH = X80

BL = X20’ The contents of registers
CX = X‘0000’ . AX, BX, DX, ES, and DI
DX = Resolved value for KEYBOARD are unpredictable.

ES = Segment address of the parameter list

DI

= Offset address of the parameter list

Parameter List Format

Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID (X‘62’)
2 1 byte Session ID Unchanged
3 1 byte Reserved Reserved
4 1 word Connector’s task ID Unchanged

Parameter Definitions
Req

uest Parameters:

The session ID is the ID of the session you want to disconnect from.
The session must have been previously connected to the keyboard
through a Connect to Keyboard service request.

The connector’s task ID is needed only if the task that requested the
Connect to Keyboard service for this session is different from the task
requesting the Disconnect from Keyboard service. This parameter is
optional and should be set to zero if not used.

Chapter 5. Coding Keyboard Service Requests 5-13

Disconnect from Keyboard

Return Codes

Usage Notes

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Keyboard Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the keyboard management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Keyboard
services return codes use a function ID of X‘62’. The error codes that
can be received for this service are:

Code Meaning

X0’ Successful completion.

X¢02’ Invalid session ID.

X4’ The session is not connected for keyboard services.
X< C’ Byte 0 of the parameter list is not zero on request.

See Appendix H, “Return Codes,” for more information.

This service also enables operator input to the session if it was
previously disabled through a Disable Input service request.

Before exiting, your application program must use the Disconnect from
Keyboard service for each session that was connected for keystroking
data. This service should be requested at all error exit points as well as
during normal processing.

5-14

Disconnect from Keyboard

Coding Example

i
; PARAMETER LIST FOR DISCONNECT FROM

DKRETNCD
DKFXNID

DKSESSID
DKRESRV1
DKTASKID

~e e ~e

DB
DB
DB
DB
DW

.
.

MOV
MOV
MOV
MOV
MOV
MOV

QOO OO

DKRETNCD, 00H
DKFXNID,OO0H
AL,SESSID
DKSESSID,AL
AX,TASKID
DKTASKID,AX

~e we Ne e o~

~e Nb e we we we

KEYBOARD

RETURN CODE
FUNCTION NUMBER
SESSION ID

RESERVED
CONNECTOR'S TASK ID

INITIALIZE PARAMETER LIST FOR DISCONNECT FROM KEYBOARD

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST

SESSION ID INTO THE LIST

CONNECTOR'S TASK ID INTO THE LIST

; INITIALIZE REGISTERS FOR DISCONNECT FROM KEYBOARD

~e we we

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

INT

.

AH,09H

AL,02H

BH, 80H

BL,20H

CX,00H

DX ,KEYBOARD

DI, SEG DKRETNCD
ES,DI

DI,OFFSET DKRETNCD

7AH

i
i
.
H
.
i

RESOLVED VALUE FOR 'KEYBOARD'
SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR DISCONNECT FROM KEYBOARD SERVICE

Chapter 5. Coding Keyboard Service Requests

5-15

Read Input

Keyboard Service X‘03’: Read Input

Use this service to read intercepted keystroke data destined for the session.
An options byte is set to indicate whether the Read is done with scan
code/shift states or with ASCII mnemonics. This service returns the scan
code/shift state and/or the ASCII mnemonic for one keystroke with each
request made, '

Register Values

On Request On Completion

AH = X09 ' CH = X12

AL = X03 CL = Return code

BH = X80’

BL = X20’ The contents of registers
CX = X‘0000’ AX, BX, DX, ES, and DI
DX = Resolved value for KEYBOARD are unpredictable.

ES = Segment address of the parameter list
DI = Offset address of the parameter list

Parameter List Format

Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID (X‘62’)
2 1 byte Session ID | Unchanged
3 1 byte Reserved Reserved
4 1 word Connector’s task ID Unchanged
6 1 byte Options byte Unchanged

The bits in the options byte are as follows:

0 1 2 3 4 5 6 7
ASCII |0 SC/SS {0 Nowait | 0 0 0

e Bit 0 set to 1 means to read the keystroke in ASCII format.

¢ Bit 2 set to 1 means to read the keystroke in scan code/shift state
format.

Note: Choose either ASCII or scan code/shift state format. Do not select
both (that is, do not set bits 0 and 2 equal to 1).

5-16

Read Input

e Bit 4 set to 1 means to read the keystroke with the NOWAIT option. If
a keystroke is not available on the queue when this is issued, a return
code of X‘09’ will be placed in the parameter list and control returned to
the caller. If the bit is not set, the calling test will be suspended until
keystroke data appears on the task input queue.

The remainder of the parameter list depends on whether you have specified
the scan code/shift state format or the ASCII/ASCII mnemonic format.

If you have selected the scan code/shift state format, the parameter list is as

follows:
Contents on Contents on

Offset | Length Request (SC/SS) Completion (SC/SS)
7 1 byte Reserved Reserved

8 1 byte Reserved Scan code of the key
9 1 byte Reserved Shift state of the key
10 1 byte Reserved X‘0r

11 1 word Reserved X‘00’

If you have selected the ASCII/ASCII mnemonic format, the parameter list
is as follows:

Contents on Contents on
Offset | Length Request (ASCII) Completion (ASCII)
7 1 byte Reserved Length of
ASCIT/ASCII
mnemonic returned in
bytes 8 — 13
8 — 13 | 6 bytes Reserved ASCIIJASCII
mnemonic

Chapter 5. Coding Keyboard Service Requests 5-17

Read Input

Parameter Definitions

Request Parameters:

o The session ID is the ID of the session from which keystroke data is
intercepted.

e The connector’s task ID is needed only if the task that requested the
Connect to Keyboard service for this session is different from the task
requesting the Read Input service. This parameter is optional and
should be set to zero if not used.

Completion Parameters for Scan Code/Shift State Option:

Keystroke data is sent to a session in a format that uses four bytes of data
to represent the key being sent. The first byte is called the scan code, and
the second byte is called the shift state. The third and fourth bytes are
particular to the device being used and, for a keyboard, should normally be
X‘0100’.

o The scan code represents a particular key position on the keyboard.

o The shift state indicates which of the possible characters or functions
located at that key position is being sent. The possible shift states are
the lower shift, the upper shift, the alt shift, and the ctrl shift.

Appendix A lists the scan codes for each key position and describes the

format of the shift state byte. In addition, the foldout for the IBM 3270 PC

keyboard (at the back of this book) shows the scan codes for each key
position on the keyboard.

Completion Parameters for ASCII/ASCII mnemonic option:

e ASCII/ASCII mnemonics are from 1 to 6 bytes long. ASCII mnemonics
start with @.

e The length of field is the léngth of the ASCII code or ASCII mnemonic.
Note: Any bytes left unused will remain unchanged.

See Appendix A for a list of all the ASCII/ASCII mnemonics that can be
received.

5-18

Read Input

Return Codes

Note: If the shift state of the key pressed does not contain a unique
ASCII|ASCII mnemonic or if multiple shift states are active, ASCII
mnemonics for the shift state will be prefixed. The valid shift prefix
mnemonics are:

@A - Alt shift active
@S - Upshift active

@r - Ctrl shift active.

An example of this would be pressing alt-a. The ASCII mnemonic
returned would be @Aa. If the Ctril-shift-A were pressed, the ASCII
mnemonic returned would be @rA.

e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

e Keyboard Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the keyboard management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Keyboard
services return codes use a function ID of X‘62’. The error codes that
can be received for this service are:

Code

X‘00’
X‘or
X‘02’
X‘0¢4’
X9’
XoC’
X110

Meaning

Successful completion.

Invalid intercept option (see Note).

Invalid session ID.

The session is not connected for keyboard services.
Queue empty, no keystroke available.

Byte 0 of the parameter list is not zero on request.
Invalid keystroke.

Note: An invalid intercept option means that the application is trying to do
a Read Input when no Read options were specified on the connect.

See Appendix H, “Return Codes,” for more information.

Chapter 5. Coding Keyboard Service Requests 5-19

Read Input

Usage Notes

To be able to use the Read Input service, you must do the following
when you request the Connect to Keyboard service:

— Specify which types of keystrokes are to be intercepted from the
connected session

— Provide the ID of a fixed-length queue to be used by the workstation
program to store the intercepted keystroke data.

The scan code and shift state returned by this service are not the same
as those returned by BIOS or DOS read keys.

When using the Read Input service with the scan code option for a PC
session, you must keep in mind that each key will generate an X‘F0’
scan code if the key is breaking, followed by the scan code of the key.
See “Special Scan Codes” in Appendix A.

It is recommended that each Read Input request be followed by a Post
Status Code request, particularly if keystrokes are rejected for any
reason.

Applications running on non-3270 PC XT hardware that send keystrokes
to or receive keystrokes from the host session will not run on Uni-DOS.

Applications using the keyboard services should be well-behaved.
Additionally, if your application is using the API to another PC session,
then that session must also be well-behaved.

5-20

Read Input

Coding Example

PARAMETER LIST FOR READ INPUT

o ~e ~e

’
RKRETNCD DB O RETURN CODE

RKFXNID DB O ; FUNCTION NUMBER
RKSESSID DB O ; SESSION ID
RKRESRV1 DB O ; RESERVED
RKTASKID DW O ; CONNECTOR'S TASK ID
DB 20H ; MUST BE 20H FOR SCAN CODES
RKRESRV2 DB O ; RESERVED
RKSCANCD DB O ; SCAN CODE OF THE KEY
RKSHIFST DB O ; SHIFT STATE OF THE KEY
DB O ; O1H ON RETURN
DB O ; OOH ON RETURN

INITIALIZE PARAMETER LIST FOR READ INPUT

~e we we

MOV RKRETNCD, OOH
MOV RKFXNID,O00H
MOV AL ,SESSID
MOV RKSESSID,AL
MOV AX,TASKID
MOV RKTASKID,AX

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = O BEFORE REQUEST
SESSION ID INTO THE LIST

CONNECTOR'S TASK ID INTO THE LIST

Ne Ne Ne we Ne Se

; INITIALIZE REGISTERS FOR READ INPUT

MOV AH,09H

MOV AL,O3H

MOV BH,S80H

MOV BL,20H

MOV CX,00H

MOV DX,KEYBOARD ; RESOLVED VALUE FOR 'KEYBOARD'

MOV DI, SEG RKRETNCD ; SEGMENT ADDRESS OF PARAMETER LIST
MOV ES,DI ; IN ES

MOV DI,OFFSET RKRETNCD ; OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR READ INPUT SERVICE

~e we ~o

INT 7AH

Chapter 5. Coding Keyboard Service Requests 5-21

Write Keystroke

Keyboard Service X‘04’: Write Keystroke

Register Values

Use this service to send keystroke data to the session. An options byte is
set to indicate whether the write is done with scan code/shift states or with
ASCII/ASCII mnemonics. Appendix A contains the valid scan code/shift
states or ASCII/ASCII mnemonics that can be sent.

On

Request On Completion
= X‘09’ AX = Request ID
= X‘04’ CH = X12
= X‘80° or X‘40’ (see Note) CL = Return code
= X‘20’ or X‘00’ (see Note)
= X‘0000’ The contents of registers
= Resolved value for KEYBOARD BH, DX, ES, and DI are
= Segment address of the parameter list unpredictable.
= Offset address of the parameter list

Note: The combined contents of the BH and BL registers are either X‘8020’

or X4000°.
Request Register Values:

For asynchronous processing of the Write Keystroke service request,
set the BH register to X‘40’ and the BL register to X‘00°. When
asynchronous processing is specified, you must request the Get Request
Completion service to obtain the results of each Write Keystroke
service request.

For synchronous processing of the Write Keystroke service request, set
the BH register to X‘80’ and the BL register to X‘20’.

Completion Register Values:

If you specified asynchronous processing (the BH register = X‘40’ and
the BL register = X‘00’ on request), the AX register contains a request
ID that the workstation program assigned to the request. You use this
request ID to match the results of the service obtained by the Get
Request Completion service to a previously requested service.

5-22

Write Keystroke

Parameter List Format

Contents , Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID (X62’)
2 1 byte Session ID Unchanged
3 1 byte Reserved Reserved
4 1 word Connector’s task ID Unchanged
6 1 byte Options byte Unchanged

The bits in the options byte are as follows:

0 1 2 3 4 5 6 |7
ASCII |0 SC/SS |List |0 0 0 0

o Bit 0 set to 1 means to write the keystroke or list of keystrokes in
ASCII format.

o Bit 2 set to 1 means to write keystroke or list of keystrokes in scan
code/shift state format.

Note: Choose either ASCII or scan code/shift state format. Do not select
both (that is, do not set bits 0 and 2 equal to 1).

e Bit 3 is set as follows:

1 — Write a list of keystrokes.
2 — Write a single keystroke.

The remainder of the parameter list depends on which option you have
specified and on whether you are writing a single keystroke or a list of
keystrokes.

If you are sending a single keystroke with the scan code/shift state option,
the parameter list must be formatted as follows:

Contents on Request Contents on Completion|
Offset | Length | (SC/SS Single) (SC/SS Single)
7 1 byte Reserved Reserved
8 1 byte Scan code of the key Unchanged
9 1 byte Shift state of the key Unchanged

Chapter 5. Coding Keyboard Service Requests 5-23

Write Keystroke

If you are sending a single keystroke with the ASCII option, the parameter
list must be formatted as follows:

Contents on Request

Contents on Completio

Offset | Length | (ASCII) Single (ASCII) Single

7 1 byte Number of bytes of Number of bytes of
ASCII/ASCII ASCII/ASCII
mnemonics to send (in mnemonics sent
bytes 8 —13)

8—-13 6 bytes | ASCII mnemonic Unchanged

If you are sending a list of keystrokes with the scan code/shift state option,

the parameter list must be formatted as follows:

Contents on Request

Contents on Completion]

Offset | Length | (SC/SS List) (SC/SS List)
7 1 byte Reserved Number of keys sent
8 1 word Offset address of list of Unchanged
keys
10 1 word | Segment address of list Unchanged

of keys

list must be formatted as follows:

If you are sending a list of keystrokes with the ASCII option, the parameter

Contents on Request

Contents on Completion]

Offset | Length | (ASCII) (ASCII)

7 1 byte Reserved Number of bytes of
ASCII/ASCII
mnemonics in the list
that were sent

8 1 word Offset address of list of Unchanged

keys
10 1 word Segment address of list Unchanged

of keys

5-24

Write Keystroke

Parameter Definitions
Request Parameters:
® The session ID is the ID of the session to write the keystrokes to.
e The connector’s task ID is needed only if the task that requested the
Connect to Keyboard service for this session is different from the task
requesting the Write Keystroke service. This parameter is optional and

should be set to zero if not used.

o The format of a list of scan code/shift state keystrokes is as follows:

Offset Length | Contents (SC/SS List)
0 1 word 2 x n (where n is the number of keys being
sent to the session)
2 1 byte Scan code of the first key being sent
3 1 byte Shift state of the first key being sent
4 1 byte Scan code of the second key being sent
5 1 byte Shift state of the second key being sent
[J
®
[]
2n 1 byte Scan code of the nth key being sent
2n + 1 1 byte Shift state of the nth key being sent

Note: n=255 keys, which is the maximum value allowed.

The format of a list of ASCII keystrokes is as follows:

Offset Length | Contents

0 1 word | N (where N is the number of bytes of
ASCII/ASCII mnemonics being sent to the
session)

2-(N+2)|N ASCII/ASCII mnemonic of the keys being

bytes sent

Note: N=255 bytes, which is the maximum value allowed.

Chapter 5. Coding Keyboard Service Requests 5-25

Write Keystroke

Return Codes

e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

e Keyboard Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the keyboard management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Keyboard
services return codes use a function ID of X‘62’. The error codes that
can be received for this service are:

Code

X00’
X1
X2’

X4’
XC’
X10°

X1

Meaning

Successful completion.

Invalid option byte value.

Invalid session ID, or the list of scan code/shift state
keystrokes is longer than 255 bytes, or the list of
ASCII/ASCII mnemonics is longer than 255 bytes.

The session is not connected for keyboard services.

Byte 0 of the parameter list is not zero on request.
Processing stopped because of invalid scan code or input
inhibited, or invalid ASCII mnemonic.

Processing stopped because AID key was detected; successful
completion.

See Appendix H, “Return Codes,” for more information.

5-26

Write Keystroke

Usage Notes

The maximum number of keystrokes that can be sent is 255.

The maximum number of ASCII/ASCII mnemonic bytes in the list that
can be sent is 255.

AID keys must not be embedded within a list, although one may be the
last key in a list. The processing of a keystroke list ends when an AID
key is processed or when a keystroke is rejected for any reason. If a
return code of X‘10’ or X‘12’ is received, it is good practice to check byte
7 of the parameter list on completion to determine how many of the
keystrokes or how many bytes of ASCII/ASCII mnemonics were actually
sent before processing was ended.

If you specified asynchronous processing (BH = X‘40’ and BL = X‘00’
on request), you must use the Get Request Completion service to obtain
the results in the parameter list when the Write Keystroke service is
completed.

Host sessions must be functional in order for keystroke data to be
processed. That is, if your 3270 Personal Computer is customized to
support a host session, but no port is available for that session on the
control unit, any keystroke data sent to that host session will not be
processed.

If your 3270 Personal Computer is connected to more than one control
unit through a coaxial switch, you can switch to an alternate control
unit by toggling the coaxial switch and pressing the Ctrl key and the
Clear key at the same time. This sequence of keystrokes enables you to
log on to an alternate host system without having to re-IPL the
workstation program.

A successful completion return code from a Write Keystroke request to
a host session does not mean that the host has processed the keystroke.
It indicates only that the keystroke has been successfully sent to the
host session.

Applications running on non-3270 PC XT hardware that send keystrokes
to or receive keystrokes from the host session will not run on Uni-DOS.

Applications using the keyboard services should be well-behaved.
Additionally, if your application is using the API to another PC session,
then that session must also be well-behaved.

Chapter 5. Coding Keyboard Service Requests 5-27

Write Keystroke

Coding Example

+ ~e =

17
WRKYPAR1
WKRETNCD
WKFXNID
WKSESSID
WKRESRV1
WKTASKID
WKOPTION
WKNUMKEY
WKSCNCOD
WKSHFST
WRKYPAR1

WRKYPARM

WKLSTOFF
WKLSTSEG
WRKYPARM

4

STRUC
DB
DB
DB
DB
DW
DB
DB
DB
DB
ENDS

eNoNoRoNoNoNoNoNe)

STRUC
DB 8
Dw O
DWw O
ENDS

DUP (00)

Ne NS Ne N Ne Ne e N N

~

PARAMETER LIST STRUCTURE FOR WRITE KEYSTROKE

RETURN CODE

FUNCTION NUMBER
SESSION ID

RESERVED

CONNECTOR'S TASK ID
OPTIONS BYTE

KEYS SENT SUCCESSFULLY
SCAN CODE OF THE KEY
SHIFT STATE OF THE KEY

OFFSET OF LIST OF KEYSTROKES
SEGMENT OF LIST OF KEYSTROKES

; ALLOCATE STORAGE FOR THE PARAMETER LIST

WKPARLST WRKYPARM <>

~e ~e o~

MOV
MOV
MOV
MOV
MOV
MOV

WKPARLST .WKRETNCD, OH
WKPARLST.WKFXNID,OH
AL,SESSID
WKPARLST .WKSESSID,AL
AX,TASKID
WKPARLST .WKTASKID, AX

; IF SENDING ONE KEYSTROKE

~s ~e ~e

MOV
MOV
MOV
MOV

MOV
MOV

IF SENDING A

MOV
MOV
MOV
MOV

MOV
MOV

AL,SCANCD

WKPARLST .WKSCNCOD, AL
AL,SHIFST

WKPARLST .WKSHFST,AL

AL,20H
WKPARLST .WKOPTION, AL

LIST OF KEYSTROKES

AX,OFFSET LIST
WKPARLST .WKLSTOFF ,AX
AX,SEG LIST

WKPARLST .WKLSTSEG, AX

AL, 30H
WKPARLST . WKOPTION, AL

~e

SET UP THE PARAMETER LIST FOR WRITE

e Ne Ne e Ne we

NP Ne e we Ne o~ Ne

e we ~e o~

4

KEYSTROKE

RETURN CODE MUST BE O FOR THE CALL
FUNCTION ID MUST BE O FOR THE CALL
SESSION ID INTO THE LIST

CONNECTOR'S TASK ID INTO THE LIST

PUT THE SCAN CODE INTO THE
PARAMETER LIST

PUT SHIFT STATE INTO THE
PARAMETER LIST

PUT THE OPTION BYTE FOR SENDING SCAN
CODES ONE CHARACTER IN THE PARM LIST

PUT THE OFFSET ADDRESS OF THE LIST
INTO THE PARAMETER LIST
PUT THE SEGMENT ADDRESS OF THE LIST
INTO THE PARAMETER LIST

PUT THE OPTION BYTE FOR SENDING A
LIST OF CHARS. IN THE PARM LIST

5-28

Write Keystroke

~e wo N

~e ma we

SET UP THE REGISTERS FOR WRITE KEYSTROKE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,04H

BH, 40H

BL,40H

CX,00H

DX ,KEYBOARD

DI, SEG WKPARLST
ES,DI

DI, OFFSET WKPARLST

; RESOLVED VALUE FOR 'KEYBOARD'

; GET SEGMENT ADDRESS OF PARM LIST
; AND PUT IT IN ES

; SET DI TO OFFSET OF PARM LIST

SIGNAL WORKSTATION PROGRAM FOR WRITE KEYSTROKE SERVICE

INT

.

7AH

Chapter 5. Coding Keyboard Service Requests

5-29

Disable Input

Keyboard Service X‘05’: Disable Input

Register Values

Use this service to disable operator input to the session.

On Request
AH = X'09
AL = X0%
BH = X80’
BL = X20
CX = X‘0000’

DX = Resolved value for KEYBOARD
ES = Segment address of the parameter list
DI = Offset address of the parameter list

Parameter List Format

On Completion

CH = X‘12
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID (X‘62’)
2 1 byte Session ID Unchanged
3 1 byte Reserved Reserved
4 1 word Connector’s task ID Unchanged

Parameter Definitions

Request Parameters:

e The session ID is the ID of the session whose keyboard you want to
disable.

o The connector’s task ID is needed only if the task that requested the
Connect to Keyboard service for this session is different from the task
requesting the Disable Input service. This parameter is optional and
should be set to zero if not used.

5-30

Disable Input

Return Codes

Usage Notes

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Keyboard Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the keyboard management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Keyboard
services return codes use a function ID of X‘62’. The error codes that
can be received for this service are:

Code Meaning

X000’ Successful completion.

X<02’ Invalid session ID.

X04’ The session is not connected for keyboard services.
X‘oC’ Byte 0 of the parameter list is not zero on request.

See Appendix H, “Return Codes,” for more information.

Keystrokes typed on the keyboard of a session can become intermixed
with the keystroke data that your application program is sending to
that session. To prevent this, you can disable the processing of
keystrokes typed on the keyboard of the session by using this service.

Using the Disable Input service on the work station control session
causes the work station control session to become active with operator
inputs disabled.

Chapter 5. Coding Keyboard Service Requests 5-31

Disable Input

Coding Example

+ ~e ~e

DEFINE PARAMETER LIST FOR DISABLE INPUT

4

DIRCODE DB
DIFXNID DB
DISESID DB
DIRESRVD DB
DICONNID DW

Ne Ne o~

~e N~

~e Ne o~

[eNeNeoNoNe!

e Ne Ne Ne we

RETURN CODE
FUNCTION CODE
SESSION ID
RESERVED
CONNECTORS TASK ID

INITIALIZE PARAMETER LIST FOR DISABLE INPUT

MOV
MOV
MOV
MOV

MOV
MOV

INITIALIZE REGISTERS FOR DISABLE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AL,SESSID

DISESID,AL
DIRCODE, 00H
DIFXNID,OO0OH

AX,CONNID
DICONNID,AX

AH,09H

AL,O05H

BH, 80H

BL,20H

CX,00H

DX, KEYBOARD
DI,SEG DIRCODE
ES,DI

DI,OFFSET DIRCODE

e Ne Ne Ne Ne Ne N

KEYBOARD INPUT DISABLED FOR
THIS SESSION

RETURN CODE MUST=0 ON REQUEST
FUNCTION ID MUST=0 ON REQUEST
IF THERE IS A CONNECTORS ID
THEN PUT IT IN THE

PARAMETER LIST

INPUT

i
7
i
i

RESOLVED VALUE FOR 'KEYBOARD'
ADDRESSABILITY OF

PARAMETER LIST

USING ES:DI

SIGNAL WORKSTATION PROGRAM FOR DISABLE INPUT SERVICE

INT

.
.

7AH

5-32

Enable Input

Keyboard Service X‘06’: Enable Input

Use this service to reenable operator input to the session.

Register Values

On

Request

X'09’
X‘06’
= X80’
= X20°
= X‘0000°

I

= Resolved value for KEYBOARD

It

Parameter List Format

Segment address of the parameter list
Offset address of the parameter list

On Completion

X12’
Return code

CH
CL

In

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID (X‘62’)
2 1 byte Session ID Unchanged
3 1 byte Reserved Reserved
4 1 word Connector’s task ID Unchanged

Parameter Definitions

Request Parameters:

The session ID is the ID of the session whose keyboard you want to

enable.

The connector’s task ID is needed only if the task that requested the
Connect to Keyboard service for this session is different from the task
requesting the Enable Input service. This parameter is optional and
should be set to zero if not used.

Chapter 5. Coding Keyboard Service Requests 5-33

Enable Input

Return Codes
e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

o Keyboard Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the keyboard management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Keyboard
services return codes use a function ID of X‘62’. The error codes that
can be received for this service are:

Code Meaning

X‘00° Successful completion.

X402’ Invalid session ID.

X‘04’ The session is not connected for keyboard requests.
XC’ Byte 0 of the parameter list is not zero on request.

See Appendix H, “Return Codes,” for more information.

Usage Notes

e The Disconnect from Keyboard service also enables operator input to a
session if it was previously disabled.

e Using the Enable Input service on the work station control session
causes the work station control session to become inactive.

5-34

Enable Input

Coding Example

H
.
!

DEFINE PARAMETER LIST FOR ENABLE

’

EIRCODE DB
EIFXNID DB
EISESID DB
EIRESRVD DB
EICONNID DW

r

~e ~e ~e

~e ~e o~

QOO COo

INPUT

~s Ne we Ne e

RETURN CODE
FUNCTION ID

SESSID

RESERVED
CONNECTOR'S TASK ID

INITIALIZE PARAMETER LIST FOR ENABLE INPUT

MOV
Mov
MOV
MOV

MOV
MOV

AL, SESSID
EISESID,AL
EIRCODE,00H
EIFXNID,OO0H

AX,CONNID
EICONNID,AX

e Ne Ne e Ne e we

KEYBOARD INPUT ENABLED FOR
THIS SESSION

RETURN CODE MUST=0 ON REQUEST
FUNCTION ID MUST=0 ON REQUEST
IF THERE IS A CONNECTOR'S ID
THEN STORE THE ID

IN THE PARAMETER LIST

INITIALIZE REGISTERS FOR ENABLE INPUT

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL, O06H

BX, 80H

BL, 20H

CX,00H

DX , KEYBOARD
DI,SEG EIRCODE
ES,DI

DI,OFFSET EIRCODE

i
.
1
.
i
i

RESOLVED VALUE FOR 'KEYBOARD'
ADDRESSABILITY OF

PARAMETER LIST

USING ES:DI

SIGNAL WORKSTATION PROGRAM FOR ENABLE INPUT SERVICE

INT

7AH

Chapter 5. Coding Keyboard Service Requests

5-35

Post Status Code

Keyboard Service X‘07’: Post Status Code

Use this service to notify the workstation program of the status of your
application program’s keystroke processing.

Register Values

On Request On Completion

AH = X'09 CH = X12

AL = X‘07 CL = Return code

BH = X80’

BL = X20 The contents of registers
CX = X‘00FF AX, BX, DX, ES, and DI
DX = Resolved value for KEYBOARD are unpredictable.

ES Segment address of the parameter list

=
-
i

Offset address of the parameter list

Parameter List Format

Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID (X‘62’)
2 1 byte Session ID Unchanged
3 1 byte Reserved Reserved
4 1 word Connector’s task ID Unchanged
6 1 byte Status code Unchanged

Parameter Definitions
Request Parameters:

o The session ID is the ID of the session from which keystroke data was
intercepted.

e The connector’s task ID is needed only if the task that requested the
Connect to Keyboard service for this session is different from the task
requesting the Post Status Code service. This parameter is optional and
should be set to zero if not used.

5-36

Post Status Code

Return Codes

Usage Notes

The status codes that can be sent to the workstation program are:

Code Meaning
X<00’ The keystroke was accepted.
X1 The last keystroke sent was detected to be from an AID key.

X2’ The keystroke was rejected or could not be processed. When
the workstation program receives this status code, it signals
the operator with a beep to indicate invalid input.

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Keyboard Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the keyboard management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Keyboard
services return codes use a function ID of X‘62’. The error codes that
can be received for this service are:

Code Meaning

X00’ Successful completion.

X02’ Invalid session ID.

X‘04’ The session is not connected for keyboard services.
X‘0C’ Byte 0 of the parameter list is not zero on request.

See Appendix H, “Return Codes,” for more information.

Your application program should request the Post Status Code service
after it has processed a keystroke that was received by the Read Input
request and was not passed on to the original session for which the
keystroke was intended.

The primary usage of the Post Status Code service is to provide audible
feedback to the user in case of rejected keystrokes.

For applications providing full keystroke services for newly created
sessions, the Post Status Code service must be issued after every Read
Input function to provide full compatibility with the workstation
program. The use of all three status codes listed above at the correct
times allows for proper operation of the keyboard services and autokey.

Chapter 5. Coding Keyboard Service Requests 5-37

Post Status Code

Coding Example

.
I

.
4

PSRETNCD

DB 0 . ;
PSFXNID DB O ‘ ;
PSSESSID DB O ;
PSRESERV DB O ;
PSTASKID DW O ;
PSRETCOD DB O ;

~. ~o we

~e ~e ~e

PARAMETER LIST FOR POST STATUS CODE

INITIALIZE PARAMETER LIST FOR POST

MOV PSRETNCD, OOH ;
MOV PSFXNID,OO0H ;
MOV AL,SESSID ;
MOV PSSESSID,AL
MOV AX,TASKID ;
MOV PSTASKID,AX
MOV AL,RETCODE ;
MOV PSRETCOD,AL

RETURN CODE

FUNCTION NUMBER

SESSION ID

RESERVED

CONNECTOR'S TASK ID
RETURN CODE TO BE POSTED

STATUS CODE

RETURN CODE MUST 0 BEFORE REQUEST
FUNCTION ID MUST 0 BEFORE REQUEST
SESSION ID INTO THE LIST

LT}

CONNECTOR'S TASK ID INTO THE LIST

RETURN CODE INTO THE LIST

INITIALIZE REGISTERS FOR POST STATUS CODE

MOV AH,O09H

MOV AL,O07H

MOV BH,80H

MOV BL,20H

MOV CX,O0FFH

MOV DX,KEYBOARD ;
MOV DI, SEG PSRETNCD ;
MOV ES,DI ;
MOV DI,OFFSET PSRETNCD ;

RESOLVED VALUE FOR 'KEYBOARD'
SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR POST STATUS CODE SERVICE

INT 7AH

5-38

Chapter 6. Coding Window Management Service

Requests
Introductiont e e e 6-2
Requesting the Window Management Services 6-5
Return Codes for the Window Management Services 6-6
Window Management Service X‘01’: Connect to Work Station Control 6-7
Window Management Service X‘02’: Disconnect from Work Station
Control .. e e e e 6-11
Window Management Service X‘03’: Add Window 6-14
Window Management Service X‘04’: Change Window Position on
73 -1 o 6-17
Window Management Service X‘05”: Change Window Size 6-21
Window Management Service X‘06’: Change Window Color 6-25
Window Management Service X‘07: Change Window Position on
Presentation Space 6-29
Window Management Service X‘08’: Change Hidden State 6-33
Window Management Service X‘09”: Change Enlarge State 6-36
Window Management Service X‘0A’: Change Screen Background ... 6-38
Window Management Service X‘0B’: Query Window Position on
S el Y= « YO 6-41
Window Management Service X‘0C’: Query Window Size 6-44
Window Management Service X‘0D’: Query Window Colors 6-47
Window Management Service X‘0E’: Query Window Position on
Presentation Space i e e 6-51
Window Management Service X‘0F": Query Hidden State 6-54
Window Management Service X‘10’: Query Enlarge State 6-57
Window Management Service X‘11”: Query Screen Background Color 6-60
Window Management Service X‘12’: Query Window Names 6-63
Window Management Service X‘13’: Clear Screen 6-66
Window Management Service X‘14": Select Active Window 6-69
Window Management Service X‘15’: Redraw Screen 6-72
Window Management Service X‘16’: Redraw Window 6-75
Window Management Service X‘17’: Delete Window 6-78
Window Management Service X‘18": Query Active Window 6-81
Window Management Service X‘19": Query Active Screen 6-84
Window Management Service X‘1A”: Query Window Attributes 6-87
Window Management Service X‘1B’: Change Window Attributes 6-92
Window Management Service X‘1C’: Select Active Screen 6-98
Chapter 6. Coding Window Management Service Requests 6-1

Introduction

Introduction

This chapter describes how to code requests for the window management
services provided by the APL

The window management services allow your application program to use
the functions of the work station control session of the IBM 3270 Personal
Computer. Using these services, your application program can determine
the current size, position, or color of a window, and change them if desired.
You can jump to specified windows, enlarge or hide windows, or change to
a different screen profile. You can add a window, delete a window, or clear
the entire screen.

Your application program must request the Connect to Work Station
Control service before it can request any of the other window management
services. After the Connect to Work Station Control service has been
completed successfully, the keyboard is attached to the work station control
session and the operator information area (OIA) is displayed on the bottom
line of the screen, with the following symbols:

e WSCTRL

e viz x clock (X [] on non-3270 PC hardware)
e WINDOW =name

o SCREEN =number

Note: When using work station control API with non-3270 PC
hardware, the WS Cirl OIA will not be displayed on either a
Uni-DOS or Multi-DOS system under the following conditions:

— Your application uses graphics mode
~ Your application uses 40-column mode
— Your application writes directly to the screen.

When your application program is finished using the window
management services, it must request the Disconnect from Work Station
Control service. If an error occurs during the execution of an
application program that has connected to the work station control
session, the OIA remains visible and the keyboard remains attached to
the work station control session. You can press the Quit key (Alt plus
Reset) to force termination of the connection to the work station
control session. The program that was connected to the work station
control session will continue to run, but any window management
service requests that it makes will fail with an error code indicating
that the program is not connected to the work station control session.

6-2

Introduction

Possible problems can occur by the simultaneous use of the keyboard
service requests to connect to the work station control keyboard and
the use of the window management service requests.

— If the keyboard for the work station control session is redirected to
another session, the use of the Quit key to force termination of the
connection to the work station control session for window
management services will be lost.

— If keystrokes are sent to the work station control session while
window management service requests are being made, those
keystrokes will effectively be lost except for the Quit key, which
will terminate the connection to the work station control session for
window management services.

The window management services provided by the API are:

— Connect to Work Station Control Service: Use this service to
connect to the work station control session, to be able to use the
window management services.

— Disconnect from Work Station Control Service: Use this
service to disconnect from the work station control session.

— Add Window Service: Use this service to add a window from
screen profile 0 to the specified screen profile.

— Change Window Position on Screen Service: Use this service
to change the position of a window on the specified screen profile.
The window’s new position is determined by placing the upper left
corner of the window at the specified row and column numbers.

— Change Window Size Service: Use this service to change the
size of a window on the specified screen profile. The window’s new
size is determined by the specified number of rows and columns.

— Change Window Color Service: Use this service to change the
foreground and background colors of a window on the specified
screen profile.

— Change Window Position on Presentation Space Service: Use
this service to change the position of a window on the presentation
space for the specified screen profile. The window’s new position is
determined by placing the upper left corner of the window at the
specified row and column numbers.

-~ Change Hidden State Service: Use this service to toggle the
“hidden” state of a window on the specified screen profile. A hidden
window becomes not hidden, or a window that is not hidden
becomes hidden.

Chapter 6. Coding Window Management Service Requests 6-3

Introduction

Change Enlarge State Service: Use this service to toggle the
“enlarge” state of the display image. An enlarged display image
becomes normal, or a normal display image becomes enlarged.

Change Screen Background Service: Use this service to
change the background color of the specified screen profile.

Query Window Position on Screen Service: Use this service to
obtain the position of a window on the specified screen profile. The
window’s position is given by the row and column numbers of the
upper left corner of the window.

Query Window Size Service: Use this service to obtain the size
of a window on the specified screen profile. The window’s size is
given as the number of rows and columns in the window.

Query Window Colors Service: = Use this service to obtain the
foreground and background colors of a window on the specified
screen profile.

Query Window Position on Presentation Space Service: Use
this service to obtain the position of a window on the specified
screen profile. The window’s position is given by the row and
columns of the upper left corner of the window.

Query Hidden State Service: Use this service to obtain the
“hidden” state of a window on the specified profile. The hidden
state tells whether the window is hidden or not hidden.

Query Enlarge State Service: Use this service to obtain the
“enlarge” state of the display image. The display image can be
either enlarged or not enlarged. In an enlarged image, the active
window is displayed on the entire screen.

Query Screen Background Color Service: Use this service to
obtain the background color of the specified screen profile.

Query Window Names Service: Use this service to obtain the
short names of all windows in the specified screen profile.

Clear Screen Service: Use this service to delete all windows
from the specified screen profile. Windows cannot be deleted from
screen profile 0.

Select Active Window Service: Use this service to select a
window on the specified screen profile to become the active window.

Redraw Screen Service: Use this service to redraw the specified
screen profile, if it is the active screen.

Redraw Window Service: Use this service to redraw a window
on the specified screen profile, if it is the active screen.

6-4

Introduction

Delete Window Service: Use this service to delete a window
from the specified screen profile. Windows cannot be deleted from
screen profile 0.

Query Active Window Service: Use this service to obtain the
short name of the active window in the specified screen profile.

Query Active Screen Service: Use this service to obtain the
number of the active screen profile.

Query Window Attributes Service: Use this service to obtain
the following information about a window on the specified screen
profile:

— Number of rows and columns in the window

— Row and column number of the upper left corner of the window
on the screen

— Window colors and border colors

— Control flags

— Row and column number of the upper left corner of the window
on the presentation space.

Change Window Attributes Service: Use this service to change
the following information about a window on the specified screen
profile:

— Number of rows and columns in the window

— Row and column number of the upper left corner of the window
on the screen

— Window colors and border colors

— Control flags ’

— Row and column number of the upper left corner of the window
on the presentation space.

Select Active Screen Service: Use this service to make active
the specified screen profile.

Requesting the Window Management Services

To request any of the window management services, load the registers and
the parameter list with the proper values, and use the INT 7AH instruction
to signal the workstation program that it has a request to process.

Note:

Before your application can request the window management services,
it must request the Name Resolution service, using ‘WSCTRL ’as
the gate name in the parameter list. (Remember that the gate name
must be padded to the right with blanks if it is less than eight

characters.)

Chapter 6. Coding Window Management Service Requests 6-D

Introduction

Return Codes for the Window Management Services

Each window management service has two return codes associated with it:
a system return code and a window management return code. Both types of
return codes are two-byte values made up of a function ID and an error
number. The function ID indicates the portion of the workstation program
in which the error occurred. The error number indicates the specific type
of error that has occurred. An error number of X‘00’ always indicates a
successful acceptance or completion of the request.

e System Return Codes:

After your application has requested a window management service, the
CH and CL registers contain a return code generated by the request
processing portion of the workstation program. The function ID is in
the CH register, and the error number is in the CL register. System
return codes use a function ID of X‘12’. The error codes that can
appear are:

Code Meaning

X0 Request accepted.

X05’ Invalid index specified.
X7 Invalid reply specified.
X‘08’ Invalid wait type specified.
X‘0B’ RQE pool depleted.

XOF’ Invalid environment access.
X34’ Invalid gate entry.

These system return codes apply to all window management services.
o Window Management Services Return Codes:

After a requested window management service is completed, bytes 0 and
1 of the parameter list contain a return code generated by the window
management portion of the workstation program. The function ID is in
byte 1, and the error number is in byte 0. Window management return
codes use a function ID of X‘63’. The error numbers that can appear are
specific to the service that was requested and are included in the
descriptions of each service.

See Appendix H, “Return Codes,” for more information.

6-6

Connect to Work Station Control

Window Management Service X‘01’: Connect to Work
Station Control

Use this service to connect to the work station control session, to be able to
use the window management services.

Register Values

On Request On Completion

AH = X'09 CH = X12

AL = X0V CL = Return code

BH = X80

BL = X20° The contents of registers
CX = X‘00FF AX, BX, DX, ES, and DI
DX = Resolved value for WSCTRL are unpredictable.

ES = Segment address of the parameter list
= Offset address of the parameter list

Parameter List Format

Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID (X‘63’)
2 1 byte Session ID Unchanged

Parameter Definitions
Request Parameters:

® The session ID is the ID of the session requesting the use of the window
management services.

Return Codes
e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Chapter 6. Coding Window Management Service Requests 6-7

Connect to Work Station Control

Usage Notes

Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code Meaning

X00° Successful completion.

X¢02’ Invalid session ID.

X004’ A session is already connected for window management
. services.

X‘oC’ Byte 0 of the parameter list is not zero on request.

See Appendix H, “Return Codes,” for more information.

Only one session can be connected for window management services at
a time.

When the connection is completed, the following symbols will appear in
the operator information area (OIA):

— WSCTRL

— viz X CLOCK (X [] on non-3270 PC hardware)
— WINDOW =name

— SCREEN =number

~ When using work station control API with non-3270 PC hardware,
the WS Ctrl OIA will not be displayed on either a Uni-DOS or
Multi-DOS system under the following conditions:

— Your application uses graphics mode
— Your application uses 40-column mode
— Your application writes directly to the screen.

— While your application program is using the window management
services, the screen and windows are not redrawn. The screen is
redrawn when your application requests the Disconnect from Work
Station Control service. In order to update the display screen while
connected to the work station control session, your application
must request either the Redraw Screen service or the Redraw
Window service.

6-8

Connect to Work Station Control

While a session is connected to the work station control session, the
keyboard belongs to the work station control session. All
keystrokes typed at the keyboard are rejected except the Quit key,
unless your application program has issued a Connect to Keyboard
service request to the work station control session to intercept
keystrokes. In this case, the keystrokes will be sent to your
application program instead of to the work station control session.

The Quit key allows the user to disconnect from the work station
control session at any time. The Quit key can be used to enable the
keyboard in the event that an application program finishes without
disconnecting from the work station control session. When the Quit
key is pressed, the application program is disconnected from the
work station control session. Keystrokes typed at the keyboard are
directed either to the active window, or to the work station control
session if no windows exist on the active screen.

Note: The Quit key is active once your application program issues a
Connect to Work Station Control service request. If the Quit
key is pressed while the application program is running, any
subsequent requests to window management services
(including the Disconnect from Work Station Control service)
fail with a return code indicating that the session is not
connected to the work station control session.

If your application program hangs, because of a problem in the
application, the usual recovery sequence of pressing the Ctrl-Alt-Del
keys causes a re-IPL of the entire workstation program. To recover
only the session in which the faulty application program is running,
you must first disconnect from the work station control session by
the Quit key. Once the Quit key is pressed, the Ctrl-Alt-Del
keystroke sequence re-IPLs the session without disrupting the rest
of the sessions that are running.

Chapter 6. Coding Window Management Service Requests 6-9

Connect to Work Station Control

Coding Example

PARAMETER LIST FOR CONNECT TO WORK STATION CONTROL

. Ne N

RETURN CODE
FUNCTION NUMBER
SESSION ID

CWRETNCD DB O
CWFXNID DB O
CWSESSID DB O

No Ne e

.

INITIALIZE PARAMETER LIST FOR CONNECT TO WORK STATION CONTROL

Ne we ~e

MOV CWRETNCD, O0OH ; RETURN CODE MUST = O BEFORE REQUEST
MOV CWFXNID,OO0OH ; FUNCTION ID MUST = O BEFORE REQUEST
MOV AL,SESSION ; SESSION ID INTO PARAMETER LIST

MOV CWSESSID,AL

INITIALIZE REGISTERS FOR CONNECT TO WORK STATION CONTROL

~e ~o we

MOV AH,09H

MOV AL,O01H

MOV BH,S80H

MOV BL,20H

MOV CX,OFFH

MOV DX,WSCTRL

MOV DI, SEG CWRETNCD
MOV ES,DI

MOV DI,OFFSET CWRETNCD

RESOLVED VALUE FOR 'WSCTRL '
SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

B)

SIGNAL WORKSTATION PROGRAM FOR CONNECT TO WORK STATION CONTROL SERVICE

~e ~o ~e

INT 7AH

6-10

Disconnect from Work Station Control

Window Management Service X‘02’: Disconnect from
Work Station Control

Use this service to disconnect from the work station control session.

Register Values

On Request
AH = X'09
AL = X‘02
BH = X80’
BL = X‘20°
CX = X‘O0FF

DX = Resolved value for WSCTRL
Segment address of the parameter list
Offset address of the parameter list

=
wn
([

Parameter List Format

On Completion

CH = X12
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID (X‘63’)
2 1 byte Session ID Unchanged

Parameter Definitions

Request Parameters:

o The session ID is the ID of the session currently connected to the work
station control session.

Chapter 6. Coding Window Management Service Requests 6-11

Disconnect from Work Station Control

Return Codes
e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

e Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code Meaning

X00’ Successful completion.

X‘04’ The session is not connected for window management
services.

XC’ Byte 0 of the parameter list is not zero on request.

See Appendix H, “Return Codes,” for more information.

Usage Notes
e When the disconnect is completed, the following occurs:
— The screen is redrawn.

— The work station control OIA is removed from the screen, and
keystrokes typed on the keyboard are directed to the active window.

— If there are no windows on the active screen:

— On 3270 PC hardware, the work station control OIA remains on
the screen,

~— On non-3270 PC hardware, the work station control OIA appears
on the screen. The prompt “Valid Keys: WSCTRL List Print A-Z
0-9 Jump ChgSc Quit” will appear.

6-12

Disconnect from Work Station Control

Coding Example

; PARAMETER LIST FOR DISCONNECT FROM WORK STATION CONTROL

4

DWRETNCD DB
DWFXNID DB
DWSESSID DB

RETURN CODE
FUNCTION ID
SESSION ID

[eReNeo]

INITIALIZE PARAMETER LIST FOR DISCONNECT FROM WORK STATION CONTROL

~e ~o o~

MOV DWRETNCD, O0H
MOV DWFXNID,OOH
MoV AL,SESSID

MoV DWSESSID,AL

RETURN CODE MUST = O BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST

TO QUERY SESSION ID SERVICE

~e Ne e e

INITIALIZE REGISTERS FOR DISCONNECT FROM WORK STATION CONTROL

~s Se we

MOV AH,09H

MOV AL,02H

MOV BH,80H

MOV BL,20H .

MOV CX,OFFH

MOV DX,WSCTRL ; RESOLVED VALUE FOR 'WSCTRL'

MOV DI, SEG DWRETNCD ; SEGMENT ADDRESS OF PARAMETER LIST

MOV ES,DI ; IN ES

MOV DI,OFFSET DWRETNCD ; OFFSET OF PARAMETER LIST IN DI
; SIGNAL WORKSTATION PROGRAM FOR DISCONNECT FROM WORK STATION CONTROL
; SERVICE

INT 7AH

Chapter 6. Coding Window Management Service Requests 6-13

Add Window

Window Management Service X‘03’: Add Window

Register Values

Use this service to add a window from screen profile 0 to the specified

screen profile.

On Request

AH = X‘09

AL = X‘03

BH = X80

BL X20’

CX X‘00FF’

DX Resolved value for WSCTRL

ES
DI

Segment address of the parameter list
Offset address of the parameter list

[| I |

Parameter List Format

On Completion

CH = X112
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Contents Contents

Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID

(X‘63%)

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte ' Window short Unchanged
name

Parameter Definitions

Request Parameters:

® The session ID is the ID of the session currently connected to the work

station control session.

o The screen profile number is the number (in ASCII) of the screen profile
that you are adding the window to. Windows cannot be added to screen

profile 0.

¢ The window short name is the 1-character ASCII name for the window
being added. Window short names must be alphabetic characters (A

through Z).

6-14

Add Window

Return Codes

e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

e Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code

X‘00’
X1

X2’
X‘04°

X05°
X‘06’
X9’
X‘ocC’

Meaning

Successful completion. ,

The maximum number of windows has already been reached
(no free WCBs).

Invalid session ID.

The session is not connected for window management
services.

The window already exists on screen.

Invalid screen ID.

The window is not on screen 0.

Byte 0 of the parameter list is not zero on request.

See Appendix H, “Return Codes,” for more information.

Usage Notes

® The added window becomes the active window.

e Windows cannot be added to screen profile 0.

Chapter 6. Coding Window Management Service Requests 6-15

Add Window

Coding Example

o Se e

PARAMETER LIST FOR ADD WINDOW

7

AWRETNCD DB
AWEFXNID DB
AWSESSID DB
AWSCRPRO DB
AWWINDN DB

.
r

.
4

~e we ~o

.
4
.
1

i

[ejololoNe]

Ne Ne Ne Se N

RETURN CODE

FUNCTION ID

SESSION ID

SCREEN PROFILE NUMBER IN ASCII
WINDOW SHORT NAME IN ASCII

INITIALIZE PARAMETER LIST FOR ADD WINDOW

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AWRETNCD, 00H
AWFXNID,00H
AL,SESSID
AWSESSID,AL
AL,'1'
AWSCRPRO, AL
AL,'P'
AWWINDN,AL

N Ne N Ne Ns e W e

RETURN CODE MUST
FUNCTION ID MUST
SESSION ID

IN PARAMETER LIST
SCREEN PROFILE NUMBER 1
IN PARAMETER LIST
WINDOW SHORT NAME 'P'
IN PARAMETER LIST

0 BEFORE REQUEST
0 BEFORE REQUEST

INITIALIZE REGISTERS FOR ADD WINDOW

MOV
MOV
- MOV
MOV
MOV
MOV
MOV
MOV
MOV

SIGNAL WORKSTATION PROGRAM FOR ADD

INT

AH, 09H
AL,O3H

BH, 80H

BL,20H

CX,O0FFH

DX, WSCTRL

DI, SEG AWRETNCD
ES,DI

DI,OFFSET AWRETNCD

7AH

i
.
i
.
i
i

RESOLVED VALUE FOR 'WSCTRL'
SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

WINDOW SERVICE

6-16

Change Window Position on Screen

Window Management Service X‘04’: Change Window
Position on Screen

Register Values

Use this service to change the position of a window on the specified screen
profile. The window’s new position is determined by placing the upper left
corner of the window at the row and column numbers specified in the

parameter list.

On Request
AH = X'09
AL = X'04
BH = X80
BL = X20°
CX = X'00FF

DX = Resolved value for WSCTRL

=)
-
o

Parameter List Format

Segment address of the parameter list
Offset address of the parameter list

On Completion

CH = X12
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Contents Contents
Offset Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID
(X‘63")
2 1 byte Session ID Unchanged
3 1 byte Screen profile Unchanged
number
4 1 byte Window short Unchanged
name
5 1 byte Row Unchanged, or
row
6 1 byte Column Unchanged, or
column

Chapter 6. Coding Window Management Service Requests 6-17

Change Window Position on Screen

Parameter Definitions

Request Parameters:

The session ID is the ID of the session currently connected to the work
station control session.

The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

The window short name is the 1-character ASCII name for the window
being changed. Window short names must be alphabetic characters.

“Row” is the new row position for the upper left corner of the window
on the screen.

“Column” is the new column position for the upper left corner of the
window on the screen.

Note: Row and column numbers start at zero.

Completion Parameters:

“Row” is the row number chosen by the workstation program when the
row number in the parameter list on request caused the window to
overlap the screen boundaries.

“Column” is the column number chosen by the workstation program
when the column number in the parameter list on request caused the
window to overlap the screen boundaries.

Note: Row and column numbers start at zero.

6-18

Change Window Position on Screen

Return Codes

e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

e Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code

X0’
X<02’
X04’

X‘06’
X7
X0C’
XE’
X410’

Meaning

Successful completion.

Invalid session ID.

The session is not connected for window management
services.

Invalid screen ID.

The window was not found on screen.

Byte 0 of the parameter list is not zero on request.

No windows exist on screen.

The window overlapped the screen boundaries or did not fit
on the screen.

See Appendix H, “Return Codes,” for more information.

Usage Notes

o If the window overlaps the screen boundaries after it has been moved to
the new position:

— The window is moved to fit on the screen.

— A return code of X‘10’ is returned in the parameter list.

— The row and column numbers of the window position chosen by the
workstation program are returned in the parameter list.

Chapter 6. Coding Window Management Service Requests 6-19

Change Window Position on Screen

Coding Example
; PARAMETER LIST FOR CHANGE WINDOW POSITION ON SCREEN

CSRETNCD DB

OF WINDOW
COLUMN POSITION OF UPPER LEFT
CORNER OF WINDOW

(@]

CSCOLUMN DB

0 ; RETURN CODE
CSFXNID DB O ; FUNCTION NUMBER
CSSESSID DB O ; SESSION 1ID
CSSCREEN DB O ; SCREEN PROFILE NUMBER
CSWINDOW DB O ; WINDOW SHORT NAME
CSROW DB O ; ROW POSITION OF UPPER LEFT CORNER

INITIALIZE PARAMETER LIST FOR CHANGE WINDOW POSITION ON SCREEN

~s e W

MOV CSRETNCD, OOH
MOV CSFXNID,OOH
MOV AL,SESSID

MOV CSSESSID,AL

RETURN CODE MUST = O BEFORE REQUEST
FUNCTION ID MUST = O BEFORE REQUEST
SESSION ID INTO THE LIST

~e e we

MOV CSSCREEN,'2' ; SCREEN NUMBER 2

MOV CSWINDOW,'B' ; WINDOW 'B' SHORT NAME

MOV AL,ROW ; ROW POSITION INTO THE LIST
MOV CSROW,AL

MOV AL,COL ; COLUMN POSITION INTO THE LIST

MOV CSCOLUMN, AL

INITIALIZE REGISTERS FOR CHANGE WINDOW POSITION ON SCREEN

~e Ne N

MOV AH,09H

MOV AL,04H

MOV BH,80H

MOV BL,20H

MOV CX,OFFH

MOV DX ,WSCTRL ; RESOLVED VALUE FOR 'WSCTRL'

MOV DI, SEG CSRETNCD ; SEGMENT ADDRESS OF PARAMETER LIST
MOV ES,DI ; IN ES

MOV DI,OFFSET CSRETNCD ; OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CHANGE WINDOW POSITION ON SCREEN SERVICE

~e we o~

INT 7AH

.

6-20

Change Window Size

Window Management Service X‘05’: Change Window Size

Use this service to change the size of a window on the specified screen
profile. The window’s new size is determined by the number of rows and
columns specified in the parameter list.

Register Values

On Request On Completion

AH = X'09 CH = X12

AL = X05 CL = Return code

BH = X80’

BL = X20° The contents of registers
CX = X‘00FF AX, BX, DX, ES, and DI
DX = Resolved value for WSCTRL are unpredictable.

ES = Segment address of the parameter list

DI = Offset address of the parameter list

Parameter List Format

Contents Contents
Offset Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID
(X63")
2 1 byte Session ID Unchanged
3 1 byte Screen profile Unchanged
number ;
4 1 byte Window short Unchanged
name
5 1 byte Rows Unchanged, or
rows
6 1 byte Columns Unchanged, or
columns

Parameter Definitions
Request Parameters:

o The session ID is the ID of the session currently connected to the work
station control session.

e The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

e The window short name is the 1-character ASCII name for the window
being changed. Window short names must be alphabetic characters.

Chapter 6. Coding Window Management Service Requests 6-21

Change Window Size

Return Codes

“Rows” is the number of rows in the new window size.

“Columns” is the number of columns in the new window size.

Completion Parameters:

“Rows” is the number of rows chosen by the workstation program when
the number of rows in the parameter list on request caused the window
to become too big to fit on the screen or the presentation space.

“Columns” is the number of columns chosen by the workstation
program when the number of columns in the parameter list on request
caused the window to become too big to fit on the screen or the
presentation space.

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

. Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code Meaning

X00° Successful completion.

X02’ Invalid session ID.

X‘04’ The session is not connected for window management
services.

X“06’ Invalid screen ID.

X7 The window was not found on screen.

XC’ Byte 0 of the parameter list is not zero on request.

X‘OF’ No windows exist on the screen.

X10° The window overlapped the screen boundaries or did not fit

on the screen, because of the row and column values sent in
the parameter list. If the window size was too big, the
number of rows and columns chosen by the workstation
program is returned in the parameter list.

See Appendix H, “Return Codes,” for more information.

6-22

Change Window Size

Usage Notes

A value of 0 for either the number of rows or the number of columns in
the window size is changed by the workstation program to be a value of
1.

If the window overlaps the screen boundaries after it has been changed
to the new size:

— The window is moved to fit on the screen.
— A return code of X‘10’ is returned in the parameter list.

If the window overlaps the presentation space boundaries after it has
been changed to the new size:

— The window is moved to fit on the presentation space.
— A return code of X‘10’ is returned in the parameter list.

If the window is too big to fit on the screen or the presentation space
after it has been changed to the new size:

— The window size is reduced, and the window position is changed (if
necessary), to allow the window to fit on the screen and the
presentation space.

— A return code of X‘10’ is returned in the parameter list.

— The number of rows and columns in the window size chosen by the
workstation program is returned in the parameter list.

Chapter 6. Coding Window Management Service Requests 6-23

Change Window Size

Coding Example

o ~e o~

’
CZRETNCD
CZFXNID
CZSESSID
CZSCRPRO
CZWINDN
CZNUMROW
CZNUMCOL

~e we o~

.
I

DB
DB
DB
DB
DB
DB
DB

MOV
MOV
MOV
MOV
MOV
MOV
MoV
MOV
MOV
MOV
MOV
MOV

[ejoNoNeoNoloNo]

PARAMETER LIST FOR CHANGE WINDOW

CZRETNCD, 00H
CZFXNID,O0H
AL,SESSID
CZSESSID, AL
AL,'1"
CZSCRPRO, AL
AL, 'P'
CZWINDN,AL
AL, 10
CZNUMROW , AL
AL,15
CZNUMCOL, AL

SIZE

Ne Ne Ne Ne we we N

WO NI Ne NE Ne NGO Ne N4 Ne we Ne N

RETURN CODE
FUNCTION ID

SESSION ID

SCREEN PROFILE NUMBER IN ASCII
WINDOW SHORT NAME IN ASCII

NUMBER OF ROWS IN NEW WINDOW SIZE
NUMBER OF COLUMNS IN NEW WINDOW SIZE

INITIALIZE PARAMETER LIST FOR CHANGE WINDOW SIZE

RETURN CODE MUST = O BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST

TO QUERY SESSION ID

SCREEN PROFILE NUMBER 1

IN PARAMETER LIST

WINDOW SHORT NAME 'P'

IN PARAMETER LIST

NUMBER OF ROWS IN THE NEW

WINDOW SIZE

NUMBER OF COLUMNS IN THE

WINDOW SIZE

; INITIALIZE REGISTERS FOR CHANGE WINDOW SIZE

i

~e we o~

Mov
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

INT

AH,09H

AL,O5H

BH,80H

BL,20H

CX,O0FFH

DX ,WSCTRL

DI, SEG CZRETNCD
ES,DI

DI,OFFSET CZRETNCD

7AH

.
1’
’
’
.
4

RESOLVED VALUE FOR 'WSCTRL'
SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CHANGE WINDOW SIZE SERVICE

6-24

Change Window Color

Window Management Service X‘06’: Change Window

Color

Use this service to change the foreground and background colors of a
window on the specified screen profile.

Register Values

On Request On Completion

AH = X‘09 CH = X‘12

AL = X‘06’ CL = Return code

BH = X‘80’

BL = X20’ The contents of registers
CX = X‘00FF’ AX, BX, DX, ES, and DI
DX = Resolved value for WSCTRL are unpredictable.

ES = Segment address of the parameter list

Parameter List Format

Offset address of the parameter list

Contents Contents
Offset Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID
(X‘63")
1 byte Session ID Unchanged
1 byte Screen profile Unchanged
number
4 1 byte Window short Unchanged
name
5 1 byte Foreground color Unchanged
value
6 1 byte Background color | Unchanged
value
7 1 byte Base color Unchanged

Chapter 6. Coding Window Management Service Requests 6-25

Change Window Color

Parameter Definitions

Request Parameters:

The session ID is the ID of the session currently connected to the work
station control session.

The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

The window short name is the 1-character ASCII name for the window
being changed. Window short names must be alphabetic characters.

The foreground and background color values are as follows:
Value Color

Black
Blue

Red

Pink
Green
Turquoise
Yellow
White

N U W = O
| | (A

If the foreground or background color value is greater than 7, the color
value is selected using the formula: color=value MOD 8.

The base color is specified as follows:

— A value of 1 indicates that the base colors are to be used to display
the window.

— A value other than 1 indicates that the specified foreground and
background colors are to be used to display the window.

Note: Setting base colors for the window overrides the color values
specified for the foreground and background.

6-26

Change Window Color

Return Codes

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code

X00°
X02’
X‘04’
X‘06’
X7
X‘C’
X‘0E’
X‘0F’
X12°

Meaning

Successful completion.

Invalid session ID.

The session is not connected for window management services.
Invalid screen ID.

The window is not found on screen.

Byte 0 of the parameter list is not zero on request.

No windows exist on screen.

No colors can be set for a PC session.

Foreground and background colors are the same. The window
name and the window border become black on white.

See Appendix H, “Return Codes,” for more information.

Chapter 6. Coding Window Management Service Requests 6-27

Change Window Color

Coding Example

o Ns o~

CCRETNCD
CCFXNID
CCSESSID
CCSCREEN
CCWINDOW
CCFORGND
CCBAKGND
CCBASE

e ~e o~

~e e Ne

~e So ~e

DB
DB
DB
DB
DB
DB
DB
DB

MOV
MOV
MOV
Mov
MoV
MOV
MOV
Mov
MOV

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

INT

.

[eNeoNoRoNoNoNoNe]

PARAMETER LIST FOR CHANGE WINDOW

CCRETNCD, 00H
CCFXNID,00H
AL,SESSID
CCSESSID,AL
CCSCREEN, '3
CCWINDOW,'S"
CCFORGND, 4
CCBAKGND, 0
CCBASE, 0

AH,09H

AL,O6H

BH, 80H

BL, 20H

CX,0FFH

DX, WSCTRL

DI, SEG CCRETNCD
ES,DI

DI,OFFSET CCRETNCD

7AH

COLOR

Ne Ne NE Ne Ne Ne Ne N

N Ne NE Ne Ne Ne we Ne e

.
4
I
17
.
’

RETURN CODE

FUNCTION NUMBER
SESSION ID

SCREEN PROFILE NUMBER
WINDOW SHORT NAME
FOREGROUND COLOR VALUE
BACKGROUND COLOR VALUE
BASE COLOR

INITIALIZE PARAMETER LIST FOR CHANGE WINDOW COLOR

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = O BEFORE REQUEST
SESSION ID INTO PARAMETER LIST

SCREEN NUMBER 3
WINDOW 'S' SHORT NAME
GREEN FOREGROUND
BLACK BACKGROUND

NO BASE COLORS

INITIALIZE REGISTERS FOR CHANGE WINDOW COLOR

RESOLVED VALUE FOR 'WSCTRL '
SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CHANGE WINDOW COLOR SERVICE

6-28

Change Window Position on Presentation Space

Window Management Service X‘07’: Change Window

Position on Presentation Space

Register Values

Use this service to change the position of a window on the presentation
space for the specified screen profile. The window’s new position is
determined by placing the upper left corner of the window at the row and

column numbers specified in the parameter list.

On Request
AH = X09
AL = X07
BH = X80
BL = X0
CX = X‘O0FF’

DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

Parameter List Format

On Completion

CH = X12
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Contents Contents
Offset Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID
(X63")
2 1 byte Session ID Unchanged
3 1 byte Screen profile Unchanged
number
4 1 byte Window short Unchanged
name
5 1 byte Row Unchanged, or
row
6 1 byte Column Unchanged, or
column

3

Chapter 6. Coding Window Management Service Requests 6-29

Change Window Position on Presentation Space

Parameter Definitions

Request Parameters:

The session ID is the ID of the session currently connected to the work
station control session.

The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

The window short name is the 1-character ASCII name for the window
being changed. Window short names must be alphabetic characters.

“Row” is the new row position for the upper left corner of the window
on the presentation space.

“Column” is the new column position for the upper left corner of the
window on the presentation space.

Note: Row and column numbers start at zero.

Completion Parameters:

“Row” is the row number chosen by the workstation program when the
row number in the parameter list on request caused the window to
overlap the presentation space boundaries.

“Column” is the column number chosen by the workstation program
when the column number in the parameter list on request caused the
window to overlap the presentation space boundaries.

Note: Row and column numbers start at zero.

6-30

Change Window Position on Presentation Space

Return Codes

Usage Notes

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code Meaning

X00° Successful completion.

X02’ Invalid session ID.

X‘04’ The session is not connected for window management
services.

X‘06’ Invalid screen ID.

X7’ The window is not found on screen.

X0C’ Byte 0 of the parameter list is not zero on request.

XOE’ No windows exist on screen.

X10’ The window overlapped the presentation space boundaries or

did not fit on the presentation space.

See Appendix H, “Return Codes,” for more information.

If the window overlaps the presentation space boundaries after it has
been moved to the new position:

— The window is moved to fit on the presentation space.
— A return code of X‘10’ is returned in the parameter list.

— The row and column numbers of the window position chosen by the
workstation program are returned in the parameter list.

This service accepts only row and column positions as parameters, not
PEL positions such as those used by windows in graphics mode.

This service is similar to the Browse function on the keyboard. When
the window becomes the top window of the screen and the screen is
active, if the cursor is not within the area shown by the window, the
window will be moved on the presentation space until the cursor is
within the window area.

Chapter 6. Coding Window Management Service Requests 6-31

Change Window Position on Presentation Space

Coding Example

i

; PARAMETER LIST FOR CHANGE WINDOW POSITION ON PRESENTATION SPACE

CPRETNCD DB

UPPER LEFT CORNER OF WINDOW

0 ; RETURN CODE
CPFXNID DB O ; FUNCTION ID
CPSESSID DB O ; SESSION ID
CPSCRPRO DB O ; SCREEN PROFILE NUMBER IN ASCII
CPWINDN DB O ; WINDOW SHORT NAME IN ASCII
CPROWNUM DB O ; ROW NUMBER FOR NEW POSITION OF
; UPPER LEFT CORNER OF WINDOW
CPCOLNUM DB O ; COLUMN NUMBER FOR NEW POSITION OF
7

; INITIALIZE PARAMETER LIST FOR CHANGE WINDOW POSITION ON PRESENTATION SPACE

MOV CPRETNCD,00H
MOV CPFXNID,O0H
MOV AL,SESSID
MOV CPSESSID,AL
MOV AL,'1"

MOV CPSCRPRO,AL
MOV AL,'P'

MOV CPWINDN,AL
MOV AL,20

MOV CPROWNUM,AL
MOV AL, 25

MOV CPCOLNUM, AL

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST

TO QUERY SESSION ID SERVICE

SCREEN PROFILE NUMBER 1

IN PARAMETER LIST

WINDOW SHORT NAME 'Pp'

IN PARAMETER LIST

ROW NUMBER FOR NEW POSITION OF
UPPER LEFT CORNER OF WINDOW

COLUMN NUMBER FOR NEW POSITION OF
UPPER LEFT CORNER

N Ne Ne Ne e Ne Ns NE Ne Ne Na we

; INITIALIZE REGISTERS FOR CHANGE WINDOW POSITION ON PRESENTATION SPACE

MOV AH,09H

MOV AL,O07H

MOV BH,80H

MOV BL,20H

MOV CX,O0FFH

MOV DX,WSCTRL ; RESOLVED VALUE FOR WSCTRL

MOV DI, SEG CPRETNCD ; SEGMENT ADDRESS OF PARAMETER LIST
MOV ES,DI ; IN ES

MOV DI,OFFSET CPRETNCD ; OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CHANGE WINDOW POSITION ON PRESENTATION
SPACE SERVICE

~e Ne Ne N

INT 7AH

6-32

Change Hidden State

Window Management Service X‘08’: Change Hidden

State

Use this service to toggle the “hidden” state of a window on the specified
screen profile. (A hidden window becomes not hidden, or a window that is

not hidden becomes hidden.)

Register Values

On Request

AH = X09

AL = X08

BH = X‘80°

BL = X‘20°

CX = X‘O0FF

DX = Resolved value for WSCTRL

ES = Segment address of the parameter list

DI = Offset address of the parameter list

Parameter List Format

On Completion

CH
CL

X112’
Return code

([

The contents of registers
AX, BX, DX, ES, and DI

are unpredictable.

Contents Contents

Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID

(X‘63%)

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Window short Unchanged
name

Parameter Definitions

Request Parameters:

e The session ID is the ID of the session currently connected to the work

station control session.

o The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

e The window short name is the 1-character ASCII name for the window
being changed. Window short names must be alphabetic characters.

Chapter 6. Coding Window Management Service Requests 6-33

Change Hidden State

Return Codes
e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

e Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code Meaning

X0’ Successful completion.

X02’ Invalid session ID.

X‘04’ The session is not connected for window management
services.

X‘06’ Invalid screen ID.

X7 The window is not found on screen.

XA’ Only one window on screen; the window cannot be hidden.

X‘oB’ All other windows are hidden; the next window has been
unhidden and made the active window.

XC’ Byte 0 of the parameter list is not zero on request.

X‘OF’ No windows exist on screen.

See Appendix H, “Return Codes,” for more information.

Usage Notes

o If the requested window is the active window and all other windows are
hidden, the next window on the screen profile becomes not hidden and
is made the active window.

6-34

Change Hidden State

Coding Example

o e

’
CHRETNCD
CHFXNID
CHSESSID
CHSCREEN
CHWINDOW

. we ~o

~e No N

~e wo o~

DB
DB
DB
DB
DB

MOV
MOV
MOV
MOV
MOV
MOV

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

INT

[eNoNeoRoNe]

CHSCREEN, '5'

PARAMETER LIST FOR CHANGE HIDDEN STATE

RETURN CODE

FUNCTION NUMBER
SESSION ID

SCREEN PROFILE NUMBER
WINDOW SHORT NAME

e Ne N6 Se N

INITIALIZE PARAMETER LIST FOR CHANGE HIDDEN STATE

SCREEN NUMBER 5

CHRETNCD, OOH ; RETURN CODE MUST = 0 BEFORE REQUEST
CHFXNID,O00H ; FUNCTION ID MUST = 0 BEFORE REQUEST
AL,SESSID ; SESSION ID INTO THE
CHSESSID,AL ; PARAMETER LIST

7

CHWINDOW, 'T'

AH,09H
AL,08H
BH, 80H
BL,20H
CX,O0FFH
DX, WSCTRL

ES,DI

DI ,OFFSET CHRETNCD

7AH

WINDOW 'T' SHORT NAME

INITIALIZE REGISTERS FOR CHANGE HIDDEN STATE

RESOLVED VALUE FOR 'WSCTRL ‘'

IN ES
OFFSET OF PARAMETER LIST IN DI

DI, SEG CHRETNCD ; SEGMENT ADDRESS OF PARAMETER LIST

SIGNAL WORKSTATION PROGRAM FOR CHANGE HIDDEN STATE SERVICE

Chapter 6. Coding Window Management Service Requests

6-35

Change Enlarge State

Window Management Service X‘09’: Change Enlarge

State

Use this service to toggle the “enlarge” state of the display image. (An
enlarged display image becomes normal, or a normal display image becomes

enlarged.)
Register Values

On Request
AH = X09
AL = X'09
BH = X‘80
BL = X220
CX = X‘00FF

Parameter List Format

= Resolved value for WSCTRL
ES = Segment address of the parameter list
= Offset address of the parameter list

On Completion

X112’
Return code

CH
CL

I

The contents of registers
AX, BX, DX, ES, and DI

are unpredictable.

Contents Contents
Offset Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID
(X‘63%)
2 1 byte Session ID Unchanged

Parameter Definitions

Request Parameters:

® The session ID is the ID of the session currently connected to the work

station control session.

Return Codes

e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

6-36

Change Enlarge State

Coding Example

.
’

Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code Meaning

X00° Successful completion.

X<02’ Invalid session ID.

X04’ The session is not connected for window management
services.

X‘0C’ Byte 0 of the parameter list is not zero on request.

See Appendix H, “Return Codes,” for more information.

; PARAMETER LIST FOR CHANGE ENLARGE STATE

CERETNCD

DB
CEFXNID DB
CESESSID DB

0 ; RETURN CODE
0 ; FUNCTION ID
0 ; SESSION ID

; INITIALIZE PARAMETER LIST FOR CHANGE ENLARGE STATE

MOV
MOV
MOV
MOV

~ Ne o~

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

~e No o=

INT

CERETNCD, 00H ; RETURN CODE MUST = O BEFORE REQUEST
CEFXNID,OO0OH ; FUNCTION ID MUST = O BEFORE REQUEST
AL,SESSID ; SESSION ID OBTAINED FROM REQUEST

CESESSID,AL

AH,09H

AL, 09H

BH, 80H

BL,20H

CX,0FFH

DX, WSCTRL

DI, SEG CERETNCD
ES,DI

DI,OFFSET CERETNCD

7AH

I
’
’
’

TO QUERY SESSION ID SERVICE

INITIALIZE REGISTERS FOR CHANGE ENLARGE STATE

RESOLVED VALUE FOR WSCTRL

SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CHANGE ENLARGE STATE SERVICE

Chapter 6. Coding Window Management Service Requests

6-37

Change Screen Background

Window Management Service X‘0A’: Change Screen

Background

Register Values

Use this service to change the background color of the specified screen
profile.

On Request " On Completion

AH = X09 CH = X‘12

AL = X‘0A’ CL = Return code

BH = X80’

BL = X220 The contents of registers
CX = X‘O0FF AX, BX, DX, ES, and DI
DX = Resolved value for WSCTRL are unpredictable.

ES Segment address of the parameter list

Offset address of the parameter list

Parameter List Format

Contents Contents

Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID

(X‘63%)

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Screen Unchanged
background color

Parameter Definitions

Request Parameters:

e The session ID is the ID of the session currently connected to the work
station control session.

e The screen profile number is the number (in ASCII) of the screen profile
being changed.

6-38

Change Screen Background

® The background color values are as follows:

Value

OGN O

| T I 1 O I

Color

Black
Blue

Red

Pink
Green
Turquoise
Yellow
White

If the background color value is greater than 7, the color value is selected
using the formula: color = value MOD 8.

Return Codes

e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

e Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by

the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window

management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code

X<00’
X2’
X‘04’

X‘06’
X‘0C’

Meaning

Successful completion.

Invalid session ID.

The session is not connected for window management
services.

Invalid screen ID.

Byte 0 of the parameter list is not zero on request.

See Appendix H, “Return Codes,” for more information.

Chapter 6. Coding Window Management Service Requests

6-39

Change Screen Background

Coding Example

; PARAMETER LIST FOR CHANGE SCREEN BACKGROUND

RETURN CODE
FUNCTION NUMBER
SESSION ID

SCREEN PROFILE NUMBER
SCREEN BACKGROUND COLOR

CBRETNCD DB
CBFXNID DB
CBSESSID DB
CBSCREEN DB
CBCOLOR DB

[eNeoloNeoNe]
Ne we e we e

INITIALIZE PARAMETER LIST FOR CHANGE SCREEN BACKGROUND

~e ~o e

0 BEFORE REQUEST
0 BEFORE REQUEST

RETURN CODE MUST
FUNCTION ID MUST
SESSION ID INTO THE
PARAMETER LIST

SCREEN NUMBER O
BACKGROUND COLOR = WHITE

MOV CBRETNCD, O0H
MOV CBFXNID,00H
MOV AL,SESSID
MOV CBSESSID,AL
MOV CBSCREEN, '0'
MOV CBCOLOR, 7

e Ne Ne Ne Ne o~

INITIALIZE REGISTERS FOR CHANGE SCREEN BACKGROUND

~e ~o ~»

MOV AH,O09H
MOV AL,OAH

MOV BH,80H

MOV BL,20H

MOV CX,OFFH

MOV DX,WSCTRL ; RESOLVED VALUE FOR 'WSCTRL '

MOV DI, SEG CBRETNCD ; SEGMENT ADDRESS OF PARAMETER LIST
MOV ES,DI ; IN ES

MOV DI,OFFSET CBRETNCD ; OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CHANGE SCREEN BACKGROUND SERVICE

~ No ~e

INT 7AH

6-40

Query Window Position on Screen

Window Management Service X‘0B’: Query Window

Position on Screen

Use this service to obtain the position of a window on the specified screen
profile. The window’s position is given by the row and column numbers of
the upper left corner of the window.

Register Values

Resolved value for WSCTRL

On Request
AH = X‘09
AL = X‘0OB’
BH = X80’
BL = X20’
CX = X‘00FF
DX =

=
—
It

Parameter List Format

Segment address of the parameter list
Offset address of the parameter list

On Completion

CH
CL

X12

Return code

The contents of registers
AX, BX, DX, ES, and DI

are unpredictable.

Contents Contents
Offset Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID
(X‘63")
2 1 byte Session ID Unchanged
3 1 byte Screen profile Unchanged
number
4 1 byte Window short Unchanged
name
5 1 byte Reserved Row
6 1 byte Reserved Column

Chapter 6. Coding Window Management Service Requests

6-41

Query Window Position on Screen

Parameter Definitions

Return Codes

Request Parameters:

The session ID is the ID of the session currently connected to the work
station control session.

The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

The window short name is the 1-character ASCII name for the window
being queried. Window short names must be alphabetic characters.

Completion Parameters:

“Row” is the row number of the upper left corner of the window on the
screen.

“Column” is the column number of the upper left corner of the window
on the screen.

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code Meaning

X00° Successful completion.

X<02’ Invalid session ID.

X‘04’ The session is not connected for window management
services.

X06’ Invalid screen ID.

X7 The window is not found on screen.

xX‘C’ Byte 0 of the parameter list is not zero on request.

X‘OFE’ No windows exist on screen.

See Appendix H, “Return Codes,” for more information.

6-42

Query Window Position on Screen

Coding Example

i
7

PARAMETER LIST FOR QUERY WINDOW POSITION ON SCREEN

RETURN CODE

FUNCTION ID

SESSION ID

SCREEN PROFILE NUMBER IN ASCII
WINDOW SHORT NAME IN ASCII

ROW NUMBER OF UPPER LEFT CORNER
COLUMN NUMBER OF UPPER LEFT CORNER

QQRETNCD DB
QOFXNID DB
QQSESSID DB
QQSCRPRO DB
QOWINDN DB
QOROWNUM DB
QQCOLNUM DB

eNeoNoRoNoNoNe]

.

; INITIALIZE PARAMETER LIST FOR QUERY WINDOW POSITION ON SCREEN

MOV QQRETNCD, OOH
MOV QQFXNID,O0H
MOV AL,SESSID
MOV QQSESSID,AL
MOV AL,'1"

MOV QQSCRPRO,AL
MOV AL,'P’

MOV QQWINDN,AL

RETURN CODE MUST = O BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST

TO QUERY SESSION ID SERVICE

SCREEN PROFILE NUMBER

IN PARAMETER LIST

WINDOW SHORT NAME OBTAINED FROM
REQUEST TO QUERY SESSION ID SERVICE

Ne Ne we N Ne Ne e SNe

; INITIALIZE REGISTERS FOR QUERY WINDOW POSITION ON SCREEN

MOV AH,O09H

MOV AL,OBH

MOV BH,80H

MOV BL,20H

MOV CX,OFFH

MOV DX,WSCTRL ; RESOLVED VALUE FOR WSCTRL

MOV DI, SEG QQRETNCD ; SEGMENT ADDRESS OF PARAMETER LIST
MOV ES,DI ; IN ES

MOV DI,OFFSET QQRETNCD ; OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY WINDOW POSITION ON SCREEN SERVICE

~e ~o o~

INT 7AH

.
.

Chapter 6. Coding Window Management Service Requests 6-43

Query Window Size

Window Management Service X‘0C’: Query Window Size

Register Values

Use this service to obtain the size of a window on the specified screen
profile. The window’s size is given as the number of rows and columns in

Resolved value for WSCTRL
Segment address of the parameter list

the window.
On Request
AH = X'09
AL = X'0C
BH = X80
BL = X20’
CX = X‘00FF
DX =

ES =

DI =

Parameter List Format

Offset address of the parameter list

On Completion

X12’
Return code

CH
CL

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Contents Contents
Offset Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID
(X‘63’)
2 1 byte Session ID Unchanged
3 1 byte Screen profile Unchanged
number
4 1 byte Window short Unchanged
name
5 1 byte Reserved Rows
6 1 byte Reserved Columns

6-44

Query Window Size

Parameter Definitions

Return Codes

Request Parameters:

The session ID is the ID of the session currently connected to the work
station control session.

The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

The window short name is the 1-character ASCII name for the window
being queried. Window short names must be alphabetic characters.

Completion Parameters:

“Rows” is the number of rows in the window size.

“Columns” is the number of columns in the window size.

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code Meaning

X00’ Successful completion.

X2’ Invalid session ID.

X‘04’ The session is not connected for window management
services.

X‘06’ Invalid screen ID.

X7 The window is not found on screen.

X‘oC’ Byte 0 of the parameter list is not zero on request.

X‘OE’ No windows exist on screen.

See Appendix H, “Return Codes,” for more information.

Chapter 6. Coding Window Management Service Requests 6-45

Query Window Size

Coding Example

7

; PARAMETER LIST FOR QUERY WINDOW SIZE

QZRETNCD
QZFXNID
QZSESSID
QZSCREEN
QZWINDOW
QZROWS
QZCOLUMS

. Sa =

DB
DB
DB
DB
DB
DB
DB

-

MOV
MOV
MOV
MOV
MOV
MOV

[eNeoloNoNoNoNo

QZRETNCD, 00H
QZFXNID,00H
AL,SESSID

QZSESSID,AL
QZSCREEN, '4"
QZWINDOW, 'D’

e e Na e e we N

N T TR TN

RETURN CODE

FUNCTION NUMBER

SESSION ID

SCREEN PROFILE NUMBER

WINDOW SHORT NAME

NUMBER OF ROWS IN WINDOW SIZE
NUMBER OF COLUMNS IN WINDOW SIZE

INITIALIZE PARAMETER LIST FOR QUERY WINDOW SIZE

RETURN CODE MUST = O BEFORE REQUEST
FUNCTION ID MUST = O BEFORE REQUEST
SESSION ID INTO THE

PARAMETER LIST

SCREEN NUMBER 4

WINDOW 'D' SHORT NAME INTO THE LIST

; INITIALIZE REGISTERS FOR QUERY WINDOW SIZE

~e Ne ~e

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

INT

AH, 09H

AL,OCH

BH, 80H

BL, 20H

CX,O0FFH

DX, WSCTRL

DI, SEG QZRETNCD
ES,DI

DI,OFFSET QZRETNCD

7AH

.
7
’
.
7
14

RESOLVED VALUE FOR 'WSCTRL '

SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY WINDOW SIZE SERVICE

6-46

Query Window Colors

Window Management Service X‘0D’: Query Window

Colors

Use this service to obtain the foreground and background colors of a
window on the specified screen profile.

Register Values

On Request
AH = X‘09
AL = X‘0D’
BH = X‘80’
BL = X20°
CX = X‘00FF
DX

=
wn
[

Parameter List Format

Resolved value for WSCTRL
Segment address of the parameter list
Offset address of the parameter list

On Completion

CH
CL

X‘12’
Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Contents Contents
Offset Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID
(X‘63")
1 byte Session ID Unchanged
1 byte Screen profile Unchanged
number
4 1 byte Window short Unchanged
name
5 1 byte Reserved Foreground color
6 1 byte Reserved Background color
7 1 byte Reserved Color flag

Chapter 6. Coding Window Management Service Requests 6-47

Query Window Colors

Parameter Definitions

Request Parameters:

® The session ID is the ID of the session currently connected to the work
station control session.

e The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

e The window short name is the 1-character ASCII name for the window
being queried. Window short names must be alphabetic characters.

Completion Parameters:

® The foreground and background color values are as follows:
Value Color

Black
Blue

Red

Pink
Green
Turquoise
Yellow
White

SO WN=O

| | I T

® The color flag is as follows:

0 = Normal
(foreground/background color values apply)

1 = Base mode
(base colors apply)

2 = PC session

Note: If the color flag value is 1 or 2, the foreground and
background color values are both 0.

6-48

Query Window Colors

Return Codes

e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

o Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code

X0’
X‘02’
X‘04’

X‘06’
X7
X‘oC’
X‘OE’

Meaning

Successful completion.

Invalid session ID.

The session is not connected for window management
services.

Invalid screen ID.

The window is not found on screen.

Byte 0 of the parameter list is not zero on request.
No windows exist on screen.

See Appendix H, “Return Codes,” for more information.

Chapter 6. Coding Window Management Service Requests 6-49

Query Window Colors

Coding Example

o Se we

QCRETNCD
QCFXNID

QCSESSID
QCSCRPRO
OCWINDN

QCFORCOL
QCBAKCOL
QCCOLFLG

~e No N

~e e~

.
7

DB
DB
DB
DB
DB
DB
DB
DB

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

OOCOO0OOOOO

N Ne Ne me Ne we e e

QCRETNCD, O0H
QCFXNID, 00H
AL,SESSID
QCSESSID,AL
AL,'1"
QCSCRPRO, AL
AL, 'P'
QCWINDN,AL

Ne Ne Ne Ne Ne we e Ne

AH,O09H
AL, ODH
BH, 80H
BL,20H
CX,0FFH
DX, WSCTRL ;
DI, SEG QCRETNCD ;
ES,DI ;
DI,OFFSET QCRETNCD ;

PARAMETER LIST FOR QUERY WINDOW COLORS

RETURN CODE

FUNCTION ID

SESSION ID

SCREEN PROFILE NUMBER IN ASCII
WINDOW SHORT NAME IN ASCII
FOREGROUND COLOR

BACKGROUND COLOR

COLOR FLAG

INITIALIZE PARAMETER LIST FOR QUERY WINDOW COLORS

RETURN CODE MUST 0 BEFORE REQUEST
FUNCTION ID MUST O BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST

TO QUERY SESSION ID SERVICE

SCREEN PROFILE NUMBER 1

IN PARAMETER LIST

WINDOW SHORT NAME 'P'

IN PARAMETER LIST

INITIALIZE REGISTERS FOR QUERY WINDOW COLORS

RESOLVED VALUE FOR WSCTRL

SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR QUERY WINDOW COLORS SERVICE

-
7

INT

7AH

6-50

Query Window Position on Presentation Space

Window Management Service X‘OE’: Query Window

Position on Presentation Space

Use this service to obtain the position of a window on the presentation
space for the specified screen profile. The window’s position is given by the
row and column numbers of the upper left corner of the window.

Register Values

Resolved value for WSCTRL

On Request
AH = X09
AL = XOF’
BH = X‘80’
BL = X0’
CX = X‘O0FF
DX =

ES =

Parameter List Format

Segment address of the parameter list
DI = Offset address of the parameter list

On Completion

CH = X12
CL. = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Contents Contents
Offset Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID
(X63)
2 1 byte Session ID Unchanged
3 1 byte Screen profile Unchanged
number
4 1 byte Window short Unchanged
name
5 1 byte Reserved Row
6 1 byte Reserved Column

Chapter 6. Coding Window Management Service Requests 6-51

Query Window Position on Presentation Space

- Parameter Definitions

Return Codes

Request Parameters:

The session ID is the ID of the session currently connected to the work
station control session.

The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

The window short name is the 1-character ASCII name for the window
being queried. Window short names must be alphabetic characters.

Completion Parameters:

“Row” is the row number of the upper left corner of the window on the
presentation space.

“Column” is the column number of the upper left corner of the window
on the presentation space.

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code Meaning

X00° Successful completion.

X002’ Invalid session ID.

X004’ The session is not connected for window management
services.

X‘06’ Invalid screen ID.

X7 The window is not found on screen.

X‘0C’ Byte 0 of the parameter list is not zero on request.

X‘OFE’ No windows exist on screen.

See Appendix H, “Return Codes,” for more information.

6-52

Query Window Position on Presentation Space

Coding Example

i
; PARAMETER LIST FOR QUERY WINDOW POSITION ON PRESENTATION SPACE

RETURN CODE

FUNCTION NUMBER

SESSION ID

SCREEN PROFILE NUMBER

WINDOW SHORT NAME

ROW NUMBER OF UPPER LEFT CORNER
COLUMN NUMBER OF UPPER LEFT CORNER

QPRETNCD DB
QPFXNID DB
QPSESSID DB
OPSCREEN DB
QPWINDOW DB
QPROW DB
QPCOLUMN DB

[eNeNoRoNoNoNo]

INITIALIZE PARAMETER LIST FOR QUERY WINDOW POSITION ON
PRESENTATION SPACE

Ne Ne we s

MOV QPRETNCD,O00H
MOV QPFXNID,O0OH
MOV AL,SESSID

MOV QPSESSID,AL
MOV QPSCREEN, '3
MOV QPWINDOW,'J'

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = O BEFORE REQUEST
SESSION ID INTO THE

PARAMETER LIST

SCREEN NUMBER 3

WINDOW 'J' SHORT NAME

Ne we we ~e oNe o~

INITIALIZE REGISTERS FOR QUERY WINDOW POSITION ON
PRESENTATION SPACE

e Se e o~

MOV AH,09H

MOV AL,OEH

MOV BH,80H

MOV BL,20H

MOV CX,OFFH

MOV DX,WSCTRL ; RESOLVED VALUE FOR 'WSCTRL

MOV DI, SEG QPRETNCD ; SEGMENT ADDRESS OF PARAMETER LIST
MOV ES,DI ; IN ES

MOV DI,OFFSET QPRETNCD ; OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY WINDOW POSITION ON
PRESENTATION SPACE SERVICE

~e Ne Ne N

INT 7AH

Chapter 6. Coding Window Management Service Requests 6-53

Query Hidden State

Window Management Service X‘0F’: Query Hidden State

Register Values

Use this service to obtain the “hidden” state of a window on the specified
screen profile. (The hidden state tells whether the window is hidden or not

Resolved value for WSCTRL
Segment address of the parameter list

hidden.)

On Request
AH = X‘09
AL = XOF
BH = X‘80’
BL = X20’
CX = X‘O0FF’
DX =

ES =

DI =

Parameter List Format

Offset address of the parameter list

On Completion

CH = X‘12
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Contents Contents

Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID

(X‘63)

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Window short Unchanged
name

5 1 byte Reserved “Hidden” flag

6-54

Query Hidden State

Parameter Definitions

Return Codes

Request Parameters:

The session ID is the ID of the session currently connected to the work
station control session.

The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

The window short name is the 1-character ASCII name for the window
being queried. Window short names must be alphabetic characters.

Completion Parameters:

The “hidden” flag is as follows:

— A value of X‘01’ in the “hidden” flag means that the window is
hidden.

— A value of X‘00’ in the “hidden” flag means that the window is not
hidden.

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code Meaning

X‘00’ Successful completion.

X02’ Invalid session ID.

X‘04’ The session is not connected for window management
services.

X*06’ Invalid screen ID.

X07’ The window is not found on screen.

X‘cC’ Byte 0 of the parameter list is not zero on request.

X‘OE’ No windows exist on screen.

See Appendix H, “Return Codes,” for more information.

Chapter 6. Coding Window Management Service Requests 6-55

Query Hidden State

Coding Example

; PARAMETER LIST FOR QUERY HIDDEN STATE

QHRETNCD
QHFXNID
QHSESSID
QHSCRPRO
QHWINDN
QHHIDFLG

e W o~

~e we N

~. Ne o~

DB
DB
DB
DB
DB
DB

MoV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

INT

.

OOOOOO0

QHRETNCD, 00H
QHFXNID, 00H
AL,SESSID
QHSESSID,AL
AL,'1'
QHSCRPRO, AL
AL, 'P’
QHWINDN ,AL

AH,09H
AL, OFH

BH, 80H

BL,20H

CX,O0FFH

DX ,WSCTRL

DI, SEG QHRETNCD
ES,DI

DI,OFFSET QHRETNCD

7AH

Ne Ne e Ne e N

e Ne Ne e N N Ne N

-
’
.
17
.
’
.
I

RETURN CODE

FUNCTION ID

SESSION ID

SCREEN PROFILE NUMBER IN ASCII
WINDOW SHORT NAME IN ASCII
HIDDEN FLAG

INITIALIZE PARAMETER LIST FOR QUERY HIDDEN STATE

RETURN CODE MUST 0 BEFORE REQUEST
FUNCTION ID MUST 0 BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST

TO QUERY SESSION ID SERVICE

SCREEN PROFILE NUMBER

IN PARAMETER LIST

WINDOW SHORT NAME

IN PARAMETER LIST

INITIALIZE REGISTERS FOR QUERY HIDDEN STATE

RESOLVED VALUE FOR WSCTRL

SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY HIDDEN STATE SERVICE

6-56

Query Enlarge State

Window Management Service X‘10’: Query Enlarge State

Register Values

Use this service to obtain the “enlarge” state of the display image. (The
display image can be either enlarged or not enlarged. In an enlarged
image, the active window is displayed on the entire screen.)

On Request
AH = X‘09
AL = X10
BH = X80’
BL = X2¢0’
CX = X‘O0FF
DX =

Resolved value for WSCTRL
Segment address of the parameter list

DI = Offset address of the parameter list

Parameter List Format

On Completion

CH = X‘12
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Contents Contents
Offset Length on Request On Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID
(X‘63")
2 1 byte Session ID Unchanged
3 1 byte Reserved “Enlarge” flag

Chapter 6. Coding Window Management Service Requests 6-57

Query Enlarge State

Parameter Definitions

Return Codes

Request Parameters:

e The session ID is the ID of the session currently connected to the work
station control session.

Completion Parameters:

e The “enlarge” flag is as follows:

— A value of X‘01’ in the “enlarge” flag means that the display image
is enlarged.

— A value of X‘00’ in the “enlarge” flag means that the display image
is not enlarged.

e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

o Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code
X00’
X¢02’
X‘04’

X‘oC’

Meaning

Successful completion.

Invalid session ID.

The session is not connected for window management
services.

Byte 0 of the parameter list is not zero on request.

See Appendix H, “Return Codes,” for more information.

6-58

Query Enlarge State

Coding Example

o Ne we

r

QERETNCD DB
QEFXNID DB
QESESSID DB
QEENLFLG DB

~e ~o W

MOV
MOV
Mov
MOV

leNoNoRe]

PARAMETER LIST FOR QUERY ENLARGE

QERETNCD, 00H
QEFXNID,00H

AL,SESSID

QESESSID,AL

~e Ne we N

~e Ne owe N

STATE

RETURN CODE
FUNCTION NUMBER
SESSION ID
ENLARGE FLAG

INITIALIZE PARAMETER LIST FOR QUERY ENLARGE STATE

RETURN CODE MUST
FUNCTION ID MUST
SESSION ID INTO THE
PARAMETER LIST

u

; INITIALIZE REGISTERS FOR QUERY ENLARGE STATE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

r

AH,09H
AL, 10H
BH, 80H
BL, 20H
CX,0FFH
DX, WSCTRL

DI, SEG QERETNCD

ES,DI

DI ,OFFSET QERETNCD

.
1
.
7
-
!
.
’

RESOLVED VALUE FOR 'WSCTRL ‘'
SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR QUERY ENLARGE STATE SERVICE

INT

7AH

0 BEFORE REQUEST
0 BEFORE REQUEST

Chapter 6. Coding Window Management Service Requests

6-59

Query Screen Background Color

Window Management Service X‘11’: Query Screen
Background Color

Use this service to obtain the background color of the specified screen

profile.
Register Values
On Request On Completion
AH = X‘09 CH = X412
AL = X171 CL = Return code
BH = X‘8¢’
BL = X220’ The contents of registers
CX = X‘00FF’ AX, BX, DX, ES, and DI
DX = Resolved value for WSCTRL are unpredictable.
ES = Segment address of the parameter list
DI = Offset address of the parameter list

Parameter List Format

Contents Contents
Offset Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID
(X‘63’)
2 1 byte Session ID Unchanged
3 1 byte Screen profile Unchanged
number
4 1 byte Reserved Screen
background color

6-60

Query Screen Background Color

Parameter Definitions

Return Codes

Request Parameters:

The session ID is the ID of the session currently connected to the work
station control session.

The screen profile number is the number (in ASCII) of the screen profile
being queried.

Completion Parameters:

The background color values are as follows:
Value Color

Black
Blue

Red

Pink
Green
Turquoise
Yellow
White

Nk WNHO
A T | I

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code Meaning

X00° Successful completion.

X02° Invalid session ID.

X‘04’ The session is not connected for window management
services. '

X‘06’ Invalid screen ID.

X‘oC’ Byte 0 of the parameter list is not zero on request.

See Appendix H, “Return Codes,” for more information.

Chapter 6. Coding Window Management Service Requests 6-61

Query Screen Background Color

Coding Example

o Ne we

QBRETNCD
QBFXNID

QBSESSID
OBSCRPRO
OBBAKCOL

~e wo N

~e ~e o~

.
7

DB
DB
DB
DB
DB

MOV
MOV
MOV
MOV
MOV
MOV

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

OO OCOoO

OBRETNCD, 00H
OBFXNID,00H
AL,SESSID
OBSESSID,AL
AL,'1'
OBSCRPRO, AL

AH,09H

AL,11H

BH, 80H

BL,20H

CX,OFFH

DX ,WSCTRL

DI, SEG QBRETNCD
ES,DI

DI,OFFSET QBRETNCD

~e So Ne we e

~e we me Ne wa e

-
’
i
.
7
4

PARAMETER LIST FOR QUERY SCREEN BACKGROUND COLOR

RETURN CODE

FUNCTION ID

SESSION ID

SCREEN PROFILE NUMBER IN ASCII
SCREEN BACKGROUND COLOR

INITIALIZE PARAMETER LIST FOR QUERY SCREEN BACKGROUND COLOR

RETURN CODE MUST 0 BEFORE REQUEST
FUNCTION ID MUST = O BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST

TO QUERY SESSION ID SERVICE

SCREEN PROFILE NUMBER

IN PARAMETER LIST

INITIALIZE REGISTERS FOR QUERY SCREEN BACKGROUND COLOR

RESOLVED VALUE FOR WSCTRL

SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR QUERY SCREEN BACKGROUND COLOR SERVICE

.
7

INT

7AH

6-62

Query Window Names

Window Management Service X‘12’: Query Window

Names

Use this service to obtain the short names of all windows in the specified
screen profile.

Register Values

On Request
AH = X‘09
AL = X12
BH = X80’
BL = X20’
CX = X‘00FF

DX = Resolved value for WSCTRL

ES =
DI =

Parameter List Format

Segment address of the parameter list
Offset address of the parameter list

On Completion

CH = X112
CL. = Return code

The contents of registers
AX, BX, DX, ES, and DI

are unpredictable.

Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID (X‘63")
2 1 byte Session ID Unchanged
3 1 byte Screen profile Unchanged
number
4 1 byte Reserved Window short name #1
5 1 byte Reserved Window short name #2
6 1 byte Reserved Window short name #3
[]
H
21 1 byte Reserved Window short name #18
22 1 byte Reserved Window short name #19
23 1 byte Reserved Window short name #20

Chapter 6. Coding Window Management Service Requests

6-63

Query Window Names

Parameter Definitions

Return Codes

Usage Notes

Request Parameters:

The session ID is the ID of the session currently connected to the work
station control session.

The screen profile number is the number (in ASCII) of the screen profile
being queried.

Completion Parameters:

The window short name is the 1-character ASCII name for the window
on the specified screen profile. Window short names are uppercase
alphabetic characters.

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code Meaning

X00’ Successful completion.

X02’ Invalid session ID.

X‘04° The session is not connected for window management
‘ services.

X‘06’ Invalid screen ID.

XoC’ Byte 0 of the parameter list is not zero on request.

XOFE’ No windows exist on the screen.

See Appendix H, “Return Codes,” for more information.

The windows are listed in the parameter list in the order they appear on
the screen. \

The parameter list is filled with blanks (X‘20’) after all window names
have been given.

6-64

Query Window Names

Coding Example

7

; PARAMETER LIST FOR QUERY WINDOW NAMES

’
QWRETNCD
QWFXNID
QWSESSID
QWSCREEN
QWWNDLST

~e o~ e

. e~

7

DB
DB
DB
DB
DB

MOV
MOV
MOV
MOV
MOV

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

0
0]
0]
0]

20 DUP(0)

RETURN CODE

FUNCTION NUMBER

SESSION ID

SCREEN PROFILE NUMBER

LIST OF WINDOW SHORT NAMES

~e Ne we me o~

INITIALIZE PARAMETER LIST FOR QUERY WINDOW NAMES

QWRETNCD, OOH ; RETURN CODE MUST = 0 BEFORE REQUEST
QWFXNID, O0OH ; FUNCTION ID MUST = O BEFORE REQUEST
AL,SESSID ; SESSION ID INTO THE

QWSESSID,AL ; PARAMETER LIST

QWSCREEN, '1"'

AH,09H
AL,12H
BH,80H
BL,20H
CX,0FFH
DX, WSCTRL

DI, SEG QWRETNCD

ES,DI

DI,OFFSET QWRETNCD

SCREEN NUMBER 1

INITIALIZE REGISTERS FOR QUERY WINDOW NAMES

; RESOLVED VALUE FOR 'WSCTRL '

; SEGMENT ADDRESS OF PARAMETER LIST
; IN ES

; OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR QUERY WINDOW NAMES SERVICE

H

INT

.

7AH

Chapter 6. Coding Window Management Service Requests 6-65

Clear Screen

Window Management Service X‘13’: Clear Screen

Use this service to delete all windows from the specified screen profile.
Windows cannot be deleted from screen profile 0.

Register Values

On Request On Completion

AH = X‘09 CH = X‘12

AL = X138 CL = Return code

BH = X‘80°

BL = X‘20° The contents of registers
CX = X‘O0FF AX, BX, DX, ES, and DI
DX = Resolved value for WSCTRL are unpredictable.

ES = Segment address of the parameter list

Offset address of the parameter list

Parameter List Format

Contents Contents
Offset Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID
(X‘63’)
1 byte Session ID Unchanged
1 byte Screen profile Unchanged
number

Parameter Definitions
Request Parameters:

o The session ID is the ID of the session currently connected to the work
station control session.

e The screen profile number is the number (in ASCII) of the screen profile
being cleared.

6-66

Clear Screen

Return Codes
e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

e Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code Meaning

X000’ Successful completion.

X02’ Invalid session ID.

X‘04’ The session is not connected for window management
services.

X‘06° Invalid screen ID.

xXcC’ Byte 0 of the parameter list is not zero on request.

See Appendix H, “Return Codes,” for more information.

Usage Notes

e Windows cannot be deleted from screen profile 0.

Chapter 6. Coding Window Management Service Requests 6-67

Clear Screen

Coding Example

.
i
i

PARAMETER LIST FOR CLEAR SCREEN

CLRETNCD DB
CLFXNID DB
CLSESSID DB
CLSCRPRO DB

~e we Ne

~e o N

~e e o~

[eNeoNeoNe

Ne Ne Ne we

RETURN CODE
FUNCTION ID
SESSION ID
SCREEN PROFILE NUMBER IN ASCII

INITIALIZE PARAMETER LIST FOR CLEAR SCREEN

MOV
MOV
MOV
MOV
MOV
MOV

CLRETNCD, O0H
CLFXNID,OOH
AL,SESSID
CLSESSID,AL
AL,'1"
CLSCRPRO, AL

e Ne Ne Ne e N~

1l

RETURN CODE MUST 0 BEFORE REQUEST
FUNCTION ID MUST 0 BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST

TO QUERY SESSION ID SERVICE

SCREEN PROFILE NUMBER

IN PARAMETER LIST

INITIALIZE REGISTERS FOR CLEAR SCREEN

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,O09H

AL,13H

BH,80H

BL, 20H

CX,O0FFH

DX, WSCTRL

DI, SEG CLRETNCD
ES,DI

DI,OFFSET CLRETNCD

RESOLVED VALUE FOR WSCTRL

SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CLEAR SCREEN SERVICE

INT

7AH

6-68

Select Active Window

Window Management Service X‘14’: Select Active

Window

Register Values

Use this service to select a window on the specified screen profile to become
the active window.

On Request
AH = X‘09
AL = X414
BH = X80’
BL = X220’
CX = X‘O0FF’
DX =

Resolved value for WSCTRL

ES = Segment address of the parameter list
DI = Offset address of the parameter list

Parameter List Format

On Completion

CH = X412
CL. = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Contents Contents

Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID

(X‘63")

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Window short Unchanged
name

Chapter 6. Coding Window Management Service Requests 6-69

Select Active Window

Parameter Definitions

Return Codes

Request Parameters:

The session ID is the ID of the session currently connected to the work
station control session.

The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

The window short name is the 1-character ASCII name for the window
being made active. Window short names must be alphabetic characters.

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code Meaning

X“00’ Successful completion.

X02’ Invalid session ID.

X004’ The session is not connected for window management
services. :

X06’ Invalid screen ID.

X407 The window is not found on screen.

X‘0C’ Byte 0 of the parameter list is not zero on request.

X‘OE’ No windows exist on screen.

See Appendix H, “Return Codes,” for more information.

6-70

Select Active Window

Coding Example

PARAMETER LIST FOR SELECT ACTIVE WINDOW

o e owe

RETURN CODE

FUNCTION NUMBER
SESSION ID

SCREEN PROFILE NUMBER
WINDOW SHORT NAME

’

ACRETNCD DB
ACFXNID DB
ACSESSID DB
ACSCREEN DB
ACWINDOW DB

[eNeoNoNoNe]

; INITIALIZE PARAMETER LIST FOR SELECT ACTIVE WINDOW

RETURN CODE MUST
FUNCTION ID MUST
SESSION ID INTO THE
PARAMETER LIST

SCREEN NUMBER 1
WINDOW 'C' SHORT NAME

MOV ACRETNCD, OOH
MOV ACFXNID,OOH
MOV AL,SESSID

MOV ACSESSID,AL
MOV ACSCREEN, '1'
MOV ACWINDOW,'C'

0 BEFORE REQUEST
0 BEFORE REQUEST

~e ~e e Ne we N

INITIALIZE REGISTERS FOR SELECT ACTIVE WINDOW

~ we N

MOV AH,09H

MOV AL, 14H

MOV BH,80H

MOV BL,20H

MOV CX,OFFH

MOV DX,WSCTRL ; RESOLVED VALUE FOR 'WSCTRL

MOV DI, SEG ACRETNCD ; SEGMENT ADDRESS OF PARAMETER LIST
MOV ES,DI ; IN ES

MOV ~ DI,OFFSET ACRETNCD ; OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR SELECT ACTIVE WINDOW SERVICE

~e ~e o~

INT 7AH

.

Chapter 6. Coding Window Management Service Requests 6-71

Redraw Screen

Window Management Service X‘15’: Redraw Screen

Use this service to redraw the specified screen profile if it is the active

screen.
Register Values

On Request On Completion

AH = X‘09 CH = X12

AL = X1¥5 CL = Return code

BH = X‘80’

BL = X20 The contents of registers

CX = X‘00FF’ AX, BX, DX, ES, and DI

DX = Resolved value for WSCTRL are unpredictable.

ES = Segment address of the parameter list

DI = Offset address of the parameter list

Parameter List Format

Contents Contents
Offset Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID
(X‘63")
1 byte Session ID Unchanged
1 byte Screen profile Unchanged
number

Parameter Definitions
Request Parameters:

® The session ID is the ID of the session currently connected to the work
station control session.

e The screen profile number is the number (in ASCII) of the screen profile
being redrawn.

6-72

Redraw Screen

Return Codes

Usage Notes

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code Meaning

X‘00’ Successful completion.

X2’ Invalid session ID.

X04’ The session is not connected for window management
services.

X*06’ Invalid screen ID.

X0C Byte 0 of the parameter list is not zero on request.

XD’ This screen is not the active screen.

See Appendix H, “Return Codes,” for more information.

This service is necessary if the position or size of any window on the
screen has been changed, or if a window has been enlarged, so that the
change becomes visible.

The Disconnect from Work Station Control service also redraws the
screen.

Chapter 6. Coding Window Management Service Requests 6-73

Redraw Screen

Coding Example

7
.
i

’

RSRETNCD DB
RSFXNID DB
RSSESSID DB
RSSCRPRO DB

~e No N

~e SN

~e ~e o~

[eNoNeNe

PARAMETER LIST FOR REDRAW SCREEN

Ne Ne we N

RETURN CODE
FUNCTION ID
SESSION ID
SCREEN PROFILE NUMBER IN ASCII

INITIALIZE PARAMETER LIST FOR REDRAW SCREEN

MOV
MOV
MOV
MOV
MOV
MOV

RSRETNCD, 00H
RSFXNID, 00H
AL,SESSID
RSSESSID,AL
AL,'1'
RSSCRPRO, AL

we Ne e Ne e Ne

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = O BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST

TO QUERY SESSION ID

SCREEN PROFILE NUMBER

IN PARAMETER LIST

INITIALIZE REGISTERS FOR REDRAW SCREEN

MoV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL, 15H

BH, 80H

BL,20H

CX,0FFH

DX, WSCTRL

DI, SEG RSRETNCD
ES,DI

DI,OFFSET RSRETNCD

i
.
i
.
i
.
i

RESOLVED VALUE FOR WSCTRL

SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR REDRAW SCREEN SERVICE

INT

7AH

6-74

Redraw Window

Window Management Service X‘16’: Redraw Window

Use this service to redraw a window on the specified screen profile if it is
the active screen.

Register Values

On Request
AH = X09
AL = X1¢’
BH = X80’
BL = X20°
CX = X‘O0FF’

DX = Resolved value for WSCTRL
ES = Segment address of the parameter list
DI = Offset address of the parameter list

Parameter List Format

On Completion

CH = X12
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Contents Contents

Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID

(X63")

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Window short Unchanged
name

Parameter Definitions

Request Parameters:

® The session ID is the ID of the session currently connected to the work

station control session.

e The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

® The window short name is the 1-character ASCII name for the window
being redrawn. Window short names must be alphabetic characters.

Chapter 6. Coding Window Management Service Requests 6-75

Redraw Window

Return Codes
o System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

o Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code Meaning

X000’ Successful completion.

X<02’ Invalid session ID.

X‘04’ The session is not connected for window management
services.

X‘06’ Invalid screen ID.

X7 The window is not found on screen.

X 0C’ Byte 0 of the parameter list is not zero on request.

X‘oD’ Requested screen not active.

XOFE’ No windows exist on screen.

See Appendix H, “Return Codes,” for more information.

Usage Notes

e This service is necessary to make the change visible on the screen when
the contents of a window or its colors have changed, but the position or
size of the window has not changed. The Redraw Screen service and
the Disconnect from Work Station Control service have the same
function, except that they redraw the entire screen.

6-76

Redraw Window

Coding Example

+ Ne ~e

RWRETNCD
RWFXNID

RWSESSID
RWSCREEN
RWWINDOW

~e Ne N

~e N ~e

~e we e

DB
DB
DB
DB
DB

.
-

-

MOV
MOV
MOV
MOV
MOV
MOV

MOV
MOV
MOV
MOV
Mov
MOov
Mov
MOV
MOV

INT

[eoNeoRoNe]

RWRETNCD, 00H
RWFXNID,00H

AL,SESSID

RWSESSID,AL
RWSCREEN, ' 7"
RWWINDOW, 'E’

AH,09H
AL, 16H
BH, 80H
BL,20H
CX,OFFH
DX, WSCTRL

DI, SEG RWRETNCD

ES,DI

DI,OFFSET RWRETNCD

7AH

PARAMETER LIST FOR REDRAW WINDOW

e Ne Ne Ne e

~e e Ne Ne Ne e

i
.
i
.
i
.
i

RETURN CODE

FUNCTION NUMBER
SESSION ID

SCREEN PROFILE NUMBER
WINDOW SHORT NAME

INITIALIZE PARAMETER LIST FOR REDRAW WINDOW

RETURN CODE MUST = 0O BEFORE REQUEST
FUNCTION ID MUST = O BEFORE REQUEST

SESSION ID INTO THE
PARAMETER LIST

SCREEN NUMBER 7
WINDOW 'E' SHORT NAME

INITIALIZE REGISTERS FOR REDRAW WINDOW

RESOLVED VALUE FOR 'WSCTRL
SEGMENT ADDRESS OF PARAMETER LIST

IN ES

OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR REDRAW WINDOW SERVICE

Chapter 6. Coding Window Management Service Requests

6-77

Delete Window

Window Management Service X‘17’: Delete Window

Use this service to delete a window from the specified screen profile.
Windows cannot be deleted from screen profile 0.

Register Values

On Request On Completion

AH = X‘09 CH = X12’

AL = X17 CL = Return code

BH = X80

BL = X20’ The contents of registers
CX = X‘00FF AX, BX, DX, ES, and DI
DX = Resolved value for WSCTRL are unpredictable.

ES = Segment address of the parameter list

Offset address of the parameter list

Parameter List Format

Contents Contents
Offset Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID
(X‘63")
1 byte Session ID Unchanged
1 byte Screen profile Unchanged
number
4 1 byte Window short Unchanged
name

Parameter Definitions
Request Parameters:

e The session ID is the ID of the session currently connected to the work
station control session.

o The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

e The window short name is the 1-character ASCII name for the window
being deleted. Window short names must be alphabetic characters.

6-78

Delete Window

Return Codes

Usage Notes

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code Meaning

X00’ Successful completion.

X02’ Invalid session ID.

X004’ The session is not connected for window management
services.

X‘06’ Invalid screen ID.

X7 The window is not found on screen.

XcC’ Byte 0 of the parameter list is not zero on request.

X‘OE’ No windows exist on screen.

See Appendix H, “Return Codes,” for more information.

Windows cannot be deleted from screen profile 0.

If all the remaining windows on the specified screen profile are hidden,
the next window on the chain will be unhidden and made the active
window on the screen.

Chapter 6. Coding Window Management Service Requests 6-79

Query Active Window

Coding Example

; PARAMETER LIST FOR DELETE WINDOW

7
DDRETNCD
DDFXNID
DDSESSID
DDSCRPRO
DDWINDN

~e Ne o~

DB
DB
DB
DB
DB

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOov

[eNoNoNoRe]

Ne Ne Ne Ne No

DDRETNCD, O0OH
DDFXNID,O0H
AL,SESSID
DDSESSID,AL
AL,'1"
DDSCRPRO, AL
AL,'P'
DDWINDN,AL

Ne Ne Ne Ne Ne Ne W we

RETURN CODE

FUNCTION ID

SESSION ID

SCREEN PROFILE NUMBER IN ASCII
WINDOW SHORT NAME IN ASCII

INITIALIZE PARAMETER LIST FOR DELETE WINDOW

RETURN CODE MUST = O BEFORE REQUEST
FUNCTION ID MUST = 0 BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST

TO QUERY SESSION ID SERVICE

SCREEN PROFILE NUMBER

IN PARAMETER LIST

WINDOW SHORT NAME

IN PARAMETER LIST

;7 INITIALIZE REGISTERS FOR DELETE WINDOW

Ne wa we

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

INT

.
.

.

AH,09H
AL,17H
BH, 80H
BL,20H
CX,0FFH
DX ,WSCTRL ;
DI, SEG DDRETNCD ;
ES,DI ;
DI ,OFFSET DDRETNCD ;

7AH

RESOLVED VALUE FOR WSCTRL

SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR DELETE WINDOW SERVICE

6-80

Query Active Window

Window Management Service X‘18’: Query Active

Window

Register Values

Use this service to obtain the short name of the active window in the

specified screen profile.

On Request
AH = X‘09
AL = X18
BH = X‘80’
BL = X20’
CX = X‘O0FF’
DX =

ES =

DI =

Parameter List Format

Resolved value for WSCTRL
Segment address of the parameter list
Offset address of the parameter list

On Completion

CH
CL

X112’
Return code

The contents of registers
AX, BX, DX, ES, and DI

are unpredictable.

Contents Contents
Offset Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID
(X‘63)
2 1 byte Session ID Unchanged
3 1 byte Screen profile Unchanged
number
4 1 byte Reserved Window short
name

Chapter 6. Coding Window Management Service Requests 6-81

Query Active Window

Parameter Definitions
Request Parameters:

e The session ID is the ID of the session currently connected to the work
station control session.

e The screen profile number is the number (in ASCII) of the screen profile
being queried.

Completion Parameters:

e The window short name is the 1-character ASCII name for the active
window. Window short names are uppercase alphabetic characters.

Return Codes
e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

e Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code Meaning

X‘00’ Successful completion.

X“02’ Invalid session ID.

X‘04’ The session is not connected for window management
services.

X<06’ Invalid screen ID.

X‘oC’ Byte 0 of the parameter list is not zero on request.

XOF’ No windows exist on the screen.

See Appendix H, “Return Codes,” for more information.

6-82

Query Active Window

Coding Example

o me o~

QNRETNCD
QONFXNID

QNSESSID
ONSCREEN
ONWINDOW

~e wo N

DB
DB
DB
DB
DB

MOV
MOV
MOV
MOV
MOV

[eNeoNeoNoNe)

~e No Ne N8 e

ONRETNCD, 00H
ONFXNID,00H
AL,SESSID
QNSESSID,AL
ONSCREEN, '0"

~ Ne Ne Ne e

PARAMETER LIST FOR QUERY ACTIVE WINDOW

RETURN CODE

FUNCTION NUMBER

SESSION 1ID

SCREEN PROFILE NUMBER
ACTIVE WINDOW SHORT NAME

INITIALIZE PARAMETER LIST FOR QUERY ACTIVE WINDOW

RETURN CODE MUST = 0 BEFORE REQUEST
FUNCTION ID MUST = O BEFORE REQUEST

SESSION ID INTO THE
PARAMETER LIST
SCREEN NUMBER O

; INITIALIZE REGISTERS FOR QUERY ACTIVE WINDOW

.
r’

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,18H
BH, 80H
BL,20H
CX,OFFH
DX, WSCTRL ;
DI, SEG QNRETNCD ;
ES,DI :
DI,OFFSET QNRETNCD ;

RESOLVED VALUE FOR 'WSCTRL

SEGMENT ADDRESS OF PARAMETER LIST

IN ES

OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR QUERY ACTIVE WINDOW SERVICE

i

INT

7AH

Chapter 6. Coding Window Management Service Requests 6-83

Query Active Screen

Window Management Service X‘19’: Query Active Screen

Register Values

Use this service to obtain the number of the active screen profile.

On Request
AH = X‘09
AL = X419
BH X80’
BL X220’
CX X‘00FF’

Parameter List Format

Segment address of the parameter list

DX = Resolved value for WSCTRL
= Offset address of the parameter list

On Completion

CH = X‘12
CL = Return code

The contents of registers
AX, BX, DX, ES, and DI
are unpredictable.

Contents Contents
Offset Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID
(X63")
1 byte Session ID Unchanged
1 byte Reserved Screen profile

number

Parameter Definitions

Request Parameters:

e The session ID is the ID of the session currently connected to the work

station control session.

Completion Parameters:

o The screen profile number is the number (in ASCII) of the active screen

profile.

6-84

Query Active Screen

Return Codes
e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

e Window Management Services Return Codes:
Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code Meaning

X*00’ Successful completion.

X02’ Invalid session ID.

X‘04’ The session is not connected for window management
services.

XcC’ Byte 0 of the parameter list is not zero on request.

See Appendix H, “Return Codes,” for more information.

Chapter 6. Coding Window Management Service Requests 6-85

Query Active Screen

Coding Example

+ we W

QARETNCD DB
QAFXNID DB
QASESSID DB
QASCRPRO DB

~e Ne N

~e wo w»

Ne e we

OO OO

~e ~o N~

PARAMETER LIST FOR QUERY ACTIVE SCREEN

RETURN CODE
FUNCTION ID
SESSION ID
SCREEN PROFILE NUMBER IN ASCII

INITIALIZE PARAMETER LIST FOR QUERY ACTIVE SCREEN

MOV
MOV
MOV
MoV

QARETNCD, 00H
QAFXNID, O0OH
AL,SESSID
QASESSID,AL

.
r’
.
7
.
14
.
r

RETURN CODE MUST 0 BEFORE REQUEST
FUNCTION ID MUST 0 BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST

TO QUERY SESSION ID

o

INITIALIZE REGISTERS FOR QUERY ACTIVE SCREEN

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H

AL, 19H

BH, 80H

BL,20H

CX,0FFH

DX, WSCTRL

DI, SEG QARETNCD
ES,DI

DI,OFFSET QARETNCD

.
i
i
.
r
i

RESOLVED VALUE FOR WSCTRL

SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY ACTIVE SCREEN SERVICE

INT

7AH

6-86

Query Window Attributes

Window Management Service X‘1A’: Query Window

Attributes

Register Values

Use this service to obtain the following information about a window on the
specified screen profile:

On

The number of rows in the window
The number of columns in the window
The row number of the upper left corner of the window on the screen

The column number of the upper left corner of the window on the
screen

Window colors
Border colors
Control flags

The row number of the upper left corner of the window on the
presentation space

The column number of the upper left corner of the window on the
presentation space.

Request On Completion
= X09 CH = X12
= X1A’ CL = Return code
= X‘80’
= X20 The contents of registers
X‘00FF’ AX, BX, DX, ES, and DI
Resolved value for WSCTRL are unpredictable.

Segment address of the parameter list
Offset address of the parameter list

| I [

Chapter 6. Coding Window Management Service Requests 6-87

Query Window Attributes

Parameter List Format

Contents Contents

Offset Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero Function ID

(X‘63")

2 1 byte Session ID Unchanged

3 1 byte Screen profile Unchanged
number

4 1 byte Window short Unchanged
name

5 1 byte Reserved Rows

6 1 byte Reserved Columns

7 1 byte Reserved Row on screen

8 1 byte Reserved Column on screen

9 1 byte Reserved Window colors

10 1 byte Reserved Border colors

11 1 byte Reserved ' Control flags

12 1 byte Reserved Row on PS

13 1 byte Reserved Column on PS

Parameter Definitions

Request Parameters:

e The session ID is the ID of the session currently connected to the work
station control session.

e The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

e The window short name is the 1-character ASCII name for the window
being queried. Window short names must be alphabetic characters.

Completion Parameters:
e “Rows” is the hexadecimal number of rows in the window.
o “Columns” is the hexadecimal number of columns in the window.

e “Row on screen” is the row position of the upper left corner of the
window on the screen.

e “Column on screen” is the column position of the upper left corner of
the window on the screen.

6-88

Query Window Attributes

The window colors are specified as follows:

Oand 1 2 through 4 5 through 7

Not used Foreground color Background color

The foreground and background color values are as follows:

Value Color

SOOI WN-=O

Black
Blue

Red

Pink
Green
Turquoise
Yellow
White

O T T T T

The border colors will always be the same as the window colors (except
where the window foreground and background colors are the same; in
that case, the border colors will be white on black).

The bits in the control flag are as follows:

0

1 and 2 3 4andb 6 7

Hidden | Reserved | Enlarge | Reserved | Base Window

colors colors

Bit 0 set to 0 means that the window is not hidden.
If bit O is set to 1 and:

1. Bit 3 is set to 0, the window is hidden.

2. Bit 3 is set to 1, the window is not hidden (but will not be
displayed on the screen, because the display is enlarged).

Bit 6 set to 0 means that the session is not displayed in the base
colors.

Bit 6 set to 1 means that the session is displayed in the base
colors.

Bit 7 set to 0 means that the session is not displayed in the
foreground and background colors.

Bit 7 set to 1 means that the session is displayed in the
foreground and background colors.

Note: Bits 6 and 7 cannot both be set to 1.

Chapter 6. Coding Window Management Service Requests

6-89

Query Window Attributes

Return Codes

“Row on PS” is the row position of the upper left corner of the window
on the presentation space.

“Column on PS” is the column position of the upper left corner of the
window on the presentation space.

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code Meaning

X00’ Successful completion.

X<02’ Invalid session ID.

X049’ The session is not connected for window management
services.

X*06’ Invalid screen ID.

X07 The window is not found on screen.

X‘0C’ Byte 0 of the parameter list is not zero on request.

XOE’ No windows exist on screen.

See Appendix H, “Return Codes,” for more information.

6-90

Query Window Attributes

Coding Example

7
’

PARAMETER LIST FOR QUERY WINDOW ATTRIBUTES

H
QTRETNCD DB

OF THE WINDOW ON THE

PRESENTATION SPACE

COLUMN NUMBER OF UPPER LEFT CORNER
OF THE WINDOW ON THE

PRESENTATION SPACE

QTLCCLPS DB O

0 ;7 RETURN CODE
QTFXNID DB O ; FUNCTION NUMBER
QTSESSID DB O ; SESSION ID
QTSCREEN DB O ;7 SCREEN PROFILE NUMBER
QTWINDOW DB O ; WINDOW SHORT NAME
QTNUMROW DB O ; NUMBER OF ROWS IN THE WINDOW
QTNUMCOL DB O ; NUMBER OF COLUMNS IN THE WINDOW
QTLCRWSC DB O ; ROW NUMBER OF UPPER LEFT CORNER OF
; THE WINDOW ON THE SCREEN
QTLCCLSC DB O ; COLUMN NUMBER OF UPPER LEFT CORNER
; OF THE WINDOW ON THE SCREEN
QTWCOLOR DB O ; WINDOW COLOR ATTRIBUTES
QTBCOLOR DB O ; BORDER COLOR ATTRIBUTES
QTCTLFLG DB O ; CONTROL FLAGS
QTLCRWPS DB O ; ROW NUMBER OF UPPER LEFT CORNER
’
’
1

; INITIALIZE PARAMETER LIST FOR QUERY WINDOW ATTRIBUTES

RETURN CODE MUST
FUNCTION ID MUST
SESSION ID INTO THE
PARAMETER LIST

SCREEN NUMBER O
WINDOW 'M' SHORT NAME

MOV QTRETNCD,O0H
MOV QTFXNID,OOH
MOV AL,SESSID

MOV QTSESSID,AL
MOV QTSCREEN,'0'
MOV ~ QTWINDOW, 'M'

0O BEFORE REQUEST
0 BEFORE REQUEST

[}

e we Ne e e o~

; INITIALIZE REGISTERS FOR QUERY WINDOW ATTRIBUTES

MOV AH,09H

MOV AL, 1AH

MOV BH,80H

MOV BL,20H

MOV CX,OFFH

MOV DX,WSCTRL ; RESOLVED VALUE FOR 'WSCTRL '

MOV DI, SEG QTRETNCD ; SEGMENT ADDRESS OF PARAMETER LIST
MOV ES,DI ; IN ES

MOV DI,OFFSET QTRETNCD ; OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR QUERY WINDOW ATTRIBUTES SERVICE

~o ~a =

INT 7AH

Chapter 6. Coding Window Management Service Requests 6-91

Change Window Attributes

Window Management Service X‘1B’: Change Window
Attributes

Use this service to change the following information about a window on the
specified screen profile:

e The number of rows in the window
e The number of columns in the window
o The row number of the upper left corner of the window on the screen

e The column number of the upper left corner of the window on the
screen

e Window colors
e Border colors
e Control flags

e The row number of the upper left corner of the window on the
presentation space

e The column number of the upper left corner of the window on the
presentation space.

Register Values

On Request On Completion

AH = X‘09 CH = X112

AL = X‘1B’ CL = Return code

BH = X80’

BL = X220’ The contents of registers
CX = X‘00FF AX, BX, DX, ES, and DI
DX = Resolved value for WSCTRL are unpredictable.

ES = Segment address of the parameter list -

DI = Offset address of the parameter list

6-92

Change Window Attributes

Parameter List Format

Contents Contents
Offset Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID
(X‘63")
2 1 byte Session ID Unchanged
3 1 byte Screen profile Unchanged
number
4 1 byte Window short Unchanged
name
5 1 byte Rows Unchanged *
6 1 byte Columns Unchanged *
7 1 byte Row on screen Unchanged *
8 1 byte Column on screen | Unchanged *
9 1 byte Window colors Unchanged
10 1 byte Border colors Unchanged
11 1 byte Control flags Unchanged
12 1 byte Row on PS Unchanged *
13 1 byte Column on PS Unchanged *
* These values may be changed by the workstation program. See “Usage Notes” for
~ more information.

Parameter Definitions

Request Parameters:

The session ID is the ID of the session currently connected to the work
station control session.

The screen profile number is the number (in ASCII) of the screen profile
containing the specified window.

The window short name is the 1-character ASCII name for the window
being changed. Window short names must be alphabetic characters.

“Rows” is the number of rows in the window.
“Columns” is the number of columns in the window.

“Row on screen” is the row position of the upper left corner of the
window on the screen.

“Column on screen” is the column position of the upper left corner of
the window on the screen.

Chapter 6. Coding Window Management Service Requests 6-93

Change Window Attributes

o The window colors are specified as follows:

0,1 2 through 4 5 through 7
Not used Foreground color Background color

The foreground and background color values are as follows:
Value Color

Black
Blue

Red

Pink
Green
Turquoise
Yellow
White

T T | I T

N OO WO

e The border colors will always be the same as the window colors (except
where the window foreground and background colors are the same; in
that case, the border colors will be white on black).

Note: If the window and border color attributes do not maich, the border
color will be changed to match the window colors.

o The bits in the control flag are as follows:

0 1 and 2 3 4 and 5 6 7

Hidden | Reserved | Enlarge | Reserved | Base Window
colors | colors

— Bit 0 set to 0 means that the window is not hidden.
If bit 0 is set to 1 and:

1. Bit 3 is set to 0, the window is hidden.

2. Bit 3 is set to 1, the window is not hidden (but will not be
displayed on the screen, because the display is enlarged).

— Bit 6 set to 0 means that the session is not displayed in the base
colors.
Bit 6 set to 1 means that the session is displayed in the base
colors.

~ Bit 7 set to 0 means that the session is not displayed in the
foreground and background colors.
Bit 7 set to 1 means that the session is displayed in the
foreground and background colors.

Note: Bits 6 and 7 cannot both be set to 1.

6-94

Change Window Attributes

Return Codes

Usage Notes

“Row on PS” is the row position of the upper left corner of the window
on the presentation space.

“Column on PS” is the column position of the upper left corner of the
window on the presentation space.

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code Meaning

X‘00’ Successful completion.

X002’ Invalid session ID.

X<04’ The session is not connected for window management
services.

X*06’ Invalid screen ID.

X07 The window is not found on screen.

XC’ Byte 0 of the parameter list is not zero on request.

X‘OE’ No windows exist on screen.

X1’ One or more values sent in the parameter list are not valid.

See Appendix H, “Return Codes,” for more information.

If the window does not exist on the specified screen, it is added to the
screen, with the attributes specified in the parameter list.

A value of 0 for either the number of rows or the number of columns in
the window size is changed by the workstation program to a value of 1.

If the window overlaps the screen or presentation space boundaries
after it has been moved to the new position:

— The window is moved to fit on the screen.
— A return code of X‘11’ is returned in the parameter list.

— The row and column numbers of the window position chosen by the
workstation program are returned in the parameter list.

Chapter 6. Coding Window Management Service Requests 6-95

Change Window Attributes

Coding Example

o Ne we

CTRETNCD
CTFXNID

CTSESSID
CTSCRPRO
CTWINDN

CTROWNUM
CTCOLNUM
CTROWSCR
CTCOLSCR

CTWINDCO
CTBORDCO
CTFLAG
CTROWPS
CTCOLPS

DB
DB
DB
DB
DB
DB
DB
DB
DB

DB
DB
DB
DB
DB

coooo

[eNoNeoNoloNoNoNoNe]

If the window overlaps the screen boundaries after it has been changed
to the new size:

— The window is moved to fit on the screen.

— A return code of X‘11’ is returned in the parameter list.

If the window is too big to fit on the screen after it has been changed to
the new size:

— The window size is reduced, and the window position is changed (if
necessary), to allow the window to fit on the screen.

— A return code of X‘11’ is returned in the parameter list.

— The number of rows and columns in the window size chosen by the
workstation program is returned in the parameter list.

If the “hidden” bit in the control flag is 1 and the window is the only
window on the screen, the workstation program changes the bit setting
to 0.

If the “hidden” bit in the control flag is 1 and all the other windows on
the specified screen profile are hidden, then the next window on the
chain will become not hidden and will be made the active window.

If any of the reserved bits in the control flag are set to 1, the
workstation program changes the bit setting to 0.

If both the “base colors” and “window colors” bits in the control flag
are the same value (both 1 or both 0), “base colors” is used as the
default setting.

This service places the specified window at the bottom of the chain on
the specified screen profile.

PARAMETER LIST FOR CHANGE WINDOW ATTRIBUTES

RETURN CODE

FUNCTION ID

SESSION ID

SCREEN PROFILE NUMBER IN ASCII
WINDOW SHORT NAME IN ASCIT

NUMBER OF ROWS IN THE WINDOW
NUMBER OF COLUMNS IN THE WINDOW
ROW NUMBER AND COLUMN NUMBER OF THE
UPPER LEFT CORNER OF THE WINDOW

ON THE SCREEN

WINDOW COLOR ATTRIBUTES

BORDER COLOR ATTRIBUTES

FLAG BYTE

ROW AND COLUMN NUMBER OF THE UPPER
LEFT CORNER OF THE WINDOW ON THE
PRESENTATION SPACE

Ne N6 Ne Ne Ne e Ne Ne Ne e Ne we Ne we ~e Ne

6-96

Change Window Attributes

~e we o~

~e e e

~ ~e we

INITIALIZE PARAMETER LIST FOR CHANGE WINDOW ATTRIBUTES

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

MOV
MOV

MOV
MoV
MOV

CTRETNCD, O0OH
CTFXNID, OOH
AL,SESSID
CTSESSID,AL
AL,'1!
CTSCRPRO, AL
AL,'P'
CTWINDN, AL
AL,10
CTROWNUM, AL
AL, 10
CTCOLNUM, AL
AL,15
CTROWSCR, AL
AL,15
CTCOLSCR, AL
AL,00001000B
CTWINDCO, AL
AL,O
CTBORDCO, AL
AL,00000001B
CTFLAG,AL

AL,5
CTROWPS, AL

AL,5S
CTCOLPS,AL
CTROWPS , AL

Mo NE Ne Mo e Ne Ne Ne e e Ne Ne Ne NS Ne Ne NS N6 Ne e Ne we e we N Ns N6 w6 we

RETURN CODE MUST = O BEFORE REQUEST
FUNCTION ID MUST = O BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST

TO QUERY SESSION ID

SCREEN PROFILE NUMBER

IN PARAMETER LIST

WINDOW SHORT NAME

IN PARAMETER LIST

NUMBER OF ROWS IN THE NEW

WINDOW SIZE

NUMBER OF COLUMNS IN THE

WINDOW SIZE

ROW NUMBER AND COLUMN NUMBER OF THE
UPPER LEFT CORNER OF THE

WINDOW ON SCREEN

IN THE PARAMETER LIST

FOREGROUND = BLUE AND

BACKGROUND = BLACK

BORDER COLOR WILL BE THE SAME

AS THE WINDOW COLOR

THE SESSION IS NOT HIDDEN AND IT

IS DISPLAYED IN FOREGROUND AND
BACKGROUND COLORS

ROW NUMBER OF UPPER LEFT CORNER

OF THE WINDOW

ON THE PRESENTATION SPACE

COLUMN NUMBER OF UPPER LEFT CORNER
OF THE WINDOW

OF THE WINDOW

INITIALIZE REGISTERS FOR CHANGE WINDOW ATTRIBUTES

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL, 1BH
BH, 80H
BL, 20H
CX,O0FFH
DX, WSCTRL

DI, SEG CTRETNCD

ES,DI

DI ,OFFSET CTRETNCD

i
.
7
i
.
i

RESOLVED VALUE FOR WSCTRL

SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CHANGE WINDOW ATTRIBUTES SERVICE

INT

7AH

Chapter 6. Coding Window Management Service Requests

6-97

Select Active Screen

Window Management Service X‘1C’: Select Active

Screen

Use this service to make the specified screen profile the active screen.

Register Values

On Request On Completion

AH = X‘09 CH = X12

AL = X1C CL = Return code

BH = X80’

BL = X20 The contents of registers
CX = X‘O0FF’ AX, BX, DX, ES, and DI
DX = Resolved value for WSCTRL are unpredictable.

ES = Segment address of the parameter list

b1

= Offset address of the parameter list

Parameter List Format

Contents Contents
Offset Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID
(X‘63")
2 1 byte Session ID Unchanged
3 1 byte Screen profile Unchanged
number

Parameter Definitions

Request Parameters:

The session ID is the ID of the session currently connected to the work
station control session.

The screen profile number is the number (in ASCII) of the screen profile
being made active.

6-98

Select Active Screen

Return Codes
o System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

e Window Management Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the window management portion of the workstation program. The
function ID is in byte 1, and the error number is in byte 0. Window
management return codes use a function ID of X‘63’. The error codes
that can be received for this service are:

Code Meaning

X‘00° Successful completion.

X02’ Invalid session ID. ‘

X‘04’ The session is not connected for window management
services.

X‘06’ Invalid screen ID.

X‘oC’ Byte 0 of the parameter list is not zero on request.

See Appendix H, “Return Codes,” for more information.

Chapter 6. Coding Window Management Service Requests 6-99

Select Active Screen

Coding Example

o Ne ~e

PARAMETER LIST FOR SELECT ACTIVE

7

ASRETNCD DB
ASFXNID DB
ASSESSID DB
ASSCREEN DB

Ne N e

~e we we

[oNeoNoNo)

SCREEN

e we Ne Se

RETURN CODE
FUNCTION NUMBER
SESSION ID
SCREEN NUMBER

INITIALIZE PARAMETER LIST FOR SELECT ACTIVE SCREEN

MOV
MOV
MOV
MOV
MOov

ASRETNCD, OOH
ASFXNID,OOH
AL,SESSID
ASSESSID,AL
ASSCREEN, 3

Ne we o~

.
’

RETURN CODE MUST = O BEFORE REQUEST
FUNCTION ID MUST = O BEFORE REQUEST
SESSION ID INTO THE LIST

SCREEN NUMBER 3

INITIALIZE REGISTERS FOR SELECT ACTIVE SCREEN

MoV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H

AL, 1CH

BH, 80H

BL, 20H

CX,0FFH

DX, SERVTYPE

DI, SEG ASRETNCD
ES,DI

DI,OFFSET ASRETNCD

.
r
.
’
7
’

SERVICE TYPE IN DX

SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR SELECT ACTIVE SCREEN SERVICE

INT

.

7AH

6-100

Select Active Screen

Chapter 7. Coding Host Interactive Service Requests

Introductiont e e e e e e 7-2
Requesting the Host Interactive Services 7-2
Return Codes for the Host Interactive Services 7-3

Host Interactive Service X‘01”: Connect to Host Session 7-4

Host Interactive Service X‘02”: Disconnect from Host Session 7-11

Host Interactive Service X‘03”: Read Structured Field 7-15

Host Interactive Service X‘04”: Write Structured Field 7-20

Host Interactive Service X‘05’: Define Buffer © 725,

Chapter 7. Coding Host Interactive Service Requests 7-1

Introduction

Introduction

This chapter describes how to code requests for the host interactive services
provided by the APL

The host interactive services allow communication between a personal
computer application program and a host application program using
destination/origin structured field protocol. The host interactive services
also allow a personal computer application program to be notified when a
host presentation space or operator information area is updated.

With CUT host sessions, one connection is allowed for only PS/OIA
updates. For each DFT host session, all PC tasks may connect for both
destination/origin and PS/OIA updates; however, a maximum of three
connections at any one time are allowed. When destination/origin
protocols are used, each PC task must be identified with a unique
application name. When activated, the 3270 PC file transfer program uses
one of the three connections. With the destination/origin protocol, the 3270
Workstation Program accepts Open (X‘D000’), Close (X‘D041’), Set Cursor
(X‘D045°), Get (X‘D046’), and Insert and Insert Data structured fields
(X‘D047’). See Appendix B, “Destination/Origin Structured Fields,” for
more information.

The host interactive services provided by the API are:

o Connect to Host Session Service: Use this service to connect to the
specified host session for host interactive services.

e Disconnect from Host Session Service: Use this service to
disconnect from the specified host session.

® Read Structured Field Service: Use this service to read structured
field data from the specified host session. This service is valid for DFT
host sessions only.

e Write Structured Field Service: Use this service to write
structured field data to the specified host session. This service is valid
for DFT host sessions only.

e Define Buffer Service: Use this service to define a buffer that will
be used to receive a message from the specified host session. This
service is valid for DFT host sessions only.

Requesting the Host Interactive Services

To request any of the host interactive services, load the registers and the
parameter list with the proper values, and use the INT 7AH instruction to
signal the workstation program that it has a request to process.

Note: Before your application can request the host interactive services, it
must request the Name Resolution service, using ‘MFIC " as the
gate name in the parameter list. (Remember that the gate name must
be padded to the right with blanks if it is less than eight characters.)

7-2

Introduction

Return Codes for the Host Interactive Services

Each host interactive service has two return codes associated with it: a
system return code and a host interaction management return code. Both
types of return codes are 2-byte values made up of a function ID and an
error number. The function ID indicates the portion of the workstation
program in which the error occurred. The error number indicates the
specific type of error that has occurred. An error number of X‘00’ always
indicates a successful acceptance or completion of the request.

System Return Codes:

After your application has requested a host interactive service, the CH
and CL registers contain a return code generated by the request
processing portion of the workstation program. The function ID is in
the CH register, and the error number is in the CL register. System
return codes use a function ID of X‘12’. The error codes that can
appear are:

Code Meaning

X<00’ Request accepted.

X*05’ Invalid index specified.
X7 Invalid reply specified.
X‘08’ Invalid wait type specified.
X‘0B’ RQE pool depleted.

X“0F’ Invalid environment access.
X34’ Invalid gate entry.

These system return codes apply to all host interactive services.
Host Interactive Services Return Codes:

After a requested host interactive service is completed, bytes 0 and 1 of
the parameter list contain a return code generated by the host
interaction management portion of the Workstation Program. The
function ID is in byte 1, and the error number is in byte 0. Host
interactive return codes use a function ID of X‘32’. The error numbers
that can appear are specific to the service that was requested and are
included in the descriptions of each service.

See Appendix H, “Return Codes,” for more information.

Chapter 7. Coding Host Interactive Service Requests 7-3

Connect to Host Session

Host Interactive Service X‘01’: Connect to Host Session

Register Values

Use this service to connect to the specified host session for host interactive

services.

On Request On Completion
AH = X09 AX = Request ID
AL = X‘Or CH = X12

BH = Synchronous or asynchronous * CL = Return code
BL = Synchronous or asynchronous *

CX = X‘0000 The contents of

DX = Resolved value for MFIC registers BH, DX,
ES = Segment address of the parameter list ES, and DI are

DI = Offset address of the parameter list unpredictable.

* The values in these registers depend on whether you want the request to be processed
synchronously or asynchronously. See the following description of request register values
for more information.

Request Register Values:

You can specify synchronous or asynchronous processing of the
Connect to Host Session service. In synchronous processing, control is
returned to your application program after the workstation program has
completed the request. In asynchronous processing, control is returned
to your application program before the workstation program has
completed the request. You must use the Get Request Completion
service to obtain the parameter list values on completion when you
request asynchronous processing.

Synchronous processing:
There are two ways to specify synchronous processing:

1. Set the BH register to X‘80’ and the BL register to X‘20’. When the
request is completed, control is returned to your application
program, and the registers and parameter list contain the values for
completion of the request.

2. Set both the BH and BL registers to X‘40’. When the request is
completed, control is returned to your program, but the parameter
list values for completion of the request are not obtained until you
request the Get Request Completion service.

Connect to Host Session

Asynchronous processing:

For asynchronous processing of the Connect to Host Session service
request, set the BH register to X‘40’ and the BL register to X‘00’. When
asynchronous processing is specified, you must request the Get Request
Completion service to obtain the results of the Connect to Host Session
service.

Completion Register Values:

If you specified asynchronous processing, or synchronous processing
using X‘40’ in both the BH and BL registers on request, the AX register
contains a request ID that the workstation program assigned to the
request. Match this request ID with the results from the Get Request
Completion service.

Parameter List Format to Connect for Structured Field Communications

Note: Connection for structured field communication is valid for DFT host
sessions only.

Contents Contents

Offset | Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero X‘32’

2 1 byte Host session ID Unchanged

3 1 byte Must be zero Unchanged

4 1 word Fixed-length queue ID | Unchanged

6 1 byte Xo1’ Unchanged

7 1 byte Must be zero Unchanged

8 1 byte Must be zero Unchanged

9 1 byte X‘06’ Unchanged

10 1 word Offset address of Unchanged
Query Reply data

12 1 word Segment address of Unchanged
Query Reply data

14 1 word Must be zero Unchanged

16 1 word Task ID Unchanged

18 1 word Must be zero Unchanged

20 — 35| 9 words System work area System work area

Chapter 7. Coding Host Interactive Service Requests

7-5

Connect to Host Session

Parameter Definitions

Request Parameters:

For connect for structured field communications:

The session ID is the ID of the host session you will be communicating
with using structured fields.

The fixed-length queue ID is the ID of a fixed-length queue that the

workstation program will use to post communication status information

about the specified host session. Your application program must use
the Dequeue Data service to obtain the communication status
information before each Read Structured Field service request. The

communication status information is described under “Usage Notes” in

the Read Structured Field service description in this chapter.

The format of the Query Reply data is as follows:

Offset | Length | Contents Meaning

0 1 byte Must be zero Not used

1 1 byte X119’ Length of structure

2 1 byte X881 Query Reply

3 1 byte X9’ Query Reply type

4 1 byte Must be zero Reserved flags

5 1 byte X‘or’ Structured field exchange

6,7 2 bytes Up to maximum | Maximum number of bytes

of X‘0E00’ allowed in an inbound

transmission

8,9 2 bytes Up to maximum | Maximum number of bytes

of X‘0E00° allowed in an outbound

transmission

10 1 byte Must be X‘OF’ Identifies the next two bytes as
being the destination/origin ID

11 1 word Must be zero Destination/origin ID supplied
by the 3270 workstation
program

13 — 24|12 bytes | APLNME Application name
(in EBCDIC)

o The task ID is the ID of the task that is issuing the Connect to Host
Session service request. It is used to identify the application to the API
and must be the same for all Read Structured Field, Write Structured
Field, and Define Buffer services that your application program
requests. You can use the Query Active Task service to obtain the ID
of your application program. The Query Active Task service is
described in Chapter 17, “Coding Task State Modifier Services.”

o The system work area is used by the workstation program while it

processes the request. This area must be provided in the parameter list.

7-6

Connect to Host Session

Parameter List Format to Connect for PS/OIA Update Events

Note: Connection for PS|OIA update events is valid for both DFT and CUT

host sessions.

Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero X‘32’
2 1 byte Host session ID Unchanged
3 1 byte Must be zero Unchanged
4 1 word Fixed-length queue ID | Unchanged
6 1 byte X038’ Unchanged
7 1 byte Must be zero Unchanged
8 1 byte Events Unchanged
9 1 byte Must be zero Unchanged
10 1 word Reserved Reserved
12 1 word Reserved Reserved
14 1 word Reserved Reserved
16 1 word Reserved Reserved
18 1 word Reserved Reserved
20 — 3519 words System work area System work area

Parameter Definitions

Request Parameters:

For connect for PS/OIA update events:

The session ID is the ID of the host session for which you want to
receive notification whenever PS/OIA information is updated. The
session ID is one word in length.

The fixed-length queue ID is the ID of a fixed-length queue that the
workstation program will use to post update information about the
PS/OIA of the specified host session. Your application program must
use the Dequeue Data service to obtain the update information. The
Dequeue Data service is described in Chapter 3, “Coding Supervisor
Services.” The format of the update information is in 4 bytes, 2 for the
session ID and 2 for the update information. The update information is
as follows:

— X‘1000’ - Presentation space updated

— X‘2000’ - OIA updated

Chapter 7. Coding Host Interactive Service Requests 7-7

Connect to Host Session

Return Codes

® The events that you want to be notified of are specified as follows:

Bits 0 — 4 Bit 5 Bit 6 Bit 7
Must be zero PS OIA Must be zero

— Bits 0 through 4 are reserved and must be zero.

— Bit 5 set to 1 indicates that you want to be notified of presentation
space updates to the specified host session.

— Bit 6 set to 1 indicates that you want to be notified of operator
information area updates to the specified host session.

— Bit 7 is reserved and must be zero.

o The system work area is used by the workstation program while it
processes the request. This area must be provided in the parameter list.

o System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

o Host Interactive Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the host interaction management portion of the workstation program.
The function ID is in byte 1, and the error number is in byte 0. Host
interactive return codes use a function ID of X‘32’. The error codes that
can be received for this service are:

Code Meaning

X00° Successful completion.

X1’ The host session is not active (DFT only).

X02’ Invalid service request parameter.

X04° The session is already connected.

X<08’ A system error has occurred.

X‘10° The limit of three requesters have already connected.
XC’ Byte 0 of the parameter list is not zero on request.

See Appendix H, “Return Codes,” for more information.

7-8

Connect to Host Session

Usage Notes

o Before you request this service, you must create a fixed-length queue
entry using the Create Queue service.

e If you specified asynchronous processing, or synchronous processing
using X‘40’ in both the BH and BL registers on request, you must use
the Get Request Completion service to obtain the results in the
parameter list when the Connect to Host Session service is completed.

e CUT host sessions can be connected to for PS/OIA update events only,
not structured field communications.

Chapter 7. Coding Host Interactive Service Requests 7-9

Connect to Host Session

Coding Example

.
17
’

PARAMETER LIST FOR CONNECT TO HOST SESSION

;
CFRETNCD DB

0 ; RETURN CODE
CFFXNID DB 0 ; FUNCTION NUMBER
CFSESSID DB 0 ; SESSION ID
CFRESRV1 DB 0 ; MUST BE O
DW 0
CFFLQID DB 01 ; FIXED-LENGTH QUEUE ID MUST BE 01
DB 00
CFEVNTS DB 00 ; EVENTS TO BE ENQUEUED - DFT
DB 06
CFQRPLY DD QUERYREP ; OFFSET AND SEGMENT OF THE QUERY REPLY
CFRESERV2 DW 0 ; MUST BE O
CFTASKID DW 0 ; PC TASK ID
CFRESRV3 DW 0 ; MUST BE O
CFWORK DW 9 DUP(0) ; SYSTEM WORK AREA

QUERY REPLY FOR DESTINATION/ORIGIN

i
i
i
QUERYREP DW 0019H LENGTH OF THE STRUCTURE

DB 81H QUERY REPLY

DB 9DH ANOMALY IMPLEMENTATION

DB 0 MUST BE O

DB O1lH STRUCTURED FIELD EXCHANGE

DW 0008H
DW ooos8H

MAXIMUM NUMBER OF BYTES IN INBOUND TRANSMISSION
MAXIMUM NUMBER OF BYTES IN OUTBOUND TRANSMISSION

Ne Mo Ne Ne N Ne Ne Ne Ne Ne

DB OFH RESERVED
DW 0 RESERVED
QRAPLNAM DB 8 DUP(0) PC APPLICATION NAME IN EBCDIC

; INITIALIZE PARAMETER LIST FOR CONNECT TO HOST SESSION

MOV CFRETNCD, OOH
MOV CFFXNID,OOH
MOV AL,SESSID
MOV CFSESSID,AL
MOV AX,QUEUEID
MOV CFFLQID,AX
MOV AX,PCTASKID
MOV CFTASKID,AX

RETURN CODE MUST 0 BEFORE REQUEST
FUNCTION ID MUST 0 BEFORE REQUEST
SESSION ID INTO THE LIST

~e we N

FIXED-LENGTH QUEUE ID INTO THE LIST

~e

PC TASK ID INTO THE LIST

~

INITIALIZE REGISTERS FOR CONNECT TO HOST SESSION

~e ~o wo

MOV AH,09H

MOV AL,O1H

MOV BH,80H

MOV BL,20H

MOV CX,O0FFH

MOV DX,SERVTYPE

MOV DI, SEG CFRETNCD
MOV ES,DI

MOV DI,OFFSET CFRETNCD

RESOLVED VALUE FOR 'MFIC !
SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

~e Ns e ~e

SIGNAL WORKSTATION PROGRAM FOR CONNECT TO HOST SESSION SERVICE

~e we o~

INT 7AH

7-10

Disconnect from Host Session

Host Interactive Service X‘02’: Disconnect from Host

Session

Register Values

Use this service to disconnect from the specified host session.

On Request \ On Completion
AH = X'09 AX = Request ID
AL = X02 CH = X12

BH = Synchronous or asynchronous * CL = Return code
BL = Synchronous or asynchronous *

CX = X‘0000’ The contents of

DX = Resolved value for MFIC registers BH, DX,
ES = Segment address of the parameter list ES, and DI are

DI = Offset address of the parameter list unpredictable.

* The values in these registers depend on whether you want the request to be processed
synchronously or asynchronously. See the following description of request register values
for more information.

e Request Register Values:

You can specify synchronous or asynchronous processing of the
Disconnect from Host Session service. In synchronous processing,
control is returned to your application program after the workstation
program has completed the request. In asynchronous processing,
control is returned to your application program before the workstation
program has completed the request. You must use the Get Request
Completion service to obtain the parameter list values on completion
when you request asynchronous processing.

Synchronous Processing:
There are two ways to specify synchronous processing:

1. Set the BH register to X‘80° and the BL register to X‘20’. When the
request is completed, control is returned to your application
program, and the registers and parameter list contain the values for
completion of the request.

2. Set both the BH and BL registers to X‘40’. When the request is
completed, control is returned to your program, but the parameter
list values for completion of the request are not obtained until you
request the Get Request Completion service.

Chapter 7. Coding Host Interactive Service Requests 7-11

Disconnect from Host Session

Asynchronous Processing:

For asynchronous processing of the Disconnect from Host Session
service request, set the BH register to X‘40’ and the BL register to X‘00’.
When asynchronous processing is specified, you must request the Get
Request Completion service to obtain the results of the Disconnect from
Host Session service. '

Completion Register Values:

If you specified asynchronous processing, or synchronous processing
using X‘40’ in both the BH and BL registers on request, the AX register
contains a request ID that the workstation program assigned to the
request. You use this request ID to match the results of the service
obtained by the Get Request Completion service to the results of this
service. That is, when the request ID in the AX register on completion
of the Get Request Completion service, matches the request ID in the
AX register on completion of this service, the results obtained by the
Get Request Completion service pertain to this request.

Parameter List Format

Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero X‘32
2 1 byte Session ID Unchanged
3 1 byte Must be zero Unchanged
4 1 word Reserved Reserved
6 1 byte Disconnect type Unchanged
7 1 byte Must be zero Must be zero
8 1 word Reserved Reserved
10 1 word Reserved Reserved
12 1 word Reserved Reserved
14 1 word Reserved Reserved
16 1 word Task ID Unchanged
18 1 word Reserved Reserved _
20 — 35| 9 words System work area System work area

7-12

Disconnect from Host Session

Parameter Definitions

Return Codes

Usage Notes

Request Parameters:

The session ID is the ID of the host session to disconnect from.
The disconnect type is specified as follows:

— X‘01’ to disconnect for structured field communications
— X‘03’ to disconnect for PS/OIA update events

Note: Disconnect type X01’ can be specified for DFT host sessions only.
Disconnect type X03’ can be specified for both DFT and CUT host
sessions.

The system work area is used by the workstation program while it
processes the request. This area must be provided in the parameter list.

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Host Interactive Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the host interaction management portion of the workstation program.
The function ID is in byte 1, and the error number is in byte 0. Host
interactive return codes use a function ID of X‘32’. The error codes that
can be received for this service are:

Code Meaning

X00’ Successful completion.

X902’ Invalid service request parameter.

X004’ The session is not connected.

X8’ A system error has occurred.

X‘0C’ Byte 0 of the parameter list is not zero on request.

See Appendix H, “Return Codes,” for more information.

If you specified asynchronous processing, or synchronous processing
using X‘40’ in both the BH and BL registers on request, you must use
the Get Request Completion service to obtain the results in the
parameter list when the Disconnect from Host Session service is
completed.

Chapter 7. Coding Host Interactive Service Requests 7-13

Disconnect from Host Session

Coding Example

o Ne e

PARAMETER LIST FOR DISCONNECT FROM

7
DFRETNCD DB

DFFXNID DB
DFSESSID DB
DFRESERV1 DB

DW
DFTYPE DB

DW
DFWORK DW

~e ~o ~e

~e Ne N

~e we o~

leNeoNoRoNoNe]

6 DUP(0)
9 DUP(0)

Ne Ne Ne e we e Ne e

HOST SESSION

RETURN CODE

FUNCTION NUMBER

SESSION ID

RESERVED

NOT USED

DISCONNECT TYPE - DESTINATION/ORIGIN
NOT USED

SYSTEM WORK AREA

INITIALIZE PARAMETER LIST FOR DISCONNECT FROM HOST SESSION

MOV
Mov
MOV
MOV

DFRETNCD, 00H
DFFXNID,0OH
AL,SESSID

DFSESSID,AL

i
.
i
i

RETURN CODE MUST 0 BEFORE REQUEST
FUNCTION ID MUST 0 BEFORE REQUEST
SESSION ID INTO THE LIST

INITIALIZE REGISTERS FOR DISCONNECT FROM HOST SESSION

MOV
MOV
MOV
MOV
MOV
Mov
Mov
MOV
MOV

AH,09H

AL,02H

BH, 80H

BL,20H

CX,0FFH

DX, SERVTYPE

DI, SEG DFRETNCD
ES,DI

DI,OFFSET DFRETNCD

.
i
.
K
.
i
;

RESOLVED VALUE FOR 'MFIC !

SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR DISCONNECT FROM HOST SESSION SERVICE

INT

7AH

7-14

Read Structured Field

Host Interactive Service X‘03’: Read Structured Field

Register Values

Use this service to read structured field data from the specified host
session. This service is valid for DFT host sessions only.

On Request On Completion
AH = X09 AX = Request ID
AL = X‘03 CH = X12

BH = Synchronous or asynchronous * CL = Return code
BL = Synchronous or asynchronous *

CX = X000’ The contents of

DX = Resolved value for MFIC registers BH, DX,
ES = Segment address of the parameter list ES, and DI are

DI = Offset address of the parameter list unpredictable.

* The values in these registers depend on whether you want the request to be processed
synchronously or asynchronously. See the following description of request register values
for more information.

e Request Register Values:

You can specify synchronous or asynchronous processing of the Read
Structured Field service. In synchronous processing, control is
returned to your application program after the workstation program has
completed the request. In asynchronous processing, control is returned
to your application program before the workstation program has
completed the request. You must use the Get Request Completion
service to obtain the parameter list values on completion when you
request asynchronous processing.

Synchronous Processing:
There are two ways to specify synchronous processing:

1. Set the BH register to X‘80’ and the BL register to X20’. When the
request is completed, control is returned to your application
program and the registers and parameter list contain the values for
completion of the request.

2. Set both the BH and BL registers to X‘40’. When the request is
completed, control is returned to your program, but the parameter
list values for completion of the request are not obtained until you
request the Get Request Completion service.

Chapter 7. Coding Host Interactive Service Requests 7-15

Read Structured Field

Asynchronous Processing:

For asynchronous processing of the Read Structured Field service
request, set the BH register to X‘40’ and the BL register to X‘00’. When
asynchronous processing is specified, you must request the Get Request
Completion service to obtain the results of the Read Structured Field
service.

Completion Register Values:

If you specified asynchronous processing, or synchronous processing
using X‘40’ in both the BH and BL registers on request, the AX register
contains a request ID that the workstation program assigned to the
request. You use this request ID to match the results of the service
obtained by the Get Request Completion service to the results of this
service. That is, when the request ID in the AX register on completion
of the Get Request Completion service matches the request ID in the AX
register on completion of this service, the results obtained by the Get
Request Completion service pertain to this request.

Parameter List Format

Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero X32’
2 1 byte Host session ID Unchanged
3 1 byte Must be zero Unchanged
4 1 word Reserved Reserved
6 1 byte X1’ Unchanged
7 1 byte Must be zero Unchanged
8 1 word Reserved Reserved
10 1 word Unchanged Offset address of
: structured field data
12 1 word Unchanged Segment address of
structured field data
14 1 word Reserved Reserved
16 1 word Task ID Unchanged
18 1 word Reserved Reserved
20 — 35| 9 words System work area System work area

7-16

Read Structured Field

Parameter Definitions

Request Parameters:

The session ID is the ID of the host session to read the structured field
data from.

The task ID must be the same task ID that was specified by the
application program in the parameter list for the Connect to Host
Session service.

The system work area is used by the workstation program while it
processes the request. This area must be provided in the parameter list.

Completion Parameters:

The structured field data contains the application structured fields
received from the host. Destination/origin structured field headers are
removed by the workstation program before the structured field data
reaches the application.

The structured field data format is as follows:

Offset Length Contents
0 1 word X‘0000°
2 1 word m (message length, which is the number of
bytes in the message). This length does not
include the eight bytes used for the message
buffer header.
4 1 word n (buffer size - this is the number that you
specified in the Define Buffer request).
6 1 word X‘Coo0’
8 1 word p Number of bytes from byte 8 to the end of
the message.
10 1 byte First byte in the structured field message
11 1 byte Second byte in the structured field message
M
°
m byte Last byte in the structured field message

Bytes 0 through 7 are the buffer header. Bytes 8 and 9 contain the number
of bytes in the message, including 2 bytes for bytes 8 and 9. Bytes 10
through m are used for the structured field message received from the host.

Chapter 7. Coding Host Interactive Service Requests 7-17

Read Structured Field

Return Codes

Usage Notes

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Host Interactive Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the host interaction management portion of the workstation program.
The function ID is in byte 1, and the error number is in byte 0. Host
interactive return codes use a function ID of X‘32’. The error codes that
can be received for this service are:

Code Meaning

X00’ Successful completion. Structured field data is available in
the message buffer.

X002’ Invalid service request parameter.

X‘04’ The session is not connected.

X408’ A system error has occurred.

X‘cC’ Byte 0 of the parameter list is not zero on request.

X‘14° No structured field data is available.

See Appendix H, “Return Codes,” for more information.

If you specified asynchronous processing, or synchronous processing
using X‘40’ in both the BH and BL registers on request, you must use
the Get Request Completion service to obtain the results in the

parameter list when the Read Structured Fields service is completed.

Before you request the Read Structured Field service, you must use the
Dequeue Data service to check for the communication status
information that indicates that a message is available from the host.

The first two bytes of the communication status information contain the
session ID of the host session that the information pertains to. The
second two bytes of the communication status information contain one
of the following codes:

Code Type Meaning

X04’ X80’ A message from the host is available.

X‘06’ X80’ An outbound transmission from the host was
canceled.

X‘08’ X00’ Lost contact with the host.

X0A’ X‘00° Contact reestablished with the host.

7-18

Read Structured Field

Coding Example

7
i

14
RSRETNCD
RSFXNID
RSHOSTID
RSZERO

RSOFFSD
RSSEGTD

RSTASKID

’

7

;
.
i

.
1

DB
DB
DB
DB
DW
DB
DB
DW
DW
DW
DW
DW
DW

MoV
MOV
MOV
MOV
MOV
MOV
MOV

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

INT

DUP(0)

RSRETNCD, 00H
RSFXNID,O00H
AL,HOSTID
RSHOSTID,AL
AX,PCTSKID
RSTASKID,AX
RSZERO, 0

AH,09H
AL,03H
BH, 40H
BL,40H
CX,0

DX ,MFIC
DI, SEG RSRETNCD

ES,DI

DI,OFFSET RSRETNCD

7AH

PARAMETER LIST FOR READ STRUCTURED

Ne Ne Ne N6 Ne Ne Ne Sa we Ne S

~e

INITIALIZE PARAMETER LIST FOR READ

.
i
i
H
i
i
i
.
i

.
i
.
i
i
i
i
i
i

FIELD

RETURN CODE

FUNCTION NUMBER

HOST SESSION ID

UNCHANGED

NOT USED

STRUCTURED FIELD TYPE, (DEST/ORIG)
UNUSED

OFFSET ADDRESS OF STRUCTURED FIELD DATA
SEGMENT ADDRESS OF STRUCTURED FIELD DATA
UNUSED

PC TASK ID

SYSTEM WORK AREA

STRUCTURED FIELD

RSRETNCD MUST BE O BEFORE REQUEST
RSFXNID MUST BE O BEFORE REQUEST
HOST ID IN

THE LIST
PC TASK ID

IN LIST
THIS FIELD MUST BE ZEROED

INITIALIZE REGISTERS FOR READ STRUCTURED FIELD

REPLY TYPE IN BH

WAIT TYPE IN BL

PRIORITY IN CX

RESOLVED VALUE FOR 'MFIC !

SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR READ STRUCTURED FIELD SERVICE

Chapter 7. Coding Host Interactive Service Requests 7-19

Write Structured Field

Host Interactive Service X‘04’: Write Structured Field

Register Values

Use this service to write structured field data to the specified host session.
This service is valid for DFT host sessions only.

On

AH
AL
BH
BL
CX
DX
ES
D1

Request On Completion
= X‘09’ AX = Request ID
= X‘04 CH = X12
= Synchronous or asynchronous * CL = Return code
= Synchronous or asynchronous *
= X‘0000’ The contents of
= Resolved value for MFIC registers BH, DX,
= Segment address of the parameter list ES, and DI are
= Offset address of the parameter list unpredictable.

* The values in these registers depend on whether you want the request to be processed
synchronously or asynchronously. See the following description of request register values
for more information.

Request Register Values:

You can specify synchronous or asynchronous processing of the Write
Structured Field service. In synchronous processing, control is
returned to your application program after the workstation program has
completed the request. In asynchronous processing, control is returned
to your application program before the workstation program has
completed the request. You must use the Get Request Completion
service to obtain the parameter list values on completion when you
request asynchronous processing.

Synchronous Processing:
There are two ways to specify synchronous processing:

1. Set the BH register to X‘80° and the BL register to X‘20’. When the
request is completed, control is returned to your application
program, and the registers and parameter list contain the values for
completion of the request.

2. Set both the BH and BL registers to X‘40’. When the request is
completed, control is returned to your program, but the parameter
list values for completion of the request are not obtained until you
request the Get Request Completion service.

7-20

Write Structured Field

Asynchronous Processing:

For asynchronous processing of the Write Structured Field service
request, set the BH register to X‘40’ and the BL register to X‘00’. When
asynchronous processing is specified, you must request the Get Request
Completion service to obtain the results of the Write Structured Field
service.

Completion Register Values:

If you specified asynchronous processing, or synchronous processing
using X‘40’ in both the BH and BL registers on request, the AX register
contains a request ID that the workstation program assigned to the
request. You use this request ID to match the results of the service
obtained by the Get Request Completion service to the results of this
service. That is, when the request ID in the AX register on completion
of the Get Request Completion service matches the request ID in the AX
register on completion of this service, the results obtained by the Get
Request Completion service pertain to this request.

Parameter List Format

Contents Contents

Offset | Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero X382’

2 1 byte Host session ID Unchanged

3 1 byte Must be zero Unchanged

4 1 word Reserved Reserved

6 1 byte X‘or Unchanged

7 1 byte Must be zero Unchanged

8 1 word Reserved Reserved

10 1 word Offset address of Unchanged
structured field data

12 1 word Segment address of Unchanged
structured field data

14 1 word Reserved Reserved

16 1 word Task ID Unchanged

18 1 word Reserved Reserved

20 — 35| 9 words System work area System work area

Chapter 7. Coding Host Interactive Service Requests 7-21

Write Structured Field

Parameter Definitions
Request Parameters:

o The session ID is the ID of the host session to write the structured field
data to.

® The task ID must be the same task ID that was specified by the
application program in the parameter list for the Connect to Host
Session service.

e The structured field data contains the application structured fields that
are to be sent to the host. Destination/origin structured fields are
added by the workstation program before the structured field data
reaches the host.

o The system work area is used by the Workstation Program while it
processes the request. This area must be provided in the parameter list.

The structured field data format is as follows:

Offset Length Contents
0 1 word X‘0000°
2 1 word m (message length, which is the number of

bytes in the message). This length does not
include the eight bytes used for the message

buffer header.
4 1 word X‘0000°
6 1 word X‘0000°
8 1 word p Number of bytes from byte 8 to the end of
the message.
10 1 byte First byte in the structured field message
must be X‘D0’.
11 1 byte Second byte in the structured field message
must be X‘00’, X‘41’, X‘45’, X‘46’, X‘47’, and
X‘48’,
®
°
[}
m + 7 l byte lLast byte in the structured field message

Bytes 0 through 7 are the buffer header. Bytes 8 and 9 contain the number
of bytes in the message, including 2 bytes for bytes 8 and 9. Bytes 10
through m + 7 are used for the structured field message sent to the host.

7-22

Write Structured Field

Return Codes

Usage Notes

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Host Interactive Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the host interaction management portion of the workstation program.
The function ID is in byte 1, and the error number is in byte 0. Host
interactive return codes use a function ID of X‘32’. The error codes that
can be received for this service are:

Code Meaning

X<00’ Successful completion. The message has been sent to and
acknowledged by the host.

X2’ Invalid service request parameter.

X‘04’ The session is not connected.

X08’ A system error has occurred.

XC’ Byte 0 of the parameter list was not zero on request.

X‘10° The message you sent was rejected.

See Appendix H, “Return Codes,” for more information.

If you specified asynchronous processing, or synchronous processing
using X‘40’ in both the BH and BL registers on request, you must use
the Get Request Completion service to obtain the results in the

parameter list when the Write Structured Fields service is completed.

Before you use the Write Structured Field service, you must use the
Define Buffer service to define a buffer to use to receive the next
transmission of structured field data sent from the host.

Chapter 7. Coding Host Interactive Service Requests 7-23

Write Structured Field

Coding Example

o N N

WSRETNCD
WSFXNID
WSHOSTID
WSZERO

WSOFFSD
WSSEGTD

WSTASKID

~e =+ ~e

~e me we Ne o~

DB
DB
DB
DB
DW
DB
DB
DW
DW
DW
DW
DW
DW

MOV
MOV
MOV
MOV

MOV
MOV
Mov
MOV
MOV

MOV
MOV
MOV

PARAMETER LIST FOR WRITE STRUCTURED FIELD

RETURN CODE

FUNCTION NUMBER

HOST SESSION ID

UNCHANGED

NOT USED

STRUCTURED FIELD TYPE, (DEST/ORIG)

UNUSED

OFFSET ADDRESS OF STRUCTURED FIELD DATA
SEGMENT ADDRESS OF STRUCTURED FIELD DATA

Ne Ne e Ne NE Ne Ne Ne Se Ne we

UNUSED
PC TASK ID
DUP (0) ; SYSTEM WORK AREA

INITIALIZE PARAMETER LIST FOR WRITE STRUCTURED FIELD

WSRETNCD, O0H
WSFXNID, 00H
AL,HOSTID

WSHOSTID, AL

WSRETNCD MUST BE O BEFORE REQUEST
WSFXNID MUST BE O BEFORE REQUEST
HOST ID IN

THE LIST ,
; OFFSET AND SEGMENT OF DATA IN LIST
WSOFFSD,OFFSET STR$DATA
WSSEGTD, SEG STR$DATA

~e Ne e N

AX,PCTSKID ; PC TASK ID
WSTASKID,AX ; IN LIST
WSZERO, 0 ; THIS FIELD MUST BE ZEROED

INITIALIZE THE FIELDS IN THE STRUCTURED FIELD 8 BYTE HEADER.
STRSDATA IS THE MEMORY LOCATION NAME OF THE BEGINNING OF THE
STRUCTURED FIELD 8 BYTE HEADER.

STRSDATA, O
WORD PTR STRS$SDATA + 4,0
WORD PTR STRSDATA + 6,0

; INITIALIZE REGISTERS FOR WRITE STRUCTURED FIELD

.
7

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H
AL,04H
BH,80H ; REPLY IS A COMPLETION SIGNAL
BL,20H ; WAIT FOR A COMPLETION SIGNAL
CX,0 ; PRIORITY IN CX
DX ,MFIC ; RESOLVED VALUE FOR 'MFIC !
DI, SEG WSRETNCD ; SEGMENT ADDRESS OF PARAMETER LIST
ES,DI ; IN ES
r

DI ,OFFSET WSRETNCD OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR WRITE STRUCTURED FIELD SERVICE

.
7

INT

.
.

7AH

7-24

Define Buffer

Host Interactive Service X‘05’: Define Buffer

Register Values

Use this service to define a buffer that will be used to receive a message
from the specified host session. This service is valid for DFT host sessions
only.

On Request On Completion
AH = X‘09 AX = RequestID
AL = X‘0%’ CH = X12

BH = Synchronous or asynchronous * CL = Return code
BL = Synchronous or asynchronous *

CX = X‘0000’ The contents of

DX = Resolved value for MFIC registers BH, DX,
ES = Segment address of the parameter list ES, and DI are

DI = Offset address of the parameter list unpredictable.

* The values in these registers depend on whether you want the request to be processed
synchronously or asynchronously. See the following description of request register values
for more information.

e Request Register Values:

You can specify synchronous or asynchronous processing of the Define
Buffer service. In synchronous processing, control is returned to your
application program after the workstation program has completed the
request. In asynchronous processing, control is returned to your
application program before the workstation program has completed the
request. You must use the Get Request Completion service to obtain
the parameter list values on completion when you request asynchronous
processing.

Synchronous Processing:
There are two ways to specify synchronous processing:

1. Set the BH register to X‘80° and the BL register to X‘20’. When the
request is completed, control is returned to your application
program, and the registers and parameter list contain the values for
completion of the request.

2. Set both the BH and BL registers to X‘40’. When the request is
completed, control is returned to your program, but the parameter
list values for completion of the request are not obtained until you
request the Get Request Completion service.

Chapter 7. Coding Host Interactive Service Requests 7-25

Define Buffer

Asynchronous Processing:

For asynchronous processing of the Define Buffer service request, set
the BH register to X‘40’ and the BL register to X‘00’. When
asynchronous processing is specified, you must request the Get Request
Completion service to obtain the results of the Define Buffer service.

Completion Register Values:

If you specified asynchronous processing, or synchronous processing
using X‘40’ in both the BH and BL registers on request, the AX register
contains a request ID that the workstation program assigned to the
request. You use this request ID to match the results of the service
obtained by the Get Request Completion service to the results of this
service. That is, when the request ID in the AX register on completion
of the Get Request Completion service matches the request ID in the AX
register on completion of this service, the results obtained by the Get
Request Completion service pertain to this request.

Parameter List Format

Contents Contents

Offset | Length on Request on Completion

0 1 byte Must be zero Return code

1 1 byte Must be zero X32’

2 1 byte Host session ID Unchanged

3 1 byte Must be zero Unchanged

4 1 word Reserved Reserved

6 1 byte X‘0r Unchanged

7 1 byte Must be zero Unchanged

8 1 word Reserved Reserved

10 1 word Offset address of Unchanged
buffer

12 1 word Segment address of Unchanged
buffer

14 1 word Reserved Reserved

16 1 word Task ID Unchanged

18 1 word Reserved Reserved

20 — 35] 9 words System work area System work area

7-26

Define Buffer

Parameter Definitions

Return Codes

Request Parameters:

The session ID is the ID of the host session whose structured field data
will be received in the buffer being defined.

The task ID must be the same task ID that was specified by the
application program in the parameter list for the Connect to Host

Session service.

The system work area is used by the workstation program while it
processes the request. This area must be provided in the parameter list.

The format of the buffer is as follows:

Offset Length Contents

0 1 word Must be zero

2 1 word Must be zero

4 1 word n (buffer size). This includes the 8-byte
prefix.

The maximum buffer size allowed is 3592
bytes (decimal).

6 1 word X‘0000’
8 1 byte Used for structured field data
9 1 byte Used for structured field data
N
H
n + 8 |[1lbyte | Used for structured field data

Bytes 0 through 7 are the buffer header. Bytes 8 through n+8 are used
for the destination/origin structured field message received from the
host.

The length of the buffer is the number of bytes in the buffer. The
maximum buffer size allowed is 3592 (decimal) bytes.

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Chapter 7. Coding Host Interactive Service Requests 7-27

Define Buffer

Usage Notes

Host Interactive Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the host interaction management portion of the workstation program.
The function ID is in byte 1, and the error number is in byte 0. Host
interactive return codes use a function ID of X‘32’. The error codes that
can be received for this service are:

Code Meaning

X400’ Successful completion.

X2’ Invalid service request parameter.

X‘04° The session is not connected.

X‘08’ A system error has occurred.

xX‘ocC’ Byte 0 of the parameter list was not zero on request.

See Appendix H, “Return Codes,” for more information.

If you specified asynchronous processing, or synchronous processing
using X‘40’ in both the BH and BL registers on request, you must use
the Get Request Completion service to obtain the results in the
parameter list when the Define Buffer service is completed.

You must request the Define Buffer service at the following times:

— Before the host application that communicates with your
application is started, so that a message buffer is available in time
to receive the first message from the host. (To start the host
application program, your application program can use the
keyboard services for sending keystrokes to the host.)

— Before each Write Structured Field service request, so that a
message buffer is available in time to receive the next message from
the host session.

You do not have to use a different message buffer for each Write

Structured Field service request (although you can if you wish), but you

must reset the message buffer header as follows:

1. Set the first two words of the buffer header to zero.

2. Set the third word of the buffer header to the length of the message
buffer (including the eight bytes of the buffer header).

3. Set the fourth word of the message buffer header to zero.

7-28

Define Buffer

Coding Example

PARAMETER LIST FOR DEFINE RECEIVE BUFFER

o e~

RETURN CODE
FUNCTION NUMBER
HOST SESSION ID

’

~ DBRETNCD DB
DBFXNID DB

DBHOSTID DB

~e e we Ne we

DB UNCHANGED
DW NOT USED
DB 1

0] ; UNUSED

DBOFFSET DW SEGMENT AND OFFSET OF THE MESSAGE BUFFER
DBSEGMNT DW
DW
DBTASKID DW
DW

DW

.

UNUSED
PC TASK ID

~ ~

0
0
0
0
0
0
DB O
0
0
0
0
0
9

DUP (0) SYSTEM WORK AREA

~

INITIALIZE PARAMETER LIST FOR DEFINE RECEIVE BUFFER

~e o ~»

MOV DBRETNCD, OOH
MOV DBFXNID,00H

DBRETNCD MUST BE O BEFORE REQUEST
DBFXNID MUST BE O BEFORE REQUEST

MOV AL,HOSTID HOST ID IN
MOV DBHOSTID,AL THE LIST
MOV AX,PCTSKID PC TASK ID

IN THE LIST

OFFSET OF MESSAGE BUFFER
IN THE LIST

SEGMENT OF THE MESSAGE BUFFER
IN THE LIST

MOV DBTASKID,AX

MOV AX,OFFSET BUFFER
MOV DBOFFSET,AX

MOV AX,SEG BUFFER
MOV DBSEGMNT, AX

e NE NS Ne N6 Na Ne we Ne e

INITIALIZE THE 8 BYTE HEADER OF THE MESSAGE BUFFER.
BUFFER IS THE MEMORY LOCATION NAME OF THE BEGINNING OF THE
STRUCTURED FIELD 8 BYTE HEADER.

D A TR TR

MOV BUFFER, O
MOV WORD PTR BUFFER + 2,0
MOV WORD PTR BUFFER + 6,0

INITIALIZE REGISTERS FOR DEFINE RECEIVE BUFFER

~e ~o o~

MOV AH,09H
MOV AL,O5H
MOV BH,40H
MOV BL,40H

REPLY
WAIT TYPE IN BL

MOV CX,0 PRIORITY IN CX
MOV DI, SEG DBRETNCD SEGMENT ADDRESS OF PARAMETER LIST
MOV ES,DI IN ES

i
MOV DX,MFIC ; RESOLVED VALUE FOR 'MFIC !

MOV DI,OFFSET DBRETNCD OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR DEFINE RECEIVE BUFFER SERVICE

~e we e

INT 7AH

.
.

.

Chapter 7. Coding Host Interactive Service Requests 7-29

Define Buffer

7-30

Define Buffer

Chapter 8. Coding Presentation Space Service Requests

Introduction i e e 8-2
Requesting the Presentation Space Services 8-2
Return Codes for the Presentation Space Services 8-2

Presentation Space Service X‘01’: Define Presentation Space 84

Presentation Space Service X‘02’: Delete Presentation Space 8-11

Presentation Space Service X‘03’: Display Presentation Space 814

Presentation Space Service X‘04’: Set Cursor Position 8-17

Presentation Space Service X‘05’: Switch Presentation Space 8-21

Chapter 8. Coding Presentation Space Service Requests 8-1

Introduction

Introduction

This chapter describes how to code requests for the presentation space
services provided by the APL

The presentation space services allow your application program to create
and delete personal computer presentation spaces, to display them, and to
control the position of the cursor in them.

The presentation space services provided by the API are:

e Define Presentation Space Service: Use this service to define a
presentation space, and to obtain the session ID that the workstation
program assigns to that presentation space.

o Delete Presentation Space Service: Use this service to delete a
presentation space created by the Define Presentation Space service.
Any window created on this presentation space is also deleted.

e Display Presentation Space Service: Use this service to display
any changes made in the specified presentation space.

e Set Cursor Service: Use this service to set a cursor position in a
presentation space.

e Switch Presentation Space Service: Use this service to specify a
presentation space as the default presentation space for all DOS and
BIOS updates.

Requesting the Presentation Space Services

To request any of the presentation space services, load the registers and the
parameter list with the proper values, and use the INT 7AH instruction to
signal the workstation program that it has a request to process.

Note: Before your application can request the presentation space services, it
must request the Name Resolution service, using ‘PCPSM ’ as the
gate name in the parameter list. (Remember that the gate name must
be padded to the right with blanks if it is less than eight characters.)

Return Codes for the Presentation Space Services

Each presentation space service has two return codes associated with it: a
system return code and a presentation space management return code.
Both types of return codes are 2-byte values made up of a function ID and
an error number. The function ID indicates the portion of the workstation
program in which the error occurred. The error number indicates the
specific type of error that has occurred. An error number of X‘00’ always
indicates a successful acceptance or completion of the request.

Introduction

System Return Codes:

After your application has requested a presentation space service, the
CH and CL registers contain a return code generated by the request
processing portion of the workstation program. The function ID is in
the CH register, and the error number is in the CL register. System
return codes use a function ID of X‘12’. The error codes that can
appear are:

Code Meaning

X00’ Request accepted.

X“05° Invalid index specified.
X7 Invalid reply specified.
X08’ Invalid wait type specified.
X‘0B’ RQE pool depleted.

XOF’ Invalid environment access.
X34’ Invalid gate entry.

These system return codes apply to all presentation space services.
Presentation Space Services Return Codes:

After a requested presentation space service is completed, bytes 0 and 1
of the parameter list contain a return code generated by the
presentation space management portion of the workstation program.
The function ID is in byte 1, and the error number is in byte 0.
Presentation space return codes use a function ID of X‘69’. The error
numbers that can appear are specific to the service that was requested
and are included in the descriptions of each service.

See Appendix H, “Return Codes,” for more information.

Chapter 8. Coding Presentation Space Service Requests 8-3

Define Presentation Space

Presentation Space Service X‘01’: Define Presentation

Space

Register Values

Use this service to define a presentation space and to obtain the session ID
that the workstation program assigns to it. This service is allowed only if

Multi-DOS is selected at customization time.

Parameter List Format

On Request On Completion
AH = X09 CH = X12
AL = X0r CL = Return code
BH = X80
BL = X20 The contents of
CX = X‘00FF’ registers AX, BX, DX,
DX = Resolved value for PCPSM ES, and DI are
ES = Segment address of the parameter list unpredictable.
DI = Offset address of the parameter list
Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID (X69")
2 1 byte Reserved Session ID
3 1 byte Reserved Reserved
4 1 word Offset address of the Unchanged
presentation space
work area
6 1 word Segment address of Unchanged
the presentation space
work area
8 1 word Offset address of the Unchanged
presentation space
data stream
10 1 word Segment address of Unchanged
the presentation space
data stream
12 1 byte Must be zero Unchanged
13 1 byte Reserved Window short name

8-4

Define Presentation Space

Parameter Definitions

Request Parameters:

The presentation space work area is a 1552-byte area that your
application program must provide.

The presentation space data stream is in the following format:

~— Header
— Elements in the form of command data

The header is a 1-byte value that contains the number of commands you
have coded in the data stream.

Each command is specified as a 1-byte value indicating the command
number, followed by a variable-length amount of data.

Commands 01, 02, and 03 are required to define a presentation space,
while 05 and 06 are optional. Command 07 is used only for a specific
function—3270 keystroke emulation.

The commands available in the presentation space data stream, and
their data format, are as follows:

— Command 01: Set Presentation Space Size

The only presentation space currently supported is 25 rows by 80
columns. (The presentation space is the buffer described for
command 03.) The data format is one byte containing X‘19°, which
indicates 25 rows in hexadecimal followed by one byte containing
X‘50°, which indicates 80 columns in hexadecimal.

— Command 02: Set Presentation Space Type

The data format is one byte containing X‘00’, which indicates text
indirect. The application program uses either a presentation space
or the BIOS or DOS calls that must be routed to a presentation
space.

— Command 03: Set Presentation Space Buffer

The data format is one word containing the offset address of the
presentation space buffer, followed by one word containing the
segment address of the presentation space buffer.

The size of the presentation space buffer must be twice the number
of character positions in the presentation space. (Each character
needs two bytes of information for it to be displayed.) Thus, for a
presentation space of 25 rows with 80 columns each, the
presentation space size must be 4000 bytes. (See Command 01.)

The space for the presentation space buffer must be provided by
your application program.

Chapter 8. Coding Presentation Space Service Requests 8-

Define Presentation Space

— Command 04: Reserved
— Command 05: Set Window Long Name

The data format is eight bytes containing the window long name.
The window long name can be as many as eight ASCII characters
long, and it must begin with an alphabetic character. If the window
long name is less than eight characters long, it must be padded to
the right with blanks. This command is optional.

— Command 06: Set Window Short Name

The data format is one byte containing the window short name.

This command is optional. If the window short name is not
specified, the workstation program assigns the first unused letter
from A through Z as the window short name. If a short name is
supplied, it must be a unique short name (one not already in use). If
the short name supplied is currently in use, the Define Presentation
Space request will not be completed successfully.

— Command 07: Set Session Attribute Buffer

The data format is one word containing the offset address of the
session attribute buffer, followed by one word containing the
segment address of the session attribute buffer. The size of the
session attribute buffer must be twice the number of rows specified
in command 01 of the presentation space data stream.

This buffer is an internal work space allocated in the user area; it
should not be altered by the user. The workstation program uses
this buffer for 3270 attribute algorithms.

This command should be used only if you intend to use 3270
keystroke emulation in this presentation space. For more
information, refer to Chapter 9, “Coding 3270 Keystroke Emulation
Service Requests.”

Completion Parameters:

The session ID is the ID identifying this presentation space. Use this
session ID for all further communication with this presentation space or
its window.

The window short name is the 1-character ASCII name of the window
associated with the presentation space. This window short name is
either provided in the presentation space data stream (command 06) or
provided by the workstation program. If it is provided by the
workstation program, it will be the first letter from A through Z that is
not currently used as a short window name.

Define Presentation Space

Return Codes

® System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

® You may receive return codes from the session information services,
with a function code of X‘6B’.

® Presentation Space Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the presentation space management portion of the workstation program.
The function ID is in byte 1, and the error number is in byte 0.
Presentation space return codes use a function ID of X‘69’. The error
codes that can be received for this service are:

Code

X00°
X‘0A°

X‘oB’

X‘C’
XD’

X‘0F’
Xar

X413’
X114’

X15’
X188

X19’

Meaning

Successful completion.

An invalid number of commands is in the presentation space
data stream.

An invalid number of rows/columns is in the presentation
space data stream.

Byte 0 of the parameter list was not zero on request.

There is invalid data in the Set Presentation Space Type data
stream command.

A command that had no data was found in the presentation
space data stream.

Invalid parameter.

The address of the work area was zero on request.

The maximum number of personal computer presentation
spaces has already been created, or DOS has been configured
and you attempt to create an alternate presentation space
(ALT PS).

The Set Presentation Space Buffer command was missing
from the presentation space data stream.

The Set Presentation Space Size command was missing from
the presentation space data stream.

The Set Presentation Space Type command was missing from
the presentation space data stream.

See Appendix H, “Return Codes,” for more information.

Chapter 8. Coding Presentation Space Service Requests 8-7

Define Presentation Space

Usage Notes

A window for the presentation space is created on screen profile 0 and
also on the current screen. You can use the presentation space data
stream to specify the window short and long names. If no short name is
specified, a default short name is provided. The workstation program
assigns the first unused character from A through Z as the default
window short name. There is no default for the long name.

The only type of presentation space that can be created is a personal
computer presentation space.

The presentation space that was the default remains the default for all
DOS and BIOS updates until the switch occurs for the new presentation
space just defined by the application program. After the switch occurs,
the new presentation space becomes the default. To specify another
presentation space as the default for DOS and BIOS updates, use the
Switch Presentation Space service.)

Before exiting, your application program should use the Delete
Presentation Space service to delete any presentation spaces it may
have created with this service.

For each presentation space that you create using this service, you
must provide a unique 1552-byte work area.

A session defined by your application program as a result of a Define
Presentation Space service request requires that a Connect to Keyboard
service request with an All key intercept option be issued in order to
receive and process keystrokes. A second Connect to Keyboard service
request can be issued relative to a Define Presentation Space session.

8-8

Define Presentation Space

Coding Example

PRESENTATION SPACE DATA STREAM FOR

+ ~e Ne

PSDS

DB 5 :
SETSIZE DB O01H ;
PSROWS DB 25 H
PSCOLS DB 80 ;
SETTYPE DB 02H ;

DB O0OH ;
SETPSBUF DB O03H ;
PSOFFSET DW O ;
PSSEGMNT DW O H
SETLNGNM DB 0O5H ;
LONGNAME DB ' SAMPLE ! H
SETSHTNM DB O06H H
SHRTNAME DB X! ;

.
4

DEFINE PRESENTATION SPACE

PSDS HEADER - 5 COMMANDS
COMMAND TO SET THE PS SIZE
25 ROWS IN THE PS

80 COLUMNS IN THE PS
COMMAND TO SET THE PS TYPE

TYPE = TEXT INDIRECT

COMMAND TO SET THE PS BUFFER
PS OFFSET

PS SEGMENT

COMMAND TO SET THE WINDOW LONG NAME
WINDOW LONG NAME

COMMAND TO SET WINDOW SHORT NAME
WINDOW SHORT NAME

; PARAMETER LIST FOR DEFINE PRESENTATION SPACE

DPRETNCD

DB O ;
DPFXNID DB O i
DPSESSID DB O H
DPRESERV DB O H
DPBUFOFF DW O :
DPBUFSEG DW O ;
DPDSOFF DW O ;
DPDSSEG DW O 7

DB O H
DPWINDOW DB O ;

NEW PRESENTATION SPACE
és DB 4000 DUP{(0)
KEYSTROKING BUFFER
éSBUF DB 128 DUP(0)

1552 BYTE WORK AREA

WORKAREA DB 1552 DUP(0)

i

RETURN CODE

FUNCTION NUMBER

SESSION ID

RESERVED

OFFSET ADDRESS OF THE 1552 BYTE WORK AREA
SEGMENT ADDRESS OF THE 1552 BYTE WORK AREA
OFFSET OF DATA STREAM

SEGMENT OF DATA STREAM

MUST BE O

RETURNED WINDOW SHORT NAME

; INITIALIZE PRESENTATION SPACE DATA STREAM FOR DEFINE PRESENTATION SPACE

i
MOV
MOV

PSOFFSET,OFFSET PS
PSSEGMNT, SEG PS

; OFFSET OF PS INTO THE PSDS
; SEGMENT OF PS INTO THE PSDS

Chapter 8. Coding Presentation Space Service Requests

8-9

Define Presentation Space

~e Ne o~y

MOV
MOV
MOV
MOV
MoV
MOV
MOV
MOV
MOV
MOV

Ne N N

MOV
MOV
MOV
MoV
MOV
MOV
MOV
MOV
MOV

~o N we

INT

DPRETNCD, 00H
DPFXNID,00H
AX,OFFSET WORKAREA
DPBUFOFF , AX

AX,SEG WORKAREA
DPBUFSEG , AX
AX,OFFSET PSDS
DPDSOFF, AX

AX,SEG PSDS
DPDSSEG,AX

AH,09H

AL,01H

BH, 80H

BL, 20H

CX,0FFH

DX ,PCPSM

DI, SEG DPRETNCD
ES,DI

DI,OFFSET DPRETNCD

7AH

.
4
.
’
.
r

.
7

~

~e Na e ~e

INITIALIZE PARAMETER LIST FOR DEFINE PRESENTATION SPACE

RETURN CODE MUST 0 BEFORE REQUEST
FUNCTION ID MUST 0 BEFORE REQUEST
WORK AREA OFFSET INTO THE LIST

o

WORK AREA SEGMENT INTO THE LIST
PSDS OFFSET INTO THE LIST

PSDS SEGMENT INTO THE LIST

INITIALIZE REGISTERS FOR DEFINE PRESENTATION SPACE

RESOLVED VALUE FOR 'PCPSM !

SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR DEFINE PRESENTATION SPACE SERVICE

8-10

Delete Presentation Space

Presentation Space Service X‘02’: Delete Presentation

Space

Register Values

Use this service to delete a presentation space created by the Define
Presentation Space service. This service is allowed only if Multi-DOS is
selected at customization time. Any window created on this presentation
space is also deleted.

On Request On Completion

AH = X‘09 CH = X412

AL = X'02 CL = Return code
BH = X‘80 :

BL = X20 The contents of

CX = X‘'00FF’ registers AX, BX, DX,
DX = Resolved value for PCPSM ES, and DI are

ES = Segment address of the parameter list unpredictable.

DI = Offset address of the parameter list

Parameter List Format

, Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID (X‘69’)
2 1 byte Session ID Unchanged
3 1 byte Reserved Reserved

Parameter Definitions

Request Parameters:

e The session ID is the ID that was assigned to the presentation space by
the Define Presentation Space service.

Chapter 8. Coding Presentation Space Service Requests 8-11

Delete Presentation Space

Return Codes

Usage Notes

e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers. '

e Presentation Space Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the presentation space management portion of the workstation program.
The function ID is in byte 1, and the error number is in byte 0.
Presentation space return codes use a function ID of X‘69’. The error
codes that can be received for this service are:

Code

X00°
X02’
XoC’
X110

Meaning

Successful completion.

Invalid session ID.

Byte 0 of the parameter list was not zero on request.
The specified presentation space cannot be deleted.

See Appendix H, “Return Codes,” for more information.

e Any window created on this presentation space is deleted from all
screen profiles on which it appears, as well as from screen profile 0.

8-12

Delete Presentation Space

Coding Example

.
I
7

PARAMETER LIST FOR DELETE PRESENTATION SPACE

DYRETNCD DB

0 ; RETURN CODE
DYFXNID DB O ; FUNCTION NUMBER
DYSESSID DB O ; SESSION ID
DYRESERV DB O ;7 RESERVED

; INITIALIZE PARAMETER LIST FOR DELETE PRESENTATION SPACE

MOV DYRETNCD, OCH ; RETURN CODE MUST 0 BEFORE REQUEST
MOV DYFXNID, O0OH ; FUNCTION ID MUST O BEFORE REQUEST
MOV AL,SESSID ; HANDLE ID INTO THE LIST

MOV DYSESSID,AL

INITIALIZE REGISTERS FOR DELETE PRESENTATION SPACE

~ Ne we

MOV AH,09H

MOV AL,02H

MOV BH,80H

MOV BL,20H

MOV CX,0FFH

MOV DX ,PCPSM ; RESOLVED VALUE FOR 'PCPSM !

MOV DI, SEG DYRETNCD ; SEGMENT ADDRESS OF PARAMETER LIST
MOV ES,DI ; IN ES

MOV DI,OFFSET DYRETNCD ; OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR DELETE PRESENTATION SPACE SERVICE

~. ~e ~e

INT 7AH

Chapter 8. Coding Presentation Space Service Requests 8-13

Display Presentation Space

Presentation Space Service X‘03’: Display Presentation

Space
Use this service to display any changes made in the specified presentation
space.
Register Values
On Request On Completion
AH = X09 CH = X12
AL = X03 CL = Return code
BH = X80’
BL = X20 The contents of
CX = X‘O0FF’ registers AX, BX, DX,
DX = Resolved value for PCPSM ES, and DI are
ES = Segment address of the parameter list unpredictable.
DI = Offset address of the parameter list
Parameter List Format
Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID (X‘69’)
2 1 byte Session ID Unchanged
3 1 byte Reserved Reserved
4 1 word Starting offset Unchanged
6 1 word Length Unchanged

Parameter Definitions

Request Parameters:

® The session ID is the ID that was assigned to the presentation space by
the Define Presentation Space service.

e The starting offset is a character offset into the presentation space
buffer, specifying the first character to display.

o The length is the number of characters to be displayed.

8-14

Display Presentation Space

Return Codes
e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

¢ Presentation Space Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the presentation space management portion of the workstation program.
The function ID is in byte 1, and the error number is in byte 0.
Presentation space return codes use a function ID of X‘69’. The error
codes that can be received for this service are:

Code Meaning

X00° Successful completion.

X<02’ Invalid session ID.

X038’ The specified offset for display is not within the address of
the presentation space.

X09’ The specified length is invalid.

X0C’ Byte 0 of the parameter list was not zero on request.

Xar Invalid parameter.

See Appendix H, “Return Codes,” for more information.

Chapter 8. Coding Presentation Space Service Requests 8-15

Display Presentation Space

Coding Example

o Ne o~

4
RDRETNCD
RDFXNID
RDSESSID
RDRESERV
RDCHROFF
RDLENGTH

i

DB
DB
DB
DB
DW
DwW

leNeoloRoNoNe]

PARAMETER LIST FOR DISPLAY PRESENTATION SPACE

RETURN CODE

FUNCTION NUMBER

SESSION ID

RESERVED

STARTING CHARACTER OFFSET
NUMBER OF CHARACTERS TO DISPLAY

Ne Ne w6 Ne we N

; INITIALIZE PARAMETER LIST FOR DISPLAY PRESENTATION SPACE

MOV
MOV
MOV
MOV
MOV
MOV

RDRETNCD, 00H
RDFXNID, OOH
AL,SESSID
RDSESSID,AL
RDCHROFF, 0
RDLENGTH, 2000

; INITIALIZE REGISTERS FOR DISPLAY

’

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

AH,09H

AL,O03H

BH,80H

BL,20H

CX,O0FFH

DX, PCPSM

DI, SEG RDRETNCD
ES,DI

DI,OFFSET RDRETNCD

; RETURN CODE MUST = O BEFORE REQUEST
; FUNCTION ID MUST = O BEFORE REQUEST
; SESSION ID INTO THE

; PARAMETER LIST

; START AT THE 1ST CHARACTER

; DISPLAY 2000 CHARACTERS

PRESENTATION SPACE

; RESOLVED VALUE FOR 'PCPSM !

; SEGMENT ADDRESS OF PARAMETER LIST
; IN ES

; OFFSET OF PARAMETER LIST IN DI

; SIGNAL WORKSTATION PROGRAM FOR DISPLAY PRESENTATION SPACE SERVICE

.
4

INT

7AH

8-16

Set Cursor Position

Presentation Space Service X‘04’: Set Cursor Position

Use this service to set a cursor position in a presentation space.

Register Values

On Request On Completion

AH = X'09 CH = X‘12

AL = X'04 CL = Return code
BH = X80’

BL = X220’ The contents of

CX = X‘O0FF’ registers AX, BX, DX,
DX = Resolved value for PCPSM ES, and DI are

ES = Segment address of the parameter list unpredictable.

DI = Offset address of the parameter list

Parameter List Format

Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID (X‘69’)
2 1 byte Session ID Unchanged
3 1 byte Reserved Reserved
4 1 word Cursor address Unchanged
6 1 byte Cursor type Unchanged
7 1 byte Reserved Reserved

Parameter Definitions
Request Parameters:

® The session ID is the ID that was assigned to the presentation space by
the Define Presentation Space service.

e The cursor address is an offset into the presentation space buffer,
specifying character position to set the cursor.

Chapter 8. Coding Presentation Space Service Requests 8-17

Set Cursor Position

The character position for the cursor is derived from the following
formula:

[Row number x number of columns] + column number
where:

— “Row number” is the number of the row that you want the cursor to
be positioned in (0 to 24).

— “Number of columns” is the number of columns defined in the
presentation space.

— “Column number” is the number of the column that you want the
cursor to be positioned in (0 to 79).

o The cursor type byte is as follows (where bit 0 is the high-order bit and
bit 7 is the low-order bit):

Reserved

Reserved

Reserved

Inhibited cursor with autoscroll
Reserved

Inhibited cursor

Blinking cursor

Box cursor

N TR W ~O

— A blinking underscore cursor appears as _

— A blinking box cursor appears as H

— An inhibited cursor is not displayed. When the cursor position
changes, the text in the window is not moved to keep the cursor
inside the window borders.

— An inhibited cursor with autoscroll is not displayed. When the

cursor position changes, the text in the window is moved to keep
the cursor inside the window borders.

Return Codes
e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

8-18

Set Cursor Position

& Presentation Space Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the presentation space management portion of the workstation program.
The function ID is in byte 1, and the error number is in byte 0.
Presentation space return codes use a function ID of X‘69’. The error
codes that can be received for this service are:

Code . Meaning
X‘00° Successful completion,

X02° Invalid session ID.
X06’ Invalid cursor type.

X7 Invalid cursor address.
X0C’ Byte 0 of the parameter list was not zero on request.
X171 Invalid parameter.

See Appendix H, “Return Codes,” for more information.

Usage Notes

o Request this service each time you wish to change the position of the
cursor,

® The cursor only appears in the active window, data autoscrolls if
necessary to keep the cursor in view, and the cursor always blinks.

Chapter 8. Coding Presentation Space Service Requests 8-19

Set Cursor Position

Coding Example

.
7
.
’

i
DCRETNCD

DB O :
DCFXNID DB O ;
DCSESSID DB O H
DCRESRV1 DB O H
DCCURADD DW O ;
DCCURTYP DB O ;
DCRESRV2Z DB O H

~e ~e we

MOV DCRETNCD,OO0H ;
MOV DCFXNID,OOH ;
MOV AL, SESSID ;
MOV DCSESSID,AL ;
MOV DCCURADD,O ;
MOV DCCURTYP,O1H ;

PARAMETER LIST FOR SET CURSOR POSITION

RETURN CODE
FUNCTION NUMBER
SESSION ID
RESERVED

CURSOR ADDRESS
CURSOR TYPE
RESERVED

INITIALIZE PARAMETER LIST FOR SET CURSOR POSITION

RETURN CODE MUST
FUNCTION ID MUST
SESSION ID INTO THE

PARAMETER LIST

DISPLAY CURSOR AT THE HOME POSITION
CURSOR TYPE = BOX CURSOR

0O BEFORE REQUEST
0 BEFORE REQUEST

; INITIALIZE REGISTERS FOR SET CURSOR POSITION

MOV AH,09H
MOV AL,O04H
MOV BH,80H
MOV BL,20H
MOV CX,OFFH
MOV DX,PCPSM ;
MOV DI, SEG DCRETNCD ;
MOV ES,DI ;
MOV DI,OFFSET DCRETNCD ;

SIGNAL WORKSTATION PROGRAM FOR SET

~e wo o~

INT 7AH

RESOLVED VALUE FOR 'PCPSM !
SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

CURSOR POSITION SERVICE

8-20

Switch Presentation Space

Presentation Space Service X‘05’: Switch Presentation

Space

Register Values

Use this service to specify a presentation space to become the default
presentation space for all DOS and BIOS updates.

On Request On Completion

AH = X'09 CH = X12

AL = X‘0%’ CL. = Return code
BH = X80

BL = X20 The contents of

CX = X‘00FF registers AX, BX, DX,
DX = Resolved value for PCPSM ES, and DI are

ES = Segment address of the parameter list unpredictable.

DI = Offset address of the parameter list

Parameter List Format

Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Must be zero Function ID (X‘69°)
2 1 byte Session ID Unchanged
3 1 byte Reserved Reserved

Parameter Definitions

Return Codes

Request Parameters:

o The session ID is the ID that was assigned to the presentation space by
the Define Presentation Space service.

e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Chapter 8. Coding Presentation Space Service Requests 8-21

Switch Presentation Space

e Presentation Space Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the presentation space management portion of the workstation program.
The function ID is in byte 1, and the error number is in byte 0.
Presentation space return codes use a function ID of X‘69’. The error
codes that can be received for this service are:

Code Meaning

X‘00’ Successful completion.
X¢02’ Invalid session ID.
X‘C’ Byte 0 of the parameter list was not zero on request.

See Appendix H, “Return Codes,” for more information.
Coding Example

PARAMETER LIST FOR SWITCH PRESENTATION SPACE

* Ne we

7
SPRETNCD DB

0 ; RETURN CODE
SPFXNID DB O ; FUNCTION NUMBER
SPSESSID DB O ; SESSION ID
SPRESERV DB O ; RESERVED

.

INITIALIZE PARAMETER LIST FOR SWITCH PRESENTATION SPACE

~o we N

MoV SPRETNCD, OOH ; RETURN CODE MUST
MOV SPFXNID,OO0H ; FUNCTION ID MUST
MoV AL,SESSID H

MOV SPSESSID,AL

Hon

0 BEFORE REQUEST
0 BEFORE REQUEST
SESSION ID INTO THE LIST

INITIALIZE REGISTERS FOR SWITCH PRESENTATION SPACE

~. wr we

MOV AH,09H

MOV AL,O5H

MOV BH,80H

MOV BL,20H

MOV CX,OFFH

MOV DX,PCPSM ; RESOLVED VALUE FOR 'PCPSM '

MOV DI, SEG SPRETNCD ; SEGMENT ADDRESS OF PARAMETER LIST
MOV ES,DI ; IN ES

MOV DI,OFFSET SPRETNCD ; OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR SWITCH PRESENTATION SPACE SERVICE

~e w0~

INT 7AH

.
.

8-22

Switch Presentation Space

Chapter 9. Coding 3270 Keystroke Emulation Service
Requests

Introduction it e 9-2
Field Attribute Definition for 3270 Keystroke Emulation 9-2
Presentation Space Format for 3270 Keystroke Emulation 9-4
Requesting the 3270 Keystroke Emulation Services 9-5
Return Codes for the 3270 Keystroke Emulation Services 9-5

3270 Keystroke Emulation Service X‘01’: Connect for 3270 Keystroke

Emulation i e e e 9-7

3270 Keystroke Emulation Service X‘02’: Disconnect for 3270

Keystroke Emulation 9-10
3270 Keystroke Emulation Service: Read Attention Identifier (AID)
=) 2 9-13

Chapter 9. Coding 3270 Keystroke Emulation Service Requests 9-1

Introduction

Introduction

This chapter describes how to code requests for the 3270 keystroke
emulation services provided by the API. This service is allowed only if
Multi-DOS is selected at customization time.

The 3270 keystroke emulation services enable you to type into a personal
computer presentation space as if it were a host presentation space.
Keystrokes that previously were valid only for host sessions are processed
by the 3270 keystroke emulation task for personal computer sessions as
well.

The 3270 keystroke emulation services are activated in your personal
computer session by issuing the INDEML command. To use the 3270
keystroke services, your application must first issue a Define Presentation
Space command to define a presentation space. This presentation space
should have no more than 24 rows or 80 columns. Screen row 25 is reserved
for the operator information area (OIA). You must run the INDEML utility
in each PC session for which you want to use 3270 Keystroke Emulation.
See Chapter 10 in the IBM 3270 Workstation Program User’s Guide and
Reference for more information.

The format of a personal computer session defined to accept 3270 keystroke
emulation is the same as the format of a standard personal computer
session. However, the contents of that presentation space are interpreted
and processed differently from other personal computer presentation spaces.
A presentation space defined to accept 3270 keystroke emulation is
interpreted as having 3270 field attributes as well as personal computer
ASCII characters.

Field Attribute Definition for 3270 Keystroke Emulation

Field attributes are contained in two bytes and are defined as any personal
computer ASCII character with a hexadecimal value between X‘C0’ and
X‘FF’, and a character attribute of nondisplay (X‘00’). This enables all 256
characters of the personal computer character set to be displayed with 3270
keystroke emulation. Field attributes occupy character positions within
the presentation space. The first byte within a field is a field attribute
character that defines the characteristics of the field. A field continues
until the next field attribute is encountered in the presentation space.
Fields within the presentation space can wrap from the bottom of the
presentation space to the top of the presentation space. The 3270 keystroke
emulation task interprets field attributes within the presentation space and
applies the 3270 keystroke rule defined by the field attribute to all
keystrokes entered into the presentation space field. The following table
describes the field attribute character bit assignment. (Remember that bit 0
is the high-order, leftmost, bit in the byte, and bit 7 is the low-order,
rightmost, bit in the byte.)

Note: Only the 3270 base attributes are supported.

9-2

Introduction

EBCDIC
Bit Field Characteristics
0,1 11 = This byte is an attribute
2 0 = Unprotected
1 = Protected (see Note)
3 0 = Alphanumeric
1 = Numeric (if numeric lock capability is activated, causes
automatic numeric shift of keyboard) (see Note)
4,5 00 = Display not detectable by Cursor Select key
01 = Display detectable by Cursor Select key
10 = Intensified display detectable by Cursor Select key
11 = Nondisplay, nonprint, nondetectable
6 Reserved: always 0
7 Modified data tag (MDT); identifying modified fields during

Read Modified command operation

0 = Field has not been modified
1 = Field has been modified by the operator. Can also be
set by a program in the presentation space.

Note: Binary 11 in bits 2 and 3 causes an automatic skip.

When a personal computer presentation space defined to accept 3270

keystroke emulation is defined or redisplayed using presentation space
services, all character attributes in the presentation space are set to display
the character in the color defined by that character’s field attribute.

Chapter 9. Coding 3270 Keystroke Emulation Service Requests

9-3

Introduction

Presentation Space Format for 3270 Keystroke Emulation

When defined to accept 3270 keystroke emulation, the presentation space is
interpreted as follows:

- Field >t Field >
R} =
Field Attr Char. | Attr Char. | Attr Field Attr Char. | Attr Char. | Attr
3y
L J | « ¢
Field Y
Attribute ‘CO’ — ‘FF’X ‘0O’X
Character
\
Character Attribute
Seta{;y PC/PSM on White — Intensified/protected
Create and Display Blue — Normal/protected
lg(ll)ef;rgsentatlon Red — Intensified/unprotected
Green — Normal/unprotected

The 3270 keystroke emulation services provided by the API are:

Connect for 3270 Keystroke Emulation Service: Use this service
to connect the 3270 keystroke emulation task to the session identified in
the request.

Disconnect for 3270 Keystroke Emulation Service: Use this
service to disconnect the 3270 keystroke emulation task from the
session identified in the request.

Read AID Key Service: Use this service to enable operator input at
the keyboard until a valid AID key is entered. The 3270 PC READ AID
API allows you to choose how the application will receive AID keys.
You can receive each AID key as a scan code/shift state or as a 2- or
4-byte ASCII mnemonic. Select the ASCII option by setting the
high-order bit of byte 3 in the parameter list during READ API request.
The ASCII mnemonic is returned in bytes 10 — 13 of the parameter list.

Your personal computer application program formats the presentation
space by storing characters and field attributes directly in the presentation
space buffer. After formatting the presentation space, use the Display
Presentation Space and Display Cursor services to display the formatted
presentation space.

9-4

Introduction

After the presentation space has been formatted and displayed, request the
Read AID Key service to enable operator input from the keyboard. When
the Read AID Key service request is completed, your application program
must interrogate the contents of the presentation space, or scan the field
attributes for attributes with the modified data tag (MDT) bit set, to
determine which fields have been modified. Your application should modify
and, if necessary, redisplay the presentation space before the next Read AID
Key service request.

Requesting the 3270 Keystroke Emulation Services

To request any of the 3270 keystroke emulation services, load the registers
and the parameter list with the proper values, and use the INT 7AH
instruction to signal the workstation program that it has a request to
process.

Note: Before your application can request the 3270 keystroke emulation
services, it must request the Name Resolution service, using
‘3270EML °’ as the gate name in the parameter list. (Remember that
the gate name must be padded to the right with blanks if it is less
than eight characters.)

Return Codes for the 3270 Keystroke Emulation Services

Each 3270 keystroke emulation service has two return codes associated
with it: a system return code and a 3270 keystroke emulation services
return code. Both types of return codes are 2-byte values made up of a
function ID and an error number. The function ID indicates the portion of
the workstation program in which the error occurred. The error number
indicates the specific type of error that has occurred. An error number of
X‘00’ always indicates a successful acceptance or completion of the request.

e System Return Codes:

After your application has requested a 3270 keystroke emulation
service, the CH and CL registers contain a return code generated by the
request processing portion of the workstation program. The function ID
is in the CH register, and the error number is in the CL register.
System return codes use a function ID of X‘12’. The error codes that
can appear are:

Code Meaning

X00° Request accepted.

X05’ Invalid index specified.
X407 Invalid reply specified.
X08’ Invalid wait type specified.
X‘0B’ RQE pool depleted.

X‘OF” Invalid environment access.
X34’ Invalid gate entry.

Chapter 9. Coding 3270 Keystroke Emulation Service Requests 9-b

Introduction

These system return codes apply to all 3270 keystroke emulation
services.

o 3270 Keystroke Emulation Services Return Codes:

After a requested 3270 keystroke emulation service is completed, bytes 0
and 1 of the parameter list contain a return code generated by the 3270
keystroke emulation management portion of the workstation program.
The function ID is in byte 1, and the error number is in byte 0. The
3270 keystroke emulation services return codes use a function ID of
X‘6E’. The error numbers that can appear are specific to the service
that was requested and are included in the descriptions of each service.

See Appendix H, “Return Codes,” for more information.

Connect for 3270 Keystroke Emulation

3270 Keystroke Emulation Service X‘01’: Connect for 3270
Keystroke Emulation

Register Values

Use this service to attach a 3270 keystroke emulation task to your PC
presentation space that has been defined to accept 3270 keystroke

emulation. On successful completion of this service, operator input to the
keyboard of the connected session is disabled, so that the operator cannot

type keystrokes to that session from the keyboard.

Resolved value for 3270EML

On Request
AH = X'09
AL = X0or
BH = X‘80’
BL = X20
CX = X‘O0FF
DX =

Parameter List Format

On Completion

BL = Return type
CH = X‘12
CL = Return code

The contents of

registers AX, BH, DX,

ES Segment address of the parameter list ES, and DI are
DI Offset address of the parameter list unpredictable.
Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Reserved Function ID (X‘6E’)
2 1 byte Session ID Unchanged
3 1 byte X‘00’ Unchanged
4 1 word X0’ Keystroke task ID
6 1 word Work area offset Unchanged
8 1 word Work area segment Unchanged

Chapter 9. Coding 3270 Keystroke Emulation Service Requests

9-7

Connect for 3270 Keystroke Emulation

Parameter Definitions

Return Codes

Request Parameters:

The session ID is the ID of the PC presentation space returned on the
Define Presentation Space request. The PC presentation space must be
defined to accept 3270 keystroke emulation.

The work area is a 700-byte area of working storage that your
application program must provide. The work area is allocated to the
keystroke emulation task until the Disconnect 3270 Keystroke
Emulation service request is issued.

Completion Parameters:

The keystroke task ID is the task ID of the 3270 keystroke emulation
task. This task ID is required on both the Read AID Key service and the
Disconnect 3270 Keystroke Emulation service request. This is the task
provided by the workstation program that performs the 3270 keystroke
emulation for the specified presentation space.

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

3270 Keystroke Emulation Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the 3270 keystroke emulation management portion of the workstation
program. The function ID is in byte 1, and the error number is in byte
0. The 3270 keystroke emulation services return codes use a function
ID of X‘6E’. The error codes that can be received for this service are:

Code Meaning

X00’ Successful completion.
X¢02’ Invalid session ID.
X¢08’ An unsuccessful return code was encountered while

processing the request.
X‘oC’ Byte 0 of the parameter list is not 0 on the request.

See Appendix H, “Return Codes,” for more information.

9-8

Connect for 3270 Keystroke Emulation

Coding Example

; PARAMETER LIST FOR CONNECT FOR 3270 KEYSTROKE EMULATION
’

CERETNCD DB
CEFXNID DB
CESESSID DB
CEZERO DB
CEKEYS$SID DW
CEWRKOFF DW
CEWRKSEG DW

RETURN CODE
FUNCTION NUMBER
SESSION ID

MUST BE ZERO
KEYSTROKE TASK ID
WORK AREA OFFSET
WORK AREA SEGMENT

[eNeoRoNoNoNoNe

INITIALIZE PARAMETER LIST FOR CONNECT FOR 3270 KEYSTROKE EMULATION

N Ne W

MOV CERETNCD, O0OH ; CERETNCD MUST BE O BEFORE REQUEST
MOV CEFXNID, 00H ; CEFXNID MUST BE O BEFORE REQUEST
MOV AL,SESSID ; SESSION ID OBTAINED FROM DEFINE
MOV CESESSID,AL ; PRESENTATION SPACE API

MOV CEZERO, O ; MUST BE ZERO

MOV AX,OFFSET WORKAREA ; OFFSET OF THE WORK AREA IN LIST
MOV CEWRKOFF ,AX

MOV AX,SEG WORKAREA ; SEGMENT OF THE WORK AREA IN LIST

MOV CEWRKSEG, AX

INITIALIZE REGISTERS FOR CONNECT FOR 3270 KEYSTROKE EMULATION

~o Ne N

MOV AH,09H

MOV AL,O01H

MOV BH,80H

MOV BL,20H

MOV CX,OFFH

MOV DX, 3270EML RESOLVED VALUE FOR '3270EML '

MOV DI, SEG CERETNCD ; SEGMENT ADDRESS OF PARAMETER LIST

MoV ES,DI IN ES
MOV DI,OFFSET CERETNCD OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR CONNECT FOR 3270 KEYSTROKE EMULATION SERVICE

~e we o~

INT 7AH

Chapter 9. Coding 3270 Keystroke Emulation Service Requests 9-9

Disconnect for 3270 Keystroke Emulation

3270 Keystroke Emulation Service X‘02’: Disconnect for
3270 Keystroke Emulation

Use this service to detach the 3270 keystroke emulation task from your PC
presentation space that has been defined to accept 3270 keystroke

emulation.

Register Values
On Request On Completion
AH = X'09 BL = Return type
AL = X‘02 CH = X12
BH = X80’ CL = Return code
BL = X20’
CX = X‘00FF’ The contents of
DX = Resolved value for 3270EML registers AX, BH, DX,
ES = Segment address of the parameter list ES, and DI are
DI = Offset address of the parameter list unpredictable.

Parameter List Format

Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Reserved Function ID (X‘6E’)
2 1 byte Session ID Unchanged
3 1 byte X00° Unchanged
4 1 word Keystroke task ID Unchanged

Parameter Definitions
Request Parameters:

e The session ID is the ID of the PC presentation space that was specified
on the Connect to 3270 Keystroke Emulation request.

e The keystroke task ID must be the ID of the 3270 keystroking task
returned on the Connect for 3270 Keystroke request.

9-10

Disconnect for 3270 Keystroke Emulation

Return Codes
e System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

e 3270 Keystroke Emulation Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the 3270 keystroke emulation management portion of the workstation
program. The function ID is in byte 1, and the error number is in byte
0. The 3270 keystroke emulation services return codes use a function
ID of X‘6E’. The error codes that can be received for this service are:

Code Meaning

X00’ Successful completion.
X002’ Invalid session ID.
X<08’ An unsuccessful return code was encountered while

processing the request.
X‘oC’ Byte 0 of the parameter list is not 0 on the request.

See Appendix H, “Return Codes,” for more information.

Usage Notes

® You cannot request the Disconnect for 3270 Keystroke Emulation
service while you have a Read AID Key service request outstanding.
That is, if you have requested the Read AID Key service and specified
asynchronous processing, you must use the Get Request Completion
service to obtain the values on completion in the parameter list before
you can request the Disconnect for 3270 Keystroke Emulation service.

Chapter 9. Coding 3270 Keystroke Emulation Service Requests 9-11

Disconnect for 3270 Keystroke Emulation

Coding Example

i
; PARAMETER LIST FOR DISCONNECT FOR 3270 KEYSTROKE EMULATION

1

DERETNCD DB
DEFXNID DB
DESESSID DB
DEZERO DB
DEKEY$ID DW

.

~e e e

MOV
MOV
MOV
MOV
MOV
MOV
ED
MOV

.
r

[eNeNoReoNeo]

DERETNCD, O0H
DEFXNID,00H
AL,SESSID
DESESSID,AL
DEZERO, 0
AX,KEYTSKID

DEKEYS$ID,AX

Ne e Ne Ne we

e Ne Ne N we we

-
7

RETURN CODE
FUNCTION NUMBER
SESSION ID

MUST BE ZERO
KEYSTROKE TASK ID

INITIALIZE PARAMETER LIST FOR DISCONNECT FOR 3270 KEYSTROKE EMULATION

DERETNCD MUST BE O BEFORE REQUEST
DEFXNID MUST BE O BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST
TO DEFINE PRESENTATION SPACE API
MUST BE ZERO
KEYSTROKE TASK ID IN LIST (THE ID IS RETURN

FROM CONNECT TO 3270 KEYSTROKE EMULATION)

; INITIALIZE REGISTERS FOR DISCONNECT FOR 3270 KEYSTROKE EMULATION

’
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV

~e ~e o~

INT

.

AH,09H

AL,O02H .

BH, 80H

BL,20H

CX,OFFH

DX, 3270EML

DI, SEG DERETNCD
ES,DI

DI,OFFSET DERETNCD

7AH

.
’
.
14
’
7

RESOLVED VALUE FOR '3270EML '

SEGMENT ADDRESS OF PARAMETER LIST
IN ES

OFFSET OF PARAMETER LIST IN DI

SIGNAL WORKSTATION PROGRAM FOR DISCONNECT FOR 3270 KEYSTROKE EMULATION SERVICE

9-12

Read AID Key

3270 Keystroke Emulation Service: Read Attention
Identifier (AID) Key

Register Values

Use this service to receive AID keystrokes from the 3270 keystroke
emulation task that is performing 3270 keystroke emulation for the
specified presentation space. The Read AID Key service begins keystroke
processing by enabling operator input at the keyboard of the connected
session. As keystrokes are entered, the presentation space is updated using
3270 keystroke rules until a valid AID key is entered. When an AID key is
encountered, operator input to the connected session’s keyboard is again
disabled. The Read AID key service returns the AID key in the parameter
list in one of two formats: scan code/shift state format or ASCII mnemonic
format. Select the ASCII format by setting the ASCII option of byte 3 of
the parameter list upon request. The READ AID key service also returns
the current row and column position of the cursor.

On Request On Completion

AH = X09 BL = Return type

BH = Synchronous or asynchronous * CH = X12

BL = Synchronous or asynchronous * CL = Return code

CX = X'00FF

DX = Keystroke task ID The contents of

ES = Segment address of the parameter list registers AX, BH, DX,

DI = Offset address of the parameter list ES, and DI are
unpredictable.

* The values in these registers depend on whether you want the request to be processed
synchronously or asynchronously. See the following description of request register values
for more information.

® Request Register Values:

You can specify synchronous or asynchronous processing of the Read
AID Key service. In synchronous processing, control is returned to
your application program after the workstation program has completed
the request. In asynchronous processing, control is returned to your
application program before the workstation program has completed the
request. You must use the Get Request Completion service to obtain
the parameter list values on completion when you request asynchronous
processing.

Synchronous Processing:

There are two ways to specify synchronous processing:

1. Set the BH register to X‘80’ and the BL register to X‘20’. When the
request is completed, control is returned to your application

program and the registers and parameter list contain the values for
completion of the request.

Chapter 9. Coding 3270 Keystroke Emulation Service Requests 9-13

Read AID Key

2. Set both the BH and BL registers to X‘40’. When the request is
completed, control is returned to your program, but the parameter
list values for completion of the request are not obtained until you
request the Get Request Completion service.

Asynchronous Processing: i

For asynchronous processing of the Read AID key service request, set
the BH register to X‘40’ and the BL register to X‘00’. When
asynchronous processing is specified, you must request the Get Request
Completion service to obtain the results of the Read AID Key service.

Completion register values:

If you specified asynchronous processing, or synchronous processing
using X‘40’ in both the BH and BL registers on request, the AX register
contains a request ID that the workstation program assigned to the
request. You use this request ID to match the results of the service
obtained by the Get Request Completion service to the results of this
service. That is, when the request ID in the AX register, on completion
of the Get Request Completion service, matches the request ID in the
AX register on completion of this service, the results obtained by the
Get Request Completion service pertain to this request.

Parameter List Format

Contents Contents
Offset | Length on Request on Completion
0 1 byte Must be zero Return code
1 1 byte Reserved Function ID (X‘6E’)
2 1 byte Session ID Unchanged
3 1 byte Options byte Unchanged
4 1 word Reserved Reserved
6 1 byte X‘00’ Scan code
or length of mnemonic
starting at byte 10
7 1 byte X‘00’ Shift state
or unchanged
8 1 byte X00’ Cursor row
9 1 byte X00’ Cursor column
10—-13 |24 Reserved ASCII mnemonic. May
bytes be 2 or 4 bytes long.

9-14

Read AID Key

Parameter Definitions

Request Parameters:

The session ID is the ID of the presentation space to which the

keystroke emulation task is attached.

The options byte has the following values:

— X‘00’: Previous AID key was accepted, return AID keys in

scan/shift.

— X‘01’: Previous AID key was rejected, return AID keys in scan/shift.
— X‘80’: Previous AID key was accepted, return AID keys in ASCIL
— X‘81’: Previous AID key was rejected, return AID keys in ASCIL.

Completion Parameters:

The scan code or length of mnemonic field (byte 6 of the parameter list)
is a hexadecimal value that could contain one of two values:

- If the options byte was set to X80’ or X‘81" upon request, byte 6 will
contain the length of the ASCII mnemonic being returned. If this
byte is X‘02’, then bytes 10 —11 of the parameter list contain the
2-byte ASCII mnemonic being returned, and bytes 12—13 are
unchanged. If this byte is X‘04’, then bytes 10—13 of the parameter
list contain the 4-byte ASCII mnemonic being returned.

— If the options byte was set to X‘00’ or X‘01’ upon request, byte 6 will
contain the scan code of the AID key being reported. Bytes 10—13

are unchanged.

The AID keys, and their associated hexadecimal scan code and ASCII
mnemonics, are shown in the table below:

Hexadecimal ASCII
Scan Code Mnemonic

AID Key Returned Returned

Enter or CrSel X568’ @E

on Ampersand

(&) *

Numeric Pad X719 @E

Enter

PF1 X7 @1

PF2 XOF’ @2

PF3 X17 @3

PF4 X1F @4

PF5 X7 @5

Chapter 9. Coding 3270 Keystroke Emulation Service Requests 9-15

Read AID Key

Hexadecimal ASCII

Scan Code Mnemonic
AID Key Returned Returned
PFé6 X2F’ @6
PF7 X337 @7
PF8 X‘3F’ @8
PF9 X47 @9
PF10 X‘4F’ @a
PFi11 X‘56’ @b
PF12 X‘5E’ @c
PF13 X08’ @d
PF14 X0 @e
PF15 X18’ @f
PF16 X220 @g
PF17 X28’ @h
PF18 X‘30° @i
PF19 X‘38’ @j
PF20 X400 @k
PF21 X‘48’ @1
PF22 X50° @m
PF23 X‘57 @n
PF24 X‘5F @o
CrSelon a X‘03’ @A@d
Space or null *
PA1 X‘67 @x
PA2 X‘6E’ @y
PA3 X‘6F’ @z
Attn X‘oC’ @A@Q
Clear X‘06’ @C

* The 3270 Workstation Program uses the CrSel key the same way a light pen is used. It
CrSel is pressed when the cursor is on a light pen detectable field, the workstation program
may do one of four things:

1. It returns an Enter AID key if the field begins with an ampersand (&).
2. It returns the CrSel key itself if the field begins with a null or a space.

3. It returns no AID key if the field begins with a question mark (?). The question mark
is, however, changed to a ‘>’ and the modified data tag (MDT) bit in the field
attribute is set on.

4. It returns no AID key if the field begins with a greater than sign (>). The greater
than sign is, however, changed to a ‘? and the modified data tag (MDT) bit in the field
attribute is set off.

9-16

Read AID Key

Return Codes

If the cursor is not on a light pen detectable field, an input-inhibit condition results.
— When the Clear key is pressed, the presentation space is cleared.

— When all other AID keys in this table are pressed, the MDT bit is set in the field
attribute byte of all modified fields in the presentation space.

— The SysRq and Test keys are not supported by 3270 keystroke emulation.

The shift state indicates the shift conditions that were active when the
AID key was sent to your application program. The format of the shift
byte is as follows:

0,1 2 3 4 5 6 7
Reserved | Right | Left | Control ALT Shift | Upshift
shift | shift | key keys Lock | keys

— Bits 0 and 1 are reserved.

— Bit 2 represents the right upshift key.

— Bit 3 represents the left upshift key.

— Bit 4 represents the control shift state.

— Bit 5 represents the ALT shift state.

— Bit 6 represents the Shift Lock state.

— Bit 7 represents the upshift state. Bit 7 indicates that one of the
two upshift keys was pressed. If your application program must
distinguish between the right upshift key and the left upshift key,
use bits 2 and 3.

— Lower shift is represented by a value of X‘00’.

“Cursor row” is the row position of the cursor on the specified
presentation space. Cursor row positions start at zero.

“Cursor column” is the column position of the cursor on the specified
presentation space. Cursor column positions start at zero.

System Return Codes:

Refer to the chapter introduction for a description of the system return
codes found in the CH and CL registers.

Chapter 9. Coding 3270 Keystroke Emulation Service Requests 9-17

Read AID Key

Usage Notes

e 3270 Keystroke Emulation Services Return Codes:

Bytes 0 and 1 of the parameter list contain a return code generated by
the 3270 keystroke emulation management portion of the workstation
program. The function ID is in byte 1, and the error number is in byte
0. The 3270 keystroke emulation services return codes use a function
ID of X‘6E’. The error codes that can be received for this service are:

Code

X‘OO’

X02’
X‘08’

Xc’

Meaning

Successful completion. The scan code for AID key was
returned in parameter list.

Invalid session ID.

An unsuccessful return code was detected while processing
the request.

Byte 0 of the presentation list is not 0 on the request.

See Appendix H, “Return Codes,” for more information.

e If you specified asynchronous processing, or synchronous processing
using X‘40’ in both the BH and BL registers on request, you must use
the Get Request Completion service to obtain the results in the
parameter list when the Read AID Key service is completed.

9-18

Read AID Key

Coding Example

i

; PARAMETER LIST FOR READ AID KEY

RARETNCD
RAFXNID

RASESSID
RAACCREJ

RASCNCDE
RASHFTST
RACURSSR
RACURSSC

~e e ~a

~e e ~e

.
’

DB
DB
DB
DB
DW
DB
DB
DB
DB

MOV
MOV
MOV
MOV
MOV
MOV

MOV
MOV
MOV
MOV
MOV

MOV
MOV
MOV

OCOO0OOO0O0OO0OO0O0O

RARETNCD, 00H
RAFXNID, 00H
AL,SESSID
RASESSID, AL
AL,ACCS$REJ
RAACCREJ, AL

AH,09H
BH, 80H
BL,20H
CX,0FFH
DX ,KEYTSKID

DI, SEG RARETNCD

ES,DI

DI,OFFSET RARETNCD

RETURN CODE

FUNCTION NUMBER
SESSION ID
ACCEPT/REJECT AID
UNUSED

SCAN CODE

SHIFTSTATE

CURSOR ROW POSITION
CURSOR COLUMN POSITION

e Ne Ne N6 w6 Ne S N we

INITIALIZE PARAMETER LIST FOR READ AID KEY

RARETNCD MUST BE O BEFORE REQUEST
RAFXNID MUST BE O BEFORE REQUEST
SESSION ID OBTAINED FROM REQUEST

TO DEFINE PRESENTATION SPACE API
ACCEPT OR REJECT PREVIOUS AID IN LIST

e wa Ne e Ne

INITIALIZE REGISTERS FOR READ AID KEY

REPLY TYPE
WAIT TYPE
PRIORITY

TO 3270 KEYSTROKE EMULATION
SEGMENT ADDRESS OF PARAMETER LIST
IN ES
OFFSET OF PARAMETER LIST IN DI

Ne we Ne we Ne Ne Ne e

; SIGNAL WORKSTATION PROGRAM FOR READ AID KEY SERVICE

.
7

INT

7AH

KEYSTROKE TASK ID RETURNED FROM CONNECT TO

Chapter 9. Coding 3270 Keystroke Emulation Service Requests

9-19

Read AID Key

9-20

Read AID Key

Chapter 10. Coding Copy Service Requests

Introduction e 10-2
Requesting the Copy Serviceso iun... 10-3
Return Codes for the Copy Servicescuvn.... 10-4

Copy Service X‘01; Copy Stringcivrivienann 10-5

Copy Service X‘02”: Copy Block, 10-12

Copy Service X‘03”: Connect for Copy to PC Session 10-19

Copy Service X‘04’: Disconnect for Copy to PC Session 10-22

Chapter 10. Coding Copy Service Requests 10-1

Introduction

Introduction

This chapter describes how to code requests for the copy services provided
by the API.

The copy services allow your application program to copy data into a
personal computer window, as well as copy data from one area into another
within the same personal computer window. The copy services also allow
copying of data between any host and notepad sessions. (Before you can
use a personal computer window as the target for a copy operation, you
must use the Connect for Copy to PC Session service to designate the
session as a valid copy target. You must also use the Disconnect for Copy
to PC Session service when you no longer want your personal computer
session to be a target for copy operations.)

The copy services also allow your application program to copy data from
one presentation space or buffer to another. Copying graphics characters
or program symbol set characters is not allowed.

When copying between sessions that have different character code types
(i.e., PC characters and host/notepad characters), a translation will occur.

The copy services provided by the API are:

e Copy String Service: Use this service to copy a string from a
specified presentation space or buffer into another specified
presentation space or buffer.

o Copy Block Service: Use this service to copy a block from a
specified presentation space or buffer into another specified
presentation space or buffer.

e Connect for Copy to PC Session Service: Use this service to
identify a personal computer session as being a valid target session for
the copy services.

o Disconnect for Copy to PC Session Service: Use this service to
identify a personal computer session as no longer being a valid target
for the copy services.

Copy services are available for use only if you specify COPY = YES at
customization time.

10-2

Introduction

The major copy operations are: copy string and copy block. The copy
string operation copies all characters beginning with the specified starting

character up to and including the specified ending character, as shown
below:

e Copy string

If the source is specified as:

Bl ow is the time for all good
women to come to the aid of their part

the string copied to the target is:

Now is the time for all good
women to come to the aid of their party

The copy block operation copies all characters in the block of text formed
by the specified starting and ending characters, as shown below:

e Copy block

If the source is specified as:

B ow is the time for all good
women to come to the aid of their part

the block copied to the target is:

Now is the time for all good
men to come to the aid of their party

Requesting the Copy Services

To request any of the copy services, load the registers and the parameter
list with the proper values, and use the INT 7AH instruction to signal the
workstation program that it has a request to process.

Note: Before your application can request the copy services