PROGRAMMING AND CODING THE IBM 709-7090-7094 COMPUTERS

' PROGRAMMING

AND CODING

THE IBM 709-7090-7094
COMPUTERS

PHILIP M. SHERMAN

BELL TELEPHONE LABORATORIES
MURRAY HILL, NEW JERSEY

JOHN WILEY AND SONS, INC.

NEW YORK, LONDON AND SYDNEY

Copyright © 1963 by John Wiley & Sons, Inc.

All Rights Reserved

This book or any part thereof

must not be reproduced in any form

without the written permission of the publisher

Printed in the United States of America

PREFACE

The purpose of thls booklet is to explain the differ-
ences that exlst between the hypothetical DELTA 63 (in
PROGRAMMING AND CODING DIGITAL COMPUTERS) and the
IBM 709-7090-7094 digital computers. It 1s deemed impor-~
tant that the reader "go on" a computer early in his
studles. This booklet, used in conjunction with the book,
attempts to permit him to do Just that.

The book itself 1is self-contailned; it stands by
1tself and makes no references to this booklet. The
booklet, however, is tied intimately to the book. There
are many references to the latter, indicated by the speci-
fic mention of pages.

The plan for the Joint use of book and booklet 1is as
follows. The reader follows the book with reference to
the workplan of this booklet (placed at the start of this
booklet). The workplan indicates when material here 1s to
supplement, modify, or replace material in the book. The
reader then makes appropriate references as noted.
Material here follows the plan of the book and is placed
in proper sequence. In general, the book material in
small type, which 1s of a specific nature (specific to the
DELTA 53;, 1ls supplemented, modified or replaced.

The effect of thls Joint usage is to yield a textbook
that 1s of general structure, illustrated by codlng for
the IBM 709-7090~T094 computers. Characteristics of these
computers, thelr repertolres of instructions, and examples
of their coding appear in this booklet. A number of
additional examples are included to reflect the speclal
features and instructions of the IBM 709-7090-7094 computers,

Computer manuals, published by IBM on the three
computers, should also be used.

~Part I of the book 1is general in 1ts approach and so
needs no modification here. Parts IT and IIT, however, are
largely specific and so are well represented in this
booklet,

An index to the 7090 instructions appearing 1n this
booklet follows the regular index.

Philip M. Sherman

O 0 N O WU

10
11
12
13
14
15
16
17
18

19

TABLE OF CONTENTS

Workplan

Basic Operations
Symbolic Coding
Program Loops

Index Registers
Sequencing in Memory
Subroutines
Input-Output Operations
Program Planning
Numerical Problems
Algebraic Languages
Nonnumerical Problems
Data Processing

Macro-instructions

Interpreters and Simulation

Program Debugging and Testing

Index

Index to 1Instructions

vil

ix

14
18
28
45
51
61
64
72

75
90
97
122
126

133
136

WORKPLAN

This workplan 1ndicates where the material in the
booklet 1s to be used to supplement, modify, or replace
the corresponding material in the book, PROGRAMMING AND
CODING DIGITAL COMPUTERS. (S, M, and R indicate supple-
ment, modify, and replace. These characters appear at
each section within the booklet.)

‘Pages Material
CHAPTER 5 -
R 84.4 - 85.5 General structure of 7090
R 85.8 - 86.3 Addition and subtractlon: instructions
R 86.7 - 87.2 Example 5.1 '
R 87.4 - 87.8 Example 5.2
S At 87.10 Comments on overflow
R 88.4 - 89.1 Mult. and division: instructions
R 89.5 - 91.1 Examples 5.3,5.4,5.5 |
R 92.1 - 92.6 Example 5.6
R 93.3 - 03.6 Transfer instructions
M 93.6 - 94,4 Comments on transfers
R 94.5 - 97.10 Examples 5.7,5.8,5.9
CHAPTER 6
R 102.7 - 103.1 Example 6.1
S At 104.4 What FAP 1s
R 106.8 - 107.1 1Instructlon format
M 107.4 - 109.7 Pseudo-operations
S At 109.10 Qualifiers
R 110.2 - 110.6 Example 6.2
R 111.5 - 112.1 Example 6.3

ix

Chapter 5
BASIC OPERATIONS

GENERAL STRUCTURE OF 709/7090/7094 COMPUTERS

The three computers are very similar, having the same
memory capaclty and essentially the same special registers
and instructions. The 709 is slower than the 7090 by a
factor of approximately 5; the 7094 has a few additional
features and instructions. The three will be referred to
by reference to the T090, **

The IBM 7090 computer has 32,768 36-bit words, usually
addressed octally, 00000 through 77777. Bits in memory
words are labeled S, 1, 2, ..., 35. The S-bit holds the
sign, so that a signed 35-bilt number can be stored in each
word; a positive sign 1s stored as a O and a negative sign
1s stored as a 1.

Magnetic tapes are connected to the computer for
input-output purposes. Information may be read from
magnetic tape or punched cards and may be written on tape,
punched ‘on cards, or printed on paper. Data transmitted
between memory and an input-output unit must pass through
a data channel.

Each Instruction is placed in one word 1n memory
Most instructlons have the format shown in Figure 5,1.
Bits S and 1 through 11, the operation field, hold the .
operation code. Bits 21 through 35, the address field,
hold the operand address of the instruction. The octal
representatlon of the instruction shown in Figure 5.1 is
+050000015056. The operation code 1is +05008 and the
operand address is 150568. '

*Pages glven at heads of sections indicate the pages in
the text replaced by the material here. The digit after
the decimal point indicates position on the page; thus
"8U4.4" indicates a poilnt about 4/10 down the page.

**Detalls on the 7090 and 7094 computers are available in
these IBM Manuals: "Reference Manual - IBM 7090 Data
Processing System" (Form A22-6528-4, 1962) and "Reference
Magu%I - IBM 7094 Data Processing System" (Form A22-6703,
1962).

1

- ©O ©” 1 \1» ¥ ™ ™ T

bov .o s B s IR O B v B ¢ Jo s B ¢ [¢ IC-NC S B

Pages

120.1 - 120,
120.8 - 122,
123.7 - 124,
125.6 - 126,
At 129.2
At 129.4
131.7 - 132.
133.1 - 134,
135.2 - 136.
141.8 - 142,
143,1 - 143,
143.9 - 144,
144,84 - 144,
145.6 - 146,
146.4 - 146,
147.2 - 147,
148.4 - 152,
153.1 - 153,
At 154.7
155.0 - 156,
156.7 - 157.
159.4 - 161,
162.4 - 164,

50 W &

O

w O

)

0]

w N @ o W

Oy U1 0 W

Material

CHAPTER 7

Example 7.1

Example 7.2

Example 7.3

Example 7.4
Information on tape
Input-output equlipment
Example 7.5

Examples 7.6,7.7
Example 7.8

CHAPTER 8

Index Reglsters

Indexing instructions

Ievels of addressing

The variable fleld

Example 8.1

Example 8.2

Example 8.3, indexing instructions
Examples 8.4,8.5,8.6
Tlime-space balance example
Index reglister pointers
Indexing instructions, Ex. 8.7
Example 8.8

Indirect addressing

Example 8.9

M4 ¥ 0y d Hd "y WD W1 DD M W =™ g =

= I T W

Pages

168.2 - 168.6
168.7 - 169.8
At 170.1
170.5 - 171.7
172.7 - 174.3
176.4 - 178.7

182.10 - 183.4

185.4 - 185.9
At 186.4
186.5 - 186.7
188.1 - 188.5
189.7 - 190.2
190.7 - 191.6
191.7 - 192.4
192.6 - 192.8
193.0 - 195.3
196.4 - 196.5
At 206.8
208.8 - 209.10
210.7 - 211.1

211.2 - 213.2

Material

CHAPTER 9

Compare 1nstruction
Example 9.1

Test 1nstructions
Examples 9.2,9.73
Examples 9.4,9.5
Example 9.6

CHAPTER 10

Example 10.1

Example 10.2
Macro-instructions
Macro-instruction example
TSX instruction and linkages
Transfer of information
Example 10.3

Example 10.4

Subroutine call example
Examples 10.5,10.6,10.7
Multiple returns

CHAPTER 11

Correction cards

BCD codes

BCD pseudo-~operation
Input-output subroutines

xi

s B>y R s o By By |

o]

T W Hd "N HFHWLW DD =EHdW

Pages

235.1 - 235,
235.8 - 236.
240.3 - 241.
2U3,1 - 2uu,
2U5,3 - 246,
2UT.2 - 2uT,
254,.8 - 255.
255.8 - 256,
267 .4 - 267,
At 296.5
297.4 - 298,
299.3 - 299.
299.8 - 300.
301.2 - 301.
At 302.1
307.7 - 311.
316.1 - 317.
320.1 - 320.
320.6 - 321,
At 322.0
322.1 - 322,

w

10

~N v @

Uy = W

Material

CHAPTER 12

Instructlon execution times
Example 12.2

Example 12.3

Shifting and masking
Example 12.4

Example 12.5

CHAPTER 13

Floating pt.
Floating-point examples

oper'ns and instructions

CHAPTER 14

Compller codling example

CHAPTER 15

Loglical instructlons
Example 15.1

Packling binary information
Example 15.2

Example 15.3

ERA, PBT, and the sense 1ndicators
Example 15.4

Word formats, Example 15.5
Example 15.6

Example 15.7

PAC instruction

Example 15.8

xii

Pages

At
332.2
At
338.7
340.2
341.1

g =2 W 0 0 »

At
349.0
350.1

e~
ct

351.
352.
353.
355.
356.
356.
357.
358.
359.
359.

W o &F0OU 00O & 0O & &~

s
c-r

360.3
361.4
363.7
365.3
R 366.8
R 368.4

S W Y2 PR W YR YW WL YD W

oy

331.10

- 333.10
334, 2

- 340.2
- 340.5

- 341,10

348,10
-~ 349.9

- 350.3

350.4

- 351.10
- 352.9
- 354.7
- 355.9
- 356.4
- 357.8
- 358.3
- 358.10
- 359.3

- 359.7

359.10
- 361.
362.
364,
- 366,
367.
- 370.

~N O U W

Material

CHAPTER 16

Convert instruction

Examples 16.1, 16.2, 16.3

CRQ instruction; Example 16.3A
TIQ instruction; Example 16.4
Comments on sorting

Example 16.5

 CHAPTER 17

Comments on pseudo-operations
Example 17.1 -
Macro-instruction expansion
PMC pseudo-operation

Example 17.2

IFF pseudo-operation

Example 17.3

IFF variations

Example 17.4

IRP pseudo-operation; Ex. 17.4, cont'd
Example 17.5

Example 17.5,<cont'd

Comment on created symbols
Example 17.6
Created-symbol IFF

RMT pseudo-operation; Ex. 17.7
Example 17.8

Comments on G@ pseudo-operation
Example 17.10

Example 17.11

Example 17.12

x1ii

w 9 0 O o

=

W " " " =W A" W

Pages

371.2 - 371.
372.4 - 373,
373.6 - 374,
375.3 - 376.
376.5 - 378.
387.5 - 391.
391.7 - 394.
395.3 - 395.
At 402.3
4o2.4 - L403.
403.9 - 404,
4o6.4 - 406,
409.4 - 409,
413.1 - 413,
414.3 - 415,

Material

Simulation macro-instructions
Example 17.13
Example 17.14
Example 17.15
Example 17.16

= N O N @

CHAPTER 18

2 Example 18.2
8 Comments on generality of material
10 Example 18.4

CHAPTER 19

Assembler alds
8 Example 19.1
Example 19.2
7T Example 19.3
10 Trap feature (STR)
9 Examples 19.4, 19.5
3 Example 19.6

no

xiv

S1 11 21 35
QQOlOlOOOOOOOOOOOOOOl101000101110
L N i

V—f
operatlion code address
Figure 5.1. IBM 7090 instruction word.

Integers and fixed-polnt numbers each may occupy _
35 bits, filling bits 1-35; the S-bit 1s used for %
sign. Floating-point numbers each also occupy,gwé word;
one number 1s shown in Figure 5.2. Bits 1 thxough 8
hold the characteristic, and bits 9 through 35 hold the
absolute value of the fraction. Characterlstics are
formed by adding 200g (128) to the powers of 2 in floating-
point form. The binary point 1is assumed to be immedlately
to the left of the fraction. The octal form of the number
shown 1in Figure 5.2 1s -20622050400, which 1is the number
-18.0790.

implied location of
binary point
IQQQESEEQQ}OOIOOOOIO1000lOOOOOOOOQ99

~—
Characteristic Fraction

Figure 5.2. IBM 7090 floating-point number.

The accumulator register (AC) contains 38 bits,
labeled S, Q, P, and 1 through 35. The Q and P bilts are
considered to be to the left of blt 1 and provide for
overflow in the AC. The multiplier-quotient register (MQ)
contains 36 bits, numbered as in a memory word. Durlng the
executlon of special instructions, including multliplication
and division, the MQ 1s used as the right-hand extenslon
of the AC.

ADDITION AND SUBTRACTION

Following are several of the arlthmetic and data-
moving instructions of the 7090. In these descriptions,
the following sequence of information 1s glven: The

3

instructlion name in full, a 3-letter mnemonic abbreviation
for the 1instruction, the operation code, the execution
time 1n machine cycles, and the description. A machine
cycle 1s 12, 2.18, and 2 mlcroseconds for the 709, 7090
and TO94 computers, regpectively. The Y that 1s mentioned
refers to a memory location and represents an operand
address. All registers affectéd by the instruction are
mentioned. : '

CLEAR AND ADD (CIA Y) (+0500); 2 cycles. The C(Y)
replaces the C(AC)g 1-35.* Positions P and Q of the AC are
set to zero. The C(Y) ?s unchanged., '

STORE (STO Y) (+0601); 2 cycles. - The C(AC)g 1-35
replaces the C(Y). The C(AC) is unchanged. ’ :

ADD (ADD Y) (+0400); 2 cycles. The C(Y) is added :
algebraically to the C(AC) and the sum 1s placed in the AC.
The C(¥) 1is unchanged. o

SUBTRACT (SUB Y) (+0402); 2 cycles. The C(Y) 1is
subtracted algebralcally from the C(AC) and the difference
1s placed in the AC. The C(Yg i1s unchanged.

HALT AND TRANSFER (HTR Y (+0000); 2 cycles. The
computer stops upon execution of this instruction. (1If
the gtart key on the console 1s pushed, the computer takes
its ne§t instruction from location Y and proceeds from
there.

As the result of an addition or subtraction, if the
C(AC) 1s zero, the sign of the AC is unchanged. Thus if
the C(AC) 1s -60 and the céy) 1s +60, then after the
addition of the C(Y) the C(AC) = -0.

(R)m=mmmmmmmmmmmmmmma o (86.7 = 87.,2)-mmmmmmmmmmmmm e

Example 5.1 Find the sum of 56, -U45, 23, and -39.
These numbers are located in Sequence, beginning at loca-
tion 00300. Place the sum in location 00304.

Since addition 1s performed in the AC, the first
number must be loaded into the AC, and all other numbers
must then be added to the filrst. Finally, the sum must
be stored in 00304. The program is written to begin at
location 00100 and end at location 00105. ILocatlon 00304
i1s set aside for the sum. '

*Subscripts on an expression of the form C(X), where X is
a word or register, refer to the only bits involved; bits
not mentioned are not involved. .

i

Iocation Contents Remarks

00100 +0500 000 00300 Load 56 into the AC
00101 +0400 000 00301 Add =45 to AC, gilving 11
00102 +0400 000 00302 Add 23, gliving 34

00103 +0400 000 00303 Add -39, glving -5

00104 +0601 000 00304 Store sum in 00304

00105 +0000 000 00000 Halt

00300 +000000000070 56 (Numbers are listed

00301 ~000000000055 Z45 at left in octal)

00302 +000000000027 23

00303 -000000000047 -39

00304 +000000000000 For sum
(R)=m—m—mmmmmmm o (87.4 = 87.8)---=mmmmmmmmmm oo

Example 5.2 Find the value of m, where

m=a+b-¢ +4d

The quantities a, b, ¢, and d are stored 1n sequence,
startin% at location 00675. Place the sum 1n loca-
tion O006TL4.

The structure of this program 1s similar to the one
in Example 5.1, except that one quantity (c) 1s subtracted
from the C(AC). The pro%ram is written to start at loca-
tion 00020. Iocatlon 00674 1s set aside for the sum.

ILocation Contents Remarks

00020 +0500 000 00675 Ioad a into AC

00021 +0400 000 00676 Add b, forming a + b

00022 +0402 000 00677 Subtract c, forming a + b - ¢
00023 +0400 000 00700 Add d: a +b - ¢ + d

00024 +0601 000 00674 Store sum

00025 +0000 000 00000 Halt

00674 +000000000000 For sum
00675 +XXXXXXXXXXXX a
00676 +XXXXXXXXXXXX b
00677 +FXXXXXXXXXXXXK c
00700 FXXXXXXXXXXXX d

The contents of the four words contalning &, b, ¢,
and d are shown as x's with plus signs. The x's stand for
any digits, and the signs may be negative.

If two numbers are added, there may be an overflow
bit (a carry) to the left of bit 1 in the accumulator,
into blt P. Carries from bit P are placed in bit Q, and
carrles from bit Q are lost. When a "1" bit 1s so placed
in bilt P, overflow occurs and the overflow indicator is
turned on. An instruction, TRANSFER ON OVERFLOW, may be
used to test the status of this indicator

MUITIPLICATION AND DIVISION

MULTIPLY (MPY Y) (+0200); 2-14 cycles. The C(Y) 1s
multliplled algebraically by the c(MQ), and the product 1s
placed 1n the AC and the MQ. The less significant half
of the product 1s placed in the MQ, and the more signifi-
cant half 1s placed in the AC. Positions P and Q@ of the
AC are set to zero. The sign of the product is placed in
the signs of both registers.

To 1illustrate multiplication, let us assume for

simplicity that the AC, the MQ, and location Y have 4 bits
and a sign each. Iet

c(Mq) = -1011,
c(Y)

+Olll2

The product of these numbers is -OlOOllOl it appears
in the AC and the MQ as follows:

AC: -0100 MQ: ~1101

Note that, i1f the product is small enough (4 bits
here, or 35 bits in the actual MQ) all signifilcant bits
are located in the MQ.

DIVIDE OR HALT (DVH Yg (+0220); 3-14 cycles. The
C(AC and the C(MQ are treated as a T2-bit
dividend an the c(Y) 1s trea ed as a 35-bit divisor. The
sign of the AC 1is the slgn of the dividend. If the

*This means "at the bottom of 87."

6

magnitude of the C(Y) 1s greater than the magnitude of the
C(AC), division takes place. The 35-bit quotient is
placed in the MQ and the remalnder 1s placed in the AC.
The C(Y) is unchanged. If the magnitude of the C(Y) is
not greater than the magnitude of the C(AC), division does
not occur and the computer stops with the divlide~check
indicator on; the C(AC) and the C(MQ) remain unchanged.

A similar instruction, DIVIDE OR PROCEED, 1s avallable.
If division does not occur because the magnitude of the
c(Y) 1s too small, division does not occur and the computer
continues 1n sequence with the next instruction.

To 1llustrate division, assume again that registers
and words have 4 bits and a sign each. Iet the MQ contain
the number 14 (16g) and the C(AC) = 0. Let the C(Y) = 4,
The quotlient 18 3 and the remainder 1is 2. The answer
appears as follows:

AC: +0010 MQ: +0011

Instructlons to load and store the MQ are required to
perform these operations.

LOAD MQ (LDQ Y} (+0560); 2 cycles. The C(Y) replaces
the C(MQ). The C(Y) is unchanged.,

STORE MQ ESTQ Y) (-06003; 2 cycles. The C(MQ)
replaces the C(Y). The C(MQ) is unchanged.

It 1s sometimes necessary to move the C(AC) to the
MQ, or vice versa, and to clear the AC except for its
sign. The followlng instructions are so used.

EXCHANGE AC AND MQ (XCA) (+0131); 1 cycle. The
C(AC)s,1-35 and the C(MQ) are exchanged. Positions P
and Q of %Ee AC are set to zero.

This iInstruction requlres no operand; the address
field 1s left empty (00000) normally.

CLEAR MAGNITUDE (CIM) (+O760,02; 2 cycles. The
C(AC)Q,p,1-35 are cleared and the C(AC)s is unchanged.

§:) [G- TE TS S) I ——

Example 5.3 Determine the value of the expression

f = (a+b)(c+d)/ac

The quantities a, b, ¢, and d, having the values 1.5, -3.5,
12.1 and 14, respectively, are stored 1In sequence, starting
at location 01000, Place the value of f in locatlon 0077TT.
Scale all numbers upward by a factor of 10.

7

The numbers in this problem are small enough so that
the MQ alone sufflces for all calculations; the AC 1s not
needed. It 1s necessary to store an intermediate result,
(a+b), temporarily. This is stored in the location set
aside for f, location 0077T.

Before a division occurs, it 1s necessary to clear
the AC unless 1t 1s known for certain that it contains
zero. Here, we are assuming that all products are less
than 35 blts, so that the AC 1s zero after each multi-
plication. After the first dilvision in this program, a
remainder might be left in the AC, so that the regilster
1s cleared, except for sign. The sign must be kept 1in
the AC because that 1s taken as the sign of the dividend.
Note the use of the XCA instruction.

(In this listing, the six rightmost octal digits of
the AC and the MQ are shown with each instruction; the
contents after executlon are shown. Unknown quantitiles
are shown by x's.)

Location Contents c(AC) c(MQ) Remarks

00100 +0500 000 01000

+

..000017 +..xxxxxX Load a
00101 +0400 000 01001 . .000024 ceXxXXXXx Add b
00102 +0601 000 00777 . .000024 . oXXXXXX Store temp.
00103 +0500 000 01002 +..000171 Xxxxxx Load c
00104 +0400 000 01003 +..000405 coxxxxXx Add 4

UL B S S S S

00105 +0131 000 00000 +..XXXXXX ..000405 AC to MQ
00106 +0200 000 00777 -..000000 ..01214k (a+b)(c+d)
00107 +0220 000 01000 -..000000 ..000534 Divide by a
00100 +0760 000 00000 -..000000 ..000534k Clear AC,
keeping sign
00111 +0220 000 01002 -..000152 -..000002 Divide by c
00112 -0600 000 00777 =-..000152 =-..000002 Store f
00113 +0000 000 00000 -..000152 -..000002 Hal®
00T7TT +000000000000 For result (f)
01000 +000000000017 (Numbers are scaled up by 10)
01001 -00000000004 3

01002 +0000000001 71
01003 +000000000214

a0 oo

8

After multiplication, the C(MQ) = 121448 (5220). Division
by 17g (15) gives 5348 (348) with no remainder. Division
of this by 1718 (121) gives 2 with a remainder of 1528
(106). The value of f stored 1s 2; a more accurate value
is 2.9, but the 9-digit 1s lost unless precautions are
taken. ‘Scaling all four origilnal quantitles as indlcated
does not improve accuracy. To avold the loss of accuracy
in division, 1t 1is necessary to scale the dilvidend up more
than the divisor. This problem i1s characteristic of filxed-
point division in any computer and provides a good argu-
ment for floating-point arlithmetic.

In loading the MQ for division using I1IDQ (which 1is not
done here), the sign of that register must be placed 1in
the AC. This may be accomplished as follows:

+0560 000 XXXXX Load MQ
+0500 000 xXXXXX Ioad AC with same number
+0760 000 00000 Clear AC, keeping sign

Example 5.4 Evaluate ph; p = =13 and 1s stored in
location 00160. Place the answer in the MQ.

Location Contents c(MQ) Remarks

00200 +0560 000 00160 -000000000015 Icad p into MQ
00201 +0200 000 00160 +000000000251 Multiply: p2
00202 +0200 000 00160 -000000004225 Multiply: p3
00203 +0200 000 00160 +000000067621 Multiply: ph
0020L +0000 000 00000 +000000067621 Halt

00160 -000000000015 p

Example 5.5 Evaluate the polynomlal
2

F = 8x° + Ux°> - x

x 1s stored 1n location 01000; F 1is to be left 1n the MQ.

If the program 1is written in the manner of earlier
programs - evaluating each term separately and storing 1t
temporarily - 16 instructions are required. If we note,
however, that terms have common factors, some coding and
program execution time can be saved. For example, all
three terms have the factor x2. The function can be
regrouped as follows:

F o= x2(x(4+8x%) - 1)

9

The program can be written by starting within the inner
parentheses and performing all operations in sequence,
ending the program outside the brackets.

Location Contents Remarks

00100 0560 000 01000 Ioad x to MQ 5
00101 0200 000 01000 Multiply by x: x°,
00102 0200 000 00201 Multiply by 8: 8x
00103 0131 000 00000 8%2 to AC 5
0010L 0400 000 00200 Add 4: 4 + 8x
00105 0131 000 00000 ‘Sum to MQ

00106 0200 000 01000 Multiply by x

00107 0131 000 00000 Product to AC

00110 0402 000 00202 Subtract 1

00111 0131 000 00000 Difference to MQ
00112 0400 000 01000 Multiply by x

00113 0400 000 01000 Multiply by x

0011k 0000 000 00000 Halt

00200 +000000000004
00201 +000000000010
00202 +000000000001
01000 FEXXXXXXXKXKXX

bl O o By

ANATYSTIS FOR CODING

Example 5.6 Write a program to evaluate a general
fifth-order polynomial, leaving the result in the AC. The
coefficients a, b, ¢, d, e, and f are located in sequence
starting at location 01000; x is in location 00700.

The coding for this problem follows directly from the
last form for G at the bottom of page 91 in the book. The
program starts within the inner parentheses and proceeds
outward.

Location Contents Remarks

00100 +0560 000 01000 ILoad a into MQ

00101 +0200 000 00700 Multiply by x: ax
00102 +0131 000 00000 Product to AC

00103 +0400 000 01001 Add b: ax + D

00104 +0131 000 00700 Sum to MQ

00105 +0200 000 00700 Multiply by x: (ax+b)x
00106 +0131 000 00000 Product to AC

00107 +0400 000 01002 (ax+b)x + c

00123 +0400 000 01005 @ in AC now

00124 +0000 000 00000 Halt

10

Several instructions are omitted; the sequence of
four instructions (EXCHANGE, MULTIPLY, EXCHANGE, and ADD)
1s repeated three times after location 00107.

The time for the execution of instructions should be
considered in setting up a problem of thls type, especially
1f the sequence 1ls to be repeated many times. The
approach taken in Example 5.6 18 relatively efficient,
since operations are minimized for the general case. Note
that multiplicatlion takes 2 to 14 cycles, addition takes
2 cycles, and the exchange instruction takes 1 cycle.

TRANSFER INSTRUCTIONS

The transfer instructlons on the IBM 7090 correspond
to the Jjump instructions of the book and on some other
computers.

TRANSFER (TRA Y) (+0020); 1 cycle. The computer
takes 1%ts next 1nstruction from location Y and proceeds in
sequence from there.

TRANSFER ON PLUS (TPL Y) (+0120); 1 cycle. If the
sign of the AC is plus, the computer takes 1ts next
instruction from location Y and proceeds from there, If
it 1s minus, the computer takes the next instructlon in
sequence,

TRANSFER ON MINUS (TMI Y); (-0120); 1 cycle. If the
sign of the AC is minus, the computer takes 1ts next
instruction from locatlion Y and proceeds from there, If
it 1s plus, the computer takes the next instruction in
sequence.

TRANSFER ON ZERO (TZE Y) (0100); 2 cycles. If the
C(AC)q,p,1-35 18 zero, the computer takes 1ts next
instruétion ?rom Y and proceeds from there. If 1t is not
zero, the computer takes the next instructlon in sequence,

TRANSFER ON NO ZERO (TNZ Y) (-0100); 2 cycles. If
the C(AC)q p,1-35 18 not zero, the computer takes 1its
next instrﬁcﬁ%on from Y and proceeds from there, If 1t
is zero, the computer takes the next instruction in sequence.

(The following comments apply to 93.6 - ol 4, which
should be read wilth these in mind.)

11

The following correspondence of instructions exists:

DELTA 63 IBM 7090

JUMP TRA
JUMPMI TMI
JUMPNZ TNZ
JUMPPL TPL
LOAD CILA

The concepts described are of a general nature.

CODING SOME DECISIONS

Example 5.7 Code the following operation: If i < n,
continue at location 00150; if 1 > n, continue in sequence,
The flowchart in Fig. 5.3a in the book pictures this
declsion.

The two conditions can be rewritten as "if 1 - n ¢ O"
and "1f 1 - n > 0." Since a test against n is not avall-
able directly, this revision 1s necessary. Conditional
Jump Instructlions are used to check for the first condi-
tion, which 1s really two decilsions as far as the computer
1s concerned: "if 1 - n < 0" and "if 1 -n =0." Tf
nelther conditlion holds, the program continues in sequence,
The flowchart in Fig. 5.3b in the book pictures the revised
decision.

Iocation Contents » Remarks

00170 - CLA 00500 Ioad 1, located in 00500
00171 SUB 00501 Form 1 - n; n is in 00501
00172 TMI 00150 Jump 1f (1 - n) ¢ O

00173 TZE 00150 Jump 1f (1 - n) =0

Control willl go to 00174 1f 1 - n > 0, as required.

In the next two examples, three-way and four-way
decisions must be made. Since all transfer instructions
can make only two-way decisions, it is necessary to place
transfer instructions in sequence to accomplish these
multlple decisions.

Example 5.8 If the C(00500) is (1) negative or zZero,
(2) positive but less than 20, or (3) 20 or greater, send
control, respectively, to (1) 00600, (2) 00700, or (3)
01000. Thils decision appears in Fig. 5.4a in the book.

12

Iet the C(00500) = x. The conditions are
1. If x < 0, go to 00600;
2. 1f 0 ¢ x < 20, go to 00700;
3. 1f 20 ¢ x, go to 01000.

The steps in the coding process can be listed as follows:
1. Place x in the AC; Jump to 00600 1if
negative.
2. Jump to 00600 if zero.
3. Having taken care of nonpositlve x, form
x - 20 because condition 2 now becomes
"1f x - 20 < O, go to 00700." Jump as
indicated.
4., Having taken care of x ¢ 20, Jump to 01000.
A modified flowchart is drawn in Flg. 5.4b in the book.
Iocatlion Contents Remarks
00100 CLA 00500 Ioad x
00101 TMI 00600 Transfer if x 1s negative
00102 TZE 00600 Transfer if x 18 zero
00103 SUB 00200 Form x - 20
00104 TMI 00700 Transfer if gx - 203 < 0
00105 TRA 01000 Transfer 1f (x - 20) > O
00200 +000000000024 20

The instructions at 00600, 00700, and 01000, and subsequent
instructions are not listed.

Example 5.9 Elther the quantity a (located in 00400)
or the quantity b (located in 00402) 1is to be stored in
location 00000, depending on these conditions:

If a is positive and b is zero, store a;

1f a 1s positive and b 1s nonzero, store

if a is negative and b 1s zero, store b;

1f a is negative and b 1s nonzero, store a.

To simplify the coding, assume that a 1is not zero.

The flowchart for this problem 1s drawn in Flg. 5.5a in

the book. The coding follows directly from the flowchart,
which 1s labeled with addresses to match the program
following. As the result of the two tests (on a and on b),
a four-way branch occurs. The four paths merge into two
paths, however, because there are only two actlons to be
taken. A modification of part of the flowchart 1s shown

in Fig. 5.5b in the book.

b

L

13

Location Contents Remarks
00120 CIA 00400 Load a
00121 TPL 00125 Go to 00125 if a 1is +
00122 CLA 00402 Iovad b
00123 TZE 00130 Go to 00130 if b 18 0O
00124 TRA 00127 Go to 00127 if nonzero
00125 CILA 00402 Ioad b
00126 TNZ 00130 Go to 00130 if b is nonzero
00127 CLA 00400 Ioad a again
00130 ST@ 00000#* Store AC (a or b) in 00000
00131 HTR ' Halt

*¥Some IBM printing equipment uses the symbol "@" for the
letter O and the symbol "O" for zero. This printing
equlpment uses no small letters.

Chapter 6
SYMBOLIC CODING

A SYMBOLIC PROGRAM
Example 6.1 Evaluate the polynomial

F o= 8x° + yx3 - x°

x is stored 1n location X; F is to be left 1in the AC.

In this program, written in the symbolic language FAP
for the IBM 7090, @NE, FOUR, and EIGHT are used for the
address of the constants 1, 4, and 8. This problem was
coded 1in Example 5.5.

Tocn. Oper. Address
START 1IDQ X
MPY X
MPY EIGHT
XCA
ADD F@UR
XCA
MPY X
XCA
SUB @NE
XCA
MPY X
MPY X
HTR

ZNE +000000000001
F@UR +000000000004
EIGHT +000000000010
X +XXXKXXXXKXXXXX

THE ASSEMBIER LANGUAGE

An assembly language very commonly used for the
IBM 7090 computer 1s FAP EFORTRAN Assembly Program). FAP
is a modification of SAP (Symbolic Assembly Program),
written by United Aircraft for the IBM 704 computer.

14

INSTRUCTION FORMAT

The use of the colums on a FAP symbolic card and the
flelds they comprise are as follows:

Columns Field | Contents
1 -6 Location field Symbol (definition)
8 - 14 Operation field Symbolic operation
16 - 72 Address fleld - Address and remarks

Figure 6.1 in the book also applies to a FAP symbolic card.

The locatlon fileld may be left blank; several
instructions in Example 6.1 have no symbols in their loca-
tion filelds. A symbol is defined by being placed in the
location field of an instruction. The symbol may be
placed anywhere in the field. Column 7 must be blank.

The operation field must begin in column 8. The
varlable field contains a symbolic address which must
begin after at least one blank column following the oper-
ation, but no later than column 16. Remarks may be used,
provided at least one blank column precedes them..

(The following comments apply to 107.4 - 109.7,
which should be read with these in mind.

FAP pseudo-operations correspond exactly in Thelr
function and use to the pseudo-~ operations in the book
The following correspondence exists:

HAP FAP
PRIGIN gRG
END END
BCTAL ger
DECML DEC
BLECK BSS

The symbol "BSS" stands for block starting with symbol;
a symbol in the location field is normally used to identify
the block,. '

16

If the operation and variable flelds of a symbolic
card are left blank, FAP assembles a full word of O-bits.
If the operation field alone 1s blank, O-bits will f111
bits S, 1, and 2. If the address field alone 18 blank,
O-bits will £111 bits 21-35, the address fleld of the
instruction.

QUALIFIERS

If 1t 1s desired to modify integer interpretation for
gseveral cards, so that all Integers are treated as octal,
the SAK pseudo-operation, placed in the operation fleld,
1s used. Cards following 1t, until a second SAK card 1s
encountered, are so treated. Successlve SAKs reverse
the mode. A decimal qualifier, /D/, is also avallable.
Any integer immedlately following this qualifler 1s
treated as declmal.

THE ASSEMBLY LISTING

Example 6.2 TFollowing is a listing of the program to
evaluate the polynomlal '

F o= 8x° + 4x3 - x°

coded in Example 5.6.

Object program (octal) Source program (symbolic)
Iocation Contents Iocation Oper. Address
00100 @RG /@/100

00100 +0560 000 00120 START IDQ X
00101 +0200 000 00120 MPY X
00102 +0200 000 00117 MPY EIGHT
00103 +0131 000 00000 XCA

00104 +0L00 000 00116 ADD F@UR
00105 +0131 000 00000 XCA

00106 +0200 000 00120 MPY X
00107 +0131 000 00000 XCA

00110 +0402 000 00115 SUB ONE
00111 +0131 000 00000 XCA

00112 +0400 000 00120 - MPY X
00113 +0400 000 00120 MPY X
00114 +0000 000 00000 HTR

00115 +000000000001 @NE DEC 1
00116 +000000000004 F@UR DEC L
00117 +000000000010 EIGHT DEC 8
00120 +000000000000 X

00100 END START

STEPS IN PROGRAM ASSEMBLY

Example 6.3 Compare the quantities p and a, stored
in P and Q, respectively. If p < q, place the number 1
in NUMBER; 1f p = q, place the number 2 in NUMBER; 1if
P > q, place the number 3 in NUMBER.
These conditions can.be rewritten:
1. If p - q < O, store 1;
2. if p - q = 0, store 2;
3., 1f p -4g > 0, store 3.
Case 2 must be checked first, because -0 and +0 are
treated differently. The flowchart 1s drawn in Flg. 6.2
in the book. Note that control 1s sent to one of three
places so that the proper number (1, 2, or 3) can be’ -
obtalned for storage in NUMBER. The three possible store. .
operations are performed at one locatlion, ST@RE.

Locn. Oper. Address
@RG /8/200

START CIA P
SUB Q Form p - @g
TZE GET2 Jump 1f zero
TMI GET1 Jump 1f minus

GET3 CLA THREE Here 1f plus...3 to AC
TRA ST@RE

GET1 CLA ONE 1 to AC
TRA ST@RE

GET?2 CILA TW@ 2 to AC

ST@RE ST NUMBER
HTR

P

Q

NUMBER

ZNE DEC 1

WD DEC 2

THREE DEC 3
END START

Chapter 7
PROGRAM LOOPS

WHY USE LOOPS?

Example 7.1 Compute the value of xlo. The value of
x 1s small enough so that the number x10 does not exceed
the capacity of a computer word.

From Example 5.4, we note that a sequence of MPY
instructions suffices.

Iocn, Oper. Address

1DQ
MPY
MPY
MPY
MPY
MPY
MPY
MPY
MPY
MPY
STQ
HTR

gNNNNNNNNNN

SULT

A SIMPLE LOOP

Example 7.2 Compute the value of x,

A flowchart appears in Fig. 7.1 in the book. The
quantity p is the current value of the product; 1ts
initial value 1s 1. Counting is done with index 1; 1ts
initial value 1s also 1. The important step 1s the multi-
plication of the accumulated product by x, producling one
more power of X:

P XX =D

18

19

‘To allow for the case n = 0 a test 1g made; in that event,
p 1s set equal to 1. The symbolic names used to label
flowchart boxes correspond to the symbols in the following
program. The test for loop termination is accomplished

by checking (1 - n) against zero.

Locn., Oper. Address

START CLA @NE 1 to p and 1
ST P
ST@ I

TESTN CILA N Test for zero n
TZE D@NE

MITPY DQ P p*x to p
MPY X
STQ P

INCRSE CIA I 1+ 1 to 1
ADD @NE
ST@ I

TEST SUB N Test for end
TMI MLTPY Back 1f not done
TZE MLTPY

D@NE HTR

N

X

P

I

ZNE DEC 1

Note that through the use of a program loop 1t 1s a
simple matter to include n as a variable of the problem,

(R)=mmmmmmmmmm e (183.7 = 1249)mmmmmmme oo e

A LOOP WITH ADDRESS MODIFICATION

STORE ZERO (S8TZ Y) (4+0600); 2 cycles. The c(Y) is
set to zero and i1ts sign is set plus.

Example 7.3 Determine the sum of a given set of
n numbers, The numbers are stored in the block beginning
at NUMBRS; their sum 1s to be placed at SUM.

The flowchart is modified to include the operation
of address modification; it is redrawn in Flg. 7.2 in the
book. The memory box indicates that aj 1s stored in loca-
tlon NUMBRS+1-1. Thus, inltlally, the program sums the
C(NUMBRS); to sum aj, the program sums the C(NUMBRS+1-1).
After the last number is summed, the operand address of the
ADD instruction 1s NUMBRS+n-1. The flowchart shows, however
that the test for the end of the problem follows the modi-
flcatlion of the index, so that the operand address at the
Time of the test 1s NUMBRS+n. Thus, the loop must termi-
nate when the ADD instruction hag been modified exactly
n times.

20

In the following program, the ADD instruction 1s
modified after each number i1s summed., A data instruction,
or instruction used as a constant, can be set initilally to
check for the final value of the ADD instructlon. When
this constant matches the ADD, the loop terminates; a TNZ
does the matching. In addition, another instruction (at
SETWD) 1s used to "initlalize" the ADD instruction.

Tt 1is necessary to set aside a block of words for
the n numbers. Here, 1000 words are reserved. A word 1is
also set aside for n.

Tocen, Oper. Address
STZ SUM 0O to sum
CIA SETWD . Initlalize instr.
ST@ ADDNUM
ADD N Set test word
ST@ C@MPAR
L@@P CLA SUM Add a number
ADDNUM ADD NUMBRS
ST@ SUM
CLA ADDNUM Modify instr.
ADD @NE
ST@ ADDNUM
SUB C@MPAR
TNZ 12@P
DONE HTR
SUM
SETWD ADD NUMBRS
CZMPAR (ADD NUMBRS+n)
N
ZNE DEC 1
NUMBRS BSS 1000

A number of 7090 instructions have negatlve operation
codes; STQ and TNZ are among them. Adding +1 to such
instructions has the effect of decreasing the address
portion of the instruction. Thils difficulty may be avolded
by the consistent use of the following instructions 1n
place of CIA and ST@ for address modifilcation; thelr use
ignores the operation code sign, in effect, and arithmetic
is performed as deslred.

CIEAR AND ADD LOGICAL (CAL Y) (-0500); 2 cycles. The
C(Y) replaces the C(AC)p 1-35° Positions S and Q of the AC
are set to zero. ?

21

STORE LOGICAL WORD (SIW Y) (+0602); 2 cycles. The
C(AC)p,1-35 replaces the C(Y). The C(AC) is unchanged.

These 1nstructions move bit P of a storage word to
blt S of the accumulator and vice versa, so that arith-
metic may be performed on the storage word as though it
were a 36-blt positive integer. There are other, more
significant uses for these two instructlons; refer to
Chapter 12.)

POLYNOMIAL EVALUATION

Example 7.4 Write a program to evaluate a polynomial
of order n, for n as large as 100. The number n, the
n + 1 coefflclents, and the varlable x are all given.
These are located, respectively, in N, the block starting

at COEFF, and X. The coefficients are BsDysees,b

nl
_ n n-1
P = box + blx + ... + bn

A flowchart appears in Fig. 7.3 in the book. The
program has a structure similar to that of Example 7.3
as regards 1ts address modification and initialization.
The significant operation is the calculation of g, the
accumulated partial polynomial value. The calculation is

qx+bi—>q

Reference to Example 5.6 (page 92 in the book) indicates
why this operation repeated for successive coefficients
by ylelds the value of F.

Locn, Oper. Address
CLA CZEFF bo to Q
ST@ Q
CAL SETWD Initialize
SIW M@D
ADD N
SIW C@MPAR
LIJP IDQ Q q+x -+ bi to q
MPY X ' o
XCA

(cont'd)

22

Iocn. Oper. Address
M@D ADD CPEFF+1
ST@ Q
CAL M@D Modify instruction
ADD @NE
SIW M@D
CLA M@D
SUB C@MPAR
TNZ L@DP Back if not done
D@NE HTR
Q
SETWD ADD COEFF+1
C@MPAR (ADD CZEFF+1+n)
N
X
@NE DEC 1
CPEFF BSS 101
(8)==-—=mmmmmm (At 129.2)==-=——==--——==m-mmmm—m—mo

INFORMATION ON TAPE

Magnetlc tapes for the 7090 computer are 3" in width
and are normally 2400' long. Information 1s stored in
seven channels, in the manner described 1in the book.

Data are recorded on tape in one of two modes; the
difference 1is usually of little concern to the programmer.
In the binary mode, informatlion appears as described in
the book. In the BCD mode, some blt conflgurations are
changed and the check bit 1s such that there are an gven
number of 1l's across the tape wldth,

Record gaps are 2" long. The ends of flles are
indicated by special marks and/or end-of-flle gaps; the
latter are 32" long.

TAPE READING AND WRITING

(The material in this section and in the remainder
of Chapter 7, although hypothetical, i1s of interest to
the 7090 programmer., He wlll rarely write his own i1nput-
output coding; rather he will use a monltor system,
described 1n Chapter 11 in the book. Therefore, in order
to appreciate input-output operations, the DELTA 63
instructions should be studied. They are simplifiled
versions of instructions that actually exlist on the T090.
The latter instructions are much more complex.)

23

Magnetic tape may be read from or written on at the
rates of 75" per second (709 and 7090) or 112.5" per
second (7090). Information passes between core storage
and magnetic tape at rates of 15,000 to 62,500 lines of
bits per second. Each line of bilts represents one
character--such as a letter, digit, or punctuation mark--
so that the maximum rate 1s 62,500 characters per second.
Recent equipment uses rates up to 90,000 characters per
second.

Informatlon 1s written or read in one direction only.
A tape may be backspaced or rewound, however, and be read
or written on agalin. Instructions are available to
backspace one record,.to backspace one file, to write an
end-of-flle gap and mark, and to rewind a tape.

Data transmitted between core storage and an input-
output device (magnetic tape, card reader, card punch,
printer) must pass through a data channel. The operation
of a data channel 1s initlated within a program in the
computer, but once started the channel operates independ-
ently of the program. Data channels control the quantity
and destinatlon of the data transmitted through them.

The computer and a data channel cannot both make a
reference to core storage at the same time, so that the
executlion of a main program instruction may be de layed
untll the needs of the data channel are satisfied. The
delays do not interfere with the main program in any
other way. If the instruction being executed does not use
core storage when a channel requires a reference to storage,
normally no delay occurs. v

A maximum of 10 tapes per channel can be used. Each
tape unlt has an address, as does each channel. The
combination of the two addresses specifiles a particular
tape unit attached to a particular channel.

A card reader reads cards at the rate of 250 cards
per minute. Information punched on the cards may be blnary,
decimal, alphabetic, or in another format. The reading
format 1s controlled by the stored program and a control
panel attached to the reader. Any sequence of channel
commands calllng for the uninterrupted transmission of
24 words causes the reading of one complete card. The words
read are stored in consecutive core storage locatlons,
starting with the address specifled in the channel instruc~-
tlon. Word counts of other than 24 may also be given and
cards are read as required.

One card punch may be attached to any channel.
Punched card output may be decimal, alphabetic, binary,
or any other desired form. Cards are punched at the rate

24

of 100 per minute. The punching format 1s controlled by
the stored program and a control panel on the unit.
Starting with the location 1n core storage specifled by
the channel instruction, 24 words from consecutive
locations are punched on a card. Counts other than 24
may also be punched by a single instruction.

One printer may be attached to any channel. Informa-
tion may be printed in any form within the limltations of
the set of characters avallable. A set of 48 different
characters 1ls available. Information is printed at the
rate of 150 lines per minute. The format of the informa-
tion 1s controlled by the stored program and a control
panel on the printer.

Example 7.5 Write a loading program to load from
tape A. .

The READTA instructlon 1n the program below 1s a
DELTA 63 instruction.* A reading loop, using the skip
feature of this instruction, 1s established. A flowchart
1s drawn in Fig. 7.6 in the book. After a record of
o2li words 1s read in, the reading instruction 1s address
mddified so that the next record 1s read into memory
at a location 24 addresses later. Thils process repeats
until the fille 1s exhausted.

ILocn. Oper. Address

READIN READTA /@3/1000 Loading point
TRA /@3/1005 Starting point
CAL READIN Modify instruction
ADD N24
SIW READIN
TRA READIN

N2o4 DEC 24

*The DEITA 63 input-output instructions in these examples
can be simulated by macro-instructions, described 1n
Section 10.2 and Chapter 17 of the book.

LOADING DATA

STORE ADDRESS (STA Y) (+0621); 2 cycles. The
contents of the address fleld of the AC, i.e., bits 21-35,
replaces the contents of the address field of location Y.
The C(AC) and the other bits in Y are unchanged.

Example 7.6 Write a card-loading program that stops
loading on encountering an end-of-program card which con-
tains the octal number 777777777777 in the first word
position. '

This loading program 1s similar to the one coded in
the last example, which reads information from tape. The
only change (aside from the reading instruction) 1is that a
test for the end-of-program card must be made after each
card 1s read. As the first word of each card is read into
a memory locatlon, the contents of that location must be
checked for TTTTTTTTTT7T7; 1if that number 1s found, control
goes to the obJect program for execution. If the end-of-
program card 1s omitted, card readlng would be attempted
when no cards are present in the card reader, and the
computer would stop. A flowchart appears in Fig. 7.7 in
the book.

ILocation Oper, Address

READIN READC /971000 Loading point
HTR No 777777777777
TEST CILA /3/1000 Test first word for 7's
© SUB SEVENS
TZE /%/1005 Go to program
CAL READIN Modlfy instructions
ADD Noy
SIW READIN
STA TEST
TRA READIN
N2o4 DEC 24

SEVENS @CT rrrrrTTTeTT

As an example of a program that reads its data,
conslder the summation of n numbers; this problem was
coded in Example 7.3.

Example 7.7 Determine the sum of a given set of
n numbers. The numbers are stored in the block beginning
at NUMBRS; thelr sum is to be placed in SUM.

26

The numbers are stored on data cards. The number n°
1s in the first word position of the first data card, and
the n numbers are stored on the following cards, punched
in binary, 24 to a card. The last card 1s f1l1lled out with
zeros. The readlng loop 1s similar to the loop in
Example 7.5, where an object program is read in.

Jocation Oper. Address

READC N, 1 Read in n
TRA ERRZR
1LA@P READC NUMBRS Read in 24 numbers
TRA START Go to summatlion seq.
CAL LP@P
ADD N24
SIW LO@P
TRA L@@P
SUM

START STZ
ERRZR o

The program contlnues as in Example 7.3.

READING OUT RESULTS

Example 7.8 A deck of data cards contains n integers,
one to a card, in the first word position, in binary form.
Write a program that computes the sum of each set of three
integers in succession and writes the n/3 sums on tape.

The number n, a multiple of 3, appears on the first data
card.

(Refer to the book for an analysis and a flowchart.
Note that ST@RAD i1s equivalent to STA.)

Location Oper. Address

STEP1 READC N,1
TRA ERR@R
CAL SETWD1
STW L@@P1
ADD N
SIW CMPAR1

1L@@P1 READC NMBRS, 1
TRA ERRZR
CAL L@@P1
ADD ONE
SIW L@@P1
CILA 1.23P1
SUB CMPAR1
TNZ L@dP1

STEP2 CAL SETWD2
SIW 12@P2
ADD NE
STA L@@P2+2
ADD @NE
STA L@@P2+2
ADD N
STA CMPAR2

L@@p2 CLA NMBRS
ADD NMBRS+1
ADD NMBRS+2
ST@ SUM
WRITEB SUM,1
CAL 1L@@P2
ADD THREE
SIW LI@P2
ADD ONE
STA 1LO@P2+1
ADD INE
STA L@@P2+2
CIA L@PP2+2
SUB CMPAR2
TNZ L@@P2
HTR

INE DEC 1

THREE DEC 3

N

SUM

SETWD1 READC NMBRS, 1

SETWD2 CLA NMBRS

CMPAR1

CMPAR2 ADD * ¥

NMBRS BSS

ERRZR

3000

Read n
Tra if end of file
Initialize first 1loop

Read a number

Initlalize second loop

Add 3 numbers

Write sum on tape B
Modify instrs.

Test for last sum

READC NMBRS+n,1)
NMBRS+2-+n)

Chapter 8
INDEX REGISTERS

THE INDEX REGISTERS

The (09 and 7090 computers each have three index
registers, designated 1, 2, and 4, (The 7094 computer
has seven 1ndex registers.3 Assoclated with most instruc-
tlons 1s a tag whilch specifies one of these registers.
Bits 18-20 in the instruction word comprise the tag field,
plctured in Fig. 8.1 below. This 3-bit field may contain
the integers 0O, 1, 2, and 4.* A tag of O indicates that

000101000000000000011011010001110111
S 11 18 2], 35

Operation Tag AddTress
Code

Fig. 8.1 Format of 7090 instruction.

no index register 1s specified, whereas a nonzero integer
designates a particular one. The symbol XR is used for
"index register," and XR1l, XR2, and XRY4 refer to the
specifled registers. Each index register contalns 15 bits.

The seven index reglsters of the 7094 are designated
1, 2, ..., , and the tag fileld 1s the same as the other
computers. Integers O, 1, ..., 7 are used as described
above.

A tag 1s Indicated 1n FAP by placing 1ts numerical
designator in the variable field, after a comma following
the address, without an 1ntervening blank space. The
following Instructions, shown boeth in symbolic and assem-
bled form, indicate the use of XR1l and XR4, respectively:

Machlne word Symbolic instruction
+0500 00 1 04500 CIA LIST,1
+0400 00 4 04512 ADD LIST+10,4

*The integers 3, 5, and 6 may be used in the multiple-tag
mode. Refer to the IBM 7090 Manual.

28

29

The extra blank space, Just to the left of the tag, 1is
included 1n the assembled machine word for clarity.

In an Instructlon with no tag (zero in the tag field),
the address of the word that 1s processed is simply the
operand address. In an instruction with a tag, however,
the address of the processed word 1s the operand address
decreased by the contents of the specified index reglster.
Thls address modification 1s automatic and temporary; the
instruction does not change, but the effect is as though
1t were changed during the execution of the instruction.
As an example, let the C(XR1l) = 100; the instruction

ADD W@RD, 1
will cause the C(W@RD-100) to be added to the accumulator,

INSTRUCTIONS

LOAD INDEX FROM ADDRESS (LXA Y,T) (+0534); 2 cycles.
The C(Y)o1- replaces the contents of the specified index
register. %ge C(Y) is unchanged. .

ADDRESS TO INDEX TRUE (AXT Y,T) (+0774); 1 cycle.
Positions 21-35 (Y) of this instruction replace the con-
tents of the specified index register.

The following examples 1llustrate these instructions;
(1) if the C(NUMBER) = 500, the instruction

XA NUMBER, 1
places the number 500 in XR1l; (2) the instruction
AXT 1000, 1

places the number 1000 in XR1.

Several indexing instructions are similar to two-
address instructions; they contain two operands. These
Instructions have a fourth fleld, the decrement fleld,
which has 15 bits; it 1s pictured in Fig. 8.2. 1In these
Instructions, the operation code occuples only three bits,

OOlOOOOOOOOOOl1010010000001001100111

S 3 18 21 35
Operation Decrement Tag Address

Code

Fig. 8.2 Format of certain
indexing instructions

30

S, 1, and 2; the decrement field occupiles bilts 3-17. The
15-bit, unsigned number in the decrement fleld 1s the
decrement.

TRANSFER WITH INDEX INCREMENTED (TXI Y,T,D) (+1);

2 cycles. The decrement of thls instruction 1s added to
the contents of the specified 1ndex register, and the sum
is placed 1n the index register. The computer takes 1its
next instruction from locatlion Y.

This instruction does two distinct things, 1independ-
ently of each other: 1t modifiles an index reglster by a
specified amount and 1t transfers control unconditlonally.

The form of the instruction 1in FAP format 1s the
following:

TXI NEXT,2,26

This instruction increases the C(XR2) by 26 and transfers
control to NEXT; if the address of NEXT is 01147, then
this instruction 1s pictured in Fig. 8.2. Note that the
decrement 1s placed in the varlable fileld, directly after
the tag with an 1ntervening comma. The three fields 1n
the variable field, the address, tag, and decrement,
appear in that order, but appear in the reverse order
within the instruction.

Frequently, it 18 necessary only to modify the 1index
register without transfering control elsewhere; the
following form 1is then used:

TXI *+1,2,26
The decrement may be written as a negative number:
TXI NEXT,1,-10

Here, the C(XR1l) is decreased by 10. Since decrements are
unsigned numbers, the 2's complement 1s placed in the
instruction word; the 2's complement of 12g (10) 1is T77766g,
so that the assembled word for this last instruction 1s

+1 77766 1 01147

If the C(XR1l) = 24g (20) prior to execution of this instruc-
tlion, 1t is 000248 + 777668 = 00012g (mod 1000008) after-
ward; 12g = 10.

TRANSFER ON INDEX LOW OR EQUAL (TXL Y,T,D) (-3);
2 cycles. If the contents of the speclfiled index register
is less than or equal to the decrement of thls instruction,

31

the computer takes i1ts next instruction from location Y.
If the contents of the index reglster 1is greater than the
decrement, the computer takes the next instruction in
sequence. ' ‘

TRANSFER ON INDEX HIGH (TXH Y,T,D) (+3); 2 cycles.
If the contents of the specified index register 1s greater
than the decrement of this instruction, the computer takes
1ts next instruction from location Y. If the contents of
the index reglster is less than or equal to the decrement,
the computer takes the next instruction in sequence,

These last two Instructions are conditional transfer
instructions; a condition in an index register 1s tested.
An example of the former instruction 1s the following:

TXL Lg@P, 4,3

Control goes to I@PP if the C(XRY4) 1s less than or equal
to 3.

(The following comments apply to 143.9 - 144.3,)
The followlng correspondence of instructions exlsts:

DELTA 63 IBM 7090
SETXRI AXT
SETXR ILXA
INCRXM TXI with an address of "*+1"
XJUMP TXL (approximately)
() T (184,84 - I44,10) e

(The following comments apply to 144.4 - 144,10.)

THE VARIABLE FIEID

The materlial applies equally well to FAP, except for
the examples of instructions. Those instructions, however,
are merely 1llustrative.

Example 8.1 Compute the value of x". This problem

was previously coded in Example 7.2. The result 1is placed
in P.

32

In thls program, XR1l 1s used to represent the index 1
of Example 7.2. XR1l 1s set to 1 initially and increased
by 1 each loop cycle, after the multiplication occurs.
Then a test of the C(XR1l) is made by a TXL instruction;
when the 1ndex 1 exceeds n, after Just belng lncreased,
the computation must cease and control passes to D@NE
instead of belng returned to MLTPY for further multiplica-
tion.

A test for the case n = 0 18 included by a test for O.
Prior to this, 1 1s stored in P to allow for thls possil-
bility. If n # O, P is later set to xn,

Initially, it 1is assumed that n 1s a known numbers:; 1t
1s coded 1n the decrement of the TXL instruction.

Ioen. Oper. Var. Fleld

START AXT 1,1 Set 1 =1
CILA ONE Set P =1
ST@ P
CILA N Out if n =0
TZE D@NE
IDQ ONE

MLTPY MPY X p+X top
TXI *+1,1,1 i1+1 to 1
TXL MLTPY,1,n Test for 1 = n
STy P

D@NE HTR

N n

X

P

ONE DEC 1

Note that in this program, n 1s an integer, placed
initially in the decrement of the TXL instruction.
Normally, n would be suppllied as data and would be stored
in the decrement during the runnling of the program.

An alternate approach 1s to have the XR value run
backwards, from n down to 1, decreasing by 1 each loop
cycle. This is more common in FAP, because of the fact
that effective addresses are formed by subtraction of
index register contents. The following program uses thils
approach. The index register 1s initlally set to n; 1t
18 tested for equality with 1 at the end of the loop
(actually 1t 1s tested to see 1f 1t exceeds 0). As long
as 1 exceeds 0, control returns to MLTPY. The 1initial
test for zero n 1s done with a TXL instructlon.

33

Ioen. Oper. Var. Fleld

START LXA N,1 Set 1 =n
‘CLA ONE Set P =1
ST P
TXL D@NE, 1,0 Out 1if n = 0
1DQ ONE

MITPY MPY X p+Xx to p

' TXI *+1,1,-1 1-1 to 1
TXH MITPY,1,0 Test for 1 = 1
ST P

D@NE HTR

N n

X

P

ZNE DEC 1

(R)=mmmmmmmmmmmmea mm= (146,84 - 146,8)-mmmmmmmmme e

Example 8.2 Determine the sum of a glven set of
n numbers. The numbers are stored in the block beginning
at NUMBRS; thelr sum 1s to be placed in SUM.

This problem was previously coded in Example 7.3.

The ADD Instruction must refer to all.n numbers in
sequence, so that 1t 1s tagged; XR1l 1s used. The effec-
tlve address 1nitlially must be NUMBRS; it must then be
NUMBRS+1, ete. Since index registers decrement direct
addresses, 1t 1s most convenient to provide a direct
address that includes the size of the block to be processed.
If the 1ndex register 1s set to that size, the initial
effective address 1s that of the first word in the block.
If the final index register value is 1, the final effec-
tive address 1s that of the last word in the block. This
approach 1is feasible 1f the quantities to be processed are
stored 1n ascending memory locations.

Initlally, we assume that n 1s known to be 100. The
operand address of the ADD instruction is NUMBRS+100,
whlle the index register is initilally 100; the final value
of. the index register 1s 1, so that the final effective
address 1s NUMBRS+99, the address of the 100th and final
number,

34

Iocn. Oper. Var. Field
STZ SUM
AXT 100,1
CILA SUM

1L.33P ADD NUMBRS+100, 1 Add a number
TXI *+1,1,-1
TXH 199P,1,0 Test for end
ST SUM

D@NE HTR

SUM

NUMBRS BSS 100

If n is a variable of the problem, as 1t usually 1s,
it is necessary to set the address of the ADD instructlon
during the run of the program. For thils purpose, the data
instruction at XNUMBR 1s used, and the STA Instructilon
sets the address. (Alternately, the decrement of an
indexing instruction can be set, as in the flrst program
in Example 8.1.) However, it 1s stlll necessary to know
the upper bound on n, so that a block can be set aside.
Assume that bound is 100; the resulting program follows.

Iocn. Oper. Var. Fleld
CILA XNUMBR Set ADD instr.
ADD N
STA L3@P
STZ SUM
LXA N, 1
CIA SUM
1LgaP ADD *%] (NUMBRS+n)
TXI *¥+1,1,-1
TXH 1.99P,1,0
ST@ SUM
D@NE HTR
SUM
N
XNUMBR NUMBRS
NUMBRS BSS 100

The "#*" 1in the variable fleld of the second ADD instruc-
tion 1ndicates that an address is to be supplied when the
program 1is run.

Example 8.3 Write a program to evaluate a polynomial
of order n, for n as large as 100. The number n, the
coefficlents, and the varlable x are located in N, the
block starting at C@EFF, and X, respectively.

This program was previously coded in Example 7..4.

Ilocn. Oper. Var. Fleld
CIA XCPEFF Set ADD instr,
ADD N .
STA L@@P+2
LXA N,1
I1DQ CZEFF bo to MQ
L2@P MPY X ; c(AC).x + bi to AC
XCA :
ADD ** 01
XCA
TXI ¥ 1,1,-1
TXH 1Lg@P,1,0
STQ Q
HTR
Q .
N
X
XCOEFE COEFF+1
CZEFF BSS - 101

Three more 1ndexing instructions are described. The
first two permlt the contents of an index register to be
saved 1n storage. The third combines the operations
performed by the pair of TXI and TXH instructions 1in the
last four programs into one instruction.

STORE INDEX IN ADDRESS (SXA Y,T) (+O634), 2 cycles.
The contents of the specified index reglster replaces the
C(Y)o1- The C(Y)s,1-20 is unchanged.

8%E INDEX IN DECREMENT (SXD Y,T) (-0634); 2 cycles.
The contents of the specified index register replaces the
C(Y)3-17. The C(Y)g is unchanged.

TRANSFER ON INDEX %T T,D) (+2); 2 cycles. If
the contents of the specified index register 1ls greater
than the decrement of this instruction, the number in the
index reglster 1ls decreased by the decrement and the
computer takes 1ts next instruction from location Y. If
the contents of the index register is less than or equal
to the decrement, the index reglister is unchanged and the
computer takes the next instruction in sequence.

36

The action of this instruction 1s pictured in Fig. 8.3.
Iocation Y in this instruction 1is usually the return point
in a loop and hence precedes the test at the TIX instruc-
tion.

TIX ¥,J,d
~ l d = decrement
:
C(XRJ)-d-q XRJ 2> C(XRJ) . d Y = operand addr.
XRJ = 1ndex reg. |J

i P

to location Y to next instr.

Fig. 8.3 The TIX instruction.

Example 8.4 Given a set of n numbers in LIST, count
the number of negative numbers present; n 1s at most 1000.
Place the count in C@UNT.

Thls problem was analyzed in Section 2.2. A flow-
chart appears in Fig. 8.2 1n the book. Index 1 counts
loop cycles and index J counts the number of negatlve
integers. XR1l and XR2 are used for these, respectlvely.
At the end of the program, the C(XR2), the desired count,

is placed in C@UNT.
' The TIX instruction 1s used for loop control and the
STA instruction 1s used to set the address of the CILA
“instruction that places a number 1n the AC for testing.

37
locn. Oper, Var. Field

I SET 1 Set index symbols
J SET 2 '
CIA XLIST Set address of instr.
ADD N o .
STA TEST
IXA N,I Set 1ndex 1
AXT 0,J Zero index]
TEST CIA ** T (LIST+n)
TZE TIXPT No count if O
TPL TIXPT No count if + _
INCRSE TXI *+1,J,1 J+1 to J (if number 1s -)
TIXPT TIX TEST,I,1
SCA COUNT, J Store count
HTR .
N
C@UNT :
XLIST _ ~ LIST
- LIST BSS 1000

Example 8.5 Given 80 numbers, find the sum of the
tenth powers of the numbers. The numbers are stored in
TABIEZ; the sum 1s to go in SUMZ. _ '

This problem was analyzed in Section 2,4 (page 36);

a flowchart appears in Fig. 8.3 in the book.

Since the flowchart shows two nested loops, two index
registers are requlred for the two indices i and J. The
current value of the accumulator during the multiplication.
process 1s called p. The inner loop of this problem, which
computes the tenth power of a number, is similar to the
loop in Example 8.1. The outer loop, which sums the powers,
is similar to the loop in Example 8.2, Summation cannot
accumulate in the AC, since that regilster is also used
during multiplication. Therefore the computed partial sums
are stored in SUMZ. Symbolic indices are not used, _
although they would serve well in this program. Because
the number of inner and outer loop cycles are known,
addresses can be coded into the program.

38

Iocn. Oper. Var., Fleld
STZ SUMZ Clear sum
AXT 80,1
L@PPI AXT 10,2
IDQ @NE |
IL@@PJ MPY TABLEZ+80, 1 p-number to p(AC)
TESTJ TIX 1g@PrJ, 2,1 J+1 to J and test
XCA
SUMI ADD SUMZ Sum+p to Sum
ST@ SUMZ
TESTI TIX 1Lg@gPI,1,1
HTR
@NE DEC 1
SUMZ
TABILEZ BSS 80

Example 8.6 Given a 1list of 1000 integers, sort them
Into negatlve and posltlve 1ntegers, and compute the sums
of the two lists. ,

The numbers aj start at locatlon LIST. Iet the
negative Integers be placed 1n the block starting at NEGLST
and the positlve Integers be placed 1n the block starting
at P@SIST. Iet N4 be the jth location in the NEGLST
block; let Py be the kth location in the P@SLST block.
Place the sums 1n NEGSUM and P@SSUM; let Sn and Sp be the
negative and poslitive sums. A flowchart appears En
Fig. 8.4 in the book.

Three 1ndex registers are to be used. XR1l 1s the
loop control XR (index 1); XR2 and XR4 will be used as
pointers to designate where in NEGLST and P@SIST the
integers are to be stored (indices J and k). Since index
registers modify by decrementling rather than by incre-
menting, the 1ndex reglister contents must be decreased
each time entries are made into the tables. Thus, to
store a positlive number thils sequence 1s used:

Oper. Var. Fleld
ST@ P@SIST+1000,K
TXI M@D,K,-1

The filrst instructlon stores the number, and the second
modifies XR4 (k) so that the next time a positive number
1s stored, 1t 1is placed in the next word 1n the list. The
TXI instruction transfers control to M@D, where the TIX
instruction controls the outer loop. In this manner, XRU
Indicates at any time the next avallable locatlon for

39

storage of an integer. The same is true for XR2. These
index reglsters polnt to the locations in memory; hence
they are called polnters when so used.

Iocn. Oper, Var., Fleld

I SET 1 Set index symbols

J SET 2

K SET 4
STZ NEGSUM
STZ P@SSUM
AXT 1000,I Set main counter
AXT 1000, J Set J,k counters
AXT 1000,K

FETCH CLA LIST+1000,I Fetch a number
TPL PLUS Test sign

MINUS ST@ NEGLST+1000,J Store in list
ADD NEGSUM Sn + no. to Sn
ST@ NEGSUM
TXI M@D,J, -1 Modify J

PLUS ST@ P@SLST+1000,K Store in list
ADD P@SSUM Sp + no. to Sp
ST@ P@SSUM
TXT *+1,K,~-1

M@D TIX FETCH,I,1
HTR

NEGSUM

P@SSUM

LIST BSS 1000

NEGLST BSS 1000

P@SIST BSS 1000

The number of entries in NEGIST and P@SIST are avall-
able 1n the index regilsters after the program 1s finished,
in complemented form. For example, XR2 contailns the
difference between 1000 and the number of negative numbers.

Two methods of loop control have been used several
places 1n the examples in this chapter. One method uses
the TXI-TXH pailr of Instructions; the other uses the
TIX Instruction. 1In the examples here, both approaches
accomplish the same functlons: (1) index modification by
constant amounts and (2) testing for the end of the looping
process. In both cases, also, the index runs from an
initial value, n, down to a final value, usuvally 1, in
steps of 1: n, n -1, n - 2, eees 3, 2, 1. If, however,
1t 1s desired that the index run from one 1limit down to
another, where the lower l1imit 1s not equal to or less than
the decrementing amount (the step), the TIX instruction

4o

cannot be used; the TXI-TXH pair 1s required. Assume, for
example, that the index 1s required to run as follows:
100, 98, 96, ..., 44, 42, 4O. These instructions can be
used: '

AXT 100,1
TXI — *+1,1,-2
TXH 19%P,1,39

As soon as the index decreases to 38, the loop will stop.
The TIX instructlon cannot provide thils flexibllity.

THE TIME-SPACE BALANCE

This material is discussed 1n the book. The coding
example for the 7090 1is the following.

Iocn. Oper. Var. Fleld
CLA ZERQD
AXT 60,1

L@@P ADD NUMBRS+60, 1 Add 3 numbers
ADD NUMBRS+61, 1
ADD NUMBRS+62, 1
TXI *+1,1,-3 Modify index by 3
TXH 1¢@P,1,0
ST@ SUM

(S)mmmmmmmm e (At 154,77)==--mmmmmmmmmmm i mm e

NONLOOP INDEX REGISTER USAGE

When index reglsters are used as counters, thelr
contents generally start at O or 1 and are increased
regularly, usually by steps of 1. When used as polnters,
however, theilr contents usually decrease so that they polint
to successive memory words at increasing memory addresses;
this 1s due to the decrementing nature of these registers.

TABLE~-LOOK-AT

PIACE ADDRESS IN INDEX (PAX O,T) (+0734); 1 cycle.
The C(AC)21_35 replaces the contents of the specified index
register. The C({AC) is unchanged.

41

No address 1s involved, although a tag is necessary.
To 1Indicate that the Integer in the variable field is a
tag rather than an address, a comma must precede the tag.
This 1s-required by the convention in Section 8.1 in the
book. An example of one instruction 1is the following:

PAX 0,2

Another useful instruction is the following.

PLACE INDEX IN ADDRESS (PXA O,T) (+0754); 1 cycle.
The contents of the specified index register replaces. the
C(AC)21-35 and the remainder of the AC is cleared. (If
the tag ?s O, the AC 1s cleared completely.)

This instruction is approximately the opposite of
PAX, except that the rest of the AC (bits S,Q,P,1-20) is
cleared. Thus the instruction

PXA 0,0

may be used to clear the AC.

Example 8.7 Given 2000 positive integers, all less
than 100 in value, determine a hlstogram as follows:
compute the distribution of integers in ten equal intervals:
O-9, 10 - 19, ..., and 90 - 99. The integers are
located in the block starting at LIST.

The interval to which each integer belongs can most
readlly be found by dividing 1t by 10, discarding the
remalnder. If the quotient is d, the integer lies in the
(q+1)th interval. |

The value q is then used to set an Index register and
thereby to select one of 10 counters, which 1s then incre-
mented by 1. These counters count the number of integers
in the 10 intervals. A flowchart is drawn in Fig. 8.5 1n
the book. The 10 counts are Ny n2, cees N

10°
locn. Oper. Var. Fleld
AXT 10,2 Clear block
STZ CTABLE+10,2
TIX *~1,2,1
AXT 2000, 1
NEW@NE 1DQ LIST+2000,1 Fetch an integer
PXA 0,0 Clear AC
DVP TEN
XCA Int./10 to AC
PAX 0,2 ... to XR2
CIA CTABIE+Q, 2 Fetch proper counter
ADD ZNE ng + 1 to Nng
ST@ CTABIE+9, 2
TIX NEW@ZNE, 1,1
HTR

(Cont'd.)

b2

Loen. Oper. Var, Fleld
ZNE DEC 1
TEN DEC 10
CTABLE BSS 10 The 10 counters
LIST BSS 2000
(R)-=-=--—mmmm e (156.7 - 157.8)====mmmmmm=mmmmmm oo

PUSH~-DOWN LISTS

Example 8.8 The block of 1000 words at PDLIST
contains a set of X items (numbers), the first of which 1is
located in PDLIST, the head of the 1list. The ltems are
stored in successlve memory words; the number (1000-k) 1s
stored in XR4.

The followlng actions occur:

(1) An item 1s added to the bottom of the 1list, and
the C(XRY4) 1s decreased by 1 to reflect the
additlon.

(2) An item 1s removed from the top of the 1list, the
1ist is moved up in 1ts entirety one position,
and the C(XRY4) is increased by 1 to reflect the
removal.

The sequence of these actlons 1s unknown:; they may accur
in any sequence, e.g., (1), (2), (2), (2}, (1),

This situation may be llkened to a purchase order proces-
sing scheme, where orders are handled in the order
recelved; new orders go at the bottom while the top order
is processed first. Thils approach is sometimes called
"fipgt-in-first-out" sequencing.

The number k may be zero, but we assume 1% 1s never
negative; that 1s, no more items are removed than are added,
if we start with an empty 1list.

Two subprograms (or routines) are required; one to add
an item and one to remove an item. These must be coded
independently, since that 1s how they are used. Iet the
item to be removed be stored in @ID.

The add-item routine (ADDITM) consists of these steps:

1. The C(NEW) must be placed at the bottom of the

1ist; the address of the first free locatlon 1s
given as PDLIST+1000,4 since the C(XR4) 1is -k,
the number of 1tems 1n the 1list.

2. The C(XR4) must be decreased by 1.

The flowchart in Fig. 8.6a in the book shows the ADDITM
routine. The 1%P word in PDLIST is Ij.

43

The remove-ltem routine (REMITM) consists of these
steps: _
1. ghe C(PDLIST), the first item, must be stored in
D

2. The k-1 remalning items must be moved up one

word each.

3. The C(XRM) must be increased by 1.

To accompllsh the movement of k-1 1ltems, a loop 1is
established. The TXI-TXH palr of instructions 1s used
because the index runs from 1000 down to 1002 = k; to
effect thls, the decrement in the TXH instruction must be
1 less, 1001 - k. After XRU4 i1s increased by 1 so that it
contains this number, 1its contents are placed in the TXH
decrement by the SXD instruction.

Locn. Oper, Var. Field
ADDITM CILA NEW Put 1tem at bottom
ST PDLIST+1000, 4 of 1list
TXI *+1,4,-1
REMITM CILA PDLIST Put first item in @ID
ST@ ZLD \
TXI *+1,4,1 XR4: 1001 - k
SXD TEST, 4
AXT 1000,1 Move k - 1 items
M@VE CLA PDLIST+1001,1 up 1 position
ST PDLIST+1000,1
TXI *+1,1,-1
TEST TXH M@VE, 1, ** (1001 - k)
(M)-m=mmmmmmmm e mmee (159.4 - 161.5)==——mmmm e

(The following comment applies to 159.4 - 161.5.)
Thls correspondence exists:

IBM 7090 DEITA 6
IBM (090
CIA LZAD

USING INDIRECT ADDRESSING

The followilng pseudo-operatlon is also used to set
aslde blocks of storage in memory. Under certain condi-
tlons, 1t 1s more useful than BSS.

by

BES (Block ending with symbol). A block of words of
the slze indicated 1n the varlable fileld of this pseudo-
operation 1s set aslde for later use at the point in the
program at which thlis card occurs. The locatlon associlated
with the symbol appearing in the location fleld is the
first address after the block. Thus, in the following

LIST BES 200

1f the last locatlion used before the block was 00300, then
00301 through 00610, 3108 (200) locations long, are set
aside for the block, and location 00611 1s assoclated

with LIST.

Example 8.9 Given five blocks of numbers and a
sorted list of the starting addresses of the blocks, write
a program to process the blocks 1in the indlcated sequence,.
The program 1s to be wrltten so that each number to be
processed 1s loaded 1into the accumulator and processed 1n
some manner. (Thls processing 1s not of interest here
and l1ls therefore not coded.

Much detall and analysis of thls problem 1s given 1n
the book. Note, however, that the addresses in the S@RTED
block are the BES type. The coding in FAP follows.

Iocn., Oper. Var. Fleld
AXT 5,2 Set 1 index
START LXA BILSIZE, 1 Set J index

CLA* SPRTED+5, 2

(Processing routine here)

TIX START+1,1,1
CAL START

ADD @NE

SIW START

TIX START, 2,1

HTR

Chapter 9
SEQUENCING IN MEMORY

(The following comment applies to 168.2 - 168.6.)
The 7090 compare instruction 1s abbreviated ag CAS,
and bits S and 1-35 of the accumulator are lnvolved.

(R)==mmmmmmmm e (168.7 - 169.8)==-===--oo--- ————————

Example 9.1 Given a set of n numbers (a1,80,...),
determine the largest number. The numbers, of which there
are no more than 1000, are stored 1n the block starting at
SET; thelargest number 1s to be stored in BIG.

A flowchart appears in Fig. 9.1 in the book. Ini-
tially, the first number is placed 1n the AC. Then, the
C(AC) 1s successively compared with ap, a3, ..., until a
larger number is found. When a larger number is found, it
is placed in the AC and the process repeats, the C(AC)
beling compared to all numbers next 1n sequence. After all
numbers are tested, the AC contains the largest number in
SET; 1t 1s stored in BIG. The flowchart indlcates that
the 4index 1s initially set to 1, which causes aj to be
compared to itself. Although unnecessary, this 1ls done
for uniformity with loops in other programs.

Ioen. Oper. Var. Fleld

CLA XSET Set Instructioss

ADD N

STA FETCH

STA FETCH+3

CIA SET a, to AC

LXA N,1l _
FETCH CAS **,1 (SET+n)

TRA . NEXT C(AC) greater

TRA NEXT C(AC) equal

CILA *¥*,1 C(AC) less; ay to AC
NEXT TIX FETCH,1,1

ST@ BIG

HTR

(Cont'd.)

L5

L6

Iocn. OQOper. Var, Field
BIG
N
XSET SET
SET BSS 1000
(S8)==m=m—mmmm e (At 170.1)========—=-c-------o-mmoe

The 7090 computer has a number of test Instructlons
that are of the skip varlety; each tests a conditlon within
the computer and causes the computer to continue 1n
sequence or skip one instruction, depending on the outcome
of the test. Two such instructions are the followlng.

STORAGE ZERO TEST (ZET Y) (+0520); 2 cycles. If the
C(Y)1-35 1s zero, the computer skips the next instructlon
and proceeds from there, If 1t 1s not zero, the computer
takes the next instruction in sequence. The C(Y) is
unchanged.

STORE NOT ZERO TEST (NZT Y) (-0520); 2 cycles. If the
C(Y)31-35 1s not zero, the computer skips the next instruc-
tion ang proceeds from there. If 1t 1s zero, the computer
takes the next instruction in sequence. The C(Y) is
unchanged.

FIXED BRANCHING

CIEAR AND SUBTRACT (CIS Y) (+05023; 2 cycles. The
negative of the C(Y) replaces the C(AC -35. Positions P
and Q of the AC are set to zero. The C?Y% ?s unchanged.

Example 9.2 Code a branch point that sends control
alternately to operations P and Q.

There are a number of ways to code an alternating
branch point. Uslng instructions already studled, we shall
base the declsgion on the sign of a number in memory. The
sign 1s reversed every time control 1s sent to the branch
point, after which the slgn 1s tested wlth a TPL 1instruc-
tion. Since the slgn 1s alternately plus and minus, the
branching occurs. A flowchart appears 1in Flg. 9.2 1n the
book.

Iocn. Oper. Var, Fleld
CLS SIGNWD Change sign of SIGNWD
ST@ SIGNWD
TPL @PERP Tra to oper. P
TRA ZPERQ Tra to oper. Q
SIGNWD DEC 1

If the 1nitial sign of SIGNWD is plus (as here), control
wlll first go to Q, since the slgn 1s changed before the
test. The C(SIGNWD) will be alternately +1 and -1.

b7

Example 9.3 Code a branch point that sends control
to one of four operatlons in cyclic sequence: P, Q, R, S,
P, Q «oeo ' - '

A tagged TRA instruction 1s used to produce a cycling
transfer of control (with XR1l). The effective address of
this instruction is BRANCH, BRANCH+1, ..., BRANCH+3, in
sequence, sending control, respectively, to @PERP, ZPERQ,

.., @PPERS. Control then goes to operations P, Q, R,

and S. To produce these effective addresses, XR1l 1s set
to 3, 2, 1, 4, 3, 2, 1, Decreasing the C(XR1) by 1
is no problem, but following 1 with 4 requires specilal
treatment. 1Inltilally, early in the program, the C(XR1)
1s set to 4 and is then decreased by 1 Just prior to each
transfer at the branch point. A TXH instruction tests
for the case when the (XR1) falls to O, at which time 1t
is reset to 4 before the transfer.

A flowchart appears in Filg. 9.3 in the book.

Iocn, Oper. Var, Fleld

AXT 4,1 - (Set early in program)

TXI Co*+1,1,-1 - : -

TXH JUMPS, 1,0 Test index; tra if 1

AXT 4,1 or greater; reset if O
JUMPS TRA BRANCH+4, 1 '
BRANCH TRA @PERP C(XR1l) = 4

TRA @PERQ 3

TRA @PERR 2

TRA @PERS 1

The program can be made slightly simpler with the use
of 1ndirect addressing, flagging the first TRA instruction
(at JUMPS) and removing the operations from the next four
Instructlions. The extension of this technique to any
number of paths 1is straightforward.

VARIABIE BRANCHING

Example 9.4 Code a branch point that sends control
to one of five locations (X1, X2, ..., X5) if the
C(DIGIT) = 1, 2, ..., 5, respectively.

This problem 1s similar to the four-way branching
problem of Example 9.3, except that the branching depends
on the data. (Presumably, the C(DIGIT) is determined

48

during the program execution and thus depends on data.)
All that 1s necessary 1s that the C(DIGIT) be loaded 1nto
an index regilster and that a jump be effected with a
tagged TRA instructlon.

Ioen. Oper. Var. Fleld

LXA DIGIT,1
TRA* JTABLE+5,1
JTABLE X5
X4
X3
X2
X1

If the C(DIGIT) = J, then J 1s placed in XR1 nd the
effective address of the TRA instruction 1is JTABLE+5-],
so that a transfer to XJ occurs, as required. A check
on the C(DIGIT) might be necessary to avold an erroneous
transfer,.

Example 9.5 Code a branch point that sends control
to one of eignt locations (LO, L1, ..., L7), depending
upon the slgns of three variables, a, b, and ¢, in the
followlng manner:

Negatlive c ‘Positive ¢
b b
T —
- | 10 L2 - | 14 L6
a a
+ L1 13 + 5 L7

Two distinct approaches are possible here. In one,
the signs of the three variables are tested 1n sequence;
an elght-way branch results. A flowchart 1s given 1n
Fig. 9.4a in the Dbook. In the other, a digit J is bullt
up for an eventual jump to location LjJ. Welghts can be
assigned to the algebralc signs of the varlables:

a: N_", 0. nyn, g

L] L] , .

D n_t, 0 nypn, 2

o ", 0o, nyn, |
L] . ’ .

49

As the signs are checked, the appropriate weights are
summed to form thée proper value of J. Finally, J 1s used
to modify a transfer address as iIn the last example.

Iocn. Oper, Var, Fleld

AXT 0,1 0 to J
CIA A Test a
TMI *42
TXI *+1,1,+1 J+1 to J
CLA B Test Db
TMI *42
TXI *+1,1,+2 J+2 to J
CLA C Test ¢
TMI *42
TXI *+1,1,+4 J+4 to J
TRA* BRANCH+T7, 1
BRANCH L7

16

L5

L4

L3

L2

Il

IO

(R)-=mmmmmmmmmm e (176.4 = 178.7)-==—-——mmmmmeecme e

Example 9.6 Five coding sequences are avallable for
use 1In a computer problem: A, B, C, D, and E. They are
to be used in sequence three ways, depending upon which of
three conditlions 1s met by data belng processed:

Case 1: use A, B, and D.
Case 2: wuse A, C, D, and E.
Case 3: wuse B, C, and D.

Two approaches are analyzed and flowcharted 1n the
book. The first method uses a palr of instructions to
effect the switching as follows:

Oper. Var, Fleld
CLA INDA Skip A if zero

TZE 'SKIPA

50

The second method uses the followlng types of
tions before each box: '

TRA *+3,1 ‘
TRA *42 Here 1f C(XR1l
TRA SKIPA Here 1f C(XR1

instruc-

Chapter 10
SUBROUTINES

Example 10.1 Write a program to evaluate e:

e=a2+be+02+d2

The squares, as they are computed, must be. stored
temporarily. A three-word block (TEMP) is set aside for
thls purpose. As 1n earlier programs, it 1s assumed all
products are small enough to remain in the MQ with fixed-
point multiplication.

Locn. Oper., Var., Fileld

SUMSQ IDQ A Square a
MPY A
STQ TEMP
IDQ B Square b
MPY B
STQ TEMP+1
ILDQ C Square ¢
MPY C -
STQ TEMP+2
LDQ D Square d
MPY D
XCA
ADD TEMP Sum the squares
ADD TEMP+1
ADD TEMP+2
STP E

TEMP BSS 3

(R)===— e (185.4 - 185,9)mcmmmmmem e

Example 10.2 Write three open subroutlnes, each of
which computes the sum of a set of numbers; the sets are
50, 100, and 250 in size.

The sets begin at locations LIST1, LIST2, and LIST3;
place their sums at SUM1l, SUM2, and SUM3, respectively.
Assume that the latter three locations are cleared.

51

5e
Oper. Var, Fleld

AXT 50,1

PXA 0,0

ADD LIST1+50,1

TIX *-1,1,1

ST@ SUM1

AXT 100,1

PXA 0,0

ADD LIST2+100,1

TIX *-1,1,1

ST@ SUM2

AXT 250, 1

PXA 0,0

ADD LIST3+250,1

TIX *-1,1,1

ST@ SUM3
(§)===—=-—mmmmmmm (At 186.4)-=----=-—-mm—mmmmm oo

MACRO-INSTRUCTIONS

In BE-FAP, the codlng sequence defining the basic
structure of an open subroutlne is delimited by the pseudo-
operations MACR@ and END.* There 1s no ambigulty between
this END and the last card of a FAP program because each
MACR@ pseudo-operatlon 1s matched by the assembler to an
END pseudo-operation.

The routine of Example 10.2 would be written as
follows as a macro-definition:

Iocn. Oper. Var. Fileld
SUMBLK MACR@ A,B,C
AXT B,1
PXA 0,0 Clear AC
ADD A+B,1
TIX *-1,1,1
ST@ C
END

*BE-FAP is the assembler at Bell Telephone Laboratories
for use with the 7090 and 7094 computers; it is widely
used, with varlations, at other installations of that
computer.

(R)==m=mmmmmmoome oo (188.1 = 188.5)mmcccceeeo ;‘ ---------

TRANSFER OF CONTROL

A special instruction is avallable for the purpose of
transfering control to a closed subroutine,

TRANSFER AND SET INDEX (TSX Y) (+0074); 2 cycles. The
2's complement of the computer's instruction counter
contents 1is placed in the specifled index reglster. The
computer takes 1ts next instruction from location Y.

By storing in an index register the location of the
transfer instruction, i.e., the location from where control
came, a means 1s provided to return control to the main
program, For example, assume control is to return to the
instruction following the TSX instruction, i1.e., to READY+1
in the following:

Iocn. Oper. Var., Field

READY TSX SUBRTE, 4

The following instruction, located within the subroutine,
effects the return:

TRA 1,4

Iet L be the location of the TSX instruction, 1.e., the
address READY. Since the C(XRY4) = =L, the effective address
of the transfer instruction is 1-(-L), or I+1, as required.
The use of the TSX instruction or other instructions
to establish a means for the return of control i1s termed a
linkage. By convention, XR4 is almost always used for this
purpose. An example of a linkage that does not use index
registers is the following. In the main program, these
instructions are used:

Locn., Oper. Var. Field
CLA * Place address of this
TRA SUBRTE instr. in AC

RETURNo Return here

54

The subroutine coding 1s started and termlnated by these
instructlons:

SUBRTE ADD TWQJ Add 2 to AC to produce
STA G@BACK return location
GEBACK TRA *

The location address in the accumulator must be increased
by two to effect a return to RETURN.

TRANSFER OF INFORMATION

As an example, 1f a closed subroutine SUMBIK is
written to sum a set of numbers, as coded in Example 10.2,
one calling sequence might be:

Ioen., Oper. Var, Fileld
M@VE TSX SUMBIK, 4
ILIST1
50
SUM1

As seen here, the information stored 1n the calling
sequence may be of several types: (a) the address for a
result or the address of one data word may be glven

(e.g., SUM1); (b) the starting address of a block of words
may be given (e.g., LIST1); (c) the size of a block of
words may be given (e.g., 50).

The subroutine has the Job of obtaining the informa-
tion for its use from the calling sequence. The effectlve
address of the first word following the TSX instruction is
given by "1,4," so that the following instructions are
equlvalent:

CLA 1,4
CIA M@VE+1

These instructions load the address LIST1 into the accumu-
lator. Similarly, the other ar%uments in the calling
sequence can be addressed with "2,4" and "3o4v,

The alternate linkage described, which uses no Index
registers, can also be used with parameters placed 1n the
words immedlately following the transfer to the subroutine.

55
Within the subroutine, the addition of 2, 3, or 4 to the
address 1n the accumulator at the start provides the
addresses of the parameters in the main program. Addition
of 5 provides the return address.

Example 10.3 Write the SUMBIK macro-instruction of
Section 10.2 as a closed subroutine.

Since all parameters are glven in the calling sequence,
they must be moved to the body of the subroutine. Three
Instructions of the form

CLA M, 4

where M 1s 1, 2, and 3, load the contents of the address
flelds of the calling sequence 1nto the AC. STA instruc-
tlons store these addresses in the proper places in the
routine. The heart of the subroutine, which computes the
sum of the numbers in the block, 1s the same in form as
the macro-instruction. Because XR1 1s used by the sub-
routine, 1ts contents must be saved. Note that the
address at SUBl 1s set by adding two parameters from the
calling sequence.

Locn. Oper. Var. Fleld

SUMBIK SXA SAVEX1,1 Save XR1
CILA 1,4 Fetch 1list address
ADD 2,4 Add 1ist size
STA SUB1
CIA 2,4 Fetch 1list size
STA SUB2 _ :
CIA 3,4 Fetch sum address-
STA SUB3
SUB2 AXT **] (size)
PXA 0,0 Clear AC :
SUB1 ADD **] (1ist addr + size)
TIX *¥-1,1,1
SUB3 ST@ ** (sum address)
ILXA SAVEX1,1 Restore XR1
TRA b, 4

SAVEX1

56

This subroutine 1s generaiized so that any calling
sequence in the proper form can call upon it. The following
calling sequence will result in the summation of the 100

words at LIST2:

TSX SUMBIK, 4
LIST?2
100
SUM2

. Example 10.4 Write SUMBIK as a closed subroutine.
Since the size of the block, rather than the address of a
location containing the size, 1is glven in the calling
sequence, indirect addressing is not used to obtain that
parameter. The tag on the ADD instruction (see
Example 10.3) must be placed in the calling sequence.

- The calling sequence:

ITocn., Oper. Var, Fleld
T3X SUMBIK, 4
LIST2+100,1
100
SUM2

) The subroutine (note the alternate method of restoring
XR1):

SUMBIK SXA SAVEX1l,1
CIA 2,4 Fetch 1list silze
STA SUB2
SUB2 AXT **,1 (size)
PXA 0,0
ADD* 1,4
TIX *-1,1,1
ST@* 3,4
SAVEX1 AXT *¥*,1 Restore XR1
TRA 4,

The flexibllity offered by the combined use of 1ndirect
addressing and tags on both the direct and indlrect
addresses 1s illustrated.

Iocn. Oper. Var, Field

SUMBLK MACR@ A,B,C

TSX SUMBIK, 4
A
B
C

END

The macro—dall:
SUMBIK LIST1,50,SUM1

(R)===mmmmmmmmmme- (193.0 = 195.3)==mmmmmmmmmmmmm oo

hxample 10.5 Wrilte a closed subroutine for the
evaluvation of e:

2

e = g +bg+C2

+ a2
The calllng sequence:

Iocn. Oper. Var., Fleld

TSX SUMSQ, 4

MY QW

The subroutine:

SUMSQ LDQ*¥ 1,4
MPY* 1,4
STQ TEMP
ILDQ* 2, L
MPY* 2,4
STQ TEMP+1
LDQ* 3,4
MPY* 3,4
STQ TEMP+2
ILDQ* bl
MPY* u,h
XCA

(Cont'd.)

58
Locn. Oper. Var. Fleld

ADD TEMP
ADD TEMP+1
ADD TEMP+2
ST@* 5,4
TRA 6,4
TEMP BSS 3

In thls example, the use of indirect addressing does
not slow down the subroutine. In Example 10.4 flagging 1s
effective within a loop that cycled n times. In thils sub-
routine no loop 1ls present.

Example 10.6 Wrlte a program to evaluate

F=,%x+ ./ %2 - y2 + (x% + y° + 2% + u®)

Two subroutines are assumed avallable for thls purpose:
SQRQﬁT, which computes the square root of the c(AC) and
leaves the result in the AC, and SUMSQ, as 1n Example 10.5.

Iocn. Oper. Var, Fleld
CLA X x to AC
TSX SQRZ@T, 4
ST@ TEMP Store sq. root of x
IDQ Y
MPY Y o
STQ TEMP+1 Store y
IDQ X
MPY X
SCA o o
SUB TEMP+1 Form x~ -y
TSX SQR@QAT, 4
STY TEMP+1
TSX SUMSQ, 4
X
Y
A
0)
TEMP+2 (For result)

(Cont 'd.)

59

Locn., Oper, Var, Fleld
CLA TEMP
ADD TEMP+1
ADD TEMP+2
ST@ F
HTR

TEMP BSS 3

X

Y

Z

U

The symbols SQR@IT and SUMSQ must be defined.

In Section 8.4, it was pointed out that indirect
addressing may be used with tags on both the direct and
Indirect addresses. Thils technique 1s 1llustrated by an
example. '

Example 10.7 The block at LISTA contains 100 numbers
whose cube roots are to be computed; the results are to
be placed in the block at LISTB. Write a routine to per-
form the operations, making use of a CBR@ZT subroutine.

It 1s assumed that CBR@@T has two addresses in its
calling sequence, the address of the argument (to be cubed)
and the address for the result. A loop 1s established
contalning tke calling sequence. The addresses in the
calling sequence are tagged. Withlin the subroutine, a
flagged reference places one of the arguments in LISTA in

the AC; because of the tag, all arguments are fetched in
sequence.

ILocn. Oper. Var. Fleld
AXT 100, 1
BEGIN TSX CBR@QT, 4
LISTA+100,1
LISTB+100, 1
TIX BEGIN, 1,1
HTR
LISTA BSS 100

LISTB BSS 100

60

Within the subroutine, the argument 1s placed in the AC
and the result 1s subsequently stored in LISTB by the
instructions

CLA* 1,4
ST@ 2,4
(R)===--cmmmmmmmm e (196.4 - 196.5)===m==--emmmemmmeeee
Oper.. Var, Fileld
%%% giﬁ %ggitizguigturn

TMI 7,4 Negative return

Chapter 11
INPUT-OUTPUT OPERATIONS

(8)-==-------- mm———————— (At 206,8)==w=mmmmm e

Followling are some examples of corrections cards used
with 7090 monltors:

Ioen. Oper, Var. Fleld .

octal correction card: 237 geT 050000211145
decimal correction card: 4420 DEC 22,33,88

As the result of the first card, the octal word
050000211145, which corresponds to the instruction

CIA /@/11145,2

1s placed at location 00237, overwriting whatever was
there previously. :

As the result of the second card, the integers 22,
33, and 88 would be placed at locations 04420, 04421, and
04&22, respectlively. The convention on the use of several
fields of a FAP DEC card applles to these correction cards.

ALPHANUMERIC INFORMATION

The 7090 BCD character codes are given in the accom-
panying table. Silx blts are used for each character. The
coding 1s done by the card reader to put information from
cards on tape or in memory. The codes listed apply to
characters 1n memory; in some cases, the codes on magnetic
tape differ. The code 1s generally termed bilnary-coded-
declmal or BCD. For compactness, the codes are generally
expressed as 2-diglt octal numbers, as in the table. The
term Hollerlith 1s used synonomously with BCD.

61

62
BCD CHARACTER CODES

Character BCD code Character BCD code Character BCD code

0 00 D 24 Q 50
1 01 E 25 R 51
2 02 F 26 $ 53
3 03 G 27 * 54
I ol H 30 (blank) 60
5 05 T 31 / 61
6 06 . 33 S 62
7 o7) 34 T 63
8 10 - 40 U 6L
9 11 J 41 v 65
= 13 K 4o W 66
" 14 L 43 X 67
+ 20 M Lh Y 70
A 21 N 45 7 71
B 22 [0 L6 s 3
c 23 P 47 (T4
(R)==mmmmmmmm e (210.7 - 211.1)===—=mmmmmmm e

PSEUDO-OPERATIONS

The FAP assembler has two pseudo-operations for the
generation of alphanumeric information within a symbolic
program,

(1) BCI (binary-coded information). The first
character in the varlable field of thls pseudo-operation
i1s a decimal digit n, from 1 to 9. The second character
is a comma. The following string of 6n characters, if n
1s 1n the range from 1 to 9, 1s stored by the agsembler in
the n successlve computer words at the polint 1n the program
at which thils card occurs. If n = 10, the comma must
appear in column 12, thus providing 60 columns (columns 13
through 72) for characters; 10 BCD words are then generated.
Thus, to store 6 words of BCD information, one writes

Locn. Oper. Var. Fileld

STRING BCI 6,T¢DAY THE DATE IS @CT@BER 24, 1961.

The symbol STRING 1s assigned to the first word containing
this iInformation, which 1s stored 1in STRING through
STRING+5. If the count n 1s 1nsufficlient to account for
the entire string, only the first 6n characters are stored
iIn n words. If the count 1s too large, blanks fill up
remaining space to a total of n words.

63
(2) BCD. This pseudo-operation 1s used in the same
manner as BCI, except that the comma 1s omitted. If

10 BCD words are to be generated, the character 0O must

appear 1ln column 12, followed in column 13 by the start of
the string.

(The material in 211.2 - 213.2 consists of a typilcal
approach to monitor input-output subroutine usa

e. Actual
usage varles a great deal among 7090 computers.%

Chapter 12
PROGRAM PLANNING

MINIMIZING RUNNING TIME

The time for each instructlion to be executed, 1n
number of cycles, 1s iIndicated iIn the individual instruc-
tion descriptions. The 709 cycle time is 12 microseconds,
the 7090 cycle time is 2.18 microseconds, and the 7094
cycle time 1s 2 microseconds.

There are a few general rules that indlcate the cycle
times of 7090 instructions., (1) Instructions involving
only the arithmetic unit registers (AC, MQ, XRs) require
1 cycle; examples are XCA, PAX, and PXA. 1In addltion,
TRA, TMI, TPL, and AXT require 1 cycle. (2) Most instruc-
tions require 2 cycles. 2) The CAS instruction and some
instructions requiring testing of each bit 1n the AC and/
or memory word require 3 to 4 cycles. (4) All floating-
point instructions and fixed-point multiplicatlon and
division require approximately 2 to 15 cycles, depending
on several factors.¥*

MINIMIZING MEMORY SPACE

Example 12.2 Assume that, at location PUT 1n a
routine, the contents of the accumulator 1s to be stored
in BI@CK 1f the sequence 1s beilng used for processing a
1list of 1000 numbers or more, and 1s to be stored 1In LIST
otherwise.

The decision on which verslon to use 1s made Just
before 1ts use. If the C(NUMBER) 1s nonzero, the version
containing the followlng instruction 1s used:

Ioen., Oper. Var., Fleld

ST@ LIST

*There are some reductions in these figures for the
7094 instructions.

64

65

The sequence to set the STY instruction 1s the follow-

ing:
CLA NUMBER Test NUMBER...
TZE . ZER@ transfer if zero
CLA WZRD1 '
STA PUT
TRA PAST
ZER@ CLA WORD2
STA pPUT
PAST coe The routine
PUT ST o
WgRD1 LIST
WORD2 BLACK
(R)--=——mmmmmmmmeeee o (240.3 - 241.6)mmmmme e

DYNAMIC ALLOCATION
Example 12.3

are read initially
tions P, Q, and R.
words to blocks A,
(Refer to the
and an analysis.)
The coding to
of blocks required

Locn.

Oper.

CLA

ADD
ADD
ADD
ADD
ADD
ADD
CAS
TRA
TRA

Assume that the quantities P, 94, and r
into memory from data cards, into loca-

Write a program that assigns blocks of
B, C, and D.

book for a description of this problem '

accomplish the test on the total size
1s the following:

var. Field

Form 2p+2q+3r

B0 DOHLO dHd

TWELVE
T@PBIG
*4]

(Refer again to the book for further comments.)

66

ASSIGN CILA BEGINA
ADD ASIZE
STP BEGINB
ADD BSIZE
ST@ BEGINC
ADD CSIZE
STP BEGIND

BEGINA A

BEGINB **

BEGINC **

BEGIND * *

A BSS 24000

(Refer again to the book.)

SHIFTING

ACCUMULATOR RIGHT SHIFT (ARS Y) (+0771); 2-4 cycles.
The C(AC)Q p,1-35 are shifted right Y bit positions. Bits
shifted past position 35 are lost. Vacated posltions are
fi1lled with zeros.

ACCUMULATOR IEFT SHIFT (ALS Y) (+0767); 2-4 cycles.
The C(AC)qQ,p,1-35 are shifted left Y bit positilons. Bits
shifted past pos?tion Q are lost. Vacated posltions are
filled with zeros.

TOGICAL RIGHT SHIFT (ILGR Y) (-0765); 2-T7 cycles. The

(AC)q,P,1- §? and the C(MQ), considered as a single regls-

ter, are shifted right Y bit positions. Bits leaving
position 35 of the AC enter the sign of the MQ. The sign
of the AC is unchanged. Bits shifted past position 35 of
the MQ are lost. Vacated positions are filled wlth zeros.

I0GICAL IEFT SHIFT (IGL Y) (-0763); 2-7 cycles. The
C(AC)q,P,1- %5 and the C(MQ), considered as a single regils-
ter, are shifted left Y bit positions. Bits leaving the
slgn of the MQ enter bit 35 of the AC. The slgn of the AC
is unchanged. Bits shifted past the Q position are lost.
Vacated positions are filled wlth zeros.

ROTATE MQ IEFT (RQL Y) (-0773); 2-4 cycles. The

C(MQ) are shifted left Y bit positions in an "end-around"

fashion. Bits shifted out of the slgn reappear 1n posi—
tion 35. No bits are lost.

In addition to these shift instructions, there are
two others, LONG RIGHT SHIFT and LONG LEFT SHIFT, that are
similar to LOGICAL RIGHT and LOGICAL LEFT. In the LONG

67
shifts, only bits 1-35 of the AC and MQ shift. The sign
of the register that bits are shifted into is made to
agree with the sign of the other reglster, while the latter
1s unchanged, *

Examples of shifting operations follow.
If the C(AC) are (in binary)

QP .
-11011000000110111000110101011111000110

then execution of the instruction
ARS 10
changes the C(AC) to

QP
-00000000001101100000011011100011010101

If the C(AC) and the C(MQ) are respectively (in
binary)

QP
+0000000011010110110000001010010000000

-00000100011010010111111111001001001
then execution of the instruction
LGL 24
changes the contents of these registers to

QP
+1010010000000100000100011010010111111

~11001001001000000000000000000000000
If the C(MQ) are (in octal)

+025044210776

*¥A long left shift (LLS) instruction with an address of 0
has the effect of moving only the MQ sign to the AC sign.
This means may be used 1in integer division for putting
the dividend sign in the AC. '

68
then execution of the instructlon
RQL 27
changes the C(MQ) to
-376025044210

Note that the initial "-3" 1s actually T.
MASKING

Masking 1s accomplished by the use of the following
loglcal instructions.

"AND" TO ACCUMULATOR (ANA Y) (-0320); 3 cycles.
Corresponding blts 1in the ACP’1_3? and locatlon Y are
compared; where both contain a 1 1In any position, the blt
in the AC 1s set to 1; where elther or both are 0, the
blt in the AC 1is set to 0. The C(Y) 1is unchanged. The S
and Q positions in the AC are set to zero,.

"AND" TO STORAGE (ANS Y) (+0320); 4 cycles. Corre-
sponding bits 1in the ACp,61-35 and location Y are compared;
where both contain a 1 in any positlon, the bit in loca-
tion Y 1s set to 1; where elther or both are 0, the bit in
location Y 1s set to O. The C(AC) 1s unchanged.

As an example of the use of the ANA instructlion, we
assume the followlng:

octal binary
C(AC)P 1-35 = 033200577740 = 000011011010000000101111111111100000
J

000000111111111111111111111100000000

c(Y) = OOTTTTT77LOO

Then, execution of this instructlon
ANA Y
changes the C(AC t :
g ()P,1-35 o the following:

003200577440 = 000000011010000000101111111100000000

In this manner, any selected portlon of the C(AC) may
be retained while other portions are masked out. The
ANS instruction operates similarly on a word in memory,
using the AC as a mask. The 36 blts in positions P and
1-35 of the accumulator comprise what 1s frequently called
the logical accumulator; the subscript "L" will be used to
refer to 1t. Positions S and 1-35 comprise the arithmetic
accumulator, since those blts are involved in arlithmetic.

PACKING AND UNPACKING

Example 12.4 Four positive 9-bit integers are stored
in successive words starting at WORDS. Write g routine to
pack them into a single 36-bit word, PACKED. The C(W@RDS)
1s to be placed in the leftmost 9 blts of PACKED, the
C(WZRDS+1) 1s to be placed in the next 9 bits, and so on.

The AC will be used to accumulate the four numbers;
they willl be packed there from the right. To accomplish
this, each number will be bplaced in the leftmost portion
of the MQ and the AC-MQ double register will then be
shifted left, to place the number in the AC. If this is
done four times, all four numbers will be packed 1in the AC;
the SIW instruction 1s used to store the result., A flow-
chart appears in Fig. 12-1 below; thls flowchart is a
computer flowchart for the 7090. An analysis of the
packing procedure follows the program,

Clear AC

|

ay — left part MQ

Shift AC-MQ left

</ \>
1 4 Sto.ACL

Fig. 12-1. Flowchart for packing routine.

70

Ilocn. Oper. Var. Fleld
PXA 0,0 Clear AC
AXT 4,1
GETWRD LDQ W@RDS+4, 1 One number to MQ
RQL 27 Shift to left in MQ
IGL 9 Shift in AC
TIX GETWRD, 1,1
SIW PACKED
HTR
PACKED
W@RDS BSS 4

The C(AC)y, and the C(MQ) throughout the execution of

this program are listed below; the four loop cycles are

shown.

The actlon of the TIX instruction 1s omltted;

effective addresses are listed. The four octal numbers

being packed are assumed to be 510, 327, 222, and 106,

Instruction CQACQL c(MQ)
1DQ W@RDS 000000000000 000000000510
RQL 27 000000000000 510000000000
IGL 9 000000000510 000000000000
1DQ W@RDS+1 000000000510 000000000327
RQL 27 000000000510 327000000000
IGL 9 000000510327 000000000000
1DQ W@RDS+2 000000510327 000000000222
RQL 27 000000510327 222000000000
IGL 9 000510327222 000000000000
1DQ W@RDS+3 000510327222 000000000106
RQL 27 000510327222 106000000000
IGL 9 510327222106 000000000000
At the end of this sequence, the numbers are packed in the
AC ..
L

Example 12.5 Given a T72-character alphanumeric

string, stored in a block from STRING to STRING+11 (6 char-
acters to a word), write a routine to unpack the string,
placing each character in the rightmost 6 bits of a word

in the block UNPAKD, in the order of appearance in the
string.

71

Each word in the STRING block must be .unpacked, 1ts
contents belng placed in 6 words in UNPAKD. This requires
a loop of the form in Example 12.4, except that now
unpacking is required. This can be accomplished by loading
a word from STRING into the MQ and shifting the AC-MQ pair
left 6 bits, puttlng one character at the right of the AC.
After that 1s stored in UNPAKD and the AC 1s cleared,
another rotation puts the next character into the AC.
Surrounding this loop is an outer loop that fetches a new
word from STRING each cycle. After that word is unpacked,
the next word from STRING is placed in the MQ. A flowchart
appears in the book; that flowchart applles to the 7090 '
1f "MQ" 1s substituted for "MR".

In thls program, XR1l and XR2 are used for the outer
and inner loop indices i and Js, respectlvely. XRU 1s used
as a pointer (k), indicating the next available location
in UNPAKD for an unpacked character. After each character
1s stored, the AC must be cleared for the next one. (The
indexing discrepancy, described in Section 8.2 of the book,
should be recalled.)

Locn. Oper, Var, Field

K SET 4
I SET 1
J SET 2
AXT 72,K
AXT 12,1
LgP1 ILDQ STRING+12, T
AXT 6,J
L@@P2 PXA 0,0
IGL 6
SIW UNPAKD+72,K .
TXTI *+1,K,-1" Modlfy pointer
TIX 19@P2,J,1
TIX 1g@gP1,I,1
HTR
STRING BSS 12

UNPAKD BSS T2

Chapter 13
NUMERICAL PROBLEMS

(R)=-mmmmmmmmmmmmmmmm (254.8 = 255.8)==-n-mmmmmmmmmmmmmmm -

FLOATING-POINT OPERATIONS

Floating-point numbers were descrlbed in Chapter 5.
In this form, the fractlon parts are stored in bilts g-35
and the characteristics are stored in bits 1-8, Charac-
teristics are formed by adding 2008 to the powers of 2 in
floating point form. Examples appear 1n Chapter 4 of the
book. If the number 1s written so that a 1 blt appears in
position 9 (at the left of the fraction) the number 1is
normalized.

To incorporate floating-point numbers into a FAP pro-
gram, the DEC pseudo-operation is used wlth a decimal point
in each number field. The following instruction leads to
assembly of the integer 75:

Oper. Var. Fleld
DEC 5

This appears as +000000000113 (octal) in the program. The
following instructlon leads to assembly of 75 as a normal-
ized floating-polnt number:

DEC 5.

This appears as 207454000000 (octal) in the program.
Alternately, the exponential form described in Section 11.2
of the book may be used:

DEC . [BE+2

Regardless of the form glven, provided a decimal polnt 1is
present, the number is assembled 1n normalized form.

In the following floating-point instructlons, the
operands are treated as floating-polnt numbers (not
necessarlily normalized). The results are normalized,
except at noted.

72

73

FLOATING ADD (FAD Y) (+0300); 6-15 cycles. The C(Y)
1s added algebraically to the C(AC), and the sum 1is placed
in the AC and the MQ. The less significant half of the
sum is placed in the MQ and the more significant half is
placed in the AC; the characteristic of the MQ is 338 less
than the characteristic of the AC., The sign of the sum is
placed in both registers. The C(Y) 1s unchanged.

FLOATING SUBTRACT (FSB Y) (+0302); 6-15 cycles. The
C(Y) 1s subtracted algebraically from the C(AC), and the
difference 1is placed as the sum is in FLOATING ADD. The
C¢(Y) is unchanged

FLOATING MULTIPLY (FMP Y) (+0260); 2-13 cycles. The
C(Y) is multipllied algebraically by the C(MQ) and the
product 1s placed in the AC and the MQ; the product is
normalized 1f the original factors were normalized and not
necessarily otherwise. The less significant half of the
product 1s placed in the MQ and the more significant half
1s placed in the AC; the characteristic of the MQ is set
as 1n FLOATING ADD. The sign of the product 1s placed in
both registers. The C(Y) is unchanged.

FLOATING DIVIDE OR HALT (FDH Y) (+0240); 3-13 cycles.
The C(AC) 1s divided algebraically by the C(Y), and the
quotient 1s placed in the MQ. The remainder is placed in
the AC. The quotient is normalized if the original
operands were normallzed and not necessarily otherwise.

If the magnlitude of the AC fractilon 1s greater than or
equal to twice that of the fractlon in Y, or if the magni-
tude of the fraction in Y 1s zero, division does not occur,
the divide-check light 1s turned on, and the computer stops

In addition to these floating-point instructions,
there are others as follows: instructions to add or sub-
tract the magnitude of a number to or from the C(AC),
instructlons to add, subtract, and multiply without
placlng the result in normalized form, and a divide instruc-
tlon that lets the computer continue in sequence 1if divi-
slon cannot occur.

(The following comments apply to 255.8 - 256.4,)
In floating-point operations, the following corre-
spondence of registers exlsts:

DELTA 63 IBM 7090
MR AC

AC MQ
Thus, the result of the summation is

C(AC) = +212435710424 C(MQ) = +157222000000

Chapter 14
ALGEBRAIC LANGUAGES

THE COMPILATION PROCESS
A FAP sequence that evaluates r 1s the following:

Oper. Var. Fleld

LDQ A

MPY C OK 1f product
MPY F@UR remains in MQ
STQ TEMP

LDQ B

MPY B

XCA

SUB TEMP

TSX SQR@IT , 4 Sq. root of C(AC);
SUB B result in AC
XCA

DVP A

DVP WD

STQ R

Th

Chapter 15
NONNUMERICAI PROBLEMS

NONNUMERICAL CONCEPTS

The followlng logical instructions are availlable to
perform the operations described in the book.

"OR" TO ACCUMULATOR (ORA Y) (-0501); 2 cycles.
Corresponding bits in the logical AC and location Y are
compared; where elther or both contain a 1 in any posi-
tlon, the bit in the AC 1s set to 1; where both are O,
the bit in the AC is set to 0. The ¢(Y) and the S and
Q positions in the AC are unchanged.

"OR" TO STORAGE (ORS Y) (-0602); 2 cycles. Corre-
sponding blts 1n the logical AC and location Y are
compared; where elther or both contain a 1 in any position
the blt in locatlon Y 1s set to 1; where both are 0, the
bit in location Y is set to 0. The c(Acg is unchanged.

COMPLEMENT MAGNITUDE (COM) (+0760,6 3 2 cycles.* All
l's are replaced by O and all O's are replaced by 1 in
the C(AC)q,p,1-35. The sign of the AC 1s unchanged.

LOGI@AL’CO%?ARE ACCUMULATOR WITH STORAGE (LAS Y)
(-0340); 3 cycles. The C(AC)q,p 1-35 and the C(Y) are
compared, both considered as unsigne numbe rs If the
C(AC) 1s greater than the C(Y), the computer executes
the next instruction in sequence If the C(AC) equals the
C(Y), the computer skips the next instruction and proceeds
from there. If the C(AC) is less than the C(Y), the
computer skips the next two instructions and proceeds from
there.

*The operation code of thils instruction consists of +0760
in bits S and 1-11 and, an addition, 00006 in bits 21-35;
both numbers must be present. This format 1s true of
several 7090 instructions; all of these have either
~-0760 or +0760 in the leftmost 12 bits. None of these
Instructions makes any references to memory.

75

76

The CAL, SIW, ANA, and ANS instructlons introduced 1in
Chapters 7 and 12 and the four Instructlons above are
termed logilcal instructions. Each refers to the loglcal
accumulator (blts P and 1-35), treating those 36 bits and
the 36 bits of a memory word as unsigned numbers.

ANAIYSIS OF SYMBOLIC EXPRESSIONS

Example 15.1 Write a routine that analyzes a symbolic
expresslon, placing each symbol and each operator 1n
sequence in a 1list, one to a word. Only expressions
involving symbols, "+",and "-" need be considered.

The problem 1is flowcharted in Fig. 15.1 here. After
the string 1s unpacked and stored 1n LIST, one character
at a time 1is brought into the AC (at the right). The
character 1s examined; if it 1s an operator ("+" or "-"),
then a symbol has Just ended; that symbol 1s to be stored
in NEWLST. At that polnt, the operator can also be stored
in NEWLST. If the character examined 1s a letter, 1t is
shifted within the AC so that it can be stored in SYMB@L,
where the symbol, letter by letter, is reconstructed. With
each additional letter wilthin the symbol, the amount of
the shift decreases (6 bits at a time) so that each letter
can be properly placed. This varylng shift 1s accomplished
by a tagged ALS instructlon; XRY4 is used for thils purpose
and 1s modified by 6 after each shift. The symbol letters
are combined by use of the @RS instruction, which "or'ts
each letter to SYMB@L. When a blank 1s encountered, the
process stops, after the last symbol is stored.

Each character is examined to see if 1t 1s (a) a let-
ter, (b) an operator, or (c) a blank. The last two
possibilities are checked by testing for (c¢) BCD 20 ("-")
or 40 ("+") and (c) BCD 60 (blank). Any other possibility
is treated as a letter. In the program below, 1t 1s assumed
that unpacking into LIST has been completed, characters
stored at the right. A polnter (XR2) 1is used to indicate
the next avallable space in NEWILST. LIST 1s assumed to be
100 words long.

Start

Unpack complete expression

1l — 1
1 -]
30 = k

————————<iTest one char.:>Blank

Operator
| (+,')

Shift k
bits left;

store letter

Store symbol

k—6—>k

)

1 + 1 -1

Fig. 15.1 Flowchart of symbollic expression analysis.

Store
and operaton symbol
J+ 2= Stop

30 =

7

78

Locn. QOper. Var. Field
AXT 100, 1 Set 1
AXT 100, 2 Set J
1L.2@P AXT o,U Set k
STZ SYMB@L Clear symbol
NEXT CAL LIST+100,1 Fetch 1 character
LAS BLANKT Test for blank
TRA *42 no
TRA BLANK yes
LAS PLUS Test for +
TRA *+2 no
TRA @PER yes
LAS MINUS Test for -
TRA *42 no
TRA @PER yes
ALS 30,4 Here 1f letter
@RS SYMB@L
TXI *+1,4,6 k-6 to k
TXI NEXT, 1,-1 i+1 to 1; go back
JPER SIW NEWLST+101,2 Store operator
CAL SYMB@L
SIW NEWLST+100, 2 Store symbol
TXI *+1,2,-2 J-2 to J
TXI 1g@P,1,-1 1+41 to 1; go back
BLANK CAL SYMB@L :
SIW NEWLST+100, 2 Store symbol
HTR
BLANKT BCI 1,00000
PLUS BCI 1, 00000+
MINUS BCI 1,00000-
SYMB@L
LIST BSS 100
NEWLST BSS 100

At the end of this program, the symbols 1n NEWLST are
left-adjusted, that 1s, they are stored at the extreme
left of the words in NEWIST. If it 1s desired that they be
stored right-adjusted, then the complete symbol must be
shifted right before it 1s stored in NEWLST. Because XRY
begins at O and 1s decreased by 6 for each letter in a
symbol, the amount of the final shift needed for right-
adjusting 1s 36 - C(XRU4) at the time of storing. For
example, 1f a symbol has 4 characters, the C(XR4) will be
o4 at the time the symbol 1s to be stored; a right shift
of 12 bilt positions will right-adjust the symbol. There-
fore, the insertion of the following instruction Just after
the two CAL instructions that place the C(SYMB@L) into the
AC accomplishes the right-adjusting:

ARS 36,L

(The following comments apply to 299.3 - 299.8.)

PACKING BINARY INFORMATION

To effect the packing, each word is placed in the MQ
and the followlng two instructions are executed as a palr
six times (after the AC 1s cleared):

RQL 5
IGL 1

If thils 1is done with the 36-bit word given, the right part
of the AC willl look as follows (in binary):

.. .0000000000110100

Example 15.2 The program below takes 6 words of BCD
O's and 1's (in BITS to BITS+5) and packs them into one
word, BITPAK.

Locn. Oper. Var. Fleld
AXT 6,2

NEWWRD IDQ BITS+6, 2 ' Next word to MQ

_ AXT 6,1

NWCHAR RQL 5 Next character to AC
ILGL 1 .
TIX NWCHAR, 1,1
TIX NEWWRD, 2,1
SIW BITPAK
HTR

(R)=—=mm e (301.2 =~ 301.7)=mmmm e

CODING ALPHANUMERIC INFORMATION

Example 15.3 The following program codes the C(TERM)
and puts the code in C@DTRM. If the C(TERM) is not found
in the 1ist, control will pass to ERR@ZR.

80

Iocn. Oper. Var. Fleld
AXT 160,1 Table has 160 entries
CAL TERM th
AGAIN LAS TABILE+150,1 Compare with 1 entry
TRA *4+2
TRA F@UND Found term
TIX AGAIN,1,1
TRA ERR@R Tra 1f not in table
FPUND CAL C@DTBL+160, 1 Fetch 1th code
SIW C@DTRM
TABIE BCI 1,TRIANG
BCI 1,SQUARE
BCI 1,RECTAN
BCI 1,PARALL
C@DTBL @CT 20
geT 21
gcT 23

aCcT 30

Here, the code for "TRIANGIE" 1s 20, the code for "SQUARE"
is 21, etec.

NONNUMERICAL CONCEPTS

The following logical instruction 1s useful in
nonnumerical problems

EXCLUSIVE "OR" TO ACCUMUIATOR (ERA Y) (+0322);
3 cycles. Each bit in Y 1s matched wlth the corresponding
bit in the loglcal accumulator. Where corresponding blts
match, a O replaces the bit in the accumulator; where
corresponding bits do not match, a 1 replaces the bit In the
accumulator. The C(Y) 1s unchanged.

For example, 1f

the C(AC)

i

011100001010000111111100001100001000
the (Y)

000000011111000011101010110001111000

then execution of the ERA instructlon places this result in
the AC:

011100010101000100010110111101110000

This instruction may thus be used to identify the matchling
bits in two words.

81

The followlng instruction tests the status of the
P-bit.

P-BIT TEST (PBT) (-0760,1); 2 cycles. If the C(AC)P
1s 1, the computer skips the next Instructlon and proceeds
from there. If the C(AC)p is O, the computer continues
in sequence.

The 7090 computer has a specilal 36-bit register, the
sense indicator (SI) register. The following instructions
treat the register as switches which may be logically
treated and tested individually or in groups.

LOAD INDICATORS (IDI Y) (+04L41); 2 cycles. The c(Y)
replaces the C(SI). The C(Y) is unchanged.

STORE INDICATORS (STI Y) (+0604); 2 cycles. The C(8I1)
replaces the C(Y). The C(SI) is unchanged.

PLACE ACCUMULATOR IN INDICATORS gPAI) (+0044);s 1 cycle.
The C(AC)1, replaces the C(8I). The C(AC) is unchanged.

ON TEST FOR INDICATORS (ONT Y) (+O4 6); 4 cycles. For
each bit in the C(Y) that 1s 1, the corresponding bit in
the ST 1is examlined. If all the examined positions in the
SI contaln a 1, the computer skips the next instruction
and proceeds from there. If any of the examined positions
does not contaln 1, the computer takes the next instruction.
The C(Y) and the C(SI) are unchanged.

Another way of stating the operation of ONT 1s to say
that, considering the C(Y) and C(SI) as ordered 36-bit
sets, the computer skilps the next instruction if and only
1f the C(SI) covers the C(Y), 1.e., 1f the SI has 1's
wherever Y has 1's. Thus, if

the C(SI) =.OOOOOlllOlOOOOOOOl111000101000000000

then a skip occurs in cases (a) and (b), but not (c):

case (a): C(Y) 000001110000000000000000101000000000

case (b): C(Y) = 000000010000000001111000000000000000

case (c): C(Y)

110001110000000001000000001000000000

- These and the other SI instructions have many applica-
tions, of which the following is but a simple example:
Generalize the PBT instruction to permilt a test for 1
in any bit of the logical accumulator; let BITWRD contain
a 1 1in the deslred test position and O elsewhere. The
desired sequence:

Oper. Var, Fleld

PAI ¢(AC) to ST
ZNT BITWRD " Test word

82

By using other bit patterns in BITWRD, any set of
1's can be tested for.

Another SI instruction of interest is the followlng.

INVERT INDICATORS FROM ACCUMULATOR (ITA) (+0041);

1 cycle. Each bit of the loglcal accumulator is matched
with the corresponding bit of the SI. Where a bilt in the
AC is 1, the contents of that posiltlon in the SI is
unchanged. The C(AC) 1s unchanged.

The effect of the IIA instruction is to place the
exclusive or of the C(AC) and the C(SI) into the SI, Jjust
as the ERA instruction places the exclusive or of the c(Y)
and C(AC) into the AC.

NIM

Example 15.4 Write a program to make a Nim move; 1f
the position presented 1s even, make a "random" move by
removing one coin from the flrst nonzero group; i1f the
position presented 1s odd, make a move to create an even
position.

A large range of posltlons will be accepted; up to
35 bits may be present in each count (il.e., 235 = 1 1s
the maximum count), and up to 1000 groups of coins may be
present. Whlle these limits are extraordinarily high,
coding thils case 1s no more difficult than coding a 5-group
game with count limits of 20.

The counts are present in the block starting at
CPUNTS; the number of groups (n) 1s located in GRPNUM. The
counts are stored internally in blnary form (since the T090
is a bilnary computer), which makes a good deal of the
coding simple. C@LUMN 1is used to 1indicate the columns
requiring change; each blt posltion corresponds to one
column, and 1 indicates a change. IEFC@L is used to indi-
cate the leftmost column requlring change.

The program is coded in several stages. In the filrst
stage, steps 1 and 2 are coded. To determine which columns
have an odd number of 1's, the ERA instruction is very
useful.

Consider one column, say poslition 35, in each word
containing a count. Imagine that the first word 1s com-
bined with the cleared AC by the ERA instruction. If the
word contains a 1 in bit 35, that position in the AC becomes
1, otherwise 1t remains O. In fact, as a serles of words
1s successlvely combined with the AC (which contains the
result of all previous combinations), that bit wlll remain
0 until the first 1 (in bit 35) occurs in a word. Then,
as more words are combined with the AC, that bilt remalns 1
until another 1 occurs in a word. In summary, the number

83

in bit 35 in the AC 1ndicates, at all times, whether an
odd number (1) or an even number (0) of 1's has occurred
in that position. The same reasoning applies to all bit
posltions. '

Locn. Oper, Var. Field
CLA XC@UNT Set address
ADD GRPNUM
STA GET (Other addresses also
LXA GRPNUM, 1 set here)
PXA 0,0 Clear AC
GET ERA *%] (CGUNTS+n)
TIX GET, 1,1
SIW CZLUMN
XC@UNT C@UNTS

At the end of the flrst stage, the columns requiring
change are indicated by 1's in C@PLUMN. The second stage
conslsts of the coding for step 3 and contains two partg =--
3a: determination of the leftmost column to be changed,
and 3b: determination of the first row with a 1 in that
column. To code 3a, the C(COLUMN) are placed in the AC
and shifted left one blt position at a time until the
P-bit becomes 1. XR1l 1s used for loop control and when the
P-bit 1is 1, XR1l "points" to the leftmost column. TFor
example, 1if the leftmost 1 was 1in bit 20, that bit moves
to posltion P after 20 left shifts and the C(XR1l) then
decreases to 15 from its original 35. The proper word from
a table of single bits, BITS, can then be selected by XR1
and stored in LEFCPL. Part 3a i1s coded below; 3b is coded
later.

Provision is made here for the even-position possibil-
i1ty (Fig. 15.4 1in the book); if the loop is cycled 35 times
and positlon P 1s never 1, then no 1's are present 1n
CALUMN and no columns requlre change.

84

Iocn. Oper. Var. Field
AXT 35,1
CAL C@LUMN
SHIFT AIS 1 Shift left 1 blt position
PBT Test P-bit
TRA *42 Go on 1f O
TRA IEFTC Tra when 1
TIX SHIFT, 1,1
TRA EVEN Tra 1f no 1's
LEFTC CAL BITS+35,1 Fetch proper bit
SIW LEFC@L
BITS @cT 200000000000 1 in bit 1
@cT 100000000000 1 in bilt 2

geT 040000000000 1 in bit 3

To code 3b, each row count 1s checked to see 1f 1%t
has a 1 in the bit 1ldentified in IEFC@L. This 1s done by
loading each count into the AC, masking with the C(LEFC@L)
and transfering out on a nonzero AC. If the AC 1s nonzero,
a 1 must be present in the count Jjust tested in the proper
position. Now, XR1l 1s used to point to the count to be
modified. '

Iocn. Oper. Var., Fleld
LXA GRPNUM, 1

GETBIT CAL *%] (Must be set as in first
ANA IEFCOL stage) (COUNTS+n)
TNZ F@UND Tra when count with bit
TIX GETBIT,1,1 found

F@UND ce . XR1 stil1ll points to count

to be modified.

In the third stage of the program, step 4 1s coded.
Here, the number of coins to be removed from the selected
row must be determined. Actually, what 1s required 1s
the new count; the actual number of colns removed need not
be computed. The sense indlcators are useful here; the
IIA instruction performs preclsely the required operation:
inverting a selected set of blts within a word.

85

locn., Oper. Var. Field

FGUND IDI **] (Must be set...(C@UNTS+n))
CAL C@LUMN Cols to be changed to AC
IIA :
STI *%] (CPUNTS+n)
TRA PRINT

PRINT 1s a routine that prints the counts after the program
has calculated the move. If the computer is to play
against a man, 1t must inform him of its move. Somehow,
then, the man must inform the computer of his move. This
can be done by supplying new data cards each time or by
entering the move into the console keys. In any event,
the modified count 1s placed in the C@UNTS block and con=-
trol goes to the start of the program.

One other routine 1s needed; in the event that the
program finds an even position, 1t is to make a "random"
move: remove one coln from the first nonzero group.

Locn. Oper. Var, Fileld
EVEN LXA GRPNUM, 1
CLA *%*,1 (CGUNTS+n)
TNZ EVEN1
TIX EVEN+1,1,1
TRA ALID@N Tra 1f all are zero
EVEN1 SUB ZNE
ST@ ** 1 (CQUNTS+n)
TRA PRINT
ONE DEC 1

ALID@N 1s a routine that prints an appropriate comment.

OTHER TYPES OF LISTS

In order to place three subfields into a word, the
address, tag, and decrement fields of an instruction can
be used, provided the desired subflelds have 15, 3, and
15 bits, respectively. If the operation field 1s left
blank, zeros are assembled into the prefix, 1.e., bits S,
l, and 2; alternately the pseudo-operation PZE (Elus zero)
may be used for the same purpose. (There are other,
similar pseudo-operations that cause the 7 other possible
prefixes to be assembled; these are P@N (plus one),

PTW (plus two), PTH (plus three), M@N (minus one), etec.)

86
Thus the followilng correspondences exlist within FAP:

Machine word Symbolic Instruction
0 02215 2 11002 PZE LIST,2,WZRD

0 02215 0 11002 LIST, ,WORD
-2 11002 1 00277 MTW W@RD,1,NAME

Example 15.5 Refer to the book for a description of
the 1list structure used., Tag flelds are used here to hold
codes.

Locatlon Contents Tocation Oper. Var. Field
01000 O 01004 3 01001 10 PZE L1,3,I4
01001 0 01007 1 01002 L1 PZE 12,1,L7
01002 0 01003 2 01010 L2 PZE 18,2,13
01003 O 01012 4 01011 13 PZE 19,4,110
01004 0 01006 1 01005 4 PZE 15,1,16
01005 0 01014 3 01013 15 PZE 111,3,112
01006 0 01016 4 01015 L6 PZE 113,4,114
01007 O 00000 7 00115 L7 PZE ABC,7
01010 0 00000 7 00400 L8 PZE NAME,T7
01011 O 00000 7 42000 19 PZE LIST,T
01012 O 00000 7 00221 110 PZE W@RD,T
01013 O 00000 7 03300 L1l PZE X1,7
01014 0 00000 7 03301 L12 PZE X2,7
01015 O 00000 7 03305 113 PZE X3,7
01016 0O 00000 7 03310 L14 PZE X4,7

(R)=-—=—=mmmmmmmm e (320.1 - 320 4)=———mmmmmmmme e

INTEGER CONVERSION

Example 15.6 1Iet a block of integers ni(l < n1 < No
for 1 = 1,2,...,k) be located starting at BI@CK. It 1is
desired to classify them by assligning a class number c+4 to
each. To perform thls classification, the integer ni (the
argument) 1s placed 1n XR2 and the number ci, located in
the (my-1)th word from the end of a block at TABIE, is
fetched. This number 1s stored in the nith position of a
parallel table, CLASS. Ny is assumed to be 100,

87

Locn., Oper. Var, Field
CLA XBL@CK Set addresses
ADD K
STA ARG
CLA XCLASS
ADD K
STA PUT
LXA K,1
ARG CILA *%,1 (BL¢CK+k)
PAX 0,2 Put argument in XR2
CLA TABLE+100, 2
PUT ST@ *%,1 (CLASS+k)
TIX ARG, 1,1
XBLOCK BL@ACK
XCLASS CLASS
K

In thils problem, the argument domain is 100 (Ng) in
size and a table (TABLE) of that size contains the numbe rs
cy. These numbers cover the image range. A limitation to
this method 1s the maximum size of No permitted, since a
table of that size 1s required.

PATTERN DETECTION

Example 15.7 Count all appearances of bits "1011"
and "0100" in the block of 50 words starting at PATTRN,
and place these counts in CNTR1 and CNTR2, respectively.
Consider each word to consist of nine 4-bit bltes.

The arguments are numbers from O to 15 inclusive;
these are the decimal numbers represented by the 16 dif-
ferent bites. A transfer of control is made to one
address in a 16-word table, depending on the argument. In
all but two of these locations, a transfer is made immed-
lately back to the main subroutine. In the other two,
transfers are made to counting routines, after the execu-
tlon of which control 1s returned to the main routine,

Iocn. Oper, Var. Fleld
AXT 50,1
1@@P1 IDQ PATTRN+50, 1 Put a word in MQ
AXT 9,2
LZ@P2 PXA 0,0 Clear AC
IGL 4 Put 1 blte in AC
PAX 0,4
TRA TABIE+16,4 (TABIE 1s defined below)
guT TIX 18@pP2,2,1

TIX Lg@P1,1,1

88

14 of the 16 instructlions in the block at TABIE are
the followlng:

TRA guT

These correspond to the 14 different bites that are not
processed. The other two 1nstructions are

TRA C@UNT1
TRA C@UNT2

which occupy the sixth and eleventh words from the end of
the block, corresponding to the two patterns to be
processed. The routine at C@QUNT1 1is

C@UNT1 CILA CNTR1 Add 1 to CNTR1
ADD ONE
STY CNTR1
TRA @uT

The routine at CPUNT2 1s similar.

PIACE COMPIEMENT OF ADDRESS IN INDEX (PAC) (+0737);
The 2's complement of the C(AC) 21_%2 replaces the contents
of the specifled index register e C(AC) 1s unchanged.

Example 15,8 Refer to the book for a descriptlon and
analysilis of this problem. In this program, k, the number
of integers, 1s taken to be 500. The maximum value of
the numbers 1s taken to be 10000. The complement of each
integer 1s placed 1n XR2 so that the indexing on the STg
Instruction places ni 1n LIST+ni.

Loen. Oper. Var, Fleld
AXT 500, 1
1@PP1 CLA BIL@CK+500, 1 Fetech an integer
PAC 0,2 Place in XR2, complemented
ST LIST,2 Store in LIST
TIX 1ggPl,1,1

Thls loop constltutes the integer-ordering process. Note,
for example, that the number 45 1s stored in LIST+45,

873 1s stored in LIST+873, etc. The zero-removal routine
is the followlng:

89

AXT 10000, 1
AXT 10000, 2

183P2 CILA . LIST+10000,1 Fetch a number
TZE *43
ST@ LIST+10000,2 DMove if nonzero
TXI *+1,2,-1
TIX 1g@p2,1,1

The two XR's act as polnters here; XR1l also serves for
loop control. XR1 points to the number being tested;
XR2 points to the next avallable location for its final
posltion. The presence of a zero (indicating a missing
value) leaves XR2 unchanged, so that each nonzero number
is stored in a successlve posltion in the 1list. A count
of The number of entries in LIST is given at the end by
10000 - C(XR2).

Chapter 16
DATA PROCESSING

CONVERSION

The 7090 computer has three special instructions
useful 1n the conversion of information in one form to an-
other form. These convert instructions treat each 36-bit
word as a set of six 6-blt bites, operating upon each bilte
in sequence. One of the instructions follows.

CONVERT BY ADDITION FROM THE MQ (CAQ Y) (-0114),

2-8 cycles. The MQ is considered to consist of six 6-bit
quantlties; these may be deslgnated as follows: Ll:

Bits S and 1-5; L2: bits 6-11; ...; L6: bits 30-35. An
effective address Y + L1 is formed and the C(Y+Ll) is added
to the ACq,6p,1-35 (the sign is unchanged). Then the C(MQ)
is rotated’ six positlions to the left. As a next step, a
new effective address Y’ + L2 1s formed, where

Y = C(Y+L1)21_35, and the C(Y’+L2) 1s added to the AC.
Then the MQ 1s rotated six more positions to the left,
This process occurs n times, n being the C(INSTR)10-17,
where INSTR contalns the CAQ 1nstructilon.

Examples of the use of the CAQ and the other two 7090
convert instructlons appear in the IBM manuals, under
"Programming Examples." Other uses are glven below in
Examples 16.2 and 16.3A.

Within FAP, the count 1s designated as the third sub-
fileld in the varlable fileld.

Example 16.1 Write a routine to convert alphanumeric
octal information to binary form.

This conversion process 1s a simple one and does not
benefit particularly from the use of CAQ. Refer to the
book for an analysls. Here, the number to be converted is
placed 1Initlally 1n the MQ. The converted word remains in
the AC.

90

91

ILocn., Oper. Var. Field .
AXT 6,1
PXA 0,0 Zero AC
LA@BP RQL 3
IGL 3
TIX *.2,1,1

Example 16.2 Wrlte a routine to convert alphanumeric
decimal information to binary form. A number in DIGITS is
to be converted; the result is to be stored in SUM.

The CAQ 1nstructlon can be used to great advantage,
slnce 1t permits a sum of numbers to be accumulated rapldly
as the result of a series of table references. Consider
a BCD word containing an integer: 002258, The number can
be calculated by summing 8x100, 5x101l, 2x102, and 2x103.
For this purpose, six tables of 10 words each are required.
The address filelds of the words in these tables each con-
tain the head of the following table, so that reference is
- made 1in succession to the six tables., The decrements of
the first table contain the 10 digilts from O to 9. The
decrements of the second table contain the numbers 0, 10,
20, ..., 90. The decrements of the sixth table contain
the numbers 0, 100000, 200000, ..., 9Q00000. The addresses
of the sixth-table words are lrrelevant. (Special care is
required that the sum of the six addresses from the table
does not overflow into the left part of the AC, where the
sum 1ls accumulated. This overflow can never extend past
the decrement for a count of 6,)

Locn. Oper, Var., Fleld
IDQ DIGITS Load number 1n MQ
PXA 0,0
CAQ CTABIE, ,6
ARS 18 Place sum in address field

SLW SUM

92

The table begins as follows, where 00500 1is the
address of CTABIE:

Iocation Contents
00500 0O 00000 0O 00512 CTABILE PZE CTABLE+10,,0
00501 0O 00001 O 00K12 PZE CTABIE+10,,1
00502 O 00002 O 00512 PZE CTABIE+10,,2
00503 O 00003 O 00512 PZE CTABLE+10,,3
00504 0 00004 O 00512 PZE CTABLE+10,,4
00505 0O 00005 O 00h12 PZE CTABIE+10,,5
00506 0 00006 0O 00512 PZE CTABLE+10,,6
00507 O 00007 O 00512 PZE CTABILE+10,,7
00510 O 00010 O 00512 PZE CTABIE+10,,8
00511 O 00011 O 00512 PZE CTABIE+10,,9
00512 0 00000 O 00524 PZE CTABLE+20,,0
00513 0 00012 O 00524 PZE CTABILE+20,,10
0 00024 O 00524 PZE CTABLE+20,,20

00514

Example 16.3 Wrlte a routine to convert binary
numbers to alphanumeric decimal form.

This 1s the reverse of the process in Example 16.2,
but 1t 1s not posslible to program the problem in the
opposite manner. Instead, a simple approach 1s obtained
by using the repeated division process described in
Section 4.2. Arithmetic must be done in binary; in a
binary machine this 1s automatic. The remalnders are saved
in binary, which happens to be theilr BCD form, since all
remalnders are digits. The number to be converted is

located in NUMBER. A 35-blt number may contain as many as
11 decimal digits, when converted. '

Iocn. Oper, Var. Field
AXT 11,1
IDQ NUMBER
M@RE PXA 0,0
DVP TEN
ST@ LIST+11,1 Store remainder
TIX M@ZRE, 1,1

After executlon of thils routine, the 11 diglts are stored
in sequence 1n the block at LIST, with the low-order digit
in LIST. A packing routlne can place them 1n two words;
they will then be 1n BCD form.

CONVERSION

The followlng instruction 1s useful in the conversion
of 6-bit bites to other 6-bit bites.

CONVERT BY REPIACEMENT FROM THE MQ (CRQ Y) (-0154);
2-8 cycles. This instructlon is similar to CAQ in its
execution, except that the leftmost 6 bits (S and 1-5) of
the referenced words replace the 6-bit quantities in the
MQ, L1, L2, ..., L6, As before, the MQ 1s rotated six
poslitions left after each such substitutlon. The count n
applies as in CAQ.

Example 16.3A* Write a program that scans the
100 words starting at LIST and makes the following BCD sub-
stitutions:

replace all even diglts by X;
replace all vowels by Y;
leave other codes unchanged.

The program 1s the following:

Locn. Oper. Var. Field
AXT 100,2

LA@PS 1DQ LIST+100,2 Word to MQ
CRQ TABIE, ,6 Convert word
STQ LIST+100,2 Store word
TIX 199PS,2,1
HTR

In addition, a table is required which contalns the new
BCD codes in bits 1-6 and the address of the table (i.e.,
TABIE) in all address fields.

To create such a table, the FAP pseudo-operation VEFD
1s useful. As an example of 1ts use, consider

Iocn. Oper. Var. Fleld

PLACE VFD H6/X,15/,15/NAME

*This example has no counterpart in the book.

oL

Here, the items in the varlable fleld mean the following:
generate a 36-bit word at PLACE with its first 6 bits the
Hollerith X, its next 15 bits ignored (zeros), and i1ts
next 15 blts the equilvalence of the symbol NAME.* The
table thus begins as follows:

TABIE VFD H6/X,15/,15/TABLE 0
VFD H6/1,15/,15/TABLE 1
VFD H6/X,15/,15/TABLE 2
VFD H6/3,15/,15/TABLE 3
VFD H6/X,15/,15/TABLE 4
VFD H6/5,15/,15/TABLE 5
VFD H6/X,15/,15/TABLE 6
VFD H6/7,15/,15/TABLE T
VFD H6/X,15/,15/TABLE 8
VED H6/9,15/,15/TABLE 9
BSS 1 nil
VFD H6/=,15/,15/TABLE =
VFD H6/",15/,15/TABIE "
BSS 3 3 nils
VFD H6/+,15/,15/TABLE +
VFD H6/Y,15/,15/TABLE A
VFD H6/B, 15/, 15/TABLE B
VFD H6/C,15/,15/TABIE C
(R)==——mmmmmme e = (338.7 - 340.2)==mmmmmmmme e

SORTING (ORDERING)

TRANSFER ON LOW MQ (TIQ Y) (+0040); 2 cycles. If the
C(MQ) is algebraically less than the C(AC), the computer
takes 1ts next instruction from location Y. If the c(MQ)
1s algebralcally greater than or equal to the C(AC), the
computer continues in sequence.

Example 16.4 Write a routine to perform an inter-
change sort of 100 nggbers, located starting at NUMBRS.

Iet 21 be the 1 locatlon in the 1ist. During the
first pass, the flrst comparison i1s made between the C(&ll
and the C(&e), and the last compar%gon 1s made between
the C(49g) and the C(4100). The 1% comparison is made
between 2he C(41) and the C(£1+1); 1 runs from 1 to 99.

In the program, the index, as given by the C(XR1l), runs
initially from 99 to 1, then on succeeding passes runs
from 99 to limits that increase by 1 each pass. This 1ig

*Refer to a FAP manual for more detalls on VFD.

95

accomplished by modifying the test instruction (TXH) after
each pass through the numbers. The whole process term-
inates when XR2 1s reduced to 1, after the 99th pass. The
AC and MQ are used for comparlson and exchange. The
followlng routline places the smallest number first.

Tocn. Oper. Var. Fleld
CLA ZERO Initiallize test
STD TEST
AXT 99, 2

NEWPAS AXT 99,1 Start new pass

NEWNUM 1IDQ NUMBRS+99, 1 L1 to MQ
CILA NUMBRS+100, 1 41+1 to AC
TLQ N@EX L1+1 greater; no exch.
STQ NUMBRS+100,1
ST NUMBRS+99, 1
TXI *+1,1,-1

TEST TXH NEWNUM, 1, ** Test for last number
CAL TEST Modify test; add 1 to
ADD DECR1 decrement
STD TEST
TiX NEWPAS, 2,1

DECR1 gcT 1000000 1 in decrement

ZER@

NUMBRS BSS 100

(M)=mmmmmmmm e (340.2 = 340.5)~mmmmmmm e oo

The book discusses, in 340.2 - 340.5, the efficlency
of this sorting procedure. The following instruction can
be 1nserted in the program to test for an interchange in
a glven pass:

STZ INDIC

MERGING

Example 16.5 Write a routine to merge the lists in
the blocks at LIST1 and LIST2 of sizes m and n, respec-
tively, forming a single ordered 1list, NEWLST. The
orlginal 1ists have no more than 1000 numbers each.

The flowchart in Flg. 16.3 in the book shows the
process. The entrles 1In LIST1 are ai; the entries in
LIST2 are by; the locations in NEWLST are {4y. XR1l and
XR2 act as pointers to the two original lists; XRY4 acts
as a pointer to NEWLST.

96

In order to 1lnsure that trouble does not occur when
elther 1list 1s exhausted, an extra number 1s assumed
present at the end of each 1list. Thls number exceeds any
number in the 1list and 1s not counted (in the counts m
and n). When m + n numbers are merged and the process
stops, these numbers are ignored. At the end of the
merging process, a dummy number (in LARGE) must be attached
to the end of NEWLST,

Iocn. Oper. Var, Fleld
CLA X2001 Form 2001-m-n;
SUB M set into test instr.
SUB N
ALS 18
STD SET
AXT 2001, 4
AXT 1001,1
AXT 1001,2

NEXT CILA LIST1+1001,1 Compare ay and bJ
1DQ LIST2+1001,2
TIQ SMALL2

SMALL1 ST@ NEWLST+2001,4 Store a, (smaller)
TXI M@ZD,1,-1

SMALL2 STQ NEWLST+2001,4 Store bJ (smaller)
TXI MgD,2,-1

M@D TXI *+1,4,-1

SET TXH NEXT, 4, ** (2001-m-n)
CLA LARGE Store large number
ST@ NEWLST+2001, 4 (dummy) at end
HTR

M

" N

LARGE @CT 3TTTCT07777

X2001 DEC 2001

LIST1 BSS 1001

LIST2 BSS 1001

NEWLST BSS 2001

Chapter 17
MACRO-INSTRUCTIONS

MACRO-INSTRUCTION PSEUDO-OPERATTIONS

The pseudo-operations described here are all available
in BE-FAP, Bell Telephone ILaboratories' version of FAP.
They are not all available in other 7090 assemblers, while
other features, not here described, may be present in other
gystems.

Example 17.1 Define and use a macro-instruction that
sums three numbers and stores the result.
The macro-definition:

locn., Oper. Var. Field
SUM3 -MACRO A,B,C,S
CLA A
ADD B
ADD C
ST S
END

This macro-instruction sums the G(A), C(B), and ¢(C), and
stores the sum in 3.
Conslder this macro-call:
SUM3 WORD,DIGIT,NUMBER, RESULT

This call expands into- the following sequence:

CLA W@RD
ADD DIGIT
ADD NUMBER
ST@ RESULT

97

98

There 1s no restriction on the nature of the alpha-
numeric strings that may be aubstituted for dummy argu-
ments. The following indicates some possibilities.

Call the SUM3 macro-instructlon using more complex
call arguments.

(1) The following call

Oper. Var. Fleld

SUM3 WORD+1, (DIGIT+1,3),NUMBER, RESULT

expands into the followlng:

CLA W@RD+1
ADD DIGIT+1,3
ADD 'NUMBER
ST® RESULT

(2) The following call
SUM3 W@RD+NAME-23, , NUMBER+3, /@/44000

expands into the followlng:

CILA W@RD+NAME-23
ADD
ADD NUMBER+3
ST@ /3/44000
(R)=m-=mmmmmmmmm==mmm= (350.1 - 350.3)--======m===mm===-==-
Iocation Contents Iocation Oper., Var., Fleld
00100 +07T74 00 1 00012 AXT 10,1
00101 +0500 00 O 00223 1LJ@P CILA X
00102 +0601 00 O 00224 _ ST@ Y
00103 SUM3 NAME,W,X,Z
00107 +0120 00 O 00117 TPL NEXT
00110 +1 00001 2 00111 TXI *+1,2,1
) (At 350.4)==m=-m=mm=-mmmmmommmme-

The FAP pseudo-operation ugsed to cause printing of
macro-instruction expansions 1s PMC (print macro-
instruction). Repeated use of PMC "turns on'" and then

"turns off" this printing.

PSEUDO-OPERATIONS
Example 17.2 Compute the value of p:

p = (a+b+c)(d+e+f+g+h)/(a+d+h)
We can use the SUM3 macro-instruction:

Oper. Var., Fleld

SUM3 A,B,C,TEMP

SUM3 D,E,F,TEMP+1

SUM3 TEMP+1,G,H, TEMP+1
SUM3 A,D,H, TEMP+2

IDQ TEMP
MPY TEMP+1
DVP TEMP+2
STQ P

In this program, to sum five numbers, the SUM3 macro-
instruction must be used twice 1n succession. A temporary
location TEMP+1 is required for the storage of the first
sum. The second and third calls should be examined; they
expand to the following:

CIA D
ADD E
ADD F
STY TEMP+1
CIA TEMP+1
ADD G
ADD g
STY TEMP+1
(R)==-mmm e (352.4 - 352.9) === mmmm e __

CONDITIONAL ASSEMBLY

The following pseudo-operation in the FAP assembler
1s used to effect condltional assembly:

Oper. Var, Field

IFF P,A,B

100

The P subfleld represents a symbollc expression, while the
A and B subfilelds represent alphanumeric strings. The
instruction that is next after the IFF pseudo-operation 1s
assembled if and only 1f the quantitles p and q have the
same values, where

0 if the equivalence of P 1s zero
{1 i1f the equivalence of P 1s nonzero
0 1f A and B are nonidentical strings
) {1 1f£ A and B are 1ldentical strings

If at least one symbol in P 1s undefined prior to the
occurrence of the IFF pseudo-operatlon, then p = O.

As examples, the followlng instructions will cause
the suppression of the next instructions:

IFF 1,R,S
IFF 0, XXX, XXX
IFF 1@C+20, AA+1,1+AA

provided the equivalence of I@C is not -20. Note that
AA+1 and 1+AA are not identical strings (although they
have the same equivalence). The following instructilons
wlll cause the assembly of the next instructions:

IFF 1,888,838
IFF 0,X,Y
IFF NAME-NAME, A+B+C, A+C+B

Arguments to be substituted in the three subflelds
of IFF may be substituted within a macro-definltion as
may any argument.

This pseudo-operation may be used to suppress the
instructions discussed in Example 17.2 For example, 1if
we wrilte

IFF 0,AC,A

then assembly if the next instruction will occur 1f and
only i1f A is not AC.

Example 17.3 Revlse the SUM3 macro-instructlon to
suppress AC instructlons as indicated. Recode the evalua-
tion of p, glven in Example 17.2.

101
The macro-definition 1s

Locn. Oper. Var. Field

SUM3 MACR@ A,B,C,S
IFF O,AC,A
CLA A
ADD B
ADD C
IFF o)
ST S

END

Consider the following call and how 1t will bve
treated by the assembler.

SUM3 D,E,F,AC

Consider the first IFF, Since the IFF A and B subflelds
are different (A =D and B = AC upon substitution), q = 0,
while p = 0 also. Therefore, assembly of the next instryc-
tlon occurs. Next conslder the second IFF, Here, the

IFF A and B subfields are the same (they are both "ac™"

upon substitution) so that q = 1 while p = 0. Hence, the
next instruction is not assembled. Therefore this call
expands as follows:

CLA D
ADD E
ADD F

By similar reasoning, the call
SUM3 - AC,G,H, TEMP+1

expands into

ADD G
ADD H
ST@ TEMP+1

The revised coding begins as follows (see EXample 17.2):

SUM3 A,B,C,TEMP
SUM3 D,E,F,AC

SUM3 AC,G,H, TEMP+1
SUM3 A,D,H, TEMP+2

102
The second and third calls expand into the following:

CIA D
ADD E
ADD F
ADD G
ADD H
ST@ TEMP+1

The redundant coding of Example 17.2 1is not assembled.

In this use of the IFF pseudo-operation, the symbol
"pc" 15 used because 1t 1s suggestlve of the accumulator.
Of course, any deslred symbol may be used.

This material has no exact counterpart in FAP, since
the IFF pseudo-operation 1s more structured differently
from each of the IF-type HAP pseudo-operatlons. However,
there are parallels; the following usages are equivalent
in the two languages:

HAP FAP
IFSAME A,B IFF 1,A,B
IFDIFF A,B IFF O,A,B
IFZERG Q IFF Q,1
IFNGNZ Q IFF Q

(The reader should now read the material of
355,4 - 355.9 and then read the following.)

The first two cases of IFF above, 1]llustrated 1n
earlier examples, permit the variability of the second and
third subflelds. The last two cases illustrate 1ts use
with a variable filrst subfield, which can then be tested
for zeroness. Thus, wilth subfield A = 1 and subfield B
blank, q = O and assembly of the next 1nstructlon occurs
1f and only 1f Q 1s zero. Conversely, 1n the last case,
assembly occurs if and only 1f Q is nonzero. The book's
examples of the following form apply 1in FAP:

IFF Q/5
IFE Q-Q/2*2,1
(R)-mmmmmmmmm === mmmme (356.0 = 356.4)-mmnmmmmmmmmmmmmmmsns

REPETITION IN CODING

Example 17.4 Write a macro-instruction to determine

the sum of the cubes of three quantities and to store the
result.

103
The macro-definition is

Locn., Oper. Var, Field
SUMCUB MACR@ A,B,C,S

STZ TEMP
1DQ A

MPY A

MPY A

XCA

ADD TEMP
ST TEMP
DQ B

MPY B

MPY B

XCA

ADD TEMP
ST@ TEMP
1DQ C

MPY C

MPY C

XCA

ADD TEMP
ST@ S

END

3 N (356.6 = 357.8)==mmmmmommmcemee

Coding delimited by the IRP (indefinite repeat) pseudo-
operation at the start and end is repeated once for each
call argument supplied for a dummy argument A, the coding
belng assembled with the call arguments gilven for A.

At the start:

Oper, Var, Field

IRP A
At the end:
IRP
The several call arguments for A are placed wilthin paren-
theses, separated by commas.

Example 17.4, continued Recode the SUMCUB macro-
instruction, using IRP,

104

The new macro-definition:

Iocn. Oper., Var. Fleld

SUMCUB MACRg@ X,S
STZ TEMP
IRP X
I.DQ X
MPY X
MPY X
XCA
ADD TEMP
ST@ TEMP
IRP
STy S
END

The call

SUMCUB (X1,X2,X3),RESULT

expands into

STZ TEMP
IDQ X1
MPY X1
MPY X1
XCA

ADD TEMP
STP TEMP
1DQ X2

MPY X2
The sequence 1s the same as glven earllier, except for an
extra ST@ instruction near the end of the sequence.
The second macro-definition 1s shorter than the first
and serves for any number of repetitions. Thus the same

definition can be called upon by the followlng lnstruc-
tions:

SUMCUB (W@RD1,W@RD2),ANSWER
syMcuB (Y1,%Z1,X1,A1,B2,C3),SUM

In the first two cases two parameters are involved; in the
second, six parameters are involved. Through the use of
the IRP pseudo-operation a macro-instruction of variable
length may be defined. The length of the expanded coding
depends on the manner in which the macro-instruction is
called.

CREATED SYMBOILS

Example 17.5 Write a macro-instruction that adds the
larger of two numbers to a third, leaving the sum in the
accumulator. If the numbers are equal, a Jump to EQUAL
should occur.

The macro-definition is

Locn. Oper, Var. Field

LARSUM MACR@ A,B,C
CLA A
CAS B
TRA DD
TRA EQUAL
CLA B

DD ADD C
END

(R)==mmmmmm e (358.4 = 358.10)==-=-mmmommee__

Any dummy arguments that appear in a macro-definition
that are not called for within a macro-call, provided they
are omltted at the end of the call, are replaced by the
assembler by created symbols. The following symbols are
created: ..001, ..002, ..003, ete.; they are created in
thils sequence as needed.

Example 17.5, continued Rewrite the macro-instruction
LARSUM, permitting a created symbol.

The macro-definition, which has one extra dummy
argument, is

Iocn., Oper. Var, Fleld
IARSUM MACRYQ A,B,C,DD
CLA A
CAS B
TRA DD
TRA EQUAL
CLA B
DD ADD C

END

106
The call
IARSUM NUMBR1,NUMBR2,DIGIT
which means "add the larger of the C(NUMBR1) and the

C(NUMBR2) to the C(DIGIT), and leave the sum in the AC,"
expands into

CLA NUMBR1
CAS NUMBR2
TRA ..001
TRA EQUAL
CAL NUMBR2
. 001 ADD DIGIT
(M) =mmmmmmmmmmm o= (359.0 - 359.3)===-==-=-=====-m===--

This material applies here, with just one change.
Dummy arguments to be replaced by created symbols do not
appear on CREATE cards, as described in the book.

Example 17.6 Write a macro-instruction that places
the larger of two numbers 1n the accumulator. If the
numbers are equal, a Jump to EQUAL should occur.

The macro-definltion 1s

Iocn. OQOper. Var., Field
LARGER MACR{Z A,B,DD
CLA A
CAS B
TRA DD
TRA EQUAL
CIA B
DD BSS 0
END
The call

IARGER W@RDS,W@RDY

expands into

CILA W@RD5
CAS W@RDT
TRA ..001
TRA EQUAL
CLA W@RD'(

. 001 BSS 0]

107

(8)==mmmm e (At 359.10)

A speclal pseudo-operation 1s available to determine
whether or not a given symbol within a macro-definition
has been replaced by a created symbol.

Oper. Var. Fleld
IFF P,/CRS/X

P has the same significance as previously, in the IFF
pseudo-operation. The quantity q has the value O if X 1is
not a created symbol and the value 1 if it 1is. Thus, :

IFF 1,/CRS/Q

causes assembly of the next instruction if and only 1if @
1s created.

REMOTE ASSEMBLY
Coding delimited by the card

RMT

(for remote) at the start and at the end is assembled as
normally but 1s not assigned to memory locations until the
end of the progranm.

Example 17.7 Write a macro-instruction to evaluate
and store the function

f(x) = 5a + be

At constant, 5, and one word of temporary storage are
required. In the following macro-instruction, these two
words are remotely assembled.

108
Locn., Oper. Var, Fleld

FUNCTN MACR@ A,B,C,R,FIVE,TEMP
A

1DQ
MPY FPIVE
STQ TEMP
I1DQ B
MPY C
XCA
ADD TEMP
ST@ R
RMT

FIVE DEC 5

TEMP
RMT
END

The call

FUNCTN XX,YYY,ZZZZ,ANS

expands into

1DQ XX
MPY ..001
STP ..002
1DQ YYY
MPY 2222
XCA

ADD . . 002
STP ANS

whille the two words

..001 DEC 5
..002

are assembled at the end of the program. Created symbols
are used to refer to these two words to avold multlple
definitions as before.

(This method actually wastes space, however, slnce
two words are assembled per FUNCTN macro-call, whereas
only two are needed 1in all. However, it points out that
macro-instructions can be completely self-contained, which
is useful.)

(R) == mmmmmmmmcmm (361.4 - 362, 4)mmemee o ___

NESTED MACRO-INSTRUCTIONS

Example 17.8 Write g macro-instruction that computes
one of these two functions:

f =a + b, if a and b are both positive;
g =a - b, otherwise,

Two macro-instructions for addition and subtraction
~are defined first:

Locn. Oper. Var., Field

ADDMAC MACRY A,B,C
CILA A
ADD B
ST C
END

SUBMAC MACR®

A,B,C
CLA A
B
C

SUB
ST
END
The main macro-~-definition is

CZMPUT MACRY K,L,S,SUB, guT
K

CLA
TMI SUB
CLA L
TMI SUB
ADDMAC K,I,S
TRA 2uT
SUB SUBMAC K,I,S
2uT BSS 0]
END

The call
C@MPUT THIS,THAT, RESULT

expands into the following coding, where L(a) = THIS,
L(b) = THAT, ang L(f) or L(g) 1is RESUIT.

110

CIA THIS

TMI ..001
CLA THAT
TMI ..001
CLA THIS
ADD THAT Expansion of ADDMAC
ST RESULT
TRA ..002

. 001 CLA THIS
SUB THAT Expansion of SUBMAC
ST@ RESULT

.. 002 BSS 0

(M)=-mmmmmmmmm=m=m o= (363.7 = 364.5)===--=======-====="" -

(This material has no counterpart in FAP, since there
is no pseudo—operation in the latter equivalent to T@.
However, the pseudo—operation 6@ (with a blank variable
fie1d) may be used. It works 11ke the book's TP with a
variable address that refers to the end of the macro-
instruction. In other words, G@ causes agssembly of the
rest of the macro-instruction to be suppressed.%

Example 17.10 Write a macro-instructlons o perform
two of the five block operations.

1.-Clearing By this is meant placing zZeros in every
word in the block. The call 1s to have the form

Tocn. Oper. Var. Fleld

CILRBLK BIL@CK,N
This means "Clear the block starting at BL@CK of size
c(N)"; the number of words in the block 1s located in N.
The macro-definition 1s

CLRBLK MACR@ A,B

AXT B, U

STZ A+B, 4
TIX *-1,4,1
END

XR4 1s used in all the block macro-instructlions and 1ls
therefore to be used outside wilth cautlon.

111
2. Moving The call 1s to have the form
MOVBILK BL@CK1,N1,BL@CK2,N2
This.means "Move the block at BL@CK1 of size C(N1) so that

1t immedlately follows the block at BL@CK2 of size C(N2).
The macro-definition is

M@VBIK MACRY B1,N1,B2,N2,21,Z2,Y1,Y2
CLA z1l
ADD N1
STA Y1
CLA 72
ADD N1
ADD N2
STA Y2
AXT N1,4
Y1 CLA *% L §B1+Nl)
Y2 ST@ *%* 4 B2+N1+N2)
TIX *¥-2 4.1
RMT
71 Bl
72 B2
RMT
END

The first 7 instructions are used to set the addresses of
locatlons Y1 and Y2. The first such address (of Y1) must
‘be set to "BL@CK1+n," and the second (of Y2) must be set to
”BLQCK2+n1+n§” 1f the first word in BLOCK1 is to go after

1

the last wor n BL@CK2.
(Refer to the book for the continuatlon of the example.)
(R) ------------------- (366-8 - 367-9) -----------------------

Example 17.11 Write a program that (1) reads three
blocks of data (wlth no more than 2500 numbers in each)
from tape F, placing them in blocks starting at LIST,
TABIE, and DIGITS, %2) comblines these into one larger block
at DIGITS, (3) places in a new block at NUMBRS all positive
numbers from this block that are less than 1000, and (4)
then prints out the list of such numbers on tape G. The
number of words in each of the three records on tape appears
in a three-word record at the start of the tape.

After the three blocks are read in, they are combined
at DIGITS. In order to add the third block (TABIE) the
slze of the combined blocks at DIGITS and LIST must be com-
puted. The total size of the combined blocks i1s needed for
the loop within which all positive numbers less than 1000
are stored in NUMBRS. As each number is stored in that

112

block, the C(XR2) 1s decreased by 1; XR2 1s used as a
pointer to the next avallable locatlon in the block at
NUMBRS. Finally, the number of words in NUMBRS 1s placed
in SZ4 and used in the PRTBIK macro-instruction. In the
program, note that the three-word record will be read into
SZ1 through SZi1+2, 1i.e., into SZ1l, SZ2, and SZ3.

Ioen., Oper. Var., Fleld
READBK SZ1,THREE,F Read 3-word record
READBK LIST,SZ1,F
READBK TABILE,SZ2,F
READBK DIGITS,SZ3,F
M@VBIK LIST,SZ1,DIGITS,SZ3
CLA SZ1 Form slze of 2 blocks
ADD SZ3
ST@? SUMSZ
ADD SZ2 Form slze of 3 blocks
ST@ THTLSZ
M@VBIK TABLE,SZ2,DIGITS,SUMSZ
AXT 7500,2
CLA XDIGIT Set address
ADD THTI1SZ
STA M@RE
LXA TPTLIZ, 1
M@RE CLA **] (DIGITS+totlsz)
TMI N@LIST Place pos. numbers
CAS TH@US smaller than 1000
TRA N@LIST in NUMBRS
TRA N@LIST
ST@ NUMBRS+7500, 2
TXI *+1,2,-1
NGLIST TIX MZRE, 1,1
SXA TEMP, 2 Determine count
CIA X7500 of numbers stored
SUB TEMP
ST@ SZ4
PRTBLK NUMBRS,SZ4,G
HTR

(Cont'd.)

113

Iocn., Oper. Var., Fleld

SzZ1

Sz2

SZ3

SZ

SUMSZ

T@TISZ

TH@GUS DEC 1000

THREE DEC 3

XDIGIT

TEMP

LIST BSS 2500

TABIE BSS 2500

DIGITS BSS 500

NUMBRS BSS 500
(R)==—=—mmmmmm e (368.4 - 370.7)=======mmmmmmmm e

Example 17.12 Write macro-instructions to simulate
100 index reglsters, using the CLA instructlion as a
specific illustration. '

Normal assembler instruction names, e.g., CLA, ADD,
and SUB, are to be used by the programmer in the usual
manner, but with tags as high as 100. Since an instruc-
tion such as

CIA LIST,68

would be mlsinterpreted by the assembler under normal
cilrcumstances, the symbol CLA must refer to a macro-
Instruction. This macro-instruction must produce the
proper coding for the simulation of XR68.

In order that the assembler operatlion codes be inter-
preted as macro-instructions, new names must be assigned
to the machlne lnstructions. Thlis may be done by a serles
of pseudo-operations as follows:

Locn, Oper. Var. Fleld
CIA. @PSYN CLA
ADD., P@PSYN ADD
SUB. @PSYN SUB

Now the original names (in the variable field above) may
be used as macro-instruction names.

114

Since the T094 has 7 index registers, 93 will be
simulated. XR8 through XR100 wlll be simulated by
93 words in memory in a block, starting at SIMXR. Thus,
XRJ, where J =8, 9, ..., 100, will be simulated by loca-
tion SIMXR+J-8.

Conslder the simulation of the CILA Instruction. One
of three coding sequences must be assembled, conditional
on the tag: (1) an untagged CLA instruction 1s required
if no tag 1s present; (2) a normal, tagged CLA instruction
is required if a tag from 1 to 7 1s gilven; and (3) a
coding sequence as follows 1is requlred if a tag from 8
to 100 1s gilven: the instructlions assembled must, when
they are executed later, modify the CLA operand address by
the contents of the slimulated XR. These conditlions are
depicted in Fig. 17.1 in the book.

Condltional-assembly techniques are required. Two
decisions must be made. The test for a tag can be made
wilth the IFF test for a created symbol; if the tag 1s
omltted, a created symbol can be produced. The test for
the "size" of the tag can be made with another form of the
IFF pseudo-operatlon. Because IFF affects only thefollowing
instructlon, an inner macro-call 1s required, since several
instructions must be assembled conditionally.

The Instructions assembled in the event that a tag
from 8 through 100 1s given provide for saving and
restoring XR1l, which 1s used as the actual index register,
for executing the CLA instruction, and for loading XR1
with the C(SIMXR+J-8).

The macro-definitlons are

Locn. Oper. Var. Fleld

CLA MACR@ A,T
IFF 1,/CRS/T
CILA. A Assemble 1f no tag
IFF 0,/CRS/T
CLAM A,T Assemble 1f tag
END

CLAM MACR® A,T
IFF T/8,1
CLA. A,T Assemble 1f tag is
IFF T/8 1 through 7
CLAN A,T Assemble otherwise
END

CLAN MACR® A,T
SXA, SAVX1,1 Save XR1
LXA. SIMXR+T-8,1
CILA. A,1
LXA. SAVX1,1

END

115

The use of a normal machine operation code as a macro-
Instruction name reassigns that name to the latter function
and deletes 1ts use as a machlne operation for that
assembly. Thus CLA now refers only to the macro-instruc-
tion.

Note that operation codes ending in "." are used when
a machine instruction 1s to be assembled. The following
three macro-calls lead to the accompanying expnasions:

"

Oper. Var. Fleld

1. Call: - CILA SWITCH
Expansion: CIA. SWITCH
2. Call: CILA LIST,5
Expansgion: CLA. LIST,5
3. Call: CLA NAME, 32
- BExpansion: SXA. SAVX1,1

- LXA. SIMXR+32-8,1
CLA. NAME,1
LXA. ©SAVX1,1

Other instructions are similarly simulated, but a
different coding structure 1s needed for such instructions
as LXA, TXI, and TSX. To simulate IXA, e.g., we need only
place a number in the proper SIMXR word (1f the tag is 8
or greater); it 1s not necessary to use a real index
reglster in the process. Similarly, to simulate TXI, we
need only increase the proper SIMXR word contents.

Locn. Oper. Var. Fileld

“ADD. PPSYN
ADD MACR@

116

Iocnhn., Oper. Var, Field

SUBT MACR® A,B,C
CIA A
SUB B
ST@ C
END

MULT MACR® A,B,C
1DQ A
MPY B
STQ C
END .

DIV MACR® A,B,C

' IDQ A

PXA 0,0
LLS 0
DVP B
STQ C
END

M@VE MACRY A,B,C
AXT B-A+1,4
CLA B+1,4
ST@ C+B-A+1,4
TIX *-2,4,1
END

JUMP MACR® A
TRA A
END

JUMPPM MACR@ A,B,C
CLA A
TPL B
TMI C

END

Example 17.13 The first technique might use a PRINTL
macro-instruction which provided a printout (probably with
a standard format) of an indefinite number of specifiled
words (a 1ist), as in

PRINTL (NUMBR,W@RD,WZRD+3,XYZ)

The structure of PRINTL depends on the form of the call
for the monitor input-output subroutine. . It can be
inserted at any desired polnts in the program.

The second technique can be exemplified by a procedure
that automatically suppliles a printout of the contents of
the referenced location in any ST@ instruction. To accom-
plish this, the operation ST@ must be defined as a macro-
instruction. Another printing macro-instruction, PRINT,
1s used.

Loen. Oper. Var, Fileld

ST, JPSYN ST@

ST@ MACRg A,T
IFF 1,/CRS/T
ST@. A
IFF 0, /CRS/T
STg. A,T
PRINT A,T
END

To allow for the presence or absence of a tag, the IFF
pseudo-operations are used. Here, we shall assume that
tag hay also be present on the PRINT call.

(R)==mmmmmmmmmmmmmem o (373.6 = 3T4.8)~mmmmmmmmmmmoooeeeee -

Example 17.14 Write the TURNON and TURNGF macro-
Instructions described.

To accomplish this, ST@ must be used for both the
normal machine instruction (when no printing is desiredg

and for the macro-instruction (when printing 1s desired
The TURN@N and TURN@F macro-instructions have the function
of the swilitching the significance (and interpretation) of
the word ST@ back and forth between these two, the machine
instruction and the macro-instruction. In this way the
printing feature i1s "turned on and off."

118

The TURN@GN and TURNGF macro-instructions have no
arguments; thelr calls appear to be pseudo-operatlons.

Ioecn. Oper. Var. Fleld

ST, PPSYN ST@

ST@3. . MACR@ A,T
IFE 1,/CRS/T
ST@. A
IFE 0,/CRS/T
ST@. A,T
PRINT A,T
END

TURN@N MACRY

ST@ @PSYN ST@d. .
END

TURNGF MACR@

ST@ @#PSYN ST@Q.
END

A short program, using these features, follows:

Tocn. Oper. Var, Field
TURNZN
AXT 200, 1

QQQ CLA LIST+200,1
ADD SIX
ST@ LIST+200,1
TIX R, 1,1
TURNQF
CILA NUMBER
STP TABLE
TZE guT

This sequence expands into the following coding
(macro-calls are not given):

AXT 200, 1

QQQ CLA LIST+200,1
ADD SIX
ST@. LIST+200,1
PRINT LIST+200,1
TIX QRA, 1,1
CLA NUMBER
ST@H. TABLE

TZE guT

- 119

Example 17.15 Write coding so that printing occurs
(1) at every third ST@ instruction, and (2) at every
third ST@ execution.

1. The ST@ macro-instruction of Example 17.13 is
modified to provide for conditlonal assembly of the output
macro-instruction (PRINT). The symbol Q 1s used as a
counter, increased by 1 each time the macro-instruction 1is
called. The IFF varlable field is similar to one given
earlier, in Section 17.1, under "Conditional Assembly."
Assembly of PRINT occurs every time Q i1s a multiple of 3.

ILoen., Oper, Var., Fleld

Q SET 0

ST, @PSYN ST@

ST@ MACRZ A,T
IFF 1,/CRS/T
STY. A
IFF 0,/CRS/T
STg@. A,T

Q SET Q+1
IFF Q-Q/3*3,1
PRINT A,T
END

2. Now counting must be done when the program 1s
executed. To achleve this, a sequence of coding must be
included that calculates the function Q-Q/3*3 where the
contents of the counter 1s Q (when the program is
executed). .

CILA CNTR Q+l to Q
ADD INE
ST . CNTR
XCA
PXA 0,0
DYP THREE
MPY THREE Q/3%*3
TNZ N@PRINT Test for Q-Q/3*3 = 0O
PRINT A,T
N@PRNT ... e

It 1s easier to compute the remainder directly, but this
approach 1s taken as a parallel to method 1.

Example 17.16 Write a macro-instruction that will
cause a single word to be assembled, containing n! The
call is to be as follows:

FACTL N

where N represents an integer to be supplied.

Two nested macro-instructlions are used. In the 1nner
macro-instruction (FACTIX) the actual recursion occurs.
The macro-instructlion repeatedly calls itself, each time
computing one more factor in n!, as follows: 1:2:3....n.
At the same time, a "counter" Q is used for loop control;
the counter runs from 1 to n. An IFF 1s used to control
the recursion; when the counter contalns the value n, the
process stops.

The outer macro-instructlon is used to 1nitlalize both
the counter Q (at 0) and a partial product F (at 1). If n
1s given as O, assembly of the FATCLX macro-call 1s sup-
pressed and F (which 1s n!) 1s set equal to 1. After
FACTLX computes n! (for n # 0), the word contalning n! is
assembled. A flowchart of the process appears in Fig. 17.2
in the book.

Iocn. Oper. Var. HFileld

FACTL MACRY N,Z

Q SET 0

F SET 1
IFF N
FACTIX N

Z DEC F
END

FACTLX MACRg N

Q SET Q+1

F SET F*Q
IFF Q=N
FACTLX N

END

As an example of how this works, congslder the call

FACTL 4

Following 1s a list of most of the pseudo-operations as

they are generated in the assembly process during the
recursive calling of FACTLX. The SET and IFF pseudo-
operations are listed 1n the order of theilr generation:

Expansion of FACTL: ' Q SET O
. F SET 1

IFF 4

Expansion of FACTLX (1st time): @ SET 1
F SET 1

IFF -3

Expansion of FACTLX (2nd time): @ SET 2
F SET 2
IFF -2

Expansilon of FACTLX (3rd time): Q SET 3
' F SET 6
IFF -1

Expansion of FACTILX (4th time): Q SET 4
F SET 24

IFF O

Expansion of FACTL: ..001 DEC 24

121

Chapter 18
INTERPRETERS AND SIMUILATION

AN INTERPRETIVE PROGRAM

The followilng instruction is useful in Example 18.2.

LOAD COMPLEMENT OF ADDRESS IN INDEX (LAC Y) (+O535);
2 cycles. The 2's complement of the C(Y)21-35 replaces
the contents of the specified index register. The C(Y)
1s unchanged.

Example 18.2 Refer to the book for the 1lntroductlon
to an analysls and flowchart of thls program. That mater-
1al applles here with one modification. The complement of
the €(10000) 1s placed in XR2, rather than the € (10000),
as noted at 398.3. This 1s necessary because 7090 index
reglisters work by decrementing. Notice that 100008 must
be added to addresses in the program before they are used
to set addresses or SIMAR, as in the M@VE, JUMPSR, and
JPPMSR routilnes.

Iocn. Oper. Var. Fleld
LAC /@/10000, 2 Place compl. of C(10000)
CILA /8/10001. in XR2
ST@ SIMAR Place starting addr in
SIMAR
NEXT CAL* SIMAR Obtain A-address by
ANA AMASK masking out rest of
ARS 18 instruction; place in
STA ADDRA ADDRA
CAL* SIMAR Obtaln B-address...
ANA BMASK
ARS 9
STA ADDRB
CAL* SIMAR Obtain C-address...
ANA CMASK
STA ADDRC
(Conttd.)

122

Loen. Oper., Var. Fleld
CAL* SIMAR
ANA @PMASK.
ARS 27
PAX 0,1
TRA* SUBRT+7,1
SUBRT J PPMSR
JUMPSR
M@VESR
DIVSR
MULTSR
SUBTSR
ADDSR
HAITSR
RETURN CIA SIMAR
ADD ZNE
STJ SIMAR
TRA NEXT
HAITSR HTR
ADDSR CLA* ADDRA
ADD* ADDRB
ST@* ADDRC
TRA RETURN
SUBTSR CILA* ADDRA
SUB* ADDRB
ST @* ADDRC
TRA RETURN
MULTSR I1DQ* ADDRA
MPY* ADDRB
STQ* ADDRC
TRA RETURN
DIVSR IDQ* ADDRA
PXA 0,0
LIS 0
DVPp* ADDRB
TRA RETURN
MZVESR CILA ADDRB
SUB ADDRA
ADD @NE
PAX 0,4
ADD ADDRA
ADD RELZCN
STA MV1
SUB ADDRA
ADD ADDRC
STA MV2

(Cont'd.)

123

Obtaln operation code

Place op. code 1in XR1
Transfer on op. code

.
6
5
I
3
2
1
0
R

eturn point after non-
tra. executlion; modify
SIMAR by 1

Form size of block:
B-A+1

Place size in XR4
Add 10000 for relocation

124

Iocn. Oper, Var. Fleld

MV1 CLA *% U B+1, which 1s A+size)

MV2 ST *% U4 B-A+C+1, which 1s
TIX *¥-2 4.1 C+size)
TRA RETURN

JUMPSR CIA ADDRA Fetch new address for
ADD RE L@CN SIMAR
STA SIMAR
TRA NEXT

JPPMSR CLA* ADDRA Test sign of C(ADDRA)
TPL TR1
CILA ADDRC Set SIMAR to C-address
ADD RELICN
STA SIMAR
TRA NEXT

TR1 CILA ADDRB Set SIMAR to B-address
ADD RELGCN
STA SIMAR
TRA NEXT

SIMAR Simulated AR

AMASK gcT 000777000000 Masks

BMASK gecT 000000777000

CMASK gcT 0000000007 TT

@PMASK @CT 007000000000

ADDRA *% 2 Reglsters for the 3

ADDRB **,2 addresses

ADDRC ** 2

@NE DEC 1

REL@GCN @CT 10000

(M)=====m—mmmmmmm - — = (391.7 = 394,8)—=---mmmmm e

(The material in 391.7 = 394.8, though 1t applies to
a program written for the DELTA 63, applies to a study of
interpreters on the 7090 as well. The concepts are
general, and a study of the material can be understood
a1lmost entirely even 1f detalls on coding are not.)

Example 18.4 Write routines for a self-Interpreter
for the (090 to simulate the instructlons TXI, TSX, and
TIX.

In the self-interpreter, the address, tag, and
decrement portions of the instruction belng executed
interpretively are placed 1n ADDR, TAG, and DECR, respec-
tively (in the address fields). Then control goes to the

individual routines.
executed at that time.

125

In addltion, the SETTAG routine is
Its purpose 1s to set into a

memory location the tag of the instruction being executed;
the address field of that word contains the address

SIMXR+1.

SIMXR heads a block of seven words; SIMXR+J-1

represents the simulated XRJ (allowing for seven index

reglsters).

thus references the proper simulated XR.

An Indirect address reference to that word

The 15 rightmost

blts of the simulated XR represent the contents of that

XR.
The routine for setting the index~-register address:
Ioen. Oper, Var. Fileld
SETTAG CIA BSIMXR
ADD TAG
ST REFXR
REFXR *x (SIMXR+]-1)
BSIMXR SIMXR-1

In the following routines, SIMAR, RETURN, and NEXT
represent the same instructions as in Example 18.2;
control passes to RETURN if a transfer is not executed;
control passes to NEXT if a transfer is executed. The
STA 1nstructlon 1s used to store a new value .1n the
simulated XRs; by so doing, any arithmetic performed on
the XR 1s effectively done modulo 1000008 as required.

Oper. Var., Field
TXI: CLA* REFXR Modlfy XR
ADD DECR
STA* REFXR
CLA ADDR "Transfer"
ST@ SIMAR
TRA NEXT
TSX: CIA SIMAR Form 2's complement
CAS DECR with decrement
TRA *43 C§XR§ gr. than decr.
TRA RETURN C(XR) equal to decr.;
TRA RETURN "go on"
SUB DECR Modify C(XR) by decrement
STA* REFXR
CLA ADDR "Transfer"
STZ SIMAR
TRA NEXT

The last three instructionsg in these three routlnes are
ldentical and could be combined.

Chapter 19
PROGRAM DEBUGGING AND TESTING

ASSEMBLER AIDS

In addition to the errors 1isted in the book, the FAP

assembler also flags these errors:
6. Illegal indirect addressing.

7. Improper tag and decrement.
8. Errors in other pseudo-operations.
9. Relocatlon errors.
(R)==m=—-mmmm==-=m—=-m= (Lo2.4 - 403.8)=--=-=--==-======---- -

Example 19.1 The followlng letters are used by the
FAP assembler to flag errors: '
- undefined symbol
- multiply-defined symbol
- 1llegal operation code
_ error in data-generating card, such as @#CT or DEC
improper address or omitted address where required
- improper tag or omitted tag where requlred
- improper decrement or omitted decrement where
required
- 1l1legal indirect addressing
- 1illegal use of pseudo-operatlon
- relocation error.

gH U PQe G
!

Other flags are given, under appropriate condltions.

The program below, taken from Example 8.7, is recoded
with several errors that are flaggable by the assembler.
The octal listing is glven with error flags. Note that
portions of octal words are omltted where errors are
present.

126

127

Location Contents Location Oper. Var. Field
00200 , @RG /@/200
00201 +0560 00 1 04147 NEW@NE IDQ LIST+2000,1

T 00202 +0774 00 0 03720 AXT 2000
00203 +0754 00 0 00000 PXA 0,0
U 00204 +0221 00 O DVP TEN
& 00205 00000 0 00000 XAC
00206 +0734 00 2 00000 PAX 0,2
00207 +0500 00 2 00227 CIA CTABLE+10, 2
M 00210 +0400 00 0 00214 : ADD @NE
00211 +0501 00 2 00227 ST@ CTABIE+10,2
UD 00212 +2 00000 00201 TIX NEW@NE,I
00213 +0000 00 0 00000 HTR
M 00214 +000000000001 ONE DEC 1
00215 CTABLE BSS 10
00227 LIST BSS 2000
M o4147 +0 00000 0O 00001 @NE PZE 1

The errors made were as follows: (1) omission of the
tag in the AXT instruction; (2) failure to define the
symbol "TEN"; (3) mispunching of XCA as "XAC"; (4) multiply
defining the symbol "@NE"; (5) mispunching of the tag "1"
as "I" 1In TIX; this appears as an undefined symbol ("I"),
(6) omission of the decrement in the TIX instruction. . Note
that two flags appear on one line; two errors were made
in one symbolic instruction.

In the event that part or all of a word cannot be
assembled because of an error, the FAP assembler sometimes
leaves blanks or, in the case of a multiply-defined symbol,
assembles the earlier address. The resulting object deck
will have zeros punched where blanks appear 1n the listing,
Thus, at location 00204, the following word 1s assembled
in the deck:

022100000000

If certaln fatal errors occur in a program, an obJect deck
1s normally not produced and the brogram 1s not run at that
time; such errors include those with flags U, M, and 4.
Other errors, called nonfatal, do not inhibit deck punching
or immedlate executlon; these include those with flags A,
T, and D. These latter "errors" may be intentional and the
assembler permits a run. Optionally, a deck may be punched
regardless, 1f appropriate indications is glven. FAP pro-
vides, with the 1listing, a 1list of undefined and multiply-
defined symbols.

The errors made in this example, 1llke all coding errors
can be corrected by the use of correction cards, described
in Section 11.1, or by reassembly.

128

The following octal correction cards will correct the
errors made in the program. They would be appllied to the
obJect deck.

Ioecn. Oper. Var. Fleld

00202 aCcT 077400103720
00204 geT 022100020000
00205 gcT 013100000000
00212 gcT 200001100201
20000 gCcT 000000000012

Most of these cards are easlly understandable. Note that
a word containing 10 (128) has been established at loca-
tion 20000, a locatlon outside the program.

Example 19.2 The symbol reference table for the pro-
gram coded in Example 8.7 1s as follows: '

Locn. Symbol References

00214 ZNE 00210, 00214
oh147 TEN 00204, 04147
00227 LIST 00201, 00227

00215 CTABIE 00207, 00211,00215
00201 NEW@NE 00201, 00212

HELP AT THE CONSOLE

Example 19.3 Refer to the book for a description and
analysls of this problem. There are, of course, only
three index registers, in the 7090; this wlll not effect
the description given. The instructions under considera-
tion are the following:

TRA 02123,2
TRA 02234,4

THE USE OF DUMPS

In the 7090 a specilal trapping feature 1s provided.
If bits S, 1, and 2 of an instruction belng executed con-
tailn the bits 1, 0, and 1, respectively, the instructlon
is Interpreted as STR:

129

STORE LOCATION AND TRAP (STR); 2 cycles. The loca-
tlon of thls instruction, plus one, replaces positions 21-
35 of location 00000. The computer then takes its next
Instruction from locatlon 00002. The contents of posi-
tlons 3-35 of thils instructlon are not interpreted.

Through the use of STR, the monltor system is able to
gain control. As the program deck 1s loaded, the SNAP
cards are also loaded. As these are encountered by the
monitor, the information on them 1s stored within the
snapshot routine. A snapshot table 1is established with a
list of addresses where snapshots are requested and with
other appropriate iInformation. The monitor places the STR
prefix in bilts S, 1, and 2, after saving the instructlons!
original prefixes.

During the running of the program, when control passes
fo an 1nstruction contalining an STR prefix, a trap occurs
and control passes to 00002. At that location, a transfer
instruction sends control to the snapshot routine. There
a search 1s made of the snapshot table, and i1f a dump was
requested at the address in location 00000 (from where
control Just came), the dump 1s given.* Then the instruc-
tion with the STR prefilx must be executed. This 1s done
remotely, within the monitor, where the proper prefix is
combined with the other 33 bits of the instruction so that
execution can occur. Filnally, control returns to the pro-
gram belng run so that 1t may continue at the point from
which control left it.

To assist the programmer when hls program unintention-
ally sends control outside the block of executable instruc-
tlons, the monitor, Just prior to loading a program, places
STR prefixes throughout memory (except for the monitor
areag. Programs loaded into memory of course write over
some of these STR's, but the areas not so covered retain
them; areas set aslde by BSS pseudo-operations retain thelr
STR's. If, then, control passes to a location outside the
program (or possibly to within a block of data), a trap
occurs and the monitor, recognizing the fact that no snap-
shot was requested at that locatlion, stops the program,
indicating where control went erroneously.

THE USE OF MACRO-INSTRUCTIONS

Example 19.4 Wrilte a short program containing a loop
in which a debugging macro-call 1s placed

*Actually, OOOOO contains one more than that address.

-

130

The program:

Iocn. Oper. Var. Fileld

AXT 100, 1

- START CILA SUM
ADD NUMBRS+100, 1
ST@ SUM
PRTBIK @,SUM,SUM,UNTIL,5
TIX START, 1,1
HTR

The resultant printout, whlch merely shows the contents of
SUM, mlght appear as follows:

000000000010
000000000034
000000000055
000000000067
000000000102

The next example shows a more complex printout, the
dump of two different blocks.

Example 19.5 Consider Example 8.6, which sorts a
1ist of 1000 numbers into two blocks, P@SIST and NEGLST.
Assume that the followlng two cards are inserted in the
program immediately preceding the instruction at M@D:

PRTBILK D,P@SIST, POSLST+3,UNTIL,4
PRTBIK D,NEGLST,NEGLST+2,UNTIL,3
The request here 1s for a declmal output, assumed to be

given with three or four words to a line. The resultant
output might be as follows:

+23498 0 0 0
0 0 0
+23498 0 0 0
-232 0 0
+23498 0 0 0
-232 -86001 0
+23498 +77 0 0

Note that four dumps of P@SIST (four numbers on a line)
were glven, while three dumps of NEGLST (three numbers on
a line) were given.

Example 19.6 Write a macro-instruction that will
provide the following information, all in octal, when
control passes to 1it:

1. The C(AC) and the C(MQ):

2. the contents of the three index regilsters;

3. the contents of any three specified words in

memory ;

4. +the contents of a block of any size in memory.
" A typilcal call is:

DUMP W@RD, XXX, SUM, LIST, LIST+10

which means "Dump the AC, the MQ, the three XRs, locatlons

WZRD, XX, and SUM, and the block from LIST through LIST+10."
In the macro-instruction that follows, the index

registers, the AC, and the MQ are flrst saved and subse-

quently restored. The PRINTL macro-instruction of

Example 17.13 1s used to print a list. A new macro-

instruction, PRINTB, 1s used to print a block.

Iocn. Oper. Var, Fleld
DUMP MACRg@ A,B,C,L,M
SXA Q,1 Save XRs
SXA Q+1l,2
SXA Q+2, 4 |
SIW Q+3 These 3 instructions save
ARS 36 all 38 bits of the AC
STd Q+4
STQ Q+5 Save MQ
PRINTL §Q,Q1,Q2) Print XRs
PRINTL (A,B,C) Print 3 words
PRINTB I,M Print block
CLA Q+L4 These 3 instructions
ATS 36 restore the complete AC
ZRA Q+3
1DQ Q+5
LXA Q,1
LXA QR,1,2
LXA Q+2, 4
END

Q BSS 6
N3TTT @CT 3TTTTTTTTTT

Accumulator 2, 68
Addition 2-5, 73
Address modification 19-20
Alphanumeric informa-

tion 61-62
coding 79-80
converting 90

Arithmetic accumulator 68

Arithmetic instruc-

tions 3, 6
Assembler aids 126
Assembler language 14
Assembly 1listing 16
BCD information 61-62
BCD pseudo-operation 63
BCI pseudo-operation 62
BES pseudo-operation uh

Block operations
43-45,110-113

Branching 46-50
Card punch 23-24
Card reader 23
Cards, loading 25
format 15
Closed subroutines 53=60
Codlng alphanumeric
information 79-80

Conditional assembly99-102

Console help 128
Conversion 90-94
integers 86-87

Convert instructions90, 93
Correction cards
61, 127-128

Created symbols 105

INDEX

133

Data, loading 25
Data channel 1
Data instruction 20

Data-moving instructions

3, 6

Data processing 90-96
Debugging 126-131
DEC pseudo-operation 72
Declsions 11-13
Decrement 30
Division 5-9, 73
Dumps _ 128-129
Dynamlc storage '

allocation 65-66
Error flags 126-127
Factorial, computation

by macro-instruc-

tions 120-121
FAP language 14-16, 52
-FPixed branching 46-47
Fixed-point numbers 2
Floating-polnt numbers 2

Floating-point operations
72-73

110
h1-42

GZ pseudo-operation
Histogram

IFF pseudo-operation
. 99-100,
Indexing instructions
29-31, 35, 40-41
Index registers 28-44
simulation of 100
113-115

107

134

Indirect addressing
43 "‘LI'LI' [57-58

Input-output operatlions

61-63

Instruction format
15, 28-29
Instruction word 2
Integers 2
conversion 86-87
ordering 88-89
Interchange sort 9l -95
Interpreters 122-125
IRP pseudo-operation 103

Targest number, deter-
mination 45-46
Iinkage, subroutine 53
Iisting, assembly 1
Iists 85-86
Ioglcal accumulator 68
Iogical instructions
20-21, 66-68, 75-76, 80
Loops 18-27

Macro-instructlons
52, 97-121, 120-130

Magnetic tapes 1
information 22
reading and writing

22-24

Masking 68

Memory 1

Memory space, minimizing

Merging 95-96

Monitor program 61, 63

Multiplication 5-9, 73

Multiplier-quotient (MQ)

register 2

Nested macro-instruc-

tions 109-110

Nim 82-85
Nonnumerical problems

75-89

Numerical problems 7T2-73

Octal correctlon cards
61, 127-128
Open subroutines 51-52
@PSYN pseudo-operation
113

Ordering lntegers
88-89, 94-95

Packing 69-71, 79
Pattern detection ~ 87-88
PMC pseudo-operation 98
Pointers 39
Polynomial evaluation
8-10, 14, 21-22, 35
Printer, line 24
Printing macro-instruc-
tions 117-119, 121
Program loops 18-27
Program planning 64-T1
Program testing 126-131
Pseudo-operations 15, 4i4,
62’63: 72’ 93"'94, 98, 113
macro-instruction 97,
99-100, 103, 107, 110

Push—-down lists hooii3
Qualifiers 16
Reading out results 26-27
Reading tapes - 22-24
Recursive macro-instruc-
tlons : 120-121

Remote assembly 107-108
Repetition in coding
: 102-104
RMT pseudo-operation 107
Running time of instruc-

tions 64

Sense indlcator register
81-82
Sequencing in memory 45-50
Shifting 66-68

Simulation, index .
reglsters 113-115
3-address computer

115-116
Skip instructions 46

Sorting, by signs 38-39
see also "Ordering"
Storage allocation 65-66
Structure of computers 1

Subroutines 51-60
linkage 53
Subtraction 2-4, 73

Summation of numbers

19-20, 33-34
subroutines

51-52, 55-57
Symbolic coding 14-17

Symbolic expressions,
analysis 76-78
Symbol reference table 128

Table-look=-at Y4o-42
Tag 28
Tapes

see "Magnetilc tapes"
Testing of programs

126-131
Test instructions 46
Three-address computers,
simulation

135

with macro-instruc-
tions 115-116
with interpreter
122-124
Time-space balance 40
Transfer instructions 10
Transfer of control 53-54
Transfer of information

54-55
Trapplng feature 129
Unpacking 69-71

Variable branching 47-49
VFD pseudo-operation 93-94

Words 1n memory 1-2
Writing tapes 22-24

ADD
ALS
ANA
ANS
ARS
AXT
CAL
CAQ
CAS
CIA
CLM
COM
CRQ

FAD
FDH
FMP
FSB
HTR
ITIA
LAC
IAS
IDI
IDQ
LGL
IGR
LXA
NZT
ONT
ORA
ORS
PAC
PAT
PAX
PBT
PXA
RQL
STW
STA

INDEX TO INSTRUCTIONS

Add

Accumulator left shift

"And" to accumulator

"And" to storage

Accumulator right shift
Address to 1ndex true

Clear and add loglcal

Convert by addition to the AC
Compare AC to storage

Clear and ADD

Clear magnitude

Complement magnitude

Convert by replacement from MQ
"Exclusive or" to the AC
Floating add

Floating divide or halt
Floating multiply

Floating subtract

Halt and transfer

Invert indlcators from AC
Ioad complement address in index
Iogical compare AC to storage
Ioad indlcators

Ioad MQ register

loglcal left shift

Logical right shift

Ioad 1ndex from address
Nonzero test

On test for 1ndlcators

"Oor" to accumulator

"Oor" to storage

Place complement address 1n index
Place AC in indicators

Place address in index

P-blt test

Place index in address

Rotate MQ left

Store loglcal word

Store address

136

3
66
68
68
66
29
20
90

s

3
6

75
90
80
73
73
13
73

3
82

122

5
81
6
66
66
29
46 .
81
5
75
88
81
40
81
41
66
21
25

STI
STO
STQ
STZ
SUB
SXA
SXD
TIX
TIQ
TMI
TNZ
TPL
TRA
TSX
TXH
TXI
TXL
XCA
ZET

Store indicators

Store

Store MQ

Store zero

Subtract

Store index in address

Store index in decrement

Transfer on 1index

Trangfer on low MQ

Transfer on minus

Transfer on nonzero

Transfer on plus

Transfer

Transfer and set 1index
Transfer on index high
Transfer with 1ndex incremented
Transfer on index low or equal
Exchange AC and MQ

Zero test

129

19

35
35
35

10
10
10
10
53
31
30
30

b6

137

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	001
	0010
	0011
	0012
	0013
	0014
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137

