

Volumes RO1 through R06 accompany each Control Module
and support all 3350s attached.

MAINTENANCE INFORMATION MANUAL
ORDERING PROCEDURE (IBM Internal)
Individual pages of the 3350 Maintenance Information Manual Can be ordered from the San Jose plant by using the Wiring Diagram/Logic Page Request (Order No. 120-1679). In the Diagram/Logic Page Request (Order No. 120-1679). In the
columns headed "Logic Page" enter the page identifier information: sequence number, sheet number, part number, and EC number. Groups of pages can be ordered by including a description (section, volume, etc.) and the machine serial number.

This manual was prepared by the IBM General Products
Division, Technical Publishing, Department G26, San Jose California 95193.
© Copyright International Business Machines Corporation 1976

CE SAFETY PRACTICES

All Customer Engineers are expected to take every safety
precaution possible and observe the following safety practices while maintaining IBM equipment:
You should not work alone under hazardrus conditions or around equipment with dangerous voltage.
2. Remove all mowerer, ic and dc, when removing or assem. power supplies, performing mechanical inspection of pow. er supplies, or installing changes in machine circuitry
3. Atter turning off wall box power switch, lock it in the Off position or tag it with a "Do Not Operate" tag, For
229-1266. Pull power supply cord whenever possible.
4. When it is absolutely necessary to work on equipment live electrical circuitry anywhere in the machine, observe live electrical circuitry any
the following precautions
. Another person familiar with power off controls must
be in immediate vicinity. \qquad
metal cuff links.
t watches, chains
c. Use only insulated pliers
d. Keep one hand in pocket. are set correctiy and that insulated probes of proper apacity are used.
Avoid contacting ground potential (metal floor strips.
machine frames, etc.). Use suitable rubber mats. chased locally if necessar.
Wear safety glasses when:
a. Using a hammer to drive pins, riveting, staking, etc.
b. Power or hand drilling, reaming, grind ing e et.
c. Using spring hooks, attaching springs.
d. Soldering, wire cutting, removing steel bands.

Cleaning parts with solvents, spravs, cleaners, chem
Performing any other work that may be hazardous to
Your eyes. REMEMBER - THEY ARE YOUR EYES.
6. Follow special satety instructions when performing special. high voltages. These instructions are outlined in cEMs
7. Do not use solvents, chemic
not been approved by IBM.
. Avoid using tools or test equipment that have not been ap
proved by IBM.
Replace worr. ur . .roken tools and test equipment.
this takes strain off back muscles. Do not lift any equip. ment or parts weighing over 60 pounds.
11. Atter maintenance, restore all safety devices, such as guards
2. Each Customer Engineer is respo action on his part renders pronsible to be certain that customer personnel to hazards.
13. Place removed machine covers in a safe out-of.the way
place where no one can trip over them.
. Ensure that all machine covers are in place before returning
Always place CE tool kit away from walk areas where no
6. Avoid touching moving mechanical parts when lubricating
checking for play, etc.
17. When using stroboscope, do not touch ANYTHING - it
18. Avoid wearing

Avoid wearing loose clothing that may be caught in ma-
chinery. Shirt sleeves must be left buttoned or rolled above
the elbow.
19. Ties must be tucked in shirt or have a tie clasp (preferably nonconductive) approximately 3 inches from end. Tie
chains are not recommented
chains are not recommended.
20. Before starting equipment, make certain fellow CEs and
customer personnel are not in a hazardous position.
21. Maintain good housekeeping in area of mach hine while per ming and arter completing maintenance.
Knowing safety r riles is not enough.
An unsafe act will inevitably lead to an accident.
Use good judgment - eliminate unsfe acts.
Use good judgment- eliminate unsfe acts.

ARTIFICIAL RESPIRATION

General Considerations

1. Start Immediately - Seconds Count

Do not move victim unness absolutely necessary to remove from danger. Do not wait or look for help or stop to
loosen clothing, warm the victim, or apply stimulants.
2. Check Mouth for Obstructions

Remove foreign objects.
3. After victim is breathing by himself or when help is availiable:
a. Loosen clothing
a.
b. Place victim on his side
4. Remain in Position

After victim revives, be ready to resume respiration if
necessary.
5. Call a Doctor
6. Don't Give Up

Don't Give Up
Continue witho
Continue without interruption until victim is breathing
without help or is certainly dead.
Rescue Breathing for Adults

1. Place victim on back; lift neck
and tilt head way back. (Quickly remove any noticicabibe food or
objects from mouth.)
from mouth.)
2. Pinch nose closed; make airtight seal around victit's's
mouth with your mouth; and forcefully breathe into mouth with your mouth; and force
victim until chest rises expands).

3. Continue breathing for the victim 12 times per minute

If cht Stoping
. It chest does not rise (expand), roll victim onto side and pound firmly between shoulder blades to remove your fingers. Resume rescue breathing. higher with

3350

 OLT CONTENTS| RUNNING REFRESHER | |
| :---: | :---: |
| OLTSEP | OLT 5 |
| OS/VS-OLTEP | OLT 6 |
| DOS-OLTEP | OLT 7 |
| REQUIREMENTS | OLT 10 |
| TEST DESCRIPTIONS | |
| T3350 PSA | OLT 20 |
| T3350 PSB | OLT 24 |
| T3350 PSC | OLT 25 |
| T3350 WT | OLT 26 |
| FRIEND | OLT 27 |
| ALTERNATE TRACK ASSIGNMENT | OLT 30 |

ERROR MESSAGES . . . OLT 48 through 280

For additional information on OLTS and a bibligraphy, see the System/370 Diagnostic Reference ummary (Order No. SY25-0512) and the OLT Users Guide (Order No. D99-3350).
\square

For additional information, see System/370 Diagnostic Reference Summary (Order No. SY25-0512)

Preparation

Mount OLTSEP disk or tape and IPL.

Starting OLTSEP

OLTSEP prints:

04 SEP 188D ENTER DATE AND TIME IN THE FOLLOWING FORMAT 'MM/DD/YY, HH/MM/SS'
Reply:
r 04, 'MM/DD/YY' or r 04, 'MM/DD/YY, HH/MM/SS' or PSW RESTART
OLTSEP prints:
SEP102I OLTS RUNNING
SEP107I OPTIONS ARE NTL, NEL, EP, CP, NPP, PR, FE,NMI, SI
SEP105D ENTER DEV/TEST/OPT
01 SEP105D ENTER DEV/TEST/OPT
If it is desired to run OLTs from card decks, the RDR device must be varied from its default of the IPL device to card. To do this, reply:
r 01 , 'VARY RDR=00C'
00 C is the address of the card reader. Modify the address to conform to your system.
OLTSEP prints:
01 SEP219I VARY COMPLETE
01 SEP105D ENTER DEV/TEST/OPT
If the RDR device is to remain the IPL device, do not reply with the VARY command.

Make a Run Request

Make a run request to select the test you want to run.
Reply:

> ly: $\mathrm{r} 01, \mathrm{\prime}$ '160/3350PSA//' (See OLT descriptions, OLT 20 through 26 .)

This reply begins testing on device 160 , runs OLTS section PSA, and uses the default options. To select another sequence o testing, enter a reply of:

This runs only routine 2 of the OLT section PSA, and causes all the default options to be selected except the option FE (firs error communications), which will be altered to NFE

See OS/VS-OLTEP Make a Run Request on OLT 6 for additional examples.

Options

OPTION	YES	NO	DEFAULT
TEST LOOPERROR LOOP	TL (VALUE)	NTL	NTL
	EL		
	EL(I)		
	El (VALUE)	NEL	NEL
ERROR PRINT	EP	NEP	EP
CONTROL PRINT	CP	NCP	CP
PARALLEL PRINT	PP (VALUE)	NPP	NPP
PRINT	PR	NPR	PR
FIRST ERROR COMM.	FE	NFE	FE
MANUAL INTERVENTION	*MI	NMI	NMI
SPURIOUS INTERRUPT	SI	NSI	SI
DATA ENTRY FIELD	EXT= (DATA)	---	
REMOTE ENTRY	*RE	NRE	RE

*RE and MI are mutually exclusive (only one can be on).

Halt OLTSEP

To halt OLTSEP at any time, press the Request key on the console.
OLTSEP prints:
OLTSEP prints:
01 SEP105D ENTER DEV/TEST/OPT
Reply:
r 01, '(newDEVice/(newTEST)/(new OPTions)' New instructions to OLTSEP
or to continue:
(EOB)
or to continue or restart the section under test: r01, '///'
or to terminate the section under test r01,' CANCEL'

© Copyright IBM Corporation 1976

RUNNING REFRESHER - OS/VS-OLTEP

For additional information, see System/370 Diagnostic Reference Summary (Order No. SY25-0512).

Preparation

Units to be tested may be varied offline. This is accomplished through the console by using the Vary command. Examples:

V 160, offline (Varies unit 160 offline.)
$\mathrm{V}(160,161,162)$, OFFLINE (Varies units 160,161 , and 162 offline.)
(The System replies: $160,161,162$ OFFLINE when the vary is completed.)
SYSRES cannot be varied offline.
3350 OLTS PSA and PSB can be run online and they will not destroy data on any disk. However, to perform maintenance on the drive, you must vary the drive offline before starting OLTEP. If FRIEND (OLT TO200A) is used to write, the drive must be varied offline

Starting OS/VS-OLTEP

1. S-causes a job to be started if a reader procedure is incorporated in the system

Examples:
S OLTEP (For an MVT or VS2 system.)
S OLTEP.PX (For an MFT or VS1 system, where X is the partition number OLTEP is to run in. If in doubt, ask an or perator which partition to use.)

Use JCL on cards to execute program IFDOLT.
2. Once OLTEP is running, it generates various message Examples:

IFD 1021 OLTS RUNNING (To inform you that OLTEP is running.)
00 IFD 104D REPLY ANY CHARACTER TO REQUEST COMMUNICATION.
(A reply of any character to the above request causes a communication interval.)

Make A Run Request
OLTEP waits for a reply after issuing the message
01 IFDOO5D ENTER-DEVICE/TEST/OPTION (See OLT descriptions, OLT 20 through 28.
Examples of DEVICE/TEST/OPTION replies: (The commands are given in this sequence.)

1. r01,'160/3350PSA/EP/'
2. $\mathrm{r} 01, \mathrm{I} / 3350 \mathrm{PSA} / /$

r 01,'160-163/3350PSA//
3. r 01,' $260 / 3350 \mathrm{PSA}, 2 / \mathrm{NEP}, \mathrm{MI} / \mathrm{NRE} /{ }^{\prime}$

The commands carry forward until they are changed.

Examples	Devices (nine maximum)	Tests	Options
1.	160	$3350 P S A$	EP,CP,PR,FE,SI
2.	160	$3350 P S A$	EP,CP,PR,FE,SI
3.	161	3350 PSA	EP,CP,PR,FE,SI
4.	$160,163,165$	3350 PSA and PSB	PP,EP,CP,PR,FE,SI
5.	$160,161,162,163$	3350 PSA	EL,EP,CP,PR,FE,SI
6.	260	3350 PSA routine 2 only	PR,FE,MI,SI

Options

Use the OPTIONS list from OLTSEP, OLT 5.

Halt OS/VS-OLTEP

Reply to the outstanding request with any character to force communication. OLTEP prints:

01 IFD005DENTER--DEVICE/TEST/OPTION/
Reply:
r 01,' CANCEL' (This cancels OLTEP.)

For additional information, see System/370 Diagnostic Reference Summary (Order No. SY25-0512).

Preparation

Units to be tested must not be assigned to either of the Foreground
Units the Back . The Program must be available for CE use

Starting DOS-OLTEP

Job Control Cards may be put in the reader or JCL commands may be entered from the system console. The example shown is for the console.

AR START BG
BG // JOB OLTEP
BG //ASSGN SYSO14, X'160'
BG //EXEC IJZADOLT, REAL, SIZE=28
BG
BG EOO21 OLTS RUNNING
EOO5D ENTER -- DEV/TEST/OPT/
This is printed after the first error, after operating the Interrupt switch, or at job completion.

Make a Run Request

Make a run request to select the test you want to run.
Reply:
r 01: ' $160 / 3350 \mathrm{PSA} / / \mathrm{C}$ (Test 160 with 3350PSA.)
BG E158I ST3350A UNIT 0160 (Testing has begun.)

Option Field Entries

/ (Run with default options on initial request only.)
NTL, NEL, EP, CP, NAP/ (Run with default options.)
AP/ (Run with default options but print on SYSLST.)

Halt DOS-OLTEP

To halt DOS-OLTEP at any time, operate the CP/Interrupt switch DOS-OLTEP prints:

BG 01E105D ENTER - DEV/TEST/OPT
Reply:
BG R 01, ' Cancel

3350 OLT REQUIREMENTS

3350 OLT Tests

PSA - HA and R0 Format and Readability on 3350 HDA.
PSB - Data Readability (burst check) on 3350 HDA
PSC - SD Directory and HA Recovery
WT - Write test on any selected tr
200A - OLT(S)EP Friend
These tests are described on OLT 20 through 26

Program Requirements

3350 OLTs run under DOS OLTEP REL 32, VS 1
OLTEP release 5, VS2 OLTEP release 3 (with ICR), or
OLTEP release 5, VS2 OLTEP
OLTSEP release 8.0 or higher.
3350 OLTs test 3330 Compatibility Mode volumes under operating systems that support the 3330 .
OLTEP requires a system or private library containing:

- Standalone Online Test Support Processor (SOSP)
- Configuration Data Set (CDS), see 3350 CDS description.
- 3350 OLT Sections.

OLTSEP requires a load tape or disk load file containing

- IPL Loader
- OLTSEP Nucleus

OLTSEP Transient Modules.

- Standalone Online Test Support Processor (SOSP)
- Configuration Data Set (CDS), see 3350 CDS description
3350 OLT Sections
For additional information, see OLT Users Guide (D99-3350) and System/370 Diagnostic Reference Summary (SY25-0512)

Equipment Requirements

3350 OLTs may be run on any 3350 string. There are no special equipment requirements.

3350 Configuration Data Set (CDS)

onfiguration data must be correctly supplied in the OLTEP or OLTSEP libraries. CDS for the 3350 should appear as follows (one card per drive)

CC $02-0$

CC 10-17 Device Address (Example Device Addr
0000 0160)
CC 18-19 Blank
CC 20-21 Feature Code ($02=3830-2$ or ISC
storage control)
$10=3830-3$ staging control)
(Blank $=$ other
CC 22-23 Device class (20) attachment)
CC 22-23 Device class (20)
CC 24-25 Device Type (Mode, see Note.)
$3350=0 \mathrm{~B}$
$3330-1=09$
$3330-11=0 \mathrm{D}$
CC 26-29 Blank
CC 30-31 Flags ($04=2$-channel switch or string switch installed
$(40=$ device shared $)$
$(44=$ both of the
$\begin{array}{ll}\text { CC 32-35 } & \text { Blank } \\ \text { CC } & \text { 36-37 }\end{array}$ CUCDS suffix (see 3830 CDS CC 38 requirements
CC 38 $\stackrel{\text { requi }}{/}$
included in CDS.
SOSP
The Standalone Online Test Support Processor (SOSP)
may be used to create a master load tape or disk load file for OLTSEP. SOSP does not support the 3350 as a resident device.
SOSP also has facilities for the following

- Add, replace, or delete OLTs from the master file
- Duplicate master files (DUP)
- Print the contents of a master file (LIST)
- Generate and modify the Configuration Data Set
(CONFIG).
The SOSP Operators Guide (D99-SOSPB) has details for selecting the options.

Error Messages

o locate the error message referenced by the error printout, use the section number and REFNUM from the first printout line as an index to OLT pages starting on OLT 40. Messages with REFNUMs ending in 91 hrough 99 are common to all sections and are found a he start of the error message listing under Common Error Messages (see OLT 40, 50, and 60)
Note: At least one CDS card must be included with Device Type $0 B(3350)$ for correct 'Autoedit ' function there are CDS with Class 20, Device Type OB.

USE OF OLTs

The Online Tests for the 3350 are designed to test the following

The readability and accuracy of the Home Address and Record Zero fields.

- The data integrity of data records.
- The ability of the 3350 to write and read different bit patterns on selected tracks.

SECTIONS

T3350PSA - HDA HA/R0 Scan (requires 8K)*
33350PSA - HDA HA/R0 Scan (require
T3350PSB - HDA Burst Test (requires 8K)*
T3350PS - SD Directory and HA Recovery (requires 16K)*
T3350WT - Write Test (requires 8 K , attempts to get 8 K more storage)*

*CPU storage

3350PSA HDA HA/R0 SCAN

This section tests the readability and accuracy of HA and R0 fields on the HDA.

unning Consideration

1. This section requires that a completely operational file subsystem be used. Hardware errors invalidat results and the internal retry capability of the torage control must present hard errors to the OLT.
OLT recalibrate/retry is performed once, then the error is printed and processing continues.
Thirty hardware errors occurring on any on ylinder cause premature termination of the OLT diagnostics should be run against the failing drive and/or corrective action completed before continuing to scan the HDA.
2. This OLT does not scan data on the CE cylinder. The CE cylinder is 1024, heads 0 through 29.
3. If the 3830 Model 2 , ISC, or 3880 is placed in Forced Error Logging mode while running this cogram (retried at the storage control level) are displayed on the test printout. This is most effective for intermittent/soft errors.

Do not use the Forced Error Logging mode if the string is shared.

Routine Descriptions

Routine 1: This routine is run by default. It scans the ntire HDA except the CE cylinder. Home Addresses and Record Zeros are scanned for readability and data accuracy. Invalid HA and/or R0 fields are printed in expected-received form. HA and up to 16 bytes of R0 8 -byte Count field, 8 -byte Data field) are displayed are verified to point to a valid mate. If none is found, an appropriate error message is printed.
Routine 2: This routine must be selected. It allows specific tracks to be tested
User options.

1. Select track or tracks to be scanned
2. R0 data length to be tested (8 or any).

Running Details

This OLT requires 4 to 6 minutes to run, or longer whe run under VS-OLTEP.

1. In most cases, the default mode of operation (routine 1 only) successfully tests an HDA. Enter:
/3350PSA//
2. If some specific area of the HDA is suspected, the test time can be shortened by selecting the track(s) to be tested (routine 2).
Enter:
/3350PSA, $2 / /$
Message:
NTER TRACKS(S), 'ALL' OR'END'
AS' СССНН-СССНН' ${ }^{\text {R }}$ 'СССНН $'$
Reply
or 'ALL',EO
'END',EOB
' СССНн-СССНН', ЕОВ
' CCCHH ', EOB
or EOB (DEFAULT = 'ALL' TRACKS
Valid limits for CCCHH are:

3350 volume $=$ '00000' through '22F1D | $3330-1$ volume $=$ ' 00000 ' through ' 19412 ' |
| :--- |
| $3330-11$ volume $=$ | $3330-11$ volume $=\mathbf{~} 00000$ ' through ' 32812 '

3. If the R0 data is not 8 bytes long

Enter:

$$
\begin{aligned}
& \text { nter: } \\
& / 3350 \text { PSA, } 2 / / \\
& \hline
\end{aligned}
$$

Message:
NTER TRACKS(S), 'ALL' OR 'END'
AS ' $\mathrm{CCCH}-\mathrm{CCCHH}$ ' OR ' CCCHH
If specific tracks are required
Reply:
HH ' or ' $\mathrm{CCCHH}-\mathrm{CCCHH}$ ' (the identity of the suspect track(s)
or EOB (DEFAULT = 'ALL' TRACKS

Message
ENTERRO DATA LENGTH
Reply:
'ANY', EOB
or '8', ЕОВ

$C 10$

11

T3350PSB HDA BURST TEST

This section tests the readability of data records on the HDA.

Running Considerations

1. This section requires that the Home Addresses and Record 0 s are valid and readable, therefore

This
2. This section also requires that a completely operational file subsystem be used. Hardware
errors invalidate results and the internal retry capability of the storage control must present hard errors to the OLT.
OLT recalibrate/retry is performed once, then the error is printed and processing continues.
Thirty hardware errors occurring on any one
cylinder cause premature termination of the OLT (see OLT 250, REFNUM 0000A). Appropriate diagnostics should be run against the failing drive continuing to scan the HDA.
3. This OLT does not scan data on the CE cylinder The CE cylinder is 1024 , heads 0 through 29 .
4. If the 3830 Model 2 , ISC, or 3880 is placed in Forced Error Logging mode while running this program (retried at the storage control level) are displayed on the test printout. This is most effective for intermittent/soft errors.
Do not use Forced Error Logging mode if the string is shared.

Routine Descriptions

Routine 1: This routine is run by default. It scans the ntire HDA for readability (burst check), all records, an ail tracks (except CE tracks). A statistical summary is with the SILI and SKIP bits on. No data printed.
Routine 2: This routine must be selected. It allows specific tracks to be tested.
Routine 3: This routine must be selected. It allows a Routine 3. This routine must be selected. It allows a track containing valid data, then forms a tight scope loop.

Running Details

This OLT requires 5 to 30 minutes to run. Running time depends on storage control and HDA usage and density
(for special cases, see routine 2 and 3 description).

1. In most cases, the default mode of operation (routine 1 only) successfully tests an HDA Enter /3350PSB//
2. If a specific area of the HDA is suspected, the test time can be shortened by selecting the track(\mathbf{s}) to
be tested (routine 2).
Enter:
/3350PSB, $2 / /$
Message:
ENTER TRACK(s), 'ALL' OR'END
AS' $\mathrm{CCCHH}-\mathrm{CCCHH}$ 'OR' CCCHH '
Reply:
or
or
'END', EOB
or ' СССНн-СССНН', ЕOB
or
'ссснн', ео
EOB (DEFAULT='ALL' TRACKS
Valid limits for CCCHH are:
3350 volume $=$ ' 00000 ' through '22F1D' $3330-1$ volume $=$ ' 00000 ' through ' 19412 $3330-11$ volume $={ }^{\prime} 00000^{\prime}$ through ' 32812^{\prime}
3. If a hardware failure is causing a Data Check: Enter:
/3350PSB, $3 / /$
Message:
ENTER TRACK FOR SCOPING
Reply:
сССНн of the track to be looped
The OLT starts a tight loop of the track and continues until terminated by a normal console equest or OLT(S)EP intervention
Command Chain may terminate when an
abnormal condition occurs or the last data abnormal condition occurs or the last data record
has been read. Use OLT T0200A (FRIEND) or 3350 microdiagnostic routine B1 if a full track read of all gaps and fields is desired.

T3350PSC SKIP DISPLACEMENT OLT

This OLT is designed to create a track-by-track directory
(SDMAP) of nonzero SDs (Skip Displacements) and, if nece sary, restore the SD information from the directory to one or more tracks, or analyze a track and generate the necessary skip displacement.
The directory of nonzero SDs must be created on each installed HDA and upon installation of a new 3350 or replace ment HDA.

ROUTINE DESCRIPTIONS

Default Mode, Build SD Directory Routine M4
The Build SD Directory routine will:

- Build a directory of nonzero SDs on cylinder 561 using the Card Input option.
- Scan all $\mathrm{HA} / \mathrm{RO}$ s on an HDA, storing a directory of nonzero SDs on cylinder 56
The Build SD Directory routine will write only on cylinde 561. Customer data will not be destroyed during this step. On newer HDAs the SD Directory may have been written at the plant. (This can be determined by running T3350PSC in default mode.)

OPTIONAL ROUTINES
Any SD loss can be recovered after the SD Directory has been created by using the optional routines of this OLT. Routine M5 will analyze a track and assign a new skip displacement to allow a defect to be skipped thereby eliminating the need to assign an alternate track.
Caution: The Write HA with SD Bytes function is a Format Write. Any existing data on a track that undergoes HA/SD Write. Any existing data on a track that undergoes HA
restoration (routines M1, M2, M3, or M5) will be lost.

Routine M1
Routine M1 will restore the SDs to the selected tracks from the directory, or from input provided by the user through CECOMS.

Routine M2

Routine M2 will scan all $\mathrm{HA} / \mathrm{RO}$ s on an HDA and rewrite those which produce data checks, obtaining SD data from the SD Directory or from the user through CECOMS

Routine M3

Routine M3 will rewrite all $\mathrm{HA} / \mathrm{RO}$ on an HDA , obtaining SD data from the SD Directory or from card input.

Routine M5

Routine M5 will analyze a selected track or range of adjacent tracks on a single surface. If an unusable surface area is found Routine M5 will develop the necessary skip displacement data to allow use of the track using the skip defect function. This is preferable to alternate track assignment. Routine M5 can vailable in OLT at version level 2.0 or later.

RUNNING CONSIDERATIONS

nvoke the OLT as follows.

1. Install OLT T3350PSC in OLT(S) EP OLTLIB
2. Ensure that the 3830 Functional microcode disk (P / N 4168811 at EC 437465 with REA 13 -57853 or later) is installed.
3. Select OLT xxx - $\mathrm{yy} / \mathrm{y} / 3350 \mathrm{PSC} / \mathrm{NFE}$ where xxx - yyy is the address range of 3350s having the SD Directory created.
The T3350PSC will only run against drives that are in native mode. This is necessary so that all tracks on a volume are available to be scanned. After T3350PSC has completed the Build SD Directory run, the CE may return the drive to compatibility mode. (For information on native/compatible plugging, see INST 4.)
Note: After the reconstructions (routines M1, M2, M3, or M5) have been made in native mode, it will be necessary to reinitialize in compatibility mode to restore the format.

UNNING DETAILS

he OLT PSC routines M2 and Build SD Directory run in about 10 minutes under OLTSEP. Routine M3 runs in about 25 minutes. Expected run times for routine M5 are between 3 to 35 minutes per track, depending on system environment. The run is about twice as long under VS1 or DOS OLTEP and up to three times as long under VS2 OLTEP. This OLT is
16,000 bytes long for routines M1 through M4, and 44,000 ytes long for M5. The drive to be run must be offline and in native mode.

When to run OLT T3350PSC
building an sd director
Run T3350PSC in default mode

- On all installed HDA.
- At installation of any 3350 or replacement HDA

RUNNING DETAILS (Continued)

restoring sd data

Run T3350PSC using optional routines:

- If AP1 or OLT T3350PSA detects unreadable home addresses.
FSC $=4940,4944$, or 4949
Single Track Failure: use routine M1.
Multiple Track Failure: use routine M2
Unknown extent of damage (HA Read Failure and/or data in HA fields): use routin M3.

GENERATING SD DATA

Run T3350PSC routine M5:

- If a track has been flagged defective and the user wishes to attempt to recover use of the track.
- If a track has recurring data checks and factory SD is known to be correct (restore routine M1, M2, or M3 has been run).

EQUIPMENT REQUIREMENTS

The following equipment is required
Storage Control Unit or ISC and 3350 Disk Drive and ontroller.
T3350PSC must be used with 3830 functional microdisk, P / N 4168811 at EC 437465 with REA $13-57853$ or later. See OLT Users Guide (Order No. D99-3350) for additional information.

T3350WT WRITE TEST

This section tests the write and read capability of any selected HDA track. It also tests Index if 3330 Compatability Mode is used. T3350 WT writes a pattern on the CE track that is required for the scoping rocedure used with microdiagnostic routine B1, Read test.

Running Considerations

Caution:

1. Before running this test, OLT T3350PSA must be Before running this test, O
run and errors acted upon.
2. This OLT writes on any selected track. To test write and read capability, use only the CE track. HH is head 0 through 29).
3. Always select a CE track first and test write/read. Resolve any errors detected on the CE track before selecting a non-CE track.
4. Always make sure that there is backup for data on a Always make sure that there is backup for
non-CE track or that it has been dumped.
5. If you are unsure about the status of data on the track to be tested, use the options to CHANGE the track selected or TERMINATE the test.
6. Once the data can be considered scratch data, reply GO to begin testing.

Routine Descriptions

Routine 1: This routine writes and reads records that are iternately all zeros and all ones.
Data $=0000 \ldots \ldots$. and FFF
Running time is 20 seconds.
Routine 2: This routine writes and reads records with only one bit set per byte. The bit is then shifted right within the byte.
Data $=80808 \ldots \ldots \ldots$. .through 010101 \ldots
Running time is 90 seconds.

Routine 3: This routine writes and reads records with the worst case pattern. On each of two successive passes, the pattern is shifted right once to make sure bit shift errors re detected.
Data $=$ DB6DB6D. \qquad ..,6DB6DB6.. ..,B6DB6DB.
Running time is 35 seconds.
Routine 4: This is a dummy routine.
Routine 5: This routine only runs if selected
Enter:

$$
\vdots / 3350 \mathrm{wT}, 5 / / 1
$$

It writes a single 2048 byte record on the track selected hen reads it 1024 times. This write/read routine is epeated ten times.
Data $=$ worst case (DB6DB6D \qquad)
Running time is 3 minutes.
Routine 6: This routine only runs if selected.
Enter:
\qquad
A CE track must be selected. This routine writes a 256 byte R1 on the CE track selected and then terminates. Data $=$ AAAAAAAAFFFFFFFF
Running time is 5 seconds.

Running Detail

This OLT runs for 2 minutes on each track selected for testing, or longer when run under VS-OLTEP. Each testing, or longer when run under VS-OLTEP. Each track can be selected. This OLT must be allowed to terminate or be cancelled. Routines 1 through 3 run by efault for a thorough write/read test.
Enter:
/T3350wT//'

However, any routine or combination of routines can be selected to reduce the run time or to extend the test to include 10,000 reads (see Routine 5 description).

T0200A FRIEND

The FRIEND OLT is a special diagnostic tool to support diagnosis of unique problems. Complete operation Program Users Guide For Friend (D99-0200).

Running Considerations

FRIEND truncates sense data to the rightmost non-zero byte.
FRIEND runs online under VS/OS/DOS OLTEP or OLTSEP. The Online Test Executive Program (OLTEP) schedules and controls the activity of FRIEND and provides communication with the operator. An I/O unit may be tested using FRIEND under OLTEP with
minimum interference to the operation of other programs running in the system. This provides a method of testing 1/O devices while customer programs are being processe eliminates the requirement for an operating system (OS) where an OS is not present.
FRIEND allows the user to construct man-readable S/360/370 channel programs.
FRIEND provides no data protection other than that of the OLT(S)EP.

Running Details

SELECTING FRIEND
Enter;
T0200A//
OLTSEP options (MI, TL, etc.) have no effect when running FRIEND.
If the controller being tested is shared and FRIEND is running standalone under OLTSEP, use Block
Multiplex mode (Control Reg 0, bit 0).
After FRIEND is loaded and in control, the following messages are printed:

$$
\begin{array}{ll}
04 \text { SEP 1001 } & \text { FRIEND running V/L }=\mathrm{XX} \\
04 \text { SEP101 } & \text { Dataarea inbytes }=\text { XXXXX } \\
\text { 04 SEP101D } & \text { Enter FRIEND command }
\end{array}
$$

COMMAND ENTRY
The program is now ready to receive user input in the form of CCW commands or interpreter commands. String data must always end with a slash, for example:

SK/CYL=0/HD=0/SIDEQ/RCDNO. $=3 /$ TIC $/$ RDDATAINTO $\$$ A/NOP/GO/
This reads the volume label into a location known to FRIEND as $\$$ A. As each successive command or command string is entered, FRIEND processes each on and then prints 'ENTER CMND' when that command or string has been processed and it is ready to accep additional input. If more information is required, FRIEND asks for it. The FRIEND OLTSEP does not asert any CCW commands (such as SFM, TIC, or SET MODE).

Enter:
r04, END

FRIEND Examples

To verify a possible bad track, enter:

$$
\begin{aligned}
& \text { SK/CYL }=\mathrm{XXX} / \mathrm{HD}=\mathrm{XXX} / \mathrm{RDHAINTO} \$ \mathrm{~A} \\
& \text { /RDROINTO\$B/KL=0/DL=8/GO/ }
\end{aligned}
$$

To rewrite a bad track (standard R0), enter
SRCHEQHA/TIC/WRRO/KEY=0/DATA $=8 \times 00 / \mathrm{GO} /$
MASK $=$ C4 must be entered to SK/WRITE on a CE track (cylinder 1024, heads 0 through 29).

Command Summary			
Primary	Alternate	(hex)	Explanation
No Operation	NOP	03	No Operation
Seek	SK	07	Control Seek
Recalibrate	RECAL	13	Recalibrate
Restore	RESTR	17	Restore
Set File Mask	SFM	1 F	Set File Mask
Seek Cyl	SKCYL	OB	Seek Cylinder
Seek Hd	SKHD	1 B	Seek Head
Release (see Note)	REL	94	Release
Reserve (see Note)	RSV	B4	Reserve
Space Count	SPCNT	OF	Space Count (Space Record)
Set Sector	SS No	23	Set Sector
Diagnostic Ld	DL	53	Diagnostic Load
Sense	SNS	04	Read 24 bytes, Sense information.

in the following Search commands, SEARCH, SRCH, SCH, or can be used. MT indicates mulitrack and is entered preceding a Read or Search command. Example: MT EARCH ID or MT READ CNT.

| Primary | Alternate
 SRCHEOHA | (hex) | MT | B9 |
| :--- | :--- | :--- | :--- | :--- | | Explanation |
| :--- |
| Sch HA Eq | Search Home | Address Equal |
| :--- |

Sch Key Eq SEOK 29 A9 Search Key

Sch Key Hi SHIK 49 C9 Search Key
$\begin{array}{lllll}\text { Sch Key Eq Hi } & \text { SEQHIK } & 69 & \text { E9 } & \begin{array}{l}\text { Search Key } \\ \text { Equal or High }\end{array}\end{array}$
Read HA RDHA 1A 9A Read Home
Address
$\begin{array}{lllll}\text { Read RO } & \begin{array}{l}\text { RDRO } \\ \text { or RRO }\end{array} & 16 & 96 & \begin{array}{l}\text { Read Record }\end{array} \\ \text { Zero }\end{array}$
Read Data RDD

Read Key Data	RDKDT or RKD	OE	8 E	Read Key Data
Read Count Key	RD	1 E	9 E	Read

Data or RCKD
Count
Data
Read IPL
RDIPL
READ $.02 \begin{gathered}\text { Read IPL } \\ \text { Initial }\end{gathered}$ Program
$\begin{array}{lll}\text { Read and Reset } & \text { RDBL, } 3330 & \text { A4 } \\ \text { Buffered Log } & \text { RDLG, } 3330\end{array}$
ead Diagnotic
tatus
Read and
Reset
Reser
Buffered Log
Read Diagnostic
Status
\(\left.$$
\begin{array}{llll}\text { Primary } & \text { Alternate } & \text { (hax) } \begin{array}{l}\text { Explanation } \\
\text { Read Sector }\end{array} & \begin{array}{l}\text { RDS }\end{array} \\
\text { Write HA } & \begin{array}{l}\text { WHA } \\
\text { WRHA }\end{array} & \begin{array}{l}\text { Read } \\
\text { Sector }\end{array}
$$

Write Home Address

(requires Set File

Mask and SHAEQ

command preceding,\end{array}\right]\)| or the defective track |
| :--- |
| bit on in the flag |
| byte) |

Note: Channel Attachment and 2 Channel Switch or String Switch feature are required for the Release
and Reserve commands.

CCW CHAIN EXAMPLES

1. Chain to fetch volume ID

SEEK (cyl=0,hd=0)
SIDEQ (rcd no.=3)
TIC (to SIDEQ)
RDDATA (byte count=10)
2. Chain to burst check record n :

SEEK (incremented)
SFM (' 18 ') inhibit seeks and head switching
SIDEQ ($\mathrm{rcd} \mathrm{no} .=\mathrm{n}-1$)
TIC (to SIDEQ)
MTRDCKD (byte count=8,DC)
MTRDCKD (byte count=20000,SKIP,SILI)
3. Chain to bypass bad record n

SEEK (current track)
SFM (' 18 ') inhibit seeks and head switching SIDEQ (rcd no.=n-1)
TIC (to SIDEQ)
SPCNT (argument=000)
MTRDCKD (byte count=8, DC)
MTRDCKD (byte count=20000,SKIP,SILI)
4. Chain to scope loop track:

SEEK (to CE selected track)
SFM (' 18 ') inhibit seeks and head switching
SFM (' 18 ') inhibit seeks and
MTRDCKD (byte count=8,DC MTRDCKD (byte count=20000,SKIP,SILI) TIC (to first MTRDCKD)
5. Chain to burst check cylinder:

SEEK (incremented)

SET SECTOR (0)
MTRDCKD (byte count=20000,SKIP,SILI) TIC (to MTRDCKD)
A failure in this chain causes the cylinder to be scanned in detail, a record at a time (see Chain
2 above).
6. Chain to read HA, SD, and RO

SFM (C0 or C4)
SEEK
SNS ($\mathrm{BC}=24$)
RDRO (BC =4,SILI)
7. Chain to read VOL ID:

RECAL
SRCIDEQ (R3)
TIC (to SRCIDEQ)
READ DATA ($\mathrm{BC}=10, \mathrm{SILI}$)
8. Chain to read RO

SFM (C0 or C4)
SEEK
DRO (BC $=\mathbf{2 0 0 0 0}$,SKIP SILI)
9. Chain to read R1 through Rn (if not a CE track) SEEK
FM (' 18 ') inhibit seeks and head switching
RCIDEQ (RO)
TIC (to SRCIDEQ)
MTRDCKD $(B C=20000$, SKIP, SILI
TIC (to MTRDCKD)
10. Chain to read Rn (if CE track):

SFM (C4)
SEEK
SRCIDEQ (Rn - 1)
TIC (to SRCIDEQ)
RDCKD (BC $=20000$, SKIP, SILI)
11. Chain to Read HA/RO:

SFM (' 00 ')
SEEK (cyl/hd incremented)
RDHA
RDRO (byte count=16, DC) RDRO (byte count $=20000$, SKIP + SILI)
12. Chain to write HA (if defective or alternate track is tested)

SFM (C0 or C4)
SEEK
SRCHAEQ
TIC (to SRCHAEQ)
WRTHA ($\mathrm{BC}=11$ if type 0 B ,
5 if type 09 or 0 D)
WRTRO (BC = 16)
NOP
13. Chain to write RO:

SFM (C0 or C4)
SEEK
SRCHAEQ
WRTRO (BC=8,DC)
NOP ($\mathrm{BC}=2048$
14. Chain to write Rn:

SFM (CO or C4)
SEEK
SRCIDEQ ($\mathrm{n}-1$)
TIC (to SRCIDEQ)
WRTCKD (BC=8,DC
WRTCKD (BC=8,DC)
NOP

PURPOSE OF THIS PAGE

This page is referenced by many of the Online Test pages. It contains instructions that are commonly used when OLT errors are found.

COMMON ACTION B

1. If a Fault Symptom Code (FSC) is not included in Sense Bytes 22 and 23, go to START 101 for Sense Byte analysis. If this step does not correct the problem, continue below.
2. The first error listed is probably the most valid erro to investigate. Additional error data can be obtained by running all OLTs, and this additiona information will reinforce or refute the original error.
3. Determine the failing CCW (marked by an *) and run microdiagnostics that verify the failing function Select the appropriate microdiagnostic by checking the descriptions in the MICRO section of the MIM The failing CCW may not reflect the test in proces
An analysis of the chain printout will prevent An analysis of the chain printout will prevent the message HA READ = XXXXX is invalid if the Read HA command was not executed.
4. Was the OLT properly run? See Running section of OLT description (OLT 20 through 26)
5. Determine the failing CCW (marked by an *) and Determine the failing CCW (marked by
refer to the storage control maintenance documentation for the CCW description.

COMMON ACTION C

Use a DASDI utility program to correct tracks with unreadable or incorrect Home Addresses or R0s.

1. Control the DASDI program to flag the track as defective. If recovery or restart is desired without re-initializing the volume, go to Step 3.
2. Rerun the DASDI program on the HDA. All defective tracks are tested. If a track previously Address and R0 are corrected.
3. Always run OLT T3350PSA on the volume afte correcting format errors.
See OLT 30 for additional information on rewriting Home Address and R0.

ALTERNATE TRACK ASSIGNMENT

DEFINITIONS

Alternate Track

An alternate track is used in place of a primary track. Alternate tracks are designated by the manufacturer and are logically addressed as follows:
$\begin{array}{ll}3350 & \text { cylinders } 555-559 \text {, heads } 0-29 \\ 3330-1 & \text { cylinders } 404-410 \text { heads } 0-18\end{array}$
3330-1 cylinders 404-410, heads $0-18$
3330-11 cylinders $808-814$, heads $0-18$
Unassigned alternate tracks contain their own logical track address in the CCHH bytes of the HA and R0 Count field. On a 3350 volume, bit 7 of the flag byte in the HA field is set to identify the track as an alternate. On a 3330 compatible volume, bit 7 of the flag byte may be set to 0 until the track is assigned to a defective primary track.

Defective Track

A defective track contains one or more surface defects that cause Read Data Checks. When the track is identified as defective, bit 6 of the flag byte in the HA field is set.

A defective alternate track will have both bits 6 and 7 of the flag byte set.

HOW TO REWRITE AN INCORRECT HA OR R0

To rewrite an unreadable or incorrect Home Address (HA) or Record 0 (R0), follow Step 1, 2,3 , or 4.

1. Run IBCDASDI, INTDK, or IEHDASDR to format the volume
2. Run ICKDSF or ICLDSF to inspect the track
3. Run IBCDASDI, ALTDK, or IEHDASDR to flag the track as defective. Then run the DASDI program again to analyze, and if possible, reclaim the track
4. Run OLT T3350 PSC using routines M1, M2, or M3

HOW THE UTILITIES ASSIGN AN

 ALTERNATE TRACKNote: The selected track(s) can be checked prior to flagging and assigning an alternate (conditional assignments).

1. The R0 Count field on the alternate track is written with CCHH bytes equal to the address of the defective track.
2. The R0 Count field on the defective track is written with CCHH bytes equal to the address of the alternate track.
3. Bit 6 of the flag byte in the HA field on the defective track is set.

OS/VS UTILITIES

General utility programs are available with OS/VS operating systems to aid in alternate track assignment and HDA initialization. Because alternate track assignment is a customer responsibility, the following is for information only, For more detail, see OS/VS Utilities (Order No. GC35-0005)

IBCDASDI (standalone initializer)

A standalone utility used to initialize an HDA:

- Flags tracks defective and assigns alternate tracks. The track to be flagged is tested, and if found to be usable, is not flagged. Use the option BYPASS = YES to force flagging.

Writes volume label on track 0 , record 3 .

- Writes an IPL record on track 0.
- Allows tracks flagged defective to be analyzed and reclaimed if they are usable.
- Formats a 3350 HDA or a $3330-1$, or $3330-11$ compatible volume.
- Writes R0 on each track.

See OLT 31 for additional information on using IBCDASDI to rewrite a home address and flag the track.

IEHDASDR (online initializer)

An online utility used to initialize an HDA

- Performs the same functions as IBCDASDI.
- Can be used to dump or restore the contents or a portion of the contents of a 3350 HDA or 3330 compatible volume.
See OLT 34 for additional information on using IEHDASDR to rewrite a home address and flag the track.

IEHATLAS (assign alternate track)

A system utility used to assign and write an alternate track:

- Attempts to rewrite defective record(s) with data supplied by the user.
- Flags a track defective if it cannot be rewritten successfully.
- Locates and assigns an alternate track.
- Retrieves and transfers usable data records from the defective track to the alternate track.
- Replaces bad records with data supplied by the user

Alternate tracks cannot be assigned for defects in Home Address or R0 Count fields. Tracks flagged defective cannot be reclaimed. Use IBCDASDI or IEHDASDR

ICKDSF (Online)(ICLDSF (Standalone) Initializer For more detail, see Device Support Facility (DSF) (Order No. GC 35-0033).
A system utility that can be used to

- Check the track surfaces and assign alternate tracks to defective tracks.
- Reclaim tracks that were previously flagged defective if the results of surface checking shows there are no recording errors.
- Perform housekeeping and formatting with or without surface checking.
- Write a volume serial number in the volume labe
- Validate the home address and write record zero for each track.
- Erase data from a previously initialized volume if the volume serial number and owner identification are verified

Create a pack map that describes the format of a volume.

- Repair HA/ROs on all or selected track

See OLT 40 for additional information on using ICKDSF ICLDSF for alternate track assignment.

DOS/VS UTILITIES

General utility programs are available with DOS/VS operatin systems to aid in alternate track assignment and HDA initialization. Because alternate track assignment is a customer responsibility, the following is for information only. For more detail, see DOS/VS System Utilities (Order No. GC33-5381).

INTDK (initialize disk)

A system utility used to initialize an HDA

- Reads and verifies HA and R0 fields.
- Writes volume label on track 0 , record 3
- Constructs and writes a volume table of contents (VTOC) on cylinder 0 , track 0 .
- Allows tracks flagged defective to be analyzed and reclaimed if they are usable:

Alternate tracks are not assigned for tracks flagged defective. It is assumed that any track that is flagged defective has previously had an alternate assigned. To assign an alternate track, use ALTDK or standalone IBCDASDI.

ALTDK (assign alternate track)
A system utility used to assign and write an alternate track:

- Flags defective track
- Locates and assigns an alternate track (requires a valid VTOC on the volume)
- Retrieves and transfers usable data records from the defective track to the alternate track
- Replaces bad record(s) with data supplied by the user.
- The condition of the defective track is not analyzed.

Alternate tracks cannot be assigned for defects in Home Address or R0 Count fields. Tracks flagged defectiv cannot be reclaimed. Use standalone IBCDASDI.
See OLT 37 for additional information on using ALTDK to rewrite a home address and flag the track.

Caution: The use of this program will destroy any existing data on the selected track. The customer should do the flag. here is to enable the CE to advise and assist the customer when necessary.
Assigning an Alternate Track
IBCDASDI can be used to: (1) test a track and, if necessary, assign an alternate or (2) bypass testing and automatically assign an alternate.
Only 3350 (native) devices are tested before alternate tracks are assigned.
If testing is performed, an alternate track is assigned for any track found defective. If the defective track is an unassigned alternate, it is flagged to prevent its future use. The alternate track address is made known to the operator
If a track is tested and not found to be defective, no alternate is assigned. The operator is notified by a message.
If testing is bypassed, an alternate track can be assigned for the specified track or its alternate, whether it is defective or not. If the specified track is an unassigned alternate, it is flagged to prevent its future use

Executing IBCDASDI

IBCDASDI is loaded as a card deck or as card images on tape. Control statements for the requested program can follow the last card or card image of the program, or can be entered on a seperate input device. To execute IBCDASDI

1. Place the object program deck in the reader or mount the tape reel that contains the object program.
2. Load the object program from the reader or tape drive by setting the load selector switches and pressing the console Load key. When the program is loaded, the wait state is value ' FFFF^{\prime} '.
3. Define the control statement input device in one of the following ways:
a. Press the Request key of the console typewriter and, in response to the message DEFINE INPUT DEVICE, enter INPUT $=\mathrm{xxxx}$,cuu. The $x x x x$ is he device type, c is the channel address, and $u u$, is the unit address. The devi.
$2400,2501,2540$, or 3505 .
b. If the console typewriter is not available or unsup. ported, enter at storage location ' 0110 ' (hexadecmal): 1 cuu for a 1442 Card Read Punch; 2 cuu for a 24009 -track tape unit; or 0 cuu for a 2540 Card Read Punch, 2501 card reader, 3410 tape, or 3420 tape. Press the console Interrupt key.
4. Control statements are printed on the message outpu device. At the end of the job, END OF JOB is printed on the message output device, and the program enter the wait state.

INPUT AND OUTPUT

1 BCDASDI uses as input a control data set, which consists of utility control statements.
IBCDASDI produces as output an initialized direct access volume and a message data set.

CONTROL

IBCDASDI is controlled by utility control statements. Because IBCDASDI is an independent utility, operating system job control statements are not used.
Use IEHDASDR for online initialization of all supported DASD.

UTILITY CONTROL STATEMENTS

All utility control statements/operands must be preceded and followed by one or more blanks.
IBCDASDI utility control statements in the order in which they must appear are:
Statement
JOB Indicates the beginning of an IBCDASDI job.
MSG
getalt
END
LASTCARD
messages. messages.
Assigns an alternate track on a volume.

JOB Statement

The JOB statement indicates the beginning of an IBCDASD
job. Examples on OLT 32
The format of the JOB statement is:
1 [label] JOB [user-information]
MSG Statement
The MSG statement defines an output device for operator messages. It follows the JOB statement and precedes any function definition statements.
The format of the MSG statement is:
2 [label] MSG TODEV $=x x x x$

GETALT Statement

The GETALT statement is used to assign an alternate track on volume. Any number of alternate tracks can be assigned in a ingle job by including a GETALT statement for each track. Note: A GETALTT statement that applies to a 3330, 3330-1 3340, 334 device causes an allernate track to be assigned utomatically without testing.
The format of the GETALT statement is:
3 [label] GETALT TODEV $=x x x x$
,TOADDR = cuu
,TRACK = cccchhh
, VOLID = serial
[,BYPASS $=\{\mathbf{Y E S} \mid \underline{\text { NO }}\}]$
The GETALT function should not be used immediately after Restore operation that did not complete successfully. Before

END Statement

The END statement denotes the end of job. It appears after the last function definition statement.
The format of the END statement is:
4 [label] END [user-information]
END must be preceded and followed by at least one blank.

Caution: IBCDASDI will destroy any existing data on the
specified track and head.

Operands	Applicable Control Statement	Description of Operands/Parameters
BYPASS	getalt (G)	BYPASS=YES Applicable to 3350. Causes an alternate track to be assigned without testing the track to be flagged. Default: BYPASS=NO Test the track to be flagged and assign an alternate only if the test results are in error (data check).
TOADDR	$\begin{aligned} & \text { MSG C } \\ & \text { GETALT E } \end{aligned}$	TOADDR=cuu Specifies the channel number, c, and unit number, $u u$, of the message output device (MSG), or the direct access device.
TODEV	MSG B getalt D	TODEV $=x x x x$ Specifies the type of device to receive messages. All supported tape drives and the following unit-record devices: 1403, 1443, 1052, 3210, 3215, 3211, and 3800. specifies the type of DASD device.
TRACK	getalt (H)	TRACK=cccchhhh Specifies the hexadecimal address if the track for which an alternate is requested, where $c c c c$ is the cylinder number and hhhh is the head number.
user-information	$\begin{aligned} & \text { JOB A } \\ & \text { END } \end{aligned}$	[user-information] Specifies user explanation of action.
VOLID	getalt (VOLID $=$ serial SCRATCH Specifies the volume serial number of the volume to which an alternate track is to be assigned. If serial does not match the volume serial number found on this volume, the o operator is notified and the job is terminated. SCRATCH specifies that no volume serial number check is to be made.

IBCDASDI EXAMPLE

In this example, three alternate tracks are assigned to a disk volume, without reinitialization of the volume. The check for a defective track is bypassed when the three tracks are assigned.

Caution: The use of this program will destroy any existing data on the selected track. The customer should do the flag ging when that action is required. The information provided
here is to enable the CE to advise and assist the customer when necessary

ASSIGNING ALTERNATE TRACKS FOR SPECIFIED

 RACKSEHDASDR can be used to assign an alternate track on a disk volume. An alternate track can be assigned for any track, only it is defective. If the specified track is an alternate, a new alternate, it is flagged to prevent its future use.

NPUT AND OUTPUT

EHDASDR uses as input a control data set containing utility control statements, and optionally, IPL text.
The primary output or result of executing IEHDASDR is deter mined by the application.
A sequential message data set is created to list informational messages (for example, control statements used), dumped data for a print operation), and any error messages.
IEHDASDR provides a return code to indicate the results of program execution. The return codes and their meanings are

- 00 , which indicates successful completion

04, which indicates that an unusual condition was encounte ed; however, the overall result is successful. A warning message is issued

- 08, which indicates that a specified operation did not complete successfully. An attempt is made to perform any
additional operations.
dditional operations.
16, which indicates that either an error occurred upon in
voking IEHDASDR, or IEHDASDR was unable to open oking IEHDASDR, or IEHDASDR was unable to open the input or message data set. The job step is terminated

CONTROL

IEHDASDR is conirolled by job control statements and utility control statements. The job control statements are used to excute or invoke IEHDASDR and define the data sets used and produced by IEHDASDR.
The utility control statements are used to control the functions of the program

OB CONTROL STATEMENTS

The iob control statements necessary for using IEHDASDR are hown below. Examples on OLT 35 .
The anyname DD statement can be entered:
//anyname DD UNIT=xxxx,VOLUME=SER=xxxxxx, DISP=OLD

tateme

EXEC

SYSPRINT DD
Initiates the job.
Specifies the program name (PGM $=$ IEHDASDR) or, if the job control state ments reside in a procedure library, the procedure name.
Defines a sequential message data set. The data set can be written to a system output device, a tape volume, or a direct access device.
Defines a direct access device type.
Defines the control data set. The control data set usually resides in the input stream however, it can be defined as a blocked or unblored sequential data set or as member of a procedure library.

1 1 C C 1101

ALTERNATE TRACK ASSIGNMENT IEHDASDR

UTILITY CONTROL STATEMENTS

The utility control statements used to control IEHDASDR are defined below.

GETALT Statement 6

The GETALT statement is used to assign an alternate track fo a specified disk track if the volume was previously initialized. For 3350 volumes, alternate tracks will be assigned only if an error is detected during surface analysis
The format of the GETALT statement is:
[label] GETALT TODD=ddname
,TRACK=cccchhhh

where:

A TODD=ddname
Specifies the ddname of a job control statement defin ing a disk device containing a volume on which an alt ernate track is to be assigned.
(B) TRACK=cccchhhh

Specifies in hexadecimal the cylinder number, cccc, and head number, $h h h h$, of a track for which an alternate track is requested. TRACK cannot specify track 0 or the first track occupied by the VTOC.

IEHDASDR EXAMPLE
In this example, alternate tracks are to be assigned for three suspected defective tracks on a 3350 volume. The suspected defective tracks are tested and alternate tracks assigned only
for those tracks found defective.
The control statements are discussed below:

- VOLUME 1 DD defines a device that is to contain the 3350 volume (222222).
- SYSIN DD defines the control data set, which follows in the nput stream
- The GETALT statements specify the ddname of the DD state ments defining the device on which the 3350 volume is mounted. The GETALT statements specify the relative track addresses of the tracks for which alternates are to be assigned.
$\sqrt{\text { GETALT TODD=VOLUME1,TRACK=01010002 }}$

Caution: The use of this program will destroy any existing data on the selected track. The customer should do the flag ging when that action is required. The information provided the CE to advise and assist the customer when necessary

DESCRIPTION
ALTDK is used to assign an alternate track on a disk device, and to copy data from a defective track to an alternate track If an alternate track is found to be defective, a new alternate track must be assigned to the primary track.

ASSIGNING AN ALTERNATE TRACK

Specifications in the utility modifier statement identify the defective track. The format-4 record of the VTOC (volume table of contents) on the disk pack identifies the alternate track.
The records from the defective track are transfered to the alternate track, beginning with the data area of RO (track descriptor record), and continuing with the count, key, and data areas of R1 through Rn.
The VTOC format-4 record is modified to contain the address of the next available alternate track. The condition of the defective track may then be analyzed, depending upon the specifications in the utility modifier statement.
When an IBM 3350 is used, an alternate track is assigned unconditionaly. The condition of the track is not analyzed.

Effects of Defective Areas

Defective areas on the defective track may effect the transfer of records to the alternate track. They may also cause the program to terminate. The possible location of defective areas an their effect on program processing are shown in Figure 1.

igure 1: Defective Area Effect

Defective area	Effect
Address marker of a record. Gap preceding the count area of a record. Count area of a record.	The record is bypassed and is not transferred to the alternate track.
Key area of a record. Data area of a record.	The record is transferred to the alternate track exactly as it is read.
Gap following the count area of a record.	The count area is transferred to the alternate track. The key and data areas are filled with A's on the alternate track.
Gap following the key area of a record.	The count and key areas of the record are transferred to the alternate track. The data area is filled with A's on the alter- nate track.
Gap between the data area of a record and the address marker of the next record.	The records are transferred to the alternate track exactly as they are read.
HA of the track. R0.	IBM 3350: The appropriate Skip Displacement (SD) value. which depends on error location and device type, is used to bypass the defect- ive area and assign an alternate track. If an error persists after use of SD value, the program is terminated (the track cannot be flagged defective).

Record Printing Option

By means of the output option parameter Ox , you can specify in the utility modifier statement whether you want to print all records transferred to the alternate track, or only those that ere read in error from the defective track. The records are printed on the device assigned to SYSLST.

assign alternate track disk (altdk)

UTILITY MODIFIER STATEMENT

Contains information required to run the program
The format entries are
// UAT R=(cccchhh),Ox,Ix,Cn,Ux
The parameters are not positional. The first parameter, $\mathrm{R}=$ (cccchhh), must be supplied. The other parameters have th following default values:
// U R=(cccchhh) ,OY,IF,UNU Utility modifier statement entry.
AT Indicates the Assign Alternate Track Disk program. Can be omitted.
$2 \mathrm{R}=\quad$ Indicates the track location parameter.
(cccchhh) Indicates the track to which an alternate track will be assigned, or a track whose conditio ag is to be changed from defective to no defective.
cccc $=$ cylinder number $($ decimal $) 0-554$ Ox head number (decimal) 0-29
$\mathrm{x}=\mathrm{N} \quad$ Indicates that only the records found to be in error must be printed
3 Ix Identifies the input option parameter. $\mathrm{x}=\mathrm{F} \quad$ Indicates that an alternate track is to b assigned without surface analysis.

ALTDK EXAMPLE

In the following example, 3350 address 191 will have an alternate track assigned for cylinder 27 , head 3.
, 000000000000000000000000000000006

IC C C C 1 ALTERNATE TRACK ASSIGNMENT ICKDSF/ICLDSF

For more detail, see Device Support Facility (Order No GC 35-0033).

Caution: The use of this program will destroy any existing data on the selected track. The customer should do the flagging when that action is required. The information provided here is to enable the CE to advise and assist the customer when necessary.

ICKDSF/ICLDSF

ICKDSF/ICLDSF can be used to

- Check the track surfaces and assign alternate tracks to defective tracks. See example 1, OLT 44
- Reclaim tracks that were previously flagged defective if the results of surface checking shows there are no recording errors. See example 2, OLT 44.
- Validate the home address and write record zero for each track. See example 3, OLT 44
- Assign alternate track(s) without checking the track surfaces. See example 4, OLT 44

Size Estimates

Both the system-supported (ICKDSF) and the stand-alone (ICLDSF) versions of the Device Support Facility require minimum of 256 K bytes of main storage for execution.

ICKDSF (OPERATING SYSTEM)

OS/VS JCL statements are used to invoke the Device Support Facility processor when running a job or job step. The Device Support Facility processor is identified by PGM ICKDSF in the EXEC statement.
//JOBNAME
JOB
JOB-ACCOUNTING DATA
//JOBCAT
//
//STEP 1
///SYSPRINT EXEC
DD DSNAME=AN DD ISP=SHR
//SYSPRI
DD
D
*
commands (see examples on OLT 44)
I^{*}
Job Control Language (JCL) Command
The following steps are an explanation of the JCL commands

1. //JOBNAME is required. The JOB statement describes the job to the OS/VS system. User identification, the job to the OS/VS system. User identification, required within the JOB statement parameters.
2. //JOBCAT is optional. The JOBCAT DD statement identifies a user catalog that can be used by each of the job steps. If the job uses only the master catalog do not specify the JOBCAT DD statement because the pecter cotalog is always open and available to jobs on the system.
3. //STEP1, an EXEC statement, is required. The EXEC statement invokes the Device Support Facility processor to process the device Support Facility commands.
4. //STEPCAT is optional. The STEPCAT DD statement identifies a user catalog that can be used when process JOBCAT and STEPCAT DD starements, only the catalog identified with the STEPCAT DD statement and master catalog are used with the job step. If the job ste uses only the master catalog, do not specify the STEPCAT DD statement because the master catalog always open and available to all the jobs on the system.
//SYSPRINT is required. The SYSPRINT DD statement identifies the output data set that receives messages and output information from the Device Support Facility.

CLDSF (STAND-ALONE

The stand-alone version of the Device Support Facility is equivalent to the system-supported version. Execution does not involve an operating system; there is no job contr techniques that will cause the program to execute, and that dentifies the input and output streams. The IPL tape is a reproduction of the card deck (over 3000 cards).
The stand-alone version is invoked simply by loading the program into main storage (IPL the tape or card deck). When he program is fuly load, it

FF060000 00FFFFFF

The console, the command input stream, and the listing output stream (and optionally, the date and time-of-day) must now be identified.
operator Console device
The console is identified to the program simply by pressing the Request key.
COMMAND INPUT STREAM DEVICE (SYSIN)
The command input stream contains the command(s) that are executed by device support facility. The device types supported are:

- 2540
- 2520
- 3505
- 1052
- 1442
- 3210
- 2501
- 3215

Note that the Operator console may itself be specified as the command input device by entering the word CONSOLE in place of the above.

LISTING OUTPUT DEVICE (SYSPRINT)
The listing output device prints messages that occur during execution. The device types supported are:

- 1403
- 3800
- 3211
- 105
- $3203-1,2$ or 4
- 3210
- 1443
- 3215

Note that the Operator's console may itself be specified as the Listing Output device by entering the word CONSOLE in place of the above

DATE AND TIME-OF-DAY
Any string of eight or fewer characters may be entered, and will appear in the title line of the listing output pages. The ENTER key may be pressed without specifying a date or ime-of-day in which case the title line will contain blanks.

Device Support Facility Command

See examples on OLT 44.

Intervention Required State

Should a device, such as the printer or card reader, require intervention (that is, to make it ready), message ICK012 will be issued and the PSW will display the following

FF060000 00111111

erform the necessary intervention actions, and the program will proceed.

Program Termination

The Device Support Facility program terminates upon ncountering the end of the command input stream. The end of the command input stream is indicated by the character EOF. Should the console be used as the command input device, these characters are entered in response to the reques for the next command.

Upon normal program termination, the PSW is set to place the central processor into the wait state, and displays the following pattern:

00020000 00EEEEzz
The following zz values, in the rightmost byte of the PSW ndicate the highest condition-code encountered during execution:

- X‘00' - Decimal 0
- X ${ }^{\prime} 04^{\prime}$ - Decimal 4
- X ${ }^{\prime} 08^{\prime}$ - Decimal 8
- X'0C’ - Decimal 12
- X'10' - Decimal 16

When the program terminates, it may be started again by pressing the Request key. When started again, the requests for specification of the input and output devices, as well he date and time-of-day, may be satisfied simply by values for these parameters will be re-used.

ADDITIONAL CONDITIONS
o indicate the cause of certain types of terminating errors, the cause is set in the address field of the PSW and the entral processor is then placed in a wait state. The PSW displays the pattern:

00020000 O0EEEExx
The values of xx indicate

- X 13^{\prime} - SVC interrupt occurred
- X ${ }^{\prime} 14^{\prime}$ - Program interrupt occurre

X'15’ - Main Storage depleted
X'16' - I/O error detected
X'17’ - Data set not open

- X '18' - Write-to-operator issued, but no console exists
- X‘19’ - No end-of-data routine specified

Should the program terminate due to any of the above error it may be started again by pressing the Request key. When started again, he requests for specifcation orfer nput and tisfied simply by pressing the Enter key, in which case the previously entered values for these parameters will be re-used.

© Copyright IBM Corporation 1978

111101101
 ALTERNATE TRACK ASSIGNMENT ICKDSF/ICLDSF

Caution: The use of this program will destroy any existing data on the selected track. The customer should do the
flagging when that action is required. The information
provided here is to enable the CE to advise and assist the
customer when necessary.

INSPECT AND INIT COMMAND PARAMETERS

After a volume has been initialized, it may be necessary to inspect the volume for defective tracks. Defective tracks can be detected and assigned alternate tracks, and tracks that
have their defective-track flag on can be reclaimed.
The abbreviation for the Inspect command is INSP. The syntax of the Inspect command is.

EXAMPLES OF DEVICE SUPPORT FACILITY COMMANDS See Notes 1 through 3. alternate tracks to defective tracks.
ББINSPECT bUNITADDRESS (CUU) 5 БbINSPECT ŁUNITADDRESS (CUU)
NOVERIFYbDEVICETYPE (3350) ALLTRACKS bCHECK (n)
Example 2:
Reclaim tracks that were previously flagged defective if after checking they
are found to be good.

ЂపINSPECT БUNITADDRESS (CUU) 5 NOVERIFYbDEVICETYPE (3550) 5 ALLTRACKSbCHECK (n) \ddagger
RECLAIM
Validate the Home Address and write record zero (RO).
ЂБINITbUNITADDRESS (CUU)ち NOVERIFYbDEVICETYPE (3550) ALLTRACKSちVALIDATE

Example 4:
Assign alternate tracks unconditionally without checking track surfaces.
bIINSPECT bUNITADDRESS (CUU) \hbar NOVERIFYbDEVICETYPE (3550) \ddagger TRACKS (Cyl: Track, Cyl: Track,, Cyl: Track) b NOCHECK
UNITADDRESS:
This is replaced by DDNAME if volume is online to the operating system.
CUU:
DEVICETYPE: 250).

Enter 3350 if 13 is Enter 3330 ir volume is in native mode. compatibility mode.

Alltrack

CHECK-NOCHECK: CHECK will check the specified tracks for recording errors and assign an alternative only if the track is found to be defective. For n substitute a decimal number from 1 to 225 for the number of times a track is to be checked. (This number is forced to a specified). specified)
NOCHECK will not check tracks for recording errors. Alternates will b

This specifies reading and validating the Home Address and Record Zero

DEVICE SUPPORT FACILITY MESSAGES ICK003D REPLY 'U' TO PURGE VOLUME cuu CONTENTS, ELSE 'T'
Operator Response: Respond U to proceed with command processing; respond T to terminate the command.
ICK004D READY OFFLINE DEVICE cuu AND REPLY ' U ', ELSE ‘T
Operator Response: Ensure that the device is in the ready state, and respond U to continue processing the command or respond T o terminate the command.
ICK005E DEFINE INPUT DEVICE: 'INPUT= xxxx, cuu' Explanation: This messages appears only in a stand-alone nvironment. The operator must specify the location of the command input stream or CONSOLE
ICK006E DEFINE OUTPUT DEVICE: 'OUTPUT=xxxx, cuu'
Explanation: This message appears only in a stand-alone nvironment. The operator must specify the location of the device support facility output stream or CONSOLE

ICK011E I/O ERROR - error type cuu, command, csw, sense
Explanation: This message appears only in a stand-alone environment. An I/O error of the type indicated occurred on the device at address cuu. The command in error is on the device at address cuu. The command in error is
indicated as are the contents of the channel status word (CSW) and the results of a sense operation against the
device
ICK012E INTERVENTION REQUIRED, cuu
Operator Response: Ensure that the device is in a ready state Notes:

1. The Device Support Facility commands must be entered within the margins of 2 and 72 . If the length of the command exceeds space 72 , a continuation mark $1+$ sign in 73) must be entered, and the command continued to the next line.
Values or variables can be specified with some keyword parameters. The value or variable is entered within parentheses following the keyword parameter. A typical keyword with a value is VOLID (serial).
2. Delimiters - When a Device Support Facility command is issued, the command name must be separated from the first parameter by one or more blanks. Separate the firameters from each other by one or more blanks or comma. Do not use a semicolon as a delimiter; any characters that follow a semicolon are ignored.
3. Line Continuations - To continue a command to the next line, specify a plus or a minus sign as the last next line, specify a plus or a minus sign as the last used, leading delimiters are removed from the continued line.
$12000000000000000000000000000000000$

Sect ID	Refnum	Error Messages and Console Communications	Diagnostic Information	CE Action
T3350x	$\begin{gathered} \text { CECOM } \\ 038 \end{gathered}$	INT REQ, R to retry, T to term	After replying, the Start $1 / O$ is retried or the OLT is terminated.	1. Determine the cause of Intervention Required Status, then reply. 2. Ensure that the drive is ready.
T3350x	$\begin{array}{\|c\|c\|c\|} \hline \text { CECOM } \\ \hline \end{array}$	CC = X , R TO RETRY, T TO TERM	This message is sent to the console to warn of catastrophic failure (condition code $=2$ or 3). Usually when the storage control is busy or not operational, further testing is invalid. Determine if the controller is "hung" before continuing. If so a Halt I/O failed to clear the condition. After replying, the Start I/O is retried or the OLT is terminated.	
T3350x	$\begin{array}{\|c\|} \hline \text { CECOM } \\ \hline 041 \end{array}$	DEV Not 3350	CDS type code for the device under test is not ' $0 B^{\prime}$ (3350). '09' ($3330-1$), or 'OD' (3330-11).	Correct the CDS type code for the device to be tested or equate (by entering 'EQU') the device address to some existing CDS with the desired type code.

Sect ID	REFNUM	Error Messages and Console Communications	Diagnostic Information	CE Action
T3350X	x $\mathrm{X090}$	FPM MODE	File Protect mode was established. This section needs write space so it is not allowed to run.	1. Reply YES (Y) to the OLT message CAN VOL DATA ON XXX BE DESTROYED. 2. Then select the CE track (cylinder 1024, heads 0 through 29) to prevent destruction of valuable data.
Note:	Nine (9) standard error numbers (REFNUM) have been reserved for errors encountered by the Start $1 / 0$ used by OLT sections. These error numbers are XX091 through XX099, where $X X$ is the routine number.			
T3350X	XX091	ENVIRONMENTAL ERROR	An error occurred on a test CCW chain that established Error Logging mode or storage control was in Force Logging mode.	If a log overflow occurred, ignore the following actions. 1. If the storage control is in Normal mode and this message appears intermittently, set the storage control to CE Normal mode. 2. If the storage control is in CE Normal mode and the error looks solid, analyze errors as shown in Common Action B (OLT 28).
T3350X	x $\times 092$	CHANNEL CHECK	This error message is printed by the STARTIO subroutine when channel checks are found in the CSW status. The test is terminated when channel checks are found.	Channel checks are probably not due to subsystem failure. Run CPU channel tests.
T3350X	XX093	WAIT TIMED OUT	This error message is printed by the STARTIO subroutine when the test has timed-out while waiting for ending status. The test is terminated when it times-out.	Ending status was not received from the CCW chain printed with this message. The subsystem may have become Busy or not operational, which invalidates further testing. Look for messages to this effect following REFNUM 93. If the control unit is "hung", the storage control must be reset before continuing the test.
T3350X	XX094	ERR ON SENSE	This error message is printed by the STARTIO subroutine. When the sense data is not posted, another STARTIO is tried.	1. If this failure persists 32 times (see REFNUM XX095), continue running tests to determine if Sense I/O failure is intermittent or solid. 2. Run storage control tests. 3. Run CPU channel test for Sense I/O.
T3350X	XX095	32 Retries	This message is printed before terminating a section if either CU Busy or Invalid Sense was received on STARTIO and retried 32 times. See example on OLT 60.	1. Continue running tests to determine if Sense I / O failure is confined to this OLT. 2. Run storage control tests. 3. Run CPU channel test for Sense $1 / 0$.

HDA HA/RO SCAN

Sect ID	refnum	Error Messages and Console Communications	Diagnostic Information	CE Action
T3350PSA	$\begin{gathered} \text { CECOM } \\ \hline 033 \end{gathered}$	ENTER TRACK(S) FOR HA/RO CHECK, 'ALL' OR 'END' AS CCCHH OR СССНН-сССН (IN HEX)	Valid track entries are as follows:	Example: Enter one track ('00501 ', CYLINDER 5, HEAD 1) or some portion of the HDA ('00501' - '01008', CYLINDER 5 , HEAD 1 through CYLINDER 16, HEAD 8) to be scanned. At the conclusion of scanning the last track selected, a statistical summary is printed and routine 2 is re-entered to allow selection of some other tracks or End. Default (EOB) is to check the entire logical volume.
T3350PSA	$\begin{gathered} \text { CECOM } \\ 034 \end{gathered}$	enter ro data length as '8', or 'any'		Enter R0 data length to be scanned; eight bytes if a standard OS/VS HDA is mounted, and any number of bytes if no data length test is required. The test defaults (EOB) to an 8 -byte data length scan.

HDA HA/R0 SCAN

Sect ID	Refnum	Error Messages and Console Communications	Diagnostic Information	CE Action
T3350PSA	00001	VOL ID ON XXXX IS YyYyyyyyy	This message is printed if the HDA under test is labeled, where $X X X X$ is the drive address. If no label record (cyl 0 , hd 0 , R3) exists or it cannot be read, YYYYYYYYYY reads -NONE-. This message is preceded by error REFNUM 00002 if some hardware error other than No Record Found terminates the operation. The HDA scan continues.	This is a normal message unless preceded by error REFNUM 00002.
T3350PSA	00002	I/O ERR READING VOL ID	This message warns of some hardware failure other than No Record Found while trying to read track 0, data Record 3. The HDA scan continues.	1. If the error is a Data Check and the drive has already been tested error free using microdiagnostics, the problem is with the volume label. The operator must use the appropriate utility to restore the label. See OLT 30 for utility descriptions. 2. If the error is not a Data Check, use the printed status and sense data, then go to Common Action B (OLT 29).
T3350PSA	00003		This message warns of some error while trying to read HA and/or RO. The HDA scan continues. This message may be followed by REFNUM 00007, which identifies an incorrect HA and/or RO Read.	1. If the error is followed by REFNUM 00007 or 00009, see action for that REFNUM. 2. If the error is not followed by REFNUM 00007 or 00009 , use the status and sense data printed with REFNUM 00003, then go to Common Action B (OLT 29).
T3350PSA	00007		This message warns of HAs and/or ROs that are not as expected. XX---XX in EXPD field(s) indicates data insignificant. XX---XX in any RCVD field indicates significant data was not read into appropriate buffer (incomplete operation).	1. If the error was preceded by REFNUM 00003 and the error was not a Data Check or No Record Found, go to Common Action B (OLT 29). 2. HA miscompare may be due to volume format and drive mode jumpering which do not agree. Compare EXPD and RCVD HA to $=0000010000$ shows EXPD native MODE jumper and RCVD compat FORMAT. If drive mode (jumper) is correct go to 3 . 3. Verify that all microdiagnostics run error free on this drive. If there are no microdiagnostic errors, run OLT T3350WT on the CE 4. If T3350WT runs error free, the problem is with the HA or RO on this track. Restore the track with the appropriate utility. See OLT 30 for utility descriptions. Caution: Restoring the HA and RO destroys the remaining data on the track.
T3350PSA	00008		This message warns of defective or alternate flagged tracks that point to mate tracks that are not correctly flagged, or if flagged, RO does not point back to the ALT/DEF track (invalid assignment). Alternate tracks with incorrect mates do not have to be corrected.	If the track is defective, the operator must use the appropriate utility to restore the track. See OLT 30 for utility descriptions.

HDA HA/R0 SCAN

Sect ID	Refnum	Error Messages and Console Communications	Diagnostic Information	CE Action
T3350PSA	00009	data check on ha or ro	This message is printed immediately to warn of a Data Check on the record indicated (see the failing CCW in REFNUM 0003 , marked with an *, to determine the failing command) The sense data is reproduced in its entirety to allow absolute Byte breakdown. The most significant byte is Sense Byte 7 identified by FM in the message. Sense Byte 7 Description:	
T3350PSA	0000A		This message is printed immediately to warn that some error other than a Data Check occurred in the chain displayed. Data integrity information for the record indicated is lost. If this was the 30th error on this cylinder, the message including TEST TERMINATED is added to the message, a statistica summary is printed, and the OLT terminates.	Use the printed status and sense data in REFNUM 00003, then proceed to Common Action B (OLT 29).

T3350PSA ERROR MESSAGES

HDA HA/RO SCAN

Sect ID	REFNUM	Error Messages and Console Communications	Diagnostic Information	CE Action
T3350PSA	0000B		This message follows abnormal termination or cancellation of the OLT. It also follows testing of the selected portions of the HDA, but the error statistics may not represent the condition of the entire HDA. ERR TYPES 40 through 53 are derived from the sense data provided on Data Checks. ERR TYPE XX includes all non-Data Check errors (hardware failures). Totals by head number (HD \#) and by ERR TYPE number are shown, as well as an overall total. The maximum value for any individual ERR TYPE \#/HD\# error counter is 255. If any additional errors occur, the error counter is locked at 255 until the error message is printed. A count of 255 may represent more than 255 errors. If the drive (volume) being scanned has fixed heads, the actual cylinders that failed determine whether the failing heads are movable or fixed. See the detailed message corresponding to this error and see REFNUMs 00003, 00007, or 0000A for identification of logical cylinder and head numbers. Then convert the logical cylinder and head numbers to physical fixed head numbers by using the following charts:	This output should be analyzed to determine if data errors or hardware failures follow any pattern. Many errors on one head, for instance, may indicate a defective head. Refer to the detailed error messages (REFNUM 00009) for more specific information on tracks/records in error. Follow the CE Action under REFNUM 00009.
T3350PSA	0000C		This message follows the ERROR STATISTICS TABLE above. Defective and alternate tracks are summarized with NO MATE appearing beside those tracks flagged but not pointing to a valid or readable mate. Detailed information for these faulty ALT / DEF tracks is printed immediately and is found preceding this message (see REFNUM 00008). All tracks in the alternate area are flagged and point to themseives until assigned to a defective track. These are not summarized here.	No action is necessary unless DEFECTIVE tracks with the NO MATE message appear. Then, the operator must use the appropriate utility to restore the HDA. See OLT 30 for utility descriptions.

HDA BURST CHECK

Sect ID	REFNUM	Error Messages and Console Communications	Diagnostic Information	CE Action
T3350PSB	$\begin{aligned} & \text { CECOM } \\ & 033 \end{aligned}$	ENTER TRACKS(S) FOR DATA CHECK 'ALL' or 'END' as CCCHH OR CCCHH-CCCHH (IN HEX)	Entering this track select mode of testing (routine 2) causes the OLT to go into a record-at-a-time test mode where selection of routine 1 (default) allows the faster cylinder-at-a-time mode. Do not use this routine 2 mode to check all tracks. Valid track entries are as follows:	Enter one track or some portion of the HDA to be checked. At the conclusion of the burst check of the last track selected, a statistical summary is printed and routine 2 is re-entered to allow selection of some other track(s) or End. Default (EOB) is to check all tracks.
T3350PSB	$\begin{aligned} & \text { CECOM } \\ & 035 \end{aligned}$	ENTER TRACK TO LOOP AS CCCHH IN HEX		Enter one track address (in hex) to be burst checked in a tight loop. Default (EOB) is to cylinder 0 , head 0 .

$\begin{gathered} \text { BB0230 } \end{gathered}$	$\begin{aligned} & 2358081 \\ & \text { Part No. } \end{aligned}$	$\begin{gathered} 441300 \\ 31 \mathrm{Mar} 76 \end{gathered}$	$\begin{aligned} & \hline 441308 \\ & 18 \text { Aug } 78 \end{aligned}$			

HDA BURST CHECK

Sect ID	REFNUM	Error Messages and Console Communications	Diagnostic Information	CE Action
T3350PSB	00001	VOL ID ON XXXX IS YYYYYYYYYY	This message is printed if the HDA under test is labeled and XXXX is the drive address. If no label record (cyl $0, \mathrm{hd} 0, \mathrm{R} 3$) exists or it cannot be read, YYYYYYYYYY is -NONE-. This message is preceded by error REFNUM 00002 if some hardware error other than No Record Found terminates the operation. The HDA scan continues.	This is a normal message unless preceded by error REFNUM 00002.
T3350PSB	00002	-I/O ERR READING VOLID	This message warns of some hardware failure other than No Record Found while trying to read track 0, data Record 3. The HDA scan continues.	1. If the error is a Data Check and the drive has already been tested error free using microdiagnostics, the problem is with the volume label. The operator must use the appropriate utility to restore the label. See OLT 30 for utility descriptions. 2. If the error is not a Data Check, use the printed status and sense data, then go to Common Action B (CLT 29).
T3350PSB	00004	SEARCH FAILED ON REC\# XX ...CYL\#=XXXX,HD\#=XX(HEX)	This message indicates the search for record number XX failed after a prior read of record number XX was completed successfully. The test continues on next record.	1. If this failure first occurred on REC \#OO, then the RO on this track is missing. Run OLT T3350PSA on this track. For any other REC \#, see Steps 2 and 3. 2. If the storage control is not in Normal mode, this is printed as a result of reading/searching any Count field with an intermittent uncorrectable error. In other than Normal mode, testing moves to the next track and leaves the remainder of this track untested. 3. If the storage control is in Normal mode, the problem is an intermittent read error. Follow the CE Action for REFNUM 00009.
T3350PSB	00006	UNCORRECTABLE DATA CHECK IN HA FIELD SKIP BURST CHECK ON THIS TRACKCYL\#=XXXX, HD\#=XX (HEX)	This message indicates the HA or CNT field on this track contains an uncorrectable Data Check, preventing burst check on subsequent records on this track. This message is followed by REFNUM 00009. Test continues on next track.	1. If the message reads HA FIELD, run T3350PSA on this track. 2. If the message reads CNT FIELD, do one of the following: a. Backup this track and then test it using OLT T3350WT. Use IEHATLAS to save the track. b. Have the customer perform the appropriate data recovery action for this track, record, data set, or volume.

11 T3350PSB ERROR MESSAGES

HDA BURST CHECK

Sect ID	Refnum	Error Messages and Console Communications	Diagnostic Information	CE Action
T3350PSB	00009		This message is printed immediately to warn of a Data Check on the record indicated. The sense data is reproduced in its entirety to allow absolute identification of the data error. See SENSE 100 for a Sense Byte breakdown. The most significant byte is Sense Byte 7, identified by FM in the message at the left. Sense Byte 7 Description: Format 4 Uncorrectable Data Checks are caused by a failure while reading data and should be considered as HDA failures or hardware failures in the tested drive. Format 5 Correctable Data Checks are handled by system recovery procedures.	The CE action to be taken when a Data Check is discovered depends upon the analysis of the 3350 HDA Burst Test Error Statistics Table (REFNUM OOOOB) and this detailed error message. Consistent Data Checks may indicate a defective head or drive read problem. Run T3350WT (using a CE track) or run read/write microdiagnostics to verify that this drive and HDA are OK. If the drive has already been checked, the error may be related to the HDA. The HDA can be tested using T3350WT (see OLT 26 for description) or Device Support Facility (DSF) see OLTT 30 for description. Write/read failures on a single track indicate that it should be flagged as defective. The HDA must be corrected by the operator using the appropriate utility. See OLT 30 for utility descriptions.
T3350PSB	0000A	$\begin{aligned} & \text { I/O ERRS READING REC\# XX (HEX) } \\ & \text { (EXCESSIVXXX HD\#=XX (HEX).... } \\ & \text { (EXDWR ERRS ON CURRENT CYL, TEST TERMINATED) } \end{aligned}$	This message is printed immediately to warn that some error other than a Data Check occurred in the chain displayed. Data integrity information for the record indicated is lost. If this was the 30th error on this cylinder, the message including TEST TERMINATED is added to the message, a statistical summary is printed, and the OLT terminates.	Use the printed status and sense data, then go to Common Action B (OLT 29).
T3350PSB	0000B		This message is printed following testing on the portion of the HDA selected, following abnormal termination, or following cancellation of the OLT. ERR TYPES 40 through 53 are derived from the sense data provided on Data Checks. ERR TYPE $X X$ is a catchall type to include all non-Data Check errors (hardware failures). Totals by head number (HD\#) and by ERR TYPE number are shown as well as an overail total. The maximum value for any individual ERR TYPE \#/HD\# error counter is 255 . If any additional errors occur, the error counter is locked at 255 until the error message is printed. A count of 255 may represent more than 255 errors. For fixed heads, see the Diagnostic Information under T3350 PSA, Refnum 0000B.	This output should be analyzed to determine if data errors or hardware failures follow any pattern. Many errors on one head for instance, may indicate a defective head. Refer to the detailed error messages (REFNUM 00009) for more specific information on tracks/records in error. Follow the CE Action under REFNUM 00009.
T3350PSB	00000	RECORD XX COUNT FIELD NOT 8 BYTESCYL\#=XXXX HD\#=XX(HEX)	This message warns of some record, XX, which does not have an 8 -byte Count field.	The operator must use the appropriate utility to restore the track. See OLT 30 for utility descriptions.

SKIP DISPLACEMENT DIRECTORY

Sect. ID	REFNUM	Error Messages and Console Communications	Diagnostic Information	CE Action
T3350 PSC	$\begin{aligned} & \text { CECOM } \\ & 520 \end{aligned}$	DEVICE IS NOT PLUGGED NATIVE 3350, FIX PLUG AND RERUN ROUTINE.	The drive under test is not plugged in native mode. The OLT terminates.	Plug native and rerun the OLT, see Figure 1 on HDA 711 for plugging. After running routines M2 or M3 reinitialization will be required to restore compatibility format. After running routine M1 the track(s) selected by M1 must be reinitialized
T3350 PSC	$\begin{gathered} \text { CECOM } \\ 521 \end{gathered}$	SD DIRECTORY MICRO CHANGE IS NOT INSTALLED.	The functional microcode in the control unit will not allow seeks to cylinder 561. OLT terminates.	Re-IMPL control unit with functional microcode disk P/N 4168811 at EC 437465 with REA 13-57853 or later.
T3350 PSC	$\begin{gathered} \text { CECOM } \\ 522 \end{gathered}$	ROUTINE TERMINATED	The OLT has abnormally terminated.	Correct errors indicated by other CECOMs and rerun the OLT.
T3350 PSC	$\begin{gathered} \text { CECOM } \\ 523 \end{gathered}$	VOL ID ON xxxx IS yyyyyyyyy	The volume ID on device XXXX is YYYYYYYYYY. If the volume has no ID, ... - none - will appear in the second field.	Normal message
T3350 PSC	$\begin{gathered} \text { CECOM } \\ 524 \end{gathered}$	DIRECTORY RECORD ALREADY EXIST, DO YOU WISH TO OVERLAY? REPLY ' Y ' TO CONTINUE, ‘T' TO TERMINATE	At least a partial directory was found on cylinder 561.	Normally a ' T ' reply should be entered. A reply of ' Y ' will direct the OLT to discard this old directory and continue building a new one in its place. A reply of ' T ' will direct the OLT to retain the existing directory.
T3350 PSC	$\begin{aligned} & \text { CECOM } \\ & 525 \end{aligned}$	RHA FAILED ON CCCCHHHH, CANNOT DETERMINE SD. REPLY ‘ R ’ TO RETRY, ' T ' TO TERMINATE, 'I' TO IGNORE.	A Read Home Address (RHA) sense CCW chain failed to execute properly on track cccchhhh.	' R ' will retry the chain; ' T ' will terminate the OLT; I' will cause the OLT to assume a zero SD for the track in question and continue scanning. Use Sense Data to determine the type of error. If Data Check reply ' 1 ', if other error reply ' T ' and go to Common Action B (OLT 29).
T3350 PSC	$\begin{gathered} \text { CECOM } \\ 526 \end{gathered}$	DIRECTORY BUILD ROUTINE IS COMPLETE.	This message is output to indicate that routine Build SD Directory has come to normal completion and that an SD directory now exists on cylinder 561 of the tested volume.	Normal message
T3350 PSC	$\begin{aligned} & \text { CECOM } \\ & 527 \end{aligned}$	UNRECOVERABLE ERRORS HAVE OCCURRED DURING THE DIRECTORY BUILD.	The OLT has terminated for some reason (perhaps a ' T ' response was given to a CECOM with a terminate option) and is unable to successfully do cleanup operations on the existing SD directory due to I / O errors. The OLT will terminate.	Check the hardcopy output for failing CCW and sense. Correct the problem and rerun the routine. Do not attempt to restore the HDA from this erroneous directory. Go to Common Action B, OLT 29.
T3350 PSC	$\begin{gathered} \text { CECOM } \\ 528 \end{gathered}$	DIRECTORY BUILD IS INCOMPLETE	The OLT has terminated for some reason (perhaps a ' T ' response was given to a CECOM with a terminate option) and the OLT has marked the SD directory as incomplete. This message will occur if there is not enough room on cylinder 561 for the entire directory to be written. This condition should never occur. Cylinder 561 should accommodate all anticipated SD information. The directory is still usable, however some non-zero SD data may not be recorded in it.	Use microdiagnostic routine B1 to ensure that all available tracks on cylinder 561 are useable (not flagged defective) then rerun OLT. If this message persists the directory should be used only for recovery of selected track(s) (routine M1) to limit rewriting HAs with inaccurate SD data.
T3350 PSC	$\begin{aligned} & \text { CECOM } \\ & 529 \end{aligned}$	FPM MODE -- RTN TERMINATED	The volume is in file protect mode (FPM) and could not be allocated to this routine. The OLT terminates.	Vary the volume offline. Restart OLT and reply Yes to "Can data be destroyed" message. If running in default mode (Build SD directory), writing will occur only on CE cylinder 561.

1 (

T3350 PSC ERROR MESSAGES
SKIP DISPLACEMENT DIRECTORY

Sect. ID	REFNUM	Error Messages and Console Communications	Diagnostic, Information	CE Action
T3350 PSC	$\begin{aligned} & \text { CECOM } \\ & 530 \end{aligned}$	ERROR TRYING TO READ THE VOLID. REPLY 'C' TO CONTINUE, 'T' TO TERMINATE.	The OLT could not read the volume ID.	Go to common action B, OLT 29. 'C' will continue with the routine selected, ' T ' will terminate the OLT.
T3350 PSC	$\begin{aligned} & \text { CECOM } \\ & 5322 \end{aligned}$	NO DIRECTORY RECORDS HAVE BEEN WRITTEN.	This message is output to inform the user that routine Build SD Directory has not written any directory on cylinder 561. Preceding CECOM messages should indicate conditions which brought this about. The OLT terminates.	Respond to preceding CECOM messages.
T3350 PSC	$\underset{534}{\text { CECOM }}$	CARD SEQ NUMBER xxx CONTAINS NONSEQUENTIAL CCH.	A cch (cylinder/head) entry on the SDMAP card* (number = xxx) in question was not higher than the last cch entry recognized by the OLT. The OLT terminates.	Correct the card* in question and rerun the OLT.
T3350 PSC	$\begin{gathered} \text { CECOM } \\ 540 \\ \hline \end{gathered}$	CARD SEQ NUMBER xxx CONTAINS NONHEX DATA.	The OLT terminates.	Correct the SDMAP card* (number $=x x x$) in question and rerun the OLT.
T3350 PSC	$\begin{gathered} \text { CECOM } \\ 541 \end{gathered}$	CARD SEQ NUMBER xxx DOES NOT HAVE SDMAP IN COLS 1-5.	An SD data card did not have SDMAP in card* (number $=x \times x$) cols $1-5$. OLT terminates.	Correct the card in question and rerun the OLT.
T3350 PSC	$\begin{gathered} \text { CECOM } \\ 542 \end{gathered}$	CARD SEQ NUMBER xxx IS OUT OF SEQ.	An SDMAP card* (number $=x \times x$) was out of sequence or a sequence number was skipped. The OLT terminates.	Resequence the deck, inserting blank SDMAP cards* to complete the sequence. Check to be sure no SDMAP cards are missing. Rerun the OLT.
T3350 PSC	$\begin{aligned} & \text { CECOM } \\ & 544 \end{aligned}$	NO CARD WITH SEQ NUMBER 001 FOUND.	The first SDMAP card* in the deck must contain a sequence number of 001 . This check is necessary to insure that the OLT can identify the HDA to which the SD data deck belongs. The OLT terminates.	Correct the SDMAP deck* and rerun the OLT.
T3350 PSC	$\begin{gathered} \text { CECOM } \\ 545 \end{gathered}$	EOF OCCURRED WITHOUT FINDING 'FE' IN INPUT.	While reading SDMAP cards*, an EOF occurred before the end of data marker ' $\mathrm{FE}^{\prime *}$ was encountered. The OLT terminates.	Check the deck for missing cards*, rerun the OLT.
T3350 PSC	$\begin{gathered} \text { CECOM } \\ 546 \end{gathered}$	PERM ERROR OCCURRED WHILE READING CARDS.	An uncorrectable I/O error occurred while reading the SDMAP card* deck. The OLT terminates.	Check for invalidly punched cards. Correct the error and rerun the OLT.
T3350 PSC	$\begin{aligned} & \text { CECOM } \\ & 547 \end{aligned}$	xxxxxxxxxxxxxxxx $=$ HDA SERIAL \#. PROCEED Y/N.	The OLT has SD data ready for HDA with serial number xxxxxxxxxxx.	Check to be sure the HDA with this serial number is mounted at the device address specified at device/test/option time. If the correct HDA is under test, respond ' Y '. If not, respond ' N ' to terminate the OLT; mount the correct HDA, or specify the proper device address, and rerun the OLT.

SDMAP CARD DECK CONTAINS THE SKIP DISPLACEMENT information. See OLT users guide (Order number D99-3350) for detailed information.

Sect. ID	REFNUM	Error Messages and Console Communications	Diagnostic Information	CE Action
T3350 PSC	$\begin{gathered} \text { CECOM } \\ 554 \end{gathered}$	HA/RO HAS BEEN ALTERED AS REQUESTED.	This message is informational and will follow successful. completion of CECOM 564.	Normal
T3350 PSC	$\begin{gathered} \text { CECOM } \\ 555 \end{gathered}$	cchh ENTRY IS INVALID; HA HAS NOT BEEN ALTERED	The cchh entry in response to CECOM 564 was invalid for the type of HDA under test. This message is always followed by CECOM 564.	Check ccchh entry to be sure it is not too large. Check for illegal characters.
T3350 PSC	$\begin{aligned} & \text { CECOM } \\ & 558 \end{aligned}$	CANNOT READ SD DIRECTORY.	A record in the SD directory cannot be read because of a permanent I/O error or because the record is invalid. If encountered while running routines M1 or M2, this message is followed by message CECOM 570. If encountered while running routine M3, the OLT terminates.	Go to Common Action B, OLT 29 and determine cause of error. If no error is found the record is invalid and the SD information must be entered manually using routine M1.
T3350 PSC	$\begin{gathered} \text { CECOM } \\ 559 \end{gathered}$	ALL TRACKS BEYOND END OF THE DIRECTORY WILL HAVE SD=0	This message is output with CECOM 568 to indicate that only a partial SD directory has been found and if directed to continue, the OLT will use $\mathrm{SD}=0$ for all tracks beyond the end of the directory.	Informational message
T3350 PSC	$\begin{gathered} \text { CECOM } \\ 560 \end{gathered}$	WARNING - ALL DATA ON THE TRACKS WRITTEN WILL BE DESTROYED.	This message is output each time the OLT is run.	If the tracks having HAs rewritten contain valuable data, respond ' T ' to the CECOM 562 that follows. If the data can be destroyed, reply 'GO',
T3350 PSC	$\underset{561}{\text { CECOM }}$	DRIVE MUST HAVE BEEN RUNNING FOR TWO MINUTES BEFORE CONTINUING.	This message is output as an alert that if the drive has recently been turned off, it must be allowed to warm up.	Do not respond ' G ' to the CECOM 562 that follows until the specified warm-up time or 5 five minutes has been exceeded.
T3350 PSC	$\begin{gathered} \text { CECOM } \\ 562 \end{gathered}$	DUMP ALL VALUABLE DATA BEFORE CONTINUING. ENTER 'T' TO TERMINATE OR 'GO’ TO CONTINUE.	This message is output as a reminder to backup all valuable data on any track that will have the HA \& RO rewritten.	If valuable data resides on those tracks that will be rewritten, respond ' T '. If the data can be destroyed, respond ' GO '.
T3350 PSC	$\begin{gathered} \text { CECOM } \\ \hline 563 \end{gathered}$	SD DIRECTORY DOES NOT EXIST ON THE HDA. ENTER ' T ' TO TERMINATE, 'GO’ TO CONTINUE.	This message is output if the OLT cannot find an SD directory on cylinder 561 of the HDA under test.	If SD data is to be input from the console, respond ' GO '.
T3350 PSC	$\underset{564}{\text { CECOM }}$	ENTER TRACK TO WRITE HA AS CCCHH (DEC) OR XCCCHH (HEX).		Enter the track number that is to have HA \& RO rewritten by routine M1.

3350	B80262	2358837	441308				
	Seq. 2 of 2	Part No. ()	18 Aug 78				

T3350 PSC ERROR MESSAGES

SKIP DISPLACEMENT DIRECTORY

Sect. ID	REFNUM	Error Messages and Console Communications	Diagnostic Information	CE Action
T3350 PSC	$\begin{gathered} \text { CECOM } \\ 565 \end{gathered}$	EOB RESPONSES WILL SET SD DATA TO ZERO. ENTER SDN IN HEX AS 'XXXX' CR EOB FOR CYI TRK - CCCHH.	This message is output to elicit SD data from the console for track cechh. The n indicates the SD field for which data is requested.	If the SD field is to be zero, respond with End of Block. If SD field is to be nonzero, enter the value.
T3350 PSC	$\begin{gathered} \text { CECOM } \\ 566 \end{gathered}$	I/O ERROR READING HA/RO - CCCHH. ENTER 'R' TO RETRY OR ‘T’ TO TERMINATE.	An I/O error other than a data check occurred while reading HA/RO (or writing if 'WRITING' is specified) on track ccchh.	Check hardcopy output for failing CCW and sense information. Respond ' T ' to terminate or ' R ' to retry the chain. If error persists go to common action B, OLT 29.
T3350 PSC	$\begin{gathered} \text { CECOM } \\ 567 \end{gathered}$	NO SD DIRECTORY ON HDA - CARD RESTORE? ENTER ‘Y', YES OR ' T ', TERMINATE.	A full restore was requested. The OLT was unable to locate an SD directory on cylinder 561. The option is to input SD data from a card deck.	If a card deck is to be used, respond ' Y '. Respond ' T ' to terminate the OLT. See OLT users guide (order number D99-3350) for details on ordering a card deck containing SD data.
T3350 PSC	$\begin{gathered} \text { CECOM } \\ 568 \end{gathered}$	HDA CONTAINS A PARTIAL SD DIRECTORY. CONTINUE WITH PARTIAL DIRECTORY. ENTER ' Y ', YES OR ' N ', NO.	This message is output when routine M1, M2 or M3 is requested and the OLT can only find a partial SD directory on cylinder 561.	Reply ' N ' to terminate the OLT. If routine M1 or M2 has been selected, reply ' Y ' will cause tracks beyond the end of the directory, which are rewritten, to output CECOM 565 to elicit SD data from the console. If routine M3 has been selected, reply ' Y ' will cause all tracks beyond the end of the directory, which are rewritten, to use $\mathrm{SD}=0$.
T3350 PSC	$\begin{gathered} \text { CECOM } \\ 5699 \end{gathered}$	PERMANENT ERROR READING THE SD DIRECTORY.	This message is output to indicate that part, or all of the SD directory on cylinder 561 is unreadable. This message is always followed by message CECOM 558.	Information only
T3350 PSC	$\begin{aligned} & \text { СЕСОМ } \\ & 570 \end{aligned}$	ENTER ' T ' - TERMINATE, 'S' - SKIP RECORD, OR ' N ' - CONTINUE WITH NO DIRECTORY.	This message always follows message CECOM 558.	' T ' - terminate the OLT; ' S^{\prime} skip the directory record in error (all SD data that would have come from the skipped record will be set to zero); ' N ' - from this point on, bad tracks will cause message CECOM 565 to be output, requesting SD data from the console.
T3350 PSC	$\begin{aligned} & \text { CECOM } \\ & 001 \end{aligned}$	ERROR ENCOUNTERED	This error print is output with CECOMs that give the user an option to retry a failing chain.	The user should examine the SENSE and CCW to determine the problem. Go to common action B, OLT 29. Retry the chain after the problem is corrected.

Sect ID	REFNUM	Error Messages and Console Communications	Diagnostic Information	CE Action
T3350WT	$\begin{gathered} \text { CECOM } \\ 064 \end{gathered}$	ENTER TRACK TO TEST AS CCCHH (DEC) OR XCCCHH (HEX) DUMP VALUABLE DATA BEFORE CONTINUING, ENTER 'T' TO TERM OR SELECT CE TRACK (CYL 1024, ENTER 'X400HH')		Enter the track address to be tested or terminate the test. If a head is to be tested, use a CE track. Enter 'X40001' to run the write/read test on the CE cylinder 1024, head 1. Enter ' X 4000 A ' to run the write/read test on the CE cylinder 1024, head 10. If tests have been run successfully on the CE track and the data on the track to be tested is considered scratch, then a non-CE track can be tested. The track address can be entered in either decimal or hex. Enter 05201 or ' X03401' to test cylinder 52, head 1. Enter 00311 or 'X0030B' to test cylinder 3, head 11. Note: One track on the CE cylinder is error free and suitable for running OLT T3350 WT. A label on the rear of the HDA will identify the error free track. If no label is present track 1 is error free. Use parameters ' X 4000 HH ' where HH is the track number in hex.
T3350WT	$\begin{aligned} & \hline \text { CECOM } \\ & 065 \end{aligned}$	**WARNING** TESTING ON TRACK XXX XX (CCC HH IN DEC) all data on this track will be destroyed		Verify and double check that the track to be tested is the one that you desire.
T3350WT	$\begin{aligned} & \text { CECOM } \\ & 066 \end{aligned}$	REPLY 'GO' TO PROCEED, 'C' TO CHANGE OR 'T' TO TERM		If you do not want to destroy data on the track described in CECOM 065, reply ' C ' to return to the track select mode (CECOM 064). If you do not want to continue T3350WT, reply ' T ' to terminate the OLT. If it is OK to destroy the data on the track described in CECOM 065, reply ' GO' to start the write/read test.
T3350WT	$\begin{gathered} \text { CECOM } \\ 067 \end{gathered}$	defective track xxx xx (CCC hy in dec) to be unflagged OR ALTERNATE TRACK XXX XX (CCC HH IN DEC) TO BE UNFLAGGED	A defective or alternate track has been selected for the write/read test. Before testing can continue, the Home Address must be rewritten with bits 6 and 7 of the flag byte set to 00.	If this track is not to be tested, reply "C" or " T " to the CECOM 066 message that follows. If this track is to be tested, reply "GO". The track is re-flagged at the conclusion of testing.
T3350WT	$\begin{aligned} & \text { CECOM } \\ & 068 \end{aligned}$	*WARNING*DEFECTIVE TRACK XXX XX(CCC HH IN DEC) NOT RE-FLAGGED OR *WARNING*ALTERNATE TRACK XXX XX(CCC HH IN DEC) NOT RE-FLAGGED	A defective or alternate flagged track was tested. At the conclusion of testing, the Write HA/RO chain failed to re-flag this track.	Analyze the failure information presented with REFNUM 054 and: 1. Run T3350PSA, routine 2, and select this track (in hex) to determine the extent of the damage. 2. Run T3350PSA to scan the HDA for damage or erroneous HA or RO fields. Restore HA and RO on the track tested if necessary. 3. Go to Common Action C (OLT 29).
T3350WT	$\begin{gathered} \text { CECOM } \\ 069 \end{gathered}$	CORE NOT AVAILABLE TO WRITE RECORDS $>4 \mathrm{~K}$ or $>2 \mathrm{~K}$	The OLT attempts to get a Morecore Region of 4096 to 8192 bytes. If the message reads $>4 \mathrm{~K}$, only records 4096 bytes or shorter will be written. If the message reads $>2 \mathrm{~K}$ only records 2048 bytes or shorter will be written. The test continues.	If the maximum test capability is desired, increase the region for OLTEP job. See the OLTEP system library manual for the region requirements for a 16 K OLT.
T3350WT	$\begin{aligned} & \text { CECOM } \\ & 070 \end{aligned}$	VOL ID ON XXXX IS YYYYYYYYYY	If the VOL ID (YYYYYYYYYY) is blank, this volume is unlabeled.	Verify that the correct drive and volume were selected before continuing. If either is incorrect, reply " T " to CECOM 064.
T3350WT	$\begin{gathered} \text { CECOM } \\ 072 \end{gathered}$	*NO ERROR ON INDEX TEST	No Invalid Track Format (Sense Byte 1, bit 1) was presented while writing records longer than the 3330 track capacity.	1. This drive is configured as a 3330 compatible volume (CDS type 09 or OD). Verify that the drive being tested is wired for 3330 Compatibility Mode. 2. Run microdiagnostic routine BB to test the Track Used (TR) Counter.

3350		2358838 Part No.					
	Seq. 2 of 2	Part No.	18 Aug 78				

T3350WT ERROR MESSAGES

WRITE TEST

Sect ID	REFNUM	Error Messages and Console Communications	Diagnostic Information	CE Action
T3350WT	00050	ERROR ON READ HA CHAIN or WRITE HA CHAIN or SENSE I/O CHAIN	The OLT terminates on any of these three errors. An error on the Read HA command (' $1 A^{\prime}$ ') can be caused by a bad Home Address or a drive failure. An error on the Write HA command (' 19 ') can be caused by a storage control or drive failure. An error on the Sense I/O command (' 04 ') can be caused by a channel, storage control, or drive failure.	Rerun the test and select a CE track. 1. If the test runs successfully, the original track is probably damaged. Restore the HA and RO fields by using the procedure under Common Action C (OLT 29). 2. If the test fails on the CE tracks, go to Common Action B (OLT 29).
T3350WT	00051	ERROR ON READ ID CHAIN	An error occurred while attempting to Search and Read Record 3 on track 0 . The test continues to test write/read on the selected track.	1. If the test runs successfully on the selected track, there is damage on the label record (track 0). Restore the label. 2. If the test fails on the selected track, follow the CE Action under the REFNUMs produced by the test.
T3350WT	00052	ERROR ON WRITE RO CHAIN or WRITE CKD CHAIN	These errors cause the current routine to terminate. See the first line of the error message for the routine number (RTN XX).	Rerun the test and select a CE track. 1. If the test runs successfully, the non CE track that previously failed is is probably damaged. Flag the track defective (See OLT 30). 2. If the test fails on the CE tracks, go to Common Action B (OLT 29). 3. Run OLT T3350PSA for final verification that the problem has been resolved.
T3350WT	00053	ERROR ON READ RO CHAIN or READ CKD CHAIN		
T3350WT	00054	ERROR ON WRITE RO CHAIN or WRITE HA CHAIN	WRITE RO CHAIN indicates an error terminated the chain to re-write a standard RO on the track being tested.	
			WRITE HA CHAIN indicates an error terminated the chain to re-write an alternate or defective HA and RO following testing. If the Write HA chain failed, this defective or alternate track may not be flagged.	
T3350WT	00055	ERROR ON INDEX TEST, SNS BYTE 1 BIT 1 NOT ON	Some error other than Invalid Track Format occurred while writing records that were longer than the 3330 track capacity.	Go to Common Action B (OLT 29).

\square

INTRODUCTION	OPER 3	SEARCH OPERATION Rotational Position Sensing No Record Found	$\begin{aligned} & \text { OPER } 200 \\ & \text { OPER } 203 \\ & \text { OPER } 200 \end{aligned}$
FUNCTIONAL UNITS			
Controller : OPER 4 - 13			
Drive	OPER $15-31$	READ/WRITE OPERATION	
		R/W Control (Set/Reset) .	OPER 210, 211
		Write	OPER 225, 226
HEAD/DISK ASSEMBLY (HDA)		Write Padding	OPER 228
HDA Description	OPER 32	Read	OPER 230-233
Track Format	OPER 33, 34	ECC (Error Correction Code)	OPER 235, 236
Skip Defect	OPER 36-38		
3330-1 Mode	OPER 40-42		
3330-11 Mode	OPER 50-52	CONTROLLER ERROR CONDITIONS	
		Check End	OPER 240
		Error Alert	OPER 241
COMMANDS			
Control Commands	OPER 72		
Sense Commands	OPER 74	FEATURES AND MODELS	
Read Commands	OPER 76	Fixed Head Models	OPER 250
Write Commands .	OPER 78	String Switch Feature	OPER 261, 262
Search Commands	OPER 80	Alternate Controller Feature (C2 Module)	OPER 270
INTERFACES			
Control Interface Description	OPER 90, 91		
Device Interface Description	OPER 92, 93		
Interface Timing .	OPER 95		
Data and Control Flow	OPER 96, 97		
Tag Summary .	OPER 98-101		
Tag Description	OPER 102-106		
Interface Sequencing	OPER 107-109		
SELECT OPERATION OPER 110, 111			
ACCESS OPERATION			
Block Diagram and Description	OPER 116, 117		
Access Control Sequence	OPER 119, 120		
Track Following	OPER 123-125		
Index Detection	OPER 126		
Rezero	OPER 129, 130		
Guardband Pattern Detection	OPER 131		
Seek	OPER 139-142		

\square

```
00000000000000000000,001000000100
```

The IBM 3350 Disk Storage is a direct access storage
device. The IBM 3350 contains the following
physical units

- Control module A2 (A2F with fixed heads)
- Satellite module B2 (B2F with fixed heads)

For C2 (C2F) Module information, see FSI 970 through 986.

CONTROL MODULE A2 (A2F)

The control module contain

- Controller
- Drives A and B

Controlle

The controller performs the following

- Receives control information, data, and commands from storage control.
- Controls the operation of drives A and B and any satellite modules with the control information, data and commands.
- Receives control information, data, and status information from drives A and B and from any satellite module(s).
- Sends the control information, data, and status
information to storage control
- Sends controller status information to storage control See OPER 4 for details.

Drive A (or B)
Drive A (or B) performs the following:

- Receives control information and data from the controller.
- Controls the operation of the Head/Disk Assembly (HDA) with the control information and data.
Receives control information, data, and statu information from the HDA
- Sends the control information, data, and status information to the controller
- Sends drive status information to the controller.

See OPER 15 for details.

SATELLITE MODULE B2 (B2F)

The satellite module B2, contains two drives. Each drive performs the same functions as drive \mathbf{A} (or \mathbf{B}) in a ontrol module
Three satellite modules can be connected to a control module.

CONTROLLER

The following pages describe the functional units in the controller. The diagram on this page gives an overall
view of the controller functional logic diagram. As view of the controller functional logic diagram. As
indicated on the verall view, the diagram is contained on three pages: Oper 5,8 , and 11. Each of these pages is followed by pages explaining each functional unit as follows:

- The input, or inputs, to the functional unit and their source.
- The function of the functional unit.
- The output, or outputs, from the functional unit and their destination.

OPER 5
,

1. String Switch Select A (Cards A2D2 and A2H2)
2. String Switct Select B (Cards A2E2 and A2J2)
3. Ct1 Bus Out NPL to MST Convertor (Card A2G2)
4. String Switch A and B Common Circuitry (Card A2M2)
5. CtI Tag Bus Out NPL to MST Convertor (Card A2G2)
6. Bus Out Parity Check (Card A2G2)
7. Gap Counter and Control (Card A2P2)
8. Read Op and Write Op Tags Decoder (Card A2L2)
9. Tag Bus Parity Check (Card A2G2)
10. Macros-Operation Control (Card A2O2)
11. Op End Generator (Card A2P2)
12. Bits Out Gate (Card A2F2)
13. Bits Out to Dev Bus Out Convertor (Card A2F2)
14. ECC Control (Card A2P2)
15. Dev Tag Bus Generator (Card A2L2)
16. Dev Tag Bus MST to NPL Convertor (Card A2L2)

17. Controller Error Indicator (Card A2K2)

18. Check Bit Register (Card A2K2)
19. Error Correction (Card A2F2)
20. SERDES (Card A2S2)
21. Assm Register (Card A2K2)
22. Read Data Gate (Card A2T2)
23. Bit Ring (Card A2S2)
24. Reorient Counter (Card A2R2)
25. Variable Frequency Oscillator - VFO-(Card A2T2)
26. Track Used Counter (Card A2N2)
27. Status Monitor Check (Card A2L2)

OPER 8

OPER 11

[^0]

CONTROLLER (Continued)

1 String Switch Select A (Cards A2D2 and A2H2)
The String Select Switch A functions as follows:

- Receives

Ctl Bus Out and Ctl Tag Bus Out from storage control A.
Enable A from the Enable/Disable A Switch on the power panel.
Allow Sel Set A from the String Switch Select A and B Common Circuitry (card A2M2).

- Sends Ctl Bus Out A to the Ctl Bus Out NPL to MST Convertor (card A2G2).
- Sends $\mathrm{Ctl}^{\text {Tag Bus Out A to the Ctl Tag Bus Out NPL }}$ to MST Convertor (card A2G2).
- Sends control signals to the String Switch Select A and B Common Circuitry (card A2M2)

2. String Switch Select B (Cards A2E2 and A2J2)

The String Switch Select B functions as follows:

- Receives

Ctl Bus Out and Ctl Tag Bus Out from storage control B.
Enable B from the Enable/Disable B Switch on the power panel.
Allow Sel Set B from the String Switch A and B Common Circuitry (card A2M2)

- Sends Ctl Bus Out B to the Ctl Bus Out NPL to MST Convertor (card A2G2)
- Sends Ctl Tag Bus Out B to the Ctl Tag Bus Out NPL to MST Convertor (card A2G2).
- Sends control signals to the String Switch Select A and B Common Circuitry (card A2M2)

3 Ctl Bus Out NPL to MST Convertor (Card A2G2)

 The Ctl Bus Out NPL to MST Convertor functions as follows:- Receives Ctl Bus Out from one of the following Storage Control
String Switch Select A (cards A2D2 and A2H2) String Switch Select B (cards A2E2 and A2J2)
- Converts Ctl Bus Out NPL voltage levels to Ctl Bus Out MST voltage levels.
- Sends Bus Out to the following

Bits Out Gate (card A2F2)
Macros-Operation Control (card A2Q2)
Bus Out Parity Check (card A2G2) Gap Counter Control (card A2P2) SERDES (card A2S2)
Tag Bus Bits Decoder (card A2G2) Controller Address Compare (card A2G2) Operation Control (card A2L2) Poll Addr Bit Decoder (card A2G2) Unsuppr Attn Bits Generator (card A2G2)

4 String Switch A and B Common Circuitry (Card A2M2)

The String Switch A and B Common Circuitry functions as follows:

- Receives control signals from the following: String Switch Select A (cards A2D2 and A2H2) String Switch Select B (cards A2E2 and A2J2)
- Receives the signal, Selected, from the Select Control (card A2G2).
- Generates Allow Sel Set A or Allow Sel Set B
- Sends Allow Sel Set A to the String Switch Select A (cards A2D2 and A2H2)
- Sends Allow Sel Set B to the String Switch Select B
(cards A2E2 and A2J2).

5. Ctl Tag Bus Out NPL to MST Convertor (Card A2G2).

The Ctl Tag Bus Out NPL to MST Convertor functions as follows:

- Receives Ctl Tag Bus Out from one of the following Storage Control
String Switch Select A (cards A2D2 and A2H2) String Switch Select B (cards A2E2 and A2J2)
- Converts Ctl Tag Bus Out NPL voltage levels to Ctl
- Sends Tag Bus MST voltage levels to the following: Read Op and Write Op Tags Decoder (card A2L2) Tag Bus Parity Check (card A2G2) Dev Tag Bus Generator (card A2L2) Tag Bus Bits Decoder (card A2G2) Read/Write Control (card A2L2)
Select Control (card A2G2)
Operation Control (card A2L2)

6 Bus Out Parity Check (Card A2G2)

The Bus Out Parity Check functions as follows

- Receives Bus Out from the Ctl Bus Out NPL to MST Convertor (card A2G2)
- Checks the parity of Bus Out.
- Generates BO Par Chk Latched when a Bus Out parity error occurs.
- Sends BO Par Chk Latched via the Error Bus to the following:

Check Bit Register (card A2K2)
Controller Error Indicator (card A2K2)
7 Gap Counter and Control (Card A2P2)
The Gap Counter and Control functions as follows:

- Receives

ECC control signals via the ECC Ctl Bus from the ECC Control (card A2P2).
Bus Out Bits 4 through 7 from the Ctl Bus Out NPL
to MST Convertor (card A2G2).
Bit ring pulses from the Bit Ring (card A2S2).
During a read operation, the Gap Counter

- Counts the bit ring pulses. Each bit ring pulse represents one gap byte or one data byte.
- Generates a gap byte pulse or a data byte pulse.
- Sends a gap byte pulse or a data byte pulse to th following:
Macros-Operation Control (card A2O2) Op End Generator (card A2P2) Check Bit Register (card A2K2) via the Error Bus. ECC Control (card A2P2) Track Used Counter (card A2N2)
During a Write operation, the Gap Counter
- Generates a signal to indicate the end of written data.
- Sends this signal to the Op End Generator (card A2P2).

8 Read Op and Write Op Tags Decoder (Card A2L2) The Read Op and Write Op Tags Decoder functions as follows:

- Receives Tag Bus Bits 0,4 through 7 from the $\mathbf{C t l} \mathbf{T a}$ Bus Out NPL to MST Convertor (card A2G2).
- Decodes Tag Bus Bits 0, 4 through 7 into one of the following:

Read Op 0E

Write Op 0F

- Sends Read Op 0E or Write Op 0F to MacrosOperation Control (card A2Q2)

9 Tag Bus Parity Check (Card A2G2)

The Tag Bus Parity Check functions as follows:

- Receives Tag Bus from the Ctl Tag Bus Out NPL to MST Convertor (card A2G2).
- Checks the parity of Tag Bus.
- Generates Tag Bus Par Chk when a Tag Bus parity error occurs.
- Sends Tag Bus Par Chk to the Check Bit Register (card A2K2).

```
0000000000000000000000000000000000000
```


10 CONTROLLER (Continued)

Macros-Operation Control (Card A2Q2)

The Macros-Operation Control functions as follows:

- Receives

Bus Out Bits 0 through 3 from the Ctl Bus Out NPL Bus Out Bits 0 through 3 from the
to MST Convertor (card A2G2).
Gap byte pulses or data byte pulses from the Gap Counter (card A2P2).
Read Op 0 E or Write Op 0 F from the Read Op and Write Op Tags Decoder (card A2L2).
Reset R/W Op 05 from the Tag Bus Bits Decoder (card A2G2).
Bit ring pulses from the Bit Ring (card A2S2).
$\mathrm{Rd} /$ Wrt Latch from the Read/Write Control (card A2L2).

- Generates operation control signals and sends these
signals via the Op Ctl Bus to the following: signals via the Op Ctl Bus to the following:
Bits Out Gate (card A2F2)
Dev Tag Bus Generator (card A2L2)
Op End Generator (card A2F2)
Track Used Counter (card A2N2)
Write Data Gate (card A2T2)
Check Bit Register (card A2K2)
SERDES (card A2S2)
Tags In Generator (card A2K2)
- Generates R/W Op Dld, and, Read*Not Clk Gated Generates R/W Op Did, and, Read*Not Clk Gate
and sends them to the ECC Control (card A2P2).
- Generates error information and sends it via the Erro Bus to the Check Bit Register (card A2K2).
- Generates the tag Index Alert and sends it to the Tags In MST to NPL Convertor (card A2K2)

11 Op End Generator (Card A2P2)

The Op End Generator functions as follows:

- Receives

Bit ring pulses from the Bit Ring (card A2S2) A gap byte pulse from the Gap Counter (card A2P2) indicating the end of a gap.

The "end of written data" signal from the Gap Counter (card A2P2).
Select Hold via Tag Bus from the Ctl Tag Bus Out MST to NPL Convertor (card A2G2).
Operation control signals via the Op CtI Bus from the Macros-Operation Control (card A2Q2).

- Generates Op End at the fall of Select Hold.
- Sends Op End via the Op Ctl Bus to the Tags In
Generator (card A2K2).

12 Bits Out Gate (Card A2F2)
The Bits Out Gate functions as follows:

- Receives

Bus Out from the Ctl Bus Out NPL to MST Convertor (card A2G2).
Operation control signals via the Op Ctl Bus from the Macros-Operation Control (card A2Q2). $\mathrm{Rd} /$ Wrt Gate from the Read/Write Control (card A2L2)

- Sends Bus Out or the operation control signals via Bits Out to the Bits Out to Dev Bus Out Convertor (card A2F2).
- Rd/Wrt Gate gates the control signals to the Bits Out to Dev Bus Out Convertor (card A2F2).
- (Not) Rd/Wrt Gate gates Bus Out to the Bits Out to Dev Bus Out Convertor (card A2F2).

13 Bits Out to Dev Bus Out Convertor (Card A2F2)

The Bits Out to Dev Bus Out Convertor functions as follows:

- Receives Bits Out from the Bits Out Gate (card
A2F2). A2F2).
- Converts Bits Out MST voltage levels into Dev Bus Out NPL voltage levels.
- Sends Dev Bus Out to the Dev Bus Out NPL to MST Convertor in a drive.

14 ECC Control (Card A2P2)
The ECC Control functions as follows:

- Receives

Gap byte pulse or data byte pulse from the Gap Counter and Control (card A2P2)

$\mathrm{C}_{\mathrm{L}}^{\mathrm{F}} \mathrm{C}$

FUNCTIONAL UNITS

17 CONTROLLER (Continued)

Controller Error Indicator (Card A2K2)

The Controller Error Indicator functions as follows:

- Receives error information via the Error Bus from the following:

SERDES (card A2S2)
Reorient Counter (card A2R2)
Status Monitor Check (card A2L2)
Dev Bus In and Ctl Bus In Parity Check (card A2F2)
Track Used Counter (card A2N2)
Attn/Sel Bus (1-of-8) Check (card A2G2)
Bus Out Parity Check (card A2G2)

- Generates Controller Chk from any one of the above.
- Sends Controller Chk to the Ctl Bus In Register (card A2F2).

18 Check Bit Register (Card A2K2)

The Check Bit Register functions as follows:

- Receives error information via the Error Bus from the following:

SERDES (card A2S2).
Status Monitor Check (card A2L2)
Dev Bus In and Ctl Bus In Parity Check (card
A2F2).
Attn/Sel Bits (1-of-8) Check (card A2F2).
Tag Bus Out Parity Check (card A2G2).
Macros-Operation Control (card A2Q2)
Bus Out Parity Check (card A2G2)
Gap Counter (card A2P2)

- Also receives operation control signals via the Op Ctl Bus from the following:
Macros-Operation Control (card A2Q2).
- Generates Check Bits 0 through 7,P.
- Sends Check Bits 0 through 7, P (error information) to the Assm Register (card A2K2)

19 Error Correction (Card A2R4)

During a Read operation the Error Correction function as follows:

- Receives serial read data and ECC bits from the SERDES (card A2S2)
- Compares the serial read data to the ECC bits.
- Generates ECC Corr Bits 0 through 7,P, when an error exists in the received serial read data.
- Sends the ECC Corr Bits 0 through 7,P, to the Assm Register (card A2K2).
During a Write operation the Error Correction functions as follows:
- Receives serial write data from the SERDES (card A2S2).
- Produces ECC bits from the serial write data.
- Sends the ECC bits to the SERDES (card A2S2).

The Error Correction also receives
Operation control signals via the Op Ctl Bus from the Operations Control (card A2L2).
Reorient Cntr Check via the Error Bus from the Reorient Counter (card A2R2).
Tr Check via the Error Bus from the Track Used Counter (card A2N2).
ECC control signals via the ECC Ctl Bus from the ECC Control (card A2P2)

The Error Correction sends Reorient Cntr Check and Tr Check via the ECC Corr bits to the Assm Register (card A2K2).

20 SERDES (Card A2S2)

During a Read operation the SERDES functions as follows:

- Receives serial read data and ECC bits, or serial servo data, from the Variable Frequency Oscillator (card A2T2).
- Sends the serial read data and ECC bits to the Error
Correction (card A2R4).
- Deserializes the serial read data, or the serial servo data, from the Variable Frequency Oscillator (card A2T2).
- Sends the deserialized read data, or the deserialized servo data, via the Data Bits 0 through 7, P to the Assm Register (card A2K2).

During a Write operation the SERDES functions a follows

- Receives and serializes parallel write data via Bus Out from the Ctl Bus Out NPL to MST Convertor (card 2G2).
- Sends the serialized write data to the Error Correction (card A2R4).
- Receives ECC bits from the Error Correction (card A2R4).
- Sends the serialized write data and the ECC bits to the Write Data Gate (card A2T2).
The SERDES also receives the following:
ECC control signals via the ECC Ctl Bus from the ECC Control (card A2P2) and sends these signals to the Error Correction (card A2R4)
Operation control signals via the Op Ctl Bus from the Macros-Operation Control (card A2Q2).
The SERDES generates the tag, Sync In, and sends it to the Tags In MST to NPL Convertor (card A2K2).
The SERDES also generates error information and sends it via the Error Bus to the following:

Check Bit Register (card A2K2).
Controller Error Indicator (card A2K2)

21Assm Register (Card A2K2

The Assm Register functions as follows

- Receives

Check Bits 0 through 7, P from the Check Bi Register (card A2K2)
CE Data Bits 0 through 7, P from the Data Entry
Switches on the CE Panel.
ECC Corr Bits 0 through 7, P from the Error
Correction (card A2R4)
Data Bits 0 through 7, P (deserialized read data or servo data) from the SERDES (card A2S2).

- Sends the Check Bits, CE Data Bits, ECC Corr Bits, or Data Bits via the Assm Bus to the Ctl Bus In Register (card A2F2)

22 Write Data Gate (Card A2T2)

The Write Data Gate functions as follows

- Receives

Wr Gate via the Op CtI Bus from the MacrosWr Gate via the Op Cut Bus from
Operation Control (card A2Q2).
Serial write data and ECC bits from the SERDES (card A2S2).
VFO 1F from the Variable Frequency Osciallator (card A2T2).

- VFO 1 F and Wr Gate gate the serial write data and ECC bits to the Write Data Gate in a drive.

23 Read Data Gate (Card A2T2)

The Read Data Gate functions as follows:

- Receives

Serial read data and ECC bits from the Read Data Detector in a drive
Serial servo data from the Read Servo Gate in a drive.

- Sends the serial read data and ECC bits, or the serial servo data, to the Variable Frequency Oscillator (card A2T2)

24 Bit Ring (Card A2S2)

The Bit Ring functions as follows

- Receives the signal, Half F, from the Variable Frequency Oscillator (card A2T2).
- Counts the Half F pulses'and generates a bit ring pulse for each eighth pulse (each byte) counted.
- Sends bit ring pulses to the following

Track Used Counter (card A2N2)
Gap Counter and Control (card A2P2)
Macros-Operation Control (card A2Q2) Op End Generator (card A2P2)

FUNCTIONAL UNITS

CONTROLLER (Continued)

25 Reorient Counter (Card A2R2)

The Reorient Counter functions as follows:

- Receives

Half F pulses from the Variable Frequency Oscillator (card A2T2).
Rd/Wrt Latch from the Read/Write Control (card A2L2).

- Counts the Half F pulses.
- Generates Reorient Cntr Check when a certain number of Half F pulses are counted.
- Sends Reorient Cntr Check via the Error Bus to the ollowing:

Error Correction (card A2R4)
Controller Error Indicator (card A2K2)
The Reorient Counter also generates Reorient Servo Clock and sends it to the Status Monitor Check (card A2L2).

26 Variable Frequency Oscillator-VFO-(Card A2T2)
During a Read operation the Variable Frequency Oscillator (VFO) functions as follows:
Receives one of the following from the Read Dat Gate (card A2T2):
Serial read data and ECC bits Serial servo data

- Adjusts its frequency to the frequency of the serial read data and ECC bits or the serial servo data
- Stabilizes the frequency of the serial read data and ECC bits or the serial servo data.
- Sends the serial read data and ECC bits or the seria servo data to the SERDES (card A2S2).

During a Write operation the Variable Frequency Oscillator (VFO) frequency VFO 1 F is used by the Write Data Gate (card A2T2).

The Variable Frequency Oscillator (VFO) frequency Half F is used by the following:

Bit Ring (card A2S2)
Reorient Counter (card A2R2)

27 Track Used Counter (Card A2N2)

The Track Used Counter functions as follows

- Receives

Operation control signals via the Op Ctl Bus from the Macros-Operation Control (card A2Q2).
ECC control signals via the ECC Ct1 Bus from the ECC Control (card A2P2)

Gap byte pulses from the Gap Counter (card A2P2
Bit ring pulses from the Bit Ring (card A2S2).

- Counts the bit ring pulses (bytes) during a Write operation.
- Generates Tr Check when more bytes are counted than should be written
- Sends Tr Check via the Error Bus to the following Error Correction (card A2R4)
Controller Error Indicator (card A2K2)

23 Status Monitor Check (Card A2L2

The Status Monitor check functions as follows:

- Receives Reorient Servo Clock from the Reorient Counter (card A2R2).

Generates the signal, Status Monitor Chk.

- Sends Status Monitor Chk via the Error Bus to the ollowing
Check Bit Register (card A2K2)
Controller Error Indicator (card A2K2)

CONTROLLER (Continued)

29 Tag Bus Bits Decoder (Card A2G2)

The Tag Bus Bits Decoder functions as follows

- Receives

Tag Bus from the Ctl Tag Bus Out NPL to MST Convertor (card A2G2).
The signal, Tag Gate CV, via Bus Out from the Ct Bus Out NPL to MST Convertor (card A2G2).
The signal, Selected, from the Select Control (card

- Decodes Tag Bus into one of the following tags

Tag	Signal Name	Gated, by Selected, to:
05	Reset R/W Op 05	Read/Write Control (card A2L2) Macros-Operation Control (card A2Q2)
85	Set R/W Op 85	Read/Write Control (card A2L2)
8F	File Ctrl Op 8F	Ct1 Bus In Register (card A2F2)
04	Status Bytes Op 04	Operation Control (card A2L2) Poll/Select Reg Control (card A2G2)
84	Read Status 84	Operation Control (card A2L2)
02	Contrlr Poll Op 02	Poll/Select Reg Control (card A2G2)

- Generates the signal Valid Tag Gate from the signal Tag Gate CV
- Sends Valid Tag Gate via the Op Ctl Bus to the Tags In Generator (card A2K2)

30 Controller Address Compare (Card A2G2)

The Controller Address Compare functions as follows:

- Receives Bus Out from the Ctl Bus Out NPL to MST Convertor (card A2G2).
- Compares Bus Out Bits 0 through 2 with controller address bits wired on card A2G2.
- Generates Controller Addrsd when Bus Out Bits 0 through 2 and the controller address wired on card A2G2 are equal.
- Sends Controller Addrsd to the following

Read/Write Control (card A2L2)
Select Control (card A2G2)
Poll/Select Reg Control (Card A2G2)

31 Poll Addr Bit Decoder (Card A2G2)

The Poll Addr Bit Decoder functions as follows:

- Receives

Controller address bits wired on card A2G2.
Bus Out Bits 3 through 5 from the Ctl Bus Out NPL to MST Convertor (card A2G2).

- Decodes the controller address bits wired on card A2G2 and the Bus Out Bits 3 through 5 into 1 -of- 8 Poll Addr bits.
- Sends the decoded Poll Addr bit via the Poll Addr Bu to the Poll/Select Reg (card A2G2).

32 Unsuppr Attn Bits Generator (Card A2G2)

The Unsuppr Attn Bits Generator functions as follows

- Receives

Bus Out Bits 0,5 through 7 from the Ctl Bus Out NPL to MST Convertor (card A2G2).
Attn/Sel Bus Bits 0 through 7 from the Attn/Se Bus NPL to MST Convertor (card A2G2)
Selects the Attn/Sel Bus bits to be sent via the Dev/Attn Bus to the Poll/Select Reg (card A2G2)

33 Attn/Sel Bus NPL to MST Convertor (Card A2G2)

 The Attn/Sel Bus NPL to MST Convertor functions as follows:- Receives the Attn/Sel Bus from the Attn/Sel Bus MST to NPL Convertor in a drive.
- Converts Attn/Sel Bus NPL voltage levels to Attn/Sel Bus MST voltage levels.
- Sends Attn/Sel Bus to the following. Unsuppr Attn Bits Generator (card A2G2) Poll/Select Reg (card A2G2) Attn/Sel Bus (1-of-8) Check (card A2G2)

34 Read/Write Control (Card A2L2)

The Read/Write Control functions as follows:

- Receives

Tag Bus Bits 0, 4 from the Ctl Tag Bus Out NPL to MST Convertor (card A2G2).
Reset R/W Op 05 (tag 05) and Set R/W Op 85 (tag 85) from the Tag Bus Bits Decoder (card A2G2).
Controller Addrsd from the Controller Address Compare (card A2G2).

- Generates the signal Rd/Wrt Latch and the signal Rd/Wrt Gate.
- Sends Rd/Wrt Latch to the following Reorient Counter (card A2R2) Dev Tag Bus Generator (card A2L2) Macros-Operation Control (card A2Q2)
- Sends Rd/Wrt Gate to the Bits Out Gate (card
A2F2). A2F2).

35Select Control (Card A2G2)

The Select Control functions as follows

- Receives

Select Hold via the Tag Bus from the Ctl Tag Bus Out NPL to MST Convertor (card A2G2).
Controller Addrsd from the Controller Addres Compare (card A2G2)

- Generates the signal, Selected
- Sends Selected to the following Tags In Generator (card A2K2) Tags In MST to NPL Convertor (card A2K2) Operation Control (card A2L2) Tag Bus Bits Decoder (card A2G2) String Select Switch A and B Common Circuitry (card A2M2)

36 Operation Control (Card A2L2)
The Operation Control functions as follows:

- Receives

Selected from the Select Control (card A2L2)

Tag Bits 0, 4 through 7 from the Ctl Tag Bus Out NPL to MST Convertor (card A2G2)
Status Bytes 04 and Read Status 84 from the Tag
Bus Bits Decoder (card A2G2).
Bus Out Bits 0 through 3,6,7 from the Ctl Bus Out NPL to MST Convertor (card A2G2)

- Generates operation control signals.
- Sends operation control signals via the Op Ctl Bus to the following:

Ctl Bus In Reg (card A2F2)
Tags In Generator (card A2K 2)
Error Correction (card A2R4)
Check Bit Register (card A2K2)
CE Panel

37 Poll/Select Reg and Control (Card A2G2

The Poll Select Reg and Control functions as follows:

- Receives

Status Bytes 04 and Contrir Poll Op 02 from the Tag Bus Bits Decoder (card A2G2).
Controller Addrsd from the Controller Address Compare (card A2G2)
Controller address bits' wired on card A2G2.
Poll Addr bit via the Poll Addr Bus from the Poll Addr Bit Decoder (card A2G2)
Dev/Attn Bus from the Unsuppr Attn Bits Generator (card A2G2).
Attn/Sel Bus from the Attn/Sel Bus NPL to MST Convertor (card A2G2).

- Status Bytes 04 and Contrlr Poll Op 02 gate one of the following through the Poll/Select Reg to the Ct Bus In Reg (card A2E2):
Controller address bits wired
Poll Addr bit
Dev/Attn Bus
Attn/Sel Bus

CONTROLLER (Continued)

38 Dev Bus In NPL to MST Convertor (Card A2F2)

The Dev Bus In NPL to MST Convertor functions as follows:

- Receives Dev Bus In from the NPL Inbus MST to NPL Convertor in a drive
- Converts Dev Bus In voltage levels to Dev Bus In MST voltage levels.
- Sends the Dev Bus In MST voltage levels to the Ctl Bus In Reg (card A2F2) and to the Dev Bus In Parit Check (card A2F2).

39 Tags In Generator (Card A2K2

The Tags In Generator functions as follows

- Receives Selected from the Select Control (card A2G2).
- Generates Gate BI from Selected
- Sends Gate BI to the Ctl Bus In MST to NPL Convertor (card A2F2)
- Also receives operation control signals via the Op Ct Bus from the following
Operation Control (card A2L2)
Tag Bus Bits Decoder (card A2G2)
Op End Generator (card A2P2)
Macros-Operation Control (card A2Q2)
- Generates the tags: Check End, Normal End, and Coerce Tag Valid.
- Sends the generated tags to the Tags In MST to NPL Convertor (card A2K2).

40 CtI Bus In Reg and Control (Card A2E2)

The Ctl Bus In Reg and Control functions as follows:

- Receives

Assm Bus from the Assm Register (card A2K2).
Operation control signals via the Op Ctl Bus from he Operation Control (card A2L2)
Sel Bus from the Poll Select Reg (card A2G2). Dev Bus In from the Dev Bus In NPL to MST Convertor (card A2F2)

Controller Chk from the Controller Error Indicator (card A2K2).
File Ctrl Op 8F from the Tag Bus Bits Decoder (card A2G2)

- Places Controller Chk on Dev Bus In.
- Sends Assm Bus, Sel Bus, or Dev Bus In via Ctl Bus In to the Ctl Bus In MST to NPL Convertor (card A2F2).
41 Tags In MST to NPL Convertor (Card A2K2)
The Tags In MST to NPL Convertor functions as ollows:
- Receives the following Tags In MST voltage levels Index Alert from the Macros-Operation Control (card A2Q2).
Sync In from the SERDES (card A2S2) Selected from the Select Control (card A2G2) Check End, Normal End, or Coerce Tag Valid from the Tags In Generator (card A2K2)
- Converts Tags In MST voltage levels to Tags In NPL voltage levels.
- Sends Tags In NPL voltage levels via Tags In to storage control

42 CtI Bus In MST to NPL Convertor (Card A2F2)

The Ctl Bus In MST to NPL Convertor functions as follows:

Receive
Gate BI from the Tags In Generator (card A2K2). Ctl Bus In from the Ctl Bus In Reg (card A2F2).

- Converts Ctl Bus In MST voltage levels to Ctl Bus In NPL voltage levels.
- Gate BI gates the Ctl Bus In NPL voltage levels to storage control

43 Dev Bus In and Ctl Bus In Parity Check (Card

 A2F2)The Dev Bus In and the Ctl Bus In Parity Check functions as follows:

- Receives

Dev Bus In from the Dev Bus In MST to NPL Convertor (card A2F2).

Ctl Bus In from the Ctl Bus In Reg and Control (card A2F2).

- Checks

Dev Bus In parity at the input to the Ctl Bus In Register (card A2F2).
Ctl Bus In parity at the output of the Ctl Bus In Register (card A2F2).

- Sends Dev Bus In Par Chk Latched, or Ctl Bus In Par Chk Latched via the Error Bus to the following:

Check Bit Register (card A2K2)
Controller Error Indicator (card A2K2)

4 Attn/Sel Bus (1-of-8) Check (Card A2G2)

The Attn/Sel Bus (1-of-8) Check functions as follows

- Receives the Attn/Sel Bus from the Attn/Sel Bus NPL to MST Convertor (card A2G2).
- Checks that only one Attn/Sel bit on the bus is active.
- Sends an error indication (Check 1-of-8) via the Error Bus to the following when more than one, or none, of the Attn/Sel bits are active

Controller Error Indicator (card A2K2)
Check Bit Register (card A2K2)

DRIVE
The following pages describe the functional units in the drive. The diagram on this page gives an overall view of the drive functional logic diagram. As indicated on the overall view, the diagram is contained on five pages: OPER $17,20,23,26$, and 29 . Each of these pages follows:

- The input, or inputs, to the functional unit and their source.
- The function of the functional unit
- The output, or outputs, from the functional unit and their destination

70. Attention/Select Bit Generator (Card A1K2
71. Dev Bus Out Parity (Card A1K2)
72. Drive Selected Generator (Card A1K2)
73. Drive Address Compare (Card A1K2)
74. Drive Logical Address Jumpers (Card A1K2
75. Interface Status Bits Generator (Card A1 K2
76. Drive Operation Control (Card A1 K2)
77. Access Complete Generator (Card A1E2)
78. Attention Generator (Card A1E2)
79. Access Busy Generator (Card A1E2)
80. Acormal Attention Generator (Card A1 K2)
81. Velocity Enable Generator (Card A1C4)
82. On Track Detector (Card A1C4)
83. Velocity Intensity Detector (Card A1C4)
84. End of Deceleration Detector (Card A1C4)
```
55. Even Track Detector (Card A1E2)
```

55. Even Track Detector (Card A1E2)
56. Inbus Parity Check (Card A1H2)
57. Inbus Parity Check (Card A1H2)
58. Attn/Sel Bit MST to NPL Convertor (Card A1K2)
59. Attn/Sel Bit MST to NPL Convertor (Card A1K2)
60. Dev Bus Out NPL to MST Convertor (Card A1K2)
61. Dev Bus Out NPL to MST Convertor (Card A1K2)
62. Dev Tag Bus NPL to MST Convertor (Card A1K2)
63. Dev Tag Bus NPL to MST Convertor (Card A1K2)
64. Dev Tag Bus NPL to MST Convertor (Card A1K2)
65. Dev Tag Bus NPL to MST Convertor (Card A1K2)
66. +/-Error Demodulator and Amplifier (Card A1C2)
67. +/-Error Demodulator and Amplifier (Card A1C2)
68. Dev Tag Bus Parity (Card A1K2)
69. Dev Tag Bus Parity (Card A1K2)
70. Tag Decoder (Card A1K2)
71. Tag Decoder (Card A1K2)
72. Allow Rezero Generator (Card A1D2)
73. Allow Rezero Generator (Card A1D2)
74. Allow Rezero Generator (Card A1D2)
75. Allow Rezero Generator (Card A1D2)
76. Velocity Detector (Card A1D2)
77. Velocity Detector (Card A1D2)
78. Gated Position Derivative Generator (Card A1D2)
79. Gated Position Derivative Generator (Card A1D2)
80. Gated Position Derivative Generator (Card A1D2)
```
68. Gated Position Derivative Generator (Card A1D2)
```


C

FUNCTIONAL UNITS

DRIVE

1 Inhibit HDA Sequence Generator (Card A1F2

The Inhibit HDA Sequence Generator functions as follows:

- Receives

Selected from the Drive Selected Generator (card
A1K2). A1K2).
Set Rd*Wr or Pad Ctrl via the Drive $\mathrm{Op}_{\mathrm{P}} \mathrm{Ctrl}$ Bus from the Read* ${ }^{*}$ rite Control (card AlH2).

- Generates the Inhibit HDA Seq signal.
- Sends Inhibit HDA Seq to the Stop Sequence Status Generator (card A1F2).

12 Stop Sequence Status Generator (Card A1F2)
The Stop Sequence Status Generator functions as follows:

- Receives

Inhibit HDA Seq from the Inhibit Sequence Generator (card A1F2).
Stop Sw On via the Drive Op Ctrl Bus from the HDA Status Bits Generator (card A1F2).

- Generates the Stop Seq Status signal.
- Sends Stop Seq Status to the Bit Latches 1,2,4 (card A1F2).

3 Servo Clock Detector (Card A1C2)

The Servo Clock Detector functions as follows:

- Receives Raw Servo Amplified from the Raw Servo Signal Amplifier (card A1C2).
- Detects the Servo Clock from Raw Servo Amplified.
- Sends Servo Clock to the following:

Access Control Timer Gate Generator (card A1C2) Motor-at-Correct-Speed Detector (card A1D4) Incrementer (card A1D4)

4 Raw Servo Signal Amplifier (Card A1C2)

The Raw Servo Signal Amplifier functions as follows:

- Receives Raw Servo Signal from the HDA
- Amplifies Raw Servo Signal and generates Raw Servo Amplified.
- Sends Raw Servo Amplified to the following

Servo Clock Detector (card A1C2)
$+/-$ Error Demodulator and Amplifier (card AlC2)

5 Drive Switches +24 V to MST Convertor (Card

 A1F2)The Drive Switches +24 V to MST Convertor functions as follows:

- Receives drive switch signals via the Drive Switches Bus from the operator panel and the air switch.
- Converts drive switch +24 V voltage levels to MST voltage levels.
- Sends drive switch MST voltage levels via Read Only and the Drive Switches Bus to the HDA Status Bits
Generator (card A1F2).
- Also sends Read Only via the Drive Op Ctrl Bus to the Inbus Generator (card A1H2).

6 Bit Latches 1, 2, 4 (Card A1F2)
The Bit Latches 1, 2, 4 block functions as follows:

- Receives

End 15 Sec Delay from the 15 Second Delay Timer (card A1F2)
Stop Seq Status from the Stop Sequence Status Generator (card A1F2)

- Also receives the following via the Drive Op Ctrl Bus Run Status Good from the HDA Status Bits Generator (card A1F2).
Drive Start Sw from the HDA Status Bits Generator (card A1F2).
Go Home Complete from the Go Home Complete Generator (card A1E2).
HDA Sequence Ck Lth TP from the HDA Status Bits Generator (card A1E2)
- Generates Bit Latches 1,2,4 and sends them to the State Generator (card A1F2)
- Generates Drive Motor Run and sends it to the Drive Motor Run Relay Control (card A1F2).

7 Access Control Timer Gate Generator (Card A1C2) The Access Control Timer Gate Generator functions as follows:

- Receives Servo Clock from the Servo Clock Detector (card A1C2)
- Generates Timer Gate
- Sends Timer Gate to the Motor-at-Correct-Speed Detector (card A1D4).

8 Incrementer (Card A1D4)

The Incrementer functions as follows

- Receives Servo Clock from the Servo Clock Detector (card A1C2)
- Generates Increment
- Sends Increment to the Voltage Controlled Oscillator (card A1C2)

9 State Generator (Card A1F2)

The State Generator functions as follows

- Receives Bit Latches 1, 2, 4 from the Bit Latches 1, 2, 4 (card A1F2).
- Generates the State Bus and sends it to the following: Sequence Rezero Generator (card A1F2) 15 Second Delay Timer (card A1F2) Carriage Go Home Generator (card A1F2) HDA Status Bits Generator (card A1F2)
- Generates HDA Ready and sends it to the Ready Lamp Control (card A1E2)

10 Motor-at-Correct-Speed Detector (Card A1D4)
The Motor-at-Correct-Speed Detector functions as follows:

- Receives

Time Gate from the Access Control Timer Gate Generator (card A1C2)
Servo Clock from the Servo Clock Detector (card A1C2)

- Generates Motor at Speed
- Sends Motor at Speed to the following

HDA Sequence Complete Relay Control (card A1F2
HDA Status Bits Generator (card A1F2)

11 Voltage-Controlled Oscillator (Card A1C2)
The Voltage-Controlled Oscillator functions as follows

- Receive

Increment from the Incrementer (card A1D4)
Decrement from the Decrementer (card A1D4)

- Generates the VCO signal
- Sends VCO to the following:

Servo Byte Counter (card A1D4)
Read Servo Gate (card A1H2)

12Sequence Rezero Generator (Card A1F2)
The Sequence Rezero Generator functions as follows:

- Receives the State Bus from the State Generator (card A1F2)
- Generates Sequence Rezero
- Sends Sequence Rezero via the Drive Op Ctrl Bus to the Access Control (card A1E2).

1315 Second Delay Timer (Card A1F2)
The 15 Second Delay Timer functions as follows:

- Receives the State Bus from the State Generator (card A1F2)
- Generates End 15 Sec Delay
- Sends End 15 Sec Delay to the Bit Latches 1, 2, 4 (card A1F2).

$C_{r} C$ C C C C C C C

FUNCTIONAL UNITS

DRIVE

44Carriage Go Home Generator (Card A1F2)
The Carriage Go Home Generator functions as follows:

- Receives the State Bus from the State Generato (card A1F2).
- Generates Carriage Go Home
- Sends Carriage Go Home to the following:

Go Home Complete Generator (card A1E2)
Access Control (card A1E2) via the Drive Op Ctrl
Bus.

15 Ready Lamp Control (Card A1E2)

The Ready Lamp Control functions as follows:

- Receives

HDA Ready from the State Generator (card A1F2) Trk Following Timer from the Track Following Timer (card A1C4)

- Generates Rd^{*} Wr Capable
- Sends $\mathrm{Rd} * \mathrm{~W}_{\mathrm{r}}$ Capable to the following

Ready Lamp Driver (Card A1F2)
Inbus Generator (card A1H2)
16 Go Home Complete Generator (Card A1E2)
The Go Home Complete Generator functions as follows:

- Receives

Carriage Go Home from the Carriage Go Home Generator (card A1F2).
Access Timeout from the Access Timeout
Generator (card A1C4).

- Generates Go Home Complete.

Sends Go Home Complete via the Drive Op Ctrl Bus o the Bit Latches 1, 2, 4 (card A1F2).

17 Ready Lamp Driver (Card A1F2)

The Ready Lamp Driver functions as follows:

- Receives $\mathrm{Rd}^{*} \mathrm{Wr}_{r}$ Capable from the Ready Lamp Control (card A1E2).
- Generates and amplifies Ready Lamp On TP
- Sends Ready Lamp On TP to the Ready Lamp on the Operator Panel.

18 Drive Motor Run Relay Control (Card A1F2)

The Drive Motor Run Relay Control functions as
follows:

- Receives Drive Motor Run from the Bit Latches 1, 2, 4 (card A1F2)
- Generates and amplifies Drive Motor Run TP
- Sends Drive Motor Run TP to the Drive Motor Run Relay on the Sequence Board B.

19 HDA Sequence Complete Relay Control (Card A1F2)

The HDA Sequence Complete Relay Control functions as follows:

- Receives

Motor at Speed from the Motor-at-Correct-Speed Detector (card A1D4).
HDA Sequence Chk Lth TP via the Drive Op Ctrl But from the HDA Status Bits Generator (card A1F2). Stop Sw On via the Drive Op Ctrl Bus from the HDA Status Bits Generator (card A1F2).

- Generates and amplifies HDA Sequence Complet

TP. - Sends HDA Sequence Complete TP to the HDA
anchomal inis

FUNCTIONAL UNITS

DRIVE

20 Write Data Gate (Card A1J2)

The Write Data Gate functions as follows:

- Receives the following via the Drive Op Ctrl Bus from the Read/Write Control (card A1H2): Read Transmit
Squelch Gate
AM Gate Control
Pad Gate
- Also receives: Serial Write Data and ECC Bits from the Write Data Gate (card A2T2) in the controller. Sel IW from the Select Write Current Generator (card A1G2).
- Gates Serial Write Data and ECC Bits to the HDA.
- Generates Delta IW On and sends it to the Inbus Generator (card A1H2).

21 Read Data Detector (Card A1J2)

The Read Data Detector functions as follows:

- Receives

Serial Read Data and ECC Bits from the HDA. Read Transmit via the Drive Op Ctrl Bus from the Read/Write Control (card A1H2) Squelch Gate via the Drive Op Ctrl Bus from the Read/Write Control (card A1H2).
AM Gate Control via the Drive Op Ctrl Bus from the Read/Write Control (card A1H2)

- Detects the Serial Read Data and ECC Bits from the HDA.
- Sends Serial Read Data and ECC Bits to the Read Data Gate (card A2T2) in the controller.

22 Read Servo Gate (Card A1H2)

The Read Servo Gate functions as follows:

- Receives the VCO signal from the Voltage-Controlled Oscillator (card A1C2).
- Sends VCO as Serial Servo Data to the Read Data Gate (card A2T2) in the controller

23 Format Mode Jumpers (Card A1F2)

The Format Mode Jumpers block functions as follows

- Generates one of the following:

Native Fmt Mode
3330-1 Fmt Mode
3330-11 Fmt Mode

- Sends Native Fmt Mode, 3330-1 Fmt Mode, or $3330-11$ Fmt Mode via the Format Mode Bus to the HDA Status Bits Generator (card A1F2).

24HDA Status Bits Generator (Card A1F2)
The HDA Status Bits Generator functions as follows:

- Receive

HDA Format Mode Bus from the Format Mode Jumpers (card A1F2).
Fixed Heads from the HDA.
Motor at Speed from the Motor-at-Correct-Speed Detector (card A1D4).
State Bus from the State Generator (card A1F2)
Drive Switches Bus from the Drive Switches +24 V to MST Convertor (card A1F2)

Access Complete from the Access Complete
Generator (card A1E2)

- Generates HDA Status Bits 0 through 7 and sends them to the MST Inbus Generator (card A1H2).
- Generates Drive Start Sw and sends it via the Drive
Op Ctrl Bus to the Bit Latches 1, 2, 4 (card A1F2).

Generates Run Status Good and sends it via the Drive
Op Ctrl Bus to the Bit Latches 1, 2, 4 (card A1F2).
Generates HDA Sequence Ck Lth TP and sends it via the Drive Op Ctrl Bus to the following:

HDA Sequence Complete Relay Control (card A1F2)
Bit Latches 1, 2, 4 (card A1F2)

- Generates Stop Sw On and sends it via the Drive Op Ctrl Bus to the following

HDA Sequence Complete Relay Control (card A1F2)
Stop Sequence Status Generator (card A1F2)

25 Servo Byte Counter (Card A1D4)
The Servo Byte Counter functions as follows:

- Receives the VCO signal from the Voltage-Controlled Oscillator (card A1C2)
- Generates Sector Count Pulse each time a certain number of VCO pulses are counted
- Sends Sector Count Pulse to the following

Decrementer (card A1D4)
Sector Counter (card A1J4)
Index Shift Register (card A1D4)
Inbus Generator (card A1H2)

- Generates Index Bit and sends it to the Index Shift Register (card A1D4)
- Generates Index Gate and sends it to the following Index Check (card A1D4)
Index Mark Generator (card A1D4)
Valid Index Generator (card A1D4) Guardband Pattern Generator (card A1D4)

26 Decrementer (Card A1D4)

The Decrementer functions as follows:

- Receives Sector Count Pulse from the Servo Byte Counter (card A1D4)
- Generates Decrement
- Sends Decrement to the Voltage-Controlled Oscillato ($\operatorname{card} \mathrm{A} 1 \mathrm{C} 2$).

27 Index Shift Register (Card A1D4)

The Index Shift Register functions as follows

- Receives

Sector Count Pulse from the Servo Byte Counte (card A1D4)
Index Bit from the Servo Byte Counter (card A1D4)

- Generates IB1 through 5 TP and also 1B1 through 5
- Sends IB1 through 5 TP and also 1B1 through 5 via the Index Shift Bus to the following:
Index Mark Generator (card A1D4)
Valid Index Generator (card A1D4)
Guardband Pattern Generator (card A1D4)

28Access Control (Card A1E2)

The Access Control functions as follows:

- Receives

The Guardband Bus from the Guardband Pattern Generator (Card AlC4)
The Access Timeout signal from the Access Timeout Generator (card AIC4).

- Also receives the following control signals via the Drive Op Ctrl Bus:
Diff Ctr Zero from the Difference Counter and Control (card A1G2)
Target Velocity from the Velocity Intensity Generator (card A1C4).
Any Valid Index from the Valid Index Generator (card A1D4).
Carriage Go Home from the Carriage Go Home Generator (card A1F2).
Allow Rezero from the Allow Rezero Generator (card A1D2).
End Decelerate from the End of Deceleration Detector (card A1C4)
Seek Start from the Drive Operation Control (card A1K2)

Sequence Rezero from the State Generator (card
A1F2)
A1F2).
End Accelerate from the End of Acceleration Detector (card A1C4)
Even Track from the Even Track Detector (card A1E2).
Rezero from the Drive Operation Control (card A1K2).

DRIVE

- Generates Access Mode and sends it via the Access Ctrl Bus to the following

End of Acceleration Detector (card A1C4 Allow Difference Counter Generator (card A1E2) Access Control Amplifier (card AIC4) Velocity Detector (card A1 D2)

- Generates Access Start and sends it via the Access Ctrl Bus to the Allow Rezero Generator (card A1D2).
- Generates Any Go Home and sends it via the Access Ctrl Bus to the following:

Access Control Amplifier (card AlC4)
Velocity Enable Generator (card A1C4)

- Generates the Forward signal and sends it via the Access Ctrl Bus to the following:

Access Control Amplifier (card A1C4) Allow Rezero Generator (card A1D2)

- Generates High Velocity Set Point and sends it via the Access Ctrl Bus to the End of Acceleration Detector (card A1C4).
- Generates Linear Mode and sends it via the Access Ctrl Bus to the following:
Access Control Amplifier (card A1C4) Track Following Timer (card A1C4)
- Generates Rezero Mode and sends it via the Access Ctrl Bus to the Access Control Amplifier (card A1C4).
- Generates Run Timer Gated and sends it to the Access Timeout Generator (card A1C4).
- Generates Zero Mode and sends it via the Access Ctrl Bus to the following:

Access Control Amplifier (card A1C4)
Velocity Enable Generator (card A1C4)

2.Access Check Status Gate (Card A1E2)

The Access*Check Status Gate functions as follows:

- Receives Access Status Bus from the following Access Control (card A1E2) Sector Counter (card A1J4)
- Receives Check Status Bus from the Access Control (card A1E2)
- Gates the Access $*$ Check Status Bits $0-7$ to the MST Inbus
Generator Generator (card A1H2).

30 Access Timeout Generator (Card A1C4)

The Access Timeout Generator functions as follows:

- Receives Run Timer Gated from the Access Control (card A1E2).
- Generates Access Timeout.
- Sends Access Timeout to the following: Access Control (card A1E2) Go Home Complete Generator (card A1F2)

31 Index Check (Card A1D4)

The Index Check functions as follows

- Receives

Set Rd*Wr or Pad Ctrl via the Drive Op Ctrl Bus from the Read/Write Control (card A1H2).
Index Gate from the Servo Byte Counter (card A1D4)
Valid Index 1 from the Valid Index Generator (card A1D4).
Valid Index 2 TP from the Valid Index Generator (card A1D4).
Index Mark from the Index Mark Generator (card A1D4).

- Generates Index Check Sel.
- Sends Index Check Sel to the Inbus Generator (card A1H2).

32 Sector Counter (Card A1J4)

The Sector Counter functions as follows:

- Receives Sector Count Pulse from the Servo Byte Counter (card A1D4).
- Counts sector count pulses and generates Sector $\operatorname{Ctr} 1$ through 7
- Sends Sector Ctr 1 through 7 to the Target Register (card A1J4).
The Sector Counter also:
- Generates Sector Attention and sends it to th Attention Generator (card A1E4).
- Generates Sch Sector and sends it via the Access Status Bus to the Access* ${ }^{*}$ Check Status Gate (card A1E2).
- Generates Sector Noncompare and sends it via the Access Status Bus to the Access*Check Status Gate
(card A1E2).

33 Index Mark Generator (Card A1D4)

The Index Mark Generator functions as follows:

- Receives

Index Gate from the Servo Byte Counter (card AlD4).
IB1 through 5 from the Index Shift Register (card A1D4).
1B1 from the Index Shift Register (card A1D4)

- Generates Index Mark when the Index Shift Register (card A1D4) is full.
- Sends Index Mark to the Index Check (card A1D4).

34 Valid Index Generator (Card A1D4)

The Valid Index Generator functions as follows:

- Receives

Index Gate from the Servo Byte Counter (card A1D4)
1B2 through 5 from the Index Shift Register (card A1D4).

- Generates Valid Index 1 and sends it to the Index Check (card A1D4).
- Generates Valid Index 2 TP and sends it to the Index Check (card A1D4).
- Generates Any Index Valid and sends it via the Drive Op Ctrl Bus to the following:

Allow Difference Counter Generator (card A1E2)
Access Complete Generator (card A1E2)

35 Guardband Pattern Generator (Card A1D4)

The Guardband Pattern Generator functions as follows:

- Receives

Index Gate from the Servo Byte Counter (card A1D4).

1B1 through 5 from the Index Shift Register (card A1D4)

- Generates

Guardband Latch
Guardband Pattern 1
Guardband Pattern 2

- Sends the generated signals via the Guardband Bus to the following:
Access Control (card A1E2)
Position Enable Generator (card A1C4)
End of Acceleration Detector (card A1C4)
Access Complete Generator (card A1E2)

36MST Inbus Generator (Card A1H2

The MST Inbus Generator functions as follows:

- Receives

Access*Check Status Bits 0 through 7 from the Access*Check Status Gate (card A1E2).
HDA Status Bits 0 through 7 from the HDA Status Bits Generator (card A1F2).
Interface Status Bits 1, 6, 7 from the Interface Interface Status Bits 1, 6, 7 from the
Status Bits Generator (card A1K2).
Target Status Bits 0 through 7 from the Target Register (card A1J4)
HAR*CAR*Diff Status 0 through 7 from the HAR or CAR or Difference Counter Output Gate (card A1G2).

- Sends the HDA Status Bits, the Access*Check Status Bits, the Interface Status Bits, the Target Status Bits, 0 through 7 to the Inbus Generator (card A1H2).

FUNCTIONAL UNITS

[^1]
$\mathrm{C}^{\frac{\mathrm{F}}{\mathrm{L}} \mathrm{C}}$

FUNCTIONAL UNITS

DRIVE

37 Target Register (Card A1J4)

The Target Register functions as follows

- Receives

Sense Target Reg via the Sense Ops Bus from the Sense Operations Decoder (card A1G2).
Sector $\operatorname{Ctr} 1$ through 7 from the Sector Counter (card A1J4).
MST Outbus from the Dev Bus Out NPL to MST Convertor (card A1K2).

- Generates Target Status Bits 0 through 7.
- Sends the Target Status Bits 0 through 7 to the MST Inbus Generator (card A1H2).

38 Cylinder Address Register (Card A1G2)

The Cylinder Address Register functions as follows:

- Receives the MST Outbus from the Dev Bus Out NPL to MST Convertor (card A1 K2).
- Generates CAR 2 through 512
- Sends CAR 2 through 512 to the HAR or CAR or Difference Counter Output Gate (card A1G2).

39 Difference Counter and Control (Card A1G2)
The Difference Counter and Control functions as follows:

- Receives

MST Outbus from the Dev Bus Out NPL to MST Convertor (card A1K2)
Allow Diff Ctr from the Allow Difference Counter Generator (card A1E2).
Track Xing Pulse from the Track Crossing Detector (card A1D2).

- Generates DC 0 through 7 and sends them to the HAR or CAR or Difference Counter Output Gate HAR or CAR
(card A1G2).
- Also sends DC 7 via DC 0 through 7 to the following:
Even Track Detector (card A1E2)
Allow Rezero Generator (card A1D2)
- Generates Diff Bits 1 through 7 and sends them to the Digital-to-Analog Convertor (card A1D2).
- Generates DC equals 1 and sends it via the Drive Op Ctrl Bus to the following:
Velocity Detector (card A1D2)
Gated Positive Derivative Generator (card A1D2)
- Generates Diff Greater than 127 and sends it via the Drive Op Ctrl Bus to the Velocity Detector (card A1D2)
- Generates Diff Ctr Zero and sends it via the Drive Op Ctrl Bus to the Access Control (card A1E2).

40 Head Address Register (Card A1G2)

The Head Address Register (HAR) functions as follows

- Receives the MST Outbus from the Dev Bus Out NPL to MST Convertor (card A1K2)
- Generates HAR 0 through 7 .
- Sends HAR 0 through 7 to the following HAR or CAR or Difference Counter Output Gate (card A1G2).
Movable/Fixed Heads Decoder (card A1G2).
41 Sense Operations Decoder (Card A1G2)
The Sense Operations Decoder functions as follows
- Receives MST Outbus Bits 4 through 6 from the Dev Bus Out NPL to MST Convertor (card A1K2).
- Decodes MST Outbus Bits 4 through 6 into Sense Ops Bus.
- Sends Sense Ops Bus to the following.

HAR or CAR or Difference Counter Output Gate (card A1G2)
Target Register (card A1J4)

42 Head Short Detector (Card A1G2)

The Head Short Detector functions as follows:

- Generates the signal Head Short when more than one head is detected On during a Write operation.
- Sends Head Short to the Inbus Generator (card A1H2).

43 (CaR or CAR or Difference Counter Output Gat

 (Card A1G2)The HAR or CAR or Difference Counter Output Gate functions as follows:

- Receives

Sense Ops Bus from the Sense Operations Decode (card A1G2).
CAR 2 through 512 from the Cylinder Address Register (CAR) (card A1G2)
DC 0 through 7 from the Difference Counter and Control (card A1G2)
HAR 0 through 7 from the Head Address Registe (HAR) (card A1G2)

- Gates CAR 2 through 512, DC 0 through 7, or HAR 0 through 7 to the MST Inbus Generator (card A1H2).

44 Digital-to-Analog Convertor (Card A1D2)

The Digital-to-Analog Convertor functions as follows:

- Receives

Position Enable from the Position Enable Generator (card A1C4).
Diff Bits 1 through 7 from the Difference Counter and Control (card A1G2).

- Converts the Diff Bits 1 through 7 digital inputs into the DAC analog output
- Sends DAC to the End of Acceleration Detecto (card A1C4).

45 Read*Write Control (Card A1H2)
The Read*Write Control functions as follows

- Receives

MST Outbus Bits 1 through 4 from the Dev Bus Out NPL to MST Convertor (card A1K2).
Set Read*Write via the Drive Op Ctrl Bus from the Drive Operation Control (card A1K2).

- Generates AM Gate Control and sends it via the Drive Op Ctrl Bus to the Read Data Detector (card A1J2)
- Generates Pad Gate and sends it via the Drive Op Ctrl Bus to the Write Data Gate (card A1J2).
Generates Rd*Wr Check and sends it via the Drive
- Generates Read Transmit and sends it via the Drive Op Ctrl Bus to the following:

Read Data Detector (card A1J2)
Write Data Gate (card A1J2)

- Generates Squelch Gate and sends it via the Drive Op Ctrl Bus to the following
Read Data Detector (card A1J2)
Write Data Gate (card A1J2)
- Generates Set Rd*Wr or Pad Ctrl and sends it via the Drive Op Ctrl Bus to the following:

Movable/Fixed Heads Decoder (card A1G2)
Index Check (card A1D4)
Inhibit HDA Sequence Generator (card A1F2)

- Generates Set Rd*Wr or Pad Ctrl Safe and sends it to he Write Gate Control (card A1H2) and via the Drive Op Ctrl Bus to the Movable/Fixed Heads Decoder (card A1G2).

46 Write Gate Control (Card A1H2)

The Write Gate Control functions as follows:

- Receives

Set Rd $*$ Wr or Pad Ctrl Safe from the Read/Write Control ((card A1H2).
MST Outbus Bits 1 through 4 from the Dev Bus Out NPL to the MST Convertor (card AIK2)

- Generates Write Gate Control and sends it via the Drive Op Ctrl Bus to the following:

Select Write Current Generator (card A1G2) Inbus Generator (card A1H2)

- Generates Write Gate Sel or Pad and sends it via the Drive Op Ctrl Bus to the Select Write Current Generator (card A1G2).
$90000000000000000000000001000000000$

DRIVE

47 Inbus Generator (Card A1H2)

The Inbus Generator functions as follows:

- Receives
$\mathrm{Rd}^{*} \mathrm{Wr}$ Capable from the Ready Lamp Control (card A1E2)
MST Inbus Bits 0 through 7 from the MST Inbus Generator ($\mathbf{c a r d} \mathbf{A 1 H 2) .}$
Valid Index 1 from the Valid Index Generator (card A1D4).
Index Check Sel from the Index Check (card A1D4).
Sector Count Pulse from the Servo Byte Counter (card A1D4).
Delta IW On from the Write Data Gate (card A1J2).
Head Short from the Head Short Detector (card A1G2).
Read Only via the Drive Op Ctrl Bus from the Drive Switches +24 V to MST Convertor (card A1F2).
Write Gate Control via the Drive Op Ctrl Bus from the Write Gate Control (card A1H2).
Set Read*Write via the Drive Op Ctrl Bus from the Drive Operations Control (card A1K2).
Rd^{*} Wr Check via the Drive Op Ctrl Bus from the Read/Write Control (card A1H2).
MST Outbus Bits 1,3 via the MST Outbus from the Dev Bus Out NPL to MST Convertor (card A1K2) The signal, Selected, from the Drive Selected Generator (card A1K2).
- Generates Inbus Bits 0 through 7
- Sends Inbus Bits 0 through 7 to the following Inbus Parity Check (card A1H2) Inbus MST to NPL Convertor (card A1H2)

48Movable/Fixed Heads Decoder (Card A1G2)
The Movable/Fixed Heads Decoder functions as follows:

- Receives

Set $\mathrm{Rd}^{*} \mathrm{Wr}$ or Pad Ctrl via the Drive Op Ctrl Bu from the Read*Write Control (card A1H2).

Set Rd ${ }_{*} W_{r}$ or Pad Ctrl via the Drive Op Ctrl Bus from the Read*Write Control (card A1H2).

HAR 0 through 7 from the Head Address Registe (HAR) (card A1G2).

- Generates the following and sends them to the HDA Chip Select 0 through 7 HDA

Fixed Heads 0 through 31 HDA
Fixed Heads 32 through 59 HDA
Head Sel 1
Head Sel 2

49 Select Write Current Generator (Card A1G2)
The Select Write Current Generator functions as follows:

- Receives the following via the Drive Op Ctrl Bus from the Write Gate Control (card A1H2)

Write Gate Sel or Pad
Write Gate Control

- Generates Sel IW.
- Sends Sel IW to the Write Data Gate (card A1J2).

50Allow Difference Counter Generator (Card A1E2)

The Allow Difference Counter Generator functions as follows

- Receives

Access Mode via the Access Ctrl Bus from the Access Control (card A1E2)

End Accelerate from the End of Acceleration Detector (card AlC4).
Any Valid Index via the Drive Op Ctrl Bus from the Valid Index Generator (card A1D4).

- Generates the Allow Diff Ctr signal.
- Sends Allow Diff Ctr to the Difference Counter and Control (card A1G2).

51 Position Enable Generator (Card A1C4)
The Position Enable Generator functions as follows:

- Receives

Guardband Latch via the Guardband Bus from the Guardband Pattern Generator (card A1D4).

Rezero Rev via the Access Ctrl Bus from the Access Control Amplifier (card A1C4).
Generates Position Enable

- Sends Position Enable to the following:

End of Acceleration Detector (card A1C4)
Digital-to-Analog Convertor (DAC) (card A1D2)
52 End of Acceleration Detector (Card A1C4)
The End of Acceleration Detector functions as follows:

- Receives

Guardband Latch via the Guardband Bus from the Guardband Pattern Generator (card A1D4).
osition Enable from the Position Enable
Generator (card A1C4).
Access Mode via the Access Ctrl Bus from the Access Control (card A1E2).
High Velocity Set Point via the Access Ctrl Bus from the Access Control (card A1E2)

Rezero Fwd via the Access Ctrl Bus from the Access Control Amplifier (card A1C4).
DAC from the Digital-to-Analog Convertor (card A1D2).
Current Magnitude from the Access Current Magnitude Detector (card A1D2).
The Velocity signal from the Velocity Detector (card A1D2).

- Detects the end of acceleration of the carriage and enerates End Accelerate
- Sends End Accelerate to the Allow Difference Counte Generator (card AlE2) and also via the Drive Op Ctrl Bus to the Access Control (card A1C2).

53 Track Following Timer (Card A1C4)

The Track Following Timer functions as follows:

- Receives

Linear Mode via the Access Ctrl Bus from the
Access Control (card A1E2).
20 V from the Reference Voltage Generator (card A1C2).

+ Position and also - Position from the $+/-$ Erro Demodulator and Amplifier (card A1C2).
- Generates the Track Following Timer signal.
- Sends Track Following Timer to the following: Ready Lamp Control (card A1E2) Access Complete Generator (card A1E2).

54 Track Crossing Detector (Card A1D2)

The Track Crossing Detector functions as follows:

- Receives + Position and also - Position from the +/- Error Demodulator and Amplifier (card A1C2)
- Generates Track Xing Pulse.
- Sends Track Xing Pulse to the Difference Counter and Control (card A1G2).

FUNCTIONAL UNITS

DRIVE

55 Even Track Detector (Card A1E2)
The Even Track Detector functions as follows:

- Receives DC 7 via DC 0 through 7 from the Difference Counter and Control (card A1G2)
- Generates Even Track.
- Sends Even Track via the Drive Op Ctrl Bus to the Access Control (card A1E2)

56 Inbus Parity Check (Card A1H2)

The Inbus Parity Check functions as follows

- Receives Inbus Bits $\mathbf{0}$ through 7 from the Inbus Generator (card A1H2).
- Generates the Inbus Parity signal when an even number of Inbus bits are active.
- Sends Inbus Parity to the Inbus MST to NPL Convertor (card A1H2).

57 Inbus MST to NPL Convertor (Card A1H2)

The Inbus MST to NPL Convertor functions as follows:

- Receives

Inbus Parity from the Inbus Parity Check (card A1H2).
Inbus Bits 0 through 7 from the Inbus Generator (card A1H2).

- Converts the Inbus MST voltage levels to Dev Bus In Converts the Inbus
NPL voltage levels.
- Sends Dev Bus In to the Dev Bus In NPL to MST Convertor (card A2F2) in the controller

58 Attn/Sel Bit MST to NPL Convertor (Card A1K2)
The Attn/Sel Bit MST to NPL Convertor functions as follows

- Receives the Attn/Sel Bit from the Attention/Select Bit Generator (card A1K2).
- Converts the Atnn/Sel Bit MST voltage level to an NPL voltage level.
- Sends the Attn/Sel Bit NPL voltage level via the Attn/Sel Bus to the Attn/Sel Bus NPL to MS Convertor (card A2G2) in the controller.

59 Dev Bus Out NPL to MST Convertor (Card A1K2) The Dev Bus Out NPL to MST Convertor functions as follows:

- Receives Dev Bus Out from the Bits Out to Dev Bu Out Convertor (card A2F2) in the controller.
- Converts Dev Bus Out NPL voltage levels to MST Outbus MST voltage levels.
- Sends MST Outbus to the following: Write Gate Control (card A1H2) Sense Operations Decode (card A1G2) Read*Write Control (card A1H2) Head Address Register (card A1G2) Difference Counter and Control (card A1G2) nbus Generator (card A1H2)
Cylinder Address Register (card A1G2) Target Register (card A1J4)
Dev Bus Out Parity (card A1K2 Drive Operation Control (card A1K2) Drive Address Compare (card A1K2)

60 Dev Tag Bus NPL to MST Convertor (Card A1K2) The Dev Tag Bus NPL to MST Convertor functions as follows:

- Receives Dev Tag Bus from the Dev Tag Bus MST to NPL Convertor (card A2L2) in the controller
- Converts Dev Tag Bus NPL voltage levels to Tag Bus MST voltage levels.
- Sends Tag Bus to the following Dev Tag Bus Parity (card A1K2) Tag Decode (card A1K2)

61 Access Control Amplifier (Card A1C4)

The Access Control Amplifier functions as follows:

- Receives

Access Ctrl Bus from the Access Control (card A1E2).
Gated Position Derived from the Gated Position Derivative Generator (card A1D2).
-Position from the $+/$ - Error Demodulator and Amplifier (card A1C2).
V Ref from the Reference Voltage Generator (card A1C2)

Current Sense from the HDA via the Power Amp and sends Current Sense via the Access Ctrl Bus to the Access Current Magnitude Detector (card
A1D2

- Generates Power Amp Drive and sends it to the HDA via the Power Amp.
- Generates the signals Move Forward and Move Reverse and sends them via the Access Ctrl Bus to th Access Current Magnitude Detector (card A1D2)
- Generates Rezero Fwd and sends it via the Access Ctrl Bus to the End of Acceleration Detector (card A1C4)
- Generates Rezero Rev and sends it via the Access Ctrl Bus to the Position Enable Generator (card A1C4)

62 Reference Voltage Generator (Card A1C2)

The Reference Voltage Generator functions as follows

- Generates the reference voltages V Ref and 20 V .
- Sends V Ref to the following: Access Control Amplifier (card A1C4)
Access Current Magnitude Detector (card A1D2).
- Sends 20 V to the following Track Following Timer (card A1C4) On Track Detector (card A1C4)

63 +/-Error Demodulator and Amplifier (Card A1C2

 The +/- Error Demodulator and Amplifier functions as follows:- Receives the Raw Servo Amplified signal from the Raw Servo Signal Amplifier (card A1C2)
- Demodulates the Raw Signal Amplified signal and
obtains the signal + Position and the signal -Position
- Amplifies + Position and - Position and sends them to the following:
Track Following Timer (card A1C4)
Track Crossing Detector (card A1D2)
Allow Rezero Generator (card A1D2)
Velocity Detcetor (card A1D2)
Gated Position Derivative Generator (card A1D2)
Access Current Magnitude Detector (card A1D2) On Track Detector (card AlC4)
- Sends -Position to the Access Control Amplifier (card AlC4).

64Dev Tag Bus Parity (Card A1K2)

The Dev Tag Bus Parity functions as follows:

- Receives Tag Bus from the Dev Tag Bus NPL to MST Conyertor (card A1K2).
- Checks the parity of the Tag Bus.
- Generates Tag Bus Parity Error when Tag Bus parity is odd.
- Sends Tag Bus Parity Error to the following: Interface Status Bits Generator (card A1K2) Drive Operations Control (card A1K2)

65 Tag Decoder (Card A1K2)

The Tag Decoder functions as follows:

- Receives Tag Bits 0 through 2 via the Tag Bus from the Dev Tag Bus NPL to MST Convertor (card A1K2)
- Decodes Tag Bus into the Tag Decodes
- Sends the Tag Decodes to the following: Interface Status Bits Generator (card A1K2) Drive Operations Control (card A1K2) Drive Selected Generator (card A1K2)

FUNCTIONAL UNITS

DRIVE

66 Allow Rezero Generator (Card A1D2)

The Allow Rezero Generator functions as follows

- Receives

DC 7 via DC 0 through 7 from the Difference Counter and Control (card A1G2).
Access Start via the Access Ctrl Bus from the Access Control (card A1E2).
Forward via the Access Ctrl Bus from the Acces Control (card A1E2)

+ Position and also - Position from the $+/-$ Erro Demodulator and Amplifier (card A1C2).
- Generates Allow Rezero.
- Sends Allow Rezero via the Drive Op Ctrl Bus to the Access Control (card A1E2).

67 Velocity Detector (Card A1D2)

The Velocity Detector functions as follows:

- Receives

Access Mode via the Access Ctrl Bus from the Access Control (card A1E2).
DC Equals 1 and also Diff Greater than 127 via the Drive Op Ctrl Bus from the Difference Counter and Control (card A1G2).

+ Position and also - Position from the $+/-$ Error Demodulator and Control (card A1C2)
Velocity Enable from the Velocity Enable Generator (card A1C4)

Current Magnitude from the Access Current Magnitude Detector (card A1D2).

- Generates the Velocity signal.
- Sends Velocity to the following

End of Acceleration Detector (card A1C4) Gated Position Derivative Generator (card A1D2) Velocity Intensity Detector (card A1C4) End of Deceleration Detector (card A1C4)

68 Gated Position Derivative Generator (Card A1D2)

The Gated Position Derivative Generator functions as follows:

- Receives
+ Position and also - Position from the $+/-$ Erro $\stackrel{+ \text { Position and also }- \text { Position from the }}{\text { Demodulator and Amplifier (card A1C2). }}$
DC equals 1 via the Drive Op Ctrl Bus from the Difference Counter and Control (card A1G2). Move Forward via the Access Ctrl Bus from the Access Control Amplifier (card A1C4). Current Magnitude from the Access Current Magnitude Detector (card A1D2)
The Velocity signal from the Velocity Detector (card A1D2).
- Generates Gated Position Derived.
- Sends Gated Position Derived to the Access Control Amplifier (card A1C4)

69Access Current Magnitude Detector (Card A1D2)

The Access Current Magnitude Detector functions as
ollows

- Receives

Velocity Enable from the Velocity Enable Generator (card A1C4).
V Ref from the Reference Voltage Generator (card A1C2).
Move Forward and also Move Reverse via the Access Ctrl Bus from the Access Control Amplifie (card A1C4).
Current Sense via the Access Ctrl Bus from the Access Control Amplifier (card A1C4)

+ Position and also - Position from the $+/-$ Error Demodulator and Amplifier (card A1C2).
- Generates Current Magnitude
- Sends Current Magnitude to the following Gated Position Derivative Generator (card A1D4) Velocity Detector (card A1D2)
End of Acceleration Detector (card A1C4)

FUNCTIONAL UNITS

DRIVE

70 Attention/Select Bit Generator (Card A1K2)
The Attention/Select Bit Generator functions as
follows:

- Receives

Pre-wired Drive Address from the Drive Logical Address Jumpers (card A1K2)
Normal Attn from the Normal Attention Generato (card A1K2).

- Generates Attn/Sel Bit
- Sends Attn/Sel Bit to the Attn/Sel Bit MST to NPL Convertor (card A1K2)

71 Dev Bus Out Parity (Card A1K2)

The Dev Bus Out Parity functions as follows:

- Receives MST Outbus from the Dev Bus Out NPL to MST Convertor (card A1K2).
- Checks the parity of the MST Outbus
- Generates Bus Out Parity Good when parity is odd.
- Sends Bus Out Parity Good to the following Drive Operations Control (card AlK2) Interface Status Bits Generator (card A1K2)

2 Drive Selected Generator (Card A1K2)

The Drive Selected Generator functions as follows:

- Receives

Tag Decodes from the Tag Decoder (card A1K2) Drive Addressed from the Drive Address Compare (card A1K2).

- Generates Selected
- Sends Selected to the following

Normal Attention Generator (card A1K2)
Access Busy Generator (card A1E2) Drive Operation Control (card A1K2) Interface Status Bits Generator (card A1K2) nbus Generator (card A1H2) Inhibit HDA Sequence Generator (card A1F2)

73 Drive Address Compare (Card A1K2

The Drive Address Compare functions as follows

- Receives

Prewired Drive Address from the Drive Logical Address Jumpers (card A1K2) MST Outbus Bits 0 through 2.

- Generates Drive Addressed when the addres contained in the MST Outbus bits 0 through 2 equal the prewired drive address.
- Sends Drive Addressed to the Drive Selected Generator (card A1K2)

74 Drive Logical Address Jumpers (Card A1K2)

The Drive Logical Address Jumpers block functions as follows:

- Generates Prewired Drive Address.
- Sends Prewired Drive Address to the following Drive Address Compare (card A1K2) Attention/Select Generator (card A1K2

5 Interface Status Bits Generator (Card A1K2)

The Interface Status Bits Generator functions as follows

- Receives
ense Interface via the Tag Decodes Bus from the Tag Decoder (card A1K2)
Bus Out Parity Good from the Dev Bus Out Parity (card A1K2).
Tag Bus Parity Error from the Dev Tag Bus Parity card A1K2

Selected from the Drive Selected Generator (card A1K2).

- Generates Interface Status Bits 1, 6,7
- Sends Interface Status Bits 1, 6, 7 to the MST Inbu Generator (card A1H2).

66 Drive Operation Control (Card A1K2)

The Drive Operation Control functions as follows:

- Receives

Tag Bus Parity Error from the Dev Tag Bus Parity (card A1K2).
Tag Decodes from the Tag Decoder (card A1K2). Bus Out Parity Good from the Dev Bus Out Parity (card A1K2)
MST Outbus from the Dev Bus Out NPL to MST Convertor (card A1K2). A1K2)

- Generates Seek Start and sends it via the Drive Op Cir Bus to the following:

Access Busy Generator (card A1E2)
Access Control (card A1E2)

- Generates Rezero and sends it via the Drive Op Ctr Bus to the Access Control (card A1E2)
- Generates Set Read*Write and sends it via the Drive Op Ctrl Bus to the following
Read*Write Control (card A1H2)
Inbus Generator (card A1H2)

77Access Complete Generator (Card A1E2)

The Access Complete Generator functions as follows:

- Receives

Guardband Bus from the Guardband Pattern Generator (card A1D4)

Trk Following Timer from the Track Following Timer (card A1C4)

Any Valid Index via the Drive Op Ctrl Bus from the Valid Index Generator (card A1D4).
End Decelerate via the Drive Op Ctrl Bus from the End of Deceleration Detector (card AlC4)

- Generates Access Complete
- Sends Access Complete to the following Attention Generator (card A1E2) HDA Status Bits Generator (card A1F2)

8 Attention Generator (Card A1E2)

The Attention Generator functions as follows:

- Receives

Sector Attention from the Sector Counter (card AlJ4).
Access Complete from the Access Complet Generator (card A1E2)
Access Busy from the Access Busy Generator (card A1E2).

- Generates the Attention signal
- Sends Attention to the Normal Attention Generato (card A1K2).

79Access Busy Generator (Card A1E2

The Access Busy Generator functions as follows

- Receives

Seek Start via the Drive Op Ctrl Bus from the Driv Operation Control (card A1K2).

The signal, Selected, from the Drive Selected
Generator (card A1K2)

- Generates Access Busy.
- Sends Access Busy to the Attention Generator (card A1E2).

80 Normal Attention Generator (Card A1K2)
The Normal Attention Generator functions as follows

- Receives

Selected from the Drive Selected Generator (card A1K2)
Attention from the Attention Generator (card A1E2)

- Generates Normal Attn
- Sends Normal Attn to the Attention/Select Bit Generator (card A1K2).

DRIVE

81 Velocity Enable Generator (Card A1C4)

The Velocity Enable Generator functions as follows:

- Receives Zero Mode and also Any Go Home via the Access Ctrl Bus from the Access Control (card A1E2).
- Generates Velocity Enable
- Sends Velocity Enable to the following:

Access Current Magnitude Detector (card A1D2) Velocity Detector (card A1D2)

82On Track Detector (Card A1C4)

The On Track Detector functions as follows:

- Receives
+ Position and also - Position from the +/- Error Demodulator and Amplifier (card A1C2).
20 V from the Reference Voltage Generator (card A1C2).
- Detects that the carriage is on track and then generates the On Track signal.
- Sends On Track to the following:

Velocity Intensity Generator (card A1C4) End of Deceleration Detector (card A1C4)

83 Velocity Intensity Detector (Card A1C4)

The Velocity Intensity Detector functions as follows:

- Receives

On Track from the On Track Detector (card A1C4).
The Velocity signal from the Velocity Detector (card A1D2).

- Detects the velocity of the carriage and generates the Target Velocity signal.
- Sends the Target Velocity signal via the Drive Op Ctrl
Bus to the Access Control (card A1E2). Bus to the Access Control (card A1E2).

84 End of Deceleration Detector (Card A1C4)

The End of Deceleration Detector functions as follows:

- Receives

The Velocity signal from the Velocity Detector (card A1D2).
On Track from the On Track Detector (card A1C4).

- Detects the end of deceleration of the carriage and then generates End Decelerate.
- Sends End Decelerate to the Access Control (card A1E2).

HEAD/DISK ASSEMBLY

OPERATING MODES

The $\mathbf{3 3 5 0}$ operates in one of three modes:
3350 Native Mode
$3330-1$ Mode

3350 Native Mode

When the 3350 is operating in 3350 Native Mode, the logical cylinder and logical head addresses are directly related to the physical cylinders (or Access positions) and
physical head addresses.
Examples:
Logical cylinder 0 is located at Access position 0; logical cylinder 75 is located at Access position 75.
Logical head address 0 is located at physical head 0 ; logical head address 23 is located at physical head 23

3330-1 and 3330-11 Modes

These two modes have different logical cylinder and head addressing schemes. See OPER 40 for 3330-1 Mode and OPER 50 for 3330-11 Mode.

DESCRIPTION

The Head/Disk Assembly (HDA) contains 16 recording surfaces (8 disks). Of these 16 surfaces, the upper 15 are data surfaces;
The HDA also contains a movable carriage that attaches The HDA also contains a movable carriage that attaches holds 30 movable Read/Write heads and one servo head. The 30 movable Read/Write heads are located above the The 30 movable Read/Write heads are located above the
15 data surfaces, two heads for each surface. The servo 15 data surfaces, two heads for each
head is located on the servo surface.
If the 3350 is a Model A2F or B2F, there are 60
If the 3350 is a Model A2F or B2F, there are 60
additional Read/Write heads on the servo surface. These heads are not attached to the carriage, but are fixed in place outside of the moving range of the servo head, 30 heads on either side of the servo head.

DATA SURFACE

Each data surface contains two data bands. The data bands are divided into tracks numbered from 0 to 560 , counting from the outside track to the inside track.
Each data band has its own movable Read/Write head. Each head can read or write information on any of the tracks.
The tracks are assigned as follows:

$$
\begin{array}{ll}
\text { Tracks } 0 \text { to } 554 & =\text { Customer data tracks } \\
\text { Tracks } 555 \text { to } 559 & =\text { Alternate tracks } \\
\text { Track } 560 & =\text { CE track }
\end{array}
$$

Home addresses are prerecorded on all data tracks for ack identification, seek verification, and skip
displacement information.

SERVO SURFACE

The servo surface has one servo head and one band of servo data tracks. The servo tracks are prerecorded for seeking, track following, data clocking, Index point signal generation, and rotational position signal generation. If the 3350 is a fixed head model (A2F, C2F, or B2F), the
surface is also used for reading or writing data by the fixed heads. The fixed-head tracks occupy the areas o both sides of the servo band.

HEAD POSITIONING

The data heads and the servo head are fixed in position on the carriage. The servo head does all of the track eeking and track following; when the servo head is on track, every data head is on track.
Note: More details of Servo (Access) operation are described beginning on OPER 116.

HDA SUMMARY

Data Surfaces
 R/W Heads

Servo Heads
Physical Cylinders
Data 555
Alternate 5
$\stackrel{1}{\text { CE }}$
Tracks per cylinder $30 \quad$ (1 per head)
(logical and physical)
With fixed heads (Models A2F, C2F, and B2F):
Fixed heads
ogical cylinders under
Logical cylinders
the fixed heads

$\left.3350 \quad$| BD0032 |
| :--- | :--- | :--- |
| Soq. 1 ot 2 | \right\rvert\, \(\begin{aligned} \& 2358029

\& Part No.\end{aligned}\)
Copyright IBM Corporation 1976

FORMAT

Before a Head/Disk Assembly (HDA) is shipped from the plant, thorough surface analysis and initialization is performed. During initialization, the Home Address (HA) and Record Up to three surface defects are allowed per track. Two bytes are reserved for each possible defect. Hexidecimal 80,00 indicates that there is no defect or that the defect has been passed. The high-order bit is supplied by the storage control during a Write HA operation If a surface defect is found, its displacement is written in the six bytes of the Skip Dis-
placement (SD) field of the HA and RO Count areas as follows:
HA Area, SD Field
NO DEFECT
Bytes 1,3 , and $5=‘ 80 '$
ONE DEFECT
Bytes 5 and $6=$ distance in bytes from Index to the center of the defect.
Two DEFECTS
Byte $1=$ ' 80 '
Bytes 3 and $4=$ distance in bytes from the center of the first defect to the center of the second defect.
Bytes 5 and $6=$ distance in bytes from Index to the center of the first defect.
THREE DEFECTS
distance in bytes from the center of the second defect to the center of the third defect. (See OPER 37.)

Bytes 3 and $4=$ distance in bytes from the center of the first defect to the center of the second defect
Bytes 5 and $6=$ distance in bytes from Index to the center of the first defect.
R0 Count Area, SD Field
No DEFECT
yytes 1,3 , and $5=>80$
ONE DEFECT
tes 1 and $3={ }^{\prime} 80^{\prime}$
Bytes 5 and $6=$ distance in bytes from the end of the Count area to the center of the defect.
TWO DEFECTS
Byte $1=$
' $80 \prime$
Bytes 3 and 4 = distance in bytes from the center of the first defect to the center of the second defect.
Bytes 5 and $6=$ distance in bytes from the end of the Count area to the center of the first defect.
THREE DEFECTS
Bytes 1 and $2=$ distance in bytes from the center of the second defect to the center of the third defect. (See OPER 37.)
Bytes 3 and $4=$ distance in bytes from the center of the first defect to the center of the second defect.
Bytes 5 and $6=$ distance in bytes from the end of the Count area to the center of the first defect.
Continued on OPER 37

3350	BD0034 Seq. 2 of 2	$\begin{aligned} & 2358030 \\ & \text { Part No. } \end{aligned}$	$\begin{array}{\|l\|} \hline 441300 \\ 31 \mathrm{Mar} \mathrm{76} \end{array}$	$\begin{aligned} & 441305 \\ & 29 \text { Oct } 76 \end{aligned}$			

[^2] 2358030
Part No. \square

NO DEFECT

ONE DEFECT

TWO DEFECTS

When writing a track containing defects, a special gap of 128 bytes (G4) is written over each defective area.

When the customer formats the HDA and a defect is detected, it can be skipped by:

- Moving the field and extending the preceding gap if the defect falls near or within the gap.
Splitting the field into two parts and positioning them on each side of the G4 gap previously written over the defective area.

If a defect is too large or there are more than three defects on a single track, the track is flagged and an alternate track is assigned.

HOW TO DETERMINE SKIP DISPLACEMENT

During normal operation, the Skip Displacement field of the Home Address is ransparent to the user at the channel level. However, the SD field of the HA can determined by executing the following CCW chain via the channel:

- Read Home Address

Sense I/O
If there is no outstanding Device End or Unit check following the execution of this chain, the contents of the SD field of the HA appear in Sense Bytes 18 through 23.
If the track is error free, the SD field $00,00,00,00,00,00$, (not $80,00 \ldots . . ., \mathrm{XX}, \mathrm{XX}$). is contained in Sense Bytes 18 through 23. If the track has one defect, Sense Bytes 18 through 23 contain $00,00,00,00, \mathrm{XX}$, XX (not $80,00 \ldots, \mathrm{XX}, \mathrm{XX}$). The high-order bit (80) is removed by the storage control. The values in Sense Bytes 18 through 23 should be used when rewriting the Home Address.

THREE DEFECTS

This is an example of a track with two defects after it has been formatted.

7 Since the first defect has been passed, its information is no longer required in the SD field. Skip data, relative to the next defect (ZZ, ZZ), is moved to bytes QQ, QQ. Bytes ZZ, ZZ are made inoperative by setting the high-order bit to one. The other bits may or may not be set to zero as shown. 8 Bytes QQ, QQ prior to the G4 gap. The difference between QQ, QQ and the data length of the record equals the length of the Data segment following the defect. Bit 0 of QQ, QQ is set to 0 and with the flag byte, indicates that the Data field is split.
9 Flag byte (as shown) indicates that the next defect is in the R1 Data field.

10 Since the second, and last defect, has been passed, the defect information is no longer required. Bytes QQ, QQ are made inoperative by setting the high-order bit to one. The other bits may or may not be set to zero as shown.

When operating in 3330-1 Mode the HDA is divided into two logical cylinder parts:

- Upper Logical Cylinder
- Lower Logical Cylinder

UPPER LOGICAL CYLINDERS

The upper logical cylinders 1 occupy the top five disk surfaces of the HDA. The upper logical cylinders are numbered: $1,4,7,10,13$ (and every third number up to 409). See the Logical Cylinder Reference Chart Physical heads 20 to 29 are used for the upper logical cylinders. These physical heads are assigned logical head numbers as in the following example
Physical head 203 is logical head 0 when the head is at an even Access position, and physical head 20 3 is logical head 10 when it is at an odd Access position.
The Physical/Logical Head Chart 4 shows the physica to logical cross-reference at the even or odd Access positions.

LOWER LOGICAL CYLINDERS

The lower logical cylinders 2 occupy ten of the lower 1 disk surfaces. (The bottom surface is the Servo surface.) The lower logical cylinders are numbered: $0,2,3,5,6,8,9$ (and all other numbers not used by the upper logical Physical heads 0 to 18 are used for the lower logical
Physical heads 0 to 18 are used for the lower logical cylinders (19 is not used). The physical head numbers are the same as the logical head numbers for these lower logical cylinders.

HDA Secondary Volume
(see OPER 41) (see OPER 41)

4

Physical/Logical Head Chart

Physical Head	Logical		
	Even Position	Odd Position	
20	0	10	
21	1	11	
22	2	12	
23	3	13	
24	4	14	
25	5	15	
26	6	16	
27	7	17	
28	8	18	
29	9	"(not used)	

When operating in 3330-1 Mode, the HDA is divided into two separate logical volumes representing two logical device addresses:

- HDA Primary Volume
- HDA Secondary Volume

HDA PRIMARY VOLUME

The HDA Primary Volume 1 represents one logical addressable device. The HDA Primary Volume consists outer data bands and the inner data bands).

HDA SECONDARY VOLUME

The HDA Secondary Volume 2 represents one logical
addressable device. The HDA Secondary Volume onsists of the second half of all data bands of the HDA (both the outer data bands and the inner data bands).

COCC1

TR INDEX

The Index-to-Index track capacity on a 3350 is approximately 19,000 bytes. The track capacity on a 3330 is approximately 13,000 bytes.
To make a 3350 track appear to be a 3330 track, the Track Used Counter (TR Counter) counts only the number of bytes of the 3350 track that would be used on a 3330 track. When the TR Counter reaches track capacity of a 3330 , the TR Index signal is activated and sent to the Index detection circuits (see ALD page BK210). TR Index at the Index detection cis been reached. (See Figure 1.)

TR COUNT FIELD
In 3330-1 Mode, each Count area except the R0 Count area contains a TR Count field. The TR Count field is located in the first three bytes after the ECC bytes of the Count area 1 (see Figure 2).
During Write operations, when the Read/Write head is at the end of each Count area, the accumulated count of the TR Counter is written in the TR Count field (see Figure 2).

1. The TR Counter is Off (not counting) from Inde time until Gap Counter 63 time in the G2 gap before the R0 Count area (see Figure 2)
2. The TR Counter is On and begins counting from Gap Counter 63 time until Gap Counter 37 time after the R0 Count area. It counts 74 bytes during that time.
3. The TR Counter is Off from Gap Counter 37 time until Gap Counter 63 time
4. At Gap Counter 63 time, the TR Counter turns On again and counts 64 bytes during the R 0 Data area until Gap Counter 37 time. (The number of data bytes in the R0 Data area is 8 for this example.)
5. The TR Counter is Off again from Gap Counter 37 time until Gap Counter 63 time.
6. At Gap Counter 63 time of the $\mathbf{G 3}$ gap, the TR Counter turns On again and counts 34 bytes during the R1 Count area. The TR Counter turns Off at the beginning of the ECC bytes (at Gap Counter
reset time).
7. After the ECC bytes are written on the track, the accumulated TR count of ' AC ' is written in the TR Counter field 1 . (Count $=74+64+34=172$ decimal, or ' AC ' in hexidecimal).

During Read and Search operations, the value from the TR Count field is read and used to load the TR Counter for use in Write operations that may follow.

Figure 1.

Figure 2.

Then operating in 3330-11 Mode, the HDA is divided into two logical parts:

- Upper Logical Cylinders
- Lower Logical Cylinders

UPPER LOGICAL CYLINDERS

The upper logical cylinders 1 occupy the top five disk surfaces of the HDA. The upper logical cylinders are numbered $1,4,7,10,13$ (and every third number up to uumber 814). See Logical Cylinder Reference Chart.
Physical heads 20 to 29 are used for the upper logical cylinders. These physical heads are assigned logical head numbers as in the following example:
Physical head 203 is logical head 0 when the head is at an even Access position and physical head 203 is logical head 10 when it is at an odd Access position.
The Physical/Logical Head Chart 4 shows the physical to logical cross-reference at the even or odd Access positions.

LOWER LOGICAL CYLINDERS

The lower logical cylinders 2 occupy ten of the lower 11 disk surfaces. (The bottom surface is the Servo surface.) The lower logical cylinders are numbered $0,2,3,5,6,8,9$ ogical cylinders). See the Logical Cylinder Reference Chart.
Physical heads 0 to 18 are used for the lower logical cylinders (19 is not used). The physical head numbers cyinders (19 is not used). The physical head numbers
are the same as the logical head numbers for these lower logical cylinders.

Logical Cylinder Reference Chart Physical
Head

If fixed heads are installed, data for logical cylinders 1,2 , and 3 is written and read by the fixed heads.

Physical/Logical Head Chart

Physical Head	Logical Head Number			Even Position	Odd Position
20	0	10			
21	1	11			
22	2	12			
23	3	13			
24	4	14			
25	5	15			
26	6	16			
27	7	17			
28	8	18			
29	9	*(not used)			

$3350 \quad$| BDDO042
 Seq. 2 of 2 | 2338033
 Part No. |
| :--- | :--- | :--- | :--- | :--- | :--- |

\bigcirc Copyright IBM Corporation 1976, 1977

TR INDEX

The Index-to-Index track capacity on a 3350 is approximately 19,000 bytes. The track capacity on a
3330 is approximately 13,000 bytes. 3330 is approximately 13,000 bytes.
To make a 3350 track appear to be a 3330 track, the Track Used Counter (TR Counter) counts only the number of bytes of the 3350 track that would be used on a 3330 track. When the TR Counter reaches track capacity of a 3330, the TR Index signal is activated and sent to the Index detection circuits (see ALD pag indicates that the logical end of the track has been reached. (See Figure 1.)

TR COUNT FIELD

In 3330 Mode, each Count area except the R0 Count area contains a TR Count field. The TR Count field is located in the first three bytes after the ECC bytes of the Count area 1 (see Figure 2),
During Write operations, when the Read/Write head is at the end of each Count area, the accumulated count of the TR Counter is written in the TR Count field (see Figure 2).

1. The TR Counter is Off (not counting) from Index before the R0 Count area (see Figure 2) before the R 0 Count area (see Figure 2)
2. The TR Counter is On and begins counting from ap Couter 63 ine und Gap Counter 37 time hat time.
3. The TR Counter is Off from Gap Counter 37 time until Gap Counter 63 time.
4. At Gap Counter 63 time, the TR Counter turns On again and counts 64 bytes during the R0 Data area until Gap Counter 37 time. (The number of da
The TR Counter is Off again from Gap Counter 37 The TR Counter is Off again fro
time until Gap Counter 63 time.
5. At Gap Counter 63 time of the G3 gap, the TR Counter turns On again and counts 34 bytes during he R1 Count area. The TR Counter turns Off at the beginning
After the ECC bytes are written on the track, the accumulated TR count of ' AC' is written in the TR decimal, or ' AC ' in hexidecimal) decimal, or ' $\mathbf{A C}$ ' in hexidecimal).

During Read and Search operations, the value from the TR Count field is read and used to load the TR counter for use in Write operations that may follow.

Figure 1.

Figure 2.

Control commands are used to start operations not
involving data recorded (or to be recorded) on the HDA.
involving data recorded (or to be recorded) on the
These operations include positioning the access
mechanism and selecting the head. For most control functions, the entire operation is specified by the
command code. If the command code does not specify the entire control function, the data address field of the CCW designates a main storage location containing the additional information.

Command	HexCode	Function	Data Transferred Across Channel	Error Conditions			
				Error	Command Executed	Sense Bit Set	Presented During Ending Status
* No Operation	03	No action. Channel End and Device End are presented during initial status.	None				
${ }^{*}$ Seek	07	1. Moves the access to cylinder specified by the seek address. 2. Selects the head specified by the seek address.	Seek Address (six bytes)	Less than six address bytes transferred.	No	Command Reject	Unit Check Channel End Device End
**Seek Cylinder	OB			Invalid address			
Space Count	OF	When chained from a Read, Search, Write, or Space Count command, this command locates the start of the next Count field (including RO), spaces over the Count field, and ends with Channel End and Device End in the gap before the Key field. When not chained, Space Count searches for Index, clocks over Gap 1, Home Address, Gap 2, and spaces over RO count. Operation ends in gap following RO count with Channel End and Device End.	Key Length (one byte) and Data Length (two bytes) which are used during the next command. (See Note.) Note: Key length and Data length values that exceed the actual length of the associated field cause reading in the gap to occur. Data read from the gap area and beyond is unpredictable.	Index point occurs before an address marker is read. Space Count command chained from an Erase or a format Write command. Write, Erase, Read IPL, Set File Mask, Device Reserve, or Device Release command issued in the same chain following a Space Count command. Index point detected before the end of space count command.	Yes	No Record Found Command Reject $\begin{array}{l}\text { Invalid Track } \\ \text { Format }\end{array}$	Unit Check Channel End Device End
Recalibrate	13	Moves the access to cylinder 0 and selects head 0 .	None				
Restore	17	No action. Zero initial status is followed by final status of Channel End and Device End.					
*Seek Head	1B	Selects the head specified by the seek address.	Seek Address (six bytes). Only the 4 low-order bits of the sixth byte are used for the seek address.	Less than six address bytes transferred Invalid address	No	Command Reject	Unit Check Channel End Device End
* Set File Mask	1F	Sets the file mask to indicate permitted Write and Seek commands.	One byte of file mask data.	More than one Set File Mask command issued in a chain of CCWs.	Second Set File Mask Number	Second Set File Mask Command Reject.	
Set Sector	23	Used on disconnected command chaining channels to eliminate the need for the channel to maintain connection with the control unit while waiting for the selected record to reach the head.	One byte specifies angular track position (0-127).	Angular position specified is greater than 127 and less than 255.	No	Command Reject	Unit Check Channel End Device End
Diagnostic Load	53^{\dagger}	Transfers the specified block of diagnostic microcode from the diskette reader to a storage control buffer.	One byte of control information (Diagnostic Microprogram ID Number).	Invalid sector address.	No	Command Reject	Unit Check Channel End Device End
* Diagnostic	73^{\dagger}	3830-2/ISC: Transfers an inline test from main storage to control storage and executes the test. 3880: Transfers 8 bytes of data from main storage to the storage director and initiates execution of the diagnostic test previously loaded by a Diagnostic Load command. All: A 16 -byte error code message is stored in the storage control buffer area. A subsequent Diagnostic Sense command transfers the error code message to main storage.	3830-2/ISC: A maximum of 512 bytes 3880: A maximum of 8 bytes	3830-2/ISC: Less than 512 bytes 3880: Less than 8 bytes	No	Command Reject	Unit Check Channel End Device End

*Storage control commands only.
${ }^{\dagger}$ Note: This command is intended for maintenance purposes only. Any use other than
${ }^{* *}$ See OPER 139 for Seek operation description.
Note: This command is intended for maintenance purposes only. Any use
that provided by IBM diagnostic programs may yield unpredictable results.

3350	BD0072 $\text { Seq. } 1 \text { of } 2$	2358035	$\begin{gathered} \hline 441300 \\ 31 \text { Mar } 76 \end{gathered}$	441303 30 Jul 76	441305 29 Oct 76	441310 27 Jun 80	

These commands transfer Sense or usage/error log

Command	Hex Code	Function	Data Transferred Across Channel	Error	Comments
* Sense I/O	04	Determines the type of error or unusual condition that caused the last Unit Check.	24 bytes of sense information.	Command Reject** Bus Out Parity Overrun	Sense data is reset after transfer.
* Device Reserve	B4	Same as Sense I/O. Also dedicates the addressed device to the storage control issuing the command.	24 bytes of sense information.	Command Reject which sets Unit Check only.	Used only when string switch feature is installed. The command is executed regardless of any abnormal device conditions, such as offline.
* Device Release	94	Same as Sense 1/O. Also terminates the dedication of a dedicated device.	24 bytes of sense information.	Command Reject which sets Unit Check only.	Used only when string switch feature is installed. The command is executed regardless of any abnormal device conditions, such as offline.
* Diagnostic Sense	$44 \dagger$	Transfers to the channel any error indications found during a Diagnostic Write command. Transfers from storage control to the channel any diagnostic test data accumulated during a Diagnostic Load command.	16 bytes of Error Code message. 3830-2/ISC: 512 bytes of diagnostic test data. 3880: 16 bytes of diagnostic test data.	Command Reject** Bus Out Parity Overrun	If the command is not preceded by a Diagnostic Write or a Diagnostic Load command, 16 bytes of data from the Error Code message area are transferred.
* Read and Reset Buffered Log	A4	Supplies usage or error statistics on the addressed drive.	24 bytes of usage or overrun error information.	Command Reject** Bus Out Parity Overrun	Usage or overrun error information is reset after transfer.
* Sense I/O Type	E4	Transfers seven bytes to the channel to identify the selected storage control type and the Device type.		Unit Check and Intervention Required if the device is not powered on.	
Unconditional Reserve	14	Removes the string switch reservation from one storage control and establishes a reservation for the other storage control.	24 bytes of sense information.	Command Reject which sets Unit Check only.	Used only when string switch feature is installed. The command is executed regardless of any abnormal device conditions, such as offline. Note: Indiscriminate use of this command can impact data integrity by removing a reservation during a data transfer operation.

*Storage control commands only
*S Sets Unit Check, Channel End, and Device End

Note: This command is intended for maintenance purposes
only. Any use other than that provided by $1 B M$ diagnostic
programs may vield unpredictable results.
information from the 3350 string to the using system

3350 | $\begin{array}{l}\text { BD0072 } \\ \text { Seq. 2 of } 2\end{array}$ | $\begin{array}{l}\text { 2358035 } \\ \text { Part No. }\end{array}$ |
| :--- | :--- | 441300

31 Mar 76 $\stackrel{441303}{30}$ 441305

29 Oct 76	441310
27	
Jun 80	

Copyright IBM Corporation 1976

Read commands transfer information from the subsystem to main storage of the using system. On all Read commands, the device checks (by means of correction
record is read from a track. A parity bit is added to each byte as it is sent to the channel. All Read commands can operate on overflow records and, except for Read IPL and Read Sector, can operate in multitrack mode.

MULTITRACK MODE

Setting bit $\mathbf{0}$ of a Read command enables the drive to automatically select the next sequentially numbered head.
Head switching does not occur when:

- The incremented head address crosses a file protected boundary.
The incremented head address erceeds the limits of The incremen
the cylinder.

Command	Hex Code		Function	Data to be Read	Error Type**			Comments
	Single Track Mode	MultiTrack Mode			Data Overrun	Data Chock		
						Correctable	Uncorrectable	
*Read Initial Program Load	02	-	Seeks to cylinder 0 and head 0 , searches for Index, and reads R1 data from the drive to main storage.	First data area after RO.	Yes	Data Field. Use ECC.	System repeats operation	A Read IPL command cannot be preceded by a Set File Mask command in the same chain.
-Read Data	06	86	Transfers Data area of a record from drive to main storage.	First data area after address marker or the data area of the record that was chained from same record.	Yes	Use ECC.	System repeats operation.	
*Read Key and Data	OE	8E	Transfers Key and Data areas of a record from drive to main storage.	First Key and Data area after address marker or the Key and Data area that was chained from the Count area of the same record.	Yes	Data Field. Use ECC.	System repeats operation.	If the K_{L} equals 0 , the command is executed as a Read Data command.
*Read Count	12	92	Transfers next Count area (8 bytes) from the drive to main storage	Next record Count area or first Count area after RO.	Yes		System repeats operation	
*Read Record Zero (RO)	16	96	Transfers the Count, Key, and Data areas of RO from the drive to main storage.	Record 0	Yes	Data Field. Use ECC.	System repeats operation.	When chained from a Search HA or Read HA command, the Read RO command is executed immediately and does not initiate a search for index point.
*Read Home Address	1A	9A	Transfers 5 bytes (FCCHH) of the home address to channel.	$\begin{aligned} & \text { Byte 0 }=\text { Flag } \\ & \text { Byte } 1=\text { Chyinder address } \\ & \text { Byte } 2=\text { Cylinder address } \\ & \text { Byte } 3=0 \\ & \text { Byte } 4=\text { Head address } \end{aligned}$	Yes		System repeats operation.	
*Read Count, Key, and Data	1E	9E	Transfers Count, Key, and Data areas of a record from drive to main storage.	Next record or first record after RO.	Yes	Data Field. Use ECC.	System repeats operation.	
-Read Sector	22	-	Transfers to the channel one byte of angular position information which is used by a subsequent Set Sector command. The byte transferred contains the angular position required to access the last record processed on the drive.					Causes loss of orientation.
- Read Multiple Count, Key, and Data	5 E	-	Transfers the remaining records on a track to the channel.		Yes	Data Field. Use ECC.	System does no repeat operation	

* See OPER 230 for Resed operation description.
** Sets Unit Check, Chamnel End, and Device End.

3350 \begin{tabular}{|l|l|l|l|l|l|}

\hline | BDe076 |
| :--- |
| SoQ. 10 t 2 | \& | 2358036 |
| :--- |
| Part No. |

\hline
\end{tabular}

rite commands transfer data from main storage to the ata, the for recording on the HDA. Whire writing ytes to device appends the appropriate correction written. There are two types of Write commands: (1)

Format Write commands, used to establish records, and (2) Nonformat Write commands (Write Data and Write Key and Data), used to update previously written records.

Commend	Type	$\begin{aligned} & \text { Hox } \\ & \text { Code } \end{aligned}$	Function	Data Writton	Error ${ }^{\circ}$	Comments
- Write Special Count, Key and Data	Format	01	Same as Write Count, Koy, and Data command except a 1 is written in bit 4 of the flag byte to indicate an overflow record segment.	Same as Write Count, Key, and Data		Same as Write Count, Key, and Data. Not used for last segment of an overflow record.
- Write Data	Nonformat	05	Changes the Data area of a record.	Data from the system. Write the number of bytes specified by the $D_{L} D_{L}$ bytes of the Count area of the same record.	Command Reject Bus Out Parity Overrun	If file mask is violated, set Command Reject. Must be chained from a successful Search Equal Key or Search Equal ID command. Also, CCW count must equal $D_{L} D_{L}$.
- Write Koy and Data	Nonformat	OD	Changes the Key and Data areas of a record.	Data from the system. Write the number of bytes specified by the K_{L} and $D_{L} D_{L}$ bytes of the Count area of the same record.		If file mask is violated, set Command Reject. Must be chained from a successful Search Equal ID command. If $K_{L}=0$, operation is the same as Write Data. Also, CCW count must equal K_{L} and $D_{L} D_{L}$.
Erase	Format	11	Operates exactly like a Write Count, Key, and Data command except data from the channel is not written on the track.	Bytes of Os to end of track.		The storage control skips writing an Address Marker, Sync Byte, or ECC.
$\begin{aligned} & \text { "Write Record } \\ & (\text { RO }) \end{aligned}$	Format	15	Writes Count, Key, and Data of RO.	Flag byte from HA area. CCHHRK ${ }_{L} D_{L} D_{L}$ from system written in Count area. Key and Data from system.		Same as Write Count, Key, and Data except must be chained from a Write HA or a successful Search HA Equal command.
- Write Home Address (HA)	Format	19	Writes the 11-byte (SDFCCHH) Home Address area on the selected drive and track. (SD equals 6 bytes.)	11-byte (SDFCCHH) home address field transferred from the system.		Must be chained from a successful Search HA command with a CCW count of four or more. If the CCW count is less than five, Command Reject is set.
- Write Count, Koy, and Data	Format	1 D	Writes 1 complete record on the selected drive and track.	Count, Key, and Data areas of next record on the track. Data for the areas comes from the system. The Count area flag byte, ECC, and gap data comes from storage control.	Command Reject Bus Out Parity Overrun. Invalid track format.	If file mask is violated, set Command Reject. Must be chained from Write RO; Write Count, Key, and Data; Erase; or a successful Search Equal ID or Search Equal Key command. After last Count, Key, and Data command on a track, Write Padding to Index.

*See OPER 225 for Write operation description.
**Sets Units Check, Channel End, and Device End.

Search commands transfer a specific number of bytes from main storage to storage control. Storage control When the condition specified in the Search command is satisfied, the Status Modifier bit is set. The status bytes satisfied, the Status Modifier bit is set. The status bytes
hold the condition of the Status Modifier bit until that bit
is reset. Significant bit definitions of the Search Commands are:

- Channel Status Byte bit 1, Status Modifier, is set when search is successful.
- If a Search command is unsuccessful, it must be reissued to continue the search
- Multitrack bit is not on. Search until successful or Index is passed twice.
- Multitrack bit is on. Head switches to the next track at Index.

MULTITRACK MODE

Setting bit 0 of a Search command enables the drive to utomatically select the next sequentially numbered head. Head switching does not occur when

- The incremented head address crosses a file-protected boundary.
- The incremented head address exceeds the limits of the cylinder.

Command	Hex Code		Function	Data Compared	Error ${ }^{\circ *}$	Comments
	Single	$\begin{array}{\|l\|l\|} \hline \text { Multi- } \\ \text { track } \end{array}$				
$\begin{array}{\|l} \hline \text { * Search Key } \\ \text { Equal } \end{array}$	29	A9	Locates a Key area selected by the system.	The Key area bytes from the selected drive and track, with data from the system.	Command Reject Bus Out Parity Overrun End of Cylinder No Record Found Data Check.	The Key area compared is the Key area of the next record (excluding RO), unless chained from a Read Count or Search ID command. If chained from a Count operation, the Key area searched is in the same record.
* Search ID Equal	31	B1	Locates a Count area selected by the system.	Five bytes (CCHHR) of the next Count area from the selected drive and track, with CCHHR from the system.		
* Search Home Address Equal	39	B9	Locates a Home Address area selected by the system.	Four bytes (CCHH) of Home Address area from the selected drive and track, with CCHH from the system.		
$\begin{aligned} & \text { * Search Key } \\ & \text { High } \end{aligned}$	49	C9	Locates a Key area selected by the system.	The Key area bytes from the selected drive and track, with Key area bytes from the system.		Locates any Key area that is higher than the Key area from the system.
$\begin{array}{\|l} \hline \text { Search ID } \\ \text { High } \end{array}$	51	D1	Locates a Count area selected by the system.	Five bytes (CCHHR) of the next Count area from the selected drive and track, with CCHHR from the system.		Locates a Count area with an ID higher than the ID from the system.
*Search Key Equal or High	69	E9	Locates a Key area selected by the system.	The Key area bytes from the selected drive and track, with Key area bytes from the system.		Locates any Key area that is equal to or higher than the Key area from the system.
* Search ID Equal or High	71	F1	Locates a Count area selected by the system.	Five bytes (CCHHR) of the next Count area from the selected drive and track, with CCHHR from the system.		Locates a Count area with an ID that is equal to or higher than the ID from the system.

${ }^{*}$ *See OPER 200 for search operation description
evice End.
Note: If a Search operation is started on the track at a point
past the key, count, or record being searched for, the information will never be found because head switch occurs a
Index. See the Reference Manual for 3350 (Order No. index. See he Reference Manual for 3350 (1638) for the correct start procedure.

This page identifies and defines each part of the control interface. (The basic timing sequence of the interface is given on OPER 95. The Tag and Bus information for each Tag decode is summarized in chart form on OPER 98 through 101 and fully described on OPER 102
through 106.)

- The control interface is the common connection
between storage control and all attached controllers
- The controllers are attached in parallel to one set of signal lines, allowing simultaneous addressing or polling by the storage control
- A controller is connected to the interface until al information is transferr
- Only one controller is logically connected to the storage control at a time.
- Signals from different controllers are ORed together to be transmitted to the storage control on common lines.

CONTROL TAG BUS OUT

Tag Bus Out Bits

Tag Bus Out bits 0,4 through 7, and P send an instruction (control information) to the controller when Tag Gate is active. The instruction identifies the operation to be performed
All Tag Bus data must be valid at least 100 ns before Tag Gate becomes active, and must remain valid at least 150 ns after Tag Gate becomes inactive

Tag Gate

Tag Gate indicates the presence of an instruction on Tag Bus. Tag Gate remains active until acknowledged by the controller with Tag Valid.

An operation must be decoded in the controller within 100 ns after Tag Gate becomes active

Select Hold

Select Hold becomes active during any Select Tag. Select Hold remains active to maintain selection of a drive unt he end signal of the last operation to be performed on the drive is received and acknowledged.

Sync Out

Sync Out checks the data count during controller data rransfers and orientation clocking.
Ont is not dc-interlocked with any inbound line, but it must have a minimum pulse width of 60 ns .

Recycle

Recycle forces the Gap counter (in Modulo-16 mode) to ontinue counting data bytes by causing the Gap counte o count to 15 , step to 0 , and count to 15 and continue in his manner until all bytes of data have been transferred. 16 bytes of data to end the data transfer sequence at count 15.

Response

Response acknowledges either a Normal End or Check End condition. Response is not dc-interlocked with any ne, but it must have a minimum pulse width of 60 ns .

CONTROL BUS OUT

Control Bus Out transfers control or address informatio to the controller as a tag modifier when Tag Gate is Gtive. Bus Out must be valid at least 100 ns before Tag ns after Tag Gate becomes inactive
Control Bus Out transfers data to the controller for the Control Bus Out transers data to the controller for the valid at least 100 ns before Sync Out becomes active, and must remain valid for at least 100 ns after Sync Out becomes inactive.

CONTROL TAG BUS IN

Sync In

ync In validates and times Bus In during data transers from the controller to storage control. Sync In becomes ctive after Bus In is valid

Bus In remains valid until after Sync In becomes inactive. During data transfers from the storage control to ontroller, Sync In provides timing for the data being transferred

Select Active

Select Active becomes active as a result of the selection sequence. It remains active to indicate proper selection as long as Select Hold is active and selection of the drive is correctly maintained by the controller.

Tag Valid

Tag Valid indicates that the controller or drive has validated and accepted a tag instruction sent from the storage control. When required, Tag Valid indicates to storage control that Bus In information is valid.

Normal End

Normal End indicates that the normal ending of an operation occurred with the expected results. Normal operations. For Read, Write, Set Read/Write, and ECC Control operations (Extended operations), Tag Gate becomes inactive and the operation is complete before Normal End becomes active.
Normal End becomes active at the successful completion of the operation. Information on Bus In is valid at the start of Normal End.
When Normal End is generated with Tag Gate, it remains active until Tag Gate becomes inactive; otherwise it remains active until Response becomes active.

Check End

Check End indicates that an abnormal ending condition exists. The abnormal condition is presented on Bus in with proper parity during the time Check End is active. For Read or Write operations, Check End is active and Bus In maintains proper parity until the storage contro acknowledges the receipt of the status information by activating the Response line
Check End is not activated on an Immediate operation.

Alert Lines

Selected Alert lines indicate that certain special events have occurred in the selected drive or controller. They are active only if Select Active is present.

Unselected Alert indicates that the execution of an appropriate polling sequence is required
SELECTED ALERT LINE 1 (Error Alert): Indicates an unusual condition (Equipment Check) in the selected controller or drive.
SELECTED ALERT LINE 2 (Index Alert): Indicates the detection of Index or an ECC correctable pattern. UNSELECTED ALERT LINE 1 (CE Alert Execute): Indicates that a CE Panel Execute switch was operated. If more than one controller is on the interface, the sorage control must

CONTROL BUS IN

Control Bus In transmits data from the drive to storage control when Sync In is active. Certain commands cause status, error, or information originating in the d
transmitted on Bus In while Tag Valid is active.

If an abnormal condition occurs during a Read, Write, or ECC Control operation (Extended operations), Check End is activated and the error information relating to the abnormal condition is presented on Bus In.
During read data transfers, Bus In is active at least 125 n before Sync In and remains active for at least 125 ns after Sync In is inactive.

During information transfers, Bus In is active with or before Tag Valid and is valid until the tag ends.

This page defines the device interface. (The Tag and Bus nformation for each Device Tag decode is summarized i hart form on OPER 100 and 101. The Tag decodes are
.

- The device interface is the common connectio between all drives and the controller.
- The interface can accommodate up to eight drives.

All signals from the controller are received by all drives.

- Like signals from different drives are ORed together on a common line to the controller
Read/Write data and PLO reference puls ar carried on two balanced, bi-directional cables.

DEVICE BUS OUT

Device Bus Out transfers operational information from he controller to the drive. The meaning of the information is determined by the Tag Bus.
Parity is checked at the drive for all functions except Read/Write.

DEVICE TAG BUS

Device Tag Bus Bits 0, 1, 2, and Parity
The following Device Tag Bus lines are coded to define the data presented on Bus Out

```
Code Tag
0 0 0 ~ S e l e c t
10 Sense Interface
010}\mathrm{ Diagnostic S
Set Difference (count)
101 Set Target
10 Set Cylinder (address)
```

11 Control

Tag Gate

The Tag Gate signal is sent to the drives to gate the Tag Bus and Bus Out. It is raised after the data appears on the bus and an appropriate delay has elapsed (see OPER
95).

Select Hold

Select Hold is used to maintain selection. It must be raised before or during Tag Gate and stay up as long a communication is necessary with the selected drive.

READ/WRITE DATA

The Read/Write data cable carries Read or Write dat from the controller to the selected drive when writing, and from the selected drive to the controller when reading

PLO PULSES

PLO reference pulses, necessary for write data clocking, are transmitted from the selected drive to the controller via the PLO cable when Select Hold is up.

DEVICE BUS IN

Device Bus In carries status and sense information from
the selected drive to the controller. As soon as a drive is selected, machine status is placed on Device Bus In.
Status stays on the bus until one of the following occurs:

- Select Hold falls.
- A Sense or Read/Write function control tag is raised
- A Diagnostic Set or Sense Interface tag is raised

ATTENTION/SELECT RESPONSE BUS

This bus transmits the unique 1 -bit physical drive addres to the controller when the drive has an Attention signal present or when that drive is selected

Attention is generated by:

- HDA Attention
- Seek Complete.
- Pad Complete
- Sector Compare.
- Search Sector.

If a drive is in CE Mode, attention appears on Bus Bit S service drive position).

The Select Response signal represents the physical
address of the drive that has been selected. Only one bit
should appear on the bus when a drive is selected:

Unique Physical

Bus Bit	Dnique Fhysical
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
S	Service Drive

TAG VALID
Tag Valid is sent from the selected drive to indicate that
Device Bus Out and Tag Bus were received with correct parity. Device Tag Valid forces Tag Valid and Normal End in the controller.

There are three types of interface operation:

- Immediate Operation
- Extended Operation
- Select Operation

IMMEDIATE OPERATION

An Immediate operation transfers a single control instruction to the controller over the Control Interface and a single byte of information to or from the controller The appropriate tag is placed on the Ctl Tag Bus. At the same time, a single byte of data, either an instruction modifier or a byte of information, may be placed on the Ctl Bus Out. Tag Gate is raised after allowing for the 150 ns de-skewing.
The controller responds with Tag Valid, forcing Normal End. Data sent by the controller is placed on Ctl Bus In long with Normal End. The storage control must rovide for any de-skewing for the interface. When response from the controller. Tag Gate drops when Tag Valid and Normal End are recognized by the storage control. The controller resets Tag Valid and Normal En when Tag Gate becomes inactive. The storage control cannot activate Tag Gate again until Tag Valid becomes inactive.

Check End is not presented on Immediate operations.

EXTENDED OPERATION

An Extended operation starts a sequence of events in the ontroller that requires extended time or many transfers cross the Control Interface and Device Interface. The Extended operations are Read, Write, Set Read/Write, and ECC Control. The appropriate tag is placed on the
Ct Tag Bus. Simultaneously a single byte of data or modifier information is placed on Ctl Bus Out. Tag Gate starts after the 150 ns de-skewing interval.
The controller responds with Tag Valid, indicating
acceptance of the tag, causing the storage control to reset Tag Gate
If the operation cannot be performed because of an End is indicated after Tag Gate becomes iractive. Ctl Bus In indicates the check conditiones inactive.

If the operation can be performed, Normal End is activated at the completion of the operation
Normal End or Check End remains active until Response is returned to the controller to acknowledge either end condition.

SELECT OPERATION

Select Operation connects the storage control to a pecified controller or drive.

The appropriate select tag is placed on the $\mathrm{Ctl} \mathrm{Tag} \mathrm{Bus}$. Modifiers and address information are placed on the Ct Bus Out. Assuming that the tag and bus informatio
hen sele esponds with Tag Valid, Select Active and Normal End. When these tags are acknowledged by the storage control, Tag Gate becomes inactive. While Tag Valid is present, Ctl Bus In returns the address of the selected ntroller. The address contains coding that allows the storage control to check for double selection.
Select Hold maintains selection and must remain active until all operations are complete on the selected controller or drive. Select Active remains active until controller or drive, no response is generated.

'03' or '83'

Tag Bus	${ }^{0} 3^{\text {o or }}$ '83'
$\overrightarrow{\text { Bus Out }}$	CTLR \& DEV ADDR
$\xrightarrow{ }$	
Select Hold	
$\xrightarrow{\text { Tag Gate }}$	
\rightarrow	CTLR ADDR
Bus In	CTLR ADDR
Tag Valid	
Normal End	
$\widehat{\text { Select Active }}$	

CONTROL AND DEVICE INTERFACE TAG SUMMARY

SET UNSUPPRESSIBLE REGISTER - ' 01
Tag ' 01 ' sets the unsuppressible register in the controller to mask certain drive addresses and block them from activating Bus In during polling. This allows some level. This tag is of the immediate class.
Bus Out bits 5, 6, and 7 contain the drive address. The appropriate latch is set when bit 0 is active and it is reset when bit 0 is inactive.
The unsuppressible register is reset during power on.

POLL CONTROLLER - ' 02 '

Tag '02' allows all controllers to be polled for service requests. Bus Out defines the type of service request the poll is addressing. If Bus Out bits 3 and 4 are zero, a drive interrupt from any drive causes the controller to In.
If Bus Out bit 3 is active, the controller responds to only those drive interrupts that have their drive addresses set
 unsuppressible register is inactive, then the controller does not respond on Bus In.
If Bus Out bit 4 is active, the controller responds on Bus In with its bit significant address only if it has a CE maintenance panel request.
Tag Valid and Normal End are initiated by all controllers. This tag is of the immediate class.

SELECT CONTROLLER - ' 03

Tag '03' is used when CE Panel communication is desired

Bus Out bits 0 through 2 contain the controller address. If the address on Bus Out matches that assigned to the controller, Bus in responds with the controller address in Valid, Select Active, and Normal End are activated. Bus In is checked to ensure that only one controller is selected.
If the address on Bus Out is not recognized or if either Bus Out or Tag Bus have incorrect parity, no inbound lines are activated. Parity on Bus In is guaranteed if Normal End is present.
If a device control command is issued when only the controler has been selected, no Tag Valid or end responses are present. This tag is of the immediate class.

SENSE STATUS - ' 04
The Sense Status tag (Error Bytes tag) reads the drive physical address, error correction pattern, Track Used Bus Out defines the byte presen

00000000 Orientation Status Byte

All zeros on Bus Out activate Tag Valid to check the status bytes at the beginning of a Read/Write operation.

10000000 Gate ECC Low Byte

Bit 0 gates the ECC low-order correction byte into Bus In.

01000000 Gate ECC High Byte

Bit 1 gates the ECC high-order correction byte onto Bus In.

00100000 Gate High Byte Track Used
Bit 2 gates the high-order byte of the Track Used counter (TR counter) onto Bus In.

00010000 Gate Physical Address
Bit 3 gates the bit significant physical address of the drive onto Bus In.

00001000 Gate Low Byte Track Used

Bit 4 gates the low-order byte of the Track Used counter (TR counter) onto Bus In.

00000100 Gate Reorient Counter

Bit 5 gates the Reorient counter information onto Bus In.

00000010 Gate Controller Error 2

Bit 6 gates Error Byte 2 onto Bus In. Except for ECC Zeros Detected (Bus In bit 7), Error Byte 2 contains Check in the status byte. These errors or conditions are shown on OPER 98.

00000001 Gate Controller Error 1 Bit 7 gates Error Byte 1 onto Bus In. Error Byte 1
contains errors or conditions reported as a Controller Check in the status byte. These errors or conditions are shown on OPER 98.

RESET READ/WRITE - ' 05

Tag '05' resets the Read/Write state established by Set Read/Write. Bus In is not defined and parity cannot be guaranteed. This tag is of the immediate class.

SWITCH CONTROL 1 - ' 06' (STRING

Tag '06' sets and resets the Assignment, Device End, and Pack Change registers in the drive; it also reads th switch status.

Bus Out (See Note 1)
1100 Oaaa Assign Drive to interface
0100 Oaaa Unassign Drive from interface
1010 Oaaa Set Device End latch
0010 Oaaa Reset Device End latch
1001 Oaaa Set Pack Change latch for opposite interface.

0001 Oaaa Reset Pack Change latch for this interface.
1000 laaa Set the switch to neutral if locked to the opposite interface. (See Note 2)
0000 1aaa Reset the Assignment latch in the opposite interface. (See Note 2)
Note 1. \quad = binary drive address
Note 2: Bus In values below do not apply.
Bus In
1001 0xxx Device End Interrupt is active for this interface
0101 0xxx Pack Change Interrupt is active for this interface.
0011 0xxx Addressed drive is assigned to this interface.
00010 xxx Connection is made through a switchable controller.

0001 1xxx Addressed drive is assigned to the opposite interface
If the string switch feature is not installed, no Bus In bits are active. Parity is never generated

WITCH CONTROL 2 - '07' (STRING SWITCH ONLY)
Long Connection is required when extended operations re to be performed (see OPER 93). Tag '07' with Bu Out modifiers sets and resets Long Connection.
The Reset Disable Interlock command activates the disabled portion of the Enable/Disable manual switch Bus Out
$11 \times 0 \mathrm{xxxx}$ Set Long Connection
01×0 xxxx

00x1 xxxx
U (Reset Long Connection latch)

ECC CONTROL - ' 08

Tag ' 08 ' is used when a Data Check has been detected to Set Read/Write is still active. This tag is of the extended class.

TRANSMIT CONTROL - ' 09

Tag ' 09 ' initiates an operation as defined by the , Bus Out bits, when active, perform the following functions

Bit 0 - Controller Reset

Bit 0 resets all the control and the check indicator latches.
Bit 1
Not Used
Bit 2 - Set Diagnostic
it 2 sets the diagnostic modes as defined by the Diagnostic Decode.

Bit 3 - Reset Diagnostic
Bit 3 resets any diagnostic mode that is left set in the ontroller. These modes are also reset by Power On Reset and Controller Reset.

Bit 4

Reserved

its 5 through 7 - Diagnostic Decodes

Refer to Control and Device Interface Summary Chart OPER 99) for decodes.

CONTROL AND DEVICE INTERFACE TAG DESCRIPTION

READ CONTROL - '0A'

Tag ' 0 A ' reads control bytes from the controller. The contents of Bus Out define the byte presented on Bus In. Bus Out must have
mmediate class.

Bus Out

10xx xxxx Gate Device Type
Gates the device type bits to Bus In if the selected device is online. Bus In bits 4 and
5 define the 3350 . 5 define the 3350
01xx xxxx Gate CE Switches.
Gate contents of CE data switches onto Bus In.

SYNC - ' OB'
Tag ' OB' provides a scope sync. Activates Test point A2L2J11 (logic page BD100) during a Tag Gate operation.

DISPLAY CE HI - ' OC

Tag ' 0 C ' sets the eight high-order positions of the parity cannot be guaranteed. This tag is of the immediate class.

DISPLAY CE LO - '0D'
Tag ' OD' sets the eight low-order positions of the controller CE Panel lights. Bus In is not defined and parity cannot be guaranteed. This tag is of the immediate class.

READ OP - ' OE

Tag ' $0 E$ ' issues Read or Clock Data commands to the controller. Tag ' 0 E ' is an extended operation (see OPER 95)

When Tag ' $O E$ ' is issued, the variable frequency oscillator (VFO) must be locked in and Set Read/Write must be active in the drive. Except for the gap codes involving HA and AM Search, all read codes can only be issued after field orientation has been previously ndicating Command Overrun if this is violated.

Ctl Bus Out

Ctl Bus Out defines the type of Read or Clock Data command and a count. Bits 4 through 7 contain the modulo-16 count of the number of bytes of the next data field to be transferred by the controller. Bits 0 through 3 contain the type of Read and the prefield gap preceding it. The Read and Clock Data commands are as follows: 0001 xxxx CLOCK G3
0010 xxxx CLOCK G2
Clock G3 and Clock G2 commands allow Key and Data reas to be clocked without locking to data and searching for the sync byte. The controller executes these codes by keeping the VFO locked to servo and simulating a Wris G3 or G2 operation with the Write Gate off. Sync In occurs then as if the field were being written. The data on Bus In is valid and therefore parity is not generated

0011 xxxx READ G4

Read G4 is used for defect skipping. It is used to extend a gap by 128 bytes following the Special Read G2 code. 0100 xxxx READ G1

Read G1 allows orientation on Home Address. This code is executed in two ways. If the gap counter is counting from Index and has not reached byte 63, the execution proceeds immediately. If the counter is past byte 63 or if the counter is not running, the execution is delayed until
Index occurs. This code never overruns the command. If no sync byte is located before the normal position of HA on the track, a second attempt to read a sync byte is made 128 bytes later. No Sync Found and Check End occur if the second attempt fails.
0101 xxxx READ G3 Both codes (Read G3 and Read G2) involve locking
VFO to data sequence at the proper point in the gap, searching for sync bytes, and if successful, transferring
sequen at the data read and processing the ECC bytes. The difference between Read G2 and Read G3 is that the Read G3 sets the gap counter to process a G3 prefield gap whereas the Read G2 implies a G2 prefield gap. Also, the Transfer Sector Counter line is only activated during execution of the Read G3 code.

111 xxxx READ G3 AM SEARCH
Read G3 AM Search initiates an address mark search sequence. Once an Address Mark is found, the execution is the same as a Read G3 code. Field orientation is established when Address Mark (AM) is found. Transfer Sector Count line to the drive is activated when an AM is found.

1110 xxxx SPECIAL READ G
Special Read G2 is the same as Read G2 except that it denotes there is an inter-record gap following and that there is no ECC at the end of the field

Ctl Bus In

Ctl Bus In is valid for each Sync In as denoted for data ransfer after each gap definition. In addition, Bus In is valid for Tag Valid, Normal End, and Check End TAG VALID
Information is gated onto Bus In for Command Overrun control.
Bit 0: Not Used
Bit 1: Not Used
Bit 2 Lost Orientation: Indicates that orientation is not established when the Read or Write operation is issued.
Bit 3: Not Used
Bit 4 Status Overrun: Indicates that Tag Gate is active too late for the operation to continue successfully. It usually means that the channel has not responded to status In on a chained Read or Write operation.
Bit 5: Not Used
Bit 6 G1 Unoriented: Indicates that a Read G1 peration has been issued when the controller is not oriented, that is, not in a G1 gap area.
Bit 7: Not Used
NORMAL END
Normal End is raised after the last ECC byte or last byte of a skipped record has been transferred and no erro condition has been detected. Bus In is all zeros with correct parity.

CHECK END

Check End is raised if an unusual condition occurs. Bus n is never zero when Check End is active. The
onditions causing Check End are as follows:
Bit 0 Command Overrun: Bus In bit 0 is set if the Read operation is not received at the controller before the gap G3 AM Search byte count 71. The Read G1 and Read have an overrun point. The Check End lines rise after Tag Gate falls at the controller. Since the gap counter running when Command Overrun occurs, record orientation is lost. Bit 0 is reset by Response.
Bit 1 Sync Out Timing Error: Bus In bit 1 is set if there is a late or extra response to a Sync Out. Data reset by Response.

Bit 3 ECC Data Check: Bus In bit 3 is set if (after processing the ECC bytes) the ECC hardware indicates a Write operation.
Bit 4 No AM Found/ECC Data Check: Bus In bit 4 is set as an end condition of the Read G3 AM Search ECC Data Check with bit 3 . Bit 4 is reset by Response. Bit 5 No Sync Found: Bus In bit 5 is set if the ontroller does not find a sync byte. This does not appl 0 Clock G3 and Clock G2 codes. Bit 5 is reset by

Response.

Bit 6 Data Found: Bus In bit 6 is set if at least a single bit is only gated to Bus In if bit 5 (No Sync Found) is on. Bit 6 is reset by Response.

ERROR ALERT CONDITIONS

Error Alert Condition is activated whenever an error condition is detected that is not covered by Check End. The Error Alert (Selected Alert 1) line may become active at any time and may accompany Tag Valid, errors, any condition that sets Error Alert is latched for examination under the Status and Error bytes.

WRITE OP - ' OF'
Tag ' 0 F' issues Write commands to the controller. This tag is an extended operation (see OPER 95).
When this tag is issued, The VFO is locked in as a result of the Set Read/Write tag. If the VFO is not locked in Error Alert reports a VFO error
Except for the Format G1 code, all other write codes may only be issued after a field orientation on the active portion of the track has been previously established. If with Check End, and Command Overrun is noted on Bus In. The Format Write operations cause Write Gate to be set at a predetermined point on the track. From this point Write Gate remains active until Index is detected. If subsequent format operations are not activated, zeros are padded throughout the rest of the track. Write Gate is also dropped with Reset Read/Write or the fall of executed, all subsequent Write commands are executed as format commands. When required, the controller writes the following: the address marker, sync byte, data transferred from storage control, ECC bytes, and gaps. Data transfer is initiated with a Sync In when the controller starts to write the sync byte. The ECC bytes
are written immediately following the end of data are written immediately following the end of data
transfer. ECC hardware sequence is handled by the controller. The normal updating Write command causes Write Gate to be set at a predetermined point in the gap and to be reset at the end of the field after the ECC bytes have been written.

Bus Out

Bivs 0 through 3 contain the type of Write command (codifiers) to be performed and the prefield gap associated with it. Bits 4 through 7 contain the
modulo-16 residual count of the number of bytes of the next field to be transferred to the controller. This count is loaded into the controller data transfer counter.
Following is a summary of the Write modifiers.
0010 xxxx WRITE G2
Bit 2 writes a G2 prefield gap. Write Gate is turned off
at the end of the data field.
0011 xxxx FORMAT REORIENT
The Format Reorient tag reorients the R / W head on the track when a count field is reached that contains a defect skip within its control. The count field must be rewritten
once this is determined. The command is issued in the gap following the count field. Sync In is presented and padding is continued to Index.

Sync In continues to the reorientation point. The coun used to reorient ahead of the R0 count field is 19,785 places the orientation just after the last byte before the ECC bytes of the data field and prior to the desired coun field. Normal End is presented in the normal manner. 0100 xxxx FORMAT G1
This code causes the controller to search for Index. G1 is formatted and Home Address is written according to the data transfer. The Transfer Counter line to the drive is activated at byte 63 in the gap.
0101 xxxx FORMAT G3
The Format G3 tag writes a G3 prefield gap and writes the Address Mark. The Transfer Counter line to the drive is activated at byte 63 in the gap.
0110 xxxx FORMAT G2
This code is the same as the Write G2 code. It is used to write a G2 prefield gap. Write Gate is turned off at the end of the data field.
0111 xxxx FORMAT ERASE
This code causes zeros to be written to Index and turns off the Write Gate. Clocking continues until Recycle drops and the modulo- 16 count has decremented to zero or Index is detected. Track overrun is presented during this command when Index is detected.
1011 xxxx WRITE G4
This code is used to extend a gap before the gap This code is used to extend a gap before t.
definition is presented (to skip a defect).
1100 xxxx SPECIAL FORMAT G1
This code causes a search for Index and Active Track. When found, 128 bytes of zeros are written. After this, the controller continues writing the Format G1.
1110 xxxx SPECIAL WRITE G2
This code allows a following gap without ECC bytes at the end of the data field. Write Gate is turned off afte the last byte of data.

Bus In

Bus In is valid when Tag Valid, Normal End, or Check End is active.
TAG VALID
Bits 0 and 1: Not Used
Bit 2 Lost Orientation: Indicates that orientation is not established at the time the Read or Write operation is issued.

Bit 3: Not Used

Bit 4 Status Overrun: Indicates that Tag Gate is active too late for the operation to continue successfully. It usually means that the had or Write operation.
Bit 5: Not Used
Bit 6: Not Used
Bit 7: Not Used

NORMAL END

Normal End is raised if the Check End condition does not exist after the last byte of the ECC field is written. Bus In is set to zero.
CHECK END
Bus In is never zero when Check End is raised. Check End is raised if one of the following unusual conditions occur:
Bit 0 Command Overrun: Bus In bit 0 is set if the command is not received at the controller before the gap counter reaches byte count 63 (for operations requiring maintained operation)

Bit 1 Sync Out Timing Error: Bus In bit 1 is set if Sync Out arrives too late to service a byte of data. If Write Gate is active, it is turned off.
Bit 3 Track Overrun: Bus In bit 3 is set if the index point is detected while a field is being written. The field includes the prerecord gap through the end of the ECC bytes. Write Gate is dropped and Check End is raised when Index is detected, except when Format G1 is being processed.

ERROR ALERT

Error Alert is raised whenever an error condition is detected that is not covered by Check End. The alert line may rise at any time.

POLL DEVICE - ' 82

Tag ' 82 ' allows the drives of the addressed controller to be polled for service requests and can only be issued when no drive is selected on the control interface. Bus
Out bits 0 through 2 contain the address of the desired Out bits 0 through 2 contain the address of the desired controller. The controller responds with Tag Valid and Normal End if there is no Bus Out or Tag Bus parity error. If Bus Out bit 3 and 5 are zero, the presence of a
drive interrupt from any drive causes the bit significant address of that drive to be activated on Bus In.
If Bus Out bit 3 is active, the drive address for which an interrupt exists is only seen on Bus In if the correspondFor example, if a drive with address 7 has an interrupt, Bus In bit 7 is only activated if bit 7 of the unsuppressible register is set.
Bit 5 on Bus Out polls requests from only the drive in the service mode. Bus In bit 0 indicates a request is present. Bus Out bit 3 (unsuppressible) is not defined when polling the service drive and should not be used.
Parity on Bus In is not guaranteed for Poll Device. This tag is of the immediate class.

SELECT DEVICE - ' 83 '

Tag ' 83 ' is used to select both a controller and a drive Bus Out contains the address of the controlier and the logical drive address. The controller generates the selection sequence to the drive. Bus Out to the controller is gated on Bus Out to the drive for the logical drive address contained in bits 5 through 7. The controller
responds to this tag with Tag Valid, Select Active, and Normal End if the address on Bus Out matches that assigned to the controller and if Tag Valid is received from the device. Tag Valid is returned from the device to the controller if a drive is selected and there are no device Tag Bus or Bus Out parity checks. Bus In contains the controller address (bits $0-2$) and its inverse (bits 5-7) if selection is success-
ful. Bit 4 is active if the alternate controller is selected When ful. Bit 4 is active if the alternate controller is selected. When
Bus Out bit $4=1$, drive selection is blocked. Bus Out bit $3=1$ causes drive in CE Mode to be selected while ignoring bits 5 through 7. If the address on Bus Out is not recognized, or if either Bus Out or Tag Bus have incorrect parity, no inboun lines are activated. This tag is of the immediate class.

READ STATUS - ' 84

Tag ' 84 ' causes the controller to transmit the drive status onto Bus In bits 1 through 7. The tag does not
affect the drive. The Controller Check bit is transmitte affect the drive. The Controller Check bit is transmitted
on Bus In bit 0 . The drive status has some differences when Set Read/Write is active. Refer to Control and Device Interface Tag Summary chart on OPER 100 for summary of the status bits with Set Read/Write active and inactive. This tag is of the immediate class.
Correct parity on Bus In is not guaranteed because of the asynchronous state of the information presented.

SET READ/WRITE - '85'

Tag ' 85 ' sets the Read/Write control in the controller and synchronizes the VFO with Servo Pulses from the activated drive. The Read/Write control to the device is established as follows:

1. Device Tag Bus bits 0,1 , and 2 are forced to all 1 s .
2. Device Bus Out bits 5, 6, and 7 are forced to all 1 s
3. Device Bus Out bits 0 through 4 are conditioned so the various Read and Write controls may be transmitted to the device
4. Device Tag Gate is forced on.
5. The Device Bus Out parity checker is blocked after Set Read/Write is decoded in the device.
6. Upon detection of Index, the Read/Write controls
are blocked for approximately 63 microseconds. are blocked for approximately 63 microseconds This allows the microprogram to set the head Read or Search operations.
It is expected that after this tag is issued, Read operation (Tag ' $0 \mathrm{E}^{\prime}$) or Write operation (Tag ' $0 \mathrm{~F}^{\prime}$ ') will be issued.
The Read/Write controls are reset by:
7. Reset Read/Write operation (Tag ' 05 ').
8. Controller Reset (Tag '09', Bus '80').
9. Dropping Select Hold.

Tag ' 85 ' is of the extended class and Normal End usually signals that the Read/Write logic is ready. Check End is not possible.
Bus In is not defined and parity cannot be guaranteed.

SENSE INTERFACE - ' 89

Tag ' 89 ' determines the cause of a Device Interface check. Bus In bits 6 and 7 indicate:

Bit 6 - Device Bus Out Parity Check.
Bit 7 -Device Tag Bus Parity Check.
This tag forces Tag Valid even though the Device Interface checks are present. The Device Bus Out and Device Tag Bus Parity Check latches are reset when Tag
Gate drops. Gate drops.
This tag is of the immediate class. Bus Out is not used.
DIAGNOSTIC SET - ' 8A'
Tag ' 8 A ' is used in conjunction with Device Bus Out to set the selected drive into predefined hardware states to aid troubleshooting.

Device Bus Out

10xx 0x00 SERVO RESET
Servo Reset forces the Servo into Zero mode and inhibits access movement or track following control while the tag is active.
01xx 0x00 GO HOME
Go Home causes the access mechanism to go to the home position, fully retracted into the Head/Disk Assembly (HDA).
001x 0x00 FORCE DELTA I W CHECK
Force Delta I W Check forces a Delta I W Check when an inner (odd-numbered) head is selected.
00xx 0x10 FORCE PAD GATE D CHECK
Force Pad Gate causes the device padding function to operate under diagnostic control.
00xx 0x10 FORCE MULTIHEAD CHECK
The Force Multihead Check command sets the Odd Head latch in the drive. A subsequent Set Read/Write 00xx 0x01 DECREMENT DIFFERENCE COUNTER Decrement Difference Counter causes the difference count to be decreased by one each time Diagnostic Set Tag is applied with Device Bus Out bit 7 active

SET HAR - ' 8B'

Tag ' 8 B' is used to transfer the Head Address.

Bits 0 and 1 - Fixed Heads

Bit 0 is on when any one of the 30 fixed heads from 32 to 59 is addressed. Bit 1 is on when any one of the fixed heads from 0 to 31 is addressed.

Bits 2-6 — Head Address
SET DIFFERENCE - ${ }^{\prime} \mathrm{CC}^{\prime}$
Tag ' 8 C ' loads the Difference Counter of the selected drive. The Difference Counter is loaded with the difference between the current cylinder address and the desired cylinder address as calculated by the controlling system. The 256 bit and the 512 bit of the Difference The difference value, including the 256 and 512 bits, must be set at least 8 microseconds before a Seek Start is issued.

SET TARGET - ' 8D
Tag ' 8D' transfers a sector number to the Target Register of the selected drive for rotational position
sensing. The drive immediately begins to perform Search Sector operation to compare the Target Register with the Sector Counter to find a match.

SET CYLINDER - ' 8E'

Tag ' 8E' loads the Cylinder Address Register (CAR). CAR is not functionally connected to the access mechanism; it serves only as a storage register to contain current position information of the access mechanism to be used with the string switch feature of the controller. CAR is reset by a Rezero operation to indicate that the heads are positioned over track 0 .

CONTROL - '8F

Tag ' 8 F ' transfers control information to the selected drive. Under this tag, the Device Bus Out is divided into two groups of four bits each. Device Bus Out bits 4 through 7 are coded to perform 14 different functions. Bits 0 through 2 are interpreted to further control certain of these functions. Refer to Control and Device Interface Tag Summary chart on OPER 101. The
functions are:

No-op	Sense Cylinder
Seek Start	Sense Difference Counter
Attention Reset	Sense Head Register
Check Reset	Sense Target Register
Rezero	Sense Status
Drive Sync Tag	Sense Read/Write
Read/Write Check Reset	Diagnostic Set Read/Write
Set Difference Hi	

xxxx 0000 No-op
The drive sees this tag as a No-op, but status as under tag 84 is returned to storage control. Some storage control types use
this tag/bus combination to obtain status.

xxxx 1000 Seek Start

Seek Start causes the drive to move the Read/Write heads as specified by the information contained in the Difference Counter and Head Address Register. The Difference Counter and the Head Address Register must
previously have been set. If the difference count is zero, previously have been set. If the difference count is zero zero track Seek is signaled immediately. Completion of the action initiated by Seek Start is signaled by Attention. At the termination of a Seek, the Seek Complete status bit in the machine status is on. An Access failure is indicated by the Drive Check bit being active with Attention.

xxxx 0100 Attention Reset

Bit 5 resets the attention signals in the selected drive. To prevent masking of attention signals, Attention Reset should be performed to reset attentions already present prior to the initiation of an operation resulting in an attention. Attention Reset also cancels pending Seek Rezero or Search Sector Attentions.

xxxx 1100 Check Reset

This code resets check conditions in the selected drive including Read/Write checks

xxxx 0010 Rezero

Bit 6 causes the drive to place the heads over track 0 with HAR and Difference Counter reset to zero, which is the same condition as that after a head/disk assembly ha completed a load sequence. Rezero is a low-speed operation used to recover to a known track position after
a seek error has occurred. Check Reset must be issued prior to a Rezero operation if an Access check is presen in the drive. The response of the drive to the controller after completion of this control function is similar to Seek Start.

xxxx 1010 Drive Sync Tag

Drive Sync Tag causes A1C2G02 to shift to a minus level (MST-1). The microdiagnostics use this to provide oscilloscope sync pulses.

CONTROL AND DEVICE INTERFACE DESCRIPTION

xxxx 0110 Read/Write Check Rese

Read/Write Check Reset causes these common Read/Write Checks to be reset:

- Multihead Check
- Capable/Enable Check
- Write Overrun
- Index Check
- Interlock Check
- Control Check
- Transition Check
- Write Current Check

yyyy 1110 Set Difference Hi

Set Difference Hi is used to load yyyy (yyyy=Bus Out bits 0-3):
Bit 0 - Direction ($1=$ in)
Bit 1 - Difference count 512
Bit 2 - Difference count 256 (Bits 2 and 3 are extensions of the difference counter. See Tag '8C'.)
Bit 3 - CAR bit 512. (This is an extension of cylinder address register. See Tag ' $8 \mathrm{E}^{\prime}$.)

xxxx 0001 Sense Cylinder

Sense Cylinder causes the contents of the cylinder
address register to be presented on the Device Bus In.

xxxx 1001 Sense Difference Counter

Sense Difference Counter causes the contents of the difference counter to be presented on the Device Bus In

xxxx 0101 Sense Head Register

Sense Head Register causes the contents of the head register to be presented on Device Bus In.
xxxx 1101 Sense Target Register
Sense Target Register causes the contents of the target register to be presented on the Device Bus In.

xxxx 0011 Sense Status

Sense Status causes one of five drive status bytes to be placed on Device Bus In as determined by bits 0 through 3 of Device Bus Out. For a summary of each of the status bytes, refer to the Control and Device Interface Summary Chart on OPER 101

xxxx 1011 Sense Read/Write

Sense Read/Write presents Read/Write check conditions on the Device Bus In. Refer to OPER 101 for Bus In bit significance.

xxxx x111 Diagnostic Set Read/Write

Diagnostic Set Read/Write causes bits 0 through 4 of the Device Bus Out to control Read/Write functions in the
device. While the Set Read/Write Control function is device. While the Set Read/Write Control function is present, parity checking of Device Bus Out by the drive is
disabled and Read/Write status of the drive is presented disabled and Read/Write status of the drive is presented on Device Bus In. Refer to the Control and Device status on Device Bus In.
During a normal Set Read/Write, (see Set Read/Write Tag ' 85' on OPER 105), the controller hardware a Diagnostic Set Read/Write (Tag ' 8 F ', Bus $\times x \times x \times 111$) the diagnostic microprogram must control the bits on Device Bus Out.
The control functions under Device Bus Out are as follows:
Bit 0 Transfer Sector Count: The contents of the sector counter are transferred to the target register for later readout.
Bit 1 Write Gate: When active, (along with bit 4) Address Mark Control causes writing to be performed on the head/disk assembly. Read/Write Checks prevent writing.
Bit 2 Unsquelch/Cue Pad: During Read operations, bit 2 causes squelch to be removed from the read amplifier to allow read data operations. During Write operations, bit 2 conditions the file to pad to Index independently of the controller

Bit 3 Read Gate: Causes the read amplifier, read detector, and data line drivers to be set to Read mode.

Bit 4 Address Mark Control: In Read mode, the read detector is set to detect Address Marks. In Write mode rite Gate to allow writing on the assembly
Bits 5 through 7: Must be ones
\square

A timing chart of a typical control and device interface operation is shown on OPER 108 and 109. A Seek operation (OPER 108) followed by Polling and a Seek Complete Attention (OPER 109) shows the sequence of events that take place on the Bus In Bus Out, and Tag Bus.

The charts on OPER 98 through 101 show the data on each bus for both interfaces, and for each tag and modifier issued. Note that some tags do not use the descriptions and OPER 95 for tag considerations.

BUS OUT

The Control Interface Bus Out is sent to the Device Interface Bus Out at all times except during Read/Write mode.

TAG BUS

The Device Tag Bus uses a register to transmit tags to the evice as follows (see diagram):

1. Selection Tag ' 83 ' causes the register to reset. Since the register is not clocked and neither the G1 nor G2 input is active, the register is reset to zero
Tag ' 83 ' also activates Tag Gate.
2. Tags with bits 0 and 4 on are device tags (Tags ' 89 ' through ' 8 F '). These tags activate the G1 gate to the register. The active Control Interface ag Bus bits 5,6, and 7 are set into the register and Tag Gate activates Device Tag Gate.
3. Read/Write mode activates the G2 inputs and sets all output Device Tag bits on. Read/Write mode also forces Device Tag Gate.
4. Controller Tags ('00' through ' 85 ', except ' 83 ') do not affect the register settings. Device Tag Gate is not activated.

SEEK OPERATION

The timing chart of a Seek operation on OPER 108 shows a typical sequence of interface operations and initiated operation interaction for a storage-control

The timing chart is based on a 3830-2 using a croprogram dis has string switch code and 3340 ith or without the string feature.

A Start I/O with a Seek command is issued by the CPU The storage control selects the addressed device and makes certain checks of the device such as status, features, and device type. The direction and length of
the Seek are computed and sent to the device along with the Read address. These values are verified by a read-back check. Cylinder address values are also rransmitted and are verified if the string switch feature is installed. If no errors are encountered, the access is started. As soon as the device becomes Busy, it is The storage control returns to Polling mode to await either an Attention from the device or a channel command.

SEEK COMPLETE ATTENTION

The timing chart on OPER 109 illustrates Polling with a device-initiated sequence of interface operation
The timing chart is based on a 3830-2 using a microprogram disk that has string switch code and 3340 s with or without the string switch feature
The storage control, when idle, polls all of the attached controllers for outstanding Attentions. If an event such as a Seek Complete has occurred, the device places its Bi Significant Device Address (BSDA) on the Attention/Select Bus to the controller (BSDA equals bit 0 for device 0 , bit 1 for device 1 , etc.). When the Interface Bus In. The storage control then selects the first device and interrogates it (Read Status Tag '84') to determine the type of Attention. The Attention is stacked (not reset) as indicated on the timing chart o reset depending upon the storage control/channel requirements.

Seek Complete Attention

* See OPER 98 through 106 for a complete description of Bus and Tag values. See OPER 95 for Tag considerations.
\square
© Copyright IBM Corporation 1976, 1977

34 Mar 76	141300

This page describes the diagram on OPER 111.

UNIT SELECTION

The unit address consists of an 8-bit byte plus parity Bits 0 through 3 contain the address of a controller. Bits 4 through 7 contain the address of a drive.| 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- |$\underbrace{1}$

Controller
Address
To select a drive:

1. Storage control places Tag ' 83 ' on Ctl Tag Bus 1. Tag ' 83 ' indicates that an address is on Ct Bus Out 1.
2. Each controller decodes Tag '83' 4
3. Storage control places a unit address (a controlle (Ctl Bus Out bit 3 is zero.)
4. Storage control activates Tag Gate and then Select Hold 3.
5. Each controller compares its prewired 3-bit address and Bus Out bits 0 through 27.
6. Comparison is successful in the controller when Controller Addressed becomes active. This sets the Select CtIr latch 5 and causes Select Active 8 to be sent from the selected controller to storage
7. The selected controller places its prewired 3-bi address on Selection Bus bits 0 through 2 and the inverted prewired 3-bit address on Selection Bus bits 0 through 2 and 5 through 7 are placed on Ctl Bus In by the Bus In Assm 13.
8. The selected controller generates Dev Tag Bus Tag (000) from Ctl Tag Bus Tag '83' 2.
9. Each drive attached to the selected controller generates Select Gate 6 from Tag bits 0 through 2 genera).
(000).
10. Each drive compares its prewired 3-bit address and MST Outbus Bits 5 through 79
11. Comparison will be successful in one drive where Drive Addressed becomes active. This sets the Select Drive latch and activates Selected A (B) 10 .
12. Selected activates NPL Attn Sel Resp drive $\mathbf{x} \mathbf{A}$ (B) which activates the drive address bit on the Attention/Select Response Bus 12 . (Bit $0=$ drive 0 , bit $1=$ drive 1 , etc.) Selected also gate Tag Gate Valid to the controller.
13. A Sense Physical Address tag (Ctl Tag Bus ' 04 and Ctl Bus Out ' 10 ') gates the Attention/Select Response Bus through the Bus In Assm onto Ctl Bus In 13 .
14. The controller sends Tag Valid 14 and Normal
End 15 to storage control. End 15 to storage control.

3350 \square $\left\lvert\, \begin{aligned} & 2358047 \\ & \text { Part No. }\end{aligned}\right.$ eright IBM Corpotion 1976, 1977

$$
\begin{array}{|c|c|}
\hline \mathbf{4 4 1 3 0 0} & 441306 \\
\hline \mathbf{3 1} \text { Mar } 76 & 1 \text { Apr } 77 \\
\hline
\end{array}
$$

$\mathrm{C}_{\mathrm{F}} \mathrm{C}$ C C

ACCESS CONTROL

Access control provides control signals for the servo logic to start operations and give direction and speed for acces access operation.

INDEX DETECTOR

The Index detector identifies Index patterns for Index ensing and identifies the sectors for Rotational Position Sensing (RPS).

DIFFERENCE COUNTER

During Seek operations, the difference counter counts track crossings as the heads move from the start track to the target track.

SERVO AMPLIFIER

The servo amplifier maintains an even signal from the ervo head to develop the Position signal. It provides VCO), the sector counter, and the Index register.

SERVO LOGIC

he Servo Logic circuits drive the power amplifier monitor access operations, and act as an interface between access control and servo analog.

SERVO ANALOG

The Servo Analog converts the Position signal, the
lifference counter, and the track crossing inputs into the elocity output signal. Velocity represents the carriage speed.

POWER AMPLIFIER

The power amplifier amplifies forward-or reverse-drive current to move the voice coil.

VOICE COIL MOTOR

The voice coil motor is connected to the carriage within the head/disk assembly (HDA). When the voice coil motor moves, the carriage and the heads also move.

3350
Copyright IBM Corporation 1976

BD0120	2358050 Seq. 1 of 1
Part No.	

All data heads in the Head/Disk Assembly (HDA) are tied directly through the carriage to the servo head. When the servo head is on a particular track, every head is on the same track.
At the completion of a Seek or Rezero operation, the servo head locks on the correct track and continues to initiated.

TRACK FOLLOWING LOOP

1. The servo head 1 reads the servo signal.
2. The servo amplifier 2 develops the composite servo signal.
Steps 1 and 2 are described in more detail on OPER 124 and OPER 125 .
3. The demodulator 3 produces a voltage level (Position signal) proportional to the servo head position over the center of the servo track.
4. The compensator 4 uses the Position signal to generate the Position Error signal. This error signal is proportional to the distance that the servo head is off the track center.
5. During track following time, access control provide Linear Mode, which gates Position Error throug the select amplifier 5 to generate Power Amp Drive to the power amplifier.
6. The power amplifier 6 provides the current to The power amplifier 6 provides the current to
the voice coil motor to move the servo head back on track.

ACCESS CHECK

1. The Position signal is checked by voltage leve detectors A to determine when the servo head is within the proper on track area.
2. During Linear Mode, the track following timer B sends a signal to access control if the heads remain on track
3. If the Track Following Timer signal is lost during a Read or Write operation, the access control check
circuits (C) post a servo off track Access Check.

SERVO CLOCK

The servo clock \boldsymbol{X} develops clock pulses to synchroniz Read/Write operations to the disk and access contro lines.

INDEX SENSING

Using the clock bits from the servo clock, the Index Sensing circuitry Y determines when the servo head passes over an Index Mark. (See OPER 126 for a more detailed description of Index detection.)

In order for the servo head to be able to track follow,
the servo surface of the HDA has the following format:

- 561 tracks between special prerecorded bands.
- Bands are either Odd or Even and arranged
alternately; one even, one odd.
- Bands are recorded like bar magnets, end-to-end, with north and south poles.
- Odd-numbered tracks are preceded by odd bands;
even-numbered tracks by even bands, so that
Track 1 is preceded by an Odd band.
Track 2 is preceded by an Even band.

As the disk rotates, the servo
head senses the magnetic changes.
he resultant differential signal
passes through the preamplifi
way to the
servo amplifier.

The servo amplifier combines the two sig-
nals into a composite
servo signal. This is servo signal. This is by the servo circuits by the servo circuit (Continued on OPER
125.)
© Copyright IBM Corporation 1976

- .
-

TRACK FOLLOWING

When the servo head is exactly between an "odd" and an "even" band, it is On Track. In this example the head is attempting to follow track 2. As the disk rotates under the head, the carriage tries to keep the head on the track center.

$\mathrm{C}_{\mathrm{F}} \mathrm{C}$ C

It is necessary for Read or Write operations to begin a he correct location on a track. A reference point is eeded to indicate the start of the track. The reference int is Index.
The sync characters of the composite servo signal are used for encoding the Index. The method of encoding character.

The Index detection circuits recogonize an Index bit by The Index detection circuits recogonize an Index bit by decode it as a 1 bit.
Figure 1 shows a normal composite servo signal. Figure 2 shows a composite signal with Index coded sync characters.
An Index signal is finally indicated when the correct sequence of ones is decoded. The correct sequence for a valid Index is 1-1-0-1-0

Figure 1. Normal Composite Servo Signal.

See OPER 130 for a description of this diagram.

\square

The Rezero operation is neccessary to establish (or re-establish) a reference point for access control. Rezero causes the carriage to:

1. Move out from the center of the disk, past track 0 .
2. Turn around.
3. Move slowly in the direction of the spindle.
4. Stop and track follow on track 0 .

Use the timing diagram on this page with the block diagram on OPER 129
A Rezero operation begins as a result of one of the
following conditions: an HDA Rezero following conditions: an HDA Rezero during HDA sequencing, a Recalibrate command under program
control, or by a manual Rezero (pushing the Rezero pushbutton on the Operator Panel). For any of these conditions, access control 1 sends Rezero Mode to the select amp control 2 and Any Rezero to the Difference counter 3 .
The Forward signal from access control to the select amp control 2 indicates the direction the carriage moves at the start of the operation:

- Forward = toward the spindle.
- Reverse = toward the outside edge of the disk

With Rezero Mode and not Forward as input signals, the select amp control sends Reverse to the select amplifier
5.

Any Rezero from access control resets the Difference counter 3. Because the Difference counter is reset an Rezero Mode is active the velocity error detector in
the maximum velocity of a Rezero operation is 15 inches per second.
With the Velocity Error and Reverse as input signals, the select amplifier 5 provides Power Amp Drive for the power amplifier 6 to start the carriage moving outward from the center of the disk toward track 0 . The servo head 7 reads the servo signal and sends it through the pre-amp and servo amplifier 8 to the demodulator 9
The output of the demodulator (the Position signal) reflects track crossings used by the velocity generator
10 to calculate the velocity of carriage movement.

When the servo head is in the guardband pattern area, the Index sensing circuits 11 decode Guardband
Pattern 1 and send the Guardband Latch signal to th Pattern 1 and send the Guardband Latch signal to the
velocity generator 10 . (See OPER 131 for a detailed description of guardband pattern detection.)
When the velocity generator receives the Guardband Latch signal, it sends End Accelerate to the velocity error detector 4 .
End Accelerate controls the carriage speed by gating + Position to the velocity error detector. Carriage velocity decreases to 3 inches per second because of the decreas in voltage (from Position) into the velocity error detector.
The carriage continues at 3 inches per second until it reaches Guardband Pattern 2 near track -9. At Guardband Pattern 2 time, access control 12 sends High Velocity Set Point to the velocity error detector to stop the carriage.
Guardband Pattern 2 also feeds access control 1 an activates the Forward signal for Turn around.

The carriage moves forward toward track 0 at 3 inches per second. When the carriage nears track 0, the Guardband Latch becomes inactive. Rezero Mode and
Forward becomes inactive at access control 1 , and the carriage slows down to a stop and begins track following on track 0 in Linear Mode.


```
0000000000000000000000000000000000
```

The Guardband pattern is detected by the Index detectio circuits in the same way that Index is detected. The ndex detection circuits look at each sync character of the composite servo signal for Index bits. As mentioned on OPER 126, the Index detection circuits recognize an Index bit by the absence of the first half of a sync haracter. This absence is decoded as a 1 bit. The correct sequence of 1 and 0 bits is decoded as follows:
For Guardband Pattern $1-0-1-0-1-0$
For Guardband Pattern $2-0-1-1-1-0$
The Index detection circuit decoders are shown on ALD page KR030.

$$
\begin{aligned}
& \text { Sync } \\
& \text { Charac }
\end{aligned}
$$

$$
\overbrace{\overbrace{\text { Sync }}^{\text {Character }}}
$$

Normal
Composite Composite
Servo Signal

The three most important steps of a Seek operation The three most important steps of a Seek operation
(OPER 108) are Select (Tag ${ }^{\prime} 83$ '), Set HAR (Tag
(8B'), and Set Difference (Tag ' $8 \mathrm{C}^{\prime}$).

SELECT
he controller and the drive must both be selected (Tag 83').
6-byte Seek address must be transferred from the hannel to the storage control.
Tag Gate and Tag Bus must be latched to the drive.

SET HAR

Ctl Tag ' 8 B' sets the Head Address Register (HAR). Tag bits 6 and 7 are routed through the controller to the
device and shifted to Dev Tag Bus bits 1 and 2 (OPER device and
140 1).
Bytes 2 and 3 of the Seek address specify the logical cylinder address and bits 3 through 7 of Byte 5 specif the logical head address. (See Figure 1.) The head address is placed on Bus Out and is routed through the controller and shifted to Dev Bus Out to set the Head Address Register (OPER 140 3).

SET DIFFERENCE

CI Tag ' 8 C ' sets the Difference Counter (OPER 140 2). The Difference Counter is loaded with the
difference between the current cylinder address and the desired cylinder address as calculated by the storage

The storage control sends a Seek Start (OPER 140 (see OPER 141 and 142 for Access operation during the Seek).

Figure 1. Seek Address
$\begin{array}{llllll}\text { Byte } & 0 & 1 & 2 & 3 & 4\end{array}$

\square
Copyright IBM Corporation 197

SEEK OPERATION

A Seek command causes the carriage to move from one physical track to another by first loading the difference between the current carriage address and the new carriage address into the difference counter. It the
places the new head address and direction of the Seek (forward or reverse) in the Head Address Register (HAR). The carriage is moved the correct number of tracks to the new location and track follows on the new
track. track.
The operation begins after the difference counter 1 is
loaded and access control 2 sends Access Mode and the direction of the Seek to the servo circuits. This allows the Digital-to-Analog Converter (DAC) 3 to set the speed of the carriage.

If the difference counter has a value of 127 or above, the DAC output voltage is at its maximum point. During the Seek, as the difference counter decreases, the DAC output remains at maximum until the count reaches 127. At that time, the DAC output voltage begins to decrease a result, if the difference counter is 250 at the start of a Seek, the DAC Output signal curve is as shown below:

Difference Counter $=$

If the Seek starts with a difference count of less than 127 (for example, 120), the curve is more like the following:

Difference Counter $=$

The output of the velocity error detector 4 , Velocity Error, is the sum of DAC Output and Velocity. Velocity Error feeds the select amplifier 5 , which feeds a voltage signal to the power amplifier 6 to drive the carriage toward the target track.

As the servo head 7 moves across the tracks. the
servo signal is fed through the servo amplifier 8 to the
demodulator $\mathbf{9}$ where the resulting output Position demodulator 9 where the resulting output Posis. The level detectors 10 use the Position signal to develop the Coarse Track and Fine Track signals, and the relationship of these signals to each other.) he relationship of these si
The velocity generator 11 also uses the Position signal to determine the speed of the carriage and sends the
Velocity signal to the velocity error detector.

The velocity error detector takes DAC output and the Velocity signal, adds them algebraically, and produces Velocity Error. DAC output represents an ideal carriage velocity; Velocity is the actual velocity of the carriage. on the DAC output signal to show their relationship for two seeks of different length.

When the Velocity signal becomes greater than the DAC output, reverse current is applied to the Voice Coil Mot (VCM) to slow down the carriage. As the difference counter decreases, the carriage continues to slow dow carriage stops, access control goes to Linear Mode, and the servo system begins track following on the new track.

Figure 1.

Position

Coarse Track
Fine Track
Track Xing Latch
Track Xing Pulse
On Track
End Decelerate
Track Following Timer
Access Mode
Linear Mode

SEARCH ID EQUAL

Storage control compares data from the system with data read from the HDA (the ID bytes for Search HA or Search ID; Key field bytes for Search Key).

Only one record is operated on for each Search command

When the search is unsuccessful, the channel must reissue the Channel Command Word (CCW). This is done by the use of a Transfer In Channel (TIC) back to the Search command.

When the search is successful, the Status Modifier bit in the Channel Status Word (CSW) is set on. This causes the channel to skip the next CCW (TIC) in the chain.

When Index is sensed during an AM search, this sequence of operations is performed to maintain orientation and read the R1 Count field. If the second active Index is sensed before the search is Record Found is set
(See OPER 208.)

3350 \begin{tabular}{|l|l|}
\hline BDD142 \& $\begin{array}{c}\text { 2358057 } \\
\text { Seq. 2 of 2 }\end{array}$

Part No

\hline 441300

31 Mar 76

\hline
\end{tabular} \square

Rotational Position Sensing (RPS) reduces the channel time consumed by disk rotation during Search operations. The channel time consumed is reduced by the drive releasing the channel to perform other operations until ust before the record is reached. The drive reconnect Counter are equal (compare equal).
The Sector Counter counts from 0 (at Index) to 127.
The Sector Counter runs continuously while the drive is The Sector Counter runs continuously while the drive is
track following. Sector Count pulses are derived from the servo clock. The Sector Clock Counter (see OPER 204) accepts 39 sector count pulses before advancing the Sector Counter one count. After the Sector Counter reaches 127, the Valid Index 1 pulse resets the Secto Counter for the next revolution.

The Target Register performs two function

1. It is loaded at the beginning of all Read, Write, and Search CCWs by a Set Sector command. The sector number is fetched from main storage.
2. It holds the starting sector location of the record to be read or written. It temporarily stores the beginning sector count transferred from the Secto Counter

After the Target Register is loaded during a Search operation, its value can be moved over the channel to main storage by a Read Sector command. The storage location of the sector number is determined by the individual customer program
An example of an RPS application (Figure 1), is Read Verification (read-back check). The sequence of channel commands or functions is

1. Seek
2. Search ID
3. Write Data
4. Read Secto

Disconnect (Function)
8. Search ID
9. TIC*-8
10. Read Data

Seek

Moves the carriage to the desired track and selects the ead.

Search ID

Finds the record to be written and transfers the sector umber from the Sector Counter to the Target Register at 2

TIC*-8
Loops until the desired ID is located

Nrite Data

Transfers data from main storage to the disk record at

Read Sector

Moves the sector number from the Target Register a to main storage

et Sector

- Moves the sector number from main storage to the Target Register at 5 . The Target Register has the orrect sector number but comparison is required
-The number three is subtracted from the sector
The number three is subtracted from the sector
number in the storage control before it is loaded into num Target Register.

Disconnect

The Disconnect function releases the channel at 6 to perform other operations.

Search ID

Search ID is a short search from $\sqrt{1}$ to 2 in which the
time demand on the channel was reduced.

TIC*-8

Loops until ID is located

Read Data

The data written earlier at 3 is now read into main torage for comparison with the original data.

If all records were of fixed length, the sector number could be calculated for each record to be written. With RPS, the search before writing could release the channel and reconnect when the Target Register and Secto Counter are compared.

OPER 204 and 205 contain more details on Rotationa Position Sensing

Figure 1. Read Verification with RPS

Copyright IBM Corporation 1976

Functional characteristics of the Search Sector operation are:

- One sector count pulse for each servo byte
- 4992 sector count palses for a full track
- 128 sectors for each track (0 to 127).
- 39 sector count pulses for each sector (38 clock counter pulses plus next sector count pulse) 2
- Sector duration is $\mathbf{1 2 4}$ to 136 microseconds.
- Sector Counter resets at Valid Index 1 while the drive is track following 3

OPERATION

- The value in the Target Register is set with a Set Target Command which also starts a Search Sector Operation (OPER 205 5 and 8).
- When the sector count is equal to the value in the Target Register, a Sector Compare occurs for 124 to sector time. sector time
- A Sector Compare occurs each revolution until Attention is reset (OPER 2059)
- Device Bus In bit 7 is active during the Search Sector operation.
- Device Bus In bit 6 (Busy) is active during the Search Sector operation except during the sector in which the compare is equal (OPER 2057
- Sector Compare check occurs if a Sector Compare does not take place in two revolutions. Drive Check is set (OPER 2056 and 10).
- The controller issues Transfer Sector Count to the drive before all G1 and G3 Read and Write tags at count 67 time and on Search commands when an Address Mark is found.
- A Sense Target command then sends the value of the sector count to Device Bus In (OPER 2054

$$
1000090000900000000000000000000000
$$

NO RECORD FOUND

A No Record Found condition exists when Index has been passed twice in the same non-multitrack search and TIC loop. When the No Record Found condition is detected, the storage control posts a unit check with No Record Found indicated in Sense Byte 1 bit 4.

To illustrate the No Record Found operation, assume the track is formatted as shown below and the following command chain has been issued:

Seek
Search ID Equal Record 5
TIC-8 (Transfer In Channel To The Previous CCW)
Read Count, Key, Data
When a non-multitrack search and TIC are successive commands in a command chain, the loop continues unt either the search is successful or until Index has bee passed twice.

If the Search is started at A, the operation becomes
oriented on the Address Mark in the gap prior to the oriented on the Address Mark in the gap prior to the
record 3 Count area. The record 3 Count area (record 3) record 3 Count area. The record 3 Count area (record 3) read and compared against the search argument (record) and a non-compare results. The TIC-8 causes th
earch command to be reissued.
There are no fields after record 3; therefore, no sync byte is found at B. Because no sync byte is found, the storage control suspends the search at \mathbf{B} until Index is

After Index is passed, the storage control reads and clocks the Home Address area and saves certain command chain.
The Search command, which was suspended at B, is resumed at (C) beginning with Record 0 Count area. As before, a non-compare results and a TIC-8 occurs. The Search command is reissued for record 1, record 2, nd record is issued for the last results. Then, the Search search is suspended at B because no sync byte is ound.

When the Index is encountered again, the storage control signals a unit check, which breaks the command chain to terminate the operation.
Sense information is formatted with Byte 1 bit 4 set to indicate No Record Found.

The Index counter is reset whenever a Read Data, Read Home Address, or any Write Sense or Control command is issued subsequent to a successful search. This allo解

This page describes the diagram on OPER 211

SET READ/WRITE - Tag '85

Set Read/Write - Tag ' 85 ' is an extended operation. (See OPER 95 for an explanation of an extended operation.) Tag ' 85 ' conditions the controller and the drive for data transfer operations (Read or Write operations) in the following way. Set Read/Write:

- Sets the Read/Write latch 1
- Activates G2 (gate 2) on the Device Tag Reg causing tag bits 0,1 , and 2 to be sent to the d (drive).
- Activates Device Tag Gate 3
- Activates Rd/Wr Gate 4 which activates G2 (gate 2) of the Bus Out Selector 6 . This deconditions the normal bus out bits (from storage control) and allows the Device Bus Out to carry read/write contro information to the drive (from controller hardware). Gate. The other Bus Out bits are manipulated by controller hardware 5 to control the data transfer The device checks the condition of Bus Out ('07') fter the Set Read/Write Op is issued, prior to the data transfer.
- Places the device in Control mode 7
- Activates Set Rd*Wr 8 in the device. This is a result of Control mode and Bus Out bits 5, 6, and being active. The Set Rd*Wr line

1. Blocks normal device Bus Out Parity Error detection.
2. Gates machine read/write status to Device Bus In 95. (See OPER 100 for Device Bus In under Tag
3. Activates Set Rd*Wr Safe if no R/W Check conditions exist 10
4. Provides a path for the Read/Write control line the Read Detector card of the selected drive 12 and 13
5. Causes a Read/Write head to be selected in
accordance with the value in HAR 15 . (HAR accordance with the value in HAR 15 . (HAR was set during the Seek, Tag ' 8B', that preceded
this tag. See OPER 139 and 140.)
6. Allows monitoring the Read/Write control lines for proper sequence 11
7. Establishes a data path between the controller and
the selected drive 14 the selected drive 14

- Enables the following functions of the data transfer control hardware
. Index processing

2. Gap counter control
3. Function Pulse generation
4. Synchronization of VFO with the controller and Servo pulses on the servo track of the HDA.
5. Orientation (must be established between nicroprogram and disk rotational position for most operations).

- Signals the microprogram (with Normal End) that the controller and the device are conditioned to receive a data transfer tag. A data transfer tag is either ' 0 E for a Read operation or ' 0 F ' for a Write operation

RESET READ/WRITE - Tag ' 05

Reset Read/Write - Tag ' 05 ' is an immediate operation (see OPER 95 for an explanation of an immediate
(see OPER 95 for an explanation of an immediate
operation). Tag ' 05 ' resets the controller and device hardware that was set by Tag ' 85 ' after Read or Write Tags (Tags ' 0 E ' and ' 0 F ') have been completed.
To have a complete data transfer operation, the sequence of tags should be:

1. Set Read/Write - Tag ' 85 '
2. Data Transfer

Tag '0E' for Read
Tag '0F' for Write
3. Reset Read/Write - Tag '05

Reset Read/Write - Tag '05':

- Resets the Read/Write Latch 1
- Deactivates Device Tag Gate 3 , which removes the device from control mode, disabling the device Read/Write hardware
- Restores data transfer control hardware functions
to non-data transfer condition:

1. Allows bit ring 0 time pulse to reset the gap counter and control the function pulse.
2. Disables Index processing
3. Disables VFO synchronization.
4. Disables Orientation

- Returns control of Device Bus Out to the storage control 6
- Resets conditions set up during a Read (Tag ' $0 E^{\prime}$ ') or Write (Tag ' 0 F ') operation.
- Signals the microprogram with Normal End

SET AND RESET,READ/WRITE—TAGS '85' AND '05'
set and resetread/write-tags '8s' and 'os' OPER 211

When the Write command is sent by the CPU to storage control, storage control (the microprogram) issues the appropriate chain of tags to the controller to carry out the

Note: So that the R / W head can start from a known reference point on the track, the first tag operation in the chain is the one that establishes G1, or Read G3 AM Search.

TYPES OF WRITE OPERATIONS

See OPER 99 and OPER 104 - Tag 'OF', Bus Out bits 0 to 3 for the type of Write operation on Bus Ou

See OPER 33 and OPER 34 - for track format and gap-to-data-area relationships

Write G2 (Bus Out = ' 2 x')

Write G2 functions as follows:

- Sets up the Write operation during Gap 2 time.
- Writes the sync byte (' 19 ') at the end of Gap 2.
- Writes the Key area, Data area, or Record 0 (R0) Count area.
- Turns off Write Gate at the end of the written are (after the ECC bytes have been written).

Format Reorient (Bus Out $=\mathbf{' 3 x}^{\prime}$)

Format Reorient is initiated when a Count area indicates a skipped defect within its control.
Format Reorient functions as follows:

- Begins its operation in the gap immediately following the Count are
- Reorients to the last byte before the ECC bytes of the preceding Data area
- Turns off the Write Gate at Index time. (Write Gate is under the control of the Format latch at this time. The Format latch was set by the Format G3 operation that preceded the Format Reorient operation.)

Format G1 (Bus Out $=\mathbf{~} \mathbf{4 x}$ ')

Format G1 functions as follows:

- Orients on Index
- Sets up the Write operation during Gap 1 time.
- Writes the sync byte (' $19{ }^{\prime}$) at the end of Gap 1
- Writes the Home Address (HA)
- Keeps Write Gate on at the end of the HA area until
(If no other Write operations are chained to this one, Write padding occurs until Index is detected)

Format G3 (Bus Out $=\mathbf{5 x}$)

Format G3 functions as follows:

- Sets up the Write operation during Gap 3 time.
- Writes the Count area
- Writes the sync byte (' 19^{\prime}) at the end of Gap 3.
- Keeps Write Gate on at the end of the Count area til Index is detected.
(If no other Write operations are chained to this
one, Write padding occurs until one, Write padding occurs until Index is detected.)

Format G2 (Bus Out $=\mathbf{~}^{\mathbf{6 x}}{ }^{\prime}$)

Format G2 functions as follows

- Sets up the Write operation during Gap 2 time.
- Writes the sync byte (' 19 ') at the end of Gap 2.
- Writes the Key area, Data area, or the Record 0 (R0) Count area.
- Keeps Write Gate on at the end of the written are until Index is detected
(If no other Write operations are chained to this one, Write padding occurs until Index is detected.)

Format/Erase (Bus Out $={ }^{\prime} 7 \mathbf{x}^{\prime}$)

Format/Erase functions as follows

- Writes zeros to Index

Write G4 (Bus Out = $\mathbf{B x}^{\prime}$)

Write G4 is used to skip a track defect during a Write operation in one of two ways

- Extends a normal gap (G1, G2, or G3) by adding a Gap 4 before the normal gap. (Gap $4=128$ bytes see OPER 33)
- Extends a defect gap when more than one dëfect occurs without intervening data.

Special Format G1 (Bus Out $=\quad$ ' $\mathbf{C x}$ ')

Special Format G1 functions as follows:

- Orients on Index
- Sets up the Write operation during Gap 1 time
- Writes the sync byte ('19') at the end of Gap 1
- Writes 128 bytes of zeros, followed by the normal
Gap 1 to skip a defect.
- Writes the Home Address (HA
- Keeps Write Gate on at the end of the HA area until Index is detected
(If no other Write operations are chained to this one, Write padding occurs until Index is detected.

Special Write G2 (Bus Out = 'Ex')

Special Write G2

- Sets up the Write operation during Gap 2 time
- Writes the sync byte (${ }^{\prime} 19^{\prime}$) at the end of Gap 2
- Writes the first segment of a Key area or Data area.
- Inhibits writing ECC bytes following the first segment.
- Causes the following Gap 2 to be increased to 128 bytes.
- Will be followed by a Write G2 to write the final segment and the ECC bytes.

DESCRIPTION OF A WRITE OPERATION
See the diagram on OPER 226.

Prerequisites

The microprogram prerequisites for a Write operation are as follows

- The Controller and the drive must both be selected (Tag '83').
- Set Read/Write (Tag '85') must be latched
- Tag Gate and Tag Bus must be latched to the drive.
- VFO must be locked in.
- Orientation must be established

Sequence of Operation

1. Write command ' 0 F ' is placed on the CTL Tag

CTL Bus Out contains a modifier that specifies the type of Write command and the pre-field gap

Bus Out bit	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	Operation
	0	0	1	0	Write G2
	0	0	1	1	Frormat Reorient
	0	1	0	0	Format G1
	0	1	0	1	Format G3 0
0	1	1	0	Format G2	
	0	1	1	1	Format/ /Erase
	1	0	1	1	Write G4
	1	1	0	0	Special Format G1
	1	1	1	0	Special Write G2

2. Write Gate is set 8 .
. Write Mode is set 3
3. Write Mode enables generation of Sync In 4 . the first byte of data on Bus Out (Sync Byte '19').
4. Sync Out and the first byte of write data are transferred 5 .
5. Data on Bus Out is sent to the Data Register 6 and serialized by the Data Serializer 7 for in the data transfer mode.
6. The controller continues to transfer data until End Data is detected. The path between the ECC Shift Data is detected. The path between the ECC S
register and the SERDES Shift register 9 is enabled. Six bytes of ECC are transferred from the ECC Shift register, through the SERDES Shift register, and recorded at the end of the data field
7. After End Data is detected, the controller resets the Write Op latch and activates Normal End to the user if there are no check conditions. The use answers with End Response.
\square

WRITE - TAG ' OF'
WRITE - TAG 'of' OPER 226

Write padding is the writing of bytes of zeros on the remaining portion of a track. The padding bytes are written until the next Index Mark. Write padding occurs immediately after
writing during a Format Write command. When successive writing during a Format Write command. When successive
Write commands are issued and any one of them is a Format Write command (FMT G1, FMT G2, or FMT G3), padding starts immediately following the last command even if the last Write command is not a Format Write command. The following command sequence is an example:
FMT G3 (Create a Count field)
WR G2 (Create a Key field)
WR G2 (Create a Data field)
Padding that was specified by the FMT G3 operation starts following the last WR G2 operation.

In 3330-1 Mode, write padding is initiated and controlled by storage control.
In 3330-11 Mode or in 3350 Native Mode, write padding is initiated by storage control and controlled by the storage initiated by storage control and controlled by the storage
control or by the drive. The drive controls write padding that begins prior to disk sector 125. The storage control controls padding that begins in or after disk sector 125 by maintaining Write mode in the controller until Index time. Figure 1 represent the operation of write padding with various command chaining/ non-chaining applications.

If a new chain is started on a drive that is padding, the storage control accepts the SIO command but waits to execute the command (except TIO and Sense commands) until padding
is complete.

Index orientation is not ensured
upon reconnection.

When a Read command is sent by the CPU to storage ontrol, storage control (the microprogram) issues the ppropriate tags to the controller to carry out the Read operation. For example, the appropriate chain of tags fo
Read Data command (06^{\prime}) might be:

1. Read G3,Tag '0E', Bus ' $5 x$ '
2. Clock G2,Tag '0E' Bus ' $2 x$
. Clock G2,Tag '0E', Bus '2x

Note that the tag chain must always begin with either a Read G1 or a Read G3 AM Search for track orientation, othe read head can start reading from a known reference point.

TYPES OF READ OPERATIONS

These operations are defined by bits 0 through 3 of Bus Out duri
OPER 103.
See also: Track Format on OPER 33 and 34 for sap-to-read area relationships.

Clock G3 (Bus Out = ' $1 \mathbf{x}$ ')
Clock G3 functions as follows

- Sets up the Read operation during Gap 3
- Clocks over the Count area that follows the gap while maintaining track orientation

Clock G2 (Bus Out = ' $2 x$ ')

Clock G2 functions as follow

- Sets up the Read operation during Gap 2
- Clocks over the Key or Data area that follows the gap, while maintaining track orientation.

Read G4 (Bus Out = $\mathbf{~}^{\mathbf{3 x}}{ }^{\prime}$)

Read G4 functions as follows:

- Clocks over the 128 -byte gap for a skipped defect
- Is followed by a Read G2 to read the next area on the track.

Read G1 (Bus Out = '4x')

Read G1 functions as follows

- Orients on Index
- Sets up the Read operation during Gap 1.
- Reads the Home Address area

Read G3 (Bus Out = $\mathbf{' 5 x}^{\prime}$)
Read G3 functions as follows:

- Sets up the Read operation during Gap 3.
- Reads the Count area (except R0 Count area).

Read G2 (Bus Out = ' $\mathbf{6 x}$ ')

Read G2 functions as follows:

- Sets up the Read operation during Gap 2.
- Reads the Key area, Data area, or the R0 Count area

Read G3 AM Search (Bus Out = '7x')

Read G3 AM Search functions as follows:

- Sets up the Read operation
- Orients on the Address Mark (AM) in Gap 3. (Note: If Index is detected before the Address Mark, No AM If Index is detected before the Address Mark, No Index and issues a Read G1.)
- Reads the Count area that follows the Gap (except R0 Count area).

Special Read G2 (Bus Out = 'Ex')
Special Read G2 functions as follows:

- Sets up the Read operation
- Reads the first part of the Key or Data area that has been split for defect skipping.
- Saves the ECC Shift Register contents at the end of the data transfer.
- Sets up conditions to process a 128 -byte gap for a following Read G2 operation.

DESCRIPTION OF A READ OPERATION (Read

 G1)See the diagram on OPER 231 and the timing chart on OPER 232.

Sequence of Operation

1. Read Op Tag 'OE' is placed on Ctl Tag Bus. Ctl Bus Out contains a modifier in bits 0 through 3 that Buscifies the Read G1 operation (0100) 1 . Ctl Bus Out bits 4 through 7 contain the modulo count units digit of the hex byte count) and are latched for future use by the gap counter 5. For a Read G1, the modulo count is always 9 .
2. Tag Valid is returned to the storage control if there are no control interface errors 8
3. At Index time, orientation is established $\mathbf{2}$ and the gap counter is reset. The gap counter starts counting and at count- 64 time, Read Gate is raised o the drive 6. At count-76 time, Unsquelch is raised to the drive 6 . Device Bus Out bits 2 and 3 drive 7. These controls are necessary to amplify and transfer read data from the selected drive to the controller 3
4. Count 102 resets the gap counter.
5. Count 1 time locks VFO to data and activates VFO Count 1 time 1
6. Count 8 resets VFO Fast Sync and gate Standardized Data to SERDES 10
7. When a sync byte is detected in SERDES, Da Good causes Read Mode to become active 4. gap counter is set to the 15 s complement of the modulo count. For a Read G1, the complemented modulo count is
Bit ring 7 transfers the sync byte from SERDES to he data register 11
During the next complete bit ring cycle the first data byte is assembled in SERDES. At bit ring 1 time of that cycle, Sync In is sent to the storage 13 .
8. At the next bit ring 4 time, the gap counter stepped to 2 .
9. Bit ring 7 transfers the first data byte to the data egister. Bit ring 1 of the next bit ring cycle activates Sync In to the storage control with the data byte on Ctl Bus In. Bit ring 4 increments the gap counter to 3. The next data byte is bei ransferred to the data register at bit ring 7 time
10. Data transfer continues until the gap counter reaches Data transfer continues until the gap counter reaches
11. Read Mode is reset and prevents any further data 15. Reansfer 4 .

Count 15 also activates Transfer ECC Control to allow the next byte (first ECC byte) to be gated to allow the next byte (first EC
the ECC Shift Register 12
11. The six ECC bytes are transferred to the ECC Shift six ECC bytes are transferred ECC blocked.
12. Op End is activated and Normal End is sent to the storage control provided no errors have occurred 14
13. End Response is returned from the storage contro and Reset End condition is activated in the controller.
\square

$\left.3350 \quad$| BDO228 |
| :--- | :--- | :--- |
| Seq. 2 of 2 | \right\rvert\, \(\begin{aligned} \& 23580

\& Part No\end{aligned}\)
Copyright IBM Corporation 1976

$\begin{array}{ll}\text { - READ } & - \text { READ } \\ \text { READ } \\ \text { DEVICE INTERFACE (DEV-II DEVICE INTERFACE IDEV- }-11 \\ \text { DEVICE INTEREA }\end{array}$ CE DEV-1) DEVIC E INTEAFACE (DEV-1) DEVIIE INTERFACE (DEV-11 DEVIIE INTERFACE IDEV-11

3350

See 2 on OPER 232

ECC (ERROR CORRECTION CODE)

See OPER 236 for timing diagram
Each area on the disk (Home Address, Count, Key, or Data) includes six bytes of hardware-generated Error Correction Code (ECC) information. The ECC bytes are the last six bytes of each area.
$\overbrace{}^{6 \text { ECC Bytes }}$

Sync Byte	1	Data	2	3	4	5

The ECC bytes are used for both error detection and error correction and are referred to as either Detection Code bytes, or Correction Code bytes.
The six ECC bytes added to the Home Address area, Count area, or Key area, provide error detection capability. They are called Detection Code Byte
(DCBs). (DCBs).
The six ECC bytes added to Data areas provide error correction as well as error detection capabilities and are called Correction Code Bytes (CCBs).
The DCB and CCB detect any error burst of a 10-bit span or less. The CCB can be used to correct errors of a 4-bit span or less.
As the data plus the six ECC bytes are shifted through the ECC Shift Register, the data is divided by the generator polynomial. If there are no data errors, the contents of the ECC Shift Register is zero after shifting the six ECC bytes, giving ECC Zeros Compare. The detection of zeros inhibits the setting of the ECC Data Check latch a
End Data Op time (approximately 7.84 microseconds after Transfer ECC latch is set)

Op End is enabled with the setting of End Data Op and activates Normal End to the user. The user responds with End Response, resetting End Data, End Data Op Register is not zero, the ECC Data Check latch is set by End Data Op time and Check End is raised under Op End. The storage control issues an ECC Correct Op (Tag '08') starting error correction procedures. A constant of 19,544 is set into a counter and the ECC Shift Register shifts. The storage control counter is dectected in Shift Register positions 3 through 47 (SR3 to SR47) or the counter is decremented to zero 47 (SR3 to

After zeros det in SR3 T SR47, Register continues shifting bits until the next byte boundary is reached. The error correction pattern is now contained in the ECC Shift Register positions 0 to 15 .

The pattern is gated to storage control by control Tag '04' (read correction bytes) and Bus Out bit 8 (gate ECC low byte, ECC Shift Register position 0 to 7) and Bus Out bit 1 (gate ECC Hi byte, ECC Shift Register position 8 to 15).
The error pattern is placed in Sense Bytes 20, 21, and 22 (Sense Byte 22 contains all logical zeros). The storage control calculates the displacement of the error from then Sense Bytes 18 and 19.

Error correction is accomplished by aligning the error pattern from Sense Bytes 20, 21, and 22 with the erroneous data from storage and exclusive ORing the

All abnormal or unexpected conditions in the controller are considered error conditions. Controller error
conditions are classified as one of two conditions:

- Check End conditions
- Error Alert conditions

Note: All errors (controller errors, or otherwise) are identified in Status Bytes, Sense Bytes, Error Message bytes, or Console Display Bytes. This summary is provided only to describe the error detecting circuits the controller.
Always begin maintenance or troubleshooting
procedures on START 100.

CHECK END

Check End errors occur at the end of Read or Write operations when abnormal conditions occur (not Norma End).

Command Overrun

Command Overrun indicates that one of two possible conditions exist:

- A nonoriented Write tag exists at Index time
- An oriented type tag is attempting a Read or Write operation in a nonoriented mode.

Sync Out Timing Error

Sync Out Timing Error indicates that one of the following conditions occurred:

Sync Out pulses were more than 2 pulses behind the ync In pulses.

- A Sync Out signal that was not a response to a prior Sync In signal was detected on the Control Interface.
- Data transfer ended without enough Sync Out pulses

ECC Data Check

ECC Data Check indicates that the ECC circuits detected a Data Check in the data stream.

Track Overrun

rack Overrun indicates that a Write operation was still active at Index time.

No Address Mark Found

No Address Mark Found indicates that a Read G3 AM Search tag failed to identify an Address Mark. (This ma ean that an Index Mark occurred prior to an Address Mark under an AM Search tag.)

No Sync Byte Found
No Sync Byte Found indicates that one of three conditions occurred

- No Sync Byte was detected in the Home Addres area
- No Sync Byte was detected in either the Gap 2 or Gap 3 area being searched.
- A false Address Mark was detected. (A void or erased area was found that was similar to an Address Mark, but no Sync Byte was found.)

ERROR ALERT

Error Alert errors are either controller errors or indications that conditions exist that could endanger dat integrity during Read or Write operations.
Error Alert errors from the controller are indicated by a Control Check.
Error Alert errors from the drive are indicated by a Read * Write Check.

VFO Detected Errors (Controller Check)
The VFO Detected Error bits (bits 0 and 1) together indicate whether an error occurred and the type of error: VFO Error VFO Error Bit 0 Bit 1 Error

0	0	No error
0	1	Missing Servo input
1	0	VFO phase error during a Write operation.
1	1	Missing data input

SERDES Check (Control Check)

SERDES Check indicates that the SERDES Shift Register parity did not match its predicted parity.

Gap Counter Check (Controller Check)

Gap Counter Check indicates that incorrect parity was detected in the Gap Counter.

Write Data Check (Controller Check)
Write Data Check indicates that parity did not match parity of the data byte received from storage control.

Monitor Check (Controller Check)

Monitor Check indicates that there is a high probability the controller will stop functioning because of one or more of the following conditions

- The Bit Ring is stopped
- The Gap Counter is stopped.
- Sync In was missing for six consecutive byte times.
- Raw Read data was missing during an AM Search

ECC Check (Controller Check)
ECC Check indicates that an ECC control failure or an ECC parity error has occurred

Control Tag Bus Parity Check (Controller Check)
Control Tag Bus Parity Check indicates that a parity error was detected on the Control Interface Tag Bus while Tag Gate was active.

Control Bus Out Parity Check (Controller Check)
Control Bus Out Parity Check indicates that a parity error was detected on Control Interface Bus Out whil Tag Gate was active.

Drive Selection Check (Controller Check)
Drive Selection Check indicates that more than one drive or no drive was selected.

Device Bus In Parity Check (Controller Check) Device Bus In Parity Check indicates that a parity error was detected on Device Bus In

Control Bus In Parity Check (Controller Check) Control Bus In Parity Check indicates that a parity error was detected on Control Interface Bus in.

I Write Fail (Controller Check)

I Write Fail indicates that I Write Sense was not detected in the drive within approximately nine microseconds afte the rise of Write Gate.

TR Index Check (Controller Check)

In 3330 mode, the TR Index Check indicates that an error occurred in the Track Used Counter circuitry

Reorient Counter Check (Controller Check)

Reorient Counter Check indicates that an error occurred in the Reorient Counter circuitry

Multiple Chip Select Check (Rd * Wr Check)
Multiple Chip Select Check indicates that more than one Chip (for $4 \mathrm{R} / \mathrm{W}$ heads) was selected in the HDA of the selected drive

Capable/Enable Check (Rd * Wr Check)

Capable/Enable Check indicates that one of the following conditions occurred:

- Writing was attempted with the Read/Write switch set to Read Only.
- Reading or Writing was attempted with the drive not Ready or with the servo not Track Following.

Write Overrun (Rd * Wr Check)

Write Overrun indicates that writing was attempted through an Index Mark. (Writing into or out of Index is valid.)

ndex Check (Rd * Wr Check)

Index Check indicates that an invalid Index pattern was detected while Set Read/Write was presen.

Delta I Write Check (Rd * Wr Check)

Delta I Write Check indicates that one of the following conditions occurred:

- Writing was attempted on an even numbered movable not detected
- Writing was attempted on an odd numbered movable head and Delta Write current was detected.

Head Short Check (Rd * Wr Check)

Head Short Check indicates that more than one head wa selected (detected as being on) at the same time, in the selected drive

Control Check (Rd * Wr Check)
Control Check indicates that the Write Gate signal wa present with the Unsquelch or Read Gate signals.

Pad Gate Error (Rd * Wr Check)

Pad Gate Error indicates that Write padding was attempted through an Index Mark.

Write Transition Check (Rd * Wr Check)
Write Transition Check indicates that one of the following conditions occurred:

- Write transitions were not detected within four microseconds (nominal) after Write Gate was turned on.
- Write transitions were present when Write Gate was turned off
- Write transitions were detected while reading

Write Current Check (Rd * Wr Check) Write Current Check indicates that one of the following conditions occurred

- No Write current was detected during a Write operation.
- Write current was detected while reading.

There are six 3350 models available:
A2: Control module without fixed heads.
B2: Satellite module without fixed heads.
C2: Alternate control module without fixed heads.
C2: Alternate control module without fixed heads.
A2F: Control module with fixed heads.
A2F: Control module with fixed heads.
C2F: Alternate control module with fixed heads.
Models A2F, B2F, and C2F each have 60 additional
Models A2F, B2F, and C2F each have 60 additional Read/ Write heads in the HDA. The heads are ined in
position, one to a data track, on the servo surface. (See the HDA description on OPER 32.)
The HDA capacity is the same for all models.
In 3350 Mode, cylinders 1 and 2 are located on the fixed head tracks instead of on the movable head tracks. Cylinder 1 is under the first 30 fixed heads; cylinder 2 is .

In 3330 Mode, cylinders 1, 2, and 3 are located on the fixed head tracks instead of on the movable head track Cylinder 1 is located under fixed heads 0 through cylinder 3 is located under fixed heads 38 through 56
(Fixed heads 57, 58, and 59 are not used.)
Reference pages:
Physical location on the HDA, OPER 32 Head Select logic OPER 140

The string switch feature allows an IBM 3350 Disk Storage to be physically connected to two storage controls. Only one storage control is logically connected o the 3350 at any time.

For information on the C2 Module string switch feature, see OPER 270 and FSI 980

OPERATION

1. Storage control $\mathrm{A}(\mathrm{B}) \mathbf{1}$ places a controller address
 '03' or a Tag '83' on Ctl Tag Bus.
2. Controller $\mathbf{A}(\mathbf{B})$ Address Compare 2 generates Adr Compare Eq A(B) when Ctl Bus Out bits 0,1 2 equal the controller address bits Wired Adr 1,2, 4.
3. Adr Compare Eq $\mathbf{A}(\mathbf{B})$ allows Tag Bus Decoder A(B) 3 to generate Decoded Tags and Selecting $\mathrm{A}(\mathrm{B})$ from the Ctl Tag Bus bits 0,4 through 7 .
4. Interface $A(B)$ Out-In Control Select (Tie Breaker) 4 generates Allow Sel Set A(B) from Enable A(B). See Enable/Disable switch A(B) on this page.
5. Allow Sel Set $\mathbf{A}(\mathbf{B})$ allows Interface $\mathrm{A}(\mathrm{B})$ Out-In Control 5 to generate Cnt Pwr 1, Cnt Pwr 2, and In Code 1, 2.
6. Cnt Pwr 1 gates Ctl Bus Out bits 0 through 7, through the Bus Out A(B) Gate 6 to the following:
Polling and Selection 9 in the controller Drive Address Compare 10 in the drive
7. Cnt Pwr 2 gates Ctl Tag Bus bits 0,4 through 7, P Selection the Tag Out A(B) Gate 7 to Polling and Selection 9 in the controller
8. In Code 1, 2 gates Bus In Asm Bits 0 through 7, P through the Bus In A(B) Register 8 onto Ctl Bu

ENABLE/DISABLE SWITCH A(B)

The Enable/Disable switches A and B allow one or bot orage controls to be connected to/disconnected from he 3350 Disk Storage.

The Enable/Disable switches A and B are located on th 3350-A2 Power Panel.

ALTERNATE PATH RECOVERY

This function uses an Unconditional Reserve (UR) command
to break device allocation to the primary path, that has
ecome inoperative, and establishes an alternate path within he system.

Unconditional Reserve
If a storage control attached to a string of 3350 drives
with string switch feature stops operating while an interface is selected or an assignment register position is set,
 from another storage control.

To elimate this condition the select latch and assignmen register positions can be reset through the use of the Unconditional Reserve (UR) command. Once the select atch and/or assignment register positions for the desired drive(s) have been reset, the string is reserved for the sued and normal operation issued and normal operation may continue on the

STRING SWITCH FEATURE
STRING SWITCH FEATURE

The Alternate Controller feature adds a second control module (C2) to the 3350 string. The C2 Module contains two drives and a controller board. The string configuration A 2 of C 2 controller over a common device interface. All drives, but only one controller, can be online running customer programs. The offline controller has the capability of running microdiagnostics inline while customer programs are running.
PRIMARY/ALTERNATE SWITCH
The Primary/Alternate switch is located on the Controller Select Panel of the C2 Module and determines which controller is online.
With the Primary/Alternate switch set to Primary:

- The A2 controller is online.
- The C2 controller is offline.

With the Primary/Alternate switch set to Alternate:

- The A2 controller is offline
- The C2 controller is online

To change the status of the controllers:

1. Power off the 3350 string.
2. Change the Primary/Alternate switch setting.
3. Power on the 3350 string.

CONTROLLER ADDRESSING

Both controllers (A2 and C2) have the same address plugge during installation. The high-order address bit is off and th two low-order bits are plugged as required to give addresses $0,1,2$, or 3 . The online controller address is the same as the address plugged on installation. The Primary/Alternate switch forces on the high-order address bit in the offline controller. This gives the online controller addresses $0,1,2$, or 3 and the offline controller addresses $4,5,6$, or 7 . The functional microcode accepts only addresses $0,1,2$, and 3 while th diagnostic microcode accepts addresses 0 through 7

STRING SWITCH FEATURE OPERATION

With each controller having a unique address, the use of a common device interface causes no problems during string switch operation. String switch microdiagnostics cannot be run from the offline controller while customer programs
are running on the online controller.

POWER CONTROL

The offline controller can be powered off for maintenance
while the online controller is being used by the customer. See service notes on FSI 970 for the power off procedu

3350 \begin{tabular}{l|l|l|l|l|l|l|l|}

\hline \multicolumn{1}{l	}{	BDD262
Seq. 2 of 2	} \&	2358069
:---		
Part No.	 	

\hline
\end{tabular}

$\mathrm{C}_{\mathrm{F}} \mathrm{C} \mathrm{C}$

 C 1 C 1 C

OPERATOR PANEL PANEL 10	REFERENCE TO OTHER SECTIONS
Drive Functional Units	

BASIC PANEL MAPs PANEL 150 - 173

3350 OPERATOR PANEL

00121 A

READY Indicator

Lights when the HDA has sequenced to Ready with no errors.

START/STOP Switc
In the Start position, the drive motor starts turning and the heads are moved to track 0 (see HDA 500 to HDA 502).

In the Stop position, the Ready lamp is turned off, the carriage is moved to Home position, and the voltage is then dropped to the drive motor. The drive stop sequence is inhibited if it is selected and Set Read/Write is active, or if the drive is selected and busy (see HDA

R/W or READ Switch

In the R / W position, the drive is write enabled. In the Read position, the drive is write inhibited If the drive is selected, it cannot switch from Read to Write mode or from Write to Read mode. The drive remains in this condition until it is deselected.

ATTENTION Pushbutto

Pressing the pushbutton causes a Rezero operation:

1. Read/Write heads are moved to track 0 .
2. Seek Complete Attention is signaled to the controller when the Rezero operation is complete

OPERATOR PANEL SWITCH REMOVAL and REPLACEMENT

Removal

1. Remove all lens covers
2. Pull the Operator Panel 3 up and out of the front cover
3. Lift the bracket 1 up and out from the front cover.
4 Remove the switch housing 2
4. Note the position of the wires and remove them from the rear of the switch
5. Loosen the lock nut on the switch. Unscrew and remove the switch from the housing.

Replacement

Replace in the reverse order of removal.

8xx POWER PANEL

A2 Module (Standard)

Power On Switch
Pressing the Power On switch allows ac power to be applied to the string if the Power Off/Enable switch is in subsystem sequencing controls during a system Power-On operation if the CE Panel Power Mode switch is in the Remote position.

Power Off/Enable Switch
OFF

- Prevents ac power from being applied to the string equencing during a system Power On opstem

Permits the Power On switch or system Power On

A2 Module (String Switch)

Enable/Disable Switches
The Enable/Disable switches (A or B) can be used to dedicate the 3350-A2 and associated drives to a single ring switch feature do not hided. Machines without the

C2 Module (String Switch)

Primary
Alternate
©
©

Primary/Alternate Switch (String Switch)
The Primary/Alternate switch determines which controller is operating.
With switch set to Primary
2 controller is online, C2 controller is offline.
With switch set to Alternate:
A2 controller is offline, C2 controller is online.
To change the status of controllers:

1. Power off the 3350 string
. Change the Primary/Alternate switch setting
2. Power on the 3350 string.

Changing the Primary/Alternate switch setting with he power on does not change the status of the controllers.

CE PANEL CONTROLS

The CE Panel (under the lower rear covers of the A2 and C2 Modules)

- Communicates with the storage control to initiate and control microdiagnostics from the 3350-A2 or C2 (See MICRO 10 and 11.)
- Removes the 3350 string from system power sequencing
- Resets various drive circuits.

Program Control and Data Displays
Program Control and Data display receive information from the storage control to the 3350-A2 or C2 Module For a description of Program Control displays and their corresponding Data displays, see MICRO 10 and 11.

Data Entry Switches

The Data Entry switches are used in conjunction with the Execute switch to send information to the storage
rol. Examples are

- Microdiagnostic routine and test numbers.
- Test parameters
- Running options

CE Dr Selected/Execute Request Lamp
This lamp turns on when the Execute switch is operated It resets when the operation requested by the Data Entry switches is complete and the Program Control display is set. The lamp also turns on while a drive in CE Mode is eing selected and the Select Hold line is active.

Execute Switch

Operating the Execute switch:
Turns on the Execute Request lamp and activates the CE Alert Execute line to the storage control.

- Causes the control program to read the Data Entry switches.
- Resets the Party Check Indicator latches.

Interface Select Switch
The Interface Select switch selects control interface A or B for CE Panel operation (string switch feature).

PARITY CHECK

00126

Power Mode Switch
A C2 Module has no Power Mode switch.
The two positions of the Power Mode switch are

- The Remote position, which places the powe sequencing under system control.
- The Local position, which removes the 3350 string from the normal system power sequence. The 3350 string can then be powered off without affecting the system operation. The system power-on sequence annot power on the 3350 string while the switch is in the Local position

CTL-I Bus Out Lamp

The CTL-I Bus Out lamp is turned on by a Control Bus Out Parity error. It is reset by the Execute switch or by power-on/off sequence.

DEV-I Bus In Lamp

The DEV-I Bus In lamp is turned on by a Device Bus In Parity error. It is reset by the Execute switch or by power-on/off sequence.

CTL-I Tag Bus Lamp

The CTL-I Tag Bus lamp is turned on by a Control Interface Tag Bus Parity error. It is reset by the Execute switch or by a power-on/off sequence

CE POWER AND MODE CONTROLS

The CE Power and Mode controls are in the A2, B2, and C2 Modules.

CE Mode Switch

The CE Mode switch places either Drive A or B in CE Mode so it can be selected when a Select Tag accompanied by the Service Select bit on Bus Out is present. Neither drive is in CE Mode when the CE Mode switch is in the Off (center) position.

-AC Power Switch (Service Bypass Switch)

The Service Bypass switch removes the module from the string power-on sequence. It also removes dc power from both drives in either A2, B2, or C2 Modules, as wel as ac power from certain power supplies and other components.
Note: On the A2 and C2 Modules, the Service Bypass switch does not remove the ac and dc power from the controller logic power supplies.

—Drive DC Power Switch

The Drive DC Power switch removes dc power from either Drive A or B for servicing.

Note 1: If the A2G2 card is replaced or swapped, the address jumpers must be checked. See INST 6. Note 2: When there is more than one controller on
the interface (but without the C2 Module installed). the following conditions exist.

- The controller Execute Request lamp is on continuously with the higher address
operated the Execute Request switch.
- No apparent Execute Request lamp is on the controller with the lower address when the Execute Request switch is operated
Replace cards in the controller with the lower address: Basic-A2G2
Interface A $\left.\begin{array}{l}\text { Interface } A-A 2 D 2 \\ \text { Interface } B-A 2 E 2\end{array}\right\}$ SWFE

- 100

Figure 1. Voltage Locations

Voltage	Test Point	Input Point	Reference
+6	A2F2B11	A2E2B11	PWR 60 , Entry A
$+6$	A2D2S11	A2E2S11	
+6 +6	A2K2B11	A2L2B11	
${ }_{+6}^{+6}$	A2T2G11	A2T2B11	
-4	A2T2B06	A2S2806	PWR 55, Entry B PWR 355,Entry B if
-4	A2T2G06	A2S2G06 $\}$	
-4	A2D2B06	Connector*	

* Planar connector at the top of the A2 Board.

\square

$3350 \quad$| Seq. 2 of 2 | Part No. |
| :--- | :--- |

© Copyrigh IBM Corporation 19

CE PANEL CHECKOUT

CE PANEL CHECKOUT
PANEL 156

Read Mode Ctl causes the (SERDES) Data Bits, which are reset to all bits on, to be gated to the Bus In. When his happens, hex FF is on Bus In for all operaticns. Th atch to set Data Good line can cause the Read Mo grounding the Error*Reset line (ALD BG150).

POLL CONTROLLER

See PANEL 160 through 164 for CE Panel operation diagrams and Figure 1 for inactive lines that affect CE Panel operations.
The Execute switch sets the CE Alert Latch γ if the controller is not selected (Select Hold C and Selected K inactive). The CE Alert Latch activates CE Alert
Execute NPL Z. The storage control responds to CE Alert Execute NPL with a Controller Poll operation (Tag '02', Bus '08'). The controller responds on Bus In with its bit significant address. (Bit 0 for Controller 0 or bit 1 for Controller 1). If the C2 Module is installed, bit 4 indicates the offline controller.

SELECT CONTROLLER

The storage control then selects the controller using an address based on the response from the Controller Poll operation. To select Controller 0, Bus Out equals ' 00 and to select Controller 1, Bus Out equals ' 20 '. To select the offline controller if the C2 Module is installed, Bus Out should equal $1 \times x 00000$ ($\mathrm{xx}=$ Controller address).
The controller responds to selection by placing a 3 -of- 6 code (prewired 3 -bit address on bits 0 through 2 and the inverted prewired address on bits 5 through 7) on Bus In to the storage control. The value of Bus In equals ' 07^{\prime} for Controller 0 and ' 26 ' for Controller 1. See OPER
110 for description of the Select operation. If the C2 Module is installed, bit 0 is on for the offline controller and bit 4 is on for the alternate controller.

SET LONG CONNECTION

If the offline controller needs servicing, the online controller is selected first to Set Long Connection.
The storage control then sends Tag '07', Bus ' C 0 ' to the controller to Set Long Connection if there is a String Switch feature or C2 Module installed. Tag '07' is a no-op to a machine without String Switch.

CE DATA TO STORAGE CONTROL

The storage control brings up Tag '0A' Bus ' 40 ' to the controller. Tag '0A' Bus ' 40 ' is decoded in the controller to activate Gate CE Data. Gate CE Data
resets the CE Alert Latch Y and activates Assm Sel X 1 and Assm Sel Y 2 . The bit value of the Data Entry switches is set into the Assembly register. Selected brings up Gate BI. Gate BI places the CE data bits the Bus In to the storage control.

SENSE DEVICE TYPE

Tag '0A', Bus ' 80 ' is then issued by the storage control to determine the proper device type so that the correct responses can be issued

DATA DISPLAY

The storage control brings up Tag ' $0 C^{\prime}$ ', then Tag ' 0 D ' Tag 'OC' gates the Bus Out (CE Hi byte) to the gates the Bus Out (CE Lo byte) to the Data Display lights on the CE Panel

RESET

General Reset, Tag '09', Bus ' 80 ' resets errors that may be set.

UNLOCK SWITCH

If the String Switch feature is installed the Unlock Switch command (Tag '07' Bus '04) will reset the Select latch or the Partial Select latch for the active interface resulting in a reset to the Set Long Connection latch. Tag ' 07 ' is a no-op to a machine without String Switch.

Figure 1. Inactive lines affecting CE Panel operation. See PANEL 159 and 160

Chart Line No.	Line Name	ALD	Test Point	
1	-Invert Tag Bus Bit P	BD170	A2L2 J07	5
2	+Power On Reset	BD180	A2L2 D04/B08	\times
3	-Read Status 84	BF110	A2G2 D09	N
4	-BO Par Chk Latched	BF110	A2G2 J10	R
5	-Read Mode Ct1	BG150	A2P2 D03	(11
6	-Not Index Data Good	BG150	A2P2 M07	10

3350 \qquad | $\begin{array}{l}441300 \\ \text { 31 Mar 76 }\end{array}$ | $\begin{array}{c}441301 \\ \text { 1 June 76 }\end{array}$ | $\begin{array}{l}\text { 441303 } \\ \text { 30 Jul } 76\end{array}$ |
| :--- | :--- | :--- |

© Copyright IBM Corporation 1976, 1977

	Line Name	ALD	Test Point											
Sweep $0.2 \mathrm{~ms} / \mathrm{div}$	-Execute	BD190	A2L2B04	0										
Trigger Int-Ch 1 Slope	+ Execute	BD190	A2L2B02	(1)					Varie	saccording to	to switch ch	aracteristics.		
Ch $1 \begin{gathered}\text { A2L2804 } \\ \text {-Execute }\end{gathered}$	-CE Alert Latch TP	BD190	A2L2D11	v										
$\begin{array}{ll}\text { volts/div } \\ \text { probe } & 0.2 \\ \times 10\end{array}$	+CE Alert Execute NPL	BD230	A2L2.J05	2						Varies acc	cording to	witch and stor	storage con	trol cycle
Ch 2 A2L2802														
+Execute volts/div 0.2														
volts/div probe	-CE Alert Latch TP	BD190	A2L2D11	v										
	+ Contr Poll Op 02	BF110	A262J12	G			$\text { \} Dura }$	1	9 varies	with storage	${ }^{\text {control cy }}$	cle time.		
$\begin{aligned} & \text { Sweep } \\ & \text { Trigger Int:Ch } 1 \end{aligned} 50 \text { us/div }$														
Ch $1 \begin{gathered}\text { Slope (-) } \\ \text { A2L2011 }\end{gathered}$	+ Contr Poll Op 02	BF110	A262J12	©										
-CEA Alert Latch TP	+ Select Hold NPL	WK110	A2C5(A5/B5)D11	c										
probe $\times 10$	+ Tag Gate NPL	WK110	A2C5(A5/B5)B10	(0)										
	-Valid Tag Gate TP	BF110	A2G2809	s										
	-Selected Tag Gate	BF110	A2G2G07	(1)										
Ch 1 A 262312	-Selected	BF 120	A2G2J05	*										
Contr Poll Op 02 Ch 2 See Sequence Chart.	-Controller Addrsd	BF120	A2G2G04	(1)										
	+ Gated Poll and Sel	BF170	A2G2J04	P										
	-BI Sel X	BD110	A2L2M11	3										
	-Bl Sel Y	BD110	A2L2P04	(4)										
	-Assm Sel X	BD110	A2L2P06	1										
	-Assm Sel Y	BD110	A2L2M07	2										
	Tag Bus	BF100	See Figure 1, PANEL 164		$02 \quad 03$	07	${ }^{07}$	83		OD 09	07			
	Bus Out	BF130	See Figure 1, PANEL $164{ }^{4}$		$08 . \mathrm{CA}$	∞ CA	$\mathrm{CO}_{4}{ }^{40}$	10		DS	30			
	Bus In	BA100	$\begin{aligned} & \text { See Figure } 1, \\ & \text { PANEL } 164 \\ & \hline \end{aligned}$		BSCA 3/6	3/6	DS	${ }^{3 / 6}$						
	$\begin{aligned} & \text { 1odule is } \longrightarrow \\ & \text { Mer is looping. } \end{aligned}$		cant Controller Add									nlock Switch eneral Rese Display CE Lo elect Control ate Device	$\begin{aligned} & \text { ch } \\ & \text { to } \\ & \text {-ow = Data Sw } \\ & \text { High (= Program } \\ & \text { oller } \\ & \text { Type (} 3350=0 \end{aligned}$	Switches ram Control) $=0 C)$

.
For other Pin locations see PANEL 158 and 159.

POLL AND
SELECTION

$\underset{B D \times x x}{\text { A2L2 }}$

 FL

CE PANEL DATA ENTRY

ce panel data entry PANEL 162

See PANEL 158 for CE Panel operation description and sequence chart.

Note: Lines indicated are internal to switch

DATA ENTRY SWITCHES

(E)		F	8	7	v		(w)	(J)	(H)	B	A
	CE Data Switches	$\begin{aligned} & \text { Assm } \\ & \text { Bus } \end{aligned}$	Contr Bus In	Contr Bus In	Sel Bus	CE Hi Byte Display	CE Lo Byte Display	Tag Bits Bits	Busout Bits	Busout Bits NPL	Tagbus Bits NPL
Card Loc	$\begin{gathered} \text { A2K2 } \\ \text { (BE100) } \end{gathered}$	$\begin{gathered} \text { A2K2 } \\ \text { (BE110) } \end{gathered}$	$\begin{gathered} \text { A2F2 } \\ \text { (BA100) } \end{gathered}$	$\begin{gathered} \text { A2F2 } \\ \text { (BA150) } \end{gathered}$	$\begin{gathered} \text { A2F2 } \\ \text { (BA190) } \\ \hline \end{gathered}$	$\begin{gathered} \text { A2L2 } \\ \text { (BD200) } \\ \hline \end{gathered}$	$\begin{gathered} \text { A2L2 } \\ \text { (BD210) } \\ \hline \end{gathered}$	$\begin{gathered} \text { A2G2 } \\ \text { (BF100) } \end{gathered}$	$\begin{gathered} \text { A2G2 } \\ \text { (BF130) } \\ \hline \end{gathered}$	$\begin{gathered} \text { A2C4 } \\ \text { (WK100) } \end{gathered}$	$\begin{array}{\|c} \text { A2C5 } \\ \text { (WK110) } \end{array}$
Bit 0	G10	M07	P05	D06	B02	$\cup 11$	U04	J03	P02	D05	B04
Bit 1	J10	M09	M10	в03	D04	B05	U05	-	J13	B05	-
Bit 2	$\cup 10$	S11	M08	D10 plus	B04	$\cup 02$	M12	-	M02	D06	-
Bit 3	S12	S13	S07	D09 NPL	B05	P12	U06	-	P05	B08/809	-
Bit 4	G13	M02	P06	J02 at	D11	S13	S09	J02	P04	D09/D10	B05
Bit 5	$J 13$	M04	U03	J07 inter-	B12	U12	U09	B02	P06	B10	D05
Bit 6	P10	M11	P09	J11 face	J06	$\cup 13$	S10	D07	P11	D11	B08/B09
Bit 7	P11	M13	$\cup 06$	J03	G08	S12	U10	B07	M10	B12	D06
Bit P	$J 11$	G07	U04	J12	G04	-	-	D10	-	B02	D09/D10

CE PANEL CHECKOUT (String Switch Feature)

- Copyrigh IBM Corporation 1976

CE PANEL CHECKOUT (String Switch Feature)

$\mathrm{C}_{\mathrm{E}} \mathrm{C} C \mathrm{C}$

CE PANEL CHECKOUT (String Switch Feature)

CTL-I CONTENTS

BASIC CTL-I MAPs CTL-I 20-899
CONTROL INTERFACE ANALYSIS

CTL-I 100

INTERFACE CONNECTOR DIAGRAMS Basic 3350 CTL-I 105 3350 with String Switch . . . CTL-I $113-116$

STRING SWITCH
Overview CTL-I 852
Bypass Procedure. CTL-I 855

TROUBLE NOT FOUND . . . CTL-I 990

CABLE CHECKING HINTS . . CTL-I 993

REFERENCES TO OTHER SECTIONS
Controller FunctionalUnits . . OPER 4-13 Control Interface Description ag Summary ORER 98 - 241 Controller Error Conditions. . OPER 240, 241 String Switch Feature OPER 261, 262 String Switch Checkout

OPER 261, 262 START 120

FAULTY END RESPONSE LINE

The End Response line is open. Possible causes of trouble are:

- A faulty receiver in the controller that holds the line at ground.
- A faulty driver in the storage control
- Short to ground or signal line in either the controller or the storage control.
Note: If an EC was installed just prior to the failure, recheck the EC work and the EC instructions.

For strings with multiple controllers, reconfigure to the smallest configuration that sustains the error.
line五 .

INACTIVE INBOUND LINE

One or more, but not all, of the inbound signal lines are inactive at a time when they should be active. Possible causes of trouble are:

- An open circuit in the specified inbound line(s) in the interface cable.
- A short between the specified inbound signal line and a shield in the interface cable or a signal line shorted to ground
- A faulty receiver in the storage control
- A faulty driver in the (A) controller holding the line at an inactive level
- Opens or shorts to ground in other cables or on the back panel.
Note: If an EC was installed just prior to the failure, check the EC instructions and verify the changes made.
For strings with multiple controllers, reconfigure to the
smallest configuration that sustains the error.

ine	String Switch Machine					
	Interface A			Interface B		
Interface Cables (Tailgate)	Cards	$\begin{aligned} & \text { Flat } \\ & \text { Cables } \end{aligned}$	Interface Cables (Tailgate)	Cards	$\begin{array}{\|l\|l} \text { Flat } \\ \text { Cables } \end{array}$	Interface (Tailgate)
A1H1 A1F1	A22	A2A3	$\begin{aligned} & \mathrm{A}_{11 \mathrm{H}} \mathrm{~A} 1 \mathrm{l} \end{aligned}$	A2E	A2B	A1D1 A1B1 A
${ }_{\text {A1F1 }}^{\text {A1H1 }}$	A2M2	A2A3	$\begin{aligned} & \text { A1H1 } \\ & \text { A1F } \end{aligned}$	A2M2	A2B3	A1D1
A1G1	A2M2	A2A2	A1G1 A1E1	A2M2	A2B2	A1C1 A1A1
A1G1	A2M2	A2A2	A1G1	A2M2	A2B2	${ }_{\text {A1C1 }}^{\text {A1A1 }}$

One or more outbound signal lines are active at a time when they should be inactive. Possible causes of the
trouble are: trouble are:

- A faulty driver in the storage control.
- A faulty receiver in the controller holding the line at an active level.
- A short to a voltage or signal line in either the controller or storage control.

Note: If an EC was installed just prior to the
failure, check the EC instructions and verify the changes made

For strings with multiple controllers, reconfigure to the smallest configuration that sustains the error.

Figure 1. Outbound Signal Line

Group	Line Name	Basic Machine			String Switch Machine					
					Interface A			Interface B		
		Cards	Flat Cables	Interface Cables (Tailgate)	Cards	Flat Cables	Interface Cables (Tailgate)	Cards	Flat Cables	Interface Cables (Tailgate)
Group 1	$\begin{aligned} & \text { Bus Out Bits } \\ & 0-7, \mathrm{P} \end{aligned}$	A2G2	A2C4	$\begin{aligned} & \text { A1H1 } \\ & \text { A1F1 } \end{aligned}$	A2D2	A2A4	$\begin{aligned} & \mathrm{A} 1 \mathrm{H} 1 \\ & \mathrm{~A} 1 \mathrm{~F} 1 \end{aligned}$	A2E2	A2B4	$\begin{aligned} & \text { A1D1 } \\ & \text { A1B1 } \end{aligned}$
Group 2	Tag Bus Bits 0, 4-7, P Select Hold Tag Gate	A2G2	A2C5	$\begin{aligned} & \text { A1G1 } \\ & \text { A1E1 } \end{aligned}$	A2D2	A2A5	$\begin{aligned} & \text { A1G1 } \\ & \text { A1E1 } \end{aligned}$	A2E2	A2B5	$\begin{aligned} & \mathrm{A} 1 \mathrm{C} 1 \\ & \mathrm{~A} 1 \mathrm{~A} 1 \end{aligned}$

$3350 \quad$| BJ0030
 Seq. 2 of 2 | 2358513
 Part No. |
| :---: | :---: |

\square

Figure 2. Jumper Chart

 usually corrects the problem.

Bus and Tag Cables Twisted

Diagnostic tests indicate that the Bus and Tag cables are crossed. Swapping connectors at either end usually corrects the problem.
See CTL-I 993 for cable checking hints.

3350

$\mathrm{C}_{\mathrm{E}}^{\mathrm{F}} \mathrm{C} \mathrm{COCC}$

During this portion of the test a bit is placed on one of the Outbound lines. Proper operation activates a corresponding Inbound line. If the Outbound line is
open, the test card activates all of the Inbound lines.

The program recognizes this condition. The bit indicated in the display is the open line. Possible causes of the trouble are

- A line or connector pin open, shorted to ground, or shorted to the shield.
- A faulty driver in the storage control
- A faulty receiver in the controller.
- A short to ground or a -level NPL in either the storage control or the controller.
Note: If an EC was installed just prior to the failure, check the EC instructions and verify the changes made
For strings with multiple controllers, reconfigure to the smallest configuration that sustains the error.

Figure 1. Outbound Signal Lines

Group	Line Name	Basic Machine			String Switch Machine					
					Interface A			Interface B		
		Cards	Flat Cables	Interface Cables (Tailgate)	Cards	Flat Cables	Interface Cables (Tailgate)	Cards	Flat Cables	Interface Cables (Tailgate)
Group 1	$\begin{aligned} & \text { Bus Out Bits } \\ & 0 \rightarrow 7 \end{aligned}$	A2G2	A2C4	$\underset{\Delta 1 \mathrm{Fi}}{\mathrm{~A} 1 \mathrm{H} 1}$	A2D2	A2A4	$\begin{aligned} & \text { A1H1 } \\ & \text { A1F1 } \end{aligned}$	A2E2	A2B4	$\begin{aligned} & \text { A1D1 } \\ & \text { A1B1 } \end{aligned}$
Group 2	Tag Bus Bits 0, 4-7, P Select Hold	A2G2	A2C5	$\begin{aligned} & \text { A1G1 } \\ & \text { A1E1 } \end{aligned}$	A2D2	A2A5	$\begin{aligned} & \text { A1G1 } \\ & \text { A1E1 } \end{aligned}$	A2E2	A2B5	$\begin{aligned} & \mathrm{A} 1 \mathrm{C} 1 \\ & \mathrm{~A} 1 \mathrm{~A} 1 \end{aligned}$

[^3]

An inbound bit line is active when its corresponding outbound bit line is not active. A further test is made to ensure that a short condition does not exist. During this
portion of the test, a bit is placed on an outbound line. Proper operation causes the corresponding bit on Bus In to be activated. If an additional bit is received, two possibilities exist:

1. The bit line is shorted to a voltage source.
2. The bit line is shorted to an active bit line.

The outbound bit corresponding to the additional bit is placed on the outbound lines. If both bits are received again, it is assumed to be a short to a voltage source. If only one bit is received, it is assumed to be shorted to an auses of failure are:

- A faulty driver in the controller.
- A faulty receiver in the storage control.
- A short to a voltage in either the controller or storage control.
Note: If an EC was installed just prior to the failure, check the EC instructions and verify the changes made.

For strings with multiple controllers, reconfigure to the smallest configuration that sustains the error.

Figure 1. Inbound Signal Lines

Group	Line Name	Basic Machine			String Switch Machine					
					Interface A			Interface B		
		Cards	Flat Cables	Interface Cables (Tailgate)	Cards	Flat Cables	Interface Cables (Tailgate)	Cards	Flat Cables	Interface Cables (Tailgate)
Group 1	Bus In Bits	A2F2	A2C3	$\begin{aligned} & \text { A1H1 } \\ & \text { A1F1 } \end{aligned}$	A2D2	A2A3	$\begin{aligned} & \mathrm{A} 1 \mathrm{H} 1 \\ & \mathrm{~A} 1 \mathrm{~F} 1 \end{aligned}$	A2E2	A2B3	A1D1 A1B1
Group 2	Sync In	$\begin{aligned} & \text { A2F2 } \\ & \text { A2K2 } \end{aligned}$	A2C3	$\begin{aligned} & \mathrm{A} 1 \mathrm{H} 1 \\ & \mathrm{~A} 1 \mathrm{~F} 1 \end{aligned}$	A2M2	A2A3	$\begin{aligned} & \text { A1H1 } \\ & \text { A1F1 } \end{aligned}$	A2M2	A2B3	$\begin{aligned} & \text { A1D1 } \\ & \text { A1B1 } \end{aligned}$
Group 3	Error Alert CE Alert	$\begin{aligned} & \text { A2F2 } \\ & \text { A2L2 } \end{aligned}$	A2C2	$\begin{aligned} & \text { A1G1 } \\ & \text { A1E1 } \end{aligned}$	A2M2	A2A2	A1G1 A1E1	A2M2	A2B2	$\mathrm{A} 1 \mathrm{C} 1$ A1A1
Group 4	All Others	$\begin{aligned} & \mathrm{A} 2 \mathrm{~F} 2 \\ & \mathrm{~A} 2 \mathrm{~K} 2 \\ & \hline \end{aligned}$	A2C2	$\begin{aligned} & \text { A1G1 } \\ & \text { A1E1 } \end{aligned}$	A2M2	A2A2	$\begin{aligned} & \text { A1G1 } \\ & \text { A1E1 } \end{aligned}$	A2M2	A2B2	A1C1 A1A1

This portion of the test determines the interaction between two interface lines. A bit is placed on one of the outbound lines and two or more inbound lines are detected. When the outbound lines for the spurious signals are activated, the
activated. For example:

Test 1A
Bus Out $=$ Bit 0
Bus In = Bit 0 and Bit 1 .
This is an error because Bit 1 is not expected
Test 1B
Bus Out $=$ Bit 1
Bus In $=$ Bit 0 and Bit 1 .
This also is an error because Bit 0 is not expected. These errors indicate that there is a short since each line activates the other.

This program cannot determine whether the outbound or inbound lines are shorted, but can point to a pair of possibilities. In the example above, the Bus In display was identical in both cases. However, Bus In Bits 0 and 1 may not be the shorted pair. (See Figure 1 for corresponding lines and CTL-I 82 for Bus In, Bus Out shorted examples.)

Figure 1. Interf ace Lines

Displayed Line	Corresponding Line
Bus In Bit 0	Bus Out Bit 0
Bus In Bit 1	Bus Out Bit 1
Bus In Bit 2	Bus Out Bit 2
Bus In Bit 3	Bus Out Bit 3
Bus In Bit 4	Bus Out BBit 4
Bus In Bit 5	Bus Out Bit 5
Bus In Bit 6	Bus Out Bit 6
Bus In Bit 7	Bus Out Bit 7
Error Alert	Tag Bus Bit 6
Select Active	Select Hold
Snnc In	Tag Bus Bit 0
CE Alert	Tag Bus Bit P
Normal End	Tag Bus Bit 4
Check End	Tag Bus Bit 5
Tag Valid	Tag Gate
Index Alert	Tag Bus Bit 7

3350	$\begin{array}{l}\text { BJ0070 } \\ \text { Seq. 2 of 2 }\end{array}$	$\begin{array}{l}\text { 2358516 } \\ \text { Part No. }\end{array}$

SHORTED INTERFACE LINES

Scope Setup

Loop Routine BF Test 1.
Sweep $0.5 \mu \mathrm{~s} /$ div

$\mathrm{Ch} 1 / \mathrm{Ch} 2$ Volts/div $0.2 \longrightarrow$ Inactive
Example 1. Bus Operation Normal

| $\begin{array}{c}\text { Chart } \\ \text { Line } \\ \text { No. }\end{array}$ | Line Name | ALD | Test Point | |
| :---: | :--- | :--- | :--- | :--- | :--- |$]$

Example 2. Bus Out Bits 0 and 1 Shorted

| $\begin{array}{l}\text { Chart } \\ \text { Line } \\ \text { No. }\end{array}$ | Line Name | ALD | Test Point | |
| :---: | :--- | :--- | :--- | :--- | :--- |$]$

Example 3. Bus In Bits 0 and 1 Shorted

| $\begin{array}{c}\text { Chart } \\ \text { Line } \\ \text { No. }\end{array}$ | Line Name | ALD | Test Point | |
| :---: | :--- | :--- | :--- | :--- | :--- |$]$

3350 \begin{tabular}{|l|l|}
\hline BJ0082

Seq. 1of 2 \& $\begin{array}{l}2358517 \\
\text { Part No }\end{array}$

\hline

\hline 441300

31 Mar 76 \& $\begin{array}{l}4411303 \\
30 \text { Jul } 76\end{array}$

\hline
\end{tabular} \square $\quad \square$

© Copyright IBM Corporation 1976

After the Sync In and Normal End lines are checked and found to be functioning normally, they are used to check the Sync Out and Response lines. The sequence is as教

1. Set the Storage Control to Data Response mode. 2. Raise Tag Bit 0 , which causes Sync In.
2. Sync In activates Sync Out.
3. Sync Out sets a latch on the test card
4. The latch forces Normal End to become active
5. Normal End is used to raise Response
6. Response resets the latch and drops Normal End A Sync Out failure (open) is indicated by a missing Normal End. A Response failure (open) is indicated by an active Normal End after raising Response. Possible causes of failure are:

- Open interface cables or a short to ground
- Faulty receiver in the controller.
- Open, short to ground, or short to plus voltage on the torage control.
- Faulty driver in the storage control

Note: If an EC was installed just prior to the failure, check the EC instructions and verify the changes made.

For strings with multiple controllers, reconfigure to the smallest configuration that sustains the error See CTL-I 92 for typical timing relationships.

OPEN SYNC OUT

Scope Setup

Sweep Trigger	$0.2 \mu \mathrm{~S} /$ div Slope $(+)$ Test Point A
$\mathrm{Ch} 1 / \mathrm{Ch} 2$	Volts $/ \mathrm{div} 0.2$ Probe $\times 10$

See OPER 90 for additional theory.
 vary slightly depending on the interface length and configuration.

						Legend:	पा1ाm	Inactive Active level Tolerance
Chart Line No.	Line Name	ALD	Test Poi					
1	+Tag Bit 0 NPL	$\begin{array}{\|l\|} \hline \text { BF100 } \\ \text { BM100 (BN100) } \end{array}$	$\begin{aligned} & \hline \text { A2G2 D13 } \\ & \text { A2D2(A2E2) B07 } \end{aligned}$	A				
2	+Sync In NPL	$\left\lvert\, \begin{aligned} & \text { BE160 } \\ & \text { BR190 } \end{aligned}\right.$	$\begin{array}{\|l\|} \hline \text { A2K2 D04 } \\ \text { A2M2 J06(J07) } \end{array}$	B	1			
3	+Sync Out NPL	$\begin{array}{\|l\|l\|} \hline \text { BF100 } \\ \text { BR130 } \end{array}$	$\begin{aligned} & \text { A2G2 B13 } \\ & \text { A2M2 S03(D03) } \end{aligned}$	C	2			
4	+ Normal End NPL	BE160 BR170 (BR180)	$\begin{array}{\|l\|} \hline \text { A2K2 D11 } \\ \text { A2M2 U13(P07) } \end{array}$	(D)	3	5		
5	+End Response NPL	$\left\lvert\, \begin{array}{\|l\|l\|} \text { BF160 } \\ \text { BR130 } \end{array}\right.$	$\begin{aligned} & \text { A2G2 SO3 } \\ & \text { A1M2 SO4(BO5 } \end{aligned}$	(E)		4		

See EC History	441309 15 Jul 79	441310 27 Jun 80		

PHILOSOPHY OF INTERFACE ANALYSIS
The recommended approach to interface problems is to replace the designated replaceable unit in the controlle and determine if the problem is corrected. (The replacements are normally made prior to coming to this impact on system operation.
If further action is required, go to the Interface Checkout procedure for the storage control/drive interface. If the problem is not resolved, return here.

Service Hints

1. If more than one controller is attached to the interface, install the terminators in the first controller and check that it functions correctly; the proceed to the next controller and continue until all units function correctly.
2. Note that the lines listed below require a back panel connection to distribute the signal to the next controller. If a connector is loose at the A2 Board in any controller, all controllers may appear to fail. Check that the following connectors in all controllers are securely seated:

	Basic Machine Interface A		Interface
Bus Out bit 3	A2C4	A2A4	A2B4
Bus Out bit 4	A2C4	A2A4	A2B4
Tag Bus bit 6	A2C5	A2A5	A2B5
Tag Bus bit P	A2C5	A2A5	A2B5
Bus In bit 3	A2C3	A2A3	A2B3
Bus In bit 4	A2C3	A2A3	A2B3
Error Alert	A2C2	A2A2	A2B2
Index Alert	A2C2	A2A2	A2B2

. For new installations, location changes, or whenever cables are removed, the interface cables may be transposed. Verify the cabling at the tailgate.

Operating Instructions

1. Request the operator to vary offline the storage control and all its drives.
2. On the controller to be tested, operate the Power Off switch to remove ac power from the subsystem
3. Install the Interface Test Card (arrow up 4) on the pin side of the A2 Board (see Figure 1, CTL-I 102):

Card Cocation	Aasic 3350	With String Switch	
	Interface A	Interface B	

4. Plug the Interface Test Card voltage cable connector on A2K2. See Figure 1, CTL-I 102.
5. Operate the controller Power On switch.
6. Assure that the diskette containing the 3350 microdiagnostics is in the Storage Control reader (see MICRO 8)
7. If attached to a 3880 Storage Control refer to the 3880 maintenance documentation for running BF (Control Interface bringup program) 3350 MLX exit 3 .

$\sqrt[3350]{3}$
3880 Storage Control MLX Chart

If attached to a 3830 or ISC perform the following steps at the Storage Control CE Panel:
a. Set the Operation Mode switch to CE Normal.
b. Set Enter/Display Mode switch to Program Data Enter/Display.
c. Operate the Stop/SI switch
d. Operate the Reset switch
e. Operate the IMPL switch

When 'CABF' is displayed in the Address Check Program Display lamps, routine BF (CTL Interface Bringup Program) is ready for execution.
g. Set the Data Entry switches to ' 00 ' and operate the Execute switch. 'CFBF' in the Address Check Program Display lamps indicates successful completion of routine BF 'EOxx' indicates an error condition, where xx is the error number ($\mathrm{EOxx}=\mathrm{BFxx}$). Display and record the message bytes, then locate BFxx in the 3350 MICRO section for the meaning and the analysis of the error. See CTL-I 100 for additional operating instructions for 3830 and ISC's

Terminate control interface testing by performing the following steps:
a. Operate the controller Power Off switch to remove power from the controller being tested.
b. Remove the Interface Test Card and its cable
c. Operate the controller Power On switch to restore power to the subsystem.
d. Insert the functional microprogram disk in the reader. (3830 or ISC only.)
e. Operate the following switches at the Storage Control CE Panel (3830 or ISC only)
Stop/SI
Reset
IMPL
f. If attached to a 3880 Storage Control, refer to the 3880 maintenance documentation for restoring the Storage Control from the MD (Maintenance Device) after running BF.-

9. If necessary, return to the section exited from Otherwise, exit to START 500, Entry A.

3350

| BJ0092
 Seq. 2 of 2 | 2358518
 Part No. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | See EC
 History | 441309
 15 Jul 79 | 441310
 27 Jun 80 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

INTERFACE ANALYSIS

To Display Message Bytes

1. Set the Data Entry switches to ' 20 '.
2. Operate the storage control Execute switch. The messages appear in the Address Check Program Display lamps. Refer to MICRO 700 for a description of the messages.
Note: Two message bytes are displayed at the same time.

To Reset and Restart Program

1. Operate the Stop/SI switch
2. Operate the Reset switch
3. Operate the Start switch.
4. Return to step 7 on CTL-I 100 under Operating Instructions

To Loop A Test

1. Operate the Stop/SI switch.
2. Operate the Reset switch.
3. Operate the Start switch.
4. After 'CABF' is displayed in the Address Check Program Display lamps, enter 10,YY,ZZ,00.
WhereYY $=$ Test Number
$\mathrm{ZZ}=00$ for stop on error 01 to loop and display error number 02 to loop and display line message 03 for scope loop
$00=$ start execution

Figure 1. Interface Test Card

All interface lines and pins are NPL levels. All logic lines and pins are MST levels. See CTL-I section divider tab for signal levels.

Note: Pin numbers do not appear on WK120. See ALD
pages indicated in the column to the left or the chart on ZAO9O for pin identification

BUS OUT/TAG OUT
All interface lines and pins are NPL levels. All logic lines and pins are MST levels. See CTL-I section divider tab for signal levels.

BUS IN/TAG IN
INTERFACEA
All interface lines and pins are NPL levels. All logic lines
and pins are MST levels. See CTL-I section divider tab

OCopyright IBM Corporation 1976, 1977
Note: Pin numbers do not appear on WK220 or WK230.
See ALD pages indicated in the columns to the left for the
appropriate interface or the chart on ZAO9O for pin
identification

BUS IN/TAG IN
All interface lines and pins are NPL levels. All logic lines and pins are MST levels. See CTL-I section divider tab for signal levels.

[^4]| 441300 |
| :---: | :---: | :---: |
| 31 Mar 76 | \(\begin{gathered}441301

1 Jun 76\end{gathered} $$
\begin{aligned} & \text { 441305 } \\
& 29 \text { Oct 76 }\end{aligned}
$$\)

CrCCCC

CONDITION CODE 3 ERRORS

Circuit Description

Condition Code 3 errors are caused by:

Active Outbus bit \boldsymbol{A}
Erroneous Tag Bus bit B

Inactive Tag Bus or Select Hold C
Condition Code 3 errors normally prevent controller selection and the microdiagnostics fail to load properly. Controller selection requires the following:

Select Hold

Valid Tag Gate
Tag "03’
Online (If C2 Module is installed.)
Valid Tag Gate becomes active if there is no Bus Ou Parity or Tag Bus Parity check.

See OPER 90 for additional theory
Analysis Procedure
Three microdiagnostic tests in routine A1 may be looped oo help determine the cause of the failur

- Test 2 exercises the select circuits (C) by issuing Tag
'03' (Select Controller) and Tag '09' (Reset Controller).
See CTL-I 252 for more detail
- Test 3 exercises the outbus bits A and forces Tag Bus Parity and Bus Out Parity check. See CTL-I 304 for more detail
- Test 4 exercises the Tag Bus bits (B) and issues all ags and checks for Tag Valid

1. Loop the appropriate test:

$$
\begin{aligned}
& \text { Load routine A1 } \\
& \text { Enter } 10 \times x .00
\end{aligned}
$$

$\mathrm{XX}=$ Selected test number
2. Scope setup

Sweep $20 \mu \mathrm{~s} /$ div

Slope $(+)$
A2G2B1
((+Select Hold NPL)
Ch 1 A2G2J05
(-Selected)

Additional Service Hints

1. Check the -4 V and +6 V for a stable and proper evel. See PWR 90, Entry B for procedure. ote: Adjusting the -4 or +6 V regulators become less internittent. e less intermittent.
2. Check the backpanel wiring for tight wire wraps.
See Figure 1 for wire net locations.
3. Check connectors for shorts or broken land patterns. See Figure 1 for connector pin locations.

Without String Switch Feature Installed A2C4

3350 \square

$\mathrm{C}_{\mathrm{F}} \mathrm{C} C \mathrm{C}$ C C C C C

ALWAYS ACTIVE LINES

Always active lines

Figure 1. Pin Locations

Line Name	Conn A2A2 Pins E	Conn A1G1 Pins (Conn A1E1 Pins
+Select Active A NPL	B02	G03	G03
+Tag Valid A NPL	D05	J04	J04
+Normal End A NPL	B05	G05	G05
+Check End A NPL	D06	J06	J06
+Error Alert A NPL	B08/B09	G08	G08
	Conn A2B2 Pins F	Conn A1C1 Pins (Conn A1A1 Pins \boldsymbol{R}
+Select Active B NPL	B02	G03	G03
+Tag Valid B NPL	D05	J04	J04
+Normal End B NPL	B05	G05	C05
+Check End B NPL	D06	J06	J06
+Error Alert B NPL	B08/B09	G08	G08

Note: If more than one controller is attached, it is necessary
to isolate to a single controller. I solation can be accomplished to isolate to a single controller. Isolation can be accomplished
by either removing power to all controllers except the one by either removing power to all controllers except the one succeeding controllers (A1E1 and A1A1 connectors). In order to properly analyze Normal End and Tag Valid
roblems, it may be necessary to stop polling by stopping the storage control. When feasible, stop the storage control and continue the analysis.

ALWAYS ACTIVE LINES (With String Switch)

always active lines (With String Switch)
CTL-I 207

MULTIPLE CONTROLLER CHECKOUT PROCEDURE

When two controllers with the same address respond to selection on the same storage control, their responses ar
identical. It is impossible for the storage control to
determine if more than one controller responded. O on subsequent operations, where different responses are possible, is the condition detected.
Examples of errors that might be expected with multiple controllers selected are
Storage control detected Bus In Parity errors.
Head Switch Timer Expired check.
This procedure establishes controller conditions that anable the failing unit to be isolated.

START 500

START 101

Microdiagnostic routine A1 selects the controller Tag '03' (Select Controller). The controller responds with 3 its active on Control Bus In

Bits $0,1,2$ contain the controller addres
Bits $5,6,7$ contain the complement.
Routine A1 then checks the validity of this 3 -of -6 code.

Controller Address	Message Byte 3 Bits 01234567	Hex Value
0	000--111	07
1	001--110	26
2	010--101	45
3	011--100	64
The controller address is determined by jumpers on the A2G2 card. See INST 6 for jumper locations.		

A2G2 card. See INST 6 for jumper locations.
If the C2 Module is installed, the controller responds with 4 bits active on the Control Bus In
Bit 0 indicates the status of the controller being addressed.

$$
\begin{aligned}
& \text { Bit } 0=1 \text { Offline controller addressec } \\
& \text { Bit } 0=0 \text { Online controller addressed }
\end{aligned}
$$

Bit 4 indicates the A 2 or C 2 controller addressed. Bit $4=1 \quad \mathrm{C} 2$ controller addressed

checke haddressing
jumpers. See INST 6.
$\# 1$

3350 | $\begin{array}{c}\text { BJ0240 } \\ \text { Seq. 2of } 2\end{array}$ | $\begin{array}{l}2358555 \\ \text { Part No. }\end{array}$ |
| :---: | :---: |

441300

31 Mar 76 | 441301 |
| :--- |
| 1 Jun 76 | ${ }_{30}^{441303}$ Jul 76

Copyright IBM Corporation 19

CONTROLLER SELECTION FAILURE

Circuit Description

The 3 -of. 6 code is generated by Sel Bus Bits (A)
Sel Bus Bits \boldsymbol{A} becomes Contr Bus In Bits ©. Contr
Bus In Bits activate Contr Bus In Bits NPI B Gate
Bus In Bits activate Contr Bus In Bits NPL B. Gate
B1 \boldsymbol{F} gates the Contr Bus In Bits NPL B $^{\text {to the storage }}$

Analysis Procedure
Find the bit that is in error and scope it back (see Figure 1 on CTL-I 250).

See OPER 90 for additional theorv.

Note: If an error is detected while looping a test, the microprogram ends the test and starts it over again microprogram ends the test and starts it over again
from the beginning. Any part of the signal appearing after the error is detected, and before the test is restarted, is not valid

Figure 1. Pin Locations

Line Name	$\begin{aligned} & \text { Card A2D2 } \\ & \text { Pins C } \end{aligned}$	$\begin{aligned} & \text { Conn A2A3 } \\ & \text { Pins D } \end{aligned}$	$\begin{aligned} & \text { Conn A1H1 } \\ & \text { Pins (} \end{aligned}$	$\begin{aligned} & \text { Conn A1F1 } \\ & \text { Pins } \boldsymbol{F} \end{aligned}$	$\begin{aligned} & \text { Card A2H2 } \\ & \text { Pins } \boldsymbol{A} \end{aligned}$	$\begin{aligned} & \text { Card A2H2 } \\ & \text { Pins B } \end{aligned}$
+Con A Bus In Bit 0	U06	D05	J04	J04	G02	G03
+Con A Bus \ln Bit 1	U07	в05	G05	G05	G05	J04
+Con A Bus In Bit 2	P11	D06	J06	J06	D11	B11
+Con A Bus In Bit 3	M12	B08/809	G08	G08	D13	B13
+Con A Bus In Bit 4	S07	D09/D10	J09	J09	D06	B07
+Con A Bus In BIt 5	U09	B10	G10	G10	D10	B10
+Con A Bus In Bit 6	M11	D11	$J 11$	$J 11$	D02	в03
+Con A Bus \ln Bit 7	P12	B12	G12	G12	B05	B04
+Con A Bus In Bit P	M02	B02	G03	G03	G12	D12
	$\begin{aligned} & \text { Card A2E2 } \\ & \text { Pins J } \end{aligned}$	$\begin{aligned} & \text { Conn A2B3 } \\ & \text { Pins } \boldsymbol{K} \end{aligned}$	$\begin{aligned} & \text { Conn A1D1 } \\ & \text { Pins } L \end{aligned}$	$\begin{aligned} & \text { Conn A1B1 } \\ & \text { Pins (M) } \end{aligned}$	$\begin{aligned} & \text { Card A2J2 } \\ & \text { Pins } \mathbf{G} \end{aligned}$	$\begin{aligned} & \text { Card A2J2 } \\ & \text { Pins H } \end{aligned}$
+Con B Bus In Bit 0	U06	D05	J04	J04	G02	G03
+Con B Bus In Bit 1	$\cup 07$	B05	G05	G05	G05	J04
+Con B Bus In Bit 2	P11	D06	J06	J06	D11	B11
+Con B Bus In Bit 3	M12	B08/809	G08	G08	D13	B13
+Con B Bus In Bit 4	S07	D09/D10	J09	J09	D06	в07
+Con B Bus In Bit 5	U09	B10	G10	G10	D10	B10
+Con B Bus In Bit 6	M11	D11	$J 11$	$J 11$	D02	B03
+Con B Bus \ln Bit 7	P12	B12	G12	G12	B05	B04
+Con B Bus In Bit P	M02	B02	G03	G03	G12	D12

Analysis Procedure

Start scoping the failing bit line at test point (C and trace it back to determine why it is failing.
See OPER 90 and OPER 260 for additional theory.

Select Active was off following controller selection.
See OPER 90 for theory.

Ch 1 A2K2B10
-Coorce Tag Valid
volto
Volts/div 0.2
probe

+ Select Active NP
volts/div 0.2
*10

Note: If an error is detected while looping a test, the microprogram ends the test and starts it over again rom the beginning. Any part of the signal appearing after the error is detected, and before the test is restarted, is not valid.

Chart Line No.	Line Name	ALD	Tegend: Point		
1	-Selected	BF120	A2G2 J05	A	
2	-Coerce Tag Valid	BE150	A2K2 B10		
3	+Select Active NPL	BE160	A2K2 J03	B	

3350

SELECT ACTIVE NOT ON (With String Switch)


```
000000000000000000000000000000000000
```


Each operation, whether an imediate or extend operations (Read, Write, ECC Control, and Set Read/Write), must be terminated with a Normal End or a Check End.
Microdiagnostic routire A1 verifies that Normal End and Microdiagnostic routire A1 verifies that Normal End
Check End are turned off after Tag Gate is dropped.

Sweep
Trigger
Slope (-)
A2G2J05
Sope
A2S2JO5

- Selected
Ch
A $2 K 2205$

 probe
$\# 20 \ldots$
\ldots Check End should never be] \#21
\square
-
100000

C

NORMAL END/CHECK END FAILURE

Normal End

During normal operation:
Normal End is set by Coerce Tag Valid \boldsymbol{K} and Imm Op during this microdiagnostic test.
If Op End Dis active, an error occurs.
Op End is set by End Data Op \mathbf{F}
End Data Op is set by PLO End Op C
Check End
Check End should not be active during this test.
During normal operation:
Check End is set by Chk Cond B
Chk Cond is set by Sync Out Timing Error \boldsymbol{A} or No
Sync Found ©
See OPI:R 90 for additional theorn

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|r|}{Note: If an error is detected while looping a test, the microprogram ends the test and starts it over again from the beginning. Any part of the signal appearing after the error is detected and before the test is restarted is not valid.} \& \square Inactive
Active leve
Tolerance

\hline \[
$$
\begin{aligned}
& \text { Chart } \\
& \text { Line } \\
& \text { No. }
\end{aligned}
$$

\] \& Line Name \& ALD \& \& \& \begin{tabular}{l}
Controller

Selected

 \& Tag ' 03 Select \&

Tag ' 09 '

Transmit Contro
\end{tabular}

\hline 1 \& -Selected \& BF120 \& A2G2 J05 \& \& \& \&

\hline 2 \& + Normal End NPL \& BE160 \& A2K2 D11 \& (H) \& \& \&

\hline 3 \& -Op End \& BG170 \& A2P2 P04 \& (${ }^{\text {d }}$ \& Inactive \& \&

\hline 4 \& -End Data Op \& BG170 \& A2P2 D10 \& F \& Inactive \& \&

\hline 5 \& +PLO End Op \& BH160 \& A202 S12 \& C \& Inactive \& \&

\hline 6 \& +Check End NPL \& BE160 \& A2K2 D05 \& G \& Inactive \& \&

\hline 7 \& +Chk Cond \& BH150 \& A202 B12 \& B \& Inactive \& \&

\hline 8 \& - No Sync Found \& BG140 \& A2P2 S04 \& E \& Inactive \& \&

\hline 9 \& -Sync Out Timing Error \& BC170 \& A2S2 U10 \& (A) \& Inactive \& \&

\hline 10 \& -Imm Op \& BE140 \& A2K2 B07 \& (J) \& \& \&

\hline 11 \& -Coerce Tag Valid \& BE140 \& A2K2 B10 \& (K) \& \& \&

\hline
\end{tabular}

$\mathrm{C}_{\mathrm{E}} \mathrm{C}$ C C C C C C C C

TAG BUS/BUS OUT PARITY CHECK

\square

See OPER 90 for theory.

3350

| BJ0300
 Seq. 2 of 2 2 | 235851
 Part No. |
| :---: | :---: | | 441300
 31 Mar 76 | 441303
 30 Jul 76 | | | |
| :--- | :--- | :--- | :--- | :--- |

TAG BUS/BUS OUT PARITY CHECK

Tag Bus Parity Check

See the diagram on CTL-I 302 for referenced test points.
Microdiagnostic routine A1, test 3 issues an invalid Tag ' 94 ' which causes a Tag Bus Parity Check B
The microdiagnostic then issues a Tag ' 04 ', expecting an Assm Bus Bit 0 L
Status Byte Op 04 (D) and Bus Out Bit 6 activate Gate Controller Err 1 .
Gate Controller Err 1 G gates Tag Bus Parity Check hrough the Check Register as Check Bit 0 . Check Bit becomes Assm Bus Bit 0 (L) if Assm Sel Y and X H are not active.
If Tag Bus Bit 0 R is not active during Tag '94' time, a
Tag Bus Parity Error does not occur
fany of the following gates are active during Tag ' 04 time, Tag Bus Parity Chk (B) is not gated through the Check Register and an error occurs

Gate Controller Err 2
Assm Sel Y
ECC Correct Op
ECC Ctrl Op 08
Bus Out Parity Check
See the diagram on CTL-I 302 for referenced tes points.

Microdiagnostic routine A1, test 3 forces a BO Parity
Check (E by changing Bus Out from '00' to ' 01 ' while
Tag Gate is active
Tag Gate and Bus Out Parity Check sets BO Par Chk
Latched \mathbf{C}
The microdiagnostic then issues a Tag ' 04 ' to sense Assm
Bus Bit 1 (M)
If the string switch feature is installed and Assm Bu
1 is correct, trace bit 1 through the SWFE cards \boldsymbol{N}.

Note: If an error is detected while looping a test, the microprogram ends the test and starts it over again from the beginning. Any part of the signal appearing fler the error is detected, and before the test is restarted, is not valid.


```
0000000000000000000000000000000000
```


CONTROLLER CHECK MISSING

The following is the normal operation for generating Controller Check.

Controller Chk is gated by BI Sel Y and sent to storage
control as Contr Bus In Bit 0 NPL \mathbf{F}
Tag Bus Par Chk (C) sets Controller Chk (D) Gate Device Bus In sets BI Sel Y (E. Read Status 84 sets Gate Device Bus In.
Read Status 84 A
Tag Bit 0 B.
Decode 84.
Selected.

1 Tag '94' = Invalid tag
Tag '84' = If Controller Check
is not on, A135 Error
3 Tag ${ }^{\prime} 09^{\prime}$ = Resete occurs.
Tag '09’ $=$ Reset Controller Check
Tag ${ }^{\prime} 84^{\prime}=$ If Controller Check is
$\begin{aligned} \text { Tag }{ }^{\prime} 84^{\prime}= & \text { If Controller Check is } \\ & \text { not on, A138 Error Code }\end{aligned}$ occurs

The following is the normal operation for generating an Error Alert.
See the diagram on CTL-I 316 for referenced test
points.
Controller Chk (A) sets Err Alert Cond B Err Alert Cond sets Suppr Error Alert (9)
See OPER 241 for errors that cause Error Alert

3350

ERROR ALERT FAILURE

See OPER 90 for theory.
Figure 1. Connector Pin Locations

Line Name	$\begin{aligned} & \hline \text { Conn A2C2 } \\ & \text { Pin G } \end{aligned}$	$\begin{aligned} & \text { Conn A1G1 } \\ & \text { Pin } \mathbb{K} \end{aligned}$	$\begin{aligned} & \text { Conn A1E1 } \\ & \text { Pin D } \end{aligned}$
+Err Alert NPL	B08/B09	G08	G08
	$\begin{aligned} & \text { Conn A2A2 } \\ & \text { Pin } \boldsymbol{H} \end{aligned}$	Conn A1G1 Pin (M)	$\begin{aligned} & \text { Conn A1E1 } \\ & \text { Pin } \boldsymbol{N} \end{aligned}$
+Err Alert A NPL	B08/809	G08	G08
	Conn A2B2 Pin J	Conn A1C1 Pin P	$\begin{aligned} & \text { Conn A1A1 } \\ & \operatorname{Pin} \mathbf{Q} \end{aligned}$
+ Err Alert B NPL	B08/B09	G08	G08

Tag Bus and Bus Out Parity Check latches are forced on and then reset. The microdiagnostic then verifies that the error condition was reset

3350 \begin{tabular}{|l|l|l|l|l|l|}

\hline | BJ0316 |
| :--- |
| Seq. 20 or 2 | \& | 23285534 |
| :--- |
| Part No. |

\hline
\end{tabular}

PARITY CHECK FAILURE

Tag Bus Parity Check
Assm Bus Bit $0 \boldsymbol{F}$ is set by Tag Bus Par Chk Gen Reset (B) turns off Tag Bus Parity Chk.
All Assm Bus Bits (' FF^{\prime}) are gated to the interface if Assm Sel X (C) is active
Assm Sel X is activated by Read*Not Clk Gated \boldsymbol{A}
Bus Out Parity Check
Assm Bus Bit 1 (is set by Bus Out Par Chk (E) Gen Reset B turns off Bus Out Parity Chk.

See OPER 90 for additional theory.

1. $\mathrm{Tag}^{\prime} 03^{\prime}=$ Select controller
2. Tag ' $03^{\prime}=$ Select controller
3. Tag 94 ' $=$ Force Tag Bus Parity Check

2 Tag ' 94 ' $=$ Force Tag Bus Parity Check
3 Tag 09^{\prime} = Reset Tag Bus Parity Check. If it fails to reset, A13
Error Code occurs.
4 Tag ${ }^{\prime} 04^{\prime}=$ Verify that Tag Bus Pairty was reset.

- Tag '05’ = Force Bus Out Parity Check by changing Bus Out
from '00' to ' 01 ' with Tag Gate active.
6 Tag ' $09^{\prime}=$ Reset Bus Out Parity Check. If it fails to reset, A133 Error Code occurs.

Each operation, whether an immediate or extended operation, must be terminated with a Normal End or a Check End
For immediate operations, Normal End occurs imultaneously with Tag Valid.
For extended operations (Read, Write, ECC Control and Set Read/Write), Normal End and Tag Valid are
returned at different times.
Microdiagnostic routine A1, test 4 issues all controller tags and checks for Tag Valid. If Tag Valid is returned, he microdiagnostic then checks for Normal End. If Normal End is not returned, an A141 Error Code occur The tag sequence is as follows:

OB’, ‘01’, ‘02’, ‘04’, ‘05’, ‘06’, ‘07’, ‘09’,
'0A', ${ }^{\circ} 0 \mathrm{C},{ }^{\prime}$, 0 D '
Microdiagnostic Error
Message Byte 4 for the

\#24
${ }^{\# 13}$

CTL-I 100 and Return
Licrodiagnostic
Loop test 4 and bypass
errors:

1. Load routine A1
2. Enter 10, 04, 01, 00

 sequence clat on CTL-1
402 to isolate the problem \#25

18
MICR
MICF
Mic
Loo
byp
1.
2.

CFL 20 MICFL 20 | Microdiagnostic |
| :--- |
| $\begin{array}{l}\text { Loop failing test and } \\ \text { bypass errors }\end{array}$ | Loop fanng les:

bypass errors:

1. Load routi Load routine
Enter $10, \mathrm{X}, 01,00$
$(X X=$ test numb (XX = test number
from the Error Code

Sweep
Trigger

Slope (-)
A2G2005 A2G2JO5
Ch Selected
1A2G2J11 Ch 1 A2 2 Gected
+Tag Gate NPL
volts volts/div 0.2 Ch $\underset{\substack{\text { probere } \\ \text { 2K2D11 }}}{ }$ $+\begin{aligned} & + \text { Normal End NPL } \\ & \text { volts } / \text { div }\end{aligned}$ $\begin{array}{ll}\text { volts/div } & 0.2 \\ \text { probe }\end{array}$ CTL-1
402

Normal End Missing (A141 Error Code)
Normal End NPL (G) is set by:
Coerce Tag Valid H
Imm Op C
Imm Op
Imm Op blocks Normal End if any of the following lines are active before the extended Ops ('08', 'OE' or
OF') are issued
Read Op OE F
Set RW Op 85
Set RW Op 85 A
ECC Ctrl Op 08 (D
ECC Ctrl Op 08 D
Write Op OF E
Tag Bit 4 B should not be active when tags ' 01 '
'02', ${ }^{\prime} 04^{\prime}, \cdot$ '05', $06^{\prime}, \cdot 107$ ' are issued. If Tag Bit 4 is active with the above tags, the controller decodes:
Tag '01' as '09'
'02' as '0A '
'04' as '0C.
Tag '0E' as 'OD
04' as '0C' \quad '06' as '0E'

Normal End Premature (A14C Error Code)
Imm Op C is at a + level (MST-1) while the following
lines are active:
$\mathrm{ECC} \operatorname{Ctrl} \mathrm{Op} 08$
Read Op 0 E
Write Op 0 F
Microdiagnostic Message Byte 4 identifies the tag that caused the Normal End

See OPER 90 for additional theory.

Note: If an error is detected while looping a test, the microprogram ends the test and starts it over again after the error is detected, and before the test is restarted, is not valid.

See the diagram on CTL-I 412 for referenced test points.

Tag Bus Parity Check

While Tag Gate is active, bits on the Control Tag Bus are monitored. If an even number of bits is detected, the following occurs:
Tag Bus Par Chk E latch is set.
Tag Valid is blocked.
Normal End is inhibited.
Tag Bus Parity Check Display latch is set.
Error Alert and Controller Chk \boldsymbol{F} are activated.

Bus Out Parity Check

While Tag Gate is active, bits on the Control Bus Out are monitored. If an even number of bits is detected, the monitored. If an
BO Par Chk Latched (D) is set.
Tag Valid is blocked.
Bus Out Parity Check Display latch is set. Error Alert and Controller Chk F are activated.

Parity Check Lamps

Microdiagnostic routine A1, test 3, checks the Tag Bus and Bus Out Parity Check lamps. They should be on after running this test and remain on until reset by the Execute switch or Power On Reset.

$3350 \quad$| $\begin{array}{l}\text { BJ0402 } \\ \text { Seq. } 2 \text { of 2 }\end{array}$ | $\begin{array}{l}\text { 2358536 } \\ \text { Part No. }\end{array}$ |
| :--- | :--- |

© Copyright IBM Corporation 1976, 1977
\(\left.$$
\begin{array}{|l|l|l|}\hline \text { 441300 } \\
\text { 31 Mar 76 }\end{array}
$$ \begin{array}{l}441303

30 Jul 76\end{array}\right)\)| 441306 |
| :--- |
1 Apr 77	31 Mar 76	4 1 Apr 77		

Figure 1. Interface Connectors

Machine Type	Connectors	
	Tag Bus Parity	Bus Out Parity
	A1G1	A1H1
Basic	A1E1	A111
	A2C5	A2C2
		A1G1
String Switch	A1E1	A1H1
Interface A	A2A5	A2A4
A2A	A24	
String Switch	A1C1	A1D1
Interface B	A1A1	A111
	A2B5	A2B4

CONTROL TAG BUS/BUS OUT PARITY CHECK
CONTROL TAG BUS/BUS OUT PARITY CHECK
See OPER 90 for theory

Note: If the string switch feature is installed, there is
no cable installed in A2C4 and A2C5. Bus Out and no cable installed in A2C4 and A2C5. Bus Out and
Tag Bus are transmitted from cards A2D2 or A2E2.

- Active level

Note: If an error is detected while looping a test, the microprogram ends the test and starts it over again rom the beginning. Any part of the signal appearing
restarted, is not valid.

BJ0414	2358538
Seq. 1 of 2	Part No.

\square

Microdiagnostic routine A1, test 4 issues all controller tags and checks for Tag Valid for all operations.
The tag sequence is as follows:

3350 | $\begin{array}{c}\text { BJ0414 } \\ \text { Seq. } 20 \text { o } 2\end{array}$ | $\begin{array}{l}2358538 \\ \text { Part No. }\end{array}$ |
| :---: | :---: |

© Copyright IBM Corporation 1976

Tag Valid Missing On Tags '08', $\mathbf{\prime} \mathbf{0 E}$ ', and ' $0 F^{\prime}$ This error is usually caused by RW Op Dld going to -level (MST-1) and activating Block Tag Valid to a + level (MST-1
RW Op Dld is -level if Half $F \boldsymbol{F}$ is at either a solid

+ level or -level. +level or -level.
Half F is pulsing if VFO 1F \boldsymbol{G} is pulsing and Special
VFO Reset \boldsymbol{B} is
VFO Reset B is
VFO 1F is pulsing if VCO Inject TP \boldsymbol{H} is pulsing. Selected Tag Gate \mathbf{E} must be at a - level (MST-1).

Tag Valid Missing On Immediate Tags.
Each time a tag is issued, it sets Tag Valid NPL
Each time a tag is issued, it sets Tag Valid NPL.
If Tag Valid NPL is correct, the problem is in the cable If Tag Valid NPL is correct, the pr
and connectors to storage control.
Tag Valid NPL (is set by Coerce Tag Valid (0). Coerce Tag Valid is set by Valid Tag Gate Dand not Block Tag Valid or Alt*Pri Check (B)
_ Allow Drive Tag Valid C

- Valid Tag Gate
- Valid Tag Gate D, + Alt*Pri Check (B)
A 2 L 2
BDxxx

\square

Γ Controller \rceil
Tailgate-01B
| $\begin{gathered}\text { A1G } \\ \text { Conn }\end{gathered}$ or online.
Sec OPI:R 90) for additionul theory.

Legend: | Inactive |
| :---: |
| |
| |
| |

Chart Line No.	Line Name	ALD	Test Point		Tags
1	-Write Op OF	BD100	A2L2 M04	(A)	Inactive
2	+ Tag Gate NPL	BF130	A2G2 J11		${ }^{\circ 0 B^{\prime} 01^{\prime}}$
3	-Selected Tag Gate	BF110	A2G2 G07	(E)	
4	+Tag Valid NPL	BE160	A2K2 G05	(1)	
5	- Allow Drive Tag Valid	BF110	A2G2 G11	C	Inactive
6	- Valid Tag Gate	BF110	A2G2 809	(D)	
7	+ Half F	BJ130	A2T2 G13	F	
8	+VFO 1F	BJ130	A2T2 B07	(G)	
9	VCO Inject TP	BJ130	A2T2 G08	(H)	
10	+Special VFO Reset	BC130	A2S2 J07	B	Inactive
11	-RW Op Did	BH100	A202 B10	(k)	

- Copyright IBM Corporation 1976

BUS IN PARITY CHECK

$\mathbf{C}_{\mathrm{F}} \mathbf{I}$
 F

BUS IN PARITY CHECK (With String Switch)

L

BUS IN ASSEMBLER FAILURE

The Lost Orientation Latch B is set, and with prope
gating it sets Check Bit 2.
Check Bit 2 turns on Assm Bus Bit 2
Proper gating for the check bits is:
Not Gate Controller Err
Not Gate Controller Err 2
If other bits are on in addition to Check Bit 2, it indicates an erroneous check condition was set.

$\left.3350 \quad \begin{array}{l|l|l}\text { BJ0512 } \\ \text { Seq. } 1 \text { of 2 }\end{array}\right] \begin{aligned} & \text { 2358542 } \\ & \text { Part No. }\end{aligned}$
© Copyright IBM Corporation 1976
An error occurs if b
or extra bits are on

The bits on Bus In are checked and then parity is checked
in the storage control.
A Bus In Parity check in the storage control indicates that the parity generator failed or that some external line is affecting the parity bit.
See OPER 90 for additional theory.

\square

On successive operations of microdiagnostic routine A1, test 5 , two ECC pattern bytes are sensed (Tag ' 04 ', Bus '80' and Tag '04', Bus '40').
The ECC Shift Register supplies the pattern bytes and is normally reset to ' 00 '. Therefore, ' 00 ' is expected on Bus In for both bytes.
See OPER 90 for additional theory.
3350

$$
\begin{array}{c|c}
\begin{array}{c}
\text { BJ0522 } \\
\text { Seq. 2 of 2 } 2
\end{array} & \begin{array}{l}
2358543 \\
\text { Part No. }
\end{array} \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|}
\hline \text { 341300 } & 4411030 \\
\text { 31 Mar 76 } & \text { 30 Jul 76 } \\
\hline
\end{array}
$$

Figure 1. Pin Locations

Line Name	Card A2R4 Pins
+ECC Corr Bit 0	J04
+ECC Corr Bit 1	J 13
+ECC Corr Bit 2	G09
+ECC Corr Bit 3	J06
+ECC Corr Bit 4	J05
+ECC Corr Bit 5	J03
+ECC Corr Bit 6	G03
+ECC Corr Bit 7	G13

BUS IN ASSEMBLER FAILURE

To ensure data integrity on Read operations, redundant controls are on the registers that assemble the Bus In bits. A malfunction in this area could cause the SERDES Data Register to be gated to Bus In during non-Read operations. This condition is recognized by observing that Sense Bytes 8 through 12 are 'FF'

Microdiagnostic routine A1 resets the Data Register to all ones ('FF').
Read Tag ' 0 E ' is then issued
Approximately 2 microseconds after Tag Gate drops, Bus In is checked to verify that the Data Register contains
'FF'.

Note: When replacing A2D2, A2E2, or A2G2, check
the addressing jumpers. See INST 6.

\square

See the sequence diagram on CTL-I 534
See OPER 90 for theory.

Figure 1. Data Bit Pin Locations

Line Name	$\begin{aligned} & \text { Card A2s2 } \\ & \text { Pin } P \text {. } \end{aligned}$	$\begin{array}{\|l} \hline \text { Card A2K2 } \\ \text { Pin @ } \end{array}$	$\begin{aligned} & \text { Card A2F2 } \\ & \text { Pin S } S \end{aligned}$	$\begin{aligned} & \text { Card A2F2 } \\ & \text { Pin R } \end{aligned}$	$\begin{aligned} & \text { Conn A2C3 } \\ & \text { Pin } T \end{aligned}$	Conn A1H1 Pin U
Data Bit 0	J02	M07	P05	006	D05	J04
Data Bit 1	B07	M09	M10	B03	B05	G05
Data Bit 2	D06	S11	M08	D10	D06	J06
Data Bit 3	G02	S13	S07	D09	B08/B09	G08
Data Bit 4	B10	M02	P06	J02	D09/D10	J09
Data Bit 5	D09	M04	U03	J07	B10	G10
Data Bit 6	D10	M11	P09	J11	D11	J11
Data Bit 7	J03	M13	006	J03	B12	G12

See the diagram on CTL-I 533 for referenced test
 point.

Normal Operation
During normal operation of the Bus In Assembler while running microdiagnostic routine A1, the following
occurs:
The Data Bits P are all active ('FF') and Fmt
Erase*Reorient M and Write TR D are inactive.
The Data Bits are gated through the Assembler Bus whe
Assm Sel $X \mathbb{N}$ is active and Assm Sel $Y(0)$ is inactive
The Assm Bus Bits © feed through the Bus in card to
form Contr Bus In Bits NPL R. Note: If an error is detected while looping a test, the
The gate, Assm Sel X N, is activated by: microprogram ends the test and starts il over again
Read*Not Clk Gated (J)
Read*Not Clk Gated is activated by:
RW Op
Not Dld Tag
Dld Tag is held inactive by:
Not Selected Tag Gate G
RW Op is activated by:
Read Op 0E B
Not End Data Op
Not Error* Reset
Error*Reset is held inactive by:
Not Suppr Error Alert A
Not Reset RW Op 05 F
Not Reset RW Op 05 F
Reset $\operatorname{Rd} O p$ is held inactive by:
Rd G1
Not Bus Out Bit 2 C
Assm Sel Y O is not active because Status Bytes Op 04 is inactive

Analysis Procedure

If one data bit is missing, scope that line to find where it is missing. See Figure 1 on CTL-I 533 for pin locations. If more than one bit is missing, suspect a problem in the gating circuits:

Fmt Erase*Reorient
Assm Sel X
Assm Sel \mathbf{X}
Write TR
microprogram ends the test and starts it over again from the beginning. Any part of the signal appearing
after the error is detected, and before the test is after the error is detected, and before the test is restarted, is not valid.

Line Name	Card A2H2 Pin A	Card A2J2 Pin B
Contr Bus In Bit 0	G02	G02
Contr Bus \ln Bit 1	G05	G05
Contr Bus \ln Bit 2	D11	D11
Contr Bus \ln Bit 3	D13	D13
Contr Bus \ln Bit 4	D06	D06
Contr Bus \ln Bit 5	D10	D10
Contr Bus \ln Bit 6	D02	D02
Contr Bus \ln Bit 7	B05	B05

See the diagram on CTL-I 542 for referenced test points.
The microdiagnostic issues Tag ' 84 ' which gates the Device Bus In bits (C to the storage control. All bits should be 0 .
If bit 4 or 6 is on, Device Select Hold A may be active This causes the erroneous selection of a drive.
If a drive is selected when Tag ' 84 ' is issued, bit 4 (On
Line) or bit 6 (Busy) is active.

See OPER 20 for theory.

Figure 1. Connector Pin Locations

Line Name	Conn A2V5 Pin	Conn A1V3 Pin	Conn A2V4 Pins C	Conn A1V2 Pins D
+Device Sel Hold NPL	D09	D09	-	-
+Device Bus In Bit 0 NPL			B 02	B 02
+Device Bus In Bit 1 NPL			B 04	B 04
+Device Bus In Bit 2 NPL			B 05	B 05
+Device Bus In Bit 3 NPL			B 06	B 06
+Device Bus In Bit 4 NPL			B 08	B 08
+Device Bus In Bit 5 NPL			B 09	B 09
+Device Bus In Bit 6 NPL			B 10	B 10
+Device Bus In Bit 7 NPL			B 12	B 12
+Device Bus In Bit P NPL			B 13	B 13

© Copyright IBM Corporation 197
\square

$\mathrm{C}_{\mathrm{E}} \mathrm{C}$ CONTROLLER CHECK AFTER RESET

The microdiagnostic issues Tag '94' to activate Tag Bus
Par Chk A. Tag Bus Par Chk then activates Controller Chk N. Tag Bus Par Chk is reset and the
microdiagnostic verifies that Controller Chk is also reset microdiagnostic verifies that Controller Chk is also reset.
If Controller Chk or one of the error latches A through N is still active at Tag ' 09 ' reset or Tag ' 84 ', an error ccurs.
See OPER 90 for additional theory.

A2L2
BDxx STATUS MON.

${ }_{B}^{\text {A2F2 }}$

 BAAxx IN BUS IN

1 Tag '94' = Invalid tag, sets Controller Chk.
2 Tag ${ }^{\circ} 09^{\prime}=$ Reset Controller Chk.
3 Tag '84’ = Verifies that Controller
Chk is reset.

The microdiagnostic issues Tag ' $O E^{\prime}$ ' to set Read Mode
Ctl C).
Tag ' 05 ' then activates Error Reset B , which resets
Read Mode Cll. If Error Reset is not working properly, Read Mode Ctl. If Error Reset is not working properly, Read Mode Ctl does not reset, which causes a 0 bit to be gated to storage control at Tag '04’ time.

See OPER 90 for additional theory.

$\begin{array}{\|l} \hline \text { Chart } \\ \text { Line } \\ \text { No. } \\ \hline \end{array}$	Line Name	ALD	Test Point		'0E'	'05'	'04'	Tags	
1	+Tag Gate NPL	BF130	A2G2 J11		Sync	1	2		
2	+Error * Reset	BH130	A202 S04	B					
3	+Reset RW Op 05	BH130	A202 D12	A					
4	-Read Mode CtI	BG150	A2P2 D03	C					

1 (Tag $05=$ Reset R/W
$\begin{aligned} & \text { Tag } 04= \text { If reset fails, Error Code } \\ & \text { A15C occurs. }\end{aligned}$

A15C occurs.

	BJ0552	2358548	${ }^{441300}$				
3350	Seq. of 2	Part No.	31 Mar 76	30 Jul 76			

At times, the storage control must determine the type of accomplished ittempting to communicate with it. This is accomplished with
' $0 A^{\prime}$, Bus ${ }^{\prime} 80$ ').
If the addressed device can be selected, the controller responds with bits 4 and 5 on Bus In.
The device does not have to be ready.
Gated Attn Sel gates bits 4 and 5 through the Select Bus and is generated by:
$\left.\begin{array}{l}\text { Decode Tag 0A } \\ \text { Bus Out Bit 0 } \\ \text { Selected } \\ \text { Any Attn Sel }\end{array}\right\}$ See ALD BF100.

Sel Bus Bit 4 activates Contr Bus In Bit 4 B and Bit 5 C If the addressed device cannot be selected, only the parity bit appears on Bus In.
See OPER 90 for additional theory.

1 Tag ' $\mathrm{OA}^{\prime}=$ Device type bit and 5 must be active.
\square
Copyright IBM Corporation 1996

34 Mar 76	$\begin{array}{l}\text { 441 303 } \\ \text { 30 Jul } 76\end{array}$

See the diagram on CTL-I 611 for referenced test points.

Tag Valid Missing - Error Code A258

The microdiagnostic verifies that Tag Valid is received for Tag ' 82 '. Addressing $82(H$ and Valid Tag Gate
(G) activates Coerce Tag Valid \mathbf{L}.

Tag Valid With Tag Bus Parity - Error Code A260
The microdiagnostic verifies that Coerce Tag Valid (L) is not received for certain drive tags when Tag Bus Parity is bad. Tag '09', Bus '21' inverts the tag bus parity bit to cause a Tag Bus Parity Error A in the drive. The Tag
Bus Parity error prevents File Tag Valid NPL (D) and Bus Parity error pre
The following conditions occur for ail drive Tags 8A through 8 F during this microdiagnostic test
Coerce Tag Valid is inactive
Dlyd Tag Response is inactive Dlyd Tag Response is inact Allow Drive Tag Valid is active
Tag Response is inactive F. Tag Bus Parity Error is a NPL Tag Gate is active.

See OPER 95 for a description of the sequence of tag operations and Tag Valid.

TAG VALID FAILURE

ag valid failure CTL-I 611
Circuit Description
Tag Valid is activated by Coerce Tag Valid (L)
Coerce Tag Valid is activated by the following
conditions.

- Allow Drive Tag Valid
+Addressing 82 H
-Valid Tag Gate G
- Dlyd Tag Response
Allow Drive Tag Valid is activated by Tag Bit 0 and Not Tag 84.
Valid Tag Gate is activated by
Not Bus Out Parity Chk
Not Tag Bus Parity Chk
Tag Gate
Dlyd Tag Response is activated by Tag Response (\mathbf{F}, which is activated by File Tag Valid NPL (D)
File Tag Valid in the drive is generated by Enable Functions (C)

See OPER 90 for additional theory.

$\mathrm{Ce}_{\mathrm{L}} \mathrm{C}$

TAG VALID MISSING

Set RW Op 85 B and Selected Tag Gate (C) allow the set of Device Tag Gate (D. Tag Gate and no errors activates Tag Gate Valid. Tag Gate Valid activates Enable Functions and allows File Tag Valid to be returned to the controller.
The microdiagnostic issues Tag ' 85 ' and then tests for Interface Checks during Tag ' 84 '. The microdiagnostic again issues Tag ' 85 ' and checks for Tag Valid active.

See OPER 90 for additional theory.

The Unsuppressible Attention bits are used by the storage control to selectively poll for Device Attentions. The Unsuppressible Attention bits are set and reset individually by Tag ' 01 '
These bits are only effective when a Tag '82' (Poll Device) is issued with Bus Out bit 3 on. Then, Attention bits that have their respective Unsuppressible Attention bits active, are transmitted to the controller

For example:
If device 5 has an Attention bit active and an Unsuppressible Attention bit 5 not active, there is no response to a Poll Unsuppressible operation. However, if Unsuppressible Attention bit 5 is active, an Attention Bi 5 is returned to the controller in response to the Poll Unsuppressible Operation.

See OPER 104 for additional theory

$\underset{B F \times x \times}{ }$

Cricccce

Each operation, whether an immediate or extended operation, must be terminated with a Normal End or a Check End.
For immediate operations, Normal End occurs simultaneously with Tag Valid.

For extended operations (Read, Write, ECC Control and Set Read/Write), Normal End and Tag Valid are returned at different times.

If Normal End or Check End is not received at the proper time, an error is posted.
For additional information on tag sequencing, see OPER 95.

$\begin{array}{\|l} \hline \text { Chart } \\ \text { Line } \\ \text { No. } \end{array}$	Line Name	ALD	Test Point		
1	-Set RW Op 85	BD150	A2L2 M08		
2	+Normal End NPL	BE160	A2K2 D11	(0)	
3.	-Op End	BG170	A2P2 P04	M	
4	-End Data Op	BG170	A2P2 D10	P	
5	-Selected Tag Gate	BF110	A2G2 G07	F	
6	-Read*Not Clk Gated	BG170	A2P2 D02	(L)	Inactive
7	+PLO End Op	BG170	A2P2 D04	(H)	
8	+Reset End Cond	BG170	A2P2 810	E	
9	-VFO Good	BH160	A202 S13	D	
10	-CT 15	BH150	A202 402	N	,
11	+Add 128	BG140	A2P2 M12	(J)	Inactive
12	+Reset Gap Ctr	BG140	A2P2 P07	(k)	
13	-AM Area	BH160	A202 SO^{2}	A	Inactive
14	-Rd Wrt Latch	BH130	A202 S03	C	
15	-Bit Ring 1 Pwr	BH130	A202 412	B	High Frequency Pulses
16	+Reset RW Op 05	BD150	A2L2 813	(G)	

- Copyright IBM Corporation 1976

\rightleftarrows Inactive

> Active level

$$
\begin{array}{|l}
\text { Sco } \\
\hline \begin{array}{l}
\text { Swe } \\
\text { Trig! } \\
\hline
\end{array} \\
\hline
\end{array}
$$

NORMAL END MISSING ON SET R/W

Normal End is set by:
Op End active (M) and not Chk Cond. Op End is set by

End Data Op \boldsymbol{P} active while Selected Tag Gate
(F) and Read * Not Clk Gated $(\mathbf{L}$ are inactive.

End Data Op is set by:
PLO End Op \boldsymbol{H} active and not Reset End Cond \boldsymbol{E}.
PLO End Op is set by VFO Good (D) and not Reset End Cond (E)
VFO Good is set by:
Rd Wrt Bit 1 and CT 15 N
CT 15 is set by:
Add 128 and Reset Gap Ctr \mathbf{K} both inactive. AM Area A active causes Reset Gap Ctr to be active Rd Wrt Bit 1 is set by:

Rd Wrt Latch (C) and Bit Ring 1 Pwr B
Rd Wrt Latch is set by
Reset RW Op 05 (G) is inactive.
See OPER 95 for additional theory.

The End Response signal is sent from storage control to the controller after Normal End or Check End is received

Failure to receive End Response is recognized when one or more of the end latches fail to reset.
See OPER 95 for the sequence of the end conditions.

\section*{3350} | $\begin{array}{l}\text { BJ0642 } \\ \text { Seq. 2of } 2\end{array}$ | $\begin{array}{l}\text { 2358554 } \\ \text { Part No. }\end{array}$ |
| :--- | :--- | | 441300 | |
| :---: | :--- |
| 31 Mar 76 | $\begin{array}{l}441303 \\ \text { 30 Jul } 76\end{array}$ |

Copyright IBM Corporation 1976

END RESPONSE FAILURE

See the diagram on CTL-I 650 for referenced test points.

C

NORMAL OR CHECK END MISSING

NORMAL OR CHECK END MISSING

Each operation, whether an Immediate or Extended peration, must be terminated with a Normal End or a Check End.

Immediate Operations

For Immediate operations, Normal End occurs simultaneously with Tag Valid.

Extended Operations

For Extended operations (Read, Write, ECC Control and Set Read/Write), Normal End and Tag Valid are returned at different times.

If Normal End or Check End is not received at the proper time, an error is posted
End Data \mathbf{G} and Not Rst Run ECC TP \mathbf{F} causes an Op End \boldsymbol{E}. Op End activates Normal End NPL (K) or Check End NPL
The Recycle Tag A in conjunction with the counter in Modulo-16 Mode, determines when End Data (G) becomes active.
See DATA 100 for a description of a Recycle Line Failure.
Run Modulo is active for Extended operations. If Modulo does not run, Op End \mathbf{E} never becomes active. Modulo is activated by Cntl 1 on a Write operation Cntl 1 is activated by Sync In D. Sync In is activated by Gated Write Mode. Gated Write Mode is activated by Not End Data \mathbf{G} and Write Mode \boldsymbol{H}.
Write Mode is activated by Not Extend G1 (C) and Fmt G1 (D)
For additional information on tag sequencing, see OPER 95.

Command Overrun (C) is generated when one of the ollowing occurs:

- Oriented A becomes active. This indicates that orientation has occurred during a non-oriented Read or Write command. Orientation normally occurs only during a Read Format G1 command or during a Search Address Mark command
- R/W Op Dlyd B becomes active within 63 bytes after Index Range activates.
Command Overrun sets Assm Bus Bit 0 (E) and Chk Cond (D.
Assm Bus Bit 0 sets Bus In Bit 0 G
Chk Cond sets Check End NPL
See OPER 240 for additional theory.

3350
Copurbu IBM Corporation 1976

COMMAND OVERRUN

\square

A false Error Alert is an indication of an Error Alert condition that is not further defined by Controller Error or 2 sense in Check) for bit

An undefined Error Alert is also used to indicate that Diagnostic Suppress Write Gate is active when not in
Diagnostic Mode.

\square

ALWAYS ACTIVE LINES (With String Switch)

STRING SWITCH OVERVIEW

string switch overview CTL-I 808

Circuit Description

Error Alert is caused by one of two conditions

1. Controller Chk (A)
2. Read/Write Check from the device (bit 3) (G) Controller Check can be caused by intermittent bits from storage control on Bus Out (D) or Tag Bus (E) Read/Write Check (Device Bus In Bit 3 NPL) causes an Error Alert when Rd Wrt Latch and Dld Tag Response (H) are both active. See A2F2 Logic Diagram (inset)

Analysis Procedure

To determine which condition is causing the Error Alert: Controller Check - Loop microdiagnostic routine A1, tes 4. See CTL-I 410 and 412 for scoping procedure and diagrams.

Read/Write Check - Loop microdiagnostic routine B8 test D. See CTL-I 640 and 642 for scoping procedure and diagrams.
If string switch is installed, Bus Out (D) and Tag Bus come from A2D2 for Interface A and A2E2 for Interface $\stackrel{\text { Bee CTL-I }}{ } 808$ for string switch overview.

Additional Service Hint

1. Check the -4 V and +6 V for a stable and proper level. See PWR 90, Entry B for procedure.
Note: Adjusting the -4 V or +6 V regulators out-of-spec can cause an intermittent failure to become less intermittent.
2. Verify that cards and connectors are properly seated.
3. Check to see if an Engineering Change has been recently installed.

See OPER 241 for additional theory
\square
${ }_{B D \times x \times}^{\text {A2L2 }}$

${ }_{\text {A2F }}^{\text {A2 }}$

Circuit Description

See the diagram on CTL-I 812 for referenced test points.
Each Read (Tag ' 0 ' '), Write (Tag '0F'), ECC Correct (Tag '08') and Set Read/Write (Tag '85') operation must terminate with a Normal End or Check End response.
Fault Symptom Code 9002 indicates Normal End was not received for:

SET R/W OP ' 85 '
Normal End (M) turns on when Op End (L) is active and no check conditions are detected.
As shown in the logic diagram for A2P2

- Op End normally turns on when End Data Op is received.
- Selected Tag Gate and Read* Not Clk Gated are inactive (+MST-1) before End Data Op is received.
- When a Set RW Op ' 85 ' is complete, End Data Op is activated by PLO End Op and Bit Ring 6 Pwr
As shown in the logic diagram for A2Q2
- When Set RW (Tag ' 85 ') is first issued, Reset End Cond is active (+MST-1) because Rd Wrt Latch is inactive (+MST-1).
- VFO Good is also inactive (+MST-1), therefore PLO End Op is inactive (-MST-1).
- Tag 85 now activates Rd Wrt Latch.
- Rd Wrt Latch activates VFO Good (-MST-1) and causes Reset End Cond to go to -MST-1.
- An inactive Reset End Cond keeps Resp Rd * Wr Latch inactive
- VFO Good and Resp Rd * Wr Latch, both at -MST-1, activates PLO End Op.
When the storage control receives Normal End, it sends back End Response A. End Response activates Reset End Cond (E.
- Reset End Cond activates Resp Rd * Wr Latch. This causes PLO End Op to return to -MST-1.
READ OR WRITE OP
When a Read Op ' 0 E ' or a Write Op ' 0 F ' is complete End Data Op © is activated by End Data, Rst Run
ECC TP, and ECC Set.

	BJ0809	2358560
3350	Seq. 2 of 2	Part No.

nalysis Procedur

etermine which of the following lines is causing Op End to fail

-End Data Op @ -Selected Tag Gate D -Read $*$ Not Clk Gated

If End Data Op is the problem, determine whether the Set RW Op '85', the Read or Write Op path is the cause. Looping the microdiagnostic may help to
determine the failing path.
Set RW Op ' 85 ' - Loop routine B8, test D. See CTL-I 640 for scoping procedure
Write Op ' 0 F' - Loop routine AD, test 1 . See CTL60 for scoping procedure.

Read Op ' 0 E' - Loop routine AF, test 1 . See CTL660 for scoping procedure

Additional Service Hints

1. Check the -4 V and +6 V for a stable and proper level. See PWR 90, Entry B for procedure
Note: Adjusting the $-4 V$ or $+6 V$ regulator
ut-of-spec can cause an intermittent failure to become less intermittent.
2. Verify that cards and connectors are properly seated.
3. Check to see if an Engineering Change has been recently installed.

NORMAL END MISSING

\square

Circuit Description

When a controller is selected by Tag ' 03 ' or ' 83 ', it responds with the controller address on Bus In.
Sense Byte 13 contains the address of the controller desired
Sense Byte 14 contains the address and compliment returned by the selected controller.

Analysis Procedure

1. Check Sense Byte 13 for the correct value:

Controller Selected	Value in Sense Byte 13
0	07
1	26
2	45
3	64

2. Check Sense Byte 14 for returned address.

If one bit has been dropped, scope the Contr Bus In bit by looping microdiagnostic routine A1, test 2

See CTL-I 250, Entry B (basic 3350) or CTL-I 254, Entry B (string switch installed) for scoping procedure.

If value is 00 , suspect the following lines

Tag Bits A
Tag Valid NPL
If value is ' 80 ', suspect Contrlr Poll Op 02
Additional Service Hints

1. Check the -4 V and +6 V for a stable and proper Check the -4 V and +6 V for a stable and
level. See PWR 90, Entry B for procedure. Note: Adjusting the -4 V or +6 V regulators out-of-spec can cause an intermittent failure to become less intermittent.
2. Verify that cards and connectors are properly seated.
3. Check to see if an Engineering Change has been recently installed.
See OPER 110 for additional theory.

$\mathrm{C}_{\mathrm{E}} \mathrm{C} C \mathrm{C} \mathrm{C}$

ALWAYS ACTIVE LINES (Fault Symptom Code 9007)

Circuit Description

Prior to selection, the control lines are tested for their zero state. If any one or more is not zero, an error is indicated
End Data Op C
Op End turns on Normal End (one of the control lines)
Freeze Correct $\mathrm{Op} \boldsymbol{A}$ or TR Index \boldsymbol{B} activates Index
Alert \mathbf{E} and Err Alert NPL \mathbf{G}.
Analysis Procedure
Two microdiagnostic tests may be looped to help determine the cause of failure.

Loop routine A1, test 1. See CTL-I 202 (basic 3350) o CTL-806 (string switch installed) for scoping procedure and sequence diagram.

This test exercises the control lines \mathbf{F} and Err Alert
NPL (
Also loop routine A1, test 2.

Additional Service Hints

1. Check the -4 V and +6 V for a stable and proper level. See PWR 90, Entry B for procedure.
Note: Adjusting the $-4 V$ or $+6 V$ regulators ut-of-spec can cause an intermittent failure to become less intermittent.
2. Verify that cards and connectors are properly seated.
3. Check to see if an Engineering Change has been recently installed.

See OPER 241 for additional theory

Circuit Description

On operations where the Data Bits B or the Cntrl Bus In Bits (E) must maintain good parity, the input to the Bus In drivers is checked for proper parity. If parity is bad, the Contr Bus In Par Chk Latch \boldsymbol{F} is set.

Analysis Procedure

Data Bits - Loop microdiagnostic routine A1, test 5 . Refer to CTL-I 534 (basic 3350) or CTL-I 536 (strin switch installed) for scoping procedure and sequence diagrams.
This routine checks for all data bits on.
Also loop microdiagnostic routine AD, test 7 for a check of all data bits off
Note: Write Mode A must be operating correctly
for Data Bits to be good. for Data Bits to be good.
Sel Bus Bits - Loop microdiagnostic routine A2, test 4 This routine checks for Sel Bus Bits off.

Additional Service Hints

1. Check the -4 V and +6 V for a stable and proper level. See PWR 90, Entry B for procedure.
Note: Adjusting the -4 V or +6 V regulators out-of-spec can cause an intermittent failure to become less intermittent.
2. Verify that cards and connectors are properly seated.
3. Check to see if an Engineering Change has been recently installed.

See OPER 241 for additional theory.
\square

3350 \begin{tabular}{c|c|c|}
\hline BJ0825 \& \(\begin{array}{l}Beq.

Seq. 2 o f 2\end{array}\) \& | Part No. |
| :--- |

\hline
\end{tabular}

© Copyright IBM Corporation 1976

Figure 1. Controller Errors

Sense Byte 20	Possible Causes	Error Description	Logic Lines related to error.	$\begin{aligned} & \text { MAP } \\ & \text { Exit } \end{aligned}$	Additional Action
Bit $3=1$	$\left.\begin{array}{ll}\text { A2P2 } & \text { A2O2 } \\ \text { A2G2* } & \text { A2S2 } \\ \text { A2K2 } & \text { A2C5 (Conn) } \\ \text { A2D2 }^{*} & \\ \left.\begin{array}{ll}\text { A2A5 (Conn) }\end{array}\right\} & \text { SWFE A } \\ \text { A2E2* } \\ \text { A2B5 (Conn) }\end{array}\right\}$ SWFE B	Unexpected end during data response.	Recycle Tag NPL Reset End Cond PLO End Op	DATA 100 CTL-I 282	Some latch is failing to reset. See ALD BF160.
Bit $2=1$	A2F2 A2C3 (Conn) A2H2 A2D2* A2A3 (Conn) $\left.\begin{array}{l}\text { A2J2 } \\ \text { A2J2* } \\ \text { A2E2* } \\ \text { A2B3 (Conn) }\end{array}\right\}$ SWFE A SWFE B	Buffer Bus In Parity check. Storage control detected a Bus In Parity check from the controller.	Contr Bus In Bit P	CTL-I 520	
Bit $1=1$	 $\left.\begin{array}{l}\text { A2K2 } \\ \text { A2C2 (Conn) } \\ \text { A2G2* } \\ \text { A2C5 (Conn) } \\ \text { A2D2* } \\ \text { A2M2 } \\ \text { A2A2 (Conn) }\end{array}\right\}$ SwFE A $\left.\begin{array}{l}\text { A2A5 (Conn) } \\ \text { A2E2* } \\ \text { A2M2 } \\ \text { A2B2 (Conn) } \\ \text { A2B5 (Conn) }\end{array}\right\}$ SWFE B	Select Active without Select Hold.	Select Active NPL	CTL-I 260	
Bit $6=1$	A2P2 $\left.\begin{array}{l}\text { A2G2* } \\ \text { A2C5 (Conn) } \\ \text { A2D2* } \\ \text { A2A5 (Conn) }\end{array}\right\}$ SWFE A $\left.\begin{array}{ll}\text { A2E2* } \\ \text { A2B5 (Conn) }\end{array}\right\}$ SWFE B	Control Interface Transfer check.	Recycle	CTL-I 660	Loop microdiagnostic routine $A D$, test 1 .

*When replacing A2G2, A2D2, or A2E2, check the addressing jumpers.
See INST 6.

A Controller Check has been detected, but is not furthe defined. Sense Bytes 17 and 20 normally define the Error Latch that caused the Controller Check.

Circuit Description
SENSE BYTE 20 IS NOT ' 00 '
This error is due to incorrect gating through the Chec Reg or Assm Reg G. Each Error Latch is gated
through the Check Reg by: through the Check Reg by:
-Gate Controller Err 1 (See ALD BE120) -Gate Controller Err 2 (See ALD BE120)
 Correct Op (F is active.
The check bit is gated through the Assm Reg by -Assm Sel Y inactive (D)
-Assm Sel X inactive.
SENSE BYTE 17 IS ' 00 ' and SENSE BYTE 20 IS ' 00 ' This error is caused by TR Check or VFO Detected Error.
TR Check \boldsymbol{A} activates TR*Reorient Ck B and causes
a Controller Check \mathbf{G}. a Controller Check (G). VFO Detected Error causes a Controller Check (G)

See OPER 241 for additional theory.

$\begin{aligned} & \text { Error } \\ & \text { Code } \end{aligned}$	Error Description	Suspected Logic Lines	Possible Causes				Comments	MICFL Reference
			Interface A		Interface B			
			ALD	Card	ALD	Card		
$\begin{aligned} & \text { B615 } \\ & \text { B616 } \\ & \text { B617 } \end{aligned}$	Failed to receive Index Alert with a short connection.	-Set Long Con Ltch -Sel Ltch -Selecting	$\begin{aligned} & \text { BM140 } \\ & \text { BR120 } \\ & \text { BR120 } \end{aligned}$	$\begin{aligned} & \text { A2D2 J13 } \\ & \text { A2M2 D12 } \\ & \text { A2M2 P10 } \end{aligned}$	$\begin{aligned} & \text { BN140 } \\ & \text { BR120 } \\ & \text { BR120 } \end{aligned}$	$\begin{aligned} & \text { A2E2 J13 } \\ & \text { A2M2 B10 } \\ & \text { A2M2 P06 } \end{aligned}$	Set Long Con Ltch sets long connection. If long connection is set, Index Alert is not returned. -Sel Ltch, +Selecting, and Short Con Latch TP activate-Wait. -Wait and -Normal End Switch activate -Wait. Alert.	
$\begin{aligned} & \text { B619 } \\ & \text { B61A } \\ & \text { B61B } \end{aligned}$	Index Alert fails to turn off.	-Set Long Con Ltch -Sel Ltch -Selecting	$\begin{aligned} & \hline \text { BM140 } \\ & \text { BR120 } \\ & \text { BR120 } \end{aligned}$	$\begin{aligned} & \hline \text { A2D2 J13 } \\ & \text { A2M2 D12 } \\ & \text { A2M2 P10 } \end{aligned}$	$\begin{aligned} & \hline \text { BN140 } \\ & \text { BR120 } \\ & \text { BR120 } \end{aligned}$	$\begin{aligned} & \text { A2E2 J13 } \\ & \text { A2M2 B10 } \\ & \text { A2M2 P06 } \end{aligned}$	Set Long Con Ltch sets long connection. If long connection is set, Index Alert is not returned. -Sel Ltch, +Selecting, and Short Con Latch TP activate - Wait. -Wait and -Normal End Switch activate -Index Alert.	
$\begin{aligned} & \hline \text { B61D } \\ & \text { B61E } \\ & \text { B61F } \end{aligned}$	Unable to select the Service Drive.	$\begin{aligned} & \text {-Sel Ltch } \\ & \text {-Allow Sel Set } \end{aligned}$	$\begin{aligned} & \hline \text { BR110 } \\ & \text { BR100 } \end{aligned}$	$\begin{aligned} & \text { A2M2 B10 } \\ & \text { A2M2 J13 } \end{aligned}$	$\begin{aligned} & \hline \text { BR110 } \\ & \text { BR100 } \end{aligned}$	$\begin{aligned} & \text { A2M2 D12 } \\ & \text { A2M2 G11 } \end{aligned}$	-Sel Ltch activates -Allow Sel Set. -Allow. Sel Set is necessary to set the Select Latch.	
$\begin{aligned} & \hline 8621 \\ & \text { B622 } \\ & \text { B623 } \\ & \hline \end{aligned}$	Failed to receive Tag Valid or Normal End for Tag '07'.	+Tag '07'	BM150	A2D2 J10	BN150	A2E2 J10	Tag '07’ inactive causes a Check 1 -of- 6 which prevents Tag Valid.	MICFL 520
$\begin{aligned} & \hline \text { B625 } \\ & \text { B626 } \\ & 8627 \end{aligned}$	Failed to detect Select Active during partial select.	-Allow Par Sel Set -Set Long Con Ltch	$\begin{aligned} & \text { BR100 } \\ & \text { BM140 } \end{aligned}$	$\begin{aligned} & \text { A2M2 P09 } \\ & \text { A2D2 J13 } \end{aligned}$	$\begin{aligned} & \text { BR100 } \\ & \text { BN140 } \end{aligned}$	$\begin{aligned} & \text { A2M2 P05 } \\ & \text { A2E2 J13 } \end{aligned}$	-Allow Par Sel Set must be active to set the Partial Select Latch. The Partial Select Latch and Coerce Tag Valid activate Sel Active. Allow Par Sel Set is activated only if Long Connection is set on the opposite interface. Long Connection cannot set if -Set Long Con Ltch is inactive.	
$\begin{aligned} & \mathrm{B} 629 \\ & \mathrm{B62A} \\ & \mathrm{~B} 62 \mathrm{~B} \\ & \hline \end{aligned}$	Short Busy indicator remains active when Long Connection is set.	-Short Con Ltch TP	BR120	A2M2 M09	BR120	A2M2 M09	The set of the Long Con Ltch resets the Short Con Ltch. Short Connection activates Wait, which causes an Index Alert.	
$\begin{aligned} & \text { B62D } \\ & \text { B62E } \\ & \text { B62F } \end{aligned}$	Failed to detect a Partial Select with Long Connection set.	$\begin{aligned} & \text { +Non Selecting Valid Tag } \\ & \text {-Tag '01' } \\ & \text {-Busy } \end{aligned}$	$\begin{aligned} & \text { BM150 } \\ & \text { BM150 } \\ & \text { BR150 } \end{aligned}$	$\begin{aligned} & \text { A2D2 J10 } \\ & \text { A2D2 JO6 } \\ & \text { A2M2 P12 } \end{aligned}$	$\begin{aligned} & \hline \text { BN150 } \\ & \text { BN150 } \\ & \text { BR160 } \end{aligned}$	$\begin{aligned} & \text { A2E2 J10 } \\ & \text { A2E2 J06 } \\ & \text { A2M2 M03 } \end{aligned}$	Non Selecting Valid Tag and Partial Select Latch activate Gate BI. Gate BI gates the Bus In Bits. If Non Selecting Valid Tag is always active, the bits are not gated to Bus In. Tag '01' active causes a Check 1 -of- 6 , preventing a Normal End or Tag Valid. -Busy becomes BI bit 3, which should be active and indicates Partial Select.	
$\begin{aligned} & \hline \text { B6E1 } \\ & \text { B6E2 } \\ & \text { B6E3 } \end{aligned}$	The Enable/Disable switch disabled the interface with the Disable Interlock Latch still set.	-Enable Latch	BM170	A2D2 M09	BN170	A2E2 M09	The Enable Latch should remain set with the Enable/Disable switch set to Disable.	
$\begin{aligned} & \text { B6E5 } \\ & \text { B6E6 } \\ & \text { B6E7 } \end{aligned}$	The Enable Latch cannot be reset.	-Enable Latch	BM170	$\begin{aligned} & \text { A2D2 M09 } \\ & \text { A2H2 } \end{aligned}$	BN170	$\begin{aligned} & \text { A2E2 M09 } \\ & \text { A2J2 } \end{aligned}$	The Dislock Latch resets with Tag '07' Bus ' 10 ' and Sel Active if the Enable/Disable switch is set to Disable.	
$\begin{aligned} & \text { B6E9 } \\ & \text { B6EA } \end{aligned}$	The Enable Latch cannot be set again by turning the Enable/Disable switch to Enable.	-Enable Latch	BM170	A2D2 M09	BN170	A2E2 M09	The Enable Latch should become active with the Enable/Disable switch set to Enable.	
B6ED B6EE B6EF	Registers fail to reset with the interface disabled.	-Enable Latch	BM170	$\begin{aligned} & \text { A2D2 M09 } \\ & \text { AOH } \end{aligned}$	BN170	$\begin{aligned} & \text { A2E2 M09 } \\ & \text { A2J2 } \end{aligned}$	The Enable Pwr Lines are inactive with the Enable Latch inactive. All registers are reset by the inactive Enable Pwr Lines.	

$\mathrm{C}_{\mathrm{F}} \mathrm{C}$ C C C

STRING SWITCH BYPASS PROCEDURE

STRING SWITCH INSTALLED

Flat cables from inerface B are plugged to sockets A2B2, A2B3, A2B4, A2B5

- Flat cables from interface A are plugged to sockets A2A2, A2A3, A2A4, A2A5.
- Discrete-wire cable from CE Panel and Power Pane is plugged into socket A2V3.
- Feature cards are installed at:

$$
\begin{array}{ll}
\mathrm{A} 2 \mathrm{D} 2 & \mathrm{~A} 2 \mathrm{~J} 2 \\
\mathrm{~A} 2 \mathrm{E} 2 & \text { A2M }
\end{array}
$$

${ }^{\text {A2 } 2 \mathrm{H} 2}$

Controller A2 Board

PROCEDURE 1.

CONNECT INTERFACE B DIRECTLY TO CONTROLLER.

1. Turn both interface switches to Disable.
2. Remove power.
3. Move interface B flat cables from sockets in column B to sockets in column C
Interface A flat cables remain in column A.
Discrete-wire cable remains in A 2 V 3
4. Remove cards:

5. Plug A2G2 address compare jumper to active (see INST 6).
6. If C 2 Module is installed, perform Steps 1 through 5 on both controllers.

Controller A2 Board

PROCEDURE 2
CONNECT INTERFACE A DIRECTLY TO CONTROLLER

1. Turn both interface switches to Disable.
2. Remove power.
3. Remove interface B flat cables from sockets in column B and fold back out of the way
4. Move interface A flat cables from sockets in column A to sockets in column C. Discrete-wire cable remains in A2V3
5. Remove cards:

A2D2	A2J2	
A2E2	A2M2	(If C2 Module is installed, do not remove
A2H2		A2M2.)

Plug A2G2 address compare jumper to active (see INST 6).
7. If C 2 Module is installed, perform Steps 1 through 6 on both controllers.

Controller A2 Board

Device Interrupts originate from each drive or from string switch status cards A2H2 (Interface A) or A2J2 (Interface B). The interrupts coming from each drive are

- Attention
- Seek Complete
- Sector Compare

The resulting Device Attentions bypass the controller and are sent to the proper control interface by the string
switch.
The interrupts originating from the string switch status cards are identified by reading Switch Status (Tag '06')

- Device End (Primed interrupt for Busy)
- Pack Change

All interrupts pass through string switch and are removed from one interface for all devices assigned to the other interface.
See OPER 261 and 262 for a detailed description of the string switch feature.

\square

INTERFACE FAILURE (With String Switch)

Note 1: See routine B6 operating procedures on MICFL 520. Pass 1:

Master $=$ Interface A
Pass 2:
Master $=$ Interface B
Slave $=$ Interface A
Note 2: For isolation purposes, Interface A cards may be wapped with interface B B cards

A2H2 with A2J2 (see CTL-1 852)
Note 3: When replacing A2D2 or A2E2, check the addressing jumpers. See INST 6.

Error	Error Description	Suspected Logic Lines	Possible Causes				Comments	$\begin{gathered} \text { MICFL } \\ \text { Reference } \end{gathered}$
			Interface A		Interface B			
			ALD	Card	ALD	Card		
B609	Tag '06' Bus ' 00 ' is issued. Bus In Bit 3 should be on.	-Set Active	BM150	A2D2 107	BN150	A2E2 M07	Tag '06' is not being activated with -Sel Active.	
B631 B632 B633	Tag '06' Bus ' $8 \mathrm{x}^{\prime}$ is issued. But In Bit 0 should be off.	$\begin{aligned} & \text {-Bus Out Bit } 0 \\ & \text {-Bus Out Bit } 2 \end{aligned}$	$\begin{aligned} & \text { BP100 } \\ & \text { BP110 } \end{aligned}$	$\begin{aligned} & \text { A2H2 D07 } \\ & \text { A2H2 M04 } \end{aligned}$	$\begin{aligned} & \text { BQ } 100 \\ & \text { BQ110 } \end{aligned}$	$\begin{aligned} & \text { A2J2 D07 } \\ & \text { A2J2 M04 } \end{aligned}$	Dev End 0 can be activated by -Bus Out Bit 0. Dev End is activated by -Bus Out Bit 2.	
$\begin{aligned} & \text { B635 } \\ & \text { B636 } \\ & \text { B637 } \end{aligned}$	Tag ' 06 ', Bus ' $8 x^{\prime}$ ' is issued. Bus In Bit 1 should be off.	-Set PC Latch	BP110	A2H2 M02	B0110	A2J2 M02	-Set PC Latch sets the Pack Change Latches.	
B639 B63A B63B	Tag ' 06 ', Bus ' 8 x ' is issued. Bus In Bit 2 should be off.	-Dev Asgn Bit (For drive in CE Mode.) -Bus Out Bit 1 -Dev UR Asgd Bit (For drive in CE Mode.)	$\begin{aligned} & \text { BP140 } \\ & \text { BP110 } \\ & \text { BP210 } \end{aligned}$	$\begin{aligned} & \text { A2H2 } \\ & \text { A2H2 PO4 } \\ & \text { A2H2 } \end{aligned}$	$\begin{aligned} & \text { BQ140 } \\ & \text { BQ110 } \\ & \text { BQ210 } \end{aligned}$	$\begin{aligned} & \text { A2J2 } \\ & \text { A2J2 PO4 } \\ & \text { A2J2 } \end{aligned}$	Check the Dev Asgn Bit for the drive in CE Mode. Bus Out Bit 1 and Tag '06' activate - Asgnment.	
$\begin{aligned} & \text { B63D } \\ & \text { B63E } \\ & \text { B63F } \end{aligned}$	Failed to detect Tag Valid or Normal End with Tag '06'.	-Bus Out Bit 5 -Bus Out Bit 6 -But Out Bit 7	BP100	$\begin{aligned} & \text { A2H2 } \mathrm{J} 12 \\ & \text { A2H2 G13 } \\ & \text { A2H2 J13 } \end{aligned}$	BQ100	$\begin{aligned} & \text { A } 2 \mathrm{~J} 2 \mathrm{~J} 12 \\ & \text { A2J } \mathrm{G} 13 \\ & \text { A2 } 2 \mathrm{~J} 2 \mathrm{~J} 13 \end{aligned}$	Bits 5, 6, and 7 can cause a Dev Addr Miscompare. Dev Addr Miscompare activates +Tag '06' Error, preventing a Tag Valid or Normal End.	MICFL 520
$\begin{aligned} & \text { B641 } \\ & \text { B642 } \\ & \text { B643 } \end{aligned}$	Tag '06' is issued. Bus In Bit 3 should be on.	-Bus In Asm Bit 3	BP200	A2H2 B13	B0200	A2J2 B13	Bus In Asm Bit 3 is always active on a Tag '06'.	
$\begin{aligned} & \text { B645 } \\ & \text { B646 } \\ & \text { B647 } \end{aligned}$	Tag ' 06 ', Bus ${ }^{\prime} 00$ ' activates the Assignment Register.	+Tag 06 Error + Error A or B	$\begin{aligned} & \text { BP190 } \\ & \text { BR110 } \end{aligned}$	$\begin{aligned} & \text { A2H2 G07 } \\ & \text { A2M2 MO7 } \end{aligned}$	$\begin{aligned} & \text { BQ190 } \\ & \text { BR110 } \end{aligned}$	$\begin{aligned} & \text { A2J2 G07 } \\ & \text { A2M2 M08 } \end{aligned}$	Tag '06' Error or Error A/B prevents Tag Valid.	
$\begin{aligned} & \text { B64D } \\ & \text { B64E } \\ & \text { B64F } \end{aligned}$	Tag '06', Bus '40' resets the Assignment Register.	+Tag 06 Error + Error A or B	$\begin{aligned} & \text { BP190 } \\ & \text { BR1110 } \end{aligned}$	$\begin{aligned} & \text { A2H2 G07 } \\ & \text { A2M2 M07 } \end{aligned}$	$\begin{aligned} & \text { BQ190 } \\ & \text { BR110 } \end{aligned}$	$\begin{aligned} & \text { A2J2 G07 } \\ & \text { A2M2 M08 } \end{aligned}$	Tag '06' Error or Error A/B prevents Tag Valid.	
$\begin{aligned} & \text { B65D } \\ & \text { B65E } \\ & \text { B65F } \end{aligned}$	Failed to receive Tag Valid from a Tag '06' with partial selection.	+Nonselecting Valid Tag	BR150	A2M2 M10	BR160	A2M2 M13	+Nonselecting Tag Valid activates Tag Valid.	
$\begin{aligned} & \mathrm{B675} \\ & \mathrm{B676} \\ & \mathrm{B677} \end{aligned}$	See Error Code B645.							
$\begin{aligned} & \text { B679 } \\ & \text { B67A } \\ & \text { B67B } \end{aligned}$	The Primed Interrupt Register fails to turn on.	-Bus Out Bit 2	BP110	A2H2 M04	BQ110	A2J2 M04	Tag '06' and Bus Out Bit 2 activate Dev End. Dev End gates the Primed Interrupt Registers.	
B683	Primed Interrupt indication during a Poll.		BM140	A2D2 002	BN140	A2E2 S02	Tag '02' and any Attention can indicate an interrupt.	

3350 \begin{tabular}{|l|l|l|l|l|l|}

\hline | BJO870 |
| :--- |
| Seq 2 of 2 2 | \& | 2358567 |
| :--- |
| Part No. |

\hline
\end{tabular}

C C

$3350 \quad$| BJ0873
 Seq. 1 of 2 2 | 2358568
 Part No. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

© Copyright IBM Corporation 1976

Note 1: See routine B6 operating procedures on MICFL 520 Pass 1 Master $=$ Interface A Slave
Pass 2:
ass 2:
Master $=\operatorname{Interface} B$
Master $=$ Interface B
Slave $=$ interface A
Note 2: For isolation purposes, Interface A cards may be swapped with Interface B cards. Swap A2D2 with A2E2, and
A2H2 with A2J2 (see CTL-1 852)
Note 3: When replacing A2D2 or A2E2, check the addressing jumpers. See INST 6.

3350 | $\begin{array}{l}\text { BJ0873 } \\ \text { Seq. } 2 \text { of } 2\end{array}$ | $\begin{array}{c}\text { 2358568 } \\ \text { Part No. }\end{array}$ |
| :--- | :--- |

- Copyright IBM Corporation 1976
\square

Error Code	Error Description	Suspected Logic Lines	Possible Causes				Comments	MICFL Reference
			Interface A		Interface B			
			ALD	Card	ALD	Card		
B649 B64A B64B	One or more positions of the Assignment Register failed to come on.	-Dev Asgn Bits -Enable Latch -Bus Out Bit 1 -Dev UR Asgn Bits	$\begin{aligned} & \text { BP140 } \\ & \text { BP } 100 \\ & \text { BP10 } \\ & \text { BP210 } \end{aligned}$	$\begin{aligned} & \mathrm{A} 2 \mathrm{H} 2 \\ & \text { A2H2 Do9 } \\ & \text { A2H2 PO9 } \\ & \text { A2H2 } \end{aligned}$	BO140 BQ100 BQ110 BO210	$\begin{aligned} & \text { A2J2 } \\ & \text { A2J2 DO9 } \\ & \text { A2J2 P09 } \end{aligned}$	Check the Dev Asgn Bit Latch for proper operation. -Enable Latch becomes - Enable Pwr. -Enable Pwr allows the Dev Asgn Bit to become active. -Bus Out Bit 1 and Tag '06' activate -Asgnment. -Asgnment gates the decoder for the Dev Asgn Bits.	
$\begin{aligned} & \text { B651 } \\ & \text { B652 } \\ & \text { B653 } \end{aligned}$	One or more positions of the Assignment Register failed to reset.	-Dev Asgn Bits -Dev UR Asgn Bits	$\begin{aligned} & \text { BP140 } \\ & \text { BP210 } \end{aligned}$	$\begin{aligned} & \mathrm{A} 2 \mathrm{H} 2 \\ & \mathrm{~A} 2 \mathrm{H} 2 \end{aligned}$	$\begin{aligned} & \text { BQ140 } \\ & \text { BQ210 } \end{aligned}$	$\begin{aligned} & \mathrm{A} 2 \mathrm{~J} 2 \\ & \mathrm{~A} 2 \mathrm{~J} 2 \end{aligned}$	Check the Polarity Holds to verify that they are resetting.	MICFL 520
B655 B656 B657	Bus \ln Bit 4 is active with the Assignment Register reset.	+Adrsd Dev A Asgd B +Adrsd Dev B Asgd A	BP180	A2H2 U13	B0180	A2J2 U13	+Adrsd Dev Asgd active causes Bit 4 to become active.	
B661 B663	Bus In Bit 4 is not active with Device Assignment.	+Adrsd Dev A Asga B +Adrsd Dev B Asgd A -Dev Asgd Bits	$\begin{aligned} & \text { BP180 } \\ & \text { BP140 } \end{aligned}$	A2H2 U13 A2H2	$\begin{aligned} & \text { BQ180 } \\ & \text { BQ140 } \end{aligned}$	$\begin{aligned} & \text { A2J2 U13 } \\ & \text { A2J2 } \end{aligned}$	+Adrsd Dev Asgd active causes Bit 4 to become active.	
B67D B67E B67F	One or more positions of the Primed Interrupt Register failed to reset.	-Dev End Bits	BP120	A2H2	BQ120	A2J2	Check the Dev End Polarity Holds to be sure they reset.	
B6C9 B6CA B6CB	Received an Assignment To indication from registers that should be inactive.	-Dev Asgn Bits	BP140	A2H2	BQ140	A2J2	Check the Dev Asgn Polarity Holds to be sure they reset.	
B6CD B6CE B6CF	See Error Code B655.							
	.							

Note 1: See routine B6 operating procedures on MICFL 520 Pass 1: Master $=$ Interface A Pass 2: Master $=$ Interface B Slave $=$ Interface A
Note 2: For isolation purposes, Interface A cards may be swapped with Interface B cards.

A2H2 with A2J2 (see CTL-I 852)
Note 3: When replacing A2D2 or A2E2, check the addressing
iumpers. See INST 6 .

\#21

3350

© Copyright IBM Corporation 1976

$\mathrm{C}_{\mathrm{E}} \mathrm{C}$ C

Error Code	Error Description	Suspected Logic Lines	Possible Causes				Comments	MICFL Reference
			Interface A		Interface B			
			ALD	Card	ALD	Card		
$\begin{aligned} & \text { B659 } \\ & \text { B65A } \\ & \text { B65B } \end{aligned}$	Failed to receive a Partial Selection indication when trying to select a drive that is already assigned.	-Adrsd Dev A Asgd B -Adrsd Dev B Asgd A -Gate Adrsd Dev A Asgd 01 -Gate Adrsd Dev B Asgd 01 -Connect A -Connect B	BP180 BP180 BR140	A2H2 U13 A2H2 S12 A2M2 G09	BQ180 B0180 BR140	A2J2 U13 A2J2 S12 A2M2 G05	-Gate Adrsd Dev A/B Asgd 01 activates +Adrsd Dev Asgd if a Dev Asgn Bit is active. +Adrsd Dev Asgd and -Connect allow Partial Selection to become active.	MICFL 520
$\begin{aligned} & \text { B681 } \\ & \text { B682 } \end{aligned}$	An interrupt is received from a drive assigned to the other interface while Polling devices.	Dev Attn Bus Bits	BP160	A2H2	BQ160	A2J2	Check the Dev Attn Bus Latches to the sure they are resetting.	
B6A9 B6AA B6AB	Pack Change Register fails to reset.							
$\begin{aligned} & \text { B6AD } \\ & \text { B6AE } \\ & \text { B6AF } \end{aligned}$	Received an unexpected Pack Change Interrupt during a Poll.	-Pack Chg Bits	BP130	A2H2	BQ130	A2J2	Check the Pack Chg Bit Latches to be sure they are resetting.	
$\begin{aligned} & \text { B6C5 } \\ & \text { B6C6 } \\ & \text { B6C7 } \end{aligned}$	Received a Pack Change Interrupt from a register that should be off.							

Note 1: See routine BC operating procedures on MICRO 82 Pass 1:
Master $=$ Interface
Slave $=$ Interface B
Pass 2:
Master $=$ Interface B
Slave $=$ Interface A
Note 2: For isolation purposes, Interface A cards may be swapped with Interface B cards.

A2H2 with A2J2 (see CTL-1 852
Note 3: When replacing A2D2 or A2E2, check the addressing jumpers. See INST 6 .

350	BJ0882 Seq. 2 of 2	$\begin{aligned} & 2358570 \\ & \begin{array}{l} 2351 \text { No. } \end{array} \end{aligned}$	$\begin{aligned} & 441300 \\ & \text { 31 Mar } 76 \end{aligned}$	441303 30 Jul 76	$\begin{aligned} & \mathbf{4 4 1 3 0 5} \\ & 29 \text { Oct } 76 \end{aligned}$		

Copyright IBM Corporation 1976
000000000000000000000000000000000

$\mathrm{C}_{\mathrm{L}}^{\mathrm{F}}$
 C C C C CrCCOC C C C C C C C

INTERFACE FAILURE (With String Switch)

Note 1: See routine BC operating procedures on MICRO 82. Pass 1:

Master $=1$ interface A
Slave $=$ Interface B
Pass 2:
Mast
Slave $=$ Interface A
Note 2: For isolation purposes, Interface A cards may be swapped with Interface B cards.
Swap A2D2 with A2E2, and
A2H2 with A2J2 (see CTL-1 852).
Note 3: When replacing A2D2 or A2E2, check the addressing jumpers. See INST 6.

3350

$\begin{array}{l}\text { BJJ8888 } \\ \text { Seq. } 1 \text { of } 2\end{array}$	$\begin{array}{l}2358802 \\ \text { Part No }\end{array}$

Seq. 1 of 2	Part No.

${ }_{29}^{441305}$ \square

ALTERNATE PATH RECOVERY

This function uses an Unconditional Reserve (UR) command to break device allocation to the primary path, that has become inoperative, and establishes an alternate path within the system.

Unconditional Reserve

When a 3350 string with string switch feature is attached to a storage control that stops operating while an interface is selected or an Assignment Register position is set, no operation is possible from another storage control to the affected string or drive. To eliminate this condition, the Select latch and Assignment Register positions can be reset by the UR (Unconditional Reserve) command using a circuit similar to Figure 1. For example, the Select latch orerating Interface A may activate A Unlock B using '0perating. Bus ' 88 '. This forces -Sel Ltch B to a plus level breaking the latch back. Similarly, the Assignment Re breaking the latch back. Similarly, the Assignment Register
positions may be reset using the Dev UR Asgn A (or B) bits to break the Assignment Register latch back on the opposite interface. Once the interface Select latch and/or the Assignment Register positions have been reset, the string is reserved for the storage control through which the UR command was issued and normal operation may continue on the functional interface.
See CTL-I 852 for String Switch Overview diagram.

Device Assignment/Select Latch

3350 \square

$\begin{array}{l}\text { BJ08888 } \\ \text { Seq. } 2 \text { of } 2\end{array}$	$\begin{array}{l}2358802 \\ \text { Part No. }\end{array}$

| Seq. 2 of 2 | Part No. |
| :--- | :--- | :--- |

441305
29 Oct 76
29 Oct 76
Copyright IBM Corporation 1976

O_{F}

Error Code	Error Description	Suspected Logic Lines	Possible Causes				Comments	MICFL Reference
			Interface A		Interface B			
			ALD	Card	ALD	Card		
$\begin{aligned} & \mathrm{BC} 11 \\ & \mathrm{BC} 12 \\ & \mathrm{BC} 13 \end{aligned}$	Tag '06' Bus '08'; reset to the Assignment Register bit on the opposite interface failed.	Device UR Asgn Bits	BP210	A2H2	BQ210	A2J2	The operation attempts to reset the Assignment Register latch in the opposite interface by forcing the latch back to a plus level.	MICFL 770
$\begin{aligned} & \mathrm{BC} 15 \\ & \text { BC16 } \\ & \text { BC17 } \end{aligned}$	Tag '06' Bus ' 88 ' failed to reset the Select latch on the opposite interface.	A Unlock B B Unlock A	BP210	$\begin{aligned} & \text { A2H2 } 2 \\ & \text { A2D2 } \end{aligned}$	BQ210	$\begin{aligned} & \text { A2J2 } \\ & \text { A2E2 } \end{aligned}$	The operation attempts to reset the Tag Select latch on the opposite interface by forcing the latch back to a plus level.	
$\begin{aligned} & \mathrm{BC} 19 \\ & \mathrm{BC} 1 \mathrm{~A} \\ & \mathrm{BC} 1 \mathrm{~B} \end{aligned}$	Full selection failed in an attempt to force the string switch to neutral.	A Unlock B B Unlock A	BP210	$\begin{aligned} & \mathrm{A} 2 \mathrm{H} 2 \\ & \mathrm{~A} 2 \mathrm{D} 2 \end{aligned}$	B0210	$\begin{aligned} & \text { A2J2 } \\ & \text { A2E2 } \end{aligned}$	Select latch failed.	
BC1D BC1E BC1F	No Normal End on select tag.	--Selecting	BM150	A2D2	BN150	A2E2	This error is primarily intended to prevent a hang condition and is not an expected error for this, test.	
BC20	Failed to detect a Partial Select with long connection set.	+ Non Selecting Tag Valid -Tag '01' -Busy	$\begin{aligned} & \text { BM150 } \\ & \text { BM150 } \\ & \text { BR150 } \end{aligned}$	$\begin{aligned} & \text { A2D2 J10 } \\ & \text { A2D2 Jo6 } \\ & \text { A2M2 P10 } \end{aligned}$	$\begin{aligned} & \text { BN150 } \\ & \text { BN150 } \\ & \text { BR160 } \end{aligned}$	$\begin{aligned} & \text { A2E2 J10 } \\ & \text { A2E2 J06 } \\ & \text { A2M2 MO } \end{aligned}$	Non Selecting Tag Valid and Partial Select Latch active gate B1. Gate B1 gates the Bus In bits. If Non Selecting Tag Valid is always active, the bits are not gated to Bus In. Tag ‘01’ active causes a Check 1 of 6, preventing a Normal End or Tag Valid. -Busy becomes BI bit 3, which should be active, indicating Partial Select.	

This page contains aids for problem resolution where insufficient error information is available to follow the maintenance analysis procedure. It may also be used as an aid in analyzing intermittent errors.

VOLTAGE CHECKS
Check for unstable voltage ($\mathbf{~} 4 \mathrm{Vdc},+6 \mathrm{Vdc}$) on drive or controller board. Voltages can be monitored while looping a failing microdiagnostic or while machine is running online. See PWR 90 (controller) or PWR 290 (drive) for procedure and tolerances.

VISUAL CHECKS

Connectors

Check for bent or damaged pins, foreign objects between pins, and proper seating.

Back Panel Wiring

Check for a tight wire wrap cutting into a pin on the back panel. Check for a cracked land pattern on a board or card.

EC INSTALLATION

If an enginerring change has been recently installed
check the EC installation instructions and determine
where the change was made. Inspect the back panel for tight wire wraps.

REFERENCES

Microdiagnostic Routine A1 Summary

Test 1
Checks for always active lines between controller Checks for always a
See OPER 11 and 1341
Test 2

- Verifies that the controller can be selected (Tag '03').
See OPER 11 and 123035
- Resets controller circuits (Tag '09') and verifies that the following lines are active.
Tag Valid
$\left.\begin{array}{l}\text { Tag Valid } \\ \text { Normal End }\end{array}\right\}$ See OPER 11 and 13 Check End
Select Active See OPER 11 and 1335 Sync In See OPER 8 and $9 \quad 20$

Test 3

- Verifies the set and reset of the following latches:
$\left.\begin{array}{l}\text { Tag Bus Parity Check } \\ \text { Bus Out Parity Check }\end{array}\right\}$ See OPER 5 and 696
Bus Out Parity Check

Test 4
- Verifies that Tag Valid and Normal End are returned for all controller tags.
See OPER 11 and 1339
Test 5
- Checks the set and reset of controller Bus In Parity Check.
See OPER 11 and 1342
- Checks the Bus In Registers for proper operation.

See OPER 8,9,11, and 13182140

- Checks for always active bits on Device Bus In See OPER 11 and 1338
- Checks for proper operation of the reset lines.

CABLE CHECKING HINTS

The following items should be considered when checking cables.
Note: Interface cables must always be connected light (gray) to dark (black). Light to light or dark to dark is wrong (see INST 10).

POSSIBLE CAUSES

- Inspect contacts; they may be bent, broken, or pushed in.

Check these points

- Inspect for broken wires at crimps and around strain reliefs.
- Inspect SLT paddle cards for cold solder connections solder splashes, or open land patterns.
- Inspect flat cables at bends for wires breaking through insulation caused by straightening bent cables.

- Inspect wire for evidence of arcing or burning especially paddle cards that carry high current
- Inspect cables and wires for chafing at rough or sharp pivot points.
- Inspect for interference of strain relief hardware.
- Check that connectors are properly seated and/or mated.
- Where specific lines are suspected or indicated by analysis procedures, use a CE meter to check for Open Short to ground Short to adjacent signal line

POSSIBLE ACTION

1. Swap both ends of identical cables (check \mathbf{P} / Ns) for isolation (for example, control interface cables or device interface cables)
2. Use card extenders to swap wires within a cable for isolation or a temporary fix.

Continuity Checks for Long Cables

1. Connect a CE meter to two pins in the connector
2. Verify that you have an open circuit.
3. Short the corresponding pins in the other end of the cable.
4. Verify that you now have a short circuit.

[^0]: 29. Tag Bus Bits Decoder (Card A2G2)
 30. Controller Address Compare (Card
 31. Controller Address Compare (Card A2G2)
 32. Poll Addr Bit Decoder (Card A2G2)
 33. Attn/Sel Bus NPL to MST Convertor (Card A2G2)
 34. Read/Write Control (Card A2L2)
 35. Select Control (Card A2G2)
 36. Operation Control (Card A2L2)
 37. Poll/Select Reg and Control (Card A2G2)
 38. Dev Bus In NPL to MST Convertor (Card A2F2)
 39. Tags In Generator (Card A2K2)
 40. Ctl Bus In Reg and Control (Card A2E2)
 41. Tags In MST to NPL Convertor (Card A2K2) 43. Dev Bus In and CtI Bus In Parity Check (Card A2F2) 43. Dev Bus In and CtI Bus In Parity Check (Card A2F2
 42. Attn/Sel Bus (1-of-8) Check (Card A2G2)
[^1]: 3350

[^2]: - Coopright IBM Corporation 1976

[^3]: 1976

[^4]: 3350 | BJ0116 |
 | :--- | :--- |
 | Sea. 2 of 2 | \(\begin{aligned} \& \mathbf{2 3 5 8 5 2 1}

 \& Part No.\end{aligned}\)
 © Copyrigh IBM Corporation 1976

