| index | OLT | DEV-I | HDA | R/W | MICFL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MLX | OPER | DATA | ACC | RPI |  |
| LGND | panel |  |  | PWR |  |
| START | CTL-I |  |  | LOC |  |
| FSI |  |  |  | INST |  |
| MSG |  |  |  |  |  |
| SENSE |  |  |  |  |  |
| MICRO |  |  |  |  |  |
|  |  |  |  |  |  |
| VOL. R01 | VOL. R02 | VOL. R03 | VOL. R04 | VOL. R05 | VOL. R06 |
|  |  |  |  |  |  |

Volumes R01 through ROG accompany each Control Module and support all 3350s attached.

## 5

MAINTENANCE INFORMATION MANUAL
ORDERING PROCEDURE (IBM Internal)
Individual pages of the 3350 Maintenance Information Manual can be ordered from the San Jose plant by using the Wiring Diagram/Logic Page Request (Order No. 120-1679). In the Diagram/Logic Page Request (Order No. 120-1679). In the
columns headed "Logic Page" enter the page identifier inforcolumns headed "Logic Page" enter the page identifier infor-
mation: sequence number, sheet number, part number, and EC number. Groups of pages can be ordered by including a description (section, volume, etc.) and the machine serial number.

This manual was prepared by the IBM General Products Division, Technical Publishing, Department G26, San Jose, California 95193
© Copyright International Business Machines Corporation 1976

## CE SAFETY PRACTICES

All Customer Engineers are expected to take every safety precaution possible and observe the foliowing safety pra ices while maintaining IBM equipmen
You should not work alone under hazard:us conditions or around equipment with dangerous vol tage.
advise your manager if you MUST work alone.
2. Remove all power, ac and dc, when removing or assem. power supplies, performing mechanical inspection of pow er supplies, or installing changes in machine circuitry.
3. After turning off wall box power switch, lock it in the

Off position or tag it with a "Do Not Operate" tag, Form
229-126. Pull opwer supoly cord whenever possible.
4. When it is absolutely necessary to work on equipmen having exposed operating mechanical parts or exposed live electrical circuitry anywhere in the machine, observ
a. Another person familiar
with power off controls mus
. Another person familiar
b. Do not wear rings, wrist watches, chains, bracelets, of

Keeply insulated pliers and screwdrivers.
. When using hand in pocket.
are set correctly and that insulated probes of pontrols are set correctly and
capacity are used.
Avoid contacting ground potential (metal floor strips, machine frames, etc.). Use suitable rubber mats, pur chased locally if neces
a. Using a hammer to drive pins, riveting, staking, etc.
b. Power or hand drilling, reaming, grinding, etc.
c. Using spring hooks, attaching springs.
d. Soldering, wire cutting, removing steel bands.
cals, etc.
Performing any other work that may be hazardous to 6. Follow special safett instructions when performing special-
ized tasks, such as handling cathode ray tubes and extremelv high voltages. These instructions are outlined in CENS
nd the safety portion of the maintenance manuals.
7. Do not use solvents, chemicals, greases, or oils that have

Do not use solvents, chemic
not been approved by IBM.
8. Avoid using tools or test equipment that have not been ap proved by IBM.
. Replace worn or broken tools and test equipment
10. Lift by standing or pushing up with stronger leg muscles
this takes strain off back muscles. Do not lift any equip. ment or parts weighing over 60 pounds.

1. After maintenance, restore all safety devices, such as guards,
2. Each Customer Engineer is respon
no action on his part renders producte to be certain that customer personnel to hazards.
3. Place removed machine covers in a safe out-of.thewa
over them.
4. Ensure that all machine covers are in place before returning 5. Always place CE tool kit away from walk areas where
one can trip over it; for example, under desk or table.
5. Avoid touching moving checking for play, etc.
6. When using stroboscope, do not touch ANYTHING - it
may be moving.
7. Avoid wearing loose clothing that may be caught in machinery. Shirt sleeves must be left buttoned or rolled above
8. Ties must be tucked in shirt or have a tie clasp (preferably nonconductive) approximately inches from end. Tie chains are not recommended
9. Before starting equipment, make certain fellow CEs and
customer personnel are not in a hazardous position.
10. Maintain good housekeeping in area of machine while performing and after completing maintenance.
Knowing safety rules is not enough.
An unsafe act will inevitely
An unsafe act will inevitably lead to an acciden.
RTIFICIAL RESPIRATION

## General Consideration

1. Start Immediately - Seconds Count Do not move victim unless absolutely necessary to remove from danger. Do not wait or look for help or stop to
loosen C .
2. Check Mouth for Obstruc
3. After victim is breathing by himself or when help is available:
a. Loosen a. Loosen clothing.
b. Place victim on his sid
c. Keep victim warm.
4. Remain in Position

After victim revives, be ready to resume respiration if
necessary.
Have someone summ
6. Don't Give Up U U it interruption until victim is breathing without help or is certainly dead.

## Rescue Breathing for Adults

1. Place victim on back; lift neck
and tilt head way back. (Quickly and tile heaa way back. ( ruick
remove any noticeable food o objects from mouth.)
2. Pinch nose closed; make airtight seal arour


3. Continue breathing for the victim 12 times per minute

WITHOUT STOPPING.
4. If chest does not rise (expand), roll victim onto side
and pound firmly between shoulder blades to remove and pound firmly between shoulder blades to remove
blocking material. Also, try lifting jaw hisher wit your fingers. Resume rescue breathing.

R/W SAFETY MAPS . . . . . R/W $100-287$ | REFERENCE TO OTHER SECTIONS |
| :---: |
| HDA Cable Swap Procedure. . HDA 713 |
| Read/Write Operation . . . . |


onitored to ensure that all Write controls are unctioning correctly. If a Safety Check is detected, Read/Write Safe is deactivated which suspends all urther writing. Read/Write Check (Bus In Bit 3) is activated to signal the controller that an error has

occurred and the type of Read/Write Check is latched \begin{tabular}{l}
for further sensing. <br>
Figure 1 <br>
System Sense Byte 12 (Format 1) <br>
and Routine B3 Error <br>
Message Byte 8. <br>

| Bit | Check |
| :--- | :--- |
| 0 | Multichip Check |
| 1 | Capable Enable Check |
| 2 | Write Overrun Check |
| 3 | Index Check |
| 4 | Delta I W Check |
| 5 | Control Check |
| 6 | Write Transition Check |
| 7 | Write Current during | <br>

\hline
\end{tabular}

## Figure 2

System Sense Byte 19
nd Routine B3 Error
and Routine B3 Error
Bit Check



| 441300 |
| :--- |
| $\mathbf{3 1}$ Mar 76 |

4411303
30
Jul 76 READ/WRITE CHECK SENSE BYTE ANALYSIS

## Read/Write Checks

- Sense Byte 8, bit 3 active indicates a Read/Write Check. The Read/Write Check is further defined by Sense Bytes 12 and 19. See Figure 1.
- A Read/Write Check causes a Fault Symptom Code to be developed from Sense Bytes 8,12 , and 19. The Fault Symptom Code is then placed in Sense Bytes 22 and 23.
If Sense Bytes 12 and 19 are both ' 00 ', Fault Symptom Code 1400 is developed

If Sense Byte $12=$ ' 00 ' and Sense Byte 19, bits 4 or 5 are active, Fault Symptom Code 14F4 or 14F8 is developed.
If Sense Byte 12 = '01' to ' FF ', Fault Symptom Code 14XX is developed ( $\mathrm{XX}=$ value of Sense Byte 12).

## Physical Drive Address

Sense Byte 4 contains the bit significant drive address but does not indicate the string on multistring subsystems (see Figure 1). The string must be determined from the logical unit address.

## Cyinder And Head Addres

The logical cylinder and head addresses can be determined from Sense Bytes 5 and 6 See R/W 400 to convert logical cylinder and head addresses to physical cylinder and head numbers.




| EC0110 | 2358635 |
| :---: | :---: |
| Seq. 1 of 2 | Part No. |


| 441300 | 441303 | 441310 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 31 Mar 76 | 30 Jul 76 | 27 Jun 80 |  |  |

Figure 1. Drive Voltage

** Use a scope to measure the ripple. See PWR 290 for the procedure.

Note 1. When replacing A1K2(A1L2), check the ddressing jumpers. See INST 6.
Note 2: When replacing A1C2(A1T2), A1C4(A1T4), 102( P (S2), A D4(A 1S4), or Pwr Amp adjusted. See ACC 800, Entry B for procedure

$\square$

## Error Description

Read/Write Check is a drive failure indicating that an unsafe condition occurred during a Read or Write peration. Read/Write Check is sent to the controller on Inbus bit 3 when:

- Set Read/Write is active.
- A drive tag that senses drive status is active. See OPER 100 and 101


## Force Read/Write Check

Read/Write Check is forced on when any one of the checks A is forced. Microdiagnostic routine B8, test F is the first test in the linked series of microdiagnostics that forces which in turn forces Read/Write Check. Tests in microdiagnostic routines A5 and AD force Read/Write Check using the other check conditions

## Reset Read/Write Check

Read/Write Check is reset when the check condition that is causing the Read/Write Check is reset. The check conditions are reset by

> Check Reset.
> Read/Write Reset.
> Pwr On CE Reset.

## Circuit Description

Read/Write Check is activated when one of eleven unsafe conditions $\boldsymbol{A}$ is active. Each of these unsafe conditions sensed separately by either a Sense Read/Write or active and the eleven unsafe conditions are sensed and found to be inactive, the Read/Write Check is false.

## Diagnostic References

READ/WRITE MICRODIAGNOSTIC
The following microdiagnostic routines exercise the Read/Write circuits (see MICRO 10 for looping instruc tions):

Routine A5 (MICFL 130)
$\begin{array}{ll}\text { Routine AD } & \text { (MICFL 130) } \\ \text { (MICFL }\end{array}$
Routine AF (MICFL 320)
Routine B2 (MICFL 380)
Routine B8 (MICFL 630)
Routine BB (MICFL 740)

## SCOPING REFERENCES

Use the following microdiagnostic tests along with the Sequence Descriptions and charts on the indicated pages to isolate the problem:

Routine A5, test 3 (R/W 250)
Routine AD, test $1 \quad$ (R/W 260)
Routine AD, test 8 (R/W 266)
Routine AD, test 9 (R/W 270)
Routine B8, test D (R/W 276)
$\begin{array}{lll}\text { Routine B8, test D } \\ \text { Routine B8, test } F \\ \text { (R/W } & \text { W 280) }\end{array}$ Routine BB, test 1 (R/W 286)





|  | ${ }_{\text {EC0122 }}$ | 23586 |
| :---: | :---: | :---: |
| 3350 | Seq. 2 of 2 | Par N |


| 441300 | $\begin{array}{l}441303 \\ 31 \text { Mar 76 }\end{array}$ |
| :--- | :--- |
| 30 | Jul 76 |

-C

## Error Description

Write Transition Check indicates that Write Transitions were not detected within 8 microseconds after Write Gate Control is turned on. Each of the following
conditions must exist for Write Transitions to occur
Head is selected.
Write Current is active
Write Data is active.
Write Transition Checks can be caused by a control line Write Transition Checks can be caused by a control line
failure or an open data path. These failures can be in the controller logic, drive logic, or in the HDA.

## Circuit Description

Write Transition errors are detected in the HDA and transferred to the Write Transition Check latch in the drive on the MARS Unsafe line. Write Transition Check activates Read/Write Check which causes the controller to send Error Alert to the storage control. Write Transition Check is indicated to the storage control by Inbus Bit 6 being active during a Sense Read/Write operation. See OPER 101.

## Force Write Transition Check

Microdiagnostic routine AD, test 8 forces Write Transition Check by selecting an invalid head and the
activating Write Gate. The Head Address Register is set to ' $3 C^{\prime}$ (this activates Chip Select 7 and Head Select 2) in an attempt to select physical head 30 (a non-existent head). The HDA logic activates Unsafe non-existent head
Current which causes the Write Transition Check latch to set.

## Reset Write Transition Check

The Write Transition Check latch is reset by the following:

Check Reset.
Rd* Wr Reset.
Pwr On CE Reset

## Diagnostic References

READ/WRITE MICRODIAGNOSTICS
The following microdiagnostic routines exercise the
Read/Write circuits (see MICRO 10 for looping instruc-
tions): tions):

Routine A5 (MICFL 130)
Routine AD (MICFL 240)
Routine AF (MICFL 320)
Routine B2 (MICFL 380)
Routine B8 (MICFL 630)

SCOPING REFERENCES
Use the following microdiagnostic tests along with the Sequence Descriptions and charts on the indicated pages to isolate the problem:

Routine A5, test 3 (R/W 250) $\begin{array}{ll}\text { Routine AS, test } 3 & \text { (R/W 250) } \\ \text { Routine AD, test } 1 & \text { (R/W 260) }\end{array}$
Routine AD, test 8 (R/W 266)
Routine AD, test 9 (R/W 270
Routine B8, test D (R/W 276
Routine BB, test 1 (R/W 286)


WRITE CURRENT DURING READ CHECK (Write I Check)



## C C C C C C C C

WRITE CURRENT DURING READ CHECK (Write I Check)

## Error Description

Write Current during Read Check (Write I Check) indicates that logic internal to the HDA detected Write Current during a Read operation. This condition is ndicated to the drive logic by the MARS Unsafe line MARS Unsafe, Set Read* Write and MST Outbus Bit 3 Read Gate), set the Write I Check latch. Write I Check tivt to the controller on Inbus Bit 7 during a Sense command.

## Force Write I Check

Microdiagnostic routine AD, test 8 forces Write Current during Read Check (Write I Check) by setting the
diagnostic latch and performing a Set Read ${ }^{*}$ Write atch is set by the Diagnostic Set command and Outbus Bit 6 (see OPER 101).

## Reset Write I Check

The Write I Check latch is reset by the following
Check Reset.
Pwr On CE Reset

## Diagnostic References

READ/WRITE MICRODIAGNOSTICS
The following microdiagnostic routines exercise the Read/Write circuits (see MICRO 10 for looping instruc tions):

Routine.A5
Routine AD
Routine AF (MICFL 240)
Routine B2 (MICFL 380)
Routine B8 (MICFL 630)
Routine BB (MICFL 740)
SCOPING REFERENCES
Use the following microdiagnostic tests along with the Sequence Descriptions and charts on the indicated page Sequence Descriptions and charts on the indicated pages te the problem
Routine A5, test 3 (R/W 250)
Routine AD, test 1 (R/W 260) $\begin{array}{ll}\text { Routine AD, test } 8 & \text { (R/W 266) } \\ \text { Routine AD, test } 9 & (R / W 270)\end{array}$ $\begin{array}{ll}\text { Routine AD, test } 9 \\ \text { Routine B8, test } D & (R / W / W 276)\end{array}$ Routine B8, test F (R/W 280) Routine BB, test 1 (R/W 286)




## CONTROL CHECK

## Error Description

Control Check is caused by MST Outbus Bit 1 (Write Gate) and MST Outbus Bit 3 (Read Gate) both being active when Set Read*Write is active. Control Check sent to the controller on Inbus Bit 5 during a Sense Read* Write command.

## Force Control Check

Microdiagnostic routine AD, test 8 forces Control Chec by a diagnostic Set Read*Write command with MST Outbus bits 1 and 3 active.

## Reset Control Check

Control Check is reset by the following

## Check Reset

Pwr On CE Reset

## Diagnostic References

READ/WRITE MICRODIAGNOSTICS
The following microdiagnostic routines exercise the Read/Write circuits (see MICRO 10 for looping instruc tions):

$$
\begin{array}{ll}
\text { Routine A5 } & \text { (MICFL 130) } \\
\text { Routine AD } & \text { (MICFL 240) } \\
\text { Routine AF } & \text { (MICFL 320) } \\
\text { Routine B2 } & \text { (MICFL 380) } \\
\text { Routine B8 } & \text { (MICFL 630) } \\
\text { Routine BB } & \text { (MICFL 740) }
\end{array}
$$

## SCOPING REFERENCES

Use the following microdiagnostic tests along with the Sequence Descriptions and charts on the indicated pages to isolate the problem:

Routine A5, test 3 (R/W 250) Routine AD, test 1 (R/W 260) Routine AD, test 8 (R/W 266) Routine AD, test 9 (R/W 270) Routine B8, test D (R/W 276) Routine B8, test F (R/W 280) Routine BB, test 1 (R/W 286)



DELTA I W CHECK




## 

## DELTA I W CHECK

## Error Description

Delta I W Check indicates that one of the following conditions occurred:

- Writing was attempted on an outer (even numbered) movable head or a fixed head and Delta Write current was not detected.
- Writing was attempted on an inner (odd numbered) movable head and Delta Write current was detected.

Delta I W Check activates R/W Check (see R/W 110) Delta I W Check is sent to the controller on Inbus Bit 4 during a Sense Read/Write command

## Force Delta I W Check

Microdiagnostic routine AD, test 9 forces Delta I W Check by selecting physical head 1 and issuing a iagnostic set command with Outbus Bit 2 active. Tore Delta Write current.

## Reset Delta I W Check

Delta I W Check is reset by the following:
Check Reset.
Pwr On CE Rese

## Diagnostic References

READ/WRITE MICRODIAGNOSTICS
The following microdiagnostic routines exercise the Read/Write circuits (see MICRO 10 for looping instruc
位 tions):

| Routine A5 | (MICFL 130) |
| :--- | :--- |
| Routine AD | (MICFL 240) |
| Routine AF | (MICFL 320) |
| Routine B2 | (MICFL 380) |
| Routine B8 | (MICFL 630) |
| (MICFL 740) |  |

$\begin{array}{ll}\text { Routine B2 } & \text { (MICFL 380) } \\ \text { Routine B8 } & \text { (MICFL 630) }\end{array}$
Routine B8 (MICFL 630)

SCOPING REFERENCES
Use the following microdiagnostic tests along with the Sequence Descriptions and charts on the indicated page to isolate the problem:

Routine A5, test 3 (R/W 250)
Routine AD, test $1 \quad(\mathrm{R} / \mathrm{W} 260)$
Routine AD, test 8 ( $R / W$ 266)
Routine AD, test 9 ( $R / W$ 270)
Routine B8, test D (R/W 276)
$\begin{array}{ll}\text { Routine B8, test } D \quad(R / W 276) \\ \text { Routine B8, test } F & (R / W 280)\end{array}$
Routine BB, test 1 ( $\mathrm{R} / \mathrm{W} 286$ )



Note: When replacing A1C2(A1T2), A1C4(A1T4), A1D2(AIS2), A1D4(A1S4), or Pwr Amp P532(P534), the servo velocity gain must be adjusted. See ACC 800, Entry B for
procedure.


3350 $\square$

## 

## Error Description

Write Overrun indicates that writing was attempted through an Index Mark. (Writing into or out of an Index is valid but not both.)

MST Outbus Bit 1 activates Write Gate Control when Set Read/Write is active. If Write Gate Control is active through an Index Mark, Write Overrun is indicated and Read/Write Check is set on. A subsequent Sense Read/Write co

## Force Write Overrun Check

Microdiagnostic routine AD, test 8 forces Write Overrun Check by:

1. Setting Read/Writ
2. Orienting on Index
3. Waiting until just before the next Index the activating Write Gate Control (MST Outbus Bit 1) and keeping it active through Index.

## Reset Write Overrun Check

Write Overrun Check is reset by the following:
Check Reset
Rd ${ }^{*}$ Wr Reset
Pwr On CE Reset

## Diagnostic References

READ/WRITE MICRODIAGNOSTICS
The following microdiagnostic routines exercise the Read/Write circuits (see MICRO 10 for looping instructions):

Routine A5 (MICFL 130) Routine AD (MICFL 240) Routine AF (MICFL 320) Routine B2 (MICFL 380) Routine BB (MICFL 740)

SCOPING REFERENCES
Use the following microdiagnostic tests along with the Sequence Descriptions and charts on the indicated pages to isolate the problem.

Routine A5, test 3 (R/W 250)
Routine AD, test $1(\mathrm{R} / \mathrm{W} 260)$
Routine AD, test 1 (R/W 260)
Routine AD, test 8 (R/W 266)
Routine AD, test 8 (R/W 266)
Routine AD, test 9 ( $\mathrm{R} / \mathrm{W} 270$ )
Routine B8, test D (R/W 276)
Routine B8, test F (R/W 280)
Routine B8, test F (R/W 280)
Routine BB, test 1 (R/W 286)



## C C C C C C C C C C C C C C C C C C C C C C C C C <br> CAPABLE/ENABLE CHECK



Note 1: When replacing A1K2(A1L2) and/or A2G2, check the addressing jumpers. See INST 6
Note 2: When replacing A1C2(A1T2), A1C4(A1T4), 103(P53), A1D4(A ( S4), or Pwr Amp in must be adjusted See ACC 800, Entry B for procedure.



CAPABLE/ENABLE CHECK
R/W 172

- Copyright IBM Corporation 1976


## Write Enable

Write operations are enabled by turning the $\mathrm{R} / \mathrm{W}$ or Read switch to the $\mathrm{R} / \mathrm{W}$ position. The storage control determines if the drive is write enabled by issuing a Sense Status 1 Tag and looking for an active Inbus Bit 4 .


*R/W or Read switch must be in the R/W position.


## CAPABLE/ENABLE CHECK

## Error Description

Capable/Enable Check indicates that one of the following conditions occurred:

- Writing was attempted with the R/W or Read switch set to the Read position.
- Reading or Writing was attempted with the drive not Ready or with the Servo not track following.
apable/Enable Check activates R/W Check (see R/W 114). Capable/Enable Check is indicated to the
controller on Inbus Bit 1 during a Sense Read*Write tag


## Force Capable/Enable Check

Microdiagnostic routine B8, test F forces
Capable/Enable Check by issuing a Rezero command Capable/Enable Check by issuing a Rezero command
immediately followed by a Set Read/Write command. Since the drive is not track following when the Set Read/Write command is issued, Set Rd*Wr Capable Check TP becomes active and sets the Capable/Enable Check latch.

## Reset Capable/Enable Check

Capable/Enable Check is reset by the following

## Check Reset. <br> Rd*Wr Reset.

Pwr On CE Reset.

## Diagnostic References

READ/WRITE MICRODIAGNOSTICS
The following microdiagnostic routines exercise the Read/Write circuits (see MICRO 10 for looping instructions):

Routine A5 (MICFL 130)
Routine AD (MICFL 240)
Routine AF (MICFL 320)
Routine B2 (MICFL 380)
Routine BB (MICFL 740)
SCOPING PROCEDURES
Use the following microdiagnostic tests along with the Sequence Descriptions and charts on the indicated pages to isolate the problem:

Routine A5, test 3 ( $\mathrm{R} / \mathrm{W} 250$ )
Routine AD, test 1 ( $\mathrm{R} / \mathrm{W} 260$ )
Routine AD, test 8 (R/W 266)

Routine AD, test 9 (R/W 270) Routine B8, test D (R/W 276)
Routine B8, test F (R/W 280) Routine BB, test 1 ( $\mathrm{R} / \mathrm{W} 286$ )


| EC0176 | 2358649 |
| :---: | :---: |
| Seq. 10 of 1 | Part No. |

$0000000000000000000000000000000000$


[^0]Use a scope to measure the ripple. See PWR 290 for the procedure.


Figure 1. Drive Voltage Chart

| Voltage* | Test Point | Tolerance | Maximum** <br> AC Ripple | Page Entry |
| :--- | :---: | :---: | :---: | :--- |
| -4 V | A1C2 (A1T2) B06(-) to A1K2D08(+) | -3.85 to -4.50 V | $0.23 \mathrm{Vp-p}$ | PWR 255, A |
| +6 V | A1F2 (A102) B11 (+) to A1 F2 (A102) D08(-) | +5.76 to +6.24 V | $0.08 \mathrm{Vp-p}$ | PWR 260, A |

* Use a digital voltmeter to check voltages.
* Use a scope to measure the ripple. See PWR 290 for the procedure.


## Error Description

Multiple chips selected indicate that two or more head Multiple chips selected indicate that two or more head
select chips were active at the same time and a Read or
Write operation was attempted.

The +6 V to MARS Module line is monitored for
excessive current. If excessive current is detected, the Multichip Selected line becomes active and the
Multichip Check latch is set. Multichip Check activates Read/Write Check (see R/W 114). Multichip Check is Inbus Bit 0 during a Sense Read/Write Status command.

## Force Multi-Chip Chec

Microdiagnostic routine A5, test 3 forces Multichip Check by setting HAR to ' 08 ' and activating Chip Select 1 line. The routine then issues a Diagnostic Set command which turns on the Diagnostic latch, forcing Chip Select 0 .

Reset Multichip Check
Multichip Check is reset by the following
Check Reset.
Rd ${ }^{\text {Wr }}$ Rr Reset.
On CE Reset.

## Diagnostic Reference

READ/WRITE MICRODIAGNOSTICS
The following microdiagnostic routines exercise the Read/Write circuits (see MICRO 10 for looping instructions):

Routine AD (MICFL 240)
Routine AF (MICFL 320)
Routine B2 (MICFL 380)
Routine B8 (MICFL 630)
Routine BB (MICFL 740)
SCOPING REFERENCES
Use the following microdiagnostic tests along with the Sequence Descriptions and charts on the indicated page to isolate the problem:

Routine A5, test 3 (R/W 250)
Routine AD, test $1 \quad(\mathrm{R} / \mathrm{W} 260)$
$\begin{array}{ll}\text { Routine AD, test } 1 & (R / W 260) \\ \text { Routine AD, test } 8 & \text { (R/W 266) }\end{array}$ Routine AD, test 9 (R/W 270) Routine B8, test D (R/W 276) Routine B8, test $\mathrm{F} \quad(\mathrm{R} / \mathrm{W} 280)$ Routine BB, test 1 (R/W 286)

$\square$
$C \mathrm{C}$

## C

C 1

## ( <br> 1

## C C C



## PAD GATE CHECK

## Error Description

Pad Gate Check indicates that Pad Gate (Outbus Bit 2) and Write Gate (Outbus Bit 1) are both active when Set and Write Gate (Outbus Bit 1) are both active when Set Read/Write Check (see R/W 114). Pad Gate Check is indicated to the controller on Inbus Bit 5 during a Sense Status 0 Tag.

## Force Pad Gate Check

Microdiagnostic routine AD, test 9 forces Pad Gate Check with a Set Diagnostic tag and an active MST Outbus Bit 4.

## Reset Pad Gate Check

Pad Gate Check is reset by the following:
Check Reset.
Rd ${ }^{*}$ Wr Reset.
Pwr On CE Reset.

## Diagnostic References

READ/WRITE MICRODIAGNOSTICS
The following microdiagnostic routines exercise the Read/Write circuits (see MICRO 10 for looping instruc tions):

$$
\begin{array}{ll}
\text { Routine A5 } & \text { (MICFL 130) } \\
\text { Routine AD } & \text { (MICFL 240) } \\
\text { Routine AF } & \text { (MICFL 320) } \\
\text { Routine B2 } & \text { (MICFL 380) } \\
\text { Routine B8 } & \text { (MICFL 630) }
\end{array}
$$

$$
\begin{array}{ll}
\text { Routine B8 } \\
\text { Routine BB } & \text { (MICFL 740) }
\end{array}
$$

## SCOPING REFERENCES

Use the following microdiagnostic tests along with the Sequence Descriptions and charts on the indicated pages to isolate the problem:
$\begin{array}{ll}\text { Routine A5, test } 3 & \text { (R/W 250) } \\ \text { Routine AD, test } 1 & \text { (R/W 260) } \\ \text { Routine AD, test } 8 & (R / \mathbf{W} 266) \\ \text { Routine AD, test } 9 & (R / \mathbf{W} 270) \\ \text { Routine B8, test } D & (R / \mathbf{W} 276) \\ \text { Routio B8, }\end{array}$
Routine B8, test F (R/W 280)
Routine BB, test 1 ( $\mathrm{R} / \mathrm{W} 286$ )


$3350 \quad$| ECO194 <br> Seq. 1 of 1 | 2358652 <br> Part No. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |





| Voltage* | Test Point | Tolerance | Maximum** AC Ripple | Page Entry |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|l\|} \hline-4 \mathrm{~V} \\ +6 \mathrm{~V} \end{array}$ | A1C2 (A1T2) B06(-) to A1K2D08(+) A1F2 (A102) B11 (+) to A1F2 (A102) D08(-) | $\begin{array}{\|l\|} \hline-3.85 \text { to }-4.50 \mathrm{~V} \\ +5.76 \text { to }+6.24 \mathrm{~V} \\ \hline \end{array}$ | $\begin{aligned} & 0.23 \mathrm{~V}-\mathrm{p} \\ & 0.08 \mathrm{~V}-\mathrm{p} \end{aligned}$ | PWR 255, A PWR 260, A |

** Use a scope to measure the ripple. See PWR 290 for the procedure.

$3350 \quad$| EC0200 <br> Seq. 2 of 2 2 | 2358653 <br> Part No. |
| :--- | :--- | :--- | :--- | :--- | :--- |

## C C C C C C C

## Error Description

Head Short Check indicates that excessive current wa detected on the Movable or Fixed Write Select line during a Write operation. The Write Select line is wired in parallel to all of the head center taps. If any head is shorted to ground, excessive current is drawn through the Write Select line during a Write operation (a head shorted to another head is indicated by a Multichip Check).

Head Short Check activates R/W Check (see R/W 114). head Short Check is sent to the controller on +NPL Inbus Bit 4 during a Sense Status 0 command.

## Force Head Short Check

Microdiagnostic routine AD, test 9 forces Head Short Check by doing the following

- Diagnostic Set with Outbus Bit 6 active (sets Diagnostic Latch).
- Diagnostic Set Read/Write with Outbus equal to '4F' (activates Write Gate Control)

This causes excessive current to flow on the Write Select Movable HDA line.

## Reset Head Short Check

Head Short Check is reset by the following
Check Reset.
Rd*Wr Reset.
Pwr On CE Reset

## Diagnostic Reference

READ/WRITE MICRODIAGNOSTICS
The following microdiagnostic routines exercise the Read/Write circuits (see MICRO 10 for looping instruc

Routine A5 (MICFL 130)
Routine AD (MICFL 240)
Routine AF (MICFL 320)
Routine B2 (MICFL 380)
$\begin{array}{ll}\text { Routine B8 } \\ \text { Routine BB } & \text { (MICFL 630) } \\ \text { (MICFL 740) }\end{array}$
SCOPING REFERENCES
Use the following microdiagnostic tests along with the Sequence Descriptions and charts on the indicated page
to isolate the problem
Routine A5, test 3 (R/W 250)
$\begin{array}{ll}\text { Routine A5, test } 3 & \text { (R/W 250) } \\ \text { Routine AD, test } 1 & \text { (R/W 260) }\end{array}$
$\begin{array}{ll}\text { Routine AD, test } 1 & \text { (R/W 260) } \\ \text { Routine AD, test } 8 & \text { (R/W 266 }\end{array}$
$\begin{array}{ll}\text { Routine AD, test } 8 & (R / W \text { 266) } \\ \text { Row } \\ \text { (R/W 270) }\end{array}$
Routine B8, test D (R/W 276)
Routine B8, test F (R/W 280)
Routine BB, test $1 \quad$ (R/W 286)



| 3350 | EC0204 $\text { Seq. } 2 \text { of } 2$ | 2358654 Part No. | - 4413000 | ${ }_{4}^{441303}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



COCOCO

## PAD IN PROGRESS FAILURE

## Pad Operation Description

The Pad operation pads the track with clock bits from the end of the last Data field to Index. The pad operation is performed by the drive, independent of the controller, after a Write G3 operation (Write Data field). The Outbus Bit 1 (Write Gate). This activates Pad Data Gate in the drive and the Pad operation is started. Pad In Progress is indicated to the storage control by Outbus Bit 5 while Set Read/Write is active. After the Pad Read/Write and disconnect from the controller without affecting padding. When Set Read/Write is not active, Pad In Progress is indicated to the storage control on Inbus Bit 0 during a Sense Status 1 tag.

## Force Pad In Progress

Microdiagnostic routine BB, test 1 forces Pad In Progress by performing a 1-byte Write G3 operation, then checking for Pad In Progress (Inbus Bit 5) while Set Read/Write is still active

## Reset Pad In Progress

Pad In Progress is reset by the following:
Early Index.
Pwr On CE
Pwr On CE Reset.
Read/Write Check

## Index Mark

## Diagnostic References

READ/WRITE MICRODIAGNOSTICS
The following microdiagnostic routines exercise the
Read/Write circuits (see MICRO 10 for looping instruc tions):

Routine A5 $\quad$ (MICFL 130)
Routine AF MICFL 240)
$\begin{array}{ll}\text { Routine AF } & \text { (MICFL 320) } \\ \text { Routine B2 } & \text { (MICFL 380) }\end{array}$
$\begin{array}{ll}\text { Routine B2 } \\ \text { Routine B8 } & \text { (MICFL 630) }\end{array}$
Routine BB (MICFL 740)

## SCOPING REFERENCES

Use the following microdiagnostic tests along with the Sequence Descriptions and charts on the indicated pages to isolate the problem:
$\begin{array}{ll}\text { Routine A5, test } 3 & \text { (R/W 250) } \\ \text { Routine AD, test } 1 & \text { (R/W 260) } \\ \text { Routine AD, test } 8 & (R / W \text { 266) }\end{array}$

Routine AD, test 9 (R/W 270) Routine B8, test D (R/W 276) $\begin{array}{lll}\text { Routine B8, test F } & \text { (R/W 280) } \\ \text { Routine BB, test } 1 & \text { (R/W 286) }\end{array}$



3350 \begin{tabular}{|c|c|c|c|c|c|}

\hline | ECO212 |
| :---: |
| Seq. 2 of 2 | \& | 2358655 |
| :---: |
| Part No. | <br>

\hline
\end{tabular}

## $\mathrm{C} C \mathrm{C} \mathrm{C}$

## PAD COMPLETE FAILURE

## Pad Operation Description

The Pad operation pads the track with clock bits from the end of the last Data field to Index. The operation is performed by the drive, independent of the controller, after a Write G3 operation (Write Data field). T
controller activates Outbus Bit 2 , then de-activates
Outbus Bit 1 (Write Gate). This activates Pad Data Gat in the drive and the Pad operation is started. The storage ontrol is now free to disconnect from the drive. When he drive senses Eanl Index, the Pad operation is rese and the Pad Attention latch is set. This activates an reselects the drive to determine the type of Attention. The Pad Complete Attention is indicated to the Storage Control on NPL Inbus Bit 7 during a Sense Drive Status Tag.

## Force Pad Complete

Microdiagnostic routine BB, test 1 forces Pad Complete by performing a 1 -byte Write G3 operation and then waiting until Index is passed before checking for Pad Complete. Test 1 then deselects the drive and checks for Attention to be active.

## Reset Pad Complete

Pad Complete is reset by the following:

> Attention Reset. Pwr On CE Reset. Read/Write Check.

## Diagnostic References

READ/WRITE MICRODIAGNOSTICS
The following microdiagnostic routines exercise the
Read/Write circuits (see MICRO 10 for looping instructions):

| Routine A5 | (MICFL 130) |
| :--- | :--- |
| Routine AD | (MICFL 240) |
| Routine AF | (MICFL 320) |
| Routine B2 | (MICFL 380) |
| Routine B8 | (MICFL 630) |

$\begin{array}{ll}\text { Routine AF } & \text { (MICFL 320) } \\ \text { Routine B2 } & \text { (MICFL 380) }\end{array}$
Routine BB

## SCOPING REFERENCES

Use the following microdiagnostic tests along with the Sequence Descriptions and charts on the indicated page to isolate the problem

Routine A5, test 3 (R/W 250)
$\begin{array}{ll}\text { Routine A5, test } 3 & \text { (R/W 250) } \\ \text { Routine AD, test } 1 & \text { (R/W 260) }\end{array}$
$\begin{array}{ll}\text { Routine AD, test } 1 & \text { (R/W 260) } \\ \text { Routine AD, test } 8 & \text { (R/W 266) }\end{array}$
$\begin{array}{ll}\text { Routine AD, test } 8 & \text { (R/W W 266) } \\ \text { Routine AD, test } 9 & \text { (R/W 270) }\end{array}$
Routine B8, test D (R/W 276 Routine B8, test $D \quad(R / W 276)$
Routine B8, test $F \quad(R / W 280)$ Routine BB, test 1 ( $\mathrm{R} / \mathrm{W} 286$ )


## INTRODUCTION

Use Figure 1 (Sequence Chart Description) on this page, the Sequence Chart on R/W 251, and the machine ALDs to isolate the problem

## ANALYSIS PROCEDURE

1. Read the Microdiagnostic Test Description.
2. Loop the microdiagnostic test (see Looping Instructions).
3. Review the Sequence Number Description column in Figure 1.
4. Relate the Sequence Numbers and Chart Line Numbers in Figure 1 to the Sequence Numbers and Chart Line Numbers in the Sequence Chart on series of events as they occur in the microdiagnostic test. The Chart Line Numbers relate the lines on the Sequence Chart on R/W 251 to the events taking place in the microdiagnostic test.
5. The Sequence Chart on R/W 251 shows the active and inactive level for the lines used in the test and inactive level for the lines used in the tes Number Description column in Figure 1 and scope the drives using delayed sweep. The position of the signal scoped can be related to the Tag Gate pulses (Chart Line Number 2)

## MICRODIAGNOSTIC

## Test Description

Routine A5, test 3 forces a Multichip Check with the aid of a special diagnostic command (Tag ' 8 A ' Bus ${ }^{\circ} 02^{\prime}$ ). The test also verifies that a Read/Write Check is generated by the Multichip Check.

Looping Instructions
To loop the test and bypass errors:

1. Load routine A5.
2. Enter 10, 03, 01, 00

Figure 1. Sequence Chart Description

| Test Function | Sequence Number | Sequence Number Description | Chart <br> Line <br> Number | Error Code | MICFL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Force <br> Multi- <br> chip <br> Check | 1 | Select CE Drive | 1 |  | 130 |
|  | 2 | Drive Sync Tag (Use as a sync) | 3 |  |  |
|  | 3 | Attention Reset | 15 |  |  |
|  | 4 | Check Reset | 5 |  |  |
|  | 5 | Device Interface Checks (Sense Interface) | 16 |  |  |
|  | 6 | Set HAR to select additional head | 8 |  |  |
|  |  | Sense Read/Write | 9 |  |  |
|  | 7 | Verify that Multichip Check is inactive (NPL Inbus Bit 0) | 13 | A537 |  |
|  |  | Verify that Read/Write Check is inactive (NPL Inbus Bit 3) | 10 | A538 |  |
|  | 8 | Diagnostic Force Multichip Check | 6 |  |  |
|  | 9 | Diagnostic Set Read/Write | 4 |  |  |
|  |  | Sense Read/Write | 9 |  |  |
|  | 10 | Verify that Multichip Check is active (NPL Inbus Bit 0) | 13 | A530 |  |
|  |  | Verify that Read/Write Check is active | 10 | A531 |  |
|  | 11 | Set Read/Write | 4 |  |  |
|  |  | Check for Error Alert active |  | A532 |  |
|  | 12 | Read/Write Check Reset | 7 |  |  |
|  | 13 | Select CE Drive | 1 |  |  |
|  | 14 | Diagnostic Set Read/Write | 4 |  |  |
|  |  | Sense Read/Write | 9 |  |  |
|  | 15 | Verify that Multichip Check is inactive (NPL Inbus Bit 0) | 13 | A533 |  |
|  |  | Verify that Read/Write Check is inactive (NPL Inbus Bit 3) |  | A534 |  |

SEQUENCE CHART - ROUTINE A5, TEST 3
Legend: $\square$ Inactive level
Active level


## NTRODUCTION

Use Figure 1 (Sequence Chart Description) on this page the Sequence Chart on R/W 261, and the machine ALDs to isolate the problem.

## ANALYSIS PROCEDURE

1. Read the Microdiagnostic Test Description
2. Loop the microdiagnostic test (see Loopin Instructions).
3. Review the Sequence Number Description column in Figure 1 for the function selected.
4. Relate the Sequence Numbers and Chart Line Numbers in Figure 1 to the Sequence Numbers and Chart Line Numbers in the Sequence Chart on series of events as they occur in the microdiagnosti est. The Chart Line Numbers relate the lines on he Sequence Chart on R/W 261 to the events taking place in the microdiagnostic test.
5. The Sequence Chart on R/W 261 shows the active and inactive level for the lines used in the test. Select a sync point as noted in the Sequence Number Description column in Figure 1 and scope the drives using delayed sweep. The position of the signal scoped can be related to the Tag Gate pulses Chart Line Number 2).

## MICRODIAGNOSTIC

## Test Description

Routine AD, test 1 checks drive status to verify that I Write Sense is not active prior to the initiation of any Write operation.
The test checks that the Diagnostic Inhibit Write Gate mode is operational. This is done by orienting on Index initiating a write G1 operation, re-orienting on Index, past Index. Drive status is then sensed for an active I Write Sense (NPL Inbus Bit 1).
The above sequence is repeated with Diagnostic Inhibit Write Gate mode active then checking for an inactive I Write Sense (NPL Inbus Bit 1). This ensures that the Diagnostic Inhibit Write Gate mode circuit is operational.
The test then verifies that Gap Counter error is inactive.

The test then attempts to force a Gap Counter error by setting Diagnostic Inhibit Write Gate mode and Diagnostic Invert Bus Out Parity mode, then initiating a Write G1 operation. The microdiagnostic expects Gap This activity also forces Phase error. The microdiagnostic verifies that Phase error is active. The test then issues a Controller Reset and ensures that Gap Counter error and Phase error are both reset

## Looping Instructions

To loop the test and bypass errors.

1. Load routine AD.
2. Enter $10,01,01,00$

Figure 1. Sequence Chart Description

| Test Function | Sequence Number | Sequence Number Description | Chart <br> Line <br> Number | Error Code | MICFL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Check <br> Diagnostic <br> Inhibit <br> Mode | 1 | Select CE Drive (Use as a sync) <br> Verify that there is no outstanding Attention (NPL Inbus Bit 5) | 1 | AD12 | 240 |
|  | 2 | Check Reset | 4 |  |  |
|  | 3 | Sense Interface | 5 |  |  |
|  |  | Set Read/Write | 3 |  |  |
|  | 4 | Verify that I Write Sense is inactive (NPL Inbus Bit 1) | 7 | AD13 |  |
|  |  | Verify that I Write Sense is active (NPL Inbus Bit 1) | 7 | AD15 |  |
|  | 5 | Check Reset | 4 |  |  |
|  | 6 | Set Read/Write | 3 |  |  |
|  | 7 | Check Reset | 4 |  |  |
|  |  | Verify that I Write Sense is inactive (NPL Inbus Bit 1) | 7 | AD16 |  |
|  |  | Set Read/Write | 3 |  |  |
|  |  | Verify the following: |  |  |  |
|  |  | No Gap Counter Error |  | AD19 |  |
|  |  | Gap Counter Error |  | AD18 |  |
|  | 8 | Write Data Check |  | AD1A |  |
|  |  | Phase Error |  | AD1D |  |
|  |  | Controller Error |  | AD1B |  |
|  |  | No Gap Counter Error |  | AD1C |  |
|  |  | No Phase Error |  | AD1E |  |
|  | 9 | Check Reset | 4 |  |  |


SEQUENCE CHART - ROUTINE AD, TEST 1
sequence chart - routine ad. test 1 R/W 261
Legend: $\square$ Inactive levs!
Inactive leve Active leve!



OCopyright IBM Corporation 1976. 1977

## INTRODUCTION

Use Figure 1 (Sequence Chart Description) on this page the Sequence Chart on R/W 267, and the machine ALD to isolate the problem.

## ANALYSIS PROCEDURE

1. Read the Microdiagnostic Test Description
2. Loop the microdiagnostic test (see Looping Instructions).
3. Select the function to be scoped from the Test Function rnlumn in Figure 1.
4. Review the Sequence Number Description column in Figure 1 for the function selected.
5. Relate the Sequence Numbers and Chart Line Numbers in Figure 1 to the Sequence Numbers and Chart Line Numbers in the Sequence Chart on series of events as they occur in the microdiagnostic test. The Chart Line Numbers relate the lines on the Sequence Chart on R/W 267 to the events taking place in the microdiagnostic test.
6. The Sequence Chart on $R / W 267$ shows the active and inactive level for the lines used in the test. Select a sync point as noted in the Sequence Number Description column in Figure 1 and scope the drives using delayed sweep. The position of the signal Line Number 2).

## MICRODIAGNOSTIC

## Test Description

Routine AD , test 8 selects the CE drive, then checks for outstanding Spindle Attention. A Check Reset is issued and a check is made to make sure that Read/Write Check is inactive.
The test then forces a Control Check by activating Read Gate and Write Gate to the drive at the same time.
The test then forces a Write Overrun Check by orienting near the end of the active track, activating Write Gate to the drive, and holding it active beyond Index. The test forces a Transition Check by activating Write Gate to the drive without Bus Out bit 4 being active.
The test forces Write Current During Read Check (Read Unsafe) by setting Multichip Select latch on, and activating Read Gate in the drive.
The test makes sure that each of the above error conditions forces a Read/Write Check. After each error is forced, the test issues a Check Reset then verifies that the error is reset.
Looping Instructions
To loop the test and bypass errors:

1. Load routine AD.
2. Enter $10,08,01,00$

Figure 1. Sequence Chart Description

| Test Function | Sequence Number | Sequence Number Description | Chart Line Number | Error Code | MICFL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Reset Read/Write Checks | 1 | Select CE Drive (Use as a sync) <br> Verify that there is no outstanding Attention (NPL Inbus Bit 5) | $\begin{array}{r} 1 \\ 11 \end{array}$ | AD81 | 240 |
|  | 2 | Check Reset Verify that Read/Write Check is inactive | $\begin{array}{r} 5 \\ 10 \\ \hline \end{array}$ | AD82 |  |
| Force Control Check | 3 | Set Read/Write | 4 |  | 240 |
|  | 4 | Drive Sync Tag (Use as a sync) | 3 |  |  |
|  | 5 | Activate Read Gate and Write Gate Simultaneously | $\begin{aligned} & 21 \\ & 14 \end{aligned}$ |  |  |
|  | 6 | Sense Read/Write <br> Verify that Control Check is active (NPL Inbus Bit 5) Verify that Read/Write Check is active | $\begin{array}{r} 9 \\ 11 \\ 10 \\ \hline \end{array}$ | AD84 AD8C |  |
|  | 7 | Check Reset | 5 |  |  |
|  | 8 | Sense Read/Write <br> Verify that Control Check is inactive (NPL Inbus Bit 5) | $\begin{array}{r} 9 \\ 11 \\ \hline \end{array}$ | AD85 |  |
| Force Write Overrun Check | 9 | Set Read/Write | 4 |  | 240 |
|  | 10 | CE Sync Point (Diagnostic Reset Read/Write) (Use as a sync) | 7 |  |  |
|  | 11 | Activate Write Gate | 14 |  |  |
|  | 12 | Sense Read/Write <br> Verify that Write Overrun is active (NPL Inbus Bit 2) Verify that Read/Write Check is active | $\begin{array}{r} 9 \\ 15 \\ 10 \\ \hline \end{array}$ | AD86 AD8D |  |
|  | 13 | Check Reset | 5 |  |  |
|  | 14 | Sense Read/Write <br> Verify that Write Overrun is inactive (NPL Inbus Bit 2) | $\begin{array}{r} 9 \\ 15 \\ \hline \end{array}$ | AD87 |  |
| Force <br> Transition Check | 15 | Set HAR | 8 |  | 240 |
|  | 16 | Activate Write Gate | 14 |  |  |
|  | 17 | Sense Read/Write <br> Verify that Transition Check is active (NPL Inbus Bit 2) Verify that Read/Write Check is active | $\begin{array}{r} 9 \\ 18 \\ 10 \end{array}$ | AD88 AD8E |  |
|  | 18 | Check Reset | 5 |  |  |
|  | 19 | Sense Read/Write Verify that Transition Check is inactive (NPL Inbus Bit 6) | $\begin{array}{r} 9 \\ 18 \end{array}$ | AD89 |  |
|  | 20 | Set Head = 1 | 8 |  |  |
| Force Write Current During Read Check | 21 | Attention Reset |  |  | 240 |
|  | 22 | Diagnostic Set Multiheads (Use as a sync) | 6 |  |  |
|  | 23 | Activate Read Gate | 21 |  |  |
|  | 24 | Sense Read/Write <br> Verify that Read Unsafe is active (NPL Inbus Bit 7) Verify that Read/Write Check is active | $\begin{array}{r} 9 \\ 20 \\ 10 \\ \hline \end{array}$ | $\begin{aligned} & \text { AD8A } \\ & \text { AD8F } \end{aligned}$ |  |
|  | 25 | Check Reset | 5 |  |  |
|  | 26 | Sense Read/Write Verify that Read Unsafe is inactive (NPL Inbus Bit 7) | $\begin{array}{r} 9 \\ 20 \end{array}$ | AD8B |  |

C C C C C C C C C C C C C C C C C C C C C C O C C C C C C C C C
SEQUENCE CHART - ROUTINE AD, TEST 8
SEQUENCE Chart - Routine ad, test 8 R/W 267
Legend: $\square$ Inactive leve!
$\square$ Inactive level
Tumb Tolerance

| $\begin{aligned} & \text { Chart } \\ & \text { Line } \\ & \text { No. } \\ & \hline \end{aligned}$ | Line Name | ALD | Test Point | 12 |  | 45 | 6. 7 | 819 |  | Numbers <br> 11 | $12 \quad 13$ | 14.15 | 16.17 | 18 19 | 20.21 | 22.23 | 24.25 | 26 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | +Selection $A(B)$ | KK140 (KL140) | A1K2 (A1L2) G12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | +NPL Tag Gate | KK100 (KL100) | A1K2 (A1L2) P09 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | -Drive Sync Tag TP | KK170 (KL170) | A1K2 (A1L2) P10 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 | +Set Read*Write | KK170 (KL170) | A1K2 (A1L2) U13 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 | -Check Reset | KK170 (KL170) | A1K2 (A1L2) M10 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 | +Diag Set | KK120 (KL120) | A1K2 (A1L2) G07 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 | -Read*Write Reset | KK170 (KL170) | A1K2 (A1L2) P12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 | +Set HAR | KK120 (KL120) | A1K2 (A1L2) G13 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 9 | -Sense Read*Write | KH100 (KN100) | A1H2 (A1N2) M03 |  |  |  |  |  |  |  |  |  | - | - |  |  |  |  |
| 10 | -Read*Write Check TP | KH100 (KN100) | A1H2 (A1N2) J10 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 11 | +NPL Inbus Bit 5 | KH200 (KN200) | A1H2 (A1N2) D02 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 12 | -MST Outbus Bit 1 | KH140 (KN140) | A1H2 (A1N2) M09 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 13 | -MST Outbus Bit 3 | KH160 (KN160) | A1H2 (A1N2) U09 | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 14 | -Write Gate Control | KH160 (KN160) | A1H2 (A1N2) G12 |  |  |  | See Note. |  |  |  |  |  |  |  |  |  |  |  |
| 15 | +NPL Inbus Bit 2 | KH200 (KN200) | A1H2 (A1N2) B09 |  |  |  |  |  |  |  |  |  |  | Note: This can be easil | s pulse has a <br> ily overlooked | very short <br> d. | duration and |  |
| 16 | -Chip Select 7 HDA | KG170 (KP170) | A1G2 (A1P2) M05 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 17 | -Head Select 2 | KG170 (KP170) | A1G2 (A1P2) D07 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 18 | +NPL Inbus Bit 6 | KH200 (KN200) | A1H2 (A1N2) B02 |  |  |  |  |  |  | 1 |  |  | $\underline{\square}$ |  |  |  |  |  |
| 19 | -MARS Unsafe | KG210 (KP210) | A1G2 (A1P2) G05 |  |  |  |  |  |  |  |  |  |  |  |  | $\stackrel{F}{1}$ | See Note. $\qquad$ |  |
| 20 | +NPL Inbus Bit 7 | KH200 (KN200) | A1H2 (A1N2) D06 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 21 | -Read Transmit | KJ100 (KM100) | A1J2 (A1M2) B09 |  |  | $\square$ |  |  |  |  |  |  |  |  |  | - |  |  |
| 22 | Write Current HDA | KJ100 (KM100) | A1J2 (A1M2) J06 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 23 | --MST Outbus Bit 6 | KG170 (KP170) | A1G2 (A1P2) D13 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## INTRODUCTION

Use Figure 1 (Sequence Chart Description) on this page, the Sequence Chart on R/W 271, and the machine ALDs to isolate the problem.

## ANALYSIS PROCEDURE

1. Read the Microdiagnostic Test Description.
2. Loop the microdiagnostic test (see Looping Instructions).
3. Select the function to be scoped from the Test Function column in Figure 1.
4. Review the Sequence Number Description column in Figure 1 for the function selected.
5. Relate the Sequence Numbers and Chart Line Numbers in Figure 1 to the Sequence Numbers and Chart Line Numbers in the Sequence Chart on series of events as they occur in the microdiagnostic test. The Chart Line Numbers relate the lines on the Sequence Chart on R/W 271 to the events taking place in the microdiagnostic test.
6. The Sequence Chart on R/W 271 shows the active and inactive level for the lines used in the test. Select a sync point as noted in the Sequence Number Description column in Figure 1 and scope the drives using delayed sweep. The position of the signal
soced can be related to the Tag Gate pulses (Chart scoped can be related to the Tag Gate pulses (Chart Line Number 2).

## MICRODIAGNOSTIC

## Test Description

Routine AD, test 9 verifies proper operation of the Head Short Check, Pad Gate Check, and Delta I Write Check circuits.
The test first verifies that the 11 error bits and Read/Write Check are inactive. The test then forces a Pad Gate Check, Head Short Check, and Delta I Write Check using the Drive Diagnostic command. Read/Write Check is forced as a result of the above errors. The test then issues a Check Reset and expects all the error bits to be reset, including the Read/Write Check.

## Looping Instructions

To loop the test and bypass errors:

1. Load routine AD .
2. Enter $10,09,01,00$.

Figure 1. Sequence Chart Description

| Test Function | Sequence Number | Sequence Number | Chart <br> Line <br> Number | $\begin{aligned} & \text { Error } \\ & \text { Code } \end{aligned}$ | MICFL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Reset Read/Write Check | 1 | Select CE Drive (Use as a sync) <br> Verify that there is no outstanding Attention (NPL Inbus Bit 5) <br> Verify that there is no Drive Check (NPL Inbus Bit 2) | $\begin{aligned} & 11 \\ & 21 \\ & 18 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { AD91 } \\ & \text { AD90 } \end{aligned}$ | 240 |
|  | 2 | Sense Interface | 23 |  |  |
|  | 3 | Check Reset | 5 |  |  |
|  | 4 | Set HAR = Head 1 | 6 |  |  |
|  | 5 | Sense Status 0 <br> Verify that Pad Check is inactive (NPL Inbus Bit 5) <br> Verify that Head Short Check is inactive (NPL Inbus Bit 4) | $\begin{aligned} & 12 \\ & 21 \\ & 20 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { AD92 } \\ & \text { AD99 } \end{aligned}$ |  |
|  | 6 | Sense Read/Write <br> Verify that Delta I Write Check is inactive (NPL Inbus Bit 4) Verify that Read/Write Check is inactive | $\begin{array}{r} 7 \\ 20 \\ 4 \end{array}$ | $\begin{aligned} & \text { AD9C } \\ & \text { AD93 } \end{aligned}$ |  |
| Force Head <br> Short <br> Check | 7 | Set Read/Write | 3 |  | 240 |
|  | 8 | CE Drive Sync (Use as a sync) | 8 |  |  |
|  | 9 | Set Drive Diag. Mode = Force Head Short Check | 11 |  |  |
|  | 10 | Raise Write Gate to Drive | 10 |  |  |
|  | 11 | Sense Status 0 | 12 |  |  |
|  | 12 | Reset Potential Intf Check <br> Verify that Head Short Check is active (NPL Inbus Bit 4) Verify that Read/Write Check is active | $\begin{array}{r} 11 \\ 20 \\ \hline \end{array}$ | $\begin{aligned} & \text { AD98 } \\ & \text { AD95 } \end{aligned}$ |  |
|  | 13 | Select CE Drive |  |  |  |
|  | 14 | Check Reset | 5 |  |  |
|  | 15 | Sense Status 0 <br> Verify that Head Short Check is inactive (NPL Inbus Bit 4) | $\begin{aligned} & 12 \\ & 20 \\ & \hline \end{aligned}$ | AD9A |  |
| Force Pad Gate Check | 16 | Set Read/Write | 3 |  | 240 |
|  | 17 | Set Drive Diagnostic Mode = Force Pad Gate Check | 11 |  |  |
|  | 18 | Activate Write Gate to drive | 10 |  |  |
|  | 19 | Sense Status 0 <br> Verify that Pad Gate Check is active (NPL Inbus Bit 5) <br> Verify that Read/Write Check is active | $\begin{array}{r} 12 \\ 21 \\ 4 \\ \hline \end{array}$ | $\begin{aligned} & \text { AD94 } \\ & \text { AD95 } \end{aligned}$ |  |
|  | 20 | Select Service Drive | 1 |  |  |
|  | 21 | Check Reset | 5 |  |  |
|  | 22 | Sense Status 0 <br> Verify that Pad Gate Check is inactive (NPL Inbus Bit 5) | $\begin{array}{r} 12 \\ 21 \\ \hline \end{array}$ | AD96 |  |
| Force Deltal Write Check | 23 | Set HAR $=$ Head 0 | 6 |  | 240 |
|  | 24 | Set Read/Write | 3 |  |  |
|  | 25 | Sense Read/Write Status <br> Verify that Delta I Write Check is inactive (NPL Inbus Bit 4) | $\begin{array}{r} 7 \\ 20 \\ \hline \end{array}$ | AD9B |  |
|  | 26 | Sense Status 1 (Use as a sync) | 14 |  |  |
|  | 27 | Set HAR = Head 1 | 6 |  |  |
|  | 28 | Set Drive Diagnostic Mode = Force Delta 1 Write Check | 11 |  |  |
|  | 29 | Set Read/Write | 3 |  |  |
|  | 30 | Sense Read/Write Status <br> Verify that Delta I Write Check is active (NPL Inbus Bit 4) Verify that Read/Write Check is active | $\begin{array}{r} 7 \\ 20 \\ \hline \end{array}$ | $\begin{aligned} & \text { AD9D } \\ & \text { AD95 } \end{aligned}$ |  |
|  | 31 | Check Reset | 5 |  |  |
|  | 32 | Sense Read/Write Status <br> Verify that Delta I Write Check is inactive (NPL Inbus Bit 4) Verify that Read/Write Check is inactive | $\begin{array}{r} 70 \\ 20 \\ \hline \end{array}$ | $\begin{aligned} & \text { AD9E } \\ & \text { AD97 } \end{aligned}$ |  |

## 



## INTRODUCTION

Use Figure 1 (Sequence Chart Description) on this page the Sequence Chart on R/W 277, and the machine ALD o isolate the problem

## ANALYSIS PROCEDURE

1. Read the Microdiagnostic Test Description.
2. Loop the microdiagnostic test (see Looping Instructions).
3. Review the Sequence Number Description column in Figure 1 for the function selected.
4. Relate the Sequence Numbers and Chart Line Numbers in Figure 1 to the Sequence Numbers and Chart Line Numbers in the Sequence Chart on R/W 277. The Sequence Number refers to the series of events as they occur in the microdiagnostic est. The Chart Line Numbers relate the lines the Sequence Chart on R/W 277 to the
5. The Sequence Chart on R/W 277 shows the active and inactive level for the lines used in the tes. Select a sync point as noted in the Sequence Number Description column in Figure 1 and scope the drives using delayed sweep. The position of the signal scoped can be related to the Tag Gate pulses (Chart Line Number 2)

## MICRODIAGNOSTIC

## Test Description

Routine B8, test D makes sure that Set R/W Tag ' 85 ' operates error free.

## Looping Instructions

To loop the test and bypass errors:

1. Load routine $\mathbf{B 8}$.
2. Enter $\mathbf{1 0}, \mathbf{0 0}, 01,00$.

## Figure 1. Sequence Chart Description

| Test Function | Sequence Number | Sequence Number Description | Chart <br> Line <br> Number | Error Code | MICFL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Check <br> Set <br> Read/Write <br> Tag '85' | 1 | Select CE Drive (Use as a sync) | 1 |  | 630 |
|  | 2 | Sense Interface | 5 |  |  |
|  | 3 | Check Reset <br> Verify that Controller Status Byte is OK | 4 | B8DO |  |
|  | 4 | Set Read/Write Verify that Normal End is inactive | 3 | B8D1 |  |
|  |  | Check for Error Alert <br> If Error Alert is active, check for Controller Check active <br> If Controller Check is not active, check for Read/Write Check active <br> If Read/Write Check is active, check for: <br> Read/Write Safety Checks active <br> Sense Status 0 Checks active <br> (False) Read/Write Check active |  | $\begin{aligned} & \text { B8D8 } \\ & \text { B8DA } \\ & \text { B8D9 } \end{aligned}$ |  |

Legend: $\square$ Inactive levs!
Active leve!


## INTRODUCTION

Use Figure 1 (Sequence Chart Description) on this page the Sequence Chart on R/W 281, and the machine ALDs to isolate the problem.

## ANALYSIS PROCEDURE

1. Read the Microdiagnostic Test Description.
2. Loop the microdiagnostic test (see Looping Instructions).
3. Review the Sequence Number Description column in Figure 1 for the function selected.
4. Relate the Sequence Numbers and Chart Line Numbers in Figure 1 to the Sequence Numbers and Chart Line Numbers in the Sequence Chart on series of events as they occur in the microdiagnostic test. The Chart Line Numbers relate the lines on he Sequence Chart on R/W 281 to the events taking place in the microdiagnostic test.
5. The Sequence Chart on R/W 281 shows the active and inactive level for the lines used in the test. Select a sync point as noted in the Sequence Number Description column in Figure 1 and scope the drives using delayed sweep. The position of the signal scoped can be related to the Tag Gate pulses
(Chart Line Number 2). Chart Line Number 2).

## MICRODIAGNOSTIC

## Test Description

Routine B8, test F checks the operation of the Servo Off Track Error logic. Servo Off Track (Access Status Bit 2) generates a Drive Check as the primary indication, but it is always accompanied by one of the following:

Read/Write and Capable/Enable Check Read/Write Check
Read/Write
Index Check
The servo off track error is caused by setting Read/Write latch on during a Rezero operation.

## Looping Instructions

To loop the test and bypass errors:

1. Load routine $\mathbf{B 8}$.
2. Enter 10,0 F 01,00

Figure 1. Sequence Chart Description

| Test Function | Sequence Number | Sequence Number Description | Chart <br> Line <br> Number | Error Code | MICFL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Force <br> Servo Off <br> Track <br> Error | 1 | Select CE Drive | 1 |  | 630 |
|  | 2 | Attention Reset | 10 |  |  |
|  | 3 | Check Reset | 5 |  |  |
|  | 4 | Drive Sync Tag (Use as a sync) | 3 |  |  |
|  | 5 | Rezero <br> Verify that Busy is active (NPL Inbus Bit 6) | 11 | B8F0 |  |
|  | 6 | Sense Status 1 (Use as a sync) | 13 |  |  |
|  | 7 | Set Read/Write | 4 |  |  |
|  | 8 | Sense Status 0-Sync Point only | 6 |  |  |
|  | 9 | Access Status (Sense Status 4) <br> Verify that Servo Off Track Error is active (NPL Inbus Bit 2) | 12 | B8F2 |  |
|  | 10 | Attention Reset <br> Verify that Drive Check is active (NPL Inbus Bit 2) | 10 | B8F3 |  |
|  | 11 | Sense Read/Write Status <br> Verify that Capable/Enable Check is active (NPL Inbus Bit 1) <br> Verify that Index Check is active (NPL Inbus Bit 3) <br> Verify that Read/Write Check is active | $7$ | B8F4 B8F5 B8F6 |  |
|  | 12 | Check Reset | 5 |  |  |
|  | 13 | Diagnostic Go Home to reset Access Errors <br> Verify that Drive Check is inactive (NPL Inbus Bit 2) |  | B8F7 |  |
|  | 14 | Sense Read/Write Status <br> Verify that Capable/Enable Check is inactive (NPL Inbus Bit 1) <br> Verify that Index Check is inactive (NPL Inbus Bit 3) <br> Verify that Read/Write Check is inactive | $\begin{aligned} & \hline 7 \\ & 9 \\ & 8 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { B8F8 } \\ & \text { B8F9 } \\ & \text { B8FA } \end{aligned}$ |  |
|  | 15 | Reselect CE Drive | 1 |  |  |
|  | 16 | Rezero <br> Verify that Busy is active (NPL Inbus Bit 6) | 11 | B8F0 |  |
|  | 17 | Access Status (Sense Status 4) <br> Test for correct Ending Status | 12 | B8FB |  |
|  | 18 | Attention Reset | 10 |  |  |



SEQUENCE CHART ROUTINE B8, TEST F


## SEQUENCE DESCRIPTION - ROUTINE BB, TEST 1

## INTRODUCTION

Use Figure 1 (Sequence Chart Description) on this page the Sequence Chart on R/W 287, and the machine ALDs to isolate the problem.

## ANALYSIS PROCEDURE

1. Read the Microdiagnostic Test Description
2. Loop the microdiagnostic test (see Looping Instructions).
3. Review the Sequence Number Description column in Figure 1 for the function selected.
4. Relate the Sequence Numbers and Chart Line Numbers in Figure 1 to the Sequence Numbers and Numbers in Figure 1 to the Sequence Numbers R/W 287. The Sequence Number refers to the series of events as they occur in the microdiagnostic test. The Chart Line Numbers relate the lines on the Sequence Chart on R/W 287 to the events taking place in the microdiagnostic test.
5. The Sequence Chart on R/W 287 shows the active and inactive level for the lines used in the test. Select a sync point as noted in the Sequence Number Description column in Figure 1 and scope the drives using delayed sweep. The position of the signal coped can be related to the Tag Gate pulses (Chart Line Number 2).

## MICRODIAGNOSTIC

## Test Description

Routine BB, test 1 selects the CE drive, Write G3, checks for Pad In Progress, waits for at least 17 ms for the padding to complete, then checks that Pad In Progress is not present, and that Pad Complete is active.

## Looping Instructions

To loop the test and bypass errors:

1. Load routine BB.
2. Enter $10,01,01,00$.

Figure 1. Sequence Chart Description

| Test Function | Sequence Number | Sequence Number Description | Chart <br> Line <br> Number | $\begin{aligned} & \text { Error } \\ & \text { Code } \end{aligned}$ | MICFL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Write <br> Padding <br> Test | 1 | Select CE Drive | 1 |  | 740 |
|  | 2 | Sense Interface (Use as a sync) | 14 |  |  |
|  | 3 | Check Reset | 4 |  |  |
|  | 4 | Attention Reset | 5 |  |  |
|  | 5 | Set Read/Write | 3 |  |  |
|  |  | Verify the following: |  |  |  |
|  |  | Pad in Progress is inactive (NPL Inbus Bit 5) | 10 | BB12 |  |
|  |  | Pad in Progress is active (NPL Inbus Bit 5) | 10 | BB13 |  |
|  |  | Error Alert is inactive |  | BB15 |  |
|  |  | Pad Complete (NPL Inbus Bit 7) | 16 | BB16 |  |
|  |  | Pad Complete Attention (NPL Inbus Bit 0) | 12 | BB17 |  |
|  | 6 | Select CE Drive | 1 |  |  |
|  |  | Attention Reset | 5 |  |  |
|  | 7 | Verify that Pad Complete is inactive (NPL Inbus Bit 7) | 15 | BB1A |  |



## 

SEQUENCE CHART ROUTINE BB, TEST 1
Legend: $\square$ Inactive leve!
Active leve


- Copyright IBM Corporation 1976

A Data Check is an error indicating an unsuccessful termination of a Read operation. There are four types of No Data Found, and No AM Found During Retry.

## NO SYNC BYTE FOUND

No Sync Byte Found is an error indicating a failure to detect a Sync Byte prior to a field. There are four types
of No Sync Byte Found errors:

- No Sync Byte Found - HA field
- No Sync Byte Found - Count Field
- No Sync Byte Found - Key field
- No Sync Byte Found - Data field


## ECC DATA CHECK

ECC Data Check is an error indicating an unsuccessful compare of the ECC characters at the end of a field with the ECC data tabulated during the Read operation.
郎

- ECC Data Check - HA field
- ECC Data Check - Count field
- ECC Data Check - Key field
- ECC Data Check - Data field


## NO DATA FOUND

No Data Found is a controller error indicating that data was not detected coming from the drive during a Read operation. No Data Found is caused by the controller
not detecting clock bits from the HDA during a VFO Fast Sync. VFO Fast Sync occurs in the Gap just prior to a field.

## NO AM FOUND DURING RETRY

No AM Found During Retry is a microprogram detected rror indicating a failure to find an Address Mark after attempting to reorient on a failing record 27 times. The
initial failure causing the retry operation is due to one of he following conditions occurring in a Count or Data field of a record other than Record 0 (R0):

No Sync Byte Found
ECC Data Check
No Data Found
Command Over

©Copyright IBM Corporation 1976, 1977, 1978, 1979, 1980, 1981

## Data Check Failures

Sense Byte 0 , bit $4=1$ indicates a Data Check
Sense Byte $7=$ ' 53 ' indicates a Data field ECC correctable Data Check. The error is corrected in main storage using the error pa

Sense Byte $7=$ ' 4 x ' indicates an ECC uncorrectable Data Check and the Fault Sumptom Code is 494 x where x defines the Field and type of error. The record is retried by the Storage Contro $y$ rereading the record. If the retry operation is successful, count is placed in bytes 14 and 15 of the Usage and Error is at E/C 437467 or later for the $3830-2 /$ ISC or at E/C 450555E or later for a 3880 , ECC uncorrectable errors in the HA Field will also be logged as a Format 4 temporary error (with Byte 1 iit $0=0$ ). If the retry operation is unsuccessful in any field after a minimum of 27 retries, the Data Check is permanent
(indicated by Sense Byte 1 Bit $0=1$ ) and is logged as a Format 4 record.
Logging of all ECC uncorrectable errors may be forced when it desirable to gather detailed sense information to better analyze
problem. Logging Mode is forced on the $3830-2 /$ ISC by placing the CE Mode switch in the Forced Logging position. Refer to 3880 documentation ( 3880 Storage Control, 3350 MLX ENTRY 4) for information on how to place the 3880 in Forced Logging Mode. Fault Sumptom Code is 92 C0. This is the error that occurs if
unable to read at all. unable to read at all.

Physical Drive Address
Sense Byte 4 contains the bit significant drive address but does not indicate the string on multistring subsystems. The string must be determined from the logical unit address (see START 103).

Cylinder and Head Address
Logical cylinder and head addresses can be determined from Sense Bytes 5 and 6 . The procedure on R/W 400 can be used to convert logical cylinder and head addresses to the physical
cylinder and head numbers. cylinder and head numbers.

Sense Bytes 8 through 13 contain the Logical CCHH, Record, and Sector numbers, respectively, as read from the disk. Thes bytes are not valid for Data Checks in the Home Address and Count fields and are not valid for No Data Found errors.

## OLT 3350 PSC

This OLT (Routine M5) will analyze a selected track or range of adjacent tracks on a single surface and develop the necessary skip displacement data to skip any defect found. This is preferable to assigning an alternate track. Do not use this OLT for data check
occurring at random addresses.
CAUTION: Data on track prior to this OLT will be destroyed.

Figure 1. Sense Byte Definitions

| Sense Bytes 0 through 23 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
|  |  |  |  | $\begin{array}{\|c\|} \hline \begin{array}{l} \text { Phy } \\ \text { Addr } \end{array} \\ \hline \end{array}$ | $\begin{aligned} & \text { Cyl } \\ & \text { Addr } \\ & \text { Lo } \end{aligned}$ | $\begin{array}{\|c\|} \hline \left.\begin{array}{c} \mathrm{CyI} \\ \mathrm{Addr} \\ \mathrm{Ai} \mathrm{Hd} \end{array} \right\rvert\, \end{array}$ | For mat | C | C | H | H | R | S |  |  |  |  |  |  |  |  |  |  |

Use sense information and
Figure to dotermine the
following for each error received:

## 1. Physical drive addre. from Sense Byte See START 103 . See START 103 to

 determine the stringon a multistring sub-
2. $\begin{gathered}\text { system. } \\ \text { Trpe of }\end{gathered}$
2. $\begin{aligned} & \text { Type of Data Check } \\ & \text { from Seinse Bytes } 22\end{aligned}$ rom Sense Bytes 22
and 23 or Sense Byte
7 and 23 or Sense By
7 No Sy By Be
Found, ECC Data 7 No Sync Byte
Found, CCC Data
Check, No Data Check, No Data
Found, or No AM Found Duri
Retry).

\#3
Tf Data Checks occur -
repeatedly at the same
address, consider running
$\square$
Return to MAP

| 3350 | Seq. 2 of 2 | Part No. |
| :--- | :--- | :--- | :--- | :--- | | History | 18 Aug 78 |
| :--- | :--- | :--- |

## Microdiagnostics

routine bl
In Default mode, Read operations are performed on all physical movable heads on cylinder 4 and then on all fixed heads (if installed). If Data Checks occur, the routine continues on error until all heads have been read. A summary Message Bytes (Errors Codes B1FD through BIFF). Options are available to stop on error, loop on error, and run on any selected track. See MICRO 56 for running instruction

ROUTINE B2
Read and Write operations are performed on all physical movable heads on the CE cylinder. The sequence is as follows

1. Seek
2. Read Home Address.
3. Write R0 and R1.
4. Read R0 and R1.
5. Repeat Steps 2, 3, and 4 for each CE track
6. Read full CE cylinder

See MICRO 60 for running instructions.
OLTS
OLT T3350PSA
The Home Address and Record 0 are read and checked on all tracks scanned. The CCHH bytes of the Home Address are compared to the CCHH bytes of the RO Count field. Alternat track assignment is checked to make sure that al Home
Addresses that are flagged as defective point to an alternat track and that the alternate track points back to the defective track. Unused alternate tracks point back to themselves. See
OLT 20 for running instructions.

Olt T3350PSB
All data records are read and checked on all tracks scanned. CE cylinders are not checked. See OLT 24 for running instructions.
olt T3350PSC
Creates a track-by-track directory of nonzero skip displacemen information on cylinder 561 . After the directory has been created, this OLT can be used to restore $\mathrm{HA} / \mathrm{ROs}$ with skip displacement information obtained from the directory. This
OLT can also be used to assign a skip displacement for a defective track, a method preferable to assigning an alternate track. Do not use this OLT for data checks occurring at random addresses.



## Data Check Failures - Upper Heads

ECC Uncorrectable Data Checks can occur on upper heads due to a shift of track to head position. Physical head addresses of decimal 20 through 29 (hex ' 14 ' through ' 1 D ') have been used to describe upper heads, however, the condition may occassionally be found outside of this range. Most frequently, the condition will result in Fault Symptom Codes of $4940,4941,4944$, or 4945 and can be corrected by rewriting the HDA. OLT 3350 PSC or any utility progra which completely rewrites the HDA including Home Addresses with proper skip displacements can be used.

## ormat 4 Error Loggin

Sense Byte $7=$ ' $4 x$ ' indicates an ECC uncorrectable Data Check and the Fault Symptom Code is 494x where $\mathbf{x}$ define the Field and type of error. The record is retried by the Storage Control by rereading the record. If the retry opera Storage Control by rereading the record. If the retry oper Usage and Error Statistics record (Format 6). If the functional microcode disk is at $\mathrm{E} / \mathrm{C} 437467$ or later for the $3830-2 /$ /ISC or at E/C 450555 E or later for a 3880 , ECC uncorrectable errors in the HA Field will also be logged as a Format 4 temporary error (with Byte 1, Bit $0=0$ ). If the retry operation is unsuccessful in any field after a minimum Sense Byte 1, Bit $0=1$ ) and is logged as a Format 4 record.
Logging of all ECC uncorrectable errors may be forced when analyze a problem. Loging Mode is forced on the $3830-2 /$ /SC by placing the CE Mode switch in the Forced Logging position. Refer to 3880 documentation ( 3880 Storage Control, 3350 MLX ENTRY 4) for information on how to place the 3880 in Forced Logging Mode.

## Recovery

1. Temporary Errors Only (Sense Byte 1, Bit $0=0$
A. Have customer dump data from HDA
B. Verify that an SD Directory exists on cylinder 561 of HDA. If Directory does not exist, create one using OLT Rewrite HDA using OLT
C. Rewrite HDA using OLT 3350 PSC, Routine M3 or any available utilty which completely rewrites the HDA ments).
2. Permanent Errors (Sense Byte 1, Bit 0=1)
A. Tracks with permanent errors cannot be read in the normal manner for data recovery. A CE tool is available to provide a slight head offset. Use of this tool will usually enable complete recovery. The tool, which is a servo card with built in offset, is availab in $\mathrm{B} / \mathrm{M} 2354577$. The card $\mathrm{P} / \mathrm{N}$ is 5864500
B. Install offset card and jumper per instructions provided with the Bill of Material. Adjust servo velocity gain using microdiagnostic routine A7.
C. Have customer dump his data from the HDA.
D. Create new SD Directory with OLT 3350 PSC. This Directory will be offset and must be restored later.
E. Remove offset card and jumper. Reinstall original serv card and verify servo velocity gain.
F. Rewrite the HDA with OLT 3350 PSC Routine M3 G. Create new SD Directory with OLT 3350 PSC
H. Return machine to customer and check for proper operation


Note 1: Bill of Material 2354577 contains servo offset card 5864500 tor Note 2: This step creates an SD Directory which is offsee from the normel head tracking position by the servo offset card. The SD Hirectory must be rewritten
HDA rewrite is completed.

3350


## 

Note 2: To determine if the pulser card is causing the failure, either disconnect P535 from the pulser card 'the drive will run with P535 disconnected) or disconnect P535, otate it by 180 degrees, and reconnect P535 (this moves the problem from one drive to the other).

Figure 1. Voltage Chart Controller

| Voltage** | Test Point | Tolerance | Maximum** <br> AC Ripple | Page Entry |
| :--- | :---: | :---: | :---: | :---: |
| -4 V | A2T2BO6(-) to A2T2D08(+) | -3.84 to -4.16 V | $0.04 \mathrm{Vp-p}$ | PWR 55, B |
| +6 V | A2T2G11 (+) to A2T2J08(-) | +5.76 to +6.24 V | 0.08 V p-p | PWR 60, A |

* Use a digital voltmeter to check voltages.

Use a scope to measure the ripple. See PWR 90 for the procedure
Drive

| Voltage* | Test Point | Tolerance | Maximum*** <br> AC Ripple | Page Entry |
| :--- | :--- | :--- | :--- | :--- |
| -4 V | A1C2 (A1T2) B06(-) to A1K2D08(+) | -3.85 to -4.50 V | 0.23 V p-p | PWR 255, A |
| +6 V | A1F2 (A102) B11 (+) to A1F2 (A102) D08(-) | +5.76 to +6.24 V | 0.08 V p-p | PWR 260, A |

- Use a digital voltmeter to check voltages.
** Use a scope to measure the ripple. See PWR 290 for the procedure.


## SOLATED SINGLE TRACK FAILURES

## kip Displacement

A single defective track can usually be corrected by using a Skip Displacement. The displacement can be developed and assigned using OLT 3350PSC (see OLT 25).
Note: This method applies to either movable or fixed heads and is preferable to alternate track assignment described below.

## Alternate Track Assignmen

A single defective track is re-assigned by the customer to an lternate track (see OLT 30). Tracks that are flagged as
defective and their assigned alternates can be determined by Ining OLT 3350PSA (see OLT 220). For further informa ion on alternate tracks, see OLT 30

## Fixed Head Track Failures

A defective fixed head track can be re-assigned by the
customer to one of the movable head alternate tracks. If this is not acceptable to the customer, the only alternative is to

Note: See Skip Displacement, above

Note. To determine if the puser card causing the failure, either disconnect P535 from the pulser card the drive will run with P535 disconnected) or disconnect P535, otate it by 180 degrees, and reconnect drive to the other.


OCopyright IBM Corporation 1976, 1977, 1980, 1981



## MODULE AND CABLE ISOLATION POCEDURE

1. Remove A1B3 (R/W and PLO terminator card) from the last module on the string.
2. Remove cable from A1B3 in the A2 Module and install the terminator card
3. Rerun the failing test on Drive $A$ of the $A 2$ Module If the test fails, the problem is in the A2 Module Return to the fowchart and continue. If the test does next step.
4. Remove the terminator card from A1B3 and econnect the cable.
5. Remove the cable from A1B3 in the first B2 Module on the string and install the terminator card.
6. Rerun the failing test on Drive A of the A2 Module. If the test fails, use the diagram on R/W 326 to isolate the he test fails, use the diagram on $\mathrm{R} / \mathrm{W} 326$ to isolate the
problem to a module, cable, or interframe connector, then return to the flowchart and continue. If the test does not fail, repeat Steps 4 through 6 on each B2 Module until the problem is isolated to a module, and use the diagram on R/W 326 and the same procedure above to isolate the problem to a module, cable, or interframe connector, then return to the flowchart and continue.
$\square$

## 

 READ DATA PATH

## 

CONTROLLER


| $\begin{array}{l}441300 \\ \text { 31 Mar 76 }\end{array}$ | $\begin{array}{l}441303 \\ \text { 30 Jul 76 }\end{array}$ | $\begin{array}{l}441306 \\ \text { 1 Apr 7 }\end{array}$ |
| :--- | :--- | :--- |


| 31 Mar 76 | 340 Jul 76 | $\begin{array}{l}\text { 44 Apr } 77 \\ \text { 1 }\end{array}$ |
| :--- | :--- | :--- |

Head selection failures are detected after a Seek operation by reading an incorrect physical address from the PA3 byte in the Home Address or from the Count field. While this type of failure can be caused by the PA3
byte being written incorrecty it is mere likely the byte being written incorrectly, it is more likely that it is
caused by selecting the wrong head.

\#1



Figure 1. PA3 Byte Conversion to Physical Head Number

| Movable Head |  | Fixed Heads |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Hex <br> Value PA3 | Movable Head Number | Hex <br> Value PA3 | Fixed Head Number | Hex Value PA3 | Fixed Head Number |
| 00 | 00 | 40 | 00 | 7 C | 30 |
| 02 | 01 | 42 | 01 | 7E | 31 |
| 04 | 02 | 44 | 02 | 80 | 32 |
| 06 | 03 | 46 | 03 | 82 | 33 |
| 08 | 04 | 48 | 04 | 84 | 34 |
| OA | 05 | 4A | 05 | 86 | 35 |
| OC | 06 | 4 C | 06 | 88 | 36 |
| OE | 07 | 4 E | 07 | 8A | 37 |
| 10 | 08 | 50 | 08 | 8 C | 38 |
| 12 | 09 | 52 | 09 | 8 E | 39 |
| 14 | 10 | 54 | 10 | 90 | 40 |
| 16 | 11 | 56 | 11 | 92 | 41 |
| 18 | 12 | 58 | 12 | 94 | 42 |
| 1 A | 13 | 5A | 13 | 96 | 43 |
| 1 C | 14 | 5 C | 14 | 98 | 44 |
| 1 E | 15 | 5 E | 15 | 9A | 45 |
| 20 | 16 | 60 | 16 | 9 C | 46 |
| 22 | 17 | 62 | 17 | 9 E | 47 |
| 24 | 18 | 64 | 18 | A0 | 48 |
| 26 | 19 | 66 | 19 | A2 | 49 |
| 28 | 20 | 68 | 20 | A4 | 50 |
| 2A | 21 | 6A | 21 | A6 | 51 |
| 2 C | 22 | 6 C | 22 | A8 | 52 |
| 2 E | 23 | 6 E | 23 | AA | 53 |
| 30 | 24 | 70 | 24 | AC | 54 |
| 32 | 25 | 72 | 25 | AE | 55 |
| 34 | 26 | 74 | 26 | во | 56 |
| 36 | 27 | 76 | 27 | B2 | 57 |
| 38 | 28 | 78 | 28 | B4 | 58 |
| 3A | 29 | 7A | 29 | B6 | 59 |

3350

| EC0327 <br> Seq. 2 of 2 | 2358669 <br> Part No. |
| :--- | :--- |


| 341300 | 441303 |  |
| :--- | :--- | :--- |
| 31 Mar 76 | 30 Jul 76 | 441306 |
| 1 Apr 77 |  |  |

© Copyright IBM Corporation 1976, 1977

## C 1 C 1 i 1 <br> HEAD SELECTION FAILURE


$\square$

| $\begin{array}{l}441300 \\ \text { 31 Mar 76 }\end{array}$ | $\begin{array}{l}441303 \\ 30 \text { Jul } 76\end{array}$ | $\begin{array}{l}\text { 44 1306 } \\ \text { 1 Apr } 77\end{array}$ |
| :--- | :--- | :--- | :--- |



## 



## HEAD SELECTION SCOPING PROCEDURE

## head selection scoping procedur

## PURPOSE

The purpose of the Head Selection Scoping Procedure is to check that all head selection lines are at the correct level with

1. A Static Check with no heads selected
2. A Dynamic Check while looping a microdiagnostic that selects a single head.

## STATIC CHECK

## Microdiagnostic

Power on the drive and do not load microdiagnostics.

## Action

Check all Head Select lines for the inactive level using Figure 1. See Note.
Are the signals correct for all lines?
Yes $\longrightarrow$ Perform Dynamic Check.
No Use the cable checkout procedure on R/W 372 and the ALDs to isolate the problem.

## DYNAMIC CHECK

## Microdiagnostic

Loop routine B1 on a failing head and bypass errors.

1. Load routine
2. See MICRO 56 for parameter entries.

Use R/W 344 to determine which Select lines should be Use R/W 344 to determine which Select lines microdiagnostic.

## Scope Setup

Sweep
Trigge
Trigge
Slope (+) A1H2(A1N2)M05 + Selected A(B)
Ch $1 \quad$ See Figures 1 through 4.

3350

© Copyrigh IBM Corporation 1976, 1977

## Action

Check all Head Select lines for the proper levels (active and inactive) using Figures 1 through 4 . All scope
pictures (Figures 2 through 4) show the active level. Are the signals correct for all Head Select lines?
Yes $\longrightarrow$ Return to MAP.
No Use the cable checkout procedure on R/W 372 and the ALDs to isolate the problem.

## Figure 2.

Ch 1 AIG2(A1P2)S02 + Selected A(B) Volts/div 0.1
Probe $\times 10$
Ch $2+$ Movable (or Fixed) Hd Select Gate (See Figure 1.) Volt/div 0.1
Probe $\times 10$


Figure 3.
Ch 1 Chip Select (1-7) (See Figure 1.) Volts/div 0.5
Probe x10
Ch 2 -Head Sel (1-2) (See Figure 1.) Volts/div 0.1
Probe $\times 10$


## Figure 4.

Ch 1 -Fixed Heads 0.31 or 32-59 (See Figure 1.) Probe x 10
Ch 2 -MARS HAR Bit (2 to 4) (See Figure 1.) Volts/div 0.1
Probe $\times 10$


| Line Name* | Pin Location | Active Level | Inactive Level |
| :---: | :---: | :---: | :---: |
| + Movable Hd Select Gate | A1G2 (A1P2) P12 | +MST | -MST |
| + Fixed Hd Select Gate | A1G2 (A1P2) P10 | +MST | -MST |
| -Chip Select 0 ) | A1G2 (A1P2) J11 | Gnd | $+6 \mathrm{~V}$ |
| -Chip Select 1 | A1G2 (A1P2) P02 |  |  |
| -Chip Select 2 | A1G2 (A1P2) M03 |  |  |
| -Chip Select 3 (See | A1G2 (A1P2) P04 |  |  |
| -Chip Select 4 Note) | A1G2 (A1P2) M04 |  |  |
| -Chip Select 5 | A1G2 (A1P2) M02 |  |  |
| -Chip Select 6 | A1G2 (A1P2) P03 |  |  |
| -Chip Select 7 | A1G2 (A1P2) M05 | 1 |  |
| -Fixed Heads 32-59 | A1G2 (A1P2) S09 | -MST | +MST |
| -Fixed Heads 0-31 | A1G2 (A1P2) S10 |  |  |
| -MARS HAR Bit 2 | A1G2 (A1P2) U11 |  |  |
| -MARS HAR Bit 3 | A1G2 (A1P2) U12 |  |  |
| -MARS HAR Bit 4 | A1G2 (A1P2) U10 |  |  |
| -Head Sel 1 | A1G2 (A1P2) D10 |  |  |
| -Head Sel 2 | A1G2 (A1P2) D07 | - |  |

All lines listed may be found on ALD page KG170
(Drive A) or KP170 (Drive B).
Note: The +6 V measured on a Chip Select line during the inactive state comes from the HDA, not the driver card. An open Chip Select line causes the voltage at the driver card, A1G2(A1P2), to float to the ground level. A Chip Select line thorted to ground causes multichip select failures, not Data Checks.

| Movable Heads |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Physical Movable Heads |  | $\begin{aligned} & \text { Chip } \\ & \text { Sel } \end{aligned}$ | Fixed Heads |  | MARS HAR Bits |  |  | $\begin{aligned} & \mathrm{Hd} \\ & \mathrm{Sel} \end{aligned}$ |  |
| Decimal | Hex |  | 32/59 | 0/31 | 2 | 3 | 4 | 2 | 1 |
| 0 | '0' | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | ' 1 ' | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 2 | '2' | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 3 | '3' | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 4 | '4' | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 5 | '5' | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| 6 | '6' | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
| 7 | '7 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| 8 | '8' | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 9 | '9' | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 10 | ' $\mathrm{A}^{\prime}$ | 2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| 11 | 'B' | 2 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| 12 | 'C' | 3 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| 13 | 'D' | 3 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| 14 | 'E' | 3 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| 15 | 'F' | 3 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 16 | '10' | 4 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 17 | '11' | 4 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| 18 | '12' | 4 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| 19 | '13' | 4 | 0 | 0 | 1 | 0 | - | 1 | 1 |
| 20 | '14' | 5 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| 21 | '15' | 5 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 22 | '16' | 5 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
| 23 | '17' | 5 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
| 24 | '18' | 6 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
| 25 | '19' | 6 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
| 26 | '1A' | 6 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| 27 | '1B' | 6 | 0 | 0 | 1 | , | 0 | 1 | 1 |
| 28 | '1C' | 7 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 29 | '10' | 7 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |


| Fixed Heads |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Physical Fixed Heads |  | $\begin{aligned} & \text { Chip } \\ & \text { Sel } \end{aligned}$ | Fixed Heads |  | MARS HAR Bits |  |  | $\begin{aligned} & \hline \mathrm{Hd} \\ & \mathrm{Sel} \end{aligned}$ |  |
| Decimal | Hex |  | 32/59 | 0/31 | 2 | 3 | 4 | 2 | 1 |
| 0 | '0' | - | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | '1' | - | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 2 | '2' | - | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| 3 | '3' | - | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
| 4 | '4' | - | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| 5 | '5' | - | 0 | 1 | 0 | 0 | - | 0 | 1 |
| 6 | '6' | - | 0 | 1 | 0 | 0 | 1 | 1 | 0 |
| 7 | '7' | - | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
| 8 | '8' | - | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| 9 | '9' | - | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
| 10 | ' ${ }^{\text {' }}$ | - | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 11 | 'B' | - | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
| 12 | 'C' | - | 0 | 1 | 0 | 1 | 1 | 0 | 0 |
| 13 | 'D' | - | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| 14 | 'E' | - | 0 | 1 | 0 | 1 | 1 | , | 0 |
| 15 | 'F' | - | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
| 16 | '10' | - | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 17 | '11' | - | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
| 18 | '12' | - | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| 19 | '13' | - | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 20 | '14' | - | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
| 21 | '15' | - | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
| 22 | '16' | - | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
| 23 | ${ }^{17} 7^{\prime}$ | - | 0 | 1 | 1 | 0 | , | 1 | 1 |
| 24 | '18' | - | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 25 | '19' | - | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
| 26 | '14' | - | 0 | 1 | 1 | 1 | 0 | 1 | 0 |
| 27 | '1B' | - | 0 | 1 | 1 | 1 | 0 | 1 | 1 |
| 28 | '1C' | - | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 29 | '10' | - | 0 | 1 | 1 | 1 | 1 | 0 | 1 |


| Fixed Heads |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Physical Fixed Fixed Heads |  | ChipSel | Fixed Heads |  | MARS HAR Bits |  |  | $\begin{aligned} & \mathrm{Hd} \\ & \text { Sel } \end{aligned}$ |  |
| Decimal | Hex |  | 32/59 | 0/31 | 2 | 3 | 4 | 2 | 1 |
| 30 | '1E' | - | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 31 | '1F' | - | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
| 32 | '20' | - | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 33 | '21' | - | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| 34 | '22' | - | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| 35 | '23' | - | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
| 36 | '24' | - | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 37 | '25: | - | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
| 38 | '26' | - | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
| 39 | '27' | - | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
| 40 | '28' | - | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 41 | '29' | - | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
| 42 | '2A' | - | 1 | 0 | 0 | 1 |  | 1 | 0 |
| 43 | '28' | - | 1 | 0 | 0 | 1 | 0 | 1 | 1 |
| 44 | '2C' | - | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| 45 | '20' | - | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
| 46 | '2E' | - | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
| 47 | '2F' | - | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
| 48 | '30' | - | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| 49 | '31' | - | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
| 50 | '32' | - | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| 51 | '33' | - | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
| 52 | '34' | - | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 53 | '35' | - | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 54 | '36' | - | 1 | 0 | 1 | 0 | 1 | 1 | 0 |
| 55 | '37' | - | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
| 56 | '38' | - | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
| 57 | '39' | - | 1 | 0 | 1 | 1 | 0 | - | 1 |
| 58 | '3A' | - | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
| 59 | '3B' | - | 1 | 0 | 1 | 1 | 0 | 1 | 1 |

$1000000000000000000000000000000000$

## READ DATA SIGNAL SCOPING PROCEDURE

## Purpose

The purpose of the Read Data Signal Scoping Procedure is to provide a method of scoping the HDA Read signal while looping a single track Read operation. The Read signal cannot be scoped directly. An amplifier that is not functional to machine operation is located on the Read
Scoping the Read signal determines:

- If the amplitude of the Read signal from a suspected bad head is adequate
- If the combined frequency response of the head and the disk surface of a suspected bad head or track is within tolerance


## Track Format

The track to be read must be formatted with the standard The track to be read must be formatted with the stand The R1 Count field must be written to reflect the R1 data length and the R1 Data field must be written with an alternating data pattern of 8 bytes of 'AA' and 8 byte of ' FF '. This pattern must be repeated at least ten times

Most microdiagnostics and OLTs that write on the CE cylinder leave the CE tracks formatted with the proper data pattern for this procedure. To format the CE cylinder, run microdiagnostic routine B0 in default mode (see MICRO 52). To format any track, including thos FRIEND. When formating customer tracks be sure data removed since it will be destroyed.

## Looping Instruction

A Read operation can be looped on a specific head using FRIEND or OLT T3350PSB, but microdiagnostic routine B1 is preferred (see MICRO 57, Scope Loop-Physical, fo procedure).
Scope Setup (See Figure 1.)

Sweep
or
$.1 \mathrm{~ms} /$ div

Trigger
ADD
(with Ch 2 inverted)
${ }^{\text {Trigger }}$ Slope ( + ) A1H2(A1N2)J13

+ +Squelch A(B)
Ch 1 A1J2(A1M2)B05
Differential Read X TP A(B)
Volts/div $\quad 10$ to 20 mV (See Note.
Probe
A1J2(A1M2)B07
Differential Read Y TP A(B)
Volts/div $\quad 10$ to 20 mV (See Note.)
Probe $\quad x 10$ and grounded

Action
Use Figures 1 and 2 to obtain the scope picture shown in Figure 3.

## Analysis

The frequency of the repetitive 'AA' pattern is $1 / 2$ of the frequency of the repetitive 'FF' pattern. The amplitude of the ' FF ' pattern is less than that of the 'AA' pattern. This difference in amplitude is due to the ombined frequency response (head resolution) of the head and disk surface.
The peak-to-peak amplitude of the ' $F F$ ' pattern should not fall below 165 millivolts and must be equal to a minimum of $55 \%$ of the average peak-to-peak amplitude average peak-to-peak value of the 'FF' pattern by the average peak-to-peak value of the 'AA' pattern.
As shown in Figure 3, the average peak-to-peak value of the ' AA ' pattern is about 4 divisions and the averag divisions ( $3 / 4=0.75$ ). Head resolution is equal to 0 or $75 \%$. The average peak-to-peak amplitude measurements should be made as close as possible to the nearest tenth of a division.

Figure 1. Scope Setup.


Scope picture may vary depending on the number of FF' and 'AA' patterns written.

Figure 2. Use the same scope setup as Figure 1 and change:
Delay Time -Delay Sweep $=5 \mu \mathrm{~s}$
Horizontal Display = A Intensified during B
Sweep Mode Buttins After Delay Time as portion obtain scope picture as shown on Figure 2


Figure 3. Use the same scope setup as Figure 2 and change Horizontal Display to Delayed Sweep (B).

'FF' ${ }^{\text {Pattern }}$ 'AAA'

Note: Even-numbered movable physical heads and all fixed physical heads normally have about 1.5 time the peak-to-peak voltage amplitude of the odd peak-to-peak value is due to the even numbered physical heads and the fixed physical heads having been written with Hi I W (Hi Write Current).

## Purpose

The purpose of the Read Data Path Scoping Procedure is to provide information to allow scoping of the read data Home Address operation.

## Microdiagnostic

Run microdiagnostic routine AF on the first failing drive (nearest the controller). If all the drives are failing, run microdiagnostic routine AF on Drive A of the A2 Module
Loop test 1 and bypass errors:

1. Load routine $\mathbf{A F}$
2. Enter $10,01,01,01,00$

A Read Home Address operation is looped using physical head 1.

Scope Setup
Sweep
Trigger
$10 \mu \mathrm{~s} / \mathrm{div}$
Trigger
Slope (+)
$\stackrel{\mathrm{A} 2 \mathrm{Q} 2 \mathrm{~J}}{+\mathrm{G} 1}$


$\begin{array}{ll} \\ \mathrm{Ch} 2 \mathrm{Probe} \\ \text { A2T2B05 (J) }\end{array} \times 10$
-Read*Write Data
Volts/div 50 mV

Action

1. The signal should be the same as shown in Figure 1.
2. Scope the same points differentially (ADD Mode and Ch 2 inverted). Compare signals to Figure 2 .
The amplitude after the gap should be 1 V peak-to-peak
$\pm 10 \%$. $\pm 10 \%$.

The portion of the signal that is before the gap is composed of Clock bits coming from the controller. The portion of the signal that is after the gap is composed of
Clock and Data bits coming from the HDA.

Are the signals correct for both Figures 1 and 2?
Yes $\rightarrow$ Return to MAP and continue.
No $\longrightarrow$ Scope test point $A$ (of drive being tested) Scope test print A (of drive being tested)
using the previous Scope Setup and Action Steps 1 and 2. The signals should be the same as shown in Figures 1 and 2.
Are the signals correct?
Yes $\rightarrow$ Use the diagram to isolate the problem.
No $\longrightarrow$ Go to R/W 352 and continue with the Read Data Path Scoping Procedure.

Figure 1. Read Data
Mode $=$ ALT


Figure 2. Read Data Differentially
Mode = ADD


Note: Wires are twisted and pin designations change as shown in diagram. See $R / W 326$ for interframe connector diagram


| Test Point | A | B | C | D | E | F | G | H | (J |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| + Read $*$ Write Data | $A 1 \mathrm{~J} 2(\mathrm{~A} 1 \mathrm{M} 2) \mathrm{D} 13$ | A 1 B 3 B 12 | A 1 U 3 B 12 | A 1 U 2 D 12 | A 1 B 2 B 12 | A 1 B 3 B 12 | A 1 U 3 B 12 | A 2 V 2 B 12 | A 2 T 2 D 07 |
| Read $*$ Write Data | $\mathrm{A} 1 \mathrm{~J} 2(\mathrm{~A} 1 \mathrm{M} 2) \mathrm{D} 12$ | A 1 B 3 B 13 | A 1 U 3 B 13 | A 1 U 2 D 13 | A 1 B 2 B 13 | A 1 B 3 B 13 | A 1 U 3 B 13 | A 2 V 2 B 13 | A 2 T 2 B 05 |

© Copyright IBM Corporation 1976, 1977

## READ DATA PATH SCOPING PROCEDURE

## Scope Setup

Sweep
$20 \mu \mathrm{~s} / \mathrm{di}$
Trigger
Slope ( +
A1H2(A1N2)M05

+ Selected A(B)
Ch 1 A1H2(A2N2)S13
+ Set Read*Write A(B)
Volts/div
$\begin{array}{ll}\text { Probe } & 0.1 \\ \times 10\end{array}$
Ch 2 A1J2(A1M2)B0 9
- Read Transmit A(B) B

Probe
0.1
$\times 10$

## Action

The signal should be the same as shown in Figure 1
Are the signals correct?
Yes $\longrightarrow$ Go to the next scope setup
No Use the diagram on this page and the procedure on R/W 360 to isolate the problem.

## Scope Setup

sweep
rigger
Slope (+)
A1H2(A1N2)M05
Ch 1 A1J2(A1M2)J05

- Squelch Gate A(B)
- Squelch Gate A(B)

Probe $\times 10$

Action
The signals should be the same as shown in Figure 2.
Are the signals correct?
Yes $\longrightarrow$ Use the diagram on this page and the procedure on R/W 350 to isolate the problem
No Use the diagram on this page and the procedure on R/W 360 to isolate the problem

Figure 1. Scope Data Control


Figure 2. Scope Data Control



| Chart <br> Line <br> No | Line Name | ALD | Test Point |  |
| :---: | :--- | :--- | :--- | :--- |
| 1 | +Set Read*Write A(B) | KH140 (KN140) | A1H2 (A1N2) S13 | A |
| 2 | -MST Outbus Bit 2 A(B) | KH160 (KN160) | A1H2 (A1N2) P09 |  |
| 3 | -MST Outbus Bit 3 A(B) | KH160 (KN160) | A1H2 (A1N2) U09 |  |
| 4 | -MST Outbus Bit 4 A(B) | KH160 (KN160) | A1H2 (A1N2) P02 |  |
| 5 | -Read Transmit A(B) | KJ100 (KM100) | A1J2 (A1M2) B09 | B |
| 6 | -Squelch Gate A(B) | KJ100 (KM100) | A1J2 (A1M2) J05 | C |
| 7 | +Read*Write Data A(B) | KJ100 (KM100) | A1J2 (A1M2) D13 |  |
| 8 | -Read*Write Data A(B) | KJ100 (KM100) | A1J2 (A1M2) D12 |  |



The following is a description of a Read G1 operation as it is used in microdiagnostic routine AF, test 01:
See OPER 230 through 233 for a general description of a Read operation.

1. Before the Read G1 tag is executed, the CE drive is selected (Tag '83' Bus ' 10 ') and a Set selected (Tag '83' Bus '10) and
2. As soon as the drive is oriented on Index, the Gap Counter is reset and the microdiagnostic issues a will be available at the RAS test point.)
3. The microdiagnostic issues the Read G1 tag (Tag through 7 is the mol E int Bus Out bits 4 byte count). This indicates that 14 bytes are to be transferred.
4. At Count 64 time, the controller activates Read Gate to the drive.
5. At Count 76 time, the controller activates Unsquelch to the drive.
6. At Count 102 time, the Gap Counter is reset to zero.
7. At Count 1 time, the VFO is locked to data and put in Fast Sync mode.
8. At Count 8 time, VFO Fast Sync is reset and the hardware starts searching for a Sync Byte in SERDES ('19').
9. After the Sync Byte is detected, Data Good is activated This indicates that the next byte entering SERDES is the data byte. If no Sync Byte is detected by Count 22 time, the G1 Retry latch (BG140) is set to allow for a possible skip defect. At Count 128 time, the Gap Counter is reset to zero. VFO is locked to data again and if a Sync Byte is not detected by Count 2 time, a Check End condition with a No Sync Byte Found indication results. See OPER 232
the Sync Byte.
10. Read Mode, Run ECC, and Run Modulo are activated and the Gap Counter is again reset to zero
11. The Gap Counter is set to the inverted modulo count, which in this case is 1 (see number 3 above,
for modulo count). The Sync Byte is placed on Bu In and Sync In is sent to the storage control.
12. Sync Out is returned from the storage control.
13. Fourteen more Sync In and Sync Out cycles transfer the Home Address to the storage control. The data the Home Address to the storage control. The data
transfer is ended when the Gap Counter equals 15.
14. End Data and Transfer ECC are activated and Read Mode is de-activated.
15. The six ECC Bytes are transferred to the ECC Shift Register. If ECC Zeros Compare is active after the x ECC Bytes are transferred, ECC Data Check is blocked.
16. Op End is activated and Normal End is sent to the storage control. If ECC Data Check was not blocked (see number 15 above). Check End, Command Overrun (Bus In bit 0), and ECC Data Check (Bus In bit 3) are sent to the storage control instead.
17. End Response is returned from the storage control.
18. Reset End Condition is activated in the controller


[^1]$\square$
0 O
30

$\square$

# C C C C C C C C C C C C C C C C C C C C C C C <br> READ HA SEQUENCE CHART 

gap counter value

| Chart Line | Line Name | ALD |  |  | READ OP |  |  | GATE |  | FAS | YNC, | DATA AND ECC DATA TRANSFER | END DATA OP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Line Name | ALD | Test Point | ${ }_{1}^{15}$ | $\begin{gathered} 28 \\ \hline \end{gathered}$ | $\stackrel{64}{1}$ | $\stackrel{67}{1}$ | $\stackrel{76}{1}$ | $\stackrel{102}{1}$ | 1 | $\stackrel{8}{1}$ |  |  |
| 24 | -Sync In | BC170 | A2S2 S10 |  |  |  |  |  |  |  |  |  |  |
| 25 | +Sync Out | BC170 | A2S2 S12 |  |  |  |  |  |  |  |  |  |  |
| 26 | +End Data | BG170 | A2P2 G02 |  |  |  |  |  |  |  |  |  |  |
| 27 | -Xfer ECC Control | BG170 | A2P2 306 |  |  |  |  |  |  |  |  |  |  |
| 28 | -ECC Zeros Compare | BC150 | A2S2 406 |  |  |  |  |  |  |  |  |  |  |
| 29 | -Op End | BG170 | A2P2 P04 |  |  |  |  |  |  |  |  |  |  |
| 30 | +Normal End NPL | BE160 | A2K2 D11 |  |  |  |  |  |  |  |  |  |  |
| 31 | +End Response NPL | BF160 | A1G2 S03 |  |  |  |  |  |  |  |  |  |  |
| 32 | +Reset End Condition | BF160 | A2G2 G05 |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | $\sum$ |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |



## HDA CABLE CHECK PROCEDURE

## Purpose

The purpose of this procedure is to check continuity of the HDA cable lines.

## Procedure

1. Set the drive Start/Stop switch to the Stop position
2. Turn the Drive DC Power switch to the Off position.
3. Remove the two cable connectors from the HDA but do not remove the connectors from the Al
bard.
01C (01D) A1A2
C (01D) A1A3
See R/W 370 for the location.
4. Check continuity of cables using Figure 1 on this page and the cable diagram on R/W 370. Refer to
the MAP page that was used to enter this procedure for an indication of the failing lines.

## Action

Are cables OK?
Yes $\longrightarrow$ Rest ore the HDA cables, turn the Drive DC Power switch
page.
No $\longrightarrow$ Repair or replace as required. Exit to START 500 when the trouble is corrected.


* The pin in the $B$ row is connected to the same pin on the

$D$ row on the pin side of the A1 Board. ${ }_{31}{ }^{441300}$ Mar 76 | 441303 |
| :--- |
| 30 | ${ }^{4411306}$ | 441310 |
| :--- |
| 27 |

## Purpose

The purpose of this procedure is to check voltages at the HDA connectors. The voltages should have previously been checked at the A1 logic board. If not, check the voltages using Figure 1 on R/W 312 before continuing.

## Test Equipment Required

Digital Voltmeter
Scope

## Procedure

1. Set the drive Start/Stop switch to the Stop position
2. Turn the drive DC Power switch to the Off position.
3. Remove the two cable connectors from the HDA 01 C (01D) A1A2 01 C (01D) A1A3

See R/W 370 for the location.
4. Turn the drive DC Power switch to the On position
5. Check voltages and ripple at cable end using Figure 1. See Figure 2.

## Action

Are the voltages and ripple correct?
Yes— Turn the drive DC Power switch to the Off position, restore the HDA cables, restore the power, and return to the MAP page.

No The problem is in the HDA cables or the A1 logic board land pattern. See R/W 372 for voltage source. Repair or replace as required. Exit to START 500 when the trouble is corrected.

Figure 1. HDA Voltage Level

| Voltage | Test Point 01C(01D) | Tolerance | Maximum AC Ripple |
| :---: | :---: | :---: | :---: |
| -4V | A1A3 B05 | -3.85 to -4.50 V* | $0.23 \vee \mathrm{p}-\mathrm{p}$ |
| -4V | A1A3 D05 |  |  |
| -4V | A1A3 B06 |  |  |
| -4V | A1A3 D06 |  |  |
| -4V | A1A3 807 |  |  |
| $\begin{aligned} & +6 \mathrm{~V} \\ & +6 \mathrm{~V} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { A1A3 D07 } \\ & \hline \text { A1A3 D10 } \\ & \hline \end{aligned}$ | +5.76 V to +6.24 $\mathrm{V}^{*}$ | $0.08 \vee p-p$ |
| +6V | A1A2 D05 |  |  |

* All voltages are referenced to ground at 01C (01D) A1A2D08 or 01C (01D) A1A3D08.

Figure 2. Cable End View Pin Locations


| 3350 | EC0372 $\text { Seq. } 2 \text { of } 2$ | $2358677$ | $\begin{gathered} 441300 \\ 31 \text { Mar } 76 \end{gathered}$ | $441303$ $30 \mathrm{Jul} 76$ | $441306$ $1 \text { Apr } 77$ | 441310 <br> 27 Jun 80 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$C$ C C BASE PLATE GROUND CHECK PROCEDURE

## Purpose

The purpose of this procedure is to check base plate grounding and base plate isolation from the frame and motor plate.

## Tools Required

CE Meter.

## Procedure

1. Set the DC Power switch to the Off position.
2. Remove the two cables from the HDA: 01C (01D) A1A3 See R/W 370 for the location.
3. Check for continuity from the base plate 5 to the frame. The base plate is grounded to the frame through a wire 3 attached to the left rear of the ase plate mounting pad.
4. Remove the base plate ground wire and check for continuity again. The base plate should be isolated from the frame (minimum resistance is 2 Megohm ) If the base plate is not isolated from the frame, the plate 4 The motor plate and motor case should plate 4 The motor plate and motor case shou
be isolated from the base plate when the HDA cables and the base plate ground wire are removed.
5. Check for continuity from the motor plate to the frame. The motor plate should be grounded to the frame through the motor cable and plug.
6. Check the noise suppression capacitor 2 for a shorted or open condition. To check the capacitor, do the following:
a. Momentarily short the capacitor lead to the capacitor case.
b. Set the CE Meter to RX 1000 and hold one meter lead on the capacitor lead and touch the other meter lead to the capacitor case. The meter should deflect very slightly, then return
to 0 .
c. Quickly reverse the meter leads to the capacitor. The meter should deflect almost twice as far as it did in Step $b$, then return to 0.

Action
Correct any problems found, reinstall the ground wire and HDA cable, then return to the MAP page


$$
0000000000000000000000000000000=00
$$

## 

ADDRESS CONVERSION


3350 | ECO400 |
| :--- | :--- |
| Seq. 1 of 1 | \(\begin{gathered}2358679 <br>

Part No.\end{gathered}\)

| 441300 |
| :--- |
| 31 Mar 76 |

$0000000000000000000000000000000.00$



OCopyright IBM Corporation 1976, 1981

Figure 1. Volume Identification


Figure 2. Sense Byte 6

| High Order Logical Cylinder Address |  |  | Logical Head Address |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|  | $\begin{aligned} & \hline \text { Cy1 } \\ & 256 \\ & \hline \end{aligned}$ |  | 16 | 8 | 4 | 2 |  |
|  |  |  |  |  |  |  |  |

Figure 3. Hex To Decimal Conversion Char



Figure 1. Sense Byte 6


Figure 2. Hex To Decimal Conversion Chart

|  |  | Low Order Character |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
|  | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|  | 1 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
|  | 2 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |
|  | 3 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |
|  | 4 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 |
|  | 5 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 |
| $\dot{d}$ | 6 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 11 | 111 |
| $\stackrel{\text { ér }}{\mathrm{r}}$ | 7 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 |
|  | 8 | 128 | 129 | 130 | 131 | 132 | 133 | 34 | 35 | 136 | 13 | 138 | 139 | 140 | 141 | 142 | 143 |
|  | 9 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 |
|  | A | 160 | 161 | 162 | 163 | 64 | 165 | 166 | 167 | 168 | 16 | 170 | 171 | 172 | 173 | 174 | 175 |
|  | B | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 |
|  | C | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 |
|  | D | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 |
|  | E | 224 | 22 | 22 | 22 | 22 | 22 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 |
|  | F | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 |



Figure 1. Logical Cylinder Address and Logical Head Address to Physical Fixed Head Number in Decimal

| Logical Cylinder Address in Decimal | Logical Head Address In Decimal |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| 001 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| 002 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 |
| 003 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 |

Note: Heads 57,58 , and 59 are not used.

Figure 2. Cylinder Address and Logical Head Address to Physical Fixed Head Number in Decimal

| Cylinder Address in Decimal | Logical Head Address In Decimal |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
| 001 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
| 002 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 |

3350 | $\begin{array}{l}\text { ECO406 } \\ \text { Seq. } 2 \text { of } 2\end{array}$ | $\begin{array}{l}2358681 \\ \text { Part No. }\end{array}$ |
| :--- | :--- |

$\begin{array}{r}4413 \\ 31 \mathrm{Ma} \\ \hline\end{array}$ | 41300 | 441303 | 44311 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Mar 76 | 30 Jul 76 | 41 <br> 21 |  |  |

©Copyright IBM Corporation 1976, 1981

## C C C C

| LOGICAL ADDRESS |  |  | PHYSICAL CYLINDER and HEAD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3330-1 <br> Log CyI <br> Vol 1 * | 3330-11 Log CyI | Log Head | Phy Cyl in Dec | Phy Cyl in Hex | Phy Head Equals |
| 0 | 0 | 00-18 | 0 | 000 | Log Hd |
| 1 | 1 | 00-09 | 0 | 000 | Log Hd +20 |
|  |  | 10-18 | 1 | 001 | Log Hd +10 |
| 2 | 2 | 00-18 | 1 | 001 | Log Hd |
| 3 | 3 | 00-18 | 2 | 002 | Log Hd |
| 4 | 4 | 00-09 | 2 | 002 | Log $\mathrm{Hd}+20$ |
|  |  | 10-18 | 3 | 003 | Log $\mathrm{Hd}+10$ |
| 5 | 5 | 00-18 | 3 | 003 | Log Hd |
| ${ }_{7}$ | ${ }_{7}$ | 00-18 | 4 | 004 | Log Hd |
| 7 | 7 | 00-09 | 4 | 004 | Log $\mathrm{Hd}+20$ |
|  |  | 10-18 | 5 | 005 | Log $\mathrm{Hd}+10$ |
| 8 | 8 | 00-18 | 5 | 005 | Log Hd |
| 9 | 9 | 00-18 | 6 | 006 | Log Hd |
| 10 | 10 | 00-09 | 6 | 006 | Log Hd + 20 |
|  |  | 10-18 | 7 | 007 | $\stackrel{\text { Log }}{\sim} \mathrm{Hd}+10$ |
| 11 | 11 | 00-18 | 7 | 007 | Log Hd |
| 12 | 12 | 00-18 | 8 | 008 | Log Hd |
| 13 | 13 | 00-09 | 8 | 008 | Log Hd +20 |
|  |  | 10-18 | 9 | 009 | $\operatorname{Log~Hd~}^{\log \mathrm{Hd}}+10$ |
| 14 | 14 | 00-18 | 9 | 009 | Log Hd |
| 15 | 15 | 00-18 | 10 | 00A | Log Hd |
| 16 | 1,6 | 00-09 | 10 | 00A | Log Hd +20 |
|  |  |  |  |  | Log Hd |
| 18 | 18 | 00-18 | 12 | 00 C | Log Hd |
| 19 | 19 | 00-09 | 12 | 00 C | Log $\mathrm{Hd}+20$ |
|  |  | 10-18 | 13 | 00 D | Log $\mathrm{Hd}+10$ |
| 20 | 20 | 00-18 | 13 | OOD | Log Hd |
| 21 | 21 | 00-18 | 14 | OOE | Log Hd |
| 22 | 22 | 00-09 | 14 | OOE | Log Hd + 20 |
|  |  | 10-18 | 15 | OOF | Log $\mathrm{Hd}+10$ |
| 23 | 23 | 00-18 | 15 | OOF | Log Hd |
| 24 | 24 | 00-18 | 16 | 010 | Log Hd |
| 25 | 25 | 00-09 | 16 | 010 | Log $\mathrm{Hd}+20$ |
|  |  | 10-18 | 17 | 011 | Log Hd +10 |
| 26 | 26 | 00-18 | 17 | 011 | Log Hd |
| 27 | 27 | 00-18 | 18 | 012 | Log Hd |
| 28 | 28 | 00-09 | 18 | 012 | Log Hd + 20 |
|  |  | 10-18 | 19 | 013 | Log Hd +10 |
| 29 | 29 | 00-18 | 19 | 013 | Log Hd |
| 30 | 30 | 00-18 | 20 | 014 | Log Hd |
| 31 | 31 | 00-09 | 20 | 014 | Log Hd +20 |
|  |  | 10-18 | 21 | 015 | Log Hd +10 |
| 32 | 32 | 00-18 | 21 | 015 | Log Hd |
| 33 | 33 | 00-18 | 22 | 016 | Log Hd |
| 34 | 34 | 00-09 | 22 | 016 | Log Hd + 20 |
|  |  | 10-18 | 23 | 017 | Log Hd +10 |
| 35 | 35 | 00-18 | 23 | 017 | Log Hd |


| LOGICAL ADDRESS |  |  | PHYSICAL CYLINDER and HEAD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 3330-1 \\ & \log \mathrm{Cyl} \end{aligned}$ Vol1* | 3330-11 Log Cyl | Log Head | Phy CyI in Dec | Phy Cyl in Hex | Phy Head Equals |
| 36 | 36 | 00-18 | 24 | 018 | Log Hd |
| 37 | 37 | 00-09 | 24 | 018 | Log $\mathrm{Hd}+2 \mathrm{O}$ |
|  |  | 10-18 | 25 | 019 | Log Hd +10 |
| 38 | 38 | 00-18 | 25 | 019 | Log Hd |
| 39 | 39 | 00-18 | 26 | 01A | Log Hd |
| 40 | 40 | 00-09 | 26 | 01A | Log $\mathrm{Hd}+2 \mathrm{O}$ |
|  |  | 10-18 | 27 | 01B | Log Hd +10 |
| 41 | 41 | 00-18 | 27 | 01B | Log Hd |
| 42 | 42 | 00-18 | 28 | 01 C | Log Hd |
| 43 | 43 | 00-09 | 28 | 01 C | Log $\mathrm{Hd}+20$ |
|  |  | 10-18 | 29 | 01D | Log Hd +10 |
| 44 | 44 | 00-18 | 29 | 01D | Log Hd |
| 45 | 45 | 00-18 | 30 | 01 E | Log Hd |
| 46 | 46 | 00-09 | 30 | 01 E | Log Hd +20 |
|  |  | 10-18 | 31 | 01 F | Log Hd +10 |
| 47 | 47 | 00-18 | 31 | 01F | Log Hd |
| 48 | 48 | 00-18 | 32 | 020 | Log Hd |
| 49 | 49 | 00-09 | 32 | 020 | Log Hd +20 |
|  |  | 10-18 | 33 | 021 | Log Hd +10 |
| 50 | 50 | 00-18 | 33 | 021 | Log Hd |
| 51 | 51 | 00-18 | 34 | 022 | Log Hd |
| 52 | 52 | 00-09 | 34 | 022 | Log Hd +20 |
|  |  | 10-18 | 35 | 023 | Log $\mathrm{Hd}+10$ |
| 53 | 53 | 00-18 | 35 | 023 | Log Hd |
| 54 | 54 | 00-18 | 36 | 024 | Log Hd |
| 55 | 55 | 00-09 | 36 | 024 | Log Hd +20 |
|  |  | 10-18 | 37 | 025 | Log Hd +10 |
| 56 | 56 | 00-18 | 37 | 025 | Log Hd |
|  | 57 | 00-18 |  |  | Log Hd |
| 58 | 58 | 00-09 | 38 | 026 | Log Hd + 20 |
|  |  | 10-18 | 39 | 027 | Log Hd +10 |
| 59 | 59 | 00-18 | 39 | 027 | Log Hd |
|  |  |  |  |  | Log Hd |
| 61 | 61 | 00-09 | 40 | 028 | Log Hd + 20 |
|  |  | 10-18 | 41 | 029 | Log Hd +10 |
| 62 | 62 | 00-18 | 41 | 029 | Log Hd |
|  | 63 | 00-18 |  |  | Log Hd |
| 64 | 64 | 00-09 | 42 | 02A | Log Hd + 20 |
|  |  | 10-18 | 43 | 02B | Log Hd +10 |
| 65 | 65 | 00-18 | 43 | 02B | Log Hd |
|  |  | 00-18 | 44 | 02C | Log Hd |
| 67 | 67 | 00-09 | 44 | 02C | Log $\mathrm{Hd}+20$ |
|  |  | 10-18 | 45 | 02D | Log $\mathrm{Hd}+10$ |
| 68 | 68 | 00-18 | 45 | 02D | Log Hd |
| 69 |  | 00-18 |  | 02E |  |
| 70 | 70 | 00-09 | 46 | 02 E | Log Hd + 20 |
|  |  | 10-18 | 47 | 02F | Log Hd +10 |
| 71 | 71 | 00-18 | 47 | 02F | Log Hd |


| Logical adoress |  |  | PHYSICAL CYLINDER and HEAD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3330-1 <br> Log CyI <br> Vol 1 * | 3330-11 Log Cyl | Log Head | Phy CyI in Dec | $\begin{aligned} & \text { Phy Cyl } \\ & \text { in Hex } \end{aligned}$ | Phy Head Equals |
| 7273 | 72 | 00-18 | 48 | C30 | Log Hd |
|  | 73 | 00-09 | 48 | ט30 | Log Hd + 20 |
|  |  | 10-18 | 49 | 031 | Log Hd +10 |
| 74 | 74 | 00-18 | 49 | 031 | Log Hd |
| 75 | 75 | 00-18 | 50 | 032 | Log Hd |
|  | 76 | 00-09 | 50 | 032 | Log Hd + 20 |
|  |  | 10-18 | 51 | 033 | Log Hd +10 |
| 77 | 77 | 00-18 | 51 | 033 | Log Hd |
| 7879 | 78 | 00-18 | 52 | 034 | Log Hd |
|  | 79 | 00-09 | 52 | 034 | Log Hd + 20 |
|  |  | 10-18 | 53 | 035 | Log Hd +10 |
| 80 | 80 | 00-18 | 53 | 035 | Log Hd |
| 8182 | 81 | 00-18 | 54 | 036 | Log Hd |
|  | 82 | 00-09 | 54 | 036 | Log Hd + 20 |
|  |  | 10-18 | 55 | 037 | Log Hd +10 |
| 83 | 83 | 00-18 | 55 | 037 | Log Hd |
| 8485 | 84 | 00-18 | 56 | 038 | Log Hd |
|  | 85 | 00-09 | 56 | 038 | Log Hd +20 |
|  |  | 10-18 | 57 | 039 | Log Hd +10 |
| 86 | 86 | 00-18 | 57 | 039 | Log Hd |
| 8788 | 87 | 00-18 | 58 | 03A | Log Hd |
|  | 88 | 00-09 | 58 | 03A | Log Hd + 20 |
|  |  | 10-18 | 59 | 03B | Log Hd +10 |
| 89 | 89 | 00-18 | 59 | 03B | Log Hd |
| 9091 | 90 | 00-18 | 60 | 03 C | Log Hd |
|  | 91 | 00-09 | 60 | 03C | Log Hd +20 |
|  |  | 10-18 | 61 | 03D | Log Hd +10 |
| 92 | 92 | 00-18 | 61 | 03D | Log Hd |
| 9394 | 93 | 00-18 | 62 | 03E | Log Hd |
|  | 94 | 00-09 | 62 | 03E | Log Hd +20 |
|  |  | 10-18 | 63 | 03F | Log Hd +10 |
| 95 | 95 | 00-18 | 63 | 03F | Log Hd |
| $\begin{aligned} & 96 \\ & 97 \end{aligned}$ | 96 | 00-18 | 64 | 040 | Log Hd |
|  | 97 | 00-09 | 64 | 040 | Log Hd + 20 |
|  |  | 10-18 | 65 | 041 | Log Hd +10 |
| 98 | 98 | 00-18 | 65 | 041 | Log Hd |
| 100 | 99 | 00-18 | 66 | 042 | Log Hd |
|  | 100 | 00-09 | 66 | 042 | Log Hd +20 |
|  |  | 10-18 | 67 | 043 | Log Hd +10 |
| 101 | 101 | 00-18 | 67 | 043 | Log Hd |
| $\begin{aligned} & 102 \\ & 103 \end{aligned}$ | 102 | 00-18 | 68 | 044 | Log Hd |
|  | 103 | 00-09 | 68 | 044 | Log Hd + 20 |
|  |  | 10-18 | 69 | 045 | Log Hd +10 |
| 104 | 104 | 00-18 | 69 | 045 | Log Hd |
| 106 | 105 | 00-18 | 70 | 046 | Log Hd |
|  | 106 | 00-09 | 70 | 046 | Log Hd +20 |
|  |  | 10-18 | 71 | 047 | Log Hd +10 |
| 107 | 107 | 00-18 | 71 | 047 | Log Hd |


| LOGICAL ADDRESS |  |  | PHYSICAL CYLINDER and HEAD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3330-1 <br> Log Cyl <br> Vol 1 * | $\begin{aligned} & 3330-11 \\ & \text { Log CyI } \end{aligned}$ | Log Head | Phy Cyl in Dec | Phy Cyl in Hex | Phy Head Equals |
| 108109 | $\begin{aligned} & 108 \\ & 109 \end{aligned}$ | 00-18 | 72 | 048 | Log Hd |
|  |  | 00-09 | 72 | 048 | Log $\mathrm{Hd}+20$ |
|  |  | 10-18 | 73 | 049 | Log $\mathrm{Hd}+10$ |
| 110 | 110 | 00-18 | 73 | 049 | Log Hd |
| 111112 | 111 | 00-18 | 74 | 04A | Log Hd |
|  | 112 | 00-09 | 74 | 04A | Log $\mathrm{Hd}+20$ |
|  |  | 10-18 | 75 | 04B | Log $\mathrm{Hd}+10$ |
| 113 | 113 | 00-18 | 75 | 04B | Log Hd |
| $\begin{aligned} & 114 \\ & 115 \end{aligned}$ | $\begin{aligned} & 114 \\ & 115 \end{aligned}$ | 00-18 | 76 | 04C | Log Hd |
|  |  | 00-09 | 76 | 04C | Log Hd + 20 |
|  |  | 10-18 | 77 | 04D | Log Hd +10 |
| $116$ | 116 | 00-18 | 77 | 04D | Log Hd |
| $\begin{aligned} & 117 \\ & 118 \end{aligned}$ | 117 | 00-18 | 78 | 04E | Log Hd |
|  | 118 | 00-09 | 78 | 04E | Log Hd +20 |
|  |  | 10-18 | 79 | 04F | Log Hd +10 |
| 119 | 119 | 00-18 | 79 | 04F | Log Hd |
| $\begin{aligned} & 120 \\ & 121 \end{aligned}$ | $\begin{aligned} & 120 \\ & 121 \end{aligned}$ | 00-18 | 80 | 050 | Log Hd |
|  |  | 00-09 | 80 | 050 | Log Hd +20 |
|  |  | 10-18 | 81 | 051 | Log Hd + 10 |
| 122 | 122 | 00-18 | 81 | 051 | Log Hd |
| $\begin{aligned} & 123 \\ & 124 \end{aligned}$ | $\begin{aligned} & 123 \\ & 124 \end{aligned}$ | 00-18 | 82 | 052 | Log Hd |
|  |  | 00-09 | 82 | 052 | Log $\mathrm{Hd}+2 \mathrm{O}$ |
|  |  | 10-18 | 83 | 053 | Log $\mathrm{Hd}+10$ |
| 125 | 125 | 00-18 | 83 | 053 | Log Hd |
| $\begin{aligned} & 126 \\ & 127 \end{aligned}$ | $\begin{aligned} & 126 \\ & 127 \end{aligned}$ | 00-18 | 84 | 054 | Log Hd |
|  |  | 00-09 | 84 | 054 | Log $\mathrm{Hd}+20$ |
|  |  | 10-18 | 85 | 055 | Log $\mathrm{Hd}+10$ |
| 128 | 128 | 00-18 | 85 | 055 | Log Hd |
| $\begin{aligned} & 129 \\ & 130 \end{aligned}$ | 129 | 00-18 | 86 | 056 | Log Hd |
|  | 130 | 00-09 | 86 | 056 | Log Hd +20 |
|  |  | 10-18 | 87 | 057 | Log Hd +10 |
| 131 | 131 | 00-18 | 87 | 057 | Log Hd |
| $\begin{aligned} & 132 \\ & 133 \end{aligned}$ | $\begin{aligned} & 132 \\ & 133 \end{aligned}$ | 00-18 | 88 | 058 | Log Hd |
|  |  | 00-09 | 88 | 058 | Log $\mathrm{Hd}+20$ |
|  |  | 10-18 | 89 | 059 | Log Hd +10 |
| 134 | 134 | 00-18 | 89 | 059 | Log Hd |
| $\begin{aligned} & 135 \\ & 136 \end{aligned}$ | $\begin{aligned} & 135 \\ & 136 \end{aligned}$ | 00-18 | 90 | 05A | Log Hd |
|  |  | 00-09 | 90 | 05A | Log Hd + 20 |
|  |  | 10-18 | 91 | 05B | Log Hd +10 |
| 137 | 137 | 00-18 | 91 | 05B | Log Hd |
| $\begin{aligned} & 138 \\ & 139 \end{aligned}$ | $\begin{aligned} & 138 \\ & 139 \end{aligned}$ | 00-18 | 92 | 05C | Log Hd |
|  |  | 00-09 | 92 | 05C | Log Hd +20 |
|  |  | 10-18 | 93 | 05D | Log Hd +10 |
| 140 | 140 | 00-1 | 93 | 05D | Log Hd |
| 141142 | 141142 | 00-18 | 94 | 05E | Log Hd |
|  |  | 00-09 | 94 | 05E | Log Hd + 20 |
|  |  | 10-18 | 95 | 05F | Log Hd +10 |
| 143 | 143 | 00-18 | 95 | 05F | Log Hd |

Continued on RW 411.

| LOGICAL ADDRESS |  |  | PHYSICAL CYLINDER and HEAD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3330-1 <br> Log Cyl <br> Vol 1 * | $\begin{aligned} & 3330-11 \\ & \text { Log Cyl } \end{aligned}$ | Log Head | $\begin{aligned} & \hline \text { Phy Cyl } \\ & \text { in Dec } \end{aligned}$ | Phy Cyl in Hex | Phy Head Equals |
| 144 | 144 | 00-18 | 96 | 060 | Log Hd |
| 145 | 145 | 00-09 | 96 | 060 | Log Hd +20 |
|  |  | 10-18 | 97 | 061 | Log Hd +10 |
| 146 | 146 | 00-18 | 97 | 061 | Log Hd |
| 148 | 147 | 00-18 | 98 | 062 | Log Hd |
|  | 148 | 00-09 | 98 | 062 | Log Hd + 20 |
|  |  | 10-18 | 99 | 063 | Log Hd +10 |
| 149 | 149 | 00-18 | 99 | 063 | Log Hd |
| 151 | 150 | 00-18 | 100 | 064 | Log Hd |
|  | 151 | 00-09 | 100 | 064 | Log Hd +20 |
|  |  | 10-18 | 101 | 065 | Log $\mathrm{Hd}+10$ |
| 152 | 152 | 00-18 | 101 | 065 | Log Hd |
| 153154 | 153 | 00-18 | 102 | 066 | Log Hd |
|  | 154 | 00-09 | 102 | 066 | Log Hd +20 |
|  |  | 10-18 | 103 | 067 | Log Hd +10 |
| 155 | 155 | 00-18 | 103 | 067 | Log Hd |
| 157 | 156 | 00-18 | 104 | 068 | Log Hd |
|  | 157 | 00-09 | 104 | 068 | Log Hd +20 |
|  |  | 10-18 | 105 | 069 | Log Hd +10 |
| 158 | 158 | 00-18 | 105 | 069 | Log Hd |
| 160 | 159 | 00-18 | 106 | 06A | Log Hd |
|  | 160 | 00-09 | 106 | 06A | Log Hd +20 |
|  |  | 10-18 | 107 | 06B | Log Hd +10 |
| 161 | 161 | 00-18 | 107 | 06B | Log Hd |
| 163 | 162 | 00-18 | 108 | 06 C | Log Hd |
|  | 163 | 00-09 | 108 | 06 C | Log Hd + 20 |
|  |  | 10-18 | 109 | 06D | Log $\mathrm{Hd}+10$ |
| 164 | 164 | 00-18 | 109 | 06D | Log Hd |
| 166 | 165 | 00-18 | 110 | 06 E | Log Hd |
|  | 166 | 00-09 | 110 | O6E | Log Hd + 20 |
|  |  | 10-18 | 111 | 06 F | Log Hd +10 |
| 167 | 167 | 00-18 | 111 | 06F | Log Hd |
| 169 | 168 | 00-18 | 112 | 070 | Log Hd |
|  | 169 | 00-09 | 112 | 070 | Log Hd +20 |
|  |  | 10-18 | 113 | 071 | Log $\mathrm{Hd}+10$ |
| 170 | 170 | 00-18 | 113 | 071 | Log Hd |
| 171172 | 171 | 00-18 | 114 | 072 | Log Hd |
|  | 172 | 00-09 | 114 | 072 | Log Hd +20 |
|  |  | 10-18 | 115 | 073 | Log Hd +10 |
| 173 | 173 | 00-18 | 115 | 073 | Log Hd |
| $\begin{aligned} & 174 \\ & 175 \end{aligned}$ | 174 | 00-18 | 116 | 074 | Log Hd |
|  | 175 | 00-09 | 116 | 074 | Log Hd + 20 |
|  |  | 10-18 | 117 | 075 | Log Hd +10 |
| 176 | 176 | 00-18 | 117 | 075 | Log Hd |
| $\begin{aligned} & 177 \\ & 178 \end{aligned}$ | 177 | 00-18 | 118 | 076 | Log Hd |
|  | 178 | 00-09 | 118 | 076 | Log Hd + 20 |
|  |  | 10-18 | 119 | 077 | Log Hd +10 |
| 179 | 179 | 00-18 | 119 | 077 | Log Hd |


| LOGICAL ADDRESS |  |  | PHYSICAL CYLINDER and HEAD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3330-1 <br> Log Cyl <br> Vol 1 * | 3330-11 Log Cyl | Log Head | $\begin{aligned} & \text { Phy Cyl } \\ & \text { in Dec } \end{aligned}$ | $\begin{aligned} & \text { Phy Cyl } \\ & \text { in } \mathrm{Hex} \end{aligned}$ | Phy Head Equals |
| 180181 | 180 | 00-18 | 120 | 078 | Log Hd |
|  | 181 | 00-09 | 120 | 078 | Log Hd +20 |
|  |  | 10-18 | 121 | 079 | Log Hd +10 |
| 182 | 182 | 00-18 | 121 | 079 | Log Hd |
| $\begin{aligned} & 183 \\ & 184 \end{aligned}$ | 183 | 00-18 | 122 | 07A | Log Hd |
|  | 184 | 00-09 | 122 | 07A | Log Hd +20 |
|  |  | 10-18 | 123 | 07B | Log Hd +10 |
| 185 | 185 | 00-18 | 123 | 07B | Log Hd |
| 186187 | 186 | 00-18 | 124 | 07 C | Log Hd |
|  | 187 | 00-09 | 124 | 07C | Log Hd +20 |
|  |  | 10-18 | 125 | 07D | Log Hd + 10 |
| 188 | 188 | 00-18 | 125 | 07D | Log Hd |
| 189190 | 189 | 00-18 | 126 | 07E | Log Hd |
|  | 190 | 00-09 | 126 | 07 E | Log Hd +20 |
|  |  | 10-18 | 127 | 07 F | Log Hd +10 |
| 191 | 191 | 00-18 | 127 | 07 F | Log Hd |
| 192 | 192 | 00-18 | 128 | 080 | Log Hd |
| 193 | 193 | 00-09 | 128 | 080 | Log Hd + 20 |
|  |  | 10-18 | 129 | 081 | Log Hd +10 |
| 194 | 194 | 00-18 | 129 | 081 | Log Hd |
| 195196 | 195 | 00-18 | 130 | 082 | Log Hd |
|  | 196 | 00-09 | 130 | 082 | Log Hd +20 |
|  |  | 10-18 | 131 | 083 | Log Hd +10 |
| 197 | 197 | 00-18 | 131 | 083 | Log Hd |
| 198 | 198 | 00-18 | 132 | 084 | Log Hd |
| 199 | 199 | 00-09 | 132 | 084 | Log Hd +20 |
|  |  | 10-18 | 133 | 085 | Log Hd +10 |
| 200 | 200 | 00-18 | 133 | 085 | Log Hd |
| 201 | 201 | 00-18 | 134 | 086 | Log Hd |
|  | 202 | 00-09 | 134 | 086 | Log Hd +20 |
|  |  | 10-18 | 135 | 087 | Log Hd +10 |
| 203 | 203 | 00-18 | 135 | 087 | Log Hd |
| 204 | 204 | 00-18 | 136 | 088 | Log Hd |
| 205 | 205 | 00-09 | 136 | 088 | Log Hd +20 |
|  |  | 10-18 | 137 | 089 | Log Hd +10 |
| 206 | 206 | 00-18 | 137 | 089 | Log Hd |
| 207 | 207 | 00-18 | 138 | 08A | Log Hd |
|  | 208 | 00-09 | 138 | 08A | Log Hd +20 |
|  |  | 10-18 | 139 | 08B | Log Hd +10 |
| 209 | 209 | 00-18 | 139 | 08B | Log Hd |
| $\begin{aligned} & 210 \\ & 211 \end{aligned}$ | 210 | 00-18 | 140 | 08C | Log Hd |
|  | 211 | 00-09 | 140 | 08C | Log Hd +20 |
|  |  | 10-18 | 141 | 08D | Log Hd +10 |
| 212 | 212 | 00-18 | 141 | 08D | Log Hd |
| 213 214 | 213 | 00-18 | 142 | 08E | Log Hd |
|  | 214 | 00-09 | 142 | 08E | Log Hd +20 |
|  |  | 10-18 | 143 | 08F | Log Hd +10 |
| 215 | 215 | 00-18 | 143 | 08F | Log Hd |


| LOGICAL ADDRESS |  |  | PHYSICAL CYIINDER and HEAD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3330-1 <br> Log Cyl <br> Vol 1 * | $\begin{aligned} & 3330-11 \\ & \text { Log Cyl } \end{aligned}$ | Log Head | $\begin{aligned} & \text { Phy CyI } \\ & \text { in Dec } \end{aligned}$ | $\begin{aligned} & \text { Phy Cyl } \\ & \text { in Hex } \end{aligned}$ | Phy Head Equals |
| 216 | 216 |  | 144 144 | 090 | Log Hd |
| 217 | 217 | $\begin{aligned} & 00-09 \\ & 10-18 \end{aligned}$ | $\begin{aligned} & 144 \\ & 145 \end{aligned}$ | $\begin{aligned} & 090 \\ & 091 \\ & \end{aligned}$ | $\text { Log } \mathrm{Hd}+20$ |
| 218 | 218 | 00-18 | 145 | 091 | Log Hd |
| 219 | 219220 | 00-18 | 146 | 092 | Log Hd |
| 220 |  | 00-09 | 146 | 092 | Log Hd + 20 |
|  |  | 10-18 | 147 | 093 | Log Hd +10 |
| 221 | 221 | 00-18 | 147 | 093 | Log Hd |
| $\begin{aligned} & 222 \\ & 222 \end{aligned}$ | $\begin{aligned} & 222 \\ & 222 \end{aligned}$ | 00-18 | 148 | 094 | Log Hd |
|  |  | 00-09 | 148 | 094 | Log Hd +20 |
|  |  | 10-18 | 149 | 095 | Log Hd +10 |
| 224 | 224 | 00-18 | 149 | 095 | Log Hd |
| 225226 | 225 | 00-18 | 150 | 096 | Log Hd |
|  |  | 00-09 | 150 | 096 | Log Hd + 20 |
|  |  | 10-18 | 151 | 097 | Log Hd +10 |
| 227 | 227 | 00-18 | 151 | 097 | Log Hd |
| $\begin{aligned} & 228 \\ & 229 \end{aligned}$ | $\begin{aligned} & 228 \\ & 229 \end{aligned}$ | 00-18 | 152 | 098 | Log Hd |
|  |  | 00-09 | 152 | 098 | Log Hd + 20 |
|  |  | 10-18 | 153 | 099 | Log Hd +10 |
| 230 | 230 | 00-18 | 153 | 099 | Log Hd |
| $\begin{array}{r} 231 \\ 232 \end{array}$ | 231 | 00-18 | 154 | 09A | Log Hd |
|  |  | 00-09 | 154 | 09A | Log Hd +20 |
|  |  | 10-18 | 155 | 09B | Log $\mathrm{Hd}+10$ |
| 233 | 233 | 00-18 | 155 | 098 | Log Hd |
| $\begin{aligned} & 234 \\ & 235 \end{aligned}$ | $\begin{aligned} & 234 \\ & 235 \end{aligned}$ | 00-18 | 156 | 09C | Log Hd |
|  |  | 00-09 | 156 | 09C | Log Hd +20 |
|  |  | 10-18 | 157 | 09D | Log $\mathrm{Hd}+10$ |
| 236 | 236 | 00-18 | 157 | 09D | Log Hd |
| $\begin{aligned} & 237 \\ & 238 \end{aligned}$ | $\begin{aligned} & 237 \\ & 238 \end{aligned}$ | 00-18 | 158 | 09E | Log Hd |
|  |  | 00-09 | 158 | 09E | Log Hd + 20 |
|  |  | 10-18 | 159 | 09F | Log Hd +10 |
| 239 | 239 | 00-18 | 159 | 09F | Log Hd |
| $\begin{aligned} & 240 \\ & 241 \end{aligned}$ | 240 | 00-18 | 160 | oá | Log Hd |
|  |  | 00-09 | 160 | oá | Log Hd + 20 |
|  |  | 10-18 | 161 | OA1 | Log Hd +10 |
| 242 | 242 | 00-18 | 161 | OA1 | Log Hd |
| $\begin{aligned} & 243 \\ & 244 \end{aligned}$ | $\begin{aligned} & 243 \\ & 244 \end{aligned}$ | 00-18 | 162 | OA2 | Log Hd |
|  |  | 00-09 | 162 | OA2 | Log Hd +20 |
|  |  | 10-18 | 163 | OA3 | Log Hd +10 |
| 245 | 245 | 00-18 | 163 | OA3 | Log Hd |
| 246247 | 246 | 00-18 | 164 | OA4 | Log Hd |
|  |  | 00-09 | 164 | OA4 | Log Hd + 20 |
|  |  | 10-18 | 165 | OA5 | Log $\mathrm{Hd}+10$ |
| 248 | 248 | 00-1 | 165 | OA5 | Log Hd |
| 249250 | $\begin{aligned} & 249 \\ & 250 \end{aligned}$ | 00-18 | 166 | OA6 | Log Hd |
|  |  | 00-09 | 166 | 0a6 | Log Hd + 20 |
|  |  | 10-18 | 167 | OA7 | Log $\mathrm{Hd}+10$ |
| 251 | 251 | 00-18 | 167 | OA7 | Log Hd |

* Vol 2 3330-1 starts on R/W 413

| LOGICAL ADDRESS |  |  | PHYSICAL CYLINOER and HEAD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3330-1 <br> Log Cyl <br> Vol 1 * | 3330-11 Log Cyl | Log Head | Phy CyI in Dec | $\begin{aligned} & \text { Phy Cyl } \\ & \text { in Hex } \end{aligned}$ | Phy Head Equals |
| 253 | 252 | 00-18 | 168 | OA8 | Log Hd |
|  | 253 | 00-09 | 168 | 0A8 | Log Hd +20 |
|  |  | 10-18 | 169 | OA9 | Log Hd +10 |
| 254 | 254 | 00-18 | 169 | OA9 | Log Hd |
| 256 | 255 | 00-18 | 170 | OAA | Log Hd |
|  | 256 | 00-09 | 170 | OAA | Log Hd +20 |
|  |  | 10-18 | 171 | OAB | Log Hd +10 |
| 257 | 257 | 00-18 | 171 | OAB | Log Hd |
| 258259 | 258 | 00-18 | 172 | OAC | Log Hd |
|  | 259 | 00-09 | 172 | OAC | Log Hd +20 |
|  |  | 10-18 | 173 | OAD | Log $\mathrm{Hd}+10$ |
| 260 | 260 | 00-18 | 173 | OAD | Log Hd |
| 262 | 261 | 00-18 | 174 | OAE | Log Hd |
|  | 262 | 00-09 | 174 | OAE | Log Hd +20 |
|  |  | 10-18 | 175 | OAF | Log Hd +10 |
| 263 | 263 | 00-18 | 175 | OAF | Log Hd |
| 265 | 264 | 00-18 | 176 | OBO | Log Hd |
|  | 265 | 00-09 | 176 | ово | Log Hd +20 |
|  |  | 10-18 | 177 | OB1 | Log Hd +10 |
| 266 | 266 | 00-18 | 177 | OB1 | Log Hd |
| 268 | 267 | 00-18 | 178 | OB2 | Log Hd |
|  | 268 | 00-09 | 178 | OB2 | Log Hd + 20 |
|  |  | 10-18 | 179 | OB3 | Log Hd + 10 |
| 269 | 269 | 00-18 | 179 | Ов3 | Log Hd |
| 271 | 270 | 00-18 | 180 | OB4 | Log Hd |
|  | 271 | 00-09 | 180 | $0 \mathrm{B4}$ | Log Hd +20 |
|  |  | 10-18 | 181 | OB5 | Log Hd +10 |
| 272 | 272 | 00-18 | 181 | OB5 | Log Hd |
| 274 | 273 | 00-18 | 182 | OB6 | Log Hd |
|  | 274 | 00-09 | 182 | OB6 | Log Hd +20 |
|  |  | 10-18 | 183 | OB7 | Log $\mathrm{Hd}+10$ |
| 275 | 275 | 00-18 | 183 | OB7 | Log Hd |
| 277 | 276 | 00-18 | 184 | OB8 | Log Hd |
|  | 277 | 00-09 | 184 | OB8 | Log Hd + 20 |
|  |  | 10-18 | 185 | ов9 | Log Hd +10 |
| 278 | 278 | 00-18 | 185 | OB9 | Log Hd |
| 280 | 279 | 00-18 | 186 | OBA | Log Hd |
|  | 280 | 00-09 | 186 | OBA | Log Hd +20 |
|  |  | 10-18 | 187 | OBB | Log Hd +10 |
| 281 | 281 | 00-18 | 187 | OBB | Log Hd |
| 282 | 282 | 00-18 | 188 | OBC | Log Hd |
| 283 | 283 | 00-09 | 188 | OBC | Log Hd +20 |
|  |  | 10-18 | 189 | OBD | Log Hd +10 |
| 284 | 284 | 00-18 | 189 | OBD | Log Hd |
| $\begin{aligned} & 285 \\ & 286 \end{aligned}$ | 285 | 00-18 | 190 | OBE | Log Hd |
|  | 286 | 00-09 | 190 | OBE | Log Hd + 20 |
|  |  | 10-18 | 191 | OBF | Log Hd + 10 |
| 287 | 287 | 00-18 | 191 | OBF | Log Hd |

Continued on RW 412.

3350 \begin{tabular}{|l|l|l|l|l|l|}

\hline | ECO4 10 |
| :--- |
| Seq. 2 of 2 | \& | 2358682 |
| :---: |
| Part No. | <br>

\hline
\end{tabular}

## $C$ C C C C

address Conversion

| LOGICAL ADDRESS |  |  | PHYSICAL CYLINDER and HEAD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3330-1 <br> Log Cyl <br> Vol 1 * | $\begin{aligned} & 3330-11 \\ & \text { Log Cyl } \end{aligned}$ | Log Head | $\begin{aligned} & \text { Phy Cyl } \\ & \text { in Dec } \end{aligned}$ | Phy CyI in Hex | Phy Head Equals |
| 288 | 288 | 00-18 | 192 | OCO | Log Hd |
| 289 | 289 | 00-09 | 192 | OCO | Log Hd +20 |
|  |  | 10-18 | 193 | OC1 | Log Hd +10 |
| 290 | 290 | 00-18 | 193 | OC1 | Log Hd |
| 291292 | 291 | 00-18 | 194 | OC2 | Log Hd |
|  | 292 | 00-09 | 194 | OC2 | Log Hd +20 |
|  |  | 10-18 | 195 | 0С3 | Log Hd +10 |
| 293 | 293 | 00-18 | 195 | OC3 | Log Hd |
| 295 | 294 | 00-18 | 196 | OC4 | Log Hd |
|  | 295 | 00-09 | 196 | OC4 | Log Hd +20 |
|  |  | 10-18 | 197 | OC5 | Log Hd +10 |
| 296 | 296 | 00-18 | 197 | 0C5 | Log Hd |
| 298 | 297 | 00-18 | 198 | OC6 | Log Hd |
|  | 298 | 00-09 | 198 | OC6 | Log Hd +20 |
|  |  | 10-18 | 199 | 0 C 7 | Log Hd +10 |
| 299 | 299 | 00-18 | 199 | 0C7 | Log Hd |
| 300 | 300 | 00-18 | 200 | OC8 | Log Hd |
| 301 | 301 | 00-09 | 200 | OC8 | Log Hd +20 |
|  |  | 10-18 | 201 | OC9 | Log Hd +10 |
| 302 | 302 | 00-18 | 201 | OC9 | Log Hd |
| 303304 | 303 | 00-18 | 202 | OCA | Log Hd |
|  | 304 | 00-09 | 202 | OCA | Log Hd +20 |
|  |  | 10-18 | 203 | OСB | Log Hd +10 |
| 305 | 305 | 00-18 | 203 | OCB | Log Hd |
| 306 | 306 | 00-18 | 204 | OCC | Log Hd |
| 307 | 307 | 00-09 | 204 | OcC | Log Hd +20 |
|  |  | 10-18 | 205 | OCD | Log Hd +10 |
| 308 | 308 | 00-18 | 205 | OCD | Log Hd |
| 310 | 309 | 00-18 | 206 | OCE | Log Hd |
|  | 310 | 00-09 | 206 | OCE | Log Hd +20 |
|  |  | 10-18 | 207 | OCF | Log Hd +10 |
| 311 | 311 | 00-18 | 207 | OCF | Log Hd |
| 312313 | 312 | 00-18 | 208 | ODO | Log Hd |
|  | 313 | 00-09 | 208 | ODO | Log Hd + 20 |
|  |  | 10-18 | 209 | OD1 | Log Hd +10 |
| 314 | 314 | 00-18 | 209 | 0D1 | Log Hd |
| 316 | 315 | 00-18 | 210 | OD2 | Log Hd |
|  | 316 | 00-09 | 210 | OD2 | Log Hd +20 |
|  |  | 10-18 | 211 | OD3 | Log Hd +10 |
| 317 | 317 | 00-18 | 211 | OD3 | Log Hd |
| 318319 | 318 | 00-18 | 212 | OD4 | Log Hd |
|  | 319 | 00-09 | 212 | OD4 | Log Hd + 20 |
|  |  | 10-18 | 213 | OD5 | Log Hd + 10 |
| 320 | 320 | 00-18 | 213 | OD5 | Log Hd |
| 321 | 321 | 00-18 | 214 | OD6 | Log Hd |
| 322 | 322 | 00-09 | 214 | 0D6 | Log Hd +20 |
|  |  | 10-18 | 215 | OD7 | Log Hd +10 |
| 323 | 323 | 00-18 | 215 | OD7 | Log Hd |


| LOGICAL ADDRESS |  |  | PHYSICAL CYIINDER and HEAD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3330-1 <br> Log Cyi <br> Vol 1 * | $\begin{aligned} & \text { 3330-11 } \\ & \text { Log Cyl } \end{aligned}$ | Log Head | $\begin{aligned} & \text { Phy CyI } \\ & \text { in Dec } \end{aligned}$ | $\begin{aligned} & \text { Phy Cyl } \\ & \text { in Hex } \end{aligned}$ | Phy Head Equals |
| 324 | 324 | 00-18 | 216 | OD8 | Log Hd |
| 325 | 325 | 00-09 | 216 | OD8 | Log $\mathrm{Hd}+2 \mathrm{O}$ |
|  |  | 10-18 | 217 | OD9 | Log $\mathrm{Hd}+10$ |
| 326 | 326 | 00-18 | 217 | OD9 | Log Hd |
| 328 | 327 | 00-18 | 218 | ODA | Log Hd |
|  | 328 | 00-09 | 218 | ODA | Log $\mathrm{Hd}+20$ |
|  |  | 10-18 | 219 | ODB | Log $\mathrm{Hd}+10$ |
| 329 | 329 | 00-18 | 219 | ODB | Log Hd |
| 331 | 330 | 00-18 | 220 | ODC | Log Hd |
|  | 331 | 00-09 | 220 | ODC | Log Hd +20 |
|  |  | 10-18 | 221 | ODD | Log Hd +10 |
| 332 | 332 | 00-18 | 221 | ODD | Log Hd |
| 334 | 333 | 00-18 | 222 | ODE | Log Hd |
|  | 334 | 00-09 | 222 | ODE | Log Hd +20 |
|  |  | 10-18 | 223 | ODF | Log $\mathrm{Hd}+10$ |
| 335 | 335 | 00-18 | 223 | ODF | Log Hd |
| 336337 | 336 | 00-18 | 224 | OEO | Log Hd |
|  | 337 | 00-09 | 224 | OEO | Log Hd +20 |
|  |  | 10-18 | 225 | OE1 | Log $\mathrm{Hd}+10$ |
| 338 | 338 | 00-18 | 225 | OE1 | Log Hd |
| 349340 | 339 | 00-18 | 226 | OE2 | Log Hd |
|  | 340 | 00-09 | 226 | OE2 | Log Hd +20 |
|  |  | 10-18 | 227 | OE3 | Log $\mathrm{Hd}+10$ |
| 341 | 341 | 00-18 | 227 | OE3 | Log Hd |
| 342 | 342 | 00-18 | 228 | OE4 | Log Hd |
| 343 | 343 | 00-09 | 228 | OE4 | Log Hd +20 |
|  |  | 10-18 | 229 | OE5 | Log $\mathrm{Hd}+10$ |
| 344 | 344 | 00-18 | 229 | OE5 | Log Hd |
| 346346 | 345 | 00-18 | 230 | OE6 | Log Hd |
|  | 346 | 00-09 | 230 | OE6 | Log $\mathrm{Hd}+20$ |
|  |  | 10-18 | 231 | OE7 | Log Hd +10 |
| 347 | 347 | 00-18 | 231 | 0 EF 7 | Log Hd |
| 349 | 348 | 00-18 | 232 | OE8 | Log Hd |
|  | 349 | 00-09 | 232 | OE8 | Log Hd +20 |
|  |  | 10-18 | 233 | OE9 | Log Hd +10 |
| 350 | 350 | 00-18 | 233 | OE9 | Log Hd |
| 352 | 351 | 00-18 | 234 | OEA | Log Hd |
|  | 352 | 00-09 | 234 | OEA | Log Hd +20 |
|  |  | 10-18 | 235 | OEB | Log Hd +10 |
| 353 | 353 | 00-18 | 235 | OEB | Log Hd |
| 354 | 354 | 00-18 | 236 | OEC | Log Hd |
| 355 | 355 | 00-09 | 236 | OEC | Log Hd +20 |
|  |  | 10-18 | 237 | OED | Log $\mathrm{Hd}+10$ |
| 356 | 356 | 00-18 | 237 | OED | Log Hd |
| $\begin{aligned} & 357 \\ & 358 \end{aligned}$ | 357 | 00-18 | 238 | Oee | Log Hd |
|  | 358 | 00-09 | 238 | Oee | Log Hd +20 |
|  |  | 10-18 | 239 | OEF | Log $\mathrm{Hd}+10$ |
| 359 | 359 | 00-18 | 239 | OEF | Log Hd |


| LOGICAL ADDRESS |  |  | PHYSICAL CYLINDER and HEAD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3330-1 <br> Log Cyl <br> Vol 1 * | 3330-11 Log CyI | Log Head | $\begin{aligned} & \text { Phy Cyl } \\ & \text { in Dec } \end{aligned}$ | Phy Cyl in Hex | Phy Head Equals |
| ${ }_{361}$ | 360361 | $\begin{aligned} & \hline 00-18 \\ & 00-09 \\ & 10-18 \\ & 0-18 \end{aligned}$ | 240 | CFO | Log Hd |
|  |  |  | 240 | OFO | Log Hd +20 |
|  |  |  | 241 | OF1 | Log Hd +10 |
| 362 | 362 |  | 241 | OF1 | Log Hd |
| 363364 | 363364 | 00-18 | 242 | OF2 | Log Hd |
|  |  | 00-09 | 242 | OF2 | Log Hd +20 |
|  |  | 10-18 | 243 | OF3 | Log Hd +10 |
| 365 | 365 | 00-18 | 243 | OF3 | Log Hd |
| 366367 | $\begin{aligned} & 366 \\ & 367 \end{aligned}$ | 00-18 | 244 | OF4 | Log Hd |
|  |  | 00-09 | 244 | OF4 | Log Hd +20 |
|  |  | 10-18 | 245 | $0 F 5$ | Log Hd +10 |
| 368 | 368 | 00-18 | 245 | 0 O5 | Log Hd |
| $\begin{aligned} & 369 \\ & 370 \end{aligned}$ | 369370 | 00-18 | 246 | OF6 | Log Hd |
|  |  | 00-09 | 246 | OF6 | Log Hd +20 |
|  |  | 10-18 | 247 | 0 F 7 | Log Hd +10 |
| 371 | 371 | 00-18 | 247 | OF7 | Log H |
| $\begin{aligned} & 372 \\ & 373 \end{aligned}$ | $\begin{aligned} & 372 \\ & 373 \end{aligned}$ | 00-18 | 248 | 0 FP | Log Hd |
|  |  | 00-09 | 248 | OF8 | Log Hd +20 |
|  |  | 10-18 | 249 | $0 \mathrm{F9}$ | Log Hd +10 |
| $374$ | 374 | 00-18 | 249 | OF9 | Log Hd |
| $\begin{aligned} & 375 \\ & 376 \end{aligned}$ | 375376 | 00-18 | 250 | OFA | Log Hd |
|  |  | 00-09 | 250 | OFA | Log Hd +20 |
|  |  | 10-18 | 251 | OFB | Log Hd +10 |
| 377 | 377 | 00-18 | 251 | OFB | Log Hd |
| $\begin{aligned} & 378 \\ & 379 \end{aligned}$ | $\begin{aligned} & 378 \\ & 379 \end{aligned}$ | 00-18 | 252 | OFC | Log Hd |
|  |  | 00-09 | 252 | OFC | Log Hd + 20 |
|  |  | 10-18 | 253 | OFD | Log $\mathrm{Hd}+10$ |
| 380 | 380 | 00-18 | 253 | OFD | Log Hd |
| $\begin{aligned} & 381 \\ & 382 \end{aligned}$ | $\begin{aligned} & 381 \\ & 382 \end{aligned}$ | 00-18 | 254 | OFE | Log Hd |
|  |  | 00-09 | 254 | OFE | Log Hd + 20 |
|  |  | 10-18 | 255 | OFF | Log Hd +10 |
| 383 | 383 | 00-18 | 255 | OFF | Log Hd |
| $\begin{aligned} & 384 \\ & 385 \end{aligned}$ | $\begin{aligned} & 384 \\ & 385 \end{aligned}$ | 00-18 | 256 | 100 | Log Hd |
|  |  | 00-09 | 256 | 100 | Log Hd +20 |
|  |  | 10-18 | 257 | 101 | Log Hd +10 |
| 386 | 386 | 00-18 | 257 | 101 | Log Hd |
| $\begin{aligned} & 387 \\ & 388 \end{aligned}$ | 387388 | 00-18 | 258 | 102 | Log Hd |
|  |  | 00-09 | 258 | 102 | Log Hd +20 |
|  |  | 10-18 | 259 | 103 | Log Hd +10 |
| 389 | 389 | 00-18 | 259 | 103 | Log Hd |
| $\begin{aligned} & 390 \\ & 391 \end{aligned}$ | $\begin{aligned} & 390 \\ & 391 \end{aligned}$ | 00-18 | 260 | 104 | Log Hd |
|  |  | 00-09 | 260 | 104 | Log Hd +20 |
|  |  | 10-18 | 261 | 105 | Log Hd +10 |
| 392 | 392 | 00-18 | 26 | 105 | Log Hd |
| 393394 | $\begin{aligned} & 393 \\ & 394 \end{aligned}$ | 00-18 | 262 | 106 | Log Hd |
|  |  | 00-09 | 262 | 106 | Log Hd +20 |
|  |  | 10-18 | 263 | 107 | Log Hd + 10 |
| 395 |  | 00-18 | 263 | 107 | Log Hd |


| LOGICAL ADDRESS |  |  | PHYSICAL CYLINDER and HEAD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 3330-1 \\ & \text { Log Cyl } \\ & \mathrm{Voll}_{1} \end{aligned}$ | 3330-11 <br> Log Cyl | Log Head | Phy CyI in Dec | Phy Cyl in Hex | Phy Head Equals |
| 396397 | $\begin{aligned} & 396 \\ & 397 \end{aligned}$ | 00-18 | 264 | 108 | Log Hd |
|  |  | 00-09 | 264 | 108 | Log $\mathrm{Hd}+2 \mathrm{O}$ |
|  |  | 10-18 | 265 | 109 | Log Hd +10 |
| 398 | 398 | 00-18 | 265 | 109 | Log Hd |
| $\begin{aligned} & 399 \\ & 400 \end{aligned}$ | 399400 | 00-18 | 266 | 10A | Log Hd |
|  |  | 00-09 | 266 | 10A | Log Hd + 20 |
|  |  | 10-18 | 267 | 10B | Log Hd +10 |
| 401 | 401 | 00-18 | 267 | 10B | Log Hd |
| $\begin{aligned} & 402 \\ & 403 \end{aligned}$ | 402 | 00-18 | 268 | 10 C | Log Hd |
|  |  | 00-09 | 268 | 10 C | Log Hd +20 |
|  |  | 10-18 | 269 | 10 D | Log Hd +10 |
| 404 | 404 | 00-18 | 269 | 10D | Log Hd |
| $\begin{aligned} & 405 \\ & 406 \end{aligned}$ | 405406 | 00-18 | 270 | 10 E | Log Hd |
|  |  | 00-09 | 270 | 10 E | Log $\mathrm{Hd}+20$ |
|  |  | 10-18 | 271 | 10F | Log Hd +10 |
| 407 | 407 | 00-18 | 271 | 10F | Log H |
| $\begin{aligned} & 408 \\ & 409 \end{aligned}$ | $\begin{aligned} & 408 \\ & 409 \end{aligned}$ | 00-18 | 272 | 110 | Log Hd |
|  |  | 00-09 | 272 | 110 | Log $\mathrm{Hd}+2 \mathrm{O}$ |
|  |  | 10-18 | 273 | 111 | Log Hd +10 |
| 410 | 410 | 00-18 | 273 | 111 | Log Hd |

Continued on RN 413.

* Vol 2330 -1 starts on R/W 413

| LOGICAL ADDRESS |  |  | PHYSICAL CYLINDER and HEAD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3330-1 <br> Log Cy <br> Vol 2 * | $\begin{aligned} & 3330-11 \\ & \text { Log } \mathrm{Cyl} \end{aligned}$ | Log Head | Phy Cyl in Dec | Phy Cyl in Hex | Phy Head Equals |
| 0 | 411 | 00-18 | 274 | 112 | Log Hd |
| 1 | 412 | 00-09 | 274 | 112 | Log Hd +20 |
|  |  | 10-18 | 275 | 113 | Log Hd +10 |
| 2 | 413 | 00-18 | 275 | 113 | Log Hd |
| 3 | 414 | 00-18 | 276 | 114 | Log Hd |
| 4 | 415 | 00-09 | 276 | 114 | Log Hd + 20 |
|  |  | 10-18 | 277 | 115 | Log Hd +10 |
| 5 | 416 | 00-18 | 277 | 115 | Log Hd |
| 6 | 417 | 00-18 | 278 | 116 | Log Hd |
| 7 | 418 | 00-09 | 278 | 116 | Log Hd + 20 |
|  |  | 10-18 | 279 | 117 | Log Hd +10 |
| 8 | 419 | 00-18 | 279 | 117 | Log Hd |
| 9 | 420 | 00-18 | 280 | 118 | Log Hd |
| 10 | 421 | 00-09 | 280 | 118 | Log Hd +20 |
| 10 | 421 | 10-18 | 281 | 119 | Log Hd +10 |
| 11 | 422 | 00-18 | 281 | 119 | Log Hd |
| 12 | 423 | 00-18 | 282 | 11 A | Log Hd |
| 13 | 424 | 00-09 | 282 | 11A | Log Hd +20 |
| 13 | 424 | 10-18 | 283 | 11B | Log Hd +10 |
| 14 | 425 | 00-18 | 283 | 11B | Log Hd |
| 15 | 426 | 00-18 | 284 | 11 C | Log Hd |
| 16 | 427 | 00-09 | 284 | 11 C | Log Hd +20 |
| 16 | 427 | 10-18 | 285 | 11D | Log Hd +10 |
| 17 | 428 | 00-18 | 285 | 11D | Log Hd |
| 18 | 429 | 00-18 | 286 | 11 E | Log Hd |
| 19 | 430 | 00-09 | 286 | 11 E | Log Hd +20 |
| 19 | 430 | 10-18 | 287 | 11 F | Log Hd +10 |
| 20 | 431 | 00-18 | 287 | 11 F | Log Hd |
| 21 | 432 | 00-18 | 288 | 120 | Log Hd |
| 22 | 433 | 00-09 | 288 | 120 | Log Hd +20 |
| 22 | 433 | 10-18 | 289 | 121 | Log Hd +10 |
| 23 | 434 | 00-18 | 289 | 121 | Log Hd |
| 24 | 435 | 00-18 | 290 | 122 | Log Hd |
| 25 | 436 | 00-09 | 290 | 122 | Log Hd +20 |
| 25 | 436 | 10-18 | 291 | 123 | Log Hd +10 |
| 26 | 437 | 00-18 | 291 | 123 | Log Hd |
| 27 | 438 | 00-18 | 292 | 124 | Log Hd |
| 28 | 439 | 00-09 | 292 | 124 | Log Hd +20 |
| 28 | 439 | 10-18 | 293 | 125 | Log Hd +10 |
| 29 | 440 | 00-18 | 293 | 125 | Log Hd |
| 30 | 441 | 00-18 | 294 | 126 | Log Hd |
| 31 | 442 | 00-09 | 294 | 126 | Log Hd +20 |
| 31 | 442 | 10-18 | 295 | 127 | Log $\mathrm{Hd}+10$ |
| 32 | 443 | 00-18 | 295 | 127 | Log Hd |
| 33 | 444 | 00-18 | 296 | 128 | Log Hd |
| 34 | 445 | 00-09 | 296 | 128 | Log Hd +20 |
| 34 | 445 | 10-18 | 297 | 129 | Log Hd +10 |
| 35 | 446 | 00-18 | 297 | 129 | Log Hd |

* Vol 2 3330-1 starts on this page
$\square$

| LOGICAL ADDRESS |  |  | PHYSICAL CYIINDER and HEAD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3330-1 <br> Log Cyl <br> Vol 2 * | 3330-11 Log Cyl | Log Head | $\begin{aligned} & \text { Phy Cyl } \\ & \text { in Dec } \end{aligned}$ | $\begin{aligned} & \text { Phy Cyl } \\ & \text { in Hex } \end{aligned}$ | Phy Head Equals |
| 36 | 447 | 00-18 | 298 | 12A | Log Hd |
| 37 | 448 | 00-09 | 298 | 12A | Log Hd +20 |
| 37 | 448 | 10-18 | 299 | 12B | Log Hd +10 |
| 38 | 449 | 00-18 | 299 | 12B | Log Hd |
| 39 | 450 | 00-18 | 300 | 12 C | Log Hd |
| 40 | 451 | 00-09 | 300 | 12 C | Log Hd +20 |
| 40 | 451 | 10-18 | 301 | 12D | Log Hd +10 |
| 41 | 452 | 00-18 | 301 | 12D | Log Hd |
| 42 | 453 | 00-18 | 302 | 12 E | Log Hd |
| 43 | 454 | 00-09 | 302 | 12E | Log Hd +20 |
| 43 | 454 | 10-18 | 303 | 12 F | Log Hd +10 |
| 44 | 455 | 00-18 | 303 | 12F | Log Hd |
| 45 | 456 | 00-18 | 304 | 130 | Log Hd |
| 46 | 457 | 00-09 | 304 | 130 | Log Hd +20 |
| 46 | 457 | 10-18 | 305 | 131 | Log Hd +10 |
| 47 | 458 | 00-18 | 305 | 131 | Log Hd |
| 48 | 459 | 00-18 | 306 | 132 | Log Hd |
| 49 | 460 | 00-09 | 306 | 132 | Log Hd +20 |
| 49 | 460 | 10-18 | 307 | 133 | Log Hd +10 |
| 50 | 461 | 00-18 | 307 | 133 | Log Hd |
| 51 | 462 | 00-18 | 308 | 134 | Log Hd |
| 52 | 463 | 00-09 | 308 | 134 | Log Hd +20 |
| 52 | 463 | 10-18 | 309 | 135 | Log Hd +10 |
| 53 | 464 | 00-18 | 309 | 135 | Log Hd |
| 54 | 465 | 00-18 | 310 | 136 | Log Hd |
| 55 | 466 | 00-09 | 310 | 136 | Log Hd + 20 |
| 55 | 466 | 10-18 | 311 | 137 | Log Hd +10 |
| 56 | 467 | 00-18 | 311 | 137 | Log Hd |
| 57 | 468 | 00-18 | 312 | 138 | Log Hd |
| 58 | 469 | 00-09 | 312 | 138 | Log Hd +20 |
| 58 | 469 | 10-18 | 313 | 139 | Log Hd +10 |
| 59 | 470 | 00-18 | 313 | 139 | Log Hd |
| 60 | 471 | 00-18 | 314 | 13A | Log Hd |
| 61 | 472 | 00-09 | 314 | 13A | Log Hd +20 |
| 61 | 472 | 10-18 | 315 | 13B | Log Hd +10 |
| 62 | 473 | 00-18 | 315 | 13B | Log Hd |
| 63 | 474 | 00-18 | 316 | 13 C | Log Hd |
| 64 | 475 | 00-09 | 316 | 13 C | Log Hd +20 |
| 64 | 475 | 10-18 | 317 | 13D | Log Hd +10 |
| 65 | 476 | 00-18 | 317 | 13D | Log Hd |
| 66 | 477 | 00-18 | 318 | 13 E | Log Hd |
| 67 | 478 | 00-09 | 318 | 13 E | Log Hd + 20 |
| 67 | 478 | 10-18 | 319 | 13F | Log Hd +10 |
| 68 | 479 | 00-18 | 319 | 13F | Log Hd |
| 69 | 480 | 00-18 | 320 | 140 | Log Hd |
| 70 | 481 | 00-09 | 320 | 140 | Log Hd + 20 |
| 70 | 481 | 10-18 | 321 | 141 | Log Hd +10 |
| 71 | 482 | 00-18 | 321 | 141 | Log Hd |


| LOGICAL ADDRESS |  |  | PHYSICAL CYLINDER and HEAD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $3330-1$ Log Cyl <br> Vol 2 * | 3330-11 Log Cyl | Log Head | $\begin{aligned} & \text { Phy Cyl } \\ & \text { in Dec } \end{aligned}$ | $\begin{aligned} & \text { Phy Cyl } \\ & \text { in Hex } \end{aligned}$ | Phy Head Equals |
| 72 | 483 | 00-18 | 322 | 142 | Log Hd |
| 73 | 484 | 00-09 | 322 | 142 | Log Hd +20 |
| 73 | 484 | 10-18 | 323 | 143 | Log Hd +10 |
| 74 | 485 | 00-18 | 323 | 143 | Log Hd |
| 75 | 486 | 00-18 | 324 | 144 | Log Hd |
| 76 | 487 | 00-09 | 324 | 144 | Log Hd +20 |
| 76 | 487 | 10-18 | 325 | 145 | Log Hd +10 |
| 77 | 488 | 00-18 | 325 | 145 | Log Hd |
| 78 | 489 | 00-18 | 326 | 146 | Log Hd |
| 79 | 490 | 00-09 | 326 | 146 | Log Hd + 20 |
| 79 | 490 | 10-18 | 327 | 147 | Log Hd +10 |
| 80 | 491 | 00-18 | 327 | 147 | Log Hd |
| 81 | 492 | 00-18 | 328 | 148 | Log Hd |
| 82 | 493 | 00-09 | 328 | 148 | Log Hd +20 |
| 82 | 493 | 10-18 | 329 | 149 | Log Hd +10 |
| 83 | 494 | 00-18 | 329 | 149 | Log Hd |
| 84 | 495 | 00-18 | 330 | 14A | Log Hd |
| 85 | 496 | 00-09 | 330 | 14A | Log Hd +20 |
| 85 | 496 | 10-18 | 331 | 14B | Log Hd +10 |
| 86 | 497 | 00-18 | 331 | 14B | Log Hd |
| 87 | 498 | 00-18 | 332 | 14 C | Log Hd |
| 88 | 499 | 00-09 | 332 | 14 C | Log Hd +20 |
| 88 | 499 | 10-18 | 333 | 14 D | Log Hd + 10 |
| 89 | 500 | 00-18 | 333 | 14D | Log Hd |
| 90 | 501 | 00-18 | 334 | 14 E | Log Hd |
| 91 | 502 | 00-09 | 334 | 14 E | Log Hd +20 |
| 91 | 502 | 10-18 | 335 | 14F | Log Hd +10 |
| 92 | 503 | 00-18 | 335 | 14 F | Log Hd |
| 93 | 504 | 00-18 | 336 | 150 | Log Hd |
| 94 | 505 | 00-09 | 336 | 150 | Log Hd +20 |
| 94 | 505 | 10-18 | 337 | 151 | Log Hd +10 |
| 95 | 506 | 00-18 | 337 | 151 | Log Hd |
| 96 | 507 | 00-18 | 338 | 152 | Log Hd |
| 97 | 508 | 00-09 | 338 | 152 | Log Hd +20 |
| 97 | 508 | 10-18 | 339 | 153 | Log Hd +10 |
| 98 | 509 | 00-18 | 339 | 153 | Log Hd |
| 99 | 510 | 00-18 | 340 | 154 | Log Hd |
| 100 | 511 | 00-09 | 340 | 154 | Log Hd +20 |
|  |  | 10-18 | 341 | 155 | Log Hd +10 |
| 101 | 512 | 00-18 | 341 | 155 | Log Hd |
| 102 | 513 | 00-18 | 342 | 156 | Log Hd |
| 103 | 514 | 00-09 | 342 | 156 | Log Hd +20 |
|  |  | 10-18 | 343 | 157 | Log Hd +10 |
| 104 | 515 | 00-18 | 343 | 157 | Log Hd |
| 105 | 516 | 00-18 | 344 | 158 | Log Hd |
| 106 | 517 | 00-09 | 344 | 158 | Log Hd +20 |
|  |  | 10-18 | 345 | 159 | Log Hd +10 |
| 107 | 518 | 00-18 | 345 | 159 | Log Hd |


| LOGICAL ADDRESS |  |  | PHYSICAL CYLINDER and HEAD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3330-1 <br> Log Cyl <br> Vol 2 * | $\begin{aligned} & 3330-11 \\ & \text { Log } \mathrm{Cyl} \end{aligned}$ | Log Head | $\begin{aligned} & \text { Phy CyI } \\ & \text { in Dec } \end{aligned}$ | Phy Cyl in Hex | Phy Head Equals |
| 108109 | 519520 | 00-18 | 346 | 15A | Log Hd |
|  |  | 00-09 | 346 | 15A | Log $\mathrm{Hd}+2 \mathrm{O}$ |
|  |  | 10-18 | 347 | 15B | Log $\mathrm{Hd}+10$ |
| 110 | 521 | 00-18 | 347 | 15B | Log Hd |
| $\begin{aligned} & 111 \\ & 112 \end{aligned}$ | $\begin{aligned} & 522 \\ & 523 \end{aligned}$ | 00-18 | 348 | 15 C | Log Hd |
|  |  | 00-09 | 348 | 15 C | Log $\mathrm{Hd}+20$ |
|  |  | 10-18 | 349 | 15D | Log Hd +10 |
| 113 | 524 | 00-18 | 349 | 15D | Log Hd |
| $\begin{aligned} & 114 \\ & 115 \end{aligned}$ | 525526 | 00-18 | 350 | 15 E | Log Hd |
|  |  | 00-09 | 350 | 15E | Log $\mathrm{Hd}+2 \mathrm{O}$ |
|  |  | 10-18 | 351 | 15 F | Log $\mathrm{Hd}+10$ |
|  | 527 | 00-18 | 351 | 15F | Log Hd |
| $\begin{aligned} & 117 \\ & 118 \end{aligned}$ | $\begin{aligned} & 528 \\ & 529 \end{aligned}$ | 00-18 | 352 | 160 | Log Hd |
|  |  | 00-09 | 352 | 160 | Log Hd +20 |
|  |  | 10-18 | 353 | 161 | Log Hd +10 |
| $119$ | 530 | 00-18 | 353 | 161 | Log Hd |
| $\begin{aligned} & 120 \\ & 122 \end{aligned}$ | $531$ | 00-18 | 354 | 162 | Log Hd |
|  |  | 00-09 | 354 | 162 | Log $\mathrm{Hd}+2 \mathrm{O}$ |
|  |  | 10-18 | 355 | 163 | Log $\mathrm{Hd}+10$ |
| 122 | 533 | 00-18 | 355 | 163 | Log Hd |
| $\begin{aligned} & 123 \\ & 124 \end{aligned}$ | $\begin{aligned} & 534 \\ & 535 \end{aligned}$ | 00-18 | 356 | 164 | Log Hd |
|  |  | 00-09 | 356 | 164 | Log Hd +20 |
|  |  | 10-18 | 357 | 165 | Log Hd +10 |
| 125 | 536 | 00-18 | 357 | 165 | Log Hd |
| $\begin{aligned} & 126 \\ & 127 \end{aligned}$ | $\begin{array}{r} 537 \\ 538 \end{array}$ | 00-18 | 358 | 166 | Log Hd |
|  |  | 00-09 | 358 | 166 | Log Hd +20 |
|  |  | 10-18 | 359 | 167 | Log Hd +10 |
| 128 | 539 | 00-18 | 359 | 167 | Log Hd |
| $\begin{aligned} & 129 \\ & 130 \end{aligned}$ | $\begin{aligned} & 540 \\ & 541 \end{aligned}$ | 00-18 | 360 | 168 | Log Hd |
|  |  | 00-09 | 360 | 168 | Log Hd +20 |
|  |  | 10-18 | 361 | 169 | Log Hd +10 |
| 131 | 542 | 00-18 | 361 | 169 | Log Hd |
| $\begin{aligned} & 132 \\ & 133 \end{aligned}$ | $\begin{aligned} & 543 \\ & 544 \end{aligned}$ | 00-18 | 362 | 16A | Log Hd |
|  |  | 00-09 | 362 | 16A | Log Hd +20 |
|  |  | 10-18 | 363 | 16B | Log Hd +10 |
| 134 | 545 | 00-18 | 363 | 16B | Log Hd |
| $\begin{aligned} & 135 \\ & 136 \end{aligned}$ | $\begin{aligned} & 546 \\ & 547 \end{aligned}$ | 00-18 | 364 | 16 C | Log Hd |
|  |  | 00-09 | 364 | 16 C | Log Hd +20 |
|  |  | 10-18 | 365 | 16D | Log Hd +10 |
| 137 | 548 | 00-1 | 36 | 16 D | Log Hd |
| $\begin{aligned} & 138 \\ & 139 \end{aligned}$ | $\begin{aligned} & 549 \\ & 550 \end{aligned}$ | 00-18 | 366 | 16 E | Log Hd |
|  |  | 00-09 | 366 | 16E | Log Hd +20 |
|  |  | 10-18 | 367 | 16 F | Log Hd +10 |
| 140 | 551 | 00-18 | 367 | 16F | Log Hd |
| $\begin{aligned} & 141 \\ & 142 \end{aligned}$ | $\begin{aligned} & 552 \\ & 553 \end{aligned}$ | 00-18 | 368 | 170 | Log Hd |
|  |  | 00-09 | 368 | 170 | Log Hd +20 |
|  |  | 10-18 | 369 | 171 | Log Hd +10 |
| 143 | 554 | 00-18 | 369 | 171 | Log Hd |

Continued on RW 414.

## C C C C <br> address conversion

| LOGICAL ADDRESS |  |  | PHYSICAL CYLINDER and HEAD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 3330-1 \\ & \text { Log CyI } \\ & \text { Vol } 2 \end{aligned}$ | 3330-11 Log Cyl | Log Head | Phy Cyl in Dec | Phy Cyl in Hex | Phy Head Equals |
| 145 | 555 | 00-18 | 370 | 172 | Log Hd |
|  | 556 | 00-09 | 370 | 172 | Log Hd +20 |
|  |  | 10-18 | 371 | 173 | Log Hd +10 |
| 146 | 557 | 00-18 | 371 | 173 | Log Hd |
| 148 | 558 | 00-18 | 372 | 174 | Log Hd |
|  | 559 | 00-09 | 372 | 174 | Log Hd +20 |
|  |  | 10-18 | 373 | 175 | Log Hd +10 |
| 149 | 560 | 00-18 | 373 | 175 | Log Hd |
| 150151 | 561 | 00-18 | 374 | 176 | Log Hd |
|  | 562 | 00-09 | 374 | 176 | Log $\mathrm{Hd}+20$ |
|  |  | 10-18 | 375 | 177 | Log Hd + 10 |
| 152 | 563 | 00-18 | 375 | 177 | Log Hd |
| 153 | 564 | 00-18 | 376 | 178 | Log Hd |
| 154 | 565 | 00-09 | 376 | 178 | Log $\mathrm{Hd}+20$ |
|  |  | 10-18 | 377 | 179 | Log $\mathrm{Hd}+10$ |
| 155 | 566 | 00-18 | 377 | 179 | Log Hd |
| 156157 | 567 | 00-18 | 378 | 17A | Log Hd |
|  | 568 | 00-09 | 378 | 17 A | Log Hd +20 |
|  |  | 10-18 | 379 | 17B | Log Hd +10 |
| 158 | 569 | 00-18 | 379 | 17B | Log Hd |
| 159 | 570 | 00-18 | 380 | 17 C | Log Hd |
| 160 | 571 | 00-09 | 380 | 17 C | Log Hd +20 |
|  |  | 10-18 | 381 | 17D | Log $\mathrm{Hd}+10$ |
| 161 | 572 | 00-18 | 381 | 17D | Log Hd |
| 162163 | 573 | 00-18 | 382 | 17 E | Log Hd |
|  | 574 | 00-09 | 382 | 17 E | Log Hd +20 |
|  |  | 10-18 | 383 | 17 F | Log Hd +10 |
| 164 | 575 | 00-18 | 383 | 17F | Log Hd |
| 166 | 576 | 00-18 | 384 | 180 | Log Hd |
|  | 577 | 00-09 | 384 | 180 | Log Hd + 20 |
|  |  | 10-18 | 385 | 181 | Log Hd +10 |
| 167 | 578 | 00-18 | 385 | 181 | Log Hd |
| $\begin{aligned} & 168 \\ & 169 \end{aligned}$ | 579 | 00-18 | 386 | 182 | Log Hd |
|  | 580 | 00-09 | 386 | 182 | Log Hd +20 |
|  |  | 10-18 | 387 | 183 | Log Hd +10 |
| 170 | 581 | 00-18 | 387 | 183 | Log Hd |
| 171172 | 582 | 00-18 | 388 | 184 | Log Hd |
|  | 583 | 00-09 | 388 | 184 | Log Hd +20 |
|  |  | 10-18 | 389 | 185 | Log Hd +10 |
| 173 | 584 | 00-18 | 389 | 185 | Log Hd |
| 174175 | 585 | 00-18 | 390 | 186 | Log Hd |
|  | 586 | 00-09 | 390 | 186 | Log Hd + 20 |
|  |  | 10-18 | 391 | 187 | Log Hd +10 |
| 176 | 587 | 00-18 | 391 | 187 | Log Hd |
| $\begin{aligned} & 177 \\ & 178 \end{aligned}$ | 588 | 00-18 | 392 | 188 | Log Hd |
|  | 589 | 00-09 | 392 | 188 | Log Hd + 20 |
|  |  | 10-18 | 393 | 189 | Log $\mathrm{Hd}+10$ |
| 179 | 590 | 00-18 | 393 | 189 | Log Hd |


| LOGICAL ADDRESS |  |  | PHYSICAL CYLINDER and HEAD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3330-1 Log CyI <br> Vol 2 | $\begin{aligned} & 3330-11 \\ & \text { Log } \mathrm{CyI} \end{aligned}$ | Log Head | $\begin{aligned} & \text { Phy Cyl } \\ & \text { in Dec } \end{aligned}$ | Phy Cyl in Hex | Phy Head Equals |
| 180181 | 591 | 00-18 | 394 | 18A | Log Hd |
|  | 592 | 00-09 | 394 | 18A | Log Hd +20 |
|  |  | 10-18 | 395 | 18B | Log Hd +10 |
| 182 | 593 | 00-18 | 395 | 18B | Log Hd |
| 183184 | 594 | 00-18 | 396 | 18 C | Log Hd |
|  | 595 | 00-09 | 396 | 18 C | Log Hd +20 |
|  |  | 10-18 | 397 | 18D | Log Hd +10 |
| 185 | 596 | 00-18 | 397 | 18D | Log Hd |
| 186 | 597 | 00-18 | 398 | 18 E | Log Hid |
| 187 | 598 | 00-09 | 398 | 18E | Log Hd +20 |
|  |  | 10-18 | 399 | 18 F | Log Hd +10 |
| 188 | 599 | 00-18 | 399 | 18 F | Log Hd |
| 189190 | 600 | 00-18 | 400 | 190 | Log Hd |
|  | 601 | 00-09 | 400 | 190 | Log Hd +20 |
|  |  | 10-18 | 401 | 191 | Log Hd +10 |
| 191 | 602 | 00-18 | 401 | 191 | Log Hd |
| 193 | 603 | 00-18 | 402 | 192 | Log Hd |
|  | 604 | 00-09 | 402 | 192 | Log Hd +20 |
|  |  | 10-18 | 403 | 193 | Log Hd +10 |
| 194 | 605 | 00-18 | 403 | 193 | Log Hd |
| 195196 | 606 | 00-18 | 404 | 194 | Log Hd |
|  | 607 | 00-09 | 404 | 194 | Log Hd +20 |
|  |  | 10-18 | 405 | 195 | Log Hd +10 |
| 197 | 608 | 00-18 | 405 | 195 | Log Hd |
| 199 | 609 | 00-18 | 406 | 196 | Log Hd |
|  | 610 | 00-09 | 406 | 196 | Log Hd +20 |
|  |  | 10-18 | 407 | 197 | Log Hd +10 |
| 200 | 611 | 00-18 | 407 | 197 | Log Hd |
| 202 | 612 | 00-18 | 408 | 198 | Log Hd |
|  | 613 | 00-09 | 408 | 198 | Log Hd +20 |
|  |  | 10-18 | 409 | 199 | Log Hd +10 |
| 203 | 614 | 00-18 | 409 | 199 | Log Hd |
| 204 | 615 | 00-18 | 410 | 19A | Log Hd |
| 205 | 616 | 00-09 | 410 | 19A | Log Hd +20 |
|  |  | 10-18 | 411 | 198 | Log Hd +10 |
| 206 | 617 | 00-18 | 411 | 19B | Log Hd |
| 208 | 618 | 00-18 | 412 | 19 C | Log Hd |
|  | 619 | 00-09 | 412 | 19C | Log Hd +20 |
|  |  | 10-18 | 413 | 19D | Log Hd +10 |
| 209 | 620 | 00-18 | 413 | 19D | Log Hd |
| 210 | 621 | 00-18 | 414 | 19 E | Log Hd |
| 211 | 622 | 00-09 | 414 | 19 E | Log Hd +20 |
|  |  | 10-18 | 415 | 19 F | Log Hd +10 |
| 212 | 623 | 00-18 | 415 | 19F | Log Hd |
| 213 | 624 | 00-18 | 416 | 1 AO | Log Hd |
| 214 | 625 | 00-09 | 416 | 1 AO | Log Hd +20 |
| 214 | 625 | 10-18 | 417 | 1A1 | Log Hd +10 |
| 215 | 626 | 00-18 | 417 | 1A1 | Log Hd |


| Logical address |  |  | PHYSICAL CYIINDER and HEAD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $3330-1$ Log CyI <br> Vol 2 | $\begin{aligned} & 3330-11 \\ & \text { Log Cyl } \end{aligned}$ | Log Head | $\begin{aligned} & \hline \text { Phy CyI } \\ & \text { in Dec } \end{aligned}$ | Phy Cyl in Hex | Phy Head Equals |
| 216 | 627 | 00-18 | 418 | 1A2 | Log Hd |
| 217 | 628 | 00-09 | 418 | 1A2 | Log Hd +20 |
|  |  | 10-18 | 419 | 1A3 | Log $\mathrm{Hd}+10$ |
| 218 | 629 | 00-18 | 419 | 1 A 3 | Log Hd |
| 219 | 630 | 00-18 | 420 | 1A4 | Log Hd |
| 220 | 631 | 00-09 | 420 | 1A4 | Log Hd +20 |
|  |  | 10-18 | 421 | 1A5 | Log Hd +10 |
| 221 | 632 | 00-18 | 421 | 1A5 | Log Hd |
| 222 | 633 | 00-18 | 422 | 1A6 | Log Hd |
| 223 | 634 | 00-09 | 422 | 1A6 | Log Hd +20 |
|  |  | 10-18 | 423 | 1A7 | Log $\mathrm{Hd}+10$ |
| 224 | 635 | 00-18 | 423 | 1A7 | Log Hd |
| ${ }_{226}^{225}$ | 636 | 00-18 | 424 | 1A8 | Log Hd |
|  | 637 | 00-09 | 424 | 1A8 | Log Hd +20 |
|  |  | 10-18 | 425 | 1A9 | Log Hd +10 |
| 227 | 638 | 00-18 | 425 | 1A9 | Log Hd |
| 228 | 639 | 00-18 | 426 | 1AA | Log Hd |
|  | 640 | 00-09 | 426 | 1AA | Log Hd +20 |
|  |  | 10-18 | 427 | 1 AB | Log Hd +10 |
| 230 | 641 | 00-18 | 427 | 1 AB | Log Hd |
| 232 | 642 | 00-18 | 428 | 1 AC | Log Hd |
|  | 643 | 00-09 | 428 | 1 AC | Log Hd + 20 |
|  |  | 10-18 | 429 | 1 AD | Log Hd +10 |
| 233 | 644 | 00-18 | 429 | 1 AD | Log Hd |
| 235 | 645 | 00-18 | 430 | 1AE | Log Hd |
|  | 646 | 00-09 | 430 | 1 AE | Log Hd +20 |
|  |  | 10-18 | 431 | 1AF | Log Hd +10 |
| 236 | 647 | 00-18 | 431 | 1AF | Log Hd |
| 238 | 648 | 00-18 | 432 | 180 | Log Hd |
|  | 649 | 00-09 | 432 | 180 | Log Hd +20 |
|  |  | 10-18 | 433 | 181 | Log Hd +10 |
| 239 | 650 | 00-18 | 433 | 181 | Log Hd |
| 240 | 651 | 00-18 | 434 | 182 | Log Hd |
| 241 | 652 | 00-09 | 434 | 1 B 2 | Log Hd +20 |
|  |  | 10-18 | 435 | 1B3 | Log $\mathrm{Hd}+10$ |
| 242 | 653 | 00-18 | 435 | 183 | Log Hd |
| 244 | 654 | 00-18 | 436 | 184 | Log Hd |
|  | 655 | 00-09 | 436 | 184 | Log $\mathrm{Hd}+20$ |
|  |  | 10-18 | 437 | 185 | Log Hd +10 |
| 245 | 656 | 00-18 | 437 | 185 | Log Hd |
| 246 | 657 | 00-18 | 438 | 186 | Log Hd |
| 247 | 658 | 00-09 | 438 | 186 | Log Hd +20 |
|  |  | 10-18 | 439 | 187 | Log Hd +10 |
| 248 | 659 | 00-18 | 439 | $1 \mathrm{B7}$ | Log Hd |
| 249 | 660 | 00-18 | 440 | 188 | Log Hd |
| 250 | 661 | 00-09 | 440 | 188 | Log $\mathrm{Hd}+20$ |
|  |  | 10-18 | 441 | $1 \mathrm{B9}$ | Log Hd +10 |
| 251 | 662 | 00-18 | 441 | $1 \mathrm{B9}$ | Log Hd |


| LOGICAL ADDRESS |  |  | PHYSICAL CYLINDER and HEAD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 3330-1 \\ & \text { Log CyI } \\ & \text { Vol } 2 \end{aligned}$ | 3330-11 Log Cyl | Log Head | $\begin{aligned} & \text { Phy CyII } \\ & \text { in Dec } \end{aligned}$ | Phy CyI in Hex | Phy Head Equals |
| 252 | 663 | 00-18 | 442 | 1BA | Log Hd |
| 253 | 664 | 00-09 | 442 | 1BA | Log Hd +20 |
|  |  | 10-18 | 443 | 1BB | Log Hd +10 |
| 254 | 665 | 00-18 | 443 | 1BB | Log Hd |
| 255 | 666 | 00-18 | 444 | 1 BC | Log Hd |
| 256 | 667 | 00-09 | 444 | 1BC | Log Hd + 20 |
|  |  | 10-18 | 445 | 1 BD | Log Hd +10 |
| 257 | 668 | 00-18 | 445 | 1BD | Log Hd |
| 258 | 669 | 00-18 | 446 | 1BE | Log Hd |
| 259 | 670 | 00-09 | 446 | 18E | Log Hd +20 |
|  |  | 10-18 | 447 | 18F | Log Hd +10 |
| 260 | 671 | 00-18 | 447 | 1BF | Log Hd |
| 261 | 672 | 00-18 | 448 | 1 CO | Log Hd |
| 262 | 673 | 00-09 | 448 | 1 CO | Log Hd +20 |
|  |  | 10-18 | 449 | 1 C 1 | Log Hd +10 |
| 263 | 674 | 00-18 | 449 | 1 C 1 | Log Hd |
| 264 | 675 | 00-18 | 450 | 102 | Log Hd |
| 265 | 676 | 00-09 | 450 | 1 C 2 | Log Hd +20 |
|  |  | 10-18 | 451 | 1 C 3 | Log Hd +10 |
| 266 | 677 | 00-18 | 451 | $1 \mathrm{C3}$ | Log Hd |
| 268 | 678 | 00-18 | 452 | $1 \mathrm{C4}$ | Log Hd |
|  | 679 | 00-09 | 452 | 1 C 4 | Log Hd +20 |
|  |  | 10-18 | 453 | 1 C 5 | Log Hd +10 |
| 269 | 680 | 00-18 | 453 | $1 \mathrm{C5}$ | Log Hd |
| 270 | 681 | 00-18 | 454 | 1 C 6 | Log Hd |
| 271 | 682 | 00-09 | 454 | $1 \mathrm{C6}$ | Log Hd +20 |
|  |  | 10-18 | 455 | $1 \mathrm{C7}$ | Log Hd +10 |
| 272 | 683 | 00-18 | 455 | $1 \mathrm{C7}$ | Log Hd |
| 274 | 684 | 00-18 | 456 | $1 \mathrm{C8}$ | Log Hd |
|  | 685 | 00-09 | 456 | $1 \mathrm{C8}$ | Log Hd +20 |
|  |  | 10-18 | 457 | $1 \mathrm{C9}$ | Log Hd +10 |
| 275 | 686 | 00-18 | 457 | $1 \mathrm{C9}$ | Log Hd |
| $\begin{aligned} & 276 \\ & 277 \end{aligned}$ | 687 | 00-18 | 458 | 1CA | Log Hd |
|  | 688 | 00-09 | 458 | 1CA | Log Hd +20 |
|  |  | 10-18 | 459 | 1 CB | Log Hd +10 |
| 278 | 689 | 00-18 | 459 | 1CB | Log Hd |
| $\begin{aligned} & 279 \\ & 280 \end{aligned}$ | 690 | 00-18 | 460 | 1 CC | Log Hd |
|  | 691 | 00-09 | 460 | 1CC | Log Hd +20 |
|  |  | 10-18 | 461 | 1CD | Log Hd +10 |
| 281 | 692 | 00-18 | 461 | 1 CD | Log Hd |
| $\begin{aligned} & 282 \\ & 283 \end{aligned}$ | 693 | 00-18 | 462 | 1 CE | Log Hd |
|  | 694 | 00-09 | 462 | 1 CE | Log Hd +20 |
|  |  | 10-18 | 463 | 1 CF | Log Hd +10 |
| 284 | 695 | 00-18 | 463 | 1CF | Log Hd |
| $\begin{aligned} & 285 \\ & 286 \end{aligned}$ | 696 | 00-18 | 464 | 1枵 | Log Hd |
|  | 697 | 00-09 | 464 | 1D0 | Log Hd +20 |
|  |  | 10-18 | 465 | 1D1 | Log Hd +10 |
| 287 | 698 | 00-18 | 465 | 1D1 | Log Hd |

Continued on RN 415.

$3350 \quad$| ECO414 |
| :--- | :--- | :--- |
| Seq. 1 of 2 | \(\begin{aligned} \& 2358684 <br>

\& Part No.\end{aligned} \quad\)| 441300 |
| :--- | :--- | :--- |
| 31 Mar 76 |\(\quad \begin{aligned} \& 441303 <br>

\& 30 Jul 76\end{aligned}\)

| LOGICAL ADDRESS |  |  | PHYSICAL CYLINDER and HEAD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3330-1 <br> Log CyI <br> Vol 2 | $\begin{aligned} & 3330-11 \\ & \text { Log Cyl } \end{aligned}$ | Log Head | $\begin{aligned} & \text { Phy Cyl } \\ & \text { in Dec } \end{aligned}$ | Phy Cyl in Hex | Phy Head Equals |
| 289 | 699 | 00-18 | 466 | 1D2 | Log Hd |
|  | 700 | 00-09 | 466 | 1D2 | Log $\mathrm{Ha}+2 \mathrm{O}$ |
|  |  | 10-18 | 467 | 1D3 | Log Hd + 10 |
| 290 | 701 | 00-18 | 467 | 1D3 | Log Hd |
| 292 | 702 | 00-18 | 468 | 1 D 4 | Log Hd |
|  | 703 | 00-09 | 468 | 1D4 | Log Hd +20 |
|  |  | 10-18 | 469 | 1 D 5 | Log Hd +10 |
| 293 | 704 | 00-18 | 469 | 1D5 | Log Hd |
| 294295 | 705 | 00-18 | 470 | 1D6 | Log Hd |
|  | 706 | 00-09 | 470 | $1 \mathrm{D6}$ | Log Hd +20 |
|  |  | 10-18 | 471 | $1 \mathrm{D7}$ | Log Hd +10 |
| 296 | 707 | 00-18 | 471 | 1D7 | Log Hd |
| 298 | 708 | 00-18 | 472 | 108 | Log Hd |
|  | 709 | 00-09 | 472 | 1 D 8 | Log Hd +20 |
|  |  | 10-18 | 473 | 1D9 | Log Hd +10 |
| 299 | 710 | 00-18 | 473 | 1D9 | Log Hd |
| 301 | 711 | 00-18 | 474 | 1DA | Log Hd |
|  | 712 | 00-09 | 474 | 1DA | Log Hd + 20 |
|  |  | 10-18 | 475 | 1DB | Log $\mathrm{Hd}+10$ |
| 302 | 713 | 00-18 | 475 | 1DB | Log Hd |
| 303304 | 714 | 00-18 | 476 | 1DC | Log Hd |
|  | 715 | 00-09 | 476 | 1DC | Log $\mathrm{Hd}+20$ |
|  |  | 10-18 | 477 | 1DD | Log Hd +10 |
| 305 | 716 | 00-18 | 477 | 1DD | Log Hd |
| 306307 | 717 | 00-18 | 478 | 1DE | Log Hd |
|  | 718 | 00-09 | 478 | 1DE | Log Hd +20 |
|  |  | 10-18 | 479 | 1DF | Log Hd +10 |
| 308 | 719 | 00-18 | 479 | 1DF | Log Hd |
| 309 | 720 | 00-18 | 480 | 1 EO | Log Hd |
| 310 | 721 | 00-09 | 480 | 1E0 | Log $\mathrm{Hd}+2 \mathrm{O}$ |
|  |  | 10-18 | 481 | $1 \mathrm{E1}$ | Log $\mathrm{Hd}+10$ |
| 311 | 722 | 00-18 | 481 | 1 E 1 | Log Hd |
| 312 | 723 | 00-18 | 482 | 1 E 2 | Log Hd |
| 313 | 724 | 00-09 | 482 | 1 E2 | Log $\mathrm{Hd}+2 \mathrm{O}$ |
| 313 | 724 | 10-18 | 483 | 1 E3 | Log Hd +10 |
| 314 | 725 | 00-18 | 483 | 1 E3 | Log Hd |
| 315 | 726 | 00-18 | 484 | $1 \mathrm{E4}$ | Log Hd |
| 316 | 727 | 00-09 | 484 | 1 E4 | Log Hd +20 |
|  |  | 10-18 | 485 | $1 \mathrm{E5}$ | Log Hd +10 |
| 317 | 728 | 00-18 | 485 | 1 E 5 | Log Hd |
| 318319 | 729 | 00-18 | 486 | 1 E6 | Log Hd |
|  | 730 | 00-09 | 486 | 1 E6 | Log $\mathrm{Hd}+2 \mathrm{O}$ |
|  |  | 10-18 | 487 | $1 \mathrm{E7}$ | Log $\mathrm{Hd}+10$ |
| 320 | 731 | 00-18 | 487 | 1 E7 | Log Hd |
| $\begin{aligned} & 321 \\ & 322 \end{aligned}$ | 732 | 00-18 | 488 | 1 188 | Log Hd |
|  | 733 | 00-09 | 488 | 1 E 8 | Log Hd +20 |
|  |  | 10-18 | 489 | 1 E9 | Log Hd +10 |
| 323 | 734 | 00-18 | 489 | 1 E9 | Log Hd |


| LOGICAL ADDRESS |  |  | PHYSICAL CYLINDER and HEAD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $3330-1$ Log Cyl <br> Vol 2 | $\begin{aligned} & 3330-11 \\ & \text { Log Cyl } \end{aligned}$ | Log Head | $\begin{aligned} & \text { Phy Cyl } \\ & \text { in Dec } \end{aligned}$ | Phy Cyl in Hex | Phy Head Equals |
| 324325 | 735 | 00-18 | 490 | 1 EA | Log Hd |
|  | 736 | 00-09 | 490 | 1 EA | Log Hd +20 |
|  |  | 10-18 | 491 | 1 EB | Log $\mathrm{Hd}+10$ |
| 326 | 737 | 00-18 | 491 | 1 EB | Log Hd |
| 327 | 738 | 00-18 | 492 | 1 EC | Log Hd |
| 328 | 739 | 00-09 | 492 | 1 EC | Log Hd +20 |
|  |  | 10-18 | 493 | 1ED | Log Hd +10 |
| 329 | 740 | 00-18 | 493 | 1ED | Log Hd |
| 330 | 741 | 00-18 | 494 | 1 EE | Log Hd |
| 331 | 742 | 00-09 | 494 | 1 EE | Log Hd + 20 |
|  |  | 10-18 | 495 | 1 EF | Log Hd +10 |
| 332 | 743 | 00-18 | 495 | 1 EF | Log Hd |
| 333 | 744 | 00-18 | 496 | 1FO | Log Hd |
| 3343 | 745 | 00-09 | 496 | 1 FO | Log Hd + 20 |
|  |  | 10-18 | 497 | 1 F 1 | Log $\mathrm{Hd}+10$ |
| 335 | 746 | 00-18 | 497 | 1F1 | Log Hd |
| 336 | 747 | 00-18 | 498 | 1 F2 | Log Hd |
| 337 | 748 | 00-09 | 498 | 1 F2 | Log Hd +20 |
|  |  | 10-18 | 499 | 1 F3 | Log Hd +10 |
| 338 | 749 | 00-18 | 499 | 1F3 | Log Hd |
| 339340 | 750 | 00-18 | 500 | 1 F4 | Log Hd |
|  | 751 | 00-09 | 500 | 1 F4 | Log Hd +20 |
|  |  | 10-18 | 501 | 1 F5 | Log Hd +10 |
| 341 | 752 | 00-18 | 501 | 1 F5 | Log Hd |
| 342343 | 753 | 00-18 | 502 | 1 F6 | Log Hd |
|  | 754 | 00-09 | 502 | 1 F6 | Log Hd + 20 |
|  |  | 10-18 | 503 | 1 F7 | Log Hd +10 |
| 34 | 755 | 00-18 | 503 | 1F7 | Log Hd |
| 345346 | 756 | 00-18 | 504 | 1 F8 | Log Hd |
|  | 757 | 00-09 | 504 | 1 F8 | Log $\mathrm{Hd}+20$ |
|  |  | 10-18 | 505 | 1F9 | Log Hd +10 |
| 347 | 758 | 00-18 | 505 | 1 F9 | Log Hd |
| 348349 | 759 | 00-18 | 506 | 1FA | Log Hd |
|  | 760 | 00-09 | 506 | 1FA | Log Hd + 20 |
|  |  | 10-18 | 507 | 1 FB | Log $\mathrm{Hd}+10$ |
| 350 | 761 | 00-18 | 507 | 1FB | Log Hd |
| 352 | 762 | 00-18 | 508 | 1 FC | Log Hd |
|  | 763 | 00-09 | 508 | 1 FC | Log Hd + 20 |
|  |  | 10-18 | 509 | 1FD | Log $\mathrm{Hd}+10$ |
| 353 | 764 | 00-18 | 509 | 1FD | Log Hd |
| 354 | 765 | 00-18 | 510 | 1 FE | Log Hd |
| 355 | 766 | 00-09 | 510 | 1 FE | Log Hd + 20 |
|  |  | 10-18 | 511 | 1 FF | Log $\mathrm{Hd}+10$ |
| 356 | 767 | 00-18 | 511 | 1FF | Log Hd |
| $\begin{aligned} & 357 \\ & 358 \end{aligned}$ | 768 | 00-18 | 512 | 200 | Log Hd |
|  | 769 | 00-09 | 512 | 200 | Log Hd + 20 |
|  |  | 10-18 | 513 | 201 | Log $\mathrm{Hd}+10$ |
| 359 | 770 | 00-18 | 513 | 201 | Log Hd |


| LOGICAL ADDRESS |  |  | PHYSICAL CYLINDER and HEAD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 3330-1 \\ & \text { Log Cyl } \\ & \text { Vol } 2 \end{aligned}$ | 3330-11 Log Cyl | Log Head | Phy CyI in Dec | Phy Cyl in Hex | Phy Head Equals |
| 360 | 771 | 00-18 | 514 | 202 | Log Hd |
| 361 | 772 | 00-09 | 514 | 202 | Log $\mathrm{Hd}+2 \mathrm{O}$ |
|  |  | 10-18 | 515 | 203 | Log Hd +10 |
| 362 | 773 | 00-18 | 515 | 203 | Log Hd |
| $\begin{aligned} & 363 \\ & 364 \end{aligned}$ | 774775 | 00-18 | 516 | 204 | Log Hd |
|  |  | 00-09 | 516 | 204 | Log Hd +20 |
|  |  | 10-18 | 517 | 205 | Log Hd +10 |
| 365 | 776 | 00-18 | 517 | 205 | Log Hd |
| 366367 | $\begin{aligned} & 777 \\ & 778 \end{aligned}$ | 00-18 | 518 | 206 | Log Hd |
|  |  | 00-09 | 518 | 206 | Log $\mathrm{Hd}+2 \mathrm{O}$ |
|  |  | 10-18 | 519 | 207 | Log Hd +10 |
| 368 | 779 | 00-18 | 519 | 207 | Log Hd |
| $\begin{aligned} & 369 \\ & 370 \end{aligned}$ | $\begin{aligned} & 780 \\ & 781 \end{aligned}$ | 00-18 | 520 | 208 | Log Hd |
|  |  | 00-09 | 520 | 208 | Log $\mathrm{Hd}+2 \mathrm{O}$ |
|  |  | 10-18 | 521 | 209 | Log $\mathrm{Hd}+10$ |
| 371 | 782 | 00-18 | 521 | 209 | Log Hd |
| $\begin{aligned} & 372 \\ & 373 \end{aligned}$ | $\begin{aligned} & 783 \\ & 784 \end{aligned}$ | 00-18 | 522 | 20A | Log Hd |
|  |  | 00-09 | 522 | 20A | Log Hd +20 |
|  |  | 10-18 | 523 | 20B | Log Hd +10 |
| 374 | 785 | 00-18 | 523 | 20B | Log Hd |
| $\begin{aligned} & 375 \\ & 376 \end{aligned}$ | 786787 | 00-18 | 524 | 20 C | Log Hd |
|  |  | 00-09 | 524 | 20 C | Log Hd +20 |
| 376377 | 787788 | 10-18 | 525 | 20 D | Log Hd +10 |
|  |  | 00-18 | 525 | 20D | Log Hd |
| $\begin{aligned} & 378 \\ & 379 \end{aligned}$ | $\begin{aligned} & 789 \\ & 790 \end{aligned}$ | 00-18 | 526 | 20 E | Log Hd |
|  |  | 00-09 | 526 | 20E | Log Hd +20 |
|  |  | 10-18 | 527 | 20 F | Log Hd +10 |
| 380 | 791 | 00-18 | 527 | 20F | Log Hd |
| 381382 | 792793 | 00-18 | 528 | 210 | Log Hd |
|  |  | 00-09 | 528 | 210 | Log Hd +20 |
|  |  | 10-18 | 529 | 211 | Log $\mathrm{Hd}+10$ |
| 383 | 794 | 00-18 | 529 | 211 | Log Hd |
| $\begin{aligned} & 384 \\ & 385 \end{aligned}$ | $\begin{aligned} & 795 \\ & 796 \end{aligned}$ | 00-18 | 530 | 212 | Log Hd |
|  |  | 00-09 | 530 | 212 | Log Hd +20 |
| $\begin{aligned} & 385 \\ & 386 \end{aligned}$ | $\begin{aligned} & 796 \\ & 797 \end{aligned}$ | 10-18 | 531 | 213 | Log Hd +10 |
|  |  | 00-18 | 531 | 213 | Log Hd |
| $\begin{aligned} & 387 \\ & 388 \end{aligned}$ | 798799 | 00-18 | 532 | 214 | Log Hd |
|  |  | 00-09 | 532 | 214 | Log Hd +20 |
|  |  | 10-18 | 533 | 215 | Log Hd +10 |
| 389 | 800 | 00-18 | 533 | 215 | Log Hd |
| $\begin{aligned} & 390 \\ & 391 \end{aligned}$ | $\begin{aligned} & 801 \\ & 802 \end{aligned}$ | 00-18 | 534 | 216 | Log Hd |
|  |  | 00-09 | 534 | 216 | Log Hd + 20 |
|  |  | 10-18 | 535 | 217 | Log $\mathrm{Hd}+10$ |
| 392 | 803 | 00-18 | 535 | 217 | Log Hd |
| $\begin{array}{r} 393 \\ 394 \end{array}$ | 804805 | 00-18 | 536 | 218 | Log Hd |
|  |  | 00-09 | 536 | 218 | Log Hd +20 |
|  |  | 10-18 | 537 | 219 | Log $\mathrm{Hd}+10$ |
| 395 | 806 | 00-18 | 537 | 219 | Log Hd |


| LOGICAL ADDRESS |  |  | PHYSICAL CYLINDER and HEAD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 3330-1 \\ & \text { Log CyI } \\ & \text { Vol } 2 \end{aligned}$ | 3330-11 Log Cyl | Log Head | Phy Cyl in Dec | Phy Cyl in Hex | Phy Head Equals |
| 396397 | 807 | 00-18 | 538 | 21A | Log Hd |
|  | 808 | 00-09 | 538 | 21A | Log Hd + 20 |
|  |  | 10-18 | 539 | 21B | Log $\mathrm{Hd}+10$ |
| 398 | 809 | 00-18 | 539 | 21B | Log Hd |
| 400 | 810 | 00-18 | 540 | 21 C | Log Hd |
|  | 811 | 00-09 | 540 | 21 C | Log Hd + 20 |
|  |  | 10-18 | 541 | 21D | Log Hd +10 |
| 401 | 812 | 00-18 | 541 | 21D | Log Hd |
| 402 | 813 | 00-18 | 542 | 21 E | Log Hd |
|  | 814 | 00-09 | 542 | 21 E | Log Hd +20 |
|  |  | 10-18 | 543 | 21 F | Log $\mathrm{Hd}+10$ |
| 404 |  | 00-18 | 543 | 21 F | Log Hd |
| 406 |  | 00-18 | 544 | 220 | Log Hd |
|  |  | 00-09 | 544 | 220 | Log Hd + 20 |
|  |  | 10-18 | 545 | 221 | Log Hd +10 |
| 407 |  | 00-18 | 545 | 221 | Log Hd |
| $\begin{aligned} & 408 \\ & 409 \end{aligned}$ |  | 00-18 | 546 | 222 | Log Hd |
|  |  | 00-09 | 546 | 222 | Log Hd +20 |
|  |  | 10-18 | 547 | 223 | Log Hd +10 |
| 410 |  | 00-18 | 547 | 223 | Log Hd |

End of Address Conversion Chart

This page contains aids for problem resolution where insufficient error information is available to follow the mainten in analyzing intermittent errors also be used

## SENSE BYTE ANALYSIS

Examine all available system sense information for multiple error conditions (see $R / W$ 102). If errors other than the primary error are occuring, exit to the appropriate page listed in the chart below.

| Sense Information |  |  |  | Page <br> Entry |
| :---: | :---: | :---: | :---: | :---: |
| $4 x$ | Byte 17 | Byte 12 | Byte 19 |  |
|  | C 0 or C 1 |  |  | R/W 300, D |
|  |  | Bit $0=1$ <br> Bit $1=1$ <br> Bit $2=1$ <br> Bit 3=1 <br> Bit $4=1$ Bit $5=1$ <br> Bit 6=1 <br> Bit 7=1 | $\begin{aligned} & \text { Bit } 4=1 \\ & \operatorname{Bit} 5=1 \end{aligned}$ $\text { Bit } 5=1$ | R/W 180, A R/W 170, A R/W 160, A RPI 100, A R/W 150, A R/W 140, A R/W 120, A R/W 130, A R/W 200, A R/W 190, A |
| Other |  |  |  | FSI section |

## EC INSTALLATION

If an engineering change has been recently installed, check the EC Installation Instructions and determine where the change was made. Inspect the back panel for tight wire wraps.

## VOLTAGE CHECKS

A2 Module -See the procedure on PWR 90, Entry B.
B2 Module -See the procedure on PWR 290, Entry B.

## CABLES

Verify that the following cable connector pins are not bent or pushed in and that the connectors are seated properly:
HDA Cables
A1Y3(A1Y4)
A1B2(A1U2)
01C(01D)A1A2
01C(01D)A1A
Data Cables
(if present)A1B3
A1U3
A1V5(A1A5)
A1V5(A1A5)
A2V2(A2 Module)

## JUMPERS

Check special voltage jumper from +6 Vdc to A1J3(A1M3)B11 (see YA090 or YB090).

## TERMINATION

Check for correct $R / W$ termination on the last module in the string (see R/W 326).

## HDA

The HDA cable swapping procedure on HDA 713 can be used to help isolate an HDA problem. See HDA 710 for the HDA eplacement procedure. See HDA 708 for voice coil replacement procedure.

## SUMMARY OF CARDS

Reseat or Replace:
Drive
A1H2(A1N2
A1G2(A1P2)
A1J2(A1M2)
A1J4(A1M4)
A1D4(A1S4)
A1E2(A1R2)
A1F2(A1Q2
A1K2(A1L2)
Controller
A2T2
A2Q2
A2F2
A2P2
A2L2
REFERENCES
Set Read/Write operation
Write operation
Read operation
HDA description
Track format
3330 compatibility
Fixed heads
Address conversion
Sense Byte analysis
ead/Write Control
Head Select and Read/Write Control Read Detector
Pad Controls
Index
Capable/Enable
Read Only-Capable/Enable
Command Decode and Device Interface

Read/Write Driver and VFO
Read/Write Contro
Device Interface
Gap Counter
Read/Write Latch
SERDES

OPER 210 and 211
OPER 210 and 211 OPER 230 through 233 OPER 30
OPER 33 through 37 OPER 40 through 52
OPER 250
R/W 400
R/W 102

This page contains aids for problem resolution where insufficient error information is available to follow the maintenance analysis procedure. It may also be used as an aid in analyzing intermittent errors.

## CHECK DEVICE ADDRESS

Check EREP printouts to determine if more than one drive is failing. See START 103 to determine physical drive.

## EC INSTALLATION

If an engineering change has been recently installed, check the EC Installation Instructions and determine where the change was made. Inspect the back panel fo tight wire wraps.

## VOLTAGE CHECKS

| Voltage* | Test Point | Tolerance | Maximum** AC Ripple | Page Entry |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & -4 \mathrm{~V} \\ & +6 \mathrm{~V} \end{aligned}$ | A1C2 (A1T2) B06(-) to A1K2D08(+) A1F2 (A102) B11 (+) to A1F2 (A102) D08(-) | $\left\lvert\, \begin{array}{\|c\|} \hline-3.85 \mathrm{to}-4.50 \mathrm{~V} \\ +5.76 \text { to }+6.24 \mathrm{v} \end{array}\right.$ | $\begin{aligned} & 0.23 \vee p-p \\ & 0.08 \vee \mathrm{p} \end{aligned}$ | PWR 255, A PWR 260, A |

- Use a digital voltmeter to check voltages.

| Voltage* | Test Point | Tolerance | Maximum** AC Ripple | Page Entry |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & -4 \mathrm{~V} \\ & +6 \mathrm{~V} \end{aligned}$ | A2T2B06(-) to A2T2D08(+) A2T2G11 (+) to A2T2J08(-) | $\begin{aligned} & -3.84 \text { to }-4.16 \mathrm{~V} \\ & +5.76 \text { to }+6.24 \mathrm{~V} \end{aligned}$ | $0.04 \vee p-p$ $0.08 \mathrm{Vp} \cdot \mathrm{p}$ | PWR 55, B PWR 60, A |

* Use a digital voltmeter to check voltages.


## ERROR RE-CREATION

## Microdiagnostics

Routine B1 is the primary tool used to re-create Data
Check failures. Control options and parameters may be
selected to:

1. Scan any single cylinder and stop on error.
2. Scan any single cylinder and log error.
3. Scan any single cylinder, loop, and log error
4. Scan any single track and stop on error
5. Scan any single track, loop, and stop on error.

See MICRO 56 for operating instructions.
Routine B2 writes and reads on the CE cylinder. Contro options and parameters may be selected to:

1. Write and read the entire CE cylinder and stop on error
2. Write and read the entire CE cylinder, loop, and top on error.
3. Write and read one CE track and stop on error
4. Write and read one CE track, loop, and stop on error
See MICRO 60 for operating instructions.
Routines AD, AF, and AE check Read/Write and ECC hardware in the controller. Any one of these routines may be looped using a control option.

OLTS
T3350PSA (Pack Scan A) reads Home Address and R0 fields then compares the CCHH bytes of both fields. Options may be selected to:

1. Read all logical cylinders and head
2. Read all logical cylinders and heads between specified limits.
See OLT 20 for operating instructions.
T3350PSB (Pack Scan B) reads all records on track
scanned. Options may be selected to
3. Read all logical cylinders and heads.
4. Read all logical cylinders and heads between specified limits.
See OLT 24 for operating instructions.
T3350WT (Track Analysis) writes and reads many different length records with worst case patterns on a specified track. Customer data will be destroyed. See
OLT 25 for operating instructions.

## SUMMARY OF CARDS

## Reseat or Replace:

Drive
A1J2(A1M2)
A1H2(A1N2)
A1G2(A1P2)
A1K2(A1L2)
A1B2 (in last module
only)
Controller
A2T2
A2S2
A2Q2
A2P2
A2R4
A2K2
A2F2
A2R2

## REFERENCES

Read data flow
Read operation
Read Home Addres
Set Read/Write
HDA description
3330 compatib
Fixed heads
Address conversion
PA3 byte conversio
Sense Byte analysis

Read Detector Read/Write Control Head Selection File Control

Read/Write and PLO Terminatio (See LOC 4 or 14)

Driver/Receiver and VFO SERDES, Data Reg, and ECC Control Read/Write Control
Gap Counter
ECC Shift Register
Bus In Assemble
Bus In Register
No Data Found Detectio

R/W 326 and 327 OPER 230 through 233
R/W 360 through 36
OPER 210 and 21
OPER 30
OPER 33 through 37 OPER 40 through 52
OPER 250
R/W 400
R/W 330
R/W 302

| 3350 | EC0990 | $2358689$ | $\begin{gathered} 441300 \\ \text { 31 Mar } 76 \end{gathered}$ | $\begin{gathered} 441303 \\ 30 \text { July } 76 \end{gathered}$ | $441307$ $441501$ | $441310$ $27 \text { Jun } 80$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Cooyright isy Comat

RPI CONTENTS
RPI MAPS . . . . . . . . RPI $130-310$
TROUBLE NOT FOUND . . . RPI 990

REFERENCE TO OTHER SECTIONS
Index Detection OPER 203-2

Index check (Index Mark without Valid Inde.) is caused by an invalid Index pattern detected while Set Read/Write is
active. A valid Index pattern is 1011 '.
See OPER 126 for detailed description of Index Detection.


Check | Verify that the following |
| :--- |
| cable connector pins are |
| not | cable connector pins are

not bent or pushed in and
that the connectors are that the connectors
seated properly seated properly:
A2V2
A1
Control A21U2
A113
Repair of


Note 1: When replacing A1 C2(A1T2), A1C4(A1T4), A1D2(A1S2), A1D4(A1S4), or Pwr Amp P532(P534), Entry $B$ for the procedure.
Note 2: When replacing A1K2(A1L2), check the
addressing jumpers. See INST 6 .


Routine B 8, test F contains long delay times (in excess of 400 ms ). Because of the long delay times involved, the following sync points can be used to scope the set or reset of Index Check Sel without using delayed sweep:

- Setting of the error, sync on A1K2(A1L2) P10 (-Drive Sync Tag).
- Resetting of the error, sync on A1K2 (A1 L2) U10 (-Sense Status 0).
Ch 2 A1G2 (A1P2) JO7

probe



Selected



Missing Index or an invalid Index Mark during a Set Read*Write peration activates the Index Check Select latch. Index Check Select latch activates Read/Write Check. Sense Read*Write and
Selected gate the Read/Write Check to the interface as NPL Inbus Bit 3. Reading and writing are inhibited until the Index Check Select latch is reset by either Power On Reset or Check Reset.

## Missing Index

Missing Index is activated, after Sector 127, by the following conditions:

- Clock Counter 3 active.
- Valid Index 1 inactive.


## Invalid Index Mark

Invalid Index Mark consists of the following conditions

- Index Mark active.
- Valid Index 1 inactive


Figure 1. Expanded Sequence Chart
Change Delay Time-Delay Sweep to $1 \mu \mathrm{~s} / \mathrm{div}$.
Use Ch 2 to scope each of the lines.


Triggering Instructions





Routine A5, test 2 issues a special Read*Write command and then waits for an Index to orient on. After orienting, it waits for the next Index and measures the width of it. It then measures the distance from that Index to the next one.

Figure 1. Expanded Sequence Chart Triggering Instructions



Triggering Instructions

| B Sweep Mode - B Triggerable After Delay Time Delay Time-Delay Sweep - $2 \mathrm{~ms} /$ div |  | $A$ and $B$ Time/Div - $5 \mathrm{~ms} /$ div Delay-Time Multiplier - 0.0 |  | $\begin{aligned} & \text { Slope }-(-) \\ & \text { Source - Int Ch } 1 \end{aligned}$ | Legend: $\begin{gathered}\square \\ \\ \\ \\ \text { Active level } \\ \text { Tolerance }\end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|l} \hline \text { Chart } \\ \text { Line } \\ \text { No. } \\ \hline \end{array}$ | Line Name | ALD | Test Point |  | Pulse being Measured (See Figure 1) |  |  |
| 1 | -Drive Sync Tag TP | KK170 (KL170) | A1K2 (A1L2) P10 |  |  |  |  |
| 2 | -Valid Index 1 | KH140 (KN140) | A1H2 (A1N2) S02 | A |  |  |  |
| 3 | +Set Read*Write | KH140 (KN140) | A1H2 (A1N2) S13 | B |  |  |  |
| 4 | +NPL Inbus Bit 6 | KH200 (KN200) | A1H2 (A1N2) B02 |  |  |  |  |


| EE0130 | 2358303 |
| :--- | :--- |
| Seq. 1 of 1 | Part No. |


| 441300 <br> 31 Mar 76 | 441303 <br> 30 Jul 76 |  |  |  |
| :--- | :--- | :--- | :--- | :--- |

```
000000000000000000000000000000000000
```



3350 \begin{tabular}{|l|l|l|l|l|l|l|}

\hline | EE0160 |
| :--- |
| Seq. 1 of 2 2 | \& | 2358304 |
| :--- |
| Part No. | <br>

\hline
\end{tabular}

© Copyright IBM Corporation 1976, 1977


$$
{ }^{* *} x x x=\text { Bus In Rits } 0-7 \text { and } P
$$

$$
\begin{aligned}
& { }^{*} x=\text { Tag Bus bits 0, 4,5,6,7 and } F \\
& :{ }_{x x x}=\text { Bus Out bits } 0-7 \text { and P. }
\end{aligned}
$$




## INDEX ALERT ERROR

Scope Setup
Sweep $2 \mathrm{~ms} /$ div
Trigger
Slope (+)
A2L2D13
+CE Alert Execute Ind
Ch $1 / \mathrm{Ch} 2$ Use the diagram and sequence chart on this page.
Action
Use the diagram and sequence chart on this page to isolate the problem. The sequence chart shows microdiagnostic routine AD , test 1 .

Microdiagnostic
Loop test 1 and bypass errors:

1. Load routine AD
2. Enter $10,01,01,00$


Legend: Inactive - Active level שImma Tolerance

| Chart <br> Line <br> No. | Line Name | ALD | Test Point |  |
| :--- | :--- | :--- | :--- | :--- |
| 1 | -Set RW Op 85 | BF110 | A2G2 D03 |  |
| 2 | -Rd Wrt Latch | BA140 | A2F2 S04 |  |
| 3 | -Index Alert | BE160 <br> BR150 (SWFE) | A2K2 D06 <br> A2M2 U10 (SWFE) |  |
| 4 | +Index Alert NPL | BE160 <br> BR170 (SWFE) | A2K2 B05 <br> A2M2 S12 (SWFE) |  |
| 5 | -Phy Index | BH170 | A2O2 S07 |  |
| 6 | +Servo Mode | BH170 | A2O2 S11 |  |
| 7 | -Bit Ring 3 | BH170 | A202 M10 |  |
| 8 | -CT 63 | BH170 | A202 P10 |  |

After an ECC Data Check and during an ECC Correct operation, the controller ceases to transfer Index pulse from the device to storage control. Instead, when a correctable ECC pattern is found, as indicated by Freeze Correct Op, the controller generates an Index Alert signal the storage control indicating that a pattern has been found. The ECC Shift Register then stops shifting and waits for the storage control to sense the pattern byte.



## 

## TRANSMIT TARGET ERROR

transmit target error

## SET TARGET - ‘8D

Tag ' 8 D ' transfers the value on Bus Out to the Target Register of the selected drive for Rotational Position Sensing (RPS) The drive immediately begins a Search Sector operation to compare the Target Register with the Sector Counter until they compare equal.

TRANSFER SECTOR COUNT
Rotational Position Sensing (RPS) senses the angular position of a record on the disk and uses it to reduce rotational delay on subsequent operations.

The drives contain a counter that counts the 128 sectors between Index Marks. When a G1 (Home Address) or a G3 (Count field) operation begins, the Transfer Sector Count line is activated in the controller and sent to the drive over transfer the value in the Sector Counter into the Target Register After the Read or Write operation is complete, the Target Register may be sensed and used for subsequent operations.
See OPER 203 through 205 for a more complete explanation of Rotational Position Sensing

Note 1: When replacin
Not 2. Wen A1D2(A1S2) A1D4(A1S4) or Pwr A) P532(P534), the servo velocity gain must be adjusted See ACC 800, Entry $B$ for the procedure.



3350 \begin{tabular}{l|l|l|l|l|l|l|l|}

\hline | EE0200 |
| :--- |
| Seq. 2 of 2 2 | \& | 2358306 |
| :--- |
| Part No. | <br>

\cline { 2 - 6 }
\end{tabular}

TRANSMIT TARGET ERROR



Target Status Bit 0 is always active when Sense Target command is issued.
The Set Target command sets the Target Register to the value of Bus Out. Power On Reset resets the register to '80'

The Sense Target command puts the Target Register alue on Bus In.
Transmit Target Register error indicates that the value received on Bus In when Sense Target command is issued does not equal the value set into the Target Register by the microprogram.
Device Busy is present (except during Sector Compare time) as long as the Search Sector latch is active. The atch is set by a Set Target command and reset by Attention Reset or Power On Reset.

Figure 1. Voltage Check

| Voltage | Test Point |
| :--- | :--- |
| -4 V | Use the ALD pages KA 100 |
| +6 V | (KV100) to determine applicable |
| +12 V | voltages and their test points. |
| -12 V | See PWR 290 for acceptable |
| -24 V | tolerances. |

SEARCH SECTOR FAILURE

The Set Target command sets the value of Bus Out into the Target Register and starts a Search Sector operation When the Sector Counter is equal to the value in the
Target Register, a 124 to 136 microsecond Sector Compare pulse is generated. The Sector Compare pulse occurs at each revolution until an Attention Reset is issued.

$\square$ Ina
Active level
Tolerance

| Chart <br> Line <br> No. | Line Name | ALD | Test Point |  |
| :---: | :--- | :--- | :--- | :--- |
| 1 | +Set Target | KJ530 (KM530) | A1J4 (A1M4) D04 | A |
| 2 | +Sch Sector | KJ510 (KM510) | A1J4 (A1M4) B03 | B |

```
0000000000000000000000000000000000
```


## C C C C C C 1 C

TRANSFER SECTOR COUNT
Rotational Position Sensing (RPS) senses the angular position of a record on the disk and uses it to reduce rotational delay on subsequent operations.
The drives contain a counter that counts the 128 sectors be tween Index Marks. When a G1 (Home Address) or a G3 (Count field) operation begins, the Transfer Sector Count ine is activated in the controller and sent to the drive over Device Outbus bit 0 . The drive uses bit 0 as a control to Device Outbus bit 0 . The drive uses bit 0 as a control to
transfer the value in the Sector Counter into the Target transfer the value in the Sector Counter into the Target
Register. After the Read or Write operation is complete, th Target Register may be sensed and used for subsequent operations.
See OPER 203 through 205 for a more complete explanation Rotational Position Sensing.


A2P2


Legend: $\Longleftarrow$ Inactive - Active level

| Charr <br> Line <br> No. | Line Name | ALD | Test Point |  |  |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 1 | + CT 67 | BH120 | A202 G07 |  |  |
| 2 | - Transfer Sector Count | BA140 | A2F2 P03 | A |  |
| 3 | -Bus Out Bit 0 | BA140 | A2F2 M02 |  |  |
| 4 | -Rd Wrt Gate | BA140 | A2F2 M13 |  |  |

See OPER 203 through 205 for a more complete explanation of Rotational Position Sensing


Note 1: When replacing A1K2(A1L2), check the addressing
jumpers. See INST 6.
Note 2: When replacing A1C2(A1 T2), A1C4(A1T4),
the servo velocity gain must be adjusted. See ACC 800 Entry $B$ for the procedure.

| Parameter definitions: <br> $83,10=$ Select CE drive <br> 8F,87 = Transfer Sector Counter <br> AF, OD = Sense Target Register to CE Panel Lamps* <br> $40,11=$ Delay of 17 ms *The Data lamps on the CE Panel contain the Target Register. |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

the value received from
the Target Register.
the Target Register.

00 $\square$

The Sector Counter counts from 0 (at Index) to 127. Th Sector Counter runs continuously while the drive is track following. Sector Count pulses are developed from the servo 39 sector count pulses before advancing the Sector Counter ne count. After the Sector Counter reaches 127, the Valid Index 1 pulse resets the Sector Counter for the next revolution.
The Target Register performs two functions:

1. It holds the starting sector location of the record to be read or written. The register is loaded at the beginnin of all Read, Write, and Search CCWs by a Set Sector command. The sector number is retrieved from main torag
2. It temporarily stores the beginning sector count transferred from the Sector Counter after a Write operation



Rotational Position Sensing (RPS) senses the angular positio of a record on the disk and uses it to reduce rotational delay on subsequent operations.

The drives contain a counter that counts the 128 sectors between Index Marks. When a G1 (Home Address) or a G3 (Count field) operation begins, the Transfer Sector Count line is activated in the controller and sent to the drive over Device
Outbus bit 0 The drive uses bit 0 as a control to transfer the Outbus bit 0 . The dive uses bit 0 as a control transer號 ay be sensed and used for subsequent perations. may be sensed and used for subsequent operations.

See OPER 203 through 205 for a more complete explanatio f Rotational Position Sensing.
 TRANSFER SECTOR COUNT LATCH FAILURE
transifr slctor count latch fall ure


Figure 1. Target Register Status Bits

| Bits | ALD | Test Point |
| :---: | :---: | :---: |
| 0 | KH 200 (KN200) | A1H2 (A1N2) B05 |
| 1 |  | A1H2 (A1N2) D05 |
| 2 |  | A1H2 (A1N2) B09 |
| 3 |  | A1H2 (A1N2) D10 |
| 4 |  | A1H2 (A1N2) D07 |
| 5 |  | A1H2 (A1N2) D02 |
| 6 |  | A1H2 (A1N2) B02 |
| 7 |  | A1H2 (A1N2) D06 |



| $\begin{aligned} & \text { Chart } \\ & \text { Line } \end{aligned}$ No. | Line Name | ALD | Test Point |  | Transfer Sector 12 ? | Transfer Sector 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | +Selected | KJ520 (KM520) | A1J4 (A1M4) D06 |  | ! | ! |
| 2 | +Sector Compare TP | KJ510 (KM510) | A1J4 (A1M4) D11 | (E) |  |  |
| 3 | +Set Read*Write | KJ510 (KM510) | A1J4 (A1M4) B10 | (A) |  |  |
| 4 | -MST Outbus Bit 0 | KJ510 (KM510) | A1J4 (A1M4) B05 | B |  |  |
| 5 | -Sense Target Reg | KJ520 (KM520) | A1J4 (A1M4) B09 | (c) |  |  |
| 6 | -Valid Index 1 | KJ520 (KM520) | A1J4 (A1M4) D09 | D |  |  |
| 7 | +NPL Inbus Bits 0-7 | KH200 (KN200) | See Figure 1. | F |  |  |

```
0000000000000000000000000000000000
```


## 

## TRANSFER SECTOR COUNT LATCH FAILURE

Rotational Position Sensing (RPS) senses the angular positio
of a record on the disk and uses it to reduce rotational delay on subsequent operations.
The drives contain a counter that counts the 128 sectors between Index Marks. When a GI (Home Address) or a G3 (Count field) operation begins, the Transfer Sector Count line is activated in the controller and sent to the drive over transfer the value in the Sector Counter into the Targt Register. After the Read or Write operation is complete, the Target Register may be rensed and for subsequent eragons operations

See OPER 203 through 205 for a more complete explanation of Rotational Position Sensing.

Figure 1. Expanded Sequence Chart
Triggering Instructions

| B Sweep Mode - B Triggerable After Delay Time | A and B Time/Div - $5 \mathrm{~ms} /$ div | Slope $-(+)$ |
| :--- | :--- | :--- |
| Delay Time-Delay Sweep $-20 \mu \mathrm{~s} /$ div | Delay-Time Multiplier -4.0 | Source $-\operatorname{Int}$ Ch 1 |





## 

 SECTOR NON-COMPARE (Sector Compare Check )The Sector Non-Compare occurs as follow

1. Set Target sets the Target Register and starts Search Sector.
2. At the first Valid Index (Index Mark), Sector Compare Check latch 1 is set. See ALD page KJ510(KM5 10).
3. At the fall of Index Mark, Sector Compare Check latch 2 is set.
4. If no Sector Compare occurs before the next Valid Index, Sector Compare Check latch 1 turns off
5. Sector Compare Check latch 1 off and Sector Compare Check latch 2 on causes Sector Non-Compare.
6. Attention is set and remains on until Attention Reset or Check Reset is issued. Sector Compare Check is also indicated in Sense Status 1, bit 1.
7. Drive Check is turned on in Machine Status.

Note 1: When replacing A1K2(A1L2), check the addressing jumpers. See INST 6 .
Note 2: When replacing A1C2(A1T2), A1C4(A1T4), A1D2(A1S2), A1D4(A1 S4), or Pwr Amp P532(P534), the servo velocity gain must be adjusted. See ACC 800 Entry $B$ for the procedure.


$$
\begin{aligned}
& \text { 1. Load routine A5 } \\
& \text { 2. Enter } 1005
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { 1. Load routine A5 } \\
\text { 2. Enter 10, 05, 01, } \\
\hline
\end{array} \\
& \begin{array}{|l|l|}
\hline \text { Scope } \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{array}{|l|l} 
& \\
\hline \text { Scope } & \\
\hline \begin{array}{l}
\text { Sweep } \\
\text { Trigger EXT } \\
\text { SXT }
\end{array} & 5 \mathrm{~ms} / \mathrm{div}
\end{array}
$$

$$
\begin{aligned}
& \text { Drigger EXT } \\
& \text { Tlope (-) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { A1K2(A1L2)P10 } \\
& \text { Drive Sync Tag TP }
\end{aligned}
$$

$$
\begin{gathered}
\text { Driv Sync Tag Tr } \\
\text { Ch } 1 \text { A1 14(A1 M4)D11 }
\end{gathered}
$$

$$
\begin{gathered}
\text { Ch A144(A1M4)D11 } \\
\text { +Sector Compare TP }
\end{gathered}
$$

$$
\begin{aligned}
& \text { +Access*Check Sta } \\
& \text { Bit (Busy) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Instructions in } \\
& \text { on RPI 302 }
\end{aligned}
$$

 뀰



$$
\text { P1 } 304
$$



Figure 1. Expanded Sequence Chart

## Triggering Instructions

riggerable After Delay Tim B Sweep Moday Time-Delay Sweep $=0.1 \mathrm{~ms} /$ div

A and B Time/Div-5 ms/div
Delay-Time Multiplier - 3.5
Slope - (+)
Source - Int Ch 1



| Chart <br> Line <br> No. | Line Name | ALD | Test Point |  |
| :---: | :--- | :--- | :--- | :--- |
| 1 | -Drive Sync Tag TP | KK170 (KL170) | A1K2 (A1L2) P10 |  |
| 2 | +Sector Compare TP | KJ510 (KM510) | A1J4 (A1M4) D11 | C |
| 3 | +Access*Check Status Bit 6 (Busy) | KE160 (KR160) | A1E2 (A1R2) S04 | D |
| 4 | +Sch Sector | KE170 (KR170) | A1E2 (A1R2) G13 | A |
| 5 | +Sector Attention | KJ510 (KM510) | A1J4 (A1M4) D03 | B |

3350 \begin{tabular}{|l|l|l|l|l|l|}

\hline | EE0323 |
| :--- | :--- |
| Seq. 2 of 2 2 | \& | 2358310 |
| :--- |
| Part No. | <br>

\hline
\end{tabular}

## 

## SECTOR NON-COMPARE (Sector Compare Check)

Figure 1. Expanded Sequence Chart
Triggering Instructions

| B Sweep Mode - B Triggerable After Delay Time |
| :--- |
| Delay Time-Delay Sweep $-20 \mu \mathrm{~s} /$ div |
| A and B Time/Div $-5 \mathrm{~ms} /$ div |
| Delay-Time Multiplier -3.0 |
| Slope $-(+$ ) |
| Source $-\operatorname{Int}$ Ch 1 |

Source-Int Ch

+ Sector Non
Compare
-Attn Reset
+Access*Check
Status Bit 2
(Drive Check)
+Gate Mach or
R*W Status
-Sense Status 1
+ Target Status Bit 1



|  |  |  |  |  |  | Legend: | $\square$ Inactive <br> Active level  <br> Tolerance  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|l\|} \hline \text { Chart } \\ \text { Line } \\ \text { No. } \\ \hline \end{array}$ | Line Name | ALD | Test Point | See Figure 1. | $\text { Set } \text { Target }=4$ | $\text { Set Target }=1$ |  |
| 1 | -Drive Sync Tag TP | KK170 (KL170) | A1K2 (A1L2) P10 |  | ! |  |  |
| 2 | +Set Target | KJ530 (KM5.30) | A1J4 (A1M4) D04 | (B) | ' |  |  |
| 3 | -Valid Index 1 | KJ520 (KM520) | A1J4 (A1M4) D09 | A |  |  |  |
| 4 | +Sector Non-Compare | KJ510 (KM510) | A1J4 (A1M4) D02 | (E) |  |  |  |
| 5 | -Attn Reset | KJ530 (KM530) | A1J4 (A1M4) D10 | (C) |  |  |  |
| 6 | +Access*Check Status Bit 2 (Drive Check) | KE160 (KR160) | A1E2 (A1R2) S10 | (J) |  |  |  |
| 7 | +Sector Compare TP | KJ510 (KM510) | A1J4 (A1M4) D11 | F |  |  |  |
| 8 | +Ga. Mach or R*W Status | KE160 (KR160) | A1E2 (A1R2) U12 | (H) |  |  |  |
| 9 | +Target Status Bit 1 | KJ510 (KM510) | A1J4 (A1M4) J09 | (G) |  |  |  |
| 10 | -Sense Status 1 | KJ510 (KM510) | A1J4 (A1M4) G13 | (D) |  |  |  |

The Set Target command sets the value of Bus Out into the Target Register and starts a Search Sector operation. When the Sector Counter is equal to the value in the Target Register, a 124 to 136 microsecond Sector Compare pulse is generated. The Sector Compare pulse occurs at each revolution until an Attention Reset is issued.
Device Bus In bit 7 is active (except at Sector Compare time) while a Search Sector is in progress.
Device Bus In bit 6 is active except at Sector Compare time to indicate that the drive is busy
Sector Non-Compare occurs if a Sector Compare is not found within two Index Marks. Sector Non-Compare activates Drive Check. The Sector Non-Compare occurs as follows:

1. Set Target sets the Target Register and starts Search Sector
2. At the first Valid Index (Index Mark), Sector Compare Check latch 1 is set. See ALD page KJ510(KM510)
3. At the fall of Index Mark, Sector Compare Check atch 2 is set
4. If no Sector Compare occurs before the next Valid Index, Sector Compare Check latch 1 turns off
5. Sector Compare Check latch 1 off and Sector Compare Check latch 2 on gives the condition for Sector Non-Compare.
6. Attention is set and remains on until Attention Reset or Check Reset is issued. Sector Compare Check is also indicated in Sense Status 1 bit 1.
7. Drive Check is turned on in Machine Status.



Use this diagram for reference only.



## C C C

## trouble not found

This page contains aids for problem resolution where insufficen error information is available to follow the maintenance analysi procedure. It may also be used as an aid in analyzing intermittent errors

## CHECK DEVICE ADDRES

Check EREP printouts to determine if more than one device is failing.

CHECK MICRODIAGNOSTIC DISK
If the microdiagnostic failed, verify that the microdiagnostic disk used is the proper level for the device that failed.

## EC INSTALLATION

If an engineering change has been recently installed, check the EC installation instructions and determine where the change was made.
Inspect the back panel for tight wire wraps.

## DRIVE MOTOR

Drive motor speed is incorrect. Check the following:

- Drive-motor belt (see HDA 760)
- Drive-motor pulley loose or faulty (see HDA 760).
- Drive-motor brake (see HDA 720).
- Drive motor faulty (see HDA 715 for replacement procedure)


## CABLE

Check for a loose or defective cable at:
A1B2 (A1U2)
A1Y3 (A1Y4)
01 C (01D) A1A2
01 C (01D) A1 A
A1A2
A1V2
A1V3
vOLTAGE CHECKS
Incorrect Power Supply voltage.
Controller
A2 Module - PWR 90
C2 Module - PWR 390
Drive
A2, B2, or C2 Modules - PWR 290

3350

| EE0990 | 2358314 |
| :--- | :--- |
| Seq. 1 of 1 | Part No. |


| Seq. 1 of 1 |  |
| :--- | :--- |
| Part No. |  |


| 441300 |  |
| :--- | :--- |
| 31 Mar 76 | 441303 |
| 30 |  |


| 31 Mar 76 | 30 Jul 76 |
| :--- | :--- |

DD
Use the HDA Cable Swap Procedure (HDA 713) to isolate the problems to the HDA. See HDA 710 for HDA replacement procedure.
SUMMARY OF CARDS
Reseat or replace:
A1E2(A1R2)
A1D4(AIS4)*
A1G2(A1P2)
A1C2(A1T2)*
A1H2(A1N2)
A1K2(A1L2)**
A1 J4(A1M4)

When replacing AlC2(AlT2), A1C4(A1T4
AlD2(A1S2), A1D4(A1S4), or Pwr Amp P532(P534), the servo velocity gain must be adjusted. See ACC 800, Entry B for the procedure.
When replacing A1K2(A1L2), check the addressing jumpers. See INST 6

## REFERENCES

Index theory on RPI 102 and OPER 126 Transmit Target theory on OPER 205 and 206

```
000000000000000000000000000000000

3350 WITHOUT C2 MODULE ATTACHED
Controller
SEQUENCING
Description
Diagram
Sequence Chart
PWR 6
PWR 8
POWER SUPPLY FAILURE
Power Supply Failure Analysis
Power Supply Failure Analysis
AC Circuit Failure Analysis
AC Circuit Diagram
AC Circuit Failure Analysis
+24 Volt Bootstrap Failure Analysis
+24 Volt Bootstrap Diagram
+24 Volt Bootstrap Failure Analysis +24 Volt Bootstrap Failure Analysis
-4 Volt Failure Analysis
-4 Volt and +6 Volt Regulator
+6 Volt Failure Analysis
FIX VERIFICATION AND VOLTAGE CHECKS

COMPONENT AND TEST POINT LOCATIONS

Drive
SEQUENCING
Analysis for A2 Module Diagram
Analysis for B2 Module
AC Circuit Failure Analysis
AC Circuit Diagram
PWR 101
PWR 111, 112
PWR 116, 117
PWR 120 PWR 121

3350 WITH C2 MODULE ATTACHED (ALTERNATE CONTROLLER)

\author{
Controller
}

SEQUENCING
\(\begin{aligned} & \text { Description } \\ & \text { Diagram }\end{aligned}\) ............. . . . . PWR 306
\(\stackrel{\text { Dequence Chart }}{ }\)
POWER SUPPLY FAILURE
Power Supply Failure Analysis
AC Circuit Failure Analysis
AC Circuit Diagram .
AC Circuit Failure Analysis .
+ 24 Volt Bootstrap Failure
+24 Volt Bootstrap Failure Analysis
+24 Volt Bootstrap Diagram
+24 Volt Bootstrap Failure Analysis
-4 Volt Failure Analysis Analysis
-4 Volt and +6 Volt Regulato
Diagram +6 Volt Regulato
+6 Volt Failure Analysis
FIX VERIFICATION AND VOLTAGE CHECKS

COMPONENT AND TEST POINT LOCATIONS

\section*{Drive}

Qumsin
Analysis for A2 Module .
Power Sequencing Analysis
for A2 or C2 Module

PWR 391

PWR 402
PWR 415
PWR 416,
PWR 420
PWR 421
PWR 307
PWR 308

PWR 309 PWR 310 PWR 320 PWR 321 PWR 322 PWR 330
PWR 331 PWR 332 PWR 333 PWR 355 PWR 360

PWR 390

PWR 401 PWR 415 PWR 416, 417

Analysis for B2 Module
Analysis for C2 Module
AC Circuit Failure Analysis

\section*{3350 B2 MODULE}

POWER SUPPLY FAILURE
\(\left.\begin{array}{lllll}\text {-12 Volt and +12 Volt Failure Analysis } & . & \text { PWR } 240 \\ \text {-12 Volt and }+12 \text { Volt Diagram } & . & . & . & \text { PWR } 241 \\ \text {-24 Volt Failure Analysis } & . & . & . & .\end{array}\right)\) PWR 250

\section*{INTRODUCTION}

Power for the entire disk storage string is routed through the A2 (control) Module. The ac power (three phase, 208 V 60 Hz ) is controlled by the sequencing circuits in the A2 Module.
Line filtering is accomplished by a capacitor between each phase of the 208 Vac connected at the output of CB200. A phase-detection circuit containing resistance, capacitance, and an relay ( K 202 ) is used to detect improper power and drive motors. Relay K 202 picks only if the main ac phasing is correct. If phasing is incorect, K202 fails to phasing is correct. If phasing is ino uence is prevented
With three-phase power to the 3350 string, T201 is activated. The secondaries feed the convenience outlets 115 V ) and the +24 V Bootstrap (BS) supply. The bootstrap convenience outlets are energized if the EPO control from the Storage Control is active to pick the EPO relay (K203).
There are two separate power supplies; a controller supply and a drive supply. The controller supply consists of a +24 V power sequence, a 115 Vac convenience outlet, and a -4 V and +6 V supply (T420) for the A2 logic board. The drive power supply for every module consists of two he A1 logic board the servo T532) that provide power for +24 V Local for relay operation.
Power-on sequencing begins with the controller and continues with the following steps:
1. Controller power-on is initiated by the using storage control or with a local Power On switch
2. DC power for the logic in each module is made active next, beginning with the A2 logic board in the A2 Module and stepping to the Al logic board and servo string. The B2 Modules do not contain A2 logic boards.
3. With dc power on in all modules and all drive Start/ Stop switches in the Start position, Drive A in the A2 Mhale stars firt, fllowed by Dive B. Dive A of Drive B. This stepping continues with Drive B in the last (end) module starting last. Refer to HDA 500 for details of drive motor start sequencing.
With the Power Off/Enable switch in the Enable position, a power-on sequence is initiated by the Power On switch if in storage control if in Remote mode. AC power is provided to the controller power transformer and the blower motor
hrough the Subsystem (String) Power contactor (K201). With the dc power supply transformer active, output from the -4 V and +6 V Regulators is available. A 6 V Sense relay ( K 602 ) is picked by the +6 V Regulator to indicate that the controller has powered on
The dc power for drives is available when the AC Power Drives contactor (K331) is picked. K331 is picked from the controller when the 6 V Sense relay is picked. The Power Sequence Delay relay (K611) picks one second after K331 is picked and from the same source of voltage. The points of K611 enable +24 V Power Sequence (Out) to pick th K331 and K611 in the next module. Monitor points of K611 turn on the Power Sequence Complete indicator (LED)

\section*{POWER-ON SEQUENCE}

\section*{Controller}
1. Three-phase power is supplied from the customer's power receptacle to activate the +24 V Bootstrap Rotation Detection) 2 picks if the phase is correct With Pom
2. With the Power Off/Enable switch in the Enable posit 3 , the storage control pick relay or Power O \(\qquad\) witch picks K601 (Subsystem Sequence Start) 4 is not open. is not open
3. The K601 points pick K201 (Subsystem Power) and the Power On lamp 5 comes on
4. The blower motor comes on 6
5. The ferroresonant transformer (T420) 7 with its associated rectifiers and filters provide bulk dc voltages to the -4 V and +6 V Regulators.
6. K602 (6 V Sense) 8 is picked by the +6 V Regulator. +24 V Sense, -4 V Regulator, and the +6 V Bulk are required to activate the +6 V Regulator.
7. Points of K 602 supply the +24 V Bootstrap Sequence line and the +24 V Power Sequence line to power-on the string 23
8. The controller power-on sequence is now complete except for picking the String Power Sequence Complete relay (K603) 10 by the Power Sequence Complete ine. This line is activated through a jumper (T4 to T3) in the last module of the string when its Power 22 in the last module of the string when its Power
Sequence Delay relay (K611) is picked. K603 signals Sequence Delay relay (K611) is picked. K603 signals
the controlling storage control to advance to the next subsystem string. If the Service Bypass switch 14 any module is on, K611 does not need to be picked for string power sequencing.

\section*{Drives}

The drive power section components, labels, and numbers of each module are identical. This means that K351 19 is the A2 or B2 Module. There are two exceptions, however. The first is that the blower 6 in the A2 Module receives powe when contactor K201 is picked while contactor K331 a activates the blower 17 in the B2 Module. The second exception is the application of the series of auxiliary CP points 15 and 16 that pick K331. Both exceptions result because blowers must be turned on when power is applied o the logic boards. The drive power-on sequence for each module is
1. The +24 V Power Sequence line picks the AC Power Drives contactor (K331) 18 through the Off position of the Service Bypass switch and through the CP auxiliary point and Logic Gate Thermal points.
2. Contactor K331 activates the dc power supplies and starts the blower motor in the B2 Module. Threephase power is also available to he drive motor contactors (K351 and K361) 19
3. DC power from the supplies is distributed to the drive logic panel 24 through CPs , the +6 V Regulator, and the Drive DC Power switch 21 . The three-position Drive DC Power switch permits removal of DC power oo one drive while the other continues to operate.
4. The Power Sequence Delay relay (K611) 11 pick one second after K331 is picked and from the same source of voltage. With K611 picked, the Power Sequence Complete (LED) 12 is turned on and +24 V Power Sequence is sent to the next module
In the next module, drive power sequencing begins by picking K331 and K611. In the last module of the string, a umper between T4 and T3 22 routes the +24 V Power Sequence Complete line to pick the String Power Sequence Complete relay (K603) 10 . The K603 points signal the torage control to advance to the next subsystem string. Other points of K 603 provide +24 V Drive Sequence and 24 V Poll lines 25 that with the +24 V Bootstrap line, start and stop the spindle drive motors.
With the Service Bypass switch in the On position, the Power Sequence Complete (LED) is on and the other drives remain active. The drives section of this module is not sequenced on (K331 dropped 18 ). K611 10 remains picked, but \(\mathrm{K} 612(+6 \mathrm{~V}\) Sense) cannot pick; therefore the Power Che
\((\mathrm{LED})\) is on through K612-1 \(\mathrm{N} / \mathrm{C} 20\).

\section*{OWER-OFF SEQUENCE}

\section*{Controller}
1. The Subsystem Power contactor (K201) drops all ac power to the string when the circuit to th Subsystem Sequence Start relay (K601) 4 opens. The hold circuit to K601 is through auxiliary points of CP420 and CP421, CP311 Aux, the Logic Gate Thermal, he power hold relay poin 3 .ontrol storage, and the Power Off/Enable switch 3
2. With K201 dropped, power is removed from the drive motors, blowers, and power supplies in all modules of the string
3. Circuits that remain active after the hold to K601 is lost are the Phase Rotation Detection relay 2 , the +24 V Bootstrap Supply, and the convenience outlets if the EPO voltage remains on.

\section*{Drives}

When the drives section of an A2 or B2 Module loses powe because of a tripped CP , other modules of the string remain on.
1. If contactor \(\mathrm{K} 331 \mathbf{1 8}\) is dropped, all power is removed from the dc power supplies and both drive motors in an A2 or B2 Module. In an A2 Module, K311 is held activated through CPs \(531-536\) auxiliary points 15 , and the Service Bypass switch.
In a B2 Module, contactor K331 is held activated hrough the points of the Logic Gate Thermal, CP311 auxiliary points 16 , and the Service Bypass switch. CP311 monitors the auxiliary points of CPs 531-536 When an auxiliary point in the series opens, the increased current trips CP311 which opens its auxiliary points to drop K331.
2. With K331 dropped in an A2 or B2 Module, other modules of the string remain on because the Powe Sequence Delay relay (K611) 11 is still picked to send +24 V Power Sequence to the next module. The Power Sequence Complete (LED) 12 is still on even ough the drives are inactive.
3. The Power Check (LED) \(\mathbf{1 3}\) is also turned on when K 331 is dropped because there is no +6 V Regulato output to pick the 6 V Sense relay (K612). The normally closed points of K612-1 20 complete the Power Check (LED) circuit.

POWER SUPPLY SEQUENCE



An overall description of the power-on sequence is
located on PWR 6 through \(P W R 8\).

\section*{SEQUENCE PANEL}


3350
\[
\begin{aligned}
& \begin{array}{l|l|}
\begin{array}{c}
\text { EG0008 } \\
\text { Seq. 2 of 2 }
\end{array} & \begin{array}{l}
2358261 \\
\text { Part No. }
\end{array} \\
\hline
\end{array} \\
& \text { Copright IBM Corporation 1976, } 1977
\end{aligned}
\]


\section*{C C C C C C}

POWER SUPPLY FAILURE ANALYSIS


An overall description of the power-on sequence is located on PWR 6 through PWR 8.

See PWR 91 and LOC pages for component locations.
See ZA100 for relay terminal numbering.

\section*{Component
Numbers \(\quad\) Located in \(\begin{array}{ll}2 \times x & \text { Controller AC Compartment } \\ 3 \times x & \text { Drive AC Compartment } \\ 4 \times x & \text { Controller DC Compartment } \\ 5 \times x & \text { Drive DC Compartment } \\ 6 \times x & \text { Sequence Panel }\end{array}\)}

SEQUENCE PANEL

\section*{Board B}

about \(1 / 2\) inch. When reset, the button protrudes about \(1 / 4\) inch.


 inch.
Note 2: When CP204 is tripped, the red button protrudes


```

| DANGER
LETHAL VOLTAGES are present in the power servicing area. SAFETY Cannot be overemphasized. Cons
ALL CIICUCUTS LIVE until measured otherwise. ALL CIRCUITS LIVE until measured otherwise
CAPACITORS are potentially explosive devices.
WEAR SAFET
CAPACITORS are Votentially explosive devices.
WEAR SAF TY GLASSES. After feplacing any capacitor,
reinstall all SAFETY COVERS before powering on maching
reinstall all SAFETY COVERS before powering on machine.

```

\(\left.3350 \begin{array}{l|l|l|}\hline \text { EG0010 } \\
\text { Seq. } 2 \text { of 2 }\end{array}\right]\)\begin{tabular}{l} 
2358262 \\
Part No.
\end{tabular}
\(\square\)
0
00

\section*{AC CIRCUIT DIAGRAM (A2)}
\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
DANGER \\
LETHAL VOLTAGES are present in the power servicing area. SAFETY cannot be overemphasized. Consider ALL CIRCUITS LIVE until measured otherwise. CAPACITORS are potentially explosive devices. WEAR SAFETY GLASSES. After replacing any capacitor, reinstall all SAFETY COVERS before powering on machine
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

See ZA100 for relay and contactor point location.


\section*{C C C C C O}

\section*{ac CIRCUIT FALLURE ANALYSIS}
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
DANGER \\
LETHAL VOLTAGES are present in the power servicing area. SAFETY cannot be overemphasized. Consider ALL CIRCUITS LIVE until measured otherwise. CAPACITORS are potentially explosive devices. WEAR SAFETY GLASSES. After replacing any capacitor, reinstall all SAFETY COVERS before powering on machine.
\end{tabular} \\
\hline
\end{tabular}

An overall description of the power on sequence is located on PWR 6 through PWR 8.

\section*{SEQUENCE PANEL}

Board A



3350

3350 \begin{tabular}{|l|l|l|l|l|l|l|}
\hline \begin{tabular}{ll} 
EG0022 \\
Seq. 2 of 2 2
\end{tabular} & \begin{tabular}{l} 
2358264 \\
Part No.
\end{tabular} \\
\hline
\end{tabular}

SEQUENCE PANEL
See ZA100 for relay and contactor point location.


AC COMPARTMENT, Top View


Note: In terminal blocks TB203 and TB211, the terminals are numbered from the top to the bottom.



\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{3350} & \begin{tabular}{l}
FG0031 \\
Seq. 2 of 2
\end{tabular} & \[
2358265
\] & \[
\begin{array}{|c|}
\hline 441300 \\
31 \mathrm{Mar} 76
\end{array}
\] & \[
441301
\] & & & \\
\hline & Seq. 2 of 2 & Part No. & 31 Mar 76 & 1 Jun 76 & \[
29 \text { Oct } 76
\] & 15 Jul 79 & \[
27 \text { Jun } 80
\] \\
\hline & & & & & & & \\
\hline
\end{tabular}

\section*{C C C C C C C C C C C C C C} +24 VOLT BOOTSTRAP FAILURE ANALYSIS


For component locations, (TBs, relays, etc.), see
illustrations on PWR 31, the LOC section, or YA000.


\(-\frac{\mathrm{Re}}{+}\) 2. Check riple with an
oscilloscope and a
grounded


Use PWR 31 and YA011 to isolate the probl
ble causes are:
ble causes are:
1. \(\mathrm{CP} 204 \mathrm{~N} /\)
1. \(\underset{\text { contact. }}{\mathrm{CP} 204 \mathrm{~N} / \mathrm{C} \text { poor }}\)
2. C202 or its connec-
tions. (Soe Service
3. CR201 diode ope
4. See Service Note
4.
4. Improper terminals
5. Incorrect voltage at
6. main power source.
6. power supply.

\#4 wiring. wiring


\section*{SERVICE NOTES}
1. Capacitor Check with CE Meter
a. With power off, discharge the capacitor by shorting the terminals together
b. Open the circuit to one capacitor terminal
c. Set the meter range to \(R \times 10\).
d. Touch the meter leads to the two capacitor terminals and observe that the needle nearly goes to zero, then returns toward infinity
e. Reverse the leads and repeat the check. Because of the charge built up by the first check, the needle should deflect beyond zero, then go back toward speed up the process.
2. Rectifier Check with CE Meter
a. Disconnect leads to CR201 assembly (PWR 31).
b. With the meter set to \(R \times 1\), measure the forward resistance which should be from 5 to 15 ohms.
c. Set the meter to \(R \times 1000\) and reverse the meter leads. The resistance should be near infinity.

rocedur
\#9


\footnotetext{
3350 \begin{tabular}{|l|l|}
\hline EG0033 \\
Seq. of 2 & \(\begin{array}{l}\text { 2358266 } \\
\text { Part No. }\end{array}\) \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|}
\hline 34 Mar 76 & \(\begin{array}{l}441301 \\
1 \\
\text { 1 Jun 76 }\end{array}\) & \(\begin{array}{l}441305 \\
29 \text { Oct 76 }\end{array}\) \\
\hline
\end{tabular}
© Copyright IBM Corporation 1996
}
\(00 \rightarrow 0\)

\section*{C C C C C}


\section*{SERVICE NOTES}

Capacitor Check with CE Me
a. With power off, discharge the capacitor by shortin the terminals together
b. Open the circuit to one capacitor terminal
c. Set the meter range to \(R \times 10\).
d. Touch the meter leads to the two capacitor terminals and observe that the needle nearly goes to zero then returns toward infinity.
e. Reverse the leads and repeat the check. Because of the charge built up by the first check, the needle infinity. For large capacitors, set the range to \(R \times 1\) to speed up the process.
2. Load Resistance Check with CE Meter.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Supply & Scale & Gnd Lead & Test Point & Condition & Resistance \\
\hline \multirow[t]{2}{*}{-4V} & \multirow[t]{2}{*}{Rx1} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Common } \\
& 1+\Omega \mid
\end{aligned}
\]} & \multirow[t]{2}{*}{T8422-2} & CP421 Tripped & \(>15\) ohm \\
\hline & & & & CP421 Reset & \(>15\) ohm \\
\hline
\end{tabular}
3. Rectifier Check with CE Meter
a. Remove the lead to the rectifier heat sink from the capacitor (C421). The rectifier leads are soldered place. Use the heat sink as a diode terminal.
b. With the meter set to \(R \times 1\), measure the forward ance whi should be from 515 ohs.
c. Set the meter to \(\mathrm{R} \times\) should be near infinity.


DC COMPARTMENT, Front Half


DC COMPARTMENT, Rear Half

\(3350 \quad\)\begin{tabular}{c|c|c|}
\hline EG0056 & \begin{tabular}{c} 
2358267 \\
Part No.
\end{tabular} \\
\hline
\end{tabular}


\section*{FIX VERIFICATION AND CHECKOU PROCEDURE}

Complete the following checklist to ensure that th machine problem has been corrected. If a check go to the rerenced MIM page for aid in making a fix
Note 1: It is not always necessary to check each step. Use your judgement for skipping all unneeded steps.
1. Set Power Mode switch to Local, then power off the string by placing the Power Off/Enable switch in the Off position. If the tring does not power off, go to PWR 22, Entry C (controlier).
2. Restore the string to normal operating conditions. (Remove all diagnostic jumpers and replace wiring, connectors, or parts that were removed.)
3. Power on the string, then set Power Mode witch to Remote
4. Verify that the Power Sequence Complete (LED) and String Power Sequence Complete (LED) ndicators and the blowers in each module all turn on. If not, go to PWR 9, Entry D.
5. Turn on the A and B Drive Start switches on the problem module(s). Verify that both Ready lamps turn on. If not, go to START 100, Entry B
6. Check power supply voltages as shown in the Voltage Check Chart (this page). (See Note 2.)
7. Examine the DC Compartment air filter and clean or replace as necessary
8. Replace all covers.
9. Run a string check. (See START 110.)
10. Go to START 500, Entry A

\section*{VOLTAGE CHECKS}

Note 2: The following checks should be made with the drives stopped or ready but with no Seek or Read/Write operations in progress.

\section*{DC Voltage Checks}

Measure each dc voltage in the order listed in the Voltage Check Chart. Only two voltages can be directly adjusted ( -4 V and +6 V ) for the controlier board (A2). If adjustments are adjustment potentiometers for -4 V and +6 V Regulators are accessible when the rear DC Compartment cover is removed. Be certain that only the voltage adjustment potentiometer on the
regulator assembly is adjusted. (See PWR 56.) The regulator assembly is adjusted. (See PWR 56.) The
overvoltage potentiometer on each card is adjusted at the plant and should not be changed. Turn the voltage adjustment potentiometer clockwise to increase the voltage.
The +24 V Bootstrap supply has no output voltage adjustment. The only adjustment possible is to primary taps at T201 determine the ac input to the +24 V Bootstrap supply. If this supply is not within specification, check the main 3-phase ac power and ensure that the machine is wired for the correct input voltage, as shown in the Transformer Primary Input Tap Wiring Chart on this page.

If the voltage checks are not completed
successfully, exit to the appropriate MAP indicated in the Voltage Check Chart.
If this page is entered because of a known dc voltage problem, and the voltage checks are correct, the problem must be in the voltage distribution. Use the appropriate diagram listed in the chart to isolate the problem.

\section*{AC Ripple Check}

If the peak-to-peak ac ripple exceeds the maximum listed in the chart, it is likely that a power supply part has failed.

To measure the ac ripple, use the ac input on a
scope having a 0.01 volt per centimeter range and a X1 probe placed on the test points shown in the hart. Place the probe ground on any convenien round point.

If the ac component is greater than the maximum listed, exit to the appropriate MAP referenced in the chart to correct the problem.

W1 (the DC Common Ground) is located
on the logic gate. W1 is grounded by a on the logic gate. 1 is grounded by
lead from the steel frame to \(W 1-12\).

TRANSFORMER PRIMARY INPUT TAP WIRING CHART
\begin{tabular}{|c|c|c|}
\hline Voltage & TB202 (YA011) & TB421 (YA026) \\
\hline 200 V & Phase A to TB202-2 & Phase C to TB421-2 \\
\hline 208 V & Phase A to TB202-3 & Phase C to TB421-3 \\
\hline 230 V & Phase A to TB202-4 & Phase C to TB421-4 \\
\hline
\end{tabular}

Note 3: Before changing primary taps, check another dc output woltage that uses the same primary winding (except +24 Vdc Bootstrap).

VOLTAGE CHECK CHART ,
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
DC \\
Supply
\end{tabular}} & \multicolumn{1}{|c|}{ Test Point } \\
\hline
\end{tabular}
* Check transformer primary input taps, change to match available voltage. (See chart above.)
© Copyright IBM Corporation 197
\(\square\)

\section*{COMPONENT AND TEST POINT LOCATIONS}


See ZA100 for relay and contactor point location.

DC COMPARTMENT, Rear Half

A2 MODULE


DC COMPARTMENT, Front Half


SEQUENCE PANEL, A2 MODULE


3350
\begin{tabular}{|c|c|}
\hline EG0091 & \begin{tabular}{l} 
2358269 \\
Seq. 1 of 1
\end{tabular} \\
Part No. \\
\hline
\end{tabular} \begin{tabular}{|c|c|c|}
\hline 441300 \\
31 Mar 76
\end{tabular} \(\begin{gathered}441301 \\
\text { 1 Jun 76 }\end{gathered} \begin{aligned} & 441305 \\
& 29\end{aligned}\)
© Copyright IBM Corporation 1996
```

O00000000000,0000000000000000000000

```

DRIVE POWER SEQUENCING ANALYSIS (A2)


\section*{SEQUENCE PANEL}

See ZA100 for relay and contactor point location.


AC COMPARTMENT, Top View
 - YA050



Note: In terminal blocks TB203 and TB211, the termina/s are
numbered from top to bottom.
Note: In terminal blocks TB203 and TB211, the termina/s are
numbered from top to bottom.

\[
\begin{array}{|l|l|}
\hline \text { EGG0201 } & 2358270 \\
\text { Seq. 2 of 2 } & \text { Part No. } \\
\hline
\end{array}
\]
\begin{tabular}{|l|l|l|l|l|}
\hline \(\begin{array}{l}441300 \\
31 \text { Mar 76 }\end{array}\) & \(\begin{array}{l}\text { 441301 } \\
\text { 1 Jun 76 }\end{array}\) & \(\begin{array}{l}441305 \\
29 \text { Oct 76 }\end{array}\) & \(\begin{array}{l}441309 \\
\text { 15 Jul 79 }\end{array}\) & \(\begin{array}{l}441310 \\
27 \text { Jun 80 }\end{array}\) \\
\hline
\end{tabular}
© Copyright IBM Corporation 1976

\section*{DRIVE POWER SEQUENCING DIAGRAM}



SEQUENCE PANEL
Board B

\begin{tabular}{l|c|c|}
3350 & \begin{tabular}{|c|c|}
\hline EG0212 \\
Seq. 2 of 2
\end{tabular} & \(\begin{array}{c}\text { 2358271 } \\
\text { Part No. }\end{array}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{c}
441300 \\
31 Mar 76
\end{tabular} & \begin{tabular}{c}
441301 \\
1 Jun 76
\end{tabular} & \begin{tabular}{l}
441306 \\
1 Apr 77
\end{tabular} & \begin{tabular}{l}
441310 \\
27 \\
2 Jun 80
\end{tabular} & \\
\hline
\end{tabular}

\(3350 \quad\)\begin{tabular}{|c|c|}
\hline EG0217 \\
Seq. 1 of 2
\end{tabular} \begin{tabular}{c}
2358272 \\
Part No. \\
\hline
\end{tabular}
© Copyright IBM Corporation 1976



See ZA100 for relay terminal numbering.

AC COMPARTMENT, Top View (earlier machines)


AC COMPARTMENT, Top View (later machines)


Note 1: In terminal block TB211, the terminals are numbered from top to bottom.
Note 2: \(2 W\) indicates leads tied to ground by sheet Note 2: \(2 W\) indicates leads tied to ground by
metal screws inside the AC Compartments.

\(3350 \quad\)\begin{tabular}{|c|c|}
\hline EG0221 \\
Seq. 1 of 2
\end{tabular} \begin{tabular}{c}
2358273 \\
Part No. \\
\hline
\end{tabular}

© Copyright IBM Corporation 1976, 1977



See ZA100 for relay and contactor point location. SERVICE NOTES
1. Capacitor Check with CE Meter
a. With power off, discharge the capacitor by shorting the terminals together
b. Open the circuit to one capacitor terminal.
c. Set the meter range to \(R \times 10\).
d. Touch the meter leads to the two capacitor terminals and observe that the needie nearly goes to zero, then returns toward infinity.
e. Reverse the leads and repeat the check. Because of the charge built up by the first check, the needle should deflect beyond zero, then go back toward infinity. For large capacitors, set range to \(R \times 1\) to up the process.
2. Load Resistance Check with CE Meter

Note: Meter slowly rises to value.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Supply & Scale & Gnd Lead & Test Point & Condition & Resistance \\
\hline \multirow[t]{2}{*}{-12V} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Common } \\
& (+\Omega)
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Load side } \\
& \text { of CP535 }
\end{aligned}
\]} & CP535 Tripped & \(>60\) ohm \\
\hline & & & & CP535 Reset & > 20 ohm \\
\hline \multirow[t]{2}{*}{+12V} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Pos } \\
1+\Omega)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Load side } \\
& \text { of CP534 }
\end{aligned}
\]} & CP534 Tripped & > 30 ohm \\
\hline & & & & CP534 Reset & > 20 ohm \\
\hline
\end{tabular}
3. Rectifier Check with CE Meter
a. Disconnect the leads to CR533 assembly.
b. With the meter set to \(R \times 1\), connect the common lead to one ac terminal and the other lead alternately to the + and - terminal, measure the resistance which should be from 5 to 15 ohms.
c. Set the meter to \(R \times 1\) and measure the resistance between the two ac terminals. The resistance
should be near infinity. should be near infinity.
4. An open 12 Vdc return line to the \(T 53112 \mathrm{~V}\) secondary center tap causes the -12 Vdc to drop below and the +12 Vdc to rise above specifications.
5. The power amp -12 volts is controlled by a transistor switch on the +6 volt regulator board. A drop in the +24 Vdc sequence supply immediately cuts off the -12 volts to the oower amps.


DC COMPARTMENT, Rear Half


Rear
00136 F
\begin{tabular}{|c|l|l|l|l|}
\hline \begin{tabular}{c}
441300 \\
31 Mar 76
\end{tabular} & \begin{tabular}{l}
441301 \\
1 Jun 76
\end{tabular} & \begin{tabular}{l}
441305 \\
29 \\
Oct 76
\end{tabular} & & \\
\hline
\end{tabular}


\section*{SERVICE NOTES}
1. Capacitor Check with CE Meter
a. With power off, discharge the capacitor by shorting the terminals together.
b. Open the circuit to one capacitor terminal
c. Set the meter range to \(R \times 10\).
d. Touch the meter leads to the two capacitor terminals and observe that the needle nearly goes to zero

Reverse the leads and repeat the check Because the charge built up by the first check, the needle should deflect beyond zero, then go back towar infinity. For large capacitors, set range to \(R \times 1\) to speed up the process.
2. Load Resistance Check with CE Meter
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Supply} & Scale & Gnd Lead & Test Point & Condition & Resistance \\
\hline & \multicolumn{5}{|c|}{With Drive DC Power switch set to both on} \\
\hline \multirow[t]{3}{*}{-24V} & \multirow[t]{2}{*}{R×10} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Common } \\
& |+\Omega|
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \text { CP533 } \\
& \text { Load } \\
& \text { Term. }
\end{aligned}
\]} & CP533 Tripped & > 750 ohm \\
\hline & & & & CP533 Reset & \(>75 \mathrm{ohm}\) \\
\hline & \multicolumn{5}{|c|}{With Drive DC Power switch set to one off.} \\
\hline \multirow[t]{2}{*}{-24V} & \multirow[t]{2}{*}{R×10} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Common } \\
& (+\Omega)
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
CP533 \\
Load \\
Term.
\end{tabular}} & CP533 Tripped & \(>1500 \mathrm{ohm}\) \\
\hline & & & & CP533 Reset & \(>75\) ohm \\
\hline
\end{tabular}
3. Rectifier Check with CE Meter
a. Disconnect the leads to CR532 assembly
b. With the meter set to \({ }^{R} \times 1\), measure the forward resistance which should be from 5 to 15 ohms.
c. Set the meter to \(R \times 1000\) and reverse the meter


DC COMPARTMENT, Rear Half




SERVICE NOTES
1. Capacitor Check with CE Meter
a. With power off, discharge the capacitor by shorting the terminals together
Open the circuit to one capacitor terminal
c. Set the meter range to \(R \times 10\).
d. Touch the meter leads to the two capacitor terminals returns toward infinity.
e. Reverse the leads and repeat the check. Because of the charge built up by the first check, the needle should deflect beyond zero, then go back toward infinity. For large capacitors, set range to \(R \times 1\) to
speed up the process. speed up the process.
2. Load Resistance Check with CE Meter
\begin{tabular}{|c|c|c|c|c|c|}
\hline Supply & Scale & Gnd Lead & Test Point & Condition & Resistance \\
\hline \multirow[t]{2}{*}{-4V} & \multirow[t]{2}{*}{Rx1} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Common } \\
& (+\Omega)
\end{aligned}
\]} & \multirow[t]{2}{*}{CP536 Load side} & CP536 Tripped & \(>15\) oh \\
\hline & & & & & \\
\hline
\end{tabular}
3. Rectifier Check with CE Meter
a. Remove heat-sink assembly from top of C 530 and heat-sink as the diode terminal.
b. With the meter set to \(R \times 1\), measure the forward resistance which should be from 5 to 15 ohms. Set the meter to \(R \times 1000\) and reverse the metor leads. The resistance should be near infinity.
4. The voltage across C530 and C531 should normally measure about 0.3 to 0.6 volts higher than the voltage measured at TB 102-5/6 or TB 102-3/4. Other typ
voltages measurements are: (Refer to PWR 256)
0.07 volts (Drives A \& B)
0.15 volts (Drive \(A\) )
0.15 volts (Drive \(B\) )
0.11 volts (Drive \(A\) )
to \(\mathbf{G}\) © 011 vors (Drive \(B\) ) to A1T2B06 0.02 volts (Drive B)
to (1) 0.06 volts (Drives \(A \& B\) )
0.06 volts (Drives \(A\) \& B) to A1C2D08 0.02 volts (Drive A) © to A1T2D08 0.02 volts (Drive \(B\) )
voltage drops exceed these typical examples and voltage as measured at card is still below specification,


OCopyright IBM Corporation 1976, 1980

© Copyright IBM Corporation 1976

\section*{SERVICE NOTES}
1. Capacitor Check with CE Meter
a. With power off, discharge the capacitor by shorting the terminals together.
b. Open the circuit to one capacitor terminal
c. Set the meter range to \(R \times 10\).
d. Touch the meter leads to the two capacitor terminals and observe that the needle nearly goes to zero
returns toward infinity.

Reverse the leads and repeat the check. Because of the charge built up by the first check, the needle should deflect beyond zero, then go back toward infinity. For large capacitors, set range to \(R \times 1\) to rocess
2. Load Resistance Check with CE Meter
\begin{tabular}{|c|c|c|c|c|c|}
\hline Supply & Scale & Gnd Lead & Test Point & Condition & Resistance \\
\hline \multirow[t]{5}{*}{+6V} & \multirow[t]{5}{*}{Rx10} & \[
\begin{aligned}
& \text { Common } \\
& 1+\Omega \mid
\end{aligned}
\] & \[
\begin{gathered}
\text { CP532 } \\
\text { Load side } \\
|-\Omega|
\end{gathered}
\] & \[
\begin{aligned}
& \text { CP532 Tripped } \\
& \text { CP532 Reset }
\end{aligned}
\] & \[
\begin{aligned}
& >400 \mathrm{ohm} \\
& >30 \mathrm{ohm}
\end{aligned}
\] \\
\hline & & With Dive DC & wer swith se & st to both on. & \\
\hline & & W1 & \[
\begin{gathered}
\text { TP7 } \\
\text { Seq Bd } \\
B
\end{gathered}
\] & CP532 Reset & \(>15\) ohm \\
\hline & & With Dive DC & wer switch to & one off. & \\
\hline & & W1 & \[
\begin{gathered}
\text { TP7 } \\
\text { Seq Bd } \\
\text { B }
\end{gathered}
\] & CP532 Reset & >20 ohm \\
\hline
\end{tabular}
3. Rectifier Check with CE Meter
a. Disconnect the leads to CR536 assembly
b. With the meter set to \(R \times 1\), measure the forward resistance which should be from 5 to 15 ohms.
c. Set the meter to \(R \times 1000\) and reverse the meter leads. The resistance should be near infinity.
00000000000


3350


\section*{DC COMPARTMENT, Rear Half}


DC COMPARTMENT, Front Half

\(3350 \quad\)\begin{tabular}{|c|c|c|l|l|l|}
\hline \(\begin{array}{c}\text { EG0261 } \\
\text { Seq. 2 of 2 } 2\end{array}\) & \(\begin{array}{l}\text { 2358277 } \\
\text { Part No. }\end{array}\) \\
\hline
\end{tabular}
© Copyright IBM Corporation 1976

\section*{+24 VOLT (Local) SUPPLY DIAGRAM}

```

0000000000000000000000000000000000

``` +24 VOLT (Local) FAILURE ANALYSIS


\section*{SERVICE NOTES}
1. Capacitor Check with CE Meter
a. With power off, discharge the capacitor by shorting he terminals together
b. Open the circuit to one capacitor terminal.
c. Set the meter range to \(R \times 10\).
d. Touch the meter leads to the two capacitor terminals and observe that the needle nearly goes to zero then returns toward infinity
e. Reverse the leads and repeat the check. Because of the charge built up by the first check, the needle should deflect beyond zero, then go back toward infinity. For large capacitors, set range to \(R \times 1\) to

Load Resistance Check with CE Meter
Drive DC Power switch in the Both Drives position.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Supply & Scale & Gnd Lead & Test Point & Condition & Resistance \\
\hline+24 V & \(\mathrm{Rx1}\) & \begin{tabular}{c} 
Conmon \\
\(1+\Omega 1\)
\end{tabular} & \begin{tabular}{l} 
Load side \\
of CP531
\end{tabular} & CP531 Tipped & \(>100\) ohm \\
\cline { 5 - 6 } & & & & & \\
\cline { 5 - 6 } & & & & & \\
\hline
\end{tabular}
3. Rectifier Check with CE Meter
a. Disconnect the leads to CR535
b. With the meter set to \(R \times 1\), measure the forward resistance of each diode which should be from 5 to 15 ohms.
c. Set the meter to \(R \times 100\) and reverse the meter


An overall description of the power on sequence is
located on \(P W R 6\) through \(P W R 8\)


\({ }^{* 12}\)


\begin{tabular}{|l|l|l|}
\hline Test Point & Range & AC Ripple \\
\hline TB431-4 & -36.0 to -43.2 V & \(<0.14 \mathrm{Vp} / \mathrm{p}\) \\
\hline
\end{tabular}
Use PWR 281 and
YA060(YBO60) to isolate the drive problem. Possi-
ble causes are:
Defective power amp
\({ }_{\text {P532 (P542) or shor }}^{\text {card }}\)
to ground between
                            power amp and voice
                            power amp
coil motor.
\(\square\) \begin{tabular}{|l|l|}
\hline 441300 \\
31 Mar 76 & \begin{tabular}{l}
441301 \\
1 Jun 76 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

© Copyright IBM Corporation 1976

\section*{SERVICE NOTES}
1. Capacitor Check with CE Meter
a. With power off, discharge the capacitor by shorting
terminals together.
b. Open the circuit to one capacitor terminal.
c. Set the meter range to \(R \times 10\).
d. Touch the meter leads to the two capacitor terminals and observe that the needle nearly goes to zero,
then returns toward infinity.
e. Reverse the leads and repeat the check. Because of he charge built up by the first check, the neede infinity. For large capacitors, set range to \(R \times 1\) to speed up the process.
2. Load Resistance Check with CE Meter
\begin{tabular}{|c|c|c|c|c|c|}
\hline Supply & Scale & Gnd Lead & Test Point & Condition & Resistance \\
\hline \[
-36 \mathrm{~V}
\] & \[
\begin{array}{|l|l|}
\hline \mathrm{Rx} 10 \\
\mathrm{Ryx}
\end{array}
\] & \[
\begin{aligned}
& \text { Common } \\
& (+\Omega)
\end{aligned}
\] & \[
\begin{aligned}
& \text { CP557/ } \\
& \text { C5568 } \\
& \text { Load Side }
\end{aligned}
\] & \begin{tabular}{l}
CP557/CP568 \\
Tripped \\
CP557/CP568 \\
Reset
\end{tabular} & \[
\begin{aligned}
& \mid>750 \Omega \\
& >30 \Omega
\end{aligned}
\] \\
\hline
\end{tabular}
3. Rectifier Check with CE Meter
a. Disconnect the leads to the CR534 assembly
b. With the meter set to \(R \times 1\), measure the forward
resistance which should be from 5 to 15 ohms. . Set the meter to \(R \times 1000\) and reverse the meter
4. +12 Vdc missing at the power amplifier(s) causes an CP557 and /or CP568 to supply which cause P532-13 and P542-13 shown on PWR 281.
5. If -20 V is missing at A1C2(A1T2)B10, an overload is placed on the -36 Vdc supply which may trip CP557 and/or CP568

\section*{-36 VOLT SUPPLY DIAGRAM}
\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
DANGER \\
LETHAL VOLTAGES are present in the power servicing area. SAFETY cannot be overemphasized. Consider ALL CIRCUITS LIVE until measured otherwise. CAPACITORS are potentially explosive devices. WEAR SAFETY GLASSES. After replacing any capacitor, reinstall all SAFETY COVERS before powering-up machine.
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

DC COMPARTMENT, Rear Half



3350 \begin{tabular}{|l|l|}
\hline EG0281 & \(\begin{array}{c}2358259 \\
\text { Peq. 1 of 2 }\end{array}\) \\
\hline
\end{tabular} \({ }_{31}^{441300} \mathrm{Mar} 76\) 441301
1 Jun 76
\begin{tabular}{l|l}
441305 \\
29 Oct 76 & \(\begin{array}{l}441310 \\
27 \text { Jun }\end{array}\) \\
\hline
\end{tabular}
© Copyright IBM Corroration 1976

\section*{FIX VERIFICATION AND CHECKOUT} PROCEDURE

Complete the following checklist to ensure that the machine problem has been corrected. If a check cannot be completed, go to the referenced MIM page for aid in making a fix.
Note 1: It is not always necessary to check each step. Use your judgement in skipping all
unneeded steps.
unneeded steps.
1. Set Power Mode switch to Local, then power off the string by placing the Power Off/Enable switch to Off. If the string does not power off, go to PWR 22, Entry C (controller)
2. Restore the string to normal operating conditions. (Remove all diagnostic jumpers and replace wiring, connectors, or parts tha were removed.)
3. Power-on the string, then set Power Mode witch to Remote
4. Verify that the Power Sequence Complete (LED) and String Power Sequence Complete (LED) indicators and the blowers in each module al urn on. If not, go to PWR 9, Entry D controller)
5. Turn on the A and B Drive Start switches on the problem module(s). Verify that both Ready lamps turn on. If not, go to START 100 Entry B.
6. Check power supply voltages as shown in the Voltage Check Chart (this page). (See Note 2.)
7. Examine the DC Compartment air filter and clean or replace as necessary
8. Replace all covers
9. Run a string check. (See START 110.)
10. Go to START 500, Entry A.

\section*{VOLTAGE CHECKS}

Note 2: The following checks should be made with the drives stopped or Ready but with no Seek or Read/Write operations in progress.

\section*{DC Voltage Checks}

With a digital voltmeter, measure each dc voltage in he order listed in the Voltage Check Chart. Only ne voltage can be directly adjusted (10 necessary, the rear DC Compartment top cover must be removed. Be certain that only the voltage adjustment potentiometer on the regulator card is adjusted. (See PWR 261.) The overvoltage potentiometer is adjusted at the plant and should potentiometer clockwise to increase the voltage.
All power supplies, except the one mentioned bove, have no output voltage adjustment. Th nly adjustment possible is to change the taps determine the ac input for the \(-12 \mathrm{~V},+12 \mathrm{~V}\), -4.0 V , and -24 V supplies. The T532 primary taps determine the ac input for the \(-36 \mathrm{~V},+11.5 \mathrm{~V}\) and +24 V Local supplies. If any of these supplies are not within specification, check the main 3-phase ac power and ensure that the machine is wired for in the Wiring Chart on this this page.
If the voltage checks are not completed uccessfully, exit to the appropriate MAP indicated in the Voltage Check Chart.
If the voltage checks are completed successfully, but this page is entered because of a known dc voltage problem, the problem must be in the voltage distribution. Use the appropriate diagram listed in the chart to isolate the problem.

\section*{AC Ripple Checks}

If the peak-to-peak ac ripple exceeds the maximum isted in the chart, it is likely that a power supply part has failed.

To measure the ac ripple, use the ac input on a scope having a 0.01 volt per centimeter range and a X1 probe placed on the test points shown in the hart. Place the probe ground on any convenien ground point.
If the ac component is greater than the maximum listed, exit to the appropriate MAP referenced in the chart to correct the problem.
on the logic gate. W1 Ground) is locate lead from the steel frame to W1-12.
vOLTAGE CHECK CHART
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { DC } \\
\text { Supply }
\end{gathered}
\] & Test Points & \(/ \begin{gathered}\text { Tolerance } \\ \text { (Volts) }\end{gathered}\) & Adjustment & Logic Page & Maximum AC Ripple & Diagram & Page Entry \\
\hline +24 V Local & CP531 Load Terminal to W1 Ground Bus & +21.6 to +26.4 & None* & \[
\begin{array}{|l|}
\text { YAO3O } \\
\text { YBO3O }
\end{array}
\] & \(0.35 \mathrm{Vp} / \mathrm{p}\) & PWR 271 & PWR 272, A \\
\hline -24V & A1C2D03 (Dr A)/ A1T2D03 (Dr B) to A1K2D08 & -24.0 to -28.8 & None* & \[
\begin{array}{|l|}
\hline \text { YAO90 } \\
\text { YBO9O }
\end{array}
\] & \(0.08 \mathrm{Vp} / \mathrm{p}\) & PWR 251 & PWR 250, A \\
\hline +12V & A1C2D05 (Dr A)/ A1T2D05 (Dr B) to A1K2D08 & +12.0 to +14.4 & None* & \[
\begin{array}{|l}
\text { YA090 } \\
\text { YBO90 }
\end{array}
\] & \(0.10 \mathrm{Vp/p}\) & PWR 241 & PWR 240, A \\
\hline -12V & A1C2D06 (Dr A)/ A1T2D06 (Dr B) to A1K2D08 & -12.0 to -14.4 & None* & \[
\begin{aligned}
& \text { YA090 } \\
& \text { YBO90 }
\end{aligned}
\] & \(0.10 \mathrm{p} / \mathrm{p}\) & PWR 241 & PWR 240, A \\
\hline -4V & A1C2B06 (Dr A)/ A1T2B06 (Dr B) to A1K2D08 & -3.85 to -4.5 & None* & \[
\begin{aligned}
& \text { YA090 } \\
& \text { YB090 }
\end{aligned}
\] & \(0.23 \mathrm{Vp} / \mathrm{p}\) & PWR 256 & PWR 255, A \\
\hline \(+6 \vee \mathrm{Reg}\) & \[
\begin{aligned}
& \text { A1F2B11 (Dr A)/ } \\
& \text { A102B11 (Dr B) } \\
& \text { to A1F2D08/ } \\
& \text { A102008 }
\end{aligned}
\] & \[
\begin{aligned}
& +5.76 \text { to }+6.24 \\
& \text { (Adjust to 6.0) }
\end{aligned}
\] & Turn screw clockwise to increase voltage & \[
\begin{aligned}
& \text { YA09O } \\
& \text { YB090 }
\end{aligned}
\] & \(0.08 \mathrm{Vp} / \mathrm{p}\) & PWR 261 & PWR 260, A \\
\hline -36V & TB431-4 to W1 Ground Bus & -36.0 to -43.2 & None* & \[
\begin{aligned}
& \text { YA03O } \\
& \text { YBO3O }
\end{aligned}
\] & \(0.14 \mathrm{Vp} / \mathrm{p}\) & PWR 281 & PWR 280, A \\
\hline
\end{tabular}
* Check transformer primary taps and change to match available voltage. COMPONENT AND TEST POINT LOCATIONS
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
DANGER \\
LETHAL VOLTAGES are present in the power servicing area. SAFETY cannot be overemphasized. Consider ALL CIRCUITS LIVE until measured otherwise CAPACITORS are potentially explosive devices. WEAR SAFETY GLASSES. After replacing any capacitor, reinstall all SAFETY COVERS before powering on machine.
\end{tabular}} \\
\hline \\
\hline
\end{tabular}

See ZA100 for relay and contactor point location.

DC COMPARTMENT, Rear Half


B2 MODULE


DC COMPARTMENT, Front Half


SEQUENCE PANEL, B2 MODULE


AC COMPARTMENT, Top View (later machines)

to bottom.


Note: In terminal block TB211, the terminals are numbered from top

\section*{INTRODUCTION}

Power for the entire disk storage string is routed through the A2 (control) Module. The ac power (three phase, 208 V , 60 Hz ) is controlled by the sequencing circuits in the A2 Module. (See PWR 307.)
Line filtering is accomplished by a capacitor between each phase of the 208 Vac connected at the output of CB200. A phase-detection circuit containing resistance, capacitance, and an ac relay (K202) is used to detect improper power phasing; this is done to ensure proper rotation of the blower
and drive motors. Relay K202 picks only if the main ac and drive motors. Relay K202 picks only if the main ac
phasing is correct. If phasing is incorrect, K202 fails to pick phasing is correct. If phasing is incorrect, K202 fails to pick and the power-on sequence is prevented.
With three-phase power to the 3350 string, \(\mathbf{T} 201\) is activated. The secondaries feed the convenience outlets ( 115 V ) and the +24 V Bootstrap (BS) supply. The bootstrap voltage picks sequence and control relays in all modules.
All modules have a drive power supply. The control modules (A2 and C2) each have an additional supply for the controller board. The controller supply in the A2 Module consists of a +24 V power sequence, a 115 Vac convenience outlet, and a -4 Vdc and +6 Vdc supply (T420) for the A2 logic board. The controller supply in the C2 Module consists of only the -4 Vdc and +6 Vdc supply ( T 420 ), which supplies
the A2 logic board. The drive power supply for each module the A2 logic board. The drive power supply for each module And associated board the servo power amplifiers, and the +24 Vdc Local for relay operation.
Power-on sequencing is initiated in the A2 Module and continues through the last module on the string.

\section*{POWER-ON SEQUENCE}

References are to the Power Supply Sequence diagram on PWR 307 and the sequence chart on PWR 308.

\section*{Controllers (A2 and C2)}
1. Three-phase power is supplied from the customer's receptacle to active the +24 V Bootstrap Supply 1 and the picked to provide 115 Vac at the outlets. K202 (Phase Rotation Detection) 3 picks if the phase is correct
2. In the A2 Module, the Power Pick line or Power On switch 13 picks K601 (Subsystem Sequence Start) 5 if the Power Off/Enable switch is in the Enable position 4 . The
Controller AC contactor (K221) 8 , Blower AC contactor (K222), and the Gate/Blower Thermal Sense relay (K606) Kre picked through CP Aux points and the gate thermal when K601 is picked.
3. With K601 picked, K201 (Subsystem Power)
is picked, he Power On lamp is on, and the +24 V BS Sequence line is active. The +24 V BS Sequence line picks two contactors and a relay in the C2 Module; Controller AC contactor K221) 11, Blower AC contactor (K222), and Gate/Blower relay (K606). K20 mose ac po their blowers, and through K222 relays of both modules to their blowers, and hrog 9 and 12 power supplies for each A2 logic board 9 and 12.
4. The +24 V Power Sequence line is also activated by K601 to pick the AC Power Drives contactor (K331) 23 and start the one-second delay in the pick of Power Sequence Delay relay (K611) 16
5. The controller power-on sequence is now complete except for picking the String Power Sequence Complete relay (K603) 14 by the Power Sequence Complete line. This line is activated through a jumper (T4 to T3) 27 in the last module of the string when its Power Sequence Delay relay (K611) is picked. K603 signals the controlling storage control to advance to the next subsystem string. If the Service Bypass switch 19 of any module is on, th K611 does not need to be picked for string powe sequencing.

\section*{Drives}

The drive power section components, labels, and numbers of each module are identical. This means that K 35124 is the A2, B2 or C2 Module. There are two exceptions, however. The first is that the blower 10 in the \(\mathbf{A} 2\) Module recives pow The first is that the blower 10 in the A2 Module receives power
when contactor K201 is picked while contactor K331 activates when contactor K201 is picked while contactor K331 activates
the blower 22 in the B2 Module. The C2 blower also receives power when K201 is activated. The second exception is the power when
application of the series of auxiliary CP points 20 and 21 that pick K331. Both exceptions result because blowers must he turned on when power is applied to the logic boards. The urive power-on sequence for each module is:
1. The +24 V Power Sequence line picks the AC Power Drives contactor (K331) 23 through the Off position of the Service Bypass switch and through the CP auxiliary point and Logic Gate Thermal points.
2. Contactor K331 activates the dc power supplies and starts the blower motor in the B2 Module. Three-phase power is also available to the drive motor contactors (K351 and K361) 24.
3. DC power from the supplies is distributed to the drive logic panel 28 through CPs , the +6 V Regulator, and the Drive DC Power switch 25. The three-position Drive DC Power switch permits removal of dc power to one drive while the other continues to operate.
4. The Power Sequence Delay relay (K611) 16 picks one second after K331 is picked and from the same source of voltage. With K611 picked, the Power Sequence Com-
plete (LED) 17 is turned on and +24 V Power Sequence plete (LED) 17 is turned on and +24 V Power Sequence is sent to the next module.
In the next module, drive power sequencing begins by picking K331 and K611. In the last module of the string, a jumper between T4 and T3 27 routes the +24 V Power Sequence Complete line to pick the String Power Sequence Complete relay (K603) 14 . The K603 points signal the storage control 0 advance to the next string (if used). Other points of K 603 provide +24 V Drive Sequence and +24 V Poll lines 29 that with the motors.
The Power Sequence Complete (LED) is turned on if the string is active even when the Service Bypass switch is in the On position. The module is not sequenced on but K611 16 is picked and K612 26 is not picked. With K612 ( 6 V Sense) dropped, the K612-1 points turn on the Power Check

\section*{LED) 18 .}

POWER-OFF SEQUENCE

\section*{String}

The entire string is powered off if the hold to the Subsystem Sequence Start relay (K601) is removed.
1. The hold to K601 is through the Power Off/Enable switch in the Enable position 4, K603-1 points 14, K601-4 points, the Power Hold line to the ISC, from the ISC o the Unit Source line, and to CP204 in the +24 V BS o CP204 in the +24
s the hold to K201
6
2. With K201dropped, power is removed from the drive motors, blowers, and power supplies in all modules of the string.
3. Circuits that remain active after the hold to K 601 is lost are the Phase Rotation Detection relay 3 , the +24 V Bootstrap Supply, and the convenience outlets.

Controller
Since either controller will operate the string, the type of power failure determines whether the drives in the same module will be available. An open CP in the controller power supply affects only the controiler, but an open Logic Gate Thermal or tripped drive CP causes loss of power to the drives.

CONTROLLER (OPEN THERMAL)
1. When the Logic Gate Thermal or Blower Thermal opens, the Controller AC contactor (K221), the Blower AC con
tactor (K222), and the Gate/Blower Thermal Sense relay (K606) 8 or 11 are dropped. This removes power from the A2 logic board \(\mathbf{9}\) or 12, from the blowers, and
opens the hold for K331 (AC Power Drives) 23 . opens the hold for K331 (AC Power Drives) 23
2. The Power Sequence Complete (LED) 17 and Power Check (LED) 18 are both on. K611 (Power Sequence Delay) 16 is held from the +24 V Bootstrap supply and \(\mathrm{K} 612(+6 \mathrm{~V}\) Sense) \(\mathbf{2 6}\) is dropped because dc drive power is off.

CONTROLLER (TRIPPED CP)
1. A tripped CP in the power circuit for the controller (A2 or C2) logic board drops the Controller AC contactor
(K221) \(\mathbf{8}\) (K221) 8 or 11. The hold circuit to K221 is through CP42 Aux points and CP421 Aux points.
2. The modules ( A 2 and C 2 ) maintain blower and drive power while the Power Sequence Complete (LED) is on and the Power Check (LED) is off. After control is transferred to the other controller, full string operation is maintained.
Drives
When the drives section of an A2, B2, or C2 Module loses power because of a tripped CP , other modules of the string remain on.
1. If contactor K331 23 is dropped, all power is removed from the dc power supplies and both drive motors in A2, B2, or C2 Module. In an A2 or C2 Module, K331 is held activated through CPs 531-536 auxiliary points 20 through the Service Bypass switch, and through points of K606.
In a B2 Module, contactor K331 is held activated through the points of the Logic Gate Thermal, CP311 auxiliary points 21, and the Service Bypass switch. CP311 monitors the auxiliary points of CPs \(531-536\). When an auxiliary which opens its auxiliary points to drop K331.
2. With K331 dropped in an A2, B2, or C2 Module, other modules of the string remain on because the Power Se quence Delay relay (K611) 16 is still picked to send +24 V Power Sequence to the next module. The Power Sequence Complete (LED) 17 is still on even though the drives are inactive.
3. The Power Check (LED) \(\mathbf{1 8}\) is also turned on when K331 is dropped because there is no +6 V Regulator output to pick the 6 V Sense relay (K612). The normally closed points of K612-1 26 complete the Power Check (LED) circuit.
\begin{tabular}{|c|c|c|c|c|}
\hline 3350 & \begin{tabular}{l}
EG0291 \\
Sey. \(<\mathrm{ur}\)
\end{tabular} & \[
2358767
\] & - 441301 & 441305 \\
\hline
\end{tabular}

\section*{POWER SUPPLY SEQUENCE}
power supply sequence PWR 307


\footnotetext{

© Copyright IBM Corporation 1976, 1977
}

\section*{C C C C C C C C C C C C C C C C C C C C C C O}

POWER ON SEQUENCE

\(\left.3350 \begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\text { EG0308 } \\ \text { Seq. } 1 \text { of } 2\end{array} & \begin{array}{c}2358751 \\ \text { Part No. }\end{array} \\ \hline\end{array} \begin{array}{|c|c|c|c|c|}\hline 441301 \\ 1 \text { Jun 76 }\end{array}\right]\)
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
DANGER \\
LETHAL VOLTAGES are present in the power servicing area. SAFETY cannot be overemphasized. Consider ALL CIRCUITS LIVE until measured otherwise CAPACITORS are potentially explosive devices. WEAR SAFETY GLASSES. After replacing any capacitor, reinstall all SAFETY COVERS before powering on machine.
\end{tabular}} \\
\hline \\
\hline \\
\hline
\end{tabular}

An overall description of the power-on sequence is located on PWR 306 through PWR 308.
See PWR 391 and LOC pages for component locations.
See ZA100 for relay terminal numbering.

\section*{Numbers Located In \\ \(\begin{array}{ll}2 \times x & \text { Controller AC Compartment } \\ 3 \times x & \text { Drive AC Compartment }\end{array}\) \(\begin{array}{ll}3 \times x & \text { Drive AC Compartment } \\ 5 \times x & \text { Controller DC Compartment }\end{array}\) Drive DC Compartment} Sequence Panel

SEQUENCE PANEL

\(\square\)



```

0

```
\(0-00\)
000
100
100
\(\square\)
 aC CIRCUIT FALLURE ANALYSIS
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
DANGER \\
LETHAL VOLTAGES are present in the power servicing area. SAFETY cannot be overemphasized. Consider ALL CIRCUITS LIVE until measured otherwise CAPACITORS are potentially explosive devices WEAR SAFETY GLASSES. After replacing any capacitor, reinstall all SAFETY COVERS before powering on machine.
\end{tabular}} \\
\hline \\
\hline \\
\hline
\end{tabular}


3350 \begin{tabular}{|l|l|l|l|l|l|}
\hline \begin{tabular}{c} 
EG0320 \\
Seq. 2 of 2
\end{tabular} & \begin{tabular}{c}
2358752 \\
Part No.
\end{tabular} \\
\hline
\end{tabular}
© Copyright IBM Corporation 1976, 1977
```

000000000

```
D 0

\section*{C C C C C C C C C C C C C C C C C C C C C C C C}
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
DANGER \\
LETHAL VOLTAGES are present in the power servicing area. SAFETY cannot be overemphasized. Cunsider ALL CIRCUITS LIVE until measured otherwise. CAPACITORS are potentially explosive devices. WEAR SAFETY GLASSES. After replacing any capacitor, reinstall all SAFETY COVERS before powering on machine.
\end{tabular}} \\
\hline \\
\hline \\
\hline
\end{tabular}

An overall description of the power on sequence is
located on PWR 306 through PWR 308

SEQUENCE PANEL
Board A

*Not used in C2 Module.



SEQUENCE PANEL
aC COMPARTMENT, Top View


Note: In terminal blocks TB203 and TB211 the terminals are numbered from the top to the bottom.

See ZA100 for relay and contactor point locations.
Board A

*Not used in C2.


3350
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
DANGER \\
LETHAL VOLTAGES are present in the power servicing area. SAFETY cannot be overemphasized. Consider ALL CIRCUITS LIVE until measured otherwise. CAPACITORS are potentially explosive devices. WEAR SAFETY GLASSES. After replacing any capacitor, reinstall all SAFETY COVERS before powering-up machine
\end{tabular}} \\
\hline \\
\hline \\
\hline
\end{tabular}

An overall description of the power-on sequence is
located on PWR 306 through PWR 308. Note: The jumpers between T1 and T2 or between T3 and
T4 are designed for installation in the last module of a string. The string of modules will work, however, if the jumpers are
in any unit regardless of its position in the string.



\(\square\) Use PWR 331 and PWR 31 to isolate the proble
Possible causes are:
1. \(\begin{aligned} & \text { No jumper installed } \\ & \text { between } T 4 \text { and } T 3 \text { in }\end{aligned}\) between T4 and T3
last module in string
(Sequence Board B). last module
Sequence B
See Note.
See Note.
Cable or connect
Cable or connecto
(P630) P631, and
P642). To isolate the
failing module, move
the jumpers from the last module to the \(A 2\)
lad
Module in the erting Module in the string and progressively
disconnect P631s
starting with the end
module.
module.
K 603 pick coil or
D
3. \(\begin{aligned} & \text { circuit } \\ & \text { 4. } \\ & \text { K603-2 points. }\end{aligned}\)
 \({ }_{\# 24}\) Use PWR 33 and logic
YA048 to isolate the prob. YAO48 to isolate the pro
lem. Check for +24 V
Powert Powering Complete volt-
age at P641-4 and -6 Pos age at P641-4
sible causes is:
1. K 603.3 or \(-4 \mathrm{~N} / \mathrm{O}\)
1. K603.3 or \(-4 \mathrm{~N} / \mathrm{O}\)
failed to make.
2. Sequence Cables and
connectors.
(P101 P102, P641)
\#27

\[
\left.\begin{array}{l|c|c}
3350
\end{array} \begin{array}{|c|c}
\hline \text { EG0331 } \\
\text { Seq. } 2 \text { of } 2
\end{array}\right) \begin{gathered}
2358754 \\
\text { Part No. } \\
\hline
\end{gathered}
\]
\[
\text { © Copyright IBM Corporation } 1976
\]

\section*{C C C C C C C C C C C C C C C C C C C C C C C C}



After problem is corrected,

cation and Checkout
Procedure.
\#9

\section*{SERVICE NOTES}
1. Capacitor Check with CE Meter
a. With power off, discharge the capacitor by shorting the terminals together
b. Open the circuit to one capacitor terminal.
c. Set the meter range to \(R \times 10\).
d. Touch the meter leads to the two capacitor termina and observe that the needle nearly goes to zero then returns toward infinity
e. Reverse the leads and repeat the check. Because of the charge built up by the first check, the needle should deflect beyond zero, then go back toward
infinity. For large capacitors, set range to \(R \times 1\) speed up the process.

Rectifier Check with CE Meter
a. Disconnect leads to CR201 assembly (PWR 31).
b. With the meter set to \(R \times 1\), measure the forward resistance which should be from 5 to 15 ohms.
c. Set the meter to \(R \times 1000\) and reverse the meter
\(\square\)


3350 \(\square\) \begin{tabular}{l}
441301 \\
1 Jun 76 \\
\hline
\end{tabular}
© Copyrigh IBM Corporation 1976

\section*{C C C C C C}



\section*{FIX VERIFICATION AND CHECKOUT PROCEDURE}

Complete the following checklist to ensure that the machine problem has been corrected. If a check cannot be completed, go to the referenced MIM page for aid in making a fix.
Note 1: It is not always necessary to check each step. Use your judgement for skipping all unneeded steps.
1. Set Power Mode switch to Local, then power off the string by placing the Power Off/Enable switch in the Off position. If the string does not power off, go to PWR 322, Entry C (controller).
2. Restore the string to normal operating conditions. (Remove all diagnostic jumpers and replace wiring, connectors, or parts that were removed.)
3. Power on the string, then set Power Mode switch to Remote.
4. Verify that the Power Sequence Complete (LED) and String Power Sequence Complete (LED) indicators and the blowers in each module all turn on. If not, go to PWR 9, Entry D.
5. Turn on the A and B Drive Start switches on the problem module(s). Verify that both the problem module(s). Verify that both 100, Entry B.
6. Check power supply voltages as shown in the Voltage Check Chart (this page). (See Note 2.)
7. Examine the DC Compartment air filter and clean or replace as necessary
8. Replace all covers
9. Run a string check. (See START 110.)
10. Go to START 500, Entry A.

\section*{VOLTAGE CHECKS}

Note 2: The following checks should be made with the drives stopped or Ready but with no Seek or Read/Write operations in progress.

\section*{DC Voltage Checks}

Measure each dc voltage in the order listed in the Voltage Check Chart. Only two voltages can be directly adjusted ( -4 V and +6 V ) for the controller board (A2). If adjustments are necessary, measure with a digital voltmeter. The adjustment potentiometers for -4 V and +6
Regulators are accessible when the rear DC Compartment cover is removed. Be certain that only the voltage adjustment potentiometer on the regulator card is adjusted. (See PWR 356.) The overvoltage potentiometer on each card is adjusted at the plant and should not be changed. Turn the voltage adjustment potentiometer clockwise to increase the voltage.

If the voltage checks are not completed successfully, exit to the appropriate MAP indicated in the Voltage Check Chart.
If this page is entered because of a known dc voltage problem, and the voitage checks are correct, the problem must be in the voltage distribution. Use the appropriate diagram listed in the chart to isolate the problem.

\section*{AC Ripple Checks}

If the peak-to-peak ac ripple exceeds the maximum isted in the chart, it is likely that a power supply part has failed.
To measure the ac ripple, use the ac input on a scope having a 0.01 volt per centimeter range and a X1 probe placed on the test points shown in the hart. Place the probe ground on any convenien ground point.
If the ac component is greater than the maximum listed, exit to the appropriate MAP referenced in the chart to correct the problem.

\section*{TRANSFORMER PRIMARY INPUT TAP} WIRING CHART
\begin{tabular}{|c|c|}
\hline Voltage & TB421 (YC026) \\
\hline 200 V & Phase C to TB421-2 \\
\hline 208 V & Phase C to TB421-3 \\
\hline 230 V & Phase C to TB421-4 \\
\hline
\end{tabular}


VOLTAGE CHECK CHART
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { DC } \\
\text { Supply }
\end{gathered}
\] & Test Points & Tolerance (Volts) & Adjustments & Logic Page & Maximum AC Ripple & Diagram & Page Entry \\
\hline \[
\begin{aligned}
& +24 \mathrm{~V} \\
& \text { BS Seq. }
\end{aligned}
\] & TB301-6 to \(\quad!\)
W1 (Gnd) & +19.2 to +30.7 & None* & YA050 & \(0.6 \mathrm{~V} \mathrm{p/p}\) & PWR 331 & PWR 333, A \\
\hline -4 V Reg & A2T2B06 to A2T2D08 & \[
\begin{aligned}
& -3.84 \text { to }-4.16 \\
& \text { (Adiust to } 4.0 \text { ) }
\end{aligned}
\] & Turn screw clockwise to increase voltage & \[
\begin{aligned}
& \text { YA090 } \\
& \text { BV100 }
\end{aligned}
\] & \(0.04 \mathrm{~V} / \mathrm{p}\) & PWR 356 & PWR 355, B \\
\hline +6 V Reg & A2TG11 to A2T2D08 & \[
\begin{aligned}
& \hline+5.76 \text { to }+6.24 \\
& \text { (Adjust to } 6.0 \text { ) }
\end{aligned}
\] & Turn screw clockwise to increase voltage & \[
\begin{aligned}
& \hline \text { YA090 } \\
& \text { BV100 }
\end{aligned}
\] & \(0.08 \mathrm{Vp/p}\) & PWR 356 & PWR 360, A \\
\hline
\end{tabular}

\footnotetext{
"Check transformer primary input taps and change to match available
voltage. (See chart above.)
}


See ZA100 for relay and contactor point location.

A2 MODULE


\section*{DC COMPARTMENT, Front Half}


SEQUENCE PANEL, A2 MODULE

*Not used in C2 Module.


\section*{DC COMPARTMENT, Rear Half}
 Note:
top to bottom.

AC COMPARTMENT, Top View

\section*{}

DRIVE POWER SEQUENCING ANALYSIS (A2)


\section*{}

\section*{DRIVE POWER SEQUENCING ANALYSIS (A2 or C2)}

DRIVE POWER SEQUENCING ANALYSIS (A2 or (C2)


3350

3350 \begin{tabular}{|l|l|l|l|l|l|}
\hline \begin{tabular}{l} 
EG0402 \\
Seq. 2 of 2 2
\end{tabular} & \begin{tabular}{l}
2358766 \\
Part No.
\end{tabular} \\
\hline
\end{tabular}
© Copyright IBM Corporation 1976

\section*{ClClCl}

DRIVE POWER SEQUENCING DIAGRAM



SEQUENCE PANEL
Board B


\section*{C C C C C C}

DRIVE POWER SEQUENCING ANALYSIS (C2)

An overall description of the power-
on sequence is located on PWR 306



\(\qquad\)



\section*{SEQUENCE PANEL}

Board B

PWR


Note: In terminal blocks TB203 and TB211, the terminals are numbered from top to bottom.



\section*{}


```

DANGER
LETHAL VOLTAGES are present in the power sevivicing
l
ALLCIRCUITS LIVE unt1 measured otherwise.
l

```
z0100

AC COMPARTMENT, Top View


Note 1: In terminal blocks TB203 and TB211 the terminals are numbered
from the top to the bottom.
\(\square\) \begin{tabular}{|c|c|}
\hline EG0420 \\
Seq. 2 of 2 2 & \(\begin{array}{l}\text { 2358761 } \\
\text { Part No. }\end{array}\) \\
\hline
\end{tabular}
© Copyright IBM Corporation wn


C CIRCUIT DIAGRAM (C2)
\(\square\)

\section*{LOCATION INDEX}

LOC 2, 4, and 6 for A2 Module.
LOC 22, 24, and 26 for A2 or C2 with a C2 Module attached.
A

Absolute Filter LOC 2, 12, 22
AC Compartment LOC 2, 12, 22
Air Filters LOC 2, 12, 22
Air Switches LOC 6, 16, 2

\section*{B}

Blower LOC 2, 12, 22
Boards
A1 Logic LOC 2, 12, 22
A2 Logic LOC 2, 22
Sequence B LOC 4, 14, 24
Brake, Solenoid LOC 2,12, 2
C
Capicitors
C2xx LOC 2,22
C4xx LOC 4, 24
C5xx LOC 4, 14, 24
CB (Circuit Breaker)
CB2xx LOC 2, 12, 24
CE Mode Switch LOC 6, 16, 26
CE Panel LOC 6, 26
CE Mode Panel LOC 6, 16, 26
Iductors)
Connectors
Control Interface LOC 2, 22
EC601 LOC 2, 12, 22
EPO LOC 2
Jxxx (see P connector number)
Plxx LOC 2
P3xx LOC 2, 12, 22
P4xx LOC 4, 24
P5xx LOC 4, 14, 24
P6xx LOC 4, 14,
\(01 \mathrm{C}(01 \mathrm{D})\) HDA LOC \(6,16,26\)
01 (Frame to Frame) LOC 12, 22
Contactor (see Relays)
Controller, A2 Board LOC 2, 22
Convenience Outlet LOC 2, 12, 22
CPs (Circuit Protectors)
CP2xx LOC 2
CP4xx LOC \(4,12,22\)
CP5xx LOC 4, 14, 2

D
DC Compartment LOC 2, 4, 12, 14, 22,24
Drive, A1 Board LOC 2, 12, 22
Drive Motor LOC 6, 16, 26
F
Filter DC Compartment LOC 2, 12, 22
Flapper Valve Assembly LOC 6, 16,26
G
Go Home Pulser (P535) LOC 4
H
HDA Baseplate LOC 2, 12, 22
HDA Cables LOC \(6,16,26\)

I
Inductors
L1xx (Solenoid Brake) LOC 2, 12, 22
L3xx LOC 2, 12, 22
Solenoid Brake LOC 2, 12, 22
Interface A LOC 2,22
Interface B LOC 2, 22
Interframe Connector (01E) LOC 12, 22

J
Jumpers
T1 to T2 LOC 4, 14, 24
T3 to T4 LOC 4, 14, 24
L
Lights and Indicators
Air A (LED) LOC 4, 14, 24
Air B (LED) LOC 4, 14, 24
Alternate (LED) LOC 26
Attention LOC 6, 16, 26
CE Dr Selection LOC 6, 26
Data (Lo Byte) LOC 6, 26
Execute Request LOC 6, 26
Parity Check
CTL-I Bus Out LOC 6, 26
CTL-I Tag Bus LOC 6, 26
DEV-I Bu In LOC 6, 26
Power Check (LEC 6
Power On LOC Pequence Complete (LED) LOC 4, 14, 24
Primary (LED) LOC 26
Program Control (Hi Byte) LOC 6, 26
Ready LOC 6, 16, 26

Start A (LED) LOC 4, 14, 24
Start B (LED) LOC 4, 14, 24
Stop A (LED) LOC 4, 14, 24
String Power Sequence Complete (LED) LOC 4
N
Nipple with Cap LOC 2, 12, 22
0
Operator Panel LOC 6, 16, 26

\section*{R}

Rectifiers
CR2xx LOC 2
CR4xx LOC 4, 24
CR5xx LOC 4, 14, 24
Regulators
-4 V Regulator (Controller) LOC 4, 24
+6 V Regulator (Controller) LOC 4, 24
+6 V Regulator (Drive) LOC 4, 14, 24
Relays
K2xx LOC 2, 22
K3xx LOC 2, 12, 22
K6xx LOC (Sequence Panel) LOC 4, 14, 24
Resistors
R2xx LOC 2
R4xx LOC 4, 24
R5xx LOC 4, 14, 24

S

Sequence Panel, Board A LOC 4, 24 Sequence Panel, Board B LOC 4,14, 24 Service Bypass LOC 6, 16, 26
String Switch Enable/Disable LOC 6, 26 Switches

Air Switches. LOC 6, 16, 26
Attention LOC 6, 16, 26
Channel Enable LOC 6,26
Data Entry LOC 6, 26
Drive DC Power LOC 4, 14,
Drive DC Power LOC
Execute LOC 6, 26
Interface Enable (A/B) LOC 6, 26
Power Mode LOC 6, 26
Power Off/Enable LOC 6, 26
Power On LOC 6, 26
Primary/Alternate LOC 26

R/W Read LOC 6, 16, 26
Service Bypass LOC 6, 16, 26
Start/Stop, Drive LOC 6, 16, 26
S1xx LOC 6, 16, 26
S531 LOC 4, 14, 24
S7xx LOC 6, 16, 26
S8xx LOC 6, 26
S9xx LOC 6,26
S10xx LOC 6, 16, 26

\section*{T}

Tailgate LOC 2,22
TBs (Terminal Blocks)
TB1xx LOC 2,12, 22
TB2xx LOC \(2,12,22\)
TB3xx LOC 2, 12, 22
TB4xx LOC 4, 14, 24
TB5xx LOC 4, 14, 24
Thermals
Blower Motor, not shown
(Thermal is internal to motor; resets
as a result of cooling.)
Logic Gate LOC 2,12, 22
Transformers
T2xx LOC 2
T4xx LOC 4, 24
T5xx LOC 4, 14, 24
V
VCM Terminals LOC 6, 16, 26
W
W1 LOC 2, 12, 22
2 W not shown
( 2 W indicates a lead grounded in the
AC Compartment by a sheet metal screw.)


\section*{GATE A AND FRAME}


C indicates connector installed for basic machine.
C* indicates connector installed for String Switch feature (SWFE).

A2 MODULE, Rear View


BOARD A1 TOP ROW
CONNECTOR PIN ALIGNMENT


CONTROL MODULE LOCATIONS
Controller Board, Card Side 01A-A2

AC COMPARTMENT, Top View
Drive Board, Card Side 01A-A1

*This card used only on fixed head models at EC level 451140 or later.

- ?

\section*{CONTROL MODULE LOCATIONS}

A2 MODULE, Front View


SEQUENCE PANEL


Board A

DC COMPARTMENT, Front Half



A2 MODULE, Rear View


\section*{DC COMPARTMENT, Rear Half}




B2 MODULE, Rear View


3350
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
EH0012 \\
Seq. 1 of 2
\end{tabular} & \begin{tabular}{l} 
2358092 \\
Part No.
\end{tabular} \\
\hline
\end{tabular}

Copyright IBM Corporation 1976, 1977

GATE A AND FRAME

Drive Board, Card Side 01A-A1


EC level 451140 or later.
BOARD A1 TOP ROW CONNECTOR PIN ALIGNMENT


AC COMPARTMENT, Top View (earlier machines)


AC COMPARTMENT, Top View (later machines)


Note: In terminal block TB211, the terminals are numbered from top to bottom.


\section*{DC COMPARTMENT, Rear Half}



CE MODE AND SERVICE BYPASS

\(\square\)

0

\section*{CONTROL MODULE LOCATIONS (A2 or C2 Module)}

\section*{A2 or C2 MODULE, Front View}


\section*{GATE A AND FRAME}


BOARD A1 TOP ROW
CONNECTOR PIN ALIGNMENT


Controller Board, Card Side 01A-A2


ABCDEFGHJKLMNPQRSTUV
100) 2


C indicates connector installed for basic machine.
C* indicates connector installed for String Switch feature (SWFE).
aC COMPARTMENT, Top View

\begin{tabular}{|l|l|l|}
\hline \(\begin{array}{l}\text { 441301 } \\
\text { 1 Jun 76 }\end{array}\) & \(\begin{array}{l}441305 \\
29 \text { Oct 76 }\end{array}\) & \(\begin{array}{l}441310 \\
27 \\
\text { 27 Jun 80 }\end{array}\) \\
\hline
\end{tabular}


\section*{C C C C C C C C C C C}

CONTROL MODULE LOCATIONS (A2 or C2 Module)

\(000000000000000000000000000000000\)

INSTALLATION PROCEDURES

Preliminaries
Introduction
Pre-installation Check
Unpack Units
Positioning and Ground Check
Locating Units \(\quad\) Baseplate Ground Check
Cabling


Addressing


Power Wiring Checks
\((60 \mathrm{~Hz}\) and 50 Hz )
Power Checks \(\quad\) P-INST 14
Testing


Installation Problems
\(\qquad\) INST 16

3350 DISK STORAGE


\section*{A INTRODUCTION}
- 1 Follow each procedure in sequence.
- 2 When installing an A2 Module only, OMIT the following procedures:
\begin{tabular}{lll} 
D & Steps 3, 4, and 5 \\
\hline G & Steps 1 and 4 \\
\hline H & Step 1 \\
\hline J & Step 1 \\
K & Step 1
\end{tabular}
- 3 When installing an A 2 , one or more B 2 s , and a C 2 Module, perform ALL procedures

When adding a B2 Module to an existing string,
perform all procedures except \(\mathrm{F}, \mathrm{K}, \mathrm{L}, \mathrm{N}\), 0. Steps 3 through 8 , and
- 5 When adding a C2 Module to an existing string, perform ALL procedures.

SPECIAL TOOLS AND TEST EQUIPMENT Required for installation
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Tools} & \begin{tabular}{l}
Part \\
Number
\end{tabular} \\
\hline \begin{tabular}{l}
Digitec Voltmeter \(\dagger\) \\
(Branch office)
\end{tabular} & & 453585 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Scope \\
(Branch office)
\end{tabular}} & \[
453
\] & 453047 \\
\hline & 454 & 453550 \\
\hline & \[
\begin{gathered}
\text { or } \\
475
\end{gathered}
\] & 453215 \\
\hline CTL-I Test Card (Branch office) & & 2758440 \\
\hline Bobbin Pushrod (A2 Shipping Group) & & 2758393 \\
\hline \multicolumn{3}{|l|}{C2 Terminator Cards (C2 Shipping Group)} \\
\hline Card (1 wide) & & 4516956 \\
\hline Card (2 wide) & & 4516953 \\
\hline
\end{tabular}
\(\dagger\) Trademark of United Systems Corporation.
\(3350 \quad\)\begin{tabular}{|l|l|}
\hline ELL0001 & \begin{tabular}{l} 
2358205 \\
Seq. 2 of 2
\end{tabular} \\
\hline
\end{tabular}
\(\bigcirc\) Copyright IBM Corporation 1976,1977

B PRE-INSTALLATION CHECK
Check with the IBM Branch Office or area Physical Planning Representative to ensure that installation planning requirements are met (service receptacle voltage, phase rotation, grounding, and cable length3). When attaching a 3350 to an existing system Stor-
age Control, check that the correct attachment feaage Control, check that the correct attachment fea-
tures are installed. The attachment feature should be ordered on an MES by the responsible sales office before installation of the 3350 .
The installation of a C2 Module requires the Primary Controller Adapter feature in the A2 Module. See Figure
1 for all 3350 Feature codes and Field Bill of Materials. Note: If Primary Controller and Field Bill of Materials. but not installed, the procedure in step \(\mathbf{K}\) will allow for temporary installation of the \(C 2\)

\section*{C UNPACK UNITS}
- 1 Use packing/unpacking instructions that are taped to the cover. Remove packing. Check for damage Do not remove the bobbin shipping rod from the rear of the voice coil motor at this time.

2 Inventory the parts in the shipping group. Us the Bill of Material listing:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{11}{*}{BM 2758190 (A2) BM 2758191 (B2) BM 2758590 (C2)} & \multicolumn{8}{|l|}{Figure 1. 3350 Features} \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
Feature \\
Code
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Factory } \\
& \text { BMM }
\end{aligned}
\]} & \multicolumn{6}{|c|}{Field Bill of Material Numbers} \\
\hline & & & & 8150 w/o 1320 & \(1320 \mathrm{w} / \mathrm{o} 8150\) & \(8150 \mathrm{w} / 1320\) & 1320 w/8150 & \(8150+1320\) \\
\hline & 8150 & \[
\begin{aligned}
& \hline 2757400 \\
& \text { (Comnlete }
\end{aligned}
\]
\[
\mathrm{B} / \mathrm{M})
\] & \[
\begin{array}{|l|l}
\text { To } \\
\text { Add }
\end{array}
\] &  & & 2757418 & & 4516959 \\
\hline & \(\underset{\substack{\text { String } \\ \text { Switch }}}{ }\) & 2757405 (FEALDs) & \begin{tabular}{l}
To \\
Remove
\end{tabular} &  & & 2757419 & & 4516960 \\
\hline & 1320
Primary Controll & \begin{tabular}{l}
2757392 ( 60 Hz ) \\
2757856
\end{tabular} & \[
\begin{array}{|l|l}
\mathrm{To} \\
\text { Add }
\end{array}
\] & & \[
\begin{aligned}
& 2757394 \\
& (6 \mathrm{~Hz}) \\
& \begin{array}{l}
275780 \\
(50 \mathrm{~Hz})
\end{array}
\end{aligned}
\] & & & \\
\hline & \begin{tabular}{l}
Adapter
without \\
8150
\end{tabular} & \begin{tabular}{l}
( 50 Hz ) \\
2757406 (FEALDs)
\end{tabular} & To Remove & &  & & & \\
\hline & 1320 Primary Controller & \begin{tabular}{l}
2757393 ( 60 Hz ) \\
2757857
\end{tabular} & \[
\begin{aligned}
& \text { To } \\
& \text { Add }
\end{aligned}
\] & & & & 2757405
\((60 \mathrm{~Hz})\) 2757854
\((50 \mathrm{~Hz})\) & \[
\begin{aligned}
& 2757427 \\
& (6 \mathrm{~Hz}) \\
& 275752 \\
& (50 \mathrm{~Hz})
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
Adapter
with \\
8150
\end{tabular} & \begin{tabular}{l}
( 50 Hz ) \\
2757632 (FEALDs)
\end{tabular} & \[
\begin{aligned}
& \text { To } \\
& \text { Remove }
\end{aligned}
\] & & & & \[
\begin{aligned}
& 2757429 \\
& (60 \mathrm{zr}) \\
& 275755 \\
& (50 \mathrm{~Hz})
\end{aligned}
\] &  \\
\hline & 6148 & \begin{tabular}{l}
2757399 \\
( 8150 is
\end{tabular} & \(\stackrel{\text { To }}{\text { To }}\) & \[
\begin{aligned}
& 2757397 \\
& \text { (For A2) }
\end{aligned}
\] & \[
\begin{aligned}
& 451710 \\
& (\text { FFor Co }
\end{aligned}
\] & & & \\
\hline & \begin{tabular}{l}
Remote \\
Switch
\end{tabular} & & \begin{tabular}{l}
To \\
Remove
\end{tabular} & \[
\begin{gathered}
2757398 \\
\text { (For A2) }
\end{gathered}
\] & \[
\begin{aligned}
& 2757398 \\
& \text { (For C2 also) }
\end{aligned}
\] & & & \\
\hline
\end{tabular}

\section*{E BASEPLATE GROUND CHECK}

Modules must be separated and no cables connected between modules during this check.
- 1 Remove the jumper from W1-12 to frame ground at the W1 end for each 3350 being installed. W1 is located on the logic gate (INST 4).
- 2 If installing an A2/C2 Module, pull the ribbon con nectors from the following locations to remove ground connections at the tailgate
- On a basic machine without the string switch feature
A2C2, A2C3, A2C4, A2C5
- With the string switch feature: A2A2, A2A3, A2A4, A2A5 A2B2, A2B3, A2B4, A2B5
3 Check that the resistance between each baseplate and frame ground is at least 1 megohm. Baseplates are connected through the servo and \(\mathrm{R} / \mathrm{W}\) matrix card cables and by leads to the dc common terminal block (W1) on the logic gate.

4 If resistance is less than 1 megohm, a grounding condition exists. Correct this problem first. For additional information, see the Power section of the Logics ( \(\mathrm{YA} / \mathrm{YB} / \mathrm{YC}\) ) and the PWR pages in the MIM. (Check that HDA shipping blocks are removed, the Power Amp card in the DC compar ment is not loose, and that the shock mounts are properly installed.)
- 5 Reconnect the jumper at the ground bus and reinstall the ribbon cables.

Note: If a ground check is required between the host system and the 3350, the interface cables should be disconnected.

\section*{INSTALLATION PROCEDURES}

F CABLING CONTROL MODULE (A2/C2) TO CONTROL INTERFACE


1 Connect EPO cable (P/N 5351178) from control module tailgate (A2 only) to Storage Control EPO The EPO cable pigtail (ground) does not need to be connected at the 3350 end. It should be taped back against the cable body. Connect J101 to storage control 1 and J102 to storage control 2 Note: If it is inconvenient at this time to connect the EPO cable, use the shorting plug assembly (P/N 2282264 in A2 Shipping Group), but the EPO cable should be connected as soon as possible.
- 2 Connect interface cables (P/N5466456) from the control module tailgate to the control interface. Plug the light grey cable connector into the black tailgate connector and the black cable connector into the light grey tailgate connector. To determine the color of the new style tailgate connectors, ook at the center portion of the connector where it is not plated.

Note: The plating on the tailgate connectors provides a ground path from the cable shield through the tailgate to the 3350 frame.
- 3 Plug two bus terminators ( \(\mathrm{P} / \mathrm{N} 2282675\) ) into the Bus Out and Tag Out positions in the control with the storage control.
- 4 If installing multiple controllers, connect interface cables in Bus Out and Tag Out positions. Terminate at last controller by plugging two bus termiOut positions. These terminators are shipped with the storage control.
- 5 If installing a C2 Module, connect it in the same way as an A2 Module. Perform Steps 2, 3, and 4 of this procedure at the C2 Module tailgate. This to Interface A in the C2 Module and Interface B to Interface B.


G AC POWER CABLES, LEVEL AND BOLT FRAMES
If installing an A2 Module only, OMIT Steps 1 and 4.
\(\qquad\) 1 Move all units together.

\section*{DANGER}

If attaching to a previously installed A2 or B1/B2 Module, the AC power must be removed by turning off the main line disconnect (CB201) in the A2 Module.

Connect ac power cable from B2/C2 to the conhector on A2 or B2 AC Compartment (P304).
If the last module is a \(\mathbf{C} 2\) Module, relieve the strain on the AC power cable in the preceding B2 Module by using the screw (P/N 2181004) and cable clamp ( \(\mathrm{P} / \mathrm{N} 350664\) ) in the C2 Shipping Group. Place the screw in the upper tapped cover atch hole. This hole, shown in left hand module on INST 4, is available because the latch is not required in the last B2 Module
- 2 Verify with a CE meter that a direct short exists between the AC Compartments of the modules. Check the green and yellow ground wire from AC Compartment to AC Compartment for 0.1 or less ohms.) If the reading is not within this range, investigate and correct the condition.

3 Adjust leveling jacks for appearance and/or ease of inserting frame tie bolts.

Caution: Before tightening bolts, check that no cables are caught between frame members.

4 Bolt frames together using:
3 bolts (P/N 59652 in B2/C2 Shipping Group) 3 washers 3 nuts ( \(\mathrm{P} / \mathrm{N} 39600\) in B2/C2 Shipping Group)
- 5 Remove the bobbin shipping rod (Figure 1) from the rear of the voice coil motor
Note: Store the bobbin shipping rod in the clips located at the rear of the module on the VCM.

Caution: The tool must be re-installed whenever the machine is moved even for short distances.

If at a later time the bobbin must be retrieved at the inner diameter (ID), thread the bobbin pushrod \(P / N\) 2758393) into the shipping rod. Loosen the wingnut and washer and insert the combined too After the bobbin is returned to outer diameter stud on the shipping rod and hand-tighten. Prevent the rod from turning by applying an open-end wrench to the stud at the end of the shipping rod which has flats provided for this purpose.
Caution: Do not overtighten the rod or wingnut. Fingertight is tight enough.

Figure 1.
Bobbin Shipping Rod (P/N 2758392)
Ef
Bobbin Pushrod (P/N 2758393)

3350 \begin{tabular}{|l|l|l|l|l|l|}
\hline \begin{tabular}{l} 
EL0004 \\
Seq. 1 of 2
\end{tabular} & \begin{tabular}{l} 
235824. \\
Part No.
\end{tabular} \\
\hline
\end{tabular}

OCopyright IBM Corporation - 976 , 1977

H SEQUENCE CABLE AND TERMINATION If installing an A2 Module only, OMIT Step 1.
Caution: Do not connect the A2 Module to ac wall receptacle now.
- 1 Connect the dc Sequence Cable ( \(\mathrm{P} / \mathrm{N} 2757781\) ) between modules at \(\boldsymbol{A}\). The cable is preinstalled in the B2 and C2 Modules. Route the cable and plug the connectors into P631 on Sequence Board B.
2 In the last module (A2, B2, or C2), install jumpers from: and T 1 to T2 B
T 3 to 4 C
These jumpers ( \(\mathrm{P} / \mathrm{N} 2757790\) ) are shipped in the A2 Module plugged in Sequence Board B.

Ensure agreement between the Customer's desired operating mode, the operating mode shown on the HDA, and the plug wiring as shown in the following chart.
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Mode } & A-Side & B-Side \\
\hline \(3330-11\) & A1F2G08 to F2J08 & A102G08 to Q2J08 \\
\(3330-1\) & A1 F2M08 to F2P08 & A102M08 to Q2P08 \\
3350 & A1F2S08 to F2U08 & A102S08 to Q2U08 \\
\hline
\end{tabular}
- 4 Be sure jumpers B and \(\mathbf{C}\) have been removed on all Sequence panels other than in the last and cables. If cards were removed, be sure to reseat them.

\section*{SEQUENCE PANEL}

Board B


J CABLING INTERFRAME CONNECTORS If installing an A2 Module only, OMIT Step 1.
- 1 Plug the ribbon cables in the appropriate slot in the interframe connector.
- 2 Insert the 2 -wide terminator ( \(\mathrm{P} / \mathrm{N} 5863806\) ) in Insert the 2 -wide terminator \((\mathrm{P} / \mathrm{N} 5863806\) ) in
the 2 -wide card guide ( \(\mathrm{P} / \mathrm{N} 811804\) ). These item are supplied in the A2 Shipping Group. Instal
the assembly in A1A2 (Drive Board 01A) in place of the cables in the last module on the string.
Insert the 1 -wide terminator ( \(\mathrm{P} / \mathrm{N} 8250634\) ) in the 1 -wide card guide (P/N 811802 ). These items are supplied in the A2 Shipping Group. Plug it into Al B3 (Drive Board 01 A ) in place of the cables
in the last module on the string. Tie the three flat cables (from A1A2, A1A3, and A1B3) together on the outide of the gate using cable tie P/N
1159519 (in A2 Shipping Group).

If a B2 Module is being added to the string, move the terminators to the new last module, and replug the cables as marked on the cable-ends. Follow the procedure above for plugging the terminator cards.
If a C2 Module is being installed, the terminator cards are not needed; termination is done by the A2F2, A2G2, A2L2, and A2T2 cards. Replug the cables in the previous last module after remo ing the terminators.


CABLING PRIMARY/ALTERNATE
CONTROL CABLE
3350 A2 Module with Primary Control Adapter (PCA) feature or C2 Module only
- 1 Route the cable ( \(\mathrm{P} / \mathrm{N} 2758575\) ), looped on the side of the C2 Module, through all B2 cable troughs and install at A2U3 in the A2 Module

The following allows for temporary installation of A2 and C2 modules when either Primary Control Adapter (PCA) is not installed on A2 module or when the PCA is present and C2 module is not present. Action should be taken to restore the string to normal configuration as soon as possible. (See INST 2, Figure 1.)
a. To install a C2 module on a 3350 A2 Module without the Primary Control Adapter feature (PCA - feature code 1320):
- Install in the normal configuration.
- Do not plug the cable P/N 2758575 into A2U3 in the A2 module.
Note: The C2 module cannot be used as a controller until the PCA feature is installed on the \(A 2\) module and the cable plugged into A2U3 of A2 module.
b. To install a 3350 A 2 Module with PCA (feature code 1320) and shipped without a C2 Module:
- Install in the normal configuration.
- Connect the following to jumpers in A2 modul

A2M2M11 to ground
A2M2P03 to groun
Terminate normally in the last B2 Module

L CONNECT REMOTE SWITCH ATTACHMEN feature plug

3350 A2/C2 only.
This feature permits the selection of Channel A or B at the CPU Console instead of at the Power Panel on the A2 Module or at the Controller Select Panel on the C2 Module. Thus, if String Switch is installed with the Remote Switch Attachment feature, the A2/C2 Module has no Enable/Disable A or B switches.
The cable from the CPU connects to the A2/C2 Modul at J100 located on the Control Module Tailgate (see INST 3). J100 is shown on ALD page ZA040

\section*{DRIVE ADDRESSING}
- \(1 \quad \begin{aligned} & \text { Install customer-assigned physical address labels } \\ & \text { (P/N } 5412746\end{aligned}\) (P/N 5412746 in A2 Shipping Group) in the
recesses on the Operator Panel.

When in 3330-1 Compatibility Mode, each spindle has a primary and a secondary address. The second ary address equals:

Primary address + ' 20 '.
Examples:
Primary address \(\quad=143\) Secondary address \(=143+{ }^{\prime} 20^{\prime}=163\) Primary address Secondary address \(=18 \mathrm{E}+{ }^{\prime} 20\) ' \(=18 \mathrm{E}\)

Operator Panel

- 2 Establish each drive address by connecting jumper points on card A1K2(A1L2). The drive addresses need not be in sequence, but no two can be plugged alike. The jumper ( \(\mathbf{P} / \mathbf{N} 816645\) ) is on the card.


\section*{N CONTROLLER ADDRESSING}

3350 A2 and/or C2 Module only.
Plug the address card(s) for the controller address(cs) assigned. Addresses are shown in Chart A, see Note. Plug the address cards (see Figures 1 and 2) by selecting the correct Controller Configuration in保 onfiguration.
Jumpers are included on the A2G2, A2D2, and A2E2 cards and may require re-plugging for correct addressing. Check that Storage Control addresses are correct for his configuration.

Figure 1.
Figure 2.


Chart A
\begin{tabular}{|c|c|c|}
\hline Controller & Plug & Addresses \\
\hline 0 & \[
\begin{aligned}
& 432 \\
& \bullet \\
& \bullet C C
\end{aligned}
\] & \[
\begin{aligned}
& X 00-X 07 \\
& X 20-X 27 \\
& X 40-X 47 \\
& X 60-X 67 \\
& X 80-X 87 \\
& X A O-X A 7 \\
& X C 0-X C 7 \\
& X E O-X E 7
\end{aligned}
\] \\
\hline 1 & \[
\begin{array}{ll}
4 & 3 \\
C_{0} \\
C & \cdot \\
& C \\
C & C
\end{array}
\] & \begin{tabular}{l}
X08 - XOF \\
X28 - X2F \\
X48 - X4F \\
X68 - X6F \\
X88 - X8F \\
XA8 - XAF \\
XC8 - XCF \\
XE8 - XEF
\end{tabular} \\
\hline 2 & \[
\begin{aligned}
& 43^{2} \\
& C_{0}^{\circ} \cdot{ }^{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \times 10-X 17 \\
& \times 30-X 37 \\
& \times 50-\times 57 \\
& \times 70-\times 77 \\
& \times 90-X 97 \\
& \times B 0-X B 7 \\
& \text { XDO - XD7 } \\
& \text { XFO - XF7 }
\end{aligned}
\] \\
\hline 3 & \[
\begin{array}{r}
432 \\
C C_{0} \\
\bullet
\end{array}
\] & \begin{tabular}{l}
\(X 18\) - X1F \\
\(\times 38-X 3 F\) \\
X58-X5F \\
X78 - X7F \\
X98-X9F \\
XB8 - XBF \\
XD8 - XDF \\
XF8 - XFF
\end{tabular} \\
\hline
\end{tabular}

Note: If attachment is to a 3880 use the 3880 INS section to determine the correct controller for the given address range and string configuration. Plug A2G2 using chart A and INST 7 for the controller assigned.

CONTROLLER ADDRESS PLUGGING
Figure 1, Figure 2, and Chart A, referenced in this chart, are located on INST 6.
\begin{tabular}{|c|c|c|c|}
\hline Controller Configuration & Address Plugging & Address Compare & Primary/Alternate \\
\hline \begin{tabular}{l}
Basic A2 Module \\
Without String Switch feature Without a C2 Module
\end{tabular} & A2G2 (Figure 1) with address (0-3) from Chart A. & Common to Active on A2G2. & Common to Primary on A2G2. \\
\hline \begin{tabular}{l}
A2 Module with String Switch feature \\
Without a C2 Module \\
Both A and B Interface addresses of A2 Module are identical
\end{tabular} & A2G2, A2D2, and A2E2 (Figures 1 and 2) with identical addresses ( \(0-3\) ) from Chart \(A\). & Common to Active on A2G2. & Common to Primary on A2G2, A2D2, and A2E2. \\
\hline \begin{tabular}{l}
A2 Module with String Switch feature \\
Without a C2 Module \\
Interface A and B addresses of A2 Module are different
\end{tabular} & A2D2 (Figure 2) with Interface \(A\) address ( \(0-3\) ) and A2E2 with Interface B address (0-3) from Chart A. (Plug A2G2 with either address.) & Common to Inactive on A2G2 (Figure 1). Addresses are compared by the A2D2 and A2E2 cards. (A2G2 must be plugged.) & Common to Primary on A2G2, A2D2, and A2E2. \\
\hline A2 Module with a C2 Module Without String Switch feature on either A2 or C2 Module & A2G2 (Figure 1) in both A2 and C2 Modules are plugged with the same address \((0-3)\). See Chart \(A\). & Common to Active on A2G2 in both the A2 and C2 Modules. & Common to Primary on A2G2 in the A2 Module and Common to Alternate in the C2 Module. \\
\hline A2 Module with a C2 Module With String Switch feature on either or both A2 or C2 Module Interface \(A\) and \(B\) addresses identical & A2G2 (Figure 1), A2D2 (Figure 2), and A2E2 with identical address (0-3). See Chart A. Address plugging must be performed in both A2 and C2 Modules if both Modules have the String Switch feature. & Common to Active on A2G2 in both the A2 and C2 Modules. & Common to Primary on all three cards in the A2 Module and Commoń to Alternate in the C2 Module. \\
\hline A2 Module with a C2 Module With Strina Switch feature on either or both A2 or C2 Module Interface A and B addresses different & A2D2 (Figure 2) with Interface A address and A2E2 with Interface B address (0-3). See Chart A. Interface A in both the \(A 2\) and \(C 2\) Modules must have the same address, and Interface B in the A2 and C2 Modules must have the same address. (Plug A2G2 with either address.) & Common to Inactive on A2G2 (Figure 1) in the A2 and C2 Modules. Addresses are compared by the A2D2 and A2E2 cards in both the A2 and C2 Modules. (A2G2 must be plugged.) & Common to Primary on all three cards in the A2 Module and Common to Alternate in the C2 Module. \\
\hline
\end{tabular}

\section*{0 POWER WIRING CHECKS}

Steps 3 through 8 are for \(A 2\) Modules only.
This procedure is for all \(\mathrm{A}_{2}, ~ \mathrm{~B} 2\), and \(\mathrm{C}_{2}\) Modules. Do not leave this page until all modules being installed are checked using his procedure.
- 1 In all modules being installed, set the drive Start/ Stop switch to Stop.
- 2 In all modules being installed, turn off the drive disconnect circuit breaker (CB230).
- 3 Turn the Power Mode switch on the CE Panel to Local mode during installation.
- 4 Turn off the main line disconnect (CB200).
- 5 Verify with a CE meter that a direct short exists between the irregular size pin (GND) of the power plug or the green and yellow lead of the line cord and the control module frame ground ( 0.1 ohms or less). Investigate and correct this condition first if this is not the case.
- 6 For 50 Hz machines only, see PWR 92 and verify that the line cord neutral is connected properly on TB203 (YA010).
- 7 Turn on wall receptacle CB and check ac voltage at the receptacle.

\section*{DANGER}

Letal Voltage
- 8 If the voltage measured at the wall receptacle agrees with the voltage label located on the frame above the AC Compartment, go to step 9 . For 50 Hz machines, see Figure 1.
If the voltage is different:
- For 60 and 50 Hz machines, see Figure 2 for transformer tap wiring changes.
- For 50 Hz machines only, go to PWR 92 for Delta/Wye jumper changes on the terminal boards (TBs) shown in Figure 3.
If a voltage conversion is made, record the change on the voltage label.

If a 3350 B 2 or C 2 Module is also being installed, perform the following steps. If not, go to step 12
- \(\mathbf{1 0}\) Check that the voltage specified on the voltage label on the frame above the AC Compartment laber on the frame above the AC Compartment
agrees with that specified on the A2 Module. If the voltage is the same, go to Step 11 .
If the voltage is different:
- For 60 and 50 Hz machines, see Figure 2 for transformer tap wiring changes.
- For 50 machines only, go to PWR 92 for Delta/ Wye jumper changes on the terminal boards (TBs) shown in Figure 3.
If a voltage conversion is made, record the change on the voltage label.

If more than one \(\mathbf{B} 2\) Module is being installed, perform Step 10 for each B2 Module.

After each module being installed has been checked using this procedure, go to \(\mathbf{P}\) on INST 14.

Figure 1. 3 Phase Table -50 Hz


Figure 2. Transformer Primary Tap Wiring
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Voltage} & \multicolumn{3}{|c|}{Transformer Taps} \\
\hline \multirow[t]{3}{*}{60 Hz} & \multicolumn{2}{|c|}{50 Hz} & \multirow[t]{3}{*}{\begin{tabular}{c} 
Bootstrap \\
TB202 (YA011) \\
See Note. \\
\hline A2
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
Controller Ferro TB421 (YB/YC026) \\
A2 and C2
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Drive Ferro } \\
\text { TB530 } \\
\text { (YB/YB/YC030) }
\end{gathered}
\]} \\
\hline & Wye & Delta & & & \\
\hline & & & & & A2, B2, and C2 \\
\hline 200 V & - & 200 V & 1-2 & 1-2 & 3-4-7 \\
\hline 208 V & 380 V & 220 V & 1-3 & 1-3 & 2-4-6 \\
\hline 235 V & 408 V & 235 V & 1-4 & 1-4 & 1-4-5 \\
\hline
\end{tabular}

Note: For Japan installations ( 60 Hz only), change the convenience outlet lead at TB202 if 110 V test equipment is issued (see YA011).

Figure 3. ( 50 Hz Machines Only) Delta/Wye Terminal Boards (TBs)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Module } & \multicolumn{6}{|c|}{ TB Number } \\
\cline { 2 - 6 } & \begin{tabular}{c} 
TB201 \\
\((Y A / Y B / Y C 010)\)
\end{tabular} & \begin{tabular}{c} 
TB211 \\
\((Y A / Y B / Y C 020)\)
\end{tabular} & \begin{tabular}{c} 
TB330 \\
\((Y A / Y B / Y C 010)\)
\end{tabular} & \begin{tabular}{c} 
TB351 \\
\((Y A / Y B / Y C 020)\)
\end{tabular} & \begin{tabular}{c} 
TB361 \\
\((Y A / Y B / Y C 020)\)
\end{tabular} \\
\hline A2 & \(*\) & \(*\) & \(*\) & \(*\) & \(*\) \\
B2 & - & \(*\) & \(*\) & \(*\) & \(*\) \\
C2 & \(*\) & \(*\) & \(*\) & \(*\) & \(*\) \\
\hline
\end{tabular}
*To be checked.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 3350 & \begin{tabular}{l}
EL0008 \\
Seq. 2 of 2
\end{tabular} & \[
2358250
\] & \[
441300
\]
\[
31 \text { Mar } 7
\] & \[
441301
\] & 441303 30 Jul 76 & 441305 29 Oct 77 & \[
441307
\] \\
\hline
\end{tabular}

\section*{INSTALLATION PROCEDURES}

P POWER CHECKS
If installing a 3350 B2 Module, OMIT Steps 1 and 3.
If installing a 3350 C2 Module, OMIT Step 1 .
- 1 Turn off wall receptacle CB and install power cable. Turn on wall receptacle CB, turn on CB200 place Power Off/Enable switch in the Enable position, and press the controller Power On switch position, and press the controller Power On switch.
Assume that power is on when the controller Power Assume har power is on when he controler Power
On light and the drive Power Sequence Complete LED) on Sequnce Panel Board B (LOC 4) are on. The Power Check (LED) is also on because CB230 is tripped. If power comes on, go to Step 2. If power does not come on, phase rotation may be incorrect. K 202 is picked if phase rotation is correct. Have customer maintenance personnel check the phase rotation at the wall receptacle. Contact the Branch Office Installation Planning Representative if assistance is needed.
If changing rotation at the wall receptacle is not possible, disconnect power cable from ac outlet. Correct the phasing by reversing any two input eads on the A2 Module, TB 203.
Repeat the beginning of Step 1. If phasing is correct and power does not sequence on, go to START 100, Entry B.
- 2 Turn on CB230 in all modules.
- 3 Check the controller voltages shown in Figure 1. Use a Digitec 251 Voltmetert (P/N 453585). Set the +6.0 V to +6 Vdc and -4.0 V to -4.0 Vdc to nominal at nstallation time. If adjustment is required see PWR 90 or 390 Entry B.

Figure 1: Controller Voltages
\begin{tabular}{|l|l|l|l|}
\hline Supply & Range & \multicolumn{2}{|c|}{ Test Point } \\
\hline \begin{tabular}{l}
+24 Vdc \\
Bootstrap
\end{tabular} & \begin{tabular}{l}
+19.2 V to +30.7 V \\
(Not adjustable) \()\)
\end{tabular} & TB306-1 & -- \\
\hline-4 Vdc & \begin{tabular}{l}
-3.84 V to -4.16 V \\
(Adjust to 4.0\()\)
\end{tabular} & A2D2 B06 & A2D2 B06 \\
\hline+6 Vdc & \begin{tabular}{l}
+5.76 V to +6.24 V \\
(Adjust to 6.0
\end{tabular} & A2T2 G11 & A2T2 G11 \\
\hline
\end{tabular}

Figure 2: Drive Voltages
\begin{tabular}{|c|c|c|}
\hline \[
\begin{gathered}
\text { DC } \\
\text { Supolv }
\end{gathered}
\]
Supply & Test Point & Tolerance (Volts) \\
\hline +24 V Local & CP531 Load Terminal & \[
\begin{array}{|l}
\hline+21.6 \text { to }+26.4 \mathrm{~V} \\
\text { (Not adjustable) }
\end{array}
\] \\
\hline -24 V & \[
\begin{aligned}
& \mathrm{A} 1 \mathrm{C2D03}(\mathrm{Dr} A) \\
& \mathrm{A} 1 \mathrm{~A} 2 \mathrm{D} 03(\mathrm{Dr} \mathrm{~B})
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline-24.0 \text { to }-28.8 \mathrm{~V} \\
\text { (Not adjustable) } \\
\hline
\end{array}
\] \\
\hline +12V & \[
\begin{aligned}
& \text { A1C2D05 (Dr A) } \\
& \text { A1T2D05 (Dr B) }
\end{aligned}
\] & \[
\begin{aligned}
& \hline+12.0 \text { to }+14.4 \mathrm{~V} \\
& \text { (Not adjustable) }
\end{aligned}
\] \\
\hline -12 V & \[
\begin{aligned}
& \text { A1C2D06 (Dr A) } \\
& \text { A1T2D06 (Dr B) }
\end{aligned}
\] & \[
\begin{array}{|l}
\hline-12.0 \text { to }-14.4 \mathrm{~V} \\
\text { (Not adjustable) } \\
\hline
\end{array}
\] \\
\hline -4V & \begin{tabular}{l}
A1C2B06 (Dr A) \\
A1 T2B06 (Dr B)
\end{tabular} & \[
\begin{aligned}
& -3.85 \text { to }-4.50 \mathrm{~V} \\
& \text { (Not adjustable) }
\end{aligned}
\] \\
\hline +6 V Reg & \[
\begin{aligned}
& \hline \text { A1F2B11 ( } \mathrm{Dr} \mathrm{~A}) \\
& \text { A102B11 (Dr B) }
\end{aligned}
\] & \[
\begin{aligned}
& +5.76 \text { to }+6.24 \mathrm{~V} \\
& \text { (Adjust to } 6.0 \text { ) }
\end{aligned}
\] \\
\hline -36 V & TB431-4 & \[
\begin{aligned}
& -36.0 \text { to }-43.2 \mathrm{~V} \\
& \text { (Not adjustable) }
\end{aligned}
\] \\
\hline
\end{tabular}

Ensure that the Service Bypass switch is in the Off position in all modules being installed (LOC 6).

\section*{DANGER}

Power off the drive before removing or replacing he DC Compartment cover. (Remove cover for adjustment only.)
- 5 Check the drive voltages in each drive as shown in Figure 2. Use the Digitec 251 Voltmeter \(\dagger\) ( \(\mathrm{P} / \mathrm{N} 453585\) ). The +6.0 Vdc should be et at nominal during installation. If oltage is out of tolerance, see PWR 290. If powering on problems are encountered, check the symptom list on INST 16 first. If trouble is not corrected, follow the normal maintenance procedure beginning on START 100

\section*{OR SEQUENCE AND EPO CHECK}
\(\qquad\) With module power on, set the drive Start/Stop switch to Start.
a. Check that the disk rotates counter clockwise as viewed from the top. If the rotation is wrong (B2 Module) or PWR 421 (C2 Module) and ALD's to locate drive phase rotation problem.
b. The drive Ready lamp must come on within 30 seconds. If the lamp does not come on, go to START 100.
- 2 Perform these steps
a. Install back panel jumper between C4D09 (T4D09) and ground put servo in zero mode.
b. Check for carriage binding by inserting the bobbin pushrod into the back of the VCM and threading it into the coupler. Move the carriage between the outer and inner stops with the pushrod. If resistance or binding is felt (over 100 grams), use the procedure on HDA 712 to correct the problem. Return here and continue once the trouble is corrected
c. Remove the bobbin pushrod and back panel jumper.

3 Press the Attention pushbutton and verify the rezero function. The Ready lamp should go of as long as the Attention pushbutton is pressed.

Repeat the above steps for each drive.
- 5 Bring all drives to Ready

6 Power off the subsystem at the storage control (check that controller Power Mode switch on the CE panel is in the Remote position). (LOC 6)

7 Power on at the storage control and observe the following:
a. Control module power comes on.
b. All drives start through the cycle within seconds from each other and should go to Ready.

If powering on problems are encountered, check the symptom list on INST 16 first. If trouble is notede, follow the normal maintenance procedure beginning on START 100.

9 Install all covers. Adjust hinges and cover latches for alignment, appearance, and ease of operation. The conductive rubber seals must be slightly com pressed against he frame when locotro dich For top cover adjustment, see HDA 770 .

\section*{R STRING CHECKOUT}
- 1 Make all drives Ready.
- \(2 \begin{aligned} & \text { Use the microdiagnostic facility checkout proce- } \\ & \text { dure to check all drives (see MICRO 8). Recom- }\end{aligned}\) dure to check all drives (see MICRO 8). Recommended procedure is to run routine A0 once.
Use Checklist below for procedure

If problems are encountered, check the symptom
list on INST 16 first. If trouble is not corrected, follow the normal maintenance procedure beginnin on START 100
- 3 With String Switch feature, run routine B6 also (see MICRO 70).
- 4 If the Alternate Controller feature is installed, run microdiagnostic routines A 1 to BB at least once, using the CE Panel in the C2 Module.
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline \multicolumn{6}{|c|}{ Checklist for Microdiagnostics } \\
\hline Drive & A & B & C & E & F & H & Remarks \\
\hline A0 & & & & & & & & \begin{tabular}{l} 
Run once \\
(See MICRO 20)
\end{tabular} \\
\hline A1-BB & & & & & & & \begin{tabular}{l} 
Description (starts \\
on MICRO 20)
\end{tabular} \\
\hline A7 & & & & & & & \begin{tabular}{l} 
See ACC 800, \\
Entry B
\end{tabular} \\
\hline B1 & & & & & & & & See MICRO 56 \\
\hline B2 & & & & & & & See MICRO 60 \\
\hline AB & & & & & & & See MICRO 28 \\
\hline
\end{tabular}
- 5 Execute the '30' option (Reset Diagnostic Control) See START 500 for additional information on load ing the Fault Symptom Code Generator (3830-2 an ISC only) and on resetting the CE mode latch.

\section*{S SYSTEM TEST}Configure OLTEP, OLTSEP, and ST370 to include the 3350 string.
- 2 Check that the CE Mode switch is in the Off posi tion (online). Push all Attention pushbuttons to rezero the HDA.
- 3 Run the following online tests from the CPU on at least one spindle (see OLT section) to check the test programs for proper configuration (PSB, TO 200A, and T3350 WT)
Run PSC in default mode on each spindle to build the SD (Skip Displacement) Directory. Note: If an SD directory already exists on the HDA it is not necessary to rewrite the directory.
If PSC is not run because an SD directory already exists PSA must be run

If the compatibility mode jumper was changed to run PSC, restore the jumper to customer configuration. See Figure 1 on HDA 711
Misleading errors can occur if two control modules on the same channel have the same address. Refer to INST 6, Item \(\mathbf{N}\) for prope plugging.

\section*{T RECORDS}
- \(1 \begin{gathered}\text { Assist } \\ \text { string }\end{gathered}\)

Complete all installation records and report that the installation is complete to the Branch Office dispatche See Figure 1 for Installation Activity Document (IAD)
codes. Note: Machine serial tag is located on the lower
- 3 Insert these installation procedures in the Maintenance Information Manual for future reference
- 4 Update the Account Management Plan book to include this installation.If the String Switch feature is installed, a deca (P/N 2745548) is located on the A2 Module the information required on the decal to indicat the cabling route. Repeat this procedure at the C2 Module, if installed.

\section*{Figure 1: Installation Activity Document Codes}

\section*{3350 \& 3830}

Site readiness/Problems -
0 - power/air cond.
5 - other - explain
SHIPPING DAMAGES/PROBLEMS
ode and 0 actual hrs. on IAD).
6 - bent covers, broken hardware, pa
features-_
wrong, missing or extra features
\(\begin{array}{ll}2 & 3 \\ 2 & 7 \\ & 7\end{array}\)
DOCUMENTATION -
incorrect or misleading - explain (PDP MAPS,
instructions
mising - explain (e.g. parts catalog, MAPS, etc.)
INSTALLATION ACTIVIT
\({ }_{5}^{4}\) - wait time - explain problem
\(m\) related (partial/total)
TECHNICAL PROBLEMS/DEFECTS
\(\begin{array}{ll}5 & 5 \text { - operator panel } \\ 5 & 6 \\ 5 & \text { - brake assembly }\end{array}\) voice coil, VCM,
hycraulic actul draver assembly
disk brush unit disk pack/data module/HDA
spindie assembly spindie as
carriage
heads heads
retract mech/DM retract mech/DM
load mech
bobbbinhead load load mech
bobbin/head load
- linkage photo cell/ransdu
bhoto cell//ransducer
base/cooling/filters/ covers
motor/drive motor/drive
Wiring error
wirong
EC wrong ECT level/
part number part number
air flow system
pulley/belt
sequenceldistributio sequence/dis
(power)


67 - logic board
- card-replaced/adjusted
- signal cable
- cable-RW/PLO/matrix
- cabie-RW/PL
- power amp
CE panel
diskette drive
- diskette drive
diagnostics will not - diagnostics will
run explain
micrest
\(\left.8 \quad 9-\begin{array}{c}\text { run - explain } \\ \text { microcode } \\ 9\end{array}\right)-\) other - general technical)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 3350 & \begin{tabular}{l}
EL001 2 \\
Seq. 2 of 2
\end{tabular} & \begin{tabular}{l}
\[
2358251
\] \\
Part No.
\end{tabular} & See EC History & 441309 15 Jul 79 & \[
\begin{aligned}
& 441310 \\
& 27 \mathrm{Jun} 80
\end{aligned}
\] & & \\
\hline
\end{tabular}

\section*{INSTALLATION PROCEDURES}

\section*{INSTALLATION PROBLEMS}

Use the Symptom Checklist to assist in isolating installation type problems. Do not spend a great deal of time. If a pas STAPT 100 and follow the established maintix, go to dure in the MIM.
The following is a list of general hints. Use it when problems are encountered during installation that do not have obvious symptoms:
1. Check interframe connector cables and terminators.
See INST 5 and DEV-I 90 or DEV-I 100 .
2. Check controller and drive addressing. See INST 6.
3. Check cables between controller ( \(3350 \mathrm{~A} 2 / \mathrm{C} 2\) ) and storage control. Verify cables are not reversed. See INST 3.
4. Check all voltages. Procedures are on PWR 90 (PWR 290) For 50 Hz , motor conversions are on PWR 92 .
5. Verify that the correct Functional Microprogram disk is loaded in storage control, ISC, or IFA.
6. Verify that the correct Microdiagnostic disk is loaded in storage control, ISC, or IFA
7. If the String Switch feature is installed, verify that both A and B Enable/Disable switches are in the Enable position.
8. Check Addressing cards, (A2G2; with String Switch feature A2D2 and A2E2). Verify that Address Compare, Primary Alternate Controller, and Controller Addresses are plugged properly (see INST 7). See also the \(3830-2 /\) ISC Installation for address plugging
9. Return to normal established maintenance procedures in the MIM. Go to START 100.

SYMPTOM CHECKLIST FOR INSTALLATION PROBLEMS
\begin{tabular}{|c|c|c|c|}
\hline Failure & Symptom & Recommended Action & Reference \\
\hline \multirow[t]{3}{*}{Power Sequence} & Power sequences on but drive motors do not start. & Check that jumpers are between T1 and T2, and T3 and T4 in the last module only. & \begin{tabular}{l}
INST 3, F 2 \\
YA/YB/YC052 \\
PWR 8 or PWR 308
\end{tabular} \\
\hline & Some drives power on, others do not. & Check that the ac power cable is plugged into P304 and properly seated. & \[
\begin{aligned}
& \text { INST 3, G } 1 \\
& \text { YA/YB/YC010 }
\end{aligned}
\] \\
\hline & Drive motors turn slowly. & Check that a pin is not pushed back into P304. & YA/YB/YC010 \\
\hline \multirow[t]{2}{*}{Ready Lamp not on} & Drive never comes Ready. Drive motor starts and then stops. & \begin{tabular}{l}
1. Check that Mode jumper is installed correctly. \\
2. Check for proper seating of Mode cable.
\end{tabular} & \begin{tabular}{l}
INST 4, H 3 \\
KF110, 120 \\
(KQ110,120)
\end{tabular} \\
\hline & Drive never comes Ready, but drive motor runs. & \begin{tabular}{l}
1. Check servo adjustment. Go to ACC 800, Entry A. \\
2. Check for other servo problems or a missing voltage. \\
3. Check that disk rotates counter clockwise as viewed from the top. If not check drive phase rotation.
\end{tabular} & \begin{tabular}{l}
INST 14, Q \\
PWR 290 \\
PWR 21 and 321 (A2 Module) \\
PWR 121 (B2 Module) \\
PWR 421 (C2 Module)
\end{tabular} \\
\hline \multirow[t]{3}{*}{Microdiagnostics} & Microdiagnostics will not load. Execute Request LED on continuously. & \begin{tabular}{l}
Ensure that one of the following is not the failure: \\
1. Control Interface cables swapped; Bus In to Tag In connector. \\
2. Wrong terminator is used. \\
3. The Switch Unit (for example, IBM 2914) not set up correctly. \\
4. Control Interface cables loose.
\end{tabular} & \[
\begin{aligned}
& \text { INST 3, F } \\
& \text { ZA090 }
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
Microdiagnostic Error Codes: \\
A158 \\
A211 \\
A220
\end{tabular} & Ensure correct plugging at the interframe connector. & \[
\begin{aligned}
& \hline \text { INST 5, } \mathrm{J} \\
& \text { DEV-I } 100
\end{aligned}
\] \\
\hline & Microdiagnostics run slowly with the Alternate Controller only. & Ensure that card A2G2 (A2D2 and A2E2 with String Switch feature) is not wired for Primary Controller but installed in the C2 Module. & INST 66 \\
\hline Fault Symptom Code & Fault Symptom Code 9120. & Ensure that cards A1K2 and A1L2 are not wired with the same address (no two cards in a string can have the same address). & INST 6 M \\
\hline
\end{tabular}```


[^0]:    Use a digital voltmeter to check voltages

[^1]:    © Copyright IBM Corporation 1976

