
Program Product

5C33-0006-3
File No. 5360/5370-29

OS
PL/I Optimizing Compiler:
Programmer's Guide

Program Numbers 5734-PL 1
5734-LM4
5734-LM5

(These program products are available
as composite package 5734-PL3)

Third Edition (December ~974)

This is a major revision of, and obsoletes, SC33-0006-2.
This edition applies to Version 1 Release 2
Modification 2 of the PL/I Optimizing Compiler
and to all subsequent releases until otherwise
indicated in new editions or Technical Newsletters. Changes
will continually be made to the information herein; before
using this publication in connection with the operation of
IBM systems, consult the latest IBM System/360 and System/37C
Bibliography, Order No. 0360;GA22-6822-0360, for the
editions that are applicable and current.

Changes or additions to the text and figures
are indicated by a vertical line to the left
of the change. Chapter 4 has been restructured.

Requests for copies of IBM publications should be wade to
your IBM representative or to the IBM branch office serving
your locality.

A form for reader's comments is provided at the back of this
pw)lication. If the form has been removed, comments may be
addressed to IBM United Kingdom Laboratories Ltd. ,
Programming Publications, Hursley Park, Winchester,
Hampshire, England. Comments become the property of IBM.

© Copyright International Business Machines Corporation
1971,1972,1973,1974

ii

This publication is a guide to the use of
the PL/I Optimizing Compiler (program NO.
5134-PL1) in a batch environment of the IBM
Operating System. It explains how to use
the compiler to execute PL/I programs and
describes the operating system features
that may be required by a PL/I programmer.
It does not describe the language
implemented by the compiler, nor does it
explain how to use the compi ler in an
operati ng system with the Time Sharing
Option ('l'SO); these are the fUnctions of
the manuals listed under "Associated
publications," below.

The compiler is designed to operate
under Release 20.1 of the IBM Operating
System and under all subsequent releases
and modifications unless otherwise stated
in a revision of the Program Product
specifications. The compiler also operates
under Release 1.0 and all subsequent
releases of the Conversational Monitor
System (CMS) component of the virtual
Machine Facility/310 (VM/310).

An MFT, MVT, VS1, or vs2 version of the
Operating System is required. Note that
PL/I multitasking facilities can be used
only on an MVT or VS2 system.

For execution of a PL/I program, the
optimizing compiler employs subroutines
from the OS PL/I Resident Library (Program
No. 5134-LM4) and the OS PL/I Transient
Library (Program No. 5134-LM5), and this
programmer's guide assumes the availability
of these program produQts.

Different release levels of the os PL/I
Optimizing Compiler and the PL/I Resident
and Transient libraries will be compatible
in execution provide9 that the following
conditions are satisfied:

1. The release level of the transient
library is equal to or greater than the
release level of the resident library.

2. The release level of the resident
library is equal to or greater than the
release level of the compiler.

The first three chapters cover basic
topics, and are intended primarily for
casual (non-specialist) programmers or for
newcomers to IBM system/360 or IBM
system/310. The reader is assumed to have
only an elementary grasp of PL/I and the

Preface

basic concepts of data processing. These
chapters introduce the reader to the
operating system, and explain how tc run a
PL/I program and how to define a data set.

The rest of the manual ccntains rrcre
detailed information on the optimizing
compiler, and provides general guidance and
reference information on operating system
features that are likely tc be required by
the PLiI applications programmer. Most of
this information is equally relevant to the
use of the compiler in a batch or TSO
environment.

Chapter 4 describes the c~tirrizing
compiler, the data sets it requires, its
optional facilities, and the listings it
produces. Chapter 5 contains similar
information for the linkage editor and
loader, one of which is needed in addition
to the compiler to prepare a PL/I prcgram
for execution.

Chapters 6 through 10 are concerned with
the various types of data sets that can be
created and accessed by a PL/I program, and
explain how to define these data sets.

Chapter 11 describes the standard
cataloged procedures provided by IBM for
the optimizing compiler, and explains how
to modi fy them.

Chapter 12 deals with the facilities
available for debugging PL/I ~rograrrs.

Chapter 13 explains hcw tc link frograrrs
written in PL/I with those written in
assembler language. (The o~tirrizing
compiler imFlements language designed to
facilitate communication between Frcgrams
written in PL/I and those written in
FORTRAN, COBOL, and ASSEMBLER; these
facilities are described in the language
reference manual listed under "Associated
publications," below.>

Chapters 14 and 15 are concerned with
the use of built-in subroutines included in
the resident library to provide direct
interface between PL/I programs and the
operating system sort/merge and
checkpoint/restart facilities~

A series of appendixes supply sundry
reference information.

iii

Associated Publications

The language implemented by the optimizing
compiler is described in the following
publication:

OS PLiI Optimizing and Checkout
compilers: Language Reference Manual,
Order No. GC33-0009

For information on how to use ·the
compiler in a TSO environment refer to:

Os Time Sharing Option: PL/I Optimizing
compiler, Order No. SC33-0029

E'orinformation on how to use the
compiler under the Conversational Moniter
System of VM/370, refer to:

PL/I Optimizing Compiler: CMS User's
Guide, Order No. SC33-0037

The diagnostic messages issued by the
compiler and the transient library are
listed in the following publication,
together with explanations, where
necessary, and suggested programmer
response:

OS PL/I OPtimizing Compiler: Messages,
Order No. SC33-0027

Recommended Publications

The following publications are referred to
in this programmer's guide. They contain
additional details about particular topics
discussed in this manual.

os PL/I optimizing Compiler:
Execution Logic, Order No. SC33-0025

OS In trod Uc tion ,
Order No. GC28-6534

iv

Os Job Control Language Reference,
Order No. GC28-6704

Os Time Shari~tionL
Terminal User's Guide,

Order No. GC28-6763

Os Linkage Editor and loader,
Order No. GC28-6538

Os system Programmer's Guide,
Order No. GC28-6550

os Utilities, Order No. GC28-6586

os Sort/Merge, Order No. SC28-6543

os sort/Merge: Programmer's Guide,
Order No. SC33-4007

OS/VS sort/Merge: programmer's Guide,
Order Nc. SC33-4035

os SUFervisor and Data Managerrent Macro
Instructions, Order No. GC28-6647

os Programmer's Guide to Debugging,
Order No., GC28-6670

Terminal Commands and COmfiler 0Ftions:
Reference Surrrrary, Order Nc. SX33-6005

Availability of Publications

The availability of a publication is
indicated by its use key, the first letter
in the order number. The use keys are

G - General: available to users of IBM
systems, products, and services
without charge, in quantities to meet
their normal requirerrents; can also be
purchased by anyone through IBM branch
offices.

S - Sell: can be purchased by anyone
through IBM branch offices.

CHAPTER 1: INTRODUCrION
The Optimizing Compiler
The Operating System

Time Sharing Option . • • •
Jobs and Job Steps • •
Job control Language •

Cataloged Procedures •
Bxecuting a PL/I Program • •

CHAPrER 2: HOW TO RUN A PL/I PROGRAM

CHAP'l' ER 3: HOW TO CREATE AND ACCESS
A DATA SET

Using a Data Set . • • •
How to Create a Data Set • • • •

Type of Output Device (UNIT=)
Volume Serial Number (VOLUME=SER=)
Name of Data Set (DSNAME=)
Record 'l'ype (DCB=) • • • • • • •
Auxiliary Storage Required

(SPACE=) •.••••••••..
Disposition of Data set (DISP=)

How to Access a Dat a Set ••••••
Type of Input Device (UNIT=) • • •
Volume serial Number (VOLUME=SER=)
Name of Data Set (DSNAME=) • • • .
Record Type (DCB=) • • . • • • • •
Auxiliary Storage Required

(SPACE=) •••••••.•••
Disposition of Data set (DISP=)

special-purpose Parameters • • • • .
system Output (SYSOUT=) •••.
Data in the Input Stream (* and

DATA) . • • • • • • •
Standard Files . • • •
Examples • • • .

CHAPTER 4: THE COMPILER
Description of the Compiler
Job Control Statements for

Compilation ••••••••
EXEC Statement • • • • •
DO Statements for the Standard
Data sets • . • • • • • • • .

Input (SYSIN, or SYSCIN) ••
Output (SYSLIN, SYSPUNCH)
Temporary Workfile (SYSUT1)
Listing (SYSPRINT) • • • •
Source statement Library

(SYSLIB) •.•••.•.
Example of Compiler JCL

Optional Facilities • • • •
Specifying Compiler Options

Specifying Compiler Options in
the EXEC Statement • . • • • •

Specifying Compiler Options in
the PROCESS statement

Campi ler Options • • •
AGGREGATE Option • • • • • .
ATTRIBUTES Option
CHARSET Option • • • • • •
COMPILE Option . •

1
1
1
1
2
2
2
2

5

7
7
8
8
9
9
9

9
10
10
10
10
10
10

10
11
11
11

11
13
13

15
15

17
19

19
19
19
20
20

20
20
20
21

21

22
22
22
22
22
23

Contents

CONTROL Option • •
COUNT Option •
DECK Option
DU~P Option
ESD Option ••
FLAG Option
FLOW Option
GONUMBER Option
GOSTMT Option
IMPRECISE Option •
INCLUDE Option • •
INSOURCE Option
IINECOUNT Option •
LIST Option
LMESSAGE Option
MACRO Option •
MAP Option ••
MARGINI Option • •
MARGINS Option •
MDECK Option •
NAME Option
NEST Option
NUMBER Option
OBJECT Option
OFFSET Option
OPTIMIZE Option
OPTIONS Option • •
SEQUENCE Option
SIZE Option
SMESSAGE option
SOURCE option
STMT Option
STORAGE Option
SYNTAX Option
'l'ERMINAL Option
XREF Option

Specifying Execution-Time Options
Specifying Execution-Tine

Options in the PLIXOPr String •
Specifying Execution-Time

Options in the EXEC statenent •
Execution-Time Options • • • •

Execution-time Storage
Requirements •••• • • • • •

Execution-Time COUNt O[.ticn
Execution-Time FLOW Option •

Compiler Li sting • • • • • • •
Heading Informat ion •• • • • • •
Options Used for the Cc~[.ilation •
Preprocessor Input • • • • • •
Source Program • . • • • • ••
Statement Nesting Level • • • • •
Attribute and Cross-reference
Table • • • • • • • • •
Attribute Table
Cross-reference table •• • • •

Aggregate Length Tatle •
Storage Requirements • •
Statement Offset Addresses •
External Symbol Dicticnary •

ESD Entries
Other ESD Entries •• • •

24
24
24
24
24
24
24
25
25
25
25
25
25
25
26
26
26
26
26
26
27
27
27
27
28
28
28
28
28
29
29
29
29
29
30
30
30

30

31
31

32
33
34
34
35
35
35
35
36

36
36
36
37
37
38
38
39
39

Ccntents v

static Internal Storage Map
Object Listing •. ••••
Messages • • • • • • • •
Return Codes . . •

Batched Compilation .
SIZE Option
NAME Option
Return Codes in Batched

Compi lation • • • •
Job Control Language for Batched

Processing • • • • . • • • • • •
Examples of Batched Compilations

Compile-time Processing
(Preprocessing) ••• •••••

Invoking the Preprocessor • • • .
The %INCLUDE statement

Dynamic Invocation of the Compiler
Option List . • • • • •
Ddname List • • • • • •
page Number

CHAPTER 5: THE LINKAGE EDITOR AND
THE LOADER

Basic Differences
Choice of Program • • • • • • • •

Linkage Editor • •
Loader • • • • • • • •
Performance Considerations • •

Module structure . • • • . • • •
Text • . • • • • • • • . •
External symbol Dictionary .
Relocation Dictionary
END Inst ruction • • • • • • • •

Linkage Editor ••• . . • • •
Linkage Editor Processing • • • .

Main Storage Requirements
Job Control Language for the Linkage
Edi tor . • • • • • • • • • • • •

EXEC Statement •••••••
DD Statements for the standard
Data Sets • • • • • • • • •

Primary Input (SYSLIN) .••
output (SYSLMOD) • • • • • •
Temporary Workspace (SYSUT1)
Automatic Call Library (SYSLIB)
Listing (SYSPRINT) . • • • •

Example of Linkage Editor JCL
Optional Facilities •

LET Option •.
LIST Option
MAP Option •
NCAL Option
SIZE Option • • • • • . • • • .
XCAL Option
XREF Option • • • • •

Listing Produced by the Linkage
Edi tor • • • • •• • • • •

Diagnostic Messages and Control
statements • • • • • • • •

Diagnostic Message Directory
Module Map • • • • • • •
Cross-reference Table • • • •
Return Code • • • • • • •

Additional Processing • • •
Format of Control statements
Module Name • • . • • • • • • • •

Alternative Names
Additional Input Sources

40
40
40
41
41
41
41

42

42
42

43
43
44
45
45
46
46

47
47
47
47
47
48
48
48
48
49
49
49
49
50

50
51

51
51
52
52
52
53
53
53
54
54
54
54
54
55
55

55

55
56
56
57
57
57
57
58
58
58

INCLUDE Statement
LIBRARY Statement

Overlay Structures •
Design of the overlay structure
Control Statements • • • • • • •
Creating an Overlay structure

Link Editing Fetchable Lcad
Modules • • • • • • • • • • • • •

Combining PL/I Modules frow the
Optimizing and Checkout
Compilers • • • • • • • • •

Loader • • • • • • • • • • • •
Loader Processing • • • • •

Main Storage Requirerrents
Job Control Language for the Loader •

EXEC S ta tement • • • • • • • •
DD Statements for the Standard
Data Sets • • • • • • •

Primary Input (SYSLIN)
Automatic Call Library (SYSLIB)
Listing (SYSLOUT)
Listing (SYSPRINT) • •

Examples of loader JCI •
Optional Facilities of the Loader

CAll Option
EP Option
LET Option ••
MAP Option ••
PRINT Cption •
RES Option ••
SIZE Option

Listing Produced by the Loader
Module Map • • • • • • • •
Explanatory and Diagnostic
Messages • • •• •• • •

CHAPTER 6: DATA SETS AND FILES.
Data Sets • • • • • • •

Data Set Names • • • • • • • •
Blocks and Records • • • • • •
Record Formats •• • • • •

Fixed-length Records (F-format
Records) •••••••••••

Variable-length Records (D- or V-
format Records) • • •• ••

Undefined-length Records (U-
format Records) • • •

Data Set Organization
Labels • • • • • • • •
Data Definition (DO) Statement

Name of DD Staterrent • • • •
Parameters of DD statement •

Naming the Data Set • • • • •
Describing the Device and Volume •
Disposition of the Data Set

Use of the Conditional
Subparameters • • • • • • •

Data Set Characteristics • • •
Operating System Data Managerrent

Buffers •••• • •
Access Methods • • •
Data Control Block •
Opening a File • • •
Closing a File • • •

Auxiliary Storage Devices •
IBM 2520 and 2540 Card Reader and

Punch • • • • • • • • • • • •
IBM 3505 and 3525 Card Reader and

vi OS PL/I Optimizing Compiler: Programmer's Guide

59
59
59
60
61
61

62

63
64
64
64
64
66

66
66
67
67
67
67
68
69
69
69
69
69
69
70
70
70

70

73
73
73
74
75

75

75

76
77
77
78
78
78
78
78
79

79
79
80
80
80
81
81
83
83

83

Punch • • • • • • • • • • • • • •
Basic Card Reading and Punching
EBCDIC or Column Binary Modes
Stacker Selection
Optical Mark Read
Read Column Eliminate
Punch Interpret
printing on Cards • • • • •
Multiple operations ••••••
Data protection

Paper Tape Reader
Printer • • • • • • • • • • •
Magnetic Tape
Direct-access Devices

CHAPTER 7: DEFINING DATA SETS FOR
STREAM FILES • • • • • •

creating a Data Set • • • •
Essential Information
Example • • • • • • •

Accessing a Data Set
Essential Information • • • •
Magnetic Tape Without Standard

Label s • • • • • • • • • •
Record Format
Example

Print Files • • ••
Record Format
Example

Tab Control Table . • • •
Standard Files • • • •

CHAPTER 8: DEFINING DATA SETS FOR

84
84
84
85
85
86
86
86
87
88
88
88
88
89

91
91
91
92
92
93

93
95
95
95
95
96
97
98

RECORD FILES • • • • • • • • • • • • 101
Consecutive Data Sets •••••••• 101

Creating a Consecutive Data Set • 101
Accessing a Consecutive Data Set • 102

Essential Information • • • • • 102
Magnetic Tape Without Standard

Labels • . • • • • • • • • • • 103
Record Format •• . • . • • • • 103

Example of Consecutive Data Sets. 103
Punching cards and Printing • • • 104

Example 107
Indexed Data Sets • • • 107

Indexes 107
creating an Indexed Data Set • 108

Essential Information 110
Name of Data Set • • • • 111
Record Format and Keys 111
Overflow Area • . 112
Master Index • • • 114
Dummy Records 114

Accessing an Indexed Data set 114
Reorganizing an Indexed Data Set • 115
Examples of Indexed Data sets •• 115

Regional Data Sets • • •• •• • 116
creating a Regional Data set • 118

Essential Information 118
Accessing a Regional Data Set •• 120
Examples of Regional Data Sets 120

REGIONAL (1) Data Sets 120
REGIONAL (2) Data Sets 121
REGIONAL (3) Data Sets 122

Teleprocessing • • . • • • . 124
Message Processing Program (MPP) • 125
How to Run an MPP •• • • • 126

CHAPTER 9: VIRTUAL STORAGE ~CCESS
METHOD (VSAM) •• 131

VSAM Data Sets
Data Format

• • 131

Key Sequenced Data sets
Entry Sequenced Data Sets

Operations on VSAM Data Sets
Access Method Services • • •
Creating VSAM Data Sets

creating a Key sequenced Data
Set

Accessing a Key Sequenced Data

• 131
131
131

• 133
• 133
• 133

• 133

Set • • • • • • • • • • • • • • 136
Creating and Accessing an Entry

sequenced Data Set • • • • • • 137
DD Statements for VSAM Data sets 137
The Compatibility Interface 137
Password Protection of VS~M tata Sets 138
Sharing VSAM Data sets ••••• 138

Sharing between Jobs • • • • • • • 138
Sharing between Subtasks in a Job 138

CHAPTER 10: LIBRARIES OF D~TA SETS
Types of Library • • • • • • • • •
How to Use a Library • • • •

By the Linkage Editor or Loader
By the Operating system
By Your Program

Creating a library •• • •
Space Parameter •• • •

Creating a Library Merrber •
Examples • • • • •
Library Structure • • • • •

• 141
• 141
• 141
• 141
• 141
• 142
• 142
• 142

143
• 143
• 145

CHAPTER 11: CATALOGED PROCEDURES • • 149
Invoking a Cataloged Procedure • 149

Multiple Invocation of Cataloged
Procedures • • • • • • • • • • 149

Dedicated Data Sets • • • • • • 150
Multitasking using Cataloged
Procedures • • • • • • • • 150

Modifying cataloged Procedures • 151
Temporary Modification • • • 151

EXEC Staterr.ent • • • • • • • • • 151
DD Statement • • • • • • • • • • 151

Permanent Modification • • • • • • 152
IBM-supplied Cataloged Procedures • • 152
compile Only (PLIXC) •••••• 153
Compile and Link-edit (PLIXCL) • 153
Compile, Link-edit, and Execute

(PLIXCLG) ••••••••••
Link-edit and Execute (PLIXLG) ••
Compile, Load, and execute (FLIXCG)
Load and execute (PLIXG)

• 155
• 155
• 155
• 155

CHAPTER 12: PROGRAM CaECKOUT • • • • 157
Conversational Program Checkcut • • • 157
Compile-time Checkout • • • • • • • • 157
Linkage Editor Checkout ••••••• 158
Execution-time Checkout • • • • • 158

Logical Errors in Source
Programs • • • • • • • 158

Invalid Use of PL/I • 158
Unforeseen Errors • 158
Operating Error • • • 159
Invalid Input Data • • • • • • • 159
Unidentified Program Failure • • 159
Compiler or Library Subroutine

Contents vii

Fail ure • • • • • . • . •
System Failure . • • • •

Statement Numbers and Tracing
Dynamic Checking Facilities ••
control of Exceptional Conditions •

Use of the PL/I Preprocessor in

160
160
160
160

• 161

program Checkout • • 161
on- codes • . • • • • • • 161
Dumps • . • • • . • • • • . • •• 161

Trace Information 162
File Information • 163
Hexadecimal Dump • • 163

Return Codes • . • • • • 163
The ABEND Facility 164

Altering the standard Module
IBMBEER • • • • • • 164

CHAPTER 13: LINKING PLII AND
ASSEMBLER-LANGUAGE MODULES . • • • . 165

The PLiI Environment • • • • • s • • 165
Establishing the PL/I Environrllent 165

Use of PLIMAIN to Invoke a PL/I
Procedure . • • • • • • • • • • 165

PLISTART, PLICALLA, and PLICALLB . 165
The Dynamic Storage Area (DSA) and

save Area • • • • • • • • • 166
Calling Assembler Routines from PL/I 169

Invoking a Non-recursive and Non­
reentrant Assembler Routine • • . 169

Invoking a RecUrsive or Reentrant
Assembler Routine • • • • •. 169

Use of Register 12 • • • • • • • • 169
Calling PLII Procedures from

Assembler Language ••••••••. 170
Establishing the PL/I Environment

for Multiple Invocations • . • • 170
Establishing the PL/I Environment
separately for Each Invocation • 171

PL/I Calling Assembler Calling
PL/ I • • • • • • • • • • • • . 173

Assembler Calling PL/I Calling
Assembler • • • • • • • • 173

Overriding and Restoring PL/I Error-
handling • • • • • • • • • ., • 173

Arguments and Parameters • 174
Receiving Arguments in an
Assembler- Language Routine ••• 174

Assembler Routine Entry Point
Declared with the ASSEMBLER
Option •••••••••••• 174

Assembler Routine Entry Point
Declared without the ASSEMBLER
Option ••••••••• 175

Passing Arguments from an
Assembler- Language Routine. 175

CHAPTER 14: PL/I SORT ••••
Storage Requirements •

Entry Names
Procedures Invoked by Way of Sort

User Exits • • • • • • • • •
Data Sets Used by Sort/merge •

Input Data sets
Work Data Sets • •
Output Data sets •
other Data Sets

InVoking Sort/merge from PL/I • •
Multiple Invocations of

• 177
• 177

177

178
178
178
179
179
179
179

Sort/Merge • • • • • • • 180
Sort/Merge Message Listing
Options • • • • • • • • • • • • 181

Sort/Merge Sorting Techniques • 181
Examples of Using PL/I Sort • • • • • 181

Sorting Records Directly from One
Data Set to Another (PLISRTA) • • 181

Using User Exit E15 to Pass
Records to Be sorted (PLISRTB)

USing User Exit E35 to Handle
Sorted Records (PLISRTC)

• 182

• 182
Passing Records to Be sorted, and
Receiving sorted Records
°c PLI SRTD) • • • • • • • • • • •

Sorting Variable-length Records
• 182
• 183

CHAPTER 15: CHECKPOINT/REST~RT.
Writing a Checkpoint Record • • •
Checkpoint Data Set • • • • • ••
performing a Restart • • • • •

• • 189
• • 189
• • 190

• 190
Automatic Restart After a systen
Failure ••••••••••••• 190

Automatic Restart frorr Within the
Program • • • • • • • • • • • 190

Deferred Restart • • • • • • • • • 190
Modifying Checkpoint/restart
Activity • • • • • • • • • • 191

APPENDIX A: DCB SUBPARAMETERS • 193
DCB Parameter • • • • • • • • • • 193
Using Existing DCB Inforrraticn • 193

Information in Similar Data sets • 193
Information in an Earlier Data Set 193

Overriding Existing DCB Inforrraticn 193
Subparameters of the DCB Parameter • 194

BLKSIZE=n •• • • • • • • • 194
BUFNO=n •• • • • • • • • • 194
CODE=AIBICIFIIINIT • 194
CYLOFL=n • • • • • 194
DEN=0111213 • 194
DSORG=ISIDA ••••• 195
FUNC=function • 195
KEYLEN=n • • • • • • 195
LIMCT=n • • • • • 195
LRECL=n • 195
MODE= (E I C} [0 IR] • • • • • 195
NCP=n • 195
NTM=n • 196
OPTCD=option list •• 196
RECFM= • • 196
RKP=n • • • • • 197
STACK=112 ••••• 197
TRTCH=CITIEIET 197

APPENDIX B: COMPATIBILITY WITH THE
PL/I (F) COMPILER •••• • 199

199 Areas • • • • • • • •
Arrays and structures
Built-in Functions • •
Checkpoint/Restart • •
Conditions • • • • • •
Control Variable in DO
DEFINED Attribute
Dependent Declarations
DISPLAY Statement

• • • • • 199
• 199

• • 200
• 200

statement 200
• • 200

• 200
• • 200

Dumps from PL/I Prograrrs • •
ENDPAGE Condition •• • •

• • 200
• 200

Entry Names, Parameters, and

viii OS PL/I Optimizing Compiler: programmer's Guide

Returned Values • . • • 201
ENVIRONMENT Attribute 201
Error Correction • • • • 201
EXCLUSIVE Attribute • 201
Expression Evaluation 202
FIXED BINARY Expressions.. 202
INITIAL Attribute 202
LIKE Attribute . 202
Link-editing • . • • • 202
Locked Records . • 202
Multitasking Programs 202
NAME option • •. 202
Operating System Facilities 202
Pictures • • • • • • • . 203
Preprocessor • • 203
Pseudovariables 203
Record I/O . • • 203
Redundant Expression Elimination 203
Return codes • • • •• • • . 203
REWIND Option . • • • 203
Standard File SYSPRINT • • • 203
Statements. • • • • 204
Statement Labels • • • 204
Statement Lengths 204
Stream Transmission 204
Varying-length strings • 205
WAIT Statement . • • • . 205

APPEi~DIX C: REQUIREMENTS FOR PROBLEM
DETERMINATION AND AFAR SUBMISSION . 207

Original Source Program • • • . 207

Use of the Preprocessor • 207
Job Control Statements • • 207
Operating Instructions/Ccnsole
Log • • • • • • • • • • • • • • 207

Terminal Session Listing • 207
LOGON Procedure • • • 208
Listings • • • • • • • • 208
Linkage Editor Map • • • • 209
Execution-time Durrps • • 209
Applied PTFs • • • • • 209
Submitting the APAR • 209

APPENDIX D: IBM SYS~EM/360 MODELS 91
AND 195 • • • • • • • • • • • • • • 211

APPENDIX E: SHARED LIBRARY CATALOGEB
PROCEDURES • • • • • • • • • • • • • 213

Execution when Using the Shared
Library • • • • • • • • • • • • 213

Multitasking Considerations •• 213
Using Standard IBM Cataloged

Procedures • • • • • • • • • • • 214

APPENDIX F: PROGRAMMING EXAMPLE • • 215
Transient Library Modules in the

Link Pack Area • • • • • • • • • 215

APPENDIX G: RUNNING UNDER A VIRTUAL
STORAGE OPERATING SYSTEM (CS/vS> •• 249

INDEX • • . • • • • • • • • • 251

Contents ix

Figure 1-1. A JOB statement 3
Figure 2-1. How to run a PL/I
program • • • • • • • • • • • • 6

Figure 3-1. Information to be
specified when creating a data set. 7

Figure 3-2. Creating a CONSECUTIVE
data set: essential parameters of DD
statement • • • • • • • • • • • •• 8

Figure 3-3. Accessing a CONSECUTIVE
data set: essential parameters of DO
statement • • • • • • • • • • • •• 11

Figure 3-4. creating a CONSECUTIVE
data set • • • • • • • • • • • • • • 12

Figure 3-5. Accessing a CONSECUTIVE
data set • • • • • • • • • • • • •• 12

Figure 4-1. Simplified flow diagram
of the compiler • • • • • • •• 16

F'igure 4-2. Compiler standard data
sets • • • • • • • • • • • • • • •• 18

Figure 4-3. Record sizes for SYSUT1 20
Figure 4-4. Typical job control
statements for compiling a PL/I
program • • • • • • • • • • • 21

Figure 4-5. Compiler options,
abbreviations, and defaults in batch
mode • • • • • • • • • • • • • 23

Figure 4-6. Format of the FLAG
option • • . • • • • • • • • • 24

Fi.gure 4-7. Compiler listings and
associated options • • • • • • • •• 35

Figure 4-8. Contents of columns 73
to 80 of source statements • • • •• 36

Figure 4-9. Standard entries in the
ESO •••••••••••••••• 39

Figure 4-10. Selecting the lowest
severity of mespages to be printed,
using the FLAG option 40

Figure 4-11. Return codes from
compilation of a PL/I program 41

Figure 4-12. Use of the NAME option
in batched compilation • • • • • 42

Figure 4-13. Example of batched
compilation, including execution •• 42

Figure 4-14. Example of batched
compilation, excluding execution 42

Figure 4-15. Format of the
preprocessor output • • • • • • 43

Figure 4-16. Using the preprocessor
to create a member of a source
program library . • • • • • • 44

Figure 4-17. Including source
statements from a library 45

Figure 4-18. The sequence of entries
in the ddname list • • • • 46

Figure 5-1. The CSECT lOR
in format ion •• • • • • • 49

Figure 5-2. Basic linkage editor
processing • • • • • • • • • • • 50

Figure 5-3. Main storage
requirements for linkage editor
IEWLFxxx • • • • • • • • • • • • 51

Figure 5-4. Linkage editor standard

Figures

data sets •••• • • • • • • • •• 52
Figure 5-5. Typical jeb contrel

statements for link editing a PL/I
program • • • • • • • • • • • • • • 54

Figure 5-6. coding the SIZE e~ticn. 55
Figure 5-7. Linkage editor listings
and associated options • • • • • •• 55

Figure 5-8. Diagnostic message
severity codes • • • • • • • • • •• 56

Figure 5-9. Return codes from the
linkage editor • • • • • • • • • 57

Figure 5-10. Processing of
additional data sources • • • • 59

Figure 5-11. Overlay structure and
its tree • • • • • • • • • • • 60

Figure 5-12. Creating and executing
the overlay structure of Figure 5-11 61

Figure 5-13. Control secticns to be
deleted for optimum space-saving •• 63

Figure 5-14. Example ef link-editing
a fetchable load module • • • • •• 63

Figure 5-15. Basic loader processing 65
Figure 5-16. Loader processing, link-

pack area and SYSLIB resolution 65
Figure 5-17. Main storage

requirements for the loader 66
Figure 5-18. Loader standard data
sets • • •• •• •• •••• 66

Figure 5-19. Job centrol lar.guage
for load-and-go • • • • • • • • •• 68

Figure 5-20. Object and load I('odules
in load-and-go • • • • • • • • • •• 68

Figure 5-21. Contents of SYSLOUT
and SYSPRINT data sets • • • • • • • 70

Figure 6-1. A hierarchy of indexes. 73
Figure 6-2. Fixed-length records •• 75
Figure 6-3. Variable-length records 76
Figure 6-4. The three rrain ty~es of

data set • • • • • • • • • • • 77
Figure 6-5. The access rrethcds used

by the compiler • • • • • • • • 81
Figure 6-6. Access rrethods fcr

record-oriented transmission • • 82
Figure 6-7. How the o~erating systerr

completes the OCB •• • • • • • •• 82
Figure 6-8. Card read punch 2540:
stacker numbers • • • • • •• 83

Figure 6-9. An example of a program
to link edit the DPI • • • • • • •• 88

Figure 7-1. creating a data set:
essential parameters ofDD staterrent 92

Figure 7-2. creating a data set with
stream-oriented transmissicn. • •• 93

Figure 7-3. Accessing a data set:
essential parameters of DD statement 94

Figure 7-4. Accessing a data set
with stream-oriented transmission 94

Figure 7-5. Printer control cedes
used by a PRINT file • • • • • • 95

Figure 7-6. Creating a data set
using a PRINT file • • • • • • • 96

Figure 7-7. Tab control library

Figures xi

module IBMBSTAB • • • • • • • • •• 97
Figure 7-8. PL/I structure PLITABS

for modifying the standard tab
settings (alternative method) 98

Figure 8-1. creating a CONSECUTIVE
data set: essential parameters of DD
statement . • • • • • • • • • . •• 101

Figure 8-2. DCB subparameters for
CONSECUTIVE data sets • • • • • • • 102

Figure 8-3. Accessing a CONSECU'IIVE
data set: essential parameters of DD
statement . • • •• ••• • • • 103

Figure 8-4. Creating and accessing a
CONSECU'l'IVE data set • • • • • . •• 104

Figure 8-5. ANS printer and card
punch control codes • • •• 105

Figure 8-6. 1403 printer control
codes • • • • • • • • • • 106

Figure 8-7. 2540 Card Read Punch
control characters • • • • • • • • • 106

Figure 8-8. 3525 card printer
control code (CTLASA) ••••• 106

Figure 8-9. 3525 card printer
control codes (CTL360) • • • • 106

Figure 8-10. printing with record-
oriented transmission • • • • 107

Figure 8-11. Index structure of an
INDEXED data set • • • • • • • 108

Figure 8-12. Adding records to an
INDEXED data set • . • • • • • 109

Figure 8-13. Creating an INDEXED
data set: essential parameters of DD
statemen t . • • • • • • • •• • 111

Figure 8-14. DCB subparameters for
an INDEXED data set • • • • • • 112

Figure 8-15. Record formats in an
INDEXED data set • • • • • . 113

Figure 8-16. Record format
information for an INDEXED data set 114

Figure 8-17. Accessing an INDEXED
data set: essential parameters o:f DD
statement • • • • • • • • • •• 115

Figure 8-18. creating an INDEXED
data set • • • • • • • • • • • • • • 116

Figure 8-19. Updating an INDEXED
data set • • • • • • • • • • •• 117

Figure 8-20. creating a REGIONAL
data set: essential parameters of DD
statement • • • • • • • • •• • 119

Figure 8-21. DeB subparameters for a
REGIONAL data set • • • • • • • • • 119

Figure 8-22. Accessing a REGIONAL
data set: essential parameters of DD
statement • • • • • • • • • • • • • 121

Figure 8-23. Creating a REGIONAL(l)
data set • • • • • • • • • • • • • • 122

Figure 8-24. Updating a REGIONAL(l)
data set • • • • • . • • • • • • • • 123

Figure 8-25. Creating a REGIONAL(2)
data set • • • • • • • • • • • • • • 124

Figure 8-26. Updating a REGIONAL(2)
data set directly • • • • • • • • • 125

Figure 8-27. Updating a REGIONAL(2)
data set sequentially • • • • • • • 126

Figure 8-28. Creating a REGIONAL(3)
data set • . • • • • • • • • • • • • 127

Figure 8-29. Updating a REGIONAL(3)
data set directly • • • • • • • • • 128

Figure 8-30. Updating a REGIONAL(3)
data set sequentially ••••••• 129

Figure 8-31. PL/I nessage processing
program • • • • • • • • • 130

Figure 9-1. Structure of Key
Sequenced Data Set • • • • • • • • • 132

Figure 9-2. Indexed VSAM Data set • 132
Figure 9-3. The principal ~ccess

Method Services functions • • • • • 133
Figure 9-4. creating and

Initializing a Key Sequenced Data
Set • • • • • • • • • • • 134

Figure 9-5. Updating a Key sequenced
Data set • • • • • • • • • • • • • • 135

Figure 9-6. Creating an Entry
Sequenced Data Set • • • • • • • • • 136

Figure 10-1. Information required
when creating a library • • • • • • 142

Figure 10-2. Creating new libraries
for compiled otject modules • 144

Figure 10-3. Placing a load rrodule
in an existing library • • • • • • • 144

Figure 10-4. Creating a library
member in a PL/I program • • • • • • 145

Figure 10-5. Updati.ng a library
member • • • • • • • • • • • • • • • 145

Figure 10-6. structure of a library 146
Figure 11-1. Invoking a cataloged

procedure • • • • • • • • • • • • • 153
Figure 11-2. Modifying a cataloged

procedure to produce a punched card
output·. • • • • • • • • • • • • • • 153

Figure 11-3. cataloged procedure
PLIXC • • • • • • • • • • • • 154

Figure 11-4. cataloged procedure
PLIXCL • • • • • • • • • • • • • • • 154

Figure 11-5. Cataloged procedure
PLIXCLG • • • • • • • • • • • • 154

Figure 11-6. cataloged procedure
PLIXLG • • • • • • • • • • • • • • • 155

Figure 11-7. Cataloged procedure
PLIXCG • • • • • • • • • • • • • • • 156

Figure 11-8. Cataloged procedure
PLIXG • • • • • • • • • • • • 156

Figure 12-1. Return codes frorr
execution of a PL/I program • 163

Figure 12-2. Typical User-written
IBMBEER Module • • • • • • • • • • • 164

Figure 13~1. Inserting a PL/I entry
point add~ess in PLIMAIN • • • • • • 166

Figure 13-2. Establishing PLIMAIN as
an entry in the assembler-language
routine • • • • • • • • • • • • • • 166

Figure 13-3. (part 1 of 2). Invoking
PL/I procedures frqm an assembler
routine • • • • • • .• • • • •••• 167

Figure 13-3. (Part 2 of 2). Invoking
PL/I procedures from an assembler,
routine • • • • • • • • • • • • • • 168

Figure 13-4. Invoking a non­
recursive and non-reentrant
assembler routine •••• • •••• 169

Figure 13-5. Invoking a recursive c~
reentrant assembler routine •• 170

Figure 13-6. Use of PLISTAR~ for
ATTACH. • • • • • • • • •• •• 172

Figure 13-7. Use of PLISTAR~ passing
null parameter string 172

xii os PL/I Optimizing Compiler: programmer's Guide

Figure 13-8. Coding the options word 172
Figure 13-9. Use of ptICALLA • • • • 172
Figure 13-10. Use of PLICALLB . 173
Figure 13-11. Method of overriding
and,restoring PLiI error-handling • 174

Figure 14-1. Sort/merge program
entry points • • • • • • • • •• 177

Figure 14-2. Arguments used when
invoking sort/merge • • • • •• 179

Figure 14~3. Multiple invocations of
sort/merge • • • • • • • • • • • • • 180

Figure 14-4. Sort/merge message
listing options •• • • • • •• 181

Figure 14-5. Specifying a sort/merge
message listing option • • • • • • • 181

Figure 14-6. Specifying a sort/merge
sorting technique option • • •• 181

Figure 14-7. Invoking sort/merge via
entry point PLISR'I'A • • • • • • 182

Figure 14-8. Invoking sort/merge via
entry point PLISR'I'B • • • • •• 183

Figure 14-9. Invoking sort/rrerge via
entry };:oint FI.ISRl'C ••• • • • • • 184

Figure 14-10. Invoking sort/rrerge
via entry point PLISRl'D • • • • • • 185

Figure 14-11. Sorting variatle-
length records • • • • • • • • • 186

Figure A-l. Specifying tape
recording techniques using the TRTCE
subparameter • • • • • • • • • • 197

Figure B-1. Environrrent opticns
recognized ty the compiler • • • • • 201

Figure B-2. Teleprocessing
environment options ••• • • 201

Figure B-3. operating systerr
facilities • • • • • • • • • • • 202

Figure B-4. Statement length
limitations ••• • • • ••• 204

Figure C-l. Summary of requirements
for APAR submission ••••• 208

Figure G-l. Compiler spill file
record sizes • • • • • • • • • 249

Figures xiii

The Optimizing Compiler

The PLII Optimizing Compiler is a
processing program that translates PL/I
source programs, diagnosing errorS as it
does so, into IBM System/360 machine
instructions. These machine instructions
make up an object program. (Later in this
chapter there is a description of how an
object program is prepared for execution.)

The compiler is designed to produce
efficient object programs either with or
without OFtimization. This optimization,
which is optional, can be specified by the
programmer by Reans of a compiler option.
(see Chapter 4 for details.)

If optimization is specified, the
machine instructions generated will be
optimized if necessary, to produce a very
efficient object program.

If optimization is not specified,
compilation time will be reduced.

The optimizing compiler can also be used
conversationally. It can be invoked from a
remote terminal to compile and execute a
PL/I source program, and return the results
to the terminal or to a printer.

The optimizing compiler requires a
mininum of 50K bytes of main storage when
used with MFT and a minimum of 52K when
used with MVT. (For minimum storage under
OS/VS see Appendix G.) In any case it will
work more efficiently with larger amounts
of main storage.

The Operating System

The optimizing compiler must be executed
through the IBM Operating System. This
operating system is used with both
System/360 and System/370.

The operating system relieves the
programmer of routine and time-consuming
tasks by controlling the allocation of
storage space and input/output devices.
The throughput of the system is increased
because the operating system can process a
stream of jobs without intervention by the
operator.

The operating system comprises a control
program and a number of processing

Chapter 1: Introduction

programs. The control progran su~ervises
the execution of all processing programs,
and provides services that are required by
the processing prograns durir.g their
execution. The processing programs include
such programs as compilers, the linkage
editor, and the loader (described later in
this chapter). The operating systen is
described in the publication os
Introduction.

The optimizing compiler can be used with
four operating system contrel prograns:

• MFT (Multiprogranning with a Fixed
number of Tasks) permits up to fifteen
jobs to be processed concurrently, each
job occupying a separate area of main
storage tern:ed a partitier..

• MVT eMul tiprograrrning with a Variable
nurrber of Tasks) permits up to fifteen
jobs to be processed concurrently, each
job occupying a separate area of main
storage termed a regien.

• VS1 and VS2 (Virtual Storage) errploy
addressable auxiliary storage that
appears to the user as rrain storage. In
use VS1 and VS2 are generally similar to
MFT and MVT respectively; the
differences are explained in Appendix G.
Except as explained in the appendix, all
inforl(',ation in this manual about WT
applies to VS1, and all ir.fornatien
about MVT a~plies to VS2.

TIME SHA~ING OFTION

An optional facility of the ~VT operating
system is the Time Sharing Option (TSO).
One or rrore regions can be allocated to TSO
and several users can have concurrent
access to the system. Each user enters his
jobs from a remote terminal and can receive
the results at the tern,inal. (To centrast
it with this "conversational" mode of
operation, the more conventienal nethod of
submitting jobs through the system operator
is called batch operation.)

This progran,rrer's guide ferns a complete
guide to the use of the optimizing compiler
in a batch environment. It also prevides
essential background and reference
information for the TSO user: however,
instructions on how to use TSO and how to
use the optimizing ccnpiler with TSO are
contained in the publications TSO Terminal

Chapter 1: Intreduction 1

User's Guide and TSO: PL/I Optimizing
compiler.

JOBS AND JOB STEPS

In a batch environment, the order of
processing jobs is determined by a user­
defined job class and/or priority. Thus
the order in which jobs are processed may
differ from the order in which they are
entered. consequently jobs should be
independent of each other.

A job comprises one or more jQt steps,
each of which involves the execution of a
program. Since job steps are always
processed one-by-one in the order in which
they appear, they can be int~rdependent.
For example, 'the output from one job step
can be used as the input to a later one,
and the processing of a job step can be
made dependent on the successful completion
of a previous job step.

JOB CONTROL LANGUAGE

Job control language (JCL) is the means by
which a programmer defines his jots and job
steps to the operating system; it allows
the programmer to describe the work he
wants the operating system to do, and to
specify the input/output facilities he
requires.

Chapter 2, "How to Run a PL/I Program,"
illustrates the use of JCL statements that
are essential for the PL/I prograrrmer.
ThE~se statements are:

• JOB statement, which identifies the
start of a job.

• EXEC statement, which identifies a job
step and, in particular, specifies the
program to be executed, either directly
or by means of a cataloged procedure
(described later in this chapter).

• DD (data definition) statement, which
defines the input/output facilities
required by the program executed in the
job step.

• /* (delimiter) statement, which
separates data in the input stream from
the job control statements that follow
this data.

JOB, EXEC, and DO statements have the
same format, and Figure 1-1 shows an
example of a JOB statement on a punched
card. These three statements are

identified ty the character sequenc~ // in
columns 1 and 2. Each statenent can
contain four fields -- narre, o~eraticn,
operand, and comments -- that are separated
by one or more blanks. The narre field
always starts in column 3.

A full description of job control
language is given in the putlications as
Job Control Language User's Guide and as
Job Control Language Reference.

Cataloged Procedures

Regularly-used sets of job control
statements can be prepared cnce, given a
name, stored in a system litrary, and the
name entered into the catalog for that
library. such a set of statements is
termed a cataloged procedure. A cataloged
procedure comprises one or rrcre job steps
(though it is not a jot, because it must
not contain a JOB staterrent). It is
included in a job by specifying its name in
an EXEC statement instead of the narre of a
program.

several IBM-supplied cataloged
procedures are available for use with the
optimizing compiler. Chapter 11 describes
these procedures and how to use therr.

EXECUTING A PL/I PROGRAM

The process of executing a PL/I program
requires a minirr.um of two job steps.

A compilation job step is always
required. In this step the optimizing
compiler translates the PL/I source ~rograrr
into a set of machine instructions called
an object module. This object module does
not include all the machine instructions
required to represent the source ~rogram.
In many instances the corrpiler ll'erely
inserts references to sutroutines that are
stored in the as PL/I Resident Library.

To include the required subroutines from
the resident library, the object rrodule
must be processed by one of two processing
programs, the linkage editor and the
loader. sutroutines from the resident
library may contain references to other
subroutines stored in the as PL/I Transient
Library. The subroutines frcrr the
transient library do not become a permanent
part of the compiled prograrr; they are
loaded into main storage when needed during
execution of the PL/I pragran, and the
storage they occupy is released when they
are no longer needed.

2 OS PL/I Optimizing Compiler: Programmer's Guide

Name of
job

Accounting
information

Programmer's
name

//E~~MPLE JOB (2345~Al1i),J.BLDGGS

A I. I I I I II II
J tolllR II I I II
II 10 Z :'~ ~ n ~': f: G :J g n t: I n {~ n () n I n :.~ ~ 0 ;:~ ::. :.! I :'~ n : n D r: :: t~ :',: :'~ ~; C C [; :.) '·1 •. ~ '~: \.: r: '~i n ~! ~; ,.~ 0 n ; ~ G iJ :} n ~J :.~ n n \} ~.~ {,; ~'~. :.~ n n

1 2 3 c S (, 7 8 9 10 q 11 ti 14 1516 11 1113 ;'0 ;'111 13 24 25 ~6 27 ii 2Q 30 31 J(:3 101 33 3S 1i 38 3~ 404142 .p ,'4 ~1 ·ft: i"; 41J n!1) ~, ;,,~ ~3 ~~ ~5 Sf, '57 :..~ :,) SO 61 S2 Sl S4 65 SI) C7 66 G9 70 11 72 1'! 1516·/; i: in (;;)
III ill I I JI j 1 j 1 1 >; I) 111111 llA: 1 .; i ; i J l; 11 , : i ;!I; . I; A 'ii f ! ; 1 J i :ii ~ i' :, i :1 ,:

[3 "'?? ":' K I.:::' I;'" S ;::??' i;' • ?? :;' I,'? K ,"," ::' 5 2':;:':' ";~' B }",'
C :;;:' 'I,,;, L ;;:':; I ::: • ';": J I" I • :;:::~:" :,' L ';:' ;; T ::; ,: ,:: .~ ,'; C ;~ ~

, K ,'~':' z S

:3 L ; ';\', T
: ,\ 0 I, ,;::l M ': ,lll; U ,1" ~.;;l ',1 0 ,~: ,; ,>," M '::,:.; U ':",~

:,.,1 E :, :il:::' NI:; :;,1; V :.1,:"", E;,:,'",", :.' N (; ',~,;, V:',:", ,;

"; 0 ,i';·

. i E .~:.

, "~ M : ,;:' U ",'" ,.~

N ,'0; V'., \:.

:' ',' .:;, F ;':: "I:; 0 ,. :j;:, W :, ::;;: ,; IF' i, 0 ;;:::;;, ' W (;;' F ::,' 0 :.';: ',.: W

;> ..) I; I i' i i ~'i P ; f l ,: i X l 01 ; i 'J i IIG: :,: " i -: P " i ; I: X :, J i ! .' :: i G "i ''; :'..' P j": i .' i X
~Jb~j~ H ~ ~0&1 Q ~I~~J Ilsl:jd8 H ~~3[~8 Q ~3CJj , e~a~~.s H as: ~ Q ~;~~~ Y
~; : " .. : ;':1 : ,: ': '. " :";' R ,;',': ~.I:i Z \i:l" : .• 2~' , '~':'" ':l R ::l:::.: Z ,', " ,:,~ I:',:,:", R' ': :'; :' Z
, : : 4 .: 6 ; e 9 :0111, "J ~1 15 If; 17 18 i~;O~: (2'3 24l~ 20 27 =8 2!1:~ 'I: :~ 33 J~ ~~ 3t ~7 ~~ .~' ~o :~ u·q'~ ~J 46'" ·10 ~J :.:15t ;i2~) ~1 Jj 5< ~; ~8:~ €C c~ p t3~; :5':: ~1~} ~.3 ;.; /1 r;. 13 14 7~ 15,7 7il"lJ ~J

'''M' WTC :<,!Ij~ •

Figure 1-1. A JOB statement

When using the linkage editor, two
further job steps are required after
compila.tion. In the first of these steps,
the linkage editor converts the object
module into a form suitable for execution.,
and includes subroutines, referred to by
the compiler, from the resident library.
The program in this form is called a load
module. In the final job step, this load
module is loaded into main storage and
executed.

When using the loader, only one nore job
step is required after compilation. The
loader processes the object module,
includes the appropriate library
subroutines, and executes the resultant
executable program immediately.

Both the linkage editor and the loader
can combine separately produced object

rr.cdules and previously processed lcad
nodules. However, they differ in one
important respect: the linkage editcr
produces a load module, which it al~ays
places in a library, ~here it can be
pernanently stored and called whenever it
is required; the loader creates cnly
temporary executable programs in main
storage, where they are executed
immediately.

The linkage editor also has several
facilities that are not provided by the
loader; for exanple, it can divide a
program that is too large for the space
available in main storage, se that it can
be loaded and executed segment by segment.

The lcader is intended primarily for use
when testing prograns and fer I;rocessing
programs that will be executed only once.

Chapter 1: Intreducticn 3

Chapter 2: How to Run a PL/I Program

The job control statements shown in Figure
2-1 are sufficient to compile and execute a
PL/I program that comprises only one
external procedure.

This program uses only punched-card
input and printed output. For other forms
of input/output refer to Chapter 3. The
listing produced includes only the standard
default items. Many other items can be
included by specifying the appropriate
compiler options in the EXEC statement.
'l'he compiler listing and all the compi ler
options are described in Chapter 4. The
linkage editor listing and the linkage
editor options are described in Chapter 5.
Appendix F is a sample PL/I program that

includes most of the listing items
discussed in these two chapters.

The example in Figure 2-1 uses the
cataloged procedure PLIXCLG. Several other
cataloged procedures are su~~lied by IBM
for use with the optimizing compiler (for
example, for co~pilation only). The use of
these other cataloged procedures is
described in chapter 4.

An alternative method of specifying
compiler options is by use of the PROCESS
statement, which is described in Cha~ter 4.
An example of a PROCESS staterrent is:

• PROCESS MACRO,OPTCTIME);

Chapter 2: How to Run a PL/I Prograrr 5

JOB statement

EXAMPLE is the name of the job. You can use any name
that does not have more than eight alphameric or national
characters; the first character must not be numeric. The
job name identifies the job within the operating system; it
is essential. The parameters required in the JOB statement
depend on the conventions established for your installation.

EXEC statement

PLlXCLG is the name of a cataloged procedure supplied by
IBM. When the operating system meets this name, it replaces
the EXEC statement with a set of JCL statements that have
been written previously and cataloged in a system library.
The cataloged procedure contains three procedure steps:

PLI The compiler processes the PUI program and translates
it into a set of machine instructions called an object
module.

LKED The linkage editor produces a load module from the
object module produced by the compiler.

GO The load module produced by the linkage editor is
loaded into main storage and executed.

DD statement

This statement indicates that the statements to be processed
in procedure step PLI follow immediately in the card deck.
SYSI N is the name that the compiler uses to refer to the
device on which it expects to find this data. (In this case,
the device is the card reader,and the data is the PUI program.)

~
elimiter statement

This statement indicates the end of the data (that is, the
PL./I program).

DD statement

This statement indicates that the data to be processed by the
program (in procedure step GO) follows immediately in the
card deck.

Delimiter statement

This statement indicates the end of the data.

Figure 2-1. How to run a PL/I program

PUI source statements 1----_

~ //EXAMPLE JOB (6487,N14),JONES,MSGLEVEL=1
//STEP1 EXEC PLlXCLG

~ //PLI.SYSIN DO *

EXOOt: PROCEOURE OPTION$(MAJN1;
DECLARE (A,B,C)fIXEDOECt~A.4(31;
ONENOFJLE(SVSINlGOTO·PINISH;

NEXT: GETF ILE{SYSIN}OA'tA(A,BJ;
0=1\+8;•
PUr •. FILE(SYSPRINT)SKIPOATA:(A,B,C);
GO TO NEXT;

FINISH: END;

/*
//GO.SYSIN DO *

A=1316;:::;75;
·A=:~2 8=907;
A=-14S#14;
A=341B#429;
A=245B#.'102;

r

Data to be processed
by the PUI program

6 as PL/I Optimizing Compiler: programmer's Guide

Chapter 3: How to Create and Access a Data Set

Informa ti on
Required

Type of output
device to which the
data set will be
transmi tted.

Serial number of the
volume (tape reel,
disk pack, etc.)
that will contain
the data set.

Name of the data
Set.

Type of records in
the data set.

Amount of auxiliary
storage required for
the data set
(direct-access
devices only).

DispositiQn of the
data set on entry
to, and at the end
of the job step.

Parameter of
DD statement

UNIT=

VOLUME=SER=
(or VOL=SER=)

DSNAME= (or DSN=)

DCB= (see appendix A)

SPACE=

DISP=

Figure 3-1. Information to be,
specified when creating a
data set

A data set is any collection of data in
auxiliary storage that can be created or
accessed by a program. It can be punched
onto cards or a reel of paper tape; or it
can be recorded on magnetic tape or on a
direct-access device such as a magnetic
disk or drum. A printed listing can also
be a data set, but it cannot be read by a
program.

Data sets that are created or accessed
by PL/I programs must have one of the
following types of organization:

CONSECUTIVE

INDEXED

REGIONAL

Teleprocessing

The items of data in a CONSECUTIVE data
set are recorded in the order in which you

present them, and can be accessed only in
the order in which they were ~resented or,
in the case of magnetic tape, in the
reverse order. The items of data in
lNDEXED and REGIONAL data sets are arranged
according to "keys" that you su~ply when
you create the data sets. teleprocessing
data sets are organized as ccnsecutive
groups of data items.

This chapter explains how tO,create and
access CONSECUTIVE data sets stored en
magnetic tape or on a direct-aGcess device.
It is intended to provide an intrcduction
to the subject of data management,' and to
meet the needs of those ~rograrrmers who do
not require the full input/output
facilities of PL/I and the c~erating
system. Chapters 6 through 9 contain a
full explanation of the relaticnshi~
between the data management facilities
provided by PL/I and those ~rovided by the
operating system, and they explain how to
create and access all the ty~es of data
sets referred to above.

Using a Data Set

To create or access a data set, you rrust
not only include the appropriate input and
output statements in your PL/I program, but
you must also supply certain information to
the operating system in a DB staterrent. A
DD statement defines a data set and
specifies how it will be handled. The
information contained in a DD· statement
enables the operating systerr to allccate
the necessary auxiliary storage devices,
and allows the compiler to use the data
management routines of the operating system
to transmit data between rrain storage and
auxiliary storage.

The language reference manual for this
compiler describes the input and cut~ut
statements that you will need to use in
your PL/I program. Essentially, you must
declare a file (explicitly or contextually)
and open it (explicitly or inplicitly)
before you can begin to transrrit data. A
file is the means provided in PL/I for
accessing a data set, and is related to a
particular data set only while the file is
open; when you close the file, the data set
is no longer available to your program.
This arrangement allows you to use the same
file to access different data sets at
different times, and to use different files
to access the same data set.

Chap~er 3: How to Create and Access a Data Set 7

r---,
1 Parameters of DD Statement

Storage Device 1---
1 When required 1 What you must state 1 Parameters

1 1 Output device 1 UNIT= cr SYSOUT=
All 1 Always 1---

1 I Block sizeS. I DCB=(BLKSIZE= •••)

Direct access only 1 Always 1 Auxiliary storage I SPACE=
1 1 space required I

1 Data set to be used I 1
I by another job step I Disposition 1 DISP=
I but only required I I
I by this job I 1

Direct access and
standard labeled
magnetic tape

1---
1 Data set to be kept I Disposition I DISP=
1 after end of job 1---
I I Name of data set 1 D SN=
1---
1 Data set to be on 1 Volume serial number I VOL=SER=
1 particular volume I I

1Alternatively, you can specify the block size in your PL/I program by using the
ENVIRONMENT attribute. L-----.---------------________________________________ -----------------------------------J

Figure 3-2. creating a CONSECUTIVE data set: essential parameters of DD statement

You must provide a DD statement for each
data set that you will use in each job
step. If you use the same data set in more
than one job step, each job step that
refers to this data set must include a DD
statement for the data set.

If you are using a cataloged procedure,
such as PLIXCLG (described in Chapters 2
and 10), the DD statement for any data set
processed by your program must be
associated with the appropriate step of the
procedure by qualifying the name of the DD
statement with the name of the procedure
step. For example:

//GO.RESULTS DD

would indicate a DD statement named RESULTS
in procedure step GO, as in the example in
Figure 3- 5. The name of the DD statement
is known as its .. ddname" •

How to Create a Data Set

The information that you should specify
when you create a data set is listed in
Figure 3-1, which also shows the parameters
of the DD statement that you should use.

The following paragraphs discuss the use
of these parameters in creating a

CONSECUTIVE data set. Figure 3-2
summarizes this discussion, Figure 3-4 is
an example of creating this type of data
set, and the sutparameters of the DeE
parameter are described in Appendix A. The
job control language reference publication
explains how to code a DD statement.

TYPE OF OUTPUT DEVICE (UNIT=)

You must always indicate the type of output
device (for example, magnetic tape or disk
drive, card punch, or printer) cn which you
want to create your data set. Usually the
simplest way to .do this is tc use the UNIT
parameter, although for a printer or a card
punch it is often more convenient tc use
one of the special forms of DD statement
discussed under ·Special-purpose
Parameters,· 'later in this chapter.

In the UNIT parameter, you can specify
either the type number of the unit (for
example, 2311 for a disk drive) or the name
of a group of devices (for example, SYSDA
for any direct-access device). The group
names are established for a syste~ during
system generation.

8 OS PL/I Optimizing Compiler: Programmer's Guid~

VOLUME SERIAL NUMBER (VOLUME=SER=)

A unit of auxiliary storage such as a reel
of magnetic tape or a magnetic disk pack is
termed a volume~ a volume can contain one
or more data sets, and a data set can
extend to more than one volume. A voluRe
is identified by a serial number that is
recorded within it (and usually printed on
the label attached to it). Although a deck
of cards, a printed listing, and a reel of
paper tape can be considered to be volumes,
they do not have serial numbers.

specify a volume serial number only if
you want to place the data set in a
particular volume. If you omit the VOLUME
parameter, the operating system will print
in your program listi.ng the serial number
of the volume in which it placed the data
set.

The VOLUME parameter has several
subparameters. To specify a volurre serial
number, you need only the SER (serial
number) subparameter (for example,
VOLUME=SER=12345).

NAME OF DATA SET (OSNAME=)

You must name a new data set if you want to
keep it for future jobs. If the data set
is temporary (required only for the job in
which it is created), you can still name
it, but you need not; if you omit the
OSNAME parameter, the operating system will
assume that the data set is temporary; and
will give it a temporary name.
Alternatively, you can specify your own
temporary name by prefixing it with the
characters &&. For example:

OSNAME=&&TEMP

This is especially useful if you want to
use the temporary data set in more than one
step of your job. The cataloged procedures
supplied with the optimizing compiler
contain examples of such use.

RECORD TYPE (DCB=)

You can give record-type information either
in your PL/I program (in the ENVIRONMENT
attribute or LINESIZE option) or in a DO
statement. This discussion refers only to
the DD statement, and does not apply if you
decide to give the information in your
program; refer to the language reference
manual for this compiler for a description
of the ENVIRONMENT attribute and the

I.INESIZE option.

The type of record in a data set is
defined by its format, its ~hysical length
(block size), and the length of the
subsections (logical record length) ~hich
together can be considered te Irake uI; a
physical record.

The records in a data set must have one
of the following fornats:

F fixed length

V variable length (0- er V-fcrnat)

U undefined length

F-, D-, and V-forrrat recerds can be
blocked (FB, DB, or VB) or unblocked (F, D,
or V): V-format records can be sFanned. (A
spanned record is a record whose length can
exceed the size of a block. If this
occurs, the,record is div~dedintc segments
and accommodated in two or more consecutive

Iblocks. D-format indicates that the recorQ
lis in an ASCII data set. (see the
Ilanguage reference manual for this compiler
Ifor details of ASCII data sets.) In most
cases, you must specify a block size. If
you do not specify a record iength,
unblocked records of length equal to the
block size are assuRed. If you are using a
PRINT file to produce printed output, you
do not need to specify a block size in your
DD statement or in your PL/I program~ in
the absence of other infcrroaticn, the
compiler supplies a default line size of
120 characters.

To give record-type infornation in a DO
statement, use the RECFM (record format),
BLKSIZE (block size), and LRECL (lcgical
record length) subparameters of the tCB
parameter. The DCB pararreter passes
information to the operating system for
inclusion in the data coptrol block, a
table maintained by the data n.anagerrent
routines of the operating. system for each
data set in a job step; it ccntains a
description of the data set and how it will
be used.. If your OCB parameter includes
more than one subparamet"er, you must
enclose the list in parentheses. Fer
example:

DCB=(RECFM=FB,BLKSIZE=1000,LRECL=50)

AUXILIARY STORAGE REQUIRED (SPACE=)

When creating a data set en a direct-access
device, you must always specify the amount
of auxiliary storage that the data set will
nee~. Use the SPACE parameter to s~ecify
the number of cylinders,.tracks, or blocks

Chapter 3: Bow to Create and Access a Data Set 9

that the data set will need. If you intend
to extend the data set in a later job or
job step, ensure that your original space
allocation is sufficient for future needs;
you cannot make a further allocation later.
If the SPACE parameter appears in a DD
statement for a non-direct-access device,
it is ignored.

DISPOSITION OF DATA SET (DISP=)

To keep a data set for use in a later job
step or job, you must use the DISP
parameter to specifY how you want it to be
handled. You can pass it to another job
step, keep it for use in a later job, or
enter its name in the system catalog. If
you want to keep the data set, tut do not
want to include its name in the system
catalog, the operating system will request
the operator to demount the volume in which
it resides and keep it for you. If you
omit the DISP parameter, the operating
system will assume that the data set is
temporary and will delete it at the end of
the job step.

The DISP parameter can contain two
positional subparameters. The first
specifies whether the data set is new or
already exists, and the second specifies
what is to be done with it at the end of
the job step. If you omit the first, you
must indicate its atsence by a comma. For
example:

DISP= (, CATLG)

specifies that the data set is to be
cataloged at the end of the job step. The
omission of the first suhparameter means
that the data set is assumed by default to
be new.

How to Access a Data Set

To access (that is, read or update) an
existing data set, your DD statement should
include information similar to that given
when the data set is created. However, for
data sets on labeled magnetic tape or on
direct-access devices, you can omit several
parameters because the information they
contain is recorded with the data set by
the operating system when the data set is
created; Figure 3-3 summarizes the
essential information and Figure 3-5 is an
example of accessing this type of data set.
The subparameters of the DCB pararreter are
described in Appendix A, and the job
control language reference publication
explains how to code a DD statement.

Except in the special case of data in
the input stream (descrited under "s~ecial­
purpose parameters," later in this
chapter), you rrust always include the name
of the data set (DSNAME) and ,its
disposition (DISP).

TYPE OF INPUT DEVICE (UNIT=)

You can omit the UNIT ~ararreter if the data
set is cataloged or if it is created with
DISP=(NEW,PASS) in a previous job step of
the same jot. Otherwise, it must always
appear. (PASS specifies that the data set .'
is to be passed for use by a subsequent job
step in the sarre job).

VOLUME SERIAL NUMBER (VOLUME=SER=)

You can omit the VOLUME parameter if the
data set is cataloged or if it is created
with DISP=(,FASS) in a previous job step of
the same job. Otherwise it must always
appear.

NAME OF DATA SET (DSNAME=)

The DSNAME parameter can either refer back
to the DD statement that defined the data
set in a previous job step, e~ it can give
the actual name of the data set. (Yeu
would have to uS,e the former method to
refer to an unnan:ed terrpcrary data set.)

,RECORD TYPE (DCE=)

You can omit the DCE paranetet if the
record information is specified in your
PL/I program, using the ENVIRONMENT
attribute, or if you are accessing a data
set on a direct-access device or standard
labeled magnetic tape. otherwise yeu must
specify the DCB parameter for punched
cards, paper tape, or unlabeled magnetic
tape.

AUXILIARY STORAGE RECUIRED (SPACE=)

You cannot add to, or otherwise rrodify, the
space allocation made for a data set when
it is created. Accordingly, the SPACE
parameter is never required in a DD
statement for an existing data set.

10 OS PL/I Optimi zing Compi ler: Programmer' s Guide

r---,
1 Pararreters of DD Staterrent
1---~-------------------------
1 When required 1 What you must state 1 Parameters
1---
1 INarre of data set 1 DSN=
IAlways 1---
1 IDispositicn of data set 1 DISP=
1---
1 1 All devices 1 Input device 1 UNIT=
IIf data. set not 1---
I cataloged IMagnetic tape andlVclurre serial nurrber I VOL=SER=
1 1 direct access 1 1
1---
IFor punched cards, paper tape, or I Blcck size1 I DCB=(BLKSIZE= •••)
lunlabeled magnetic tape 1 I
1---
11 Alternatively, you can specify the block size in your PL/I program by using the
IENVIRONMENT attribute.
L-------~ ___ ------------______________________ J

Figure 3-3. Accessing a CCNSECUTIVE data set: essential pararreters cf DD staterrent

DISPOSITION OF DATA SET (DISP=)

Except for unit record devices (such as
card readers), you must always include the
DISP parameter to indicate to the operating
system that the data set exists. Code
DISP=SHR if you want to read the data set,
DISP=OLD if you want to read and/er
overwrite it, or DISP=MOD if you want to
add records to the end of it.

Specia I-purpose Parameters

Three parameters of the DD staterrent have
special significance because you can use a
very Simple form of DD statement; they are:

SYSOUT=

*
DATA

SYSOUT= is particularly useful for printed
or punched-card output, and * and DA!A
allow you to include data in the input
stream.

system Output (SYSOUT=)

A system output device is any unit (but
usually a printer or a card punch) that is
used in common by all jobs. The computer
operator allocates all the system output
devices to specific classes according to

the type of device. !he usual convention
is for class A to refer to a printer and
class B to a card punCh; the IBM-supplied
catalcged procedures assurre that this
convention is followed.

Te rcute your output through a system
output device, use the SYSOU! pararreter in
your DD statement. For example, to punch
cards, use the DD staterrent:

I/GO.PUNCH DD SYSOU!=B

Data in the Input Strearr (* and DATA)

A convenient way to introduce data to your
program is to include it in the input
strearr with your job control statements.
Data in the input strearr rrust, like job
contrel statements, be in the form of 80-
byte records (usually punched cards), and
must be immediately preceded by a DD
statement with the single pararreter * in
its operand field. For example:

IIGO.SYSIN DD *
To indicate the end of the data, you may

optionally include a delirriter jeb ccntrol
statement (/*). If you omit the /*
delimiter, the end of the data is
deterrrined by the next jcb ccntrel
staterrent (commencing II in the first two
columns) in the input strearr.

If your data includes reccrds that start
with II in the first two columns use the
parameter DATA. For exarrple:

Chapter 3: How to Create and Access a rata Set 11

/ /OPT3#4 JOB
//STEP1 EXEC PLIXCLG
//PLI.SYSIN DD *

CREATE: PROC OPTIONSCMAIN):

DCL PUNCH FILE STREAM OUTPU'r,
DISK FILE RECORD OUTPUT SEQUENTIAL,

1 RECORD,
2CA,B,C,X1,X2) FLOAT DEC(6) COMPLEX:

ON ENDFlLE CSYSIN) GO TO FINISH:

OPEN FILE CPUNCH), FILE (DISK):
NEX'I': GET FILE (SYSIN) LISTCA, B,C) ;

X1=(-B+SQRT(B**2-4*A*C»/(2*A);
X2=(-B-SQRT(B**2-4*A*C»/(2*A);
PUT FILE (PUNCH) EDIT (RECORD) (C (E (16,9») ;
WRITE FILE(DISK) FROM(RECORD):
GO TO NEXT;

FINISH: CLOSE FILE (PUNCH), FILE (DISK) :
END CREATE:

/*
//GO.PUNCH DD SYSOUT=B
//GO.DISK DD DSN=ROOTS,UNIT=2311,VOL=SER=D186,DISP=CNEW,REEP),
// SPACE=CTRK,C1,1»,DCB=CRECFM=FB,BLKSIZE=400,LRECL=40)
//GO.SYSIN DO *
5 12 4
4 -10 4
5 16 2
4 -12 10
5 12 9
29 -20 4
/*

Figure 3-4. Creating a CONSECUTIVE data set

/ /OPT3#5 JOB
//STEP1 EXEC PLIXCLG
//PLI.SYSIN DD *

ACCESS: PROC OPTIONS(MAIN)i

DCL RESULTS FILE RECORD INPUT SEQUENTIAL,
1 RECORD,

2CA,B,C,X1,X2) FLOAT DEC(6) COMPLEX;

ON ENDFILECRESULTS) GO TO FINISH:

PUT FILECSYSPRINT) EDITC'A' ,'B','C','Xl','X2')
CX(7),3(A,X(23»,A,X(22),A);

OPEN FILE CRESUL'I'S) ;
NEXT: READ FI LE (RESULTS) I NrO (RECORD);

PUT FILECSYSPRINT) SKIP EDIT(RECORD) (CCF(12,2»);
GO TO NEXT;

FINISH: CLOSE FILE(RESULTS);
END ACCESS;

/*
//GO.RESULTS DD DSN=ROOTS,UNIT=2311,VOL=SER=D186,DISP=(OLD,KEEP)

Figure 3-5. Accessing a CONSECUTIVE data set

12 OS PL/I Optimizing compiler: Programmer's Guide

//GO.SYSIN DD DATA

In this case, you must always indicate
the end of the data by the job control
delimiter statement (/*).

St andard File s

PL/I includes two standard files, SYSIN for
input and SYSPRINT for output. If your
program includes a GET statement without
the FILE or STRING option, the compiler
uses the file name SYSIN; if it includes a
PUT statement without the FILE option, the
compiler uses the name SYSPRINT.

If you use one of the IBM-supplied
cataloged procedures to execute your
program, you will not need to include a DD
statement for SYSPRINT: procedure step GO
always includes the statement:

//SYSPRINT DD SYSOUT=A

The block size is normally supplied by
the compiler; you need not specify it
yourself, unless you want blocked output.

If your program uses SYSIN, either
explicitly or implicitly, you must always
include a corresponding DD statement.

Examples

Two examples of simple a~~licatiens for
CONSECUTIVE data sets are shown in Figures
3-4 and 3-5; both use the cataloged
procedure PLIXCLG supplied by IBM.

The first program evaluates the familiar
expression for the rcots of a quadratic
equation and stores the results in a data
set on a disk pack and on punched cards.

IThe last but one DD stateRent
(//GO.DISK •••) specifies that the newly
created data set is to be given the name
ROOTS and is to be stored in a volume with
serial number D186 on a 2311 Disk Stcrage
Drive. It specifies that fixed-length
records, 40 bytes in length, are to be
grouped together in blocks, each 400 bytes
long. It specifies that the data set is
new and that it is to be kept en the voluRe
at the end of the job step; and it
specifies that one track of the disk
storage drive is to be allocated to the
data set with one additicnal track tc be
used if more space is required.

The second program accesses the data set
on the disk pack created in the first
program and prints the results.

Chapter 3: How to Create and Access a Lata Set 13

This chapter describes the optimizing
compiler and the job control statements
required to invoke it, and defines the data
sets it uses. It describes the compiler
options, the listing produced by the
compiler, batched compilation, and the
preprocessor, all of which are introduced
briefly below.

The optimizing compiler translates the
PL/I statements of the source prograrr into
machine instructions. A set of machine
instructions such as is produced for an
external PL/I procedure by the compiler is
termed an object module. If severa.l sets
of PL/I statements, each set corresponding
to an external procedure and separated by
appropriate control statements, are
present, the compiler can create two or
more object modules in a single job step.

However, the compiler does not generate
all the machine instructions required to
represent the source program. Instead, for
frequently used sets of instructions such
as those that allocate main storage or
those that transmit data between rrain
storage and auxiliary storage, it inserts
into the object module references to
standard subroutines. These subroutines
are stored either in the OS PL/I Resident
Library or in the OS PL/I Transient
Library.

An object module produced by the
compiler is not ready for execution until
the appropriate subroutines from the
resident library have been included; this
is the task of either one of two processing
programs, the linkage editor and the
loader, described in Chapter 5. An object
module that has been processed by the
linkage editor is referred to as a load
module; an object module that has been
processed by the loader is referred to as
an executable program.

subroutines from the transient library
do not form a permanent part of the load
module or executable program. Instead,
they ar~ loaded as required during
execution, and the storage they occupy is
released when they are no longer needed.

While it is processing a PL/I program,
the compiler produces a listing that
contains information about the program and
the object module derived from it, together
with messages relating to errors or other
conditions detected during compilation.
Much of this information is optional, and
is supplied either by default or by

Chapter 4: The Compiler

specifying appropriate oEtief2 when the
compiler is invoked.

The compiler also includes a
Freprocessor (or compile-time processor)
that enables you to rredify scurce
staterrents or insert additier.al seurce
staterrents before compilation commences.

Compiler options, discussed under
nopticnal Facilities,n later in this
chapter, can be used for pur~eses ether
than to specify the information to be
listed. For example, the preprocesser can
be used independently to process source
programs that are to be compiled later. or
the compiler can be used rrerely tc check
the syntax of the statements of the source
program. Also, continuaticr. cf processing
through syntax checking and compilation can
be made conditional on successful
preprocessing.

Description of the Compiler

The compiler consists of a number of load
modules, referred to as phasg§, each of
which can be loaded individually into rrain
storage for execution. A simplified flow
diagram is shown in Figure 4-1. The first
phase to be loaded is a resident control
phase, which remains in main storage
throughout compilation. This phase
consists of a nurr.ber cf service routines
that provide facilities required during
execution of the rerraining phases. One of
these routines communicates with the
supervisor program of the operating systerr
for the sequential loading of the remaining
phases, which are referred te as precessing
phases.

The resident control phase alsc causes a
transient control phase to te loaded, the
function of which is to initialize the
operating environment in accordance with
options specified by the prcgrarrrrer.

Each processing phase perforrrs a single
function or a set of related functions.
Some of these phases rr.ust be leaded and
executed for every compilation; the
requirerrent for other phases depends on the
content of the source program or on the
optional facilities selected. Apart from
the phases that provide diagnostic
information, each phase is executed ence
only.

Chapter 4: ~he Compiler 15

48-
CHARACTER­
SET
PROCESSOR

BCD or CHARSET(48)

60-CHARACTE R-SET
TEXT VIA SYSUT1

SOURCE TEXT
(FROM SYSIN)

EBCDIC or
CHARSET(60)

SYNTAX­
ANALYSIS
STAGE

DICTIONARY­
BUILD
STAGE

TRANSLATION
STAGES

OBJECT MODULE
(TO SYSLIN OR SYSPUNCH)

Figure 4-1. simplified flow diagram of the compiler

16 OS PL/I Optimizing Compiler: Programmer's Guide

COMPILE­
TIME PRE­
PROCESSOR

PROCESSED SOURCE
TEXT VIA SYSUT1

Input to the compiler is known
throughout all stages of the compilation
process as text. Initially, this text
comprises the PL/I statements of the source
program. At the end of compilation, it
comprises the machine instructions
substituted by the compiler for the source
text, together with the inserted references
to resident library subroutines for use by
the linkage editor or by the loader.

'I'he source text must be in the form of a
data set defined by a DO statement with the
name SYSIN~ frequently, this data set is a
deck of punched cards. The source text is
passed to the syntax-analysis stage either
directly or after processing by one of the
following preprocessor phases:

1. If the source text is in the PL/I 48-
character set or in BCD, the 48-
character-set preprocessor translates
it into the 60-character set. To use
the 48-character-set processor,
specify the CHARSET(48) or
CHARSET(BCD) options.

2. If the source text contains
preprocessor statements, the
preprocessor executes these statements
in order to modify the source text or
to introduce additional statements.
Also, if the source text is in the
PL/I 48-character set or in BCD (as
specified by the CHARSET.(48) or
CHAR SET (BCD) options), the
preprocessor automatically translates
it into the 60-character set. To use
the preprocessor, specify the MACRO
compiler option.

Both preprocessor phases store the
translated source text in the data set
defined by the DD statement with the name
SYSUT1.

The syntax-analysis stage takes its
input either from this data set or from the
data set defined by the DD statement with
the name SYSIN. This stage analyzes the
syntax of the PL/I statements and removes
any comments and non-significant blank
characters.

After syntax analysis, the dictionary­
build stage creates a dictionary containing
entries for all identifiers in the source
text. The compiler uses this dictionary to
communicate descriptions of the elements of
the source text and the object module
between phases. The dictionary-build stage
of the compiler replaces all identifiers
and attribute declarations in the source
text with references to dictionary entries.

FUrther processing of the text involves
several compiler stages, known as
translation stages, which:

• Translate the text froIT- the PL/I
syntactic form into an internal
syntactic form.

• Rearrange the text to facilitate further
translation (for exarr~le, by re~lacing
array assignments with do-loops that
contain element assignrrents).

• Map arrays and structures to ensure
correct coundary alignment.

• Translate the text into a series of
fixed-length tables, each with a format
that can be used to define machine
in structions.

• Allocate main storage for static
variables and generate inline code to
allow storage to be allocated
automatically during execution. (In
certain cases resident library
subroutines may also ce called to
allocate storage during execution.)

The final-assembly stage translates the
text tacles into machine instructions, and
creates the external sy~bol dictionary
(ESD) and relocation dictionary (RL~)
required by the linkage editor and by the
loader.

The external symbol dictienary includes
the names of subroutines that are referred
to in the object module but are net ~art of
the module and that are to ce included by
the linkage editor or by the loader; these
names, which are termed external
references, include the names of all the
PL/I resident library subroutines that will
be required when the object nodule is
executed. (These resident library
subroutines may, in their turn, contain
external references to other resident
library subroutines required for
execution) •

The relocation dictionary contains
information that enables absolute storage
addresses to be assigned to locations
within the load module when it is leaded
for execution.

The external symbol dictionary and the
relocation dictionary are described in
Chapter 5, which also explains how the
linkage editor and the loader use them.

Job Control Statements for Compilation

Although you will probably use cataloged
procedures rather than supply all the job
control statements required for a jeb ste~
that invokes the compiler, you should be
familiar with these staterrents so that you

Chapter 4: The compiler 17

r----------------------------·---,

I
I
I
I
I
I
I
I

Standard I Contents of I Possiblel Record I Record I Buffers
ddname I data set I device I format I size 1------------------------

I I classes I (RECFM) I (LRECL) I BUFNO I BLKSIZE

SYSIN (or Input to the I SYSSQ F,FB,U
VB,y

<101(100)
<105 (104)

2 200
SYSCIN)

SYSLIN

SYSPUNCH

SYSUT1

SYSPRINT

SYSLIB

Notes:

compiler

Object module

Preprocessor
output,
compiler output

Temporary
workfile

Listing,
including
messages

Source
statements for
preprocessor

I
I
I SYSSQ
I
I SYSSQ
I SYSCP

SYSDA

SYSSQ

SYSDA

FB

FB

F

f,FB

80

80

1091,1691,3491
or 4051
according to
available
space

125

<101

2 80

2 80

2 129

1. The possible device classes are:

SYSSQ Magnetic-tape or direct-access device.

SYSDA Direct-access device.

SYSCP Card-punch device.

2. Any block size can be specified except for SYSLIB and SYSUT1. Block size
for SYSLIB depends on the options specified. If the INCLUDE option is
specified, the maxi~um block size is 4260 bytes. If MACRO is specified,
for SIZE values below 60K bytes, the maximum is 400 bytes: atove 60K
bytes, the block size maximum is the value of LRECL for SYSUT1. The
block size for SYSUT1 is always provided by the compiler.

3.

4.

5.

If the record format is not specified in a DD statement, the default value
(underlined) is provided by the compiler.

The compiler will atterept to obtain source input from SYSCI~ if a DD
statement for this data set is provided. Otherwise it will obtain its
input from SYSI N.

The numbers in parentheses in the wRecord sizew column are the defaults
which can be overridden by the user. Where no parentheses are present,

I the value is fixed and cannot be altered.
l---J
Figure 4-2. Compiler standard data sets

18 as PL/I Optimizing Compiler: Programmer's Guide

can make the best use of the compiler, and
if necessary, override the staterrents of
the cataloged procedures.

The IBM-supplied cataloged procedures
that include a compilation procedure step
are as follows:

PLIXC Compile only.

PLIXCL Compile and link-edit.

PLIXCLG Compile, link-edit, and execute.

PLIXCG Compile, load, and execute.

The follOWing paragraphs describe the
essential job control statements for
compilation. The IBM-supplied cataloged
procedures are described in Chapter 11 and
include examples of these statements.

EXEC STATEMENT

The basic EXEC state~ent is:

//stepname EXE~ P~=IELOAA

The PARM parameter of the EXEC staterrent
can be used 'to specify one or more of the
optional facilities provided by the
compiler. These faciiities are described
under "Optional Facilities," later in this
chapter.

DD STATEMENTS FOR THE STANDARD DATA
SETS

The compiler requires several standard data
sets, the number'depending on the optional
tacilities specified. You must define
these data sets in DD statements with the
standard ddnames which are shown, together
with other characteristics of the data
sets, in Figure 4-2. 'Ihe DD statements
SYSIN, SYSUT1, and SYSPRINT are always
required.

You can.store any of the standard data
sets on a direct-access device, in which
case, you must include the SPACE parameter
in the DD statement that defines the data
set to specify the amount of auxiliary
storage required. The amount of auxiliary
storage allocated in the IBM-supplied
cataloged procedures should suffice for
most applications.

Input (SYSIN, or SYSCIN)

Input to the compiler must be a data set
defined by a DD staten,ent with the name
SYSIN or SYSCIN: this data set must have
CONSECUTIVE organizaticn. 'Ihe input must
be one or more external FL/I procedures; if
you want to compile nore thar. cne external
proc~dure in a single jot or job step,
precede each procedure, exce~t possitly the
first, with a PROCESS statement (described
under "Batched Compilaticn," later in this
chapter) •

Eighty-column punched cards are commonly
used as the input mediurr for PL/I scurce
programs. However, the input data set may
be on a direct-access device, rragnetic
tape, or paper tape. The input data set
may contain either fixed-length reccrds,
blocked or untlocked r, variatle-Iength
records, or undefined-length records; the
maximum record size is 100 bytes. The
compiler always reserves 200 bytes cf main
storage (100 tytes each) for two buffers
for this data set; however, you rray specify
a bl0ck size of more than laC bytes"
provided that sufficient rrain storage is
available to the compiler. (See the
discussion of the SIZE opticn under
"Optional Facilities," later in this
chapter.)

Output (SYSLIN, SYSPUNCH)

Output (that .is, one or more object
modules) from the conpiler can be stcred in
either,the data set defined ty the DD
statement with the nan,e SYSLIN (if ycu
specify the OBJECT compile~ option) .or in
the data set defined by the I:D statenent
with the name SYSPUNCH (if you specify the
DECK compiler option). You nay specify
both options in one program, when tihe
output will be stored in both data sets.

The object module is always in the forn:
of 80-byte fixed-length records, blocked or
unblocked. The compiler always resierves
two buffers of 80 bytes each; however, you
may specify a block size of more than 80
bytes, provided.that sufficient nail')
storage is available to the compiler. (see
the discussion of the SIZE cption under
·Optional Facilities," later in this
chapter.) The data set defined by the DD
statement with the name SYSPUNCH is also
used to store the output frcn the
preprocessor if you specify the MDECK
compiler option.

Chapter 4: 'Ihe Corrpiler 19

Temperary Workfile (SYSUT1)

The compiler requires a data set for use as
a temporary workfile. It is defined by a
:CD statement with the name SYSU'Il, and is
known as the spill file. It must be on a
w.rect-access device. The spill file is
used as a logical extension to rrain storage
and is used by the compiler and by the
preprocessor to contain text and dictionary
information.

Four record sizes are given in Figure
4-2 for SYSUT1. For storage devices other
than the 3330, the first three sizes
correspond to the amount of storage
available to the compiler, as sho~n in
Figure 4-3.

storage Record Size

50-55K 1091
56-69K 1691
over 69K 3491

Figure 4-3. Record sizes for SYSUTl

A record size of 4051 is used en the
3330.

Note that the DD statements given in
this publication and in the cataloged
procedures for SYSUTl request a sFace
allocation in blocks of 1024 bytes; this is
to ensure adequate secondary allocations ef
direct-access storage space are acquired.

Dedicated Data Sets: If a job being run
under MVT has several job steps, and each
job step requires a data set for use as a
terr.porary workfile, the result is a
considerable overhead in time and space.
To reduce this as far as possible, you can
use dedicated .data sets. These are data
sets. that are created by the operating
system when the job is selected for
processing. They can be used by each jeb
step that requires a temporary workfile.
Dedicated data sets are normally allocated
by the initiator and deleted when it
terminates. More information on using
dedicated data sets is given in Chapter 11.

Listing (SYSPRINT)

The compiler generates a listing that
includes all the source statements that it
processed, inforrration relating to the
object module, and, when necessary,
messages. Most of the information included
in the listing is optional, and yeu can

specify those parts that yeu require by
including the appropriate ccnpiler cFtions.
The infermation that may appear, and the
associated compiler oFtiens, are described
under "Compiler Listing," later in this
chapter.

You must define the data set in ~hich
you wish the corrpiler to stcre its listing
in a :CD statement with the name SYSPRINT.
This da ta set rr:ust have CONSECUTIVE
organization. Although the listing is
usually printed, it can be stcred cn any
magnetic-tape or direct-access device. For
printed output, the fcllcwing statenent
will suffice if your installation follows
the convention that output class A refers
te a printer:

//SYSPRINT DD SYSCUT=A

The cempiler always reserves 258 bytes
of main storage (129 bytes each) fer two
buffers for this data set; hcwever, you may
specify a block size of more than 129
bytes, provided that sufficient rrain
storage is available to the compiler. (see
the discussion of the SIZE e~tien under
"Optienal Facilities," later in this
chapter.)

Source Statement Library (SYSLIE)

If you use the preprocessor %INCLU:CE
statement to introduce seurce statenents
into the Pl/I program from a library, you
can either define the library in a DD
statenent with the narre SYSIIE, or ycu can
cheose your own ddname (or ddnames) and
specify a ddname in each %INCLUDE
statement. (See "Cerrpile-tine precessing,"
later in this chapter.)

EXAMPLE CF CCMFILER JCl

A typical sequence of jeb ccr.trel
staterr·ents for compiling a Fl/I program is
shown in Figure 4-4. 'Ihe DECK and NCOBJECT
corr-piler options, described below, have
been specified to obtain an cbject ncdule
as a card deck only. Jeb ccr.trel
staterrents for link editing an object
module in the form ef a card deck are shown
in Chapter 5.

Optional Facilities

The compiler provides a nurrber of e~tional
facilities, both at compile time and at

20 OS PL/I Optimizing Compiler: Programmer's Guide

JOB //COMP
//S'IEPl
//SYSPUNCH
//SYSUTl
//SYSPRINT
//SYSIN

EXEC PGM=IELOAA,PARM='DECK,NOOBJECT'
DD SYSOU'I=B

DD UNIT=SYSDA,SPACE=(1024,(60,60)"CONTIG)
DD SYSOUT=A
DD *

(insert here.the PL/I program to be compiled)

/*

Figure 4-4. Typical job control staterrents for ccrepiling a FI/I program

execution time. Options that can be
specified at compile time are known as
coupiier oPtions. Options. that can be
specified at execution time are known as
execution-time options.

Execution-time and compiler options,
their abbreviated forms, and their defaults
(as supplied by IBM) are shown in Figures
4-5 and 4-7. An installation can modify or
delete defaults according to local
requirements: check for any modified
defaults at your installation. Deleted
corr.piler options can be reinstated for a
compilation by means of the CONTRCL
corrpiler option.

1 Also provided is the ability to pass an
largument to the PI/I main procedure. This
Ifacility is described in the section
1 "Specifying Execution-Time options in the
IEXEC statement," later in this chapter.

SPECIFYING COMPILER OPTIONS

For each compilation, the IBM or
installation default for a compiler option
will apply unless it is overridden by
specifying the option in a PROCESS
statement or in the PARM parameter of an
EXEC statement.

An op'tion specified in the PARM
pararreter overrides the default value, and
an option specified in a PROCESS staterrent
overrides both that specified in the PARM
parameter and the default value.

Where conflicting attributes are
specified either explicitly or implicitly
by the specification of other options, the
latest implied or explicit option is
accepted. No diagnostic message is issued
to indicate that any options are overridden
in this way.

Ispecifying Compiler Options in the EXEC
Stat errent

Tc specify cpt ions in the EXEC statement.
code FAR~= followed by the list cf c~tions,
in any crder (except that CO~~ROL, if used,
must be first) separating the cpticns with
corrmas and enclosing the list within single
quotation marks, for exarrple:

//STEFl EXEC FGM=IEIO~A,FARM='OBJECT,LIST'

Any cption that has quotation marks, for
example ~ARGINI('c'), rrust have the
quctaticn marks duplicated. The length of
the opticn list must not exceed 256
characters, including the separating commas
(ncte that only the first 100 characters
are printed out on the listing). However,
many of the options have an abbreviated
foru that ycu can use to save space. If
you need to continue the staterrent cnto
another line, you must enclose the list of
options in parentheses (instead cf in
quotaticn marks) enclose the options list
on each line in quotation rrarks, and ensure
that the last comma on each line except the
last is outside of the quctaticn rrarks. An
exareple covering all the above points is as
follows:

//STEFl EXEC FGM=IEIO~A,FARM=('AG,A',
1// 'C,ESD,F(I),FLOW(10,1)',
// 'M,MI("X~'),NEST,STG,X')

If ycu are using a cataloged procedure,
and wish to specify opticns explicitly, ycu
must include the PARM parameter in the EXEC
statement that invokes it~ qualifying the
keyword PAR~ with the name of the procedure
step that invokes the ccrrpiler, fer
example:

//STEFl EXEC FIIXCLG,FAR~.PII='A,LIST,ESD'

Chapter 4: 'The Compiler 21

l§Eecifying Compiler options in the
PROCESS Staterrent

TO sfecify options in the PROCESS
statement, code as follows:

* PROCESS options;

where "options" is a list of compiler
options. The list of options must be
terrrinated with a semicolon and should not
extend beyond the default right-hand source
margin. The asterisk must appear in the
first byte of the record (card column 1),
and the keyword PROCESS may follcw in the
next byte (column) or after any number of
blanks. Opticn keywords must be separated
by a comma and/or at least one blank.

Blanks are permitted before and after
any non-blank delimiter in the list, with
the exception of strings wi thin quotaticn
marks, for example MARGINI('*'), in which
optional blanks should not be inserted.

The number of characters is limited only
by the length of the record. If you dc net
wish to specify any options, code:

* PROCESS;

Should it be necessary to continue the
PROCESS staterr.ent onto the next card or
record, terminate the first part cf the
list after any delimiter, up to tbe default
right-hand margin, and continue on the next
card or record. Option keywords or keyword
arguments may be split, if required, when
continuing onto the next record, provided
that the keyword or argument string
terminates in the right-hand source rrargin,
and the remainder of the string starts in
column 1 of the next record. A PROCESS
statement may be continued in several
statements, or a new PRCCESS staten-ent
started.

COMPILER OPTIONS

The compiler options are of the following
types:

1. Simple pairs of keywords: a positive
form (for example, NEST) that requests
a facility, and an alternative
negative form (for example, NONES'I)
that rejects that facility.

2. Keywords that permit you to provide a
value-list that qualifies the ofticn
(for example, NCCOMPILE(E».

3. A combination of 1 and 2 above.

The following paragraphs describe the
options in alphabetic order. For those
options that specify that the compi1er is
to list inforrr.ation, cnly a brief
description is included; the generated
listing is described under "Ccrrfiler
Listing," later in this chapter.

Figure 4-5 lists all the corrpiler
options with their abbreviated forms and
their standard default values fcr batch
rrode. ~efaults under TSO are given in the
TSO User's Guide for this ccrr~iler.

AGGREGATE Option

The AGGREGATE option s~ecifies that the
corrfiler is to include in the co~piler
listing an aggregate length table, giving
the lengths of all arrays and major
structures in the source ~rcgrarr.

ATTRIBUTES Cpt ion

The ATTRIBUTES option specifies that the
compiler is to include in the ccrr~iler
listing a table of source-program
identifiers and their attributes. If both
ATTRIBUTES and XREF apply, the two tables
are combined.

CHARSET Opti£!!

The CHAR SET option sfecifies the character
set and data code that you l1ave used to
create the source prcgrarr. Theccrr~iler
will accept source programs written in the
60-character set or the 48-character set,
and in the Extended Binary Coded tecimal
Interchange Code (EBCDIC) cr Binary Coded
Decirral (BCD).'

60- or 48-character set: If the source
program is written in the 6C-character set,
sfecify CHARSET(60); if it is writt~n in
the 48-character set, specify CHARSET(48).
The language reference rranual fcr this
corrpiler lists both of these character
sets. (The corrpiler will acce~t scurce
frograms written in either character set if
CHAR SET (48) is specified, hcwever, if the
reserved keywords, for example, CAT or LE
are used as identifiers, errcrs rray cccur.)

BCD or EBCDIC: If the scurce ~rograrr is
written in BCD, specify CHARSFT(EC~); if it
is written in EBCDIC, specify
CHARSET(EBCDIC). The language reference
manual for this compiler lists the EBCDIC

22 OS PL/I Optimizing Compiler: Programmer's Guide

r---,
I Compiler Option I Abbreviated Name I IBM Default
1-- --------------------
i
I AGGREGATE I NOAGGREGATE

ATTRIBUTES I NOATTRIBUTES
CHARSET([48 I 60] [EBCDIC I BCD])
COMPI LE I NOC OMPI LE [(W I E Is)]
CONT~OL('password')
COUNT I NOCOUNT
DECK I NODECK
DUMP I NODUMP
ESD I NOE$D
FLAG [~I I WI E IS)]
FLOW[Cn,m)] I NOFLOW
GONUMBERINOGONUMBER
GOSTMTINOGSTMT
IMPRECIpEINOIMPRECISE
INCLUDE I NOINCLUDE
INSOURCEINOINSOURCE
LINECOUNT(n)
LIST[Cn ,m)] I NOLIST
LMESSAGEISMESSAGE
MACRO I NOMACRO
MAP I NOMAP
~RGINI('c') I NOMARGINI
MARGINS(m,n[,c])

AGINAG
AINA
CS ([48 I 60] [EB I B])
CINC[(WIEls)]

crl NCT
DIND
DUI NDU

F[(IIWIEls)]

GNINGN
GSINGS
IMPINIMP
INCININC
ISINIS
LC (n)

LMSGI SMSG
MINM

MI (' c') I NMI
MAR(m,n[,c])

~illECKINOMDECK MDINMD
NAME ('name') N (' name')

NOAGGREGATE
NOATTRIBUTES
CHARSET(60 EBCDIC)
NOCOMPILE(S)

NOCOUNT
NODECK

NOESD
FLAG (I)
NOFLOW
NOGONUMBER
NOGOSTMT
NOIMPRECISE
NOINCLUDE
INSOURCE
LINECOUNT(55)
NOLIST
LMESSAGE
NOMACRO
NOMAP
NOMARGINI
MARGINS(2,72,O) or
MARGINS(10,100,0)
(see text)
NOMDECK

NESTINONEST NONEST
NUMBER I NONUMBER NUMINNUM NONUMBER
OBJECT I NOOBJECT OBJINOBJ OBJECT
OF~SETINOOFFSET OFINOF NOOFFSET
OPTIMIZE (TIME I 012) I NOOPl'IMIZE OPl'(TIMEI012) INOPT NOOPTIMIZE
OPTIONS I NOOPTIONS OPINOP OPTIONS
SEQUENCE (m,n) I NOSE QUENCE SEQ(m,n) I NSEQ NOSEQUENCE
SIZE ([-]yyyyyyyyl [-]yyyyyKIMAX) SZ([-]yyyyyyyyl[-]yyyyyKIMAX) SIZE (MAX)
SOURCE I NOSOURCE SINS SOURCE
STMTINOSTMT STMT
STQRAGEINOSTORAGE STGI NSTG NCSTCRAGE
SYNTAXINOSYNTAX[{WIEIS)] SYNINSYN[(WIEIS)] NOSYNTAX(S)
TERMINAL[(opt-list)]INOTERMINAL TERM[(opt-list)] INTERM NOTERMINAL
XREFJNOXREF XINX NOXREF L----------------------------------___________________ -------------_____________________ J

Figure 4-5. Compiler options, abbreviations, and defaults in batch ncde

representation of both the 48-character set
and the 60-character set.

If both arguments (48 or 60, EBCDIC or
BCD) are spec1fied, they may be in any
order and should be separated by a blank or
by a comma.

COMPILE Option

The COMPILE option specifies that the
compiler is to compile the source program
unless an unrecoverable error was detected

during preprocessing or syntax checking .•
The NOCOMPILE option without an argument
causes processing to stop unconditicnally
after syntax checking. with an argument,
continuation depends on the severity of
errors detected so far, as follows:

NOCOMPILE(W) No compilaticn if a warning,
error, severe error, or
unrecoverable error is
detected.

NOCOMPILE(E) No compilation if error,
severe error, cr unreccverable
error is detected.

Chapter 4: The Compiler 23

NOCOMPILE(S) No compilation if a severe
error or unrecoverable error
is detected.

If the compilation is terminated by the
NOCOMPILE option, the cross-reference
listing and attribute listing may be
produced; the other listings that follow
the source program will not be produced.

CONTROL Option

The CONTROL option specifies that any
compiler options deleted for your
installation are to be available for this
compilation. You must still specify the
appropriate keywords to use the options.
The CONTROL option must be specified with a
password that is established for each
installation; use of an incorrect password
will cause processing to be terminated.
The CONTROL option, if used, must be
specified first in the list of options. It
has the format:

CONTROL('password ')

where "password" is a character string, not
exceeding eight characters.

COUNI' Option

The COUNT option specifies that the
compi ler is to produce code to enabl e the
number of times each statement is executed
to be counted at execution time.

The COUNT option implies the GOSTMT
option if the STMT option applies, or the
GONUMBER option if the NUMBER option
applies.

DECK Option

The DECK option specifies that the compiler
is to produce an object module in the form
of 80-column card images and store it in
the data set defined by the DO statement
with the name SYSPUNCH. Columns 73-76 of
each card contain a code to identify the
object module; this code comprises the
first four characters of the first label in
the external procedure represented by the
object module. columns 77-80 contain a 4-
digit decimal number: the first card is
numbered 0001, the second 0002, and so on.

DUMP Option

The DUMP option specifies that the ccmpiler
is to produce a formatted dump of main
storage if the compilaticn terninates
abnormally (usually due to an I/O error or
compiler error). This dunp is written on
the data set associated with SYSPRINT.

ESD Option

The ESD option specifies that the external
symbol dictionary (ESD) is tc be listed in
the compiler listing.

FLAG Option

The FLAG option specifies the minimum
severity of error that requires a ness age
to be listed in the compiler listing. The
format of the FLAG option is given in
Figure 4-6.

FLAG (1)

FLAG(W)

FLAG (E)

FLAG (S)

List all nessages.

List all except infornatory
messages. If you specify
FLAG, FLAG(W) is assuned.

list all except warning and
informatory nessages.

List only severe error and
unrecoverable error
messages.

Figure 4-6. Format of the FLAG option

FLOW Option

The FLOW option specifies that the compiler
is to produce code to enable the flow of
control to be listed when the progran is
executed. The format of the FLOW option
is:

FLOW [Cn ,m)]

where wnw is the maxinurr. nunber cf
entries to be included in the
lists. It should not exceed
32768.

WmW is the maximum number of
procedures for which the lists

24 OS PL/I Optimizing Compiler:: programmer's Guide

are to be generated. It
should not exceed 32768.

The IBM default, if (n,m) is not
specified, is (25,10).

The output produced by the FLOw optien
is described under "Execution-Time FLOW
Option" later in this chapter.

GONUMBER Option

The GONUMBER option specifies that the
compiler is to produce additional
information that will allow line numbers
from the source program to be included in
execution-time messages. Alternatively,
these line numbers can be derived by using
the offset address, which is always
included in execution-time messages, and
the table produced by the OFFSET eption.
(The NUMBER option must also apply.)

Use of the GONUMBER option implies
NUMBER, NOSTMT, and NOGOSTMT.

GOSTMT Option

The GOSTMT option specifies that the
compiler is to produce additional
information that will allow statellent
numbers from the source program to be
included in execution-time messages.
Alternatively, these statement numbers can
be derived by using the off set address ,
which is always included in execution-time
messages, and the table produced by the
OFFSE~ option. (The STMT option must also
apply.)

Use of the GOSTMT, NOGONUMBER eption
implies STMT and NONUMBER.

IMPRECISE Option

The IMPRECISE option specifies that the
compiler is to include extra text in the
object module to localize imprecise
interrupts when executing the prograrr. with
an IEM Systernl360 Model 91 or 195 (see

IAppendix D). This extra text is generated
Ifor ON statements (to ensure that if
linterrupts occur, the correct on-units will
lbe entered), for null statements, and fcr
IENTRY statements. The correct line or
Istatement numbers will not necessarily
lappear in execution-time messages. If you
Ineed more accurate identification of the
Istatement in error, insert null state~ents

lat suitatle points in yeur pregrall.

INCI.UDE Cption

The INCLUDE option requests the compiler to
handle the inclusion ef PL/I seurce
statements for programs that use the
~INCI.UDE' staten:ent. Fer Frcgrarrs that use
the % INCLUDE statement but no other PL/I
preprocessor statements, this rrethcd is
faster than using the FreFrccesscr. If the
MACRO OFtion is also specified, the INCLUDE
option has no effect.

INSOURCE Option

The INSOURCE option sFecifies that the
corrpiler is to include a listing of the
source program (including prerrccesscr
statements) in the compiler listing. This
option is applicable only when the
Freprocessor is used, therefcre the MACRO
option rrust also apply.

LINECOUNT Option

The LINECOUNT option specifies the number
of lines to be included in each page of the
compiler listing, including heading lines
and blank lines. The format of the
LINECOUNT option is:

LINECOUNT(n)

where nnw is the nurrber cf lines. It
must be in the range 1 through
32767, but cnly headings are
generated if you specify less
than 7.

LIST Option

The LIST option specifies that the compiler
is to include a listing cf the object
module (in a form sireilar tc IEM System/360
assembler language instructions) in the
compiler listing. The fcrIr.at cf the list
option is:

LIST [(m [, n])]

where "ron is the numter of the first source
statement for which an otject listing is
required and nnW is the nurnter of the last
source statement for which an object
listing is required. If wnw is omitted,

Chapter 4: The Compiler 25

only statement "m" is listed. If the
option NUMBER applies, "m" and "n" must be
specified as line numbers.

LMESSAGE Option

The LMESSAGE and SMESSAGE options specify
that the compiler is to produce messages in
a long form (specify LMESSAGE) or in a
short form (specify SMESSAGE). Short
messages can have advantages in a TSO
environment due to the comparatively slow
printing speed of a terminal.

MACRO Option

The MACRO option specifies that the source
program is to be processed by the
pz"eprocessor.

MAP Option

The MAP option specifies that the compiler
is to produce tables showing the
organization of the static storage for the
object module. These tables consist of a
static internal storage map and the static
external control sections. The MAP option
is normally used with the LIST option.

MARGINI Option

'I'he MARGINI option specifies that the
compiler is to include a specified
character in the column preceding the left­
hand margin, and in the column following
the right-hand margin of the listings
resulting from the INSOURCE and SOURCE
options. Any text in the source input
which precedes the left-hand margin will be
shifted left one column, and any text that
follows the right-hand margin will be
shifted right one column. For variable­
length input records that do not extend as
far as the right-hand margin, the character
is inserted in the column following the end
of the record. Thus text outside the
source margins can be easily detected.

The MARGI NI option has the format::

MARGI NI (• c')

where ncR is the character to be printed
as the margin indicator.

MARGINS Option

The MARGINS option specifies the extent of
the part of each input line cr record that
contains PL/I statements. The compiler
will not process data that is outside these
limits (but it will include it in the
source listings).

The option can also s~ecify the fcsiticn
of an Areerican National Standard (ANS)
printer control character tc forrrat the
listing produced if the SOURCE option
applies. This is an alternative tc using
~PAGE and ~SKIP statements (described in
the language reference rranual fer this
compiler). If you qo not use eithez
method, the input records will be listed
without any intervening bla~k lines. The
format of the MARGINS option is:

MARGINSCm,n[,c])

where "m" is the column number of the
left-hand rrargi~. It should
not exceed 100.

Ann is the column number of the
right-hand rrargin. It should
be greater than m, but not
greater than 100.

nCR is the colurrn ~urrber of the
ANS printer control character.
It should not exceed 100 and
should be outside the'values
specified for rr and n. Only
the following control
characters can ce used:

Cblank) Skip one line before ~rinting.

o Skip two lines before printing.

Skip three lines before ~rinting.

+ No skip before printing.

1 Start new page.

The standard IBM-su~~lied default for
Ifixed-length records is MARGINSC2,72,O);
Ithat for variable-length and undefined­
Ilength records is MARGINS (10{,100,O). A
zero value for ncR specifies that there is
n2 printer control character. .

MDECK Option

The MDECK option specifies that the
preprocessor is to produce a copy of its
output (see MACRO option) and store it in
the,data set defined by the DO statement
with the name SYSPUNCH. The iast fcur

26 OS PL/I Optimizing Compiler: programmer's Guide

bytes of each record in SYSUT1 are not
copied, thus this option allows you to
retain the output from the preprocessor as
a deck of 80-column punched cards.

NAME Option

The NAME option specifies that the compiler
is to place a linkage editor NAME staterrent
as the last statement of the object module.
When processed by the linkage editor, this
NAME statement indicates that primary input
is complete and causes the specified narre
to be assigned to the load module created
from the preceding input (since the last
NAME statement).

It is required if you want the linkage
editor to create more than one load module
from the object modules produced by batched
compilation (see later in this chapter).

If you do not use this option, the
linkage editor will use the member name
specified in the DD statement defining the
load module data set. you can also use the
NAME option to cause the linkage editor to
substitute a new load module for an
existing load module with the same name in
the library. The format of the NAME option
is:

NAME (• name •)

where "name" has from one through eight
characters, and begins with an
alphabetic character. The
linkage editor NAME statement
is described in Chapter 5.

NEST Option

The NEST option specifies that the listing
resulting from the SOURCE option will
indicate, for each statement, the block
level and the do-group level.

NUMBER Option

The NUMBER option specifies that the
numbers specified in the sequence fields in
the source input records are to be used to
derive the statement numbers in the
listings resulting from the AGGREGATE,
ATTRIBUTES, LIST, OFFSET, SOURCE and XREF
options.

If NONUMBER is specified, STMT and
NOGONUMBER are implied. NUMBER is implied

by NOSTMT or GCNUMBER.

The position of the sequence field can
be specified in the SEQUENCE option.
Alternatively the following default
positions are assumed:

• First 8 columns for undefined-length or
variatle-Iength source infut reccrds.
In this case, 8 is added to the values
used in the MARGINS o~ticn.

• Last 8 columns for fixed-length scurce
input records.

These defaults are'the positions used
for line-numbers generated by TSO; thus it
is not necessary to specify the SEQUENCE
option, or change the MARGINS defaults,
when using line numbers generated by TSO.
Note that the preprocessor cutfut has
fixed-length records irrespective of the
original primary input. Any sequence
numbers in the primary input are
repositioned in columns 73-80.

The line number is calculated frcrr the
five right-hand characters of the sequence
number (or the number specified, if less
than five). These characters are converted
to decimal digits if necessary. Each time
a sequence number is found that is not
greater than the preceding line number, a
new line number is formed by adding the
minimum integral multiple of 100,000
necessary to produce a line number that is
greater than the preceding one. If the
sequence field consists only of blanks, the
new line number is formed by adqing 10 to
the preceding one. The maximum line number
permitted by the compiler is 134,000,000;
numbers that would normally exceed this are
set to this maximum value. Only eight
digits are printed in the source listing;
line numbers of 100,000,000 or over will be
printed without the leading "1" digit.

If there is more th~n one staterrent on a
line, a suffix is used to identify the
actual statement in the rressages. For
example, the second statement beginning on
the line numbered 40 will be identified by
the number 40.2. The maximum value for
this suffix is 31. Thus the thirty-first
and subsequent statements on a line have
the same number.

OBJECT Option

The OBJECT option specifies that the
compiler is to store the object module that
it creates in the data set defined by the
DD statement with the name SYSLIN.

Chapte~ 4: The Corrpiler 27

OFFSET Option

The OFFSET option specifies that the
compiler is to print a table of statement
or line numbers for each procedure with
their offset addresses relative to the
primary entry point of the procedure. This
information is of use in identifying the
st.atement being executed when an error
occurs and a listing of the object module
(obtained by using the LIST option) is
available. If GOSTMT applies, statement
numbers, as well as offset addresses, will
be included in execution-time messages. If
GONUMBER applies, line numbers, as well as
offset addresses, will be included in
execution-time messages.

A method of determining statement or
line numbers from the offsets gi ven in
error messages is given under the heading
"statement Offset Addresses" later in this
chapter.

OPTIMI ZE Opti on

The OPTIMIZE option specifies the type of
optimization required:

NOOPTIMIZE

OPTIMIZE
prIME)

OPTIMIZE(O)

OPT IMIZ E (2)

specifies fast compilation
speed, but inhibits
optimization for faster
execution and reduced main
storage requirements.

specifies that the
compiler is to optimize the
machine instructions
generated to produce a very
efficient object program. A
secondary effect of this
type of optimization can be
a reduction in the amount of
main storage required for
the object module. The·use
of OPTIMIZE(TIME) could
result in a substantial
increase in compile time
over NooprIMIZE.

is the equivalent of
NOOPTIMIZE.

is the equivalent of
OPTIMIZE (TIME) .

The language reference manual for this
compiler includes a full discussion of
opt.imi zation.

OPTIONS Option

The OPTIONS option specifies that the
compiler is to include in the cerr~iler
listing, a list showing the compiler
options, to be used during this
compilation. This list includes all those
applied by default, those s~ecified in the
PARM parameter of an EXEC statement, and
those specified in a PROCESS staterrent.

SEQUENCE QEtion

The SEQUENCE option specifies the extent of
the part of each input line or record that
contains a sequence number. This nurrber is
included in the source listings produced by
the INSOURCE and SOURCE opticn. Alse, if
the NUMBER option applies, line numbers
will be derived from these sequence numbers
and will be included in the scurce listings
in place of statement numbers. No attempt
is made to sort the input lir.es or records
into the specified sequence. The SEQUENCE
option has the format:

SEQUENCE(m,n)

where "m" specifies the column number of
the left-hand margin.

"nn specifies the cclurrn nurrber of
the right-hand margin.

The extent specified should not overlap
with the source prograrr (as specified in
the MARGINS option).

SIZE Option

This option can be used to lirrit the amount
of main storage used ty the compiler. This
is of value, for example, when dynarrically
invoking the compiler, to ensure that space
is left for other purposes. The SIZE

loption can te expressed in five forms:

SIZE (yyyyyyyy) specifies that yyyyyyyy
bytes of main storage are
to be requested. Leading
zeros are not required.

SIZE (yyyyyK) specifies that yyyyyK bytes
of main storage are to be
requested (lK=1024).
Leading zercs are net
required.

ISIZE(-yyyyyy)
I

specifies that the ccmpiler
is to obtain as much main
storage as it can, and then I

28 OS PL/I Optimizing Compiler: Programmer's Guide

, , , ,
release yyyyyy bytes to the
operating system. Leading
zeros are not required.

lSI ZE (-yyyK)
I

specifies that the compiler
is to obtain as much main
storage as it can, and then
release yyyK bytes to the
operating system (1K=1024).
Leading zeros are not
required.

I
I , , ,

specifies that the compiler
is to obtain as much main
storage as it can.

The IBM default, and the most usual
value to be used, is SIZE (MAX) , which
permits the compiler to use as much main
storage in the partition or region as it
can.

When a limit is specified, the aITount of
main storage used by the compiler depends
on how the operating system has been
generated, and the method used for storage
allocation. The compiler assumes that
buffers, data management routines, and
processing phases take up a fixed amount of
main storage, but this amount can vary
unknown to the compiler.

, The negative forms can be useful when a
Icertain amount of space must be left free
land the maximum size is unknown, or can
,vary because the job is run in regions of
Idifferent sizes.

Under MFT the compiler will operate in a
partition of 50K bytes or more of main
storage, using its default values for file
specifications. Under MVT a region of 52K
bytes or more is required.

After the compiler has loaded its
initial phases and opened all files, it
att.empts to allocate space for working
storage.

If SIZE(r~X) is specified it ottains all
space remaining in the region or partition
(after allowance for subsequent data
management storage areas). If a limit is
specified then this amount is requested.
If the amount available is less than
specified, but is more than the minimum
workspace required, compilation proceeds.
If insufficient storage is available,
compilation is terminated. This latter
situation should arise only if the region
or partition is too small, that is, less
than 50K, or if too much space for buffers
has been requested. The value cannot
exceed the main storage available for the
job step and cannot be changed after
processing has begun.

This means, that in a batched

compilation, the value estaclished when the
compiler is invoked cannot ce changed for
later programs in the catch. Thus it is
ignored if specified in a PROCESS
statement.

In a TSO environment, an additional 10K
to 30K tytes must be allowed for TSO. The
actual size required for TSO depends on
which routines are placed in the link-pack
area (a common main storage pool available
to all regions).

SMESSAGE option

See LMESSAGE option.

SOURCE Option

The SOURCE option specifies that the
compiler is to include in the compiler
listing a listing of the source program.
The source program listed is either the
original source input or, if the MACRO
option applies, the output frorr the
preprocessor.

STMT Option

'!;he STMT option specifies that statements
in the source prograrr. are to be counted,
and that this "staterrent nurrber" is used tc
identify statements in the compiler
listings resulting from the AGGREGA'IE,
ATTRIBUTES, LIST, OFFSET, SOURCE, and XREF
options. STMT is implied by NONUMBER or
GOSTMT. If NCSTMT is specified, NUMEER and
NOGOSTMT are implied.

STORAGE Option

The STORAGE option specifies that the
compiler is to include in the ccmpiler
listing a tacle giving the main storage
requirements for the object ncdule.

SYNTAX Optio!!

The SYNTAX option specifies that the
compiler is to continue into syntax
checking after initializaticn (or after
preprocessing if the MACRO o~tion a~plies)
unless an unrecoverable error is detected.

Chapter 4: The CcrrJ;iler 29

The NOSYNTAX option without an argument
causes processing to stop unconditicnally
after initialization (or preprocessing).
With an argument, continuation de~ends en
the severity of errors detected so far, as
follows:

NOSYNTAX (W)

NOSYNT AX (E)

NOSYNTAX(S>

No syntax checking if a
warning, error, severe
error, or unrecoverable
error is detected.

No syntax checking if an
error, severe error, or
unrecoverable error is
detected.

No syntax checking if a
severe error or
unrecoverable error is
detected.

If the SOURCE option a~plies, the compiler
will generate a source listing even if
syntax checking is not performed.

If the compilation is terminated by the
NOSYNTAX option, the cross-reference
listing, attribute listing, and other
listings that fellow the source prograre
will not be produced.

The use of this option can prevent
wasted runs when debugging a PL/I ~rogram
that uses the ~re~rocessor.

TEHMINAL Option

The TERMINAL option is applicable only in a
'ISO environment. It specifies that sorre cr
all of the com~iler listing produced during
compilation is to be ~rinted at the
terrrinal. If TERMINAL is specified without
an argument, diagnostic and inferrratory
rrlessages are ~rinted at the terminal. You
can add an argument, which takes the form
of an option list, to specify other parts
of the compiler listing that are to be
printed at the terminal.

The listing at the terminal is
independent of that wri tten on SYSPRIN'I.
However, if SYSPRINT is associated with the
terminal, only one copy of each o~tion
requested will be printed even if it is
requested in the TERMINAL option and also
as an independent option. The following
o~tion keywords, their negative forms, or
their abbreviated forms, can be specified
in the option list:

AGGREGATE, ATTRIBUTES, ESD, INSOURCE,
LIST, MAP, OPTIONS, SOURCE, STORAGE,
and XREF.

The other options that relate to the
listing (that is, FLAG, GONUMBER, GOSTMT,
LINECCUl:\T, I~ESSAGE/S~ESSAGE, MARGINI,
NEST, and NU~BER) will be the same as for
the SYSPRIN'I listing.

XREF CFtion

The XREF option specifies that the compiler
is to include in the cerrFiler listing a
list cf all identifiers used in the PL/I
program together with the nurrbers cf the
stateroents in which they are declared or
referenced. Note that label references on
END statements are not included, reference
lists for structures rray be.inccrrFlete, and
arrays cf structures are always listed with
bounds of (*>. If both ATTRIBUTES and XREF
a~~ly, the two tables are combined.

SPECIFYING EXECUTION-TIME OFT IONS

For each execution, the IBM or installation
default for an executien-tine eFticn will
a~ply unless it is overridden by a PIIXOPT
string in the source Frograrr er by the PARM
~ararreter of the EXEC statement for the
execution step.

An oFtion specified in the PLIXOPT
string overrides the default value, and an
option specified in the FARM Fararreter
overrides that specified in the PLIXCPT
string.

ISpecifying Execution-Tirre Oftiens in
the PLIXOPT String

Execution-time options can be s~ecified in
a source pregram by means of the following
declaration:

DCL PLIXOPT CHAR (len) VAR INIT('strg ')
STATIC EXTERNAL;

where "strg" is a list of options
separated by cannas, and "ler." is a

Iconstant equal to or greater than the
length cf "strg".

If more than one external procedure in a
job declares FLIXOP'I as S'I'A'IIC EXTERNAL,
only the first string will be link-edited
and available at executicn tirre~

The FIIXCPT string is igncred in a
Checkout Com~iler/Optimizing Compiler
mixture environn.ent.

30 OS PL/I Optimizing Compiler: prograrrmer's Guide

Ispecifying Execution-Time Options in
the EXEC statement

The method of coding the PARM parameter in
an EXEC statement is gi ven under the
heading "Specifying Compiler Options in the
EXEC statement" earlier in this chapter.

If you are using a cataloged procedure,
you must qualify the keyword PARM with the
name of the execution step; for example:

IISTEP EXEC PLIXCLG,PARM.GO=('ISA(10K) , ,
II REPORT)

I You can also use the PARM field to pass
Ian argument to the PL/I main procedure. To
Ido so, place the argument, preceded by a
Islash, after the execution-time options.
IFor example:
I
IIIGO EXEC PGM=OPT,PARM='ISASIZE(10K) ,
III REPORT/ARGUMENT'
I
I If you wish to pass an argument without
Ispecifying options, it must be preceded by
la slash. For example:
I
IIIGO EXEC PGM=OPT,PARM='/ARGUMENT'

EXECUTION-TIME OPTIONS

I The following paragraphs deScribe the
lexecution-time options, which can be
Ispecified in the EXEC statement or in the
IPLIXOPT string.

COUNT specifies that a count is to be
kept of the number of times each
statement in the program is
executed and that the results are
to be printed when the program
terminates. This option is
discussed in greater detail under
the heading n Execution-T ime COUNT
Option" later in this chapter.

NOCOUNT specifies that statement counting
is ~ot to be performed.

FLOW(n,m)] specifies that a list of the
most recent transfers of control
in the execution of the program is
to be generated. This option is
discussed in greater detail under
the heading "Execution-Time FLOW
Option" later in th!s chapter.

NOFLOW specifies that a flow list is not
to be produced.

ISASIZE specifies the amount of rrain
storage initially acquired by the
PL/I program at execution time.

This storage is kncwn as the
initial storage area (ISA). The
option has the format:

ISASIZE(~X] [,yl [,zl»),.l··((

where "x" is the initial stcrage
allocation for the major task,

where nyu is the initial storage
allocation for each subtask within
the total storage available to the
compiler. This value can te used
ina multitasking program to
prevent a new storage request
(with its accompanying time
overhead) each time a block is
entered during the execution of
the subtasks. If you specify
enough storage for a whole
subtask, these additional requests
are not made,

and where "z" is the maximum
number of subtasks that will be
active at anyone time.

All storage values must be in
bytes or K bytes. If "x" is
omitted and nyu or "z" is
speclfied, or if nyu is omitted
and "z" is specified, then the
separating commas must be used to
indicate that a value is rrissing.

If the multitasking arguments ("y"
and HZ") are specified for a
program that was linkedited
without the multitasking library,
they will be ignored, and a
diagnostic message will be issued.

The ISA is used for the dynamic
allocation of the main storage
requir~d by PL/I blccks as they
are entered, and by controlled and
based variables as they are
allocated. If the ISA is large
enough to contain these blccks
PL/I storage handling will not
acquire any rrore stcrage frcm the
sys~em.

If ISASIZE is not specified, then
in a non-multitasking envircnroent
the IBM default value is
calculate~ as fcllcws:

(m - n)/2

where "m" is the regicn size for
the GO step, and "n" is the load
module length. This value is
rounded up to a 2K toundary. In a
multitasking environment, the
default is 8K bytes for the major
task and 8K bytes for each
subtask.' The default value for

Chapter 4: The Ccrrpiler 31

the maximum number of active
subtasks is 20.

Note that if an initial storage
allocation is too large, that is,
most variables in STATIC and few
controlled and based allocations,
there will be a considerable
amount of wasted main storage in
the ISA. In some cases this rr.ay
cause the program to terminate
abnormally, because there is
insufficient storage available for
dynamically-loaded nodules and for
data areas required by the
operating system.

If the initial storage allocation
is too small, then dynamic main
storage requirements will be less
efficiently met by individual
requests to the system.
Furthermore, the defaults may not
appear in the storage reFort given
by the REPORT option. If a
default ISASIZE is used initially
and proves to be too small, then
the ISASIZE finally used, which
aFpears in the whiclF appear&- -iR
~ report, may be less than the
default. For instance in a
multitasking environment the major
task's ISASIZE will default to 8K
bytes. If this task has an
AUTOMATIC character string
variable of say 20K bytes the ISA
will be too small. certain
control blocks are placed first in
the ISA and occupy about lK bytes
of it. The DSA, which will be
greater than 20K because it
includes storage for automatic
variables, is then allocated.
Since there is no room for it in
the ISA, more storage is made
available from the remainder of
the region. However to avoid
wastage of storage the unused Fart
of the ISA is freed beforehand.
Thus the length of the initial
storage allocation will be
approximately lK bytes and this
length will be printed in the
repor.t.

The execution-time option REPORT
is available to enable the
programmer to determine exactly
what his storage requirements are,
apart from I/O requirements.

REPORT specifies that a report of certain
Frogram management activity is to
be printed. The report will be
automatically output to a data set
with the ddname PLIDUMP or PL1DUMP
on program termination. This
includes, for example, the arrount

of storage that was sFecified in
the ISASIZE option, the length of
the initial storage area, and the
amount of PL/I storage required.
This oFtion nay be abbreviated to
R. The use of the report is
described in "Execution-tine
storage Requirements", below.

NOREPORT specifies that a report is not
required. This oFtion nay be
abbreviated to NR.

STAE

NOSTAE

SPIE

NOSPIE

specifies that when an AEENt
occurs, the PL/I library rcutines
are to attempt to raise the ERROR
condition or to Frcduce a
diagnostic message and a PLIDUMP.

specifies that on program
ini tia Ii za ti on, a S'IAE nac rc
instruction is not to be issued.

specifies that when a program
interrupt occurs, the PL/I error
handler is to be invoked. Under
certain circurrstances the ERROR
condition will be raised.

specifies that on program
initialization, a SPIE nacrc
instruction is not to be issued.
This option rr,ust net be used if
extended precision variables are
used in the PL/I scurce Frcgram.

The execution-tirre oFtions are discussed
in greater detail in the publication OS
PL/I Optimizing Compiler: Executicn Logic.

Execution-time Storage Reguirenents

At execution tirre there are three seFarate
areas of main storage.

Th€ first area is the load module. Its
length can be obtained fron the linkage
editor cutput listing.

The second area is the initial storage
area (ISA). Its length can be sFecified by
the ISASIZE execution-time option or
supplied by default. If sU~flied by
default in a non-multitasking environment,
it will be approximately half cf the main
storage available after the load module has
been loaded. In a rrultitasking
environrrent, it will be 8K bytes for the
major task and 8K bytes for each subtask.
The ISA will include:

• Dynamic block requirements. These
lengths can be obtained frcn the table
produced J:y the STOFAGE compiler option.

32 OS PL/I Optimizing Compiler: Programmer's Guide

• Variable data areas, that is, varying­
length strings and arrays, whose bounds
or dimensions are not known at compile
time. The programmer must calculate
these lengths himself.

• Controlled and based variables. These
lengths should be known to the
programmer.

'I'he third area consists of the remainder
of main storage. It is retained by the
system and is made available on specific
main storage requests for overflow from the
ISA and for I/O requirements, that is, file
control blocks, buffers, system I/O modules
and also for PL/I transient library modules
(that is, storage overflow, program
initialization, and I/O transmission
modules) .

The storage requirements in this third
are.a can be calculated only with
difficulty. The simplest way is to use the
storage Management Facilities (SMF) as
described in the publication OS
Introduction to determine the total main
storage requirements for the job. This
figure is only meaningful if an accurate
figure for the ISA has been supplied.

The length of the ISA can greatly affect
the performance of the program. If it is
too large there will be wasted storage in
the ISA which might result in insufficient
main storage being available for I/O
reqUirements and transient library modules
requirements.

If it is too small then dynamic main
storage requirements will be met by
specific requests to the system (that is,
from the third area of main storage)
resulting in slow execution. The
programmer's total ISA requirements can be
determined either by calculation or by
using the REPORT execution-time option.

This can most easily be done in one of
two ways:

1. It sufficient main storage is
available, specify an ISASIZE larger
than will be required. The report
will then give the amount of this ISA
used and this figure will be the
optimum ISASIZE.

2. If there is a shortage of main storage
specify an ISASIZE of 1, which will
ensure that the program will run if at
all possible and the report will still
give the amount of main storage which
should be allocated to the ISA.

Note that for optimum efficiency, the
ISA should contain all dynamic main storage
requirements. If however, certain blocks

are entered only occasionally, cr
controlled or based variables allocated
only briefly, these variables could well be
permitted to remain outside the ISA. So
long as these allocations dc net clash with
a larger I/C requirement the program may
run in a smaller main storage area.

Execution-Time COUNT OFtion

Statement count inforrration can be crtainea
at execution time only if one of the
compiler options COUNT or FLOW was
specified at compile time (see "Compiler
Options" earlier in this chaFter.) If FLOW
but not COUNT was specified at compile
time, COUNT must be specified at execution
to obtain count information. If COUNT was
specified at compile time, count
information will be produced unless NOCOUNT
is specifiea at execution time.

I Count information can be produced only
Iwhen a statement number table exists. If
ICOUNT is specified at compile time, a table
lis automatically produced. If only FLOW is
Ispecified at compile time, and COUNT is
Ispecified at execution time, then to obtain
Icount information, GOSTMT or GONUMBER must
lalso be specified at compile time.

Count output is written cn the PLIDUMP
file, or on the SYSPRINT file if no dump
file is provided. The output has the
following format:

PROCEDURE namel
FROM TO

1 20
21 30

200 210

PROCEDURE name2
FROM TO

1 10

COUNT
1

10

1

COUNT
5

Three such columns are printed per page.

To draw attention to staterrents that
have not been executed, ranges for which
the count is zero are listed separately
.after the main tables.

The count tables are printed when the
program terminates. If a prccedure is
invoked with one of the multitasking
options, the count table for the invocation
is printed when the task terminates.

Chapter 4: The Compiler 33

I If an invocation is terminated as a
Iresult of the termination of another task,
lits count table cannot be printed, because
lit is impossible to determine the point at
Iwhich it terminated. In these
ICircumstances, only the count table for the
Ifirst task to terminate can be printed.
IFor example, although a STOP staterrent will
Icause all tasks to be terminated, only the
Icount table for the task containing the
Istatement will be printed.

Execution-Time FLOW Option

Flow information can be obtained at
execution time only if one of the compiler
options COUNT or FLOW was specified at
compile time (see "Compiler Options"
earlier in this chapter.) If FLOW was not
specified at compile time, it must be
specified at execution time to obtain flow
information. If FLOW was specified at
compile time, flow information will be
produced unless NOFLOW is specified at
execution time.

The format of the execution-time FLOW
option is the same as that of the compile­
time FLOW option, that is:

FLOW [(n, m)]

I If "n" and "m" are not specified at
lexecution time, the values taken are as
I follows:
,- If FLOW was specified or defaulted at
I compile time, the values of Un" and "m"
I specified or defaulted at compile tirre
I are taken.
I
I­
I

If NOFLOW was specified or defaulted at
compile time, the IBM default values,
(25,10), are taken. I

Flow output is written on the SYSPRINT
file whenever an on-unit with the SNAP
option is executed. It is also included as
part of PLIDUMP output if "T" is included
in the dump options string_

is:
The format of each line of flow output

sn1 TO sn2 [IN name]

where sn1

sn2

is the number of the
statement from which the
branch was made (the
branch out point).

is the number of the
statement to which the
branch was made (the
branch in point).

name is the name of the
procedure cr the ty~e of
the on-unit that contains
"sn2" if this is different
from that containing
"snl" •

The tranches are listed in the order in
which they occur. The last Un" branch­
in/branch-out points and the last "m"
procedures or on-units are listed. If more
than "m" procedures or on-units are entered
in the course of Un" branches, changes
prior tc the last "m" procedures or on­
units are indicated by printing "UNRNOWN"
for "narre".

Compiler Listing

During compilation, the ccrrpller generates
a listing, most of which is optional, that
contains inforrration about the source
program, the compilation, and the object
module. It places this listing in the data
set defined ty the DD statement with the
name. SYSFRINT (usually cutput to a
printer) • In a TSO environment, you can
also request a listing at ycur terrrinal
(using the TER~INAL option). The following
description of the listing refers tc its
appearance on a printed page.

An example of the listing produced for a
typical PL/I program is given in appendix
F.

Figure 4-7 specifies the components that
can be included in the compiler listing,
and the order in which they appear. The
rest of this section then describes these
in detail.

Of course, if compilation terminates
before reaching a particular stage cf
processing, the corresponding listings will
not appear.

System inforrr,a tion wi 11 . a~pear before
and after the listings for each job step if
these items use the sarre cut~ut class as
the processing programs. The output class
for system information is s~ecified in the
MSGCLASS parameter of the JOB statement.
The level of informaticn prcduced is
specified in the MSGLEVEL parameter.

The listing comprises a small amount of
standard inforrr.ation that always appears,
together with those items of opticnal
information specified or supplied by
default. The listing at the terrrinal
contains only the optional information that
has been requested in the TERMINAL cption.

34 OS PL/I Optimizing Compiler: programmer's Guide

r---,
I Listings I Options required

Options used for the compilation OPTIONS
Preprocessor input MACRO and INSOURCE
Source program SOURCE
Statement nesting level NEST
Attribute table ATTRIBUTES
Cross-reference table XREF
Aggregate length table AGGREGATE
Storage requirements STORAGE
Statement offset addresses SOURCE, OFFSET, NOSTMT
External symbol dictionary ESD
Static internal storage map MAP
Object listing LIST
Messages FLAG L-----------------------------------__________________ ----------------------------------J

Figure 4-7. Comfiler listings and associated options

HEADING INFORMATION

The first page of the listing is identified
by the name of the compiler, the corrpiler
version number, the time compilation
commenced (if the system has the tirrer
feature), and the date; this page, and
subsequent pages are numbered.

The listing either ends with a statement
that no errors or warning conditions were
detected during the compilation, cr with
one or more messages. The format of the
messages is described under "Messages,"
later in this chapter. If the machine has
the timer feature, the listing also ends
wi th a statement of the CPU time taken for
the compilation and the elapsed time during
the compilation; these times will differ
only in a multiprogramming environrrent.

The following paragraphs descrire the
optional parts of the listing in the order
in which they appear.

OPTIONS USED FOR THE COMPILATION

If the option OPTIONS applies, a complete
list of the options used for the
compilation, including the default options,
appears on the first page.

PREPROCESSOR INPUT

If both the options MACRO and INSCURCE
apply, the input to the preprocessor is
listed, one record per line, each line

numbered sequentially at the left.

If the preprocessor detects an error. or
the possibility of an error, it prints a
message on the page or pages following the
input listing. The fern-at cf these
messages is exactly as described for the
compiler messages described under
"Messages," later in this chapter.

SOURCE PROGRAM

If the option SCURCE apf1ies, the input to
the compiler is listed, one record per
line; if the input records ccntain printer
control characters or ~SRIP or %PAGE
statements, the lines will re spaced
accordingly.

If the option NUMBER applies, and the
source program contains line numbers, these
numbers are printed tc the left cf each
line.

If the option STMT applies" the
statements in the source frcgrarr are
nurrbered sequentially ry the compiler, and
the number of the first staten,ent in the
line appears to the left of each line in
which a statement begins. when an END
statement closes more than one group or
block, all the implied END statenents are
included in the count. For example:

Chapter 4: The Compiler 35

1 P:
2 X:
3

4
5
6
7
9

10

PROC ;
BEGIN;
IF A=B

THEN A=1;
EISE DO;

A=O;
C=B;

END X;
D=E;
END;

If the source statements are generated by
the preprocessor, columns 73-80 contain
diagnostic information, as shown in Figure
4- 8.

Column

73-77

Information

Input line number from which
the source statement is
generated. This number
corresponds to the line number
in the preprocessor input
listing.

78,79 Two-digit number giving the
maximum depth of replacement by
the preprocessor for this line.
If no replacement occurs, the
columns are blank.

80 "E" signifying that an error
has occurred while replacement
is being attempted. If no
error has occurred, the column
is blank.

Figure 4-8. Contents of columns 73 to
80 of source statements

STATEMENT NESTING LEVEL

If the option NEST applies, the block level
and the do-level are printed to the right
of the statement or line number under the
headings LEV and NT respectively, for
example:

STMT LEV NT

1 0 A:PROC OPrIONS C MAIN);
2 1 0 B:PROCCL);
3 2 0 DO 1=1 to 10;
' .. 2 1 DO J=1 TO 10;
5 2 2 XCI ,J) =N;
6 2 2 END;
"7 2 1 BEGIN;
8 3 1 X=Y;
9 3 1 END;

10 2 1 END B;
11 1 0 END A;

ATTRIBUTE AND CROSS-REFERENCE TABLE

If the option ATTRIEUTES a:t:r:lies, the
compiler prints an attrirute table
containing a list of the identifiers in the
source :t:rogram together with their declared
and default attributes. In this context,
the attributes include any relevant
options, such as REFER, and also
descriptive comments, such as:

/ *STRUCTURE */

If the o:t:tion XREF applies, the compiler
prints a cross-reference tarle containing a
list of the identifiers in the source
program together with the nunbers of the
staterrents or lines in which they ar:r:ear.
If both ATTRIBUTES and XREF apply, the two
tables are combined.

Attribute Table

If an identifier is declared explicitly,
the numrer of the DECLARE statement is
listed. An undeclared variarle is
indicated by asterisks. The statement
numbers of statement labels and entry
labels are also given.

The attributes INTERNAL and REAL are
never included; they can be assumed unless
the respective conflicting attributes,
EXTERNAL and COMPLEX, a:t:pear.

For a file identifier, the attritute
FILE always appears, and the attribute
EXTERNAL appears if it a:t:plies: otherwise,
only explicitly declared attributes are
listed.

For an array, the dimension attribute is
printed first; the bounds are :t:rinted as in
the array declaration, rut expressicns are
replaced by asterisks and structure levels
other than base elenents have their tounds
replaced by asterisks.

For a character string or a bit string,
the length, preceded by the word BI~ or
CHARACTER, is printed as in the
declaration, but an expressicn is rer:laced
by an asterisk.

Cross-reference Table

If the cross-re~erence table is combined
with the attribute table, the numbers of
the statements or lines in which an
identifier appears follow the list of
attributes for the identifier. The number

36 OS PL/I Optimizing Compiler: Programmer's Guide

of a statement in which an implicitly­
pOinter qualified based variable appears
will be included not only in the list of
statement numbers for that variable, but
also in the list of statement numbers for
the pointer associated with it implicitly.

I If a based variable is referenced
Iwithout explicit pointer qualification, a
Ireference to the implicit pOinter used will
lbe included in the cross-reference listing.

Note that an END sta tement that refers
to a label does not have its statement
number listed in the entry for the label.

Identifiers that are initialized during
execution of prologue code on entry to a
block will have the PROCEDURE or BEGIN
statement number included in the list of
statement numbers. For example, automatic
variables with the INITIAL attribute in a
single-block program will .have a reference
to statement number 1 in the cross­
reference table.

The order in which the statement numbers
appear for a particular identifier is
subject to any reordering of blocks that
has occurred during compilation. In
general, the statement numbers for the
outermost block are given first, followed
on ·the next line by the statement numbers
for the inner blocks.

I The PLII text is expanded to a certain
lextent before the cross-reference list is
Iproduced. Consequently, an identifier
Iwithin a statement may acquire multiple
Ireferences to the same statement number.
ICommon examples are the use of do-groups
land statements involving aggregates.

AGGREGATE LENGTH TABLE

An aggregate length table is obtained by
using the AGGREGATE option. The table
shows how each aggregate in the program is
mapped. It contains the following
information:

• 'l'he statement number in which the
aggregate is declared.

• The name of the aggregate and the
element within the aggregate.

• The level number of each item in a
structure.

• The number of dimensions in an array.

• 'lihe byte offset of each element frail! the
beginning of the aggregate. (The bit
offset for unaligned bit-string data is

not given).

• The length of each element.

• The total length of each aggregate,
structure and sub-structure.

I If there is padding between twc
Istructure elements, a /*PADDING*/ comment
lappears, with appropriate diagnostic
I information.

The table is completed with the sum of the
lengths of all aggregates that do not
contain adjustable elenents.

The statement or line number identifies
either the DECLARE statenent for the
aggregate, or, for a controlled aggregate,
an ALLOCATE statenent fer the aggregate.
An entry appears for each ALLOCATE
statement involving a controlled aggregate,
as such statements can have the effect of
changing the length of the aggregate during
execution. Allocation of a based aggregate
does not have this effect, and only one
entry, which is that correspcnding tc the
DECLARE statement, appears.

The length of an aggregate may not be
known during compilaticn, either because
the aggregate contains elements having
adjustable lengths or dinensions, cr
because the aggregate is dynamically
defined. In these cases, the word
"adjustable" or "defined" appears in the
"length in bytes" column.

An entry for a COBOL mapped structure,
that is, for a structure into which a COBOL
record is read or from which a COBOL record
is written, or for a structure passed to or
from a COBOL program, has the word "COBOL"
appended. Such an entry will a~~ear only
if the compiler determines that the COBOL
and PL/I mapping for the structure is
different, and creation of a temporary
structure mapped acco+ding tc COBOL rules
is not suppressed by one of the options
NO~~P, NCMAPIN, and NOMAPOUT.

An entry for a FORTRAN naFped array,
that is, an array passed to or from a
FORTRAN program, has the word "FORTRAN"
appended.

If a COBCL or FORTRAN entry does appear
it is additional to the entry for the PL/I
roapped version of the structure.

STORAGE REQUIRE~ENTS

If the option STORAGE applies, the ccmpiler
lists the following information under the
heading "Storage Requirenents" on the page

Chapter 4: The Compiler 37

following the end of the aggregate length
table:

• The storage area in bytes for each
procedure.

• The storage area in bytes for each begin
block.

• The storage area in bytes for each on-
uni t.

• The length of the program control
section. The program control section is
the part of the ob ject module ·that
contains the executable part of the
program.

• The length of the static internal
control section. This control section
contains all storage for variables
declared STATIC INTERNAL.

STATEMENT OFFSET ADDRESSES

If the option OFFSET applies, the compiler
lists, for each primary entry point, the
offsets at which staterpents occur. This
information is found, under the heading
"Table of Offsets and Statement Numbers,"
following the end of the storage
requirements table.
t+1;unc, .

The following method can be used to find
the statement number that corresponds to an
offset given in an execution-time error
message.

1. From the error message, find the
offset that is calculated from a
procedure or ON statement.

2. In the table of offsets, locate the
offsets for the named procedure or on­
unit, and within this section find the
largest offset that is less than the
offset given in the error message.
Note the corresponding statement or
line number.

3. In the source listing, refer to the
statement or line number. If this is
not a BEGIN statement, it is the
statement at which the error occurred.
If it is a BEGIN statement, locate the
offsets for the begin block in the table
of offsets (look for the staterrent or
line number), and find the largest
offset that is less than the begin block
offset given in the error message. Note
the statement or line number, and repeat
from (3).

EXTERNAL SYMBCL DICTIONARY

If the o~tion ESD applies, the ccrr~iler
lists the contents of the external symbol
dictionary (ESD).

The ESD is a table contair.ing all the
external symbols that appear in the object
module. (The machine instructicns in the
object module are grouped together in what
are termed control sections; an external
symbol is'a name that can be referred to in
a control section other than the cne in
which it is defined.) The ccntents cf an
ESD aFpear under the following headings:

SYMBOL

TYPE

ID

An 8-character field that
identifies the external
symbol.

Two characters from the
following list to identify
the type of entry:

SD Section definiticn: the
name of a control section
within the cbject mcdule.

CM Common area: a type of
control secticn that
contains no data or
executable instructions.

ER External reference: an
external symbol that is
not defined in the cbject
module.

WX Weak external reference:
an external symbol that
is net defined in this
module and that is not to
be resolved unless an ER
entry is encountered for
the sarre reference.

PR Pseudo-register: a field
in a communications area,
the task ccnrrunications
area (TCA), used by the
comFiler and by the
library subroutines for
handling files and con­
trolled variables.

LD Label definition: the
name of an entry Fcint to
the external procedure
other than that used as
the name of the program
control secticn.

Four-digit hexadecirral number:
all entries in the ESD, except
LD-type entries, arenurrbered
sequentially, commencing from
0001.

38 OS PL/I Optimizing Compiler: Programmer's Guide

AOOR Hexadecimal representation of
the address of the external
symbol.

LENGTH The hexadecimal length in
bytes of the control section
(SO, CM, and PR entries only).

ESO Entries

The external symbol dictionary always
starts with the following standard entries;
the entries for an external procedure with
the label NAME are shown in Figure 4-9.

• sD-type entry for PLISTART. This
control section transfers control to the
initialization routine IBMBPIR. When
initialization is complete, control
passes to the address stored in the
control section PLIMAIN.
(Initialization is required only once
during the execution of a PL/I program,
even if it calls another external
procedure; in such a case, control
passes directly to the entry point named
in the CALL statement, and not to the
address contained in PLIMAIN.)

r---,
I
I
I

EXTERNAL SYMBOL DICTIONARY

I SYMBOL TYPE 10 ADDR
IPLISTART 3D 0001 000000
1***NAME1 SD 0002 000000
I ***NAME2 SD 0003 000000
IPLITABS WX 0004 000000
IIBMBPIRA ER 0005 000000
IIBMBPIRD ER 0006 000000
IIBMBPIRC ER 0007 000000
IPLICALLA LD 000006
IPLICALLB LD OOOOOA

LENGTH
000034
000100
000100

IPLIMAIN SD 0008 000000 000004
L---J
Figure 4-9. standard entries in the

ESD

• SD-type entry for the program control
section (the control section that
contains the executable instructions of
the object module). This name is the
first label of the external procedure,
padded on the left with asterisks to
seven characters if necessary, and
extended on the right with the character
1.

• SD-type entry for the static internal
control section (which contains main
storage for all variables declared

•

STATIC INTERNAl,). This narre is the
first label of the external procedure,
padded on the left with asterisks to
seven characters if necessary, and
extended on the right with the character
2.

ER-type entry for IBMBPIRA, the entry
point of the PL/I resident library
sutroutine that handles program
initialization and terrrinatien.

Other ESO Entries

The rema1n1ng entries in the external
symbol dictionary vary, but generally
include the following:

• SO-type entry for the 4-byte control
section PLIMAIN, which contains the
address of the prirrary entry point to
the external procedure. ~his control
section is present only if the prccedure
statement includes the option MAIN.

• Weak external reference to PLITAES, a
library subroutine that ccntains the
standard or locally-defined tab setting
for stream-oriented output.

• LD-type entries for all names of entry
points to the external prccedure.

• A PR-type entry for each tlock in
compilat ion.

• ER-type entries for all the library
sutroutines and external procedures
called ty the source program. This list
includes the names of resident library
subroutines called directly by compiled
code (first-level subroutines), and the
names of other resident library
subroutines that are called by the
first-level subroutines.

• CM-type entries for non-string element
variables declared STATIC EXTERNAL
without the INITIAL attritute.

• SD-type entries for all other STATIC
EXTERNAL variables and fer external file
names.

• PR-type entries for all file names. For
external file names, the narre ef the
pseudo-register is the same as the file
name; for internal file narres, the
corr.piler generates names as for the
display pseudo-registers.

• PR-type entries for all ccntrolled
variatles. For external variables, the
name of the variable is used fer the
pseudo-register name; for internal

Chapter 4: The Compiler 39

variables, the compiler generates narres.

STATIC INTERNAL STORAGE MAP

If the option MAP applies, the compiler
generates a listing of the contents of the
static internal control section; this
listing is termed the static internal
storage map.

'I'he MAP option also produces a Variable
storage Map. This map shows how PL/I data
items are mapped in main storage. It names
each PL/I identifier, its level, its offset
from the start of the storage area in both
decimal and hexadecimal form, its storage
class, and the name of the PL/I block in
which it is declared.

OBJECT LISTING

If the option LIST applies, the ccmpiler
generates a listing of the machine
instructions of the object module,
including any compiler-generated
subroutines, in a form similar to IBM
system/360 assembler language.

Both the static internal storage map and
the object listing contain information that
cannot be fully understood without a
knowledge of the structure of the obj ect
module. This is beyond the scope of this
manual, but a full description of the
object module, the static internal storage
map, and the object listing can be found in
OS PL/I Optimizing Compiler: Execution
Logic.

MESSAGES

If the preprocessor or the compiler detects
an error, or the possibility of an error,
they genezate messages. Messages generated
by the preprocessor appear in the listing
immediately after the listing of the
statements processed by the preprccessor.
Messages generated by the compiler appear
at the end of the listing. All messages
are graded according to their severity, as
follows:

• An informatory (I) message calls
attention to a possible inefficiency in
the program or gives other information
generated by the compiler that may be of
interest to the programmer.

• A warning (W) message calls attention to

a possible error, although the statement
to which it refers is syntactically
valid.

• An error (E) message describes an error
detected by the compiler for which the
compiler has applied a "fix-up" with
confidence. The resulting program will
execute and will prcbably give ccrrect
results.

• A severe error (5) message specifies an
error detected by the compiler for which
the compiler cannot apply a "fix-up"
with confidence. The resulting program
will execute but will nct give ccrrect
results.

• An unrecoverable error CU) rressage
describes an error that forces
termination of the cerrpilatien.

The compiler lists only these rressages
with a severity equal to or greater than
that specified by the FLAG c~tion, as shown
in Figure 4-10.

~of message

Informatory
Warning
Error
Severe Error
Unrecoverable Error

Option

FLAGCI)
FLAG CW)
FLAGCE)
FLAGCS)
Always listed

Figure 4-10. selecting the lowest
severity of messages to
be printed, using the
FLAG option

Each message is identified by an
a-character code of the form IELnnnnI,
where:

• The first three characters "IEL"
identity the message as coming from the
optimizing compiler.

• The next four characters are a 4-digit
mess age number.

• The last character "I" is an operating
system code for the operator indicating
that the message is for information
only.

The text of each message, an
explanation, and any recommended programmer
response, are given in the rressages
publication for this compiler.

40 OS PLII Optimizing Compiler: Programmer's Guide

RETURN CODES

For every compilation job or job step, the
compiler generates a return code that
indicates to the operating system the
degree of success or failure it achieved.
This code appears in the "end of step"
message that follows the listing ef the jeb
control statements and job scheduler
messages for each step. The meanings of
the codes are given in Figure 4-11.

Return
Code

0000

0004

0008

0012

0016

Meaning

No error detected:
compilation completed;
successful execution
anticipa ted.

Possible error (warning)
detected; compilation
completed; successful
execution probable.

Error detected; compilation
completed; successful
execution probable.

Severe error detected:
compilation may have been
completed: successful
execution improbable.

Unrecoverable error
detected: compilation
terminated abnormally:
successful execution
impossible.

Figure 4-11. Return codes from
compilation of a PL/I
program

Batched Compilation

Batched compilation allows the compiler to
compile more than one external PL/I
procedure in a single job step. ~he
compiler creates an object module fer each
external procedure and stores it
sequentially either in the data set defined
by the DD statement with the name SYSPUNCH,
or. in the data set defined by the DD
statement with the name SYSLIN. Eatched
compilation can increase compiler
throughput by reducing operating system and
compiler initialization overheads.

To specify batched compilation, include
a compiler PROCESS statement as the first

statement of each external ~rccedure except
possibly the first. The PRCCESS statements
identify the start of each external
procedure and allow cerr~iler cptiens to be
specified individually for each
compilation. The first prccedure nay
require a PRCCESS statement of its o~n,
because the options in the PARM paraneter
of the EXEC statement apply to all
procedures in the batch, and nay ccnflict
with the requirements of subsequent
procedures.

The method of coding a PROCESS statement
and the options that may be included are
described under "Optional Facilities,"
earlier in this chapter. The options
specified in a FROCESS statenent a~~ly to
the cem~ilation of the source statements
between that PReCESS statenent and the next
PROCESS statement. Options other than
these, either the defaults cr those
specified in the PARM field, will also
apply to the compilaticn of these scurce
staten:ents. Two options, the SIZE option
and the NAME option have a ~articular
significance in batched compilations, and
are discussed below.

SIZE OFtion

In a batched compilation, the SIZE
specified in the first procedure cf a batch
(by a PROCESS or EXEC statement, or by
default) is used througheut. If SIZE is
specified in subsequent procedures of the
batch, it is diagnosed and igncred. The
corrpiler does not reorganize its storage
between procedures of a batch.

NAME "Option

The NAME option specifies that the ccmpiler
is to place a linkage editor NAME statement
as the last statement of the object nodule.
The use of this optien in the PARM
parameter of the EXEC statement, or in a
PROCESS statement detern.ines hew the object
modules produceq by a batched compilation
will be handled by. the linkage editcr.
When the batch of object modules is link­
edited, the linkage editor ccrrbines all the
object modules between one NAME statement
and the preceding NAME statenent inte a
single lead module; it takes the name of
the load module from the NAME statement
that follows the last object medule that is

Ito be included. When combining two object
Imodules into one load module, the NAME
loption should not be used in the EXEC
statement. An example of the use of the
NAME option is given in Figure 4-12.

Chapter 4: The Compiler 41

1// EXEC PLIXC ,PARM. PLI=·'LIST'

1* PROCESS NAMEC'A');
ALPHA: PROC OPl'IONS CMAIN) ;

END ALPHA;
* PROCESS;

BETA: PROC;

END BETA;
* PROCESS NAMEC'B')i

GAMMA: PROC;

END GAMMA;

Figure 4-12. Use of the NAME option
in batched compilation

compilation of the PL/I procedures
ALPHA, BETA, and GAMMA, would result in the
following object modules and NAME
statements:

Object module for ALPHA
NAME A CR)

Object module for BETA
Object module for GAMMA

NAME B CR)

From this sequence of object modules and
control statements, the linkage editor
would produce two load modules, one named A
containing the object module for the
external PL/I procedure ALPHA, and the
other named B containing the object modules
for the external PL/I procedures BETA and
GAMMA.

You should not specify the option NAME
if you intend to process the object modules
with the loader. The loader processes all
object modules into a single load module;
if there is more than one name, the loader
recognizes the first one only and ignores
the others.

Return Codes in Batched Compilation

The return code generated by a batched
compilation is the highest code that would
be returned if the procedures were compiled
separately.

JOB CONTROL LANGUAGE FOR EATCHED
PROCESSING

The only special consideration relating to
JCL for batched processing refers to the
data set defined by the tD staterrent with
the name SYSLIN. If you include the option
OBJECT, ensure that this DD staterrent
contains the parameter DISP=(MOD,KEEP) or
DISP=CMOD,PASS). CThe IBM-su~~lied
cataloged procedures specify
DISP=(MOD,PASS).) If you do not s~ecify
DISP=MOD, successive otject modules will
overwrite the preceding modules.

Examples of Batched co~pilaticns

If the external procedures are components
of a language prograre and need to be
executed together, they can be link-edited
together and executed in subsequent job
steps. Cataloged procedure PLIXCG can be
used, as shown in Figure 4-13.

//OPT4#13 JOB
//STEP1 EXEC PLIXCG
//PLI.SYSIN DO *

First PL/I source rrodule
* PROCESS;

Second PL/I source module
* PROCESS;

Third PL/I sOUrce module
/*
//GO.SYSIN DO *

/*

Data processed by corrbined
PL/I modules

Figure 4-13. Example of batched
compilation, including
execution

//OPT4#14 JOB
//STEP1 EXEC PLIXCL,
//PARM.PII='NAMEC'PROG1')',
//PARM.LKED=LIST
//PLI.SYSIN DD *

First PL/I source program
* PROCESS NAME C ' PROG2") i

Second PL/I source program
* PROCESS NAMEC'PROG3');

Third PL/I source program
/*
//LKED.SYSLMOD DD DSN=PUBPGM,
//OISP=OLD

Figure 4-14. Example of batched
compilation, excluding
execution

42 OS PL/I Optimizing Compiler: programmer's Guide

If the external procedures are
independent programs to be invoked
individually from a load rrodule library,
cataloged proc€Qure PLIXCL can be used.
For example, a job that contains ~hree
compile-and-link-edit operations can be run
as a single hatched compilaticn, as shown
in Figure 4-14. .

One of these programs, such as PROG2,

sequence of instructions that have
previously been defined.

The format of the preprocessor output is
given in Figure 4-15.

Column 1 Printer control character,
if any, transferred from
the position specified in
the MARGINS cption.

can be invoked from the load module l~brary columns 2-72 Source program. If the
original source program
used wore than 71 cclum~s,
then additional lines are
included for any lines that
need continuation. If the
original source program
used less than 71 columns,
then extra blanks are added
on the right.

as follows:

//OPTEX JOB
//JOBLIB DD DSNAME=PUBPGM,DISP=SHR
//J2 EXEC PGM=PROG2
//SYSIN DD *

Data processed by program PROG2
/*

Compile-time Processing (preprocessing)

The preprocessing facilities of the
compiler are described in the language
reference manual for this compiler. You
can include in a PL/I program statements
that, when executed by the preprocessor
stage of the compiler, modify the source
program or cause additional source
statements to be included from q library.
The following discussion supplements the
information contained in the language
reference manual by providing·some
illustrations of the use of the "

columns 73-80 Sequence nurrber,
right-aligned. If either
SEQUENCE or NUMBER apply,
this is taken frcre the
sequence numrer field.
otherwise, it is a
preprocessor generated
number, in the range 1
through 99999. This
sequence nurrrer will be
used in the listing
produced by the INSOURCE
and SOURCE options, and in
any preprocesscr diagnostic
messages.

preprocessor and explaining how to ColUmn 81 blank
establish and use source statement
libraries. columns 82,83 Two-digit number giving the

maxireum depth of
replacement ty the
preprocessor for this line.
If no replacement occurs,
the colUlrns are blank.

INVOKING THE PREPROCESSOR

The preprocessor stage of the compiler is
executed if you specify the compiler option
MACRO.. The compiler and the preprocessor
use the data set defined by the DD
statement with the name SYSUT1 during
processing. They also use this data set to
store the preprocessed sourge program until
compilation begins. The IBM~supplied
cataloged procedures for compilation all
include a DD statement with the name
SYSUT1.

The term MACRO owes its or~g~n to the
similarity of some applications of the
preprocessor to the macro language
available with such processors as the IBM
System/360 Assembler. S~ch a macro
language allows you to write a single
instruction in a program to represent a

column 84 "E" signifying that an
error has occurred while
replacement is being
attempted. If no error has
o~curred, the column is
blank.

Figure 4-15. Format of the
preprocessor output

Three other compiler opticns, MDECK,
INSOURCE, and SYNTAX, are meaningful only
when you also specify the MACRO option.
All are described earlier in this chapter.

A simple example of the use of the
preprocessor to produce a source deck for a
procedure SUBFUN is shown in Figure 4-16;

Chapter 4: The Compiler 43

//OPT4#16 JOB
//STEPl EXEC PLIXC,PARM.PLI='MACRO,NOSYNTAX,MDECK'
//PLI.SYSPUNCH DD DSNAME=NEWLIBCSUBPROC),DISP=CNEW,CATLG) ,UNIT=2311,
// VOL=SER=D186,SPACE=(CYL, (1,1,1»
//PLI.SYSIN DD *

SUBF'UN: PROC (CITY) ;

DeL IN FILE RECORD,
1 DATA,

2 NAME CHAR (10) ,
2 POP FIXED(7) ,

CITY CHAR(10);

';DCL USE CHARi
%USE='SUB' /* FOR FUNCTION, SUBSTITUTE IUSE='FUN' */;

NE:XT: READ FILE (IN) INrO (DATA) ;
IF NAME=CITY THEN 00;
%IF USE='FUN' %THEN %GOTO Ll;
NO=POP; END;
%GO TO L2;

%:Ll :; RETURN (POP); END;
%L2:; ELSE GO TO NEXT;

END SUBFUNi
/*

Figure 4-16. Using the preprocessor to create a member of a source program library

according to the value assigned to the
preprocessor variable USE, the source
statements will represent either a
subroutine or a function.

THE %INCLUDE STATEMENT

The language reference manual for this
compiler describes how to use thE~ 'INCLUDE
statement to incorporate source statements
from a library into a PL/I program. (A
library is a type of data set that can be
used for the storage of other data sets,
termed members,) A set of source
st.atements that you may wish to insert into
a PL/I program by means of a %INCLUDE
st.atement must exist as a data set (member)
within a library. Creating a library and
placing members in this library, are
described in Chapter 10.

The %INCLUDE statement includes one or
more pairs of identifiers. Each pair of
identifiers specifies the name of a DD
statement that defines a library and, in
parentheses, the name of a member of the
library. For example, the statement:

%INCLUDE DD1(INVERT),DD2(LOOPX);

specifies that the source statements in
member INVERT of the library defined by the
DO statement with the name 001, and those
in member LOOPX of the library defined by

the DD statement with the name DD2, are to
be inserted consecutively into the source
program generated by the pre~rccesscr. The
compilation jot step must include
appropria te DO staterrents.

If you omit the ddname from any pair of
identifiers in a "INCLUDE staterrent, the
preprocessor assumes the ddname SYSLIB. In
such a case, you must include a ~D
statement with the name SYSLIB. CThe IBM­
supplied cataloged procedures de net
include a DD statement with this name in
the compilation procedure ste~.)

The preprocessor will not recognize a
PROCESS statement in a source statenent
module included by a %INCLUDE statement.
The presence of such a PROCESS staterrent
will result in an error in the compilation.

The use of a "INCLUDE statement to
linclude the source staterrents for SUBPROC
in the procedure TEST is shown in Figure
4-17. The library NEWLIB is defined in the
DD statement with the qualified name
PLI.SYSLIB, which is added to the
statements of the cataloged ~rccedure
PLIXCLG for this jot. Since the source
statement library is defined by a Dr
statement with the name SYSLIB, the
IINCLUDE statement need not include a
ddname.

It is not necessary to invoke the
preprocessor if your source ~rograrr, and
any text to be included, contains no

44 OS PL/I Optimizing compile.r: Progranuner's Guide

//OPT4#17 JOB
//STEP1 EXEC
//PLI.SYSLIB
//PLI.SYSIN

PLIXCLG,PARM.PLI='MACRO,OBJECT'
DD DSNAME=NEWLIB,DISP=OLD

DO *
TEST: PROC OPTIONS(MAIN);

DCL NAME CHAR(10),
NO FIXED(7) ;

ON ENDFILE(SYSIN) GO TO FINISH;

AGAIN: GET FILE (SYSIN) LIST(NAME)i
CALL SUBFUN(NAME);
PUT DATA(NAME,NO);
GO '1'0 AGAIN;

'INCLUDE SUBPROC;
FINISH: END TEST;

/*
//GO.IN DD DSNAME=POPLIST,DISP=OLD
//GO.SYSIN DO *
, ABERDEEN'
'DONCASTER'
/*

Figure 4-17. Including source statements from a library

preprocessor statements other than
%INCLUDE. Under these circumstances,
faster inclusion of text can be obtained by
specifying the INCLUDE compiler option.

Dynamic Invocation of the Compiler

You can invoke the optimizing compiler from
an assembler language program by using one
of the macro instructions ATTACH, CALL,
LINK, or XCTL. The following information
supplements the description of these macro
instructions given in the manual OS/360
Supervisor and Data Management Macro
Instructions.

To invoke the compiler specify IELOAA as
the entry point name.

You can pass three address parameters to
the compi ler:

1. The address of a compiler option list.

2. 'llhe address of a list of ddnames for
the data sets used by the compiler.

3. The address of a page number that is
to be used for the first page of the
compiler listing on SYSPRINT.

These addresses must be in adjacent
fullwords, aligned on a fullword boundary.
Register 1 must point to the first address
in the list, and the first (left-hand) bit
of the last address must be set to 1, to

indicate the end of the list.

Note: If you want to pass parameters in an
XCTL macro instruction, you must use the
execute (E) form of the rracre instruction.
Remem~er also that the XCTL macro
instruction indicates to the centrol
program that the load module containing the
XCTL macro instruction is completed. Thus
the parameters must be estaclished in a
portion of main storage outside the load
module containing the XCTL nacro
instruction, in case the load module is
deleted before the cerr.piler can use the
paramet ers •

The format of the three parameters for
all the macro instructions is descriced
below.

OPTION LIST

The option list must begin on a halfword
boundary. The first t~e bytes contain a
binary count of the number of bytes in the
list (excluding the count field). ~he
remainder of the list can comprise any of
the compiler option keywords, separated by
one or more blanks, a comma, or both of
these.

Chapter 4: The Cerrpiler 45

Entry Standard ddname

1 SYSLIN
2 not applicable
3 not applicable
4 SYSLIB
5 SYSIN
6 SYSPRINT
7 SYSPUNCH
8 SYSUT1
9 not applicable
10 not applicable
11 not applicable
12 not applicable
13 not applicable
14 SYSCIN

Figure 4-18. The sequence of entries
in the ddname list

DDNAME LIST

The ddname list must begin on a halfword
boundary. The first two bytes contain a
binary count of the number of bytes in the

list (excluding the ccunt field). Each
entry in the list must occupy an 8-byte
field; the sequence of entries is given in
Figure 4-18.

If a ddnaroe is shcrter than eight bytes,
fill the field with blanks on the right.
If you omit an entry, fill its field with
binary zeros; however you may omit entries
at the end of the list entirely.

PAGE NU~BER

The page number is contained in a 6-byte
field beginning on a halfwcrd bcundary.
The first halfword must contain the binary
value 4 (the length cf the rerrainder of the
field). The last four bytes contain the
page number in binary fcrrr.

The ccmFiler will add 1 to the last page
number used in the ccrrFiler listing and put
this value in the page-number field before
returning control to the invoking routine.
Thus, if the corrpiler is reir.vcked, Fage
nurrbering will te continuous.

46 OS PL/I Optimizing Compiler: Programmer's Guide

Chapter 5: The Linkage Editor and the Loader

This chapter describes two processing
programs of the operating system, the
linkage editor and the loader. It explains
the basic differences between them,
describes the processing done by them, the
JCL required to invoke them and, for the
linkage editor, the additional processing
it can do. Both processing programs are
fully described in os: Linkage Editor and
Loader.

The ob ject module produced by the
compiler from a PL/I program always
requires further proceSSing before it can
be executed. This further processing, the
resolution of external references inserted
by the compiler, is performed either by the
linkage editor or by the loader, both of
which convert an object module into an
executable program, which in the case of
the linkage editor, is termed a load
module.

The linkage editor and the loader
require the same type of input, perform the
same basic processing, and produce a
similar type of output. The basic
differences between the two programs lie in
the subsequent form and handling of this
output.

Basic Differences

The linkage editor converts an object
module into a load module, and stores it in
a program library in auxiliary storage.
The load module becomes a permanent member
of that library and can be retrieved at any
time for execution in either the job that
created it, or in any other job.

The lOader, on the other hand, processes
the object module, loads the processed
output directly into main storage, and
executes it immediately. The loader is
essentially a one-shot program checkout
facility; once the load module has been
executed, it cannot be used again without
reinvoking the loader. To keep a load
module for later execution, or to provide
an overlay structure, you must use the
linkage editor.

When using the linkage editor, three job
steps are required -- compilation, link
editing, and execution. When using the
loader, only two job steps are required
compilation and execution.

Choice of Program

If your installation includes both
programs, the choice of progran will de~end
on whether or not you want to retain a
permanent copy of the load ncdule, and on
whether you want to use one of the
facilities provided only by the linkage
editor. All object modules acce~table to
the linkage editor are acce~table tc the
loader; all load modules produced by the
linkage editor, except those ~roduced with
the NE (not editable) attribute1 , are also
acceptable to the loader. The differences
between the two programs are summarized
below.

Linkage Editor

• The linkage editor converts an object
module into a load nodule and stcres it
in a partitioned data set (program
library) in auxiliary stcrage.

• The linkage editor can ~rcduce cne or
more load modules in a single step (for
example, output from batch cen~ilation).

• The linkage editor can accept input from
other sources as well as fron its
primary input source and fron the
automatic call library (SYSLIB).

• The linkage editor can provide an
overlay structure fer a ~rogran.

Loader

• The loader converts an object module
into an executable ~rcgran in nain
storage, and executes it immediately.

• The loader can produce only one load
module in a single jcb ste~ nc rratter
how many obj ect modul es are produced
(for example, the output fron a batch
compilat ion) •

1The NE attribute is given tc a lead module
that has no external symbol dictionary
(ESD); a load module without an ESD cannot
be processed again, either by the linkage
editor or by the loader.

Chapter 5: The Linkage Editor and the Loader 47

• The loader can accept input from its
primary input source and from the
automatic call library (SYSLIB).

Performance Considerations

If you use the loader, you will gain the
advantage of a considerable saving in both
time and auxiliary storage when runni ng
your PL/I program. Although the execution
time will be unchanged, both the scheduling
time and the processing time will be
reduced, and much less auxiliary storage
will be needed. These savings are achieved
as follows:

Scheduling Time: Scheduling time for the
loader is much less than that for link
editing and execution because the loader
needs only one job step.

Processing Time: The time taken to process
an object module by the loader is
approximately half that taken by the
linkage editor to process the same module.
This is achieved by the elimination of
certain input/output operations required by
the linkage editor, and by a reduction in
module access time by the use of chained
scheduling and improved buffering in the
loader program.

Auxiliary storage: The amount of auxiliary
storage required by the loader when your
job is compiled, loaded, and executed as a
single job step, is much less than that
required by the linkage editor because two
of the standard data sets used by the
linkage editor are not needed. If the
loader input is to consist of existing load
modules the auxiliary storage required for
these can be reduced by storing them with
unresolved external references. These
external references are resolved by the
loader.

Module Stru cture

Object and load modules have very similar
structures; they differ only in that a load
module that has been processed by the
linkage editor contains certain descriptive
information required by the operating
system; in particular, the module is marked
as "executable" or "not executable". A
mod.ule comprises the following information:

• Text (TXT)

• External symbol dictionary (ESD)

• Relocation dictionary (RLD)

• END instruction

The text of an object or load module
consists of the machine instructicns that
represent the PL/I statements of the source
program. These instructions are greuped
together in what are termed control
sections; a control section is the smallest
group of machine instructions that can be
processed by the linkage editor. An object
module produced by the optimizing compiler
includes the following contrel sectiens:

• Program control section: ccntains the
executable instructions of the object
module.

• Static internal control section:
contains storage for all variables
declared STATIC INTERNAL and for
constants and static system blocks.

• Control sections termed common areas one
common area is created fer each EXTERNAL
file name and for each non-string
element variable declared STATIC
EXTERNAL without the INITIAL attribute.

• PLISTART: execution of a PL/I program
always starts with this centrol section,
which passes control to the appropriate
initialization subroutine; when
initialization is complete, control
passes to the address stored in the
control section PLIMAIN.

• Control sections for all PL/I library
subroutines to be included with the
program.

External Symbol Dictionary

The external symbol dictionary CESD) is a
table containing all the external symbols
that appear in the object module. An
external symbol is a name that can be
referred to in a control section other than
the one in which it is defined.

The names of the control secticns are
themselves external symbols, as are the
names of variables declared with the
EXTERNAL attribute and entry names in the
external procedure of a PL/I program.
References to external synbcls defined
elsewhere are also considered to be
external symbols; they are known as
external references. such external
references in an object module always
include the names of the subroutines from

48 OS PL/I Optimizing Compiler: Programmer's Guide

Column

33

34 to 41

44 to 47

48 to 53

Information

The number of IDR entries
that follow. This is
always ftlft for the
optimizing compiler.

The program number of the
compiler. (5734-PL1 for
the opti mi zi ng c cropi Ie r.)

The release number of the
compiler. For example,
'0102' indicates Release
1.2.

The date in day-month-year
form.

Figure 5-1. The CSECT IDR information

either the os PL/I Resident Library or the
os PL/I Transient Library that will be
required for execution. They may also
include calls to your own sUbroutines that
are not part of the PL/I subroutine
library, nor already included within the
object module. The linkage editor or
loader locates all the sUbroutines referred
to, and includes them in the load module,
or executable program respectively.

Relocation Dictionary

At execution time, the machine instructions
in a load module Use the following two
methods of addressing locations in Irain
storage:

1. Names used only within a contrel
section have addresses relative to the
starting point of the control section.

2. Other names (external names) have
absolute addresses so that any control
section can refer to them.

The relocation dictionary (RLD) contains
information that enables absolute addresses
to be assigned to locations within the load
module when it is loaded into main storage
for. execution. These addresses cannot be
determined earlier because the starting
address is not known until the module is
loaded. The relocation dictionaries from
all the input modules are combined into a
single relocation dictionary when a load
module is produced.

END Instruction

This specifies the compiler-generated
control section PLIST~RT as the entry point
for the object module. It also contains
ftCSECT IDRft inforrraticn fer frecessing by
the linkage editor. The CSECT IDR
information is given in Figure 5-1.

Linkage Editor

The lin~age editor is an operating system
process1ng program that Freduces lead
modules. It always stores the load modules
in a library, from ~hich the jcb scheduler
can call them for execution.

The input to the linkage editor can
include object nodules, load nedules, and
control statements that specify ho~ the
input is to be processed. The eutFut frorr
the linkage editor comprises one or more
load modules.

In addition to its Frirrary functicn of
converting object modules into load
modules, the linkage editor can alse be
used to:

• Combine previously link-edited load
modules.

• Modify existing load modules.

• Construct an overlay structure.

A load module constructed as an everlay
strUcture can be executed in an area of
main storage that is not large enough to
contain the entire rr.cdule at ene tine. The
linkage editor divides the load module into
segments that can be loaded and executed in
turn.

LINKAGE EDITOR PROCESSING

A PL/I program, compiled by the optimizing
compiler, cannot ,be executed until the
appropriate library subroutines have been
included. These subroutines are included
in two ways:

1. By inclusion in the load module during
link editing.

2. By dynamic call during executien.

The first method is used for mcst of the
PL/I resident library sutroutines~ the
follo~ing paragraphs describe how the
linkage editor locates them. The second is

Chapter 5: The Linkage Editor and the Loader 49

SYSLIN
(prin:ary input)

r----------------,
1 I
I PL/I object 1
1 module 1-------,
1 I 1 SYSLMOD (load
L----------------J 1 module library)

1 r----------------, r----------------,
L------> 1 1 1 1

I linkage 1---------->1 load module 1
1 editor 1 1 1

r------> 1 I 1 1
I L------------____ J L----------------J r----------------,

1 1
1
1

PL/I library I I
(SYS1.PLIBASE) I-------J

1 1

1
1

L----------------J
SYSLIB

(call library>

Figure 5-2. Basic linkage editor processing

used for the PL/I transient library
subroutines, for example those concerned
with input and output (including those used
for opening and closing files), and those
that generate execution-time messages.

In basic processing, as shown in Figure
5-2, the linkage editor accepts from its
primary input source a data set defined by
the DD statement with the name SYSLIN. For
a PL/I program, this input is the object
module producea by the compiler. The
linkage editor uses the external symbol
dictionary in this object module to
determine whether the module includes any
external references for which there are no
corresponding external symbols in the
module: it attempts to resolve such
references by a method termed autorratic
library call.

External symbol resolution by automatic
library call involves a search of the data
set defined by the DD statement with the
name SYSLIBi for a PL/I program, this will
be the PL/I resident library. The linkage
editor locates the subroutines in which the
external symbols are defined (if such
subroutines exi'st), and includes them in
the load module.

The linkage editor always places its
output (that is, the load module) in the
data set defined by the DD statement with
the name SYSLMOD.

Any linkage editor processing additicnal
to the basic processing described atove
must be specified by linkage editor control
statements placed in the primary input.

These control statements are described in
WAdditional processing,W later in this
chapter.

Main Stcrage Reguirements

The F-Ievel linkage editor has three
different versions requiring differing
amounts of main storage: 441«, 88K, and
128K bytes. The F-Ievel linkage editor is
described in the linkage editor and loader
publication.

Job Control Language for the Linkage
Editor

Although you will probably use catalcged
procedures rather than supply all the job
control language (JCL) required for a job
step that invokes the linkage editor, you
should be familiar with these JCL
statements so that you can make the best
use of the linkage editor and, if
necessary, override the statements of the
cataloged procedures.

The IBM-supplied cataloged frocedures
that .include a link-edit procedure step
are:

50 OS PL/I Optimizing Compiler: Prograrrmer's Guide

PLIXCL Compile and link edit

PLIXCLG Compile, link edit, and execute

PLIXLG Link edit and execute

The following paragraphs descrite the
essential JCL statements for link editing.
The IBM-supplied cataloged procedures are
described in Chapter 11 and include
examples of these statements.

EXEC STATEMENT

The name of the linkage editor is of the
form IEWLFxxx, where "xxx" indicates the
amount of main storage required fer its
execution, as shown in Figure 5-3.

r---, I ~ I Amount of 1
1 I main storage I
1---1
1 440 I 44K 1
1 880 I 88K I
I 128 1 128K I

L---J
Figure 5-3. Main storage requirements

for linkage editor
IEWLFxxx

The aliases IEWL or,LINKEDIT are often
used for the linkage editor and nermally
refer to the version at your installation
with the largest design level. Yeu should
find out what versions are availatle at
your installation.

The basic EXEC statement is:

//stepname EXEC PGM=IEWL

By using the PARM parameter of the EXEC
statement, you can select one or more of
the optional facilities provided by the
linkage editor; these facilities are
described in "Optional Facilities," later
in this chapter.

DO STATEMENTS FOR THE STANDARD DA'IA
SETS

The linkage editor always requires four
standard data sets. You must define these
data sets in CD statements with the ddnames
SYSLIN, SYSLMOD, SYSUT1, and SYSPRINT.

A fifth data set, defined by a tt
statement with the name SYSLIB, is
necessary if you want te use auterratic
library call. 'Ihe five data set names,
together with other characteristics ef the
data sets, are shown in Figur~ 5-4.

Primary Input <SYSLIN)

Primary input to the linkage editer rrust te
a standard data set defined ty a tc
statement with the narre SYSLIN; this data
set rrust have consecutl.ve organization.
The input must comprise ene cr rrere ebject
modules and/or linkage editor control
statements; a load rrodule car.net be fart ef
the prirrary input, although it can be
introduced by the contrcl staterrent
INCLUDE. For a PL/I program, the primary
input is usually a data set centaining an
object rr,odule produced ty the compiler.
This data set may be en rragnetic ta~e or en
a direct-access device, or you can include
it in the input job strearr. In all cases,
the input must te in the form of 80-byte F­
format records.

The IBM-supplied cataloged procedure
PLIXLG includes the DO statement:

//SYSLIN DO DDNAME=SYSIN

This statement specifies that the
primary input data set rray be defined in a
DO statement with the name SYSIN. If you
use this cataloged procedure, spe~ify this
DO statement ty using the qualified ddname
IKED.SYSIN. For exarrple, te link edit and
execute an etject module placed in the
input stream, you can use the follewing
statements ,:

//IEGC
//STEP1
//LKED.SYSIN

JOB
EXEC PLIXLG
DO *

(insert here the object rrodule to be
link edited and executed)

/*

If object modules with identically named
control sections appear in the primary
input, the linkage editor precesses enly
the first appearance of that control
section.

You can include load rrodu les or ctject
modules from one or more litraries in the
primary input by using a li~kage editor
INCLUDE statement as descrited in
"Additional Processing,· later in this
chapter.

Chapter 5: The Linkage Editor and the Loader 51

r---,
ddname Contents I Possible device classes 1

SYSLIN Primary input data, normally
the compiler output

SYSLMOO Load module

SYSUT1 Temporary workspace

SYSPRINT Listing, including messages

SYSLIB Automatic call litrary
(normally the PL/I
resident library)

1SYSSQ Magnetic tape or direct-access device
SYSDA Direct access device

UNIT=SYSSQ or input jeb stream
(specified by DD *)

UNIT=SYSDA

UNIT=SYSDA

UNIT=SYSSQ (or SYSOUT=)

UNIT=SYSDA

L---__________________________________ J

Figure 5-4. Linkage editor standard data sets

Output (SYSLMOD)

Output (that is, one or more load modules)
from the linkage editor is always stored in
a data set defined by the DO statement with
the name SYSLMOD, unless you specify
otherwise. This data set is usually called
a library; libraries are fully dE~scribed in
Chapter 10.

The IBM-supplied cataloged procedures
include the following DO statement:

//SYSLMOD DO DSNAME=&&GOSET(GO),
// UNIT=SYSDA,
// DISP=(MOD,PASS),
// SPACE=(1024,C50,20,1) ,RLSE»

This statement defines a temporary
library named &&GCSET and assigns the
member name GO to the load module produced
by the linkage editor. To retain the lead
module after execution of the job, replace
this DD statement with one that defines a
permanent library. For example, assume
that you have a permanent library called
USLIB on 2311 disk pack serial number 371;
to name the load module MCD1 and J;:lace it
in this library, code:

//LKED.SYSLMOD DD DSNAME=USLIB(MOD1),
// UNIT=2311,VCL=SER=371,DISP=CLD

The size of a load module must not
exceed 512K bytes for programs executed
under MFTi a much larger load module is
allowed for MVT. The SPACE parameter in
the DD statement with the name SYSLMOD used
in the IBM-suJ;:plied cataloged procedures
allows for an initial allocation of 50K

bytes and, if necessary, 15 further
allocations of 20K tytes (a tetal cf 350K
bytes): this should suffice for most
applications.

Temporary Workspace (SYSUT1)

The linkage editor requires a data set for
use as temporary workspace. It is defined
by a DD statement with the nane SYSUT1~
This data set must te on a direct-access
device. The following statenent ccntains
the essential parameters:

//SYSUTl DD UNIT=SYSDA,
// SPACE=(1024,(200,20»

You should normally never need to alter
the DD statement with the nane SYSUT1 in an
IBM-supJ;:lied cataloged procedure, except to
increase the SPACE allccaticn when
processing very large programs.

If your installation supports dedicated
workfiles, these can be used te prcvide
tenpcrary workspace for the link-edit job
step, 'as described in Chapter 11.

Automatic Call library (SYSlIE)

Unless you specify otherwise, the linkage
editor will always attempt to resolve
external references by autonatic litrary
call (see "Linkage Editor Processing,"
earlier in this chapter). Tc enatle it to

52 OS PL/I Optimi zing Compi le.r: Prcgrann:er's Guide

do this, you must define the data set or
data sets to be searched in a DD statement
with the name SYSLIB. (TO define second
and subsequent data sets, include
additional, unnamed, 00 statements
immediately after the DO statement SYSLIB;
the data sets so defined will be treated as
a single continuous data set for the
duration of the job step.)

For a PL/I program, the DD statement
SYSLIB will normally define the PL/I
resident library. The subroutines of the
resident library are stored in two data
sets, SYS1.PLIBASE (the base library) and
SYS1.PLITASK (the multitasking library).
The base library contains all the resident
library subroutines required by a non­
multitasking program. The multitasking
library contains subroutines that are
peculiar to multitasking, together with
multitasking variants of some of the base
library subroutines.

For link editing a non-multitasking
program, specify only the base library in
the SYSLIB 00 statement. The following DD
statement will usually suffice:

//SYSLIB DO DSN=SYS1.PLIBASE,DISP=OLD

E'or link editing a multitasking program,
specify both the multitasking library and
the base library. When attempting to
resolve an external reference, the linkage
editor will first search the multitasking
library; if it cannot find the required
subroutine, it will then search the base
library. To ensure that the search is
carried out in the correct sequence, the DO
statements defining the two sections of the
library must be in the correct sequence:
multitasking library first, base library
second. The following DD statements will
usually suffice:

//SYSLIB DO DSNAME=SYS1.PLITASK,DISP=OLD
// DO DSNAME=SYS1.PLIBASE,DISP=OLD

Listing (SYSPRINT)

The linkage editor generates a listing that
includes reference tatles relating to the
load modules that it produces and also,
when necessary, messages. The information
that may appear is described under "Listing
Produced by the Linkage Editor," later in
this chapter.

You must define the data set on which
you wish the linkage editor to store its
listing in a DO statement with the name
SYSPRINT. This data set must have
consecutive organization. Although the
listing is usually printed, it can be

stored on any magnetic-tape cr direct­
access device. For printed output, the
following staterrent will suffice:

//SYSPRINT DD SYSOUT=A

EXAMPLE OF LINKAGE EDITOR JCL

A typical sequence of jot control
statements for link editing an object
module is shown in Figure 5-5. The DO
statement SYSLIN indicates that the cbject
module ~ill follow inrrediately in the input
stream; for example, it might be an cbject
deck created by invoking the optimizing
compiler with the DECK opticn, as described
in Chapter 4. The DD statement with the
name SYSIMOO specifies that the linkage
editor is to name the load module LKEX, and
that it is to place it in a r.ew library
narred MOOLIB; the keyword NEW in the DISP
parameter indicates to the c~erating systerr
that this 00 statement specifies the '
creation of a library.

Optional Facilities

The linkage editor provides a number of
optional facilities that are selected by
including the appropriate keywords from the
following list in the PARM pararreter of the
EXEC statement that invokes it:

LIST
MAP or XREF
LET or XCAL
NCAL
SIZE

code PAR~= followed ty the list of
options, separating the opticns with commas
and enclosing the list within single
quotation marks, for exarrple:

//STEPA EXEC PGM=IEWL,PARM='LIS~,MAP'

If you are using a cataloged procedure,
you must include the FARM pararreter in the
EXEC statement that invokes the procedure
and qualify the keyword FARM with the name
of the procedure step that invokes the
linkage editor, for exarrple:

//STEPA EXEC PLIXCLG,PARM.LKED='LIS~,XREF'

The linkage editor opticns are of two
types:

1. Sirrple keywords, for example, LIST,
that specifies a facility. LET, LIST,
MAP, NCAL, XCAL, and XREF are of this
type.

Chapter S: The Linkage Editor and the Leader S3

JOB
EXEC PGM=IEWL

//LINK
//STEPl
//SYSLMOD
//
//SYSUTl
//SYSPRINT
//SYSLIB
//SYSLIN

DD DSNAME=MODLIB(LKEX),UNIT=2311,VOL=SER=D186
SPACE=(CYL, (10,10,1»,DISP=(NEW,KEEP)

DD UNIT=SYSDA,SPACE=(1024, (200,20»
DD SYSOUT=A
DD DSNAME=SYS1.PLIBASE,DISP=OLD
DD *

(insert here the object module to be link-edited)

/*

Figure 5-5. Typical job control statements for link editing a PL/I };:regran

2. Keywords that permit you to assign a
value to a function (for exarrple,
81 ZE=10K) •

The linkage editor options are described
in the following sections, in alphabetic
order.

LET Option

The LET option specifies that the linkage
editor is to mark the load module as
"executable" even if slight errors or
abnormal conditions have been found during
Ii nk editing provided these do not: exceed
severity 2.

LIST option

The LIST option specifies that all linkage
editor control statements processed should
be listed in the data set defined by the DD
statement with the name <SYSPRINT.

MAP Option

The MAP option specifies that the linkage
editor is to produce a map of the load
module showing the relative locations and
lengths of all control sections in the load
module.

NeAL Option

The NeAL option specifies that no external
references are to be resolved by automatic

library call. However, the lead ncdule is
marked "executable" provided that there are
no errors.

You can use the NCAL o};:tien te censerve
auxiliary storage in private libraries,
since, by preventing the reselutien ef
external references during link editing,
you can store load roedules witheut the
relevant library subroutines; the DD
statement with the naroe SYSlIE is net
required. Before executing these lead
modules, you must link edit them again to
resolve the external references, but the
load module created need exist only while
it is being executed. You can use this
technique to combine separately compiled
PL/I procedures into a single lead ncdule.

SIZE Option

The SIZE option specifies the anount of
main storage, in bytes, to be allocated to
the linkage editor. The fornat of the SIZE
option is:

S IZ E= (m [, n])

where "m" is the anount ef nain storage
in bytes or K bytes (where
K=1024) to be allocated to the
linkage editor: it Rust
include "n" and it must be
greater than "n."

and "n" which is o};:tional, is the
amount of main storage (in
bytes or K bytes) te be
allocated to the load module
buffer.

Figure 5-6 gives values fcr "n" and "n"
for the three versions of the F-Ievel
linkage editor.

54 OS PL/I Optimizing Compiler: Programmer's Guide

r---,
IVersion ImCminimum) 1 ~ I rr.-n I
1 I 1 (Min) (Max) I (Min) I
1---/
I I I " I 44K , 44K I 6K lOOK / 38R,
1 88K / 88K ,6K lOOK , 44K 1
I l28K ,128K / 6K lOOK / 66K /
L---J
Figure 5-6. Coding the SIZE option

If you specify SIZE incorrectly, or if
you omit it, default values set at system
generation are used. If you specify SIZE
greater than the region or partition size,
the maximum amount of main storage will be
used.

XCAL Option

The XCAL option specifies that the linkage
editor will mark the load module as
"executable" even if slight errors or
abnormal conditions, including improper
branches between control sections, have
been found during link editing. XCAL,
which implies LET, applies only to an
overlay structure.

XREF Option

The XREF option specifies that the linkage
editor is to print a map of the load module
and a cross-reference list of all the
external references in each control
section. XREF implies MAP.

Listing Produced by the Linkage Editor

The linkage editor generates a listing,
most of which is optional, that contains
information about the link-editing process
and the load module that it produces. It
places this listing in the data set defined
by the DD statement with the name SYSPRINT
(usually output to a printer). The
following description of the listing refers
to its appearance on a printed page.

The listing comprises a small amount of
standard information that always appears,
together with those items of optional
information specified in the PARM parameter
of the EXEC statement that invokes the
linkage editor, or that are applied by

default. The optional corrpcnents of the
listing and the corresponding linkage
editor options are as shown in Figure 5-7.

r---,
I Listings ,options Required/
1---1
1 1 1
1 Control statements I LIST I
I processed ty the I I
I linkage editor I I
1 I I
/ Map of the load module I MAP or XREF I
I I I
I Cress-reference tatle I XRE~ 1

L---J
Figure 5-7. Linkage editor listings

and associated cFticns

The first page of the listing is
identified ty the linkage editor version
and level number followed by a list of the
linkage editor options used.

The following paragraphs describe the
optional components of the listing in the
order in which they afpear.

An example of the listing Froduced for a
typical PI/I program is given in Appendix
F.

Diagnostic Messages and Control
Statements

The linkage editor generates rressages,
describing errors or conditions, detected
during link editing, that may lead tc
error. These messages are listed
immediately after the heading infcrrration
on page 1 of the linkage editor listing.
They are listed again at the end of the
linkage editor listing under the heading
"Diagnostic Message Directory" which is
described later in this chapter.

If you have specified the option LIST,
the names of all control staterrents
processed ty the linkage editor are listed
immediately preceding the messages, and are
identified ty the 7-character code IEWOOOO.

Each message is identified by a similar
7-character code of the forrr IEWnnnx,
where:

• The first three characters "IEW"
identify the message as ccrring frcm the
linkage editor.

• The next three characters are a 3-digit

Chapter 5: The Linkage Editor and the Loader 55

message number.

• The last character "x" is a severity
code. The possible severity codes and
their meanings are given in Figure 5-8.

severity
Code Meaning

o A condition that will not cause an
error during execution. ~he load
module is marked as "executable".

1 A condition that may cause an error
during execution. The load module
is marked as "executable".

2 An error that could make execution
impossible. The load module is
marked as "not executable" unless
you have specified the opt:ion LET.

3 An error that will make execution
impossible. The load module is
marked as "not executable".

4 An error that makes recovery
impossible. Linkage editer
processing is terminated, and no
output other than messages is
produced.

Figure 5-8. Diagnostic message
severity codes

At the end of the listing, immediately
preceding the "Diagnostic Message
Directory" (described later in this
chapter), the linkage editor places a
statement of the disposition of the load
module. The disposition statements, with
one exception, are self-explanatory; the
exception is:

****modulename DOES NOT EXIST BUT HAS
BEEN ADDED TO DATA SET

This appears when the NAME statement has
been used to add a new module to the data
set defined by the DO statement with the
name SYSLMOD. The use of the NAME
statement is described under "Module Name,"
later in this chapter. If you narr.e a new
module by including its name in the DSNAME
parameter of the DO statement with the name
SYSLMOD, the linkage editor assumes that
you want to replace an existing mooule
(even if the data set is new).

DIAGNOSTIC MESSAGE DIRECTORY

When processing of a load module has been

completed, the linkage editor lists in full
all the messages whose nurrbers affear in
the preceding list. The text of each
message, an explanation, and any
recommended programmer response, are given
in the linkage editor and leader
publication.

The warning message IEW0461, tcgether
with a return code of 0004, frequently
appears in the linkage editer listing for a
PL/I prograro. It refers to external
references that have not been reselved
because NCAL is specified. The references
occur in PL/I library subroutines that are
link edited with your program as a result
of automatic library call. Serre litrary
subroutines may, in turn, call other
library subroutines. For these secendary
subroutines that are required, the compiler
generates another external syrobol
dictionary containing alternative names for
the subroutines. These new references can
be resolved, and the required subroutines
placed in the new load module. If the
secondary subroutines in turn call ether
subroutines, the process is repeated.

MODULE MAP

The linkage editor listing includes a
module map only if you specify the eftions
MAP or XREF. The map lists all the control
sections in the load module and all the
entry point names in each control section.
The control sections are listed in erder of
appearance in the load module; alongside
each control section name is its address
relative to the start of the load module
(address 0) and its length in bytes. The
entry peints within the load module appear
on the printed listing below 'and to the
right of the control sections in which they
are defined; each entry point name is
accompanied by its address relative to the
start of the load module.

Each control section that is. included by
automatic library call is indicated by an
asterisk. For an overlay structure, the
control sections are arranged by segment in
the order in which they are specified.

After the control sections, the rrcdule
map lists the pseudo-registers estatlished
by the compiler. Pseudo-registers are
fields in a communications area, the task
communications area (TCA), used by PL/I
library subroutines and compiled code
during execution of a PL/I frograR. The
main storage occupied ty the TCA is not
allocated until the start of executicn of a
PL/I program; it does not form part of the
load module. The addresses given in the
list of pseudo-registers are relative to

56 OS PLII Optimizing Compiler: Programmer's Guide

Return Code

0000

0004

oooa

0012

0016

Meaning

No messages issued; link
editing completed without
error; successful execution
anticipated.

Warning messages only
issued; link editing
completed; successful
execution probable.

Error messages only issued;
link editing completed;
execution may fail.

Severe error messages
issued; link editing may
have been completed, but
with errors; successful
execution improbable.

Unrecoverable error message
issued; link editing
terminated abnormally;
successful execution
impossible.

Figure 5- 9. Return codes from the
linkage editor

the start of the TCA.

At the end of the module map, the
linkage editor supplies the following
information:

• The total length of the pseudo­
registers.

• The relative address of the instruction
with which execution of the load module
will commence (ENTRY ADDRESS).

• The total length of the load module.
For an overlay structure, the length is
that of the longest path.

All the addresses and lengths given in
the module map and associated information
are in hexadecimal.

CROSS-REFERENCE TABLE

The linkage editor listing includes a
"Cross-reference Table" only if you specify
the option XREF. T.his option produces a
listing that comprises all the information
described under "Module Map," above,
together with a cross-reference table of
external references. The table gives the
location of each reference within the load

module, the symbol to which the reference
refers, and the name of the ccntrol secticn
in Which the symbol is defined.

For an overlay structure, a cross­
reference table is provided for each
segment. It includes the number of the
segment in which each syrrbcl is defined.

Unresolved symbols are identified in the
cross-reference table by the entries
$UNRESOLVED or $NEVER-CALL. An unresolved
weak external reference (WX1RN) is
identified by the entry $UNRESOLVED(w).

RETURN CODE

For every linkage editor job or job step,
the linkage editor generates a return code
that indicates to the operating system the
degree of success or failure it achieved.
This code appears in the "end of step"
message and is derived by rrultiplying the
highest severity code (see "Diagnostic
Messages and control Staterrents," earlier
in this chapter) by four, as shown in
Figure 5-9.

The return code 0004 alrrost invariably
appears after a PL/I program has been link
edited because some external references
will not have been resolved. (Refer to
"Diagnostic Message Directory," earlier in
this chapter.)

Additional Processing

Basic processing by the linkage editcr
produces a single load module from the data
that it reads from its primary input, but
it has several other facilities that you
can call upon by using linkage editcr
control statements. The use of those
statements of particular relevance tc a
PL/I program is described below. All the
linkage editor control staterrents are fully
described in the linkage editor and loader
publication.

FORMAT OF CONTROL S1ATEMENTS

A linkage editor control staterrent is an
aO-byte record that contains two fields.
The operation field specifies the operation
required of the linkage editcr; it rrust be
preceded and followed by at least one blank
character. The operand field names the
control sections, data sets, or mcdules
that are to be processed, and it may

Chapter 5: The Linkage Editor and the Loader 57

contain symbols to indicate the manner of
processing; the field consists of one or
more parameters separated by commas. Some
control statements may have multiple
operand fields separated by commas.

The position of a control statement in
the linkage editor input depends on its
function.

In the following descriptions of the
control statements, items within l:rackets
[] are optional.

MODULE NAME

A load module must have a name so that the
linkage editor and the operating system can
identify it. A name comprises up to eight
characters, the first of which must be
alphabetic.

You can name a load module in cne of two
ways:

1. If you are producing a single load
module from a single link-edit job
step, it is sufficient to include its
name as a member name in the DSNAME
parameter of the DD statement with the
name SYSLMOD.

2. If you are producing two or more load
modules from a single link-edit job
step, you will need to use the NAME
statement. (The optimizing compiler
can supply the NAME statements when
you use batch compilation as described
in Chapter 4.)

The format of the NAME statement is:

NAME name [(R)]

Iwhere "name" is any name of up to eight
characters; the first character must be
alphabetic. The NAME statement serves the
following functions:

• It identifies a load module. The name
specified will be given to the load
module. "(R)", if present, specifies
that the load module is to replace an
existing load module of the sarre name in
'the data set defined by the DD statement
with the name SYSLMOD.

• It acts as a delimiter between input for
different load modules in one link-edit
step.

'rhe NAME statement must appear in the
primary input to the linkage editor (the
standard data set defined by the DD
statement SYSLIN); if it appears elsewhere,

the linkage editor ignores it. The
statement must follow innediately after the
last object module that will form part of
the load module it names (or after the
INCLUDE control statement that specifies
the last object module).

Alternative Names

You can use the ALIAS statement to give a
load module an alternative narre; a lead
module can have as many as sixteen aliases
in addition to the name given to it in a DD
statement with the name SYSLMOD, or by a
NAME statement.

The format of the ALIAS statement is:

ALIAS name

where "name" is any name of up to eight
characters; the first character wust be
alphabetic. You can include more than one
name in an ALIAS statewent, se~arating the
naJlles by commas" for example:

ALIAS FEE,FIE,FOE,FUM

An ALIAS statement can be placed before,
between, or after object medules and
control statements that are being processed
to form a load module, but it nust ~recede
the NAME statement that specifies the
primary name of the load module.

To execute a load module, you can
include an alias instead of the primary
name in the PGM parameter of an EXEC
statement.

Aliases can be used for external entry
points in a PL/I procedure. Hence a CALL
statement or a function reference to any of
the external entry names will cause the
linkage editor to include the module
containing the alias entry names without
the need to use the INCLUDE statenent for
this module.

ADDITIONAL INPUT SOURCES

The linkage editor can acce~t input from
sources other than the primary input
defined in the DD statement with the name
SYSLIN. For example" automatic library
call enables the linkage editor to include
modules from a data set (a library) defined
by the DD statement with the name SYSLIB.
You can name these additional input sources
by means of the INCLUDE statement, and you
can direct the automatic library call
mechanism to alternative libraries by means

58 OS PL/I Optimizing Compiler: Programmer's Guide

of the LIBRARY statement.

INCLUDE statement

The INCLUDE statement causes the linkage
editor to process the module or modules
indicated. After the included modules have
been processed, the linkage editor
continues with the next item in the prirrary
input. If an included sequential data set
also contains an INCLUDE statement, that
statement is processed as if it were the
last item in the data set, as shown in
Figure 5-10.

r---,
Primary Input Sequential
Data Set Data Set

end
INCLUDE end

INCLUDE

not
processed

Library
Member

end end end
L---J
Figure 5-10. Processing of additional

data sources

The format of the INCLUDE statement is:

INCLUDE ddname[(membername)]

where "ddname" is the name of a DD
statement that defines either a sequential
data set or a library that contains the
modules and control statements to be
processed. If the DD statement defines a
library, replace "membername" with the
names of the modules to be processed,
separated by commas. You can specify more
than one ddname, each of which may be
followed by any number of member names in a
single INCLUDE statement. For example:

INCLUDE D1(MEM1,MEM2),D2(MODA,MODB)

specifies the inclusion of the merrbers MEM1
and MEM2 from the library defined by the DO
statement with the name D1, and the members
MODA and MODB from the library defined by
the DD statement with the name D2.

LIBRARY Statement

The basic function of the LIERARY statement
is to name call libraries in additicn to
those named in the DD statem€~t SYSLIB.
The format of the LIBRARY staterrent is:

LIBRARY ddname(membername)

where "ddname" is the narre cf a rr
statement that defines the additional call
library, and "rr.embernarre" is the narre of
the module to be examined by the automatic
call mechanism. More than cr,e rrcdule can
be specified; separate the module names
with corrmas.

OVERLAY STRUCTURES

A load module constructed as an overlay
structure can be executed in an area of
main storage that is net large encugh to
contain the entire module at one time. The
linkage editor divides the load module into
segments that can be loaded and executed in
turn. To construct an overlay structure,
you must use linkage editor control
statements to specify the relationship
between the segments. One segment, termed
the root segment must remain in main
storage throughout the execution of the
prcgram.

In an overlay environment the addressing
of a static external structure element,
array, or string may be incorrect if used
in a data-directed I/O statenent cr CHECR
staterr.ent. This error will arise if the
control section containing the syrrbcl table
of the identifier, and the corresponding
static internal contrcl secticn are not in
the same overlay segment. This is because
the symbol table contains the address of a
locator that is in sta~ic internal storage.
The difficulty can be avoided by ensuring
that the procedure in the root segment
contains a reference tc the identifier in a
data-directed I/O or CHECR context. The
statement containing the ider,tifier need
not be executed; its presence ensures that
the symbol table for the identifier
addresses the locator in the static
internal control section of the rcot
segment.

I The descriptor for a controlled external
laggregate with fixed extents is stored in
Ithe static internal control section of the
I procedure that allocates it. 'Ihis prevents
Ireferences to the external variable being
Imade in other procedures that overlay the
Isegrr.ent in which it was allocated. A
Icontrolled external variable must be
lallocated in one of two ways:

Chapter 5: The linkage Editor and the Loader 59

r----------------------,
IA: PROC OPTICNS (MAIN) ; I
I I
I CALL Bi I
I I
I CALL F i I
I I
I END Ai I
L----------------------J
r----------------------,
IB: PROC; I
I I
I CALL C; I
I I
I END B; I
L----------------------J
r----------------------,
IC: PROC; I
I I
I CALL Di I

Procedure A

r--------------------------,
I
I
I

x

I I Prccedure B I Procedure F
I CALL E; I
I I
I END C i I
L---------------------_J

I

I
I
I

r----------------------, Procedure C I
ID: PROC: I I
I I r---------------------------,
I I I Y I
I END D: I I I L----------------------J I Prccedure D I Procedure E

I I
r----------------------, I I
IE: PROC: I I I
I I
I I
I END E i I
~----------- ________ ._J

r----------------------,
IF: PROC; I
I I
I I
I END F: I
L--------------------__ J

Figure 5-11. OVerlay structure and its tree

1. The variable can be allocated in the
root phase. A convenient technique to
use would be to have a subroutine,
containing the ALLOCATE state~ent,
which could be called from any
segment.

2. The variable can be allocated with
adjustable extents, so that the
descriptor will be copied into the
controlled storage area when
allocation takes place. Note that
this method uses more storage.

Design of the Overlay Struct~~~

Before Freparing the linkage editor control
stateroents, you must design the overlay
structure for your program. A tree is a
graphic representation of an overlay
structure that shows which segrrents cccupy
rrain stcrage at different times. The
design cf trees is discussed in the linkage
editor and loader putlication~ but for the
purposes of this chapter, Figure 5-11
contains a simple example. The program
corrprises six procedures: A, B, C, D, E~

60 OS PL/I Optimizing Compiler: Prograrrmer's Guide

//OPI'5#12
//S'IEPl

//PLI.SYSIN

JOB
EXEC PLIXCLG,
PARM.LKED='OVLY'
DD *

(insert here source statements for
procedu re A)

* PROCESS;

(insert here source statements for
procedure B)

* PROCESS;

(insert here source statements for
procedure C)

* PROCESS;

(insert here source statements for
procedure D)

* PROCESS;

(insert here source statements for
procedure E)

* PROCESS;

(insert here source statements for
precedure F)

/*
//LKED~SYSIN DD *

OVERLAY X

/*

INSERT ******Bl,******C1
OVERLAY Y
INSERT ******D1
OVERLAY Y
INSERT ******E1
OVERLAY X
INSERT ******F1

Figure 5-12. Creating and executing
the overlay structure of
Figure 5-11

and F. Procedure B calls procedure C
which, in turn, calls procedures D and E.
(Only procedure A requires the optien
MAIN.)

The main procedure (A) must be in main
storage throughout the execution ef the
prcqram. Since the execution of procedure
B \,ii..ll be completed before procedure F is
called, the two procedures can occupy the
same storage: this is depicted by the lines
representing the two procedures in Figure
51-11 starting from the common point (node)
X. Procedure B must remain in sterage
while procedures C, D, and E are executed,
but procedures D and E can occupy the same

storage~ ~hus the lines representing
procedures D and E start from the node X.

The degree of segmentation that can be
achieved can be clearly seen fren the
figure. Since procedure A must al~ays be
present, it must be included in the root
segnent. Procedures F, D and E can
usefully be placed in individual segrrents,
as can procedures Band C be placed
together; there is nething tc be gained by
separating procedures Band C, since they
must be present together at sene tine
during execution.

Control Statements

Two linkage editor control statements,
OVERLAY and INSERT, centrel the
relationship of the segments in the overlay
structure. The OVERLAY statenent specifies
the start of a segment and the INSERT
statement specifies the pesitiens ef
contrel sections in a segment. You must
include the attribute OVLY in the FARM
parameter of the EXEC statement that
invokes the linkage editer, ctherwise the
linkage editor will ignore the control
statements.

The format of the OVERLAY statenent is:

OVERLAY symtol

where "symbol" is the nede at which the
segnent starts (for example, X in Figure
5-11). You rr.ust specify the start cf every
segrrent, except the root segment, in an
OVERLAY statereent.

The format of the INSER'I staterrent is:

INSERT control-section-name

~here "control-sectien-narre" is the name ef
the centrol section (that is, the
derivative of the precedure r.arre that is
found in the linkage editor map) that is to
be placed in the segrrent. ~cre thar: one
contrel section can te specified, separate
the names with conmas. 'Ihe INSERT
statements that name the control sections
in the root segrrent rrust precede the first
OVERLAY statement.

creating an Overlay Structure

The nest efficient method of defining an
overlay structure, and the sinplest for a
PI/I pregram, is to group all the OVERLAY
and INSERT staterrents tegether and place
them in the linkage editor input (SYSLIN)

Chapter 5: The Linkage Editor and the Loader 61

after the object modules that for~r the
program. The linkage editor initially
places all these ob ject mod ules in the root
segment, and then moves those control
sections that are referred to in INSERT
statements into other segments.

'rhis method has the advantage that you
can use batched compilation to process all
the procedures in one job step and place
the object modules in a temporary data set;
this data set must have consecutive
organization. You can then place the
linkage editor control statements in the
input stream, concatenating them with the
da'ta set that contains the object modules.
(Do not use the NAME compiler option to
name the object modules; if you do, the
NAME statements inserted by the compiler
will cause the linkage editor to attempt to
create separate load modules rather than a
single overlay structure.)

The use of the IBM-supplied cataloged
procedure PLIXCLG to create and execute the
overlay structure of Figure 5-11, is shown
in Figure 5-12.

An alternative approach instead of
'batched compilation is to compile the
procedures independently and store them as
object modules in a private library. You
can then use an INCLUDE statement to place
them in the input to the linkage editor
(SYSLIN) .

If an INSERT statement contains the name
of an external procedure, the linkage
editor will move only the related program
control section that has the same name.
All other control sections established by
the compi ler, and all the PL/I library
subroutines, will remai.n in the root
segment.

It is important that the PL/I library
subroutines be in the root segment, since
the optimizing compiler does not support
exclusive calls (calls between segments
that do not lie in the same path). For
example, in Figure 5-11, procedures in the
segment containing D could call procedures
in the segments containing A, B, C, and 0,
but not in the segments containing E or F.
Procedures in the segments containing B or
C could call procedures in the segments
containing A, B, C, 0, and E, but not in
the segment containing F. A procedure in
the segment containing B may not call a
procedure in the segment containing A if
this latter procedure calls a procedure in
the segment containing F.

However, certain library subroutines may
not. be required by all segments, in which
case you can move them into a lower
segment. To do this, compile the
procedures using the compiler option ESD,

and exarrine the resulting external symbol
dictionary. For example, if in Figure 5-11
a library subroutine is called only by the
segment containing E, you can rreve it into
that segment by placing an INSERT
statement, specifying the subreutin.e name,
immediately after the statement INSERT
******E1.

Similarly, you can rrove ccntrel sectiens
from the root segment to lower segments .•
For example, to move the static internal
control section for procedure F into the
segment containing F, place the statement
INSERT ******F2 after the statement INSERT
******F1. Values assiqned tc static data
items are net retained-when a segrrent is
overlaid. Do not move static data from the
root segment unless it corr-prises only:

• values set by the INITIAL attribute and
then unchanged (that is, read-only
data) •

• Values that need net be retained between
different loadings of the segment.

Care must be taken to ensure that the
static external control sectiens fer all
the PL/I files used in an overlay program
are placed in the root segrrent. If this is
not dene, failures may occur when the ERROR
condition is raised and the PL/I errer
routines attempt to close the files. In
particular, the static external centrol
section for SYSFRINT must always be placed
in the root segrrent.

I When using the COUNT cpticn, ensure that
lall procedures for which count information
lis required have their static internal
Icontrol sections in the root segment, or
Ithe count information will be rendered
I invalid.

LINK EDITING FETCHABLE LeAD MODULES

The PL/I FETCH and RELEASEstaterrents
permit the dynamic loading of separate load
modules which can be subsequently invoked
from the PL/I object program.

Fetchable (or dynamically-loaded)
modules should be link-edited inte a load
module library which is subsequently made
available for the job step by rreans ef a
JOBLIB or STEPLIB DO statement.

The step which link-edits a fetchable
load module into a library requires the
following linkage editor control
statements:

• An ENTRY statement to define the entry­
point into the PL/I program.

62 OS PL/I Optimizing Compiler: Programmer's Guide

Control
Section

PLISTART

IBMBJWT1

IBM'l'JWT1

IBMBTOC1

IBMTTOC1

IBMBTPR1

IBMTTPR1

IBMBEFL1

Present in

All programs

Programs that use the WAIT
statement

Multitasking programs that use
the WAIT statement

Programs that use the
COMPLETION builtin function or
pseudovariable

Multitasking programs that use
the COMPLETION built-in
function or pseudovariable.

Programs that use the PRIORITY
pseudovariable

Multitasking programs that use
the PRIORITY pseudovariable.

Programs compiled with the FLOW
or COUNT options.

Figure 5-13. Control sections to be
deleted for optimum
space-saving

/ /FE'l-.cH JOB
//STP EXEC PLIXCL
//PLI.SYSIN DD *

PL/I sourceCfetchable)

/*
//LKED.SYSLMOD DD DSN=PRVLIB, ••.
//LKED.SYSLIN DD DDNAME=SYSIN
// DD DSN=&&LOADSET,DISP=COLD,DELETE)
//LKED.SYSIN CD *

/*

ENTRY procedure-name
REPLACE PLI START
REPLACE IBMBJWT1
REPLACE IBMBTOC1
REPLACE IBMBTPR1
NAME FETCH1

Figure 5-14. Example of link-editing
a fetchable load module

• A NAME statement to define the name used
for the fetchable load module. This
statement is required if the compiler
option NAME is not used and if the name

is net specified in the DSN parameter in
the SYSL~OD DD staterrent used to define
the load module library.

• Optionally, for optirruIt Sface saving,
REPLACE statements to delete the control
sections sho~n in Figure 5-13, if they
are present in the oeject module.

The name or any alias by which the
fetchable load module is identified in the
load module library must appear in a FETCE
or RELEASE statement within the sco~e of
the invoking procedure.

COBOl or FORTRAN modules cannot be
loaded dynamically by the PL/I FETCH
statement.

The job control staterrents and the
linkage editor statements to link-edit a
fetchable load module into a library called
PRVLIB are given in Figure 5-14. The
cataloged procedure PLIXCL is used tc
illustrate these statements ty sharing a
job that includes both the cCIT't:ilaticn and
the link-editing of the fetchable PL/I
module.

Combining PL/I Modules froIT the
Optimizing and Checkout Corr:Filers

When a program is to consist of PL/I
modules compiled by the optirrizing and
checkout compilers, the following points
should be considered before link-editing
the modules into a single load module:

• The modules compiled by the optirrizing
compiler should be link-edited tc form a
load module.

• The linkage editor option NCAL rrust be
specified for this link-editing
operation.

• The load module containing the ITcdules
compiled ty the optimizing compiler can
now be link-edited with the link-edit
stubs produced by the checkcut ccrrpiler.

This method ensures that the
initialization routine for a program
compiled by the optiroizing ccrot:iler will
not be included in the final load module
and that the initialization routine for a
program compiled by the checkout compiler
is used ~hen the prograrr: is executed.

Both the space occupied by the final
load module and its speed of execution are
affected by the SYSLIB data set specified
for use by the linkage editor. Two data
sets, SYS1.PLICMIX and SYS1.PLIBASE are
available. Use SYS1.PLICMIX to obtain a

Chapter 5: The Linkage Editor and the Loader 63

smaller load module at the expense of
execution time; use SYSl. PLIBASE ·to save
execution time at the expense of space.

Loader

The loader is an operating system
processing program that produces and
executes load modules. It always stores
the load modules directly in main storage
where they are execut ed immediately.

The input to the loader can include
single object modules or load modules,
several object modules or load modules, or
a mixture of both. The output from the
1~1der always comprises an executable
program that is loaded into main storage
from where it will be executed.

Unlike the linkage editor you cannot use
any control statements with the loader. If
any linkage editor control statements are
used, they will be ignored, and their
presence in the input stream will not be
treated as an error. Your job will
continue to be processed, a message will be
generated and, if you have included a DD
statement with the name SYSLOUT, this
message and the name of the contrel
statement will be printed on your listing.

The loader compensates for the absence
of the facilities provided by control
statements by allowing the concatenation of
both object and load modules in the data
set defined by the DD statement with the
name SYSLIN, and by allowing an entry point
to be specified by means of the EP option,
as described in "Optional Facilities,"
later in this chapter.

LOADER PROCESSING

A PL/I program cannot be executed until the
appropriate PL/I library subroutines have
been included. All library subroutines are
included during loading. In basic
processing, as shown in Figure 5-15, the
loader accepts data from its primary input
source, a dat a set defined by the DD
statement with the name SYSLIN. For a PL/I
program, this data is the object module
produced by the compiler. The loader uses
the external symbol dictionary in this
object module to determine whether the
module includes any external references for
which there are no corresponding external
s~nbols in the module: it attempts to
resolve such references by a method termed
automatic library call as described in
"Linkage Editor processing," earlier in

this chapter.

The loader locates the surroutines in
which the external symbcls aIe defined (if
such surroutines exist) and includes them
in the load module. If all external
references are resolved satisfactorily the
load module is executed.

The loader will always search the link­
pack area before searching the PL/!
resident library, as shown ir. Figure 5-16.
The link-pack area is an area of main
storage in which frequently used lcad
modules are stored permanently. If there
is more than one copy of an cbject rrcdule
in the data set defined ry the DD statement
with the name SYSLIN, the lcader will load
the first and ignore the rest.

Main storaqe Requirements

The minimum main storage requirements for
the loader are shown in Figure 5-17.

This amounts to at least 17K bytes for
the loader and its associated routines and
data areas plus the rr.ain stcIage required
for the program that is to re executed. If
the loader program and the data rranagement
access routines were stored in the link­
pack area, the amount of rrain storage
required would re 3K bytes for the loader
data area plus that required by the prograrr
that is to re executed.

Job Control Language for the Loader

Although you will probably use cataloged
procedures rather than supply all the job
control language (JCL) required for a job
step that invokes the loader, you shculd re
familiar with these JCL statements so that
you can make the best use of the loader
and, if necessary, override statements of
the cataloged procedures.

The IBM-supplied cataloged procedures
that include a loader procedure step are as
follows:

• PLIXCG Compile, load-and-execute

• PLIXG Load-and-execute

The following paragraphs describe the
essential JCL statements for the loader.
The IBM-supplied cataloged procedures are
described in Chapter 11 and include
examples of these statements.

64 OS PL/I Optimizing Compiler: programmer's Guide

SYSLIN
(primary input)

r----------------,
I I
IPL/I object AI
land/or BI-------,
Iload modules CI I
1 I I
L----------------J I r----------------, r----------------,

I I I 1 AI
L--------> I 1 I B I

I loader lie 1
1 1----------------->1 main storage 01

r--------> 1 liE I
SYSLIB 1 L----------------J 1 F 1

(ca 11 library) 1 I G 1
r----------------, 1 I I
I I 1 L-----------_____ J

IPL/I resident 01 I
Ilibrary .E I I
1.(SYS1.PLIBASE) FI-------J
1 GI
I I
L----------------J

Figure 5-15. Basic loader processing

SYSLIN
(primary input)

r----------------,
I I Main
IPL/I object AI storage
land/or load BI--------, r----------,
I module sCI I I 1 A
I I I I I
L----------------J 1 r---------------, 1 1 B--,

I 1 1------------------> 1 1 1
l-------> 1 I 1 I C-, 1

I 1 1 I II
I loader 1 r--------------------------->H<J I
1 1 1 1 1 1

SYSLIB r-------> I I I I I O<-J
(call library) I I I I I 1 I

r----------------, I L---------------J I I 1 E<-J
I 1 1 1 1 1 1
IPL/I resident 01 1 1 1 1 F<-J
Ilibrary EI--------J 1 1----------1 I
I (SYSl. PLIBASE) F 1 1 I 1 G<-J
I HI--------------------------------------J Ilink-pack 1
1 I 1 area I
L----------------J L----------J

Figure 5-16. Loader processing, link-pack area and SYSLIB resolution

Chapter 5: The Linkage Editor and the Loader 65

r---,
1 storage required for: IArrcuntCmin)1
1 1 in bytes 1
1---1
ILoader program 1 10K 1
IData management access I 4K I
I routines I 1
IBuffers and tatles used by 1 3K 1
1 leader 1 1
IPL/I program to be executed 1 variable 1
L---J
Figure 5-17. Main storage requirements

for the loader

EXEC STATEMENT

The name of the loader is IEWLDRGC. It
also has the alias LOADER, which is used in
the IBM-supplied cataloged procedures, and
will be used to refer to the loader program
in the rest of this chapter. The basic
EXEC statement is:

//stepname EXEC PGM=LOADER

By using the PARM parameter of t.he EXEC
statement, you can select one or more of
the optional facilities provided by the
loader; these are described under "optional
Facilities," later in this chapter.

DO STATEMENTS FOR THE STANDARD DATA
SETS

The loader always requires one standard
data set; that defined by the DD statement

with the name SYSLIN. Three cther standard
data sets are optional and if you use them
you must define them in DD staterrents with
the names SYSLCUT, SYSPRINT, and SYSLIB.
The four data sets, their names" and other
characteristics of the data sets, are shown
in Figure 5-18.

The data sets defined by the DD
statements with the names SYSLIN, SYSLIB,
and SYSLCUT are those specified at system
generation for your installaticn. Other
ddnames may have been specified at your
installation; if they have, your JCL
statements must use them in place of those
given above. In a similar rranner the IBM­
supplied cataloged procedures PLIXCG and
PLIXG use names as shown above; ycur
systems programmer will have to modify
these procedures if the names at your
installation are different.

Primary Input (SYSLIN)

primary input to the loader Rust be a
standard data set defined by a DD statement
with the name SYSLIN; this data set Rust
have consecutive organizaticn. The input
can comprise one or more object modules,
one or more load modules, or a wixture of
object modules and load modules.

For a PL/I program the primary input is
usually a data set containing an cbject
module produced by the compiler. This data
set may be on magnetic tape cr en a direct­
access device, or you can include it in the
input job stream. In all cases the input
must be in the form of 80-byte F-format
records.

The IBM-supplied cataloged procedure

r---,
1 ddname 1 Contents of Data set 1 Possible Device Classes 1

1---·--I SYSLIN I Primary input (normally the output from the 1 SYSSQ or the input job
1 1 compiler) 1 stream Cspecified by DD *)

1---·--
1 SYSLOUT I Loader messages and wodule map listing 1 SYSSQ, SYSDA, or SYSOUT~A
1---
1 SYSPRINT 1 PL/I execution-time rressages and problem 1 SYSSQ, SYSDA, or SYSOUT=A
1 1 output listing 1
1---
1 SYSLIB 1 Automatic call library I SYSDA
1---
11 SyssQ Magnetic tape or direct-access device
1 SYSDA Direct-access device
I SYSOUT=A Normal printed output class for sy~tem output L-----------------____________________________________ ----------------------------------J
F'igure 5-18. Loader standard data sets

66 OS PL/I Optimi zing Compi ler: Programmer' s Guide

PLIXCG includes the DD statement:

//SYSLIN ~D DSN=&&LOADSET,DISP=(OLD;DELETE)

This statement sP,ecifies that the data
set &&LOADSET is temporary. If yeu want to
modify this statemerit you must refer to it
by the qualified ddname GO.SYSLIN.

The IBM-supplied cataloged procedure
PLIXG does not include a DD statement for
the input data set; you must always supply
one, specifying the characteristics of your
input data set using the qualified ddnarre
GO.SYSLIN.

Automatic Call Library (SYSLIB)

Unless you specify otherwise, the loader
will normally attempt to resolve external
references by automatic library call. The
automatic call library (SYSLIB), and how to
specify it, is described in the linkage
editor section earlier in this chapter.

Listing (SYSLOUT)

The loader generates a listing that
includes a module map (if you have
specified the MAP option) and, if errors
have been detected during processing,
messages referring to these. The
information that may appear is described in
"Listing Produced by the Loader," later in
this chapter.

You must define the data set in which
you want this listing to be stored by a DO
statement with the name'SYSLOUT and it rrust
have consecutive organization. Although
the listing is usually printed it can be
stored on any magnetic-tape or direct­
access device. For printed output the
following DD statement will suffice:

//SYSLOUT DD SYSOUT=A

Listing (SYSPRINT)

As well as the information listed in the
data set defined by the DD statement with
the name SYSLOUT certain information
produced by the loader is always stored in
the data set defined by the DD statement
with the name SYSPRINT. This data set,
which must have consecutive organization,
holds messages that refer to errors that
have occurred during execution of your
program, as well as the results produced by

your program. The inforrraticn,that rray
appear is described in "Listing Produced by
the Loader," later in this chapter. For
printed output the following DD statement
will suffice:

IISYSPRINT DD SYSOUT=A

EXAMPLES OF LOADER JCL

A sequence of job control language for the
loader is shown in Figure 5-19. A PL/I
program has been compiled in a job step
with the step name PLI: the resultant
object rr.odule has been placed in the data
set defined by the DD statenent with the
narre SYSLIN. Eecause this nedule is to be
loaded and executed in the same job as the
compile step, this DD statenent can use the
backward reference, indicated by the
asterisk, as shown. If the conpile and
load-and-go steps were in different jobs,
the DD statement would have te specify a
perttanent data set, cataloged or
uncataloged.

" The IBM-supplied cataloged procedure
PLIXCG includes a DD staterr,ent with the
name SYSLIN in both the compile and load­
and-go procedure steps: you do net need to
specify this statement unless you want to
modify it. The IBM-supplied cataloged
procedure PLIXG does not include a DD
statement with the narr,e SYSLIN; yeu nust
supply one, using the qualified name
GO.SYSLIN.

Typical job control language statements
for the loader are shown in Figure 5-20.
The example illustrates how to include, in
the input strearr, both an object rredule fer
input to the loader, and data to be used by
your program during executier..

The DO statement with the narre SYSLIN
arid the two following unnamed CD statements
define three data sets that are te te
concatenated into one data set to be used
as input to the loader. The first data set
is named OBJMOO and contains an object
module. This data set could be the eutput
of the optimizing compiler that has just
processed your FL/I program. The second
data set is named MODLIE(MOC55) containing
a load module that haS been given the name
M0055 and stored in the library called
MOOLIB. The third data set is an object
module defined by the CD staterr,ent with the
name IN. This DO statement appears further
on and has the asterisk notation that
indicates that the data set defined by this
statement follows in the input strean.

The DD statement with the narre SYSLIB
and the unnamed 00 statement immediately

Chapter 5: The Linkage Editor and the Loader 67

//LOAD JOE

EXEC PGM=LOAOER //STEP1
//SYSLIN
//SYSLIB
//SYSLOUT
//SYSPRINT

DD DSN=*.PLI.SYSLIN,DISP=(OLD,OELETE)
DO DSN=SYS1.PLIBASE,DISP=SHR
DD SYSOUT=A
DD SYSOUT=A

Figure 5-19. Job control language for load-and-go

//LOAO JCB

EXEC PGM=LOAOER //STEP1
//SYSLIN
//

DD DSN=OBJECT,UNIT=SYSSQ,VOL=SER=30104,DISP=(OLD,KEEP)
:CD DSN=MODLIBCMOD55),DISP=SHR

//
//SYSLIB
//
//SYSLOUT
//SYSPRINT·
//IN

OD DONAME=IN
CD DSN=SYS1.PLIBASE,DISP=SHR
OD DSN=PRIVLIB,DISP=SHR
CD SYSOUT=A
OD SYSOUT=A
CD *

(insert here the object module to be loaded)

/*

//SYSIN DD *

(insert here the execution dat.a, if any)

/*

Figure 5-20. Object and load modules in load-and-go

following it define two data sets that are
to be concatenated so that they can be
searched for unresolved external references
by automatic library call. The first data
set is the PL/I resident library
(SYS1.PLILIB) and the second is a private
library called PRIVLIB.

Optional Facilities of the Loader

The loader provides a number of optional
facilities that are selected by including
the appropriate keywords from the following
list in the PARM parameter of the EXEC

statement that invokes it:

CALL
EF
LET
MAP
PRINT
RES
SIZE

code the FARM pararreter as fcllcws:

FAR~ = '[optionlistl [/pgnparrr],

where "option list" is a list ef leader
options, and "pgmparm" is a parameter to be
passed to the rrain procedure ef the PL/I

68 OS PL/I Optimizing Compiler: Prcgrammer's Guide

program to be executed. In the examples
given below, the program parameter is
referred to as PP.

If both loader options and a prograrr
parameter occur in the PARM parameter, the
loader options are given first and are
separated from the program parameter by a
slash. If there are loader options but nc
program parameter, the slash is omitted,
but if there are only program pararreters
the slash must be coded. If there is more
than one option, the option keywords are
separated by commas.

The PARM field can have one of three
formats:

1. If the special characters / cr = are
used, the field must be enclosed in
single quotes. For example:

PARM=tMAP,EP=FIRST/PP'
='MAP,EP=FIRST'

PARM='/PP'

2. If these characters are not included,
and there is more than one loader
option, the options must be enclosed
in parentheses. For example:

PARM=(MAP,LET)

3. If these characters are not included,
and there is only one loader option,
neither quotes nor parentheses are
required. For example:

PARM=MAP

To overwrite the PARM parameter options
specified in a cataloged procedure, you
must refer to the PARM parameter by the
qualified name PARM.procstepname. For
example: PARM.GO.

The loader options are of two types:

1. Simple pairs of keywords: a positive
form ,(for example, CALL) that requests
a facility, and an alternative
negative form (for example NOCALL)
that rejects that facility. CALL,
LET, MAP, PRINT, and RES are of this
type.

2. Keywords that permit you to assign a
value to a function (for exarrple,
SIZE=10K). EP and SIZE are cf this
type.

The loader options are described in the
following sections, in alphabetic order.

CALL Cption

The CALI option specifies that the loader
will attempt to resolve external references
by autonatic library call. To preserve
compatibility with the linkage editcr, the
negative form of this option can be
specified as NCAL as well as by NOCAIL.

EP Option

The EP option specifies the entry peint
narre cf the program that is to be executed.
The forreat of the EP option is:

EP=name

where "name" is an external name. If all
input modules are load ncdules you nust
specify EP=FIISTART.

LET Cption

The LET option specifies ,that the leader
will try to execute the problem program
even if a severity 2 errcr has been found.

MAP 0Ftion

The MAP option specifies that the loader is
to print a reap of the load rredule giving
the relative locations and lengths of
control sections in the nodule. Yeu must
specify the data set defined by the DD
statement with the nane SYSLCUT tc have
this nap printed. The module map is
described in "Listing Produced by the
loader," later in this chapter.

PRINT Option

The PIUr..~ option specifies that the data
set defined by the DD statement with the
name SYSLOUT is to be used fer nessages,
the module map, and other loader
information.

RES OFtion

The RES cption specifies that the loader
will attempt to resolve external references
by a search of the link-pack area of main

Chapter 5: The Linkage Editor and the Loader 69

storage. This search will be made after
the primary input to the loader has been
processed but before the data set defined
by the DD statement with the name SYSLIB is
opened.

SIZE Option

The SIZE option specifies the amount of
main storage, in bytes, to be allocated to
the loader. The format of the SIZE option
is:

SIZE=yyyyyy specifies that yyyyyy bytes of
main storage are to ce
allocated to the loader.

SIZE=yyyK specifies that yyyK bytes of
main storage are to te
allocated to the loader
(11<=1024) •

The values can be enclosed, optionally,
in parentheses.

Listing Produced by the Loader

The loader can provide a listing on the
SYSLOUT data set; the SYSPRINT data set is
used by the problem program. The contents
of each is given in Figure 5-21.

contents

SYSLOU'r Loader explanatory messages and
diagnostic messages, and
optionally, a module map.

SYSPRINT PL/I execution-time messages,
and problem pro~ram output.

Figure 5-21. Contents of SYSLOUT and
SYSPRIN'l' data sets

The SYSLOUT listing is described here;
the SYSPRINT listing is described in
Chapter 4.

The items in the SYSLOUT listing appear
in the following sequence:

1. statement identifying the loader.

2.

3.

4.

Module map (if specified).

Explanatory, error, or warning
messages.

Diagnostic messages.

MODULE MAP

If the MAP option is specified, a nedule
map is printed in the SYSLCUT listing. The
map lists all the control sectiens in the
load module and all the entry point names
(other than the first) in each contzel
section. The information for each
reference is:

• The control section or entry peint name.

• An asterisk, if the ccntzcl sectien is
included by automatic litrary call.

• An identifier, as follows:

SO Section definition: the name of
the control section.

LR Label reference: identifying an
entry point in the control section
other than the prinary entzy
point.

OM Common area: an external file, or
a non-string elenent variatle
declared STATIC EX'lERNAL without
the INITIAL attzibute.

• Absolute address of the control section
or entry point.

Each reference is printed left te right
across the page and starts at a preset
position. This gives the inpressien that
the references are arranged in columns, but
the correct way to read the nap is line by
line, across the page, not down each
column.

The module map is followed by a similar
listing of the pseudo-registers. The
identifier used here is PR, and the address
is the offset from the beginning of the
pseudo-register vector (PRV). The tctal
length of the PRV is given at the end.

The total length of the ncdule tc be
executed, and the atsolute aodzess ef its
primary entry point, are given after the
explanatory messages and befere the
diagnostic messages.

EXPLANATORY AND DIAGNOSTIC MESSAGES

The loader generates messages descriting
errors er conditions, detected during
processing by the loader, that may lead to
error. The format of these messages is
given in nDiagnostic Messages and Centrol
Statements" in the linkage editor section
earlier in this chapter.

70 OS PL/I Optimizing Compiler: Programmer's Guide

When the module to be executed has been
processed, the loader prints out in full
all the messages referred to above. The
text of each message, an explanation, and
any recommended programmer response, are
given in the linkage editor and loader
publicati on.

The warning message IEW1001 alR.ost
always appears in the listing. The
explanation for this is the same as that
for IEW0461, described under "Diagnostic
Message Directory," in the linkage editor
section earlier in this chapter.

Chapter 5: The Linkage Editor and the Loader 71

This chapter describes briefly the nature
and organization of data sets, the data
management services provided by the
operating system, and the record formats
acceptable for auxiliary storage devices.
The way in which a data set is associated
with a PL/I file is fully described in the
language reference manual for this
compiler. Methods of creating and
accessing data sets in PL/I are given in
Chapters 7 and 8.

Data Sets

In IBM system/360 Operating system, a data
set is any collection of data that can be
created by a program and accessed by the
same or another program. A data set may be
a deck of punched cards; it may be a series
of items recorded on magnetic tape or paper
tape; or it may be recorded on a direct­
access device such as a magnetic disk or
drum. A printed listing produced by a
program is a data set, but it cannot be
accessed by a program.

A data set resides on one or more
volumes. A volume is a standard physical
unit of auxiliary storage (for example, a
reel of magnetic tape or a disk pack) that
can be written on or read by an
input/output device; a serial number
identifies each volume <other than a
punched-card or paper-tape volume or a
magnetic-tape volume either without labels
or with nonstandard labels).

A magnetic-tape or direct-access volume
can contain more than one data set;
conversely, a single data set can span two
or more magnetic-tape or direct-access
volumes.

OAT A S Ell' NAMES

A data set on a direct-access device must
have a name so that the operating system
can refer to it. If you do not supply a
name, the operating system will supply a
temporary one. A data set on a magnetic­
tape device must have a name if the tape
has standard labels (see "Labels,n later in
this chapter.) A name consists of up to
eight characters, the first of which must
be alphabetic. Data sets on punched cards,
paper tape, unlabeled magnetic tape, or

Chapter 6: Data Sets and Files

nonstandard unlabeled rragnetic tape do net
have nan:es.

You can place the name of a data set.,
with information identifying the volume on
which it resides, in a catalog that exists
on the volume containing the o~erating
systero. Such a 'data set is termed a
cataloged data set. To cat~lcg a data set
use the CATLG subpararreter of the DISP
parameter of the DD statement. To retrieve
a cataloged data set, you do net need to
give the volume serial nurrber or identify
the type of device; you need only specify
the name Of the data set and its
disposition. The operating systerr searches
the catalog for information associated with
the name and uses this infornation te
request the operator to nount the velume
containing your data set.

If you have a set of related data sets,
you can increase the efficiency of the
search for a particular data set by
establishing a hierarchy of indexes in the
catalog. For example., censider an
installation that groups its data sets
under four headings: ENGRNG, SCIENCE,
ACCNTS, and INVNTRY, as shown in Figure
6-1. In turn, each of these groups is
subdivided; for example, the SCIENCE grou~
has subgroups called PHYSICS, CHEM, MATH,
and BIOLOGY. The MATH SUbgroup itself
contains three subgroups: ALGEBRA,
CALCULUS, and BOOL.

r---------------------------------,
I I I I
I I I I

ENGRNG SCIENCE ACCNTS INVNTRY
I
I
I

r-----------------------,
I I I I
I I I I

PHYSICS CHEM MATH BIOLOGY
I
I
I

r---------------------,
I I I
I I I

ALGEBRA CALCULUS BaaL

Figure 6-1. A hierarchy of indexes

Chapter 6: Data Sets and Files 73

To find the data set BOOL, the names of
all the indexes of which it is pa.rt must be
specified, beginning with the largest group
SCIENCE, followed by the subgroup name MATH
and finally the data set name BOOL. The
names are separated by periods. ~he
complete identification needed to find the
data set BOOL is

SCIENCE.MATH.BOOL

Such an identifier is termed a qualified
name. The maximum length of a qualified
name is 44 characters, including the
separating periods; each component name has
a maximum length of eight characters. (Do
not use names that begin with the letters
SYS; if the name is qualified do not use P
as the nineteenth character. The names
assigned by the operating system to unnamed
temporary data sets are of this form, with
P as the nineteenth character, and these
dat~a sets are deleted when the utility
program IEHPROGM is used with a SCRATCH
statement that includes the keywords VTOC
and SYS.)

Some data sets are updated periodically,
or are logically part of a group of data
set~s, each of Which is related to the other
in time. You can relate such data sets to
each other in what is termed a ~neration
data group. Each data set in a generation
data group has the same name qualified by a
unique parenthesized generation number Cfor
example, STOCKCO), STOCKC-l), STOCKC-2».
The most recently cataloged data set is
generation 0, and the preceding generations
are -1, -2, and so on. You specify the
number of generations to be saved when you
est.ablish the generation data group.

For example, consider a generation data
group that contains a series of data sets
used for weather reporting and forecasting;
the name of the data sets is WEATHER. T~e
generations for the group Cassqming that
three generations are to be saved) are:

WEATHER (0)
WEATHER (-1)
WEATHER C-2)

When WEATHER is updated, the new data
set is specified to the operating system as
WEATHERC+1). When it catalogs the new data
set, the operating system changes the name
to WEATHERCO), changes the former
WEATHER (0) to WEATHER (-1) , the former
WEATHER (-1) to WEATHER(-2), and deletes the
former WEATHERC-2).

To find out how to create a generation
data group, refer to the job control
language and utilities publications.

BLOCKS AND RECORDS

The items of data in a data set are
arranged in clocks separated by interblock
gaps (lEG) 1..

A block is the unit of data transnitted
to anq from a data set. Each block
contains one record, part of a record, or
several records. A block cculd alse
contain a prefix field of up to 99 bytes in
length depending on the code (ASCII er
EBCDIC) in which the data is recorded.
These codes are discussed in "Data Cedes,"
below. Specify the block size in the
BLKSIZE parameter of the DO statement or in
the BLKSIZE option of the ENVlRONMENT
attribute. .

A record is the unit of data transmitted
to and from a program. When writlng a PL/I
program, you need consider cnly the records
that you are reading or writing; but when
you describe the data sets that yeur
program will create or access, you must be
aware of the relationship between blccks
and records.

If a block contains two or more records,
the records are said to be blocked.
Blocking conserves storage space in a
volume because it reduces the nunber of
input/output operations required to process
a data set. Records are bleeked and
deblocked automatical+y by the data
management routines.

I Specify the record length in the LRECL
I parameter of the DD statement or in the
IRECSIZE option of the ENVIRONMENT
I attribute. .

Data Codes: The normal code in which data
is recorded in system/360 is the Extended
Binary Coded Decimal Interchange Cede
(EBCDIC) although source input can
optionally be coded in~CD (Binary Coded
Decimal). Howev~r, for nagnetiQ taFe only,
System/360 will accept data.recorded in the
American Standard Code for Inforrratien'
Interchange (ASCII) •. Use the' ASCII and
BUFOFF options of the ENVIRONMENT attribute
if you are reading or writ.,ing data sets
recorded in ASCII.

A prefix field up to 9? bytes in length
may be present at the beginning'"of each
block in an ASCII data set_: The use of
this field is contrQl~ed by the BUFOFF
option. For a f:ull description of the
options used :eor "ASCIi:. data -sets "see the
language reference manual~lorthis
<:'~~Il~!~~'!.. ___________ - "
1. Although the term "interreco"rdgaJ;:" is
widely used in operating- system .manuals r, it
is not used here; it. nas been replaced by
the more accurate term "interbloek gap."

74 OS PL/I Optimizing Compiler: Programmer's Guide

RECORD FORMATS

The records in a data set must have one of
the following formats:

• F fixed length

• V variable length (D- or V-format)

• U undefined length

All formats can be blocked if required,
but only fixed-length and variable-length
records are deblocked automatically by the
system; undefined length records rrust be
deblocked by your program.

Fixed-length Records (F-format Records)

You can specify the following formats for
fixed-length records:

F Fixed-length, unblocked
FB Fixed-length, blocked
FS Fixed-length, unblocked, standard
FBS Fixed-length, blocked, standard

In a data set with fixed-length records,
as shown in Figure 6-2, all records have
the same length. If the records are
blocked, each block contains an equal
number of fixed-length records (although
the last block may be truncated if there
are insufficient records to fill it). If
the records are unblocked, each record
constitutes a block.

Unblocked records (F-format):

r--------, r--------, r--------, r--
I Record IIBGI Record IIBGI Record IIBGI
L--------J L--------J L--------J L--
Blocked records (FB-format):

r------------Block-----------,

r----------------------------, r--------
I Record Record Record I IBGI Record
L----------------------------J L--------
Figure 6-2. Fixed-length records

Because it can base blocking and
deblocking on a constant record length, the
operating system can process fixed-length

records faster than variable-length
records. The use of "standard" (FS-format
and FBS-format) records further optimizes
the sequential processing of a data set on
a direct-access device. A standard format
data set must contain fixed-length records
and must have no embedded empty tracks or
short blocks (apart frorr the last blcck).
With a standard format data set, the
operating systerr can ~redict whether the
next block of data will be on a new track
and, if necessary, can select a new
read/write head in anticipation of the
transmission of that block. A PL/I Frograrr
never places embedded short blocks in a
data set with fixed-length reccrds. A data
set containing fixed-length records can be
processed as a standard data set even if it
is not created as such, providing it
contains no embedded short blocks cr empty
tracks.

Variable-length Records (D- cr V-forrrat
Records)

You can specify the follcwing forrrats for
variable-length records:

V Variable-length, unblocked
VB Variable-length, blocked
VS Variable-length, unblocked, spanned
VBS Variable-length, blccked/, sFanned
D Variable-length, unblocked~ ASCII
DB Variable-length, blccked, ASCII

V-format perrr:i ts both variable-length
records and variable-length blocks. The
first four bytes of each reccrd and cf each
block ccntain control information for use
by the operating systerr (including the
length in bytes of the record or block).
Because of these control fields, variable­
length records cannot be read backwards.
Illustrations of variable-Ier.gth reccrds
are shown in Figure 6-3.

V-format signifies unblocked variable­
length records. Each record is treated as
a block containing only one record, the
first four bytes of the block contain block
control information, and the next fcur
contain record control information.

VB-format signifies blocked variable­
length records. Each block contains as
many complete records as it can
accommodate. The first four bytes of the
block contain block control in format ion/,
and the first four bytes of each record
contain record control information.

Spanned Records: A spanned record is a
variable-length record in which the length
of the record can exceed the size of a
block. If this occurs, the record is

Chapter 6: Data Sets and Files 75

V-format:

Record 2

VB-format:

~_C_2~1 ____ R_e_co_r_d_1 __ ~I_C_2~1 ____ R_e_c_or_d_2 __ ~IBG I~C_1~I_C_2~1 ___ R_e_co_r_d_3 __ _

VS-format:
spanned record

VBS-format:

Record 1
(entire)

Record 2
(first segment)

spanned record

Record 2
(last segment)

Record 2
(last segment)

IBG

Record 3 IciTC1 C2T2 Record 1 Record 2] IBG C1 C2
I I I (entire) (first segment)
~~~~---- ------~~------------- ~--~~--------------~--~-------------

C1: Block control information 
C2: Record or segment control in.formation 

Figure 6-3. Variable-length records 

divided into segments and accommodated in 
two or more consecutive blocks by 
specifying the record format as either VS 
or VBS. segmentation and reassembly are 
handled automatically. The use of spanned 
records allows you to select a block size, 
independently of record length, that will 
combine optimum use of auxiliary storage 
with maximum efficiency of transmission. 

VS-format is similar to V-format. Each 
block contains only one record or segment 
of a record. The first four ~tes of the 
block contain block control inforrration, 
and the next four contain record or segment 
control information (including an 
indication of whether the record is 
complete or is a first, intermediate, or 
last segment). 

With REGIONAL(3) organization, the use 
of VS-format removes the limitations on 
block size imposed by the physical 
characteristics of the direct-access 
device. If the record length exceeds the 
size of a track, or if there is nc room 
left on the current track for the record, 
the record will be spanned over one or more 
tracks. 

VBS-format differs from VS-forrrat in 
that each block contains as many complete 
records or segments as it can acccrrrrcdate; 
each block is, therefore, approximately the 
same size (although there can be a 
variation of up to four bytes" since each 
segment must contain at least one byte of 
data> • 

ASCII Records: For data sets that are 
recorded in ASCII' use D-format as follows: 

D-format records are similar to V-format 
except that the data they contain is 
recorded in ASCII. 

DB-format records are sirrilar to VB­
format except that the data they contain is 
recorded in ASCII. 

Undefined-length Records CU-format 
Records> 

U-format permits the processing of records 
that do not conform to F- and V-fcrrrats .• 
The o~erating system and the compiler treat 
each block as a record; your progran must 

76 OS PL/I Optimizing Compiler: Programmer's Guide 



perform any required blocking or 
deblocking. 

DATA SET ORGANIZATION 

The data management routines of the 
operating system can handle five types of 
data set, which differ in the way data is 
stored within them and in the permitted 
means of access to the data. The three 
main types of data set and the 
corresponding keywords describing their 
PL/I organization1 are given in Figure 6-4. 

Type of Data Set 

Sequential 

Indexed sequential 

Direct 

PL/I Organization 

CONSECUTIVE 

INDEXED 

REGIONAL 

Figure 6-4. The three main types of 
data set 

The fourth type, teleprocessing, is 
recognized by the compiler by the file 
attribute TRANSIENT. 

The fifth type, partitioned, has no 
corresponding PL/I organization. 

In a sequential (or CONSECUTIVE) data 
set, records are placed in physical 
sequence. Given one record, the location 
of the next record is determined by its 
physical position in the data set. 
sequential organization is used for all 
magnetic tapes, and may be selected for 
direct-access devices. Paper tape, punched 
cards, and printed output are sequentially 
organized. 

An indexed seguential (or INDEXED) data 
set must reside on a direct-access volUme. 
Records are arranged in collating sequence, 
according to a key that is associated with 
every record. An index or set of indexes 
maintained by the operating system gives 
the location of certain principal records. 
This permits direct retrieval, replacement, 
addition, and deletion of records, as well 
as sequential processing. 

1 Do not confuse the terms "sequential" and 
"direct" with the PL/I file attributes 
SEQUENTIAL and DIRECT. The attributes 
refer to how the file is to be processed, 
and not to the way the corresponding data 
set is organized. 

A direct (or REGIONAL) data set rrust 
reside on a direct- access volume. The 
records within the 'data set can be 
organized in three ways: REGIONAL(l), 
REGIONAL(2), and REGIONAL(3); in each case, 
the data set is divided intc regions, each 
of which contains one or more records. A 
key that specifies the regien number and, 
for REGIONAL(2) and REGIONAL(3), identifies 
the record, permits direct access te any 
record; sequential processing is also 
possible. 

A teleprocessing data set (associated 
with a TRANSIENT file in a PL/I program) 
must reside in main storage. Records are 
placed in physical sequence; a key errbedded 
in the record provides direct access to any 
record. 

In a partitioned data set, independent 
groups of sequentially organized data, each 
called a member, reside on a direct-access 
volume. The data set includes a directory 
that lists the location of each member. 
Partitioned data sets are often called 
libraries. The compiler includes no 
special facilities for creating and 
accessing partitioned data sets; however" 
this is not necessary since each rrerrter can 
be processed as a CONSECUTIVE data set by a 
PL/I program, and there is ready access to 
the operating system facilities for 
partitioned data sets through job centrol 
language. The use of partitioned data sets 
as libraries is described in Chapter 10. 

LABELS 

The operating system uses labels to 
identify magnetic-tape and direct-access 
volumes and the data sets they contain, and 
to store data set attributes (for example, 
record length and block size). The 
attribute information must originally come 
from a DD statement or from your program. 
Once the label is written you need net 
specify the information again. 

Magnetic-tape volumes can have standard 
or nonstandard labels, or they can be 
unlabeled. Standard labels have twc parts: 
the initial volume label, and header and 
trailer labels. The initial volurre label 
identifies a volume and its owner= the 
header and trailer labels precede and 
follow each data set on the volume. Header 
labels contain systerr inforrration, device­
dependent information (for example, 
recording technique), and data set 
characteristics. Trailer latels are almost 
identical with header labels, and are used 
when magnetic tape is read backwards. 

Direct-access volumes have standard 

Chapter 6: Data Sets and Files 77 



labels. Each volume is identified by a 
volume label, which is stored at a standard 
location on the volume. This label 
contains a volume serial number and the 
address of a volume table of contents 
(VTOC). The table of contents, in turn, 
contains a label, termed a data set control 
block (OSCB), for each data set stored on 
thevolume •. 

DATA DEFINITION (DO) STATEMENT 

A data definition (DO) statement is a job 
control statement that defines a data set 
to the operating system, and is a request 
to the operating system for the allocation 
of input/output resources. Each job step 
must include a DO statement for each data 
set that is processed by the step. 

Chapter 1 describe s the format: of job 
control statements. The operand field of 
the DO statement can contain keyword 
parameters that describe the location of 
the data set (for example, volume serial 
number and identification of the unit on 
which the volume will be mounted) and the 
attributes of the data itself (for example, 
record forma t) • 

The DO statement enables you t~o write 
PL/I source programs that are independent 
of the data sets and input/output devices 
they will use. You can modify the 
parameters of a data set or process 
different data sets without recompiling 
your program: for example, you can cause a 
program that originally read punched cards 
to accept input from magnetic tape merely 
by changing the DD statement. 

Name of DO Statement 

The name that appears in the name field of 
the DO statement (ddname) identifies the 
statement so that other job contl::-ol 
statements and the PL/I program can refer 
to it. A ddname must be unique uithin a 
job step: if two OD statements ill one job 
step have the same n~e, the second 
st,atement is ignored. Except when 
specifying the concatenation of t:wo or more 
data sets, a DO statement must always have 
a name. 

For input only you can concatenate two 
or more sequential or partitioned data sets 
(that is, link them so that they are 
processed as one continuous,data set) by 
ondtting the ddname from all but the first 
of the DO statements that describe them. 
For example, the following DD statements 

cause the data sets LIST1, LIST2, and LIST3 
to be treated as a single data set for the 
duration of the job step in which the 
statements appear: 

//GO.LIST DD DSNAME=LIST1,OISP=OLD 
// OD DSNAME=LIST2,DISP=OLD 
// DD DSNAME=LIST3,DISP=OLD 

When read from a PL/I progran the 
concatenated data sets need not be on the 
same volume, but the volumes must be on the 
same type of device, and the data sets must 
have similar characteristics (for example, 
block size and record format). You cannot 
process concatenated data sets backwards. 

Parameters of DD Statewent 

The operand field of the DO stateIr;ent 
contains keyword parameters that you can 
use to give the following informaticn: 

• The name of the data set (DSNAME 
parameter). 

• Description of the device and volume 
that contain the qata set (UNIT, VOLUME, 
SPACE, LABELl, and SYSOUT parameters). 

• Disposition of the data set before and 
after execution of the job ste~ (DISP 
parameter). 

• Data set characteristics (DeB 
parameter) • 

The following paragraphs sunnarize the 
functions of these groups of parameters. 
For full details of all the ~arameters, 
refer to the job contrQI language 
publica tions. 

NAMING THE DATA SET 

The OSNAME parameter specifies the name of 
a newly defined data set or refers to the 
name of an existing data set (for example, 
DSNAME=ROOTS). You need not specify the 
DSNAME parameter for a temporary data set 
(one that exists only for the duration of 
the job in which it is created): the 
operating system will give it a tem~crary 
name. 

DESCRIBING THE DEVICE AND VOLUME 

The UNIT parameter specifies the type of 
input/output device to be allocated for the 

78 OS PL/I Optimizing Compiler: Programmer's Guide 



data set. You can specify the type by 
giving the actual unit address, the type 
number of the unit (for example, UNIT=2400 
for the 2400 series Nine-track Magnetic 
Tape Drive), or ~ naming a group of units 
established at system generation (for 
example, UNIT=SYSDA for any direct-access 
device) • 

The VOLUME parameter identifies the 
volume 'on which the data set resides (for 
example, VOLUME=SER=12345). It can also 
include instructions for mounting and 
demounting volumes. 

The SPACE parameter specifies the amount 
of auxiliary storage required to 
accommodate a data set ona direct-access 
device (for example, SPACE=(CYL,10) 
specifies that 10 cylinders are to be 
allocated) • 

The LABEL parameter specifies the type 
and contents of the data set labels for 
magnetic tape (for example, LABEL=4 
indica tes tha t the da ta set is the fourth 
data set on the volume). . , 

The SYSOUT parameter allows you to route 
an output data set through a system output 
device (for example, SYSOUT=A). A system 
output device is any uni t (but usually a 
printer or a card punch) that is used in 
common by all jobs. The computer operator 
allocates all the system output devices to 
specific classes according to device type 
and ,function. The usual convention is for 
class A to refer to a printer and class B 
to a card punch: the laM-SUpplied cataloged 
procedures assume tha t this convention is 
followed. If you use the SYSOUT parameter, 
tpe only other information you may have to 
supply about the data set is the block 
size, which you can specify either in the 
DCB parameter of the Db statement or in 
your PL/I program. 

DISPOSITION OF THE DATA SET 

The DISP parameter indicates whether a data 
set exists or is new, and specifies what is 
to be done with it at the end of the job 
step (for example, DISP=(NEW,KEEP) 
specifies that a data set is to pe created 
and that it is to be kept on the volume of 
the end of the job step). At the end of a 
job step, you can delete a data set, pass 
it to the next step in the same job, enter 
its name in the system catalog or have it 
removed from the ca ta log, or' you can keep 
the data set for future use without 
cataloging it. 

The LEAVE and REREAD options of the 
ENVIRONMENT attribute allow you to use the 

DISP parameter to pontrol the acticn taken 
when the end of a magnetic-tape volume is 
reached or when a magnetic-tape data set is 
closed. For a description of these options 
refer to the language reference manual for 
this compiler. 

Use of the Conditional Subparameters 

If you wish use the conditicnal 
subparameters of the DISP parameter for 
data sets processed by PL/I ~rograms, the 
step abend facility must ,be used. The step 
abend facility is obtained as fcllcws: 

I 1. The ERROR condition shculd be raised 
or signaled whenever the program is to 
terminate execution after a failure 
that requires the application of the 
conditional subpararreters. 

I 2. The resident library subroutine 
IBM~EER must be changed to return a 
non-zero return code. 'lhe rrethcd of 
doing this is described in Chapter 12 
under the heading "The ABEND 
Facility". 

DATA SET CHARACTERISTICS 

The DCB (data control block) parameter of 
the DD statement allows you to describe the 
characteristics of the data in a data set, 
and the way it will be ~rocessed, at 
execution time. Whereas the other 
parameters of the DD statenent deal chiefly 
with the identity, location, and disposal 
of the data set, the DCB parameter 
specifies information required for the 
processing of the records themselves. The 
subparameters of the DCB parameter are 
described in Appendix A. For DCB use, see 
"Data Control Block," later in this 
cl1apter. 

The DCB parameter contains subparameters 
that describe: 

• The organization of the data set and how 
it will be accessed (CYLOFL, DSORG, 
LIMCT, NCP, NTM, and OPTCD 
subparameters) • 

• Device dependent information such as the 
recording technique for rragnetic tape or 
the line spacing for a printer (CODErl 

DEN, FUNC, MODE, PRTSP, S~CK, and TRTCH 
subparameters) • 

• The record format (BLKSIZE, KEYLEN, 
LRECL, RECFM, and RKP sub~araneters). 

Chapter 6: Data Sets and Files 79 



• The number of buffers that are to be 
used (BUFNC subparameter). 

• The t:rinter or card punch control 
characters (if any) that will be 
inserted in the first byte of each 
record (RECFM subparameter). 

You can specify BLKSIZE, BUFNO, LRECL, 
KEYLEN, NCP, RECFM, RKP, and TRROFL (or 
their equivalents) in the ENVIRON~ENT 
attribute of a file declaration in your 
FL/I program instead of in the DCB 
parameter. 

You cannot use the DCB parameter to 
override inforrration already established 
for the data set in your PL/I program (by 
the file attributes declared and the other 
attributes that are implied by them). DCB 
subparameters that attempt to change 
information already supplied are ignored. 
In example of the DCB parameter is: 

CCB=(RECFM=FB,BLKSIZE=400,LRECL=40) 

This parameter specifies that fixed­
length records, 40 bytes in leng·th, are to 
be grouped together in a block 400 bytes 
long. 

Operating System Data Management 

An object module produced by the optimizing 
compiler uses the data management routines 
of the operating system to control the 
storage and retrieval of data. The 
compiler translates each input and output 
statement in a PL/I program into a set of 
machine instructions that result in the 
issuing of assembler language macro 
instructions that request the data 
management routines to perform the required 
input or output operations. (These macro 
instructions are described in the 
supervisor and data management macro 
instructions publication.) 

The macro instructions are issued either 
directly, by compiled code, or by 
appropriate subroutines from the transient 
li.brary. In the latter case, the compiled 
code includes a branch to an interface 
su.broutine in the resident libral::-y that 
initiates the flow of control through other 
required library subroutines. 

The data management routines control the 
organization of data sets, as well as the 
st.orage arid retrieval of the records they 
contain. They create and maintain data set 
labels, indexes, andcatalogsi they 
transmit data between main storage and 
auxiliary storage; they use the system 
catalog to locate data sets; and they 

request the operator to mount and demount 
volumes as required. 

BUFFERS 

The data management routines can provide 
areas of main storage" terrred buffers, in 
which data can be collected before it is 
transmitted to auxiliary storage, or into 
which it can be read befcre it is rrade 
available to a program. The use of buffers 
permits the blocking and deblccking cf 
records, and may allow the data management 
routines to increase the efficiency cf 
transmission of data by anticipating the 
needs of a program. Anticifatery buffering 
requires at least two buffers: while the 
program is processing the data in ene 
buffer, the next block of data can be read 
into another. Anticifatcry buffering can 
only be used for data sets being accessed 
sequentially. 

The operating system can further 
increase the efficiency cf tzansrrission in 
a program that involves many input/cutput 
operations by using chained scheduling. In 
chained scheduling, a series of read or 
write operations are chained together and 
treated as a single 0feraticn. Fer chained 
scheduling to be effective, at least three 
buffers are necessary,. For more 
information on chained scheduling see the 
data management services publication. 

The data management routines have two 
ways of making data that has been read intc 
a buffer available to a program. In the 
~ mode, the data is actually transferred 
from the buffer into the area of main 
storage occupied'by the frogzam. In the 
locate mode, the prograrr can process the 
data while it is still in the buffer; the 
data management routines pass the address 
of the buffer to the prcgran. te enable it 
to locate the data. Similarly a program 
can move output data intc the buffer or it 
can build the data in the buffer itself. 

ACCESS METHODS 

Data management has two access techniques 
for transmitting data between main storage 
and auxiliary storage: 

The queued access technique deals with 
individual records, which it blocks and 
deblocks automatically. Records are 
retrieved and written by nea~s of nacro 
instructions. The first time a macro 
instruction is issued to retrieve a record, 
the data management routines place a block 

80 OS PL/I Optimizing Compiler: Programmer's Guide 



of records in an input buffer and pass the 
first record to the program that issued the 
instruction (that is, they deblock the 
records); each succeeding retrieval passes 
another record to the program. When the 
input buffer is empty, it is automatically 
refilled with another block. Similarly, 
another macro instruction places records in 
an output buffer and, when the buffer is 
full, writes out the records. Since the 
queued access technique brings records into 
main storage before they are requested, it 
can be used only for records that have been 
stored sequentially. 

The basic access technique uses other 
macro instructions for input and output. 
These instructions move blocks, not 
records. When a macro instruction is 
issued to retrieve a block, the data 
management routines pass a block of data to 
the program that issued the instruction; 
they do not deblock the records. 
Similarly, another macro instruction 
transmits a block to auxiliary storage. 

The combination of data set 
organization, as described earlier in this 
chapter, and an access technique is termed 
an access method. The access methods used 
by the compiler are shown in Figure 6-5. 

QSAM: 

QISAM: 

BSAM: 

BISAM: 

BDAM: 

TCAM: 

Queued sequential access method: 
this combines the queued access 
technique with sequential 
organization. 

Queued indexed sequential access 
method: this combines the queued 
access technique with indexed 
sequential organization. 

Basic sequential access method: 
this combines the basic access 
technique with sequential 
organization. 

Basic indexed sequential access 
method: this combines the basic 
access technique with sequential 
organization. 

Basic direct access method: this 
combines the basic access 
technique with direct 
organization. 

Telecommunications access method: 
this combines the queued access 
technique with telecommunications 
organization. 

Figure 6-5. The access methods used by 
the compiler 

The PL/I library subroutines Use QSAM 
for stream-oriented transmission and all of 
the above methods for record-oriented 
transmission, as shown in Figure 6-6. They 
implement PL/I GET and PUT statements by 
transferring the appropriate nunber of 
characters from or to the buffers, and use 
GET and PUT macro instructions in the 
locate mode to fill or empty the buffers. 
(For paper tape, however, the library 
subroutines use the move mode to permit 
translation of the transrritted characters 
before passing them to the PL/I program.) 

DATA CONTROL BLOCK 

A data control block (nCB) is an area of 
main storage that contains information 
about a data set and the volune that 
contains it. The data management routines 
refer to this information when they are 
processing a data set; no data set can be 
processed unless there exists a 
corresponding DCB. For a PL/I program, a 
PL/I library subroutine creates a DCE for 
the associated data set when a file is 
opened. 

A data control block contains two types 
of information: data set characteristics 
and processing requirements. The 
characteristics include record forreat, 
record length, block size, and data set 
organization. The processing inforrration 
may specifY the number of buffers to be 
used, and it may include device-dependent 
information (for example, printer line 
spacing or magnetic-tape recording 
density>, and special processing options 
that are available for some data-set 
organiz at ions • 

The information in the DCB comes from 
three sources: 

1. The file attributes declared 
implicitly or explicitly in the PL/I 
program. 

2. The data definition (DD) staterrent for 
the data set. 

3. If the data set exists, the data set 
labels. 

OPENING A FILE 

The execution of a PL/I OPEN statement 
associates a file with a data set. This 
requires the merging of the information 
describing the file and the data set. If 
any conflict is detected between file 

Chapter 6: Data sets and Files 81 



r---------------------------------------------------------------------------------------, 
1 Data Set 1 File Attributes 1 Access 
1 organiza tion 1 1 Methods 

1---------------------------------------------------------------------------------------
1 1 I INPUT I BUFFERED I QSAM 
1 CONSECUTIVE 1 SEQUENTIAL 1 OUTPUT 1----------------------------------
1 1 1 UPDATE 1 UNBUFFERED 1 BSAM 

1--------------------------------_·_-----------------------------------------------------1 1 1 INPUT 1 BUFFERED 1 
1 1 SEQUENTIAL 1 OUTPUT 1 or 1 QISAM 
1 INDEXED 1 1 UPDATE 1 UNBUFFERED 1 
1 ---------------------------------------------------------------------
1 DIRECT 1 INPUT 1 BISAM 
1 1 UPDATE 1 
1----------------- ---------------------------------------------------------------------
1 1 INPUT 1 1 BSAM 
1 SEQUENTIAL 1 UPDATE 1 BUFFERED 1 
1 1-----------------1 or 1-----------------
1 1 OUTPUT 1 UNBUFFERED I BSAM 

I REGIONAL --------------,-------------------------------------------------------
1 1 INPUT I 
1 DI RECT 1 OUTPUT 1 1 BDAM 
1 1 UPDATE 1 I 
1---------------------------------------------------------------------------------------
1 TELEPROCESSItl; I TRANSIENT I INPUT 1 BUFFERED I TCAM 
I I 1 OUTPUT 1 I L-------------___________________________________________________________________________ J 

Figure 6-6. Access methods for record-oriented transmission 

PL/I PROGRAM DCL MASTER FILE ENV(FB BLKSIZE(400), 
RECSIZE(40)); 

OPEN FI LE(MASTER); 

DD STATEMENT ~~{ IIMASTER DO UNIT=2400 
VOLUME=:SE R= 1791, 
DSNAME=LlST, 
DCB=(BUFNO=3,-
RECFM=F, 
BLKSIZE=400, 
LRECL=100) 

DATA SET LABEL Record format=F 
Record length=100 
Blocking factor=4 
Recording density= 1600 ... 

~ 

, 

Note: Information from the PL/I program overrides that from the DO statement and the data set label. 
Information from the DO statement overrides that from the data set label. 

Figure 6-7. How the operating system completes the DCB 

82 OS PLII Optimizing Compiler: Programmer's Guide 

DATA CONTROL BLOCK 

Record format FB 

Block size 400 

Record length 40 

Device type 2400 

Number of buffers 3 

Recording density 1600 



attributes and data set characteristics the 
UNDEFINEDFILE condition will be raised. 

Subroutines of the PL/I library create a 
skeleton data control block for the data 
set, and use the file attributes from the 
DECLARE and OPEN statements, and any 
attributes implied by the declared 
attributes, to complete the data control 
block as far as possible, as shown in 
Figure 6-7. They then issue an OPEN macro 
instruction, which calls the data 
management routines to check that the 
correct volume is mounted and to complete 
the data control block. The data 
management routines examine the data 
control block to see what information is 
still needed and then look for this 
information, first in the DD statement, and 
finally, if the data set exists and has 
standard labels, in the data set labels. 
For new data sets, the data management 
routines begin to create the labels (if 
they are required) and to fill them with 
information from the data control block. 

Neither the DD statement nor the data 
set label can override information provided 
by the PL/I program; nor can the data set 
label override information provided by the 
DD statement. 

When the DCB fields have been filled in 
from these sources, control returns to the 
PL/I library subroutines. If any fields 
have still not been filled in, the PL/I 
OPEN subroutine provides default 
information for some of them; for example, 
if LRECL has not been specified, it is now 
provided from the value given for BLKSIZE. 

CLOSING A FILE 

The execution of a PL/I CLOSE statement 
dissociates a file from the data set with 
which it was associated. The PL/I library 
s·ubroutines first issue a CLOSE macro 
instruction and, when control returns from 
the data management routines, release the 
data control block that was created when 
the file was opened. The data management 
routines complete the writing of labels for 
new data sets and update the labels of 
existing data sets. 

Auxiliary Storage Devices 

The following paragraphs summarize the 
salient operational features of various 
types of auxiliary storage devices. 

IBM 2520 AND 2540 CARD READER AND PUNCH 

Both the card reader and card punch accept 
F-format, V-format, and U-ferIr.at reccrds; 
the control tytes of V-format records are 
not punched. Any attempt to block records 
is ignored. 

Each punched card corres~cnds tc cne 
record; you should therefore restrict the 
maximum record length to 80 bytes (EBCDIC 
mode) or 160 bytes (column-binary mode). 
To select the mode, use the MODE 
subpararoeter of the DCB parameter of the DD 
statement; if you omit this subparaneter, 
EBCDIC is assumed. (The column-binary mode 
increases the packing density of 
information on a card. punching two bytes 
in each column. Only six bits of each byte 
are punched; on input, the two high-order 
bits of each byte are set to zero; en 
output, the two high-order bits are lost.) 
The Card Read Punch 2540 has five stackers 
into which cards are fed after reading or 
punching. Two stackers acce~t only cards 
that have been read, and two others accept 
only those that have been punched; the 
fifth (center) stacker can accept either 
cards that have been read or those that 
have been punched. The two stackers in 
each pair are numbered 1 and 2 and the 
center stacker is numbered 3, as shown in 
Figure 6-8. 

r---------READ----------, 

I 
I 
I 

111 2 I 3 I 2 111 
L---------------------------------------J 
L---------PUNCH---------J 
Figure 6-8. Card read punch 2540: 

stacker numbers 

The Card Read Punch 2520 has two 
stackers, into Which cards can be read or 
punched. The Card Reader 2501 has only one 
stacker. 

Cards are normally fed into the 
appropriate stacker 1 after reading or 
punching_ You can use the STACR 
subparameter of the DCB parameter of the DD 
statement to select an alternative stacker 
for reading or punching_ For punching 
only, you can select the stacker 
dynamically by inserting an ANS or 
system/360 code in the first byte of each 
record; you must indicate which cede you 
are using in the REeFM subparameter of the 
DD statement or in the ENVIRONMENT eption. 

Chapter 6: Data Sets and Files 83 



The control character is not punched. 

IBM 3505 AND 3525 CARD READER AND PUNCH 

The 3505 Card Reader and the 3525 Card 
PUnch are available only to System/370 
users. These two devices are functionally 
separate and operate independently of each 
other. 

The 3505 will read SO-column cards, and 
provides, in addition to normal card 
reading, the following facilities: 

• Optical mark read (in EBCDIC or column 
binary mode). 

• Read column eliminate (in EBCDIC or 
column binary mode). 

• Stacker selection. 

The 3525 is basically an SO-column card 
punch, and can have the following 
additional facilities: 

• Card reading facilities that optionally 
include: 

Reading in EBCDIC or column binary 
mode. 

Read column eliminate. 

• Card punching in EBCDIC or column binary 
mode. 

• Card printing facilities that include 
either: 

Two-line printing. 

or: 

Multiline printing (up to 25 
lines) • 

• Punch interpretation. 

• Stacker selection. 

The various operations of the 3505 and 
the 3525 are described in the following 
sections. In general, the operations to be 
performed are selecte.d by the FUNC, MODE, 
and STACK subparameters of the DCB 
parameter. The forma ts of these 
subparameters are described in Appendix A 
of this man ual. 

Basic Card Reading and punching 

Card reading or punching on a 3525 is 
selected ~ specifying DCB=(FUNC=R) for 
reading or DCB=(FUNC=P) for ~unching. If 
the FUNC subparameter is not specified, the 
default is FUNC=R for input files and 
FUNC=P for output files that do not have 
the PRINT attribute. 

Apart from this function selecticn for 
the 3525, support for the 3505 as a simple 
card reader and the 3525 as a card reader 
or punch is identical to that for the 2540 
described earlier'in this chapter. 

EBCDIC or Column Binary Modes 

Cards processed by a 3505 or a 3525 can 
hold data coded in either EECDIC or column 
binary mode. If EBCDIC is used, each card 
can contain up to SO characters. If column 
binary is used, each card can contain up to 
160 binary characters, two ~er card column. 
EBCDIC and column binary data cannot be 
intermixed. 

In column binary mode, each card column 
holds two 6-bit characters. The low-order 
bit appears in row 12 of the card cclumn 
for the first character, and in row 4 for 
the second character. The binary valu.es of 
characters are transmitted to successive 
bytes in main storage. The two high-order 
bits of each byte are set to. zero (these 
bits are not represented in the 6-bit 
code). The characters are transmitted in 
the order: first (top) character, second 
(bottom) character, and so on for each 
column in the card, from column 1 tc column 
SO. 

The details of the coding and conversion 
technique used for column binary data are 
left to the program designer. The 
TRANSLATE built-in function nay provide a 
convenient method of converting data to or 
from column binary form. 

Rules for using column binary mode are: 

• The MODE subparameter of the DCB 
parameter must specify column binary 
(MODE=C). 

• The PLII file must have the RECORD 
attribute. 

• The punch-interpret feature must not be 
used. 

• The file must be either an input file or 
an output punch file. It cannct be a 
print file. 

S4 OS PLII Optimizing Compiler: Programmer's Guide 



• A column binary output file must have a 
record size of 160 bytes. 

Stacker Selection 

The stacker selection feature is optionally 
available on the 3505 and is a standard 
feature on a 3525. There are two methods 
of selecting a stacker: 

1. The stacker can be selected 
permanently for all cards in the file. 
This method involves the STACK 
subparameter of the DCB parameter. 

2. For record-oriented output files on a 
3525, the first byte of the record can 
contain a stacker control character to 
select the required stacker 
dynamically. The use of such codes is 
specified by the CTLASA or CTL360 
environment options. 

optical Mark Read 

The optical mark read (OMR) feature is 
available only on the 3505 card reader. 
This feature enables preprinted or pencil­
written marks on a punched card to be read 
as data. The following rules apply: 

• Optical mark read is specified by 
MODE=EO (EBCDIC mode) or MODE=CO (column 
binary mode) in the DCB parameter. 

• The associated PL/I file must have the 
RECORD and INPUT attributes, and must 
not have the TOTAL attribute. 

• Records must be F-format with a RECSIZE 
of 80 (EBCDIC mode) or 160 (column 
binary mode). 

• Up to 40 columns of EBCDIC data or 80 
characters of column binary data can be 
read optically from a single card. 
Optical and punched data can be read 
from the same card although there are 
some restrictions, given below, on how 
the data is recorded on the card. 

• Optical mark data can appear only in 
alternate card columns and must be 
separated by blank columns. Optical 
mark and punched hole columns must also 
be seperated by at least one blank 
column. When the record is read in, the 
data is compressed by removing the blank 
column following each optical nark 
column, and the record is padded with 
blanks. 

• The colUmns containing optically­
readable marks'must be s~ecified to the 
program at execution-tiIlle by a fermat 
descriptor card. This card must be the 
first card in the deck of cards to be 
read by the file each time the program 
is run. Operating procedures for 
running jobs that use OMR should ensure 
that this point is not overlooked. 

• The OMR descriptor card has the 
following format: 

FORMAT (n1,n2),(n3,n4) ••• 

where n1 is the first column in a group 
to be read in OMR reode, n2 is the last 
column in the group, n3 is the first 
column in the next group, n4 is the last 
column in this group, and so on. 
Remember that only every ether celumn 
between n1 and n2 or n3 and n4 can be 
read in OMR mode. A rraxinurr of 40 
columns of OMR data can be accomodated 
on an 80-column card. n1 and n2 (and 
similarly n3 and n4) rrust be either both 
even or both odd, and n3 must be at 
least 2 greater than n2. 

The format descriptor record must begin 
in colUmn 2 and can continue through 
column 71. If a continuation is 
required, punch any character in column 
72 and start the continuation in column 
16 of the following card. 

A blank must follow the keyword FORMAT. 
Operands must be separated by a comma. 
Example: 

FORMAT (1,9),(70,80) 

This specifies that columns 1 to 10 and 
70 to 80 are reserved for OMR use and, 
of these, columns 1, 3, 5, 7, 9, 70, 72, 
74, 76, 78, and 80 will be scanned for 
optical mark data. 

• Note that column 1 of the card always 
corresponds with the first byte cf the 
data in main storage. consequently, if 
an optical mark a~pears in colunn 2, 
column 1 must be blank and byte 1 will 
also be blank. 

• If a marginal mark, weak nark, or poor 
erasure is detected on a column, the 
corresponding byte and the last hyte of 
the record are set to X'3F'. The 
TRANSMIT condition is raised once only 
for all errors found in a card. The 
card itself is stacked in the 
alternative stacker to that norIllally 
used by the file. 

• When an optical mark read file is 
closed, the last card is fed and stacked 
in the same stacker as the previous 

Chapter 6: Data Sets and Files 85 



card. This feed operation resets the 
device into unformatted mode, ready for 
the next file opening. 

• optical mark read is not supported on 
SYSIN. The 3505 must be allocated 
exclusively to the user's job by 
specifying the device type of the unit 
address in the UNIT parameter of the DD 
statement. 

• When a file is opened for optical mark 
reading, the value of the BUFFERS option 
(for BUFFERED files) or the NCP option 
(for UNBUFFERED files) is automatically 
set to 1. 

Read Column Eliminate 

The read column eliminate (RCE) feature is 
optionally available on the 3505 and on a 
3525 with card reading facilities. This 
feature permits the selective reading of 
card columns. The columns to be ignored 
when the card is read are specified in a 
format descriptor card. The ignored 
columns are replaced by blanks in EBCDIC 
mode or zeroes in column binary mode before 
the record is transmitted. 

The following rules apply: 

• Read column eliminate is specified by 
MODE=ER (EBCDIC mode) or MODE=:CR (column 
binary mode) in the DCB parameter. 

• An RCE format descriptor card must be 
supplied. This card must be the first 
card in the deck of cards to be read by 
the program each time it is executed. 
operating procedures for running jobs 
that use RCE should ensure that this 
point is not overlooked. 

• The RCE descriptor card has tbe 
following format: 

FORMAT (n1,n2), (n3,n4) ••• 

where n1 is the first column in a group 
of columns to be ignored and n2 is the 
last column in the group, n3 is the 
first column in the next group to be 
ignored, n4 is the last column in this 
group, and so on. 

The format descriptor card must begin in 
column 2 and continue through to column 
71. If a continuation is required, 
punch any character in column 72 and 
start the continuation in column 16 of 
the following card. 

A blank must follow the keyword FORMAT. 
operands must be separated by a comma. 

Example: 

FORMAT (20,30),(52,76) 

This specifies that columns 20 through 
30 and columns 52 through 76 are to be 
ignored when the card is read. 

• The PL/I file can have either the STREAM 
or the RECORD attribute. Records must 
be F-format. 

• When an RCE file is closed, a card feed 
operation is executed by the reader. If 
several files are to be read 
consecutively - either for successive 
programs in a single batch, or fer 
several files in a single program - a 
non-data card must separate the files. 

• Read column eliminate is not supported 
on SYSIN. The 3505 or 3525 rrust be 
allocated exclusively to the user's job 
by specifying the device type of the 
unit address in the UNIT parameter of 
the DD staterrent. 

Punch Interpret 

A single file can be used to punch and 
interpret cards b¥ specifying DCB=(FUNC=I). 
cards are punched normally, and the same 
data is printed on lines 1 and 3 of the 
card. The first 64 characters are printed 
on line 1~ the remaining 16 characters are 
right-justified on line 3. 

A punch interpret file may have the 
STREAM or RECORD and the BUFFERED or 
UNBUFFERED attributes. Records must be F 
fomat, with a record size of 80, or 81 if 
control characters are being used for 
stacker selection. 

printing on Cards 

The card printing feature of the 3525 is 
available in two forms: 

1. Two-line printing. 

2. Multiline printing (up to 25 lines). 

Printing can be perforrred either as the 
only operation on the card, or as one of a 
number of operations on the sane card. The 
following rules apply to print-only files. 
The additional requirereents for printing 
after reading or punching a card are 
described under "Multiple Operations" later 
in this chapter. 

86 OS PLII Optimizing Compiler: Programmer's Guide 



• The FUNC subparameter of the DCB 
parameter must specify "W" if the 3525 
has the multiline print feature, or "WT" 
if it has the 2-line print feature. If 
FUNC is omitted, FUNC=W is defaulted for 
PL/I PRINT files. 

• The PLII file may have either the RECORD 
or the STREAM attribute. 

• The maximum nUmber of characters that 
can be printed on each line is 64. The 
user must ensure that this limit is not 
exceeded; in particular, on PRINT files, 
LINESIZE should not exceed 64 or data 
will be lost. 

• If the 3525 has the two-line print 
feature, and is used by a file with the 
PRINT attribute or by a file using 
CTLASA or CTL360 control characters, 
care should be taken to ensure that no 
attempt is made to print on any line 
other than lines 1 and 3. Such an 
attempt will cause the program to be 
terminated without raising the PL/I 
ERROR condition. If a PRINT file is 
used, and a PAGESIZE of more than 3 is 
specified, the pagesize is set to 3 when 
the file is opened. 

If the file is a non-PRINT file, and 
control characters are not used, records. 
are printed on lines 1 and 3 
automatically. 

• If a 3525 with the mUltiple print 
feature is used, the file should have a 
maximum pagesize of 25. If a PAGESIZE 
of greater than 25 is specified on a 
PRINT file, the pagesize is set to 25 
when the file is opened. Whatever the 
page size, a PUT PAGE statement for a 
PRINT file will always cause the file to 
be positioned at line 1 of the next 
card. Any attempt to print beyond line 
25 will cause the program to be 
terminated without raising the PL/I 
ERROR condition. 

• All the standard ASA control characters 
can be used, with the exception of "+" 
(suppress space before printing). The 
use of the "+" control character, or of 
SKIP CO) on a PRINT file, will cause the 
program to be terminated without raising 
the PL/I ERROR condition. 

Odd numbered lines on a card can be 
reached using "skip to channel" control 
characters, channel numbers being 
defined as follows: 

channel number = Cline number + 1)/2 

Only channels 1 through 12 are valid. 
Other lines can be reached by using 
"space and print" control characters. 

All lines can be reached by executing 
sufficient WRITE or PUT c~erations. 

Multiple Operations 

Two or three files may be used in 
association with each other to enable more 
than one of the operations "read", "~unch", 
and "print" to be performed on a single 
card during one pass through a 3525. A DO 
statement is required for each operation 
that the device is to perforn, and the 
association of these data sets is specified 
by means of the unit affinity CAFF) 
parameter, together with the FUNC 
subparameter of the DCB parameter. 

For example, for as set of files that 
are to perform the operations read-~unch­
print the association of the data sets and 
the set of operations are s~ecified as 
follows: 

//CARDIN DO UNIT=3525,DCE=CFUNC=RPW) 
//PUNCH DO UNIT=AFF=CARDIN,DCB=CFUNC=RPW) 
//PRINT DO UNIT=AFF=PUNCH,DCE=CFUNC=RPWX) 

Valid FUNC options are listed in 
Appendix A of this manual. Note that the 
FUNC option must specify the complete set 
of associated operations. "X" ~ust te 
added to the FUNC option of the print data 
set. If the 3525 has the two-line print 
feature, T must also be coded on the FUNC 
option of the print data set. 

The following rules apply to multiple 
operations: 

• All the device-associated files nust 
have the RECORD attritute, and must be 
all BUFFERED or all UNBUFFERED. None of 
the files can have the TOTAL option. 
Records must be F-fornat. 

• If stacker selection is reqUired, it can 
only be specified on the ~unch fil~, if 
there is one. Either stacker-select 
control characters or static stacker 
selection by means of the STACK 
subparameter can be used. 

• An associated data set ca~nct be 
allocated to SYSIN or SYSCUT. The 3525 
must be allocated exclusively to the 
user's job by specifying the device type 
of the unit address in the UNIT 
parameter of the DD statenent. 

• Data delimiter cards should not be 
punched or printed on, or the first card 
of the following job will be lost. 

Details of how to open and close 
associated files, and of the sequences of 

Chapter 6: Data Sets and Files 87 



operations that can be performed, are given 
in the Language Reference Manual for this 
compiler. 

Data Protection 

To avoid erroneous punching into card 
columns that already contain data, a ndata 
protection" option can be used on a punch 
file which is in association with a read 
file. Data protection is specified by a 
non in the FUNe option of the DO statement 
for the punch data set. The user must 
provide an 80-byte data protection image 
(OPI) and linkedit it into SYS1.IMAGELIB 
with a member name of the form FORMxxxx. 
The DPI contains blanks in columns that are 
to be protected, and any alphanumeric 
character in columns that can be punched. 
An assembler language program is used to 
link edit the OPI; an example is given in 
Figure 6-9. 

I//UP EXEC ASMFCL 
1/ /A.SM. SYSIN DO * 
FORMDPI CSECT 

DC X'40' (protected column) 
DC X'40' (protected column) 
DC C'3456789A'(punch columns) 
DC 70X'40' (protected columns) 
END 

/* 
//LKED.SYSLMOD DD DISP=OLO, 
// OSNAME=SYS1.IMAGELIB(FORMxxxx) 

Figure 6- 9. An example of a prog ram to 
link edit the DPI 

A particular OPI is selected by means of 
the the FCB parameter of the DD statement 
for the punch file. For example: 

//PUNCH DO 
// 
// 

UNIT=AFF=CAROIN, 
DCB= ( FUNC=RPWD) , 
FCB=xxxx 

Data protection cannot be specified for 
column binary cards. 

PAPER TAPE READER 

The paper tape reader accepts F-format and 
U-format records; each U-format record is 
followed by an end-of-record character. 
Use the CODE subparameter of the DCB 
parameter of the DO statement to request 
translation of data from one of the six 
standard paper-tape codes to System/360 
internal representation (EBCDIC). Any 
character found to have a parity error is 

not transmitted. 

PRINTER 

The printer accepts P-format, V-format, and 
U-format records; the contrel bytes ef V­
format records are not printed. Each line 
of print corresponds to one xecord; you 
should therefore restrict your record 
length to the length of one ~rinted line. 
Any attempt to block records is ignored. 

You can use the PRTSP sutparameter of 
the DCB parameter of the DD staterrent to 
request the line spacing of your output, or 
you can control the spacing dynamically by 
inserting an ANS or systerr/360 code in the 
first byte of each record; you must 
indicate which code you are using in the 
RECFM subparameter of the DO statement or 
in the ENVIRONMENT option. ~he centrol 
character is not printed. If you do not 
specify the line spacing, single s~acing 
(no blanks tetween lines) is assumed. 

MAGNETIC TAPE 

Magnetic-tape devices accept D-format, F­
format, V-format, and U-format records for 
both 9-track and 7-track reagnetic ta~e with 
the one exception that 7-track magnetic 
tape will not accept V-forrrat recerds 
unless the data conversion feature is 
available. (The data in the control bytes 
of V-format records is in binary form; in 
the absence of the data conversion feature, 
only six of the eight bits in each byte are 
transmitted to 7-track tape.) 

Nine-track magnetic tape is standard in 
IBM system/360, but some 2400 series 
magnetic-tape drives incerpexate features 
that facilitate reading and writing 7-track 
tape. The translation feature changes 
character data from EBCDIC (the 8-bit code 
used in system/360) to BCD (the 6-bit code 
used on 7-track tape) or vice-versa. The 
data conversion feature treats all data as 
if it were in the form of a bit string, 
breaking the string into groups of eight 
hits for reading into main storage, er into 
groups of six bits for writing on 7-track 
tape; the use of this feature precludes 
reading the tape backwards. To use 
translation or data conversicn, include the 
TRTCH (tape recording technique) 
subparameter in the DCB pararreter of the DD 
statement. 

The maximum recording density available 
depends on the model number cf the tape 
drive; single-density tape drive units have 

88 OS PLII Optimizing Compiler: Programmer's Guide 



a maximum recording density of 800 bytes 
per inch, and dual-density tape drive units 
have a maximum of 1600 bytes per inch. For 
9-track tapes, a single7density drive 
offers only the 800 bytes per inch density; 
the standard density for a dual-density 
drive is 1600 bytes per inch, but you can 
use the subparameter DEN (density) of the 
DD statement to specify 800 bytes per inch. 
For 7-track tape, the standard recording 
density for both types of drive unit is 200 
bytes per inch; you can use the DEN 
subparameter of the DCB parameter of the DD 
statement to select alternatives of 556 or 
800 bytes per inch. 

Note: When a data check occurs on a 
magnetic-tape device with short length 
records (12 bytes on a read and 18 bytes on 
a write), these records will be treated as 
noise. 

DIRECT-ACCESS DEVICES 

Direct-access devices accept F-format, V­
format, and U-format records. 

The storage space on these devices is 
divided into conceptual cylinders and 
tracks. A cylinder is usually the amount 
of space that can be accessed without 
movement of the access mechanism, and a 
track is that part of a cylinder that is 
accessed by a single read/write head. For 
example, a 2311 disk pack has ten recording 
surfaces, each of which has 200 concentric 
tracks; thus, it contains 200 cylinders, 

each of which contains ten tracks. 

When you create a data set on a direct­
access device, you must always indicate to 
the operating system how much auxiliary 
storage the data set will require. Use the 
SPACE parameter of the DD statement to 
allocate space in terms of blocks, tracks, 
or cylinders. If you request space in 
t~rms of tracks or cylinders, bear in mind 
that space in a data set on a direct-access 
device is occupied not only ty blocks of 
data, but by control inforIl';ation inserted 
by the operating system; if you use small 
blocks, the control inforIl';ation can result 
in a considerable space overhead. The 
following reference cards contain tatles 
that will enable you to detern-ine the 
amount of space you will require: 

• 2301 Drum storage Unit, 
Order No. GX20-1717 

• 2302 Disk storage Drive, 
Order No. GX20-1706 

• 2303 Drum Storage Unit, 
Order No. GX20-1718 

• 2311 Disk storage Drive, 
Order No. GX20-1705 

• 2314 Storage Facility, 
Order No. GX20-1710 

• 2321 Data cell Drive, 
Order No. GX20-1704 ,. 3330 Series Disk storage, , Order No. GX20-1920 

Chapter 6: Data Sets and Files 89 





Chapter 7: Defining Data Sets for Stream Files 

This chapter describes how to define data 
sets for use with PL/I files that have the 
STREAM attribute. It explains how to 
create and access data sets with 
CONSECUTIVE organization. The essential 
parameters of the DD statements used in 
creating and accessing these data sets are 
summarized in tables, and several examples 
of PL/I programs (complete with JCL) are 
included to illustrate the text. 

Data sets with the STREAM attribute are 
processed by stream-oriented transmission, 
which allows the PL/I program to ignore 
block and record boundaries and treat a 
data set as a continuous stream of data 
items in character form. 

For output, the data management 
subroutines of the PL/I library convert the 
data items from the program variables into 
character form if necessary, and build the 
stream of characters into records for 
transmission to the data set. 

For input, the library subroutines take 
records from the data set and separate them 
into the data items requested by the 
program, converting them into the 
appropriate form for assignment to the 
program variables. 

Because stream-oriented transmission 
always treats the data in a data set as a 
continuous stream, it can be used only to 
process data sets with CONSECUTIVE 
organization. 

Creating a Data Set 

Any data set created using stream-oriented 
transmission must have CONSECUTIVE 
organization, but it is not necessary to 
specify this in the ENVIRONMENT attribute, 
since it is the default organization. 

Your program deals only with data items, 
and not with records and blocks as they 
will exist in the data set. Accordingly, 
you need not concern yourself with the 
actual structure of the data set beyond 
specifying a block size (which is always 
necessary), unless you propose to use 
record-oriented transmission to access the 
data set at a later date. 

To create a data set, you must give the 
operating system certain information either 
in your PL/I program or in the DD statement 

that defines the data set. ~he follcwing 
paragraphs indicate the essential 
information, and discuss some of the 
optional information you rray supply: the 
ENVIRONMENT attribute and the LlNESI ZE 
option are discussed fully in the language 
reference manual for this compiler. 

ESSENTIAL INFORMATION 

You must supply the following inforrration, 
summarized in Figure 7-1, when creating a 
data set: 

• Device that will write or punch ycur 
data set (UNIT, SYSOUT, or VOLUME 
parameter of DD staterrent). 

• Block size: you can s~ecify the block 
size either in your PL/I program 
(ENVIRONMENT attribute or LlNESI ZE 
option) or in the DD statement CELKSIZE 
subparameter). If you do not specify a 
record length, unblocked records are 
assumed and the record length is 
determined from the block size. If you 
do not specify a record format, U-format 
is assumed (except for PRINT files when 
V-format is assumed: see "PRINT Files," 
later in this chapter). 

If you want to keep a ~agnetic-tape or 
direct-access data set (that is, you do not 
want the operating system to delete it at 
the end of your job), the DD statement must 
name the data set and indicate how it is to 
be disposed of (DSNAME and DISP 
parameters) • The DISP paralreter alone will 
suffice if you want to use the data set in 
a later step but will not need it after the 
end of your job. 

When creating a data set cn a direct­
access device, you must specify the amount 
of space required for it (SPACE paraneter 
of DD statement). 

If you want your data set stored on a 
particular magnetic-tape or direct-access 
device, you must indicate the volume serial 
number in the DD statement (SER or REF 
subparameter of VOLUME parameter). If you 
do not supply a serial number for a 
magnetic-tape data set that you want to 
keep, the operating system will allocate 
one, inform the operator, and print the 
number on your program listing. 

If your data set is to fellow ancther 

Chapter 7: Defining Data Sets for Stream Files 91 



r---------------------------------------------------------------------------------------, I I Parameters of DD Statement 
1 Storage Device 1-----------------------------------------------------------------
1 1 When requi red I What you must state I Parameters 
1---------------------------------------------------------------------------------------I I 1 Output device 1 UNIT= or SYSOUT= or 
1 All 1 Always 1 I VOLUME=REF= 
1 1 1-------------------------------------------1 1 1 Block size1 1 DCB=CBLRSIZE= ••• ) 
1---------------------------------------------------------------------------------------1 Direct access only 1 Always 1 storage space I SPACE= 
1 1 1 required I 
1---------------------------------------------------------------------------------------1 Magnetic tape only 1 Data set not first 1 Sequence number I LABEL= 
1 1 in volume and for 1 I 
1 1 magnetic tapes that 1 I 
lido not have 1 I 
1 1 standard labels I I 
------------------------------------------------------------------------~--------------

1 Data set to be used 1 I 
1 by another job step I Disposition 1 DISP= 
1 but is not required 1 I 
1 after end of job 1 I 

Direct access and 
standard labeled 
magnetic tape 

1-----------------------------------------------------------------1 Data set to be kept 1 Disposition I DISP= 
I after end of job 1-------------------------------------------
1 1 Name of data set I DSNAME= 
1-----------------------------------------------------------------1 Data set to be on 1 Volume ser~al number I VOLUME=SER= or 
1 particular volume 1 I VOLUME=REF= 

1---------------------------------------------------------------------------------------11 Alternatively, you can specify the block size in your PL/I program by using either 
1 the ENVIRONMENT attribute or the LINESIZE option. 
L--------------------------------------------------------------------------_-___________ J 

Figure 7-1. creating a data set: essential parameters of DD staterrent 

data set on a magnetic-tape volume, you 
must use the LABEL parameter of the DD 
statement to indicate its sequence number 
on the tape. 

EXAMPLE 

The use of stream-oriented transmission to 
create a data set on a 2311 disk drive is 
shown in Figure 7-2. The data read from 
the input stream by the standard file SYSIN 
includes a field VREC that contains five 
unnamed 7-character subfields; the field 
NUM defines the number of these subfields 
that contain information. The output file 
WORK transmits to the data set the whole of 
the field FREC and only those subfields of 
VREC that' contain information. The data 
set has U-format unblocked records with a 
maximum block size of 400 bytes (defined in 
the statement that declares the file WORK). 
All blocks except the last will contain 
exactly 400 bytes. 

Accessing a Data Set 

A data set accessed using stream-oriented 
transmission need not have been created by 
stream-oriented transmission, but it must 
have CONSECUTIVE organization, and all the 
data in it must be in character form. You 
can open the associated file for in~ut, and 
read the records the data set contains; or 
you can open the file for output, and 
extend the data set ty adding records at 
the end. 

To access a data set, you must identify 
it to the operating system in a DD 
statement. The following paragraphs, which 
are summarized in Figure 7-3, indicate the 
essential information you must include in 
the DD statement, and discuss some of the 
optional information you may supply. The 
discussions do not apply to data sets in 
the input stream, which are dealt with in 
Chapter 6. 

92 OS PLII Optimizing Compiler: programmer's GUide 



//OPT7#2 JOB 
//STEP1 EXEC PLIXCLG 
//PLI.SYSIN DD * 

PEOPLE: PROC OPTIONS C MAl N) ; 

DCL WORK FILE STREAM OUTPUT ENVCU), 
1 REC, 

2 FREC, 
3 NAME CHAR (19) , 
3 NUM CHAR C 1) , 
3 PAD CHAR (25) , 

2 VREC CHAR (35) , 
IN CHAR(80) DEF REC; 

ON ENDFILECSYSIN) GO TO FINISH; 

OPEN FILECWORK) LINESIZE(400); 
MORE: GET FILECSYSIN) EDITCIN) CA(80»; 

PUT FILE(WORK) EDITCIN) (AC45+7*NUM»i 
GO TO MORE; 

FINISH: CLOSE FILE(WORK); 
END PEOPLE; 

/* 
//GO.WORK DD DSN=PEOPLE,UNIT=2311,SPACE=(CYL, (2,1»,DISP=(NEW,KEEP), 
// VOL=SER=D186 
//GO.SYSIN DD * 
R .. C .. ANDERSON 
B .. F .. BENNETT 
R .. E.COLE 
J.F .. COOPER 
A .. J.CORNELL 
E.F.FERRIS 
/* 

o 202848 
2 771239 
5 698635 
5 418915 
3 237837 
4 158636 

DOCTOR 
PWMBER 
COOK 
LAWYER 
BARBER 
CARPENl'ER 

VICTOR HAZEL 
ELLEN VICTOR JOAN ANN OTTO 
FRANK CAROL DONALD NORMAN BRENDA 
ALBERT ERIC JANET 
GERALD ANNA MARY HAROLD 

Figure 7-2. creating a data set with stream-oriented transmission 

ESSENTIAL INFORMATION 

If the data set is cataloged, you need 
supply only the following information in 
the DD statement: 

• The name of the data set CDSNAME 
parameter) .. The operating system will 
locate the information describing the 
data set in the system catalog, and, if 
necessary, will request the operator to 
mount the volume containing it. 

• Confirmation that the data set exists 
(DISP parameter) .. If you open the data 
set for output with the intention of 
extending it by adding records at the 
end, code DISP=MOD; otherwise, to open 
the data set for output will result in 
its being overwritten .. 

If the data set is not cataloged, you 
must, in addition, specify the device that 
wi 11 read the data set and, for magnetic­
tape and direct-access devices, give the 
serial number of the volume that contains 
the data set (UNIT and VOLUME parameters). 

If the data set is on paper tape or 
punched cards, you must specify the hlock 
size either in your PL/I program 
(ENVIRONMENT attribute) or in the tt 
statement (aLKSIZE suhparameter). 

If the data set follows another data set 
on a magnetic-tape volume, ycu rr.ust use the 
LABEL parameter of the DO statement to 
indicate its sequence nu~ber on the tape. 

MAGNETIC TAPE WITHOUT STANDARD LABELS 

If a magnetic-tape data set has nonstandard 
labels or is unlabeled, you Rust specify 
the block size either in your PL/I program 
(ENVIRONMENT attribute) or in the DD 
statement (BLKSIZE subparameter). The 
DSNAME parameter is not essential if the 
data set is not cataloged. 

PL/I data management includes no 
facilities for processing ncnstandard 
labels, which, to the operating system, 
appear as data sets preceding or following 
your data set. You can either process the 

Chapter 1: Defining Data sets for Stream Files 93 



r---------------------------------------------------------------------------------------, 
I Parameters of DD Staterr:ent 
1---------------------------------------------------------------------------------------
I When required 1 What you must state I Pararreters 
1---------------------------------------------------------------------------------------
I 1 Name of data set I DSNAME= 
I Always 1---------------------------------------------------
I I Disposition of data set I DISP= 
1----------------------------------------------------------------------------------------
1 IAII devices I Input device I UNIT= or VOLUME=REF= 
IIf data set not 1---------------------------------------------------------------------
1 cata loged I St andard I abel ed 1 1 
1 I magnetic tape andl Volume serial number 1 VOLUME=SER= 
1 1 direct access I 1 
1---------------------------------------------------------------------------------------
IMagnetic tape: if data set not ISequence number I LABEL= 
Ifirst in volume or which does not 1 1 
Ihave standard labels 1 I 
1---------------------------------------------------------------------------------------
IIf data set does not have standard ,Block size~ 1 DCB=CBLKSIZE= ••• ) 1 
1 labels , 1 1 
1---------------------------------------------------------------------------------------1 11 Alternatively, you can specify the block size in your PL/I program by using either , 
1 the ENVIRONMENT attribute or the LINESIZE option. I L--------------------------___________________________ -----_____________________________ J 

Figure 7-3. Accessing a data set: essential parameters of DD statement 

//OPT7#4 JOB 
//STEP1 EXEC PLIXCLG 
//PLI.SYSIN DD * 

PEOPLE: PROC OPTIONSCMAIN); 

DCL WORK FILE STREAM INPUT, 
1 REC, 

2 FREC, 
3 NAME CHAR( 19) , 
3 NUM CHAR ( 1) , 
3 SERNO CHAR (7 ) , 
3 PROF CHAR(18), 

2 VREC CHAR(35), 
IN CHAR(80) DEF REC; 

ON ENDFILE(WORK) GO TO FINISH; 

OPEN FILE(WORK); 
MORE: GET FILE(WORK) EDIT (IN,VREC) CA(45),AC7*NUM»; 

PUT FILE (SYSPRINr) SKIP EDIT CIN) CA); 
GO TO MORE: 

FINISH: CLOSE FILE(WORK); 
END PEOPLE; 

/* 
//GO. WORK DD DSN=PEOPLE,UNIT=2311 ,VOL=SER=D186, DISP=COLD, REEF) 

Figure 7-4. Accessing a data set with stream-oriented transmission 

94 OS PL/I Optimizing Compiler: Programmer • s Guide 



labels as independent data sets or use the 
LABEL parameter of ,the DD statement to 
bypass them; to bypass the labels code 
LABEL=(2,NL) or LABEL=(,BLP). 

RECORD FORMAT 

When using stream-oriented transmission to 
access a data set yOU do not need to know 
the record format of the data set (except 
when you must specify a block size); each 
GET statement transfers a discrete number 
of characters to your program from the data 
stream. 

If you do give record format 
information, it must be compatible with the 
actual structure of the data set. For 
example, if a data set is created with F­
format records, a record size of 600 bytes, 
and a block size of 3600 bytes, you can 
access the records as if they are U-format 
with a maximum block size of 3600 bytes; 
but if you specify a block size of 3500 
bytes, your data will be truncated. 

EXAMPLE 

The prbgram in Figure 1-4 reads the data 
set created by the program in Figure 1-2 
and uses the standard file SYSPRINT to list 
the data it contains. (SYSPRINT is 
discussed later in this chapter.) Each set 
of data is read, by the GET statement, into 
two variables: FREC, Which always contains 
45 characters; and VREC, which always 
contains.35 characters. . At each execution 
of the GET statement, VREC consists of the 
number of characters generated by the 
expression 1*NUM, together with sufficient 
blanks to bring the total number of 
characters to 35. The DISP parameter of the 
DD statement could read simply DISP=OLD; if 
the second term is omitted, an existing 
data set will not be deleted. 

Print Files 

Both the operating system and the PL/I 
language iriclude features that facilitate 
the formatting of printed output. The 
operating system allows you to use the 
first byte of each record for a printer 
control code; the control codes, which are 
not printed, cause the printer to skip to a 
new line or page. Tables of printer control 
codes are given in Figures 8-5 and 8-6. In 
a PL/I program, the use of a PRINT file 
provides a convenient means of controlling 

the layout of printed output in stream­
oriented transmission; the compiler 
automatically inserts printer contrcl c¢des 
in response to the PAGE, SKIP, and LINE 
options and format iterr.s. 

You can apply the FRINT attribute to any 
STREAM OUTPUT file, even if you do net 
intend to print the associated data set 
directly. When a PRINT file is associated 
with a magnetic-tape or direct-access data 
set, the printer control codes have no 
effect on the layout of the data set, bdt 
appear as part of the data in the records. 

The compiler reserves the first byte of 
each record transmitted by a PRINT file for 
an ANS printer control code, and inserts 
the appropriate codes automatically. A 
PRINT file uses only the five printer 
control codes shown in Figure 1-5. 

code 

b (blank) o 
+ 
1 

Acticn 

Space 1 line before printing 
Space 2 lines before printing 
Space 3 lines before ~rinting 
No space before printing 
Start new page 

Figure 1-5. Printer control codes used 
by a PRINl' fi Ie 

The compiler handles the FAGE, SKIP, and 
LINE options or format items by padding the 
remainder of the current record with blanks 
and inserting the appropriate contrel code 
in the next record. If SKIF or LINE 
specifies more than a three line space, the 
compiler inserts sufficient blank records 
with appropriate control codes to 
accomplish the required spacing. In the 
absence of a printer control option or 
format item, when a record is full the 
compiler inserts a blank code (single line 
space) in the first byte of the next 
record. 

RECORD FORMAT 

You can limit the length of the printed 
line produced by a PRINT file either by 
specifying a record length in your PL/I 
program (ENVIRONMENT attribute), in aDD 
statement, or by giving a line size in an 
OPEN statement (LINESIZE option). The 
record length must include the extra byte 
for the printer control code, that is, it 
must be one byte larger than the length of 
the printed line (five bytes larger for V­
format records). The value you specify in 
the LINESIZE option refers to the number of 

Chapter 7: Defining Data Sets for Stream Files 95 



//OPT7#6 JOB 
//STEP1 EXEC PLIXCLG 
//PLI.SYSIN DD * 
SINE: PROC OPTIONSCMAIN): 

DCL TABLE FI LE STREAM OUTPUT PRINT, 
TITLE CHAR(13) INITC'NATURAL SINES'), 

HEADINGS CHAR(90) INITC' 0 
24 30 36 42 48 

PGNO FIXED DEC(2) INIT(1), 
FINISH BIT(1) INITC'O'B), 
VALUESCO:359,0:9)FLOAT DEC(6); 

ON ENDPAGECTABLE) BEGIN; 

6 
54') , 

12 18 

PUT FILECTABLE) EDITC'PAGE',PGNO)CLlNEC55),COLC87) ,A,F(3»; 
IF FINISH='O'B THEN DO; 
PGNO=PGNO+ 1 ; 
PUT FILECTABLE) EDIT CTITLE 1 I' CCONT"D)',HEADINGS) 

CPAGE,A,SKIP(3),A); 
PUT FILE (TABLE) SKIP(2); 
END; 
END; 

DO I =0 to 359; 
00 J=O TO 9; 

VALUESCI,J)=SIND(I+J/10); 
END; 

END; 
OPEN FILECTABLE) PAGESIZE(52) LINESIZE(93); 
PUT FlLE(TABLE) EDIT (TITLE,HEADINGS) (PAGE,A,SKIPC3) ,A); 
00 1=0 TO 71; 

PUT FlLECTABLE) SKIP(2); 
DO J=O TO 4; 

K=5*I +J; 
PUT FILECTABLE) EDITCK, VALUES CK, *» CF (3) ,10 F C9,4» ; 

/* 

END; 
END; 

FINISH='1' B; 
PUT FILECTABLE) LINE (54) ; 
CLOSE FlLE(TABLE); 
END SINE; 

//GO.TABLE DD DSN=SINES,UNIT=2311,DISP=CNEW,CATLG),VOl=SER=D186, 
// SPACE=CCYL,(1,1» 

Figure 7-6. Creating a data set using a PRINT file 

characters in the printed line; the 
compiler adds the printer control bytes. 

The blocking of records has no effect on 
the appearance of the output produced by a 
PRINT file, but it does result in more 
efficient use of a uxiliary storagE~ when the 
file is associated with a data set: on a 
magnetic-tape or direct-access device. If 
you use the LlNESIZE option, ensure that 
your line size is compatible with your 
block size: for F-format records, block 
size must be an exact multiple of Cline 
size + 1); for v-format records, block size 
must be at least nine bytes greater than 
line size. 

Although you can vary the line size for 
a PRINT file during execution by closing 
the file and opening it again with a new 
line size, you must do so with caution if 
you are using the PRINT file to create a 
data set on a magnetic-tape or direct­
access device: you cannot change the 
record format established for the data set 
when the file is first opened. If the line 
size specified in an OPEN statement 
conflicts with the record format already 
established, the UNDEFINEDFILE condition 
will be raised; to prevent this, either 
specify V-format records with a block size 
at least nine bytes greater than the 
maximum line size you intend to use, or 
ensure that the first OPEN statement 
specifies the maximum line size. (Output 
destined for the printer may be stored 
temporarily on'a direct-access device, 

96 OS PL/I Optimizing Compiler: Programmer's Guide 



unless you specify a printer by using 
UNIT-, even if you intend it to be fed 
directly to the printer.) 

Since PRINT files have a default line 
size of 120 characters, you need not give 
any record format information for them. In 
the absence of other information, the 
compiler assumes V-format fecords; the 
complete default information is: 

BLKSIZE-129 

LRECL-125 

RECFM-VBA 

r-----------------------------------------, 
IIBMBSTA1 CSECT 
1 ENTRY IBMBSTAB 
IIBMBSTAB EQU * 
1 DC C'IBMBSTAB' 
1 DC H'14' OFFSET OF TAB COUNT 
1 DC H'60' PAGESIZE 
1 DC 8'120' LINESIZE 
1 DC 8' 0' PAGELENGTH 
1 * (FOR TERMINALS) 
1 DC 3H' 0' FILLERS 
1* (RESERVED FOR 
1* FUTURE USE) 
1* 
1 DC H' 5' TAB COONI' 
1 DC H'25' TAB 1 
1 DC 8'49' TAB 2 
1 DC H'73' TAB 3 
1 DC H'97' TAB 4 
1 DC H'121' TAB 5 
1 END L _________________________________________ J 

Figure 7-7. Tab control library Rodule 
IBMBSTAB 

EXAMPLE 

Figure 7-6 illustrates the use of a PRINT 
file and the printing options of the 
stream-oriented transmission statements to 
format a table and write it onto magnetic . 
tape for printing on a later occasion. The 
table comprises the natural sines of the 
angles from 00 to 359 0 54' in steps of 6'. 

The statements in the ENDPAGE on-unit 
insert a page number at the bottom of each 
page, and set up the headings for the 
following page. After the last line of the 
table has been written, the statement: 

PUT FILE(TABLE) LINE (54) 

causes the ENDPAGE condition to be raised 
to ensure that a number appears at the foot 
of the last page; the preceding statement 
sets the flag FINISH to prevent a further 
set of headings from being written. 

The DO statement defining the data set 
created by this program includes no record­
format information; the compiler infers the 
following from the file declaration and the 
line size specified in the statement that 
opens the file TABLE: 

Record format - VBA (the default for a 
PRINT file) 

Record size 

I Block size 

- 98 (line size + one byte 
for printer control 
character + four bytes for 
record control field) 

- 102 (record length + four 
bytes for block control 
field) 

The program in Figure 8-10 uses record­
oriented transmission to print the table 
created by the program in Figure 7-6. 

Tab Control Table 

Data-directed and list-directed output to a 
PRINT file is automatically aligned on 
preset tabulator positions; the tab 
settings are stored in a table, an 
assembler language control section, in the 
transient library module IBMBSTAB (Figure 
7-7. ) 

The standard settings are given in the 
language reference manual for this 
compiler. The functions of the fields in 
the table are as follows: 

OFFSET OF Halfword binary integer that 
TAB COUNT: defines the field that 

indicates the number of tabs 
to be used. 

PAGESIZE: HalfwGrd binary integer that 
defines the default page 
size. 

LINESIZE: Halfword binary integer that 
defines the default line size. 

PAGELENGT8: Halfword binary integer that 
defines the default page 
length for printing at a 
terminal. The page length is 
the number of lines between 
perforations. It is used for 

Chapter 7: Defining Data Sets for Stream Files 97 



r-----------------------------------------, 
I I 
I DCL 1 PLITABS STATIC EXT, I 
I 2 (OFFSET INIT (6) , I 
I PAGESIZE INIT (60) , I 
I LINESI ZE INIT (120) , I 
II NO OF TABS INIT(3) , I 

TAB1INIT(30), 
I TAB2 INIT(60) , I 
I TAB3 INIT(90» FIXED BIN(15,0); I 
L-----------------------------------------J 
Figure 7-8. PL/I structure PLITAES for 

modifying the standard tab 
settings (alternative 
method) 

output to the terminal in a 
TSO environment because, 
unlike a printer, the terminal 
does not use a control tape to 
determine page length. The 
default value is zero which is 
a special convention to 
indicate unformatted output. 
For further information on how 
the output is formatted at a 
terminal, refer to the TSO 
Terminal User's Guide. 

FILLERS: Reserved for future use. 

Tab count: Number of tab posi ti on entries 
in table (maximum 255). If 
tab count = 0, any specified 
tab positions are ignored: 
each data item is positioned 
at the start of a new line. 

Tab~-Tabn Tab positions within the 
print line, The first position 
is numbered 1, and the highest 
position is numbered 255. The 
value of each tab should be 
greater than that of the tab 
preceding it in the table; 
otherwise, it will be ignored. 
The first data field in the 
prihted output begins at the 
next available tab position. 

The standard PL/I tab settings in 
IBMBSTAB can be overriden. I f the linkage 
editor can resolve a reference to PLITABS 
generated by the compiler, the transient 
library module IBMBSTAB will not be used. 
Instead, the stream-oriented input/output 
routines will refer to the control section 
PLITABS for the tab settings. 

There are two methods of altering the 
tab settings for a particular program. 

One method is to create an assembler­
language control section called PLITABS and 

include it in the link-editing of the 
program. 

The alternative method is to include a 
PL/I structure in the source program. The 
organization of the structure is similar to 
the assembler-language control section for 
PLITABS given in Figure 7-7. The name of 
the structure must be PLITABS also and it 
must be declared STATIC and EXTERNAL. An 
example of a PL/I structure to create three 
tab settings in positions 30, 60, and 90, 
and use the defaults for page size and line 
size, is given in Figure 7-8. 

The equivalent fields for PAGELENGTH and 
FILLERS are omitted from the structure, and 
the value given in the offset field is set 
to 6. 

Note that the PAGESIZE field in PLITABS 
is used by PLIDUMP to define the pagesize 
for the dump output. 

Standard Files 

PL/I includes two standard files, SYSIN for 
input and SYSPRINT for output. If yeur 
program includes a GET statement that does 
not include the FILE option, the conpiler 
inserts the file name SYSIN; ,if it includes 
a PUT statement without the FILE aptian, 
the compiler inserts the nane SYSPRINT. 

If you do not declare SYSPRINT, the 
compiler will give the file the attribute 
PRINT in addition to the norrral default 
attributes; the complete file declaration 
will be: 

SYSPRINT FILE STREAM OUTPUT PRINT EXTERNAL 

Since SYSPRINT is a PRINT file, the 
compiler also supplies a default line size 
of 120 characters and a V-fermat record. 
You need give only a minimum of information 
in the corresponding DD statement; if your 
installation uses the usual convention that 
the system output device of class A is a 
printer, the following is sufficient: 

//SYSPRINT DD SYSOUT=A 

If you use one of the IBM-supplied 
cataloged procedures to execute your 
program, even this DD statement is not 
required, since it is included in the GO 
procedure step. 

You can override the attributes given to 
SYSPRINT by the compiler by explicitly 
declaring or opening the file. If you do 
so, bear in mind that this file is also 
used by the error-handling routines of the 
compiler, and that any change you make in 

98 OS PL/I Optimizing Compiler: programmer' s Guide 



the format of the output from SYSPRINT will 
also apply to the format of execution-time 
error messages. When an error message is 
printed, eight blanks are inserted at the 

Istart of each line except the first. If 
IYoU specify a line size of less than 72 
characters, the messages will not be output 
to SYSPRINT. 

The compiler does not supply any special 
attributes for the standard input file 
SYSIN; if you do not declare it, it 
receives only the normal default 
attributes. The data set associated with 
SYSIN is usually in the input stream; if it 
is not in the input stream, you must supply 
full DD information. 

Chapter 7: Defining Data sets for stream Files 99 





Chapter 8: Defining Data Sets for Record Files 

This chapter describes how to define data 
sets for use with PL/I files that have the 
RECORD attribute. It explains how to create 
and access data sets for the three types of 
organization: CONSECUTIVE, INDEXED, and 
REGIONAL recognized by PL/I, and how to 
create and access data sets for 
teleprocessing. The essential parameters of 
the DO statements used in creating and 
accessing these data sets are summarized in 
tables, and several examples of PL/I 
programs (complete with JCL) are included 
to illustrate the text. 

Data sets with the RECORD attribute are 
processed by record-oriented transmission 
in which data is transmitted to and from 
auxiliary storage exactly as it appears in 
the program variables; no data conversion 
takes place. A record in a data set 
corresponds to a variable in the program. 

Consecutive Data Sets 

A data set with CONSECUTIVE crganization 
can exist on any type of auxiliary storage 
device. Records are stored sequentially in 
the order in which you write them. 

CREATING A CONSECUTIVE DATA SET 

When you create a CONSECUTIVE data set you 
must specify: 

• Device that will write or punch your 
data set (UNIT, SYSOUT, or VOLUME 
parameter of DO statement). 

• B,lock size: you can specify the block 
size either in your PL/I program 
(ENVIRONMENT attribute) or in the DD 
statement (BLKSIZE subparameter). If 
you do not specify a record length, 
unblocked records are assumed and the 
record length is determined from the 
block size. If you do not specify a 
record format, U-format is assumed. 

r---------------------------------------------------------------------------------------, 
Storage Device I Parameters of DD Statement 

All 

Di rect access 
only 

Magnetic tape 
only 

1---------------------------------------------------------------------I When required I What you must state I Parameters 

Always 

I Always 
I 

I Output device I UNIT= or 
I I SYSOUT= or 
1 I VOLUME=REF= 
1-------------------------------------------
1 Block size!. I DCB=(BLRSIZE= ••• 

I Storage space required 
1 

I SPACE= 
I 

I Data set not fi~t in I Sequence number 
j volume and for magnetic I 

LABEL= 

I tapes that do not have I 
I standard labels I 

Direct access 1 Data set to be used by I Disposition I DISP= 
and standard 1 another job step but not I 1 
labeled magneticl required at end of job I 1 
tape 1---------------------------------------------------------------------

1 Data set to be kept 1 DispOSition I DISP= 
I after end of job 1-------------------------------------------
1 1 Name of data set 1 DSNAME= 

1---------------------------------------------------------------------
1 Data set to be on 1 Volume serial number I VOLUME=SER= 
1 particular device I I or 
1 I 1 VOLUME=REF= 

11 Alternatively. you can specify the block size in your PL/I prograrr: by using the 
I ENVIRONMENT attribute. L-----------------------------------------------------__________________________________ J 

Figure 8-1. Creating a CONSECUTIVE data set: essential parameters of DD statement 

Chapter 8: Defining Data Sets for Record Files 101 



If you want to keep a magnetic-tape or 
direct-access data set (that is, you do not 
want the operating system to delete it at 
the end of your job), the DD statement must 
name the data set and indicate how it is to 
be disposed of (DSNAME and DISP 
parameters). The DISP parameter alone will 
suffice if you want to use the data set in 
a later step but will not need it after the 
end of your job. 

When creating a data set cn a dixect­
access device, you must specify the amount 
of space required for it (SPACE paraneter 
of DD statement). 

If yeu want your data set stored on a 
particular magnetic-tape or direct-access 
device, you must indicate the velune serial 
number in the DD statement (SER or REF 
subparameter of VOLUME paraneter). 

If you do not supply a serial nunber for 
a magnetic-tape data set that you want to 
keep, the operating system will allocate 
one, inform the operator, and print the 
number on your program listing. 

If your data set is to fellew ancther 
dat,a set on a magnetic-tape volume, you 
must use the LABEL parameter of the DD 
statement to indicate its sequence number 
on the tape. The essential information for 
creating a CONSECUTIVE data set is 
summarized in Figure 8-1. 

The DCB subparameters of the DD 
statement that apply to CONSECUTIVE data 
sets are listed in Figure 8-2~ they are 
described in Appendix A. You can specify 
record format CRECFM), block size 
(BLKSIZE), record size (LRECL), and number 
of buffers CBUFNO) in the ENVIRONMENT 
attr ibute of the DECLARE statement in your 
PL/I program instead of in a DD statement. 

ACCESSING A CONSECUTIVE DATA SET 

You can access a CONSECUTIVE data set in 
three ways. You can open the associated 
fi,le for input, and read the records the 
dat:a set contains; you can open the file 
for output, and extend the data set by 
adding records at the end; or you can open 
the file for update, and read and rewrite 
each record in turn. (The operating system 
does not permit updating a CONSECUTIVE data 
set on magnetic tape: you must read the 
data set and write the updated records into 
a new data set.) 

To access a data set, you must identify 
it to the operating system in a DD 
statement. The following paragraphs, which 
are summarized in Figure 8-3, indicate the 
essential information you must include in 
the DD statement, and discuss some of the 
optional information you may supply. The 
discussions do not apply to data sets in 
the input stream, which are dealt with in 
Chapter 6. 

-----------------------------------------, 
fsubparameterl specifies 1 

------------ ----------------------------1 
BLKSIZE Maximum number of bytes perl 

block 1 
BUFNO Number of data management I 

buffers I 
CODE Paper tape: code in Which I 

the tape is punched I 
DEN Magnetic tape: tape I 

recording density I 
FUNC Card reader or punch: I 

function to be performed I 
LRECL Maximum number of bytes per 

record 
MODE Card reader or punch: mode 

or operation (column binary 
or EBCDIC and read column 
eliminate or optical mark 
read 

OPTCD Optional data-management 
services and data-set 
attributes 

PRTSP Printer line spacing (0, 1, 
2, or 3) 

RECFM Record format and 
characteri stic s 

STACK Card reader or punch: 
stacker selection 

TRTCH Magnetic tape: tape 
recording technique for 
7-track tape 

L-----------------------------------------J 
Figure 8-2. DCB subparameters for 

CONSECUTIVE data sets 

Essential Information 

If the data set is cataloged, you need 
supply only the following informaticn in 
the DD statement: 

• The name of the data set (DSNAME 
parameter). The operating systen will 
locate the information describing the 
data set in the systerr catalog, and, if 

102 OS PL/I Optimizing Compiler: programmer's Guide 



r---------------------------------------------------------------------------------------, 
I Parameters of DD statement 
1---------------------------------------------------------------------------------------
I When required I What you must state I Parameters 
1---------------------------------------------------------------------------------------
I IName of data set I DSNAME= 
I Always I------------------------------~--------------------
I I Disposition of data set I DISP= 
1---------------------------------------------------------------------------------------
I IAll devices I Input device I UNIT= or VOLUME=REF= 
IIf data set not 1---------------------------------------------------------------------
I cataloged I Standard labeled I I 
I lmagnetic tape andlVolume s.erial number I VOLUME=SER= 
I I direc t access I 1 
1---------------------------------------------------------------------------------------
IMagnetic tape: if data set not I Sequence number I LABEL= 
Ifirst in volume or which does not I I 
Ihave standard labels I 1 
1---------------------------------------------------------------------------------------
IIf data set does not have standard I Block size1 I DCB=(BLKSIZE= ••• ) 
Ilabels I I 
1---------------------------------------------------------------------------------------
11 Alternatively, you can specify the block size in your PL/I program by using either 
I the ENVIRONMENT attribute or the LINESIZE option. L-----------------------------------------------------__________________________________ J 

Figure 8-3. Accessing a CONSECUTIVE data set: essential parameters of DD stateRent 

necessary, will request the operator to 
mount the volume containing it. 

• Confirmation that the data set exists 
(DISP parameter). If you open the data 
set for output with the intention of 
extending it by adding records at the 
end, code DISP=MOD; otherwise, to open 
the data set for output will result in 
its being overwritten. 

If the data set is not cataloged, you 
must, in addition, specify the device that 
wi 11 read the data set and, for magnetic­
tape and direct-access devices, give the 
serial number of the volume that contains 
the data set (UNIT and VOLUME parameters). 

If the data set is on paper tape or 
punched cards, you must specify the block 
size either in your PL/I program 
(ENVIRONMENT attribute) or in the DD 
statement (BLKSIZE subparameter). 

If the data set follows another data set 
on a magnetic-tape volume, you must use the 
LABEL parameter of the DD statement to 
indicate its sequence number on the tape. 

Magnetic Tape Without standard Latels 

If a magnetic-tape data set has nonstandard 
labels or is unlabeled, you must specify 
the block size either in your PL/I program 

(ENVIRONMENT attribute) or in the DD 
statement (BLKSIZE subparameter). The 
DSNAME parameter is net essential if the 
data set is not cataloged. 

PL/I data manageR.ent includes ne 
facilities for processing nonstandard 
labels which to the oFerating systeR appear 
as data sets preceding or following your 
data set. You can either precess the 
labels as independent data sets or use the 
LABEL parameter of the DD staterr.ent to 
bypass them; to bypass the labels code 
LABEL=(2,NL) or LABEL=(,BLP). 

Record Format 

If you give record-format informaticn, it 
must be compatitle with the actual 
structure of the data set. Fer exaR};:le, if 
a data set is created w~th F-format 
recox:ds, a record size of 600 bytes f, and a 
block size of 3600 bytes!, you can access 
the records as if they are U-fe~mat with a 
maximum block size of 3600 bytes; but if 
you specify a block size of 3500 bytes, 
your data will be truncated. 

EXAMPLE OF CONSECUTIVE DATA SETS 

Creating and accessing CONSECUTIVE data 

Chapter 8: Defining Data Sets for Record Files 103 



/ /OPl' 8# 4 JOB 
//STEP1 EXEC PLIXCU; 
//PLI.SYSIN DD * 

MERGE: PROC OPrI ONS ( MAl N) : 

DCL (IN1,IN2,OUT) FILE RECORD SEQUENTIAL, 
(ITEM! BASED(A),ITEM2 BASED(B» CHAR(80): 

ON ENDFlLE(INl) BEGIN: 
ON ENDFILE(IN2) GO TO FINISH: 

NEXT2: WRITE FlLE(OUT) FROM(ITEM2): 
READ FILECIN2) SET(B): 
GO TO NEXT2: 
END: 

ON ENDFlLE CIN2) BEGIN: 
ON ENDFILE( IN1) GO '10 FINISH: 

NEXT1: WRITE FILE (OUT) FROM (ITEM1) ; 
READ FILE(IN1) SET(A): 
GO TO NEXT1: 
END: 

OPEN FILE(IN1) INPUT, 
FILE (IN2) INPUT, 
FILE(OUT) OUTPUT; 

READ FILE(IN1) SET (A): 
READ FILE(IN2) SET(B): 

NEXT: IF ITEM1>ITEM2 THEN DO: 
WRITE FILE(OUT) FROM(ITEM2): 
READ FILECIN2) SET(B): 
GO TO NEXT: 
END: 

ELSE DO: 
WRITE FILE( OUT) FROM(ITEM1); 
READ FILECIN1) SET(A): 
GO TO NEXT: 
END: 

FINISH: CLOSE FILE(INl),FILECIN2),FILECOUT): 
END MERGE: 

/* 
//GO.OUT DO DSN=DS3,UNIT=2311,DCB=(RECFM=FB,BLKSIZE=400,LRECL=80), 
// DISP=(NEW,KEEP),VOL=SER=D186,SPACE=(CYL,C1,1» 
//GO.IN1 DO * 

(insert here data to be included in the input stream) 
//GO.IN2 DO * 

(insert here data to be included in the input stream) 
/* 

Figure 8-4. Creating and accessing a CONSECUTIVE data set 

set.s on magnetic tape are illustrated in 
the program of Figure 8-4. The program 
merges the contents of two existing data 
sets, DS1 and 082, and writes them onto a 
new data set, DS3: each of the original 
data sets contains 15-byte fixed-length 
records arranged in EBCDIC collating 
sequence. The two input files, IN1 and 
IN2, have the default attribute BUFFERED, 
and locate mode is used to read records 
from the associated data sets into the 
respective buffers. 

PUNCHING CARDS AND PRINTING 

You cannot use a PRINT file fer reccrd­
oriented transmission, and record-oriented 
transmission statements cannct include the 
printing options (PAGE, SKIP, etc). You can 
still exercise some control cver the layout 
of printed output by including a printer 
control code as the first byte of each of 
your output records: you can also use 
similar control codes to select the stacker 
to which cards punched by your prcgram are 
fed. 

104 OS PL/I Optimizing Compiler: programmer's Guide 



The operating system recognizes two 
types of code for printer and card punch 
commands, ANS code and machine code. You 
must indicate which code you are uSing, 
either in your PL/I program (ENVIRONMENT 
attribute), or in the DD statement (RECFM 
subparameter). If you specify one of these 
codes, but transmit your data to a device 
other than a printer or a card punch, the 
operating system will transmit the control 
bytes as part of your records. If you use 
an invalid control code, "space 1 line" or 
"stacker 1" will be assumed. 

The ANS control codes, which are listed 
in Figure 8-5, cause the specified action 
to occur before the associated record is 
printed or punched. 

The machine control cedes differ 
according to the type of device.. The codes 
for the 1403 Printer are listed in Figure 
8.6, and Figure 8-7 gives those for the 
2540 Card Read Punch. Centrel codes for 
the 3525 card printer are given in Figures 
8-8 and 8-9. 

r-----------------------------------------, 
I Code I Action 

Q Space 1 line before printing 
(blank code) 

o Space 2 lines before printing 
Space 3 lines before printing 

+ Suppress space before printing 
1 Skip to channel 1 
2 Skip to channel 2 
3 Skip to channel 3 
4 Skip to channel 4 
5 Skip to channel 5 
6 Skip to channel 6 
7 Skip to channel 7 
8 Skip to channel 8 
9 Skip to channel 9 
A Skip to channel 10 
B Skip to channel 11 
C Skip to channel 12 
V Select stacker 1 
W Select stacker 2 

1-----------------------------------------I The channel numbers refer to the printerl 
1 carriage control tape. (see IBM 1403 1 
1 printer component Description.) 1 
L-----------------------------------------J 
Figure 8-5. ANS printer and card punch 

control codes 

Chapter 8: Defining Data Sets for Recerd Files 105 



r---------------------------------------------------------------------------------------, 
/ Print and then act / Action / Act inmediately 
/ / I (no printing) 
/-----------------------/ 1------------------------
/ Code byte 1 1 Code byte 
----------------------- -------------------------------------- ------------------------

00000001 Print only (no space) 
00001001 space 1 line 00eOl0ll 
00010001 space 2 lines 00010011 
00011001 space 3 lines 00011011 
10001001 skip to channel 1 10001011 
10010001 Skip to channel 2 10010011 
10011001 Skip to channel 3 10011011 
10100001 skip to channel 4 10100011 
10101001 skip to channel 5 10101011 
10110001 Skip to channel 6 10110011 
10111001 skip to channel 7 10111011 
11000001 skip to channel 8 11000011 
11001001 Skip to channel 9 11001011 
11010001 Skip to channel 10 11010011 
11011001 Skip to channel 11 11011011 
11100001 Skip to channel 12 11100011 

---------------------------------------------------------------------------------------
The channel numbers refer to the printer carriage control tape. (See IBM 1403 printer 
Component Description.) L-----------------------------------____________________________________________________ J 

Figure 8-6. 1403 printer control codes 

r-----------------------------------------, 
/ Code byte / Action 1 
/-----------------------------------------/ 
/ 00000001 / Select stacker 1 1 
1 01000001 / Select stacker 2 1 
/ 10000001 / Select stacker 3 1 L-------------------------------__________ J 
Figure 8-7. 2540 Card Read Punch 

control characters 

r-----------------------------------------, 
CTLASA code/ Action 
-----------------------------------------

b /Space 1 line and print 
0 Space 2 lines and print 

Space 3 lines and print 
1 Skip to channel 1 and print 
2 Skip to channel 2 and print 
3 Skip to channel 3 and print 
4 Skip to channel 4 and print 
5 Skip to channel 5 and print 
6 Skip to channel 6 and print 
7 Skip to channel 7 and print 
8 Skip to channel 8 and print 
9 Skip to channel 9 and print 
A Skip to channel 10 and print 
B Skip to channel 11 and print 
C Skip to channel 12 and print 

L-----------------------------------------J 
Figure 8-8. 3525 card printer control 

code (CTLASA) 

r------------------------------------, 
CTL360 code / Action 

bytes 1 
------------------------------------

00001101 Print on line 1 
00010101 Print on line 2 
00011101 Print on line 3 
00100101 Print on line 4 
00101101 Print on line 5 
00110101 Print on line 6 
00111101 Print on line 7 
01000101 Print on line 8 
01001101 Print on line 9 
01010101 Print on line 10 
01011101 Print on line 11 
01100101 Print on line 12 
01101101 Print on line 13 
01110101 Print on line 14 
01111101 Print on line 15 
10000101 Print on line 16 
10001101 Print on line 17 
10010101 Print on line 18 
10011101 Print on line 19 
10100101 print on line 20 
10101101 Print on line 21 
10110101 Print on line 22 
10111101 print on line 23 
11000101 Print on line 24 
11001101 print on line 25 

L------------------------------------J 
Figure 8-9. 3525 card printer control 

codes (CTL360) 

106 OS PLiI Optimizing Compiler: Programmer's Guide 



//OPT8#10 JOB 
//STEP1 EXEC PLIXCLG 
//PLI.SYSIN DD * 

PRT: PROC OPl'IONS(MAIN); 

DCL TABLE FILE RECORD INPUT SEQUENTIAL, 
PRINTER FILE RECORD OUTPUT SEQL ENV(V BLKSIZE(102) CTLASA), 
LINE CHAR(94) VAR; 

ON ENDFILE(TABLE) GO TO FINISH; 

OPEN FILE (TABLE) ,FILE (PRINTER) ; 
NEXT: READ FILE(TABLE) INTO(LINE); 

WRITE FILE(PRINTER) FROM (LINE) ; 
GO TO NEXT; 

FINISH: CLOSE FILE(TABLE),FILE(PRINTER); 
END PRT; 

/* 
//GO.TABLE DD DSNAME=SINES,DISP=OLD 
//GO.PRINTER DD SYSOUT=A 

Figure 8-10. printing with record-oriented transmission 

There are two types of command for the 
printer, one causing the action to occur 
after the record has been transmitted, and 
the other producing immediate action but 
transmitting no data (you must include the 
second type of command in a blank record). 

The essential requirements for producing 
printed output or punched cards are exactly 
the same as those for creating any other 
CONSECUTIVE data set (described above). 
For a printer, if you do not use one of the 
control codes, all data will be printed 
sequentially, with no spaces between 
records; each block will be interpreted as 
the start of a new line. When you specify 
a block size for a printer or card punch, 
and are using one of the control codes, 
include the control bytes in your block 
size; for example, if you want to print 
lines of 100 characters, specify a block 
size of 101. 

Example 

The program in Figure 8-10 uses record­
oriented transmission to read and print the 
contents of the data set SINES, created by 
the PRINT file in Figure 7-6. Since the 
data set SINES is cataloged, only two 
parameter s are required in the DD statement 
that defines it. The output file PRINTER 
is declared with the ENVIRONMENT option 
CTLASA, specifying that the first byte of 
each record will be interpreted as an ANS 

printer control code. The information 
given in the ENVIRONMENT attribute cculd 
alternatively have been given in the DD 
statement, as follows: 

DCB=(RECFM=VA,BLKSIZE=102) 

Indexed Data Sets 

A data set with INDEXED organization can 
exist only on a direct-access device. Each 
record in the data set is identified by a 
key that is recorded with the record. A key 
is a string of not more than 255 
characters; all the keys in a data set must 
have the same length. The records in the 
data set are arranged according to the 
collating sequence of their keys. Once an 
INDEXED data set has been created, the keys 
facilitate the direct retrieval, addition, 
and deletion of records. 

INDEXES 

TO provide faster access to the reccrds in 
the data set, the operating system creates 
and maintains a system of indexes tc the 
records in the data set. The lowest level 
of index is the track index. There is a 
track index for each cylinder in the data 
set; it occupies the first track (or 
tracks) of the cylinder, and lists the keys 
of the last records on each track in the 
cylinder. A search can then be directed to 
the first track that has a key that is 

Chapter 8: Defining Data Sets for Record Files 107 



Master index 

1 450 900 12000 1 
Cylinder index 

200 300 375 450 -
500 600 700 900 --

1000 1200 '1500 2000 -

Cylinder 1 Cylinder 11 Cylinder 12 

• 100 100 200 200 
Track • 11500 ~ 12000 index 

Data Data Data Data Prime 
10 20 40 100 data 

Data Data Data Data Prime 

150 175 190 200 data 

Overflow 

Figure 8-11. Index structure of an INDEXED data set 

higher than or equal to the key of th~ 
required record. 

If the data set occupies more than one 
cylinder, the operating system develops a 
higher level index called a cylinder index. 
Each entry in the cylinder index identifies 
the key of the last record in the cylinder. 
TO increase the speed of searching the 
cylinder index, you can request in a DO 
statement that the operating system develop 
a master index for a specified number of 
cylinders; you can have up to three levels 
of master index; Figure 8-11 illustrates 
the index structure. The part of the data 
set that contains the cylinder and master 
indexes is termed the index area. 

When an INDEXED data set is created, all 
the records are written in what is called 
the prime data area. If more records are 
added later, the operating system does not 
rearrange the entire data set; it inserts 
each new record in the appropriate position 
and moves up the other records on the same 
track. Afr;f records forced off the track by 
the insertion of a new record are placed in 
an overflow area. The overflow area can 
consist either of a number of tracks set 
aside in each cylinder for the overflow 
records from that cylinder (cylinder 
overflow area), or a separate area for all 
overflow records (independent overflow 
~) • Figure 8-12 shows how records are 

added to an INDEXED data set. 

Each entry in the track index consists 
of two parts: 

1. The normal entry" which points to the 
last record on the track. 

2. The overflow entry, which contains the 
key of the first record transferred to 
the overflow area and also points to 
the last record transferred from the 
track to the overflow area. 

If there are no overflow records from 
the track, both index entries point to the 
last record on the track. An additional 
field is added to each record that is 
placed in the overflow area. It points to 
the previous record transferred from the 
same track; the first record from each 
track is linked to the corresponding 
overflow entry in the track index. 

CREATING AN INDEXED DATA SET 

When you create an INDEXED data set, your 
program must write the records in the data 
set sequentially in the order of ascending 
key values; the associated file must be 
opened for SEQUENTIAL OUTPUT. 

108 OS PL/I Optimizing Compiler: Programmer's Guide 



Normal entry 

100 

10 

150 

Track 
40 1 

10 

101 

Track 
100 1 

Track 
26 1 

10 

101 

Track 
100 1 

Figure 8-12. Adding 

Overflow entry 

100 200 

20 40 

175 190 

Track 3 
100 record 1 

20 25 

150 175 

200 
Track 

2 

100 Track 3 
record 3 

20 25 

150 175 

Track 
200 2 40 

records to an INDEmD data set 

Track 
2 

Track 
2 

Track 
2 

Track 3 
record 1 

200 

100 

200 

200 

40 

190 

200 

26 

190 

199 

Track 3 
record 2 

I 
~ 

Track 3 
record 4 

Track 3 
record 2 

Track 
Index 

Prime 
data 

Overflow 

Track 
index 

Prime 
data 

Overflow 

Track 
index 

Prime 
Data 

Overflow 

Chapter 8: Defining Data Sets for Record Files 109 



You can use a single DD statement to 
define the whole of the data set (index 
area, prime area, and overflow area), or 
you can use two or three statements to 
define the areas independently. If you use 
two DD statements, you can define either 
the index area and the prime area together, 
or the prime area and the overflow area 
together. 

If you want the whole of the data set to 
be on a single volume, there is no 
advantage to be gained by using more than 
one DD statement except to define an 
independent overflow area (see "Overflow 
Area," later in this chapter). But, if you 
use separate DO statements to define the 
index and/or overflow area on volumes 
separate from that which contains the prime 
area, you will increase the speed of direct 
access to the records in the data set by 
reducing the number of access mechanism 
movements required. 

When you use two or three DO statements 
to define an INDEXED data set, the 
statements must appear in the order: index 
area; prime area; overflow area. The DD 
statement must have a name (ddname), but 
the name fields of a second or third DD 
statement must be blank. The DD statements 
for the prime and overflow areas must 
specify the same type of unit (UNIT 
parameter). You must include all the DCB 
information for the data set in the first 
DO statement; OCB=DSORG=IS will suffice in 
the other statements. 

An INDEXED data set consisting of fixed­
length records can be extended by adding 
records sequentially at the end, until the 
original space allocated for the prime data 
is filled. The corresponding file must be 
opened for sequential output and you must 
include OISP=MOD in the DD statement. 

Essential Information 

To create an INDEXED data set, you must 
give the operating system certain 
information either in your PL/I program or 
in the DD statement that defines the data 
set~. The following paragraphs indicate the 
essential information, and discuss some of 
the optional information you may supply; 
the ENVIRONMENT attribute and the LINESIZE 
option are discussed fully in the language 
reference manual for this compiler. 

You must supply the following 
information when creating an INDEXED data 
set~: 

• Device that will write or punch your 
data set (UNIT or VOLUME parameter of DO 

statement) • 

• Block size: you can specify the tlock 
size either in your PL/I program 
(ENVIRONMENT attribute or LINESIZE 
option) or in the DD statement (ELKSIZE 
subparameter). If you do not specify a 
record length, unblocked records are 
assumed and the record length is 
determined from the block size. 

If you want to keep a direct-access data 
set (that is, you do not want the operating 
system to delete it at the end of yeur 
job), the DO statement must name the data 
set and indicate how it is'tc be disposed 
of (DSNAME and DISP parameters). The DISP 
parameter alone will suffice if you want to 
use the data set in a later step but will 
not need it after the end of your jeb. 

If you want your data set stored en a 
particular direct-access device, you must 
indicate the volume serial number in the DO 
statement (SER or REF subparameter of 
VOLUME parameter). If you de not supply a 
serial number for a data set that you want 
to keep, the operating systerr will allocate 
one, inform the operator, and print the 
number on your program listing. All the 
essential parameters required in a rD 
statement for the creation of an INDEXED 
data set are summarized in Figure 8-13, and 
Figure 8-14 lists the DCB su1:parameters 
needed. 

Appendix A contains a description of the 
DCB subparameters. 

You cannot place an INDEXED data set on 
a system output (SYSOUT) device ... 

You must request space for the prime 
data area in the SPACE pararreter. Your 
request must be in units of cylinders 
unless you place the data set in a specific 
position on the volume (by specifying a 
track number in the SPACE parameter). In 
the latter case, the number of tracks you 
specify must be eqUivalent to an integral 
number of cylinders, and the first track 
must be the first track of a cylinder other 
than the first cylinder in the volurr,e. You 
can also use the SPACE parameter to specify 
the amount of space to be used for the 
cylinder and master indexes (unless you use 
a separate DD statement for this purpose). 
If you do not specify the space for the 
indexes, the operating systerr will use part 
of the independent overflow area; if there 
is no independent overflow area, it will 
use part of the prime data area. 

In the DCB parameter, you must always 
specify the data set organization 
(DSORG=IS), and in the first (or only) DD 
statement you must also specify the length 
of the key (KEYLEN). 

110 OS PL/I Optimizing Compiler:: programmer's Guide 



r---------------------------------------------------------------------------------------, 1 Parameters of DD statement 
1---------------------------------------------------------------------------------------1 When required 1 What you must state 1 Parameters 
1---------------------------------------------------------------------------------------
1 1 Output device 1 UNIT= or VOLUME=REF= 
1 1---------------------------------------------------
1 Istorage space required 1 SPACE= 
IAlways 1---------------------------------------------------
1 IData control block I 
1 1 information: refer to I DCB= 
1 Ifigure 8-14. 1 
1---------------------------------------------------------------------------------------
1 I Name of data set and 1 
IMore than one DD statement larea (index, prime, I DSNAME= 
1 I overf low) 1 
1---------------------------------------------------------------------------------------
IData set to be used in another job 1 1 
Istep but not required after end of IDisposition 1 DISP= 
Ijob 1 1 
1---------------------------------------------------------------------------------------
IData set to be kept after end of 1 Disposition 1 DISP= 
Ijob 1---------------------------------------------------
1 1 Name of data set 1 DSNAME= 
1---------------------------------------------------------------------------------------
IData set to be on particular IVolume serial number 1 VOLUME=SER= or 
1 volume 1 1 VOLUME=REF= 
L---------~----------------------~--------.-----------__________________________________ J 

Figure 8-13. creating an INDEXED data set: essential parameters of DD statenent 

Name of Data Set 

If you use only one DD statement to define 
your data set, you need not name the data 
set unless you intend to access it in 
another job. But, if you include two or 
three DO statements, you must specify a 
data set name, even for a temporary data 
set. 

The DSNAME parameter in a DD statement 
that defines an INDEXED data set not only 
gives the data set a name, but it also 
identifies the area of the data set to 
which the DD statement refers: 

DSNAME=nameCINDEX) 

DSNAME=name (PRIME) 

DSNAME=nameCOVFLOW) 

If the data set is temporary, prefix its 
name with the characters "ii". If you use 
one DO statement to define the prime and 
index or prime and overflow area, code 
DSNAME=nameCPRIME): if you use one DD 
statement, code DSNAME=nameCPRIME), or 
simply DSNAME=name. 

Record Format and Keys 

An INDEXED data set can contain either 
fixed-length or variable-length reccrds, 
blocked or unblocked. You must always 
specify the record format either in your 
PL/I program (ENVIRONMENT attribute) or in 
the DD statement (RECFM subFaraIreter). 

The key associated with each reccrd can 
be contiguous with or embedded within the 
data in the record: you can save sterage 
space in the data set if you use blocked 
records with embedded keys. 

If the records are unblocked, the key of 
each record is recorded in the data set in 
front of the record even if it is also 
embedded within the record, as shown in Ca) 
and (b) of Figure 8-15. If blccked records 
do not have embedded keys, the key of each 
record is recorded within the block in 
front of the record, and the key of the 
last record in the block is also recorded 
in front of the block, as shown in ee) of 
Figure 8-15. When blocked records have 
embedded keys, the individual keys are not 
recorded separately in front of each record 
in the block; the key of the last record in 
the block is recorded in frent of the 
block, as shown in Cd) of Figure 8-15. 

If you use blocked records with non-

Chapter 8: Defining Data Sets for Record Files 111 



r---------------------------------------------------------------------------------------, 
I DCB subparameters 
1---------------------------------'------------------------------------------------------
I When required I To specify I sucparameters 
1---------------------------------------------------------------------------------------
I I Reco.z:d format:1. IRECFM=F, FB, FBS, 

II I IV, or VB 
I 1-----------------------------------------------------------
I I Block size:1. IBLKSIZE= 
IThese are always required 1-----------------------------------------------------------
I I Data set organization IDSORG=IS 
I 1-----------------------------------------------------------
I I Key length IKEYLEN= 
1---------------------------------,------------------------------------------------------
I ICylinder overflow area and I 
I I number of tracks per cylinder for 10PTCD=Y and CYLOFL= 
IInclude at least one of loverflow records I 
Ithese if overflow is 1-----------------------------------------------------------
Irequired I Independent overflow area 10PTCD=I 
1--------------------------- -----------------------------------------------------------
I Record length:1. ILRECL= 
I -----------------------------------------------------------
I Embedded key (relative key position) IRKP= 

I -----------------------------------------------------------
IThese are optional Master index I OPTCD=M 
I -----------------------------------------------------------
I Autorratic processing of dummy records 10PTCD=L 
I -----.------------------------------------------------------
I Number of data management buffers:1. IBUFNO= 
I -----------------------------------------------------------
I Number of tracks in cylinder index INTM= 
I I for each master index entry I 
1---------------------------------------------------------------------------------------
11 Alternatively, can be specified in ENVIRONMENT attribute. L------------------------______________________________ ---------------------------------J 
Not~: FUll DCB information must appear in the first, or only, DD staterrent. subsequent 
statements require only DSORG=IS. 

Figure 8-14. DCB subparameters for an INDEXED data set 

embedded keys, the record size that you 
specify must include the length of the key, 
and the block size must be a multiple of 
this combined length. Otherwise, record 
length and block size refer only to the 
data in the record. Record format 
informa tion is shown in Fig ure 8 -16. 

If you use records with embedded keys, 
you must include the DCB subparameter RKP 
to indicate the position of the key within 
the record. For fixed-length records the 
value specified in the RKP subparameter is 
one less than the byte number of the first 
character of the key; that is, if RKP=l, 
the key starts in the second byte of the 
record. The value assumed if you omit this 
subparameter is RKP=O, which specifies that 
the key is not embedded in the record but 
is separate from .it. 

For variable-length records, the value 
specified in the RKP subparameter must be 
the relative position of the key within the 
record plus four. The extra four bytes take 

into account the 4-byte control field used 
with variable-length records. For this 
reason you must never specify RKP less than 
four. When deleting records you must 
always specify RKP equal to or greater than 
five, since the first byte of the data is 
used to indicate deletion. 

For unblocked records, the key, even if 
embedded, is always recorded in a pcsition 
preceding the actual data. Consequently, 
the RKP subparameter need net be specified 
for unblocked records. 

Overflow Area 

If you intend to add records to the data 
set on a future occasion, yeu nust request 
either a cylinder overflow area or an 
independent overflow area, or both. 

For a cylinder overflow area, include 

112 OS PL/I Optimizing Compiler: Programmer's Guide 



(a) Unblocked records, non-embedded keys 

I Key I Data I Key I Data I Key 1 Data 

(b) Unblocked records, embedded keys 
" .. :,.:.,},:,.:,.>:.,.,::.:>:., Data : ,.:,',:,.:, .. ,:,:./:':<'.".:::':">'.': 

l same key J 
(c) Blocked records, non-embedded keys 

Data 1 Key I Data I Key 1 Data 

same key 

Data: .. ' .. '.".' ... 

I~K_ey~I __ ~ __ ~ __ ~ __ ~~ __ ~~ __ ~IK_ey~I __ ~1 I~K_eY~I __ ~_ 
t same key t 

(e) Unblocked variable length records, R KP>4 
Data 

I Key I B 1 I R 11 

L same key 

(f) Blocked variable length records, RKP>4 
Data 

~IK_ey~IB_1~IR~11 __ ~~ ____ ~ ____ ~~ __ ~I_R1~1 __ ~I_Ke_y~I~ __ J 
t same key t 

(g) Unblocked variable length records, R KP=4 
Data 

I Key I B 1 \ R 1\ Key \ 

t same key .t 
(h) Blocked variable length records, RKP=4. 

Data 

I Key , B 1 , R 11 Key I 
+ same key 

Figure 8-15. Record formats in an INDEXED data set 

Chapter 8: Defining Data Sets for Record Files 113 



r-----------------------------------------, 
I 1 RKP 1 L~ECL 1 BLKSI ZE 1 
1-----------------------------------------
1 INot zero I R 1 R * B 
IBlocked 1-----------------------------
Irecords IZero or 1 R + K 1 B*CR+K) 
I I omitted 1 1 
1-----------------------------------------
1 I Not zero I R I R 

I Unblocked 1-----------------------------
Irecords I Zero or 1 R 1 R 
I I omitted 1 I 
1-----------------------------------------
IR = Size of data in record 
1 
IK = Length of keys (as specified in 
I KEYLEN subparameter) 
I 
IB 
I 

Blocking factor 

IExample: For blocked records, 
non-embedded keys, 100 bytes of 
data per record, 10 records per 
block, key length = 20: 

1 
I 
I 
I LRECL=120,BLKSIZE=1200 ,HECFM=FB 
L-----------------------------------------J 
Figure S-16. Record format inforrration 

for an INDEXED data set 

the DCB subparameter OPTCD=Y and use the 
sUbparameter CYLOFL to specify the number 
of tracks in each cylinder to be reserved 
for overflow records. A cylinder overflow 
area has the advantage of a short search 
time for overflow records, but the amount 
of space available for overflow records is 
limi ted, and much of the space may be 
unused if the overflow records are not 
evenly distributed throughout the data set. 

For an independent overflow area, use 
the DCB subparameter OPTCD=I to indicate 
that overflow records are to be placed in 
an area reserved for overflow records from 
all cylinders, and include a separate DD 
statement to define the overflow area. The 
use of an independent area has the 
advantage of reducing the amount of unused 
space for overflow records, but entails an 
increased search time for overflow records. 

It is good practice to request cylinder 
overflow areas large enough to contain a 
reasonable number of additional records and 
an indeperxlent overflow area to be used as 
the cylinder overflow areas are filled. 

If the prime data area is not filled 
during creation, you cannot use the unused 
portion for overflow records, nor for any 
records subsequently added during direct 
access (although you can fill the unfilled 
portion of the last track used). You can 
reserve space for later use within the 

prime data area by writing "dummy" records 
during creation: see "Dummy Records," 
later in this chapter. 

Master Index 

If you want the operating system to create 
a master index for you, include the DCB 
subparameter OPTCD=M, and indicate in the 
NTM subparameter the number of tracks in 
the cylinder index you wish to be referred 
to by each entry in the master index. The 
operating system will automatically create 
up to three levels of master index, the 
first two levels addressing tracks in the 
next lower level of the master index. 

Durrmy Records 

You cannot change the specification of an 
INDEXED data set after you have created it. 
Therefore, you must foresee your future 
needs where the size and location of the 
index, prime, and overflow areas are 
concerned, and you must decide whether you 
want the operating system to identify and 
skip dummy (deleted) records. 

If you code OPTCD=L, the cperating 
system will identify any record that is 
named in a DELETE staterrent by placing the 
bit string (S)'l'B in the first byte. 
Subsequently, during SEQUENTIAL processing 
of the data set, such records will be 
ignored; if they are forced cff a track 
when the data set is being updated, they 
will not be placed in the overflew area. 
Do not specify OPTCD=L when using blocked 
or variable-length records with ncn­
embedded keys; if you do, the string 
(S)'l'B will overwrite the key of the 
"deleted" record. 

You can include a dummy record in an 
INDEXED data set by setting the first byte 
of data to (S) 'l"B and writing the record 
in the usual way. 

ACCESSING AN INDEXED DATA SET 

You can open an INDEXED data set for 
sequential or direct access, and for input 
or update in each case. Sequential input 
allows you to read the records in ascending 
key sequence, and in sequential update you 
can read and rewrite each record in turn; 
during sequential access" if OPl'Ct=L is 
specified when the data set is created, 
dummy records are ignored. Using direct 

114 OS PLiI Optimizing Compiler: Programmer's Guide 



r------------------------------------------~--------------------------------------------, 
I Parameters of DD statement 
1---------------------------------------------------------------------------------------
I When required I What you must state I Parameters 
I-----------------------------------------~---------------------------------------------
I 1 Name of data set 1 DSNAME= 
IAlways 1---------------------------------------------------
1 IDisposition of data set 'DISP= 

1 I 1---------------------------------------------------
1 I 1 Data cont rol block 1 DCB= 
II 1 information 1 

1---------------------------------------------------------------------------------------
I 1 Input device 1 UNIT= or VOLUME=REF= 
IIf data set not cataloged 1------·-----------------------------------.----------
I 1 Volume serial number I VOLUME=SER= L--------_____________________________________________ ---_______________________________ J 

Figure 8-17. Accessing an INDEXED data set: essential parameters of DD statement 

input, you can read records using the READ 
statement, and in direct update you can 
read or delete existing records or add new 
ones. 

To access an INDEXED data set, you must 
define it in one, two or three DD 
statements: the DD statements must 
correspond with those used when the data 
set is created. The following paragraphs 
indicate the essential information you must 
include in each DD statement. and Figure 
8-17 summarizes this information. 

If the data set is cataloged, you need 
supply only the following information in 
each DD statement: 

• The name of the data set (DSNAME 
parameter). The operating system will 
locate the information that describes 
the data set in the system catalog and, 
if necessary, will request the operator 
to mount the volume that contains it. 

• confirmation that the data set exists 
(DISP parameter). 

I. Full DCB information for the first, or 
I only, DD statement. Subsequent 
I statements require only DSORG=IS to be 
I coded. 

If the data set is not cataloged, you 
must, in addition, specify the device that 
will process the data set and give the 
serial number of the volume that contains 
it (UNIT and VOLUME parameters). 

REORGANIZING AN INDEXED DATA SET 

It is necessary to reorganize an INDEXED 
data set periodically because the addition 

of records to the data set results in an 
increasing number of records in the 
overflow area. Therefore, even if the 
overflow area does not eventually become 
full, the average time required for the 
direct retrieval of a record will increase. 
The frequencY of reorganization depends on 
how often the data set is ufdated, cn how 
much storage is available in the data set, 
and on your timing requirerr:ents~ 

Reorganizing the data set also 
eliminates records that are marked as 
"deleted," but are still present within the 
data set. 

There are two ways to reorganize an 
INDEXED data set: 

1. Read the data set into an area of main 
storage or onto a temporary 
CONSECUTIVE data set, and then 
recreate it in the original area of 
auxiliary storage. 

2. Read the data set sequentially and 
write it into a new area of auxiliary 
storage: you can then release the 
original auxiliary storage. 

EXAMPLES OF INDEXED DATA SETS 

The creation of a simple INDEXED data set 
is illustrated in Figure 8-18. The data 
set contains a telephone directory, using 
the subscribers' names as keys to the 
telephone numbers. 

The program in Figure 8-19 updates this 
data set and prints out its new contents. 
The input data includes the following codes 
to indicate the operations required: 

Chapter 8: Defining Data Sets for Record Files 115 



/ /OPT8#18 JOB 
//STEPl EXEC PLIXCLG 
//PLI.SYSIN DD * 

TELNOS: PROC OPTIONS (MAIN) : 

DCL DIREC FILE RECORD SEQUENTIAL KEYED ENV(INDEXED), 
CARD CHAR ( 80) , 
NAME CHAR(20) DEF CARD POS(l), 
NUMBER CHAR(3) DEF CARD POS(21), 
IOFIELD CHAR(3); 

ON ENDFILE(SYSIN) GO TO FINISH: 

OPEN FILE(DIREC) OUTPUT; 
N]~XTIN: GET FILE (SYSIN) EDIT (CARD) (A (80» : 

IOFIELD=NUMBER: 
WRITE FILECDIREC) FROM(IOFIELD) KEYFROM(NAME): 
GO TO NEXT IN : 

FINISH: CLOSE FILE(DIREC): 
END TELNOS: 

/* 
//GO.DIREC DO OSNAME=TELNO(INDEX) ,UNIT=2311,SPACE=(CYL,1), 
// DCB=(RECFM=F,BLKSIZE=3,DSORG=IS,KEYLEN=20,OPTCD=LIY,CYLOFL=2), 
// OISP=(NEW,KEEP),VOLUME=SER=D186 
// DD DSNAME=TELNO(PRIME),UNIT=2311,SPACE=(CYL,4),DCB=DSORG=IS, 
// DISP=(NEW,KEEP),VOLUME=SER=D186 
// DO OSNAME=TELNO(OVFLOW),UNIT=2311,SPACE=(CYL,4), 
// DCB=DSORG=IS,DISP=(NEW,KEEP),VOL=SER=D186 
//GO. SYSIN DO * 
ACTION,G. 
BAKER,R. 
BRAMLEY, O. H. 
CHEESEMAN,D. 
CORY,G. 
ELLIOTT,D. 
FIGGINS,S. 
HARVEY,C.D. W. 
HASTINGS,G.M. 
KENDALL, J. G. 
LANCASTER,W.R. 
MlLES,R. 
NE:WMAN ,M. W. 
PITT,W.H. 
ROLF,D.E. 
SHEERS,C.D. 
SUTCLIFFE,M. 
TAYLOR,G.C. 
WILTON,L.W. 
WINSTONE,E.M. 
/* 

162 
152 
248 
141 
336 
875 
413 
205 
391 
294 
624 
233 
450 
515 
114 
241 
472 
407 
404 
307 

Figure 8-18. Creating an INDEXED data set 

A: Add a new record 
C: Change an existing record 
D: Delete an existing record 

Regional Data Sets 

A data set with REGIONAL organization can 
exist only on a direct-access device. A 

REGIONAL data set is divided into regions 
that are numbered consecutively froIt zero. 
The following paragraphs briefly describe 
the three types of REGIONAL organization. 

REGIONAL(l): In this organization a region 
is a record. Each record in the data set 
is identified by its region number, an 
unsigned decimal integer not exceeding 
16777215. Region numbers start from 0 at 
the beginning of the data set. 

116 OS PL/I Optimizing Compiler: Programmer's Guide 



//OPr8#19 JOB 
//STEPl EXEC PLIXC:U; 
//PLI.SYSIN DO * 
DIRUPDT:PROC OPTIONSCMAIN); 

DCL DIREC FILE RECORD KEYED ENVCINDEXED), 
ONCODE BUILTIN, 
NUMBER CHAR C 3), 
NAME CHAR(20), 
CODE CHARC 2) ; 

ON ENDFILECSYSIN) GO TO PRINT; 

ON KEYCDIREC) BEGIN; 
IF ONCODE=51 THEN PUT FILECSYSPRINT) SKIP EDIT 

C'NOT FOUND: ',NAME) CA(15),A); 
IF ONCODE=52 THEN PUT FILECSYSPRINT) SKIP EDIT 

C'DUPLICATE:',NAME) CA(15),A); 
END; 

OPEN FILEC DIREC) DIRECT UPDATE; 
NEXT: GET FILE CSYSIN) EDIT CNAME, NUMBER, CODE) CA(20) ,A (3) ,XC 56) ,AC 1»; 

IF CODE='A' THEN WRITE FILECDlREC) FROMCNUMBER) KEYFROMCNAME); 
ELSE IF CODE='C' THEN REWRITE FILECDIREC) FROMCNUMBER) 

KEY CNAME); 
ELSE IF CODE='D' THEN DELETE FILE'CDlREC) KEYCNAME); 
ELSE PUT FlLECSYSPRINl') SKIP EDITC'INVALID CODE:' ,NAME) 

CA(15) ,A); 
GO TO NEXT; 

PRINT: CLOSE FILECDIREC); 
PUT FILE CSYSPRINr) PAGE; 
OPEN FILE CDIREC) SEQUENTIAL INPUT; 

ON ENDFlLECDIREC) GO TO FINISH; 

NEXTIN: READ FILE CDlREC) INl'OC NUMBER) KEY'l'OCNAME); 
PUT FILECSYSPRINT) SKIP EDITCNAME,NUMBER) CAl ; 
GO TO NEXTIN; 

FINISH: CLOSE FILE CDIREC) ; 
END DIRUPDT; 

/* 
//GO.DIREC DD DSN=TELNOCINDEX),UNlT=2311,VQL=SER=D186,DISP=COLD,KEEP) 
// DO DSN=TELNOCPRIME),UNIT=2311,VOL=SER=D186,DISP=COLD,KEEP) 
// DD DSN=TELNOCOVFLOW),UNIT=2311,VOL=SER=D186,DISP=(OLD,KEEP) 
//GO.SYSIN DO * 
NEWMAN,M.W. 516 C 
GOODFELLOW,D.T. 889 A 
MILES,R. D 
HARVEY, C. D. W. 209 A 
BARTLETT, S.G. 183 A 
CORY,G. D 
READ, Roo M. 001 A 
PITT,W.H. 
ROLF,D.F. D 
ELLIOTT,D. 291 C 
HASTINGS,G.M. D 
BRAMLEY,O.H. 439 C 
/* 

Figure 8-19. Updating an INDEXED data set 

Chapter 8: Defining Data Sets for Record Piles 117 



REGIONAL(l) data sets have no recorded 
keys. Note, however, that PL/I REGIONAL(l) 
DIRECT INPUT or UPDATE files can be used to 
process data sets that do have recorded 
keys. In particular, REGIONAL(2) and 
REGIONAL (3) data sets can be acessed by a 
file declared as ENV(REGIONAL(l». 

REGIONAL(2): This organization is similar 
to REGIONAL(l), but differs, in that a key 
is recorded with each record. The recorded 
key is a string of not more than 255 
characters. For files with the DIRECT 
attribute, a record is written in the first 
vacant space on the track that contains the 
region number specified in the WRITE 
statement; for retrieval, the search for a 
record begins on the track that contains 
the region number specified in the READ 
statement, and may continue through the 
data set until the record has been found. 
For files that are created sequentially, 
the record is written in the region 
spE~cified • 

REGIONAL(3): This organization is similar 
to REGIONAL(2), but differs in that each 
region corresponds to one track of the 
direct-access device and is not a record 
position. Depending on the record length, 
a region can contain one or more records. 

The major advantage of REGIONAL 
organization over other types of data set 
organization is that it allows you to 
control the relative placement of records: 
by judicious programming, you can. optimize 
record access in terms of device 
capabilities and the requirements of 
pa:rticular applications. REGIONAL(l) 
organization is most suited to applications 
where there will be no duplicate region 
numbers, and where most of the regions will 
be filled (reducing wasted space in the 
data set). REGIONAL(2) and REGIONAL(3) are 
more appropriate where records are 
identified by numbers that are thinlY 
distributed over a wide range. You can 
include in your program an algorithm that 
derives the region number from the number 
that identifies a record in such a manner 
as to optimize the use of space within the 
data set: duplicate region numbers may 
occur but, unless they are on the same 
track, their only effect might be to 
lengthen the search time for records with 
duplicate region numbers. 

REGIONAL (1) and REGIONAL(2) data sets 
can contain only F-format unblocked 
records, but a REGIONAL(3) data set can 
have unblocked records of all three 
formats, F, V, and U. The examples at the 
end of' this section illustrate typical 
applicati ons of all three types of REGIONAL 
organization. 

CREATING A REGIONAL DATA SE'I 

You can use either sequential or direct­
access to create a REGIONAL data set. 

In sequential creation, ~ou must present 
records in order of ascending region 
numbers; for REGIONAL(l) and REGIONAL(2) 
the region number for each record «-list 
ex'ceed that of the preceding record since 
each region can contain. only cne record. 
In all cases" dummy records (identified by 
(B)'l'B in the first byte) are place6 
automatically in regions whose numbers are 

I skipped. The data set ban, have up to 15 
lextents, which may be on more than one 
Ivolume. 

For direct creation, one cf the PL/I 
library subroutines formats the whole of 
the data set when you open the 
corresponding file. For REGIONAL(l) and 
(2), and for REGIONAL (3) with F-fcrnat 
records, formatting involves filling the 
data set with dummy records; for 
REGIONAL(3) with U-format or V-format 
records, a record, called the capacity 
record is written at the start of each 
track to indicate an empty track. During 
creation, you can present records in any 
lord~r. The data set can have cnly cne 
I extent, and can therefore reside on only 
lone volume. 

Essential Information 

To create a REGIONAL data set, you Rust 
give the operating system certain 
information either in your PL/I program or 
in the DO statement that defines the data 
set. The following paragraphs indicat~ the 
essential information, and discuss some of 
the optional information you may supply; 
the ENVIRONMENT attribute and the LINESIZE 
option are discussed fully in the language 
reference manual for this cCRpiler. 

You must supply the follcwing 
information when creating a ~EGIONAL data 
set: 

• Device that will write or punch ycur 
data set (UNIT or VOLUME parameter of DD 
statement) • 

• Block size: you can specify the block 
size either in your PL/I program 
(ENVIRON~~NT attribute or LINESIZE 
option) or in the OD statement (BLKSIZE 
subparameter). If you do not specify a 
record length, unblocked records are 
assumed and the record length is 
determined from the block size. 

118 OS PL/I Optimizing Compiler: Programmer's Guide 



r---------------------------------------------------------------------------------------, 1 Parameters of DO Statement 
1---------------------------------------------------------------------------------------
1 When required 1 What you must state I Parameters 
1---------------------------------------------------------------------------------------
1 I Output device 1 UNIT= or VOLUME=REF= 
1 1---------------------------------------------------
1 IStorage space required 1 SPACE= 
IAlways 1---------------------------------------------------
1 IData control block I 
I 1 information: refer 1 DCB= 
1 Ito figure 8-21 1 
1---------------------------------------------------------------------------------------
IData set to be used in another job I 1 
Istep but not required in another I Disposition 1 DISP= 
Ijob I I 
I~--------------------------------------------------------------------------------------
IData set to be kept after end of 1 Disposition 1 DISP= 
Ijob 1---------------------------------------------------1 1 Name of data set 1 DSNAME= 
I---------------------------~-----------------~-----------------------------------------
IData set to be on particular IVolume serial number 1 VOLUME=SER= or 
1 volume 1 1 VOLUME=REF= 
L----------------------------------------_____________ ----------------------------------J 
Figure 8-20. creating a REGIONAL data set: essential parameters of DO staterrent 

r---------------------------------------------------------------------------------------, 1 DCB Subparameters 
1---------------------------------------------------------------------------------------
1 When required 1 To specify 1 Subparameters 

Record format~ 1 RECFM=F 
1 or 
1 RECFM=Va REGIONAL(3) only 
1 or 

1 1 RECFM=U REGIONAL(3) only 
These are always required 1-----------------------------------------------------

1 Block size~ 1 BLKSIZE= 
1-----------------------------------------------------I Data set organization I DSORG=DA 

1-----------------------------------------------------
1 Key length (REGIONAL (2) I KEYLEN= 
I and (3) only) I 

1---------------------------------------------------------------------------------------1 1 Limited search for a 1 
1 I record or space to add I LIMCT= 
1 1 a record (REGIONALC2) 1 
1 These are optional 1 and (3) only) 1 
1 1-----------------------------------------------------
1 1 Number of data 1 BUFNO= 
1 1 management buffers~ 1 
1---------------------------------------------------------------------------------------1 1 Alternatively, can be specified in ENVIRONMENT attribute. 
1 a RECFM=VS must be specified in the ENVIRONMENT attribute for sequential input or 
1 update. 
L----~--_-------------________________________________ ----------------------------------J 
Figure 8-~1. DCB subparameters for a REGIONAL data set 

Chapter 8: Defining Data sets for Record Files 119 



If you want to keep a data set (that is, 
you do not want the operating system to 
delete it at the end of your job) , the DO 
statement must name the data set and 
indicate how it is to be disposed of 
(OSNAME and DISP parameters). The DISP 
parameter alone will suffice if you want to 
use the data set in a later step but will 
not need it after the end of your job. 

If you want your data set stored on a 
particular direct-access deVice, you must 
indicate the VOlume serial number in the DO 
statement (SER or REF subparameter of 
VOLUME parameter). If you do not supply a 
serial number for a data set that you want 
to keep, the operating system will allocate 
one, inform the operator, and print the 
number on your program listing. All the 
essential parameters required in a DO 
statement for the creation of a REGIONAL 
data set are summarized in Figure 8-20, and 
Figure 8-21 lists the DCB subparameters 
needed. Appendix A contains a description 
of the DCB subparamet ers • 

You cannot place a REGIONAL data set on 
a system output (SYSOUT) device. 

In the DCB parameter, you must always 
specify the data set organization as direct 
by coding DSORG=DA. For REGIONAL(2) and 
REGIONAL(3), you must also specify the 
length of the recorded key (KEYLEN): refer 
to the language reference manual for this 
compiler for a description of how the 
recorded key is derived from the source key 
supplied in the KEYFROM option. 

For REGIONAL(2) and REGIONAL(3), if you 
want to restrict the search for space to 
add a new record, or the search for an 
existing record, to a limited number of 
tracks beyond the track that contains the 
specified region, use the LIMCT 
subparameter of the DeB parameter. If you 
omit this parameter, the search will 
continue to the end of the data set, and 
then from the beginning of the data set 
back to the starting point in the data set. 

ACCESSING A REGIONAL DATA SET 

You can open an existing REGIONAL data set 
for sequential or direct access, and for 
input or update in each case. Using 
sequential input with a REGIONAL(l) data 
set you can read all the records in 
ascending region number sequence, and in 
sequential update you can read and may 
rewrite each record in turn. Sequential 
access of a REGIONAL(2) Or REGIONAL(3) data 
set will give you the records in the order 
in which they appear in the data set, which 
is not necessarily region number order. 

Using direct input, you can read any record 
by supplying its region number and, for 
REGIONAL(2) and REGIONAL(3), its recorded 
key: in direct update, you can read or 
delete existing records or add new ones. 
The operating system ignores dUIrI(lY records 
in a REGIONAL(2) or REGIONAL(3) data set: 
but a program that processes a REGIONAL(l) 
data set must be prepared to recognize 
dUIr.my records. 

To access a REGIONAL data set, you must 
identify it to the operating systeR in a DD 
statement. The following paragraphs 
indicate the minimum information you must 
include in the DD statem.ent: this 
information is summarized in Figure 8-22. 

If the data set is cataloged, you need 
supply only the following information in 
your DD statement: 

• The name of the data set (DSNAME 
parameter). The operating system will 
locate the information that describes 
the data set in the system catalog and, 
if necessary, will request the 0Ferator 
to mount the volume that contains it. 

• Confirmation that the data set exists 
(DISP parameter). 

If the data set is not cataloged" you 
must, in addition, specify the device that 
will read the data set and give the serial 
number of the volume that contains the data 
set (UNIT and VOLUME parameters). 

EXAMPLES OF REGIONAL DATA SETS 

REGIONAL(l) Data Sets 

Creating a REGIONAL (1) data set is 
illustrated in Figure 8-23. 

The program uses the same data as tha't 
in Figure 8-18, but interprets it in a 
different way: the data set is effectively 
a list of telephone numbers with the names 
of the subs cribers to whom they are 
allocated. The telephone nunbers 
correspond with the region numbers in the 
data set, the data in each occupied region 
being a subscriber'S name. The SPACE 
parameter of the DO statement requests 
space for 1000 twenty-byte records (that 
is, for 1000 regions): since space is never 
allocated in units of less than one track 
and one 2311 track can accommodate 45 
twenty-byte records, there will in fact be 
1035 regions. Note that the data set has 
no recorded keys because it is created 
using a DIRECT OUTPUT file. 

120 OS PL/I Optimizing Compiler: Programmer's Guide 



r---------------------------------------------------------------------------------------, 
I Parameters of DD Staterr.ent 
1---------------------------------------------------------------------------------------
I When required I What you must state I Paraueters 
1---------------------------------------------------------------------------------------I Always I Name of data set I DSNAME= 
I 1---------------------------------------------------
I IDisposition of data set 1 DISP= 
I-------~-------------------------------------------------------------------------------IIf data set not cataloged I Input device I UNIT= or 
I I 1 VOLUME=REF= 
I 1---------------------------------------------------1 IVolume serial number 1 VOLUME=SER= L-----------------------------------------------------__________________________________ J 

Figure 8-22. Accessing a REGIONAL data set: essential parameters of DD stateRent 

Updating a REGIONAL(l) data set is 
illustrated in Figure 8-24. The data read 
by the program is identical with that used 
in Figure 8-19, and the codes are 
interpreted in the same way. Like the 
program in Figure 8-19, this program 
updates the data set and lists its 
contents. Before each new or updated 
record is written the existing record in 
the region is tested to ensure that it is a 
dummy; this is necessary because a WRITE 
statement can overwrite an existing record 
in a REGIONAL(l) data set even if it is not 
a dummy. similarly, during the sequential 
reading and printing of the contents of the 
data set, each record is tested and dummy 
records are not printed. 

REGIONAL(2) Data Sets 

The use of REGIONAL(2) data sets is 
illustrated in Figure 8-.25, Figure 8-26, 
and Figure 8-27. The programs in these 
figures perform the same functions as those 
given for REGIONAL(3), with which they can 
usefully be compared. 

The programs depict a library processing 
scheme, in which loans of books are 
recorded and reminders are issued for 
overdue books. TWO data sets, STOCK2 and 
LOANS2, are involved. STOCK2 contains 
descr iptions of the books in the library, 
and uses the 4-digit book reference numbers 
as recorded keys; a simple algorithm is 
used to derive the region numbers from the 
reference numbers. (It is assumed that 
there are about 1000 books, each with a 
number in the range 1000-9999.) LOANS 2 
contains records of books that are on loan; 
each record comprises two dates, the date 
of issue and the date of the last reminder. 
Each reader is identified by a 3-digit 
reference number, which is used as a region 
number in LOANS2; the reader and book 

numbers are concatenated to forR the 
recorded keys. 

In Figure 8-25, the data sets STOCK2 and 
LOANS2 are created. The file LOANS, which 
is used to create the data set LOANS2 is 
opened for direct output merely tc fermat 
the data set; the file is closed 
immediately without any recerds being 
written onto the data set. It is assumed 
that the number of books on loan will not 
exceed 100; therefore the SPACE paraReter 
in the DD statement that defines LOANS2 
requests 100 blocks of 19 bytes (12 bytes 
of data and a 7-byte key: see Figure 
8-26). Direct creation is alse used for 
the data set STOCK2 l::ecause, even if the 
input data is presented in ascending 
reference number order, identical region 
numbers might be derived from successive 
reference numbers. 

updating of the data set LOAN2 is 
illustrated in Figure 8-26. Each item of 
input data, read frorr. a punched card, 
comprises a book number, a reader number, 
and a code to indicate whether it refers to 
a new issue (I), a returned book (R), or a 
renewal (A). The position of the reader 
number on the card allows the 8-character 
region number to be derived directly by 
overlay defining. The DATE built-in 
function is used to obtain the current 
date. This date is written in both the 
issue date and reminder date portions of a 
new record or an updated record. 

The program in Figure 8-27 uses a 
sequential update file (LOANS) to precess 
the records in the data set LOANS2, and a 
direct input file (S~CK) to obtain the 
book description from the data set STOCK2 
for use in a re~nder note. Each record 
from LOAN2 is tested to see whether the 
last reminder was issued more than a month 
ago; if necessary, a rerr.inder note is 
issued and the current date is written in 
the reminder date field of the record. 

Chapter 8: Defining Data sets for Record Files 121 



//OPT8#23 JOB 
//STEP1 EXEC PLIXCLG 
//PLI.SYSIN DO * 

CRR1: PROC OPTIONSCMAIN); 

DCL NOS FILE RECORD OUTPUT DIRECT KEYED ENVCREGICNAL(1», 
CARD CHAR ( 80), 

NEXT: 

NAME CHAR(20) DEF CARD POS(1), 
NUMBER CHAR(3) DEF CARD POS(21), 
IOFIELD CHAR(20); 

ON ENDFILE (SYSIN) GO TO FINISH; 

OPEN FILE(NOS); 
GET FILE CSYSIN) EDIT (CARD) CA (80) ) ; 
IOFIELD=NAME; 
WRITE FILE (NOS) FROMCIOFIELD) KEYFROMCNUMBER); 
GO TO NEXT; 

FINISH: CLOSE FILE(NOS); 
END CRR1; 

/* 
///GO.NOS 
// 

DD DSN=NOSA,UNIT=2311,SPACE=(TRK,C23,3»,DCB=(RECFM=F, 
BLKSIZE=20,DSORG=DA) ,DISP=(NEW,KEEP),VOL=SER=D186 

DO * //GO. SYSIN 
ACTION,G. 
BAKER,R. 
BRAMLEY,O.H. 
CHEESEMAN ,L. 
CORY,G. 
ELLIOTT,D. 
FIGGINS,E.S. 
HARVEY,C.D.W. 
HASTINGS,G.M. 
KENDALL,J.G. 
LANCASTER, W. R • 
MILES,R. 
NEWMAN,M.W. 
PITT ,W. H. 
ROLF.D.!!:. 
SHEERS, C. D. 
SU'I'CLIFFE ,M. 
TAYLOR, G. C. 
WILTON,L.W. 
WINSTONE,E.M. 
/* 

162 
152 
248 
141 
336 
875 
413 
205 
391 
294 
624 
233 
450 
515 
114 
241 
472 
407 
404 
307 

Figure 8-23. Creating a REGIONAL(1) data set 

REGIONAL (3) Data Sets 

The use of REGIONAL(3) data sets, 
illustrated in Figure 8-28, Figure 8-29, 
and Figure 8-30, is similar to the 
REGIONAL(2) figures, above; only the 
important differences are discussed here. 

To conserve space in the data set 
STOCK3, U-format records are used. In each 
record, the author's name and the title of 
the book are concatenated in a single 
character string, and the lengths of the 
two parts of the string are written as part 
of the record. The average record 
(including the recorded key) is assumed to 

be 60 bytes; therefore the average number 
of records per track (that is, per region) 
is 25, and there will be 40 regions. 

In Figure 8-28, the data set STOCK3 is 
created sequentially; duplicate region 
numbers are acceptatle, tecause each region 
can contain more than one record. 

In Figure 8-29, the regio~ nurrber for 
the data set LOANS3 is ottained simply by 
testing the reader number; there are only 
three regions, tecause a 2311'track can 
hold 36 nineteen-byte records. 

The only notable difference between 
Figure 8-30 and the corresponding 

122 OS PLiI Optimizing Compiler: programmer's Guide 



//OPT8#24 JOB 
//STEPl EXEC PLIXCLG 
//PLI.SYSIN DO * 

ACR1: PROC OPTIONS(MAIN); 

DCL NOS FILE RECORD KEYED ENV (REGIONAL (1» , 
NAME CHAR ( 20), 
CNEWNO,OLDNO) CHAR(3), 
CODE CHAR(l), 
IOFIELD CHAR(20) , 
SYTEl CHAR(l) DEF IOFIELD POS(1); 

ON ENDFILE(SYSIN) GO TO PRINT; 

OPEN FILECNOS) DIRECT UPDATE; 
NEXT: GET FILE(SYSIN) EDIT (NAME, NEWNO,OLDNO,CODE) 

(A(20),2 A(3) ,X(53) ,A(l»; 
IF CODE=' A' THEN GO TO RITE; 

ELSE IF CODE='C' THEN DO; 
DELETE FI LE ( NOS) KEY C OLDNO) ; 
GO TO RITE; 
END; 

ELSE IF CODE=' D' THEN DELETE FILE (NOS) KEY COIDNO) ; 
ELSE PUT FILE(SYSPRINT) SKIP 

EDITC'INVALID CODE: ',NAME) (A(15),A); 
GO TO NEXT; 

RITE: READ FILE(NOS) KEY (NEWNO) INTO(IOFIELD); 
IF UNSPEC(BYTE1)=(8)'1'S THEN WRITE FILE(NOS) KEYFROMCNEWNO) 

FROM C NAME) ; 
ELSE PUT FILECSYSPRINr) SKIP EDITC'DUPLICATE:',NAME) (A(15),A); 
GO TO NEXT; 

PRINT: CLOSE FILE(NOS); 
PUT FILECSYSPRINT) PAGE; 
OPEN FILECNOS) SEQUENrIAL INPUT; 

ON ENDFILECNOS) GO TO FINISH; 

NEXTIN: READ FILECNOS) INTOCIOFIELD) KEYTOCNEWNO); 
IF UNSPECCBYTE1)=C8)'1'S THEN GO TO NEXTIN: 
ELSE PUT FILECSYSPRINT) SKIP EDIT(NEWNO,IOFIELD) (AC5),A): 
GO TO NEXTIN; 

FINISH: CLOSE FILE(NOS): 
END ACR1; 

/* 
//GO. NOS DD DSN=NOSA, UNIT=2311, VOL=SER=D186,DISP= COLD ,KEEP)i 
//GO.SYSIN DO * 
NEWMAN,M.W 
GOODFELLOW,D.T. 
MILES,R. 
HARVEY,C.D.W. 
SARTLETT,S.G. 
CORY, G. 
READ,K. M. 
PITT,W.H. 
ROLF,D.F. 
ELLIOTT,D. 
HASTINGS,G. M. 
BRAMLEY,O.H. 
/* 

516450 
889 

233 
209 
183 

336 
001 

515 
114 

472875 
391 

439248 

Figure 8-24. Updating a REGIONAL(l) data set 

C 
A 
D 
A 
A 
D 
A 

o 
C 
o 
C 

Chapter 8: Defining Data Sets for Record Files 123 



//OPT8#2S JOB 
//STEP1 EXEC PLIXCLG 
//PLI.SYSIN DD * 

CRR2: PROC OP'I' IONS (MAIN) ; 

DCL STOCK FILE RECORD KEYED ENVCREGIONAL(2», 
LOANS FILE RECORD KEYED ENVCREGIONAL(2», 
NUMBER. CHAR (4) , 
1 BOOK, 

2 AUTHOR CHARC2S), 
2 TITLE CHAR(SO), 
2 QTY FIXED DEC(3), 

INTER FIXED DECCS), 
REGION CHAR C 8) ; 

OPEN FILECLOANS) DIRECT OUTPUT; 
CLOSE FILECLOANS); 

ON ENDFILE(SYSIN) GO TO FINISH; 

OPEN FILE (STOCK) DIRECT OUTPUT; 
NEXT: GET FILECSYSIN) LIST (NUMBER, BOOK); 

INTER=(NUMBER-1000)/9; /* INTERMEDIATE FIXED DECIMAL ITEM */ 
REGI ON=I Nl'ER; /* USED TO ENSURE CORRECT PRECISION */ 
WRITE FILE(STOCK) FROMCBOOK) KEYFROM(NUMBERIIREGION); 
GO TO NEXT; 

FINISH: CLOSE FILE(STOCK)i 
END CRR2; 

/* 
I//GO.LOANS DD DSN=LOANS2,UNIT=2311,SPACE=(19,100),DCB=(RECFM=F, 
1// BLKSIZE=19,DSORG=DA,KEYLEN=7) ,DISP=CNEW,CATLG) , 
// VOLUME=SER=D186 
//GO.STOCK DD DSN=STOCK2,UNIT=2311,SPACE=C19,100),DCB=CRECFM=F, 
// BLKSIZE=19,DSORG=DA,KEYLEN=7),DISP=(NEW,CATLG), 
// VOLUME=SER=D186 
//GO. SYSIN DO * 
'101S' 'W.SHAKESPEARE' 'MUCH ADO ABOUT NOTHING' 1 
'1214' 'L.CARROLL' 'THE HUNTING OF THE SNARK' 1 
'3079' 'G.FLAUBERT' 'MADAME BOVARY' 1 
'3083' 'V.M.HUGO' 'LES MISERABLES' 2 
'308S' 'J.K.JEROME' 'THREE MEN IN A BOAT' 2 
'429S' 'W. LANGLAND , 'THE BOOK CONCERNING PIERS THE PLOWMAN' 1 
'S999' 'O.KHAYYAM' 'THE RUBAIYAT OF OMAR KHAYYAM' 3 
'6591' 'F.RABELAIS' 'THE HEROIC DEEDS OF GARGANTUA AND PANTAGRUEL' 1 
'8362' 'H.D.THOREAU' 'WALDEN, OR LIFE IN THE W00DS' 1 
'976S' 'H.G.WELLS' 'THE TIME MACHINE' 3 
/* 

Figure 8-2S. Creating a REGIONAL(2) data set 

REGIONAL(2) figure is in the additional 
processing required for the anlysis of the 
records read from the da ta set STOCK3. The 
records are read into a varying-length 
character string and a based structure is 
overlaid o~ the string so that the data in 
the record can be extracted. 

TELEPROCESS ING 

Teleprocessing in PL/I is prOVided by an 
extension of record-oriented transmission 

with the addition of the TRANSIENT file 
attribute and of the PENDING ccnditicn. 
The compiler provides a link between PL/I 
message processing programs (MPPs) and the 
Telecommunications Access Method (TeAM) of 
the operating system. 

A TCAM message control program (MCP) 
hand1es messages originating from and 
destined for a number of remote terminals, 
each of which is identified by a terll'inal 
name carried with the message. These 
messages are transmitted to and from your 
PL/I message processing program by means of 
queues in main storage. (These queues are 

124 OS PL/I Optimizing Compiler: programmer's Guide 



//OPT8#26 JOB 
//STEPl EXEC PLIXCLG 
//PLI.SYSIN DD * 

DUR2: PROC OPTIONSCMAIN)~ 
DCL 1 RECORD, 

2 CISSUE,REMINDER) CHAR(6), 
SYSIN FILE RECORD INPUT SEQUENTIAL, 
LOANS FILE RECORD UPDATE DIRECT KEYED ENVCREGIONAL(2», 
CARD CHAR(SO), 

NEXT: 

DATE BUILTIN, 
BOOK CHAR(4) DEF CARD POS(1), 
READER CHAR(3) DEF CARD POS(10), 
CODE CHAR(l) DEF CARD POS(20), 
REGION CHAR(8) DEF CARD POS(5); 

ON ENDFILE(SYSIN) GO TO FINISH; 

OPEN FILECSYSIN),FILECLOANS); 
ISSUE,REMINDER=DATE; 
READ FILECSYSIN) INl'OCCARD); 
IF CODE='I' THEN WRITE FILECLOANS) FROMCRECORD) 

KEYFROMCREADERIIBOOKIIREGION); 
ELSE IF CODE='R' THEN DELETE FILECLOANS) 

KEYCREADERI I BOOK I IREGION); 
ELSE IF CODE='A' THEN REWRITE FILE(LOANS) FROMCRECORD) 

KEYCREADERIIBOOKIIREGION); 
ELSE PUT FILECSYSPRINT) SKIP LIST 

C'INVALID CODE:',BOOK,READER); 
GO TO NEXT; 

FINISH: CLOSE FILECSYSIN),FILECLOANS); 
END DUR2; 

/* 
//GO.LOANS DD DSN=LOANS2,DISP=QLD 
//GO.SYSIN DD * 
3085 095 X 
5999 003 A 
3083 091 R 
3083 049 I 
/* 

Figure 8-26. Updating a REGIONAL(2) data set directly 

supported by corresponding queues on a 
direct-access device in auxiliary storage. 
Your PL/I program has access only to the 
main storage queues by means of a single 
buffer for each file.) 

The exact message format (specified to 
the compiler by means of the ENVIRONMENT 
attribute) depends on the MPP. A message 
may be a complete unit, or may consi.st of a 
number of records so that it can be split 
up for processing. yOU must have this 
message format information to enable you to 
write the message processing program. Full 
information on how to write an MPP is given 
in the language reference manual for this 
compiler. A full account of TCAM procedure 
is given in the OS: TCAM Message processing 
Program Services and os: TCAM Message 
Control Program publications. 

MESSAGE PROCESSING PROGRAM CMPP) 

This program receives the terrrinal rressage 
as input and produces output according to 
the data in the message. Yeu can cede this 
program in PL/I. 

An MPP is not mandatory at 
teleprocessing installations, as for 
example, an MCP is. If the messages you 
transmit do not require processing, because 
they are only switched between terminals, 
an MPP is not required. However, yeu can 
pass data to a problem program and you can 
receive the output with a mininum of delay, 
and most installations are likely to have a 
set of processing prograrrs available for 
these purposes. These programs are stored 
as load modules, either in main storage or 
in a library in auxiliary storage. 

Chapter 8: Defining Data Sets for Record Files 125 



//0Pl' 8 #27 JOB 
//STEPl EXEC PLIXCLG 
//PLI.SYSIN DD * 

5UR2: PROC OPl'IONS CMAIN) ; 

DCL LOANS FILE RECORD SEQUENTIAL UPDATE KEYED ENVCREGIONAL(2», 
STOCK FILE RECORD DIRECT INPUT KEYED ENVCREGIONAl·(2», 
CTODAY, LASMl'H) CHARC 6), 
YEAR PIC '99' DEF LASMTH, 
MONTH PIC '99' DEF LASMTH POS(3), 
1 RECORD, 

2 CISSUE,REMINDER) CHAR(6), 
DATE BUILTIN, 
LOANKEY CHAR(7), 
READER CHAR(3) DEF LOANKEY POS(1), 
BKNO CHAR(4) DEF LOANKEY Pos(4) , 
INTER FIXED DECCS), 
REGION CHAR(8) , 
1 BOOK, 

2 AUTHOR CHARC2S), 
2 TITLE CHARCSO), 
2 QTY FIXED DEC(3); 

TODAY,LASMTH=DATE; 
IF MONTH='Ol' THEN DO; 

MONTH='12' ; 
YEAR=YEAR-l; 
END; 

ELSE MONTH=MONTH-l; 
OPEN FILECLOANS),FILECSTOCK); 

ON ENDFILECLOANS) GO TO FINISH; 

NEXT: READ FILECLOANS) INTOCRECORD) KEYTOCLOANKEY); 
IF REM! NDER<LASMTH THEN DO; 

REMINDER=TODAY; 
REWRITE FILE (LOANS) FROM (RECORD); 
INTER=CBKNO-l000)/9; /* INTERMEDIATE FIXED DECIMAL ITEM */ 
REGION=INTER; /* USED TO ENSURE CORRECT PRECISION */ 
READ FILE(STOCK) INTO (BOOK) KEYCBKNOIIREGION); 
PUT FILE (SYSPRINT) SKIP(4) EDITCREADER,AUTHOR,TITLE) 
C A, SK IP C 2) ) ; 
END; 

GO TO NEXT; 
FINISH: CLOSE FILE (LOANS) ,FILE (STOCK); 

END SUR2; 
/* 
//GO.LOANS DD DSN=LOADS2,DISP=OLD 
//GO.STOCK DD DSN=STOCK2,DISP=OLD 

Figure 8-27. Updating a REGIONAL(2) data set sequentially 

HOW TO RUN AN MPP 

An example of an MPP and the job control 
language required to create it is shown in 
Figure 8- 31 • The EXEC sta tement invokes 
the cataloged procedure PLIXCL to compile 
and link edit the PL/I message process~ng 
program. The appropriate TCAM modules are 
included in the program by the linkage 
editor. The load module produced is stored 
in the partitioned data set SYS1.MSGLIB 
under the member name MPPROC. 

MPP is declared as a tele~rocessing file 
that can process messages up to 100 bytes 
long. Similarly OUTMSG is declared as a 
teleprocessing file that can receive 
messages up to 500 bytes long. 

The READ statement gets a record (that 
is, a message) from the queue. The 
terminal identifier is inserted into the 
KEYTO character string. The record is 
placed in the INDATA variable for 
processing. The appropriate READ SET 
statement could also have been used here. 

126 OS PL/I Optimizing Compiler: programmer's Guide 



//OPT8#28 JOB 
//STEPl EXEC PLIXCLG 
//PLI.SYSIN DD * 

CRR3: PROC OPTIONS(MAIN): 

DCL STOCK FILE RECORD KEYED ENV(REGIONAL(3», 

NEXT: 

FINISH: 

/* 

1 CARD, 
2 NUMBER CHAR(4), 
2 AUTHOR CHAR(25) VAR, 
2 TITLE CHAR(50) VAR, 
2 QTYl FIXED DEC(3), 

(Ll,L2,X) FIXED DEC(3), 
1 BOOK CTL, 

2 (L3,L4) FIXED DEC(3), 
2 QTY2 FIXED DEC(3), 
2 DESCN CHARCX) VAR, 

INTER FIXED DEC(5), 
REGION CHAR (8) ; 

ON ENDFILE(SYSIN) GO TO FINISH; 

OPEN FILE(STOCK) SEQUENTIAL 
GET FILE(SYSIN) LIST(CARD); 
Ll=LENGTHCAUTHOR); 
L2=LENGTH(TITLE); 
X=Ll+L2; 
ALLOCATE BOOK; 
L3=Ll: 
L4=L2; 
QTY2=QTY1; 
DESCN=AUTHORIITITLE; 
INTER='<NUMBER-l000)/225; 
REGION=INTER: 
WRITE 'FI LE'(STOCK) FROM (BOOK) 
FREE BOOK: 
Go TO NEXT: 
CLOSE FILE(STOCK): 
END CRR3: ' 

OUTPUT: 

/* INTERMEDIATE FIXED DECIMAL */ 
/* ITEM USED TO ENSURE CORRECT PRECISION 
KEYFROM (NUMBER IIREGION); 

I//GO.STOCK DD DSN=STOCK3,UNIT=2311,SPACE=(TRK,(40,5»,DCB=(RECFM=U, 
// BLKSIZE=110,DSORG=DA,KEYLEN=4) ,DISP=(,CATLG),VOL=SER=D186 
//GO.SYSIN DD * 
'1015' 'W.SHAKESPEARE' 'MUCH ADO ABOUT NOTHING' 1 
'1214' 'L.CARROLL' 'THE HUNTING OF THE SNARK' 1 
'3079' 'G.FLAUBERT' 'MADAME BOVARY' 1 
'3083' 'V.M.HUGO' 'LES MISERABLES' 2 
'3085' 'J.K.JEROME' 'THREE MEN IN A BOAT' 2 
'4295' 'W.LANGLAND' 'THE BOOK CONCERNING PIERS THE PLOWMAN' 1 
'5999' 'O.KHAYYAM' 'THE RUBAIYAT OF OMAR KHAYYAM' 3 
'6591' 'F.RABELAIS' 'THE HEROIC DEEDS OF GARGANTUA AND PANTAGRUEL' 1 
'8362' 'H.D.THOREAU" 'WALDEN, OR LIFE IN THE WOODS' 1 
'9765' 'H.G.WE'LLS' 'THE TIME MACHINE' 3 
/* 

Figure 8-28. Creating a REGIONAL(3) data set 

Chapter 8: Defining Data sets for Record Files 127 



//OPl'8#29 JOB 
/ /STEPl EXEC PLIXCIG 
//PLI.SYSIN DD * 

OUR3: PROC OnIONS CMAIN) ; 

NEXT: 

DCL 1 RECORD, 
2 CISSUE,REMINDER) CHAR(6), 

SYSIN FILE RECORD INPUT SEQUENTIAL, 
LOANS FILE RECORD UPDATE DIRECT KEYED ENVCREGIONAL(3», 
CARD CHAR(80), 
BOOK CHAR(4) DEF CARD POS(1) , 
READER CHAR(3) DEF CARD POS(10), 
CODE CHAR(1) DEF CARD POS(20), 
DATE BUILTIN, 
REGION CHAR(8); 

ON ENDFILECSYSIN) GO TO FINISH; 

OPEN FILECSYSIN) ,FILE C LOANS); 
ISSUE,REMINDER=DATE; 
READ FILECSYSIN) INl'OCCARD); 
IF READER<'034' THEN REGION='OOOOOOOO'; 
ELSE IF READER<'067' THEN REGION='OOOOOOOl'; 

ELSE REGION=' 00000002' ; 
IF CODE='I' THEN WRITE FILE(LOANS) FROM (RECORD) 

KEYFROM(READERI IBOORI IREGION); 
ELSE IF CODE='R' THEN DELETE FILECLOANS) 

KEY (READER I I BOOK I IREGION); 
ELSE IF CODE='A' ~HEN REWRITE FILE(LOANS) FROMCRECORD) 

KEY (READER I IBOOKI IREGION); 
ELSE PUT FILE(SYSPRINT) SKIP LIST 

('INVALID CODE',BOOR,READER); 
GO TO NEXT; 

FINISH: CLOSE FILECSYSIN),FILECLOANS); 
END DUR3; 

/* 
//GO.LOANS DO DSN=LOANS3,DISP=OLD 
//GO.SYSIN DO * 
3085 095 X 
5999 003 A 
3083 091 R 
3083 049 I 
/* 

Figure 8-29. Updating a REGIONAL(3) data set directly 

128 OS PL/I Optimizing Compiler: Programmer's Guide 



//OPl'8#30 JOB 
//STEPl EXEC PLIXCLG 
//PLI.SYSIN DD * 

SUR3: PROC OPl'IONS CMAIN) ; 

NEXT: 

DCL LOANS FILE RECORD SEQUENTIAL UPDA~E KEYED ENVCREGIONAL(3», 
STOCK FILE RECORD DIRECT INPUT KEYED ENV(REGIONALC3», 
CTODAY,LASMTH) CHAR(6), 
YEAR PIC '99' DEF LASMTH, 
MONTH PIC '99' DEF LASMTH POS(3), 
1 RECORD, 

2(ISSUE,REMINDER) CHAR(6), 
LOANKEY CHAR ( 7) , 
READER CHAR (3) DEF LOANKEY POS (1) , 
BKNO CHAR(4) DEF LOANKEY POS(4), 
INTER FIXED DEC(S), 
DATE BUILTIN, 
REGION CHAR (8) , 
1 BOOK, 

2 (L1,L2) FIXED DEC(3), 
2 QTY FIXED DEC(3), 
2 DESCN CHAR(7S)VAR, 

AUTHOR CHAR(2S) VAR, 
TITLE CHAR(SO) VAR; 

TODAY,LASMTH=DATE; 
IF MONTH='01' THEN DO; 

MONTH= '12' ; 
YEAR=YEAR-l; 
END; 

ELSE MONTH=MONTH-l; 
OPEN FILE (LOANS) , FILECSTOCK); 

ON ENDFILE(LOANS) GO TO FINISH; 

READ FILE(LOANS) INTOCRECORO) KEYTO(LOANKEY): 
IF REM! NDER<LASMTH THEN DO; 

REMINDER=TODAY; 
REWRITE FILE(LOANS) FROM (RECORD); 
INTER=(BKNO-IOOO)/22S; /* INTERMEDIATE FIXED DECIMAL */ 

REGION=INTER; /*ITEM USED TO ENSURE CORRECT PRECISION */ 
READ FILE(STOCK) INTO(BOOK) KEY CBKNO I I REGION); 
AUTHOR=SUBSTRCDESCN,l,Ll); 
TITLE=SUBSTRCDESCN,L1+1,L2); 
PUT FILE(SYSPRINT) SKIP(4) EDIT (READER,AUTHOR,TITLE) 

(A, SKI P ( 2 ) ) ; 
END: 

GO TO NEXT; 
FINISH: CLOSE FILE(LOANS),FILE(S~OCK); 

END SUR3; 
/* 
//GO.LOANS DO DSN=LOANS3,DISP=OLD 
//GO.STOCK DO OSN=STOCK3,DISP=OLD 

Figure 8-30. Updating a REGIONAL(3) data set sequentially 

Chapter 8: Defining Data Sets fer Record Files 129 



// JOB 
// EXEC PLIXCL 
//PLI.SYSIN DD * 

1 MPPROC: PROC OPrIONS C MAl N) ; 
DCL MPP FILE RECORD KEYED TRANSIENT ENV(TPCM)RECSIZEC100», 
OUTMSG FILE RECORD KEYED TRANSIENT ENVCTPCM)RECSIZECSOO», 
INDATA CHAR(100), 
OUTDATA CHARCSOO), 
TKEY CHAR C 6) ; 

OPEN FILE (MPP) INPUT,FILECOUTMSG) OUTPUT; 

READ FILE (MPP) KEYTOCTKEY) INTOCINDATA) i 

WRITE FlLECOUTMSG) KEYFROMCTKEY) FROMCOUTDATA)i 

ENDTP: CLOSE FlLECMPP),FILECOUTMSG) i 
END MPPROC; 

1/* 
I//LKED.SYSLMOD DO OSNAME=SYS1.MSGLIBCMPPROC), ••• 

F'igure 8-31. PL/I message processing program 

The WRITE sta tement puts the data in 
OUTDATA into the destination queue; the 
terminal identifier is taken from the 
character string in TKEY. An appropriate 
]~OCATE statement could also have been used. 

Once the load module has been stored on 
a. direct-access device it can be restored 
for execution at any time. The job control 
statements to perform this migh<t be: 

// JOB 
//JOBLIB DD DSNAME=SYS1.MSGLIB,DISP=SHR 
// EXEC PGM=MPPROC 

I//MPP DD QNAME= ••• 
I//OUTMSG DO QNAME= ••• 
//SYSPRINT DD SYSOUT=A 

The JOBLIB DD statement is required to 
make SYS1.MSGLIB available sc that the 
operating system can find the progran 
MPPROC. The DD statement with the name DDl 
associates the FL/I file with the nain 
storage queue name (MPP). 

130 OS PL/I Optimizing Compiler: Programmer's Guide 



Chapter 9: Virtual Storage Access Method(VSAM) 

The virtual Storage Access Method (VSAM) is 
both an access method and a form of data 
set organization. VSAM is available only 
to System/370 users. A virtual storage (or 
relocate) version of the operating system 
is required. 

VSAM data sets can reside only on the 
following direct access storage devices: 

IBM 2305 
IBM 2314 
IBM 2319 
IBM 3330 
IBM 3340 

VSAM Data Sets 

There are two types of VSAM data sets: 
entry sequenced data sets (ESOS) and key 
sequenced data sets (KSOS). Key sequenced 
data sets have an associated index; a KSOS 
together with its index is referred to as 
an indexed VSAM data set. An entry 
sequenced data set has no associated index. 

All VSAM data sets are cataloged, either 
in a master catalog or in a user catalog. 
The catalog entry is made when the data set 
is "defined", and remains until the data 
set is "deleted". 

DATA FORMAT 

The unit of data that is transmitted 
between a PL/I program and a VSAM data set 
is called a logical record. Logical 
records have no defined record format; VSAM 
will accept records of any length up to a 
maximum value that is specified when the 
data set is defined. 

Logical records are grouped together in 
control intervals, and control intervals in 
turn are grouped iri control~. The 
sizes of control intervals and control 
areas are selected by the system to make 
optimum use of the particular storage 
device that is being used. 

KEY SEQUENCED DATA SETS 

Figure 9-1 illustrates the structure of a 

key ~~yu~nced data set. Each control 
interval contains system control 
information, one or more logical records, 
and some free space to allow for the later 
addition of records. The amount of free 
space in a control interval can be 
specified as a percentage of the total 
space when the data set is defined (see 
"Creating VSAM Data sets" later in this 
chapter). Similarly, the user can specify 
how many empty control intervals are to be 
left in each control area to allow for 
future additions. 

Logical records in a KSDS are ordered in 
the collating sequence of an embedded key. 
The order is maintained when records are 
inserted into an existing data set, and 
when existing records are increased or 
decreased in length. Deleted reccrds are 
physically deleted from the data set. The 
free space specification facility inproves 
the performance of update operations by 
minimizing the moving of reccrds and the 
splitting of control intervals and areas 
when records are added or increased in 
length. 

Associated with each KSDS is an index 
data set. The index is in the form cf a 
tree structure that gives rapid access to a 
specified key value. The lowest level of 
the index data set is known as the 
"sequence set", and the remaining levels 
are known as the "index set". For direct 
access, a logical record with a particular 
key is located by means of a search through 
successive levels of the index data set. 
This process is illustrated in Figure 9-2. 
For sequential access" only the sequence 
set is used. 

ENTRY SEQUENCED DATA SETS 

The structure of an entry sequenced data 
set is similar to that of a key sequenced 
data set in that it contains logical 
records within control intervals within 
control areas. However, the logical 
~ecords are stored in the order in which 
they are submitted when the data set is 
created, and records cannot be subsequently 
added (except at the end of the data set), 
deleted, or changed in length. Any unused 
space which exists in a control interval is 
thus wasted space. 

Chapter 9: Virtual Storage Access Method (VSAN) 131 



CONTROL AREA 

r-------------------------------------------------A~--------------------------------------------~, 
CONTROL INTERVAL CONTROL INTERVAL CONTROL INTERVAL 

r---------------------------, r---------------------------, r---------------------------, 
I I " I I I I I I I I I I 
I LR I LR I FS Isci 1 LR ILRI LR I FS Isci I FS 'SCI 
" I' 'I I I , I I I , I L---------------------------J L---------------------------J L------_____________________ J 

LR = logical record 
FS = free space 
SC = system control information 

Figure g~~. Structure of Key sequenced Data Set 

r-----------------------------------------------------------------------------~-.--, INDEX SET 

----.. r-----' 
I, I I I highest-level index 

:~~~\~, r-----, r-----' 
I I I , I I II I I I I t I I I intermediate level index L----- J L----- L-----J L-----J 

r-------------------------------- ~-~------------------------------~~~--~---------, I SEQUENCE SET 
I 
I 
I 
I 
I 
I 

--... r-----' r-----' r-----, r-----' r-----' r-----' 
I 1 I I I I I I I· I I I I I I , I I I I I I I I 
L-----J L-----J L-----J L-- --J L-----J L-----J 

lowest-level index 

I 
I 
I 
I 
I 
I 
I 

L---~~------~~~----~---_______ ~~~ _____ _ ~ ___ ~ _____________________________________ J 

r----~------~-------~------------------ ------------------------------------------, I DATA SET 
I 
l 
I 
I 
I 
I 

r----------------------------- -----------------, I CI , CI ,CI ,CI ,CI I CI , 
,-------I--~----,-------I-------I-------,-------I 
I I I " I I I " " I I " L--------------------~------~.--~---------------J 

I 
I , 
I 
I 
I 
I 

I I L------------.. -----------------------~------ ... --... --~ ... ----~ .. _. ___ ... --___ -. __ .... ,. .. _ .. _ .. ~ ... --..;.--J 

Figure 9-2. Indexed VSAM Data Set 

132 OS PL/I Optimizing Compiler: programmer's Guide 



Operations on VSAM Data Sets 

ACCESS METHOD SERVICES 

Access Method services is a utility program 
that enables various operations to be 
performed on VSAM data sets. It is used to 
define VSAM data sees, to delete them, to 
print out their contents, and so on. A 
full description of the use and syntax of 
access method services is given in ~ 
Access Method Services, Order No. GC35-
0009. The princip?l functions are listed 
in Figure 9-3. 

DEFINE 

ALTER 

DELETE 

To create VSAM catalogs and data 
set entries within the VSAM 
catalogs. 

To change VSAM catalog entries. 

To remove entries from the VSAM 
catalog. 

LISTCAT To list entries within VSAM 
catalogs. 

REPRO To copy the contents of data sets 
into other data sets. 

PRINT TO print the contents of data 
sets. 

EXPORT TO produce backup or portable 
copies of VSAM data sets. 

IMPORT To accept backup or portable 
copies of VSAM data sets. 

VERIFY TO check the end-of- file 
information in a catalog for 
correspondence to the physical end 
of the data set. 

Figure 9-3. The principal Access 
Method Services functions 

CREATING VSAM DATA SETS 

Before a VSAM data set can be created, VSAM 
data space must be available on a suitable 
direct access storage device. Space can be 
obtained by using the DEFINE command of 
Access Method services: this space is then 
owned by VSAM and is used as a space pool 
for the creation of VSAM data sets. 

When VSAM data space is available, the 
characteristics of the VSAM data set that 
is to be created are defined by means of a 

further DEFINE command. This causes an 
entry for the VSAM data set to be made in 
the VSAM master catalog, and the space 
requested for the data set to be obtained 
from the available VSAM space and 
formatted. The data set can then be 
"loaded" with data by the a~~licaticn 
program. 

The use of the DEFINE command for these 
purposes is illustrated in the exam~les 
later in this chapter. 

Note: The DEFINE command for the data 
set may specify either SUBALLOCATION or 
UNIQUE. SUBALLOCATION, which is the 
standard default, specifies that the space 
for the data set is to be a suballocation 
of VSAM space on a specified volURe. If 
UNIQUE is specified, the allocation is made 
directly on a specified voluRe, and it is 
not necessary to obtain VSAM space as 
described in the preceeding ~aragra~hs. In 
the rest of this chapter it is assumed that 
SUBALLOCATION is in effect. 

Creating a Rey Sequenced Data Set 

The example in Figure 9-4 illustrates the 
creation of a key sequenced data set. This 
example is similar to that shown in Chapter 
8 for the creation of an INDEXED data set; 
the only changes in the PL/I program are 
the replacement of INDEXED by VSAM in the 
ENVIRON~.ENT option of the output file 
declaration, and a modification to the 
output record structure so that the records 
contain embedded keys. 

The first job step invokes Access Method 
Services (PGM=IDCAMS) to obtain space for 
the data set and to enter its 
characteristics in the VSAM catalog. The 
first DEFINE command obtains VSAM data 
space on volume HUR137. Note that the FILE 
parameter in this DEFINE statement refers 
to the DO statement with the ddname DOl. 
This DEFINE command and the corresponding 
DD statement may be omitted if sufficient 
VSAM space is already availakle on the 
required volume. 

The second DEFINE statement defines the 
VSAM "cluster" that contains the data set 
and its associated index data set. It 
specifies that the data set and its index 
are to be placed on volume BUR137 and that 
the name of the data set (the dsname) is 
TELNO. The definition of the data set 
includes the information that the embedded 
key is 20 characters long and is at the 
front of the logical records, that both the 
average and the maximUm lengths of logical 
records are 23 bytes, that 20~ of the space 
in each "control interval is to be left 

Chapter 9: Virtual Storage Access Method (VSAM) 133 



JOB //OPT9#4 
// EXEC 
//SYSPRINT 
//001 
//SYSIN 

PGM=IDCAMS 
DD SYSOUT=A 
00 UNIT=2314,VOL=SER=HUR137,DISP=OLD 
DD * 

DEFINE 
DEFINE 

SPACE (VOL(HUR137) FILE(DD1) CYLC10,10» 
CLUSTER (NAME (TELNO) VOLCHUR137» 
OATACCYLC4,1) KEYS(20,0) RECSZ(23,23) 

FREESPACE(20,30» , 
INDEX (CYL (1,1» 

/* 
/ / EXEC TL1LOC LG 
//PLI.SYSIN DO * 

TELNOS: PROC OPTIONS CMAIN) ; 

DCL DIREC FILE RECORD SEQUENTIAL KEYED ENV(VSAM), 
CARD CHAR(80), 
NAME CHAR(20) DEF CARD POS(l), 
NUMBER CHAR(3) DEF CARD POS(21), 
OUTREC CHAR(23) DEF CARD POS(1); 

ON ENDFILECSYSIN) GOTO FINISH; 

OPEN FILECDIREC) OUTPUT; 

NEXTIN:GET FILECSYSIN) EDIT (CARD) CA(80»; 
WRITE FILE(DIREC) FROM(OUTREC) KEYFROM(NAME); 
GOTO NEXTINi 

FINISH:CLOSE FILE(DlREC); 

END TELNOS; 
//GO.DIREC DD 
//GO.SYSIN DD 
ACTION,G. 
BAKER,R. 
BRAMLEY,O.H. 
CHEES EMAN , D. 
CORY,G. 
ELLIOTT,D. 
FIGGINS,S. 
HARVEY, C. D.W. 
HASTINGS,G.M. 
KENDALL,J.G. 
LANCASTER,W.R. 
MILES,R. 
NEWMAN,M.W. 
PITT,W.H. 
ROLF,D.E. 
SHEERS, C. D. 
SUTCLIFFE, M. 
TAYLOR,G.C. 
WILTON,L.W. 
WINSTONE,E.M. 
/* 

DSNAME=TELNO,DISP=OLD 

* 162 
152 
248 
141 
336 
875 
413 
205 
391 
294 
624 
233 
450 
515 
114 
241 
472 
407 
404 
307 

Figure 9-4. Creating and Initializing a Key Sequenced Data Set 

134 OS PL/I Optimizing Compiler: programmer's Guide 



//OPT9#5 JOB 
//STEPl EXEC TL1LOCLG 
//PLI.SYSIN DD * 
OIRUPDT:PROC OPTIONSCMAIN); 

DCL DIREC FILE RECORD KEYED ENVCVSAM), 
ONCODE BUILTIN, 
OUTREC CHAR(23), 
NUMBER CHAR(3) DEF OUTREC POS(21), 
NAME CHAR(20) DEF OUTREC, 
CODE CHAR C 2) : 

ON ENDFlLE CSYSIN) GO TO PRINT; 

ON KEYCDlREC) BEGIN; 
IF ONCODE=51 THEN PUT FILECSYSPRINT) SKIP EDIT 

(' Nor FOUND:' ,NAME) CA (15) ,A); 
IF ONCODE=52 THEN PUT FILE(SYSPRINT) SKIP EDIT 

C'DUPLICATE:' ,NAME)CAC15),A); 
END; 

OPEN FILE CDlREC) DIRECT UPDATE; 

NEXT: GET FlLE(SYSIN) EDITCNAME,NUMBER,CODE)CAC20),AC3),X(56) ,A(1»; 
IF CODE='A' THEN WRITE FILECDIREC) FROM (OUTREC) KEYFROM(NAME); 
ELSE IF CODE='C' THEN REWRITE FILE(DIREC) FROM (OUTREC) 

:KEY (NAME) : 
ELSE IF CODE='D' THEN DELETE FILECDIREC) KEYCNAME); 
ELSE PUT FILE(SYSPRINT) SKIP EDITC'INVALID CODE: ',NAME) 

(AC15),A); 
GO TO NEXT; 

PRINT: CLOSE FlLECDIREC); 
PUTFILE(SYSPRINT) PAGE; 
OPEN FlLECDIREC) SEQUENTIAL INPUT; 

ON ENDFlLE(DlREC) GO TO FINISH: 

NEXT IN : READ FILE( DIREC) INTOCOU'IREC); 
PUT FILECSYSPRINT) SKIP EDITCOUTREC) CA); 
GO TO NEXT IN ; 

FINISH: CLOSE FlLECDIREC)i 
END DIRUPDT; 

/* 
//GO.DIREC DD DSNAME=TELNO,DISP=OLD 
//GO.SYSIN DO * 
NEWMAN,M.W. 516 
GOODFELLOW,D.T. 889 
MILES,R. 
HARVEY,C.D.W. 209 
BARTLETT,S.G. 183 
CORY,G. 
READ,K.M. 001 
PITT,W.H. 
ROLF,D.F. 
ELLIOTT,D. 291 
HASTINGS,G. M. 
BRAMLEY,O.H. 439 
/* 

Figure 9-5. Updating a Key sequenced Data Set 

C 
A 
D 
A 
A 
~ 

A 

D 
C 
D 
C 

Chapter 9: Virtual Storage Access Method (VSAM) 135 



/ /OPl'9#6 JOB 
// EXEC PGM=IDCAMS 
//SYSPRINT DD SYSOUT=A 
//SYSIN DO * 

DEFINE CLUSTER (NAME( DS3) VOL(HUR137) CYL(1,1) RECSZ (80,80) 
NONI NDEXED) 

/* 
//STEP1 EXEC 
//PLI.SYSIN 

MERGE: PROC 
DCL 

TLlLOCLG 
DD * 
OPrI ONS (MAl N) ; 
(IN1,IN2) FILE RECORD SEQUENTIAL, 
OUT FILE RECORD SEQUENTIAL ENV (VSAM), 

(ITEM1 BASED(A),ITEM2 BASED(B» CHAR(80); 
ON ENDFILE(IN1) BEGIN; 

NEXT2: 

NEXT1: 

NEXT: 

ON ENDFILE(IN2) GO TO FINISH: 
WRITE FILE(OUT) FROM (ITEM2) ; 
READ FILE( IN2) SET (8); 
GO TO NEXT2; 

END; 
ON ENDFILE(IN2) BEGIN; 

ON ENDFILE(l;N1) GO 'ro FINISH: 
WRITE FILE(OUT) FROM (ITEM1) ; 
READ FILE (IN1) SET CA); 
GO TO NEXT1; 

END; 
OPEN FILE(IN1) INPUT, 

FILE(IN2) INPUT, 
FILE (OUT) OUTPUT: 

READ FILE(IN1) SET (A); 
READ FILE(IN2) SET(B); 
IF ITEM1>ITEM2 THEN DO: 

WRITE FILE(OUT) FROM(ITEM2); 
READ FILE(IN2) SET(B); 
GO TO NEXT; 

END; 
ELSE DO; 

WRITE FILE(OUT) FROM(ITEM1); 
READ FILE(IN1) SET(A); 
GO TO NEXT; 

END; 
FINISH: CLOSE FI LE CI Nl) , FILE (IN2) , FILE (OUT): 

END MERGE; 
/* 
//GO.OUT DD DSNAME=DS3,DISP=OLD 
//GO. INl DO * 
(insert here data to be included in the input stream) 

//GO. IN2 DD * 
(insert here data to be included in the input stream) 

/* 

Figure 9-6. Creating an Entry Sequenced Data Set 

free, and that 301 of the control intervals 
in each control area are also to be left 
free. 

The following job steps compile, link-edit, 
and execute the PL/I program that loads the 
initial information into the data set. 
Note that the only information that need be 
supplied in the DD statement for 'the data 
set is the data set name that was defined 
in the DEFINE statement, together with the 
data set disposition (DISP=). 

Accessing a Key seguenced Data Set 

The program in Figure 9-5 updates the data 
set that was created in Figure 9-4 and 
prints out its new contents. This example 
is similar to that shown in Chapter 8 for 
updating an INDEXED data set. 

136 OS PL/I Optimizing Compiler: Programmer's Guide 



Creating and Accessing an Entry 
sequenced Data Set 

The example in Figure 9-6 illustrates the 

AMP=' subparameter, subparaIr.eter, ••• • 

The valid subparameters of the AMP 
parameter are: 

creation of an entry sequenced data set. BUFSP=number specifies the amount of 
storage to be set aside 
for VSAM buffers. 

The example is similar to that given in 
Chapter a for the creation of a CONSECUTIVE 
data set. 

The first job step in the example 
invokes Access Method services to define 

BUFND=number specifies the number of 
data buffers required. 

and catalog the data set. It is assumed in BUFNI=number 
this example that VSAM already "owns" data 

specifies the number of 
index buffers required. 

space on the specified volume. Note that 
the VSAM "clustern in this case contains RECFM=format specifies record fermat. 

The use of this 
subparaIreter is described 
under the heading "The 
Compatibility Interface" 
later in this chapter. 

only the ESDS. NONINDEXED must be 
specified in the DEFINE statement, to 
indicate that the records contain no keys 
and that an ESDS is required. 

The PL/I program in this example merges 
the contents of two existing data sets, DS1 STRNO=number 
and DS2, and writes them onto the VSAM data 

specifies how many 
concurrent data-set 
positioning requests VSAM 
must be pre~ared te 
handle. For convenience, 
the PL/I prcgraIrrrer can 
make STRNO equal to the 
number of PL/I files that 
will be open on the data 
set at the same tiIre. 

set defined in the previous job step. Each 
of the original data sets contains aO-byte 
fixed length records arranged in EBCDIC 
collating sequence. 

DD Statements for VSAM Data Sets 

This section describes the minimum 
information that must appear in DD 
statements for VSAM data sets. The 
additional facilities that are available 

TRACE specifies that a trace of 
Access Method Control 
Blocks (ACEs) is required 
during processing. 

through the job control language are also AMORG must be specified if 
VOL=SER inferRation is 
used to define a catalog 
or a subset mount of a 
multivolume data set. 

listed; further information on these 
facilities is given in OS/VS VSAM 
programmer's Guide, Order No. GC26-3a06. 

If a DEFINE command is used to obtain 
VSAM data space on a particular volume, a IOPTCD={LIIL} specifies how deleted 

records are to be handled 
when the ceIrpatibility 
interface is being used 
(see "The ccmfatibility 
Interface" later in this 

DD statement must be provided to define the 
volume. The ddname of this DD statement 
must appear in the FILE parameter of the 
DEFINE command. The DD statement must 
contain the UNIT, VOLUME, and DISP 
parameters. For example, if the DEFINE 
command is: 

DEFINE SPACEC •••• FlLE(DDN) ••••• ) 

the corresponding DD statement must have 
the form: 

//DDN DD UNIT=xxxx,VOL=SER=yyyy,DISP=OLD 

Once a data set has been defined using 
the DEFINE command, it can be accessed by 
specifying the dsname and a disposition of 
OLD. Additional parameters can, however, 
be specified. For VSAM data sets, the DCB 
parameter is invalid; its place is taken by 
the AMP parameter. The AMP parameter has 
the following format: 

chapter.) . 

The Compatibility Interface 

PLiI programs that are written to create 
and access lSAM data sets (ENV(INDEXED» 
can be used to access VSAM key sequenced 
data sets without alteration. Two types of 
access are possible: "native" access, in 
which the data set is accessed exactly as 
though the file had been declared with 
ENV(VSAM), and access via the ISAM/vSAM 
compatibility interface. 

The fact that the data set being 

Chapter 9: Virtual storage Access Methcd (VSAM) 137 



accessed is a VSAM data set is detected by 
the PL/I library routines when the file is 
opened, and the required support is 
provided. This support will normally be 
native VSAM support; in order to force use 
of the compatibility interface, the user 
must code either RECFM=FIFBIVIVB or OPTCD=L 
in the AMP parameter of the DD statement 
for the data set. Use of the compatibility 
interface must be forced if any of the 
following situations exists: 

- The PL/I program uses records with non­
embedded keys. 

,- The user requires the lengths of records 
I being read or written to be checked 
, against the record length specified for 
I the data set; the RECORD condition is to 
I be raised if an incorrect-length record 
, is encountered. 

- Deleted records are to be retained in 
the data set (ISAM deletion). If 
deleted records are to be deleted from 
the data set (VSAM deletion), but the 
compatibility interface must be used for 
some other reason, the programmer must 
specify OPTCD=IL. 

- The number of channel programs specified 
(NCP) is greater than one. Note, 
however, that the compatibility 
interface is obtained automatically in 
this case if a file declared with 
ENV(INDEXED) is opened on a VSAM KSDS. 

If the compatibility interface is used, 
and RECFM is not specified either in the 
program or in the AMP parameter, the 
default is RECFM=V. 

If a PLiI file declared with 
ENV(INDEXED) is used to load a VSAM KSDS 
with F-format records, and the key is not 
embedded, the record size specified on the 
DEFINE command for the VSAM data set must 
be equal to the length of the user record 
plus the length of the key. 

Password Protection of VSAM Data Sets 

VSAM provides a password protection option 
that enables VSAM data sets to be protected 
against unauthorized access or deletion. 
Passwords are specified as a parameter of 
the DEFINE command when a VSAM data set is 
defined. In order to gain access to a 
password-protected data set, the PL/I 
programmer RUst specify the correct 
password in the the ENVIRONMENT attribute 
of the PLiI file. 

There are three levels of password 
protection of interest to the PL/I 

programmer: 

1. Master password - Specifying this 
password allows the user to perform 
any operation on a data set or cn the 
index and catalog records associated 
with it. 

2. Update Password - Specifying this 
password allows the user to retrieve, 
update, delete, or insert records in a 
data set. 

3. Read-only Password - specifying this 
password allows the user to retrieve 
records form a data set, but not to 
update, delete, or insert records. 

Note that password protection is 
effective only if the catalog that contains 
the data set is itself password protected. 

Sharing VSAM Data Sets 

SHARING BETWEEN JOBS 

Independent jobs running in the same system 
may share VSAM data sets provided that both 
jobs specify DISP=SHR in their DD 
statements for the data set. The type of 
sharing that is to be allowed on any 
particular data set can be specifed in the 
DEFINE command when the data set is 
defined. The following four types cf 
sharing are possible: 

1. The data set may be used by one job 
for output or by any nurrber of jobs 
for input. 

2. The data set may be used by one job 
for output and by any number of jobs 
for input. 

3. The data set may be fully shared, the 
user being completely responsible for 
read and write integrity. 

4. As (3) above, but VSAM will refresh 
the buffers for each request. 

SHARING BETWEEN SUBTASKS IN A JOB 

subtasks can share VSAM data sets either 
through separate DD statements or through 
the same DO statement. 

If separate DD statements are used, the 
rules are the same as those for sharing 
between .jobs. 

138 OS PL/I Optimizing Compiler: programmer's Guide 



I f a single DO sta tement is used, the 
data set can be fully shared. The value of 
STRNO specified in the AMP parameter of the 
DO statement should be equal to the number 
of files that will be open on the data set 
concurrently. 

Chapter 9: Virtual storage Access Method (VSAM) 139 





Chapter 10: Libraries of Data Sets 

Within the IBM operating system, the terms 
"partitioned data set" and "library" are 
used synonymously to signify a type of data 
set that can be used for the storage of 
other data sets (usually programs in the 
form of source, object or load modules). A 
library must be stored on direct-access 
storage and be wholly contained in one 
volume. It contains independent, 
consecutively-organized, data sets, called 
members. Each member has a unique name, 
not more than eight characters long, which 
is stored in a directory that is part of 
the library. All the members of one 
library must have the same data 
characteristics because only one data set 
label is maintained. 

Members can be created individually 
until there is insufficient space left for 
a 'new entry in the directory, or until 
there is insufficient space for the member 
itself. Members can be accessed 
individually by specifying the member name. 

DD statements or ALLOCATE commands are 
used to create and access members. 

Members can be deleted by means of the 
IBM utility program IEHPROGM. This deletes 
the member name from the directory so that 
the member can no longer be accessed; but 
the space occupied by the member itself 
cannot be used again unless the library is 
recreated using, for example, the IBM 
utility program IEBCOPY. An attempt to 
delete a member by using the DISP parameter 
of a DO statement will cause the whole data 
set to be deleted. 

Types of Library 

The following types of library may be used 
with a PL/I program: 

• The system program library 
SYS1.LINKLIB. This can contain all 
system processing programs such as 
compilers and the linkage editor. 

• Private program libraries. These 
usually contain user-written programs. 
It is often convenient to create a 
temporary private library to store the 
load module output from the linkage 
editor until it is executed by a later 
job step in the same job. The library 
will be deleted at the end of the job. 
Private libraries are also used for 

automatic library call by the linkage 
editor and the loader. 

• The system procedure library, 
SYS1.PROCLIB. This contains the job 
control procedures that have been 
cataloged for your installation. 

How to Use a Library 

The ways in which the libraries described 
above can be used are described in the 
following sections. 

BY THE LINKAGE EDITOR OR LOALER 

The output from the linkage editor is 
usually placed on a private program 
library. 

The automatic call library used as input 
to the linkage editor or loader (see 
Chapter 5) can be SYS1.LINKLIB, a private 
program library, or a subroutine library. 

In each case, the processing of 
directory entries is perforned by the 
operating system. 

When you are adding a member to a 
library, you must specify the ~ember name 
as follows: 

• When a single module is produced as 
output from the linkage editor, the 
member name can be specified as part of 
the data set name (see later in this 
chapter). 

• When more than one module is produced as 
output from the linkage editor, the 
member name for the first module can be 
specified as part of the data set name 
or in the NAME option or NAME control 
statement. The member nanes for the 
subs equent modul es must be speci f ied in 
the NAME option or the NAME contrel 
statement. 

BY THE OPERATING SYSTEM 

When you request the executicn of a load 
module in an EXEC statement or CALL 

Chapter 10: Libraries of Data Sets 141 



command, the operating system must be able 
to retrieve the load module from a library. 
For a CALL command, this library is 
specified explicitly or implicitly in the 
command. For an EXEC sta te me nt , the 
following rules apply. 

The operating system will assume the 
load module is a member of SYS1.LINKLIB, 
and will search in the directory for that 
library for the name you have specified, 
unless you have also specified that the 
load module is in a private library, in one 
of the following ways. 

If the load mbdule has been added to the 
pri vate library in a previous step of the 
job (usually a link-edit step) and the 
member name was specified as part of the 
data set name, then you can refer, in the 
EXEC sta temen t, to the DD sta te me nt 
defining the library instead of specifying 
the load module name. The library must 
have been given the disposition P,ASS. 

If the load module exists on the private 
library before the job starts, then you 
have several ways of defining the library. 

You can define the library in a DD 
statement, with the ddname JOBLIB, 
imrrediately after the JOB statement. This 
library will be used in place of 
SYS1.LINKLIB for all the steps of the job. 
If any load module is not found on the 
private library, the system will then look 
for it on SYS1. LI NKLIB. 

You can define the library in a DD 
statement with the ddname STEPLIB, at any 
point in the job control procedure. The 
private library will be used in place of 
SYS1.LINKLIB, or any library specified in a 
JOBLIB DD statement, for the job step in 
which it appears (though it can also be 
"passed" to subsequent job steps in the 
normal way). If any load module is not 
found on the private library, the system 
will look for it on the library specified 
in the JOBLIB DD statement (if used) or on 
SYS1.LINKLIB. The STEPLIB DD statement can 
be used in a cataloged procedure. 

Alternatively, if you specify 
SYS1. LINKLtB in the JOBLIB or STEPLIB DD 
statements, and then concatenate the 
private library to it, the private library 
will be used only if a load module cannot 
be first found on SYS1.LINKLIB. 

BY YOUR PROGRAM 

Libraries can be used directly by a PL/I 
program. 

If you are adding a new member to a 
library, its directory entry will be made 
by the operating system when the associated 
file is closed, using the menber nane 
specified as part of the data 'set name. 

If you are accessing a member of a 
library, its directory entry can be found 
by the operating system from the member 
name that you specify as part of the data 
set name. 

More than one member of the same library 
can be processed by the same PL/I program, 
but only one such output file can be open 
at anyone time. Different nembers are 
accessed by giving the member name in a DD 
statement. 

Creating a Library 

TO create a library include in your job 
step a DD statement containing t~e 
information given in Figure 10-1. The 
information required is similar to that for 
a consecutively-organiz~d data set (see 
Chapter 8) except for the SPACE paraneter. 

Information Parameter of 
Required DD statement 

Type of device that will UNIT= 
process the library 

serial_ number of the volume VOLUME=SER 
that will contain the library 

Name of the library DSNAME= 

Amount of space required SPACE = 
for the library 

Disposition of the library DISP= 

Figure 10-1. Information required 
wben creating a library 

SPACE PARAMETER 

The SPACE parameter in a DD statement that 
defines a library must always be of the 
form: 

SPACE=(units,(quantity, 
increment, directory» 

Although you can omit the third term 
(incr,ement), indicating its absence by a 
comma, the last term, specifying the number 

142 OS PLiI Optimizing Compiler: programmer's Guide 



of directory blocks to be allocated, must 
always be present. 

The amount of auxiliary storage required 
for a library depends on the number and 
sizes of the members to be stored in it and 
on how often members will be added or 
replaced. (space occupied by deleted 
members is not released.) The number of 
directory blocks required depends on the 
number of members and the number of 
al iases. AI though you can specify an 
incremental quantity ;in the SPACE parameter 
that will allow the operating system to 
obtain more sp~ce for the data set if 
necessary, both at the time of creation and 
when new members are added, the number of 
directory blocks is fixed at the time of 
creation and cannot be increased. 

If the data set is likely to be large or 
you expect to do a lot of updating, it 
might be best to allocate a full volume. 
otherwise, make your estimate as accurate 
as possible to avoid wasting space or time 
recreating the data set. 

The number of directory entr ies that a 
256-byte directory block can contain 
depends on the amount of user data included 
in the entries. The maximum length of an 
entry is 74 bytes, but the entries produced 
by the linkage editor vary in length 
between 34 bytes and 52 bytes, which is 
equivalent,to between four and seven 
entries per block. 

E'or example, the DD statement: 

//PDS DD UNIT=2311,VOLUME=SER=3412, 
// DSNAME=ALIB, 
// SPACE= (CYL, (50,,10» , 
// DISP=( ,CATLG) 

requests the job scheduler to allocate 50 
cylinders of the 2311 disk pack with serial 
number 3412 for a new partitioned data set 
named ALIB, and to enter this name in the 
system catalog. The last term of the SPACE 
parameter requests that part of the space 
allocated to the data set be reserved for 
ten directory blocks. 

Creating a Library Member 

The members of a library must have 
identical characteristics otherwise you may 
subsequently have difficulty retrieving 
them. This is necessary because the volume 
table of contents (VTOC) will contain only 
one data set control block (DSCB) for the 
library and not one for each member. When 
using a PL/I program to create a member, 
the operating system creates the directory 
entry; you cannot place information in the 

user data field. 

When creating a library and a rrerrber at 
the same time, the DD statement must 
include all the parameters listed under the 
heading "Creating a Library," ~arlier in 
this chapter (although you can omit the 
DISP parameter if the data set is to be 
temporary). The DSNAME pararreter rrust 
include the member name in parentheses. 
For example, DSNAME=ALIB(MEM1) narres the 
member MEMl in the data set ALIB. If the 
member is placed in the library by the 
linkage editor, you can use the linkage 
editor NAME statement or the NAME compiler 
option instead of incldding the rrerrber nane 
in the DSNAME parameter. You must also 
describe the characteristics of the rrember 
(record format, etc.) either in the DCB 
parameter or in your PL/I prcgram; these 
characteristics will also apply to other 
members added to the data set. 

When creating a roerrber to be added to an 
existing library, you will not need the 
SPACE parameter; the original space ' 
allocation applies to the whole of the 
library and not to an individual rrerrber. 
Furthermore, you will not need to describe 
the characteristics of the nerrber, since 
these are already recorded in the DSCB for 
the library. 

To add two or more merrbers to a library 
in one job step, you must include a tD 
statement for each member, and you nust 
close one file that refers to the library 
before you open another. 

Examples 

The use of the cataloged procedure PLIXC to 
compile a simple PL/I progran and place the 
object module in a new library named EXLIB 
is shown in Figure 10-2.. The DD ,statement 
that defines the new library and names the 
object module overrides the DD statenent 
SYSLIN in the cataloged procedure. (The 
PL/I program is a function proce'dure that, 
given two values in the forn of the 
character string produced by the TIME 
built-in function, returns the difference 
in milliseconds.) 

The use of the cataloged procedure 
PLIXCL to compile and link edit a PL/I 
program and place the load module in the 

lexisting library "PUBPGM" is shown in 
Figure 10-3. (The PL/I program lists the 
names of the members of a library.) 

To use a PL/I program to add or delete 
one or more records within a member of a 
library, you must rewrite the entire member 
in another part of the library; this is 

Chapter 10: Libraries of Data Sets 143 



//OPT10#2 JOB 
//STEPl EXEC PLIXC 
//PLI.SYSLIN DD DSNAME=EXLIBCELAPSE),UNIT=2311,VOL=SER=D186, 
// SPACE=CCYL,Cl0,,2»,DISP=(NEW,KEEP) 
//PLI.SYSIN DD * 

/* 

ELAPSE: PROCCTIME1,TIME2); 

DCL CTIME1,TIME2) CHAR(9), 
Hl PIC '99' DEF TIME1, 
Ml PIC '99' DEF TIMEl POS(3), 
MSl PIC '99999' DEF TIMEl POS(S), 
H2 PIC '99' DEF TIME2, 
M2 PIC '99' DEF TIME2 POS(3), 
MS2 PIC '99999' DEF TIME2 POS (S) , 
ETIME FIXED DEC(7); 

IF H2<Hl THEN H2=H2+24: 
ETIME= C (H2*60+M2) *600000+MS 2)- C CH1* 60+Ml) * 600000+MS1) ; 
RETURN (ETIME) ; 
END ELAPSE; 

Figure 10-2. Creating new libraries for compiled object modules 

//OPT10#3 JOB 
//STEPl EXEC PLIXCL 
//PLI.SYSIN DD * 

/* 

MNAME: PROC OPTIONS (MAIN) ; 

DCL LINK FILE RECORD SEQUENTIAL INPUT, 
1 DIRBLK, 

2 COUNT BIT( 16) , 
2 ENTRIESC2S4) CHAR(1), 

1 ENTRY BASEDCA), 
2 NAME CHAR(8), 
2 TTR CHAR(3), 
2 INDIC, 

3 ALIAS BIT C 1) , 
3 TTRS BIT(2), 
3 USERCT BIT (5) , 

CLEN,PTR) FIXED BIN(31); 

ON ENDFILECLINK) GO TO FINISH: 

OPEN FILECLINK); 
NEXTBLK: READ FILE CLINK) INTOCDIRBLK); 

LEN=COUNT; 
PTR=l; 

NEXTENT: A=ADDRCENTRIESCPTR»; 
PUT FILECSYSPRINT) SKIP LISTCNAME) ; 
PTR=PTR+12+2*USERCTi 
IF PTR+2>LEN THEN GO TO NEX'I'BLK; 
GO TO NEXTENT; 

FINISH: CLOSE FILECLINK)i 
END MNAME; 

//LKED.SYSLMOD DD DSN=PUBPGMCDIRLIST),DISP=OLD,VOL=SER=D186,UNIT=2311 

Figure 10-3. Placing a load module in an existing library 

144 OS PLII Optimizing Compiler: Programmer's Guide 



//OPT10#4 JOB 
//STEPl EXEC PLIXCLG 
//PLI.SYSIN DD * 

NMEM: PROC OPI'IONS CMAIN) ; 

DCL OUT FILE RECORD SEQUENTIAL OUTPUT, 
IOFIELD CHAR(80) BASEDCA); 

ON ENDFILE (IN) GO TO FINISH; 

NEXT: READ FILECIN) SETCA); 
WRITE FILECOUT) FROMCIOFIELD); 
GO TO NEXT; 

FINISH: END NMEM; 
/* 
//GO.OUT DD DSN=ALIBCNMEM) ,UNIT=2311;VOL=SER=D186, 
// DISP=(NEW,CATLG),SPACE=CCYL,C10,1,1», 
// DCB=CRECFM=FB,BLKSIZE=400,LRECL=80) 
//GO. IN DD * 

(insert here data to be included in the input stream) 
/* 

Figure 10-4. Creating a library nember in a PL/I program 

//OPT10#5 JOB 
//STEP1 EXEC PLIXCLG 
//PLI.SYSIN, DD * 

U PDTM: PROC opr IONS CMAIN) ; 

DCL COLD,NEW) FILE RECORD SEQUENTIAL, 
DATA CHAR(80); 

ON ENDFILE COLD) GO TO FINISH; 

OPEN FILECOLD) INPUT,FILECNEW) OUTPUT TITLEC'OLD'); 
NEXT: READ FILE COLD) IN'l'O C DATA) : 

IF DATA=' , THEN GO TO NEXT; 
WRITE FILECNEW) FROMCDATA); 
PUT FlLECSYSPRINT) SKIP LISTCDATA): 
GO TO NEXT; 

FINISH: CLOSE FILECOLD),FILECNEW): 
END UPD'1'M; 

/* 
//GO.OLD DD DSNAME=ALIBCNMEM),DISP=OLD 

Figure 10-5. Updating a library member 

rarely an economic proposition., since the 
space or~ginally occupied by the member 
cannot be used again •. You must use two 
files in your PL/I program, but both can be 
associated with the same DD statement. The 
program shown in Figure 10-5 updates the 
member created by the program in Figure 10-
4; it copies all the records of the 
original member except those that contain 
only blanks. 

Library Structure 
The structure of a library is illustrated . 
in FigUre 10-6. The directory of a library 
is a series of records Centries) at the 
beginning of the data set: there is at 
least one directory entry fcr each nember. 
Each entry contains a member name, the 
relative address of the nember within the 
library, and a variable amount of user 
data. The entries are arranged in 
ascending alphameric order of member names. 

A directory entry can contain up to 62 
bytes of user data Cinfor~ation inserted by 
the program that created the member). An 
entry that refers to a nember Cload nodule) 

Chapter 10: Libraries of Data Sets 145 



bit o 

o name 
1 alias 

J 
Note: I 
pointers contain relative l.. 
addresses of locations ...... 
within member. ...... 

byte 0 7 

2 

number of ptrs in 
user data field 

....... 
....... 

...... ..... 
....... 

....... 
....... 

8 9 10 

rei block 

3 4 5 6 

number of halfwords in user 
data field (inc pointers) 

I 
I 

11 12 

7 

I 
I 

) 

byte 11 of 
directory entry 

61 

track no. relative 
member name 

to start of d.s. 
no. on optional variable user data (max 62 bytes) 
track 

I 
contents of a directory entry 

- -- -- ---- ---- - --- -... - ---, 
256 byte directory block -I-----------..-t~ 

Directory entry Directory entry Directory entry Directory entry 
for member A for member 8 for member C for member K 

space from 
member C deleted members 

~ memberB 

I 
member K 

._-
------~- -"-------- -

member K (cont'd) 

r--" 

member K (cont'd) member A 

-

member A (cont'd) available area 

Figure 10-6. structure of a library 

146 os PLII Optimizing Compiler: Programmer's Guide 



written by the linkage editor includes user 
data in a standard format, described in the 
manual system Control Blocks. 

If you use a PL/I program to create a 
member, the operating system creates the 
directory entry for you and you cannot 
write any user data. However, you can use 
assembler language macro instructions to 
create a member and write your own user 
data; the method is described in the manual 
Supervisor and Data Management Services. 

Directory entries are stored in fixed­
length blocks of 256 bytes, each containing 

a 2-byte count field specifying the number 
of active bytes in a block, and as nany 
complete entries as will fit into the 
remaining 254 bytes. The directory is in 
effect a sequential data set that ccntains 
fixed-length unblocked records, and can be 
read as such. 

The program illustrated in Figure 10-3 
demonstrates a method of extracting 
information from directory entries. The 
program lists the names of all the members 
of a library; the library must be defined, 
when the program is executed, in a tD 
statement with the name LINK. 

Chapter 10: Libraries of Data Sets 147 





Chapter 11: Cataloged Procedures 

This chapter describes the standard 
cataloged procedures supplied by IBM for 
use with the OS PL/I Optimizil19' Compiler, 
explains how to invoke them, and how to 
make temporary or permanent modifications 
to them. 

A cataloged procedure is a set of job 
control statements stored in a system 
library, the procedure library 
(SYS1.PROCLIB). It comprises one or more 

EXEC statements, each of which may be 
followed by one or more DD statements. You 
can retrieve the statements by naming the 
cataloged procedure in the PROC parameter 
of an EXEC statement in the input stream. 
When the operating system processes this 
EXEC statement, it replaces it in the input 
stream with the statements of the cataloged 
procedure. 

The use of cataloged procedures saves 
time and reduces errors in coding 
frequently used sets of job control 
statements. If the statements in a 
cataloged procedure do not match your 
requirements exactly, you can easily modify 
them or add new statements for the duration 
of a job. It is recommended that each 
installation review these procedures and 
modify them to obtain the most efficient 
use of the facilities available and to 
allow for installation conventions; refer 
to "permanent Modification," later in this 
chapter. 

Invoking a Cataloged Procedure 

To invoke a cataloged procedure, specify 
its name in the PROC parameter of an EXEC 
statement. For example, to use the 
cataloged procedure PLIXC, you could 
include the follOWing statement in the 
appropriate position among your other job 
control statements in the input stream: 

//stepname EXEC PROC=PLIXC 

You need not code the keyword PROC; if the 
first operand in the EXEC statement does 
not begin PGM= or PROC=, the job scheduler 
interprets it as the name of a cataloged 
procedure. The following statement is 
equivalent'to that given above: 

//stepname EXEC PLIXC 

When the opera ting system meets the name 
of a cataloged procedure in an EXEC 

statement, it extracts the statements of 
the cataloged procedure fron the ~rccedure 
library and substitutes them for the EXEC 
statement in the input job stream. If you 
include the parameter MSGLEVEL=l in your 
JOB statement, the operating systerr will 
include the original EXEC statement in its 
listing, and will add the statements of the 
cataloged procedure. In the listing, 
cataloged procedure statements are 
identified by XX or X/ as the first two 
characters; X/ signifies a statement that 
has been modified for the current 
invocation of the cataloged procedure. 

An EXEC statement identifies a job step, 
which can require either the execution of a 
program or the invocation of a catalcged 
procedure. A cataloged procedure includes 
one or more EXEC statements, which identify 
procedure steps. However, an EXEC 
statement in a cataloged procedure cannot 
invoke another cataloged procedure; it must 
request the execution of a program. 

It may be necessary for you to modify 
the statements of a cataloged ~rocedure for 
the duration of the job step in which it is 
invoked, either by adding DD statenents or 
by overriding one or more parameters in the 
EXEC or DD statements. For example, 
cataloged procedures that invoke the 
compiler require the additicn of a DD 
statement with the name SYSIN to define the 
data set containing the source statenents. 
Also, whenever you use more than one 
standard link-edit procedure step in a job, 
you must modify all but the first cataloged 
procedure that you invoke if you want to 
execute more than one of the load modules. 

Multiple Invocation of Catalcged 
Procedures 

You can invoke different cataloged 
procedures, or invoke the same cataloged 
procedure several times, in the sau,e job. 
No special problems are likely to arise 
unless more than one of these catalcged 
procedures involves a link-edit procedure 
step, in which case you rrnst take the 
following precautions to ensure that all 
your load modules can be executed. 

The linkage editor always places a load 
module that it creates in the standard data 
set defined by the DD stateIr:ent with the 
name SYSLMOD. In the absence of a linkage 
editor NAME statement (or the NAME compiler 

Chapter 11: Cataloged Procedures 149 



option), it uses the member name specified 
in the DSNAME parameter as the name of the 
module. In the standard cataloged 
procedures, the DD statement with the name 
SYSLMOD always specifies a temporary 
library named SSGOSET, and gives the load 
module the member name GO. 

consider what will happen if, for 
example, you use the cataloged procedure 
PLIXCLG twice in a job to compile, link 
edit, and execute two PL/I programs, and do 
not name each of the two load modules that 
will be created by the linkage editor. The 
linkage editor will name the first load 
module GO, as specified in the first DD 
statement with the name SYSLMOD. It will 
not be able to use the same name for the 
second load module since the first load 
module still exists in the library & &GOSET; 
it will allocate a temporary name to the 
second load module (a name that is not 
·available to your program). Step GO of the 
cataloged procedure requests the operating 
system to initiate execution of the load 
module named in the first DD statement with 
the name SYSLMOD in the step LKED, that is, 
to execute the module named GO from the 
library &&GOSET. consequently, the first 
load module will be executed twice and the 
second not at all~ 

To prevent this, use one of the 
following methods: 

• Delete the library &&GOSET at the end of 
the step GO of the first invocation of 
the cataloged procedure by adding a DD 
statement of the form: 

//GO.SYSLMOD DD DSN=&&GOSET, 
DISP=(OLD,DELETE) 

• Modify the DD statement with the name 
SYSLMOD in the second and subsequent 
invocations of the cataloged procedure 
so as to vary the names of the load 
modules. For example: 

//LKED.SYSLMOD DD DSN=SSGOSET(G01) 

and so on. 

• Use the NAME compiler option to give a 
different name to each load module and 
change your job control statements to 
specify the execution of the load 
modules with these names. 

Dedicated Data Sets 

Many of the processing programs in the 
operating system, including the optimizing 
compiler and the linkage editor, use 
temporary workfiles. TO avoid allocating 

data sets for these workfiles each time 
they are required, an installation using 
the MVT operating system can dedicate one 
or more data sets for temporary workfiles, 
and these remain pernanently allocated. 

The standard cataloged prccedures allow 
you to assign dedicated data sets to the 
optimizing compiler and linkage editor. 
The DD statements for workfiles have the 
ddname SYSUT1. In these DD staten,ents, the 
DSNAME parameter is coded: 

DSNAME=& & ddname 

where "ddname" is the ddname of that DD 
statement. Your installation must have 
assigned these names to the dedicated data 
sets, other~ise you must override the DD 
statement in the cataloged procedure in 
order to specify the names used by ycur 
installation. 

If the system cannot assign the 
dedicated data set to your job step, it 
creates a temporary data set instead. For 
full details of dedicated data sets see the 
OS system Programmer's Guide. 

Multitasking using cataloged Procedures 

When you use a cataloged procedure to link 
edit a multitasking program, you must 
ensure that the load module includes the 
multitasking versions of the PL/I resident 
library subroutines. To enable you to 
select the appropriate library, the 
cataloged procedures that invoke the 
linkage editor and the loader include a 
symbolic parameter (SLKLBDSN) in the DSNAME 
parameter of the DD statement SYSLIB, which 
defines the data set to be used as the 
automatic call library. This data set is 
described in chapter 5. The default value 
of this symbolic parameter is SYS1.PLIBASE, 
which is the name of the non-multitasking 
("base") library. 

To ensure that the multitasking library 
(SYS1.PLITASK) is searched before the base 
library, include the parameter 
LKLBDSN= ·SYS1. PLITASK" in the EXEC 
statement that invokes the cataloged 
procedure; for example: 

/ /STEPA EXEC PLIXCLG ,LKLBDSN=" SYS1. PLITASR' 

The DD statement SYSLIB is always 
followed in the standard cataloged 
procedures by another, unnamed, DD 
statement that includes the parameter 
DSNAME=SYS1.PLIBASE. The effect of this 
statement is to concatenate the base 
library with the multitasking librarYI, if 
the latter is used; the base library can 

150 OS PL/I Optimizing Compi~eL: Programmer's Guide 



then be searched for any subroutine common 
to multitasking and non-multitasking and 
therefore not included in·the multitasking 
library. When the non-multitasking library 
is selected, the second 00 statement has no 
effect. 

The use of the symbolic parameter 
&LKLBDSN means that for non-multitasking 
programs, SYS1.PLIBASE is concatenated with 
itself. This has no effect other than a 
very small increase in job scheduling time, 
but does avoid the need for different 
cataloged procedures for link editing 
multitasking and non-multitasking programs. 

EXEC Statement 

If a parameter of an EXEC statement that 
invokes a cataloged procedure has an 
unqualified name, the parameter applies to 
all the EXEC statements in the cataloged 
procedure. The effect on the cataloged 
procedure depends on the parameters, as 
follows: 

• PARM applies to the first procedure step 
and nullifies any other PARM paraneters. 

• COND and ACCT apply to all the procedure 
steps. 

• TIME and REGION apply to all the 
procedure steps and override existing 
values. 

Modifying Cataloged Procedures For example, the staten,ent: 

You can modify a cataloged procedure 
temporarily by including parameters in the 
EXEC statement that invokes the cataloged 
procedure or by placing additional DD 
statements after the EXEC statement. 
Temporary modifications apply only for the 
duration of the procedure step in which the 
procedure is invoked and only to that 
procedure step; they do not affect the 
master copy of the cataloged procedure 
stored in the procedure library. 

Alternatively, you can modify a 
cataloged procedure permanently by 
rewriting the job control statements that 
are stored in the procedure library. 
Permanent modification should be made only 
by system programmers responsible for 
rraintaining the procedure library. Some of 
the considerations that may influence their 
decisions to mOdify the standard cataloged 
procedures are discussed below. 

TEMPORARY MODIFICATION 

Temporary modifications can.apply to EXEC 
or DD.statements in a cataloged procedure. 
To change a parameter of an EXEC statement, 
you must include a corresponding parameter 
in the EXEC statement that invokes the 
cataloged procedure; to change one or more 
parameter s of a DD sta tement, you must 
include a corresponding DD statement after 
the EXEC statement that invokes the 
cataloged procedure. Although you may not 
add a new EXEC statement to a cataloged 
procedure, you can always include 
additional DD statements. 

Iistepname EXEC PLIXCLG,P1\RM="SIZECM1\X) ,. , 
REGION=144K 

invokes the cataloged procedure PLIXCLG, 
substitutes the option SIZECMAX) for OBJECT 
and NODECK in the EXEC statement for 
procedure step PLI, and nullifies the PARM 
parameter in the EXEC statement for 
procedure step LKEDi it also specifies a 
region size of 144K for all three procedure 
steps. 

TO change the value of a parameter in 
only one EXEC staterrent of a cataloged 
procedure, or to add a new parameter to one 
EXEC statement, you must identify the EXEC 
statement by qualifying the name of the 
parameter with the name of the procedure 
step. For example, to alter the region 
size for procedure step PLI cnly in the 
preceding example, code: 

Iistepname EXEC PROC=PLIXCLG, 
PARM='SIZE (MAX) , ,REGION.PLI=144R 

A new parameter specified in the 
invoking EXEC statement overrides 
completely the corresponding pararreter in 
the procedure EXEC statement. 

You can nullify all the options 
specified by a parameter by coding the 
keyword and equal sign without a value. 
For example, to suppress the bulk of the 
linkage editor listing when invoking the 
cataloged procedure PLIXCLG, code: 

I/stepname EXEC PLIXCLG,PARM.LRED= 

DD Statement 

To add a DD statement to a cataloged 

Chapter 11: Cataloged Procedures 151 



procedure, or to modify one or more 
parameters of an existing DD statement, you 
must include, in the appropriate position 
in the input stream, a DD statement with a 
name of the form "procstepname. ddname". If 
"ddname" is the name of a DD statement 
al.ready present in the procedure step 
identified by "procstepname," the 
parameters in the new DD statement override 
the corresponding parameters in the 
existing DD statement; otherwise, the new 
DO statement is added to the procedure 
step. For example, the statement: 

/ /PLI. SYSIN DO * 
adds a DO statement to the procedure step 
PLI of cataloged procedure PLIXC and the 
effect of the statement: 

//PLI.SYSPRINT DO SYSOUT=C 

is to modify the existing DO statement 
SYSPRINT (causing the compiler listing to 
be transmitted to the system output device 
of class C). 

Overriding DD statements must follow the 
EXEC statement that invokes the cataloged 
procedure in the same order as the 
corresponding DO statements of the 
cat:aloged procedure. DD statements that 
are being added must follow the overriding 
DD statements for the procedure step in 
which they are to appear. 

TO override a parameter of a DD 
statement, code either a revised form of 
the parameter or a replacement parameter 
that performs a similar function (for 
example, SPLIT for SPACE). To nullify a 
parameter, code the keyword and equal sign 
without a value. You can override DCB 
subparameters by coding only those you wish 
to modify; that is, the OCB parameter in an 
overriding DD statement does not 
necessarily override the entire DCB 
parameter of the corresponding statement in 
the cataloged procedures. 

PERMANENT MODIFICATION 

To make permanent modifications to a 
cataloged procedure, or to add a new 
cataloged procedure, use the system utility 
program IEBUPDTE, which is described in the 
utilities publication. The following 
paragraphs discuss some of the factors you 
should have in mind when considering 
whether to modify the standard cataloged 
procedures for your installation. For 
further information on writing installation 
cataloged procedures see the system 
programmer's guide. 

In general, installation conventicns 
will dictate the options that you include 
in the PARM, UNIT, and SPACE paraneters of 
the cataloged procedures, and also the 
blocking factors for output data sets. 

If your installation uses the MVT 
control program of the operating system, 
you may need to modify sone cr all cf the 
REGION parameters. 

The minimum region size for compilation 
should be at least 8K bytes larger than the 
largest value that will te Sfecified in the 
SIZE compiler option, ,excluding SI ZE (MAX) • 

In cataloged procedures that invcke the 
linkage editor, a region size of lOOK is 
specified for the link-edit froceduze step. 

You can reduce this regicn size if you 
are using the 44K F-Ievel linkage editor. 
In general, the region size should te at 
least 8K bytes larger than the design size 
for the particular version cf the linkage 
editor being used. You must alter the 
region size if you are using the 128K F­
level linkage editor. 

Under MVT, the operating system requires 
up to 52K bytes of main storage within a 
region when initiating or terrr.inating a job 
step. If you specify a region size of less 
than 52K bytes, completi en cf a jcb nay be 
held up until 52K bytes are available. 

The minimum region size used by MVT is 
dependent on the installaticn, and is 
defined at ,system generation. Tpere is 
nothing to be gained in reducing the region 
size below this value. 

If your installation uses MFT only, you 
can delete the REGION parameter fron all 
cataloged procedures, otherwise it will be 
ignored. 

IBM-Supplied Cataloged Procedures 

The standard PL/I catalogea procedures 
supplied for use with the oftinizing 
compiler are: 

• PLIXC Compile only 

• PLIXCL Compile, and link edit 

• PLIXCLG Compile, link edit, and execute 

• PLIXLG Link edit and execute 

• PLIXCG Compile, load-and-execute 

• PLIXG Load- and- execute 

152 OS PLiI Optimizing Compiler: Programmer's Guide 



The individual statements of the 
cataloged procedures are not fully 
described, since all the parameters are 
discussed elsewhere in this publication. 
These cataloged procedures do not include a 
DO statement for the input data.set: you 
must always provide one. The example shown 
in Figure 11-1 illustrates the JCL 
statements you might use to invoke the 
cataloged procedure PLIXCLG to compile, 
link edit, and execute, a PL/I program. 

//COLEGO JOB 
//STEPl EXEC PLIXCLG 
//PLI.SYSIN DD * 

/* 

(insert here PL/I program to be 
compiled) 

Figure 11-1. Invoking a cataloged 
'procedure 

No IBM-supplied cataloged procedure is 
provided to produce an object module on 
punched cards. You can temporarily mOdify 
any of the cataloged procedures that have a 
compile step to produce a punched card 
output: an example is shown in Figure 11-2. 

//stepname EXEC PLIXCLG, 
// PARM.PLI='OBJECT,DECK' 
//PLI.SYSPUNCH DO SYSOUT=B 
//PLI.SYSIN DD ••• 

Figure 11-2. Modifying a cataloged 
procedure to produce a 
punched card output 

Compile Only (PLIXC) 

This cataloged procedure, shown in Figure 
11-3, comprises only one procedure step, in 
which the options specified for the 
compilation are OBJECT and NOOECK. (IELOAA 
is the symbolic name of the compiler.) In 
common with the other cataloged procedures 
that include a compilation procedure step, 
PLIXC does not include a DD stateIrent foJ' 
the input data set; you must always supply 
an appropriate statement with the qualified 

ddname PLI.SYSIN. 

The OBJECT option causes the con~iler to 
place the object module, in a form suitable 
for input to the linkage editor, in the 
standard data set defined by the ~D 
statement with the name SYSLIN. This 
statement defines a temporary data set 
named &&LOAOSET on a magnetic-tape cr 
direct-access device; if you want to retain 
the object module after the end of your 
job, you must substitute a ~€rnanent name 
for &&LOAOSET (that is, a name that does 
not commence &&) and specify KEEP in the 
appropriate DISP parameter for the last 
procedure step in which the data set is 
used. 

The term MOD in the DISP ~ara~eter 
allows the compiler to place more than one 
object module in the data set" and PASS 
ensures that the data set will be available 
to a later procedure step providing a 
corresponding DO statement is included 
there. 

The SPACE parameter allows an initial 
allocation of 250 eighty-byte records and, 
if necessary, 15 further allocations of 100 
records (a total of 1750 records, which 
should suffice for most applications). 

Compile and Link-edit (PLIXCL) 

This cataloged procedure, shown in Figure 
11-4, comprises two procedure steps: PLI, 
which is identical with cataloged procedure 
PLIXC, and LKEO, which invokes the linkage 
editor (symbolic name IEWL) to link edit 
the object module produced in the first 
procedure step. 

Input data for the compi~ation procedure 
step requires the qualified ddnaffle 
PLI.SYSIN. The COND·parameter in the EXEC 
statement LRED specifies that this 
procedure step should be bypassed if the 
return code produced by the con,pileJ: is 
greater than 9 (that is, if a severe or 
unrecoverable error occurs during 
compilation) • 

The DO statement with the nane SYSLIB 
specifies the PL/I resident library, from 
which the linkage editor will obtain 
appropriate modules for inclusion in the 
load module. The linkage editor always 
places the load modules it creates in the' 
standard data set defined by the to 
statement with the name SYSLMOD. This 
statement in the cataloged procedure 
specifies a new temporary library &SGOSET, 
in which the load module will be placed and 
given the member name GO (unless you 
specify the NAME compiler option for the 

Chapter 11: Cataloged Procedures 153 



//PLIXC 
//PLI 
//SYSPRINT 
//SYSLIN 
// 
//SYSUT1 
// 

Figure 11-3. 

//PLIXCL 
//PLI 
//SYSPRINT 
//SYSLIN 
// 
//SYSUT1 
// 
//LKED 
//SYSLIB 
// 
//SYSLMOD 
// 
//SYSUT1 
// 
//SYSPRINT 
//SYSLIN 
// 

Figure 11-4. 

//PLIXCLG 
//PLI 
//SYSPRINT 
//SYSLIN 
// 
//SYSUT1 
// 
//LKED 
//SYSLIB 
// 
//SYSLMOD 
// 
//SYSUT1 
// 
//SYSPRINT 
//SYSLIN 
// 
//GO 
// 
//SYSPRINT 

Figure 11-5. 

PROC 
EXEC PGM=IELOAA,PARM:'OBJECT,NODECK',REGION=100K 
DO SYSOUT=A,DCB=(RECFM=VBA,LRECL=125,BLKSIZE=629) 
DO DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSSQ, 

SPACE=(SO,(250,100» 
DO DSN=&&SYSUT1,UNIT=SYSDA,SPACE=(1024,(60,60)"CONTIG), 

DCB=BLKSIZE=1024 

Cataloged procedure PLIXC 

PROC LKLBDSN='SYS1.PLIBASE' 
EXEC PGM=IELOAA,PARM='OBJECT,NODECK',REGION=100K 
DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=125,BLKSIZE=629) 
DO DSN=&&LOADSET ,DISP= CMOD,PASS) , UNIT=SYSSQ, 

SPACE=(SO,C250,100» 
DO DSN=&&SYSUT1,UNIT=SYSDA,SPACE=C1024,(60,60)"CONTIG), 

DCB=BLKSIZE=1024 
EXEC PGM=IEWL,PARM='XREF,LIST',COND=(9,LT,PLI),REGION=100K 
DD DSN=&LKLBDSN,DISP=8HR 
DD DSN=SYS1.PLIBASE,DISP=SHR 
DO DSN=&&GOSETCGO),DISP=(MOD,PASS),UNIT=SYSDA, 

SPACE=(1024,(50,20,1),RLSE) 
DO DSN=&&SYSUT1 ,UNIT=SYSDA,SPACE= C1024, (200,20», 

DCB=BLKSIZE=1024 
DO SYSOUT=A 
DD DSN=&&LOADSET,DISP=COLD,DELETE) 
DO DDNAME=SYSIN 

Cataloged procedure PLIXCL 

PROC LKLBDSN='SYS1.PLIBASE' 
EXEC PGM=IELOAA,PARM:'OBJECT,NODECK',REGION=100K 
DO SYSOUT=A,DCB=CRECFM=VBA,LRECL=125,BLKSIZE=629) 
DD DSN=&&LOADSET,DISP=CMOD,PASS),UNIT=SYSSQ, 

SPACE=CSO,C250,100» 
DD DSN=&&SYSUT1, UNIT=:SYSDA,SPACE=CI024, C300,60) , ,CONTIG) , 

DCB=BLKSIZE=1024 
EXEC PGM=IEWL,PARM='XREF,LIST',COND=(9,LT,PLI) ,REGION=100K 
DD DSN=&LKLBDSN,DISP=SHR 
DO DSN=SYS1.PLIBASE,DISP=SHR 
DD DSN=&&GOSETCGO) ,DISP=CMOD,PASS),UNIT=SYSDA, 

SPACE=C1024,C50,20,1),RLSE) 
DD DSN=&SSYSUT1,UNIT=SYSDA,SPACE=(1024,(200,20», 

DCB=BLKSIZE=1024 
DD SYSOUT=A 
DO DSN=&&LOADSET,DISP=COLD,DELETE) 
DD DDNAME=SYSIN 
EXEC PGM=*.LKED.SYSLMOD,COND=CC9,LT,PLI),C9,LT,LKED», 

REGION=100K 
DO SYSOUT=A 

Cataloged procedure PLIXCLG 

154 OS PL/I Optimizing Compiler: Programmer's Guide 



PROC LKLBDSN='SYS1.PLIBASE' //PLIXLG 
//LKED 
//SYSLIB 
// 
//SYSLMOO 
// 
//SYSUT1 
// 
//SYSPRINT 
//SYSLIN 
//GO 
//SYSPRINT 

EXEC PGM=IEWL,PARM='XREF,LIST' ,REGION=100K 
DD DSN=&LKLBDSN,DISP=SHR 
DO OSN=SYS1.PLIBASE,OISP=SHR 
DD DSN=&&GOSET (GO) ,DISP= (MOD,PASS), UNIT=SYSSQ, 

SPACE=(1024,(50,20,1),RLSE) 
DD DSN=&&SYSUT1,UNIT=SYSOA,SPACE=(1024,(200,20», 

OCB=BLKSIZE=1024 
DD SYSOUT=A 
DO DNAME=SYSIN 
EXEC PGM=*.LKED.SYSLMOO,COND=(9,LT,LKEO),REGION=100K 
DO SYSOUT=A 

Figure 11-6. Cataloged procedure PLIXLG 

compiler procedure step). In specifying a 
temporary library, the cataloged procedure 
assumes that you will execute the load 
module in the same job; if you want to 
retain the module, you must substitute your 
own statement for the DO statement with the 
name SYSLMOD. 

The last statement, ODNAME=SYSIN, 
illustrates how to concatenate a data set 
defined by a DO statement with the name 
SYSIN with the primary input (SYSLIN) to 
the linkage editor. You could place 
linkage editor control statements in the 
input stream by this means, as described in 
Chapter 5. 

Compile, Link-edit, and Execute 
(PLIXCLG) 

This cataloged procedure, shown in Figure 
11-5, comprises three procedure steps, PLI 
and LKED, which are identical with the two 
procedure steps of PLIXCL, and GO, in which 
the load module created in the step LKED is 
executed. The third procedure step will be 
executed only if no severe or unrecoverable 
errors occur in the preceaing procedure 
steps. 

Input data for the compilation procedure 
step should be specified in a DD statement 
with the name PLI.SYSIN, and for .the 
execution procedure step in a DD statement 
with the name GO.SYSIN. 

Link-edit and Execute (PLIXLG) 

This cataloged procedure, shown in Figure 
11-6, comprises two procedure steps, LKED 
and GO, which are similar to the procedure 
steps of the same names in PLIXCLG. 

In the procedure step LKED, the DD 

statement with the name SYSLIN does not 
define a data set, but merely refers the 
operating system to the to statement SYSIN, 
which you must supply with the qualifie~ 
ddname LKEO.SYSIN. This DO statement 
defines the data set fran which the lin~age 
editor "ill attain its prirr.ary inl=ut. . 
Execution of the procedure step GO is 
conditional on successful executien cf the 
procedure step LKED only. 

Compile, Load, and Execute (PLIXCG) 

This cataloged procedure, shown in Figure 
11-7, achieves the same results as PLIXCLG 
but uses the loader instead of the linkage 
editor. However, instead of using three 
procedure steps (compile, link edit, and 
execute), it has only two (ceffl=ile, and 
load-and-execute). In the second procedure 
step, the loader progran is executed: this 
program processes the object module 
produced by the compiler and executes the 
resultant executable program immediately. 
Input data for the compilaticn precedure 
step requires the qualified ddname 
PLI .SYSIN. 

The REGION parameter of the EXEC 
statement GO specifies lOOK tytes. Since 
the loader requires about 17K bytes of main 
storage, there are about 83K bytes for your 
program; if this is likely to be 
insufficient, you must modify the REGION 
parameter. The use of the loader imposes 
certain restrictions on your PL/I prcgram: 
before using this cataloged procedure, 
refer to Chapter 5, which eXl=lains how to 
use the loader. 

Load and Execute (PLIXG) 

This cataloged procedure, shewn in Figure 
11-8, achieves the same results as PLIXLG 

Chapter 11: Cataloged Procedures 155 



PROC LKLBDSN='SYS1.PLIBASE' //PLIXCG 
//PLI 
//SYSPRINT 
//SYSLIN 
// 
//SYSUT1 
// 

EXEC PGM=IELOAA,PARM='OBJECT,NODECK',REGION=100K 
DD SYSOUT=A,DCB=CRECFM=VBA,LRECL=125,B1KSIZE=629) 
DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSSQ, 

SPACE=(80,C250,100» 
DO DSN=&&SYSUT1 ,UNIT=SYSDA,SPACE= (1024, (60,60), ,CONTIG), 

DCB=BLKSIZE=1024 
//GO EXEC PGM=LOADER, PARM='MAP, PRINT' ,REGION=100K, 

COND=(9,LT,PLI) 
DD DSN=&LKLBDSN,DISP=SHR 
DD DSN=SYS1.PLIBASE,DISP=SHR 

// 
//SYSLIB 
// 
//SYSLIN 
//SYSLOUT 
//SYSPRINT 

DD DSN=&&LOADSET,DISP=(OLD,DELETE) 
DD SYSOUT=A 
DD SYSOUT=A 

Fi~rure 11-7. Cataloged procedure PLIXCG 

//PLIXG PROC LKLBDSN='SYS1.PLIBASE' 
//GO EXEC PGM=LOADER,PARM='MAP,PRINT',REGION=100K 
//SYSLIB DD DSN=&LKLBDSN,DISP=SHR 
// DD DSN=SYS1.PLIBASE,DISP=8HR 
//SYSLOUT DO SYSOUT=A 
//SYSPRINT DO SYSOUT=A 

Figure 11-8. Cataloged procedure PLIXG 

but uses the loader instead of the linkage 
editor. However, instead of using two 
procedure steps Clink edit and execute), it 
has only one. In this procedure step, the 
loader program is executed. This program 
processes and executes an object module 
placed in the data set defined by a DD 
statement with the name SYSLIN; yeu must 
supply this statement with the qualified 
name ·GO. SYSLI N. 

The REGICN parameter of the EXEC 
statement GO specifies lOOK tyttes. Since 
the loader requires about 17K bytes of main 
storage, there are atout 83K bytes for your 
program; if this is likely te be 
insufficient, you must modify the REGION 
parameter. The use of the leader infoses 
certain restrictions on your PL/I program; 
before using this cataloged frccedure, 
refer to Chapter 5, which explains how to 
use the loader. 

156 OS PL/I Optimizing Compiler: Programmer's Guide 



Program checkout is the application of 
diagnostic and test processes to a program. 
You should give adequate attention to 
program checkout during the development of 
a program so that: 

• A program becomes fully operational 
after the fewest possible test runs, 
thereby minimizing the time and cost of 
program development. 

• A program is proved to have fulfilled 
all the design objectives before it is 
released for production work. 

• A program has complete and clear 
documentation to enable both operators 
and program maintenance personnel to use 
and maintain the program without 
assistance from the original programmer. 

The data used for the checkout of a program 
should be selected to test all parts of the 
program. Whilst the data should be 
SUfficiently comprehensive to provide a 
thorough test of the program, it is easier 
and more practical to monitor the behaviour 
of the program if the volume of data is 
kept-to a minimum. 

Conversational Program Checkout 

The optimizing compiler can be used in 
conversational mode when writing and 
testing programs at a terminal. The 
conversational features are available to 
users where the TSO (Time Shari ng option) 
facilities of the operating system are 
present. The conversational facilities 
enable you to enter a PL/I program from a 
terminal, through which you will receive 
diagnostic messages for the compilation. 
You can also communicate wi th the prog ram 
during execution using PL/I files 
associated with the terminal. Thus a PL/I 
program can be checked out during its 
construction, the~eby saving a substantial 
amount of elapsed time that can occur 
between test compilation and execution runs 
in batched processing. 

The PL/I program is entered and 
processed using the PLI, EDIT, and other 
commands and features described in the 
publication os TSO: PL/I Optimizing 
Compiler. 

Chapter 12: Program Checkout 

Compile-time Checkout 

At compile time, both the preprocessor and 
the compiler can produce diagncstic 
messages and listings according to the 
compiler options selected fcr a particular 
compilation. The listings and the 
associated compiler o~ticns are discussed 
in Chapter 4. The diagnostic messages 
produced by the optimizing cCIq:iler are 
identified by a num~er prefixed "IEL". 
These diagnostic messages are availa~le in 
both a long form and a short form. The 
long messages are designed tc be as self­
explanatory as possible. The short 
messages are designed for re~roducticn at a 
terminal when the compiler is being used in 
a TSO environment. The short xressages are 
obtained by specifying the SMESSAGE 
compiler option. Each message is 
reproduced in the publication: OS PL/I 
Optimizing Compiler Messages. This 
publication includes explanatory notes, 
examples, and any action to be taken. 

Always check the coxr~ilaticn listing for 
occurrences of these messages to determine 
whether the syntax of the prcgram is 
correct. Messages of greater severity than 
warning (that is, error, severe errcr, and 
unrecoverable error) should 1:::e acted upon 
if the message does not indicate that the 
compiler has been atle to "fix" the error 
correctly. You should a~preciate that the 
compiler, in making an assumption as to the 
intended meaning of any erroneous statement 
in the source program, can introduce a 
further, perhaps more severe, error which 
in turn can produce yet another errcr, and 
so on. When this occurs, the result is 
that the compiler produces a nuItber cf 
diagnostic messages which are all caused 
either directly or indirectly by the one 
error. 

other useful diagnostic aids produced by 
the compiler are the attribute table and 
cross-reference table. The attribute table, 
specified by the ATTRIBUTES option, is 
useful for checking that program 
identifiers, especially those whose 
attributes are contextually and implicitly 
declared, have the correct attributes. The 
cross-reference table is requested by the 
XREF option, and indicates, for each 
program variable, the number of each 
statement that refers to the variable. 

To prevent unnecessary waste of time and 
resources during the early stages of 
developing programs, use the NOOPTIMlZE" 

Chapter 12: Program Checkout 157 



NOSY NT AX, and NOCOMP ILE opt ions. The 
NOOPTIMIZE option will suppress 
optimization unconditionally, and the 
remaining options will suppress 
compilation, link editing, and execution 
should the appropriate error conditions be 
de'tected. 

The NOSYNTAX option specified with the 
severity level "W", "E", or "S" will cause 
compilation of the output from the PL/I 
preprocessor, if used, to be suppressed 
prior to the syntax-checking stage should 
the preprocessor issue diagnostic messages 
at or above the severity level specified in 
the option. 

The NOCOMPILE option specified with the 
severity level "W", "E", or "S" will cause 
compilation to be suppressed after the 
syntax-checking stage if syntax checking or 
preprocessing causes the compiler to issue 
diagnostic messages at or above the 
severity level specified in the option. 

Linkage Editor Checkout 

when using the, linkage editor, check 
particularly that any required overlay 
structuring and incorporation of additional 
object and load modules have been performed 
correctly. Diagnostic messages produced by 
the linkage editor are prefixed "IEW". 
These messages are fully documented in the 
publication: OS Linkage Editor and Loader. 

When checking the processing performed 
by the linkage editor, refer to the module 
map produced by the linkage editor showing 
the structure of the load module. The 
module map names the modules that have been 
incorporated into the program. The 
compiler produces an external symbol 
dictionary (ESO) listing if requested by 
the ESO option. The ESO listing indicates 
thE! external names that the linkage editor 
is to resolve in order to create a load 
module. The linkage editor is described in 
Chapter 5. 

Execution-time Checkout 

At execution time, errors can occur in a 
number of different operations associated 
with running a program. For instance, an 
error in the use of a job control statement 
can cause a job to fail. Most errors that 
can be detected are indicated by a 
diagnostic message. The diagnostic 
messages for errors detected at execution 
time are also listed in the messages 
publication for this compiler and 

identified by the prefix "IEM". The 
messages are always printed on the SYSPRINT 
file. 

A failure in the executicn of a PL/I 
program could 1:e caused 1:y one of the 
following: 

• Logical errors in source ~rograms. 

• Invalid use of PL/I. 

• Unforeseen errors. 

• Operating error. 

• Invalid input data. 

• Unidentified program failure. 

• A compiler or library subroutine 
failure. 

• System failure. 

Logical Errors in Source Programs 

Logical errors in source programs can often 
be difficult to detect. Such errors can 
sometimes cause a corrpi ler cr library 
failure to be suspected. The more common 
errors are the failure to ccnvert ccrrectly 
from arithmetic data, incorrect arithmetic 
operations and string rranipulation 
operations, and failure to match data lists 
with their format lists. 

Invalid Use of PL/I 

It is possible that a misunderstanding of 
the language, or the failure to provide the 
correct environment for using PL/I, results 
in an apparent failure of a PL/I program. 
For example, the use of uninitialized 
variables, the use of controlled variables 
that have not been allocated, reading 
records into incorrect structures, the 
misuse of array subscripts, the misuse of 
pointer variatles, conversion errors, 
incorrect ari~hrretic operaticns, and 
incorrect string manipulaticn operations 
can cause this type of failure. 

Unforeseen Errors 

If an error is detected during execution of 
a PL/I program in which no on-unit is 
provided to terminate execution or attempt 
recovery, the job will be terminated 

158 OS PL/I Optimizing Compiler: Programmer's Guide 



abnormally. However, the status of a 
program executed in a batch-processing 
enVironment, at the point where the error 
occurred, can be recorded by the use of an 
ERROR on-unit that contains the statements: 

ON ERROR BEGIN: 
ON ERROR SYSTEM; 
PUT DATA: 
END; 

The statement ON ERROR SYSTEM; contained 
in the on-unit ensures that further errors 
caused by attempting to transmit 
uninitialized variables 00 not result in a 
permanent loop. 

Operating Error 

A job could fail because of an operating 
error, such as running a job twice so that 
a data set becomes overwritten or 
erroneously deleted. Other operating 
errors include getting card decks into the 
wrong order and the failure to give 
operators correct instructions for running 
a job. 

Invalid Input Data 

A program should contain checks to ensure 
that any incorrect input data is detected 
before it can cause the program to fail. 

Use the COpy option of the GET statement 
if you wish to check values obtained by 
stream-oriented input. The values will be 
listed on the file named in the COPY 
option. If no file name is given, SYSPRINT 
is assumed. 

Unidentified Program Failure 

In most circumstances, an unidentified 
program failure should not occur when using 
the optimizing compiler. Excepti ons to 
this could include the following: 

• When the program is executed in 
conjunction with non-PL/I modules, such 
as FORTRAN or COBOL. 

• When the program obtains, by means of 
record-oriented transmission, incorrect 
values for use in label, entry, locator, 
and file variables. 

• Errors in job control statements, 
particularly in defining data sets. 

If execution of a progran terninates 
abnormally without an accompanying PL/I 
execution-time diagnostic message, it is 
probable that the error that caused the 
failure also inhibited the producticn of a 
message. In this Situation, it is still 
possible to check the PL/I scurce prcgram 
for errors that could result in overwTiting 
areas of the main storage regicn that 
contain executable instructions, 
particularly the comrr.unicaticns regicn, 
which contains the address tables .for the 
execution-time error-handling routine. 
These errors may also be present in modules 
compiled by the checkout conpiler with 
NODIAGNOSE and COMPATIBLE and executed in 
conjunction with the modules produced by 
the optimizing compiler. The types of PL/I 
program that might cause the main storage 
to be overwritten erroneously are: 

• Assignment of a value to a non-existent 
array element. For example: 

DCL ARRAY(10); 

00 I = 1 TO 100: 
ARRAY(I) = VALUE~ 

To detect this type of error in a module 
compiled by the optimizing compiler, 
enable the SUBSCRIPTRANGE condition. 
For each attempt to access an element 
outside the declared range of subscript 
values, the SUBSCRIPTRANGE condition 
will be raised. If there is no on-unit 
for this condition, a diagnostic message 
will be printed and the ERROR condition 
raised. This facility, although 
expensive in execution tine and storage 
space, is a valuable program-checkout 
aid. 

• The use of incorrect locator values for 
locator (pointer and offset) variables. 
This type of error is possible if a 
locator value is obtained by means of 
record-oriented transmission. Check 
that locator values created in a 
program, transmitted to a data set, and 
subsequently retrieved for use in 
another program, are valid for use in 
the second program. 

An error could also be caused by 
attempting to free a non-based variable. 
This could be caused by freeing a based 
variable .when its qualifying pointer 
value has been changed. For example: 

DCL A STATIC,B BASED (P): 
ALLOCATE B; 
P = ADDR(A): 
FREE B: 

• The use of incorrect values for label, 

Chapter 12: Program Checkout 159 



entry, and file variables. Errors 
similar to those described above for 
locator values are possible for label, 
entry, and file values that are 
transmitted and subsequently retrieved. 

• The use of the SUBSTR pseudovariable to 
assign a string to a position beyond the 
maximum length of the target string. 
For exampl e: 

DCL X CHAR (3) ; 
I=3; 
SUBSTR(X,2,I) = 'ABC'; 

The STRINGRANGE condition can be used to 
detect this type of error in a module 
compiled by the optimizing compiler. 

Compiler or Library Subroutine Failure 

If you are absolutely convinced that the 
failure is caused by a compiler failure or 
a library subroutine failure, you should 
notify your management, who will initiate 
the appropriate action to correct the 
error. This could mean calling in IBM 
personnel for programming support to 
recti fy the problem. Be·fore call ing IBM 
for programming support, refer to the 
instructions for providing the correct 
information to be used in diagnosing the 
problem. These instructions are given in 
Appendix C, "Requirements for Problem 
Determination and APAR Submission." 
Meanwhile, you can attempt to find an 
alternative way to perform the operation 
that is causing the trouble. A bypass is 
often feasible, since the PL/I language 
frequently provides an alternative method 
of performing a given operation. 

system Fail ure 

System failures include machine 
malfunctions and operating system errors. 
These failures should be identified to the 
operator by a system message. 

Statement Numbers and Tracing 

The compiler FLOW option provides a 
valuable program-checkout aid. The 
FLC>IiV(n,m> option creates a table of the 
numbers of the last wnw branch-out and 
branch-in statements, and the last wmw 
procedures and on-units to be entered. (A 
"branch-out" statement is a statement that 
transfers control to a statement other than 

that which immediately follows it, such as 
a GOTO statement. A branch-in statement is 
a statement that receives centrol fzcm a 
statement other than that which immediately 
precedes it, such as a PROCEtURE, ENTRY, oz 
any other labeled statement.) The figure 
you choose for "n W should be large enough 
to provide a usable trace of the flow of 
control through the program. 
Alternatively, if you do not specify the 
FLOW option explicitly, defaults for the 
FLOW option will be used. 

The trace table can be obtained by any 
of the methods described belcw. 

The trace is printed whenever an on-unit 
with the SNAP option or a PUT ALL statement 
is encountered. It gives both the statement 
numbers and the .names of the containing 
procedures or on-units. For example, an 
ERROR on-unit that results in both the 
listing of the program variables and the 
statement number trace can be included in a 
PL/I program as follows: 

ON ERROR SNAP BEGIN; 
ON ERROR SYSTEM; 
PUT DATA; 
END; 

A flow trace can be specified as part of 
the output from the PL/I dump facility 
PLIDUMP, discussed later in this chapter. 

Dynamic Checking Facilities 

It is possible for a syntactically-ccrrect 
program to produce incorrect results 
without raising any PL/I errcr conditions. 
This .can be attributed to the use of 
incorrect logic in the PL/I source prograrr 
or to invalid input data. Detection of 
such errors from the resultant output (if 
any) can be a diffi,cul t task. It is 
sometimes helpful to have a record of each 
of the values assigned to a variable, 
particularly label, entry, loop control, 
and array subscript variables. This can be 
obtained ~ using the CHECK prefix option. 
Note that, unless care is exercised, the 
indiscriminate use of the facilities 
described below will result in a flcod of 
unwanted and unusable printout. 

A CHECK prefix option can specify 
program variables in a list. Whenever a 
variable that has been included in a check­
list is assigned a new value, the CHECK 
condition is raised. The standard system 
action for the CHECK condition is to print 
the name and new value of the variable that 
caused the CHECK condition to be raised. 
An example of a CHECK prefix options list 
is: 

160 OS PL/I Optimizing Compiler: programmer's Guide 



(CHECKCA,B,C,L»:I* CHECKOUT PREFIX LIST *1 
TEST: PROCEDURE OPTIONS(MAIN)i 

DECLARE A etc. , 

If the CHECK condition is to be raised 
for all the variables used in a program, 
the CHECK prefix option can be more simply 
specified without a list of items. For 
example: 

(CHECK): TEST: PROCEDURE; 

Control of Exceptional Conditions 

During execution of a PL/I object program, 
a number of exceptional conditions can be 
raised, either as a result of program­
defined action, or as a result of exceeding 
a hardware limitation. PL/I contains 
facilities for detecting such conditions. 
These facilities can be used to determine 
the circumstances of an unexpected 
interrupt, perform a recovery operation, 
and permit the program to continue to run. 
Alternatively, the facilities can be used 
to detect conditions raised during normal 
processing, and initiate program-defined 
actions for the condition. Note that some 
of the PL/I conditions are enabled by 
default, some cannot be disabled, and 
others have to be enabled explicitly in the 
program. Refer to the language reference 
manual for this compiler for a full 
description of each condition. 

Note that the SIGNAL statement can be 
used to raise any of the PL/I conditions. 
such use permits anyon-units in the 
program to be tested during debugging. 

The standa~d system action for the ERROR 
condition for which there is no on-unit, 
is, in batched proceSSing, to raise the 
FINISH condition, and in conversational 
processing, to give control to the 
terminal. The FINISH condition is also 
raised for the following: 

• When a SIGNAL FINISH statement is 
executed. 

• When a PL/I program completes execution 
normally. 

• On completion of an ERROR on-unit that 
does not return control to the PL/I 
program by means of a GOTO statement. 

• When a STOP statement is executed or 
when an EXIT statement is executed in a 
major task. 

The standard system action for the 
FINISH condition in batched ~rocessing is 
to terminate the task, and, in 
conversational processing, tc give control 
to the terminal. 

Use of the PL/I Preprocessor in Program 
Checkout 

During program checkout, it is often 
necessary to use a number of the PL/I 
conditions (and the on-units associated 
with them) and subsequently to remove them 
from the program when it is found tc be 
satisfactory. The PL/I preprocessor can be 
used to include a standard set of ~rogram­
checkout statements from the source 
statement library. When the program is 
fully operational, the %INCLUDE statement 
can be removed, and the resultant object 
program compiled for executicn. 

A standard set of PL/I program 'checkout 
statements would include both the enabling 
of any conditions that are disabled ty 
default and the provision of the 
appropriate on-units. The %INCLUDE 
statement that causes the inclusion of the 
set of program checkout staterrents weuld 
usually be placed after anyon-units that 
must remain in the program };:ernanently in 
order to cancel their effect during program 
checkout. 

On-Codes 

On-codes can indicate Rore ~recisely what 
type of error has occurred where a 
condition can be raised by nere than one 
error. For example, the ERROR condition 
can be raised by a number of different 
errors, each of which is identified by an 
on-code. YOU can obtain the on-code by 
using the condition built-in function 
ONCODE in the on-unit. The en-cedes are 
described in the language reference manual 
for this compiler. 

Dumps 

Should the checks given above fail to 
reveal the cause of the error, it nay be 
necessary to obtain a printout, or dump, of 
the main storage region used by the 
program. A dump can display the contents 
of all buffers associated with PL/I files, 
the PL/I file· attributes for each file open 
when the dump is taken, and a trace cf the 
block invocations that occurred during 

Chapter 12: Program Checkout 161 



execution before the dump was taken. 

A hexadecimal dump can also be obtained 
to determine the machine instructions and 
data present in main storage when the 
failure occurred. The use of a hexadecimal 
storage dump requires a knowledge of 
assembler language programming and an 
understanding of object program 
organization. 

Refer to the execution logic manual for 
this compiler for information about the 
organization of the object programs 
produced by the optimizing compiler, and 
how to interpret a storage dump. 

TO obtain a formatted PL/I dump, you 
must invoke the PL/I resident library dump 
module by calling PLIDUMP. Note that a DD 
statement with the ddname PLIDUMP or 
PL1DUMP must be supplied to define the data 
set for the dump. 

I The data set defined by the PLIDUMP DD 
Istatement must have DSORG=PS specified or 
lassumed by default, and must have one of 
Ithe following attributes: 
I 
I- It must be allocated to SYSOUT. 
I 
I- It must be allocated to the terminal or 
I uni t-record device. 
I 
I- DISP=MOD must be specified. 

The page size of the PLIDUMP output is 
taken from the PAGESIZE field of PLITABS. 

PLIDUMP can be invoked with two optional 
arguments. The first argument is a 
character-string constant used to specify 
the types of information to be included in 
the dump. The second argument can be a 
character-string expression or a decimal 
constant with which you can identify the 
output produced by PLIDUMP. The format of 
the PLIDUMP statement is: 

CALL PLIDUMP[('options-list' 
[,user-identification])]; 

The options-list is a contiguous string 
of characters that may include the 
following: 

T 

NT 

F 

To request a trace of active 
procedures, begin blocks, on-units, 
and library modules. 

To suppress the output produced by T 
above. 

To request a complete set of 
attributes for all files that are 
open, and the contents of the buffers 
used by the files. 

NF 

S 

C 

H 

NH 

B 

NB 

A 

E 

To suppress the output produced by F 
above. 

To request the termination of the 
program after the completion cf the 
dump. Note: The FINISH condition is 
not raised. 

To request continuation of execution 
after completion of the dump. 

To request a hexadecimal dump of the 
main storage partition used by the 
program. 

To suppress the hexadecimal dump. 

If T is specified, to produce a 
separate hexadecimal dunp of centrol 
blocks such as the TCA and the DSA 
chain that are used in the trace 
analysis. If F is specified, to 
produce a separate hexadecimal dump of 
control blocks used in the file 
analysis, such as the FCB. 

To suppress hexadecimal dumps of 
cont rol blocks. 

To request information relevant to all 
tasks in a multitasking program. 

To request that an exit be made from 
the current task of a multitasking 
program and that execution of the 
program continues after completion of 
the requested dump. 

o To request information relevant only 
to the current task in a nultitasking 
program. 

The defaults assumed for the above 
options not specified explicitly are: 

T F C A NH NB 

The user-identification ferrroits ycu to 
specify a character-string expression or a 
decimal constant to identify individual 
dumps. It cannot be specified without the 
preceding argument in the argun.ent list,. 

Trace Information 

Trace information produced by PLIDUMP 
includes a trace through all the active 
DSAs. (DSAs will be present for ccnpiled 
blocks, such as procedures and on-units, 
and for library routines.) For on-units, 
the dump gives the values of any condition 
built-in functions that could be used in 
the on-unit, regardless of whether the on­
unit actually used the conditicn built-in 
function. If a hexadecimal dump is also 

162 OS PLII Optimizing Compiler: Programmer's Guide 



Return 
Codes 

0000 

1- 999 

1000 

2000 

4000 

4004 

4008 

4012 

4020 

4024 

Meaning 

Normal termination. 

Return codes available for use 
with PLIRETC. 

Code returned if a STOP 
statement, an EXIT statement, 
or a CALL PLIDUMP statement 
with the "E" or "S" option is 
executed, or if ISASIZE is 
insufficient. This wi 11 be 
added to any PLIRETC value. 

Code returned if ERROR is 
raised and there is no ERROR 
or FINISH on-unit containing a 
GOTO statement. This value 
will be added to any PLIRETC 
value. 

Code ret urne d if an interrupt 
occurs in the PL/I error 
handler or during program 
ini tiali za tion. 

Code returned if the PRV 
(pseudo register vector) is 
too large. 

Code returned if PL/I program 
has no main procedure. 

Not enough main storage 
available .• 

Code returned if the program 
is about to enter a permanent 
wait state. 

Code returned if a task in a 
multitasking program has 
terminated without use of the 
PL/I termination routines. 

Figure 12-1. RetUrn codes from 
execution of a PL/I 
program 

requested, the trace information will also 
include: 

• The address of each DSA (Dynamic Storage 
Area) • 

• The address of the TCA (Task 
Communications Area). 

• The contents of the registers on entry 
to the PL/I error-handler module 
(IBMCERR) . 

• The PSW or the address from which the 

PL/I error handler module (IBMCERR) was 
invoked. 

• The addresses of the library module DSAs 
back to the most recently-used compiled 
code DSA. 

DSAs and the TCA are described in the 
execution logic manual for this ccn-Filer. 
A table of statement numbers indicating the 
flow of control through the program is 
always produced. 

File Information 

File information produced by PLIDUMP 
includes the default and declared 
attributes of all open files, and the 
contents of all buffers that are accessible 
to the dump routine. The information is 
given in BCD notation, and if hexadecimal 
output is also requested" in hexadecimal 
notation also. The address and ccntents of 
the FCB are then printed. 

Hexadecimal DumE 

The hexadecimal dump is a dunp of the 
region of main storage containing the 
program. The dump is given as three 
columns of printed output. The left-hand 
and middle columns contain the contents of 
storage in hexadecimal notation,. The third 
column contains a BCD translaticn cf the 
first two columns. For hexadecimal 
characters that cannot be reFresented by a 
printable BCD character, a full stop is 
printed. 

Return Codes 

Both the compilation and the link editing 
of a PL/I program will result in a return 
code being passed to indicate the severity 
of any errors found. It is Fossible to 
pass a return code from a PL/I program, 
either for examination in a subsequent job 
step if execution of that step is 
conditional upon the value cf the cede 
returned, or merely to indicate conditions 
that were encountered during execution. 
Conditional execution of a job step is 
determined by use of the CONt parameter of 
the JOB or EXEC statement. 

Return codes can be set in a PL/I 
program by passing as an argument to the 
CALL PLlRETC statement a code represented 
as a variable with the attributes FIXED 

Chapter 12: Program Checkeut 163 



BINARY(31,0). The range of codes used 
should be restricted to 1 through 999. If 
a return code of greater than 999 is 
specified, the return code is set to 999 
and a diagnostic message is issued. Codes 
higher than 999 are returned if an error 
causes the program to terminate. In some 
cases the return code for the program will 
be added to any code created by use of the 
CALL PLIRETC statement. In other cases it 
will overwrite any code set by use of the 
CALL PLIRETC statement. Other error 
situations, listed in Figure 12-1, will 
also cause a program-generated return code 
to be overwritten. 

If a return code in the 4000-4024 range 
is encountered and the cause cannot be 
traced to a source program error, it may be 
necessary to call in IBM program support 
personnel. Appendix C, "Problem 
Determination and APAR Submission", 
describes the materials that will be 
required for examination by IBM in such 
circumstances. 

The ABEND Facility 

Standard system action when the ERROR 
Icondition is raised and there is either no 
IERROR on-unit, or an ERROR on-unit that 
Iterminates normally (that is, one that does 

IBMBEER1 CSECT CSEC'I NAME 

Inot contain a GOTO STATEMENT) is to 
terminate without issuing an AEEN~. If the 
standard module IBMBEER in the PL/I 
resident litrary is altered as indicated 
below then the ABEND facility becomes 

I available. IBMBEER will be called wheneve~ 
Ithe PL/I program is to be terminated as a 
Iresult of the ERROR condition having been 
I raised. 

Altering the Standard Module IEMBEER 

A non-zero return should be set in 
register 15. The program termination 
modules IBMBPIT and IBMTPIT call IEMEEER 
and interrogate register 15 on return; a 
non-zero value causes an ABEND to be 
issued. The value in register 15 is 
passed as a parameter to the ABEND which 
allows the options of user completion code, 
dump, and STEP ABEND to be selected. 

I· When IBMBEER 
Iregister 1 will 
ISignify whether 
lon-unit: 

is called, the content of 
be set as follows to 
or not there is an ERROR 

I 
I 
I 

positive - ERROR on-unit 
negative - no ERROR on-unit 

An example of a user-written IEMEEER 
module is shown in Figure 12-2. 

ENTRY IBMBEERA DEFINE ENTRY POINT 
USING *,15 ADDRESSABILITY 

IBMBEERA EQU * ENTRY POINT 
I LTR Rl,R1 BRANCH 
I BNM ERRB IF ON-UNIT 
I L 15,RETNCOD1 SETRErURN CODE NON-ZERO 

BR 14 RETURN 
IERRB EQU * 
I L 15,RETNCOD2 
I BN 14 
I * 
DUMP EQU 128 128=DUMP, O=NO DUMP 
STEP EQU 64 64=s'rEP ABEND, o =TASK ABEND 

IUSERCODl EQU 3001 USER COMPLETION CODES (MUST BE GREATER 
I USERCOD2 EQU 3002 THAN o AND LESS THAN 4096) 
IRETNCODl DC ALl (DUMP+STEP) 
I DC AL3(USERCOD1) 
IRETNCOD2 DC ALl (DUMP+STEP) 
I DC AL3(USERCOD2) 

END 

Figure 12-2. Typical User-Written IBMBEER Module 

164 OS PL/I Optimizing Compiler: Programmer's Guide 



Chapter 13: Linking PL/I and Assembler-Language Modules 

'!'his chapter describes how to create 
programs that combine routines written in 
PL/I and assembler language. It explains 
how a PL/I program invokes an assembler­
language routine and, conversely, how an 
asse~bler-Ianguage routine invokes a PL/I 
procedure. 

Before describing any of the linkages in 
detail, the chapter discusses the PL/I 
environment that must be preserved when 
invoking an assembler-language routine from 
PL/I, and which must be created when 
invoking a PL/I procedure from an 
assembler-language routine. 

The PL/I Environment 

The PL/I environment is the term used to 
describe a number of control blocks created 
by routines that are provided by the OS 
PL/I Resident and Transient Libraries to 
satisfy the storage-management and error­
handling requirements of a PL/I procedure. 

When a .PL/I program invokes an 
assembler-language routine, the invoked 
routine must ensure that the PL/I 
environment is preserved. The PL/I 
environment is preserved by observing the 
standard IBM System/360 linkage 
conventions, which include the storing of 
register values in a save area, and by 
enSUring that the content of register l2 is 
not modified by the assembler routine if 
PLII is to handle interrupts that occur 
during execution of the assembler routine. 
Register 13 must be set to the address of a 
new save area established by the assembler 
routine. 

ESTABLISHING THE PL/I ENVIRONMENT 

The PLI I environment is estabUshed by the 
OS PL/I Resident Library routine IBMBPIR 
and the OS PL/I Transient Library routine 
IBMBPII for a non-multitasking program and 
by IBMTPIR and IBMTPII for a multitasking 
program. An assembler-language routine 
that invokes a PL/I procedure for which the 
PLII environment has not been established 
can use one of three standard entry pOints 
to establish the environment. The routine 

IIBMBPIR or IBMTPIR (with IBMBPII or 
IBMTPII) is entered through a control 
section which has three standard entry 

points, PLISTART, PLICALLA, and PLICALLB; 
these are described later in this chapter. 

Use of PIIMAIN to Invoke a FLII 
Procedure 

10nce IBMBPIR or IBMTPIR (with IBMaPII or 
IBMTPII) has created the environment, it 
transfers control to the PL/I procedure 
whose address' is contained in the compiler­
generated control section PLIMAIN. 
Normally, after link editing, PLIMAIN will 
contain the entry point address of the 
first, or only, PL/I main procedure in the 
program. If the assembler-language routine 
is to invoke a PL/I procedure that is not 
the first, or only, mainPL/I procedure in 
the program, it must insert in PLIM~IN the 
address of the entry point of the procedure 
it is to invoke. The example in Figure 
13-1 shows how this is done. 

If there is no main procedure in the 
program, the assembler routine should 
contain an entry point called PLIMAIN at 
which is held the address of the entry 
point of the PL/I routine tc be invcked. 
The example in Figure 13-2 shows how the 
appropriate address is inserted intc the 
location represented Cy the entry point 
PLIMAIN. If the assembler program does not 
include an entry point called PLIMAIN in 
these circumstances, a dummy module called 
PLlMAIN will be included frcn the OS PL/I 
Resident Library. 

Once the PL/I environment has been 
established, it can, as shawn in the 
example in Figure 13-3, be preserved, and 
any PL/I procedure can be invoked 
subsequently ~ loading the address of its 
entry point into register 15, and executing 
a branch-and-link-register instruction to 
it. 

PLISTART, PLICALLA, AND PLICALLB 

PLISTART: PLISTART is used when the PL/I 
environment must be established for a PL/I 
procedure that can use for its dynamic 
storage as much of the available space in 
storage as it requires, or, alternatively, 
as much as is specified. This entry point 
is normally used when the PL/I procedure is 
invoked directly from the operating system. 
It enables an assembler routine to ~ass to 

Chapter 13: Linking PL/I and Assembler-Language Modules 165 



IA 1,ARGLIST 
L 
L 
ST 

2,=VCPLIMAIN) CHANGE ADDRESS IN PLIMAIN 
3,=VCMYPROG) TO THAT OF 

L 
BALR 

3 ,0 C 2) MYPROG 
15,=V(PLICALLA) 
14,15 

ARGLIST DC 
DC 
DC 

ACarg1) 
X'SO' 
AL3(arg2) 

FIRS~ ARGUMENT PASSED TO ~YPROG 

LAST ARGUMENT PASSED TO MYPRCG 

Figure 13-1. Inserting a PL/I entry point address in PLIMAIN 

ENTRY PLIMAIN 
IA 1, ARG LIST 
L 2,=A(PLIMAIN) INSERT ADDRESS IN PLIMAIN 
L 3,=V(MYPROG) OF ENTRY TO 
ST 3,0(2) MYPROG 
L 15,=V(PLICALLA) 
BALR 14,15 

ARGLIST DC A(arg1) FIRS~ ARGUMENT PASSED TO ~YPROG 
DC X'SO' 
DC AL3Carg2) LAST ARGUMENT P~SSED TO ~YPRCG 

PLIMAIN OS F 

Figure 13-2. Establishing PLIMAIN as an entry in the assembler-language rcutine 

a PL/I procedure a parameter field 
identical to that which can be specified in 
the PARM field of a JCL EXEC statement. 

PLICALLA: PLICALLA is used when the PL/I 
environment must be established for a PL/I 
procedure that can use for its dynamic 
storage as much of the available space in 
Etorage as it requires. 

PLICALLB: PLICALLB is used When the PL/I 
environment must be established for a PL/I 
procedure that can use for its dynamic 
storage only a specified amount of the 
available storage. PLICALLB can optionally 
specify where that storage is to begin. 

Further details and examples using 
PLISTART, PLICALLA, and PLICALLB are given 
later in this chapter. 

THE DYNAMIC STORAGE AREA (DSA) AND SAVE 
AREA 

Whenever a PL/I procedure is invoked, it 
requires for its own use a block of storage 
known as a dynamic storage area (DSA). A 

DSA for a Pt/I procedure consists of a save 
area for the contents of registers, a 
backchain address that points to the save 
area for the previous routinet, and storage 
for automatic variables and niscellaneous 
housekeeping items. 

An a~sembler routine invcked fron PL/I 
should take the following action to 
preserve the PL/I environ~ent: 

• If the assembler routine is to use the 
PL/I error-handler, it Irust store the 
contents of all registers in the ' 
existing. PL/I DSA and establish, its own 
save area in which the backchain address 
of the PL/I D~ must be stored. The ' 
first two bytes of the save area must be 
set to zero. The second word of the 
save area is the backcha!n address. The 
remainder of the save area would only be 
used by a routine invoked from the 
assembler routine or by the PL/I error­
handler, if used, for saving'the 
assembler routine's registers. . 

• If the assembler routine is not to use 
the PL/I error-handler and does not 
invoke a further function routine, the 
SPIE macro must be used to reset the 

166 OS PL/I Optimizing Compiler:: programmer's Guide 



//OPT13#3 JOB 
//STEP1 EXEC HASMHC,PARM.ASM='LOAD,NODECK' 
//ASM.SY$LIN DD DSN=&&LOADSET,UNIT=2314,DISP=(NEW,PASS), 
// SPACE=(80,~200,100»,DCB=BLKSIZE=80 
//ASM. SYSIN OD * 
MYPROG CSECT 

* 
* 
* 
* 
* 

* 
* 
* 

* 

ASS EM 

* 

ENOUGH 

* 
* 

* 

* 
* 
* 
* 
* 
* 

ENTRY 
STM 
BALR 
USING 
IA 
ST 
ST 
LR 

SR 

ASSEM 
14,12,12 (13) 
10,0 
* ,10 
4,SAVEAREA 
13,4(4) 
4,8(13) 
13,4 

1,1 

L 15,=V(PLICALLA) 
BALR 14,15 

L 13,4.(13) 
L 14,12(13) 
LM 1,12,24(13) 
BR 14 

DC C'~SSEM' 
DC ALl (5) 

EQU * 
STM 14,12,12(13) 
BALR ~O,O 
USING *,10 

IA 0,104 
L 1,76(13) 
ALR 0,1 
CL 0,12(12) 
ENH ENOUGH 
L 15,116(12) 
BALR 14,15 
EQU * 
ST 0,76(1) 

ST 13,4(1) 
ST 1,8(13) 
MVC 12(4,1),72(13) 

LR 13,1 
MVI, Q(13),X'80' 
MVI 1(13),X'00' 
MVI 86(13),X'91' 
MVI 87 (13) ,X'CO' 

SR 5,5 

SR 1,1 

ESTABLISH SUPERVISOR REGISTERS 
ESTABLISH ADDRESSABILITY 

CURRENT SAVE AREA ADDRESS 
STORE CHAINBACK ADDRESS 
S~ORE CHAIN FORWARD ADDRESS 
STORE CURRENT SAVE AREA ADDRESS 

SET REGISTER 1 TO ZERO WHEN 
A PARAMETERLESS ENTRY POINT TO 
PROCEDURE THAT DOES NOT RETURN 
A VALUE IS TO BE INVOKED 

CALL THE PL/I PROCEDURE THAT 
HAS OPTIONS(MAIN) AND SO SET 
UP THE PL/I ENVIRONMENT AND 
THEN CALL ASSEM. 

ON RETURNING FROM PLII 
RESTORE REGISTERS 
AND 
RETURN TO THE SUPERVISOR. 

THE NAME IN PIlI FORMAT 

STORE PL/I REGISTERS 
FOR PROCEDURE "MAIN" 
ESTABLISH ADDRESSABILITY 
G~T STORAGE FOR A NEW DSA 
LENGTH REQUIRED 104 BYTES 
ADDRESS OF START OF CURRENTLY­
AVAILABLE STORAGE 
IS THERE ENOUGH SPACE LEFT? 
YES 
LOAD ADDR. OF OVERFLOW ROUTINE 
AND BRANCH TO IT. 

STORE ADDRESS OF START OF 
REMAINING AVAILABLE STORAGE 
IN NEW DSA AT OFFSET 76 
SET ~ACK CHAIN 
SET FORWARD CHAIN 
COpy ADDRESS OF WORKSPACE FOR 
USE BY THE PL/I LIBRARY 
POINT 13 AT NEW DSA 
SET FLAGS IN THE DSA TO 
PRESERVE PL/I 
ERROR-HANDLING 
IN THE ASSEMBLER ROUTINE 

~5 MUST BE ZERO WHEN CALLING 
AN EXTERNAL PL/I PROCEDURE. 

SET REGISTER. 1 TO ZERO WHEN 
A PARAMETERLESS ENTRY POINT TO 
PROCEDURE THAT DOES NOT RETURN 
A VALUE IS TO BE INVOKED 

Figure 13-3. (Part 1 of 2). Invoking PL/I procedures from an assembler routine 

Chapter 13: Linking PL/I and Assembler-Language Modules 167 



* 
L 15,=VCHEAD) 
BALR 14,15 

* 
LOOP EQU * LA 1,ARGTLST1 

L 15,=V(PLIN) 
BALR 14,15 

* 
L 3, RESULT 
LTR 3,3 
EM OUTLOOP 

* 
LA 1,ARGTLST2 
L 15,=VCPLOUT) 
BALR 14,15 
B LOOP 

* OUTLOOP EQU * 
SR 1,1 
L 15,=V(FOOT) 
BALR 14,15 

* L 13,4(13) 
LM 14,12,12(13) 
BR 14 

* 
ARG'l'LST1 DC A(DATA) 
ARGTLST2 DC X'BO' 

DC AL3 (RESULT) 
DATA DC F'123' 
RESULT DC F'O' 
SAVEAREA DC 1BF'0' 

END MYPROG 
/* 
//STEP2 EXEC PLIXCLG 

I//PLI.SYSIN DD * 
* PROCESS; 

I MAIN: PROC OPTIONSCMAIN): 
DCL ASSEM ENTRY; 
CALL ASSEM; 
END; 

* PROCESS; 

CALL PLiI TO 'HEAD' PAGE 

CALL PLiI TO READ AND ADD 

TEST RESULT AND 
BRANCH OUT IF IT IS NEGATIVE. 

CALL PL/I TO OUTPUT RESULT 

SEl' REGISTER 1 TO ZERO 
CALL PL/I TO 'FOOT' PAGE 

RETURN TO THE PL/I PROC WITH 
OPTIONSCMAIN). 

PLIN: . PROC(I) RETURNSCFIXED EIN(31»; 
DCL CI,J) FIXED EIN(31); 
GET LIST (J) ; 
REl'URN (I +J) ; 

HEAD: ENTRY; 
PUT LISTC'THE FIRST LINE OF OUTPUT AT THE TOF OF THE PAGE') 

PAGE; 
PUT SKIP (2) : 
END: 

* PROCESS; 
PLOUT: PROC(K); 

DCL K FIXED BIN(31); 
PUT LIST C K) ; 
RETURN; 

~'OOT: ENTR Y ; 
PUT LISTC'END OF THE OUTPUT FOR THIS JOB') SKIP(2); 
END; 

/* 
//GO.SYSIN DD * 

50 77 123 23·4 345 456 -23 -100 -123 -234 
/* 

Figure 13-3. (Part 2 of 2). Invoking PL/I procedures from an assembler routine 

168 OS PL/I Optimizing Compiler: Programmer's Guide 



STM 
BALR 
USING 
LA 

14,11, 12( 13) 
10,0 

STORE PL/I REGISTERS IN PL/I DSA 
ESTABLISH BASE REGISTER 

ST 
LA 

*,10 
4,SAVEAREA 
13,SAVEAREA+4 
13,SAVEAREA 

STORE PL/I DSA ADDRESS IN SAVE AREA 
LOAD SAVE AREA ADDRESS 

ASSEMBLER 
ROUTINE 

L 
LM 
BR 

13,4(13) 
14,11,12 (13) 
14 

RESTORE PL/I REGISTERS 
AND 
RETURN TO PL/I 

SAVE AREA DC 20F' 0' ALLOCATE 80 BYTE SAVE AREA 

Figure 13-4. Invoking a non-recursive and non-reentrant assembler routine 

interrupt handler but only those 
registers that it modifies must be 
stored. The SPIE macro is discussed 
later in this chapter. 

The amount of storage allocated for a 
save area or DSA must be a multiple of 
eight bytes. The address of the next 
available block of storage following the 
save area or DSA must be stored at offset 
76 of that save area or DSA. This address 
is obtained by adding the address of the 
save area of DSA to its length. 

Calling Assembler Routines from PL/I 

INVOKING A NON-RECURSIVE AND NON­
REENTRANT ASSEMBLER ROUTINE 

When a PL/I program invokes a non-recursive 
and non-reentrant assembler-language 
routine, the· assembler-language routine 
must follow system/360 linkage conventions 
and save the registers for use by PL/I on 
return from the assembler-language routine. 
The register values are stored in the PL/I 
DSA, the address of Which is contained in 
register 13 on entry to the assembler­
language routine. This address must then be 
stored in the backc"hain word in a save area 
defined by the assembler routine itself. 
The appropriate assembler instructions 
should be executed immediately the 
assembler routine is invoked in order to 
achieve the given objectives. Before 
returning to the PL/I routine, the 
assembler routine must restore the 
registers to the values held when the PL/I 
routine invoked the assembler routine. The 
example in Figure 13-4 assumes that the 
assembler routine uses register 10 as its 
base register. 

INVOKING A RECURSIVE OR REENTRANT 
ASSEMBLER ROUTINE 

A recursive or reentrant assembler routine 
invoked from PL/I can use the PL/'I storage 
overflow routine to attempt to obtain 
further storage when the stcrage initially 
available for dynamic use by the program is 
used up. 

A DSA established by the assembler 
I routine must have its first two bytes set 
to X'OO' if it is to handle any program 

. interrupts. such a DSA reust be at least 80 
bytes in length to accommodate both the 
save area and two fullwords required by 
PL/I for its housekeeping. If the PL/I 
error-handler is to service any program 
interrupts in the assembler-language 
routine, the DSA should be at least 88 

Ibytes in length. The first byte of the DSA 
Ishould be set to X'80', the second byte set 
Ito X'OO', and bytes 87 and 88 (the PL/I 
error-handler enable cells) set to X, 91CO". 
In addition, a DSA can be as lcng as is 
needed to store any values that are to be 
preserved for use by a particular 
invocation. Note that a DSA obtained in 
this way must be a rrulti~le cf 8 bytes in 
length. ' 

Termination of a recursive or reentrant 
assembler-language routine will release its 
DSA and cause control to be returned to the 
invoking routine. 

The example in Figure 13-5 shows how to 
create and release a DSA in a recursive or 
reentrant assembler routine. 

USE OF REGISTER 12 

If an assembler routine that modifies 
register 12 is to be invcked by a PL/I 

Chapter 13: Linking PL/I and Assembler-Language Modules 169 



STM 14,11,12(13) 
BALR 10,0 

STORE CALLER'S REGISTERS IN CALLER'S DSA 
ESTABLISH BASE REGISTER 

USING *,10 
LR 4,1 

* 
SAVE ANY PARAMETER LIST ADDRESS 
PASSED FROM CALLING ROUTINE 

LA 0,96 
L 1,76(13) 

PUT 'IHE LENGTH OF THE REQUIRED DSA IN REG 0 
LOAD THE ADDRESS OF THE NEXT AVAILABLE 

* BYTE OF STORAGE AFTER THE CURRENT DSA 
ALR 0,1 ADD ADDRESSES 
CL 0,12(12) 

* 
COMPARE RESULT WITH ADDRESS OF LAST AVAILABLE 
BYTE IN STORAGE THAT CAN BE USED 

ENH 
L 
BALR 
EQU 
ST 

ENOUGH 
15,116(12) 
14,15 

LOAD AND BRANCH TO THE PL/I STORAGE OVERFLOW 
ROUTINE TO ATTEMPT TO OBTAIN MORE STORAGE 

ENOUGH 

* 

* 
* 

ST 

MVC 

LR 
MVI 
MVI 
MVI 
MVI 

* 0,76(1) 

13,4(1) 

STORE THE ADDRESS OF THE NEXT AVAILABLE 
BYTE IN STORAGE AFTER THE NEW DSA 
STORE THE CHAIN-BACK ADDRESS OF THE PREVIOUS 
DSA IN THE CURRENT DSA 

72(4,1),72(13) COPY ADDRESS OF LIBRARY 

13,1 
0(13),X'80' 
1(13),X'00' 
86(13) ,X'91' 
87(13),X'CO' 

WORKSPACE 
STORE THE ADDRESS OF THE NEW DSA IN REGISTER 13 
SET FLAGS IN DSA TO 
PRESERVE PL/ I 
ERROR-HANDLING 
IN THE ASSEMBLER ROUTINE 

ASSEMBLER 
ROUTINE 

L 13,4(13) RELEASE CURRENT DSA 
LM 14,11,12(13) RESTORE CALLER'S REGISTERS 
BR 14 

Figure 13-5. Invoking a recursive or reentrant assemtler routine 

procedure, any program-check interrupts 
wi 11 result in an unpredictable program 
failure unless the routine establishes its 
own error handling for program-check 
interrupts. Consequently, the routine 
should be amended to use a register other 
than register 12 so that the PL/I error­
handler can be used, or it can issue a 
supervisor SPIE or STAE macro to establish 
its own program interrupt or abnormal 
termination handling facilities. The 
routine must subsequently restore PL/I 
error-handling facilities before returning 
to PL/I. This is discussed further in 
"Overriding and Restoring PL/I Error­
handling in an Assembler-language Routine" 
later in this chapter. (A routine that 
changes the content of register 12 should 
also store it on entry and restore it on 
return. ) 

Calling PL/I Procedures from Assembler 
Language 

The simplest way to invoke a single 
external PL/I procedure from an assembler-

language routine is to give the PL/I 
procedure the MAIN option and invcke it 
using entry point PLICALLA. All that is 
required is to load the address of PLICALLA 
into register 15 and then to branch and 
link to it. When PLICALLA is used in this 
way. the PL/I environment is created and 
control is then passed by way of PLIMAIN to 
the first (or only) rrain PL/I procedure in 
the program. Use of this technique will 
cause the PL/I environn:ent tc be 
established separately for each invocation. 

ESTABLISHING THE PL/I ENVIRONMENT FOR 
MULTIPLE INVOCATIONS 

If the assembler routine is to invoke 
either a number of PL/I routines er the 
same PL/I routine repeatedly, the creation 
of the PL/I environment for each invocaticn 
will be unnecessarily inefficient. The 
solution is to create the PL/I environment 
once only for use by ull invccations of 
PL/I procedures. This can be achieved by 
invoking a main PL/I procedure which 
immediately reinvokes the assembler 

170 OS PLII Optimizing Compiler: Programmer's Guide 



routine. The assembler routine must 
preserve the PL/I environment and is then 
able to invoke any number of PL/I 
procedures directly. The example in figure 
13-3 contains an assembler-language routine 
that establishes the PL/I environment once 
only for multiple invocations of PL/I 
procedures. 

In this example, the assembler routine 
MYPROG receives control initially from the 
supervisor, and invokes the PL/I main 
procedure MAIN using the entry pOint 
PLICALLA to the PL/I initialization 
routine. The PL/I procedure MAIN 
immediately reinvokes the same assembler 
routine at the entry point ASSEM. Note 
that, in this example, this name must be an 
odd number of characters to ensure that the 
next instruction is halfword aligned. At 
this entry pOint, the PL/I environment is 
stored, and a new DSA, 104 bytes in length, 
is created in a manner similar to that 
previously given for creating a DSA in a 
recursive or reentrant assembler-language 
routine. If there is insufficient room for 
the new DSA, the PL/I overflow routine is 
invoked to attempt to obtain storage for 
the DSA elsewhere in storage. 

The instructions in the assembler 
routine following the label ENOUGH through 
to the instruction that loads the address 
of the PLII entry pOint HEAD are concerned 
with setting up the DSA so that the correct 
environment exists when the routine invokes 
the external PL/I procedures PLIN and PLOUT 
and the secondary entry points within them. 
These instructions should always be present 
in order to preserve the PL/I environrr.ent 
set up by the main procedure for subsequent 
use by any assembler-invoked PL/I 
procedures. 

Note that when an external PL/I 
procedure is invoked, register 5 must be 
set to zero, and that a PL/I procedure, 
such as PLIN in this example, that returns 
a value will assign the value to the last 
address in the argument list, ARGTLST1. 
This address is the address of the 
assembler-defined storage for RESULT. The 
constant X'SO' in the first byte of the 
fullword containing the address of RESULTS 
in ARGTLST1 indicates that it is the last 
fullword in the argument list. 

If an assembler-language routine invokes 
a PL/I procedure without passing any 
parameters to it and without expecting any 
value to be returned from it, register 1 
must be set to zero. In this example, the 
procedure PLIN contains a RETURN 
(expression) statement, but when invoked 
through the parameterless entry point HEAD, 
does not return a value to the invoking 
routine. Similarly, the procedure PLOUT 
contains the parameteriess entry point FOOT 

and does not return a value. 

ESTABLISHING THE PL/I ENVIRONMENT 
SEPARATELY FCR EACH INVOCATICN 

If it is necessary to reestablish the PL/I 
environrr.ent each time a PL/I procedure is 
invoked, use the entry point PLISTART, 
PLICALLA, or PLICALLB to invoke the PL/I 
initialization routines. The three entry 
points are used as follows: 

For PIISTART, the assembler language 
routine must insert in register 1 the 
address of a fullword which in turn 
contains the address of a halfwcrd ~refix 
to a character string. The character 
string, which must start on a fullwcrd 
boundary, can contain a parameter string 
similar to that which can be specified in 
the PARM field of a JCL EXEC statement: for 
example, 'ISASIZE(4K),R/INPUt'. The 
halfword prefix must contain the number of 
characters in the string. This entry point 
is useful when a PL/I routine is "attached" 
by an assembler routine, because the entry 
point of the PL/I routine dces nct have to 
be changed. The use of PLISTART is 
illustrated in Figures 13-6 and 13-7. 

For PLICALLA, the asserrbler-Ianguage 
routine must insert in register 1 the 
address of the argurrent list that ccntains 
the addresses of any arguments to be passed 
to the PL/I procedure. 

For PLICALLB, the assembler-language 
routine must insert in register 1 the 
address of an argument list that contains 
the following: 

• The address of the argurrent list 
containing addresses to be passed to 
PL/I, and optionally, 

• The address of the length of storage to 
be made available to the program in'a 
non-multitasking program cr the najor 
task in a multitasking program. The 
default for this length is half the 
available storage for a non-multitasking 
program or SK bytes for the rrajcr task 
of a multitasking program. The length 
of the initial storage area (ISA) passed 
must be a multiple of eight bytes, so 
that the ISA both starts and ends on a 
double-word boundary. 

• The start address of the initial storage 
area elSA) to be used by the PL/I 
program. This storage must be aligned 
on a double word. For further 
information, refer to the discussion of 
the ISASIZE option in Chapter 4. 

Chapter 13: Linking PL/I and Assembler-Language Modules 171 



LA 1,PLISTHWD GET PLIST ADDRESS 
ATTACH EP=PLIPROG ~TACH PL/I PROGRAM 

* PLISTHWD DS 
DC 
DC 

PLISTHW DC 
PLISTCH DC 

OF 
X'80' FLAG LAST WORD OF PLIST 
AL3(PLISTHW) 
AL2(L'PLISTCH) LENGTH OF PARM STRING 
C'ISASIZE(8K),R/INPUT' PARM DATA 

Figure 13-6. Use of PLISTART for ATTACH 

LA 1,PLISTHWD GET PLIST ADDRESS 
L 15 ,=V (PLISTART) GET PL/I ENTRY POINT 
BALR 14,15 CALL PL/I ROUTINE 

* 
* DS 
PLISTHWD DC 

DC 
PLISTHW DC 
PLISTCH DC 

Figure 13-7. 

Qption 

REPORT 
NOREPORT 
SPIE 
NOSPIE 
STAE 
NOSTAE 
COUNT 
NOCOUNT 
FLOW 
NOFLOW 

Figure 13-8. 

LA 
L 
BALR 

ARG.LIST DC 
DC 

* 

DC 
DC 

OF 
X'80' FLAG LAST WORD OF PIIST 
AL3(PLISTHW) 
H'O' 
AL2 (0) NULL PARM STRING 

Use of PLISTART passing null parameter string 

Value 

X'80' in first byte 
X' 40' in first byte 
X' 20' in first byte 
X'10' in first byte 
X'08' in first byte 
X'04' in first byte 
X' 02' in first byte 
X'Ol' in first byte 
X'80' in second byte 
X'40' in second byte 

Coding the options 

1,ARGLIST 
15,=V(PLICALLA) 
14,15 

word 

• The address of the length of storage to 
be made available to each of the 
subtasks in a multitasking program. The 
default for this length is 8K bytes for 
each subtask. This value is igncred for 
a non-multitasking program. The length 
of the ISA must be a nultiple cf eight 
bytes. 

• The address of the maxi~un number of 
concurrent subtasks that can be attached 
at anyone time. This value is ignored 
in a non-multitasking program. The 
default for this value is 20. 

• The address of the options word, in 
which the execution-time options for a 
program compiled by the c~tirrizing 

AC arg1) 
ACarg2) 

ADDRESS OF FIRST ARGUMENT PASSED TO PL/I 
ADDRESS OF SECOND ARGUMENT PASSED TO PL/I 

X' 80' END OF ARGUMENT L'IST FLAG 
AL3Cargn or return-value) ADDRESS OF LAST ARGUMENT 

OR RETURNED VALUE 

Figure 13-9. Use of PLICALLA 

172 OS PL/I Optimizing Compiler: Programmer's Guide 



LA 
L 
BALR 

1,ALIST 
15,=V(PLICALLB) 
14,15 

ALIST DC A (ARGLIST) ADDRESS OF ARGUMENT LIST 
DC A (LENGTH) LENGTH OF STORAGE FOR PL/I 

* ON DOUBLE WORD BOUNDARY 
OC A( ISA) ADDRESS OF ISA 
DC ACO) TASK ISA,- NOT USED 
DC A (0) NUMBER OF CONCURRENT SUBTASKS - NONE 
DC X'SO' END OF ARGUMENT LIST FLAG 
DC AL3 (OPTIONS) OPTIONS WORD 

ARGLIST DC A(arg1) ADDRESS OF FIRST ARGUMENT 
DC A(arg2) ADDRESS OF SECOND ARGUMENT 
DC X'SO' END OF ARGUMENT LIST FLAG 
DC AL3Cargn or return-value) ADDRESS OF LAST ARGUMENT 

* OR RETURNED VALUE 
LENGTH DC F' S192 I ROUTINE'S STORAGE LIMITED TC SK BYTES 
ISA DS 1024D ROUTINES ISA STARTS HERE 
OPTIONS DC X'S4000000' REPORT AND NOSTAE REQUESTED 

Figure 13-10. Use of PLICALLB 

compiler are specified. These options 
are: REPORT; STAE; SPIE; COUNT; and 
FLOW. They are described in Chapter 4. 
The hexadecimal value for each option is 
given in Figure 13-S. 

Note that the first byte in the last 
address word in each of these argument 
lists must contain X' SO' • The examples in 
Figures 13-9 and 13-10 show the use of 
PLICALLA and PLICALLB to invoke the first 
(or only) main PL/I procedure in the 
program. The PL/I programs in these cases 
do not perform multitasking. 

If it is necessary to reestablish the 
PL/I environment for each invocation of a 
PL/I procedure that is not ,the first (or 
only) main procedure in the program, the 
user of either entry point PLICALLA or 
PLICALLB must insert in PLIMAIN the address 
of the appropriate entry point to the 
required PL/I procedure. The example in 
Figure 13-1 sets the address in pLIMAIN to 
that of the external entry name MYPROG. 

If it is necessary to reestablish the 
PL/I environment for each invocation of a 
PL/I procedure where there is no main PL/I 
procedure in the program, the use of either 
entry point PLICALLA or PLICALLB must be 
accompanied by the use of an entry point 
called PLIMAIN in'the assembler-language 
routine. This entry point must contain the 
address of the PL/I routine to be invoked. 
Figure 13-2 shows how this is inserted. 

PL/I Calling Assembler Calling PL/I 

The information given in the preceding 
sections should be sufficient to write 
programs that include a PL/I procedure that 
invokes an assembler-language routine that 
invokes a further PL/I procedure. Figure 
13-3 contains an example of a progran that 
performs this type of processing. 

Assembler Calling PL/I Calling 
Assembler 

The information given in the preceding 
sections should be sufficient to write 
programs that include an assembler-language 
routine t·hat invokes a PL/I ~rccedure that 
in turn invokes an assembler-language 
routine. Figure 13-3 contains an example 
of a program that performs this type of 
processing. 

Overriding and Restoring PL/I Error­

handling 

An assembler-language routine invcked frorr. 
PL/I can override PL/I error-handling by 
issuing its own SPIE macro tc handle 
program interrupts or STAE macro to handle 
abnormal terminations. If the SPIE nacro is 
issued, the address of the PL/I PICA must 
be saved. A routine that cancels PL/I 
error-handling must restore the PL/I error-

Chapter 13: Linking PL/I and Assembler-Language Modules 173 



PROGA CSECT 
ENTRY 
STM 
BALR 
USING 
STAE 
SPIE 
ST 

ASSEM 
14,12,12(13) 
10,0 

ENTRY-POINT INVORED FROM PL/I 
STORE PL/I ENVIRONMENT 
ESTABLISH BASE REGISTER 

*,10 
(operands) 
(operands) 
1,SAVESPIE 

ESTABLISH NEW ABEND HANDLER 
ESTABLISH INTERRUPT HANDLER 
S~ORE OLD PICA ADDRESS 

STAE 
L 
SPIE 
L 
LM 
BR 

o 
1,SAVESPIE 
MF= (E, (1» 
13,4(0,13) 
14,12, 12( 13) 
14 

RESTORE PL/I ERROR HANDLING 
RESTORE PICA ADDRESS 

RESTORE PL/I ENVIRONMENT 

RETURN TO PL/I 
SAVESPIE DS A 

Figure 13-11. Met.hod of overrid.ing and restoring PL/I error-handling 

handling facilities before returning to the 
PLiI program. It does this by issuing 
either a STAE macro with an operand of zero 
or an execute form of the SPIE macro 
restoring the saved PL/I PICA, according to 
the macros used to cancel the PL/I error­
handling. The example in Figure 13-11 
shows how these macros are used to cancel 
and subsequently restore PL/I error­
handling. 

Arguments and Parameters 

Arguments are passed between PL/I and 
assembler routines b¥ means of lists of 
addresses known as "parameter lists". Each 
address in a parameter list occupies a 
full word in main storage. The last 
fullword in the list contains X'SO' in its 
first byte to enable it to be recognized. 

Each address in a parameter list is 
either the address of a data item or the 
address of a control block that describes a 
data item. Data items themselves are never 
placed directly in parameter lists. 

RECEIVlOO ARGUMENTS IN AN ASSEMBLER­
LANGUAGE ROUTINE 

When an assembler routine is invoked by a 
PLII routine by means of a CALL statement 
or a function reference, the assembler 
routine will receive the address of a 
parameter list in register 1. The meaning 
of the addresses in the parameter list 
depends upon whether or not the entry point 
of the assembler routine has been declared 

with the ASSEMBLER option. These two cases 
are discussed separately in the following 
paragraphs. The ASSEMBLER option is fully 
described in the language reference Ir.anual 
f or this compil er • 

Assembler Routine Entry Point Declared 
with the ASSEMBLER Option 

The ASSEMBLER option is provided to 
simplify the passing of arguments from PL/I 
to assembler routines. It s~ecifies that 
the parameter list set up by PL/I is to 
contain the addresses of actual data items, 
rather than the addresses of control 
blocks, irrespective of the types of data 
that are being passed. Thus if, for 
example, an array is passed from PL/I to an 
assembler routine, the address in the 
parameter list is that of the first element 
of the array. 

Note that if a particular data item is 
not byte-aligned (for .example;, an unaligned 
bit string), the address in the parameter 
list is that of the.byte that contains the 
start of the data item. Also, varying 
length character and bit strings are 
preceded in storage b¥ a two-byte field 
specifying the current length of the 
string, and it is the address of this 
prefix that is placed in 'the para~eter 
list. 

An assembler routine whose entry point 
has been declared with the ASSEMBLER option 
can be invoked only by means of a CALL 
statement. 

114 OS PL/I Optimizing Compiler: Programmer's Guide 



Assembler Routine Entry Point Declared 
without the ASSEMBLER Option 

If the entry point of the assembler routine 
has not been declared with the ASSEMBLER 
option, each address in the parameter list 
is either the address of a data item or the 
address of a control block, depending on 
the type of data that is being passed. 

E'or arithmetic element variables, the 
address in the parameter list is that of 
the variable itself. For all other problem 
data types, the address in the parameter 
list is that of a control block known as a 
"locator/descriptor". For program control 
data, the address in the parameter list is 
that of a control block. The formats of 
locator/descriptors and of control blocks 
for program control data are given in the 
execution logic manual for this compiler. 

It is recommended that the use of this 
type of linkage is avoided wherever 
possible. Access to locator descriptors is 
normally only necessary when the full 
attributes of the the arguments are not 
known'by the assembler routine. The use of 
function references (which cannot be used 
with the ASSEMBLER option) can be avoided 
by passing the receiving field as a 
parameter to the assembler routine. 

PASSING ARGUMENTS FROM AN ASSEMBLER­
LANGUAGE ROUTINE 

In order to pass one or more arguments to a 
PL/I routine, an assembler routine must 
create a parameter list and set its address 
in register 1. The last fullword in the 
parameter list must have x'ao' in its first 
byte. ,If the PL/I routine executes a 
RETURN(expression) statement, the last 
address in the parameter list must be that 
of the field to which PL/I is to assign the 
returned value. 

Each address in the parameter list must 

be either the address of a data iterr or the 
address of a control tlock that describes a 
data item, depending upon the type cf data 
that is being passed. For arithmetic 
element variables, the address in the 
parameter list must be that of the of the 
variable itself. For all other pretlem 
data types, the address in the parameter 
list must be that of a locater/descriptor. 
For program control data, the address in 
the parameter list must be that of a 
control block. The formats of locator 
d~scriptors and of control blocks fer 
program control data are given in the 
execution logic manual fer this cC~Filer. 

In some cases, it is possible te avoid 
the use of locator/descriptors when passing 
aggregates or strings by pretending that 
the data is an arithmetic variable. 
Suppose, for example, that an asserrtler 
routine is required to pass a fixed-length 
character string of twenty characters to a 
PL/I routine. The assembler routine can 
place the address of the character string 
itself in the parameter list, and the PL/I 
routine can be written thus: 

PP: PROC (X) ; 
DCL X FIXED, 

A CHAR (20) BASED(P); 
P = ADDR(X); 

Because X is declared to be arithmetic, 
the address in the parameter list in 
interpreted as the start of the data that 
is being passed. This address is assigned 
to P, and is subsequently used as a locator 
for the based character string A, which has 
the attributes of the data that has 
actually been passed. 

This technique will work for all data 
types except unaligned bit strings. Note 
that the dummy arithmetic parameter need 
not have the same length as the data that 
is actually being passed: it is used simply 
to enable the the passed address to be 
identified as the start of the data. 

Chapter 13: Linking PL/I and Assembler-Language Modules 175 





If you intend to use the PL/I sort 
facilities, the version of OS generated for 
your installation must include either a 
copy of the os type 1 sort/merge program 
(Program Number 360S-SM-023) or a copy of 
the os program product sort/merge program 
(Program Number 5734 SM1). The PL/I sort 
facilities make use of either os sort/merge 
program to arrange records according to a 
predetermined sequence. 

Note: If any of the data sets used by the 
sort program are to reside on an IBM 3330 
or IBM 3333 device, the OS program product 
sort/merge program (Program Number 5734 
SM1) must be used. 

The sort/merge program includes ~ 
exit points to enable user-written routines 
to be entered at particular stages during 
the sorting operation and which provide 
access to records that are being sorted. 
The PL/I sort facilities provide an 
interface to enable the sort/merge program 
to be invoked and to call PL/I procedures 
through two of the user exits, E15 and E35. 

This chapter describes the method of 
invoking sort/merge from PL/I and the use 
of the user exits E15 and E35. It should 

Ibe used in conjuction with the relevant os 
ISOrt/Merge publication. The type 1 program 
lis described in OS Sort/Merge; the program 
Iproduct is described in the publications OS 
I sort/Merge: programmer's Guide and Q§LY§ -­
ISort/Merge: Programmer's Guide. These 
lbooks are referred to collectively 
Ithroughout the remainder of this chapter as 
Inthe sort/merge publication". 

storage Requirements 

The minimum storage requirements for the 
sort program when used in conjunction with 
a PL/I program compiled by the optimizing 
compiler is 12000 bytes or 26000 bytes in 
an MVT environment. Additional storage 
requirements exist if the sort program 
handles records that are greater than 400 
bytes in length and if it uses direct­
access devices for input, output, or 
intermediate storage. Efficiency is 
enhanced if additional main storage can be 

I provided. Refer to the sort/merge 
Ipublication for further information. 

Chapter 14: PL/I Sort 

ENTRY NAMES 

A P~I Frogram invokes the sort program by 
means of a CALL statereent that narres one of 
four entry points to a PL/I sort interface 
subroutine provided by the OS PL/I Resident 
Library. The CALL staterrent also Fasses 
arguments that specifY the requirements for 
the sorting operation. The argurr,ents 
include a sequence of sort/merge control 
statements in the form of character-string 
expressions. The PL/I sort interface 
subroutine has entry pOints for four types 
of processing, shown in Figure 14-1. 

PLISRTA 

PLISRTB 

PLISRTC 

Function 

Invokes the sort/merge program 
to retrieve records frorr a data 
set (SORTIN), sort them, and 
write the~ in sorted sequence 
onto another data set 
(SORTOUT) • 

Invokes the sort/merge program 
and specifies the use of user 
exit E15. A PL/I procedure 
invoked at user exit E15 will 
supply all the records ,to be 
sorted. The sorted reccrds are 
written directly onto the data 
set SORTOUT. 

.Invokes the sort/merge program 
and specifies the use of user 
exit E35. The sort/merge 
program retrieves records from 
the data set SOR~IN. The 
sorted records are passed to a 
PL/I procedure invoked at user 
exit E35. This procedure will 
handle any output that is 
required. 

PLISRTD Invokes the sort/rrerge Frograrr: 
and specifies the use of user 
exit E15 and user exit E35. 
The use of these user exits is 
exactly as described for 
PLISRTB and PLISRTC. 

Figure 14-1. sort/merge program entry 
points 

After completion of the sort, the 
sort/merge program passes a return code to 
the invoking program to indicate whether 

Chapter 14: PL/I Sort 177 



the sort is successful or not. The 
invoking procedure must include a variable 
with the attributes FIXED BINARY(31) to 
receive this return code, and the name of 
the variable must always be included in the 
argument list of the CALL statement that 
invokes sort/merge. The return codes and 
their meaning s,· are: 

o SOrt successful 

16 sort unsuccessful 

PROCEDURES INVOKED BY WAY OF SORT USER 
EXITS 

Both external and internal PL/I procedures 
can be invoked by way of sort user exits. 
The use of external PL/I procedures should 
present no problems so long as their entry 
names are declared in the main PL/I 
procedure and they are link edited with the 
main PL/I procedure to form a single 
executable program. 

All· records passed to a PL/I procedure 
from the sort/merge program, and all 
records passed to the sort/merge program, 
must be in the form of character strings. 
A PLiI procedure invoked by way of user 
exit E35 must include a character-string 
parameter; a PL/I procedure invoked from 
user exit E15 must pass a record to the 
sort/merge program by means of a RETURN 
statement with a character-string 
expression as its argument. 

Varying-length character strings can be 
returned from an E15 exi t procedure and 
sorted as variable-length records. 

Varying-length character strings cannot 
be received as parameters in an E35 exit 
procedure. However, a variable-length 
rE~cord passed to an E35 exit procedure can 
be declared as an adjustable-length 
character string. For example: 

E35X: PROC <VREC); 
DCL VREC CHAR<*); 

A sorting operation can also be 
specified to handle fixed-length records 
when the PL/I procedure is to pass varying­
length character strings to it. In this 
situation, the strings are converted to 
fixed-length records of maximum length by 
having blanks added to them where 
necessary. 

Similarly, fixed-length character 
strings passed from a PL/I procedure can be 

converted into variable-length records and 
sorted. 

A PL/I procedure invoked ty way of a 
sort/merge user exit rrust pass a return 
code to the sort program to indicate what 
action should be taken when the PL/I 
procedure next relinquishes control. This 
is effected by invoking frorr within the 
procedure the PL/I library interface 
subroutine FLIRETC as follo~s: 

CALI. PLIRETC(n); 

where "n" can have one of the follcwing 
values to specify the action required: 

For ~rocedures invoked by means of user 
exit E15: 

8 Do not return to this ~xocedure. 

12 Include the record returned frcn 
the procedure in the sort. 

16 sto~ the sort and return immediately 
to the invoking proceduxe. (OS 
~rogram product sort/merge program 
only. ) 

For procedures invoked by neans cf user 
exit E35: 

4 Pass the next sorted record to the 
E35 procedure. 

8 Do not return to this ~xocedure. 

16 stop the sort and retuxn inrrediately 
to the invoking procedure. <OS 
program product sort/nexge program 
only. ) 

DATA SETS USED BY SORT/MERGE 

The execution step for a PL/I ~rogran that 
uses PL/I soxt requires job control DO 
statements for some or all cf the fcllowing 
data sets in addition to those required by 
the Pl./I program. 

Input Data Sets 

If the sort/merge progran is to read the 
records to te sorted from a data set, 
include a DO statement for the data set, 
using the ddname SORTIN. 

118 OS PLiI Optimizing Compiler: Programmer's Guide 



arg1 

arg2 

arg3 

arg4 

arg5 

arg6 

arg7 

arg8 

arg9 

Description 

A character string containing the 
sort/merge SORT statement; this 
statement must be preceded and 
followed by a blank character. 

A character string containing the 
sort/merge RECORD statement; this 
statement must be preceded and 
followed by a blank character. 

Amount of main storage for the 
sort/merge program. 

Name of the variable in the 
invoking procedure that is to 
receive the sort return code. 

Entry point name of the PL/I 
procedure to be invoked from user 
exit E15. 

Entry point name of the PL/I 
procedure to be invoked from user 
exit E3S. 

Replacement ddname characters (see 
the section ·Multiple Invocations 
of sort/Merge,· later in this 
chapter) • 

Diagnostic message listing option 
(see the section ·Sort/Merge 
Message Listing Options,· later in 
this chapter). 

Sorting technique option (see the 
section ·sort/Merge Sorting 
Techniques,· later in this 
chapter) • 

Figure 14-2. Arguments used when 
invoking sort/merge 

Work Data Sets 

The sort/merge program requires at least 
three magnetic-tape or direct-access data 
sets for use as intermediate storage; you 
can increase efficiency by specifying the 
direct-a.ccess data sets on separate direct­
access devices., If the volume of records to 
be sorted demands more intermediate 
storage, you can specify up to 32 data 
sets. Provide a DO statement for each work 
data set, using the ddnames SORTWK01 to 
SORTWK32. 

Output Data Sets 

If the sort/merge program is to write the 
sorted records onto an output data set, 
include a DD statement for the data set l, 

using the ddname SORTOUT. 

Other Data sets 

For the sort program to execute 
successfully, it must have access to the 
following data sets: 

SORTLIB 

SYSOUT 

The system sort/nerge program 
library. 

For sort/merge program 
diagnostic messages. 

The following data sets are needed if 
the associated facility is to be used: 

SORTCKPT 

SYSUDUMP 

PLIDUMP 

If the sort/merge program is to 
make use pf the 
checkpoint/restart facility. 

For dumps of main storage if 
required for debugging the sort 
program. 

For dumps of main storage if 
required for detugging the PL/I 
program. 

Invoking Sort/Merge from PL/I 

The sort/merge program is inveked from a 
PL/I program by one of the C~LL statements 
listed below. The nunber of argunents 
required depends on the entry name invoked. 

The arguments include sort/n.erge frogran 
control statements that define the 
processing' to be carried out and describe 
the records to be sorted. (~hen the 
sort/merge program is invoked as an 
independent job step, these centrel 
statements are submitted by way of the 
SYSIN input stream.) The centrol 
statements are described in the sort/merge 
publication. Note that the MERGE statement 
cannot be used when invoking the sert/merge 
program through the PL/I sort interface. 
The general syntax of the CALL statenent 
for each of the four entry points is: 

Chapter 14: PL/I Sort 179 



MSORT: PROC OPTIONSCMAIN): 

/* INVOKE THE SORT PROORAM FOR THE FIRST TIME */ 

CALL PLISRTA (I SORT FIELDS=(7,74,CH,A) I, 
I RECORD TYPE=F,LENGTH=(SO) I, 

100000, 
RETURN_CODE) : 

/* INVOKE THE SORT PROGRAM FOR THE SECOND TIME */ 

CALL PLISRTA (I SORT FIELDS=C7,74,CH,A) " 
, RECORD TYPE=F,LENGTB=CSO) , 
100000, 
RETURN CODE, 
'TASK'>: 

END MSORT: 

Figure 14-3. Multiple invocations 
of sort/merge 

CALL PLISRTA(arg1,arg2,arg3,arg4,arg7, 
argS,arg9); 

CALL PLISRTBCarg1,arg2,arg3,arg4,arg5, 
arg7;argS,arg9): 

CALL PLISRTCCarg1,arg2,arg3,arg4,arg6, 
arg7,argS,arg9): 

CALL PLISRTDCarg1,arg2,arg3,arg4,arg5, 
arg6,arg7,argS,arg9): 

The arguments are described in Figure 
14-2. 

I Arguments arg7, argS, and arg9 are 
I optional. If an optional argument is net 
used, it need not be specified wlless 
another argument that follows it in the 
gi ven order is specified • .- In this case, 
the unused argument must be specified as a 
null string. The following sections 
describe how to use the optional arguments. 

IMultiple Invocations of sort/Merqe 

For multiple invocations of the sort/merge 
program from a single job step, -the 
standard ddnames of sort data sets (SORTIN, 
SORTOUT, SORTWK, and SORTCKPT) can be 
changed by replacing up to the first four 
characters of the ddnames with a similar 
number of different characters. This is 
achieved by specifying the optional 
argument arg7 in the CALL statements that 
invoke the sort/merge program. For the 

invocations of the sort/merge program using 
modified ddnames, the optional argument 
should be a character string that contains 
the replacement characters. Note that the 
first character of the replacement string 
must be alphabetic. 

I For the invocation using the standard 
Isort/merge data sets, arg7 need not be 
Ispecified unless argS is specified, when 
larg7 should be specified as a null string. 

I 
I An example of multiple invocation is 
Igiven in Figure 14-3. 

In this example, the first invocation of 
the sort/merge prograrr requires tD 
statements with the following ddnames: 

/ /SORTIN DD ••• 
/ /SORTOUT DD ••• 
/ /SORTWK01 DD ••• 

The second invocation of the scrt/merge 
program requires DD statements with the 
following ddnames: 

/ /TASKIN DD ••• 
/ /TASKOUT DD ••• 
//TASKWK01 DD ••• 

180 OS PL/I Optimizing Compiler: programmer's Guide 



Isort/Merge Message Listing Options 

It is possible to select one of five 
options for specifying how the sort/merge 
program diagnostic messages are to be 
produced. The selected option can be 

Ispecified as an optional argument (arg 8) 
to the entry point used. The optional 
argument should contain a character string 
selected from those given in Figure 14-4. 

NO No messages to be printed 

AP All messages to be printed on the 
printer 

AC All messages to be printed on the 
system console 

CP Critical messages only to be printed 
on the printer 

CC Critical messages only to be printed 
on the system console 

Figure 14-4. sort/merge message 
listing options 

I If no sort/merge listing option is 
I specified, the diagnostic messages will be 
/printed in the way specified when the 
Isort/merge program was generated. 

An example of a CALL PLISRTA statement 
that does not modify the sort/merge ddnames 
but that does specify a sort/merge program 
message listing option is given in Figure 
14-5. 

CALL PLISTRA (' SORT FIELDS=C7,74,CH,A) , 
, RECORD TYPE=F,LENGTH=(80) 
100000, 
RETURN CODE, 
, , , i* NULL DDNAME ARGUMENT */ 
, Cp' ) ; 

Figure 14-5. Specifying a sort/merge 
message listing option 

Sort/Merge Sorting Techniques 

It is possible to select one of four 
sorting techniques for use by the 
sort/merge program. The techniques are 
described in the sort/merge program 
publication. The selected technique must 
be specified in an optional argument (arg 
9) to the entry point used. The optional 

argument should contain one ef the 
character strings BALN, CRCX, OSCL, or POLY 
according to the technique that is 
required. 

I If no sorting technique o~tion is 
Ispecified, the\ sort/merge program will use 
Ithe method that is most efficient for the 
Iparticular job. Specifying that a 
/particular technique is to be used could 
Itherefore cause the sort/merge operation to 
Ibe performed less efficiently. 

An example of a CALL PLISRTA statement 
that neither modifies sort/nerge ddnames 
nor specifies a sort/merge message listing 
option but that does specify a sorting 
technique is given in Figure 14-6. 

CALL PLISRTA (' SORT FIELDS=(7,74,CH,A) , 
, RECORD TYPE=F,LENGTH=(SO) 
100000, 
RETURN CODE, . , -, 

/* NULL DDNAME ARGUMENT */ 
•• , 

/* NULL LISTING OPTION ARGUMENT /* 
'POLY'); 

Figure 14-6. Specifying a sert/merge 
sorting technique option 

Examples of Using PL/I Sort 

SORTING RECORDS DIRECTLY FROM ONE DATA 
SET TO ANOTHER (PLISRTA) 

The example in Figure 14-7 illustrates the 
use of entry point PLISRTA to retrieve 
records from an input data set (SORTIN), 
sort them, and write them directly in 
sorted sequence onto an output data set 
(SORTOUT). 

The PL/I program contains the following 
elements: 

• A declaration of the variable RETURN 
CODE to receive the return code from the 
sort/merge program. 

• A CALL statement to invoke the entry 
point PLISRTA. 

• Statements to test the return code. 

The example uses the nininun of data 
sets; one for input, one for output, and 
three direct-access storage extents en a 
single disk storage drive. 

Chapter 14: PL/I Sort 181 



/ /OPT14#7 JOB 
//STEP1 EXEC PLIXCLG,PARM.PLI='SIZE(130K),OBJECT' 
//PLI.SYSIN DD * 
E X10 6: PROC OPTIONS ( MAl N) ; 

DCL RETURN_CODE FIXED BIN(31,0); 

CALL PLISRTA (' SORT FIELDS=( 7, 74,CH ,A) , 
, RECORD TYPE=F,LENGrH= (80) " 
45000, 
RETURN CODE); 

IF RETURN_CODE = 16 THEN PUT SKIP EDIT ('SORT FAILED') (A): 
ELSE IF RETURN_CODE = 0 THEN PUT SKIP EDIT ('SORT COMPLETE') 

(A) : 
ELSE PUT SKIP EDIT ('INVALID SORT RETURN CODE') (A); 

END EX106: 
/* 

//GO.SORTIN DD * 
003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD 
002886BOOKER R.R. ROTORUA, MILKEDGE LANE, TOBLEY 
003077ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR 
059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON 
073872HOME TAVERN, WESTLEIGH 
000931FOREST, IVER, BUCKS 
/* 
//GO.SORTOUT DD SYSOUT=A,DCB=(RECFM=F,BLKSIZE=80) 
//GO.SYSOUT DD SYSOUT=A 
//GO.SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR 
//GO.SORTWK01 DD UNIT=2314,SPACE=(TRK,20"CONTIG) 
//GO.SORTWK02 DD UNIT=2314,SPACE=(TRK,20"CONTIG) 
//GO.SORTWK03 DD UNIT=2314,SPACE=(TRK,20"CONTIG) 

Figure 14-7. Invoking sort/merge via entry point PLISRTA 

IUSING USER EXIT E15 TO PASS RECORDS TO 
IBE SORTED (PLISRTB) 

The example in Figure 14-8 illustrates the 
use of entry point PLISRTB to enable 
records to be supplied to the sort by a 
PL/I procedure. 

Like that in the previous example, the 
main procedure invokes the sort/merge 
program and tests the return code when 
processing is complete. Note that records 
to be sorted can be supplied only by the 
procedure invoked by way of user exit E15 
(in this case, procedure E15X). 

Each time procedure E15X is invoked by 
the sort/merge program, E1?X reads a record 
from the input stream and passes it to the 
sort after the appropriate return code has 
been passed. 

USING USER EXIT E35 TO HANDLE SORTED 
RECORDS (PLISRTC) 

The example in Figure 14-9 illustrates the 

use of entry point PLISRTC tc enable 
records to te supplied from the sort to the 
PL/I procedure E35X. As in previous 
examples, the main procedure invokes the 
sort/merge program and tests the return 
code when processing is com~lete. Each 
tirre prccedure E35X is invoked by the 
sort/merge program, it receives a scrted 
record as a parameter" prints it, and 
requests the next record frcn the 
sort/merge program ty passing it the 
appropriate return code. 

PASSING RECORDS TO BE SORTED, AND 
RECEIVING SORTED RECORDS (PLISRTD) 

The example in Figure 14-10 illustrates the 
use of entry point PLISRTD to enable 
records to be supplied to the sort from a 
PL/I procedure and sorted reccrds tc be 
supplied from the sort to a PL/I procedure. 
As in previous examples, the main prccedure 
invokes the sort/merge program and tests 
the return code when processing is 
complete. The use of the E15 user exit is 
identical to that in Figure 14-8; the use 
of the E35 user exit is identical to that 

182 OS PL/I Optimizing Compiler: Programmer's Guide 



//OPl' 14# 8 JOB 
//STEPl EXEC PLIXCLG,PARM.PLI='SIZE(130K),OBJECT' 
//PLI.SYSIN DD * 
EXI07: PROC OPTIONS (MAIN); 

DCL RETURN_CODE "FIXED BIN( 31, 0); 

CALL PLISRTB (' SORT FIELDS=(1,14,CH,A) , 
, RECORD TYPE=F,LENGTH=(80) 
45000, 
RETURN CODE, 
E15X);-

IF RETURN CODE = 16 THEN PUT SKIP EDIT ('SORT FAILED') (A); 
ELSE IF RETURN CODE = 0 THEN PUT SKIP EDIT ('SORT COMPLETE') (A): 

ELSE PUT SKIP EDIT ('INVALID SORT RETURN CODE') (A): 

E15X: /* THIS PROCEDURE OBTAINS RECORDS FROM THE INPUT STREAM */ 
PROC RETURNS (CHAR (80» : 

DCL SYSIN FILE RECORD INPUT, 
INFIELD CHAR(80) INIT(' '): 

ON ENDFILECSYSIN) BEGIN; 
PUT SKIP(3) EDIT ('END OF SORT PROGRAM INPUT') (A)i 
CALL PLlRETC(8); /* SIGNAL END OF SORT INPUT */ 
GOTO ENDE15: 
END: 

READ FILE (SYSIN) INl'O (INFIELD); 

ENDE15: 
CALL PLIRETC(12); /* INPUT TO SORT CONTINUES */ 
RETURN (INFIELD); 
END E15Xi 

END EX107i 
/* 
//GO. SYSIN DO * 
003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD 
002886BOOKER R.R. ROTORUA, MILKEDGE LANE, TOBLEY 
003011ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR 
059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON 
073872HOME TAVERN, WESTLEIGH 
000931FOREST, IVE~, BUCKS 
/* 
//GO.SORTOUT DO SYSOUT=A,DCB=(RECFM=F,BLKSIZE=80) 
//GO.SYSOUT DD SYSOUT=A 
//GO.SORTLIB DO DSN=SYS1.S0RTLIB,DISP=SHR 
//GO.SORTWK01 DD UNIT=2314,SPACE=(TRK,20"CONTIG) 
//GO.SORTWK02 DO UNIT=2314,SPACE=(TRK,20"CONTIG) 
//GO.SORTWK03 DD UNIT=2314,SPACE=(TRK,20"CONTIG) 

Figure 14-8. Invoking sort/merge via entry point PLISRTB 

in Figure 14- 9. requests no more records. 

The sequence of events is as follows: 

1. The PL/I program invokes the 
sort/merge program. 

2. The sort/merge program invokes the E15 
routine for each input record until 
the return code is set to 8. 

3. The sort/merge program invokes the E35 
routine for each sorted record until 
all the sorted records have been 
passed or until the E35 routine 

SORTING VARIABLE-LENGTH RECORDS 

The following points should l:e considered 
when sorting variable-length records: 

• The portion of a variable-length record 
that contains the control field or 
fields on which the sort is to be 
performed must be present and of the 
same length for every reccrd to l:e 

Chapter 14: PL/I Sort 183 



/ /OPT14#9 JOB 
//STEP1 EXEC PLIXCLG,PARM.PLI=' SIZE (130K) ,OBJECT' 
//PLI.SYSIN DD * 

EX108: PROC OPTIONS(MAIN)i 

DCL RETURN_CODE FIXED BIN(31,0)i 

CALL PLISRTC (' SORT FIELDS=(7,74,CH,A) " 
, RECORD TYPE=F, LENGTH= ( 80) " 
45000, 
RETURN CODE, 
E35X); -

IF RETURN CODE = 16 THEN PUT SKIP EDIT ('SORT FAILED') (A): 
ELSE IF RETURN CODE = 0 THEN PUT SKIP EDIT ('SORT COMPLETE') (A): 

ELSE PUT SKIP EDIT ('INVALID SORT RETURN CODE') (A): 

E35X: /* THIS PROCEDURE OBTAINS SORTED RECORDS */ 

/* 

PROC (INREC): 
DCL INREC CHAR(80): 
PUT SKIP EDIT (INREC) (A): 
CALL PLIRETC(4): /* REQUEST NEXT RECORD FROM SORT */ 
END E35X: 

END EXl08: 

//GO.SYSOUT DO SYSOUT=A 
//GO.SORTLIB DD DSN=SYS1.S0RTLIB,DISP=SBR 
//GO~SORTWKOl DO UNIT=2314,SPACE=(TRK,20"CONTIG) 
//GO.SORTWK02 DO UNIT=2314,SPACE=(TRK,20"CONTIG) 
//GO.SORTWK03 DD UNIT=2314,SPACE=(TRK,20"CONTIG) 
//GO.SORTIN DD * 
003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD 
002996BOOKER S.W. ROTORUA, MILKEDGE LANE, TOBLEY 
003077ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR 
059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON 
073872HOME TAVERN, WESTLEIGH 
000931FOREST, IVER, BUCKS 
/* 

Figure 14-9. Invoking sort/merge via entry point PLISRTC 

184 OS PL/I Optimizing Compiler: programmer's Guide 



//OPI'14#10 JOB 
//STEPl EXEC PLIXCLG,PARM.PLI='SIZEC130K) ,OBJECT' 
//PLI.SYSIN DD * 

EX109: PROC OPTIONS CMAIN) ; 

DCL RETURN_CODE FIXED BINC31,0); 

CALL PLISRTD (' SORT FIELDS=C7,74,CH,A) • 
, RECORD TYPE=F,LENGTB=(80) 

45000, 
RETURN CODE, 
E15X, -
E35X); 

IF REl'URN CODE = 16 THEN PUT SKIP EDIT (' SORT FAILED') (}\); 
ELSE IF RETURN CODE = 0 THEN PUT SKIP EDIT C' SOR'l' COMPLETE') CA); 

ELSE PUT SKIP EDIT ('INVALID SORT RETURN CODE') (A); 

E15X: /* THIS PROCEDURE OBTAINS RECORDS FROM THE INPUT STREAM */ 
PROC RETURNSCCHAR(80»; 

ENDE15: 

DCL INFIELD CHAR(80) INITC' I); 

ON ENDFILECSYSIN) BEGIN; 
PUT SKIP(3) EDIT ('END OF SORT PROGRAM INPUT. 

'SORTED OUTPUT SHOULD FOLLOW') (A); 
CALL PLIRETC(8); /* SIGNAL END OF SORT INPUT 
GOTO ENDE15; 
END; 

GET FILE (SYSIN) EDIT (INFIELD) (AC80»; 
PUT SKIP EDIT (INFIELD) (A); 
CALL PLIRETC(12); /* INPUT TO SORT CONTINUES */ 
RETURN (INFIELD); 
END E15X; 

E35X: /* THIS PROCEDURE OBTAINS SORTED RECORDS */ 
PROC (INREC); 

DCL INREC CHAR(80); 
PUT SKIP EDIT CINREC) (A); 

• , 

NEXT: CALL PLIRETC( 4); /* REQUEST NEXT RECORD FROM SORT */ 
END E35Xi 

END EXl09; 
/* 
//GO.SYSOUT DD SYSOUT=A 
//GO.SORTLIB DO OSN=SYS1.S0RTLIB,DISP=SHR 
//GO.SORTWKOl DO UNIT=2314,SPACE=(TRK,20"CONTIG) 
//GO. SORTWK02 DO UNIT=2314 ,SPACE= (TRK,20', ,CONTIG) 
//GO.SORTWK03 DD UNIT=2314,SPACE=(TRK,20"CONTIG) 
//GO. SYSIN DO * 
003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD 
002996BOOKER S.W. ROTORUA, MILKEDGE LANE, TOBLEY 
003077ROOKER & SON, LITT~El'ON NURSERIES, SHOLTSPAR 
059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON 
073872HOME TAVERN, WESTLEIGH 
000931FOREST, IVER, BUCKS 
/* 

Figure 14-10. Invoking sort/merge via entry point PLISRTD 

Chapter 14: PL/I Sort 185 



/ /OPT14#11 JOB 
//STEPl EXEC PLIXCLG,PARM.PLI='SIZEC130K),OBJECT' 
//PLI.SYSIN DD * 

/* PL/I EXAMPLE USING PLISRTB TO SORT VARIABLE-LENGTH RECORDS */ 
EX1306: PROC OPTIONSCMAIN): 

DCL RETURN CODE FIXED BINC31,0): 
CALL PLISRTB C' SORT FIELDS=C11,14,CH,A),WORK=4 " 

, RECORD TYPE=V,LENGTH=C84",24,44) • 
45000 
RETURN CODE, 
E15X);-

IF RETURN CODE = 0 THEN PUT SKIP EDIT ('SORT COMPLETE')CA): 
ELSE IF RETURN CODE=16 THEN PUT SKIP EDIT C 'SORT FAILED') (A): 

ELSE PUT SKIP EDIT C'INVALID RETURN CODE') CA): 
lnSX: PROC RETURNS (CHAR (80) VARYING): 

DCL STRING CHAR(80) VAR; 
ON ENDFILE(SYSIN) BEGIN: 

PUT SKIP EDIT C'END OF INPUT') CAl; 
CALL PLIRETC(8); 
GOTO ENDE15; 
END; 

GET EDITCSTRING) (A(80»; 
I=INDEXCSTRINGII' ',' ')-1; /* RESET THE LENGTH CF THE */ 
STRING = SUBSTRCSTRING,l,I); /* STRING FROM 80 TO LENGTH */ 

/* OF THE TEXT IN EACH INPUT*/ 
/* RECORD */ 

PUT SKIP EDIT(I,STRING) CF(2),XC3),A): 

/* 

CALL PLlRETC(12); 
RETURN (STRING) : 

END15: END E15Xi 
END EX1036; 

//GO.SYSIN DO * 
003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELO 
002886BOOKER R.R. ROTORUA, MILKEOGE LANE, TOBLEY 
003077ROORER & SON, LITTLETON NURSERIES, SHOLTSPAR 
059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NCRTHAMPTON 
073872HOME TAVERN, WESTLEIGH 
000931FOREST, !VER, BUCKS 
/* 
//GO.SORTOUT DD SYSOUT=A,DCB=(RECFM=V,BLKSIZE=88) 
//GO.SYSOUT DO SYSOUT=A 
//GO.SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR 
//GO.SORTWKOl DD UNIT=2314,SPACE=CTRK,20"CONTIG) 
//GO.SORTWK02 DD UNIT=2314,SPACE=(TRK,20"CONTIG) 
//GO.SORTWK03 DD UNIT=2314,SPACE=(TRK,20"CONTIG) 

Figure 14-11. Sorting variable-length records 

sorted. A sort cannot be performed on 
control fields whose length or position 
within the record is liable to alter. . 
'I'hus the control fields would be 
expected within the minimum length given 
for the records in the record statement. 

field converted into a length-field for 
variable-length records. The length 
will be the current length of the 
character string plus four bytes for the 
length field. A fixed-length string 
will have the length field added to form 
a variable-length reccrd. Consequently, 
fixed-length strings of different 
lengths can be returned frorr the same 
procedure. 

• The length of each record is recorded in 
the fi rst four byt es of the record. 
provision for this length field should 
be made when you specify the sort 
control fields in the SORT control 
statement. 

• An E35 procedure can only use adjustable 
strings to receive variable-length 
records from the sort program. 

• Varying-length strings passed from an 
E15 procedure will have the PL/I length The example in Figure 14-11 shows a 

186 OS PLII Optimizing Compiler: programmer's Guide 



program to read fixed-length (80-byte) 
records from SYSIN, convert them to 
varying-length strings, sort them, and 
print them. The maximum length of each 
variable-length record after conversion 
from a string is 84 bytes including the 
four-byte control field. The maximum block 
size for these records in the SORTOUT data 
set is 88 bytes. The sort field starts on 
byte 7 of the string. consequently, it is 
defined as starting on byte 11 of the 
record to allow tor the four-byte control 
field. 

Chapter 14: FL/I Sort 187 





The PL/I Checkpoint/Restart feature 
provides a convenient method of taking 
checkpoints during the execution of a long­
running program in a batch environment. It 
cannot be used in a TSO environment. 

At points specified in the program, 
information about the current status of the 
program is written as a record on a data 
set. If the program terminates due to a 
system failure, this information can be 
used to restart the program close to the 
point where the failure occurred, avoiding 
the need to rerun the program completely. 

This restart can be either automatic or 
deferred. An automatic restart is one that 
takes place immediately (provided the 
operator authorizes it when requested by a 
system mes~age). A deferred restart is one 
that is performed la ter a s a new job. 

You can request an automatic restart 
from within your program without a system 
failure having occurred. 

PL/I Checkpoint/Restart uses the 
Advanced Checkpoint/Restart Facility of the 
operating system. This is fully described 
in the publication Advanced 
Checkpoint/Restart. 

To use checkpoint/restart you Rust do 
the following: 

• Request, at suitable points in your 
program, that a checkpoint record is 
written. This is done with the built-in 
subroutine PLICKPT. 

• Provide a data set on which the 
checkpoint record canrbe written. 

• Also, to ensure the desired restart 
activity, you may need to specify the RD 
parameter in the EXEC or JOB statement 
(see the publication JCL Reference). 

Note: You should be aware of the 
restrictions affecting data sets used by 
your program. These are detailed in the 
publication Advanced Checkpoint/Restart. 

Writing a Checkpoint Record 

Each time you want a checkpoint record to 
be written, you must invoke, from your PL/I 
program, the built-in subroutine PLICKPT. 

Chapter IS: Checkpoint/Restart 

The CALL statement has the fcrre: 

CALL PLICKPT[(ddname[,check­
id[,org[,code]]]])]~ 

The four arguments are all optional. If 
Ian argument is not used, it need not be 
Ispecified unless another argument that 
Ifollows it in the given ~rder is specified. 
lIn this case, the unused argument must be 
Ispecified as a null string. The following 
Iparagraphs describe the arguments. 

"ddname" is a character string constant or 
variable specifying the name of the DD 
statement defining the data set that iS,to 
be used for checkpoint records. If this 
argument is omitted, the systerr will use 
the default ddname SYSCHK. 

"check-id" is a character string constant 
or variable specifying the narre that you 
want to assign to the checkpoint record so 
that you can identify it later, if 
required. - If this argument is omitted, the 
system ~ill supply a unique identification 
and print it at the operator's console. 

"org" is a character string constant or 
variable with the attributes CHARAC'tER(2) 
whose value indicates, in operating systerr 
terms, the organization of the checkpoint 
data set. PS indicates sequential (that 
is, CONSECUTIVE) organizaticn; PO 
represents partitioned organization. If 
this argument is omitted, PS is assurred. 

"code" is a variable with the attributes 
FIXED BINARY (31), which can receive a 
return code from PLICKPT. 'the retuzn code 
has the following values: 

o A checkpoint has been successfully 
taken. 

4 A restart has been successfully made. 

8 A checkpoint has not been taken. The 
PLICKPT statement should be checked. 

12 A checkpoint has not been taken. 
Check for a missing DD statement, a 
hardware error, or insufficient space 
in the data set. A checkpoint will 
fail if taken while a DISPLAY 
statement with the REPLY option is 
still incomplete or if the program is 
using multitasking. 

16 A checkpoint has been taken, but ENQ 
reacro calls are outstanding and will 
not be restored on restart. This 

Chapter 15: Checkpoint/Restart 189 



situation will not normally arise for 
a PL/I program. 

Checkpoint Data Set 

A DD statement defining the data set on 
which the checkpoint records are to be 
placed, must be included in the job control 
procedure. This ~ata set can have either 
CONSECUTIVE or partitioned organization. 
Any valid ddname can be used. If you use 
the ddname SYSCHK, you do not need to 
specify the ddname when invoking PLICKPT. 

A data set name need be specified only 
if you want to keep the data set for a 
deferred restart. The I/O device can be any 
magnetic-tape or direct-access device. 

If you want to obtain only the last 
checkpoint record, then specify status as 
NEW (or OLD if the data set already 
exists). This will cause each checkpoint 
record to overwrite the previous one. 

If you want to retain more than one 
checkpoint record, specify status as MOD. 
This will cause each checkpoint record to 
be added after the previous one. 

If the checkpoint data set is a library, 
then "check-id n is used as the member-name. 
Thus a checkpoint will delete any 
preViously-taken checkpoint with the same 
name. 

For direct access storage, enough 
primary space should be allocated to store 
as many checkpoint records as you will 
retain. You can specify an incremental 
space allocation, but it will not be used. 
A checkpoint record is approximately 5000 
bytes longer than the area of main storage 
allocated to the step. 

No DCB information is required, but you 
can include any of the following, where 
applicable: 

OPTCD=W, OPTCD=C, RECFM=UT, NCP=2, TRTCH=C 

These subparameters are described in 
Appendix A. 

Performing a Re start 

A restart can be automatic or deferred. 
Automatic restarts can be made after a 
system failure or from within the program 
itself. All automatic restarts need to be 
authorized by the operator when requested 
by the system. 

AUTOMATIC RESTART AFTER A SYSTEM 
FAILURE 

If a system failure occurs after a 
checkpoint has been taken, the auton.atic 
restart will occur at the last check~oint 
if you have specified RD=R (or omitted the 
RD parameter) in the EXEC or JOB stgtement. 

If a system failure occurs before any 
checkpoint has been taken, then an 
automatic restart, from the beginning of 
the job step, can still occur if you have 
specified RD=R in the EXEC or JOB 
statement. 

If a system failure occurs after a 
checkpoint has been taken, then you can 
still force automatic restart from the 
beginning of the job step by specifying 
RD=RNC in the EXEC or JOB statement. 

AUTOMATIC RESTART FROM WITHIN THE 
PROGRAM 

An automatic restart can be requested at 
any point in your program. The rules 
applying to the restart are the sane as for 
a restart after a system failure. To 
request the restart, you must execute the 
statement: 

CALL PLIREST; 

To effect the restart., the compiler 
termina tes the program abnornally, . with a 
system completion code of 4092. Therefore, 
to use this facility, the systeR ccn~leticn 
code 4092 must not have been deleted from 
the table of eligible codes at systen 
generation. 

DEFERRED RESTART 

To ensure that automatic restart activ~ty 
is canceled, but that the checkpoin~s are 
still available for a deferred restart, 
specify RD=NR in the EXEC or JOB statement 
when the program is first executed. 

If a deferred restart is supsequently 
required, the program mpst be submitte4 as 
a new job,. with the RESTART ~arameter ~n 
the JOB stateme~t. The RES~T parameter 
specifies the job step at which the restart 
is to be made and, if you want to restart 
at a checkpoint, the name of the checkpoint 
record. The RESTART parameter has the form: 

RESTART=(stepname[,check-idl) 

190 OS PL/I optimizing Compiler: Programmer's Guide 



For a restart from a checkpoint, you 
must also provide, immediately before the 
EXEC statement for the job step, a DD 
statement, with the name SYSCHK, defining 
the data set containing the checkpoint 
record. 

MODIFYING CHECKPOINT/RESTART ACTIVITY 

You can cancel automatic restart activity 
from any checkpoints taken in your program 
by executing the statement: 

CALL PLICANC; 

However, if you have specified RO=R or 
RD=RNC in the JOB or EXEC statement, 
automatic restart can still take ~lace frorr 
the beginning of the job step. 

Also, any checkpoints already taken will 
still be availatle for a deferred restart. 

You can cancel any a.utomatic restart, 
and also the taking of checkfoints, even if 
requested in your program, ty specifying 
RD=NC in the JOB or EXEC staterrent. 

Chapter 15: Checkpoint/Restart 191 





Appendix A: DeB Subparameters 

This appendix shows you how to code data 
set information in the DCB parameter of the 
DD statement and how to make use of 
existing DCB information. It also contains 
an alphabetic list of the subparameters 
that apply to a PL/I program. These 
subparameters are specified in the DCB 
parameter of the DO statement. Chapter 3 
shows you how to write a DD statement and 
chapter 6 shows you how to use the name 
(ddname) of the DD statement. For a full 
description of the DO statement see the job 
control language publications. 

DeB Parameter 

The DCB parameter enables you to add 
information about your data set to the data 
control block (DCB) generated when the 
associated file in' your PL/I program is 
opened. The information to be added is 
defined in one or more subparameters. 
These subparameters correspond to the 
operands of the DCB macro instruction and 
are specified in the same way. For a full 
description of macro instructions see the 
supervisor and data management macro 
instructions publication. 

Code the DCB parameter as follows: 

DCB=subparameter 

or 

DCB=(subparameter,subparameter) 

For example: 

DCB=BLKSI ZE=8 0 

DCB=(RECFM=FB,LRECL=80) 

Using Existing DeB Information 

You can use the DCB parameter to make use 
of DCB information that alrea~ exists 
either in the label of a similar data set, 
or that has been specified in. the DCB 
parameter of an earlier DD statement. 

INFORMATION IN SIMILAR DATA SETS 

You can copy DCB information from the label 
of a similar data set by coding: 

DCB=dsname 

where wdsname w is the nane of the data set 
containing the information you want to 
copy. This data set must be cataloged, it 
must be on a direct-access storage device, 
and the volume containing it must be 
mounted before execution of the job step. 

INFORMATION IN AN EARLIER DA~A SET 

You can also copy the DCB informaticn from 
an earlier DD statement in a job by coding: 

DCB= •• stepname.ddname 

where the asterisk tells the o~erating 
system that this is to be a tackward 
reference, Wstepname w is the name of the 
job step in which the earlier DD statement 
app~ars, and wddnamew is the name of the 
ear1ier DD statement. If the earlier DO 
statement is in a cataloged procedure you 
must include the procedure ste~ name as 
well as the job step name, for example by 
coding: 

DCB= •• stepname. procstepname. ddnaIre 

Overriding Existing DCB Informa tion 

If the existing QCB inforrr.ation does not 
meet your requirements exactly you can 
override any of the subparameters by 
specifying the required information in a 
new subparameter. For example, if· an 
e~isting DO statement named IN in a job 
step named COMP has the follcwing DCE 
parameter: 

DCB=CREC~=FB,LRECL=80) 

and you want LRECL to be 100, simply code: 

DCB=C •• COMP.IN,LRECL=100) 

A:t;:pendix A: DeB subparameters 193 



Subparameters of the DeB 
Parameter 

The following is a summary of those 
subparameters that can apply to your PL/I 
program. The notation used in the 
descriptions is as follows: 

II unsigned decimal integer 

indicates a choice 

{} braces indicate that you mus·t select 
one line from the items enclosed 

[] brackets indicate that the item 
enclosed is optional. 

Code capital letters and numbers exactly as 
shown. 

BLKSIZE=n 

specifies the length in bytes of a block. 
The maximum length is 32760 bytes. 

For fixed-length records, the block size 
must be an integral multiple of the record 
length (LRECL)i the minimum size is 1 byte. 

For variable-length (V-format and VB­
format) records, the block size must be at 
least eight bytes larger than the largest 
item of data that you expect to read or 
write (that is, four bytes larger than the 
record length specified in LRECL). 
However, if the records are spanned (VS­
format and VBS-format), you can specify 
block size independently of record length. 
The minimum block size for data sets on 
magnetic tape is 18 bytes. 

BUFNO=n 

specifies the number of buffers to be used 
in accessing the data set. The maximum 
number is 255 (unless another maximum has 
been determined for your installation 
during system generation). For a STREAM 
file or BUFFERED RECORD file, if you do not 
specify the number of buffers or you 
specify zero buffers, the number is assumed 
to be two. 

CODE=AIBICIFIIINIT 

specifies the code in which paper tape is 
punched. (Data is read into main storage 
and then converted from that code to 

EBCDIC. ) 

A ASCII (8-track) 

B Burroughs (7-track) 

C NCR (8-track) 

F Friden (8-track) 

I IBM BCD perfora\ed-tape transnission 
code (8-track) 

N No conversion required (F-format 
records only) 

T Teletype (5-track) 

If no code is specified, I is assuned. 

CYLOFL=n 

specifies, for an INDEXED data set, the 
number of tracks of each cylinder tc be 
reserved for the records that overflow from 
other tracks in that cylinder. The 
theoretical maximum is 99, tut the 
practical limit varies with the particular 
device. 

There must be at least one track in each 
cylinder to hold the prime data. 

DEN=0111213 

specifies the recording density for 
magnetic tape as follows: 

Bytes per inch (bpi) 

DEN 7-track 9-track 

o 

1 

2 

3 

200 

556 

800 800 

1600 

The density assumed if you omit this 
subparameter is: 

7-track: 
9-track (single density)~ 
9-track (dual density): 

200 bpi 
800 b{:i 

1600 bpi 

(Th~ subparameter TRTCB is required for 7-
track tape.~ 

194 OS PL/I Optimizing compiler: Programmer's Guide 



DSORG=ISIDA 

specifies the organization of the data set 
you are creating: 

IS (indexed sequential): INDEXED data set 

DA (direct access): REGIONAL data set 

This subparameter is not required for 
CONSECUTIVE data sets. 

FUNe: function 

specifies the fUnction or functions to be 
performed by an IBM 3525. The following 
values of "function" are valid: 

I 
R 
P 
W 
WX 

WT 
WXT 
RP 
RPD 
RW 

RWX 
RWT 
RWXT 
PW 
PWX 

PWXT 
RPW 
RPWX 
RPWXT 
RPWD 

The letters have the following meanings: 

I - Interpret 
R - Read 
P - Punch 
W - Print 
D - Data protection 
X - Printer 
T - Two-line printer 

KEYLEN=n 

specifies the length in bytes of the 
recorded key of records in INDEXED, 
REGIONAL(2), and REGIONAL (3) data sets. 
The maximum key length is 255 bytes. 

LIMCT=n 

limits the extent of the search for a 
record or s pace to add a record in a 
REGIONAL(2) or REGIONAL(3) data set beyond 
the region number specified in the source 
key. 

If you do not specify a limit, the 
search starts at the specified region and 
continues through the whole of the data 
set. 

For REGIONAL(2), LIMCT specifies the 
number of records to be searched. The 
search starts at the beginning of the track 

on which the record is situated and 
continues to the end of the track 
containing the last record to be searched. 

For REGIONAL(3), LIMCT specifies the 
number of tracks to be searched. 

LRECL=n 

specifies the length of a record in tytes; 
the maximum length is 32760 tytes for F­
format records, and 32756 bytes for V­
format records. You Rust specify a record 
length for tlocked records. 

For F-format and FB-format records, the 
record length must not exceed the bleck 
size (BLKSIZE) value; the minimmn length is 
1 byte. 

For V-format records, give the naximum 
record length including the four control 
bytes required by the operating system; the 
minimum record length for V-fcrnat records 
is 14 bytes (ten bytes of data and four 
control bytes). The record length fer V­
format and VB-format records must be at 
least four bytes less than the block size 
(BLKSIZE) value; however, for VS-format and 
VBS-format records, it can be specified 
independently of block size. 

MODE= {E I C} [OIR] 

specifies the mode of operaticn for a card 
reader cr punch. E indicates EBCDIC, and C 
indicates column binary. 0 specifies 
Optical Mark Read mode on an IBM 3505, and 
R specifies Read Column Eliminate mode on 
an IBM 3505 or 3525. 

specifies the number of channel programs 
allocated to a file when it is opened: the 
number of simultaneous input/output 
operations on the file (that is" the number 
of incomplete event variables) cannct 
exceed the number of channel programs. The 
NCP subparameter applies only to direct 
access to INDEXED data sets, or sequential 
access to CONSECUTIVE or REGIONAL data sets 
that are unbuffered. The maximum number of 
channel programs is 99 (unless another 
maximum was established for your 
installation at system generation); the 
default value assumed if you omit the 
subparameter is 1. 

Appendix A: DeB subparameters 195 



For DIRECT access to an INDEXED data 
set, simultaneous input/output operations 
in excess of the number of channel programs 
are queued until a channel program becomes 
available. 

For UNBUFFERED SEQUENTIAL access to 
CONSECUTIVE or REGIONAL data sets, the 
ERROR condition is raised if there are too 
ma.ny concurrent operations. 

The NCP sUbparameter overrides the BUFNO 
subparameter or the BUFFERS option of the 
ENVIRONMENT attribute. One buffer is 
allocated for each channel program. 

specifies, for an INDEXED data set, the 
number of tracks in the cylinder index 
referred to by each master index entry, and 
the number of tracks within each level of 
the master index referred to by each entry 
in the next higher level. The maximum 
value for n is 99. (See also OP~(,CD=M later 
in this chapt er. ) 

OPTCD=option list 

lists optional data management services. 
To indicate the services you require, code 
the appropriate letters (see below) without 
separating blanks, in place of "option 
list" (for example, OPTCD=LY) .. 

OPTCD=C requests chained scheduling, 
which improves input/output performance by 
reducing the time required to transmit 
blocks to and from auxiliary storage 
devices. In chained scheduling, the data 
management routines bypass the normal 
input/output scheduling routines and chain 
several input/output operations t.ogether; a 
series of read operations, for example, is 
issued as a single chain of commands 
instead of several separate commands. 

Chained scheduling is most useful in 
programs whose performance is input/output 
limited. If you use this feature, you 
should request at least three buffers or at 
least three channel programs. Chained 
scheduling can be used with CONSECUTIVE or 
REGIONAL SEQUENTIAL data sets; it should 
not be used for I NPUT or UPDATE with U­
format records. 

OPTCD=I requests an independent overflow 
area for an INDEXED data set: you must 
define this overflow area in a separate DD 
st.atement. 

OPTCD=L requests that a record in an 
INDEXED data set be recognized as deleted 
if its first byte contains (S)'l'B. 

OPTCD=M requests the creation of a 
master index in accordance with the 
information given in the NTM subparameter. 

OPTCD=U suppresses the raising of the 
TRANSMIT condition when an invalid 
character is passed to a printer with the 
universal character set feature. A tlank is 
printed in place of the invalid character. 

OPTCD=W requests a write validity check 
for a direct-access device. 

OPTCD=Y requests that the data 
management routines use the cylinder 
overflow area for overflow records in an 
INDEXED data set. The size of the overflow 
area is established by CYLOFL=n. 

RECFM= 

RECFM= 
{ 

F[B] 
V[B] 
U 

[S] } 
[S] [T] [A 1M] 

indicates the record forrrat as follows: 

F Fixed-length records 

V Variatle-Iength records 

U Undefined-length records 

If you do not specify a record format, 
U-format is assumed, except for PRIN~ 
files, for which V-format is the default 
assumption. 

The optional subfields are: 

B Blocked records. 

S Standard (fixed-length records only). 

S 

T 

No blocks, except possitly the last, 
will be shorter than the specified 
block size. 

Spanned (variatle-length records 
only). If variable-length reccrds are 
spanned, the record length specified 
by LRECL can exceed the block size 
specified ty BLI<SIZE; if necessary" 
the records are segrrented and the 
segments are placed in consecutive 
blocks. If the records are unblocked, 
each block contains only one record or 
segment; if the records are blocked, 
each b-lock contains as nany reccrds or 
segments as it can accommodate. 

Track overflow. Track overflow is an 

196 OS PL/I Optimizing Compiler: Programmer's Guide 



r-----------------------------------------, 
I I Data I I I 
I I conversion IParitYITranslation 
1-----------------------------------------
1 I I I 
1 c 1 Yes 1 Odd 1 No 
1-----------------------------------------
I I 1 1 
1 T 1 No I Odd I Yes 
1-----------------------------------------
1 1 1 1 
1 E I No 1 Eve niNo 
1-----------------------------------------
1 1 1.1 
1 ET 1 No 1 Eve n 1 Yes 
1-----------------------------------------
1 1 1 I 
Idefaultl No 1 Odd 1 No 
L-----------------------------------------J 
Figure A-1. Specifying tape recording 

techniques using the TRTCH 
subparameter 

operating system feature that can be 
incorporatedduring system generation. 
It allows a block to overflow from one 
track of a direct-access device to 
another. Track overflow is useful in 
achieving greater data-packing 
efficiency, and also allows the size 
of a record to exceed the capacity of 
a track. 

Note: You cannot use track overflow for 
REGIONAL(3) data sets with U-format or V­
format records or for INDEXED data sets. 

A The first byte of each record contains 
an ANS printer/punch control code. 

M The first h¥te of each record contains 
an IBM system/360 printer/punch 
control code. 

specifies for an INDEXED data set, the 
position (n) of the first byte of an 
embedded key relative to the beginning of 
the record (byte 0). RKP=O implies that 
the key is not embedded. (For example, if 
"XYZ" is the key embedded in the record 
"ABCXYZDEF", RKP=3.) 

STACK=112 

refers to a card reader or punch: 

1 All cards read or punched are to be 
fed into stacker 1. 

2 All cards read or punched are tc be 
fed into stacker 2. 

stacker 1 is assumed if you omit this 
subparameter. If you want stacker 3w 
specify the ANS machine-code character in 
the RECFM parameter of the DD statement" 
and insert the appropriate character as the 
first data byte. 

TRTCH=C IT IE lET 

is required when a data set is recorded or 
is to be recorded on 7-track tape. It 
specifies the recording technique to be 
used as shown in Figure A-i. 

Notes 

Data conversion and translation: data on 
9-track magnetic tape, like that in nain 
storage, is held in a-bit bytes, a ninth 
bit being used for parity checking; data cn 
7-track tape is helQ in the form of 6-bit 
characters with a parity bit. The 
conversion feature of the 2400 series 
magnetic-tape drives treats all data as if 
it were in the form of a bit string, 
breaking the string into grcups of six bits 
for writing on 7-track tape, or into groups 
of eight bits for reading into nain 
storage. The translation feature changes 
the form in which character data is held 
from a-bit EBCDIC to 6-bit ECD or vice 
versa. If you specifY neither conversion 
nor translation, only the last six tits of 
each a-bit byte are transmitted; the first 
two are lost on output and are set tc zero 
on input. 

Parity: odd parity checking is normally 
used in IBM system/360, but you should 
specify even parity if you want to read a 
tape that was written by a system using 
even parity, or to write a tape for a 
system that demands even parity .• 

Choice of technique: The use of a 
technique other than C restricts the 
character set in which data can be written 
if it is subsequently to be reread and 
result in the same bit configuration in 
main storage. (An 8-bit code offers 256 
possible configurations, but a 6-bit code 
only 64.) For stream-oriented or record­
oriented transmission of character strings 
or pictured data, you can use technique C 
or T: you can also specify E'I if your 
program is written in the 48-character set. 
(Seven-track tape recording systems 
indicate a zero bit by the acsence cf 

Appendix A: DCB Subparameters 197 



magnetization of the tape. Even parity 
checking does not allow the code 000000 to 
be used to represent the character zero, 
since an unmagnetized band is not 
acceptable on the tape. Therefore the code 
that would otherwise represent a colon C:) 
is used for the character zero, precluding 
the use of the full PL/I 60-character set.) 
For record-oriented transmission of 
arithmetic data, you must specify technique 
C. 

Block Size: A PL/I program cannot be used 
to access a data set on a 7-track tape 
recorded with a block size that is nct a 
multiple of four bits. For example, a 7-
track tape with a block size of 175 has 
6.175 bits, that is, 1,050 bits in each 
block and cannot be read unless it is first 
modified by the the IEBCOPY utility 
program. 

198 OS PL/I Optimizing Compiler: Programmer's Guide 



Appendix B: Compatibility with the PL/I(F) Compiler 

Some features of the PLII Optimizing 
Compiler implementation are incompatible 
with the PLII (F) Compiler implementation. 
The most significant incompatibilities are 
listed below. In every case, the 
description given is of the optimizing 
compiler implementation. Programs which 
were written for the (F) compiler and which 
use any of these features should te 
reviewed before compiling them with the 
optimizing compiler to ensure that they 
will return the same results. 

A number of the differences given here 
are also given in the general information 
manual for this compiler. The general 
information manual also contains some of 
the implementation limitations and 
res tri cti ons of this comp il er • 'II he 
language reference manual for this compiler 
gives full details of the implementation of 
each language feature. 

The (F) compiler holds the length of an 
area in the first 16 bytes of the area. 
The optimizing compiler holds the length of 
an area in a descriptor outside the area. 

Arrays and structures 

• The maximum number of dimensions in an 
array is 15. 

• The maximum depth of a structure is 15. 

Built-in Functions 

• Built-in functions are recognized on the 
basis of context only, so that all 
programmer-defined external procedures 
must be declared explicitly. Built-in 
functions and pseudovariables without 
arguments, such as TIME and ONCHAR, must 
also be declared explicitly with the 
BUILTIN attribute, or contextually with 
a null argument list, for example: 
TIME ( ). 

• For a variable to be a valid argument to 
the ADDR built-in function it must be 
connected and its left extremity must 

not lie within bytes that contain data 
belonging to other variables. 

• The ALLOCATION bUilt-in function returns 
a fixed-binary value giving the number 
of generations of the argument that 
exist in the current task. 

• The NULLO built-in functicn is net 
implemented in the optimizing compiler. 
The NULL built-in functien can be used 
for offset variables as well as for 
pointer variables. 

• The ONCOUNT built-in functicn can be 
used in anyon-unit and gives the number 
of interrupts rerraining tc be precessed 
at any stage in the execution of the 
current task. In particular, this 
includes event and non-event 1/0 and 
multiple computaticnal inte'rrupts. In 
the case of event 1/0, the value of 
ONCOUNT is the nunner of renaining 
exceptional conditions to be processed 
as a result of the executicn of the WAIT 
statement. 

• When using REGIONAL(l) organizaticn, the 
value returned by the ONKEY built-in 
function for a specification errcr 
consists of the last eight bytes of the 
source key, padded on the right with 
blanks if necessary. This value is 
returned for all 1/0 conditions ether 
than ENDFILE, or other than ERROR raised 
as standard system action for an 1/0 
condition. 

• In a RECORD 1/0 statement with the KEY 
or KEYFROM option, the ONKEY built-in 
function returns a null string when the 
ERROR condition is raised. 

• In a RECORD 1/0 statement referring to a 
KEYED file (but with no KEY, KEYFROM, or 
KEYTC option specified) the ONKEY built­
in function returns the recorded key. 

• The PROD built-in function accepts 
arguments that are arrays of either 
fixed-point or floating-point elements. 
The value returned has the same scale as 
the argument given, except for 
fractional fixed-point argun.ents for 
which the result is in floating-point. 

• If the first argument of the ROUNB 
built-in function is a string, it is 
converted to arithmetic and rounded; the 
first argument must be ccnvertible to 
arithmetic. Also, a different formula is 
used .to determine the precision cf a 

Appendix B: Compatibility With the PLII (F) Compiler 199 



fixed-point result. 

• The SUBSTR built-in function returns a 
non-varying string. 

• The SUM built-in function accepts 
arguments that are arrays of either 
fixed-point or floating-point elements. 
The value returned has the same scale as 
the argument given. 

• The arguments of the TRANSLATE built-in 
function are converted to character­
strings in all cases. 

• The first 16 bits of the result returned 
by the UNSPEC bUilt-in function for a 
varying string argument represent the 
current length of the string. 

Checkpoint/Restart 

The arguments to the function PLICKPT are 
mandatory • 

conditions 

• When used with arrays, the CHECK 
condition is raised after assignment to 
each element. The standard system 
action when an assignment is made to a 
single element of an array is to print 
the value of only the element assigned. 

• The STRINGRANGE condition is not raised 
for SUBSTR(string, i, 0) when "in is one 
greater than the length of "string". A 
nUll-string is returned. 

Control Variable in DO statement 

The pseudovariables COMPLETION, COMPLEX, 
PRIORITY, and STRING are not allowed as the 
control variable of a DO statement. 

DEFINED Attribute 

• Simple defining of strings and areas on 
a larger base is allowed. 

For example: 

DECLARE A (6) CHAR (6), 
B (3) CHAR (3) DEFINED A; 

This example will result in simple 

defining - B(l) will refer to the first 
three characters of A(l), B(2) to the 
first three characters of A(2), and so 
on. 

If string overlay defining is reqUired, 
the user must specify POSITION (1) on 
the declaration of the defined item (B 
in the example above). 

If the string lengths or tounds cf the 
defined item cannot be contained in the 
base, simple defining will be assumed. 

For example: 

DECLARE A (6) CHAR (6), 
B (7) CHAR (3) DEFINED (A); 

In this example, simple defining will be 
used tecause the bounds of array B 
exceed the bounds of array A. 

• If the .DEFINED attribute is used with an 
array of pictures, the defined item must 
match the base item exactly. 

Dependent Declarations 

Only one level of dependent declaration is 
allowed. 

DISPLAY Statement 

The maximum length of the re~ly is 72 
characters. 

Dumps from PL/I Programs 

The object-time dump facility of the (F) 
compiler, IHEDUMP, requires a DD statement 
with the ddname PLIDUMP. Its equivalent in 
the optimizing compiler, PLIDUMP, requires 
a DD statement with the ddnane PLIDUMP. 
The optimizing compiler will atteR~t to use 
PLIDUMP if PLIDUMP is not available. 

IENDPAGE Condition 
I 
I 
IWhen ENDPAGE is signaled it cannot be 
Iraised again on the same page, except by 
Ithe use of a further SIGNAL statement. 

200 OS PL/I Optimizing Compiler: programmer's Guide 



Old form 

F Cb) 
F Cb,r) 
UCb) 
VCb) 
V Cb, r) 
VBSCb,r) 
VS Cb, r) 

converted to 

F BLKSIZECb) RECSIZECb) 
FB BLKSIZECb) RECSIZECr) 
U BLKSIZECb) RECSIZECb) 
V BLKSIZECb) RECSIZECb-4) 
VB BLKSIZECb) RECSIZECr) 
VBS BLKSIZECb) RECSIZECr) 
VS BLKSIZECb) RECSIZECr) 

Figure B-1. Environment options 
recognized by the compiler 

Entry Names, parameters, and Returned 
Values 

• Each alternative entry expression in a 
GENERIC attribute is followed by a WHEN 
clause. The appearance of an entry name 
alternative does not constitute a 
declaration of the entry name. The 
alternative selected is the first for 
which each descriptor is a subset of the 
attributes of the corresponding argument 
in the generic reference. 

• 

• 

The dimension attribute is not allowed 
in a generiC descriptor. 

In general, an entry name in parentheses 
causes a dummy variable to be created: 
for the function to be invoked, a null 
argument list is required. However, an 
entry name argument in parentheses, or 
an entry name without arguments, will be 
invoked if passed to a procedure whose 
parameter descriptor for the 
corresponding argument specifies an 
attribute other than ENTRY. 

• External entry names must always be 
explicitly declared. 

• Area and string extents in the RETURNS 
attribute or option must be represented 
by a decimal integer constant. 

• The maximum depth of nesting in a 
descriptor list in the ENTRY attribute 
is 2. 

• An aggregate expression involving 
strings may not be passed as an argument 
unless there is a corresponding 
parameter descriptor in wQich all string 
lengths are specified as decimal integer 
constants. 

• An internal entry constant cannot be 
declared in a DECLARE statement. 
REDUCIBLE and IRREDUCIBLE may be 
specified on PROCEDURE and ENTRY 
statements. A scalar cannot be passed to 
an array parameter of an internal entry 

constant if the parameter's bounds are 
specified by asterisks. 

ENVIRONMENT Attribute 

• The optimizing com~iler will recognize 
and convert the previously-imJ;:lenented 
forms of the options shown in Figure B-
1, and will issue a message stating that 
they are obsolete. 

• There are two new data set 
organizations, TP(M) and ~PCR), 
associated with teleprocessing. ~PCM) 
implies the transmission cf whcle 
messages: TPCR) implies the transmission 
of records. Both are valid only for 
TRANSIENT files. These data-set 
organizations are equivalent tc the 
options GCm) and RCr) available in 
Version 5 of the PL/I CF) ccm~iler. The 
optimizing compiler will recognize and 
convert these forms of the oJ;:tions as 
shown in Figure B-2. 

Old form 

G Cm) 
RCr) 

Figure B-2. 

Converted tc 

v TPCM) RECSIZECm) 
V TP(R) RECSIZECr) 

Teleprocessing environment 
options 

Error Correction 

The error correction' logic differs from 
that used by the PL/I (F) ccn~iler. 
Invalid programs that are compiled and 
corrected by the CF) comJ;:iler nay net give 
the same results on the optimizing 
compiler. 

EXCLUSIVE Attribute 

• The EXCLUSIVE attribute in.plies only the 
RECORD attribute; DIRECT. UPDATE, and 
KEYED will apply only by default. 

• The EXCLUSIVE attribute can be used in 
non-tasking programs, and jobs in the 
system can affect each other. 

Appendix B: Compatibility With the PL/I (F) Compiler 201 



Facility 

Sort 

Checkpoint/Restart 

Return Code 
Dump 

En"try- po in t Name 

PLISRTA 
PLISRrB 
PLISRTC 
PLISRTD 
PLICKPI' 
PLIRES'I 
PLICANC 
PLIRETC 
PLIDUMP 

Figure B-3. Operating system 
facilities 

~ression EValuation 

In a concatenation operation, a BINARY 
operand is converted to BIT if the other 
operand is BINARY or BIT. 

FIXED BINARY Expressions 

The length of FIXED BINARY constants and 
intermediate results with a precision less 
than 16 is 2 bytes. The UNSPEC built-in 
function returns a result whose length is 
16 bits. 

INITIAL Attribute 

The limitations on the length of DECLARE 
statements imposes some restrictions on the 
use of the INITIAL attribute. These 
restrictions are described under "Statement 
Length" later in this appendix. 

LIKE Attribute 

The optimizing compiler does not permit a 
substructure to have the LIKE attribute 
when another substructure within the major 
structure is the object of a further LIKE 
attribute. For example: 

DCL 1 A LIKE C, 
1 B, 

2 C, 
3 0, 
3 E, 

2 F LIKE X, 
1 X, 

2 Y, 
2 Z; 

In this example, the structure A has the 
LIKE attribute which refers to substructure 
C in structure B. B also contains 
substructure F with the LIKE attribute. 

Link-editing 

Programs translated by the o~timizing 
compiler cannot be link-edited with object 
modules produced ~ the PL/I (F) compiler. 

Locked Records 

• The locking action takes ~lace at the 
data set level. 

• If an on-unit is entered as a result of 
a REWRITE or DELETE stateuent, the 
record is unlocked if the on-unit is 
terminated by a GOTO staterr.ent as well 
as normal completion. 

• The ERROR condition is raised if a file 
is closed while subtasks currently have 
records in it locked. 

• A record is not locked due to "key not 
found" or "key outside data" conditions. 

IMultitasking Programs 
I 
I 
lIn certain circumstances, it is possible 
Ifor multitasking programs compiled by the 
IPL/I Optimizing Compiler to take longer to 
lexecute than corresponding programs 
Icompiled ~ the PL/I (F) Compiler. This 
Isituation can occur if a subtask, in which 
Ino files are opened, is repeatedly called. 

I NAME Option 
I 
I 
IWhen using batched compilation to produce 
Itwo object modules that will be combined 
linto one load module, the NAME option 
Ishould net be used in the EXEC statement, 
Ibecause the options in the PARM parameter 
lapply to all procedures in the batch. 

Operating system Facilities 

• The operating system facilities for 
sorting, for checkpoint/restart, for 
generating a return code, and for 

202 OS PL/I Optimizing Compiler: Programmer's Guide 



obtaining a dump are all invoked by 
means of a CALL statement with the 
appropriate entry-point name: for 
example CALL PLISRTA. The entry point 
names, which are listed in Figure B-3, 
have the BUILTIN attribute and need not 
be declared explicitly. 

• The optimizing compiler does not 
recognize the entry names used by the 
PL/I (F) compiler, that is, IHESRTx, 
IHESARC, IHEDUMx, and IHECKPT. Existing 
programs for the PL/I (F) compiler that 
use these entry names must be amended so 
that the DECLARE statements for them are 
removed completely. 

Pictures 

ster ling picture data is not implemented. 
Therefore the following picture characters 
are not allowed: 

G, H, M, P, 6, 7 I 8. 

Preprocessor 

• Text replaced by preprocessor statements 
does not have blanks appended to either 
end of the replacement value. 

• A parameter descriptor list is not 
allowed in the declaration of a 
preprocessor variable with the ENTRY 
attribute. 

• The RETURNS attribute may not be 
specified in a preprocessor DECLARE 
statement. 

Pseudovariables 

For a varying string, the first 16 bits of 
the value of the UNSPEC pseudovariable 
represent the current length of the string. 

Record I/O 

• If READ ••• KEY is used with a sequential 
data set and no record with the 
specified key exists in the data set, 
the KEY condition is raised and the file 
is positioned at the next record in 
ascending sequence. 

• If an embedded key in a record is not 

identical to that specified in a 
WRITE ••• KEYFROM, LOCATE ••• KEYFROM, or 
REWRITE FROM ••• KEY statement, the latter 
is moved into the record. 

• READ, REWRITE, and DELETE stat~rrents are 
invalid for REGIONAL DIRECT OUTPUT 
files. 

• There is no default record forrrat for 
RECORD files (unless the file is 
associated ~ith a DDDUMMY staterrent, in 
which case the default is U-format). If 
the record format is not specified, the 
UNDEFINEDFILE condition is raised. , 

Redundant Expression Elirrination 

The optimization process of eliminating 
redundant expressions could give rise to an 
incompatibility for (F) compiler programs 
that are recompiled by the o~timizing 
compiler. If a program contains an 
expression, such as IF (A=O) I (C=D) THEN .••• 
such that the condition (A=O) is satisfied, 
the expression (C=D) is igncred. Hcwever, 
(C=D) might contain a function which, if 
not evaluated, could give rise to error. 

Return Codes 

The maximum return code that may be set 
using PLIRETC is 999. 

REWIND Option 

The optimizing compiler does not implement 
the REWIND option. Programs that use this 
option should be modified. Note that the 
function of the REREAD opti on implerrented 
by the optimizing compiler is different to 
that of the REWIND option. rrhe main 
difference is that the REREA~ option 
overrides any DISP parameter and controls 
the positioning of the magnetic tape volume 
whereas the REWIND option specifies that 
the DISP parameter is to control the 
pOSitioning of the magnetic tape volume 
according to the subparameters specified. 

Standard File SYSPRINT 

The default record characteristics are: 
record format = VBA, record length = 125, 
and block size = 129. The default number 
of buffers is two. Using the DCB parameter 

Appendix B: Compatibility with the PL/I (F) Compiler 203 



of the DD statement, record format, record 
length, block size, and the number of 
buffers can be changed to any valid value. 

The following sequence: 

DCL SYSPRINT FILE; 

OPEN FILE (SYSPRINT) ; 

wi 11 cause the UNDEFI NEDFI LE condi ti on to 
be raised. Omission of either or both 
statements will result in correct 
execution. The file should be declared 
implicitly or with the attributes STREAM 
and OUTPUT. 

Statements 

The approximate maximum number of 
statements in a program is 10,000~ 

statement Labels 

A label on a DECLARE statement is treated 
as if it were on a null statement~ 

statement Lengths 

The optimizing compiler has a restriction 
that any statement must fit into the 
compiler's work area. The rnaximuxr size of 
this work area varies with the amount of 
space available to the compiler. The 
limitations on the length of statements are 
given in Figure B-4. 

space Available Maximum Statement Length 

1012 characters 50K - 55K 
55K - 69K 
Over 69K 

Figure B-4. 

1600 characters 
3400 characters 

Statement length 
limi tations 

The DECLARE statement is an exception in 
that it can be regarded as a sequence of 
separate statements, each of which starts 
wherever a comma occurs that is not 
contained within parentheses. Fo:r example: 

DCL 1 A, 
2 B(tO,10) INIT(~,2,3, ••• ), 
2 C (10,100) INIT «1000) (0» , 
(D,E) CHAR(20) VAR, ••• · 

In this example, each line can be 
treated by the compiler as a separate 
DECLARE statement in order to accoRRcdate 
it in the work area. The compiler will 
also treat in the same way the INITIAL 
attribute when it is followed by a list of 
items separated by COR:Ir.aS that are net 
contained within parentheses. Each item 
may contain initial values that, when 
expanded, do not exceed the maximum length. 
The above also applies to the use of the 
INITIAL attribute in a DEFAULT statement. 

The (F) compiler can use up to 90K bytes 
for its work area. It is possible that 
programs with large DECLARE stateRents will 
not compile successfully on the optimizing 
compiler although they had ccrepiled 
successfully on the (F) compiler. The 
following techniques are suggested to 
overcome this problem: 

• Increase the main storage availa1:le to 
the compiler, unless it already exceeds 
69K bytes. 

• Simplify the DECLARE statement so that 
the compiler can treat the statement in 
the manner described above. 

• Modify any lists of iteres fcllowing the 
INITIAL attribute so that individual 
items are smaller and separated J:y 
commas not contained in parentheses. 
For example, the fcllowing declaration 
is followed ty an expanded form of the 
same declaration. The compiler can more 
readily accomodate the second 
declaration in its work area: 

1. DCL Y (1000) CHAR(8) 
INIT «1000) (8) • Y') ; 

2. DCL Y (1000) CHAR(8) INIT 
«250) (8) 'Y', (250) (8) 'Y', 
(250) (8) 'Y', (250) (8) 'Y"); 

Stream Transmission 

• A filemark (or end of string mark for 
the STRING option) is a valid item 
delimiter for list-directed and data­
directed input. An item thus delimited 
is processed intact, and ENDFILE (ERROR 
for string) is raised on attenpting to 
read a further item from the file or 
string. 

• After processing a GET LIST stateRent, a 
file is positioned to the next non-blank 

204 OS PL/I Optimizing Compiler: Programmer's Guide 



character or, if this is a comma, to the 
character following the comma. A GET 
EDIT statement following a GET LIST on 
the same file must take into account the 
position of the file. 

• The NAME condition (ERROR for the STRING 
option) is raised for all errors 
(including out of range subscripts) 
detected on the left-hand side of an 
item of data-directed input. 

• The COpy option causes all items to be 
copied, including any skipped by the 
SKIP option. A contextual declaration 
of SYSPRINT is caused if no file name is. 
specified for the COpy option. 

• When transmitting DATA-directed output 
to a PRINT file, data items less than or 
equal to the line size will ~ot be split 
between lines. Data items greater than 
the line size will, if possible, be 
split between the equals sign and the 
data value. 

• Execution of a PUT statement in which 
the LINE option specifies the current 
line causes the ENDPAGE condition to be 
raised unless the current column is 1. 

Varying-l~ngth Strings 

The (F) compiler initializes a varying­
length string to a null string, the 
equivalent of: 

STR = "; 

whenever such a string is allocated. The 
optimizing compiler does not perform any 
initialization of varying-length strings, 
unless the INITIAL attribute is used. 

WAIT Statement 

If a WAIT statement requires the completion 
of an inactive and inccnplete event 
variable in a non-tasking program, then 
after any 1/0 event variables naned in the 
same statement are completed, a message is 
printed and the progra.rr: is terninated. In 
a TSO environment, control passes to the 
terminal. 

Appendix B: Compatibility with the PL/I (F) Compiler 205 





Appendix C: Requirements for Problem Determination and 
APAR Submission 

When a member of IBM programming support 
personnel is called to examine the 
suspected malfunctioning of an IBM program 
product, he will first determine whether or 
not the malfunction really is a problem in 
the program product. If he decides that 
the program product is at fault, he must 
then check to see if the fault is a known 
fau! t for which he can obtain an existing 
fix-up. If the fault is not known, he must 
refer the problem to the appropriate 
program maintenance group within IBM for 
analysis and correction. The process of 
referring a problem to IBM involves 
submitting a report known as an APAR 
(Authorized Program Analysis Report), which 
must be accompanied by material to enable 
the program maintenance personnel to 
analyze the problem. 

To enable IBM program maintenance 
personnel to analyze a problem, it must be 
possible to reproduce it at the IBM program 
maintenance center. It will therefore be 
essential to supply with the APAR the 
source program to enable the problem to be 
reproduced and analyzed. Faster resolution 
of the APAR may be possible if some or all 
of the material listed in Figure C-l is 
supplied and if the source program is 
reduced to the smallest, least complex form 
that still contains the problem. 

All listings that are supplied must 
relate to a particular execution of the 
compiler, in the case of a suspected 
compiler failure, or to the relevant link 
editing and execution steps, in the case of 
the failure of the PL/I program during 
execution. Listings derived from separate 
compilations or executions are of no value 
and may, in fact, be misleading to the 
programming support personnel. 

Original Source Program 

The original PL/I source program must be 
supplied in a machine-readable form such as 
a deck of punched cards or a reel of 
magnetic tape. The copy of the program 
supplied must be identical to the listing 
that is also supplied. 

Use of the Preprocessor 

If the compilation includes preprocessing, 

the source program submitted should 
include, either as a card deck or on 
magnetic tape, the source module obtained 
by means of the compiler MDECK opticn. 

If the problem is known te have eccurred 
during preprocessing, a listing of the 
source program being preprocessed nust be 
supplied. If the preprocessing involves 
the use of the %INCLUDE statenent, a copy 
of the PL/I source statement module(s) 
included should be supplied in a nachine­
readable form. If source statenent nodules 
are not supplied in the original submission 
of the APAR, the APAR will be put into 
abeyance until they are supplied. 

Job control Statements 

Listings of job control statements used to 
run the program must be supplied. Fer OS 
installations, any local cataloged 
procedures should be shown ir. expanded 
form, obtained by specifying MSGLEVEL=l in 
the JOB statement. Where there are a large 
number of job control statements, supply 
these also in a machine-readable ferm such 
as on punched cards or on nagnetic tape. 
This will assist the program maintenance 
personnel to reproduce the problen Rere 
quickly. 

Operating Instructions/Console Log 

In the case of an execution-time failure of 
a program that processes a number of data 
sets or that operates in a ccmplicated 
environment, such as a teleprocessing 
application, it is essential that adequate 
description of the processing and the 
environment is given to enable it tc be 
recreated. Although it nay be impessible 
to supply console logs and operating 
procedures, a complete description cf the 
application, the organization of the data 
sets, and adequate operating instructions 
are vital for the IBM program maintenance 
personnel to reproduce the problem. 

Terminal Session Listing 

If a malfunction is detected during a 
conversational (TSO), session the entire 

Appendix C: Requirements for Problem Determination and APAR submission 207 



r---------------------------------------------------------------------------------------, 
Material Required 1 Compiler option 1 When Required 

Original source program 

Job Control statements 

Operating Instructions/ 
Console Log 

Terminal session listing 

LOGON procedure listing 

Listings: 
Source listing 
Cross-reference listing 
Attribute table 
Aggregate table 
Stor age table 
Compiler options 

Compiler terminal dump 

Linkage editor map 

Execution-time dump 

User subroutines 

User da ta sets 

Preprocessor input 
listing 

Preprocessor output 

Partition/Region size 

SOURCE (S) 
XREF (X) 
ATTRIBUTES (A) 
AGGREGATE (AG) 
STORAGE (STG) 
OPI'IONS (OP) 

DUMP (OU) 

MAP (linkage editor 
option) 

INSOURCE (IS) 

MDECK (MO) 

C,E,T 

C,E,T 

T 

T 

C,E,T 
C,E,T 
C,E,T 
C,E,T 
C,E,T 
C,E,T 

C,T 

E,T 

E,T 

E,T 

E,T 

P,T 

C,E,T 

C,E,T 

List of applied PTFs C,E,T 
1-------------------------------------------------------- ------------------------------
1 Note: "C" indicates the requi]~ell'ents for a compile-time error; 
1 "E" indicates requirements for an executicn-time error; 
1 "P" indicates the requirements for a preprocessor error; 
1 "T" indicates the requirements for conversational (TSO) error. 
L--------~--------------------------------------------__________________________________ J 

Figure C-l. Summary of requirements for APAR submission 

listing produced at the terminal, from 
LOGON to LOGOFF, must be supplied. If the 
failure occurs during conversational 
processing of a large program under TSO, it 
may be easier to obtain the program's 
output by listing the PRINT data set on a 
line printer. 

LOGON Procedure 

If a malfunction is detected during a 

conversational (TSO) session, a listing of 
the LOGON procedure must be supplied to 
enable the session to be reFrcduced. 

Listings 

A listing of the source Frogran is 
essential. Other compiler-generated 
listings, while not essential" Iray assist 
in producing a faster resolution of the 
APAR. If any of the comFi ler cpticns that 

208 OS PL/I Optimizing Compiler: Programmer's Guide 



must be specified in order to obtain 
material for submission with an APAR have 
been deleted at system generation, they can 
be restored for temporary use by Heans of 
the compiler CONTROL option. 

If the failure occurs during 
conversational compilation of a large 
program under TSO, it may be easier to 
obtain the required listings by running the 
compilation in a background region. 
Alternatively, the output PRINT data set 
may be printed on a line printer. 

Li nkage Editor Map 

When a problem occurs at execution time, a 
linkage editor map that was obtained when 
the copy of the program that has failed was 
link edited is essential. The linkage 
editor map will be used in the analysis of 
the storage dump that must also be obtained 
when the program failed. 

Execution-time Dumps 

If the problem occurs during execution of 
the PL/I program, a storage dump must be 
supplied. A dump can be obtained by using 
a stand-alone dump program or by using the 
the system SYSABEND or SYSUDUMP facilities. 
However, if possible, a formatted PL/I dump 
produced by the PL/I error-handling 
facilities should be provided. A PL/I dump 
is obtained by including the following 
statement in an ERROR on-unit that will be 
entered when the program fails: 

CALL PLIDUMP( 'TFHB'): 

Applied PTFs 

A list of any program temporary fixes (PTF) 
and local fixes (s/zaps) applied to either 
the compiler or its libraries must be 
supplied. The IBM service aid program 
IMAPTFLS, described in the publication OS 
service Aids, Order No. GC28-6719, can be 
used to obtain from a program library a 

listing showing those members of the 
library that have PTF or local fixes, 
provided that when the fix was made, the 
correct system status index (SSI) was 
included in the library directory. 
However, if a module contains more than one 
temporary fix, only the last fix to te 
applied will be listed by the IMAPTFLS 
program. 

submitting the APAR 

When submitting material for an APAR to 
IBM, ensure that any magnetic tapes and 
decks of punched cards that are su~~lied 
containing source programs, job stream 
data, data sets, or libraries are carefully 
packed and clearly identified. 

Each magnetic tape submitted should have 
the following information attached and 
visible: 

• The APAR number assigned ty IBM. 

• The contents of the volume (source 
program, job control statements, cr 
data, etc.). 

• The recording mode and density. 

• All relevant information about the 
labels used for the valune and its data 
sets. 

• The record format and blocking sizes 
used for each data set. 

• The name of the prograro that created 
each data set. 

Each card deck submitted must have the 
following information attached and visible: 

• The APAR number assigned ty IBM. 

• The contents of the card deck (scurce 
program, job control statements, or 
data, etc.). 

This information will ensure that a 
magnetic tape or card deck will not be lost 
if it becomes separated fron the rest of 
the APAR material, and that its contents 
are readily accessed. 

Appendix C: Requirements for Problem Determination and APAR submission 209 





Appendix D: IBM System/360 Models 91 and 196 

This appendix explains how exceptions and 
interrupts in Models 91 and 195 are handled 
by the operating system. An exception is a 
hardware occurrence (such as an overflow 
error) which can cause a program interrupt. 
An interrupt is a suspension of normal 
program activities. There are many 
possible causes of interrupts, but the 
following discussion is concerned only with 
interrupts resulting from hardware 
exceptions. 

IBM Systeml360 Models 91 and 195 are 
high-speed processing systems in Which more 
than one instruction may be executed 
concurrently. As a result, an exception 
may be detected and an interrupt occur when 
the address of the instruction which caused 
the exception is no longer held in the 
central processing unit. Consequently, the 
instruction causing the interrupt cannot be 
precisely identified. Interrupts of this 
type are termed imprecise. When an 
exception occurs, the machine stops 
decoding further instructions and ensures 
that all instructions which were decoded 
prior to the,exception are executed before 
horioring the exception~ Execution of the 
remaining decoded instructions may result 
in further exceptions occurring. An 
imprecise interrupt in whi9h more than one 
exception_has occurred,is known as a 
multiple-exception imprecise interrupt. 

The OPtimizing c.oml?iler permits 
processing 6f imprecise il,lterrupts only 
when the c9m~iler option IMPRECISE is in 
effect. This i~-':1s~ful wh.en debugging a 
program. The effect. of the option is: 

1. To cause the compiier to insert 
special "no~dperation" instructions at 
certain pc>ints in the prograro to 
localize imprecise interrupts to a 
particuiar s~gment of the program, 
thus ensuring that interrupt 
processing results in the action 
specified in the source program. 
These "no-operation" instructions are 
genera ted: 

• Before an ON-statement. 

• 
• 

• 

• 

Before a REVERT statement. 

Before internal code to set the 
SIZE condition. 

Before internal code to change 
prefix options. 

Between statements if GOSTMT or 

2. 

GONUMBER apply. 

• For a null staterrent. (This 
feature provides the ~rogranmer 
with source language control over 
the timing of program interrupts.) 

To provide facilities fer: 

• Detecting multi~le-exception 
imprecise interrupts. 

• setting the value that is required 
by the ONCOUNT built-in function. 

• Raising the appropriate PL/I 
conditions. 

The order of processing the exceptions 
is as follo\'lls: 

1. PL/I conditions in the order: 

UNDERFLOW 

FIXEDOVERFLOW or SIZE 

ERROR (if system action is required 
for either FIXEDOVERFLOW or SIZE) 

FINISH (if system action is required 
for the previous ERROR condition) 

OVERFLOW 

ERROR (if systero acticn is required 
for OVERFLOW) 

FINISH (if system action is required 
for the previous ERROR condition) 

ZERODIVIDE 

ERROR (if systeR acticn is required 
for ZERODIVIDE) 

FINISH (if system action is required 
for the previous ERROR condition) 

Note: The conditions FIXEDOVERFLOW and 
SIZE cannot occur together, because the 
same'hardware condition raises both of 
them. 

Appendix D: IBM System/360 Models 91 and 195 211 



2. Hardware exceptions in the order: 

data 

specification 

addressing 

protection 

Conditions and exceptions are raised in 
the above order until one of the following 
si tuations occurs: 

• A GO TO statement in an on-unit is 
executed. All other exceptions will 
then be 10 st. 

• The ERROR condition is raised. If the 
program is terminated as a result of 
this action (that is, system action 

causing the ERROR conditicn to be 
raised, followed qy the FINISH 
condition), messages will be printed to 
indicate the nature of the unprocessed 
exceptions. The excepticns thenselves 
will not be processed. 

When an interrupt results from rr:ultiple 
exceptions, only one of the PL/I conditions 
is raised for each type of exception that 
occurred. 

When a multiple-exception imprecise 
interrupt occurs, the ONCOUNT built-in 
function provides a binary integer ccunt of 
the number of exception types (that have 
PL/I on-conditions associated with them) 
that remain to be processed. If the 
ONCOUNT built-in function is used when only 
a single exception has occurred, or if it 
is used outside an on-unit, a count value 
of zero is indicated. 

212 OS PL/I Optimizing Compiler: Progranuner' s Guide 



Appendix E: Shared Library Cataloged Procedures 

The shared library is a PLII facility that 
allows an installation to load PL/I 
resident library modules into the link pack 
area (LPA) so that they are available to 
all PL/I programs. This reduces space 
overheads. 

The resident library subroutines to be 
included in the shared library can be 
chosen by the installation: they must 
include the initialization routine, the 
error-handling routine, the open file 
routine, and all modules addressed from the 
TCA that are not identical for multitasking 
and non-multitasking programs. Further 
details of the shared library are given in 
the publications OS PL/I Optimizing 
Compiler: Execution Logic and OS PL/I 
Optimizing Compiler: system Information. 

The routines in the shared library are 
held in t\«) of three link-pack;"'area 
mOdules: IBMBPSM, and either IBMBPSL or 
its mul ti tasking equivalent IBMl'PSL. Each 
of the link-pack modules contains a number 
of library routines, and is headed by an 
addressing control block known as a 
transfer vector. IBMBPSM contains those 
modules in the shared library that are 
common to both multitasking and non­
multitasking PL/I environments. IBMBPSL 
contains the non-multitasking version~ of 
those modules that are not identical in 
mUltitasking and non-multitasking PL/I 
environments. This module has a 
multitasking counterpart, IBMTPSL, which 
holds the multitasking versions of such 
modules. 

Two further modules are also involved in 
handling the shared library. These are the 
shared library addressing modules IBMBPSR 
and its multitasking counterpart IBMTPSR. 
One or other of these modulesi each of 
which has the alias PLISHRE, is link-edited 
with compiled code and held in the program 
region: IBMBPSR for non-multitasking 
programs, or IBMTPSR for multitasking 
programs. IBMBPSR and its multitasking 
counterpart hold dummy entry points which 
duplicate the names of all entry points of 
modules within the shared library. 
References to such entry points in compiled 
code are resolved to the dummy entry points 
in IBMBPSR or IBMTPSR. 

You can use the shared library by using 
standard IBM-supplied cataloged procedures 
and overriding the link-edit and loader 
procedure steps. 

Execution when Using the Shared Library 

Vse of the shared library is s~ecified by 
the linkage editor statement INCLUDE 
PLISHRE. PLISHRE is an alias for the 
program region modules IBMBPSR and IEMTPSR. 
The appropriate module will therefore be 
loaded by the linkage editor (IEMBPSR for 
non-multitasking programs; IBMTPSR fer 
multitasking programs). All compiled code 
external references to shared library 
module entry points are then resolved to 
the dummy entry points in IBMBPSR (er 
IBMTPSR). Similarly WXTRNs in the program 
region module are resolved if compiled code 
issues an EXTRN for the entry point. 

A load module created for use with one 
shared library will not execute with a 
different shared library. Yeu will have to 
link-edit the object module again, 
including the dummy transfer vector nodule 
for the different shared library. 

You must remember that the linkage 
editor or loader require a large aneunt of 
main storage for external symbol dictionary 
tables while processing the dURmy transfer 
vector module. If you specify SIZE=200K in 
the PARM field of your EXEC statement for 
the linkage editor or loader (and use a 
region or partition of eqUivalent size),. 
you will get sufficient Rain strirage for 
processing with the largest possible shared 
library. 

Your PL/I program may take slightly 
longer to execute when using a shared 
library, because all library calls have to 
pass through the transfer vectors. 
However, your main sto:t;age requi,rerr.ents for 
a region will be greatly reduced if you 
have carefully selected your shared library 
modules to suit the operating environment. 

Multitasking Considerations 

The shared library has been designed so 
that multitasking does not affect it. If 
PLI.TASK is specified before PLI.EASE, the 
linkage editor statenent INCLUDE.PLISBRE 
will result in the module IBMl'PSR being 
loaded and linked in the prcgran. region. 
When control passes to the code following 
the IBMBPIR entry point in IBMTPSR, a 
request is made to the systeR to load the 
multitasking shared library module IBMTPSM. 
The program then runs in the "lSUa 1 nanner,· 

Appendix E: Shared Library Cataloged Procedures 213 



with the multitasking modules. 

An installation may specify that it does 
not require either the multitasking or the 
non-multitasking modules in the shared 
library. However both multitasking and 
non-multitasking versions of the program 
region module will still be created. The 
module for the unwanted environment will be 
a dummy. This prevents problems should an 
INCLUDE PLISHRE statement be included in a 
program that is intended to run in the 
environment with no shared library. If 
this process was not carried out, such a 
statement could result in the incorrect 
environment being initialized. 

USING STANDARD IBM CATALOGED PROCEDURES 

Standard IBM-supplied cataloged procedures 
that use the linkage editor or loader (see 
Chapter 11) can be used to specify the 
shared library. This is done by overriding 
the SYSLIN DO statement in the link-edit or 
load-and-go procedure steps to ensure that 

the shared library addressing rrodule 
IBMBPSR is the first module to be included 
by the linkage editor or loader and that 
its entry point in the resulting load 
module has the name PLISHRE. For example, 
the cataloged procedure PLIXCL requires the 
follo'Ning staterrents to rrake use of the 
shared library. 

//STEP1 
//Ll<ED.SYSIN 

INCLUDE 

EXEC PLIXCL 
DD * 
SYSLIB(PLISHRE) 

(add further input here) 

/* 

You can add other linkage-editor control 
statements by placing there as indicated. 
For example, to give the resulting load 
module the name MINE, add the staterrent: 

NAME MINE(R) 

between the ENTRY and /* staterrents. 

214 OS PL/I Optimizing Compiler: Programmer's Guide 



Appendix F: Programming Example 

This appendix, consisting of a PL/I sample 
program, illustrates all the components of 
the listings produced by the compiler and 
the linkage editor. The listings 
themselves are described in Chapters 4 and 
5. 

The function of the program is fully 
documented in both the preprocessor input 
and the source listing by means of PL/I 
comments. These comments consist of lines 
of text each preceded by 1* and followed by 
*1. Note that the 1* must not appear in 
columns 1 and 2 of the input record because 
it will be taken as a job control delimiter 

statement. 

Most pages of the listings ccntain brief 
notes explaining the contents of the pages. 

TRANSIENT LIBRARY MODULES IN THE LINK 
PACK AREA 

Any module in the PL/I Transient Litrary 
may be placed in the link pack area (LPA) 
without any change in ~rccedure. 

Appendix F: programming Example 215 



PL/I OPTIMIZING COMPILER VERSION 1 RELEASE 2.0 

OPTIONS SPECIFIED Ci) 
AG,A,C,ESD,GS,LIST,M,MAP,OF,IS,STG,SYN,X,MAR(2,72,1),LC(5S) 

OPTIONS USED CD 
AGGREGATE 
ATTRIBUTES 
COMPILE 
ESD 
GOSTMT 
INSOURCE 
LIST 
LMESSAGE 
MACRO 
MAP 
NEST 
OBJECT 
OFFSET 
OPTIONS 
SOURCE 
STMT 
S'IORAGE 
SYNTAX 
XREF 

NOCOUNT 
NO DECK 
NOFLOW 
NOGONUMBER 
NOIMPRECISE 
NOINCLUDE 
NOMARGINI 
NOMDECK 
NONUMBER 
NOTERMINAL 

CHARSET(60,EBCDIC} 
FLAG (I) 

LINECOUNT(5S) 
MARGINS(2,72,1) 
OPTIMIZE(TIME) 
SEQUENCE(73,80) 
SIZE(101584) 

TIME: 21.15.03 DATE: 13 APR 73 

Start of the compiler listing. 

List of options specified in the 
PARM parameter of the EXEC 
statement. 

List of options used, whether 
obtained by default, or by being 
specified explicitly. 

PAGE 1 



)II 
't1 
"0 
I'D ::s 
0. 
1-'. 
>< 
~ .. 
I'tJ 
11 
0 

\.Q 
11 

& .... 
::s 

\.Q 

tz:I 
>< 
~ 
"0 
~ 
I'D 

tv .. 
....a 

PLII OPTIMIZING COMPILER 1***** PLII SAMPLE PROGRAM. *****1 

LINE 
1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

PREPROCESSOR INPUT 

1***** PL/I SAMPLE PROGR~M. *****1 00269040 

%1*******************************************************************1 00269050 
00269060 
00269070 
00269080 
00269090 
00269100 
00269110 

1* *1 
1* USES COMPILE-TIME PREPROCESSOR TO MODIFY PL/I (F) SOUR2E FOR *1 
1* USE WITH THIS COMPILER. THE PREPRO:ESSOR ST~TEMENTS ~OLLO~ING *1 
1* COULD BE PLACED ON A LIBRARY AND USED TO MODIFY SEVERAL SOURCE *1 
1* PROGRAMS BY ME~NS OF THE PREPROCESSOR %INCLUDE STATEMENT. THEY *1 
1* PERFORM THE FOLLOWING FUNCTIONS: *1 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 

1. CONVERT CALLS TO FOLLOWING PLII (F) IHE ••. ROUTINES TO THE 
EQUIVALENT NEW PLI •.•• ROUTINES­

IHEDUMP/J/C/T TO PLIDUMP, 
IHESRTAIBICID TO PLISRT~/B/2/D, 
IHECKPS/T TO PLICKPT, 
IHERESNIT TO PLIREST/PLI:ANC, 
IHESARC/IHETSA2 TO PLIRET2. 

*1 00269120 
*1 00269130 
*1 00269140 
*1 00269150 
*1 00269160 
*1 00269170 
*1 00269180 
*1 00269190 
*1 00269200 

2. CHANGE FIRST DECL~RE/D2L ST~TEMENT FOUND TO INCLUDE *1 00269210 
00269220 
00269230 
00269240 

BUILTIN ATTRIBUTE FOR FOLLOWING BUILT-IN FUNCTIONS(WHICH *1 
DO NOT TAKE ~RGUMENTS, AND SO ~RE NOT IMPLICITLY DECL~RED *1 
BUILTIN FOR THIS COMPILER - AS THEY WOULD BE FOR PL/I (F»- *1 

NOTE: 

DATE, TIME, ONCODE, ONCH~R, ONSOURCE, ONLOC, 
ONFILE, ONKEY, EMPTY, NULL. 
THE ONCOUNT ElF IS OMITTED FROM THIS LIST, 6 IS USED 
LATER TO SHOW THE EFFECT OF NOT DECLARING IT BUILTIN. 
ANY REFERENCES TO IHE--- ROUTINES MUST BE REMOVED 
FROM DECLARE STATEMENTS BEFORE THE SOURCE PROGR~M IS 
PREPROCESSED, OTHERWISE F~ILURES MAY OCCUR wHEN THE 
CONVERTED PROGRAM IS LINK-EDITED. 

3. CHANGE 'NULLO' TO 'NULL' - THERE IS NO NULLO BUILTIN 
FUNCTION FOR THIS COMPILER; NULL MUST BE USED BOTH wITH 
POINTER AND OFFSET VARIABLES. 

*1 00269250 
*1 00269260 
*1 00269210 
*1 00269280 
*1 00269290 
*1 00269300 
*1 00269310 
*1 00269320 
*1 00269330 
*1 002693(10 
*1 00269350 
*1 00269360 
*1 00269370 

1*******************************************************************1;00269380 

Source statements for the sample 
program, exactly as they appear in the 
input stream. These statements form 
the input data for the preprocessor. 
Preprocessor statements are identified 
by the % symbol. 

1. The first line of the input is 
included as part of the heading 
for all pages of the preprocessor 
and compiler listing. 

2. Each input record is numbered 
sequentially. 

3. If an input record has a sequence 
number, this number is printed • 

P~GE 2 



PL/I OPTIMIZING COMPILER 1***** PL/I SAMPLE PROGRAM. *****1 PAGE 3 

LINE 
36 % DCL (IHEDUMP, IHEDUMJ, IHEDUMC, IHEDUMT, DECLARE, DCL, 00269390 
37 IHECKPT, IHECKPS) ENTRY; 00269400 

38 % DCL (IHESRTA" IHESRTB, IHESRTC, IHESRTD, IHEREST, 00269410 
39 IHERESN. IHESA.RC, IHETSA.C, NULLO) CHA.R; 00269420 

40 " DCL COUNT FIXED; 00269430 

41 % COUNT = 0 1* FIRST-TIME-IN mnrCH. *1;00269440 

42 % DEACTIVATE DECLARE, DCL 1* ENSURE MODIFIED STA.TEMENTS *1;00269450 
43 " ACTIVA.TE DECLARE, 1* A.RE NOT RESCA.NNED DURIN3 *1 00269460 
44 DCL NORESCAN 1* PREPROCESSOR REPLA.CEMENT. *1;00269470 



:III 
It1 
"0 
(I) 
:3 
g. 

~ 
tid 

tV 
11 
0 

I.Q 
11 

6 
!;" 

I.Q 

till 
)C 

~ ... 
(I) 

I'.J 
I-' 
\D 

PL/I OPTIMIZING COMPILER /***** PL/I SAMPLE PROGRAM. *****/ 

LINE 
45 
46 
41 
48 
49 
50 
51 
52 
53 

54 
55 
56 
51 
58 
59 

60 
61 
62 
63 
64 
65 
66 
61 
68 
69 
10 

11 
12 
13 
14 
15 
16 
11 
18 

19 
80 

81 

I DECLARE: OCL: /* GENERATE BUILTIN DECLARES. 
PROC RETURNS(CHAR): 
COUNT = COUNT + 1 /* COUNT = 1 IF 1ST TIME IN. 
IF COUNT = 1 

THEN RETURN('OCL (DATE,TIME,ONCHAR,ONSOURCE,ONCODE,' I I 
'ONLOC,ONFILE,ONKEY,EMPTY,NULL) BUILTIN, , I I 
'CKPT RETC FIXED -BIN(31),'); 

ELSE RETURN('OCL'); 
I END: 

I IHEDUMP: IHEDUMJ: IHEDUMC: IHEDUMT: /* REPLACED BY CALL ro 
PROC(ID#) RETURNS(CHAR) /* PLIDUMP ROUTINE, INCLUDING 
DCL 10# CHAR /* ORIGINAL IDUF PRESENT). 
IF 10# " THEN RETURN('PLIDUMP'); 

*/ 00269480 
00269490 

*/;00269500 
00269510 
00269520 
00269530 
00269540 
00269550 
00269560 

*1 00269570 
*/i00269580 
*li00269590 

00269600 

END: 
ELSE RETURN('PLIDUMP("TFCA",'" I I 10# II "')');00269610 

00269620 

I IHECKPS: IHECKPT: /* CHANGE TO PLICKPl'. PL/I(F) 
PROC(ARGr, ARG2. ARG3, ARG4) /* DEFAULTS GENERATED WHERE 

RETURNS (CHAR) /* NO AR;UMENTS ORI:;INALLY. 
DeL (ARG1, ARG2. ARG3, ARG4) CHAR; 
IF ARG1 I' THEN AR31 "'SYSCHK~"; 

IF ARG2 II THEN ARG2 "·'~'i 
IF ARG3 ., THEN ARG3 = , "PS"'; 
IF ARG4 "THEN ARG4 = , CKPT RETC'· 
RETURN('PLICKPT(' II ARG1 II ',T II A~:;2 I I ',' 

II ARG3 II ",' II ARG4 II ')') i 
END; 

IHESRTA 'PLISRTA' 1* REPLACE 
IHESRTB 'PLISRTB' /* CALLS TO 
IHESRTC 'PLISRTC' 1* IHE---
IHESRTD 'PLISRTD' /* ROUTINES 
IHEREST 'PLIREST' 1* BY 
IHERESN ' PLICANC' /* CALLS TO 
IHESARC ' PLIRETC" 1* PLI ... --
IHETSAC 'PLIRETC' /* ROUTINES. 

THERE IS NO NULLO BUILTIN FUNCTION FOR THIS COMPILER; 
NULL MUST BE USED INSTEAD. 

NULLO = 'NULL' i 

*1 00269630 
*/ 00269640 
*li00269650 

00269660 
00269670 
00269680 
00269690 
00269700 
00269710 
00269720 
00269730 

*li00269740 
*/;00269750 
*li 00 269760 
*/i00269770 
*1;00269780 
*/i00269790 
*li00 269800 
*/i00269810 

00269820 
*/i00269830 

00269840 

PAGE 4 



PL/I OPTIMIZING COMPILER / ••••• PL/I SAMPLE PROGRAM •••••• / 

LINE 
82 

83 
84 

85 

86 

87 
88 
89 

90 
91 
92 
93 
94 

95 
96 
97 

98 
99 

100 
101 
102 

103 
104 
105 
106 
107 
108 

$/. END OF PREPROCESSOR STATEMENTS; SOUR~E STATEMENTS FOLLOW HERE: ./:00269850 

SAMPLE: 
PROC OPTIONS(MAIN): 

DECLARE (PDATE, PTIME) CHAR(6): 

DECLARE CVAR CHAR(255) VAR: 

DCL 1 BINVAR, 
2 RETCODE FIXED BIN(31,0), 
2 FBVAR FIXED BIN: 

PDATE = DATE; 
PTIME = TIME: 
PUT SKIP EDIT(ISAMPLE PR03RAM: DATE = I, PDATE, I, rIME = I, 

PTIME) (A(23), p I 99/99/99-, A(9), P·Z9.99.99 1
); 

RETCODE = 0101: 

ON ERROR 
BEGIN: 

CALL IHEDUMP; 

/. THESE STATEMENTS ILLUSTRATE PREPROCESSOR REPLACEMENT AND USE OF 
BUILTIN FUNCTIONS. THEY WILL NEVER BE EXECUTED. 

CALL IHEDUMJ(127); 
CALL IHEDUMC(RETCODE); 
CALL IHEDUMT: 

FBVAR = ONCODE: 
CVAR = ONCHAR; 
CVAR = ONSOURCE; 
CVAR = ONLOC; 
CVAR ONFILE: 
CVAR = ONKEY: 

00269860 
00269870 

00269880 

00269890 

00269900 
00269910 
00269920 

00269930 
00269940 
00269950 
00269960 
00269970 

00269980 
00269990 
00270000 

00270010 
·/00270020 

00270030 
00270040 
00270050 

00270060 
00270070 
00270080 
00270090 
00270100 
00270110 

5 



>' 
tr1 
"0 
(1) 
::s 
Q, 
\oft 
~ 

~ .. 
I'd 
t1 
0 

I.Q 
t1 

i 
\oft 
::s 

I.Q 

tzJ 
~ 

~ 
't1 .... 
(1) 

I\) 
I\) 

~ 

PL/I OPTIMIZING COMPILER /..... PL/I SAMPLE PROGRAM. • •••• / 

LINE 
109 
110 
111 

112 
113 

114 
115 
116 

117 
118 

119 
120 
121· 
122 

123 
124 
125 

126 
127 
128 
129 
130 
131 
132 
133 
134 

135 
136 
137 

138 

139 
140 

141 

/. THIS STATEMENT, WHICH WILL NEVER BE EXECUTED, USES 'ONCOUNT' nHICH 00270120 
IS NEITHER EXPLICITLY NOR IMPLICITLY DECLARED BUILTIN. THE EFFECT 00270130 
IS SHOWN IN THE ATTRIBUTE LISTING AND DIAGNOSTIC MESSA:;ES. ./00270140 

FBVAR = ONCOUNT; 
END; 

/. THIS IS A DUMMY PROCEDURE TO ILLUSTRATE OTHER PREPROCESSOR 
REPLACEMENTS/NON-IMPLICITLY DECLARED BUILTIN FUNCTIONS. 
IT WILL NEVER BE EXECUTED. 

DUMMY: 

A: 

B: 

PROC; 

DeL AVAR AREA BASED(PV~R), 
OVAR OFFSET(AVAR), 
A ENTRY RETURNS(CHAR(80», 
SIZE FIXED BIN(31,0); 

AVAR EMPTY; 
PVAR = NULL; 
OVAR = NULLO: 

CALL IHESRTA('ARG1', 'ARG2', 
CALL IHESRTB (' ARG1:', 'AR32', 
CALL IHESRTC('ARG1', 'ARG2', 
CALL IHESRTD('ARG1', 'AR32', 
CALL IHECKPS('ARG1', 'ARG2', 
CALL IHECKPT; I. CHECKPOINT 
CALL I HEREST : 
CALL IHERESN: 
CALL IHETSAC(RETCODE); 

SIZE, RETCODE); I. S 
SIZE, RETCODE, A)i 1* 0 
SIZE, RETCODE, B)i I. R 
SIZE, RETCODE, A. B)i 1* T 
'PS', RETCODE); 1* CHECKPOINT 
*1 

1* FORCE RESTRr 
1* CANCEL CKPT 

1* SET RETURN CODE(TASKING) 

PROC RETURNS(CHAR(80»: END; 1* 
1* 
1* 

DUMMY EXIT 
PROCEDURES 
FOR SORT. PROC(RECORD); DCL RECORD CHAR(80): END: 

END DUMMY: 

00270150 
00270160 

00270170 
00270180 

*/00270190 

00270200 
00270210 

00270220 
00270230 
002702110 
00270250 

00270260 
00270270 
00270280 

·/00270290 
*/00270300 
*/00270310 
*/00270320 
*/00270330 

00270340 
*/00270350 
*/00270360 
*/00270370 

*/00270380 
*/00270390 
*/00270400 

002701110 

CALL IHESARC(RETCODE): 1* SET RETURN CODE(NONTASKING) */00270420 
PUT SKIP LIST('END SAMPLE PR03R~M'): 00270430 

END SAMPLE: 00270440 

P~GE 6 



o 
en 

~ 
1-1 

o 

PL/I OPTIMIZING COMPILER /..... PL/I SAMPLE PROGRAM. • •••• / PAGE 

PREPROCESSOR DIAGNOSTIC MESSAGES 

G) 0 0 
ERROR 10 L LINE MESSAGE DESCRIPTION 

~ SEVERE AND ERROR DIAGNOSTIC MESSAGES .... 
!9 .... 
N .... 
l:S 

\Q 

(') 

~ 
"0 .... 
..... 
(1) 
Ii 

IEL02171 E 97 MISSING LEFT PARENTHESIS FROM ARGUMENT LIST FOR PROCEDURE 'IHEDUMP'. PROCEDURE INVOKED WITHOUT 
ARGUMENTS. 

IEL02171 E 102 MISSING LEFT PARENTHESIS FROM ~R~UMENT LIST FOR PROCEDURE 'IHEDUMT' • PROCEDURE INVOKED WITHOUT 
ARGUMENTS. 

IEL02171 E 131 MISSING LEFT PARENTHESIS FROM AR3UMENT LIST FOR PROCEDURE 'IHECKPT'. PROCEDURE INVOKED WITHOUT 
ARGUMENTS. 

WA~NING DIAGNOSTIC MESSAGES 

IEL01841 W 97 TOO FEW ARGUMENTS TO FUNCTION 'IHEDUMP'. NULL STRINGS PASSED AS MISSING ARGUMENTS. 

IEL0184I N 102 TOO FEW ARGUMENTS TO FUNCTION 'IHEDUMT'. NULL STRINGS PASSED AS MISSING AR3UMENrS. 

IEL01841 iJ 131 TOO FEW ARGUMENTS TO FUNCTION 'IHECKPT". NULL STRIN3S PASSED AS MISSING ARGUMENTS. 

END OF PREPROCESSOR DIAGNOSTIC MESSAGES 

Diagnostic messages generated by the 
preprocessor. All messages generated 
by the optimizing compiler (including 
the preprocessor) are documented in 
the publication OS Optimizing Compiler: 
Messages. 

"ERROR 10" This identifies the 
message as originating from the 
optimizing compiler (IEL), and 
gives the message number. 

"L" This is the severity level of 
the message. 

"LINE" This gives the number of 
the line in which the error 
occurred. _L ________________________________________ _ 

7 



PL/I OPTIMIZING COMPILER /..... PL/I SAMPLE PROGRAM. • •••• / 

SOURCE LISTING 

o 
STMT LEV NT 

/ ••••• PL/I SAMPLE PROGRAM. • •••• / 
1 o SAMPLE: 

PROC OPTIONS(MAIN); 

(3) 
00269040 
00269860 
00269870 

o 
R 

2 1 0 DCL (DATE,TIME,ONCBAR,ONSOURCE,ONCODE,ONLOC,O~FILE,ONKEy,EMPTY,00269880 2 

3 

5 
6 
7 

8 

9 

10 

11 
12 
13 

14 
15 
16 
17 
18 
19 

1 0 

1 0 

1 0 
1 0 
1 0 

1 0 

1 0 

2 0 

2 '0 
2 0 
2 0 

2 0 
2 0 
2 0 
2 0 
2 0 
2 0 

NULL) BUILTIN, CKPT_RETC FIXED BIN(31), (PDATE, PTIME) CBAR(6); 00269880 1 

/. 

DCL CVAR CBAR(255) VAR; 

DCL 1 BINVA-R, 
2 RETCODE FIXED BIN(31,0), 
2 FBVAR FIXED BIN; 

PDATE = DATE; 
PTIME = TIME; 
PUT SKIP EDIT('SAMPLE PROGRAM: DATE = ", PDATE, ", TIME = ", 

PTIME) (A-(23), P"99/99/99', A-(9), P"Z9.99.99"l; 
RETCODE = 0101; 

ON ERROR 
BEGIN; 

CALL PLIDUMP; 

THESE STATEMENTS ILLUSTRATE PREPROCESSOR REPLACEME~T 
BDILTIN FUNCTIONS. THEY WILL NEVER, BE EXECUTED. 

CALL PLIDUMP(-TFCA','127"); 
CALL PLIDUMP('TFCA","RETCODE'); 
CALL PLIDUMP; 

FBVAR = ORCODE; 
CVAR 
CVAR 
CVAR 
CVAR 
CVAR 

ONCBAR; 
ORSOURCE; 
ONLOC; 
ONFILE; 
ONKEYi 

r----------------------------------------, 
I Source listing. This is the output I 
I from the preprocessor and the input to I 
I the compiler. All the preprocessor I 
I statements have been executed and all I 
I preprocessor comments have been I 
I deleted I 

Statement nesting levels. 

Line numbers brought forward from 
the preprocessor input. 

I 
I 
I 
I 
I 
I 
I 0 Maximum depth of replacement. 
I 
I (!) -E- in this column indicates that 
I an error has occurred during a 
I replacement attempt. L _______________________________________ _ 

AND USE OF 

00269890 2 

00269900 1 
00269910 
00269920 

00269930 
002699110 
00269950 
00269960 
00269970 

00269980 '4' 
00269990 \:!I 
00270000 lE 

00270010 
·/00270020 

00270030 1 
00270040 1 
00270050 lE 

00270060 
00270070 
00270080 
00270090 
00270100 
00270110 

PAGE 8 



o 
CIJ 

'tI 

~ 
H 

o 
?f 
~. 

a 
~. 

N 
~. 
!j 

lQ 

o 
o a 
'0 .... 
..... 
(J) 
t1 .. 

PL/I OPTIMIZING COMPILER /..... PL/I SAMPLE PROGRAM. • •••• / 

STMT LEV NT R 

20 
21 

22 

23 

24 
25 
26 

27 
28 
29 
30 
31 
32 

33 
34 
35 

36 

38 

tt2 
43 

44 

2 
2 

1 

2 

2 
2 
2 

2 
2 
2 
2 
2 
2 

2 
2 
2 

2 

2 

o 
o 

o 

o 

o 
o 
o 

o 
o 
o 
o 
o 
o 

o 
o 
o 

/. THIS STATEMENT, WHICH WILL NEVER BE EXECUTED, USES 'ONCOUNT' WHICH 00270120 
IS NEITHER EXPLICITLY NOR IMPLI~ITLY DECLARED BUILrIN. THE EFFECT 00270130 
IS SHOWN IN THE ATTRIBUTE LISTING AND DIAGNOSTIC MESSAGES. ./00270140 

FBVAR = ONCOUNT: 
END: 

/. THIS IS A DUMMY PROCEDURE TO ILLUSTRATE OTHER PREPROCESSOR 
REPLACEMENTS/NON-IMPLIClrLY DECLARED BUILTIN FUNCTIONS. 
IT WILL NEVER BE EXE=UTED. 

DUMMY: 
PROC; 

DCL AVAR AREA BASED(PVAR), 
OVAROFFSET(AVAR), 
A ENTRY RETURNS(CHAR(80», 
SIZE FIXED BIN(31,0): 

AVAR EMPTY~ 
PVAR = NULL; 
OVAR = NULL: 

CALL PLISRTA('AR:;1', 'AR:;2', SIZE, RETCODE); /. S 
CALL PLISRTBC'ARG1', 'ARG2', SIZE, RETCODE, A): /. 0 
CALL PLISRTCC'ARG1', 'AR32', SIZE, RETCODE, a); /. R 
CALL PLISRTD (. ARG1", 'ARG2'. SIZE, RETCODE. A, B); /. T 
CALL PLICKPTC' AR:;1'·. • AR32', • PS', RETCODE); /. CHECKPOINT 
CALL PLICKPl'C"SYSCHK', •• , 'PS', CKPT_RETC); /. CBECKPOINr 

CALL PLIREST: 
CALL PLICANC: 
CALL PLIRETCCRETCODE); 

/. FORCE RESTRT 
/. CANCEL CKPT 

/. SET RETURN CODE(TASKING) 

00270150 
00210160 

00270170 
00210180 

·/00270190 

00210200 
00210210 

00210220 
00270230 
00210240 
00270250 

00210260 
00270270 
00210280 

·/00270290 
·/00210300 
·/00270310 
·/00270320 
·/00270330 
·/-00210340 

00270340 
./00210350 
·/00270360 
·/00210370 

o A: PROC RETURNSCCHAR(80»: END; DUMMY EXIT 
PROCEDURES 
FOR SORT. 

·/00270380 
·/00210390 
·/00270400 o B: PROCCRECORD): DCL RECORD ~HAR(80): END; 

2 0 END DUMMY; 00210410 

1 

1 

1 
1 
1 
1 
1 
1E 

1 
1 
1 

1 

1 0 
1 0 

CALL PLIRETCCRETCODE); /. SET RETURN CODE(NONTASKING) ./00270420 1 
PUT SKIP LIST('END SAMPLE PROGRAM'): 00210430 

1 0 END SAMPLE; 00270440 

PAGE 9 



PL/I OPTI~IZING COMPILER /***** PL/I SAMPLE PROGRAM. *****/ 

G) 
DCL NO. 

36 

23 

38 

4 

2 

3 

2 

22 

2 

4 

2 

2 

2 

******** 
Q) 

2 

0 
IDENTIFIER 

A 

AVAR 

B 

BINVAR 

CKPT_RETC 

CVAR 

DATE 

DUMMY 

EMPTY 

FBVAR 

NOLL 

ONCHAR 

ONCODE 

ONCOUNT 

ONFILE 

ATTRIBUTE AND CROSS-REFERENCE TABLE 

ATTRIBUTES AND REFERENCES 

o 
fs\ ENTRY RETURNS (CHARACTER (80» 
\.::Y 28,30 

BASED (PVAR) ALIGNED AREA (1000) 
24 

ENTRY RETURNS(DECIMAL /* SINGLE */ FLOAT (6» 
29.30 

AUTO~ATIC /* STRUCTURE */ 

AOTOMA.TIC ALIGNED BINARY FIXED (31,0) 
32 

AOTOMA.TIC UNALI3NED CHARACTER (255) VARYING 
15,16,17,18,19 

BUILTIN 
5 

ENTRY RETURNS(OECIMAL /* SINGLE */ FLOAT (6» 

BUILTIN 
24 

/* IN BINVAR */ AUTOMATIC ALIGNED BINARY FIXED (15,0) 
111,20 

BUILTIN 
25,26 

BUILTIN 
15 

BUILTIN 
14 

AUTOMATIC ALIGNED DECIMAL /* SINGLE */ FLOAT (6) 
20 

BUILTIN 
18 

r-----------------------------------------, 
Attributes and Cross-reference Table. I ~ All identifiers used in the I 

Number of the statement in the 
source listing in which the 
identifier is explicitly declared. 

I program listed in alphabetic I 
I order. I 
I I 
I ~ Declared and default attributes I 
I are listed. This list also I 

Asterisks indicate an undeclared 
identifier; all of its attributes 
are implied or supplied by 
default. 

I includes descriptive comments. I 
I I 
I ~ Cross references. These are the I 
I numbers of all other statements in I 
I which the identifier appears. I 

PA.GE 10 



~ PL/I OPTIMIZING COMPILER /***** PL/I SAMPLE PROGRAM. *****/ P~:;E 11 
tv 
(7\ 

DCL NO. IDENTIFIER ArTRIBUTES AND REFERENCES 
0 en 
"0 2 ONREY BUILTIN 
~ 19 
H 

0 2 ONLOC BUILTIN 
ttj 17 rt 
t-J. 
a 2 ONSOURCE BUILI'IN ~ 
N 16 t-J. 
::s 

\Q 23 OVAR AUTOMATIC ALIGNED OFFSET (AVAR) 
() 
0 

26 
a 
ttj 2 PDATE AUTOMATIC UNALIGNED CHARACTER (6) .... 

5.7 .... 
(I) 
t; 

******** .. PLICANC BUILTIN 
34 

"0 
t; ******** PLICRPT BUILrIN 0 

~ 31.32 
PI 
B ******** PLIDUMP BUILTIN a 
(I) 10.11.12.13 
t; 

C/) ******** PLIREST BUILTIN 
en 33 
.: 
~ ******** PLIRETC BUILTIN Q, 
(I) 42 

35 

******** PLISRTA BUILTIN 
27 

******** PLISRTB BUILTIN 
28 

******** PLISRTC BUILTIN 
29 

******** PLISRTD BUILTIN 
30 

2 PTIME AUTOM~TI~ UNALI3NED CHARACTER (6) 
6.7 

**** •••• PVAR AUTOMATIC ALI.GNED POI NTER 
24.25 



PL/I OPTIMIZING COMPILER 

DCL NO. 

39 

4 

1 

23 

•••••••• 

2 

IDENTIFIER 

RECORD 

RET CODE 

SAMPLE 

SIZE 

SYSPRINT 

TIME 

I ••••• PLII SAMPLE PROGRAM. • ••• *1 

ATTRIBUTES AND REFERENCES 

1* PARAMETER *1 UNALIGNED CHARACTER (80) 

I. IN BINVAR .1 AUTO~ATIC ALIGNED BINARY FIKED (31,0) 
8,42 
27,28,29,30,31,35 

EXTERNAL ENTRY RETURNS(DECIMAL /. SINGLE .1 FLOAT (6» 

AUTOMATIC ALIGNED BINARY FIKED (31,0) 
27,28,29,30 

EXTERNAL FILE PRINT 
7,43 

BUILTIN 
6 

PAGE 12 



PL/I OPTIMIZING COMPILER 

CD 
DCL NO. 

·4 

o 
IDENTIFIER 

BINVAR 
RETCODE 
FBVAR 

/***** PL/I SAMPLE PROGRAM. *****/ 

AGGRE3ATE LEN~TH TABLE o 
LVL DIMS OFFSET ELEMENT 

LENGTH. 

1 
'] 

2 
o 
4 

6 
4 
2 

SUM OF CONSTANT LENGTHS 

o 

r--~--------------------------------------, 

I Aggregate Length Table. 
I 
ICD 

o 
o 

Number of the statement in which 
the aggregate is declared, or, for 
a controlled aggregate, the number 
of the associated ALLOCATE 
statement. 

The elements of the aggregate as 
declared. 

Length of each element of the 
aggregate. 

Sum of the lengths of aggregates 
whose lengths are constant. 

TOTAL 
LENGTH. 

6 

6 

PAGE 13 



PL/I OPTIMIZING COMPILER 

STORAGE 

CD 
BLOCK, SECTION OR STATEMENT 

*SAMPLE1 
*SAMPLE2 
SAMPLE 
9 
DUMMY 
A 
B 

/***** PL/I SAMPLE PROGRAM. *****/ 

REQUIREMENTS 

0 0 0 
TYPE LENGTH (HEX) DSA SIZE 

PROGRAM CSECr 2156 86C 
STATIC CSECT 788 31lJ 
PROCEDURE BLOCK lJ5lJ 1C6 
ON UNIT 630 276 
PROCEDURE BLOCK 83lJ 3lJ2 
PROCEDURE BLOCK 106 6A 
PROCEDURE BLOCK 12lJ 7C 

r-----------------------------------------, 
I Storage requirements. This table gives I 
I the main storage requirements for the I 
I program. These quantities do not 
I include the main storage that will be 
I required by the resident and transient 
I library subroutines that will be 
I included by ~he linkage editor or 
I loaded dynamically during execution. 
I 
I CD Name of the block, section, or 
I number of the statement in' the 
I program. 
I 
I (3) Description of the block, section, 
I or statement. 
I 
I CD Length in bytes of the storage 
I areas in both decimal and hexa-
I decimal notation. 
I 
I CD Length in bytes of the dynamic 
I storage area (DSA) in both 
I decimal and hexadecimal notation. 

552 
22lJ 
232 
184 
200 

P~:;E 14 

(HEX) 

228 
EO 
E8 
B8 
C8 



.g 
rt .... 
!3 .... 
N .... 
~ 
() 
o 
B 
'So 
~ 
1'1 .. 

PL/I OPTIMIZING COMPILER / ••••• PL/I SAMPLE PROGRAM. • •••• / 

EXTERNAL SYMBOL OICTIO~ARY 

CD ® 0) (0 
SYMBOL TYPE 10 AD DR 

PLISTART 
·SAMPLEl 
• SAMPLE2 
PLITABS 
PLIXOPT 
PLIFLOW 
PLICOUNT 
IBMBPIRA 
IBMBPIRB 
IBMBPIRC 
PLICALLA 
PLICALLB 
PLIMAIN 
I BMBKC PC 
IBMBKCPA 
I BMBKCPB 
IBMBKCPA 
IBMBKCPA 
IBMBKSTO 
IBMBKSTA 
IBMBKSTC 
IBMBKSTA. 
IBMBKSTB 
IBMBKSTA 
IBMBKSTA 
IBMBKOMA 
IBMBPRCA. 
IELCGOA 
IELCGOB 
IBMBSEOA. 
IBMBSIOA 
I BMBCC SA. 
IBMBCHFO 
IBMBCOOE 
IBMBCTHO 
IBMBCUIO 
IBMBEOCA 
IBMBEOLA. 
IBMBJOTA. 
IBMBJTTA. 
IBMBOCLA 
IBMBOCLC 
IBMBSEOB 
IBMBSEOA. 
IBMBSIOE 
IBMBSIOT 
IBMBSLOA 

SO 
SO 
SO 
WX 
wx 
wx 
WX 
ER 
ER 
ER 
LO 
LO 
SO 
ER 
ER 
ER 
ER 
ER 
ER 
ER 
ER 
ER 
ER 
ER 
ER 
ER 
ER 
SO 
SO 
ER 
ER 
ER 
ER 
ER 
ER 
ER 
ER 
ER 
ER 
ER 
ER 
WX 
WX 
ER 
WX 
WX 
ER 

0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
OOOA 

OOOB 
oooe 
0000 
OOOE 
OOOF 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
001A 
001B 
001C 
0010 
001E 
001F 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
002A 
0028 
002C 
0020 

000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000006 
OOOOOA 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 

® 
LENGTH 

000044 
00086C 
000314 

000008 

000072 
000070 

External symbol dictionary. 

® 

"SYMBOL" A list of all the 
external symbols that make up the 
object module. 

"TYPE" Type of external symbol as 
follows: 

CM Common area. 
ER External reference. 
LO Label definition. 
PR Pseudo-register. 
SO Section definition. 
WX Weak external reference. 

Full definitions of all these 
terms are given in chapter 4. 

"10" All entries, except LO-type 
entries, are identified by a 
hexadecimal number. 

"AOOR" Address (in hexadecimal) 
of LD-type entries only. 

"LENGTH" Length in bytes (in 
hexadecimal) of LO, CM, and PR 
type entries only. 

PAGE 15 



PL/I OPTI~IZING ~OMPILER /***** PL/I SAMPLE PROGRAM. ****.*/ Pl\3E 16 

IBMBSPLA ER 002E 000000 
IBMBSPOA ER 002F 000000 
IBMBCKDO ER 0030 000000 
IBMBSXCA WX 0031 000000 
IBMBSXCB WX 0032 000000 
IBMBSIST WX 0033 000000 
SAMPLE LD 000008 
SYSPINT SO 0034 000000 000020 



o 
'0 
('t .... 
a .... 
N .... 
==' IQ 

(') 
o a 
'0 .... .... 
('I) 
11 

PL/I OPTIMIZING COMPILER 

CD 
000000 
000004 
000008 
oooooc 
000010 
000014 
000018 
00001C 
000020 
000024 
000028 
00002C 
000030 
000034 
000038 
00003C 
000040 
000044 
000048 
00004C 
000050 
000054 
000058 
OOOOSC 
000060 
000064 
000068 
00006C 
000070 
000074 
000078 
00007C 
000080 
000084 
000088 
00008C 
000090 
000094 
000098 
00009C 
00009E 

0000B2 
0000B6 

OOOOCA 
ooooce 
000000 

o 
00000310 
00000008 
00000078 
00000096 
000001C8 
0000021E 
00000448 
0000049E 
000004A8 
00000788 
000007DE 
000007F4 
0000085C 
0000085C 
0000085C 
0000085c 
0000085C 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
58000017 
2000 
5400000814040680 
0808000000006800 
00680000 
58000009 
5400000814040680 
0808000008007400 
00740000 
0001 

0000000000060000 

/..... PL/I SAMPLE PROGRAM. • •••• / 

STATIC INTERNAL STORA3E M~P 

PROGRA G)DCON 

000008 
OOOOEO 
0000E8 
OOOOFO 
0000F8 
000100 
000108 
00010C 
000110 
000114 
000118 
00011C 
000120 
000124 
000128 
00012C 
000130 
000134 
000138 
00013C 
000140 
000144 
000148 
00014C 
000150 
000154 
000158 
00015C 
000160 
000164 
000168 
00016C 
000170 
000174 
000178 
00017c 
000180 
000184 
000188 
00018C 
000190 
000194 
000198 
00019C 
0001AO 
0001A4 
0001A8 
0001AC 
0001BO 
0001B4 
0001B8 
000lBC 

000001DC00120000 
0000000000040000 
0000000000030000 
0000000000070000 
0000000000020000 
0000000000000000 
91E091EO 
00000001 
00000065. 
46000000 
00000010 
FFOOOOOO 
00000000 
80000000 
80000000 
00000000 
00000000 
8000010C 
00000000 
00000000 
00000000 
80000000 
80000000 
80000000 
00000000 
00000000 
00000000 
80000000 
00000000 
00000000 
00000000 
00000000 
00000000 
80000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
80000000 
00000000 
00000000 
00000000 
00000000 
80000000 
00000000 
00000000 
00000000 
80000000 
E2C1D4D7D3C540D7 

PROGRAM ADCON 
PROGRAM ADCON 
PROGRAM ADCON 
PROGRAM ADCON 
PROGRAM ADCON 
PROGRAM AoCON 
PROGRAM ADCON 
PROGRAM ADCON 
PROGRAM ADCON 
PROGRAM ADCON 
PROGRAM ADCON 
PROGRAM ADCON 
PROGRAM ADCON 
PROGRAM ADCON 
PROGRAM ADCON 
PROGRAM ADCON 
A •• IELCGOA 
A •• IELCGOB 
A •• IBMBCCSA 
A •• IBMBCHFD 
A •• IBMBCODE 
A •• IBMBCTHD 
A •• IBMBCUID 
A •• IBMBEOCA 
A •• IBMBEOLA 
A •• IBMBJDTA 
A •• IBMBJTTA 
A •• IBMBOCLA 
A •• IBMBOCLC 
A •• IBMBSEDB 
A •• IBMBSEOA 
A •• IBMBSIOE 
A •• IBMBSIOT 
A •• IBMBSLOA 
A •• IBMBSPLA 
A •• I BMBSPOA 
A •• I Bfi:BCKDD 
FED 
DED •• PDATE 
FED 

FED 
FED 

CONSTANT 

LOCATOR •• PDATE 

r-----------------------------------------, 
Static Internal Storage Map. This is a 
storage map of the static control 
section for the program. This control 
section is the third standard entry in 
the external symbol dictionary. 

(2) Six-digit offset (in hexa­
decimal) • 

Text (in hexadecimal). 

Comment indicating type of item to 
which the text refers. A comment 
appears only against the first 
line of the text for an item. 

LOCATOR 
LOCATOR 
LOCATOR 
LOCATOR 
LOCATOR 
LOCATOR 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANr 
CONSTANT 
A •• DCLCB 
A •• PDATE 
A •• TEMP 
A •• DCLCB 
A •• TEMP 
A •• CONSTANT 
A •• ENTR~ PLIRETC 
A •• ENTR~ PLIDOMP 
A •• TEMP 
A •• TEMP 
A •• FBVAR 
A •• T:&Io1P 
A •• TEMP 
A •• TEMP 
A •• SIZE 
A •• RETCODE 
A •• ENTR~ PLISRTA 
A •• TEMP 
A •• TEMP 
A •• SIZE 
A •• RETCODE 
A •• TEMP 
A •• ENTR~ PLISRTB 
A •• ENTR~ PLISRTC 
A •• TEMP 
A •• T~P 
A •• SIZE 
A •• RETCODE 
A •• TEMP 
A •• TEMP 
A •• ENTR~ PLISRTD 
A •• TEMP 
A •• TEMP 
A •• TEMP 
A •• RETCJDE 
A •• ENTRY PLICKPr 
A •• ENTR~ PLIREST 
A •• ENTR~ PLICANC 
A •• RETCODE 
CONSTANl' 

PAGE 17 



PL/I OPTIMIZING COMPILER 

D9D6C7D9C1D47A40 
CflC1E3CSfl07EflO 

0001D3 6B40E3C90flCSfl07E 
flO 

0001DC CSDSCflflOE2C1DflO7 
D3CS40D7D9D6C7D9 
C1D4 

0001EE E3C6C3C1 
0001F2 F1F2F7 
OG01F5 D9CSE3C3D6C4CS 
0001FC C1D9C7F1 
000200 ClD9C7F2 
00020fl D7E2 
000206 E2E8Eic3C8D2 
00020C 
000210 OC160000000001C8 

000000 FFFFFFFCfl1201000 
02D70FOOOOOOOOOO 
0113001fl0008E2E8 
E2D7D9C9DSE39040 

/ ••••• PL/I SAMPLE PROGRAM. • •••• / P!\.GE 18 

CONSTANT 

CONSTANT 

CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 

STATIC ONCB 

STATIC EXTERNAL CSECTS 

DCLCB 



PL/I OPTIMIZING COMPILER 

lDEM'IPIER 

BINVAR 
RE'l'CODE 
PBVAR 
CVAR 
C}(P'1' RETe 
PDATi 
PrIME 
OVAR 
SIZE 
PVAR 
ONCOOlft' 

/..... PL/I SAMPLE PROGRAM. . .... / 
VARIABLE STORAGE MAP 

LEVEL OFFSET (HEX) CLASS 

192 CO AUTO 
192 CO AUTO 
196 CII Auro 
224 EO AUTO 
200 C8 AUro 
212 Dat AUTO 
218 DA Auro 

2 168 AI AUTO 
2 112 AC Auro 

2011 CC AUTO 
208 DO AUTO 

PA:;E 19 

BLOCK 

SAMPLE 
SAMPLE 
SAMPLE 
SAMPLE 
SAMPLE 
SAMPLE 
SAMPLE 
DUMMY 
DUMMY 
SAMPLE 
SAMPLE 



PL/I OPTIMIZING COMPILER /..... PL/l SAMPLE PR03RAM. • •••• / 

OFFSET (HEX) 
STATEMENT NO. 

OFFSET (HEX) 
STATEMENT NO. 

OFFSET (HEX) 
STATEMENT NO. 

OFFSET (HEX) 
STATEMENT NO. 

OFFSET (HEX) 
STATEMENT NO. 

TABLES OF OFFSETS AND STATEMENr NUMBERS 

WITHIN PROCEDURE SAMPLE 

o 
1 

8E 
5 

WITHIN ON UNIT 

o 
9 

56 
10 

A4 
6 

60 
11 

WITHIN PROCEDURE DUMMY 

o 
22 

60 
24 

WITHIN PROCEDURE A 

o 
36 

56 
31 

WITHIN PROCEDURE B 

o 
38 

68 
110 

10 
25 

co 
1 

A8 
12 

18 
26 

150 
8 

FO 
13 

1C 
27 

158 
9 

FA 
14 

04 
28 

15C 
42 

118 
15 

140 
29 

114 
43 

13E 
16 

lAC 
30 

lAE 
44 

180 
11 

22C 
31 

1C' 
18 

298 
32 

206 
19 

2FE 
33 

248 
20 

308 
34 

266 
21 

312 
35 

32A 
41 

PA,3E 20 



'" W 
0'1 

0 
Cf) 

to 
1:"1 
~ 

,g 
rt .. a 
N .. 
:;:, 

lQ 

() 
0 a 

'So .... 
CD 
11 

to 
11 

~ 
11 
III 

~ 
CD 
11 . 
CD 

til 
s= .. 
Q, 
it 

PL/I OPTIMIZING COMPILER /..... PL/I SAMPLE PROGRAM. ..... / 
OBJECT LISTING 000030 48 EO 1 020 

0) 0 000034 41 EO E 001 
000038 40 EO 1 020 

• COMPILER GENERATED SUBROOT1NE IELCGOA 0()Q03C 40 EO F 052 
000000 50 EO 1 ooe ST 14,12(0,1) 000040 91 10 1 010 
000004 58 FO 1 014 L 15,20(0,1) 000044 07 86 
000008 91 10 1 011 TM 17 (1) • X·' 10 ' 000046 58 10 1 01C 
OOOOOC 47 10 1 014 BO ·+8 00004A 58 FO 7 068 
000010 96 04 C 002 01 2(12) ,X'04' 00004E 05 EF 
0000111 02 03 1 008 F 04C MVC 8(4,1),16(15) 000050 07 F6 
00001A 48 FO F 050 LH 15,80(0,15) 000052 58 FO 1 06C 
00001E 4B FO E 002 SH 15,2(0,14) 000056 05 EF 
000022 01 B6 BCR 11,6 000058 58 EO 1 008 
000024 96 40 1 010 01 16(1),X'40' 00005C 50 EO 0 04C 
000028 58 FO o 04C L 15,76(0,13) 000060 94 BF 1 010 
00002C 50 FO 1 008 ST 15,8(0,1) 000064 07 F6 
000030 4A FO E 002 AH 15,2(0,14) 000066 07 00 
000034 4A FO 7 070 AH 15,112(0,7) 000068 
000038 54 FO 7 06C N 15,108(0,7) 00006C 
00003c 55 FO C OOC CL 15,12(0,12) 
000040 47 20 1 04A SH ·+10 • END OF ~OMPILER GENERATED 
000044 50 FO 0 04C ST 15.76 (0.13) 
000048 07 F6 SR 6 
00004A 50 00 1 OlC ST 0.28 (0,1) • STATEMENT NUMBER 1 
00004E 18 71 LR 7,1 000000 
000050 18 OF LR 0,15 000007 
000052 58 10 o 04C L 1,76(0,13) 
000056 58 FO C 048 L 15,12(0,12) • PROCEDURE 
00005A 05 EF BALR 14,15 
00005C 50 00 o 04C ST 0,76(0,13) • REAL ENTRY 
000060 50 10 1 008 ST 1,8(0,7) 000008 90 EC o OOC 
000064 18 11 LR 1,1 OOOOOC 47 FO F 014 
000066 58 00 1 01C L 0,28(0,1) 000010 00000000 
00006A 07 F6 BR 6 000014 00000228 
00006C FFFFFFF8 DC X'FFFFFFF8' 000018 00000000 
000070 DC AL2 (7) 00001C 58 30 F 010 

000020 58 10 0 04C 
• END OF COMPILER GENERATED SUBROUTINE 000024 58 00 F OOC 

* COMPILER GENERATED SUBROUTINE 
000000 94 FB C 002 
000004 91 40 1 010 
000008 47 10 7 052 
OOOOOC 58 FO 1 014 
000010 50 10 1 01C 
000014 58 70 1 OOC 
000018 48 EO F 050 
00001C 4B EO 1 002 
000020 40 EO F 050 
000024 58 EO F 04C 
000028 4A EO 7 002 
00002C 50 EO F 04C 

000028 lE 01 
IELCGOB 00002A 55 00 C OOC 

NI 
TM 
BO 
L 
ST 
L 
LH 
SH 
STH 
L 
AH 
ST 

2(12),X'FS' 00002E 47 DO F 030 
16(1) ,X'40· 000032 58 FO C 014 
*+14 000036 05 EF 
15,20(0,1) 000038 58 EO 0 048 
1,28(0,1) 00003C 18 FO 
1,12(0,1) 00003E 90 EO 1 048 
14,80(0,15) 000042 50 DO 1 004 
14,2(0,1) 000046 41 01 o 000 
14,80(0,15) 00004A 50 50 o 058 
14,76(0,15) 00004E 41 60 o OA8 
14,2(0,7) 000052 50 60 o 070 
14,16(0,15) 000056 01 00 o OA8 

r---------------------------------------, 
I Object listing. This is a listing of I 
I the machine instructions generated by I 
I the optimizing compiler from the PL/I I 
I source program. I 
I I 
I C!) Machine instructions (in hexa- I 
I decimal) • I 
I I 
I 0 Assembler-language form of the I 
I machine instructions. I L _______________________________________ J 

o OA8 

PAGE 21 

LH 14,32(0,1) 
LA 14,1(0,14) 
STH 14,32(0,1) 
STH 14,82(0,15) 
TM 16(1),X'10' 
BCR 8,6 
L 7,28(0,1) 
L 15,104(0,1) 
BALR 14,15 
BR 6 
L 15,108(0,7) 
BALR 14,15 
L 14,8(0,1) 
ST 14,16(0,13) 
NI 16 (1), X' SF' 
BR 6 
NOPR 0 
DC AL4 (0) 
DC A.L4(0) 

SUBROUTINE 

DC C' SA~PLE' 
DC ALl (6) 

SA~PLE 

STM 14,12,12(13) 
B *+16 
DC AC STMr. NO. N.BLE) 
DC F'552' 
DC ACSTArIC CSECr) 
L 3,16(0,15) 
L 1,76(0,13) 
L 0,12(0,15) 
ALR 0,1 
CL 0,12(0,12) 
BNH *+10 
L 15,116(0,12) 
BALR 14,15 
L 14,12(0,13) 
LR 15,0 
STM 14,0,12(1) 
ST 13,4(0,1) 
LA 13,0(1,0) 
ST 5,88 (0, 13) 
LA 6,168(0,13) 
ST 6,112(0,13) 
XC 168(1,13),168(13) 



PL/I OPTIMIZING COMPILER / ..... PL/1 SAMPLE PROGRAM. • •••• / PAGE 22 

00005C 92 01 D OA9 MVI 169 (13) , X' 01' OOOOEE 05 67 BALR 6,7 
000060 92 CO D 000 MV1 0(13),X'CO' OOOOFO 58 40 D 208 L 4,520(0,13) 
000064 92 24 D 001 MVI 1(13),X'24' 0000F4 D2 16 4 000 3 lBC MVC 0(23,4),444(3) 
000068 41 80 3 210 LA 8,528(0,3) OOOOFA 58 70 3 048 L 7,A •• 1ELCGOB 
00006C 50 80 D 05C ST 8,92(0,13) OOOOFE 05 67 BALR 6,7 
000070 D2 03 o 054 3 108 MVC 84(4,13),264(3) 000100 41 EO 0 OBO LA 14,176(0,13) 
000076 05 20 BALR 2,0 000104 41 FO 3 09C LA 15, OED •• PDArE 

000108 90 EF 1 000 STM 14,15,0(1) 
• PROLOGUE BASE 00010C 41 EO 3 09E LA 14,158 (0,3) 
000078 D2 07 D OBO 3 ODO MVC LOCATOR •• PDATE(8), 000110 50 EO 1 OOC ST 14,12(0,1) 

208 (3) 000114 58 FO 3 078 L 15,A •• 1BMBSEDB 
00007E 41 90 D OD4 LA 9,POATE 000118 05 EF BALR 14,15 
000082 50 90 D OBO ST 9,LOCATOR •• PDATE 00011A 41 EO 3 OB2 LA 14,178(0,3) 
000086 D2 07 D OB8 3 ODO MVC LO~ATOR •• PTIME(8), 00011E 58 10 D lFS L 1, 50 4 ( 0, 13) 

208 (3) 000122 58 70 3 044 L 7,A •• 1ELCGOA 
00008C 41 40 D ODA LA 4,PTIME 000126 05 67 BALR 6,7 
000090 50 40 D OB8 ST 4,LOCATOR •• PT1ME 00012S 58 60 D 208 L 6,520(0,13) 
000094 05 20 BALR 2,0 00012C D2 08 6 000 3 lD3 MVC 0(9,6),467(3} 

000132 58 70 3 048 L 7, A •• 1ELCG::>B 
• PROCEDURE BASE 000136 05 67 BALR 6,7 

000138 41 EO D 068 LA 14,184 (0,13) 
00013e 50 EO 1 000 ST 14,0(0,1} 

• STATEMENT NUMBER 5 000140 41 EO 3 OB6 LA 14,182(0,3) 
000096 41 40 D OD4 LA 4,POATE 000144 50 EO 1 OOC ST 14,12(0,1) 
00009A 50 40 3 124 ST 4,292(0,3) 000148 58 FO 3 078 L 15,A •• IBMBSEDB 
00009E 96 80 3 124 01 292(3),X'80' 00014C 05 EF BALR 14,15 
0000A2 41 10 3 124 LA 1,292(0,3) 00014E 58 10 D 1F8 L 1,504(0,13) 
0000A6 58 FO 3 068 L 15,A •• IBMBJDTA 000152 58 FO 3 084 L 15,A •• 1BMBS1or 
OOOOAA 05 EF BALR 14,15 000156 05 EF BALR 14,15 

)II 
Itj • STATEMENT NUMBER 6 • STATEMENr NUMBER 8 Itj 
CD OOOOAe 41 40 D 200 LA 4,512(0,13} 000158 58 FO 3 110 L 15,272(0,3) 
::s OOOOBO 50 40 3 128 ST 4,296(0,3) 00015e 50 FO D oeo ST 15,B1NVAR.RErCODE g,. .... 0000B4 96 80 3 128 01 296 (3) ,X' 80' w 0000B8 41 10 3 128 LA 1,296(0,3) 
t'IiI OOOOBC 58 FO 3 06e L 15,A •• IBMBJTTA • STATEMENr NUMBER 9 .. 

OOOOco 05 EF BALR 14,15 000160 92 oe D OA8 MV1 16S(13),X'OC' 

I'd 0000C2 D2 05 D ODA 0 200 MVC PT1ME(6),512(13) 
ti 

~ • STATEMENT NUMBER 42 
ti • STATEMENT NUMBER 7 000164 41 40 0 oeo LA 4,B1NVAR.RETCJDE 
I» 0000C8 41 40 D 200 LA 4,512(0,13) 000168 50 40 3 124 ST 4,292(0,3) ;:I 
=e OOOOCC 50 40 3 130 ST 4,304(0,3) 00016e 96 80 3 124 01 292(3),X"80' .... 

OOOODO 92 20 D 211 MV1 529(13),X'20' 000170 IB 55 SR 5,5 ::s 
\Q 0000D4 41 10 3 12C LA 1,300(0,3) 000172 41 10 3 124 LA 1,292(0,3) 
~ 000008 58 FO 3 080 L 15,A •• 1BMBS1OE 000176 58 FO 3 138 L 15,312(0,3) 
w OOOODC 05 EF BALR 14,15 00017A 05 EF BALR 14,15 I» a OOOODE 41 EO 3 098 LA 14,152(0,3) 

"C1 0000E2 41 10 D 200 LA 1,512(0,13) .... 
C\) 0000E6 50 10 D 1FS ST 1,504(0,13) • STATEMENr NUMBER 43 

OOOOEA 58 70 3 044 L 7, A •• 1ELCGOA 00017C 41 1i0 D 200 LA 4,512(0,13) 
N 
IN 
....a 



I'.) 
w PL/I OPrIMIZING COMPILER / ..... PL/I SAMPLE PR03RAM. ..... / P~GE 23 CD 

g 000180 SO 40 3 130 ST 4,304(0,3) 000212 92 24 0 001 MVI 1(13),X'24' 
000184 92 40 o 211 MVI 529(13),X'40' 000216 02 03 0 054 3 108 Mve 84(4,13),264(3) 

~ 000188 41 10 3 12e LA 1,300(0,3) 00021e 05 20 BALR 2,0 

~ 
00018e 58 FO 3 080 L 15,A •• 1BMBS1OE 
000190 OS EF BALR 14,15 • PROCEDURE BASE 

~ 
000192 41 EO 3 008 LA 14,216(0,3) 
000196 41 FO 3 0ge LA 15,156(0,3) rt 00019A 41 10 0 200 LA 1,512(0,13) • STATEMENT NUMBER 10 .... 

a 00019E SO 10 o IF8 ST 1,504(0,13) 00021E 18 11 SR 1,1 .... 
N 0001A2 90 EF 1 000 STM 14,15,0(1) 000220 1B 55 SR 5,5 .... 

0001A6 58 FO 3 088 L 15,A •• IBMBSLOA 000222 58 FO 3 13e L 15,316(0,3) ~ 0001AA OS EF BALR 14,15 000226 05 EF BALR 14,15 
() 0001Ae 58 10 o 1F8 L 1,504(0,13) 
0 0001BO 58 FO 3 084 L 15, A •• 1BMBS1OT a 0001B4 OS EF BALR 14,15 • STATEMENr NUMBER 11 'lj .... 

000228 02 03 0 oeo 3 lEE Mve 192(4,13),494(3) .... 
CD 00022E 02 07 0 oe4 3 OEO Mve 196(8,13) ,224(3) 
t; • STATEMENT NUMBER 44 000234 41 80 0 oeo LA 8 w192(0,13) .. 

0001B6 18 00 LR 0,13 000238 50 80 0 oe4 ST 8,196(0,13) 
"tI 0001B8 58 00 0 004 L 13,4(0,13) 00023e 41 40 0 Oe4 LA 4,196(0,13) 
t; 0001Be 58 EO 0 ooe L 14,12(0,13) 00-0240 50 40 3 140 ST 4,320(0,3) 
2 OOOleo 98 2e 0 Ole LM 2,12,28(13) 000244 02 02 0 oee 3 1F2 Mve 204 (3,13) ,498(3) 
t; 0001e4 05 1E BALR 1,14 00024A 02 07 0 000 3 OE8 Mve 208 (8,13), 232( 3) ill 

~ 000250 41 EO 0 oee LA 111 , 204 (0 , 1 3 ) 
CD • END PROCE~URE 000254 50 EO 0 000 ST 111,208(0,13) 
t; 0001C6 07 07 NOPR 7 000258 111 40 0 000 LA 4,208(0,13) 
en 00025C 50 40 3 1411 ST 4,3211 (0,3) 
Cil 000260 96 80 3 144 01 324(3),X'80' 
~ • STATEMENT NUMBER 9 000264 1B 55 SR 5,5 .... 000266 41 10 3 140 LA 1,320(0,3) Q, 
t1) 00026A 58 FO 3 13e L 15,316(0,3) 

• ON UNIT BLOCI< 00026E 05 EF BALR 14,15 
0001C8 90 EC 0 OOC STM 14,12,12(13) 
0001CC 47 FO F 014 B 20(0,15) 
000100 00000000 DC ACSTMT. NO. TABLE) • STATEMENr NUMBER 12 
000104 OOOOOOEO DC F'224' 000270 02 03 o OCO 3 lEE MVC 192(4,13),494(,) 
000108 00000000 DC A(STAT1e CSE::::T) 000276 02 07 DOell 3 OEO Mve 196(8,13),224(3) 
00010C 58 30 F 010 L 3,16(0,15) 00027C 41 80 o .OCO LA 8,192(0,13) 
0001EO 58 10 0 04C L 1,76(0,13) 000280 50 80 o OC4 ST 8,196(0,13) 
0001E4 58 00 F OOC L 0,12(0,15) 000284 41 40 o OC4 LA 4,196(0,13) 
OOOl,ES 1E 01 ALR 0,1 000288 50 40 3 140 ST 4,320(0,3) 
0001EA 55 00 e ooc CL 0,12(0,12) 00028C 02 06 0 oce 3 1F5 MVC 204 (7,13), 501( 3) 
0001EE 47 DO F 030 BNH 48CO,15) 000292 02 07 0 004 3 OFO Mve 212(8,13) ,240(3) 
0001F2 58 FO C 074 L 15,116(0,12) 000298 41 80 0 OCC LA 8,204(9,13) 
0001F6 05 EF BALR 14,15 00029C 50 80 0 004 ST 8,212(0,13) 
0001F8 58 EO D 048 L 14,72(0,13) 0002AO 41 40 0 004 LA 4, 212( 0,13) 
0001FC 18 FO LR 15,0 0002A4 50 40 3 144 ST 4,324(0,3) 
0001FE 90 EO 1 048 STH 14,0.72(1) 0002A8 96 80 3 144 01 324(3),X'80' 
000202 50 DO 1 004 ST 13,4(0,1) 0002AC 18 55 SR 5,5 
000206 41 01 o 000 LA 13,0(1,0) 0002AE 41 10 3 140 LA 1,320(0,3) 
00020T\. 50 50 o 058 ST 5,88(0,13) 0002B2 58 FO 3 13C L 15,316(0,3) 
00020E 92 8C o 000 MV1 0(13),X'8C' 0002B6 05 EF BALR 14,15 



PL/I OPTIMIZING COMPILER /***** PL/I SAMPLE PROGRAM. *****/ P~:;E 24 

000342 CL.20 EQU * 
000342 02 00 6 OE2 4 000 MVC CVAR+2(1)rO(4) 

* STATEMENT NUMBER 13 000348 CL.19 EQU * 
0002B8 lB 11 SR lrl 000348 CL.21 EOU * 
0002BA lB 55 SR 5 r 5 
0002BC 58 FO 3 13C L 15r 316 (0,3) 
0002CO 05 EF BALR 14,15 * STATEMENr NUMBER 11 

000348 41 40 D OCO LA 4 r 192(Or 13) 
00034C 50 40 3 14C ST 4 r 332(Or3) 

* STATEMENT NUMBER 14 000350 96 80 3 14C 01 332(3)rX'80' 
0002C2 58 60 0 058 L 6 r 88(Or13) 000354 41 10 3 14C LA l r 332(Or3) 
0002C6 50 60 0 OBO ST 6 r 116(Or13) 000358 58 FO 3 064 L 15,A •• 1BMBEOLA 
0002CA 41 40 6 OC4 LA 4 r B1NVAR.FBVAR 00035C 05 EF BALR 14 r 15 
0002CE 50 40 3 148 ST 4 r 328(Or3) 00035E 58 40 0 OCO L 4 r 192(0,13) 
000202 96 80 3 148 ~1 328(3)rX'80' 000362 48 80 D OCq LH 8 r 196(Or13) 
000206 41 10 3 148 LA 1 r 328(Or3) 000366 41 EO 0 OFF LA 14,255<O r O) 
00020A 58 FO 3 060 L 15 r A •• IBMBEO:::A 00036A 19 E8 CR 14,8 
00020E 05 EF BALR 14,15 00036C 41 DO 2 154 BNH CL.22 

000310 18 E8 LR 14,8 
000312 CL.22 EQU * 

* STATEMENT NUMBER 15 000312 40 EO 6 OEO STH 14 r CVAR 
0002EO 58 40 0 048 L 4,12(0,13) 000376 4B EO 3 OCA SH 14,202(0,3) 
0002E4 4A 40 4 002 AH 4,2(0,4) 00037A 47 40 2 16E BM. CL.23 
0-o02E8 CL.16 EQU * 00037E 44 EO 2 168 EX 14,CL.24 
0002E8 58 40 4 000 L 4,0(0,4) 000382 47 FO 2 16E B CL.25 
0002EC 91 40 4 006 TM 6(4),X'40' 000386 CL.24 EQU * 
0002FO 41 80 2 OCA BZ CL.16 000386 02 00 6 OE2 4 000 MVC CVAR+2(1),0(4) 
0002F4 58 FO 4 010 L 15 r16(Or 4 ) 00038C CL.23 EQU * 
0002F8 48 70 3 OCA LH 1 r 202(Or3) 00038C CL.25 EQU * 
0002FC 40 70 6 OEO STH 1,CVAR 

:til 000300 02 00 .6 OE2 F 000 MVC C\lAR+ 2 (1) r 0 (15) ro 
ro • STATEMENT NUMBER 18 
CD 00038C 58 40 0 048 L 4,72(0,13) ::s 
Q, * STATEMENT NUMBER 16 000390 4A 40 4 002 AH 4,2(Or 4 ) .... 

000306 58 90 0 048 L 9 r 72(Or13) 000394 CL.26 EQU * ~ 

"IJ 00030A 4A 90 9 002 AH 9 r 2(Or9) 000394 58 40 4 000 L 4 r O(0,4) .. 00030E CL.17 EQU * 000398 91 80 4 006 TM 6(4)rX'80' 
00030E 58 90 9 000 L 9 r O(0,9) 00039C 41 80 2 176 BZ CL.26 

"t1 000312 91 40 9 006 TM 6(9)rX'40' 0003AO 58 EO 4 008 L 14 r 8(0,4) 
11 000316 41 80 2 OFO BZ CL.l1 0003A4 48 90 4 OOC LH 9 r 12(0,4) 2 OOOllA 58 40 9 018 L 4,24(0,9) 0003A8 41 40 0 OFF LA 4,255(0,0) 
11 00031E 48 80 9 01C LH 8,28(0,9) 0003AC 19 49 CR 4 r 9 AI 
~ 000322 41 EO 0 OFF LA 14,255(0,0) 0003AE 41 DO 2 196 BNH CL.27 ::a .... 000326 19 E8 CR 14,8 0003B2 18 49 LR 4 r 9 
::s 000328 47 DO 2 110 BNH CL.18 0003B4 CL.27 EQU * t.Q 

00032C 18 E8 LR 14,8 0003B4 40 40 6 OEO STH 4,CVAR 
tzJ 00032E CL.18 EQU * 0003B8 4B 40 3 OCA SH 4 r 202(0,3) >< 
AI 00032E 40 EO 6 OEO STH 14,C\lAR 0003BC 47 40 2 lBO BM CL.28 a 000332 4B EO 3 OCA SH 14,202(0,3) 0003CO 44 40 2 1AA EX 4 r CL.29 't1 
I-' 000336 41 40 2 12A BM CL.19 0003C4 47 FO 2 lBO B CL.30 
CD 00033A 44 EO 2 124 EX 14,CL.20 0003C8 CL.29 EQU * 
N 00033E 41 FO 2 12A B CL.21 0003C8 02 O{) 6 OE2 E 000 MVC C\lAR+2 (1) ,0 (14) 
w 
\0 



'" .t: 
PL/I OPTIMIZING COMPILER / ..... PROGRAM. • •••• / 25 0 PL/I SAMPLE PAGE 

g 0003CE CL.28 EQU • • STATEMENr NUMBER 22 
0003CE CL.30 EQU • 000440 DC C' DUMMY" "C 

000447 DC ALl (5) t'4 
"-1-1 

• STATEMENT NUMBER 19 • PROCEDURE DUMMY 
!5 0003CE 58 40 D 048 L 4,72(0,13) 
rt 000302 4A 40 4 002 AH 4,2(0,4) • REAL ENTRY' ..,. 

000306 CL.31 EQU • 000448 90 EC o OOC STM 14,12,12(13) a ..,. 000306 58 40 4 000 L 4,0(0,4) 00044C 47 FO F 014 B ·+16 
N 0003DA 91 10 4 006 TM 6(4),X'10' 000450 00000000 DC A(STMr. NO. rABLE) "". t:S 0003DE 47 80 2 1B8 BZ CL.31 000454 000000E8 DC F'232' I.Q 

0003E2 58 EO 4 020 L 14,32(0,4) 000458 00000000 DC A(STATIC CSECr) n 0003E6 48 90 4 024 LH 9,36(0,4) 00045C 58 30 F 010 L 3,16(0,15) 0 
0003EA 41 40 o OFF LA 4,255(0,0) 000460 58 10 0 04C L 1,76(0,13) a 

to 0003EE 19 49 CR 4,9 000464 58 00 F OOC L 0,12(0,15) ..,. 
~ 0003FO 47 DO 2 108 BNH CL.32 000468 1E 01 ALR 0,1 
t; 0003F4 18 49 LR 4,9 00046A 55 00 C OOC CL 0,12(0,12) 

0003F6 CL.32 EQU · . 0OO46E 47 00 F 030 BNH ·+10 
0003F6 40 40 6 OEO STH 4,CV~R 000472 58 FO C 074 L 15,116(0,12) 

"C 0003FA 4B 40 3 OCA SH 4,202(0,3) 000476 05 EF BALR 14,15 t; 
0003FE 47 40 2 lF2 BM CL.33 000478 58 EO 0 048 L 14,72(0,13) S 000402 44 40 2 1EC EX 4,CL.34 00047C 18 FO LR 15,0 t; 

S» 000406 47 FO 2 1F2 B CL.35 00047E 90 EO 1 048 STM 14,0,72(1) 
;t 00040A CL.34 EQU • 000482 50 DO 1 004 ST 13,4(0,1) ;t 
(1) 00040A 02 00 6 OE2 E 000 MVC CVAR + 2 ( 1) , 0 (1 4 ) 000486 41 01 0 000 L~ 13,0(1,0) t; 

000410 CL.33 EQU • 00048A 50 50 0 058 ST 5,88(0,13) . 
en 000410 CL.35 EQU • 00048E 92 80 0 000 MVI 0(13),X'80' 
Cil 000492 92 24 0 001 MVl 1(13),X'24' 
c: 000496 02 03 0 054 3 108 MVC 84(4,13),264(3) ..,. 

• STATEMENT NUMBER 20 00049C 05 20 BALR 2,0 Q, 
(1) 000410 78 00 6 000 LE O,ONCOUNT 

000414 7E 00 3 114 AU 0,276(0,3) • PROLO:;UE BASE 
000418 70 00 D OCO STE 0,192(0,13) 00049E 58 60 0 058 L 6,88(0,13) 
00041C 91 80 D OCO 'I'M 192(13),X'80' 0004A2 50 60 0 OBO ST 6,176(0,13) 
000420 48 80 0 OC2 LH 8,194(0,13) 0004A6 05 20 BALR 2,0 
000424 47 80 2 20C BZ CL.36 
000428 13 88 LCR 8,8 • PROCEDURE BASE 
00042A CL.36 EQU • 
00042A 40 80 6 OC4 STH 8,BINVAR.FBVAR 

• STATEMENT NUMBER 24 
0004A8 58 70 6 OCC L 7,PVAR 

• STATEMENT NUMBER 21 0004AC 92 00 7 000 MVI AVAR,X'OO' 
00042E 18 OD LR 0,13 0004BO 58 EO 3 118 L 14,280 (0,3) 
000430 58 DO 0 004 L 13,4(0,13) 0004B4 50 BO 7 004 ST 14,AVAR+4 
000434 58 EO 0 OOC L 14,12(0,13) 
000438 98 2C 0 Ole LM 2,12,28(13) 
00043C 05 1E BALR 1,14 • STATEMENr NUMBER 25 

0004B8 58 70 3 11C L 7,284(0,3) 
• ON UNIT BLOCK END 0004ac 50 70 6 OCC ST 7,PVAR 
00043E 07 07 NOPR 7 

• STATEMENT NUMBER 26 



PL/I OPTIMIZING COMPILER / ..... PL/I SAMPLE PROGRAM. • •••• / P!\GE 26 

0004CO 50 70 0 OAS ST 7,OVAR 000582 58 FO 3 178 L 15,376(0,3) 
000586 05 EF BALR 14,15 

• STATEMENT NUMBER 27 
0004C4 D2 03 D OCO 3 1FC MVC 192 ( 4, 13) , 508 0 ) • STATEMENr NUMBER 29 
0004CA 02 07 0 OC4 3 OEO mc 196(8,13) ,224(3) 000588 D2 03 0 OCO 3 IFC mc 192(4,13) ,5080) 
0004DO 41 80 D OCO LA 8,192(0,13) 00058E 02 07 ti OC4 3 OEO MVC 196(8,13), 224( 3) 
000404 50 80 0 OC4 ST 8,196 (0,13) 000594 41 80 0 OCO LA 8,192(0,13) 
0004D8 41 40 D OC4 LA 4,196(0,13) 000598 50 80 0 OC4 ST 8,196(0,13) 
0004DC 50 40 3 150 ST 4,336(0,3) 00059C 41 40 0 OC4 LA 4,196(0,13) 
0004EO D2 03 D OCC 3 200 MVC 204(4,13),512(3) 0005AO 50 40 3 164 ST 4,356(0,3) 
0004E6 02 07 0 000 3 OEO MVC 208 (8,13) .2240) 0005A4 02 03 0 OCC 3 200 MVC 204(4,13) ,5120) 
0004EC 41 40 D OCC LA 4,204(0,13) 0005AA 02 07 0 000 3 OEO MVC 208(8,13),224(3) 
0004FO 50 40 0 000 ST 4,208(0,13) 0005BO 41 EO 0 OCC LA 14,204 (0,13) 
0004F4 41 40 DODO LA 4,208(0,13) 0005B4 50 EO 0 000 ST 14,208(0,13) 
0004F8 50 40 3 154 ST 4,340(0,3) 0005B8 41 40 0 000 LA 4,208(0,13) 
0004FC 41 40 D OAC LA 4,SIZE 0005BC 50 40 3 168 ST 4,360(0,3) 
000500 50 40 3 158 ST 4,344(0,3) 0005CO 41 40 0 OAC LA 4,SIZE 
000504 41 40 6 OCO LA 4,BINVAR.RETCODE 0005C4 50 40 3 16C ST 4,364(0,3) 
000508 50 40 3 15C ST 4,348(0,3) 0005C8 41 40 6 OCO LA 4,BINVAR.RETCOOE 
00050C 96 80 3 15C 01 348(3),X'80' 0005CC 50 40 3 170 ST 4,368(0,3) 
000510 IB 55 SR 5,5 000500 50 DO 0 OOC ST 13,220(0,13) 
000512 41 10 3 150 L-A 1,336 (0,3) 000504 58 FO 3 02C L 15,44(0,3) 
000516 58 FO 3 160 L_ 15,352 (0,3) 000508 50 FO 0 008 ST 15,216(0,13) 
00051A 05 EF BALR 14,15 0005DC 41 40 0 008 LA 4,216(0,13) 

0005EO 50 40 3 17'1 ST 4,-372(0,3) 
0005E4 96 80 3 174 01 3720) ,X'SO' 

• STATEMENT NUMBER 28 0005E8 lS 55 SR 5,5 
00051C D2 03 D OCO 3 IFC mc 192(4,13),508(3) 0005EA 41 10 3 164 LA 1,356(0,3) 
000522 D2 07 D OC4 3 OEO MVC 196(8,13),2240) 0005EE 58 FO 3 17C L 15,380 (0, 3) 

)II 000528 41 80 0 OCO LA 8,192(0,13) 0005F2 05 EF BALR 14,15 
It1 00052C 50 80 0 OC4 ST 8,196(0,13) ttl 
CD 000530 41 40 0 OC4 LA 4,196(0,13) 
::1 000534 50 40 3 164 ST 4,356(0,3) • STATEMENT NUMBER 30 p, ..... 000538 02 03 0 OCC 3 200 mc 204 (4,13) ,512 (3) 0005F4 02 03 0 OCO 3 1FC MVC 192(4,13),508(3) >< 00053E 02 07 DODO 3 OEO MVC 208 ( 8, 13) , 224 0 ) 0005FA 02 07 0 OC4 3 OEO MVC 196(8,13),224(3) 
~ 000544 41 EO 0 OCC LA 14,204(0,13) 000600 41 80 0 OCO LA 8,192(0,13) .. 

000548 50 EO DODO ST 14,208(0,13) 000604 50 80 0 OC4 ST 8,196(0,13) 
ttl 00054C 41 40 0 000 LA 4,208 (0,13) 000608 41 40 0 OC4 LA 4,196(0,13) 
11 000550 50 40 3 168 ST 4,360(0,3) 00060C 50 40 3 180 ST 4,384(0,3) 
0 000554 41 40 0 OAC LA 4,SIZE 000610 D2 03 0 OCC 3 200 MVC 204 (4,13), 512( 3) \Q 
11 000558 50 40 3 16C ST 4,364(0,3) 000616 02 07 0 000 3 OEO MVC 208(8,13),224(3) 
~ 00055C 41 40 6 OCO LA 4,BINVAR.RETCOOE 00061C 41 EO 0 OCC LA 14,204(0,13) a 000560 50 40 3 170 ST 4,368(0,3) 000620 50 EO DODO ST_ 14,208(0,13) ..... 
::s 000564 50 DO D ODC ST 13,220(0,13) 000624 41 40 DODO LA 4,208(0,13) 
\Q 000568 58 FO 3 024 L 15,36(0,3) 000628 50 40 3 184 ST 4,388(0,3) 
tzj 00056C 50 FO D 008 ST 15,216(0,13) 00062C 41 40 0 OAC LA 4,SIZE 
>< 000570 41 40 D 008 LA 4,216(0,13) 000630 50 40 3 188 ST 4,392(0,3) 
~ 000574 50 40 3 174 ST 4,372(0,3) 000634 41 40 6 OCO LA 4,BINVAR.RErCOOE ttl 

000578 96 80 3 174 01 372(3) ,X·80' 000638 50 40 3 18C ST 4,396(0,3) .... 
CD 00057C 1B 55 SR 5,5 00063C 50 DO 0 OOC ST 13,220(0,13) 

00057E 41 10 3 164 LA 1,356(0,3) 
I\J 

000640 58 FO 3 024 L 15,36(0,3) 
~ 
~ 



N 
~ PL/I OPTIMIZING COMPILER / ..... PL/I SAMPLE PROGRAM. • •••• / PAGE 27 N 

g 000644 50 PO 0 OD8 ST 15,216(0,13) 000706 50 EO 0 000 ST 14,208(0,13) 
000648 41 40 o 008 LA 4,216(0,13) 00070A 41 40 0 000 LA 4,208(0,13) 

~ 
00064C 50 40 3 190 ST 4,400(0,3) 00070E 50 40 3 lAO ST 4,416(0,3) 
000650 50 DO o OE4 ST 13,228(0,13) 000712 D2 01 0 OOA 3 204 MVC 218(2,13),516(3) .... 000654 58 FO 3 02C L 15,44(0,3) 000718 02 07 0 OOC 3 OP8 MVC 220(8,13),248(3) 

0 000658 50 FO 0 OEO ST 15,224(0,13) 00071E 41 80 0 OOA LA 8,218(0,13) 
??- 00065C 41 40 D OEO LA 4,224(0,13) 000722 50 80 0 OOC ST 8,220(0,13) .... 000660 50 40 3 194 ST 4,404(0,3) 000726 41 40 0 'OOC LA 4,'220(0,13) 
S 000664 96 80 3 194 01 404(3),X'80" 00072A 50 40 3 1 All ST 4,420(0,3) .... 
N 000668 lB 55 SR 5,5 00072E 41 40 6 OC8 LA 4,CKPT RET:::: .... 00066A 41 10 3 180 LA 1,384(0,3) 000732 50 40 3 lA8 ST 4,424(0,3) ~ 

I.Q 00066E 58 FO 3 198 L 15,408(0,3) 000736 96 80 3 1A8 01 424 (3) , X' 80' 
n 000672 05 EF BALR 14,15 00073A 16 55 SR 5,5 

~ 00073C 41 10 3 19C LA 1, 412( 0,3) 
"0 000740 58 FO 3 lAC L 15,428(0,3) .... • STATEMENT NUMBER 31 000744 05 EP BALR 14,15 .... 
(1) 000674 02 03 0 OCO 3 1FC MVC 192 (4,13),508 (3) 
t1 00067A D2 07 0 OC4 3 OEO MVC 196(8,13) ,224(3) .. 

000680 41 80 0 OCO LA 8,192(0,13) • STATEMENT NUMBER 33 
It! 000684 50 80 D OC4 ST 8,196 (0,13) 000746 IB 11 SR 1,1 

a 000688 41 40 0 OC4 LA 4,196(0,13) 000748 1B 55 SR 5,5 
I.Q 00068C 50 40 3 19C ST 4,412(0,3) 00074A 58 FO 3 IBO L 15,432(0,3) 
t1 000690 02 03 0 OCC 3 200 MVC 204(ll,13) ,512(3) 00074E 05 EF BALR 14,15 

& 000696 D2 07 DODO 3 OEO MVC 208(8,13),224(3) 
(1) 00069C 41 EO 0 OCC LA 14,204(0,13) 
t1 0006AO 50 EO DODO ST 14,208(0,13) • STATEMENT NUMBER 34 . 

0006A4 CD 41 40 0 000 LA 4,208(0,13) 000750 1B 11 SR 1,1 
(j) 0006A8 50 40 3 lAO ST 4,416(0,3) 000752 lB 55 SR 5,5 
d 0006AC 02 01 0 OOA 3 204 MVC 218 (2,13) ,516 (3) 000754 58 FO 3 lB4 L 15,436(0,3) .... 0006B2 02 07 0 OOC 3 OP8 MVC 220 (8,13) ,'248 (3) 000758 05 EF BALR 14,15 Qa 
(1) 0006B8 41 80 0 OOA LA 8,218(0,13) 

0006BC 50 80 0 ODC ST 8,220(0,13) 
0006CO 41 40 0 OOC LA 4,220(0,13) • STATEMENr NUMBER 35 
0006C4 50 40 3 lA4 ST 4,420(0,3) 00075A 41 40 6 Oco LA 4,B1NVAR.RETCODE 
0006C8 41 40 6 OCO LA 4,B1NVAR.RETCODE 00075E 50 40 3 lB8 ST 4,440(0,3) 
0006CC 50 40 3 lA8 ST 4,424(0,3) 000762 96 80 3 lB8 01 440(3),X'80" 
0006DO 96 80 3 lA8 01 424(3),X'80· 000766 lB 55 SR 5,5 
0006D4 lB 55 SR 5,5 000768 41 10 3 lB8 LA 1,440(0,3) 
0006D6 41 10 3 19C LA 1,412(0,3) 00076C 58 FO 3 138 L 15,312(0,3) 
0006DA 58 FO 3 lAC L 15,428(0,3) 000770 05 EF BALR 14,15 
0006DE 05 EF BALR 14,15 

• STATEMENT NUMBER 41 
• STATEMENT NUMBER 32 000772 18 OD LR 0,13 
0006EO D2 05 0 OC2 3 206 MVC 194 (6,13) ,518 (3) 000774 58 DO 0 001l L 13,4(0,13) 
0006E6 D2 07 D OC8 3 ODO MVC 200(8,13),208(3) 000778 58 EO 0 OOC L 14,12(0,13) 
0006EC 41 EO D Oc2 LA 14,194(0,13) 00077C 98 2c 0 01C LM 2,12,28(13) 
0006FO 50 EO D OC8 ST 14,200(0,13) 000780' 05 lE BALR 1,14 
0006F4 41 40 D OC8 LA 4,200(0,13) 
0006F8 50 40 3 19C ST 4,412(0,3) • END PROCEDURE 
0006FC D2 07 DODO 3 100 MVC 208(8,13),256(3) 000782 07 07 NOPR 7 
000702 41 EO DODO LA 14,208(0,13) 



PL/I OPTIMIZING COMPILER / ••••• PL/I SAMPLE PROGRAM. • •••• / PAGE 28 

• REAL ENTRY 
• STATEMENT NUMBER 36 0007F4 90 EC o OOC STM 14,12,12(13) 
000784 DC C' A' 0007F8 41 FO F 01rt B ·+16 
000787 DC AL1(1) 0007FC 00000000 DC A(STMr. NO. TABLE) 

000800 0000OOC8 DC F'200' 
• PROCEDURE A 000804 00000000 DC A(STATIC CSECr) 

000808 58 30 F 010 L 3,16 (0,15) 
• REAL ENTRY 00080C 58 10 0 04C L 1,76(0,13) 
000788 90 EC D OOC STM 14,12,12(13) 000810 58 OO-F OOC L 0,12(0,15) 
00078C 47 FO F 014 B ·+16 000814 1E 01 ALR 0,1 
000790 00000000 DC A(STMT. NO. TABLE) 000816 55 00 C OOC CL 0,12(0,12) 
000794 000000B8 DC F'184' 00081A 47 DO F 030 BNH ·+10 
000798 00000000 DC A(STATIC eSECT) 00081E 58 FO C 074 L 15,116(0,12) 
00079C 58 30 F 010 L 3,16(0,15) 000822 05 EF BALR 14,15 
0007AO 58 10 D 04C L 1,76(0,13) 000824 58 EO 0 048 L 14,72(0,13) 
0007A4 58 00 F ooe L 0,12(0,15) 000828 18 FO LR 15,0 
0007A8 1E 01 ALR 0,1 00082A 90 EO 1 048 STM 14,0,72(1) 
0007AA 55 00 C OOC eL 0,12(0,12) 00082E 50 DO 1 004 ST 13,4(0,1) 
0007AE 47 DO F 030 BNH ·+10 000832 41 01 0 000 LA 13,0(1,0) 
0007B2 58 FO C 074 L 15,116(0,12) 000836 50 50 0 058 ST 5,88 (0, 13) 
0007B6 05 EF BALR lrt,15 00083A 92 80 0 000 MVI 0(13) ,X' 80' 
0007B8 58 EO D 048 L 14,72(0,13) 00083& 92 24 0 001 MVI 1 ( 13) , X" 24' 
0007BC 18 FO LR 15,0 000842 D2 03 0 054 3 108 MVC 84 (4,13) ,264 (3) 
0007BE 90 EO 1 048 STM 14,0.,72(1) 000848 58 10 o 0011 L 1,4(0,13) 
0007C2 50 DO 1 004 ST 13,4(0,1) 0OO84C 58 10 1 018 L 1,24(0,1) 
0007C6 41 D1 o 000 LA 13,0(1,0) 000850 02 03 o OBO 1 000 MVC 176(4,13),0(1) 
0007CA 50 50 o 058 ST 5,88(0,13) 000856 92 00 o OBO MVI 176(13),X'00" 
0007CE 92 80 D 000 MVI 0(13), X' 80" 00085A 05 20 BALR 2,0 
0007D2 92 24 o 001 MVI 1 (13) ,X' 24' 
000706 D2 03 D 054 3 108 MVC 84(4,13),264(3) • PROCEDURE BASE 

-:.- 00070C 05 20 BALR 2,0 
~ 
'C • PROCEDURE BASE • STATEMENT NUMBER 40 (I) 
::s 00085C 18 OD LR 0,13 0. 

00085E 58 DO 0 004 L 13,4 (0,13) .... 
M • STATEMENT NUMBER 37 000862 58 EO 0 OOC L 14,12(0,13) 
"lit 00070E 18 00 LR 0,13 000866 98 2C 0 01C LM 2,12,28(13) .. 0007EO 58 DO D 004 L 13,4(0,13) 00086A 05 lE BALR 1,14 

10 
0007E4 56 EO 0 ooe L 14,12(0,13) 

t1 0007E8 98 2C D 01C LM 2,12,28(13) • END PROCEDURE 
0 0007EC 05 1E BALR 1,14 
~ 

• END PROGRAM t1 

i • END PROCEDURE 
0007EE 07 07 NOPR 7 

b 
~ 

lilt • STATEMENT NUMBER 38 
M 0007FO DC C' B" 

! 0007F3 DC AL1(1) 
.... 

• PROCEDURE " B 

N 
~ 
W 



PL/I OPTIMIZING COMPILER /..... PL/I SAMPLE PROGRAM. • •••• / 

COMPILER DIAGNOSTIC MESSAGES 

<D 0 CD 
ERROR 10 L STMT MESSAGE DESCRIPTION 

SEVERE AND ERROR DIAGNOSTIC MESSAGES 

IEL0413I E 23 DECLARATION OF INTERNAL ENTRY NOT ALLO~ED. DECLARATION OF 'A' I3NORED. 

WARNING DIAGNOSTIC MESSAGES 

IEL0892I it 6 

IELOS18I W 20 

IEL0916I il 22 

TARGET STRING SHORTER THAN SOURCE. RESULT TRUNCATED ON ASSIGNMENT. 

·ONCOUNT' IS THE NAME OF A BUILTIN FONCTION BOT ITS IMPLICIT DECLARATION DOES NOT IMPLY 
'BUILTIN' • 

ITEM(S) 'SIZE· MAY BE UNINITIALIZED WHEN USED IN raIS BLOCK. 

COMPILER INFORMATORY MESSAGES 

IEL05411 I 1, 9, 22, 36, 38 • ORDER' OPTION APPLIES TO THIS BLOCK. OPTIMIZATION MAY BE INHIBITED. 

END OF COMPILER DIAGNOSTIC MESSAGES 

o ® 
COMPILE TIME 0.12 MINS SPILL FILE: 2 RECORPS, SIZE 3491 r---------------------------------------, 

Diagnostic messages and an end of I 
compile step message generated by the I 
compiler. All diagnostic messaqes I 
generated by the optimizing compiler I 
are documented in the publication OS I 
Optimizing Compiler: Messages. -- I 

I 
I 
I 
I 
I 
I 

"ERROR 10" This identifies the 
message as originating from the 
optimizing compiler (IEL), and 
gives the message number. 

"L" This is the severity level I 
of the message. I 

·STMT· This gives the number of 
the statement in which the error 
occurred. 

Compile time in minutes. This 
time includes the preprocessor. 

This gives the number of records 
·spilled" into auxiliary storage 
and the size in bytes of the 
spill file. 

PAGE 29 



P88-LEVEL LINKAGE EDITOR OPTIONS SPECIPIED XREP,LIST 0 DEFAOLT OPTION(S) USED - SIZE={102_00.573 __ > 

® CROSS REPERENCE TABLE 

o CONTROL SECTION ENTRY 

NAME ORIGIN LENG'f'B NAME LOCATION NAME LOCATION NAME LOCATION NAME L:>CATIOR 

PLIS'rART 00 -- PLICALLA 6 PLICALLB A 
PLlMAlN '8 8 
SYSPIRl' 50 20 
·SAMPLE2 70 31ft 
IELCGOA 388 72 
IELCGOB 1100 70 
~AMPLE1 no 86C 

. SAMPLE "78 
IBMUCPl· CEO 232 

IBMBKCPA CEO IBMBltCPB CE2 IBNBKCPC CE' 
IBMBKS'l'1· P18 61.0 

IBMBKS'l'A P18 IBMBKS'l'B P1A IBMBKSTC F1C IBMBICSTD F1E 
IBMBPIR1· 15B8 2FO 

IBMBPlRA 1501. IBMBPIRB 150C IB!lBPIRC 15D£ 
IBMBCCSl· lIA8 180 

IBMBCCSA 181.8 
IBMBCB01· lA28 lEO 

IBMBCBXE lA28 IBllBCBFE tA28 IBMBCBXP 11.30 IBMBaIFP lAlO 
IBMBC8XY lA38 IBMBCBFY lA38 IBMBCBPB lA40 IBMBCBn lUO 
IBMBCBPD lAItS IBMBCRXD tAlI8 IBMBCRXF lA50 

:numcoOl· lC08 "'8 
IBMBCODE lC08 IBMBCOZE lC08 IBMBCODP lC08 

IBllBCT01· 2050 29C 
IBMBCTBD 2050 IBMBC'l'BX 2058 IBMBCTBF 2060 IBMBC1'8P 2068 
IBMBC'l'BE 2070 

IBMBCU01. 22FO 308 
IBMBCUIX 22PO IBMBCUID 22" IBMIIa7IP 2300 IBMBCUI£ 2308 
IBMBCUIP 2310 

IBMBEOCl· 25FS £6 r-----------------------------------------, 
IBMBEOCA 25P8 Pirst paqe of the linkage editor :.- IBMBKDM1. 26£0 F8 listinq. :g IBMBKDMA 26EO 

eD IBMBPRCl· ·2708 _8 0 Statement identifyinq the version 
:s IBMBPRCA 2708 and level of the linkaqe editor a. IBMBS£Dl· 2820 _88 and qivinq.·the options as 
k I BMBS EDA 2820 IBMBSEDB 2820 s~ified in the PARM ~arameter of 

IBMBSI01. 2CA8 260 t e EXEC statement tha invokes 
l1li IBMBSIOA 2CA8 IBMBSIOB 2CAA IBMBSIOC the cataloqed procedure. 

IBMBSIOE 2CBO IBMBSIOT 2E66 
CY IBMBCK01. 2F08 176 Cross reference table. This table 

I'd IBMBCKDP 2P'08 IBMBCKZP 2F08 IBMBCKDD consists of a module map and the 
11 IBMBEOL1. 3080 1.0 cross-reference table. 0 IBMBEOLA 3080 -a 0 The module map shows each control 11 

I section and its associated entry 
points, if any, listed across the 

t; 
paqe. An asterisk after the name 
means that these are library 

-a subroutines obtained by automatic 

M library call. 
DC ® The cross-reference table «Jives I all the locations in a control ... section at which a symbol is 
eD referenced. $UNRESOLVED (W) 

identifies a wak external 
reference that has not been 

N reSOlved. 
~ &. J 
UI -----------------------------------------



tv 
~ NAME ORIGIN LENGTH NAME LOCATION NAME LOCAl' I ON NAME LOCATION NAME LOCATION 
0' 

IBMBERR1* 3120 6CO 
0 IBMBERRA 3120 IBMBERRB 3162 IBMBERRC 313" m IBMBJDT1* 31EO 8C 

~ 
IBMBJDTA 31EO 

IBMBJTT1* 3810 68 
H IBMBJTTA 3810 

r§> IBMBOCL1* 3808 10C 
IBMBOCLA 3808 IBMBOCLB 380A IBMBOCLC 38De IBMBOCLO 380E rt· 

IBMBSE01* 39E8 E8 ..... 
~. IBMBSEOA 39E8 
N IBMBSL01* 3AOO 6EO ..... IBMBSLOA 3 ADO IBMBSLOB 3A02 ::s 
IQ IBMBSPL1* 41BO 200 
() IBMBSPLA 41BO IBMBSPLB 41B2 IBMBSPLC 41B4 
0 I BMBS POl * 4480 120 
:3 IBMBSPOA 4480 to ..... IBMBCGT1* 4SAO 88 .... 
CD IBMBCGTA 4SAO 
1'1 IBMBEEF1* 4628 149 .. 

IBMBEEFA 4628 
'tI IBMBEER1* 4118 4 
1'1 IBMBEERA 4118 
0 IBMBSCV1* 4180 240 Ul 
1'1 IBMBSCVA "180 
SlI 
§ 
CD LOCATION REFHRS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTR~L SECTION 1'1 

en 
(j) 

10 PLIMAIN PLIMAIN 1" SYSPINT SYSPINT 
c: 18 PLIFLO'" $UNRESOLVEOC"') 1C PLITABS $UNRESOLVEDOn 
..... 2C PLICOUNT $UNRESOLVEOCW) 30 PLIXOpr $UNRES~LVEOC"') 
0.. 38 IBMBPIRA IBMBPIR1 3C IBMBPIRB I BMBPIR1 (1) 

40 IBMBPIRC IBMBPIR1 48 *SAMPLEl *SAMPLE1 
74 *SAMPLE1 *SAMPLE1 78 *SAMPLE1 *SAMPLE1 
7C *SAMPLE1 *SAMPLE1 80 *SAMPLE1 *SAMPLE1 
84 *SAMPLE1 *SAMPLE1 88 *SAMPLE1 *SAMPLE1 
8C *SAMPLE1 *SAMPLE1 90 *SAMPLE1 *SAMPLEl 
94 *SAMPLE1 *SAMPLE1 98 *SAMPLE1 *SAMPLE1 
9C *SAMPLE1 *SAMPLE1 AO *SAMPLE1 *SAMPLE1 
A4 *SAMPLE1 *SAMPLE1 A8 *SAMPLEl *SAMPLE1 
AC *SAMPLE1 *SAMPLE1 BO *SAMPLEl *SAMPLE1 
B4 IELCGOA IELCGOA 98 IELCGOB IELCGOB 
BC IBMBCCSA IBMBCCSl CO IBMBCHFO IBMBCHOl 
C4 IBMBCOOE IBMBC001 C8 IBMBCTHO IBMBCTOl 
CC IBMBCUIO IBMBCUOl DO IBMBEOCA IBMBE9C1 
04 IBMBEOLA IBMBEOL1 08 IBMBJOTA IBMBJOrl 
DC IBMBJTTA IBMBJTT1 EO IBMBOCLA IB~BOCL1 
E4 IBMBOCLC IBMBOCL1 E8 IBMBSEOB IBMBSEOl 
EC I BMBSEOA IBMBSE01 FO IBMBSIOE IBMBSIOl 
F4 IBMBSIOT IBMBSI01 F8 IBMBSLOA IBMBSL01 
FC IBMBSPLA IBMBSPL1 100 IBMBSPOA IBMBSP01 

104 IBMBCKOO IBMBCK01 190 SYSPINT SYSPINT 



LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION 

19C SYSPINT SYSPINT lA8 IBMBPRCA IBMBPRCl 
lAC IBMBKDMA IBMBKOMl 100 IBMBKSTA IBMBKSTl 
lE8 IBMBKSTB IBMBKST1 1EC IBMBKSTC IBMBKSTl 
208 IBMBKSTO IBMBKSTl 21C IBMBKCPA IBMBKCPl 
220 IBMBKCPB IBMBKCPl 224 IBMBKCPC IBMBKCPl 
284 *SAMPLEl *SAMPLEl 28C *SAMPLE1 *SAMPLEl 
2CO *SAMPLEl *SAMPLEl 304 *SAMPLE1 *SAMPLEl 
34C *SAMPLEl *SAMPLEl 364 *SAMPLE1 *SAMPLEl 
468 IBMBSIST $UNRESOLVEO(W) 46C IBMBSEOA IBMBSEOl 
480 *SAMPLE2 *SAMPLE2 488 *SAMPLE2 *SAMPLE2 
640 *SAMPLE2 *SAMPLE2 648 * SAMPLE 2 *SAMPLE2 
8CO *SAMPLE2 *SAMPLE2 8C8 *SAMPLE2 *SAMPLE2 
COO *SAMPLE2 *SAMPLE2 C08 *SAMPLE2 *SAMPLE2 
C6C *SAMPLE2 *SAMPLE2 C74 *SAMPLE2 *SAMPLE2 

15BO IBMCKEXA $UNRESOLVED(W) 15B4 IBMCKEXB $UNRESOLVEO (W) 
1840 IBMBJWTA $UNRESOLVEO(W) 1844 IBMBTOCA $UNRESOLVED(W) 
1848 IBMBTOCB $UNRESOLVED(W) 184C IBMBTPRA $ UNRESOLVED ( W) 
1800 IBMBOCLB lBMBOCL1 1814 IBMBOCLB IBMBOCLl 
1830 IBMBOCLO IBMBOCLl 1838 IBMBERRB IBMBERRl 
183C lBMBPGOA $UNRESOLVEO(W) 1850 IBMBPQDA $UNRESOLVED( W) 
1868 IBMBERRC IBMBERRl 182C IBMBOCLA lBMBOCLl 
1834 lBMBERRA lBMBERRl 1870 IBMBEERA IBMBEERl 
195C IBMBCHXO IBMBCHOl 1960 IBMBCHKF IBMBCHOl 
196C IBMBCHXP IBMBCHOl 1970 IBMBCHXY IBMBCH01 
1974 IBMBCHXE lBMBCHOl 199C IBMBCKOO IBMBCK01 
19AC IBMBCKDP ISMBCKOl 19DC IBMBCHFD IBMBCHOl 
19E8 IBMBCHFH lBMBCHOl 19EC IBMBCHFP lBMBCHOl 
19FO IBMBCHFY IBMBCHOl 19F4 IBMBCHFE IBMBCHOl 
1998 lBMBCEDX $UNRESOLVEO(W) 19AO IBMBCEDF $UNRESOLVED(W) 
19D8 IBMBCEFX $UNRESOLVED(W) 1958 IBMBCYXK $UNRESOLVEO (W) 
19EO lBMBCYFF $UNRESOLVED(W) 1A18 lBMBCMPX $UNRESOLVEO(W) 

)II lAlC IBMBCMPD $UNRESOLVED(W) lA20 IBMBCMPF $UNRES:::>LVED (W) 
1'['1 1AOC IBMBCUIX IBMBCUOl 1A14 IBMBCUIF IBMBCUOl 
"0 19CC IBMBCTHX IBMBCTOl 1900 IBMBCTHD 1 BMBCTO 1 C1) 
~ 19D4 lBMBCTHF lBMBCTOl 19B4 IBMBCODE IBMBCOOl 
0. 19BO IBMBCVDY $UNRESOLVEO(W) 197C lBMBCRKB $UNRESOLVED(W) .... 
>< 1984 IBMBCRXB $UNRESOLVEDHn 19FC IBMBCRXB $UNRESOLVED(W) 
"zJ lA04 lBMBCRKB $UNRESOLVEO(W) 19A8 IBMBCWDH $UNRES:::>LVEO( W) .. 1990 IBMBCGZA $UNRESOLVED Uf) 1994 IBMBCGPA $ UNRESOLVED ( W) 

1978 lBMBCACA $UNRESOLVEO(W) 1980 IBMBCACA $UNRES:::>LVEO( W) 
ttl 1988 IBMBCACA $UNRESOLVED(W) 19B8 IBMBCACA $UNRES:::>LVED(W) 11 
0 19CO IBMBCACA $UNRESOLVED(W) 19C8 IBMBCACA $UNRESOLVED( W) 
~ 19F8 IBMBCACA $UNRESOLVED(W) lAOO IBMBCACA $UNRESOLVED (W) 11 

~ lA08 IBMBCACA $UNRES:::>LVEO(W) lA24 IBMBCPBF $UNRESOLVED(W) 
a 1968 IBMBCHXH IBMBCHOl 19BC IBMBCEDB $UNRES:::>LVEO( w) .... 19C4 lBMBCEDB $UNRESOLVED(W) 198C IBMBSCVA IBMBSCVl ~ 
~ lA2C lBMBCOZE IBMBCOOl 1A34 IBMBCKZP IBMBCK01 
t:J 1A3C IBMBCVZY $UNRESOLVED(W) lA44 IBMBCWZH $UNRESOLVED (W) 
>< 1A4C IBMBCKZD IBMBCK01 1BEC IBMBCGTA IBMBC3T1 III 2054 IBMBCKZD IBMBCK01 2074 IBMBCOZE IBMBC001 ~ 2064 IBMBCEZF $UNRESOLVEO(W) 206C IBMBCKZP IBMBCK01 ... 
C1) 205c IBMBCEZX $UNRESOLVED(W) 22E8 IBMBSCVA IBMBSCVl 

tv 
.I:: 
-..J 



"" ~ (Xl 

g 

~ 
H 

,g 
rt 
1-" 

~. 
N 
1-" 
::s 

I.Q 

() 

~ 
'0 
1-" .... 
en 
11 
00 

'tI 
11 
0 

I.Q 
11 

i 
(I) 
11 

CD 

Gl 
c:: ..... 
Oa 
(I) 

LOCATION REFERS TO SYMBOL IN CONTROJ,. SECTION 

22F4 IBMBCEFX $UNRESOLVEDOn 
2304 IBMBCHFP IBMBCHOl 
25EC IBMBSCVA IBMBSCVl 
2C9C IBMBSAOA $UNRESOLVED(W) 
2C94 IBMBSFOA $UNRESOLVED(W) 
2C98 IBMBSPOA IBMBSPOl 
2CAO IBMBSCOA $UNRESOLVED(W) 
2C80 IBMBSIST $UNRESOLVED(W) 
2FOO IBMBSPLB IBMBSPLl 
2EF8 IBMBOCLA IBMBOCLl 
31BO IBMBERCA $UNRESOLVED(W) 
39C4 IBMBRIOB $UNRESOLVED(W) 
39CC IBMBSCPA $UNRESOLVED(W) 
41AC IBMBCACA $UNRESOLVED(W) 
41A4 IBMBCZCA $UNRESOLVED(W) 
419C IBMBSIST $UNRESOLVED(W) 
4564 IBMBCKDP IBMBCKOl 
!J514 IBMBCMPP $UNRESOLVED(il) 
4580 IBMBCHXE IBMBCHOl 
4588 IBMBCHFE IBMBCHOl 
459C IBMBCMPE $UNRESOLVED(W) 
4590 IBMBCPBE $UNRESOLVED(il) 

LOCATION 20 REQUESTS CUMULATIVE PSEUDO RE3ISTER LEN3TH 
ENTRY ADDRESS 00 
TOTAL LENGTH 49CO 

····GO DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET 

SAMPLE PROGRAM: DATE 
END SAMPLE PROGRAM 

73/04/13, TIME 21.18.17 

LOCATION REFERS TO SYMBOL IN CONTROL SECfION 

22FC IBMB~HFD IBMBCHOl 
230C IBMBCHFE IBMBCHOl 
2C8C IBMBSAIA $UNRESOLVEO( il) 
2C84 IBMBSFIA $UNRESOLVED on 
2C88 IBMBSPIA $UNRESOLVED(il) 
2C90 IBMBSCIA $UNRESOLVED(W) 
2CA4 IBMBSBOA $UNRESOLVED( il) 
2EFC IBMBSPLA IBMBSPLl 
2F04 IBMBSPLC IBMBSPLl 
2FOC IBMBCODP IBMBCOOl 
31B4 IBMBEEFA· IBMBEEFl 
39C8 IBMBRIOC $UNRESOLVED(W) 
3ACC IBMBSIST $UNRESOLVED (il) 

41A8 IBMBCBC-A $UNRESOLVED(W) 
41AO IBMBCXOA $UNRESOLVED (il) 

4560 IBMBCHXP IBMBCHOl 
4568 IBMBCHFP IBMBCHOl 
451C IBMBCMPP $UNRESOLVED(il) 
4584 IBMBCODE IBMBCOOl 
4594 IBMBCMPE $UNRESOLvED on 
458C IBMBCPBP $UNRESOLVED(W) 
4598 IBMBCCSA IBMBCCSl 



Appendix G: Running under a Virtual Storage Operating 
System( OS/VS) 

OS/VSl and OS/VS2 are the virtual-storage 
equivalents of OS/MFT and OS/MVT 
respectively. In general, a program that 
compiles and executes successfully under 
OS/MFT or OS/MVT will do so under OS/VS. 

OS/VS has the advantage that the size of 
the partition or region used by the program 
is not limited by the amount of real 
storage available. In the case of PL/I 
programs, partitions or regions large 
enough to give maximum efficiency during 
both compilation and execution can be used, 
and the segmentation of programs to fit 
restr ic·ted amounts of storage becomes 
unnecessary. 

virtual partitions or regions can be 
allocated in multiples of 64K bytes. The 
amount of real storage available to a 
program at any time is under the control of 
the Operating System, and cannot be 
specified by the programmer. The storage 
requirements given below refer to the 
amounts of virtual storage available. 

The compiler will run in the minimum 
virtual partition or region size of 64K 
bytes. However, increased efficiency can 
be obtained by using a partition or region 
size large enough to prevent the compiler 
from using its spill file. The use of 
partition or region sizes in excess of 
those required to prevent the compiler from 
using its spill file may cause a slight 
degradation in performance, but this will 

not usually be significant unless the 
amount of real storage allocated by the 
operating system is small. 

It is inadvisable to limit the amount of 
storage available to the con~iler by 
specifying the SIZE option. This option 
should be used only if you require tc 
reserve space for other routines, such as 
ones that invoke the com~iler dynanically. 
In any case, the compiler requires at least 
52K bytes of storage under VSl and at least 
54K bytes under VS2. 

The sizes of records cn the com~iler 
spill file depend on the amount of storage 
available to the cow.piler. Figure G-l 
gives record sizes under VS1. For VS2, the 
specified storage size linits should be 
increased by 2K bytes. 

storage (bytes) 

52-62K 
62-78K 
78-84K 
Over 84K 

Record size (bytes) 

1091 
1691 
3491 
4051 

Figure G-l. Compiler spill file record 
sizes 

Note that the 2311 Disk Storage Unit is 
not supported by OS/VS. 

Appendix G: Running under a Virtual Storage Operating Systen (OS/VS) 249 





Index 
Where more than one page reference is given, the major reference is first. 

A page reference to a paragraph split between two pages will refer to the first of the 
two pages. 

&LKLBDSN parameter in cataloged 
procedure 150 

* parameter of DD statement 11 
* PROCESS statement 5 

%INCLUDE statement 44 
%PAGE statement 26,35 
%SKIP statement 26,35 

abbreviated form of compiler options 21 
absolute addresses 49,70 
access method services 133 
access methods 80,131 
access speed 

improving, for INDEXED data sets 110 
improving, for REGIONAL data sets 118 

accessing a VSAM dataset 
entry sequenced data set 137 
key sequenced data set 136 

addressing 49 
advanced checkpoint/restart 189 
aggregate length table 37 
AGGREGATE option 22 
ALIAS statement (linkage editor) 58 
aliases 58 
American National Standard control 
characters (see ANS) 

American Standard Code for Information 
Interchange (see ASCII) 

AMP parameter 137 
ANS (American National standard) control 
characters 

printers 95,105 
punched card devices 105 
source listing 26 
specifying in JCL 197 

APAR (Authorized Program Analysis 
Report) 207 

areas 199 
argument passed to main procedure 31 
arguments in checkpoint/restart 200 
arrays 

length table 37 
mapping 17 
maximum number of dimensions 199 

ASCII (American Standard code for 
Information Interchange) 74,75,194 

for paper tape, specifying 194 
option of ENVIRONMENT attribute 74 
records 76 

Assembler language linkage 165 
abnormal termination 169,173 
Assembler-PL/I-Assembler 173 
calling Assembler routines from 
PL/I 169 

Assembler language linkage (ccntinued) 
calling PL/I procedures from 
Assembler 170 

error handling 173 
establishing PL/I environrrent 165 
invoking PL/I procedure 165 
linkage conventions 165 
no main PL/I procedure 170 
use of register 12 169 

Assembler language listing 40 
ASSEMBLER option 174 
asterisk (*) parameter of DO statement 11 
ATTACH macro instruction 45 
attribute listing 22,29,36 
ATTRIBUTES option 22 
automatic library call 

DD statement for 51 
introduction 50 
main discussion 52 
suppressing 54,69 
use of by loader 64,69 
use of by programmer 141 

auxiliary storage (see stcrage) 

base library (SYS1.PLIEASE) 53,150 
basic access technique 81 
Basic Direct Access Method (ECAM) 81 
Basic Indexed Sequential Access Methcd 

(BISAM) 81 
Basic sequential Access Method (BSAM) 81 
batched compilation 41,62 
BCD (Binary Coded Decimal) 

compiler options 22 
magnetic tape translation 88,197 

BDAM (Basic Direct Access Method) 81 
Binary coded Decimal (see BCC) 
BISAM (Basic Indexed Sequential Access 

Method) 81 
blanks, removal of 17 
BLKSIZE option of ENVIRONMENT attribute 74 
BLKSIZE subparameter of DCB 

parameter 194,74 
block size 194 

CONSECUTIVE data sets 
record I/O 101,103 
stream I/O 9~,92 

INDEXED data sets 110 
introduction 9 
PRINT files 95 
REGIONAL data sets 118 
specifying 74.194 
system output device (SYSOUT) 13 

blocking (in general) 74 
boundary alignment 17 
branching, trace table showing 160 
BSAM (Basic sequential Access Method) 81 
buffers 

contents, in dump 161 
default storage allocations 18 
generai discussion 80 
specifying number of 194 

Index .251 



BUFFERS option of ENVIRONMENT 
attribute 196 

BUFNO subparameter of DCB parameter 194 
BUFOFF option 74 
built-in functions 199 

recognized by context 199 
without arguments 199 

BUILTIN attribute 199 
Burroughs code for paper tape, 
specifying 194 

bypassing errors 160 

CALL macro instruction 45 
CALL option (loader) 69 
capacity record 118 
card devices (see punched card devices) 
card output (see punched card output) 
cataloged data sets 73 
cataloged procedures 149 
, creating new 152 

DD stat ements 7 
definition 2 
IBM-supplied 152 
input data set 152 
invoking 149 
modifying 151 
multitasking 150 
region size 152 
shared library 213 
standard files 13 
with MFT 152 
with MVT 152 

C~rLG subparameter of DISP paramE!ter 73 
chained scheduling 80,196 
channel programs, specifying number 195 
character set specification 22 
character, invalid 196 
CHAR SET option 22 
CHECK condition 160 
CHECK prefix, use of 160 
checkout compiler modules 63 
checkout, program 157 

252 

(see also problem determination) 
bypassing errors 160 
CHECK prefix 160 
common errors 158' 
compile-time! 157,158 
control of exceptional conditions 161 
dumps 161 
dynamic checking facilities 160,161 
execution-time 158 
file information 163 
FLOW compiler option 160 
invalid use of PL/I 158 
logical errors 158 
machine errors 160 
on-codes 161 
on-units 158,161 
operating system errors 160 
PLIDUMP 162 
preprocessing 161 
PUT ALL statement 160 
return codes 163 
SIGNAL statement .161 
SNAP option 160 
STRINGRANGE condition 160 
SUBSCRIPTRAOOE condition 159 

checkout, program (continued) 
system failure 160 
trace information 162 
unidentified errors 159 
use of a standard set of checkout 

statements 161 
checkpoint/restart 189,200 
COBOL structures in aggregate length 
table 37 

code identifying object module 24 
CODE subparameter of DCB parameter 194 
column binary mode for card device, 
specifying 195 

combining procedures 54 
comments, removal of 17 
common areas 38,48 
compatibility interface, ISAM/vSAM 137 
compatibility with the PL/I (F) 
compiler 199 

compilation 
batched 41,62 
speed of 28 
suppressing 158 

COMPILE option 23 
compile-time processing (see preprocessing) 
compiler 

failure 160,207 
failure, suspected 158 
general description 15 

compiler options 21 
abbreviations 22 
batched compilation 41 
continuation line for 21 
defaults 22 
descriptions 22 
installation deletions 24 
introduction 15 
preprocessor 43 
specifying 21 
summary table 22 
use in checking out program 157,158 
used for compiler listings 34 

completion codes (see return codes) 
concatenating data sets 78 
concatenating litraries 1'42 
condition built-in functicn values in 
trace 162 

condition handling 161 
Models 91 and 195 211 

conditional compilation 23 
conditional execution of job step 163 
conditional subparameter cf DISP 79 
conditions 200 
CONSECUTIVE data sets 

accessing in record I/O 
accessing in stream I/O 
creating in record I/O 
creating in stream I/O 
general description 77 
introduction 7 

102 
92 

101 
91 

continuation line for compiler options 21 
control area 131 
control characters 

card devices 105 
printers 95,106 
specifying in JCL 197,81 

control interval 131 
CONTROL option 21,24 



control program (see operating system) 
control sections 

identification 38 
length 38 
listing, linkage editor 56 
listing, loader 69 

control statements, linkage editor 57 
listing of 54 

control variables in DO statement 200 
conversational processing (see TSO) 
conversion feature of 2400-series tape 
drives 197 

COpy option, use of 159 
COUNT option 24 

execution-time 33 
restr iction 62 

cross-reference listing 22,30 
compiler 36 
linkage editor 57 

cylinders 
definition 89 
index 108 
overflow area 112,108 
specifying overflow area 194,196 

CYLOFL subparameter of DCB parameter 194 

D-format records 9,75,76 
data check 89 
data codes 7'4,22 

ASCII 74 
BCD 74 

data control block (see DCB) 
data conversion feature, magnetic tape 
devices 88 

data definition statement (see DD 
statements) 

data for program checkout 157 
data management 

specifying data management services 196 
DATA parameter 11 
data protection image 88 
data protection on punched cards 88 
data set control block (see DSCB) 
data sets 74 

access methods 80 
accessing (basic introduction) 10 
accessing CONSECUTIVE data sets 102 
accessing INDEXED da ta sets 114 
accessing REGIONAL data sets 120 
associating with PL/I file 81 
blocks 7'4 
capacity record 118 
cataloged 73 
characteristics 79 
checkpoint/restart 190 
concatenating 78 
CONSECUTIVE (see CONSECUTIVE data sets) 
creating (basic introduction) 8 
creating CONSECUTIVE data sets in 

record I/O 101 
creating CONSECUTIVE data sets in 
stream I/O 91 

creating INDEXED data sets 108 
creating REGIONAL data sets 118 
cylinder index 108 
cylinder overflow area 108,112 
DeB (data control block) 81 

data sets (continued) 
DD statements 19 
ddnames 78,19 
dedicated 20 
defining 78 

for record files 101 
for stream files 91 

definition of term 73 
device class 10 
device type 8,10 
direct 77 
disposition 11 
dissociating from PL/I file 83 
generation data group 74 
independent overflow area 114,108 
index area 108,114 
INDEXED (see INDEXED data sets) 
indexed sequential 77 
indexes 107 
input 19 
input, and cataloged procedures 152 
labels 

cOF.Ying from 193 
general description 77 
in library data sets 141 
modification by data Iranagement 83 
nonstandard 77,103 

limiting search extent 195 
linkage editor 51 
listings 20 
loader 66 
magnetic tape 101 
master index 108,114 
members 77 
messages 20 
names 

introduction 9,10 
main discussion 73~78 

organization 77 
output 19 
overflow area 108,112 
partitioned (see libraries) 
prime data area 108,114 
printer line spacing 79 
qualified names 73,74 
re-creation 115 
record formats 75 

specifying in JCL 195,196 
record type 9,10 
records 74 
region numhers 116 
REGIONAL (see REGIONAL data sets) 
reorganiz ifl9.-.. INDEXED data sets 115 
retrieval of cataloged data sets 73 
sequential 77 
sort/merge 178 
source program 19 
source statement lihrary 20 
storage for (see storage) 
telecommunications 77 
temporary 20 ,9 
track index 107,108 
unlabeled 77 
unnamed 74,10 
updating CONSECUTIVE data sets 102 
updating INDEXED data sets 114 
updating REGIONAL data sets 120 
use of DCB suhparameters 193 

Index 253 



data sets (continued) 
volume serial number 9,10 
7-track tape 197 

data, invalid 159 
DB-format records 75,76 
DCB (data control block) 81 
DeB parameter 

(see also DCB subparameters) 
introduction 9,10 
main discussion 79 
summary appendix 193 

DCB subparameters 
BLKSIZE 194 
BUFNO 194,195 
CODE 194 
CYLOFL 194 
DEN 194 
DSORG 195 
for CONSECUTIVE data sets 103 
for INDEXED data sets 110 
for REGIONAL data sets 120 
KEYLEN 195 
LIMCT 195 
LRECL 195 
MODE 195 
NCP 195 
NTM 196 
OPl'CD 196 
overriding in cataloged procedures 152 
RECFM 196 
RKP 197 
STACK 197 
TRTCH 197 

DD (data definition) statements 78 
adding, to cataloged procedures 151 
creating a library 142 
ddnames (see ddnames) 
essential parameters 10 
for checkpoint/restart data sets 190 
for INDEXED data sets 110,114 
for input data set in cataloged 
procedures 153 

for linkage editor data sets 51 
for loader data sets 66 
for record I/O 101 
for sort/merge data sets 178 
for standard da ta sets 19 
for stream I/O 91 
for VSAM data sets 137 
introduction 2,8 
modifying, in cataloged procedures 151 
parameters 8 
PLlDUMP 162 

ddnames 78 
definition of term 8 
for checkpoint/restart data sets 190 
for linkage editor data sets 51 
for loader data sets 66 
for sort/merge data sets 180 
for standard data sets 19 
in dynamic invocation,of compiler 45 

deblocking of records 74,80 
debugging (see checkout, program) 
DECK opti on 24 
DECLARE statement labels 204 
dedicated data sets 20 
dedicated workfiles 150 
default options 20 

2S4 

DEFINED attribute 200 
delimiter statement (job control 

language) 11 
demounting volumes, instructions for 79 
DEN subparameter of DCE paraneter 88,194 
density, recording, magnetic tape 88,194 
dependent declarations 200 
depth of replacement maximum 43 
device classes 10 

for linkage editor data sets S2 
for loader data sets 66 

device description 78 
device independence df source ~rograrr 78 
device specification 78,8,10 

ddnames 79 
diagnostic messsages (see messages) 
dictionary-build stage 17 
direct data sets 77 
direct-access devices 

specifying storage requirements 9,89 
specifying write validity check 196 

directory, library 142,143 
DISP parameter 42 

introduction 80,10,11 
main discussion 79 

DISPLAY statement 200 
DO statement control variables 200 
DPI (see data protection image) 
DSA (dynamic storage area) 

trace 162 
DSCB (data set control block) 77 

for library 143 
DSNAME parameter 78,9,10 
DSORG subparameter of DeB parameter 195 
dummy records 

INDEXED data sets 114,196 
REGIONAL data sets 118,120 

DUMP o~ion 24 
dumps 161 
dumps from PL/I programs 200 
dynamic 9heckout facilities 160 
dynamically loaded modules 59 

EBCDIC (Extended Binary Coded Decimal 
Interchange Code) 

alternative codes ·74 
compiler option for source program 22 
specifying mode for card devices 195 
specifying translation to ECD 88,197 

embedded keys 111,112 
END instruction 49 
END statement 37 
ENDPAGE condition 201 
ENTRY address 56 
entry names 201 
entry point listings 

linkage editor 56 
loader 70 

entry sequenced data set 131 
entry variables as source of error 159 
ENVIRONMENT attribute 9,201 
environment, PL/I, in Assembler language 
linkage 165,170 

EP option (loader) 69 
error correction by compiler 157,201 
error handling 

Assembler-PL/I linkages 166,173 
Models 91 and 195 211 



error messages (see messages) 
errors in program (see checkout, program) 

(see also problem determination) 
errors, operating 159 
ESD (external symbol dictionary) 38 
ESD option 24 
ESDS (see entry sequenced data set) 
exception (definition of term) 211 
exceptional condition handling 161 

Models 91 and 195 211 
EXCLUSIVE attribute 201 
exclusive calls 62 
EXEC statements 19 

continuation line 21 
for linkage editor 51 
for loader 66 
locating load module 141 
modifying, in cataloged 
procedures 151,152 

option list maximum length 21 
PARM parameter 21 
speCifying compiler options 21 
specifying execution-time options 31 

executable load module labeling 54 
executable program (definition) 15 
execution· 

essential job control language 5 
suppressing 158 

execution-time options 21 
descriptions 31 
specifying 30 

Extended Binary coded Decimal Interchange 
Code (see EBCDIC) 

external references 
definition 48 
in ESD listing 38 
in linkage editor listings 57 
resolution by linkage editor 

automatic library call 52 
suppressing automatic library 
call 54 

unresolved 54,56 
suppressing automatic library 
call 54 

external symbol dictionary (ESD) 48 

F-format records 75 
FB-format records 75 
FBS-format records 75 
FCB (file control block) 163 
FETCH statement 62 
fetchable load modules 62 
files 

attributes 81 
clOSing 83 
information from PLIDUMP 163 
introduction 7 
opening 81 
specifying number of channel 

programs 195 
standard 13 
SYSIN 13 
SYSPRINT 13 
TRANSIENT 77 
variable, as source of error 159 

final-assembly stage 17 
fix-ups for program product faults 209 

fixed-length records 75,9 
FLAG option 24 
flow of control, tracing 160 
FLOW option 24,160 

execution-time 34 
format descriptor card 

optical mark read 85 
read column eliminate 86 

format of records (see record format) 
formatted dump option 24 
FORTRAN arrays in aggregate length 
table 37 

Friden code for paper tape, specifying 194 
FS-format records 75 
FUNC subparameter of DCB 195 

generation data group 74 
GET macro instruction 81 
GONUMBER option 25 
GOSTMT option 25 

header label 77 
heading information in listing 35 
hexadecimal adress representation in 

ESD 39 
hexadecimal dumps 161 

I/O (see input/output) 
IBG (interblock gap) 74 
IBM code for paper tape, specifying 194 
IBM control character, specifying 197 
IBM programming support 207,160 
IBM service aid prograrr IMAPTFLS 209 
IBMBEER 79 
IBMBPIRA 39 
IBMBSTAB 97 
identifier listing 36 
IELOAA 45 
IEWL 51 
IEWLDRGO 66 
IHEDUMP 200 
IMAPTFLS service aid program 209 
imprecise interrupts 211 
IMPRECISE option 25,211 
INCLUDE option 25 
INCLUDE statement (linkage editor) 59 
including source statements from a 
library 44 

independent overflow area 114,108 
specifying in JCL 196 

index (see INDEXED data sets) 
index data set (VSAM) 131 
index set (VSAM) 131 
INDEXED data sets 108 

adding records to 114,108,112 
creation 108 
deleted (dummy) records 114,196 
index area 1Q8,114 

separate DD statement fer 110 
indexes 107 
introduction 77 
master index 114,196 
overflow area 112,114,196 

separate DD statement for 110,112 
overflow records 194 

Index 255 



INDEXED data sets (continued) 
prime area 114 

separate DO statement for 110 
specifying key position 197 
specifying number of tracks per 
index 196 

SYSOUT device restriction 110 
INITIAL attribute 37 
initial storage area (ISA) 31 
initial volume 'label 77 
initialization 15,36,39 
input 

compiler 
data in the input stream 11,98 
da ta set 19 , 98 
in cataloged procedures 153 

linkage editor 57 
loader 66 

input/output 
(see also: data sets; input; output) 
access methods 80 
defining data sets for record files 101 
defining data sets for stream files 91 
device independence of source 

program 78 
device specification 8 
improving transmission time 196 
introduction 7 
locate mode 80 
move mode 80 

INSERT statement (linkage editor) 61 
INSOURCE option 25 
installation factors for cataloged 

procedures 152 
interblock gap (IBG) 74 
interlanguage communication between PL/I 

and Assembler 165 
interrecord gap (see interblock gap) 
interrupt (definition of term) 211 
interrupt handling 161 

Assembler-PL/I linkages 166,173 
Models 91 and 195 211 

ISA (initial storage area) 31 
lSAM/VSAM compatibility interface 137 
ISASIZE option 31 

JCL (see job control language) 
jOb (definition) 2 
job control language (JCL) 41 

checkpoint/restart 189 
creat;i.ng a library 142 
DCB subparameters 193 

for CONSECUTIVE data sets 103 
for INDEXED data sets 110 
for REGIONAL data sets 120 

defining data set libraries 142 
essential 5 
for compilation 17,20 
for linkage editor 50,53 
for loader 64,67 
for sort/merge data sets 178 
for VSAM data sets 137 
introduction 2 

JOB statement 2 
MSGCLASS parameter 34 
MSGLEVEL parameter 34 

job step 2 

256 

JOBLIB DD statement 142 
message processing prograrrs 130 
MPP (message processing program) 130 

key sequenced data set 131 
accessing 136 
creation 133 

keying records 
INDEXED data sets 111,112 
introduction 77 
REGIONAL data sets 118 
specifying key length 195 
specifying key position 197 

KEYLEN subparameter of DCE pararreter 195 
keypunch (see punched card devices) 
KSDS (see key sequenced data set) 

LABEL parameter 78 
label variables as source of error 159 
labeling data sets 77 
labeling volumes 73 
LEAVE option 79 
length of record, specifying 195,74 
LET option (linkage editor) 54 
LET option (loader) 69 
libraries 142 

base library (SYS1.ELIBASE) 53 
calling additional 58 
creat ing 142 
creating members 143 
directory 143 
including source staterrents fron 44 
multitasking library (SYS1.PLITASK) 53 
structure 145 
system procedure litrary 

(SYS1.PROCLIB) 141 ,149 
systero program library 

(SYS1.LINKLIB) 141 
types of 141 
use by linkage editor 141 
use by loader 141 
use by operating system 142 
use by PL/I program 142 

library subroutines 
control sections for 48 
data set for 53 
dynamic calling 49 
ESD entries for 39 
external reference resoluticn 56 
failure of 160 
failure of, suspected 158 
in overlay structures 62 
introduction 15 
link-editing 49 
multitasking version and cataloged 
procedures 150 

using cataloged procedures 150 
library, automatic call (see automatic 
library call) 

LIMCT subparameter of DCB parameter 195 
Ii ne numbers 

and offsets, table of 28 
in messages 25 
in source listing 28 
preprocessor 35 

LINE option/format item 95 



line size 
default, and overriding it 96 
specification 95 

line spacing, printers 106,95 
specifying in JCL 197,88 

LINECOUNT option 25 
LINESIZE option 98 
LINK macro instruction 45 
link-pack area 64,69 
linkage editor 47 

(see also: load modules; loader) 
ALIAS statement 58 
checkout 158 
choice of linkage editor or loader 47 
control statement listing 55 
control statements 57 
cross-reference listing 57 
data sets 51 
DO statements 51 
ddnames 51 
device classes 52 
input 52!, 58 
job control language for 50 
listings 55 
messages 55 
NAME statement 58,27,41 
non-multitasking program 53 
optional facilities 53 
output 52 
output and cataloged procedures 149 
output to a library 141 
overlaying (see overlaying) 
region size 152 
return code 0004 56 
specifying storage for 54 
storage requirements 50 
suppressing automatic library call 54 
suppressing link-editing 158 
system program library 

(SYS1.LINKLIB) 141 
temporary workspace 52 
use by operating system 141 

LINKEDIT (program alias) 51 
LIST opti on 25 
LIST option (linkage editor) 54 
listings 22,34 

aggregate lengths 37 
attribute 36 
cataloged procedures 149 
cross-reference 36 
dumps 161 
external symbol dictionary 38 
general discussion 34 
identifier 36 
linkage editor 55 
loader 70 
nesting level in 36 
object module 40 
of compiler options 35 
preprocessor input 35 
preprocessor messages 35 
sort/merge 181 
source program 35 
statement offset addresses 38 
static internal control section 40 
table of options 35 
use in checking out program 157 
with APARs 207 

listings produced by prograrrrring 
example 215 

LMESSAGE option 26 
load modules 

control section listing 70 
definition 3 
disposition staterrent 56 
libraries (see libraries) 
location 141,142 
map o~ion 56,69 
maximum si ze 52 
naming 

compiler 27,41 
linkage editor 58 

replacement 58 
separation 58 
structure 48 

loader 64,47 
(see also: linkage editor; lead mcdules) 
choice of linkage editor or loader 47 
data sets 66 
DO statements for loader data sets 66 
ddnames 66 
device classes 66 
external reference resoluticn 69 
general description 64 
input 66 
job control language for 64 
listings 70 
messages 70 
module map 70 
optional facilities 68 
output 67 
specifying entry point of prograrr to 69 
specifying storage for 70 
storage requireRents 64 

LOADER (program alias) 66 
locate mode input/output 80 
locator variables as source of error 159 
locked records 202 
logical record 131 
looping, preventing 159 
LRECL subparameter of DCB parameter 195,74 

machine control characters (see control 
characters) 

machine errors 160 
machine instruction listing 40 
MACRO option 26 
magnetic tapes 

accessing, without standard 
labels 93,103 

main discussion 88 
special requirerrent for 7-track 197 
specifying recording density 194 

main procedure and Assembler language 170 
MAP option 

compiler 26 
linkage editor 54,56 
loader 69 

margin indicator option 26 
MARGINI option 26 
MARGINS option 26 
master index (see INDEXED data sets) 
MCP (message control prograrr) 124 
MDECK option 26 

Index 257 



members of partitioned data sets (see 
libraries) 

M:ERGE statement restriction 179 
ddnames 180 

message control program (MCP) 124 
message format, teleprocessing 125 
message processing program (MPP) 124 
messages 

general discussion 40 
line numbers in 25 
linkage editor 55 
loader 70 
long form option 26 
numbering in preprocessor messages 43 
printed format 98 
severity option 24 
short form option 26 
sort/merge 181 
statement numbers in 25 
use in checking out program 157 

MFT (Multiprogramming with a Fixed number 
of Tasks) 1,152 

and cataloged procedures 152 
introduction 1 

MODE subparameter of DCB parameter 195 
Model 195 211 
Model 91 211 
module map, linkage editor 56 
module, load (see load modules) 

(see also: linkage editor; loader) 
move mode input/output 80 
MPP (message processing program) 124 
MSGCLASS parameter 34 
MSGLEVEL parameter 34 
multiple compilation 19,47,41,62 
multiple operations on punched cards 87 
multiple-exception imprecise interrupt 

(defi ni ti on) 211 
multitasking 

library (SYS1. PLITASIO 53,150 
options in CALL PLIDUMP 162 
with shared library 213 

MVT (Multiprogramming with a variatle 
number of Tasks) 1,152 

and cataloged procedures 152 
introduction 1 

NAME option 27,41 
compatibility restriction 202 

NAME statement (linkage editor) 58,27,41 
names, qualified 73 
NCAL option 

linkage editor 54 
loader 69 

NCP subparameter of DCB parameter 195 
NCR code for paper tape, specifying 194 
NE (not editable) attribute 47 
NE:ST option 27 
nesting level in listing 36 
no-operation instructions 211 
NOCALL option (loader) 69 
NTM subparameter of DCB parameter 196 
null statement, use for controlling 
interrupt timing 211 

NUMBER option 27 

258 

object module 
combining 41 
definition 2 
format 19 
libraries (see libraries) 
listing 40 
on punched cards 

and cataloged procedures 153 
identification 24 

output 24,27 
storage requirement listing 29 
structure 48 

OBJECT option 27,42 
OFFSET option 28,38 
offset variatles as source of error 159 
offsets, table of 28,38 
on-codes 161 
on-units 161 

condition built-in functicn values 162 
use in checking out program 159 

ONCODE built-in function 161 
ON COUNT built-in function 211 
OPEN macro instruction 81 
OPEN statement 81 
operating errors 159 
operating system 

compiler interface 15 
errors 160 
introduction 1 
release identification 35 

operating system facilities 202 
OPTCD subparameter of DCB pararreter 196 
optical mark read 85 

format descriptor card 85 
optimization options 28 
OPTIMIZE option 28 
option list 

compiler 22 
dynamic invocation 45 

linkage editor 53 
loader 68 

optional facilities 
compiler 22 
linkage editor 53 
loader 68 

OPTIONS option 28 
organization of data set, specifying 195 
OS facilities 202 
output 

(see also: data sets; input/output) 
compiler 19 
linkage editor 52 
loader 67 

overflow area 
introduction 108 
main discussion 112 
separate DD statement for 110,114 
specifying in JCL 194,196 

OVERLAY statement (linkage editor) 61 
overlaying 

checkout of 158 
library subroutines 62 
linkage editor 55 
main discussion 59 
mapping 57 

OVLY attribute (linkage editcr) 61 



page number as parameter for compiler 45 
PAGE option/format item 95 
page size 98 
page size specification and defaults 98 
PAGESIZE option 98 
paper tape code 194 
paper tape reader 88 
parameters 201 
parameters, passing to compiler 45 
parity bit 197 
parity error (paper tape transmission) 88 
PARM parameter 

for compiler 21 
for linkage editor 53 
for loader 68 
in GO step 30 

partition 
definition 1 
size 28 

partitioned data sets (see libraries) 
passing argument to main procedure 31 
password for CONTROL option 24 
password protection of VSAM data sets 138 
performance, linkage editor and loader 48 
p~ases, compiler 15 
pi ct ures 203 
PL/I (F) compiler, compatibility with 199 
PL/I programming example 215 
PL/I sort (see sort/merge) 
PLICALLA 166,170,171 
PLICALLB 166;171 
PLICANC 191 
PLICKPT 189 
PLIDUMP 162,200 
PLIMAIN 48 

in Assembler-PL/I linkage 165,173 
PLIREST 190 
PLIRETC facility 164,178 
PLISRTA 177 
PLISRTB 177 
PLISRTC 177 
PLISRl'D 177 
PLISTART 48,49 

in Assembler-PL/I linkage 165 
PLITABS 98,39 
PLIXC cataloged procedure (compile 
only) 153 

PLIXCG cataloged procedure (compile, load, 
and execute) 155 

PLIXCL cataloged procedure (compile and 
link-edit) 153 

PLIXCLG cataloged procedure (compile, link­
edit, and execute) 155 

PLIXG cataloged procedure (load and 
execute) 155 

PLIXLG cataloged procedure (link-edit and 
execute) 155 

PLIXOPT string 30 
PLlOUMP 200 
pointer variables as source of error 159 
preprocessing 

compiler options 26 
main discussion 43 
phases 17 
replacement depth 36,43,45 
suspected failure in 207 
use in program checkout 161 

t preprocessor restrictions 203 

prime data area 108,114 
separate DD statement for 110 

PRINT files 95 
PRINT option (loader) 69 
printed output and record I/O 106 
printers 106 

control characters 95,106 
for source listing 26 
specifying in JCL 197,88 

device class 79 
handling invalid characters 196 
record format 88 

printing on punched cards 86 
problem determination 207 
procedure step 149 
PROCESS statement 

example of 5 
specifying compiler options in 22 

processing phases 15 
processing time 48 
program control section 39,48 
program libraries (see libraries) 
program product maintenance 207 
program temporary fix (PTF) 209 
programming example 215 
PRTSP subparameter of DCB pararr·eter 88 
PRV (pseudo-register vector) 
listings 56,70 

pseudo-register vector (see PRV) 
pseudovariables 203 

BUILTIN attribute 199 
without arguments 199 

PSW in trace 163 
PTF (program temporary fix) 209 
punched card devices 105 

Card Punch 3525 84 
Card Reader 3505 84 
column binary/EBCDIC mode 195 
control characters 105,197 
data protection 88 
device class 79 
multiple operations 87 
optical mark read 85 
printing on cards 86 
read column eliminate 86 
stacker selection 197,85 

punched card output 104 
and cataloged procedures 153 
compiler 19,24 
preprocessor 26 
record I/O 104 

PUT ALL statement 160 
PUT, ma,cro instruction 81 

QISAM (Queued Indexed Sequential Access 
Method) 81 

QSAM (Queued sequential Access Method) 81 
qualified names 74 
queued access technique 80 
Queued Indexed sequential Access Methcd 

(QISAM) 81 
Queued sequential Access Methcd (QSAM) 81 
queues 124 

RD parameter 190,191 
read column eliminate 86 

Index 259 



read column eliminate (continued) 
format descriptor card 86 

RECFM subparameter of DCB parameter 196 
record blocking (see: block size; blocking) 
record format 

auxiliary storage 80 
CONSECUT!VE dat a sets 

record I/O 101,103 
stream I/O 91,95 

essential parameters 80 
INDEXED data sets 111 
introduction 9 
main discussion 15 
operating system data management 80 
PRINT files 95 
REGIONAL data sets 118 
specifying in JCL 196 

record length 
CONSECUTIVE data sets 

record I/O 101 
stream I/O 91 

INDEXED data sets 110 
introduction 9 
PRINT files 95 
REGIONAL data sets 118 
specifying 195,14 

record size, maximum, compi ler input 19 
record type specification 9 
rE!cord-oriented input/output 

access methods 81 
defining data sets 101 

re'cord-oriented transmission 203 
records 9,14 

deleted (dummy) 
INDEXED data sets 114,196 
REGIONAL data sets 118,120 

spanned 9,15,196 
RECSIZE option of ENVIRONMENT attribute 14 
region 

definition 1 
size 28,152 

REGIONAL data sets 116 
access 120 
capacity record 118 
creation 118 
dummy records 118,120 

register contents in trace 163 
register 12, use of 169 
release number in listing 35 
RELEASE statement 62 
relocation dictionary (RLD) 49 
replacement depth (preprocessing) 36,43,45 
reply maximum length 200 
REPORI' option 32 
REREAD option 19 
RES opti on (loader) 69 
resident control phase 15 
resident library (see library subroutines) 
restart 189 
RESTART parameter 190 
return codes 

checkpoint/restart 189 
compiler 41 
PL/I program 163 
PLIRETC restriction 203 
return code 0004 from linkage editor 56 
sort/merge 111,118 

returned values 201 

260 

RKP subparameter of DCE paraneter 112,191 
RLD (relocation dictionary) 49 
root segment 59 

save areas 165 
scheduling time 48 
scheduling, chained 80,196 
segment, root 59 
sequence numbering 

compiler options 28 
for preprocessor 43,45 

SEQUENCE option 28 
sequence set (VSAM) 131 
sequential data sets 11 
SER subparameter 10 
serial number, volume (see volume serial 

number) 
severity of messages 

compiler 24 
linkage editor 56 

shared library cataloged procedures 213 
SIGNAL statement 161 
SIZE option 

compiler 28,41 
linkage editor 54 
loader 10 

SKIP option/format item 95 
SMESSAGE option 26 
SNAP option 160 
sort/merge 111 

arguments 119 
data sets 118 
antry names 111 
examples 181 
invoking 119 
message listing options 181 
multiple invocation 180 
sorting techniques 181 
storage requirements 111 
user exits 111 

SORTCKPT 119,180 
SORTIN 118,180 
SORTLIB 119 
SORTOUT 119,180 
SORTWK 119,180 
SOURCE OFtion 29 
so urce program 

character set specification 22 
data code specification 22 
data set 19 
listing 25,29 

compiler. option for 29 
nesting level 21 
record numbering 25,21,28 
statement numbering 29,35 

source statement library 44 
SPACE parameter 

accessing data sets 10 
for direct-access devices 89 
for library 142 
for linkage editor output 52 
for standard data sets 19 
introduction 9 

spanned records 9,15,196 
SPIE option 32 
spill file 20 
STACK subparameter of DCB parameter 191 



stacker selection 105,85 
specifying in JCL 197 

STAE option 32 
standard files 98 
statement numbers 

compiler option 29 
in messages 25 
method of numbering 35 
trace of 160 

statement, maximum number of 204 
restrictions 204 

static internal control section 
description 48 
leng"th 39 
listing 40 

static storage map 26 
STEPLIB DD statement 142 
STMT option 29 
storage 

addressing 49 
allocation 17 
auxiliary, economy 

blocking PRINT files 
in INDEXED data sets 
in REGIONAL data sets 
suppressing automatic 
call 54 

using loader 48 

96 
111 

118 
library 

using track overflow 196 
buffers 80 
dumps 161 
for Assembler language linkage 
for checkpoint/restart data set 
for compilation 28 
for direct-access devices 89 
for execution 31 
for library data sets 142 
for linkage editor 52 
for loader 64,70 
for sort/merge 177 
for standard data sets 18 
insufficient available 28 
linkage editor 54 
optimization 28 
overlaying (see overlaying) 
requirements in general 28 
virtual 1 

STORAGE option 29 
stream-oriented input/output 

access method 81 
defining data sets 91 

STRINGRANGE condition 160 
structures 

length table 37 
mapping 17 

stub, link-edit 63 
subroutines, library (see library 
subroutines) 

SUBSCRIPTRANGE condition 159 
SUBSTR pseudovariable as source of 
error 160 

supervisor (see operating system) 
symbolic parameter in cataloged 
procedures 150 

syntax analysis stage 17 
syntax checking option 

compiler option 29 
suppression of 158 

165,169 
189 

SYNTAX option 29 
SYSCIN 19 
SYSIN 19,98 
SYSLIB 

linkage editor 52 
loader 67 
multitasking programs 150 
preprocessing 20 

SYSLIN 42 
compiler output 19 
linkage editor input 51 
loader input 66 

SYSLMOD 51 
SYSLOUT 67,70 
SYSOUT parameter 11 

INDEXED data set restricticn 110 
SYSPRINT 

associated with terminal 30 
compiler data set 20 
linkage editor data set 53 
loader data set 67,70 
standard PL/I file 98 

SYSPUNCH 19 
system failure 160 
system output device (see SYSOUT paraReter) 
system procedure library 

(SYS1.PROCLIB) 149 
system program library (SYS1.LINKLIB) 142 
SYSUTl 

compiler data set 20 
SYS1.LINKLIB (system program library) 142 
SYS1.PLIBASE 63,79 
SYS1.PLIBASE (base libary) 53,151 
SYS1.PLICMIX 63 
SYS1.PLITASK (multitasking library) 53,150 
SYS1.PROC~IB (system procedure 
lib ra ry ) 1 4 1 , 1 49 

tab control table 98 
tab position specification and defaults 98 
tape, magnetic (see roagnetic tapes) 
TCA (task communications area) 163 
TCAM (Telecommunications Access 

Method) 81 ,124 
Telecommunications Access Method 

(TCAM) 81 ,124 
teleprocessing 124 
Teletype code for paper tape 194 
temporary workspace 

essential parameters 52 
for compiler 20 
for linkage editor 52 

TERMINAL option 30 
terminal processing (see TSO) 
t"ermination 

in Assembler-PL/I linkage 169,173 
of compilation, dump option 24 
of execution, abnormal 159 
of execution, by request 162 

testing (see checkout, program) 
text (TXT), description of 48 
text, source (definition) 15 
~ime Sharing Option (see TSO) 
time taken for compilation 35 
timer feature 35 
trace information 160,161 

compiler option 24 

Index 261 



trace information (continued) 
execution-time option 34 

track (definition) 89 
track index 107 
track overflow, specifying 196 
t:rai ler label 77 
transfer vector 213 
transient control phase 15 
TRANSIENT files 11 
transient library (see library subroutines) 
translation stages 11 
TRANSMIT condition, suppressing 196 
troubleshooting (see checkout, prog ram; 

problem determination) 
TRTCH subparameter of DCB parameter 88,197 
TSO (Time Sharing Option) 

checkpoint/restart restriction 189 
conversational checkout 157 
introduction 1 
line numbers 21 
storage requirements 29 
terminal output option 30 

U-format records 76 
unblocked records 15 
undefined-length records 
UNDEFINEDFlLE condition 
UNIT parameter 

16 
81,96 

accessing a data set 10 
creating a data set 8,78 

unlabeled data sets 71 
unlabeled magnetic tapes 103 
unnamed da ta sets 74 , 1 0 
updating data 10 
user exit points 111 
user information (see argument passed to 

main procedure) 

V-format records 75 
validity check, write, specifying 196 
variable-length records 75,183 
variables storage map 40 
varying-length strings, sorting 118 
VB-format records 15 
VBS-format records 75 
ve:rsion number of compiler 35 
virtual storage 1 
volume 

definition of term 9 
labeling 77 

VOLUME parameter 
(see also volume serial number) 
accessing data sets (general) 10 
creating data sets (general) 10 

volume serial number 
accessing REGIONAL data sets 120 
creating CONSECUTIVE data sets 

record I/O 101,103 
stream I/O 91 

creating INDEXED data sets 110 
creating REGIONAL data sets 118 
in volume label 71 

volume table of contents (VTOC) 77 
VS-format records 15 
VSAM (Virtual storage Access Method) 131 
VSAM data sets 131 

262 

VSAM data sets (continued) 
catalogs 131 
compatibility interface 137 
control area 131 
control interval 131 
device restriction 131 
index data set 131 
index set 131 
logical record 131 
passwords 138 
sequence set 131 
sharing 138 

VSl (Virtual Storage) 
introduction 1 

VS2 (Virtual Storage) 
introduction 1 

VTOC (volume table of contents) 71 

WAIT statement 205 
weak external reference 38 
workfiles, temporary 150 

XCAL option (linkage editor) 55 
XCTL macro instruction 45 
XREF option 

compiler 30 
linkage editor 55 

1403 Printer control characters (see 
printers) 

2400-series tape drives, conversion 
feature 197 

2540 Card Read Punch control characters 95 

3505 Card Reader 84 

3525 Card Punch 84 

48-character set 17,22 

60-character set 17,22 

7-track magnetic tape (see magnetic tapes) 

9-track magnetic tape (see magnetic tapes) 



~I 
o 

~I 
a: 
~I 
0' 
::J 

~I 
5' 
CD I 
. I 

OS 
PL/I Optimizing Compiler: 
Programmer's Guide 
Order No. SC33-0006-3 

Your views about this publication may help improve its usefulness; this form 
will be sent to the author's department for appropriate action. Using this 
form to request system assistance or additional publications will delay response, 
however. For more direct handling of such requests, please contact your 
IBM representative or the IBM Branch Office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Index Figures Examples Legibility 

What is your occupation? _____________________________ _ 

READER'S 
COMMENT 
FORM 

Number of latest Technical Newsletter (if any) concerning this publication: __________ _ 

Please indic'lte in the space below if you wish a reply. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office 
or representative will be happy to forward your comments.) 



SC33-0006-3 

Your comments, please ... 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. Your comments on the other side of this 
form will be carefully reviewed by the persons responsible for writing and publishing 
this material. All comments and suggestions become the property of IBM. 

Fold Fold .••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••..•••••.•••...•.•••.•••.•••••.•.•••••..•.•••••.•.• '1 

Business Reply Mail 
No postage stamp necessary if mailed in the U.S.A. 

Postage will be paid by: 

International Business Machines Corporation 
Department 813 H P 
1133 Westchester Avenue 
White Plains, New York 10604 

First Class 1 

Permit 40 I 
Armonk 
New York 

Fold Fold 

International Bu.'ne •• Machine. Corporation 
Data Proce •• lng DM.'on 
1133 W ••• ch •••• r Av.nu., Whit. Plain., N.w York 10804 
(U.S.A. only) 

IBM World Trad. Corporation 
821 United Nation' Plaza, N.w York, N.w York 10017 
(International) 

o 
U) 

"tJ 
r­
'::: 
o 
"S 
3' 
N' 
5' 
to 
(') 
o 
3 
'2. 
~ 
"tJ a 
to 
OJ 
3 
3 
(1) .., 
VI" 

G) 
c: 
c: 
(1) 


	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	replyA
	replyB

