SC33-0006-3
File No. $360/S370-29

0S
PL/l Optimizing Compiler:
Program Product Programmer’s Guide

Program Numbers 5734-PL1
5734-LM4
5734-LMb

(These program products are available
as composite package 5734-PL3)

Third Edition (December 1974)

This is a major revision of, and cbsoletes, SC33-0006-2.

This edition applies to Version 1 Release 2

Modification 2 of the PL/I Optimizing Compiler

and to all subsequent releases until octherwise

indicated in new editions or Technical Newsletters. Changes
will continually be made to the information herein; before
using this publication in connection with the operation of
IBM systems, consult the latest IBM System/ 360 and System/37C
Bibliography, Order No. 0360;GA22-6822-0360, for the

editions that are applicable and current.

Changes or additions to the text and figures
are indicated by a vertical line to the left
of the change. Chapter 4 has been restructured.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM United Kingdom Laboratories Ltd.,
Programming Publications, Hursley Park, Winchester,
Hampshire, England. cComments become the property of IBM.

© Copyright International Business Machines Corporation
1971,1972,1973,1974

This publication is a guide to the use of
the PL/I Optimizing Compiler (Program No.
5734-PL1) in a batch environment of the IBM
Operating System. It explains how to use
the compiler to execute PL/I programs and
describes the operating system features
that may be required by a PL/I programmer.
It does not describe the language
implemented by the compiler, nor does it
explain how to use the compiler in an
operating system with the Time Sharing
Option (TS0O); these are the functions of
the manuals listed under "Associated
Publications, " below.

The compiler is designed to operate
under Release 20.1 of the IBM Operating
System and under all subsequent releases
and modifications unless otherwise stated
in a revision of the Program Product
Specifications. The compiler also operates
under Release 1.0 and all subsequent
releases of the Conversational Monitor
System (CMS) component of the Virtual
Machine Facilitys/370 (vM/370).

An MFT, MVT, VSl, or VS2 version of the
Operating System is required. Note that
PL/I multitasking facilities can be used
only on an MVT or VS2 system.

For execution of a PL/I program, the
optimizing compiler employs subroutines
from the 0SS PL/I Resident Library (Program
No. 5734-LM4) and the 0S PL/I Transient
Library (Program No. 5734-LM5), and this
programmer's guide assumes the availability
of these program products.

Different release levels of the 0S PL/I
Optimizing Compiler and the PL/I Resident
and Transient libraries will be compatible
in execution provided that the following
conditions are satisfied:

1. The release level of the transient
library is equal to or greater than the
release level of the resident library.

2. The release level of the resident
library is equal to or greater than the
release level of the compiler.

The first three chapters cover basic
topics, and are intended primarily for
casual (non-specialist) programmers or for
newcomers to IBM System/360 or IBM
systems/370. The reader is assumed to have
only an elementary grasp of PL/I and the

Preface

basic concepts of data processing. These
chapters introduce the reader to the
operating system, and explainr how tc run a

PL/I program and how to define a data set.

The rest of the manual ccntains ncre
detailed information on the optimizing
compiler, and provides general guidance and
reference information on operating system
features that are likely tc ke required by
the PL/I applications programmer. Most of
this information is equally relevant to the
use of the compiler in a katch or TSO
environment.

Chapter 4 describes the crtimizing
conpiler, the data sets it requires, its
optional facilities, and the listings it
produces. Chapter 5 contains similar
information for the linkage editor and
loader, one of which is needed in addition
to the compiler to prepare a PL/I rprcgram
for execution.

Chapters 6 through 10 are concerned with
the varijous types of data sets that can be
created and accessed by a PL/I program, and
explain how to define these data sets.

Chapter 11 descrikes the standard
cataloged procedures provided by IBM for
the optimizing compiler, and exglains how
to modify them.

Chapter 12 deals with the facilities
available for debugging PL/I fprograns.

Chapter 13 explains hcw tc link rrogranms
written in PL/I with those written in
assembler language. (The ortimizing
compiler imrplements language designed to
facilitate communication between grcgrams
written in PL/I and those written in
FORTRAN, COBOL, and ASSEMBLER; these
facilities are descriked in the language
reference manual listed under "Asscciated
Publications," kelow.)

Chapters 14 and 15 are concerned with
the use of built-in subroutines included in
the resident likrary to provide direct
interface ketween PL/I programs and the
operating system sort/merge and
checkpoint/restart facilities.

A series of appendixes supply sundry
reference information.

iii

Associated Publications

The language implemented by the optimizing
compi ler is described in the following
publication:

OS PL/TI Optimizing and Checkout
Compilers: Lanqguage Reference Manual,
Order No. GC33-0009

For information on how to use the
compiler in a TSO environment refer to:

OS Time sharing Option: PL/I Optimizing
Compiler, Order No. SC33-0029

Far information on how to use the
compiler under the Conversational Monitcr
System of VM/370, refer to:

PL/I Optimizing Compiler: CMS User's
Guide, Order No. SC33-0037

The diagnostic messages issued by the
compiler and the transient library are
listed in the following publication,
together with explanations, where
necessary, and suggested programmer
response: B : ’

OS PL/I Optimizing Compiler: Messages,
Order No. SC33-0027

Recommended Publications

The following publications are referred to
in this programmer's guide. They contain
additional details about particular topics
discussed in this manual.

0S PL/I Optimizing Compiler:
Execution Logic, Order No. SC33-0025

OS Introduction,
Order No. GC28-6534

iv

0S Jok Control Language Reference,
Order No. GC28-6704

0S Time Sharing Option,
Terminal User's Guide,
order No. GC28-6763

0S lLinkage Editor and Icader,
Order No. GC28-6538

0S System Programmer's Guide,
Oorder No. GC28-6550

0S Utilities, Oorder No. GC28-6586

0S_Sort/Merge, Order No. SC28-6543

0S Sort/Merge: Programmer's Guide,
Order No. SC33-4007

0S/VS _Sort/Merge: Programmer's Guide,
Order Nc. SC33-4035 i

0S Sugervisor and Data Management Macro
Instructions, Order No. GC28-66U47

0S Programmer's Guide to Debugging,
order No.,K GC28-6670

Terminal Commands and Comgpiler Ortions:
Reference Sunmrary, Order Nc. SX33-6005

Availab.ility of Publications

The availability of a publicaticn is
indicated by its use key, the first letter
in the order number. The use keys are

G - General: availakle to users of IEM
systems, products, and services
without charge, in quantities to meet
their normal requirements; can also ke
purchased ky anyone through IBM branch
offices.

Sell: can be purchased by anyone
through IBM branch offices.

CHAPTER 1: INTRODUCTION
The Optimizing Compiler
The Operating System « « .« &
Time Sharing Option
Jobs and Job Steps .« <« + ¢« « ¢ . .
Job Control Language . « « « o« o o«
Cataloged ProcedUres . « « « « «
Executing a PL/I Program
CHAPTER 2: HOW TO RUN A PL/I PROGRAM
CHAPTER 3: HOW TO CREATE AND ACCESS
A DATA SET ¢ o ¢ ¢ o « o o o« o « o« =
Using a Data Set . . . ¢« « « « « « .
How to Create a Data Set
Type of Output Device (UNIT) .« .
Volume Serial Number (VOLUME=SER=)
Name of Data Set (DSNAME=)
Record Type (DCB=) « o ¢ o« o « o+
Auxiliary Storage Required
(SPACE=) « .. . e
Disposition of Data Set (DISP~) .
How to Access a Data Set
Type of Input Device (UNIT=) . . .
Volume Serial Number (VOLUME=SER=)
Name of Data Set (DSNAME=) . . .
Record Type (DCB=) . . .« & « & o &
Auxiliary Storage Required
(SPACE=) o o . .
Disposition of Data Set (DISP) .
Special-purpose Parameters
System Output (sSysour=)
Data in the Input Stream (* and
DATA) v o v o o« o o o o o =« o «
Standard Files .« « « & « ¢ ¢« o o o »
Examples . ¢ ¢ ¢« o « o o o o o o o

CHAPTER 4: THE COMPILER . . +« « .+
Description of the Compiler
Job Control Statements for
Compilation .« « ¢ « ¢ &+ @ ¢ o o o o
EXEC Statement « .
DD sStatements for the standard
Data Sets « ¢ o« o o o ¢ o o o o @
Input (SYSIN, or SYSCIN)
output (SYSLIN, SYSPUNCH) « o .
Temporary Workfile (SYsuTril) . .
Listing (SYSPRINT) . . +. & « « «
Source Statement Library
(SYSLIRB) « o o . « e e .
Example of Compiler JCL . . .
Optional Facilities o o
Specifying Compiler Optlons .
Specifying Compiler Options in
the EXEC Statement . . . « .
Specifying Compiler Options in
the PROCESS Statement . . « . .
Compiler Options . « + o &« & o« o o
AGGREGATE Option . . « o o« « « &
ATTRIBUTES Option
CHARSET Option . . . «
COMPILE Option . « + « v o o o

NN NN P

(6]

17
19

19
19
19
20
20

20
20
20
21

Contents

CONTROL Option . . . « « « «
COUNT Cption .« . « « o « o o «
DECK Option . « « « ¢« « « o
DUNMP Option .« « « ¢ ¢ « « o« &
ESD OpPtion « « o ¢ o « o « o« =
FLAG Option .« + ¢ o & o o « &
FLOW Option . . .
GONUMBER Cption .
GOSTMT Option . .
IMFRECISE Option .
INCLUDE Option . .
INSOURCE Option .
LINECOUNT Cption .
LIST Option . . .
LMESSAGE Cption . . .« « . . .
MACRO Option . . « =« ¢ o o « &
MAP Option
MARGINI Option . .
MARGINS Cption . .
MDECK Option . . .
NAME Option . . .
NEST Option . . .
NUMBER Option . .
CBJECT Option . .
OFFSET Option . .
OPTIMIZE Option .
OPTIONS Option . .
SEQUENCE Option .
SIZE Option
SMESSAGE Option . . .
SOURCE Option
STMT Option
STORAGE Option
SYNTAX Option . « « « o o o &
TERMINAL Option .
XKREF Option . 4 « o o o « o «
Specifying Execution-Time Cptions
Specifying Execution-Tirne
Ortions in the FLIXOPT String
Specifying Execution-Time
Options in the EXEC Statement
Execution-Time Options
Execution-time Storage
Requirements
Execution-Time COUNT Optlcn .
Execution-Time FLOW Cption . .
Compiler Listing
Heading Information
Options Used for the Cornrilation
Preprocessor Input « « « « « o .
Source Program . . « « « o o« o
Statement Nesting Level
Attribute and Cross-reference
Table e e e e e e = =
Rttribute Table « o o o
Cross-reference Table .
Aggregate Length Takle . .
Storage Requirements . . .
Statement Offset Addresses
External Symbol Dicticnary
ESD Entries .« « « o o« o « o «
Other ESD Entries . . . « .+ «

¢« & o 8 4 o
« s
« & o s
. . .
. s 0
P R Y

L R S T Y)
. . e .
. .
e s 8 s o . o
. .
.

¢ ¢ o ® o4 @&

. . .

ccntents

s ¢ & o 4 ¢ 4 & o

v

Static Internal Storage Map
Object Listing . «
MeSSAages .« « + « . o o o o
Return Codes . . . « « . . .
Batched Compilation . « « « . .
SIZE Option . . « .+ ¢« « & & o .
NAME Option . . & o ¢ &« « o« o &
Return Codes in Batched
Compilation
Job Control Language for Batched
Processing « e e e
Examples of Batched Compllatlons
Compi le-time Processing
(Preprocessing) . . « « « « o « .
Invoking the Preprocessor . . .
The %INCLUDE Statement
Dynamic Invocation of the Compiler

s 8 & a o
s e * 4
s

option List . . . + « « ¢« + + .
Ddname List . . . ¢ ¢« ¢ ¢ & o«
Page Number . . . « ¢« « « o« « o =

CHAPTER 5: THE LINKAGE EDITOR AND

THE LOADER &+ o« ¢ o o o « o o o o o«
Basic Differences

Choice of Program . . « ¢ « « « « o+ =
Linkage EQitOor « « « « « & « o »
Icader . « « &« « o« « e e e
Performance Con51derat10ns ¢ o o

Module Structure . . « « « « o o o &
Text « « « e e e s o o

External symbol Dictionary .
Relocation Dictionary . . .

END Instruction
Linkage Editor . « .« ¢« & « « « &
Linkage Editor Processing . .
Main Storage Requirements . . .

Job Control Language for the Linkage
EQIitOr .« o o ¢ ¢ o o o o o o o o &
EXEC Statement« .
DD Statements for the Standard
Data Sets . . « . « ¢« & o & . .
Primary Input (SYSLIN)
output (SYSLMOD)
Temporary Workspace (SYSUTl) .
Automatic Call Library (SYSLIB)

Listing (SYSPRINT)
Example of Linkage Editor JCL
Optional Facilities
LET Option . .
LIST Option
MAP Option .
NCAL Option
SIZE Option
XCAL Option
XREF Option
Listing Produced by
Editor
Diagnostic Messages and Control
Statements . . . ¢ ¢ . ¢ o o o .
Diagnostic Message Directory .
Module Map « « « « « « o o o =
Cross-reference Table
Return Code . . ¢ « ¢« « « « &
Additional Processing . . « « .

.
« *» s o
e 8 8
s & o

he Linkage

t

Format of Control Statements
Module Name . . . « o ¢ o o

Alternative Names
Additional Input Sources . .

vi 0S PL/I Optimizing Compiler:

INCIUDE Statement .« « « « « « &
LIBRARY Statement < .
Overlay Structures . . . e e o @
Design of the Overlay Structure
Control Statements « « « .« « o .
Creating an Overlay Structure .
Link Editing Fetchable Lcad

Modules . . . o . . .
Combining PL/I Modules from the

Optimizing and Checkout
Compilers o« o« o o o o o o
Loader .« o« ¢ o o o o o o 2 o
Loader Processing
Main Storage Requirerents .
Job Control Language for the Loader .

EXEC Statement
DD Statements for the Standard
Data Sets . . . e« o e o o

Primary Input (SYSLIN) « e e
Automatic Call Library (SYSLIB)
Listing (SYSLOUT) . . « « « « .
Listing (SYSPRINT)
Examples of loader JCL
Optional Facilities of the Loader
CAIL Option .
EP Option . .
LET Option . .

- o« o e

MAP Option .
PRINT Cption
RES Option . .
SIZE Option .
Llstlng Produced by the loader
Module Map « « « « o o o o «
Explanatory and Diagnostic
MESSAGES « ¢ o o o o o o o o o @

CHAPTER 6: DATA SETS AND FILES
Data Sets « v &« «4 & o « »
Data Set Names « « . «
Blocks and Records . .
Record Formats . . «
Fixed-length Records
Records) e o o e o
Variable-length Reccrds (D- or V-
format Records) . « « « ¢ o « &
Undefined-length Records (U-
format Records) . . . « « &
Data Set Organization
Lakels ¢ ¢ o o o o o o o o o @
Data Definition (DD) Statement
Name of DD Statement
Parameters of DD Statement .
Naming the Data Set
Describing the Device and Volume
Disposition of the Data Set . .
Use of the Conditional
Subparameters . . « « + o @
Data Set Characteristics . . .
Operating System Data Management
Buffers . . . ¢« o« ¢ « o o &
Access Methods
Data Control Block . . .
Opening a File
Closing a File
Auxiliary Storage Devices .
IBM 2520 and 2540 card Re r and
Punch . « . . e« o o o s 8 s o o
IBM 3505 and 3525 card Reader and

¢« ¢ & a2 o
s % s o »

-
3
o o
-
-

(F-fcrmat

¢ s o 4 o s o

o s 8 o & 4 ¢ & o

e 8 & & o 4 s 4 »

-
n

Programmer's Guide

59
59
59
60
61
61

62

63
64
64
64

66

66
66
67
67
67
67
68
69
69
69
69
69
69
70
70
70

70

73
73
73
74
75

75
75

76
77
77
78
78
78
78
78
79

79
79
80
80
80
81
81

83
83

Punch « < ¢ ¢ & ¢« ¢ v ¢ ¢ & o @
Basic Card Reading and Punching
EBCDIC or Column Binary Modes
Stacker Selection
Optical Mark Read
Read Column Eliminate
Punch Interpret . . .
Printing on Cards .
Multiple Operations
Data Protection . .

Paper Tape Reader . .

e % 4 8 o @
o % o o 4 8

Printer . . « ¢ ¢ o o o o o o o
Magnetic Tape . « « « « « - &
Direct-access Devices . . + . .

CHAPTER 7: DEFINING DATA
STREAM FILES . « « « «
Creating a Data Set . . .
Essential Information
Example « . .
Accessing a Data Set . .
Essential Information
Magnetic Tape Without S
Labels . ¢« + « o« .
Record Format . .
Example
Print Files
Record Format . .
Example . .« .
Tab Control Table
Standard Files

SETS FOR

Qe e

andar

e« ¢ o & (te 4 s 4 s

2 s ® o o v o ¢ Oy e 4 s oo o

s a o o
* s °

CHAPTER 8: DEFINING DATA SETS FOR
RECORD FILES &+ + + « « o « « o « &
Consecutive Data Sets « . « « « « .
Creating a Consecutive Data Set
Accessing a Consecutive Data Set
Essential Information . . .

Magnetic Tape Without Standard
Labels . . . ¢ ¢ o« ¢ ¢ o o &
Record Format . . . « .« « « &
Example of Consecutive Data Sets
Punching Cards and Printing .
Example . . . « « . « . . .
Indexed Data Sets . « « o« « o o« .
Indexes . o« « o o« o « o o & .
Creating an Indexed Data .
Essential Information . . .

Name of Data Set
Record Format and Keys .
Overflow Area
Master Index
Dummy Records
Accessing an Indexed Data Set .
t

Reorganizing an Indexed Data Se
Examples of Indexed Data Sets
Regional Data Sets
Creating a Regional Data Set .
Essential Information . . .
Accessing a Regional Data Set
Examples of Regional Data Sets .
REGIONAL(1) Data Sets
REGIONAL(2) Data Sets
REGIONAL(3) Data Sets
Teleprocessing . « « « « « o o @
Message Processing Program (MPP)
How to Run an MPP . . . « . . .

¢« o 0 o * . s . s 4 & 8 5, 8 o @

e 4 8 o 4 o 4, o

84y
8u
84
85
85
86
86
86
87
88
88
88
88
89

101
101
101
102
102

103
103
103
104
107
107
107
108
110
111
111
112
114
114
114
115
115
116
118
118
120
120
120
121
122
124
125
126

CHAPTER 9: VIRTUAL STCRAGE ACCESS
METHOD (VSaM) e o e o o o o
VSAM Data Sets . . « . . .
Data Format

Key Sequenced Data sets
Entxry Sequenced Data Sets
Operations on VSAM Data Sets
Access Method Services . .
Creating VSAM Data Sets .
Creating a Key Sequenced
SEt ¢ ¢ ¢ o ¢ o o o o
Accessing a Key Sequenced Data
Set . ¢ ¢ ¢ e s e e s e o 8 8 =
Creating and Accessing an Entry
Sequenced Data Set . . « « . .
DD statements for VSAM Data Sets . .
The Compatikility Interface . « . . .
Password Protection of VSAM LCata Sets
Sharing VSAM Data SetS .« « « « o o
Sharing between Jobs « . . « . . .
Sharing ketween Subtasks in a Job

* & 8 4 s 4 o »
¢ o 8 4 8 o4 o s

t

T
[\

CHAPTER 10: LIBRARIES OF DATA SETS
Types of Library .« ¢« « o« ¢ « ¢ o @
How to Use a Likrary .« « « « o o« o«
By the Linkage Editor or Loader
By the Operating System . . .
By Your Program . « « .« .
Creating a lLibrary
Space Parameter
Creating a Library Merber .
Exanmples . .« &« ¢ ¢ o o o
Library Structure

CHAPTER 11: CATALOGED PROCEDURES . .
Invoking a Cataloged Procedure . .
Multiple Invocation of Cataloged
Procedures .« « o« « o o s o s o
Dedicated Data Sets . . « « « «
Multitasking Using Cataloged
Procedures . « « « o« « o o =
Modifying Cataloged Procedures . .
Temporary Modification
EXEC Statement . . « « o o o »
DD Statement . « ¢ o ¢« « o o
Permanent Modificaticn
IBM-suprlied Cataloged Procedures .
Compile Only (PLIXC) . « ¢ « o o &
Compile and Link-edit (PLIXCL) . .
Compile, Link-edit, and Execute
(PLIXCIG) e« o e o o o e e o o e @
Link-edit and Execute (PLIXLG) . .
compile, Load, and execute (FLIXCG)
Load and execute (PLIXG) . . « o« «

CHAPTER 12: PROGRAM CHECKOUT .
conversational Program Checkcut
Compile-time Checkout
Linkage Editor Checkout
Execution-time Checkout
Logical Errors in Socurce
Prxograms . . . « . -
Invalid Use of PL/I . .
Unforeseen Errors
Operating Error
Invalid Input Data « .« « « « &
Unidentified Program Failure .
compiler or Library Subroutine

o & o s o
s & s & 4
s & o o o

ccentents

131
131
131
131
131
133
133
133

133

136

137
137
137
138
138
138
138

141
141
141
141
141
142
142
142
143
143
145

149
149

149
150

150
151
151
151
151
152
152
153
153

155
155
155
155

157
157
157
158
158

158
158
158
159
159
159

vii

Failure . . . « « . ¢ « « .
System Failure . . . « .« . .
Statement Numbers and Tracing . .
Dynamic Checking Facilities . . .
control of Exceptional Conditions
Use of the PL/I Preprocessor
Program Checkout
ONn-codes . .« « « « o o @
DUIMPS &« ¢« © ¢ o o o o o o
Trace Information .

¢ 8 4 v o g * a4 4 o
=

File Information . .« .

Hexadecimal Dump
Return Codes . . ¢« . « . .«
The ABEND Facility . . .
Altering the Standard Module

IBMBEER « « « & & ¢ & ¢ o a o &

. 2 e e

CHAPTER 13: LINKING PL/I AND
ASSEMBLER-LANGUAGE MODULES . « « .
The PL/I Environment« e e
Establishing the PL/I Enmronment
Use of PLIMAIN to Invoke a PL/I
Procedure e e e e .
PLISTART, PLICALIA, and PLICALLB .
The Dynamic Storage Area (DSA) and
SAVEe AY€a « « ¢ o o « « o o o s
Calling Assembler Routines from PL/I
Invoking a Non-recursive and Non-
reentrant Assembler Routine . . .
Invoking a Recursive or Reentrant
Assembler Routine . . . «
Use of Register 12
Calling PI/I Procedures from
Assembler Language .« « .« « « o o o .
Establishing the PL/I Environment
for Multiple Invocations
Establishing the PL/I Environment
Separately for Each Invocation .
PL/I Calling Assembler Calling

PW/I
Assembler Calllng PL/I Calllng
Assembler

Overriding and Restoring PL/I Error—
handling . . & ¢ ¢ ¢ ¢ ¢« ¢ o « o o «
Arguments and Parameters
Receiving Arguments in an
Assembler- Language Routine . . .
Assembler Routine Entry Point
Declared with the ASSEMBLER
option . . . ¢ ¢ 4 ¢« ¢ < o o .
Assembler Routine Entry Point
Declared without the ASSEMBLER
Option .« ¢ ¢ ¢ ¢ ¢ e e e . e .
Passing Arguments from an
Assembler- Language Routine . . .

CHAPTER 14: PL/I SORT
Storage Requirements . . .
Entry Names
Procedures Invoked by Way of
User Exits . . « « . « .« .
Data Sets Used by Sort/merge
Input Data Sets
Work Data Sets
Output Data Sets
Other Data Sets . .
Invoking Sort/merge from PL/I
Multiple Invocations of

viii OS PL/I Optimizing Compiler:

160
160
160
160
161

161
161
161
162
163
163
163
164

164
165
165
165

165
165

166
169

169

169
169

170
170
171
173
173

173
174

174

174

175
175

177
177
177

178
178
178
179
179
179
179

sort/Merge o . « o .
Sort/Merge Message Llstlng
Options ¢ « « o ¢ ¢ ¢ o o o
Sort/Mmerge Sorting Techniques .
Examples of Using PL/I Sorxt
Sorting Records Directly from One
Data Set to Another (PLISRTA) . .
Using User Exit E15 to Pass
Records to Be Sorted (PLISRTB) .
Using User Exit E35 to Handle
Sorted Records (PLISRTC) . . . «
Passing Records to Be Sorted, and
Receiving sorted Records
(PLISRTD) . . « « & . . .
Sorting Varlable—length Records .

CHAPTER 15: CHECKPOINT/RESTART .
Writing a Checkpoint Record . . .
Checkpoint Data Set « « « ¢ o o «
Performing a Restart . . . « . .
Automatic Restart After a Systen
Failure« . .
Automatic Restart fron W1th1n the
Program « « « o « « o o o« o o o @
Deferred Restart « o
Modifying Check901nt/restart
Activity .« & o ¢ ¢ o o o o o o

APPENDIX A: DCB SUBPARAMETERS . . .
DCB PArameter « « « « o o o o o o o @
Using Existing DCB Informaticn . . .
Information in Similar Data Sets
Information in an Earlier Data Set
Overriding Existing DCB Informaticn .
Subparameters of the DCB Parameter .
BLKSIZE=n . . .
BUFNO=n . . .
CODE—AIBlCIFIIINI
CYIOFL=N . « «
DEN=0(1]2{|3 .
DSCRG=1S |DA .
FUNC=function
KEYIEN=n . . .
LIMCT=n . . .
LRECL=n .
MODE—{EIC}[OIR]
NCP=n
NTM=n .« « « &«
OPTCD=cption llSt
RECFM= ,
RKP=N o« « o« o «
STACK=1|2 . . .
TRTCH=C|T |E|ET .

o o o o
e 2 3 o o @

® s & & & & s s
o o s ¢ & o o

* & s & & s &

* & 4 0 5 8 0 4 s s T e

e ® % 4 8 4 8 & 3 & 4 @

« 8 s 0
e & g ® ¢ 8 8 4 8 4 & s g & o & 4, o
s & a2 s

e o 8 6 4 6 8 4 8 4 & ¢ ¢ 8 ¢ @
e & s .

e % s 8 o * s s & o

e * a2 ¢ & 2 & s s .

s ¢ & o s s s s & o

APPENDIX B: CCMPATIBILITY WITH THE
PL/I (F) COMPILER
BYEAS + « o o o o o o o o
Arrays and Structures . .
Built-in Functions
Checkpoint/Restart
Conditions
Control Variable in DO stat
DEFINED Attribute
Derendent Declarations . .
DISPLAY Statement . . . &
Dumps from PL/I Prograns .
ENDPAGE Condition

Entry Names, Parameters,

M* ¢ & o &

men

e * o o o (e 4 ¢ o2 & o
o ¢ o s o (Fo a2 s 4 s .

2
3
Qis ¢ 2 o o

Programmer's Guide

180

181
181
181

181
182
182

182
183

189
189
190
190

190

190
190

191

193
193
193
193
193
193
194
194
194
194
194
194
195
195
195
195
195
195
195
196
196
196
197
197
197

199
199
199
199
200
200
200
200
200
200
200
200

Returned Values « . . « o « o
ENVIRONMENT Attribute
Error Correction . « « « « « « &«
EXCLUSIVE Attribute
Expression Evaluation
FIXED BINARY Expressions
INITIAL Attribute . . .
LIKE Attribute
Link-editing
Locked Records
Multitasking Programs .
NAME Option e e e e
Operating System Fac111t1es .o .
Pictures .« « « o « « .
PreprocesSsSOY . « o « o o o o o o
Pseudovariables
Recoxrd I/0 . « « « +
Redundant Expression Elimination
Return Codes . o « o o o o o o &
REWIND Option . . e e e e .
standard File SYSPRINT e e e e .
Statements . . . ¢ . ¢ ¢ e e . .
Statement Labels . . « « « « « .
Statement Lengths . . . « . . .
Stream Transmission
Varying-length Strings
WAIT Statement . . « « ¢« « « o« .

e ® o e o

APPENDIX C: REQUIREMENTS FOR PROBLEM
DETERMINATION AND APAR SUBMISSION
Original Source Program

201
201
201
201
202
202
202
202
202
202
202
202
202
203
203
203
203
203
203
203
203
204
204
204
204
205
205

207
207

Use of the Preprccessor
Job Control Statements
Operating Instructions/cCcnsole
LOG o « o o o o o o o o « o o =
Terminal Session listing
LOGON Procedure . « « . . .
Iistings e o o o @
Linkage Editor Map « e
Execution-time Dumps .
BAprlied PTFS .« o o ¢ o o o o«
Submitting the APAR .

APPENDIX D: IBM SYSTEM/360 MODELS 91
AND 195 . . ¢ ¢ ¢ ¢ ¢ o o o o o o =

APPENDIX E: SHARED LIBRARY CATALOGED
PROCEDURES « « & « « « . « o o e e
Execution when Using the Shared
Library « « ¢« o ¢« o ¢ o o o « o
Multitasking Considerations . .
Using Standard IBM Catalcged
Procedures . o« « « o &+ o« o o o @

APPENDIX F: PROGRAMMING EXAMPLE . .
Transient Library Modules in the
Link Pack Brea . « o« o « o o o =

APPENDIX G: RUNNING UNDER A VIRTUAL
STORAGE OPERATING SYSTEM (CS/VS) . .

INDEX ¢« ¢ o ¢ o « o o o o o o o o o =

Contents

207

207

207
207
208
208
209
209
209
209

211

213

213
213

214
215
215

249

251

ix

Figures

Figure 1-1., A JOB statement 3 data SE€tS .« ¢ ¢ ¢ o o o 2 o o o « o 52
Figure 2-1. How to run a PL/I Figure 5-5. Typical jcb contrcl

PrOgram .« « o o o o o o« o o o s s @ 6 statements for 1link editing a PL/I
Figure 3-1. Information to be PrOgram . o« o« « o o « o« « « =« « « « 54
specified when creating a data set . 7 Figure 5-6. Coding the SIZE cpticn . 55
Figure 3-2. Creating a CONSECUTIVE Figure 5-7. Linkage editor listings

data set: essential parameters of DD and associated options 55
statement ¢ 0 0 . 0 e 0 . 8 Figure 5-8. Diagnostic message

Figure 3-3. Accessing a CONSECUT IVE severity codes . . . « +« o o . -« 56
data set: essential parameters of DD Figure 5-9. Return codes from the
statement ¢ 4 e 4 4 e . o 11 linkage editOr . « « « ¢ « o o « o« « 57
Figure 3-4. Creating a CONSECUTIVE Figure 5-10. Processing of

data Set « ¢ ¢ ¢ ¢ ¢ o o s e & & o . 12 additional data souxces 59
Figure 3-5. Accessing a CONSECUTIVE : Figure 5-11., Overlay structure and

data Set « ¢ ¢ ¢ 4 ¢ e e e 4 e e o . 12 its tree . « v ¢ ¢ ¢ ¢ e e e e e . . 60
Figure 4-1. sSimplified flow diagram Figure 5-12. Creating and executing

of the compiler 16 the overlay structure of Figure 5-11 61
Figure 4-2. Compiler standard data Figure 5-13. Control secticns to be

SEES « v ¢ 4 o e e e & + e e e o o o 18 deleted for optimum space-saving . . 63
Figure 4-3. Record sizes for SyYsuUT1 20 Figure 5-14. Example of link-editing
Figure 4-4. Typical job control a fetchable load module 63
statements for compiling a PL/I Figure 5-15. Basic locader processing 65
PXOgram =« « s o o « o s o o o o o » 21 Figure 5-16. Loader processing, link-
Figure 4-5. Compiler options, pack area and SYSLIB resolution . . 65
abbreviations, and defaults in batch Figure 5-17. Main storage

MOAE « v +¢ ¢ ¢ « & o o o « « o o« « « 23 requirements for the loader 66
Figure 4-6. Format of the FLAG Figure 5-18. Loader standard data

option .« « + ¢ ¢ 4« ¢ @ ¢ . e o . . 24 SEES . ¢ 4 4« 4 4o e 4 s e e e s o« o 66
Figure 4-7. Compiler listings and Figure 5-19. Job ccntrol larnguage
associated options « . 35 for load-and-go . .« « o ¢ o o o . 68
Figure 4-8. Contents of columns 73 Flgure 5-20. Object and locad nodules

to 80 of source statements 36 in load-and-go . « « . . . « 68
Figure 4-9. Standard entries in the Figure 5-21. Contents of SYSLOUT

ESD « e e o « 39 and SYSPRINT data s€ts « « « « « « « 10
Figure 4-10. Selecting the lowest Figure 6-1, A hierarchy of indexes . 73
severity of messages to be printed, Figure 6-2. Fixed-length reccrds . . 75
using the FLAG option« . U0 Figure 6-3. Variakle-length records 76
Figure 4-11. Return codes from Figure 6-4. The three main tyres cf
compilation of a PL/I program . . . W41 data set . ¢ ¢ ¢ o e o e o e e o o o 17
Figure 4-12. Use of the NAME option Figure 6-5. The access methcds used

in batched compilation 42 by the compiler « « « . . « 81
Figure 4-13. Example of batched Figure 6-6. Access rethcds fcr
compilation, including execution . . 42 record-oriented transmission 82
Figure 4-14. Example of batched Figure 6-7. How the operating systen
compilation, excluding execution . . 42 completes the DCB . . . « 82
Figure 4-15. Format of the Figure 6-8. Card read punch 2540-
preprocessor output . . . ¢ « . o o U3 stacker numbers ¢« « « « . 83
Figure 4-16. Using the preprocessor Figure 6-9. An example of a program

to create a member of a source to link edit the DPI 88
program library« . . . U4 Figure 7-1. Creating a data set:
Figure 4-17. 1Including source essential parameters of DD statemrment 92
statements from a library 45 Figure 7-2. Creating a data set with
Figure #-18. The sequence of entries stream-oriented transmissicn 93
in the ddname list « . . . U6 Figure 7-3. Accessing a data set:
Figure 5-1. The CSECT IDR essential parameters of DD statement 94
information < « . . U9 Figure 7-4. Accessing a data set
Figure 5-2. Basic linkage editor with stream-oriented transmission . 94
processing . « « + « o ¢ o ¢ 2 « « « 50 Figure 7-5. Printer control ccdes
Figure 5-3. Main storage used by a PRINT file 95
requirements for linkage editor Figure 7-6. Creating a data set

IEWLFXXX « « o« s o ¢ o s « o o « o« « 51 using a PRINT file « « 96
Figure 5-4#. Linkage editor standard Figure 7-7. Tab control library

Figures xi

module IBMBSTAB . . . ¢« « « « & .
Figure 7-8. PL/I structure PLITAES
for modifying the standard tab
settings (alternative method) . . .
Figure 8-1. Creating a CONSECUT IVE
data set: essential parameters of DD
statement . . ¢ . . ¢ 4 e
Figure 8-2. DCB subparameters for
CONSECUTIVE data sets
Figure 8-3. Accessing a CONSECUTIVE
data set: essential parameters of DD
statement 0 . .
Figure 8-4. Creating and accessing a
CONSECUTIVE data set . « « « o « o« «
Figure 8-5. ANS printer and card
punch control codes « . . .
Figure 8-6. 1403 printer control
COAES v v o o o o « o o o o o o s @
Figure 8-7. 2540 Card Read Punch
control characters o o o
Figure 8-8. 3525 card prlnter
control code (CTLASA) . . . & « . .
Figure 8-9. 3525 card printer
control codes (CTL360)
Figure 8-10. Printing with record-
oriented transmission
Figure 8-11. Index structure of an
INDEXED data Set . +« « o « o o o o
Figure 8-12. Adding records to an
INDEXED data set . . « . .+ o+ « “ .
Figure 8-13. Creating an INDEXED
data set: essential parameters of DD
statement . . . 4 ¢ ¢ . e 4 e o o o
Figure 8-14., DCB subparameters for
an INDEXED data set . « o « o ¢ o o«
Figure 8-15. Record formats in an
INDEXED data Set . « o« ¢ o o o « o &
Figure 8-16. Record format
information for an INDEXED data set
Figure 8-17. Accessing an INDEXED
data set: essential parameters of DD
statement . . . ¢ . ¢ e e 4 e e . W
Figure 8-18. Creating an INDEXED
data set . . . ¢« ¢ ¢ e e e 0 e o o
Figure 8-19. Updating an INDEXED
data S€t « . ¢ ¢ ¢ o ¢ s 4 e o @ o o
Figure 8-20. Creating a REGIONAL
data set: essential parameters of DD
statement . <« .+ ¢ ¢ ¢ 4 4 . e o . .
Fiqure 8-21. DCB subparameters for a
REGIONAL data set . « ¢« &+ & &« & o .
Figure 8-22. Accessing a REGIONAL
data set: essential parameters of DD
statement . . ¢ . . ¢ ¢ 4 4 e e e .
Figure 8-23. Creating a REGIONAL (1)
data set . . ¢ ¢ ¢ . e e e 4 e e o W
Figure 8-24. Updating a REGIONAL (1)
data set « . ¢ ¢ @ . 0 0 0 e e . . 0.
Figure 8-25. Creating a REGIONAL (2)
data Set « ¢« ¢ + ¢ « o o s e o o o a
Figure 8-26. Updating a REGIONAL(2)
data set directly . . .
Figure 8-27, Updating a REGIONAL(Z)
data set sequentially
Figure 8-28. Creating a REGIONAL(3)
data set . . .
Figure 8-29. Updating a REGIONAL(B)
data set directly <«

xii 0S PL/I Optimizing Compiler:

97

98

101
102

103
104
105
106
106
106
106

107
108
109

111
112
113

114

115
116
117

119
119

121
122
123
124
125
126
127
128

Figure 8-30. Updating a REGIONAL(3)
data set sequentially . . . « . . .
Figure 8-31. PL/I nessage frocessing
PXOGXAM =« « « o o o o o o o o o o @
Figure 9-1. Structure of Key
Sequenced Data Set- .
Figure 9-2. Indexed VSAM Data Set .
Figure 9-3. The principal Access
Methocd Services functions
Figure 9-4., Creating and
Initializing a Key Sequenced Data
SEt .+ 4 e s 4 ¢ s 8 e o e e o s+ o @
Figure 9-5. Updating a Key Sequenced
Data Set ¢« ¢« & ¢« ¢ o ¢ o ¢ o o o o @
Figure 9-6. Creating an Entry
Sequenced Data S€t « « « « ¢ o o o o
Figure 10-1. Information required
when creating a library
Figure 10-2. Creating new libraries
for compiled okject modules
Figure 10-3. Placing a load mcdule
in an existing library
Figure 10-4. Creating a library
member in a PL/I program . . « « . «
Figure 10-5. Updating a library
MEMDEY & ¢ « ¢ o o o o o o o o o o &
Figure 10-6. Structure of a library
Figure 11-1. Invoking a cataloged
Procedure . . o . o ¢ o o o o o o
Figure 11-2. Modifying a catalcged
procedure to produce a punched card
output’ v & ¢ ¢ ¢ ¢ 4 e o e e e e e @
Figure 11-3. cCataloged procedure
PLIXC ¢ « o o ¢ o o s o o o s o o o
Figure 11-4. cataloged procedure
PLIXCL « . ¢ ¢ ¢ a o o o o =« o o o «
Figure 11-5. Cataloged procedure
PLIXCLG =« ¢ o o o o o o o « o o o @
Figure 11-6. Cataloged procedure
PLIXLG o « o o o o o o o o o o o o o
Figure 11-7. cataloged prccedure
PLIXCG ¢ v« o o o« o o e o o « o o o o
Figure 11-8. cCataloged procedure
PLIXG &« ¢ o« o o o o s o o o o o o o
Figure 12-1. Return codes from
execution of a PL/I program . . « .
Figure 12-2. Typical User-Written
IBMBEER Module . « 4 & « ¢ o o o o &
Figure 13-1. Inserting a PL/I entry
point address in PLIMAIN . . . , .
Figure 13-2. Establishing PLIMAIN as
an entry in the assembler-language
routine . . . < . . e e e e s s
Figure 13-3. (part 1 of 2). 1Invoking
PL/I procedures from an assembler
TOUtine . o« ¢ ¢ ¢ ¢ o o o o o o
Figure 13-3. (Part 2 of 2). Invoking
PL/I procedures from an assenbler
routine . o . ¢ ¢ o e e o o o o o @
Figure 13-4. Invoking a non-
recursive and non-reentrant
.assembler routine
Figure 13-5. 1Invoking a recursive cr
reentrant assembler routine
Figure 13-6. Use of PLISTART fcx
ATTACH . . . -
Figure 13-7. Use of PLISTART pa531ng
null parameter string .« . . . o . -

Programmer's Guide

129
130

132
132

133

134
135
136
142
144
144
145

145
146

153

153
154
154
154
155
156
156
163
164

166

166

. 167

168

169
170
172
172

Figure 13-8. Coding the options word
Figure 13-9. Use of PLICALIA
Figure 13-10. Use of PLICALIB . . .
Figure 13-11. Method of overriding
and restoring PL/I error-handling .
Figure 14-1. Sort/merge program
entry points . .« ¢ .« ¢ ¢ ¢ o o o o .
Figure 14-2. Arguments used when
invoking sort/merge
Figure 14-3. Multiple invocations of
SOXt/MErge . o« « o « = » = o o o o &
Figure 1l4-4. Sort/merge message
listing options . « « ¢ o o« ¢ o o o
Figure 14-5. Specifying a sort/merge
message listing option
Figure 14-6. Specifying a sort/merge
sorting technique option
Figure 14-7. Invoking sort/merge via
entry point PLISRTA . . &+ « & o « o«
Figure 14-8, Invoking sort/merge via
entry point PLISRTB . . « « « « « .

172
172
173
174
177
179
180
181
181
181
182

183

Figure 14-9. Invoking sort/merge via
entry point FLISRTC

Figure 14-10.

via entry proint PLISRTD

Figure 14-11,

recording techniques using the TRTCH

subparameter .

Invoking scrt/merge

Sorting variakle-
length records .
Figure A-1. Specifying tap

Figure B-1. Environment ogticns
recognized ky the compiler .

Figure B-2. Teleprocessing
enyironment options

e e o

e e e

Figure B~3. Operating systen

facilities . .

Figure B-4. Statemen

limitations .

t length

Figure C-1. sSummary of requirements

for APAR submission

e e o

Figure G-1. Compiler spill file

record sizes .

Figures

184
185
186

197

201

201

202
204
208

249

xiii

The Optimizing Compiler

The PL/I Optimizing Compiler is a
processing program that translates PL/I
source programs, diagnosing errors as it
does so, into IBM System/360 machine
instructions. These machine instructions
make up an object program. (lLater in this
chapter there is a description of how an
object program is prepared for execution.)

The compiler is designed to produce
efficient object programs either with cr
without ortimization. This optimization,
which is optional, can be specified by the
programmer by means of a compiler option.
(See Chapter 4 for details.)

If optimization is specified, the
machine instructions generated will ke
optimized if necessary, to produce a very
efficient object program.

If optimization is not specified,
compilation time will be reduced.

The optimizing compiler can also be used
conversationally. It can be invoked from a
remote terminal to compile and execute a
PL/I source program, and return the results
to the terminal or to a printer.

The optimizing compiler requires a
mininunm of 50K bytes of main storage when
used with MFT and a minimum of 52K when
used with MVT. (For minimum storage under
0Ss/VS see Appendix G.) In any case it will
work more efficiently with larger amounts
of main storage.

The Operating System

The optimizing compiler must be executed
through the IBM Operating System. This
operating system is used with both
System/360 and System/370.

The operating system relieves the
programmer of routine and time-consuming
tasks by controlling the allocaticn of
storage space and input/output devices.
The throughput of the system is increased
because the operating system can process a
stream of jobs without intervention by the
operator. :

The operating system comprises a control
program and a number of processing

Chapter 1: Introduction

programs. The contrcl progran sugervises
the execution of all prccessing rrcgrams,
and provides services that are required by
the processing programs durirg their
executicon. The processing programs include
such programs as compilers, the linkage
editor, and the loader (described later in
this chapter). The orerating systenm is
described in the puklication QS
Introduction.

The ortimizing compiler can be used with
four operating system contrcl rrograns:

e MFT (Multiprogramming with a Fixed
nurber of Tasks) permits up to fifteen
jobs to be processed ccncurrently, each
jok occurying a separate area of main
storage termed a partiticr.

e MVT (Multiprogramming with a Variakle
nurber of Tasks) permits up to fifteen
jobs to be processed concurrently, each
jok cccupying a separate area of main
storage termed a regicn.

e VSl and VS2 (Virtual Storage) enploy
addressakle auxiliary storage that
appears to the user as main stcrage. In
use VS1 and VS2 are generally similar to
MFT and MVT respectively; the
differences are explained in Appendix G.
Except as explained in the aprendix, all
inforration in this manual about MFT
applies to vsl, and all irfcrraticn
akout MVT applies to Vs2.

TIME SHARING CFTION

An ortional facility of the MVT operating
system is the Time Sharing Ogticn (TSO).
One or more regions can ke allccated to TSO
and several users can have concurrent
access to the system. Each user enters his
jobs frem a remote terminal and can receive
the results at the terminal. (Tc ccntrast
it with this "conversational®" mode of
operation, the more ccnventicnal nethod of
submitting joks through the system operator
is called batch operaticn.)

This programmwer's guide fcrms a camplete
guide tc the use of the optimizing compiler
in a batch environment. It alsc rrcvides
essential background and reference
information for the TSO user; however,
instructions on how to use TSO and how to
use the optimizing ccrpiler with TSO are
contained in the puklications TSQO Terminal

Chapter 1: Intrcducticn 1

User's Guide and TSO: PL/I Optimizing
Compiler.

JOBS AND JOB STEPS

In a batch environment, the order of
processing jobs is determined by a user-
defined job class and/or priority. Thus
the order in which jobs are processed may
differ from the order in which they are
entered. Consequently jobs should be
independent of each other.

A job comprises one or more jok steps,
each of which involves the execution of a
program. Since job steps are always
processed one-by-one in the order in which
they appear, they can be interdependent.
For example, the output from one job step
can be used as the input to a later one,
and the processing of a job step can be
made dependent on the successful completion
of a previous job step.

JOB CONTROL LANGUAGE

Job control language (JCL) is the means by
which a programmer defines his joks and job
steps to the operating system; it allows
the programmer to describe the work he
wants the operating system to do, and to
specify the input/output facilities he
requires.

Chapter 2, "How to Run a PL/I Program,"
illustrates the use of JCL statements that
are essential for the PL/I programmer.
These statements are:

¢ JOB statement, which identifies the
start of a job.

e EXEC statement, which identifies a job
step and, in particular, specifies the
program to be executed, either directly
or by means of a cataloged procedure
(described later in this chapter).

e DD (data definition) statement, which
defines the input/output facilities
required by the program executed in the
job step.

e /% (delimiter) statement, which
separates data in the input stream from
the job control statements that follow
this data.

JOB, EXEC, and DD statements have the
same format, and Figure 1-1 shows an
example of a JOB statement on a punched
card. These three statements are

2 OS PL/I Optimizing Compiler:

identified Ly the character segquence // in
columns 1 and 2. Each statement can
contain four fields -- name, oOreraticn,
operand, and comments -- that are separated
by one or more blanks. The nare field
always starts in column 3.

A full description of job ccntrcl
language is given in the puklications
Job Control Lanquage User's Guide and
Job Control Lanquage Reference.

312

Cataloged Procedures

Regularly-used sets of job control
statements can be prepared cnce, given a
name, stored in a system likrary, and the
name entered into the catalcg for that
library. Such a set of statements is
termed a cataloged procedure. A cataloged
procedure comprises one or ncre jcb steps
(though it is not a jok, because it must
not contain a JOB statement). It is
included in a job by specifying its name in
an EXEC statement instead of the nare of a
rrogram.

Several IBM-supplied cataloged
procedures are available for use with the
optimizing compiler. Chapter 11 describes
these procedures and how to use then.

EXECUTING A PL/I PROGRAM

The process of executing a PL/I program
requires a minimum of two jcb stegs.

A compilation job step is always
required. In this step the optimizing
compiler translates the PL/I source grogran
into a set of machine instructions called
an object module. This object mocdule does
not include all the machine instructions
required to represent the scurce rrcgram.
In many instances the compiler wrerely
inserts references to sukroutines that are
stored in the 0S PL/I Residernt Library.

To include the required subroutines from
the resident library, the object mcdule
must be processed by one of two processing
programs, the linkage editor and the
loader. Sukroutines from the resident
library may contain references to cther
subroutines stored in the 0s PL/I Transient
Library. The subroutines frcr the
transient library do not become a permanent
part of the compiled program; they are
loaded into main storage when needed during
execution of the PL/I prcgran, and the
storage they occupy is released when they
are no longer needed.

Programmer's Guide

Name of Accounting Programmer's
job information name

Ay

A

F—jx‘ﬂ T 1T

/’waHﬁﬁPLE JOEB (224551110 J, BLOGGE
Aldd 1 11 [| i n
J tdBiR N (I I |]
88 Bo Ziooscsugovescasfavarsoapgrnnesi VAL EE RGNS AN RHEANER0G
1234567891025 151571819 VRBMA620 3230 N 52 3870 2819490 ¢ 42 HETEE 7 9557559950 5162 A3 64 85 6B CTEE LTI N M2 7 KI5 16
) L ERY REREN] ERRRERRRES [[| EN) /RN AE S RN I AU ER N R U AR R N B S R EEE SN
B oerior KBl S eneneer B 2B Kovorr Srererin Bavreer Ko g
S ORREIY ERIN RG] EER BREEY B BN BRI I I R S S
SR PR A M Al U odstdate D Asda s M it U o
BE s NEl:aolbs Voalivoos E paninn N sossn Vs
i F visel O ssuns WoatasesB F oo SO EnsE . Woue
il @ vriiii P osrisd X iy i G ciiciy Poviiy X viven
vrst H sesoiB Q sl ss BEesR-cses H o seaiog Ptis Yy #3
[N LR R N TenTen HESRSY A
k LI Y [? IHMI56 780 2’324251:212529.‘9"313334':3537:?.?50:1 A2 59 RDUHH
M 50

Figure 1-1. A JOB statement

When using the linkage editor, two
further job steps are required after
compilation. 1In the first of these steps,
the linkage editor converts the object
rmodule into a form suitakle for execution,
and includes subroutines, referred to by
the compiler, from the resident likrary.
The program in this form is called a load
module. 1In the final job step, this load
module is loaded into main storage and
executed.

When using the loader, only one more job
step is required after compilation. The
loader processes the object module,
includes the arpropriate library
subroutines, and executes the resultant
executable program immediately.

Both the linkage editor and the loader
can combine separately produced object

rcdules and previously processed lcad
rodules. However, they differ in one
important respect: the linkage editcr
rrcduces a load module, which it always
places in a library, where it can ke
rerranently stored and called whenever it
is required; the loader creates cnly
terporary executable programs in main
storage, where they are executed
immediately.

The linkage editor also has several
facilities that are not provided by the
loader; for exarple, it can divide a
rrogram that is too large for the space
available in main storage, sc that it can
be loaded and executed segment by segment.

- The lcader is intended primarily for use
when testing programs and fcr processing
rrograms that will ke executed only once.

Chapter 1: Intrcducticn 3

Chapter

The job control statements shown in Figure
2-1 are sufficient to compile and execute a
PL/I program that comprises only one
external procedure.

This program uses only punched-card
input and printed output. For other forms
of input/output refer to Chapter 3. The
listing produced includes only the standard
default items. Many other items can be
included by specifying the appropriate
compiler options in the EXEC statement.
The compiler listing and all the compiler
options are described in Chapter 4. The
linkage editor listing and the linkage
editor options are described in Chapter 5.
Appendix F is a sample PL/I program that

2: How to Run a PL/I Program

includes most of the listing itenms
discussed in these two chapters.

The example in Figure 2-1 uses the
cataloged procedure PLIXCLG. Several other
cataloged procedures are surplied by IBM
for use with the optimizing compiler (for
example, for compilation only). The use of
these other cataloged procedures is
described in chapter 4.

An alternative method of specifying
conpiler options is ky use of the PROCESS
statement, which is described in Charter 4.
An example of a PROCESS statement is:

* PROCESS MACRO,OPT (TIME);

Chapter 2: How to Run a PL/I Progranr 5

JOB statement

EXAMPLE is the name of the job. You can use any name
that does not have more than eight alphameric or national
characters; the first character must not be numeric. The
job name identifies the job within the operating system; it
is essential. The parameters required in the JOB statement
depend on the conventions established for your installation.

EXEC statement

PLIXCLG is the name of a cataloged procedure supplied by
IBM. When the operating system meets this name, it replaces
the EXEC statement with a set of JCL statements that have
been written previously and cataloged in a system library.
The cataloged procedure contains three procedure steps:

PLI The compiler processes the PL/| program and translates
it into a set of machine instructions called an object

module.
LKED The linkage editor produces a load module from the
object module produced by the compiler.

GO The load module produced by the linkage editor is

loaded into main storage and executed.

—~» //PLI.SYSIN bD *

— //EXAMPLE JOB (6487,N14),JONES MSGLEVEL=1
—=> //STEP1 EXEC PLIXCLG

D’L/ | source statements—l——

EX001:

NEXT:
C CEARB:

DD statement

This statement indicates that the statements to be processed

in procedure step PL| follow immediately in the card deck.
SYSIN is the name that the compiler uses to refer to the
device on which it expects to find this data. (In this case,

the device is the card reader, and the data is the PL/I program.)

FINISH: END;

“PROCEDURE OPTlONS(MAIN)
DECLARE (A,B,C) FIXED DEC
ON ENDFILE(SYSIN) GO TOF
GET FILE(SYSIN} DATA(A By

CPUT FlLE(SYSPR!NT)SKIP DA{ A
GO TO NEXT; = '

(el /%
r //GO.SYSIN DD *

A=131 B=75;

A=2 B=907;

A=—14 B=14;

Delimiter statement

This statement indicatas the end of the data (that is, the
PL/I program).

Data to be processed
by the PL/I program

A=341 B=429;
A=245 B=102;

A

DD statement

This statement indicates that the data to be processed by the
program (in procedure step GO) follows immediately in the
card deck.

Delimiter statement

This statement indicates the end of the data.

Figure 2-1. How to run a PL/I program

6 0S PL/I Cptimizing Compiler:

Prcgrammex's Guide

Information
Required

Type of output
device to which the
data set will be
transmitted.

Serial number of the
volume (tape reel,
disk pack, etc.)
that will contain
the data set.

Name of the data
set.

Type of records in
the data set.

Amount of auxiliary
storage required for
the data set
(direct-access
devices only).

Disposition of the
data set on entry
to, and at the end
of the job step.

Figure 3-1.

Chapter 3:

Parameter of
DD statement

UNIT=

VOLUME=SER=
(oxr VOL=SER=)

DSNAME= (or DSN=)
DCB= (see appendix A)

SPACE=

DISP=

Information to be

specified when creating a

data set

A data set is any collection of data in
auxjiliary storage that can be created or

accessed by a program.

It can be punched

onto cards or a reel of paper tape; or it
can be recorded on magnetic tape or on a
direct-access device such as a magnetic

disk or drum.

A printed listing can also

be a data set, but it cannot be read by a

program.

Data sets that are created or accessed
by PL/I programs must have one of the
following types of organization:

CONSECUTIVE
INDEXED
REGIONAL

Teleprocessing

The items of data in a CONSECUTIVE data
set are recorded in the order in which you

Chapter 3:

How to Create and Access a Data Set

present them, and can ke accessed only in
the order in which they were presented or,
in the case of magnetic tape, in the
reverse order. The items of data in
INDEXED and REGIONAL data sets are arranged
according to "keys" that you surrly when
you create the data sets. Teleprocessing
data sets are organized as ccnsecutive
groups of data items.

This chapter explains how to create and
access CONSECUTIVE data sets stored cn
magnetic tape or on a direct-access device.
It is intended to provide an intrcduction
to the subject of data management, and to
meet the needs of those programmers who do
not require the full input/output
facilities of PL/I and the crerating
system. Chapters 6 through 9 contain a
full explanation of the relaticnshirg
between the data management facilities
provided by PL/I and thcse provided ky the
operating system, and they explain how to
create and access all the tyres of data
sets referred to above.

Using a Data Set

To create or access a data set, you must
not only include the appropriate input and
output statements in your PL/I program, but
you must also supply certain information to
the Operating system in a DL statement. A
DD statement defines a data set and
specifies how it will be handled. The
information contained in a DD- statement
enables the operating system tc allccate
the necessary auxiliary storage devices,
and allows the compiler to use the data
management routines of the operating system
to transmit data between rain storage and
auxiliary storage.

The language reference manual for this
compiler describes the input and cutrut
statements that you will need to use in
your PL/I program. Essentially, you must
declare a file (explicitly or contextually)
and open it (explicitly or implicitly)
before you can begin to transmit data. A
file is the means provided in PL/I for
accessing a data set, and is related to a
particular data set only while the file is
open; when you close the file, the data set
is no longer availakle to your program.
This arrangement allows you to use the same
file to access different data sets at
different times, and to use different files
to access the same data set.

How to Create and Access a Data Set 7

[e e e e e e e e e e — e e e e e ————— - s e 1

| Storage Device |

Parameters of DD Statement |

__-___-_----____----_----_----------------——--------—---------_--l

Parameters |

l-___--_--_-_----_--_--—----—-_-____-_-_____-_---_----_-_------_--—-----__---_--_—-_____'

| UNIT= cr SYSOUT= |

| a1l | Always IR ittt l
| | | Block size? | DCB=(BLKSIZE=...) |
S e |
| Direct access only | Always | Auxiliary storage | SPACE= |
| | space required I |
[== o o e e !
	Data set to be used		
	by another job step	Disposition	DIsP=
	but only required		
	by this job	I	
Direct access and	~—=—=—=—memmmm e et e - e ——————		
standard labeled	Data set to be kept	Disposition	DISpP=
magnetic tape	after end of job [===-=memememmm e e e messeee———		
	Name of data set	DSN=	
e e smmmmm e ===			
	Data set to be on	Volume serial number	VOL=SER=
	particular volume		

___ I
|*Alternatively, you can specify the block size in your PL/I program by using the |
| ENVIRONMENT attribute. |
Lo m e e e e e e e e e e e e et e e e e 2 e e g

Figure 3-2.

You must provide a DD statement for each
data set that you will use in each job
step. If you use the same data set in
than one job step, each job step that
refers to this data set must include a DD

statement for the data set.

more

If you are using a cataloged procedure,
such as PLIXCIG (described in Chapters 2
and 10), the DD statement for any data set
processed by your program must be
associated with the appropriate step of the
procedure by qualifying the name of the DD
statement with the name of the procedure
step. For example:

/7/GO.RESULTS DD ...

would indicate a DD statement named RESULTS
in procedure step GO, as in the example in
Figure 3-5. The name of the DD statement
is known as its "ddname".

How to Create a Data Set

The information that you should specify
when you create a data set is listed in
Figure 3-1, which also shows the parameters
of the DD statement that you should use.

The following paragraphs discuss the use
of these parameters in creating a

8 0S PIL/I Optimizing Compiler:

Creating a CONSECUTIVE data set:

essential parameters of DD statement

CONSECUTIVE data set. Figure 3-2
summarizes this discussion, Figure 3-4 is
an example of creating this type of data
set, and the sukparameters of the DCR
parameter are described in Arpendix A. The
job control language reference publication
explains how to code a DD statement.

TYPE OF OUTPUT DEVICE (UNIT=)

You must always indicate the type of output
device (for example, magnetic tape or disk
drive, card punch, or printer) cn which you
want to create your data set. Usually the
simplest way to do this is tc use the UNIT
paraneter, although for a printer or a card
punch it is often more convenient tc use
one of the special forms of DD statement
discussed under "sSpecial-purrose
Parameters,” ‘later in this charter.

In the UNIT parameter, you can specify
either the type number of the unit (for
example, 2311 for a disk drive) or the name
of a group of devices (for example, SYSDA
for any direct-access device). The group
names are established for a system during
system generation.

Programmer's Guide

VOLUME SERIAL NUMBER (VOLUME=SER=)

A unit of auxiliary storage such as a reel
of magnetic tape or a magnetic disk pack is
termed a volume; a volume can contain one
or more data sets, and a data set can
extend to more than one volume. A vclume
is identified by a serial number that is
recorded within it (and usually printed on
the label attached to it). Although a deck
of cards, a printed listing, and a reel of
paper tape can be considered to be volumes,
they do not have serial numbers.

Specify a volume serial number only if
you want to place the data set in a
particular volume. If you omit the VOLUME
parameter, the orerating system will print
in your program listing the serial number
of the volume in which it placed the data
set.

The VOLUME parameter has several
subparameters. To specify a volume serial
number, you need only the SER (serial
number) subparameter (for example,
VOLUME=SER=12345).

NAME OF DATA SET (DSNAME=)

You must name a new data set if you want to
keep it for future jobs. If the data set
is temporary (required only for the job in
which it is created), you can still name
it, but you need not; if you omit the
DSNAME parameter, the operating system will
assume that the data set is temporary, and
will give it a temporary namne.
Alternatively, you can specify your own
temporary name by prefixing it with the
characters 6&é. For example:

DSNAME=§§ TEMP

This 1s especially useful if you want to
use the temporary data set in more than one
step of your job. The cataloged procedures
supplied with the optimizing compiler
contain examples of such use.

RECORD TYPE (DCE=)

You can give record-type information either
in your PL/I program (in the ENVIRONMENT
attribute or LINESIZE option) or in a DD
statement. This discussion refers only to
the DD statement, and does not apply if you
decide to give the information in your
program; refer to the language reference
manual for this compiler for a description
of the ENVIRONMENT attribute and the

Chapter 3:

LINESIZE option.

The type of record in a data set is
defined by its format, its rhysical length
(klock size), and the length of the
subsections (logical_reccrd length) which
together can be considered tc make ur a
rhysical record.

The
of the

records in a data set must have one
following forrmats:

F fixed length
V variable length (D- cr V-fcrrmat)
U vundefined length

F-, D-, and V-forrmat reccrds can ke
blocked (FB, DB, or VB) or unblocked (F, D,
or V); V-format records can ke sranned. (A
spanned record is a record whose length can
exceed the size of a klock. If this
occurs, the record is divided intc segments
and accommodated in two or more consecutive
|blocks. D-format indicates that the recorg
{is in an ASCII data set. (See the
{language reference manual for this compiler
|for details of ASCII data sets.) In most
cases, you must specify a block size. If
you do not specify a record length,
unblocked records of length equal to the
block size are assumed. If ycu are using a
PRINT file to produce printed output, you
do not need to specify a blcck size in your
DD statement or in your PL/I program; in
the absence of other infcrmaticn, the
compiler suprlies a default line size of
120 characters.

To give record-type information in a DD
statement, use the RECFM (record format),
BLKSIZE (block size), and LRECL (lcgical
record length) subparameters of the LCB
parameter. The DCB parameter rasses
information to the operating system for
inclusion in the data_control block, a
table maintained by the data ranagement
routines of the operating system for each
data set in a job step; it ccntains a
description of the data set and how it will
be used. If your DCB rarameter includes
more than one subparameter, you must
enclose the list in parentheses. Fcr
exanple:

DCB= (RECFM=FB ,BLKSIZE=1000,LRECL=50)

AUXILIARY STCRAGE REQUIRED (SPACE=)

When creating a data set cn a direct-access
device, you must always specify the amount
of auxiliary storage that the data set will
need. Use the SPACE rarameter to sgecify
the numker of cylinders,.tracks, or blocks

How to Create and Access a Data Set 9

that the data set will need. If you intend
to extend the data set in a later job or
job step, ensure that your original space
allocation is sufficient for future needs;
you cannot make a further allocation later.
If the SPACE rarameter appears in a DD
statement for a non-direct-access device,
it is ignored.

DISPOSITION OF DATA SET (DISP=)

To keep a data set for use in a later job
step or job, you must use the DISP
parameter to specify how you want it to be
handled. You can pass it to another job
step, keer it for use in a later jok, or
enter its name in the system catalog. If
you want to keep the data set, kut do not
want to include its name in the system
catalog, the operating system will request
the operator to demount the volume in which
it resides and keep it for you. 1If you
omit the DISP parameter, the operating
system will assume that the data set is
temporary and will delete it at the end of
the job step.

The DISP parameter can contain two
positional subparameters. The first
specifies whether the data set is new or
already exists, and the second specifies
what is to be done with it at the end of
the job step. If you omit the first, yocu

must indicate its aksence by a comma. For
example:

DIsP=(,CATLG)
specifies that the data set is to be
cataloged at the end of the job ster. The

omission of the first subparameter means
that the data set is assumed by default to
be new.

How to Access a Data Set

To access (that is, read or update) an
existing data set, your DD statement should
include information similar to that given
when the data set is created. However, for
data sets on labeled magnetic tare or on
direct-access devices, you can omit several
parameters because the information they
contain is recorded with the data set by
the operating system when the data set is
created; Figure 3-3 summarizes the
essential information and Figure 3-5 is an
example of accessing this type of data set.
The subparameters of the DCB pararxeter are
described in Appendix A, and the jok
control language reference publication
explains how to code a DD statement.

10 0S PL/I Optimizing Compiler:

Except in the special case of data in
the input stream (descriked under "Srecial-
purpose Parameters," later in this
chapter), you rust always include the naxe
of the data set (DSNAME) and its
disposition (DISP).

TYPE CF INPUT DEVICE (UNIT=)

You can omit the UNIT rarareter if the data
set is cataloged or if it is created with
DISP=(NEW,PASS) in a previous job step of
the same jok. Oth€rwise, it must always
appear. (PASS specifies that the data set.
is to be passed for use Ly a subsequent job
step in the same job).

VOLUME SERIAL NUMBER (VOLUME=SER=)

You can omit the VOLUME parameter if the
data set is cataloged cr if it is created
with DISP=(,FASS) in a previous job step of
the same job. Otherwise it must always
arrear.

NAME CF DATA SET (DSNAME=)

The DSNAME parameter can either refer back
to the DD statement that defined the data
set in a previous job step, cr it can give
the actual name of the data set. (Ycu
would have to use the former method to
refer to an unnarmed tempcrary data set.)

RECORD TYPE (DCE=)

You can omit the DCE parameter if the
record information is specified in your
PL/I program, using the ENVIRONMENT
attribute, or if you are accessing a data
set on a direct-access device or standard
labeled wmagnetic tape. OCtherwise ycu must
specify the DCB parameter for punched
cards, paper tape, or unlabeled ragnetic
tare.

AUXILIARY STCRAGE RECUIRED (SPACE=)

You cannot add to, or otherwise mcdify, the
space allocation made for a data set when
it is created. Accordingly, the SPACE
rarameter is never required in a CC
statement for an existing data set.

Precgrammer®s Guide

- ————— - = —_—————— - — " - ——— -

i e e ittty 1
| Pararmeters of DC Statenent |
| === === oo !
| When required | What you must state | Parameters |
[= e moooooo- smmmemmoos |
	Nare cf data set	DSN=
Always	=====-- e e e r e — e ———————	
	Dispositicn of data set	DISP=
[== oo o o oo		
	Al1l devices	Input device
If data set not	--=-—-=-meccmcr e e	
cataloged	Magnetic tape and	Vclure serial nurnker
	direct access	
= oo oo R		
For punched cards, paper tape, or	Blcck sizet	DCB=(BLKSIZE=...)
junlabeled magnetic tape		(
.. ———————]		
*Alternatively, you can specify the block size in your PL/I program ky using the		
ENVIRONMENT attribute.		
e e e e e e e e e e e e e e 4 2 2 2 e 2 e e 2 e e e e o e e 3

Figure 3-3.

DISPOSITION OF DATA SET (DISP=)

Except for unit record devices (such as
card readers), you must always include the

DISP parameter to indicate to the operating

system that the data set exists. Code
DISP=SHR if you want to read the data set,
DISP=0LD if you want to read and/cr
overwrite it, or DISP=MOD if you want to
add records to the end of it.

Special-purpose Parameters

Three parameters of the DD statement have
special significance kecause you can use a

very simple form of DD statement; they are:

SYSOUT=

*

DATA
SYSOUT= is particularly useful for rrinted
or punched-card output, and * and DATA

allow you to include data in the input
stream.

System Output (SYsSoUT=)

A system output device is any unit (but
usually a printer or a card punch) that is
used in common by all jobs. The computer
operator allocates all the system output
devices to specific classes according to

Chapter 3:

Accessing a CCNSECUTIVE data set: essential parameters cf DD statement

the type of device. The usual convention
is for class A to refer to a printer and
class B to a card punch; the IBM-supplied
catalcged procedures assure that this
conventicn is followed.

Tc rcute your output through a system
output device, use the SYSOUT parameter in
your DD statement. For example, to punch
cards, use the DD statement:

//GO.PUNCH DD SYSOUT=B

Data in the Input Streamr (* and LCATR)

A convenient way to introduce data to your
program is to include it in the ingut
strean with your jok control statements.
Data in the input stream nust, like job
contrcl statements, ke in the form of 80-
byte records (usuvally runched cards), and
must ke immediately preceded by a DD
statement with the single parameter * in
its operand field. For example:

//G0.SYSIN DD *

To indicate the end of the data, you may
optionally include a deliniter jct ccntrol
statement (/#*). If you omit the /#
delimiter, the end of the data is
determined ky the next jck ccntrcl
statenent (commencing // in the first two
columns) in the input strean.

If your data includes reccrds that start

with // in the first two columns use the
parameter DATA. For exangle:

How to Create and Access a Lata Set 11

//70PT3#4 JOB

//STEP1 EXEC PLIXCLG
//PLI.SYSIN DD *

CREATE: PROC OPTIONS (MAIN) ;

DCL PUNCH FILE STREAM OUTPUT,
DISK FILE RECORD OUTPUT SEQUENTIAL,
1 RECORD,
2(A,B,C,X1,X2) FLOAT DEC(6) COMPLEX;

ON ENDFILE (SYSIW) GO TO FINISH;

OPEN FILE (PUNCH) , FILE (DISK);
NEXT': GET FILE(SYSIN) LIST(A,B,C);
X1=(-B+SQRT (B**2-4*A%*C)) / (2*R) ;
X2=(-B-SQRT(B**2-4*A*C))/(2%A);
PUT FILE (PUNCH) EDIT (RECORD) (C(E(16,9)));
WRITE FILE(DISK) FROM(RECORD);
GO TO NEXT;
FINISH: CLOSE FILE(PUNCH), FILE(DISK);
END CREATE;
/¥
/7G0O. PUNCH DD SYSOUT=B
//GO.DISK DD DSN=ROOTS,UNIT=2311,VOL=SER=D186,DISP=(NEW, KEEP),

V4 SPACE=(TRK, (1, 1)), DCB= (RECFM=FB, BLKSIZE=400,LRECL=40)
//GO.SYSIN DD *

512 4

4 -10 4

5 16 2

4 -12 10

512 9

29 ~20 4

/¥

Figure 3-4. Creating a CONSECUTIVE data set

//0PT3#5 JOB

//STEP1 EXEC PLIXCIG
//7PLI.SYSIN DD *

ACCESS: PROC OPTIONS (MAIN);

DCL RESULTS FILE RECORD INPUT SEQUENTIAL,
1 RECORD,
2(a,B,C,X1,X2) FLOAT DEC(6) COMPLEX;

ON ENDFILE(RESULTS) GO TO FINISH;

PUT FILE(SYSPRINT) EDIT('A','B','C','X1','X2")
(x(7),3(A,X(23)),R,X(22),18);
OPEN FILE(RESULTS) ;
NEXT: READ FILE(RESULTS) INIrO(RECORD);
PUT FILE(SYSPRINT) SKIP EDIT(RECORD) (C(F(12,2)));
GO TO NEXT;
FINISH: CLOSE FILE(RESULTS) ;
END ACCESS;
/%
//7G0O. RESULTS DD DSN=ROOTS, UNIT=2311, VOL=SER=D186,DISP=(01D,KEEP)

Figure 3-5. Accessing a CONSECUTIVE data set

12 0S PI/I Optimizing Compiler: Programmer's Guide

//GO. SYSIN DD DATA

In this case, you must always indicate
the end of the data by the job control
delimiter statement (/%).

Standard Files

PL/I includes two standard files, SYSIN for
input and SYSPRINT for output. If your
program includes a GET statement without
the FILE or STRING option, the compiler
uses the file name SYSIN; if it includes a
PUT statement without the FILE option, the
compiler uses the name SYSPRINT.

If you use one of the IBM-supplied
cataloged procedures to execute your
program, you will not need to include a DD
statement for SYSPRINT; procedure step GO
always includes the statement:

//SYSPRINT DD SYSOUT=A

The block size is normally supplied by
the compiler; you need not specify it
yourself, unless you want blocked output.

If your program uses SYSIN, either
explicitly or implicitly, you must always
include a corresponding DD statement.

Chapter 3:

Examples

Two examples of simple arplicaticns for
CONSECUTIVE data sets are shown in Figures
3-4 and 3-5; both use the cataloged
procedure PLIXCLG supplied bty IBM.

The first program evaluates the familiar
expression for the rcots of a gquadratic
equation and stores the results in a data
set on a disk pack and on punched cards.
|The last but one DD statement
(//GO.DISK...) specifies that the newly
created data set is to be given the name
ROOTS and is to be stored in a volume with
serial number D186 on a 2311 Disk Stcrage
Drive. It specifies that fixed-length
records, 40 bytes in length, are to ke
grouped together in blocks, each 400 bytes
long. It specifies that the data set is
new and that it is to be kert cn the volure
at the end of the jok step; and it
specifies that one track of the disk
storage drive is to ke allocated to the
data set with one additicnal track tc be
used if more space is required.

The second program accesses the data set

on the disk pack created in the first
program and prints the results.

How to Create and Access a LCata Set 13

This chapter describes the optimizing
corrpiler and the jok control statements
required to invoke it, and defines the data
sets it uses. It descrikes the compiler
options, the listing produced by the
compiler, batched compilation, and the
preprocessor, all of which are introduced
briefly below.

The optimizing compiler translates the
PL/I statements of the source programx into
machine instructions. A set of machine
instructions such as is produced for an
external PL/I procedure ky the compiler is
termed an object module. If several sets
of PL/I1I statements, each set corresponding
to an external procedure and separated by
appropriate control statements, are
present, the compiler can create two or
more object modules in a single jcb steg.

However, the compiler does not generate
all the machine instructions required to
represent the source program. Instead, fcr
frequently used sets of instructions such
as those that allocate main storage or
those that transmit data between main
storage and auxiliary storage, it inserts
into the object module references to
standard subroutines. These subroutines
are stored either in the 0S PL/I Resident
Library or in the 0S PL/I Transient
Library.

An object module produced by the
compiler is not ready for execution until
the appropriate subroutines from the
resident library have been included; this
is the task of either one of two processing
programs, the linkage editor and the
loader, described in Chapter 5. An okject
module that has been processed by the
linkage editor is referred to as a load
module; an object module that has keen
processed by the loader is referred tc as
an executable program.

Subroutines from the transient library
do not form a permanent part of the load
module or executakle program. Instead,
they are loaded as required during
execution, and the storage they cccupy is
released when they are no longer needed.

While it is processing a PL/I program,
the compiler produces a listing that
contains information akout the program and
the object module derived from it, together
with messages relating to errors or other
conditions detected during compilation.
Much of this information is optional, and
is supplied either by default or by

Chapter 4: The Compiler

specifying appropriate cgticrs when the
compiler is invcked.

The compiler also includes a
preprccessor (or compile-time processor)
that enables you to rcdify scurce
staterents or insert additicral scurce
staterents before compilation commences.

Compiler options, discussed under
"Orticnal Facilities," later in this
chapter, can be used fcr purpcses cther
than to specify the information to be
listed. For example, the rrerrocesscr can
be used inderendently to process source
programs that are to be compiled later, or
the compiler can ke used merely tc check
the syntax of the statements of the source
program. Also, continuaticr cf rrccessing
through syntax checking and compilation can
be made conditicnal on successful
Ereprccessing.

Description of the Compiler

The compiler consists of a number of load
modules, referred to as rhases, each of
which can be loaded individually intc main
stcrage for execution. 2 simplified flow
diagram is shown in Figure 4-1. The first
rhase tc be loaded is a resident control
ghase, which remains in main storage
throughout compilaticn. This phase
consists of a number cf service rcutines
that prcvide facilities required during
execution of the rermaining rhases. One of
these rcutines communicates with the
supervisor program of the orerating syster
for the sequential loading of the remaining
phases, which are referred tc as rrccessing
phases.

The resident contrcl rhase alsc causes a
transient control phase to ke loaded, the
function of which is tc initialize the
operating environment in accordance with
options specified by the rrcgranrer.

Each processing rhase perfcrms a single
function or a set of related functions.
some of these phases nust be lcaded and
executed for every compilation; the
requirerent for other rhases derends on the
content of the source program or on the
optional facilities selected. Arpart from
the rhases that provide diagnostic
information, each phase is executed cnce
only.

Charter 4: The Compiler 15

SOURCE TEXT
(FROM SYSIN)

PRE- MACRO

PROCESSIN

NOMACRO

y

48-
CHARACTER-
SET
PROCESSOR

B60-CHARACTER-SET
TEXT VIA SYSUT1

BCD or CHARSET(48) CHARACTER
WT/

EBCDIC or
CHARSET(60)

_

SYNTAX~
ANALYSIS
STAGE

A

DICTIONARY-
BUILD
STAGE

)

TRANSLATION
STAGES

| 4

FINAL-
ASSEMBLY
STAGE

)

OBJECT MODULE
(TO SYSLIN OR SYSPUNCH})

Figure 4-1. sSimplified flow diagram of the compiler

16 0S PL/I Optimizing Compiler: Programmer's Guide

COMPILE-
TIME PRE-
PROCESSOR

PROCESSED SOURCE
TEXT VIASYSUT1

Input to the compiler is known
throughout all stages of the compilation
process as text. Initially, this text
comprises the PL/I statements of the source
program. At the end of compilation, it
comprises the machine instructions
substituted by the compiler for the source
text, together with the inserted references
to resident library subroutines for use by
the linkage editor or by the loader.

The source text must be in the form of a
data set defined by a DD statement with the
name SYSIN; frequently, this data set is a
deck of punched cards. The source text is
passed to the syntax-analysis stage either
directly or after processing by one of the
following preprocessor phases:

1. If the source text is in the PL/I u48-
character set or in BCD, the 48-
character-set preprocessor translates
it into the 60-character set. To use
the #48-character-set processor,
specify the CHARSET (48) or
CHARSET(BCD) options.

2. If the source text contains
preprocessor statements, the
preprocessor executes these statements
in order to modify the source text or
to introduce additional statements.
Also, if the source text is in the
PL/I 48-character set or in BCD (as
specified by the CHARSET.(48) or
CHARSET(BCD) options), the
preprocessor automatically translates
it into the 60-character set. ToO use
the preprocessor, specify the MACRO
compiler option.

Both preprocessor phases store the
translated source text in the data set
defined by the DD statement with the name
SYSuUT1.

The syntax-analysis stage takes its
input either from this data set or from the
data set defined by the DD statement with
the name SYSIN. This stage analyzes the
syntax of the PL/I statements and removes
any comments and non-significant blank
characters.

After syntax analysis, the dictionary-
build stage creates a dictionary containing
entries for all identifiers in the source
text. The compiler uses this dictionary to
communicate descriptions of the elements of
the source text and the object module
between phases. The dictionary-build stage
of the compiler replaces all identifiers
and attribute declarations in the source
text with references to dictionary entries.

Further processing of the text involves
several compiler stages, known as
translation stages, which:

¢ Translate the text fror the PL/I
syntactic form into an internal
syntactic form.

e Rearrange the text to facilitate further
translation (for exarrle, by reglacing
array assignments with do-loops that
contain element assignments).

e Map arrays and structures tc ensure
correct koundary alignment.

e Translate the text into a series of
fixed-length tables, each with a format
that can ke used to define machine
instructions.

¢ Allocate main storage for static
variakles and generate inline code to
allow storage to be allocated
automatically during execution. (In
certain cases resident likrary
subroutines may also ke called to
allocate storage during executicn.)

The final-assembly stage translates the
text takles into machine instructions, and
creates the external syxbol dicticnary
(ESD) and relocation dictionary (RLL)
required by the linkage editor and by the
loader.

The external symbol dicticnary includes
the names of subroutines that are referred
to in the object module but are nct rart of
the module and that are to ke included by
the linkage editor or by the lcader; these
names, which are termed external
references, include the names of all the
PL/I resident library subroutines that will
be required when the object recdule is
executed. (These resident library
subroutines may, in their turn, contain
external references to other resident
library subroutines required for
execution).

The relocation dictionary contains
information that enables absclute stcrage
addresses to be assigned to locations
within the load module when it is lcaded
for execution.

The external symbol dictionary and the
relocation dictionary arxe described in
Chapter 5, which also explains how the

- linkage editor and the lcader use themn.

Job Control Statements for Compilation

Although you will probably use catalcged
procedures rather than supply all the job
control statements required for a jck ster
that invokes the compiler, you should be
familiar with these statements so that you

Chapter 4: The Comrpilex 17

e c e ee— e~ ————— o - — - - - " - - - - - PP Ay P, -——-a

Standard	Contents of	Possible	Record	Record	Buffers	
ddname	data set	device	format	size	==————————- —mmm—e—cea—	
		classes	(RECFM)	(LRECL)	BUFNO	BLKSIZE
ettt sttt ettt ittt s ——————						
SY¥SIN (or	Input to the	s¥sSsQ	¥,FB,U	<101(100)	2	200

SYSCIN)	compiler		VB,V	<105(104)		
: I						
SYSLIN	Object module	SYSsSQ	FB	80	2	80
SYSPUNCH	Preprocessor	SYSSQ	FB	80	2	80
	output,	SYSCP				
	compiler output					
	I					
s¥YsuTl	Temporary	sSYsba	F	1091,1691,3491	-	-
	workfile		jor 4051	{		
				accoxding to		
			Javailable			
			space			
SYSPRINT	Listing,	SYSsQ	VBA 125 i 2 [129			
	including I					
I	messages					
]			
SYSLIB	Source	SYSDA	F,FB <101	-	-	
	statements for					
	preprocessor					
= e e e e e e e e e e e e e e e e e —————e———— I						
I						
Notes:						
I						
1. The possible device classes are:						
I I						
SYSsQ Magnetic-tape or direct-access device.						
SYSDA Direct-access device.						
SYsSCP Card-punch device.						

| 2. Any block size can be specified except for SYSLIB and SYSUT1l. Block size

| for SYSLIB depends cn the options specified. If the INCLUDE option is

| specified, the maximum block size is 4260 bytes. If MACRO is specified, |
| for SIZE values below 60K bytes, the maximum is 400 bytes; akove 60K |
| bytes, the block size maximum is the value of LRECL for SYSUTl1l. The i
| block size for sSYSUT1 is always provided by the compiler.

|

| 3. If the record format is not specified in a DD statement, the default value
| (underlined) is provided by the compiler. |
[|
| 4. The compiler will attexpt to obtain source input from SYSCIN if a DD |
| statement for this data set is provided. Otherwise it will obtain its |
| input from SYSIN. |
| |
| 5. The numbers in parentheses in the "Record size" column are the defaults |
| which can be overridden by the user. Where no parentheses are present, |
| the value is fixed and cannot be altered. |
L e e e e e e - o e e e e —rm——————————— ——mmm———————— ¥

Figure 4-2. compiler standard data sets

18 0S PL/I Optimizing Compiler: Programmer's Guide

can make the best. use of the compiler, and
if necessary, override the staterents of
the catalcged procedures.

The IBM-surplied cataloged procedures
that include a compilation procedure step
are as follows:

PLIXC Compile only.

PLIXCL Corpile and link-edit.

PLIXCLG Comrile, link-edit, and execute.
PLIXCG Comtile, lcad, and execute.

The following raragraphs describe the
essential job control statements for
compi lation. The IBM-supplied cataloged
procedures are described in Chapter 11 and
include examples of these statements.

EXEC STATEMENT

The basic EXEC st@temént is:
//stepname EXEC PGM=IELOAA

The PARM parameter of. the EXEC statemert
can be used to specify aone or more of the
optional facilities provided by the
compiler. These facilities are described
under "Optional Facilities, " later in this
chapter.

DD STATEMENTS FOR THE STANDARD DATA
SETS

The compiler requires several standard data
sets, the number depending on the optional
facilities specified. You must define
these data sets in DD statements with the
standard ddnames which are shown, together
with other characteristics of the data
sets, in Figure 4-2. The DD statements
SYSIN, SYSUT1, and SYSPRINT are always
required.

You can store any of the standard data
sets on a direct-access device, in which
case, you must include the SPACE parameter
in the DD statement that defines the data
set to specify the amount of auxiliary
storage required. The amount of auxiliary
storage allocated in the IBM-supplied
cataloged procedures should suffice for
most arrlications.

Input (SYSIN, or SYSCIN)

Input tc the compiler must ke a data set
defined by a DD statement with the name
SYSIN or SYSCIN; this data set must have
CONSECUTIVE organizaticn. The input must
ke one cr more external EL/I procedures; if
you want to compile rcre thar cne external
procedure in a single jok or job step,
precede each procedure, excert rossikly the
first, with a PROCESS statement (described
under "Batched Compilaticn,®™ later in this
charpter).

Eighty-column punched cards are commonly
used as the input mediumr for PL/I scurce
programs. However, the input data set may
be on a direct-access device, magnetic
tape, or paper tape. The input data set
may contain either fixed-length reccrds,
blocked or unklocked, variakle-length
records, or undefined-length reccrds; the
maximum record size is 100 bytes. The
compiler always reserves 200 bytes cf main
storage (100 kytes each) for two buffers
for this data set; however, ycu mray srecify
a klock size of more than 10C bytes,
provided that sufficient main storage is
available to the compiler. (See the
discussion of the SIZE orticr under
"Orticnal Facilities,®™ later in this
chapter.)

Output_ (SYSLIN, SYSPUNCH)

Output (that is, one or more object
modules) from the conpiler can be stcred in
eithexr the data set defined Ly the DD
statement with the naxe SYSLIN (if ycu
specify the OBJECT compiler option) or in
the data set defined by the LT staterent
with the name SYSPUNCH (if you specify the
DECK compiler option). You nay specify
both ortions in one program, when the
output will be stored in both data sets.

The object module is always in the forr
of 80-byte fixed-length records, blocked or
unblocked. The compiler always reserves
two buffers of 80 bytes each; however, you
may specify a block size of more than 80
bytes, provided that sufficient main
storage is availakle to the compiler.
the discussion of the SIZE crtion under
"Opticnal Facilities," later in this
chapter.) The data set defired by the DD
staterent with the name SYSPUNCH is also
used to store the output frcn the
prreprccessox if you specify the MLECK
compiler option.

(see

Chapter 4: The Ccnmpiler 19

Tempcrary Workfile (SysuTil)

The compiler requires a data set for use as
a temporary workfile. It is defined by a
LD statement with the name SYSUT1, and is
known as the gpill file. It must be on a
direct-access device. The spill file is
used as a logical extension to main storage
and is used by the compiler and ky the
preprocessor to contain text and dictionary
information.

Four record sizes are given in Figure
4~2 for SYSUT1. For storage devices other
than the 3330, the first three sizes
correspond to the amount of storage
available to the compiler, as shown in
Figure 4-3.

Storage Record size
50-55K 1091
56-69K 1691
over 69K 3491
Figure 4-3. Record sizes for SYSUT1

A record size of 4051 is used cn the
3330.

Note that the DD statements given in
this publication and in the cataloged
procedures for SYSUT1 request a stace
allocation in klocks of 1024 bytes; this is
to ensure adequate secondary allccations cf
direct~access storage space are acquired.

Dedicated Data Sets: If a job keing run
under MVT has several jok steps, and each
job step requires a data set for use as a
terporary workfile, the result is a
considerable overhead in time and space.
To reduce this as far as possible, you can
use dedicated data sets. These are data
sets that are created by the operating
system when the job is selected for
processing. They can be used by each jcb
step that requires a temporary workfile.
Dedicated data sets are normally allocated
by the initiator and deleted when it
terminates. More information on using
dedicated data sets is given in Chapter 11.

Listing (SYSPRINT)

The compiler generates a listing that
includes all the source statements that it
processed, inforration relating to the
object module, and, when necessary,
messages. Most of the information included
in the listing is optional, and ycu can

20 0S PL/I Optimizing Compiler:

specify those rarts that ycu require by
including the arprorriate ccmnpiler crtions.
The infcrmation that may appear, and the
associated compiler orticns, are described
under "Compiler Listing," later in this
chapter.

You must define the data set in which
you wish the compiler to stcre its listing
in a D statement with the name SYSPRINT.
This data set must have CONSECUTIVE
organization. Although the listing is
usually printed, it can be stcred cn any
magnetic-tare or direct-access device. For
printed output, the fcllcwing staterment
will suffice if your installation follows
the convention that output class A refers
tc a rrinter:

//SYSPRINT DD SYSCUT=A

The ccmpiler always reserves 258 bytes
of main storage (129 bytes each) fcr two
buffers for this data set; hcwever, you may
specify a block size of more than 129
bytes, provided that sufficient main
storage is available to the compiler.
the discussion of the SIZE crticn urnder
"Orticnal Facilities," later in this
chapter.)

(See

Source Statement Likbrary (SYSLIE)

If you use the preprocessor %INCLULE
statement to introduce scurce statenments
into the PL/I program from a library, you
can either define the library in a DD
staterent with the name SYSLIB, or ycu can
chcose your own ddname (or ddnames) and
specify a ddname in each %INCLUDE
statement. (see "Ccrpile-time Prccessing,”
later in this chapter.)

EXAMPIE CF CCMFILER JCL

A typical sequence of jcb ccrtrcl
statemrents for compiling a FL/I program is
shown in Figure 4-4. The DECK and NCOBJECT
corpiler options, descriked kelow, have
been specified to obtain an cbject mcdule
as a card deck only. Jck ccrtrcel
statements for link editing an object
module in the form cf a card deck are shown
in Chapter 5.

Optional Facilities

The compiler provides a nurker cf crtional
facilities, Loth at compile time and at

Programmer's Guide

//COMP JOB

//STEP1 EXEC PGM=IELOAA, PARM='LDECK,NOOEJECT®
//SYSPUNCH DD SYSOUT=B

//8YSUT1 DD UNIT=SYSDA,SPACE= (1024, (60,60),,CONTIG)
//SYSPRINT DD SYSOUT=A

//SYSIN DD *

(insert here the PL/I program to ke compiledi

/*

Figure 4-4,

execution time. OQOptions that can be
specified at compile time are known as
corpiler options. Options. that can be
specified at execution time are known as
execution-time options.

Execution-time and compiler ortions,
their abbreviated forms, and their defaults
(as supplied by IBM) are shown in Figures
4-5 and 4-7. BAn installation can modify or
delete defaults according to local
requirements; check for any modified
defaults at your installation. Deleted
corpiler options can ke reinstated for a
compilation by means of the CONTRCL
corrpiler option.

| Also provided is the akility to pass an
|argument to the PL/I main procedure. This
|facility is described in the section
|"Specifying Execution-Time Opticns in the
|EXEC Statement," later in this charpter.

SPECIFYING COMPILER OPTIONS

For each compilation, the IBM or
installation default for a compiler option
will apply unless it is overridden by
specifying the option in a PROCESS
statement or in the PARM parameter of an
EXEC statement.

An option specified in the PARM
paraneter overrides the default value, and
an ortion specified in a PROCESS statement
overrides both that specified in the PARM
parameter and the default value.

wWhere conflicting attributes are
specified either explicitly or implicitly
by the specification of other options, the
latest implied or explicit option is
accepted. No diagnostic message is issued
to indicate that any options are overridden
in this way.

Typical job control statements for ccmpiling a FIL/I program

|Specifying Compiler Cptions in the EXEC

Statement

Tc srecify cptions in the EXEC statement,
code EARM= followed by the list cf crtions,
in any crder (except that CCNTROL, if used,
must be first) separating the crticns with
corpas and enclosing the list within single
guotation marks, for exangle:

//STEF1 EXEC FGM=IEIO2A, FARM='OBJECT,LIST'

Any crtion that bhas quotation marks, for
example NMARGINI(*‘c'), must have the
quctation marks duplicated. The length of
the crticn list must not exceed 256
characters, including the separating commas
(ncte that only the first 100 characters
are printed out on the listing). However,
many of the options have an akbreviated
forr that ycu can use to save space. If
you need to continue the statement cnto
ancther line, you must enclose the list of
options in parentheses (instead cf in
quotaticn marks) enclose the options list
on each line in gquotation marks, and ensure
that the last comma on each line except the
last is outside of the quctaticn marks. An
exanrple covering all the akove points is as
follows:

//STEF1 EXEC FGN=IELORA,EFARM=('AG,RA‘',

|77 ‘c,ESD,F(I),FLOW(1C,1) ",

// ‘M,MI(C'*X""),NEST,STG,X")

If ycu are using a cataloged procedure,
and wish to specify opticns exrlicitly, ycu
must include the PARM parameter in the EXEC
statement that invokes it, qualifying the
keywcrd PARNM with the name of the procedure
step that invokes the ccrpiler, fcr
exanrle:

//STEF1 EXEC FLIXCLG, FARM.PLI='A,LIST,ESD'

Chapter 4: The Compiler 21

|Specifying Compiler Ortions in the
PROCESS Statement

To specify options in the PROCESS
statement, code as follows:

* PROCESS options;

where "options®™ is a list of compiler
options. The list of options must be
terrinated with a semicolon and should not
extend beyond the default right-hand source
margin. The asterisk must appear in the
first byte of the record (card column 1),
and the keyword PROCESS may follcw in the
next byte (column) or after any numker of
blanks. Opticn keywords must be separated
by a comma ands/or at least one blank.

Blanks are permitted before and after
any non-blank delimiter in the list, with
the exception of strings within quotaticn
marks, for example MARGINI('*'), in which
optional blanks should not be inserted.

The number of characters is limited only
by the length of the record. If you dc nct
wish to specify any options, code:

* PROCESS;

Should it ke necessary to continue the
PROCESS statement onto the next card or
record, terminate the first part cf the
list after any delimiter, up to the default
right-hand margin, and continue cn the next
card or record. Option keywords or keyword
arguments may be split, if required, when
continuing onto the next record, provided
that the keyword or argument string
terminates in the right-hand source rargin,
and the remainder of the string starts in
column 1 of the next record. A PROCESS
statement may be continued in several
statements, or a new PRCCESS statement
started.

COMPILER OPTICNS

The compiler options are of the following
types:

1. Sinmple pairs of keywords: a positive
form (for example, NEST) that requests
a facility, and an alternative
negative form (for example, NONEST)
that rejects that facility.

2. Keywords that permit you to provide a
value~list that qualifies the opticn
(for example, NCCOMPILE(E)).

3. A combination of 1 and 2 akove.

22 0S PL/I Optimizing Compiler:

The fcllowing paragraphs describe the
options in alphabetic order. For those
options that specify that the compiler is
to list inforrmation, cnly a krief
description is included; the generated
listing is described under "Ccrpiler
Listing," later in this chapter.

Figure 4-5 lists all the compiler
options with their akbreviated forms and
their standard default values fcr katch
node, Cefaults under TSO are given in the
TSO User's Guide for this ccnriler.

AGGREGATE Option

The AGGREGATE ortion srecifies that the
conpiler is to include in the compiler
listing an aggregate length takle, giving
the lengths of all arrays and major
structures in the scurce rrcgrar.

ATTRIBUTES Cption

The ATTRIBUTES option specifies that the
compiler is to include in the ccrnpiler
listing a takle of source-program
identifiers and their attributes. If both
ATTRIBUTES and XREF arply, the two tables
are combined.

CHARSET Option

The CHARSET option specifies the characterxr
set and data code that you have used to
create the source prcgrar. The ccrpilerx
will accept source programs written in the
60-character set or the 48-character set,
and in the Extended Binary Coded Lecimal
Interchange Code (EBCDIC) cr Binary Coded
Decimal (BCD).

60- or 48-character sSet: If the source
program is written in the 6(C-character set,
specify CHARSET(60); if it is written in
the U8-character set, specify CHARSET(48).
The language reference ranual fcr this
cornpiler lists koth of these character
sets. (The compiler will accert scuzxce
programs written in either character set if
CHARSET (48) is specified, hcwever, if the
reserved keywords, for example, CAT or LE
are used as identifiers, errxcrs may cccur.)

BCD or EBCDIC: If the scurce rrcgranm is
written in BCD, specify CHARSET(BCL); if it
is written in EBCDIC, srecify

CHARSET (EBCDIC). The language reference
manual for this compiler lists the EBCDIC

Programmer 's Guide

Figure 4-5.

representation of both the 48-character set

s = - T = = =~ = - - " . - - ——— - —

- ———— - —— — = > - = - ——— - WS An - - —— e = -~ -~ —

AGGREGATE | NOAGGREGATE
ATTRIBUTES | NOATTRIBUTES
CHARSET ([48| 60] [EBCDIC|BCD]})
COMPILE | NOCOMPILE{ (W|E|S)]
CONTROL('password"')
COUNT | NOCOUNT
DECK | NODECK

DUMP | NODUMP

ESD | NOESD
FLAGL (I |W[E|S)]
FLOW[(n,m) } | NOFLOW
GONUMBER | NOGONUMBER
GOSTMT | NOGSTMT
IMPRECISE | NOIMPRECISE
INCLUDE|NOINCLUDE
INSOURCE | NOINSOURCE
LINECOUNT (n)

LISTI (n,m)] |NOLIST
LMESSAGE | SMESSAGE
MACRO | NOMACRO
MAP | NOMAP -
MARGINI ('c') | NOMARGINI
MARGINS (m,nl,cl)

MDECK | NOMDECK
NAME ('name")
NEST | NONEST
NUMBER | NONUMBER
OBJECT | NOOBJECT
OFF SET | NOOFFSET

OPTIMIZE (TIME|0|2) | NOOPTIMIZE

OPTIONS | NOOPTI ONS
SEQUENCE (m, n) | NOSEQUENCE

SIZE ([-lyyyyyyyyl [-1yyyyyK|MAX)

SOURCE | NOSOURCE
STMT | NOSTMT
STORAGE | NOSTORAGE
SYNTAX | NOSYNTAX[(W|E|S)]

TERMINALL (opt-1ist)]| NOTERMINAL

XREF | NOXREF

- — - — T - - — - - " - - — " —— - — - - - — - —— = -

Compiler options,

and the 60-character set.

b

C

If both arguments (48 or 60, EBCDIC or
BCD) are specified, they may be in any
order and should be separated by a blank or

y @ comma.

OMPILE Option

The COMPILE option specifies that the

AG| NAG

A|NA

cs ({48601 [EB|B])
CINC[(W|E|S)]

CT | NCT
D|ND
DU | NDU

FI(I|W|E|S)]

GN| NGN
GS | NGs
IMP | NIMP
INC|NINC
IS|NIS
LC(n)

LMSG| SMSG
M| NM

MI('c') |NMI
M2R (m,nl,cl)

MD|] NMD

N(' name')

NUM | NNUM

OBJ | NOBJ

OF | NOF

OPT (TIME|O|2) |[NOPT
OP| NOP

SEQ (m,n) |NSEQ

8Z ([-lyyyyyyyyl| [-1yyyyyK [MAX)

S|NS
STG | NSTG
SYN|NSYN[(W|E|S)]

TERM[(opt-1ist)] |NTERM

X | NX

NOAGGREGATE
NOATTRIBUTES
CHARSET (60 EBCDIC)
NOCOMPILE (S)

|
|
|
I
|
|
| NOCOUNT

| NODECK

' -

| NOEsSD

| FLAG(I)

| NOFLOW

| NOGONUMBER

| NOGOSTMT

| NOIMPRECISE
| NOINCLUDE

| INSOURCE

| LINECOUNT (55)
| NOLIST

| LMESSAGE

| NOMACRO

| NOMAP

| NOMARGINI

| MARGINS(2,72,0) or
| MARGINS(10,100,0)
| (see text)

| NOMDECK

I -

| NONEST

| NONUMBER

| OBJECT

| NOOFFSET

| NOOPTIMIZE

| OPTIONS

| NOSEQUENCE

| SIZE (MAX)

| SOURCE

| STMT

| NCSTCRAGE

| NOSYNTAX(S)
| NOTERMINAL

| NOXREF

abkreviations, and defaults in batch mcde

during preprocessing or syntax checking.

The NOCOMPILE ortion without an argument
causes processing toc stop unconditicnally

after syntax checking.

With an argument,

continuation depends on the severity of

exrors detected so far,

as follows:

NOCOMPILE (W) No compilaticn if a warning,

error, severe error, oOr
unrecoverable error is
detected.

NOCOMPILE(E) No compilation if error,

compiler is to compile the source program
unless an unrecoverable error was detected

severe errcr,
errxor is detected.

Chapter 4: <The Compiler 23

cr unreccverakle

NOCOMPILE (S) No compilation if a severe
error or unrecoverable error

is detected.

If the compilation is terminated by the
NOCOMPILE option, the cross-reference
listing and attribute listing may be
produced; the other listings that follow
the source program will not be produced.

CONTROL Option

The CONTROL option specifies that any
compiler options deleted for your
installation are to be available for this
compilation. You must still specify the
appropriate keywords to use the options.
The CONTROL option must be specified with a
password that is established for each
installation; use of an incorrect password
will cause processing to be terminated.

The CONTROL option, if used, must be
specified first in the list of options. It
has the format:

CONTROL(' pagswoxd"')

where "password" is a character string, not
exceeding eight characters.

COUNT Option

The COUNT option specifies that the

compi ler is to produce code to enable the
number of times each statement is executed
to be counted at execution time.

The COUNT option implies the GOSTMT
option if the STMT option applies, or the
GONUMBER option if the NUMBER option
applies.

DECK Option

The DECK option specifies that the compiler
is to produce an object module in the form
of 80-column card images and store it in
the data set defined by the DD statement
with the name SYSPUNCH. cColumns 73-76 of
each card contain a code to identify the
object module; this code comprises the
first four characters of the first label in
the external procedure represented by the
object module. Columns 77-80 contain a 4-
digit decimal number: the first card is
numbered 0001, the second 0002, and so on.

24 0S PL/I Optimizing Compiler:

DUMP Option

The DUMP option specifies that the ccmpiler
is to produce a formatted dump of main
storage if the compilaticn terminates
abnormally (usually due to an I/0 error or
compilexr error). This dump is written on
the data set associated with SYSPRINT.

ESD Option

The ESD option specifies that the external
symbol dictionary (ESD) is tc be listed in
the ccmpiler listing.

FLAG Option

The FLAG option specifies the minimum
severity of error that requires a message
to be listed in the compiler listing. The
format of the FLAG option is given in
Figure 4-6.

FLAG(TI) List all rmessages.

FLAG (W) List all excegt informatory
messages. If you specify
FLAG, FLAG(W) is assuned.

FLAG (E) List all excert warning and
informatory messages.

FLAG(S) List only severe error and

unrecoverable errcr
messages .

Figure 4-6. Format of the FLAG option

FLOW Option

The FLOW option specifies that the compiler
is to produce code to enable the flow of
control to be listed when the rrograr is
executed. The format of the FLOW option
is:

FLOWI(n,m)]

where "n" is the maxirur nunber cf
entries to ke included in the
lists. It should nct exceed
32768.

"m" is the maximum number of
procedures for which the lists

Programmer's Guide

are to be generated. It
should not exceed 32768.

The IBM default, if (n,m) is not
specified, is (25,10).

The output produced by the FLOW opticn

is described under "Execution-Time FLOW
Option" later in this chapter.

GONUMBER Option

The GONUMBER option specifies that the
compiler is to produce additional
informatiocn that will allow line numbers
from the source program to be included in
execution-time messages. Alternatively,
these line numbers can be derived by using
the offset address, which is always
included in execution-time messages, and
the table produced by the CFFSET cption.
(The NUMBER ortion must also apply.)

Use of the GONUMBER option implies
NUMBER, NOSTMT, and NOGOSTMT.

GOSTMT Option

The GOSTMT option specifies that the
compiler is to produce additional
information that will allow statement
numbers from the source program to ke
included in execution-time messages.
Alternatively, these statement numbers can
be derived by using the offset address,
which is always included in execution-time
messages, and the table produced by the
OFFSET option. (The STMT option must also
apply.)

Use of the GOSTMT, NOGONUMBER crtion
implies STMT and NONUMBER.

IMPRECISE Option

The IMPRECISE option specifies that the
compiler is to include extra text in the
object module to localize imprecise
interrupts when executing the program with
an IBM System/360 Model 91 or 195 (see
|Appendix D). This extra text is generated
|for ON statements (to ensure that if
|interrupts occur, the correct on-units will
|be entered), for null statements, and fcr
|ENTRY statements. The correct line or

| statement numbers will not necessarily
|appear in execution-time messages. If you
. |[need more accurate identification of the
|statement in error, insert null statements

lat suitakle points in ycur rrcgranm.

INCIUDE Cption

The INCLUDE ortion requests the compiler to
handle the inclusion cf PL/I scuxce
statements for programs that use the
%INCLUDE statement. Fcr prcgrans that use
the FINCLUDE statement kut no other PL/I
preprocessor statements, this methcd is
faster than using the prerrccesscr. If the
MACRO ortion is also specified, the INCLUDE
option has no effect.

INSQURCE Option

The INSOURCE option srecifies that the
corpiler is to include a listing of the
source program (including prerrccesscr
statements) in the compiler 1listing. This
option is applicable only when the
rreprocessor is used, therefcre the MACRO
option must also apply.

LINECOUNT Option

The LINECOUNT oprtion specifies the number
of lines to ke included in each page of the
compiler listing, including heading lines
and blank lines. The format of the
LINECOUNT option is:

LINECOUNT (n)

where "n" is the number c¢f lines. It
must be in the range 1 through
32767, but cnly headings are
generated if you specify less

than 7.

LIST Option

The LIST option specifies that the compiler
is to include a listing cf the object
module (in a form similar tc IBEM System/360
assermkler language instructions) in the
compiler listing. The fcrmat cf the list
option is:

LISTI(m[,n1)]

where "n" is the numker of the first source
statement for which an okject listing is
required and "n" is the numker of the last
source statement for which an object
listing is required. If "n" is omitted,

Chapter 4: The Compiler 25

If the
"n" rrust be

only statement "m" is listed.
option NUMBER applies, "m" and
specified as line numbers.

 LMESSAGE Option

The LMESSAGE and SMESSAGE options specify
that the compiler is to produce messages in
a long form (specify LMESSAGE) or in a
short form (specify SMESSAGE). Short
messages can have advantages in a TSO
environment due to the comparatively slow
printing speed of a terminal.

MACRO Option

The MACRO option specifies that the source
program is to be processed by the
preprocessor.

MAP Option

The MAP option specifies that the compiler
is to produce tables showing the
organization of the static storage for the
object module. These tables consist of a
static internal storage map and the static
external control sections. The MAP option
is normally used with the LIST option.

MARGINI Option

The MARGINI option specifies that the
compiler is to include a specified
character in the column preceding the left-
hand margin, and in the column following
the right-~-hand margin of the listings
resulting from the INSOURCE and SQURCE
options. Any text in the source input
which precedes the left-hand margin will be
shifted left one column, and any text that
follows the right-hand margin will be
shifted right one column. For variable-
length input records that do not extend as
far as the right-hand margin, the character
is inserted in the column following the end
of the record. Thus text outside the
source margins can be easily detected.

The MARGINI option has the format:
MARGINI('c"')

where "c" is the character to be printed
as the margin indicator.

26 0S PL/I Optimizing Compiler:

MARGINS Option

The MARGINS option specifies the extent of
the part of each input line cr record that
contains PL/I statements. The compiler
will not process data that is outside these
limits (kut it will include it in the
source listings).

The option can also specify the pesiticn
of an Arerican National Standard (ANS)
printer control character tc format the
listing produced if the SOURCE option
applies. This is an alternative tc using
%PAGE and %SKIFP statements (described in
the language reference ranual fcr this
compiler). If you do not use either
method, the input records will be listed
without any intervening blank lines. The
format of the MARGINS option is:

MARGINS (m,nl(,cl)
is the column number of the

left~-hand wargin. It should
| not exceed 100.

wheré "m"

is the column number of the
right-hand margin. ' It should
e greater than m, but not

| greater than 100.

is the colurn number of the
ANS printer control character.
| It should not exceed 100 and
should ke outside the values
specified for n and n. Only
the following control
characters can ke used:

“c'l

(blank) sSkip one line before printing.
0 Skip two lines before printing.
- Skip three lines befcre printing.
+ No skip before printing.
1 Start new page.

The standard IBM-suprlied default for
| fixed-1length records is MARGINS(2,72,0);
|that for variakle-length and undefined-
| length records is MARGINS (10,100,0). A
zero value for "c" specifies that there is
no printer control character. '

MDECK Option

The MDECK option specifies that the
preprocessor is to produce a copy of its
output (see MACRO option) and store it in
the data set defined ky the DD statement
with the name SYSPUNCH. The last fcur

Programmer's Guide

bytes of each record in SYSUT1 are not
copied, thus this option allows you to
retain the output from the preprocessor as
a deck of 80-column punched cards.

NAME Option

The NAME option specifies that the compiler
is to place a linkage editor NAME statement
as the last statement of the object module.
When processed by the linkage editor, this
NAME statement indicates that primary input
is complete and causes the specified name
to be assigned to the load module created
from the preceding input (since the last
NAME statement).

It is required if you want the linkage
editor to create more than one load module
from the object modules produced by batched
compilation (see later in this chapter).

If you do not use this option, the
linkage editor will use the member name
specified in the DD statement defining the
load module data set. You can also use the
NAME option to cause the linkage editor to
substitute a new load module for an
existing load module with the same name in
the library. The format of the NAME option
is:

NAME ("name"')

where "name" has from one through eight
characters, and begins with an
alphabetic character. The
linkage editor NAME statement
is described in Chapter 5.

NEST Option

The NEST option specifies that the listing
resulting from the SOURCE option will
indicate, for each statement, the block
level and the do-group level,

NUMBER Option

The NUMBER option specifies that the
numbers specified in the sequence fields in
the source input records are to be used to
derive the statement numbers in the
listings resulting from the AGGREGATE,
ATTRIBUTES, LIST, OFFSET, SOURCE and XREF
options.

If NONUMBER is specified, STMT and
NOGONUMBER are implied. NUMBER is implied

by NOSTMT or GCNUMBER.

The position of the sequence field can
be specified in the SEQUENCE option.
Alternatively the following default
positions are assumed:

e First 8 columns for undefined-length or
variakle-length source ingut reccrds.
In this case, 8 is added to the values
used in the MARGINS ogticn.

¢ TLast 8 columns for fixed-length scurce
input records.

These defaults are the positions used
for line-numbers generated by TSO; thus it
is not necessary to specify the SEQUENCE
option, or change the MARGINS defaults,
when using line numbers generated by TSO.
Note that the preprocesscr cutrut has
fixed-length records irrespective of the
original primary input. Any sequence
numbers in the primary input are
repositioned in columns 73-80.

The line number is calculated frcr the
five right-hand characters of the sequence
number (or the number specified, if less
than five). These characters are converted
to decimal digits if necessary. Each time
|a sequence numker is found that is not
|greater than the preceding line number, a
|new line numker is formed by adding the
|minimum integral multiple of 100,000
| necessary to produce a line number that is
|greater than the preceding one. If the
|sequence field consists only of blanks, the
|new line numker is formed by adding 10 to
|the preceding one. The maximum line number
| pexmitted by the compiler is 134,000,000;
| numbers that would normally exceed this are
|set to this maximum value. Only eight
|digits are printed in the source listing;
| 1ine numkers of 100, 000,000 or over will be
|printed without the leading "1" digit.

If there is more than one statement on a
line, a suffix is used to identify the
actuval statement in the messages. ¥or
example, the second statement beginning on
the line numbered 40 will be identified by
the numker 40.2. The maximum value for
this suffix is 31. Thus the thirty-first
and subsequent statements on a line have
the same number.

OBJECT Option

The OBJECT option specifies that the
compiler is to store the object module that
it creates in the data set defined Ly the
DD statement with the name SYSLIN.

Chapte? 4: <The Conrpiler 27

OFFSET Option

The OFFSET option specifies that the
compiler is to print a takle of statement
or line numbers for each procedure with
their offset addresses relative to the
primary entry point of the procedure. This
information is of use in identifying the
statement being executed when an error
occurs and a listing of the object module
(obtained by using the LIST option) is
available. If GOSTMT applies, statement
numbers, as well as offset addresses, will
be included in execution-time messages. If
GONUMBER applies, line numbers, as well as
offset addresses, will be included in
execution-time messages.

A method of determining statement or
line numbers from the offsets given in
exror messages is given under the heading
"Statement Offset Addresses" later in this
chapter.

OPTIMIZE Option

The OPTIMIZE option specifies the type of
optimization required:

NOOPTIMI ZE specifies fast compilation
speed, but inhibits
optimization for faster
execution and reduced main
storage requirements.

OPTIMIZE
(TIME)

specifies that the

compiler is to optimize the
machine instructions
generated to produce a very
efficient object program. A
secondary effect of this
type of optimization can be
a reduction in the amount of
main storage required for
the object module. The use
of OPTIMIZE(TIME) could
result in a substantial
increase in compile time
over NOOPTIMIZE.

OPTIMIZE (0) is the equivalent of
NOOPTIMIZE.
OPIIMIZE(2) is the equivalent of
OPTIMIZE (TIME) .

The language reference manual for this

compiler includes a full discussion of
optimization.

28 0S PL/I Optimizing Compiler:

OPTIONS Option

The OPTIONS option specifies that the
compiler is to include in the ccmriler
listing, a list showing the compiler
options, to be used during this
compilation. This list includes all those
applied by default, those sgecified in the
PARM parameter of an EXEC statement, and
those specified in a PROCESS statement.

SEQUENCE Option

The SEQUENCE option specifies the extent of
the part of each input line or record that
contains a sequence number. This number is
included in the source listings produced by
the INSOURCE and SOURCE opticn. Alsc, if
the NUMBER option applies, line numbers
will be derived from these sequence numbers
and will be included in the scurce listings
in place of statement numbers. No attempt
is made to sort the input lires or records
into the specified sequence. The SEQUENCE
option has the format:

SEQUENCE (m, n)

where "m" specifies the column number of
the left-hand margin.

"n" specifies the cclumn number of
the right-hand margin.

The extent specified should not overlap
with the source prograr (as specified in
the MARGINS option).

SIZE Option

This option can be used to limit the amount
of main storage used ky the compiler. This
is of value, for example, when dynanically
invoking the compiler, to ensure that space
is left for other purroses. The SIZE
|option can ke expressed in five forms:

SIZE (yyyyyyyy) specifies that yyyyyyyy
bytes of main storage are
to be requested. Leading
zeros are not reguired.

SIZE(yyyyykK) specifies that yyyyyK bytes

of main storage are to be
requested (1K=1024).
Leading zercs are nct
required.

specifies that the ccmpiler
is to oktain as much main
| storage as it can, and then

ESIZE(-yyyyyy)

Programmer's Guide

release yyyyyy bytes to the

operating system. Leading

zeros are not required.
SIZE (-yyyK) specifies that the compiler
is to obtain as much main
storage as it can, and then
release yyyK bytes to the
operating system (1K=1024).
Leading zeros are not
required.

SIZE (MAX) specifies that the compiler
is to obtain as much main

storage as it can.

The IBM default, and the most usual
value to be used, is SIZE (MAX), which
permits the compiler to use as much main
storage in the partition or region as it
can.

When a limit is specified, the arount of
main storage used by the compiler depends
on how the operating system has been
generated, and the method used for storage
allocation. The compiler assumes that
buffers, data management routines, and
processing phases take up a fixed amount of
main storage, but this amount can vary
unknown to the compiler.

| The negative forms can be useful when a
|certain amount of space must be left free
|and the maximum size is unknown, or can
|vary because the job is run in regions of
|different sizes.

Under MFT the compiler will operate in a
partition of 50K bytes or more of main
storage, using its default values for file
specifications. Under MVT a region of 52K
bytes or more is required.

After the compiler has loaded its
initial phases and opened all files, it
attempts to allocate space for working
storage.

If SIZE(MAX) is specified it oktains all
space remaining in the region or partition
(after allowance for subsequent data
management storage areas). If a limit is
specified then this amount is requested.
If the amount available is less than
specified, but is more than the minimum
workspace required, compilation proceeds.
If insufficient storage is available,
compi lation is terminated. This latter
situation should arise only if the region
or partition is too small, that is, less
than 50K, or if too much space for buffers
has been requested. The value cannot
exceed the main storage available for the
job step and cannot be changed after
processing has begun.

This means, that in a batched

compilation, the value estaklished when the
compiler is invoked cannot ke changed for
later programs in the katch. Thus it is
ignored if specified in a PROCESS
statement.

In a TSO environment, an additional 10K
to 30K kytes must be allowed for TSO. The
actual size required for TSO depends on
which routines are placed in the link-pack
area (a common main storage pool available
to all regions).

SMESSAGE Option

See LMESSAGE option.

SOURCE Option

The SOURCE option specifies that the
compiler is to include in the comriler
listing a listing of the source program.
The source program listed is either the
original source input or, if the MACRO
option applies, the ocutrut from the
Freprocessor.

STMT Option

The STMT option specifies that statements
in the source progranr are to be counted,
and that this "statement nurker" is used tc
identify statements in the compiler
listings resulting from the AGGREGATE,
ATTRIBUTES, LIST, OFFSET, SOURCE, and XREF
options. STMT is implied by NONUMBER or
GOSTMT. If NCSTMT is specified, NUMBER and
NOGOSTMT are implied.

STORAGE Option

The STORAGE option specifies that the
compiler is to include in the ccrmpiler
listing a takle giving the main storage
requirements for the object ncdule.

SYNTAX Option

The SYNTAX option specifies that the
conpiler is to continue into syntax
checking after initializaticn (or after
preprocessing if the MACRO ortion agplies)
unless an unrecoverable error is detected.

Chapter 4: The Ccrnpilex 29

The NOSYNTAX option without an argument
causes processing to stop unconditicnally
after initialization (or preprocessing).
With an argument, continuation derends cn
the severity of errors detected so far, as
follows:
NOSYNTAX (W) No syntax checking if a
warning, error, severe
error, or unrecoverable
error is detected.
NOSYNTAX (E) No syntax checking if an
error, severe error, or
unrecoverakle error is
detected.
NOSYNTAX(S) No syntax checking if a
severe error or
unrecoverable errcr is
detected.

If the SOURCE option applies, the compiler
will generate a source listing even if
syntax checking is not performed.

If the compilation is terminated by the
NOSYNTAX option, the cross-reference
listing, attribute listing, and other
listings that fcllow the source program
will not be produced.

The use of this option can prevent

wasted runs when debugging a PL/I program
that uses the prerrocessor.

TERMINAL Option

The TERMINAL coption is applicakle only in a
TSO environment. It specifies that some cr
all of the compiler listing produced during
compilation is to be printed at the
terrinal., If TERMINAL is specified without
an argument, diagnostic and informratory
messages are printed at the terminal. You
can add an argument, which takes the form
of an option list, to specify other parts
of the compiler listing that are to be
printed at the terminal.

The listing at the terminal is
independent of that written on SYSPRINT.
However, if SYSPRINT is associated with the
terminal, only one copy of each option
requested will be printed even if it is
requested in the TERMINAL option and also
as an independent option. The following
ortion keywords, their negative forms, or
their abbreviated forms, can be specified
in the option list:

AGGREGATE, ATTRIBUTES, ESD, INSOURCE,

LIsT, MAP, OPTICNS, SOURCE, STORAGE,
and XREF.

30 0S PL/I Optimizing Compiler:

The other options that relate tc the
listing (that is, FLAG, GONUMBER, GOSTMT,
LINECCUNT, INMESSAGE/SMESSAGE, MARGINI,
NEST, and NUMBER) will ke the same as for
the SYSPRINT listing.

XREF _Cption

The XREF option specifies that the compiler
is to include in the ccerrilexr listing a
list cf all identifiers used in the PL/I
program together with the nunbers cf the
statements in which they are declared or
referenced. Note that label references on
END statements are not included, reference
lists for structures may be inccrrlete, and
arrays cf structures are always listed with
bounds of (*). If bcth ATTRIRUTES and XREF
arrly., the two takles are comkined.

SPECIFYING EXECUTION-TIME OFTIONS

For each execution, the IBM or installation
default for an executicn-tine crticn will
aprly unless it is overridden by a PIIXOPT
string in the source rrcgram cr by the PARM
parareter of the EXEC statement for the
execution ster.

An ortion specified in the PLIXOPT
string cverrides the default value, and an
option specified in the FARM rararmeter
overrides that specified in the PLIXCPT
string.

|Specifying Execution-Time Ofpticns in
the PLIXOPT String

Execution-time options can ke srecified in
a source prcgram by means of the following
declaration:

DCL PLIXOPT CHAR (len) VAR INIT('strg"')
STATIC EXTERNAL;

where "strg" is a list of options
separated by conras, and "ler" is a
| constant equal to or greatex than the
length cf "strg".

If more than one external procedure in a
job declares FLIXOPT as STATIC EXTERMNAL,
only the first string will ke link-edited
and available at executicn tire.

The EFLIXCPFT string is igncred in a
Checkout Compiler/Optimizing Compiler
mixture environment.

Prcgrarmmer's Guide

|Sspecifying Execution-Time Options in
the EXEC Statement

The method of coding the PARM parameter in
an EXEC statement is given under the
heading "Specifying Compiler Options in the
EXEC Statement" earlier in this chapter.

If you are using a cataloged procedure,
you must qualify the keyword PARM with the
name of the execution step; for example:

//STEP EXEC PLIXCIG,PARM.GO=('ISA(10K)',
/7 REPORT)

| You can also use the PARM field to pass
|an argument to the PL/I main procedure. To
|do so, place the argument, preceded by a
|slash, after the execution-time options.
|For example:

|

| 77/GO EXEC PGM=OPT,PARM='ISASIZE (10K),

j77 REPORT/ARGUMENT'

|

| If you wish to pass an argument without
|specifying options, it must be preceded by
Ja slash. For example:

I
| 7760 EXEC PGM=0PT,PARM='/ARGUMENT'

EXECUTION-TIME OPTIONS

| The following paragraphs describe the
|execution-time options, which can be
|specified in the EXEC statement or in the
|PLIXOPT string.

COUNT specifies that a count is to be
kept of the number of times each
statement in the program is
executed and that the results are
to be printed when the program
terminates. This option is
discussed in greater detail under
the heading "Execution-T ime COUNT
Option"™ later in this chapter.

specifies that statement counting
is not to be performed.

NOCOUNT

FLOWI(n,m)] specifies that a list of the
most recent transfers of control
in the execution of the program is
to be generated. This ortion is
discussed in greater detail under
the heading "Execution-Time FLOW
Option" later in this chapter.

NOFLOW specifies that a flow list is not
to be produced. .
ISASIZE specifies the amount of main

storage initially acquired by the
PL/I program at execution time.

This storage is kncwn as the
initial storage area (ISA). The
option has the format:

’ L py 0
ISASIZE({x)[,yl(,2z)) [='i "

where "x" is the initial stcrage
allocation for the major task,

where "y" is the initial storage
allocation for each subtask within
the total storage available to the
compiler. This value can ke used
in a multitasking program to
prevent a new storage reguest
(with its accompanying time
overhead) each time a block is
entered during the execution of
the suktasks. If you specify
enough storage for a whole
suktask, these additional reguests
are not made,

and where "z" is the maximum
nunker of suktasks that will be
active at any one time.

All storage values must be in
bytes or K bytes., If "x" is
olnitted and "y" or "z" is
specified, or if "y" is omitted
and "z" is specified, then the
separating commas must be used to
indicate that a value is missing.

If the multitasking arguments ("y"
and "z") are specified for a
program that was linkedited
without the multitasking library,
they will ke ignored, and a
diagnostic message will be issued.

The ISA is used for the dynamic
allocation of the main storage
required by PL/I blccks as they
are entered, and by controlled and
based variables as they are
allocated. 1If the ISA is large
enough to contain these blccks
PL/I storage handling will not
acquire any more stcrage frcm the
system.

If ISASIZE is not specified, then
in a non-multitasking envircnrent
the IBN default value is
calculated as fcllcws:

(m - n)/2

where "n" is the regicn size for
the GC step, and "n" is the load
module length. This value is
rounded up to a 2K koundary. 1In a
multitasking environment, the
default is 8K bytes for the major
task and 8K Lkytes for each
subtask. The default value for

Chapter 4: The Ccnpilex 31

REPORT

32 0S PL/I Optimizing Compiler:

the maximum number of active
subtasks is 20.

Note that if an initial storage
allocation is too large, that is,
most variables in STATIC and few
controlled and based allocations,
there will be a considerable
amount of wasted main storage in
the ISA. In some cases this may
cause the program to terminate
abnormally, because there is
insufficient storage availakle for
dynamically-loaded rodules and fcr
data areas required by the
operating system.

If the initial storage allocation
is too small, then dynamic main
storage requirements will be less
efficiently met ky individual
requests to the system.
Furthermore, the defaults may not
appear in the storage rerort given
by the REPORT option. If a
default ISASIZE is used initially
and proves to ke too small, then
the ISASIZE finally used, which
arpears in the whichappeare—ia
<gre- report, may be less than the
default. For instance in a
multitasking environment. the major
task's ISASIZE will default to 8K
bytes. If this task has an
AUTOMATIC character string
variable of say 20K bytes the ISA
will be too small. Certain
control blocks are placed first in
the ISA and occupy about 1K bytes
of it. The DSA, which will ke
greater than 20K because it
includes storage for automatic
variables, is then allocated.
Since there is no room for it in
the ISA, more storage is made
available from the remainder of
the region. However to avoid
wastage of storage the unused rart
of the ISA is freed beforehand.
Thus the length of the initial
storage allocation will ke
approximately 1K bytes and this
length will be printed in the
report.

The execution-time opticn REPORT
is available to enable the
programmer to determine exactly
what his storage requirements are,
apart from I/C requirements.

specifies that a report of certain
program management activity is to
be printed. The report will be
automatically output to a data set
with the ddname PLIDUMP cr PL1DUMP
on program termination. This
includes, for example, the amount

of storage that was srecified in
the ISASIZE option, the length of
the initial stcrage area, and the
amount of PL/I storage required.
This option may be abbreviated tc
R. The use of the report is
described in "Executicn-tire
Storage Requirements®, below.

NOREPORT specifies that a report is not
required. This cpticn ray ke
akkreviated to NR.

STAE specifies that when an ABENL

occurs, the PL/I likrary rcutines

are to attempt to raise the ERROR

condition or tc¢ prcduce a

diagnostic message and a PLIDUMP.

NOSTAE specifies that on program

initializaticn, a STAE macrc

instruction is not to be issued.

SPIE specifies that when a program

interrupt occurs, the PL/I error

handler is to ke invoked. Under
certain circunstances the ERROR
condition will ke raised.

NOSPIE specifies that on program

initializaticn, a SPIE rackc

instruction is not to be issued.

This option must nct be used if

extended precision variables are

used in the PL/I scurce prcgram.

The execution-time crticns are discussed
in greater detail in the puklication QOS
PL/I Optimizing Compiler: Executicrn Logic.

Execution-time Storage Requirenments

At execution time there are three serarate
areas of main storage.

The first area is the load module. Its
length can be obtained frcr the linkage
editor cutput listing.

The second area is the initial storage
area (ISA). Its length can ke specified Ly
the ISASIZE execution-time option or
supplied by default., If sugrlied by
default in a non-multitasking environment,
it will be approximately half cf the main
storage availakle after the load module has
been loaded. 1In a multitasking
environment, it will ke 8K Lytes for the
major task and 8K bytes for each sulktask.
The ISA will include:

¢ Dynamic klock requirements. These
lengths can be obtained frcr the takle
prcduced ky the STORAGE compiler option.

Programmer's Guide

e Variable data areas, that is, varying-
length strings and arrays, whose bounds
or dimensions are not known at compile
time. The programmer must calculate
these lengths himself.

e Controlled and based variables. These

lengths should be known to the

programmer.

The third area consists of the remainder
of main storage. It is retained ky the
system and is made available on specific
main storage requests for overflow from the
IsA and for I/0 requirements, that is, file
control blocks, buffers, system I/0 modules
and also for PL/I transient library modules
(that is, storage overflow, program
initialization, and I/0 transmission
modules).

The storage requirements in this third
area can be calculated only with
difficulty. The simplest way is to use the
Storage Management Facilities (SMF) as
described in the publication 0S
Introduction to determine the total main
storage requirements for the job. This
figure is only meaningful if an accurate
figure for the ISA has been supplied.

The length of the ISA can greatly affect
the performance of the program. If it is
too large there will be wasted storage in
the ISA which might result in insufficient
main storage being available for I/0
requirements and transient library modules
requirements.

If it is too small then dynamic main
storage requirements will be met by
specific requests to the system (that is,
from the third area of main storage)
resulting in slow execution. The
programmer's total ISA requirements can be
determined either by calculation or by
using the REPORT execution-time orption.

This can most easily be done in one of
two ways:

1. If sufficient main storage is
available, specify an ISASIZE larger
than will be required. The report
will then give the amount of this ISA
used and this figure will be the
optimum ISASIZE.

2. If there is a shortage of main storage
specify an ISASIZE of 1, which will
ensure that the program will run if at
all possible and the report will still
give the amount of main storage which
should be allocated to the ISA.

Note that for optimum efficiency, the
ISA should contain all dynamic main storage
requirements. If however, certain blocks

are entered only occasicnally, cr
controlled or kased variakles allocated
only briefly, these variables could well ke
permitted to remain outside the ISA. So
long as these allocations dc¢ nct clash with
a larger I/C requirement the program may
run in a smaller main storage area.

Execution-Time COUNT Ortion

Statement count inforrmation can be cktained
at execution time only if one of the
compiler options COUNT or FLOW was
specified at compile time (see "Compiler
Options" earlier in this chagter.) If FLOW
but not COUNT was specified at compile
time, COUNT must be specified at execution
to obtain count information. If COUNT was
specified at compile time, count
information will be produced unless NOCOUNT
is specified at execution time.

| count information can be produced only

| when a statement numker table exists. If

| COUNT is specified at compile time, a table
|is automatically produced. If only FLOW is
|specified at compile time, and COUNT is
|specified at execution time, then to obtain
|count information, GOSTMT or GONUMBER must
l]also be specified at compile time.

.Ccount output is written cn the PLIDUMP
file, or on the SYSPRINT file if no dump
file is provided. The output has the
following format:

PROCEDURE namel

FROM TO COUNT

1 20 1

21 30 10

200 210 1
PROCEDURE name2

FROM TO COUNT

1 10 5

Three such columns are printed per rage.

To draw attention to statements that
have not been executed, ranges for which
the count is zero are listed separately
.after the main tables.

The count takles are printed when the
program terminates. If a prccedure is
invoked with one of the multitasking
options, the count table for the invocation
is printed when the task terminates.

Chapter 4: The Compiler 33

| If an invocation is terminated as a
|result of the termination of another task,
|]its count table cannot be printed, because
|it is impossible to determine the roint at
|which it terminated. In these
|circumstances, only the count table for the
|first task to terminate can be rprinted.
|For example, although a STOP statement will
jcause all tasks to be terminated, only the
|count table for the task containing the
|statement will be printed.

Execution-Time FLCW QOption

Flow information can be obtained at
execution time only if one of the compiler
options COUNT or FLOW was specified at
conpile time (see "Compiler Options"
earlier in this chapter.) If FLCW was not
specified at compile time, it must be
specified at execution time to oktain flow
information. If FLOW was specified at
corpile time, flow information will ke
produced unless NCFLOW is specified at
execution time.

The format of the execution-time FLOW
option is the same as that of the compile-
time FLOW option, that is:

FLOWI (n,m)]

| If "n" and "m" are not specified at
lexecution time, the values taken are as
|follows:

|e If FLOW was specified or defaulted at
compile time, the values of "n" and "m"
specified or defaulted at compile time
are taken.

¢ If NOFLOW was specified or defaulted at
compile time, the IBM default values,
(25,10), are taken.

Flow output is written on the SYSPRINT
file whenever an on-unit with the SNAP
ortion is executed. It is also included as
part of PLIDUMP output if "T" is included
in the dump ortions string.

The format of each line of flow output
is:

snl TO sn2 [IN namel

where snl is the number of the
statement from which the
branch was made (the
branch out point).
sn2 is the number of the

statement to which the
branch was made (the
branch in point).

34 0S PL/I Optimizing Compiler:

is the name of the
procedure cr the tyre of
the on-unit that contains
"sn2" if this is different
from that containing
"snl".

name

The kranches are listed in the order in
which they occur. The last "n" branch-
in/kranch-out points and the last "m"
prccedures or on-units are listed. If more
than "m" procedures or on-units are entered
in the course of "n" branches, changes
prior tc the last "m" procedures or on-
units are indicated by printing “UNKNOWN"
for "name".

Compiler Listing

During compilation, the ccrpiler generates
a listing, most of which is optional, that
contains inforration about the scurce
prcgram, the compilation, and the object
module. It places this listing in the data
set defined Ly the DD statement with the
name, SYSFRINT (usually cutput tc a
printer). In a TSO environment, you can
also request a listing at ycur terminal
(using the TERNMINAL option). The following
description of the listing refers tc its
appearance on a printed page.

An example of the listing produced for a
tyrical PL/I program is given in appendix

Figure 4-7 specifies the components that
can ke included in the compiler listing,
and the crder in which they appear. The
rest of this section then describes these
in detail.

Of ccurse, if compilation terminates
before reaching a particular stage cf
processing, the corresponding listings will
not appear.

System informaticn will arrear kefore
and after the listings for each job step if
these items use the same cutrut class as
the processing programs. The output class
for system information is specified in the
MSGCLASS parameter of the JOB statement.
The level of informaticn prcduced is
specified in the MSGLEVEL parameter.

The listing comprises a small amount of
standard information that always arrears,
together with those items of opticnal
information specified or supplied by
default. The listing at the terminal
contains only the optional information that
has been requested in the TERMINAL crtion.

Programmer 's Guide

——— - ——— -~ — - = - > -

r
|

|

| Options used for the compilation
| Preprocessor input

| Source program

| Statement nesting level

| Attribute table

| Cross-reference table

| Aggregate length table

| Storage requirements

| statement offset addresses

| External symbol dictionary

| Static internal storage map

| Object listing

| Messages

L

. - - - - - = - - = = ———

Figure 4-7.

HEADING INFORMATION

The first page of the listing is identified
by the name of the compiler, the corpiler
version number, the time compilation
commenced (if the system has the timer
feature), and the date; this page, and
subsequent pages are numbered.

The listing either ends with a statement
that no errors or warning conditions were
detected during the compilation, cr with
one or more messages. The format of the
messages is described under "Messages,"
later in this chapter. If the machine has
the timer feature, the listing also ends
with a statement of the CPU time taken for
the compilation and the elapsed time during
the compilation; these times will differ
only in a multiprogramming environmnent.

The following paragraphs descrike the
optional parts of the listing in the order
in which they appear.

OPTIONS USED FOR THE CCOMPILATION

If the option CPTIONS applies, a complete
list of the ortions used for the
compilation, including the default options,
appears on the first page.

PREPROCESSOR INPUT

If both the options MACRO and INSCURCE
apply, the input to the preprocessor is
listed, one record per line, each line

- > - — - - - —— = - - " -

1
|
[
I [
| OPTIONS |
| MACRO and INSOURCE |
| SOURCE I
| NEST I
| ATTRIBUTES 1
| XREF |
| AGGREGATE I
| STORAGE |
| SOURCE, OFFSET, NOSTMT l
| ESD |
| Map I
| LIST |
| FLAG |

3

Compiler listings and associated options

numbered sequentially at the left.

If the preprocessor detects an error, or
the possibility of an errcr, it prints a
message on the page or pages following the
input listing. The fcrmat cf these
messages is exactly as described for the
compiler messages described under
"Messages," later in this chapter.

SOURCE FROGRAM

If the option SCURCE arrplies, the irnrut to
the cocmpiler is listed, one record per
line; if the input records ccntain rrinter
contrecl characters or %SKIP oxr %PAGE
statements, the lines will ke sraced
accordingly.

If the option NUMBER arplies, and the
souxce rrogram contains line numbers, these
numbers are printed tc the left cf each
line.

If the ortion STMT applies, the
statements in the source rrcgram are
nunkered sequentially ky the compiler, and
the number of the first statement in the
line arpears to the left of each line in
which a statement begins. When an END
statement closes more than one group or
block, all the implied END statements are
included in the count. For example:

Chapter 4: The Compiler 35

1 P: PROC;

2 X: BEGIN;

3 IF A=B

THEN A=1;

4 EILSE DO;

5 A=0;
6 C=B;
7 END X;

9 D=E;
10 END;

If the source statements are generated by
the preprocessor, columns 73-80 contain
diagnostic information, as shown in Figure
4-8.

Column Information

73-77 Input line number from which
the source statement is
generated. This number
corresponds to the line number
in the preprocessor input
listing.

78,79 Two-digit number giving the
maximum depth of replacement by
the preprocessor for this line.
If no replacement occurs, the
columns are blank.

80 "E" signifying that an error
has occurred while replacement
is being attempted. If no
error has occurred, the column
is blank.

Contents of columns 73 to
80 of source statements

Figure 4-8.

STATEMENT NESTING LEVEL

If the option NEST applies, the block level
and the do-level are printed to the right
of the statement or line number under the
headings LEV and NT respectively, for
example:

STMT LEV NT
1 0 A: PROC OPTIONS(MAIN);
2 1 0 B:PROC(L) ;
3 2 0 DO I=1 to 10;
q 2 1 DO J=1 TO 10;
5 2 2 X(1,J)=N;
6 2 2 END;
7 2 1 BEGIN;
8 3 1 X=Y;
9 3 1 END;
10 2 1 END B;
11 1 0 END A;

36 O0S PL/I Optimizing Compiler:

ATTRIBUTE AND CROSS-REFERENCE TABLE

If the option ATTRIBUTES arglies, the
compiler prints an attrikute table
containing a list of the identifiers in the
source rrogram together with their declared
and default attributes. In this context,
the attributes include any relevant
options, such as REFER, and alsc
descriptive comments, such as:

/ *STRUCTURE */

If the ortion XREF applies, the compiler
prints a cross-reference takle ccntaining a
list of the identifiers in the source
program together with the nunbers cf the
statemrents or lines in which they agrear.
If both ATTRIBUTES and XREF apply, the two
tables are combined.

Attribute Table

If an jidentifier is declared explicitly,
the numker of the DECLARE statement is
listed. An undeclared variakle is
indicated by asterisks. The statement
numbers of statement labels and entry
labels are also given.

The attributes INTERNAL and REAL are
never included; they can be assumed unless
the resrective conflicting attributes,
EXTERNAL and COMPLEX, arpear.

For a file identifier, the attrikute
FILE always appears, and the attribute
EXTERNAL appears if it agplies; otherwise,
only explicitly declared attributes are
listed.

For an array, the dimension attribute is
printed first; the bounds are rrinted as in
the array declaration, kut exrressicns are
replaced by asterisks and structure levels
other than base elements have their kounds
replaced by asterisks.

For a character string or a bit string,
the length, preceded by the wcrd BIT or
CHARACTER, is printed as in the
declaration, but an expressicn is rerlaced
by an asterisk.

Cross-reference Table

If the cross-reference takle is combined
with the attribute table, the numbers of
the statements or lines in which an
jdentifier arpears follow the list of
attributes for the identifier. The number

Programmer's Guide

of a statement in which an implicitly-
pointer qualified based variable appears
will be included not only in the list of
statement numbers for that variakle, but
also in the list of statement numbers for
the pointer associated with it implicitly.

| If a based variable is referenced
|without explicit pointer qualification, a
|reference to the implicit pointer used will
|be included in the cross-reference listing.

Note that an END statement that refers
to a label does not have its statement
number listed in the entry for the label.

ldentifiers that are initialized during
execution of prologue code on entry to a
block will have the PROCEDURE or RBEGIN
statement number included in the list of
statement numbers. For example, automatic
variables with the INITIAL attribute in a
single-block program will have a reference
to statement number 1 in the cross-
reference table.)

The order in which the statement numbers
appear for a particular identifier is
subject to any reordering of blocks that
has occurred during compilation. 1In
general, the statement numbers for the
outermost block are given first, followed

on the next line by the statement numbers
for the inner blocks.

| The PL/I text is expanded to a certain
|extent before the cross-reference list is
|produced. Consequently, an identifier
|within a statement may acquire multiple
|references to the same statement number.
|Common examples are the use of do-groups
|and statements involving aggregates.

AGGREGATE LENGTH TABLE

An aggregate length takle is obtained by
using the AGGREGATE option. The takle
shows how each aggregate in the program is
mapped. It contains the following
information:

e The statement number in which
aggregate is declared.

the
» The name of the aggregate and the
element within the aggregate.

e The level number of each item in a
structure.

e The number of dimensions in an array.
e The byte offset of each element from the

beginning of the aggregate. (The bit
offset for unaligned bit-string data is

not given).
e The length of each element.

e The total length of each aggregate,
structure and sub-structure.

If there is padding ketween twc
|structure elements, a /*PADDING*/ comment
| appears, with appropriate diagnostic
|information.

The table is completed with the sum of the
lengths of all aggregates that do not
contain adjustakle elements.

The statement or line numker identifies
either the DECLARE statement for the
aggregate, or, for a controlled aggregate,
an ALLOCATE statement fcr the aggregate.

An entry appears for each ALLOCATE
statement involving a controlled aggregate,
as such statements can have the effect of
changing the length of the aggregate during
execution., Allocation cf a kased aggregate
does not have this effect, and only one
entry, which is that corresgcnding tc the
DECLARE statement, appears.

The length of an aggregate may not be
known during compilaticn, either because
the aggregate contains elements having
adjustable lengths or dimensicns, cr
because the aggregate is dynamically
defined. In these cases, the wcrd
"adjustakle" or "defined" appears in the
"length in kytes" column.

An entry for a COBOL mapped structure,
that is, for a structure into which a COBOL
record is read or from which a COBOL record
is written, or for a structure passed to or
from a COBOL program, has the word "COBOL"
appended. Such an entry will arpear only
if the ccmpiler determines that the COBOL
and PL/I mapping for the structure is
different, and creation of a temporary
structure mapped according tc COBOL rules
is not suppressed by one of the options
NOMAP, NCMAPIN, and NCOMAPOUT.

An entry for a FORTRAN rarred array,
that is, an array passed to or from a
FORTRAN program, has the word "FORTRAN"
appended.

If a COBCL or FORTRAN entry does appear
it is additional to the entry for the PL/I
marped version of the structure.

STORAGE REQUIRENMENTS

If the ortion STORAGE arrlies, the ccmpiler
lists the following information under the
heading "Storage Requirements® cn the page

Chapter 4: The Compiler 37

following the end of the aggregate length
table:

e The storage area in bytes for each
procedure.

e The storage area in bytes for each begin
block.

®» The storage area in bytes for each on-
unit.

e The length of the program control
section. The program control section is
the part of the object module that
contains the executakle part of the
program.

e The length of the static intermnal
control section. This control secticn
contains all storage for variatles
declared STATIC INTERNAL.

STATEMENT OFFSET ADDRESSES

If the option OFFSET applies, the compiler
lists, for each primary entry point, the
offsets at which statements occur. This
information is found, under the heading
"Table of Offsets and Statement Numbers,"
following the end of the storage
reguirements table.

t+1l;unc. ’

The following method can be used to find
the statement number that corresponds to an
offsét given in an execution-time error
message.

1. From the error message, find the
offset that is calculated from a
procedure or ON statement.

2. In the table of offsets, locate the
offsets for the named procedure or on-
unit, and within this section find the
largest offset that is less than the
offset given in the error message.
Note the corresponding statement or
line number.

3. In the source listing, refer to the
statement or line number. If this is
not a BEGIN statement, it is the
statement at which the error occurred.
If it is a BEGIN statement, locate the
offsets for the begin block in the table
of offsets (look for the statement or
line number), and find the largest
offset that is less than the begin block
offset given in the error message. Note
the statement or line number, and repeat
from (3).

38 0S PL/I Optimizing Compiler:

EXTERNAL SYMBCL DICTIONARY

If the option ESD applies, the ccrgiler
lists the contents of the external symbol
dictionary (ESD).

The ESD is a table ccntairing all the
external symkols that appear in the object
module. (The machine instructicns in the
object module are grouped together in what
are termed control sections; an external
synbol is a name that can be referred to in
a control section other than the cne in
which it is defined.) The ccntents cf an
ESD appear under the following headings:

An 8-character field that
identifies the external
symbol.

SYMBOL -

Two characters from the
following list tc identify
the type of entry:

TYPE -

SD Section definiticn: the
name of a control section
within the cbject mcdule.

CM Common area: a type of
control secticn that
contains no data or
executable instructions.

ER External reference: an
external symbol that is
not defined in the cbkject
module.

WX Weak external reference:
an external symbol that
is nct defined in this
module and that is not to
be resolved unless an ER
entry is encountered for
the sare reference.

PR Pseudo-register: a field
in a communications area,
the task ccrrunications
area (TCR), used by the
compiler and by the
library sukroutines for
handling files and con-
trolled variables.

LD Label definition: the
nare of an entry pcint tc
the external procedure
other than that used as
the name of the program
control secticn.

Four-digit hexadeciral number:
all entries in the ESD, except
LD-type entries, are nurnbered

sequentially, commencing from

ooo1.

Programmer's Guide

ADDR - Hexadecimal representation of
the address of the external
symbol.

LENGTH - The hexadecimal length in

bytes of the control section
(sb, CM, and PR entries only).

ESD Entries

The external symbol dictionary always
starts with the following standard entries;
the entries for an external procedure with
the label NAME are shown in Figure 4-9.

¢ SD-type entry for PLISTART. This
control section transfers control to the
initialization routine IBMBPIR. When
initialization is complete, control
passes to the address stored in the
control section PLIMAIN.
(Initialization is required only once
during the execution of a PL/I program,
even if it calls another external
procedure; in such a case, control
passes directly to the entry point named
in the CALL statement, and not to the
address contained in PLIMAIN.)

r 1
| |
I EXTERNAL SYMBOL DICTIONARY I
I |
| SYMBOL TYPE ID ADDR LENGTH |
[PLISTART SD 0001 000000 000034 |
| ***NAME1 SD 0002 000000 000100 |
| #**AME2 SD 0003 000000 000100 |
|PLITABS WX 0004 000000 I
|IBMBPIRA ER 0005 000000 1
|IBMBPIRD ER 0006 000000 |
|IBMBPIRC ER 0007 000000 I
|PLICALIA LD 000006 1
|PLICALLB LD 00000A |
|PLIMAIN SD 0008 000000 000004 |
e e T T 3

Standard entries in the
ESD

Figure 4-9.

e SD-type entry for the program control
section (the control section that
contains the executable instructions of
the object module). This name is the
first label of the external prccedure,
padded on the left with asterisks to
seven characters if necessary, and
extended on the right with the character
1.

e SD-type entry for the static internal
control section (which contains main
storage for all variables declared

STATIC INTERNAL). This name is the
first label of the external procedure,
padded on the left with asterisks to
seven characters if necessary, and
extended on the right with the character
2.

e ER-typre entry for IBMBPIRA, the entry
point of the PL/I resident library
sukroutine that handles program
initialization and terminaticn.

Other ESD Entries

The remaining entries in the external
symbol dictionary vary, but generally
include the following:

e SD-type entry for the 4-byte control
section PLIMAIN, which contains the
address of the primary entry pcint to
the external procedure. This control
section is present only if the rrccedure
statement includes the option MAIN.

e Weak external reference to PLITAES, a
library subroutine that ccntains the
standard or locally-defined tab setting
for stream-oriented cutput.

e ID-tyre entries for all names of entry
points to the external prccedure.

e A PR-type entry for each klock in
compilation.

e ER-type entries for all the library
subroutines and external procedures
called ky the source program. This list
includes the names of resident library
subroutines called directly by compiled
code (first-level subroutines), and the
nares of other resident library
subroutines that are called by the
first-level subroutines.

e CM-tyre entries for non-string element
variables declared STATIC EXTERN2ZL
without the INITIAL attrikute.

e sSD-type entries for all other STATIC
EXTERNAL variables and fcr external file
names.

e DPR-tyre entries for all file names. For
external file names, the narme cf the
pseudo-register is the same as the file
name; for internal file nares, the
corrpiler generates names as for the
display pseudo-registers.

e PR-type entries for all ccntrolled
variakles. For external variables, the
name of the variable is used fcr the
pseudo-register name; for internal

Chapter 4: The Compiler 39

variables, the compiler generates nares.

STATIC INTERNAL STORAGE MAP

If the option MAP applies, the compiler
generates a listing of the contents of the
static internal control section; this
listing is termed the static internal

storage map.

The MAP option also produces a Variable
Storage Map. This map shows how PL/I data
items are mapped in main storage. It names
each PL/I identifier, its level, its offset
from the start of the storage area in both
decimal and hexadecimal form, its storage
class, and the name of the PL/I block in
which it is declared.

OBJECT LISTING

If the option LIST applies, the ccmpiler
generates a listing of the machine
instructions of the object module,
including any compiler-generated
subroutines, in a form similar to IBM
Systen/360 assembler language.

Both the static internal storage map and
the object listing contain information that
cannot be fully understood without a
knowledge of the structure of the object
module. This is beyond the scope of this
manual, but a full description of the
object module, the static internal storage
map, and the object listing can be found in
0S PL/I Optimizing Compiler: Execution

Logic.

MESSAGES

If the preprocessor or the compiler detects
an error, or the possibility of an error,
they generate messages. Messages generated
by the preprocessor appear in the listing
immediately after the listing of the
statements processed by the preprccessor.
Messages generated by the compiler appear
at the end of the listing. All messages
are graded according to their severity, as
follows:

® An informatory (I) message calls
attention to a possible inefficiency in
the program or gives other information
generated by the compiler that may be of
interest to the programmer.

e A warning (W) message calls attention to

40 0S PL/I Optimizing Compiler:

a rossible error, although the statement
to which it refers is syntactically
valid.

e An error (E) message describes an error
detected by the compiler for which the
compiler has applied a "fix-up" with
confidence, The resulting program will
execute and will prcbably give ccrrect
results.

e A severe error (S) message srecifies an
error detected by the compiler for which
the compiler cannot arply a "fix-up"
with confidence. The resulting program
will execute but will nct give ccrrect
results.

s An unrecoverable error (U) nessage
describes an error that forces
termination of the ccrpilaticn.

The compiler lists only thcse messages
with a severity equal to or greater than
that specified by the FLAG cgtion, as shown
in Figure 4-10.

Type of message Option
Informatory FLAG (I)
Warning FLAG(W)
Error FLAG (E)
Severe Error FLAG(S)

Unrecoverable Error Always listed
Selecting the lowest
severity of messages to

be printed, using the

FLAG option

Figure 4-10.

Each message is identified Ly an
8-character code of the form IELnnnnI,
where:

e The first three characters "IEL"
identify the message as coming from the
optimizing compiler.

e The next four characters are a 4-digit
mess age number.

e The last character "I" is an operating
system code for the orerator indicating
that the message is for information
only.

The text of each message, an
explanation, and any recommended programmer
response, are given in the nessages
publication for this compiler.

Programmer 's Guide

RETURN CODES

For every compilation job or jok step, the
compiler generates a return code that
indicates to the operating system the
degree of success or failure it achieved.
This code appears in the "end of step"
message that follows the listing cf the jcb
control statements and jok scheduler
messages for each step. The meanings of
the codes are given in Figure 4-11.

Return
Code

Meaning

0000 No error detected;
compilation completed;
successful execution
anticipated.

0004 Possible error (warning)
detected; compilation
completed; successful
execution prokable.

0008 Error detected; compilation
completed; successful
execution prokalkle.

0012 Severe error detected;
compilation may have been
completed; successful
execution improbable.
0016 Unrecoverable error
detected; compilation
terminated abnormally;
successful execution
impossible.

Return codes from
comrpilation of a PL/I
program

Figure 4-11.

Batched Compilation

Batched compilation allows the compiler to
compile more than one external PL/I
procedure in a single jok step. The
compiler creates an object module fcr each
external procedure and stores it
sequentially either in the data set defined
by the DD statement with the name SYSPUNCH,
or. in the data set defined by the DD
statement with the name SYSLIN. Ratched
compilation can increase compiler
throughput by reducing operating system and
cormpiler initialization overheads.

To specify katched compilation, include
a compiler PROCESS statement as the first

statement of each external prccedure except
possikly the first. The PRCCESS statements
identify the start of each external
procedure and allow ccrrpiler crticns to ke
specified individually for each
compilation. The first rrccedure may
require a PRCCESS statement of its own,
because the options in the PARM raraneter
of the EXEC statement apply to all
procedures in the batch, and ray ccnflict
with the requirements of suksequent
procedures.

The method of coding a PROCESS statement
and the options that may be included are
described under "Optional Facilities,"
earlier in this chapter. The options
specified in a FROCESS statenent arrly to
the ccmpilation of the source statements:
between that PRCCESS statement and the next
PROCESS statement. Options other than
these, either the defaults cr those
specified in the PARM field, will also
apply to the compilaticn of these scurce
staterents. Two options, the SIZE option
and the NAME ortion have a rarticular
significance in katched compilations, and
are discussed below.

SIZE Crtion

In a katched compilation, the SIZE
specified in the first rrccedure cf a katch
(by a PROCESS or EXEC statement, or by
default) is used throughcut. If SIZE is
sprecified in suksequent procedures of the
batch, it is diagnosed and igncred. The
corpiler does not reorganize its storage
between procedures of a batch.

NAME Cption

The NAME option specifies that the ccmpiler
is to place a linkage editor NAME statement
as the last staterment of the object module.
The use of this opticn in the PARM
parameter of the EXEC statement, or in a
PROCESS statement determines hcw the object
modules rroduced by a katched compilation
will be handled by. the linkage editcr.

When the katch of okject modules is link-
edited, the linkage editcr ccrmbines all the
okject mcdules ketween one NAME statement
and the preceding NAME statement intc a
single 1lcad module; it takes the name of
the load module from the NAME statement
that follows the last object mcdule that is
|to be included. When comkining two object
|modules intc one load module, the NAME
|[opticn should not be used in the EXEC
statement. An example of the use of the
NAME option is given in Figure 4-12,

Chapter 4: The Compiler 41

Va4 EXEC PLIXC,PARM.PLI='LIST'

|* PROCESS NAME('A');
ALPHA: PROC OPTIONS (MAIN) ;

END ALPHA;
* PROCESS;
BETA: PROC;

END BETA;
* PROCESS NAME('B');
GAMMA: PROC;

END GAMMA;
Figure 4-12. Use of the NAME option
in batched compilation

Compilation of the PL/I procedures
ALPHA, BETA, and GAMMA, would result in the
following object modules and NAME
statements:

Object module for ALPHA
NAME A (R)

Object module for BETA

Object module for GAMMA
NAME B (R)

From this sequence of object modules and
control statements, the linkage editor
would produce two load modules, one named A
containing the object module for the
external PL/I procedure ALPHA, and the
other named B containing the object modules
for the external PL/I procedures BETA and
GAMMA .

You should not specify the option NAME
if you intend to process the object modules
with the loader. The loader processes all
object modules into a single load module;
if there is more than one name, the loadex
recognizes the first one only and ignores
the others.

Return Codes in Batched Compilation

The return code generated by a batched
compilation is the highest code that would
be returned if the procedures were compiled
separately.

42 0S PL/I Optimizing Compiler:

JOB CONTROL LANGUAGE FCR EATCHED
PROCESSING

The only special consideration relating to
JCL for batched processing refers to the
data set defined by the LD statement with
the name SYSLIN. If you include the option
OBJECT, ensure that this DD statement
contains the parameter DISP=(MOL,KEEP) or
DISP=(MOD,PASS). (The IBM-surglied
cataloged procedures specify
DISP=(MOD,PASS).) If you dc nct sgecify
DISP=MOD, successive okject modules will
overwrite the preceding modules.

Examples of Batched Compilaticns

If the external procedures are components
of a language prograr and need to be
executed together, they can be link-edited
together and executed in subsequent job
steps. Cataloged procedure PLIXCG can be
used, as shown in Figure 4-13.

//70PT4#13 JOB
//STEP1l EXEC PLIXCG
//7PLI.SYSIN DD *
First PL/I source rcdule
* PROCESS;
Second PL/I source module
* PROCESS;
Third PL/I source module
/%
//7GO.SYSIN DD *
Data processed by corbined
PL/I modules

/¥
Figure 4-13. Example of batched
compilation, including
execution

//0PT4#14 JOB
//STEP1 EXEC PLIXCL,
//PARM, FLI="NAME (' PROG1"')"',
//PARM.LKED=LIST
//PLI.SYSIN DD *

First PL/I source program
* PROCESS NAME ('PROG2");

Second PL/I source program
* PROCESS NAME ('PROG3');

Third PL/I source program
/¥
//LKED.SYSLMOD DD DSN=PUEPGM,
//DISP=0LD
Figure 4-14, Example of batched
compilation, excluding
execution

Programmer's Guide

If the external procedures are
independent programs to be invoked
individuvually from a load mocdule library,
cataloged procedure PLIXCL can be used.

For example, a job that contains three
compile-and-link-edit operations can be run
as a single batched compilaticn, as shown
in Figure 4-14.

One of these programs, such as PROG2,
can be invoked from the load module library
as follows:

//0PTEX JOB

//J0BLIB DD DSNAME=PUBPGM, DISP=SHR
/7732 EXEC PGM=PROG2

//SYSIN DD *

Data processed by program PROG2
/*)

Compile-time Processing (preprocessing)

The preprocessing facilities of the
compiler are described in the language
reference manual for this compiler. You
can include in a PL/I program statements
that, when executed by the preprocessor
stage of the compiler, modify the source
program or cause additional source
statements to be included from a library.
The following discussion supplements the
information contained in the language
reference manual by providing some
illustrations of the use of the
preprocessor and explaining how to
establish and use source statement
libraries.

INVOKING THE PREPROCESSOR

The preprocessor stage of the compiler is
executed if you specify the compiler option
MACRO. The compiler and the preprocessor
use the data set defined by the DD
statement with the name SYSUT1 during
processing. They also use this data set to
store the preprocessed source program until
compilation begins. The IBM-supplied
cataloged procedures for conipilation all
include a DD statement with the name
SYSUT1.

The term MACRO owes its origin to the
similarity of some applications of the
preprocessor to the macro language
available with such processors as the IBM
System/360 Assemblexr. Such a macro
language allows you to write a single
instruction in a program to represent a

sequence of instructions that have
previously been defined.

The format of the preprocessor output is
given in Figure 4-15.

Printer control character,
if any, transferred from
the position specified in
the MARGINS crtion.

Column 1

Columns 2-72 Source program. If the
original source program.
used more than 71 cclumns,
then additional lines are
included for any lines that
need continuation. If the
original source fprogram
used less than 71 columns,
then extra blanks are added
on the right.

columns 73-80 Sequence nunker,
right-aligned. If either
SEQUENCE or NUMBER apply,
this is taken frcrm the
sequence numker field.
Otherwise, it is a
preprocessor generated
number, in the range 1
through 99999. This
sequence nurnker will be
used in the listing
produced by the INSOURCE
and SOURCE options, and in
any preprocesscr diagnostic
messages.

Column 81 blank

Columns 82,83 Two-digit number giving the
maxirum derth of
replacement ky the
preprocessor for this line.
If no replacement occurs,
the colurns are blank.
Ccolumn 84 "E" signifying that an
error has occurred while
replacement is being
attempted. If no error has
occurred, the column is
blank.

Format of the
preprocessor output

Figure 4-15.

Three other compiler opticns, MDECK,
INSQURCE, and SYNTAX, are meaningful only
when you also specify the MACRO ogticn.
All are descriked earlier in this chapter.

A simple example of the use of the
preprocessor to produce a scurce deck for a
procedure SUBFUN is shown in Figure 4-16;

Chapter 4: The Compiler 43

//0PT4#16
//STEP1 EXEC

JOB

PLIXC, PARM.PLI="MACRO,NOSYNTAX ,MDECK"

//PLI.SYSPUNCH DD DSNAME=NEWLIB(SUBPROC) ,DISP=(NEW,CATLG) ,UNIT=2311,

/7 VOL=SER=D186 ,SPACE= (CYL, (1,1,1))
//PLI.SYSIN DD *
SUBFUN: PROC (CITY);

DCL IN FILE RECORD,
1 DATA,
2 NAME CHAR(10),
2 POP FIXED(T),
CITY CHAR(10);

%DCL USE CHAR;
%USE='SUB' /* FOR FUNCTION,

NEXT: READ FILE (IN) INTO(DATA);
IF NAME=CITY THEN DO;
%1IF USE='FUN' %THEN %GOTO L1;

NO=POP; END;

%GO TO L2;
%L1:; RETURN(POP); END;
%L2:; ELSE GO TO NEXT;

END SUBFUN;
/*

Figure 4-16.

according to the value assigned to the
preprocessor variable USE, the scource
statements will represent either a
subroutine or a function.

THE %INCLUDE STATEMENT

The language reference manual for this
compiler describes how to use the %INCLUDE
statement to incorporate source statements
from a library into a PL/I program. (A
library is a type of data set that can be
used for the storage of other data sets,
termed members.) A set of source
statements that you may wish to insert into
a PL/I program by means of a %INCLUDE
statement must exist as a data set (member)
within a library. Creating a library and
placing members in this library, are
described in Chapter 10.

The %INCLUDE statement includes one or
more pairs of identifiers. Each pair of
identifiers specifies the name of a DD
statement that defines a library and, in
parentheses, the name of a member of the
library. For example, the statement:

| %INCLUDE DD1(INVERT), DD2(LOOPX);
specifies that the source statements in
member INVERT of the library defined by the

DD statement with the name DD1l, and those
in member LOOPX of the library defined by

by 0S PI/I Optimizing Compiler:

SUBSTITUTE

RUSE='FUN' */;

Using the preprocessor to create a member of a source program library

the DD statement with the name CD2, are to
be inserted consecutively into the source
rrogram generated by the prerprccesscr. The
compilation jok step must include
appropriate DD statements.

If you omit the ddname from any pair of
identifiers in a $INCLUDE statement, the
preprocessor assumes the ddname SYSLIB. In
such a case, you must include a LD
statement with the name SYSLIB. (The IBM-
supplied cataloged procedures dc nct
include a DD statement with this name in
the compilation procedure ster.)

The preprocessor will not recognize a
PROCESS statement in a source statemnent
module included by a %INCLUDE statement.
The presence of such a PROCESS statement
will result in an error in the compilation.

The use of a %INCLUDE statement to
linclude the source statements for SUBPROC
in the procedure TEST is shown in Figure
4-17. The library NEWLIB is defined in the
DD statement with the qualified name
PLI.SYSLIB, which is added to the
statements of the cataloged rrccedure
PLIXCLG for this jok. Since the source
statement library is defined by a LT
statement with the name SYSLIB, the
%INCLUDE statement need not include a
ddname.

It is not necessary to invoke the
preprocessor if your source grogram, and
any text to be included, contains no

Programmer's Guide

//70PTU#17 J0OB
//STEP1 EXEC
//7PLI.SYSLIB DD DSNAME=NEWLIB,DISP=0OLD
//PLI.SYSIN DD *

TEST: PROC OPTIONS (MAIN);

DCL NAME CHAR(10),
NO FIXED(7);

ON ENDFILE(SYSIN) GO TO FINISH;

AGAIN: GET FILE (SYSIN) LIST (NAME);
CALL SUBFUN(NAME) ;
PUT DATA (NAME,NO) ;
GO TO AGAIN;
%2INCLUDE SUBPROC;
FINISH: END TEST;
/%
//7GO.IN DD DSNAME=POPLIST,DISP=OLD
//GO.SYSIN DD *
' ABERDEEN"'
'DONCASTER'
/¥

Figure 4-17.

preprocessor statements other than
%INCLUDE. Under these circumstances,
faster inclusion of text can be obtained by
specifying the INCLUDE compiler option.

Dynamic Invocation of the Compiler

You can invoke the optimizing compiler from
an assembler language program by using one
of the macro instructions ATTACH, CALL,
LINK, or XCTL. The following information
supplements the description of these macro
instructions given in the manual 0S/360
Supervisor and Data Management Macro
Instructions.

To invoke the compiler specify IELOAA as
the entry point name.

You can pass three address parameters to
the compiler:

1. The address of a compiler option list.

2, The address of a list of ddnames for
the data sets used by the compiler.

3. The address of a page number that is
to be used for the first page of the
compiler listing on SYSPRINT.

These addresses must be in adjacent
fullwords, aligned on a fullword boundary.
Register 1 must point to the first address
in the list, and the first (left-hand) bit
of the last address must be set to 1, to

PLIXCIG, PARM.PLI="MACRO,OBJECT"

Including source statements from a library

indicate the end of the list.

Note: If you want to pass parameters in an
XCTL macro instruction, you must use the
execute (E) form of the macrc instruction.
Rememker also that the XCTL macro
instruction indicates to the ccntrol
program that the load module containing the
XCTL macro instruction is completed. Thus
the parameters must be estaklished in a
portion of main storage outside the load
module containing the XCTL nracro
instruction, in case the load module is
deleted before the ccrpiler can use the
parameters.

The format of the three parameters for
all the macro instructions is descriked
below.

OPTION LIST

The ortion list must kegin on a halfword
boundary. The first twc bytes contain a
binary count of the numker of bytes in the
list (excluding the count field). The
rerxainder of the list can comprise any of
the compiler option keywoxrds, serarated by
one or more blanks, a comma, or both of
these.

Chapter 4: The Ccrpiler 45

Entry Standard ddname
1 SYSLIN
2 not applicable
3 not applicable
4 SYSLIB
5 SYSIN
6 SYSPRINT
7 SYSPUNCH
8 SYSUT1
9 not applicakle
10 not applicakle
11 not applicable
12 not applicakle
13 not applicable
14 SYSCIN

The sequence of entries
in the ddname 1list

Figure 4-18.

DDNAME LIST

The ddname list must kegin on a halfword
boundary. The first two bytes contain a
binary count of the numker of bytes in the

46 OS PL/I Oprtimizing Compiler:

list (excluding the ccunt field). Each
entry in the list must occupy an 8-byte
field; the sequence of entries is given in
Figure 4-18.

If a ddname is shcrter than eight bytes,
£ill the field with klanks on the right.
If you omit an entry, £ill its field with
binary zeros; however you may omit entries
at the end of the list entirely.

PAGE NUMBER

The page numker is contained in a 6-byte
field beginning on a halfwcrd kcundary.

The first halfword must contain the binary
value 4 (the length cf the remainder of the
field). The last four kytes contain the
page number in binary fcrm.

The ccmpiler will add 1 to the last page
number used in the ccrpiler listing and put
this value in the page~numker field before
returning control to the invoking routine.
Thus, if the compiler is reirvcked, frage
nunbering will ke continuous.

Programmer 's Guide

Chapter 5: The Linkage Editor and the Loader

This chapter describes two processing
programs of the operating system, the
linkage editor and the loader. It explains
the basic differences Lketween them,
describes the processing done by them, the
JCL required to invoke them and, for the
linkage editorxr, the additional processing
it can do. Both processing programs are
fully described in 0S: Linkage Editor and
Loader.

The object module produced by the
compiler from a PL/I program always
requires further processing before it can
be executed. This further processing, the
resolution of external references inserted
by the compiler, is performed either by the
linkage editor or by the loader, both of
which convert an object module into an
executable program, which in the case of
the linkage editor, is termed a load
module.

The linkage editor and the loader
regquire the same type of input, perform the
same basic processing, and produce a
similar type of output. The basic
differences between the two programs lie in
the subsequent form and handling of this
output.

Basic Differences

The linkage editor converts an object
module into a load module, and stores it in
a program library in auxiliary storage.

The load module becomes a permanent member
of that library and can be retrieved at any
time for execution in either the job that
created it, or in any other job.

The loader, on the other hand, processes
the object module, loads the processed
output directly into main storage, and
executes it immediately. The loader is
essentially a one-shot program checkout
facility; once the load module has been
executed, it cannot be used again without
reinvoking the loader. To keep a load
module for later execution, or to provide
an overlay structure, you must use the
linkage editor.

When using the linkage editor, three job
steps are required -- compilation, link
editing, and execution. When using the
loader, only two job steps are required --
compi lation and execution.

Chapter 5:

Choice of Program

If your installation includes both
programs, the choice of prograr will degend
on whether or not you want to retain a
permanent copy of the lcad mncdule, and on
whether you want to use one of the
facilities provided only by the linkage
editor. BAll okject modules acceptable to
the linkage editor are accertable tc the
loader; all load modules produced by the
linkage editor, except those prcduced with
the NE (not editakle) attrikute?, are also
acceptable to the loader. The differences
between the two programs are summarized
below.

Linkage Editor

e The linkage editor converts an object
module into a load rmcdule and stcres it
in a partitioned data set (program
library) in auxiliary stcrage.

¢ The linkage editor can rprcduce cne ox
more load modules in a single step (for
example, output from batch cocrpilaticn).

e The linkage editor can accept input from
other sources as well as frorm its
primary input source and from the
automatic call library (SYSLIB).

¢ The linkage editor can provide an
overlay structure fcr a rrograrm.

Loader

e The loader converts an okject module
into an executable rregram in main
storage, and executes it immediately.

e The loader can produce only one load
module in a single jcb step nc matter
how many object modules are produced
(for example, the cutput fror a katch
compilation).

iThe NE attribute is given tc a lcad module
that has no external symkol dictionary
(ESD); a load module without an ESD cannot
be processed again, either ky the linkage
editor or by the loader.

The linkage Editor and the Loadex 47

¢ The loader can accept input from its
primary input source and from the
automatic call library (SYSLIB).

Performance Considerations

If you use the loader, you will gain the
advantage of a considerable saving in both
time and auxiliary storage when running
your PL/I program. Although the execution
time will be unchanged, both the scheduling
time and the processing time will be
reduced, and much less auxiliary storage
will be needed. These savings are achieved
as follows:

Scheduling Time: Scheduling time for the
loader is much less than that for link
editing and execution because the loader
needs only one job step.

Processing Time: The time taken to process
an object module by the loader is
approximately half that taken by the
linkage editor to process the same module.
This is achieved by the elimination of
certain input/output operations required by
the linkage editor, and by a reduction in
module access time by the use of chained
scheduling and improved buffering in the
loader program.

Auxiliary Storage: The amount of auxiliary
storage required by the loader when your
job is compiled, loaded, and executed as a
single job step, is much less than that
required by the linkage editor because two
of the standard data sets used by the
linkage editor are not needed. If the
loader input is to consist of existing load
modules the auxiliary storage required for
these can be reduced by storing them with
unresolved external references. These
external references are resolved Ly the
loader.

Module Structure

Object and load modules have very similar
structures; they differ only in that a load
module that has been processed by the

li nkage editor contains certain descriptive
information required by the operating
system; in particular, the module is marked
as "executable" or "not executable®". A
module comprises the following information:

e Text (TXT)
e External symbol dictionary (ESD)

e Relocation dictionary (RLD)

48 0S PL/I Optimizing Compiler:

e END instruction

Text

The text of an object or load module
consists of the machine instructicns that
rerresent the PL/I statements of the source
program. These instructicns are grcuped
together in what are termed control
sections; a control section is the smallest
group of machine instructicns that can be
processed ky the linkage editor. Arn object
module produced by the optimizing compiler
includes the following contrcl secticns:

e Program control secticn: ccntains the
executakle instructions of the object
module.

¢ Static internal control section:
contains storage for all variables
declared STATIC INTERNAL and for
constants and static system blocks.

® Control sections termed common_areas one
common area is created fcr each EXTERNAL
file name and for each non-string
element variable declared STATIC
EXTERNAL without the INITIAL attribute.

s PLISTART: execution of a PL/T program
always starts with this ccntrol section,
which passes control to the appropriate
initialization sukroutine; when
initialization is complete, control
passes to the address stcred in the
control section PLIMAIN.

e Control sections for all PL/I library

subroutines to be included with the
program.

External Symbol Dictionary

The external symbol dictionary (ESD) is a
table containing all the external symbols
that appear in the object module. 2An
external symbol is a name that can ke
referred to in a control section other than
the one in which it is defined.

The names of the control secticns are
themselves external symbols, as are the
names of variables declared with the
EXTERNAL attribute and entry names in the
external procedure of a PL/I program.
References to external symbcls defined
elsewhere are also considered to be
external symbols; they are known as
external references. Such external
references in an object module always
include the names of the sukroutines from

Programmer's Guide

Column Information
33 The number of IDR entries

that follow. This is
always "1" for the
optimizing comgiler.

34 to 41 The program number of the

compiler. (5734-PL1 for

the optimizing ccrpiler.)

44 to 47 The release number cf the

compiler., For example,

'0102"' indicates Release

1.2.

48 to 53 The date in day-month-year

form.

Figure 5-1. The CSECT IDR information

either the 0S PL/I Resident Library or the
0S PL/I Transient Library that will be
required for execution. They may also
include calls to your own subroutines that
are not part of the PL/I subroutine
library, nor already included within the
object module. The linkage editor or
loader locates all the subroutines referred
to, and includes them in the load module,
or executable program respectively.

Relocation Dictionary

At execution time, the machine iristructions
in a load module use the following two
methods of addressing locations in main
storage:

1. Names used only within a contrcl
section have addresses relative to the
starting point of the control section.

2. Other names (external names) have
absolute addresses so that any control
section can refer to them.

The relocation dictionary (RLD) contains
information that enables aksolute addresses
to be assigned to locations within the load
module when it is loaded into main storage
for. execution. These addresses cannct be
deternined earlier because the starting
address is not known until the module is
loaded. The relocation dictionaries from
all the input modules are combined into a
single relocation dictionary when a load
module is produced.

Chapter 5:

END Instruction

This specifies the compiler-generated
control section PLISTART as the entry point
for the ckject module. It also contains
"CSECT IDR" informaticn fcr rrccessing by
the linkage editor. The CSECT IDR
information is given in Figure 5-1.

Linkage Editor

The linkage editor is an operating system
processing program that prcduces 1lcad
modules. It always stores the load modules
in a library, from which the jcb scheduler
can call them for execution.

The input to the linkage editor can
include ckject rodules, load mcdules, and
contrcl statements that specify how the
input is to be processed. The cutrut fror
the linkage editor comprises one or more
load modules.

In addition to its primary functicn of
converting okject modules into load
modules, the linkage editcr can alsc ke
used to:

e Corbine previously link-edited load
modules.

e Modify existing load modules.
e Construct an overlay structure.

A load module constructed as an cverlay
structure can ke executed in an area of
main storage that is not large enough to
contain the entire mcdule at cne time. The
linkage editor divides the load module into
segments that can be lcaded and executed in
turn.

LINKAGE EDITOR PROCESSING

A PL/I program, compiled by the optimizing
compiler, cannot ke executed until the
aprprorriate likrary sukroutines have been
included. These subroutines are included
in two ways:

1. By inclusion in the load module during
link editing.

2. By dynamic call during executicn.
The first method is used for mcst of the
PL/I resident library sukroutines; the

following paragraphs descrike hcw the
linkage editor locates them. The second is

The Linkage Editor and the Loader 49

SYSLIN
(prirary input)

u'

| PL/I object |
| module | =====-- 1
[
L

| linkage
| editor

r
! |

| PL/I library |

| (SYS1.PLIBASE) |~===~=-
[

L

SYSLIB
(call library)

Figure 5-2. Basic linkage editor processing

used for the PL/I transient library
subrcutines, for example those concerned
with input and output (including those used
for opening and closing files), and those
that generate execution-time messages.

In basic processing, as shown in Figure
5-2, the linkage editor accepts from its
primary input source a data set defined by
the DD statement with the name SYSLIN. For
a PIL/I program, this input is the okject
module produced by the compiler. The
linkage editor uses the external symbol
dictionary in this object module to
determine whether the module includes any
external references for which there are no
corresponding external symbols in the
module: it attempts to resolve such
references by a method termed autcratic

library call.

External symbol resolution by automatic
library call involves a search of the data
set defined by the DD statement with the
nare SYSLIB; for a PL/I program, this will
be the PL/I resident library. The linkage
editor locates the subroutines in which the
external symbols are defined (if such
subroutines exist), and includes them in
the load module.

The linkage editor always places its
output (that is, the load module) in the
data set defined by the DD statement with
the name SYSLMOD.

Any linkage editor processing additicnal
to the basic processing described akove
must be specified by linkage editcr control
statements placed in the primary input.

SYSLMOD (locad
module library)

These control statements are described in
"Additional Processing," later in this
chapter.

Main Stcraqe Requirements

The F-level linkage editor has three
different versions requiring differing
arcunts of main storage: 44K, 88K, and
128K bytes. The F-level lirkage editor is
descriked in the linkage editor and lcader
publication.

Job Control Language for the Linkage
Editor

Although you will prcbably use catalcged
preccedures rather than supply all the job
control languvage (JCL) required fcxr a jok
ster that invokes the linkage editor, you
should be familiar with these JCL
statements so that you can make the best
use of the linkage editcr and, if
necessary, override the statements of the
cataloged procedures.

The IBM-supplied cataloged rrccedures
that include a link-edit procedure step
are:

50 0S PL/I Optimizing Compiler: Programmer's Guide

PLIXCL Conpile and link edit

PLIXCLG Compile, link edit, and execute

PLIXLG Link edit and execute

The following paragraphs descrike the
essential JCL statements for link editing.
The IBM-supplied cataloged procedures are
described in Chapter 11 and include
examples of these statements.

EXEC STATEMENT

The name of the linkage editor is of the
form IEWLFxxx, where "xxx" indicates the
amount of main storage required fcr its
execution, as shown in Figure 5-3.

| Amount of |
| main_storage |

640	44K
880	88K
128	128K
L e e e e e e e = e - 4

Figure 5-3. Main storage requirements
for linkage editor

IEWLFxxx

The aliases IEWL or LINKEDIT are often
used for the linkage editor and ncrmally
refer to the version at your installation
with the largest design level. Ycu should
find out what versions are availakle at
your installation.

The basic EXEC statement is:
//stepname EXEC PGM=IEWL

By using the PARM parameter of the EXEC
statement, you can select one or more of
the optional facilities provided by the
linkage editor; these facilities are
described in "Optional Facilities," later
in this chapter.

CD STATEMENTS FOR THE STANDARD DATA
SETS

The linkage editor always requires four
standard data sets. You must define these
data sets in LD statements with the ddnames
SYSLIN, SYSILMOD, SYSUT1l, and SYSPRINT.

Chapter 5:

A fifth data set, defined by a LL
statement with the name SYSLIB, is
necessary if you want tc use autcratic
library call. The five data set names,
together with other characteristics cf the
data sets, are shown in Figure 5-u4.

Primary Input (SYSLIN)

Primary input to the linkage editcr must ke
a standard data set defined ky a LD
statement with the name SYSLIN; this data
set must have consecutive organization.

The input must comprise cne cr rncre cbhject
modules ands/or linkage editor control
statements; a load rodule carnct be part cf
the rrimary input, although it can be
introduced by the contrcl statement
INCLUDE. For a PL/I program, the primary
input is usuvally a data set ccntaining an
okject module produced ky the compiler.
This data set may be con magnetic tare or cn
a direct-access device, or you can include
it in the input job strear. In all cases,
the input must ke in the form of 80-byte F-
forrmat records.

The IBM-supplied cataloged procedure
PLIXLG includes the DD statement:

//SYSLIN DD DDNAME=SYSIN

This statement specifies that the
rrimary input data set ray be defined in a
DD statement with the name SYSIN. If you
use this cataloged rrccedure, specify this
DD statement ky using the qualified ddname
IKED.SYSIN. For exarrle, tc link edit and
execute an ckject module placed in the
input stream, you can use the fcllcwing
statements:

//1LEGC JOB
//STEP1 EXEC PLIZIG
//LKED.SYSIN DD *

(insert here the ocbject mcdule tc be
link edited and executed)

/%

If object modules with identically named
control sections appear in the primary
input, the linkage editor prccesses cnly
the first arpearance of that control
section.

You can include locad modules c¢r ckject
modules from one or more likraries in the
primary input by using a lirkage editor
INCLUDE statement as descriked in
"Additional Processing,"™ later in this
charter.

The Linkage Editor and the Loader 51

r—‘———-———------——-—---———---_-—-.-.-..-_-—-—--------_—_—-—-_—__-_---——--—----------------u--1

(normally the PL/I
resident library)

| ddname | Contents

| I

| SYSLIN | Primary input data, normally
| | the compiler output

% SYSLMOD : Load module

} SYsSuT1 } Temporary workspace

: SYSPRINT ! Listing, including messages
: SYSLIB : Automatic call likrary

| |

| SYSDA Direct access device
Figure 5-4.

Output_(SYSLMOD)

Output (that is, one or more load modules)
from the linkage editor is always stored in
a data set defined by the DD statement with
the name SYSLMOD, unless you specify
otherwise. This data set is usually called
a library; libraries are fully described in
Chapter 10.

The IBM-supplied cataloged procedures
include the following DD statement:

//SYSLMOD DD DSNAME=§6GOSET (GO),

77 UNIT=SYSDA,
7/ DISP=(MOD, PASS),
77/ SPACE=(1024, (50,20,1) ,RLSE))

This statement defines a temporary
library named &§&GCSET and assigns the
member name GO to the load module produced
by the linkage editor. To retain the lcad
module after execution of the jok, replace
this DD statement with one that defines a
permanent library. For example, assume
that you have a permanent library called
USLIB on 2311 disk pack serial number 371;
to name the load module MCD1 and rlace it
in this library, code:

//LKED.SYSLMOD DC DSNAME=USLIB(MOD1),
/77 UNIT=2311,VCL=SER=371,DISP=CLD

The size of a load module must nct
exceed 512K bytes for programs executed
under MFT; a much larger load module is
allowed for MVI. The SPACE parameter in
the LD statement with the name SYSLMOD used
in the IBM-supplied cataloged procedures
allows for an initial allocation of 50K

52 OS PL/I Optimizing Compiler:

15YSSQ Magnetic tape or direct-access device

Linkage editor standard data sets

Possikle device classes?

UNIT=SYSSQ or input jcb stream
(specified by DD #*)

UNIT=SYSDA

UNIT=SYSDA

|
[
|
|
|
|
|
|
|
UNIT=SYSSQ (or SYSOUT=) |
|
UNIT=SYSDA |
|
|
|
|
|
|
¥ |

bytes and, if necessary, 15 further
allocations of 20K kytes (a tctal cf 350K
bytes); this should suffice for most
applications.

Temporary Workspace (SYSUT1)

The linkage editor requires a data set for
use as temporary workspace. It is defined
by a DD statement with the rame SYSUTI1.
This data set must ke on a direct-access
device. The following staterent ccntains
the essential parameters:

//SYSUT1 DD UNIT=SYSDA,
// SPACE=(1024, (200, 20))

You should normally never need to alter
the DD statement with the name SYSUT1 in an
IBM-surrlied cataloged procedure, except to
increase the SEACE allccaticr when
processing very large prograrms.

If your installation supports dedicated
workfiles, these can be used tc prcvide
terpcrary workspace for the link-edit job
step, ‘as described in Charter 11.

Automatic Call Iibrary (SYSIIRE)

Unless you specify otherwvise, the linkage
editor will always attempt to resolve
external references by auvtoratic likrary
call (see "Linkage Editor Processing,™
earlier in this chapter). 1Tc enakle it to

Prcgranmer's Guide

do this, you must define the data set or
data sets to be searched in a DD statement
with the name SYSLIB. (To define second
and subsequent data sets, include
additional, unnamed, DD statements
immediately after the DD statement SYSLIB;
the data sets so defined will be treated as
a single continuous data set for the
duration of the job step.)

For a PL/I program, the DD statement
SYSLIB will normally define the PL/I
resident library. The subroutines of the
resident library are stored in two data
sets, SYS1.PLIBASE (the base library) and
SYS1.PLITASK (the multitasking library).
The base library contains all the resident
library subroutines required by a non-
multitasking program. The multitasking
library contains subroutines that are
peculiar to multitasking, together with
multitasking variants of some of the base
library subroutines.

For link editing a non-multitasking
program, specify only the base library in
the SYSLIB DD statement. The following DD
statement will usually suffice:

//SYSLIB DD DSN=SYsl.PLIBASE,DISP=0LD

For link editing a multitasking program,
specify both the multitasking library and
the base library. When attempting to
resolve an external reference, the linkage
editor will first search the multitasking
library; if it cannot f£find the required
subroutine, it will then search the base
library. To ensure that the search is
carried out in the correct sequence, the DD
statements defining the two sections of the
library must be in the correct sequence:
multitasking library first, base library
second. The following DD statements will
usually suffice:

//SYSLIB DD DSNAME=SYS1.PLITASK,DISP=0LD
/77 DD DSNAME=SYS1.PLIBASE,DISP=0OLD

Listing (SYSPRINT)

The linkage editor generates a listing that
includes reference takles relating to the
load modules that it produwces and also,
when necessary, messages. The information
that may appear is described under "Listing
Produced by the Linkage Editor," later in
this chapter.

You must define the data set on which
you wish the linkage editor to store its
listing in a DD statement with the name
SYSPRINT. This data set must have
consecutive organization. Although the
listing is usually printed, it can be

Chapter 5:

stored on any magnetic-tape cr direct-
access device. For printed output, the
following statement will suffice:

//SYSPRINT DD SYSOUT=A

EXAMPLE OF LINKAGE EDITOR JCL

A typical sequence of jok control
statements for link editing an cbject
nmodule is shown in Figure 5-5. The DD
statement SYSLIN indicates that the cbject
module will follow immediately in the input
stream; for example, it might be an cbject
deck created by invoking the optimizing
compiler with the DECK orticn, as described
in Chapter 4. The DD statement with the
name SYSIMOD specifies that the linkage
editor is to name the load module LKEX, and
that it is to place it in a rew library
nared MODLIB; the keyword NEW in the DISP
parameter indicates to the crerating systern
that this DD statement specifies the
creation of a library.

Optional Facilities

The linkage editor provides a number of
optional facilities that are selected by
including the appropriate keywords from the
following list in the PARM rarameter of the
EXEC statement that invokes it:

LIST
MAP or XREF
LET or XCAL
NCAL
SIZE

Code PARNMN= followed ky the list of
options, separating the opticns with commas
and enclosing the list within single
quotation marks, for example:

//STEPA EXEC PGM=IEWL,PARM="LIST,MAP"

If you are using a cataloged procedure,
you must include the PARM parameter in the
EXEC statement that invokes the procedure
and qualify the keyword PARM with the name
of the rrocedure step that invokes the
linkage editor, for exangle:

. //STEPA EXEC PLIXCLG,PARM.LKED='LIST,XREF'

The linkage editor orticns are cf two
types:

1. Sirple keywords, for example, LIST,
that specifies a facility. LET, LIST,
. MAP, NCAL, XCAL, and XREF are of this

type.

The linkage Editor and the Lcader 53

//LINK JOB

//STEP1 EXEC PGM=IEWL

//SYSLMOD DD DSNAME=MODLIB{LKEX) ,UNIT=2311,VOL=SER=D186
V4 SPACE=(CYL, (10,10, 1)) ,DISP=(NEW, KEEP)
//8YSUT1 DD UNIT=SYSDA,SPACE= (1024, (200,20))

//SYSPRINT DD SYSOUT=A
//SYSLIB DD DSNAME=SYS1.PL1BASE,DISP=0LD
//SYSLIN DD *

(insert here the object module to be link-edited)

/¥

Figure 5-5.

2. Keywords that permit you to assign a
value to a function (for example,
SIZE=10K).

The linkage editor options are described
in the following sections, in alphabetic
order.

LET Option

The LET option specifies that the linkage
editor is to mark the load module as
"executable"™ even if slight errors or
abnormal conditions have been found during
link editing provided these do not exceed
severity 2.

LIST option

The LIST option specifies that all linkage
editor control statements processed should
be listed in the data set defined by the DD
statement with the name ‘SYSPRINT.

MAP Option

The MAP option specifies that the linkage
editor is to produce a map of the load
module showing the relative locations and
lengths of all control sections in the 1load
module.

NCAL Option

The NCAL option specifies that no external
references are to be resolved by automatic

54 0S PL/I Optimizing Compiler:

Typical job control statements for link editing a PL/I rrogran

library call. However, the lcad nrcdule is
marked "executalkle" provided that there are
no errors.

You can use the NCAL orticn to ccnserve
auxiliary storage in private libraries,
since, by preventing the rescluticn cf
external references during link editing,
you can store load mcdules without the
relevant likrary subroutines; the DD
statement with the name SYSLIE is nct
required. Before executing these 1lcad
rnodules, you must link edit them again to
resolve the external references, but the
load module created need exist only while
it is being executed. You can use this
technique to combine separately compiled
PL/I procedures into a single lcad mncdule.

SIZE Option

The SIZE option specifies the amrount of
main storage, in bytes, to ke allocated to
the linkage editor. The format of the SIZE
ortion is:

SIZE=(m[,nl)

where "m" is the amount cf main storage
in bytes or K bytes (where
K=1024) to be allocated to the
linkage editor; it must
include "n" and it must be
greater than "n."

and "n" which is ortional, is the
amount of main storage (in
bytes or K bytes) tc be
allocated to the load module
buffer.

Figure 5-6 gives values fcr "r" and "n"
for the three versions of the F-level
linkage editor.

Programmer's Guide

r
|Version [m(minimum) | n m-n |
| | | (Min) (Max)| (Min) |
|=mmm e e e e |
| | l] i
48R	44K	6K 100K	38K
88K	88K	6K 100K	4u4K
128K	128K	6K 100K	66K
L e m e e e e m e —————————————————— 1

Figure 5-6. Coding the SIZE option

If you specify SIZE incorrectly, or if
you omit it, default values set at system
generation are used. If you specify SIZE
greater than the region or partition size,
the maximum amount of main storage will be
used.

XCAL Option

The XCAL option specifies that the linkage
editor will mark the load module as
"executable" even if slight errors or
abnormal conditions, including improper
branches between control sections, have
been found during link editing. XCAL,
which implies LET, applies only to an
overlay structure.

XREF _Option

The XREF option specifies that the linkage
editor is to print a map of the load module
and a cross-reference list of all the
external references in each control
section. XREF implies MAP.

Listing Produced by the Linkage Editor

The linkage editor generates a listing,
most of which is optional, that contains
information about the link-editing process
and the load module that it produces. It
places. this listing in the data set defined
by the DD statement with the name SYSPRINT
(usually output to a printer). The
following description of the listing refers
to its appearance on a printed page.

The listing comprises a small amount of
standard information that always appears,
together with those items of optional
information specified in the PARM parameter
of the EXEC statement that invokes the
linkage editor, or that are applied by

Chapter 5:

default. The optional conpcnents of the
listing and the corresponding linkage
editor options are as shown in Figure 5-7.

- —— - — - - - - —————

r
|

|

| |
| Control statements |
| processed ky the |
| 1linkage editor |
I |
| [
I |
| |
L

————— — ————— —————— ——— - — - - - — - ——

Linkage editor listings
and associated cpticns

Fiqgure 5-7.

The first page of the listing is
jdentified ky the linkage editor version
and level number followed by a list:of the
linkage editor options used.

The following paragrarhs describe the
opticnal components of the listing in the
order in which they agrear.

An example of the listing produced for a
tyrical PL/I program is given in Appendix
F.

Diagnostic Messages and Control
Statements

The linkage editor generates messages,
describing errors or conditions, detected
during link editing, that may lead tc
error. These messages are listed
immediately after the heading infcrmation
on page 1 of the linkage editor listing.
They are listed again at the end of the
linkage editor listing under the heading
"Diagnostic Message Directory" which is
described later in this chapter.

If you have specified the option LIST,
the names of all control staterents
processed ky the linkage editor are listed
immediately preceding the messages, and are
identified ky the 7-character code IEW0000.

Each message is identified by a similar
7-character code of the form IEWnnnx,
where:

e The first three characters "IEW"
identify the message as ccrning frcm the
linkage editor.

¢ The next three characters are a 3-digit

The Linkage Editor and the Loader 55

message number.

e The last character "x" is a severity
code. The possible severity codes and
their meanings are given in Figure 5-8.

Severity
Code Meaning

0 A condition that will not cause an
error during execution. The load
module is marked as "executable".

1 A condition that may cause an error
during execution. The load module
is marked as "executable".

2 An error that could make execution
impossible. The load module is
marked as "not executable"™ unless
you have specified the option LET.

3 An error that will make execution
impossible. The load module is
marked as "not executable".

q An error that makes recovery
impossible. Linkage editcr
processing is terminated, and no
output other than messages is
produced.

Figure 5-8. Diagnostic message
severity codes

At the end of the listing, immediately
preceding the "Diagnostic Message
Directory™ (described later in this
chapter), the linkage editor places a
statement of the disposition of the load
module. The disposition statements, with
one exception, are self-explanatory; the
exception is:

*»***modulename DOES NOT EXIST BUT HAS
BEEN ADDED TO DATA SET

This appears when the NAME statement has
been used to add a new module to the data
set defined by the DD statement with the
name SYSLMOD. The use of the NAME
statement is described under "Module Name,"
later in this chapter. If you name a new
module by including its name in the DSNAME
parameter of the DD statement with the name
SYSLMOD, the linkage editor assumes that
you want to replace an existing module
(even if the data set is new).

DIAGNOSTIC MESSAGE DIRECTORY

wWhen processing of a load module has been

56 OS PL/I Optimizing Compiler:

completed, the linkage editor lists in full
all the messages whose nurbers agpear in
the preceding list. The text of each
message, an explanaticn, and any
reconmended programmer response, are given
in the linkage editor and lcader
publication.

The warning message IEWO461, tcgether
with a return code of 0004, frequently
appears in the linkage editcr listing for a
PL/I program. It refers to external
references that have not been resclved
because NCAL is specified. The references
occur in PL/I library subroutines that are
link edited with your program as a result
of automatic library call. Scme likrary
subroutines may, in turn, call other
library subroutines. For thcse seccndary
subroutines that are required, the compiler
generates another external symrbol
dicticnary containing alternative names for
the subroutines. These new references can
be resolved, and the required subroutines
placed in the new load module. If the
secondary sukroutines in turn call cther
subroutines, the process is repeated.

MODULE MAP

The linkage editor listing includes a
module map only if you specify the cptions
MAP or XREF. The map lists all the control
sections in the load module and all the
entry point names in each control section.
The control sections are listed in crder of
appearance in the load module; alongside
each control section name is its address
relative to the start of the load module
(address 0) and its length in bytes. The
entry pocints within the load module appear
on the printed listing below ‘and to the
right of the control sections in which they
are defined; each entry point name is
accompanied by its address relative to the
start of the load module.

Each control section that is. included Ly
automatic library call is indicated by an
asterisk. For an overlay structure, the
contrcl sections are arranged by segment in
the order in which they are specified.

After the control sections, the ncdule
map lists the pseudo-registers estaklished
by the compiler. Pseudo-registers are
fields in a communications area, the task
communications area (TCA), used by PL/I
library subroutines and compiled code
during execution of a PL/I rrocgram. The
main storage occupied ky the TCA is not
allocated until the start of executicn of a
PL/I program; it does not form part of the
load module. The addresses given in the
list of pseudo-registers are relative to

Programmer 's Guide

Return Code Meaning

0000 No messages issued; link
editing completed without
error; successful execution
anticipated.

0004 Warning messages only
issued; link editing
completed; successful
execution probable.
0008 Error messages only issued;
link editing completed;
execution may fail.

0012 Severe error messages
issued; link editing may
have been completed, but
with errors; successful
execution improbable.
0016 Unrecoverable error message
issued; link editing
terminated abnormally;
successful execution
impossible.

Return codes from the
linkage editor

Figure 5-9.

the start of the TCA.

At the end of the module map, the
li nkage editor supplies the following
information:

e The total length of the pseudo-
registers.

e The relative address of the instruction
with which execution of the load module
will commence (ENTRY ADDRESS).

* The total length of the load module.
For an overlay structure, the length is
that of the longest path.

All the addresses and lengths given in
the module map and associated information
are in hexadecimal.

CROSS-REFERENCE TABLE

The linkage editor listing includes a
"Cross-reference Table" only if you specify
the option XREF. This option produces a
listing that comprises all the information
described under "Module Map," above,
together with a cross-reference table of
external references. The table gives the
location of each reference within the load

Chapter 5:

module, the symbol to which the reference
refers, and the name of the ccntrcl secticn
in which the symbol is defined.

For an overlay structure, a cross-
reference table is provided fcr each
segment. It includes the number of the
segment in which each syrbcl is defined.

Unresolved symbols are identified in the
cross-reference table by the entries
$UNRESOLVED or $NEVER-CALL. An unresolved
weak external reference (WXIRN) is
identified by the entry $UNRESOLVED(W).

RETURN CODE

For every linkage editor jok or job step,
the linkage editor generates a return code
that indicates to the operating system the
degree of success or failure it achieved.
This code appears in the "end of step"
message and is derived by rultirlying the
highest severity code (see "Diagnostic
Messages and control Staterents," earlier
in this charter) by four, as shown in
Figure 5-9.

The return code 0004 almcst invariably
appears after a PL/I program has been link
edited because some external references
will not have keen resolved. (Refer to
"Diagnostic Message Directory," earlier in
this chagpter.)

Additional Processing

Basic processing by the linkage editcr
produces a single load module from the data
that it reads from its primary ingput, but
it has several other facilities that you
can call upon by using linkage editcr
control statements. The use of those
statements of particular relevance tc a
PL/I program is descriked below. All the
linkage editor control statements are fully
described in the linkage editor and loader
publication.

FORMAT OF CONTROL STATEMENTS

A linkage editor control statement is an
80-byte record that contains two fields.
The operation field specifies the operation
required of the linkage editcr; it must ke
preceded and followed by at least one blank
character. The operand field names the
control sections, data sets, or mcdules
that are to be processed, and it may

The Linkage Editor and the Loader 57

contain symbols to indicate the manner of
processing; the field consists of one or
more parameters separated by commas. Some
control statements may have multiple
operand fields separated by commas.

The position of a control statement in
the linkage editor input depends on its
function.

In the following descriptions of the
control statements, items within krackets
[l are optional.

MODULE NAME

A load module must have a name so that the
li nkage editor and the operating system can
identify it. A name comprises up to eight
characters, the first of which must be
alphabetic.

You can name a load module in cne of two
ways:

1. 1If you are producing a single load
module from a single link-edit job
step, it is sufficient to include its
name as a member name in the DSNAME
parameter of the DD statement with the
name SYSLMOD.

2, If you are producing two or more load
modules from a single link-edit job
step, you will need to use the NAME
statement. (The optimizing compiler
can supply the NAME statements when
you use batch compilation as described
in Chapter 4.)

The format of the NAME statement is:

NAME namel (R)]

|where "name" is any name of up to eight
characters; the first character must be
alphabetic. The NAME statement serves the
following functions:

o It idemtifies a load module. The name
specified will be given to the load
module. " (R)", if present, specifies
that the load module is to replace an
existing load module of the same name in
the data set defined by the DD statement
with the name SYSLMOD.

e It acts as a delimiter between input for
different load modules in one link-edit
step.

The NAME statement must appear in the
primary input to the linkage editor (the
standard data set defined by the DD
statement SYSLIN); if it appears elsewhere,

58 0S PlL/I Optimizing Compiler:

the linkage editor ignores it. The
statement must follow inmediately after the
last object module that will form part of
the load module it names (or after the
INCLUDE control statement that specifies
the last object module).

Alternative Names

You can use the ALIAS statement to give a
load module an alternative name; a lcad
module can have as many as sixteen aliases
in addition to the name given tc¢ it in a LD
statement with the name SYSLMOD, or by a
NAME statement.

The format of the ALIAS statement is:
ALIAS name

where "name" is any name of up to eight
characters; the first character must Lbe
alphaketic. You can include more than one
name in an ALIAS staterwent, serarating the
narmes by commas, for example:

ALIAS FEE,FIE,FCE, FUM

An ALIAS statement can be placed before,
between, or after object mcdules and
control statements that are keing processed
to form a load module, but it must rrecede
the NAME statement that specifies the
primary name of the load module.

To execute a load module, ycu can
include an alias instead of the primary
name in the PGM parameter of an EXEC
statement.

Aliases can be used for external entry
points in a PL/I procedure. Hence a CALL
statement or a function reference to any of
the external entry names will cause the
linkage editor to include the module
containing the alias entry names without
the need to use the INCLUDE staterment for
this module.

ADDITIONAL INPUT SOURCES

The linkage editor can accert input from
sources other than the primary input
defined in the DD statement with the name
SYSLIN. For example, automatic library
call enables the linkage editor tc include
modules from a data set (a library) defined
by the DD statement with the name SYSLIB.
You can name these additional input sources
by means of the INCLUDE statement, and you
can direct the automatic library call
mechanism to alternative likraries by means

Programmer's Guide

of the LIBRARY statement.

INCLUDE Statement

The INCLUDE statement causes the linkage
editor to process the module or modules
indicated. After the included modules have
been processed, the linkage editor
continues with the next item in the prirary
input. If an included sequential data set
also contains an INCLUDE statement, that
statement is processed as if it were the
last item in the data set, as shown in
Figure 5-10.

r i
| Primary Input Sequential Library|
| Data Set Data Set Member |
|- --- ---
| --- --- - |
|- --- === |
| end - --=
| INCLUDE end --=- |
| --- INCLUDE -—
[--- --- ---
| - --- not -
| --- --- processed --- |
[=== --- --= |
| end end end |
e e 1

Figure 5-10. Processing of additional

data sources

The format of the INCLUDE statement is:
INCLUDE ddnamel (membername)]

where "ddname" is the name of a DD
statement that definés either a sequential
data set or a library that contains the
nmodules and control statements to be
processed. If the DD statement defines a
library, replace "membername®" with the
names of the modules to be processed,
separated by commas. You can specify more
than one ddname, each of which may be
followed by any numkber of member names in a
single INCLUDE statement. For example:

INCLUDE D1(MEM1,MEM2) ,D2 (MODA,MCDR)

specifies the inclusion of the members MEM1
and MEM2 from the library defined by the LD
statement with the name D1, and the wemkers
MODA and MODB from the library defined by
the DD statement with the name D2.

Chapter 5:

LIBRARY Statement

The kasic function of the LIERARY statement
is to name call libraries in additicr to
those named in the DD statement SYSLIB.

The format of the LIBRARY statenment is:

ILIBRARY ddname(memkername)

where "ddname" is the name cf a LC
statement that defines the additional call
library, and "membername" is the name of
the mcdule to ke examined Lky the automatic
call mechanisr. More than cre rncdule can
be specified; separate the module names
with comrmas.

OVERLAY STRUCTURES

A load module constructed as an overlay
structure can ke executed in an area of
main storage that is nct large encugh to
contain the entire module at one time. The
linkage editor divides the load module into
segrents that can be loaded and executed in
turn. To construct an overlay structure,
you must use linkage editor control
statements to specify the relationship
kLetween the segments. One segment, termed
the root_segment must remain in main
storage throughout the execution of the
Frcgram.

In an overlay environment the addressing
of a static external structure element,
array, or string may ke incorrect if used
in a data-directed I/C statemrent cr CHECK
statement. This error will arise if the
control section containing the syrbcl takle
of the identifier, and the corresponding
static internal contrcl secticn are not in
the same overlay segment. This is because
the symbol table contains the address of a
locatcr that is in static internal storage.
The difficulty can be avcided by ensuring
that the procedure in the root segment
contains a reference tc the identifier in a
data-directed I/0 or CHECK context. The
statement containing the identifier need
not ke executed; its presence ensures that
the symbol table for the identifier
addresses the locator in the static
internal control section of the rcoct
segment.

| The descriptor for a controlled external
|aggregate with fixed extents is stored in
|the static internal control section of the
| procedure that allocates it. This prevents
| xreferences to the external variable being
[made in other procedures that overlay the
|segment in which it was allocated. A
|controlled external variable must be
|allocated in one of two ways:

The Iinkage Editor and the Loader 59

—— o -

r 1
I I
[. |
| CALL B; |
| . I
| CALL F; |
| . |
| END A; |
g 1
e 1
B: PROC;	
.	
CALL C;	
.	
END B;	[
e i	
it 1 [roosTTTT s s s TTTTT	
C: PROC;	
. [I	
CALL D; [
.	Prccedure B
I CALL E; I	
-	!
END C;	[
gy 1	
i el L L 1 Prccedure C	
D: PROC;	
[pmmmmmmmmm—memmem e 1
.	
END D;	
R it ittt 4	Prccedure D
ittt bt 1	!
E: PROC;	I
I . [
.	
END E;	
R Sy -1	
et 1	
F: PROC;	
- !	
.	
END F;	
g Y ¥

Figure 5-11.

1. The variakle can ke allocated in the
root phase. A convenient technique to
use would be to have a subroutine,
containing the ALLCCATE statewent,
which could be called from any
segment.

2. The variable can be allocated with
adjustable extents, so that the
descriptor will be copied into the
controlled storage area when
allocation takes place. Note that
this method uses more storage.

60 OS PL/I Optimizing Compiler:

Cverlay structure and its tree

Design of the Overlay Structure

Before rreparing the linkage editor control
statements, you must design the overlay
structure for your program. A tree is a
graphic representation of an overlay
structure that shows which segments cccugy
rain stcrage at different times. The
design cf trees is discussed in the linkage
editor and loader puklication, but for the
rurroses of this chapter, Figure 5-11
contains a simrle example. The program
corrrises six procedures: A, B, ¢, D, E,

Progranrmer's Guide

//70PT5#12
//STEP1

JOB

EXEC PLIXCLG,
PARM.LKED='OVLY"'
//PLI.SYSIN DD =*

(insert here source statements for
procedure A)

* PROCESS;

(insert here source statements for
procedure B)

* PROCESS;

(insert here source statements for
procedure C)

* PROCESS;

(insert here source statements for
procedure D)

* PROCESS;

(insert here source statements for
procedure E)

* PROCESS;

(insert here source statements for
rrccedure F)

/*
//LKED,SYSIN DD *
OVERLAY X
INSERT *%#%%*%*Bl , k**%**Cl
OVERLAY Y
INSERT *****%%D]1
OVERLAY Y
INSERT ***#%%*E1l
OVERLAY X
INSERT #**%**F1
7 *
Figure 5-12. Creating and executing
the overlay structure of
Figure 5-11

and F, Procedure B calls procedure C
which, in turn, calls procedures D and E.
(Only procedure A requires the opticn
MAIN.)

The main procedure (A) must ke in main
storage throughout the execution cf the
proagram. Since the execution of procedure
B will be completed before procedure F is
called, the two procedures can occury the
same storage; this is depicted Ly the lines
representing the two procedures in Figure
5-11 starting from the common point (node)
X. Procedure B must remain in stcrage
while procedures C, D, and E are executed,
but procedures D and E can occupy the same

Chapter 5:

storage; thus the lines rerresenting
procedures D and E start from the node X.

The degree of segmentation that can be
achieved can be clearly seen from the
figure. Since procedure A must always be
present, it must be included in the root
segrent. Procedures F, D and E can
usefully be placed in individual segnmnents,
as can procedures B and C ke placed
together; there is ncthing tc ke gained by
serarating rrocedures B and C, since they
must be present together at scre tire
during execution.

control Statements

Two linkage editor control statements,
OVERIAY and INSERT, ccntrcl the
relationship of the segments in the overlay
structure. The CVERIAY statement sgecifies
the start of a segment and the INSERT
statement specifies the rositicns cf
contrcl sections in a segment. You must
include the attribute CVLY in the PARM
rarameter of the EXEC statement that
invokes the linkage editcr, ctherwise the
linkage editor will ignore the control
statements.

The format of the CVERLAY statement is:
CVERIAY symktol

where "symkbol" is the ncde at which the
segrent starts (for example, X in Figure
5-11). You must specify the start cf every
segrent, except the root segment, in an
OVERLAY statement.

The format of the INSERT statement is:
INSERT contrcl-section-name

where "control-secticn-name®" is the name cf
the ccntrol section (that is, the
derivative of the prccedure rane that is
found in the linkage editor map) that is to
be placed in the segnent. Mcre thar one
contrcl section can ke specified, separate
the names with commas. The INSERT
staterents that name the control sections
in the root segment nust precede the first
OVERIAY statement.

Creating an Cverlay Structure

The rmcst efficient method of defining an
overlay structure, and the singplest for a
PL/I rrcgram, is to group all the OVERLAY
and INSERT statements tcgether and rlace
them in the linkage editor input (SYSLIN)

The Linkage Editor and the Loader 61

after the object modules that forx the
program. The linkage editor initially
places all these object modules in the rocot
segment, and then moves those control
sections that are referred to in INSERT
statements into other segments.

This method has the advantage that you
can use batched compilation to proccess all
the procedures in one job step and place
the object modules in a temporary data set;
this data set must have consecutive
organization. You can then place the
linkage editor control statements in the
input stream, concatenating them with the
data set that contains the object modules.
(Do not use the NAME compiler option to
name the object modules; if you do, the
NAME statements inserted by the compiler
will cause the linkage editor to attempt to
create separate load modules rather than a
single overlay structure.)

The use of the IBM-supplied cataloged
procedure PLIXCLG to create and execute the
overlay structure of Figure 5-11, is shown
in Figure 5-12.

An alternative approach instead of
‘batched compilation is to compile the
procedures independently and store them as
object modules in a private library. You
can then use an INCLUDE statement to place
them in the input to the linkage editor
(SYSLIN).

If an INSERT statement contains the name
of an external procedure, the linkage
editor will move only the related program
control section that has the same nane.

All other control sections established by
the compiler, and all the PL/I 1library
subroutines, will remain in the root
segment .

It is important that the PL/I library
subroutines be in the root segment, since
the optimizing compiler does not support
exclusive calls (calls bétween segments
that do not lie in the same path). For
example, in Figure 5-11, procedures in the
segment containing D could call procedures
in the segments containing A, B, C, and D,
but not in the segments containing E or F.
Procedures in the segments containing B or
C could call procedures in the segments
containing A, B, C, D, and E, but not in
the segment containing F. A procedure in
the segment containing B may not call a
procedure in the segment containing A if
this latter procedure calls a procedure in
the segment containing F.

However,
not be required by all segments, in which
case you can move them into a lower
segment. To do this, compile the
procedures using the compiler option ESD,

62 0S PL/I Optimizing Compiler:

certain likrary subroutines may

and exarine the resulting external symbol
dictionary. For example, if in Figure 5-11
a library sukroutine is called only by the
segment containing E, you can mcve it into
that segment Ly placing an INSERT
statement, specifying the subrcutine name,
immediately after the statement INSERT
*kkkk¥E]L,

Similarly, you can nove ccntrcl secticns
from the root segment to lower segments.
For example, to move the static internal
control section for procedure F into the
segment containing F, rlace the statement
INSERT ****%*F2 after the statement INSERT
#¥*¥**%F1l, Values assigned tc static data
items are nct retained when a segment is
overlaid. Do not move static data from the
root segment unless it comprises only:

e Values set by the INITIAL attribute and
then unchanged (that is, read-only
data).

e Values that need nct be retained ketween
different loadings of the segment.

Care must ke taken to ensure that the
static external control secticns for all
the PL/I files used in an overlay program
are placed in the root segrmert. If this is
not dcne, failures may occur when the ERROR
condition is raised and the PL/I errcr
routines attempt to close the files. 1In
particular, the static external ccntrol
section for SYSFRINT must always be placed
in the root segment.

| When using the COUNT cpticn, ensure that
{all procedures for which count information
|is required have their static internal
|contreol sections in the root segment, or
|the count information will ke rendered
|invalid.

LINK EDITING FETCHABLE LCAD MODULES

The PL/I FETCH and RELEASE statements
permit the dynamic loading of separate load
modules which can be subsequently invoked
from the PL/I okject program.

Fetchable (or dynamically-loaded)
modules should be link-edited intc a load
module library which is suksequently made.
available for the job step by means cf a
JOBLIB or STEPLIB DD statement.

The step which link-edits a fetchable
load module into a library requires the
following linkage editor control
statements:

e An ENTRY statement to define the entry-
point into the PL/I program.

Programmer's Guide

Control Present in

Section

PLISTART All programs

IBMBJWT1 Programs that use the WAIT
statement

IBMTJIWT1 Multitasking programs that use
the WAIT statement

IBMBTOC1 Programs that use the
COMPLETION builtin function or
pseudovariable

IBMTTOC1 Multitasking programs that use
the COMPLETION built-in
function or pseudovariable.,

IBMBTPR1 Programs that use the PRIORITY
pseudovariable

IBNMTTPR1 Multitasking programs that use
the PRIORITY pseudovariable.

IBMBEFL1 Programs compiled with the FLOW

or COUNT options.

control sections to be
deleted for optimum
space-saving

Figure 5-13.

//FETCH JOB
//STP EXEC PLIXCL
//PLI.SYSIN DD *

.

PL/I source(fetchable)

/*
//LKED .SYSLMOD DD DSN=PRVLIB,...
//LKED.SYSLIN DD DDNAME=SYS IN
/7 DD DSN=§&§LOADSET,DISP=(OLD,DELETE)
//LKED.SYSIN LD *

ENTRY procedure-name

REPLACE PLISTART

REPLACE IBMBIWT1

REPLACE IBMBTOC1

REPLACE IBMBTPR1

NAME FETCH1
VEs
Figure 5-14. Example of link-editing
a fetchable load module

e A NAME statement to define the name used
for the fetchable load module. This
statement is required if the compiler
option NAME is not used and if the name

Chapter 5:

is nct specified in the DSN parameter in
the SYSINOD DD statement used to define
the load module library.

s Optionally, for optimum sgace saving,
REPLACE statements to delete the control
sections shown in Figure 5-13, if they
are rresent in the okject module.

The name or any alias by which the
fetchable load module is identified in the
load module library must appear in a FETCH
or RELEASE statement within the score of
the invoking procedure.

COBOL or FORTRAN modules cannot be
loaded dynamically by the PL/I FETCH
statement.

The job control statements and the
linkage editor statements to link-edit a
fetchable load module into a library called
PRVLIB are given in Figure 5-14., The
cataloged procedure PLIXCL is used tc
illustrate these statements ky sharing a
job that includes both the ccrpilaticn and
the link-editing of the fetchakle PL/I
module.

combining PL/I Modules fromr the
Optimizing and Checkout Comrilers

When a program is to consist of PL/I
modules compiled by the optimizing and
checkout compilers, the following points
should be considered before link-editing
the modules into a single load module:

* The modules compiled by the ortirizing
corpiler should ke link-edited tc form a
load module.

e The linkage editor orticn NCAL rust be
specified for this link-editing
operation.

e The load module containing the rcdules
compiled ky the optimizing compiler can
now be link-edited with the link-edit
stubs produced ky the checkcut ccrnpiler.

This method ensures that the
initialization routine for a program
compiled by the optimizing ccmpiler will
not be included in the final load module
and that the initialization routine for a
program compiled by the checkout compiler
is used when the program is executed.

Both the space occuried by the final
load module and its speed of execution are
affected by the SYSLIB data set specified
for use ky the linkage editor. Two data
sets, SYS1.PLICMIX and SYS1.PLIBASE are
available. Use SYS1.PLICMIX to obtain a

The Linkage Editor and the Loader 63

smaller load module at the expense of
execution time; use SYS1.PLIBASE to save
execution time at the expense of space.

Loader

The loader is an operating system
processing program that produces and
executes load modules. It always stores
the load modules directly in main storage
where they are executed immediately.

The input to the loader can include
single object modules or load modules,
several object modules or load modules, or
a mixture of both. The output from the
loader always comprises an executable
program that is loaded into main storage
from where it will be executed.

Unlike the linkage editor you cannot use
any control statements with the loader. If
any linkage editor control statements are
used, they will be ignored, and their
presence in the input stream will not be
treated as an error. Your job will
continue to be processed, a message will be
generated and, if you have included a DD
statement with the name SYSLOUT, this
message and the name of the contrcl
statement will be printed on your listing.

The loader compensates for the abksence
of the facilities provided by control
statements by allowing the concatenation of
both object and load modules in the data
set defined by the DD statement with the
name SYSLIN, and by allowing an entry pcint
to be specified by means of the EP option,
as described in "Optional Facilities,"
later in this chapter.

LOADER PROCESSING

A PL/I program cannot be executed until the
appropriate PL/I library subroutines have
been included. All library subroutines are
included during loading. 1In basic
processing, as shown in Figure 5-15, the
loader accepts data from its primary input
source, a data set defined by the DD
statement with the name SYSLIN. For a PL/I
program, this data is the object module
produced by the compiler. The loader uses
the external symbol dictionary in this
object module to determine whether the
module includes any external references for
which there are no corresponding external
symbols in the module: it attempts to
resolve such references by a method termed
automatic library call as described in
"Linkage Editor Processing," earlier in

64 0S PL/I Optimizing Compiler:

this charter.

The loader locates the sukroutines in
which the external symbcls are defined (if
such sukroutines exist) and includes them
in the locad module. If all external
references are resolved satisfactorily the
load module is executed.

The loader will always search the link-
rack area before searching the PL/I
resident library, as shown ir Figure 5-16.
The link-pack area is an area of main
storage in which frequently used lcad
modules are stored permanently. If there
is more than one copry of an cbject ncdule
in the data set defined Ly the LD statement
with the name SYSLIN, the lcader will load
the first and ignore the rest.

Main Storage Requirements

The minimum main storage requirements for
the loader are shown in Figure 5-17.

This amounts to at least 17K bytes for
the loader and its associated routines and
data areas plus the main stcrage required
for the program that is to ke executed. If
the loader program and the data mranagement
access routines were stored in the link-
pack area, the amount of rain storage
required would ke 3K kytes for the loader
data area plus that required by the grogranm
that is to ke executed.

Job Control Language for the Loader

Although you will probably use cataloged
procedures rather than supply all the job
control language (JCL) required for a job
step that invokes the loader, you shculd ke
familiar with these JCL statements so that
you can make the best use of the loader
and, if necessary, override statements of
the cataloged procedures.

The IBM-supplied cataloged procedures
that include a loader procedure step are as
follows:

s PLIXCG Compile, load-and-execute

¢ PLIXG Load-and-execute

The following paragraphs describe the
essential JCL statements for the loader.
The IBM-supplied cataloged procedures are
described in Chapter 11 and include
examples of these statements.

Programmer 's Guide

SYSLIN
(primary input)

|PL/I object al
|and/ox B|--====~ 1
|load modules Cc| |
l | |
tommmmm e 1 I ettt 1 Sttt |
| [| i Al
toooemem >| | | B
| loaderx | | (o]
| | == >| main storage D|
prommmo-- >| | ! E|
SYSLIB | R 8] | F|
(call library) | | G|
| inmintelaiei b 1 | | |
| | | lommmmm oo mmmeoeee 1
|PL/I resident D] |
|library E| |
|(SYS1.PLIBASE) F|------- 1
| G|
| |
S 1
Figure 5-15. Basic loader processing
SYSLIN
(primary input)
(== mT T 1
| | Main
|PL/I object A storage
|and/or load Bj-=====—- 1 fmm————————— 1
|modules cl | | | A
| | | | |
e ittt bbb i | Bttt bttt 1 | | B-=q
| | [-==---==mmmmmmem- >| | |
tommomes >| | ! Y
I | [| R
| loadex | e SH<I |
| | | | | |
SYSLIB P >| | | | | D<-d
(call library) | | | | | | |
pm-mmmmmmm===soe- | 1 s i | | E<-
| _ [| | | [|
|PL/I resident D] | | | | F<-d
|library B|==m-m=-- 1 | [===mm————- | |
| (SYS1.PLIBASE) F| | | | &<~
| 2 B Rl e itk D Db Db D e 1 |1ink-pack |
| | | area |
lem e 1 . J
Figure 5-16. Loader processing, link-pack area and SYSLIB resoluticn
Chapter 5: The Linkage Editor and the Loader 65

 Anteiaietieieii itttk 1
| Storage required for: |JArcunt (rin) |
| | in bytes |
T |
|Loader program | 10K]
| Data management access] 4K |
| routines |]
Buffers and takles used by	3K
lcader	
PL/I program to be executed	variable
RS M O RSP 1

Figure 5-17. Main storage requirements

for the loader

EXEC STATEMENT

The name of the loader is IEWLDRGC. It
also has the alias LOADER, which is used in
the IBM-supplied cataloged procedures, and
will be used to refer to the loader program
in the rest of this chapter. The basic
EXEC statement is:

//stepname EXEC PGM=LOADER

By using the PARM parameter of the EXEC
statement, you can select one or more of
the optional facilities provided by the
loader; these are described under "Optional
Facilities," later in this chapter.

DD STATEMENTS FOR THE STANDARD DATA
SETS

The loader always requires one standard
data set; that defined by the DD statement

with the name SYSLIN. Three cther standard
data sets are optional and if you use them
you must define them in DD statements with
the names SYSICUT, SYSPRINT, and SYSLIB.
The four data sets, their names, and other
characteristics of the data sets, are shown
in Figure 5-18.

The data sets defined by the DD
statements with the names SYSLIN, SYSLIB,
and SYSLCUT are those specified at system
generation for your installaticn. Other
ddnames may have been specified at your
installation; if they have, your JCL
statements must use them in place of those
given above. 1In a similar manner the IBM-
supplied cataloged procedures PLIXCG and
PLIXG use names as shown abcve; ycur
systems programmer will have to modify
these procedures if the names at your
installation are different.

Primary Input (SYSLIN)

Primary input to the loader nmust be a
standard data set defined by a DD statement
with the name SYSLIN; this data set nust
have consecutive organizaticn. The input
can comprise one or more object modules,
one or more load modules, or a mixture of
object modules and load modules.

For a PL/I program the primary input is
usually a data set containing an cbject
module produced by the compiler. This data
set may be on magnetic tape cr cn a direct-
access device, or you can include it in the
input job stream. In all cases the input
must ke in the form of 80-byte F-format
records.

The IBM-supplied cataloged rrocedure

| ddname | Contents of Data Set | Possible Device Classes? |
[=== == e oo e oo |
| SYSLIN | Primary input (normally the output from the | SYSsQ or the input job |
| | compiler) | stream (specified by DD #*)|
'_.._. ..
| SYSLOUT | Loader messages and module map listing | SYSsQ, SYSDA, or SYSOUT=A %
| ___
| SYSPRINT | PL/I execution-time nessages and problem | S¥SsQ, SYSDA, or SYSOUT=A |
| | output listing | }
I __________________________________ - " . - - - - - " - - - - - - -
| SYSLIB | Automatic call library | sYSDA |
.. l
|*SYSSQ Magnetic tape or direct-access device |
| sysba Direct-access device |
| sYsour=a Normal printed output class for system output |
e e e e e e cm e —m——————————— o o 2 e o e e x|

Figure 5-18. Loader standard data sets

66 0S PL/I Optimizing Compiler:

Programmer's Guide

PLIXCG includes the DD statement:
//SYSLIN DD DSN=§5LOADSET,DISP=(OLD,DELETE)

This statement specifies that the data
set EELOADSET is temporary. If ycu want to
modify this statement you must refer to it
by the qualified ddname GO.SYSLIN,

The IBM-suprlied cataloged procedure
PLIXG does not include a DD statement for
the input data set; you must always suprly
one, .specifying the characteristics of your
input data set using the qualified ddnarxe
GO.SYSLIN.

Automatic Call Library (SYSLIB)

Unless you specify otherwise, the loader
will normally attempt to resolve external
references by automatic library call. The
automatic call library (SYSLIB), and how to
specify it, is descriked in the linkage
editor section earlier in this chapter.

Listing (SYSLOUT)

The loader generates a listing that
includes a module map (if you have
specified the MAP option) and, if errors
have been detected during processing,
messages referring to these. The
information that may appear is described in
"Listing Produced by the Loader," later in
this chapter.

You must define the data set in which
you want this listing to be stored by a DD
statement with the name SYSLOUT and it must
have consecutive organization. Although
the listing is usually printed it can be
stored on any magnetic-tape or direct-
access device. For printed output the
following DD statement will suffice:

//SYSLOUT DD SYSOUT=A

Listing (SYSPRINT)

As well as the information listed in the
data set defined by the DD statement with
the name SYSLOUT certain information
produced by the loader is always stored in
the data set defined by the DD statement
with the name SYSPRINT. This data set,
which must have consecutive organization,
holds messages that refer to errors that
have occurred during execution of your
program, as well as the results produced by

Chapter 5:

your prcgram. The infcrraticn.that nay
arpear is descriked in "Listing Produced by
the loader," later in this charter. For
printed outrut the following DD statement
will suffice:

//SYSPRINT DD SYSOUT=

EXAMPIES OF ICADER JCIL

A sequence of jok control lanquage for the
loader is shown in Figure 5-19. A PL/I
rrcgram has keen compiled in a job step
with the step name FLI; the resultant
okject mcdule has been placed in the data
set defined by the DD statement with the
nare SYSLIN. Because this mcdule is to ke
loaded and executed in the same job as the
compile step, this DD statement can use the
backward reference, indicated by the
asterisk, as shown. If the ccrpile and
load-and-go steps were in different jobs,
the DD statement would have tc srecify a
rernanent data set, cataloged or
uncataloged.

~ The IBM-supplied cataloged procedure
PLIXCG includes a DD statemert with the
riame SYSLIN in both the compile and load-
and-go procedure steps; you dc nct need tec
specify this statement unless you want to
modify it. The IBM-surrlied catalcged
procedure PLIXG does not include a DD
statement with the name SYSLIN; ycu must
sugply cne, using the qualified name
GO .SYSLIN.

Typical job control language statements
for the loader are shown in Figure 5-20.
The example illustrates how to include, in
the input strear, both an object mcdule fcr
input tc the loader, and data to be used by
your program during executicr.

The DD staterment with the name SYSLIN
and the two following unnamed LD statements
define three data sets that are tc ke
concatenated into one data set to be used
as input to the loader. The first data set
is named QBJMOD and contains an object
module. This data set cculd be the cutput
of the optimizing compiler that has just
processed your FL/I prcgram. The second
data set is named MODLIE(MOLS55) ccntaining
a load module that has Lbeen given the name
MOD55 and stored in the library called
MODLIB. The third data set is an object
module defined by the LD staterent with the
nare IN. This DD statement appears further
on and has the asterisk notaticn that
indicates that the data set defined by this
statement follows in the input strearn.

The DD statement with the nare SYSLIB
and the unnamed DD statement immediately

The Linkage Editor and the Loader 67

//LOAD JOB

//STEP1 EXEC PGM=LCADER

//SYSLIN DL DSN=#.PLI.SYSLIN,DISP=(OLD,DELETE)
//SYSLIB DD DSN=SYS1l.PLIBASE,DISP=SHR
//SYSLOUT DD SYSOUT=A

//SYSPRINT DD SYSOQOUT=A

Figure 5-19. Job control language for load-and-go

//LOAD JCB

//STEP1 EXEC PGM=LOADER

//SYSLIN DD DSN=OBJECT,UNIT=SYSSQ,VOL=SER=30104,DISP=(OLD,KEEP)
/77 LD DSN=MODLIB(MODS55) ,DISP=SHR

7/ DD DDNAME=IN

//SYSLIB CD DSN=SY¥S1.PLIBASE,DISP=SHR

/7 DD DSN=PRIVLIB,DISP=SHR

//5YSLOUT LD sYSOUT=A
//SYSPRINT DD SYSOUT=A
//IN LD *

(insert here the object module to be loaded)

/%
//SYSIN LD *

(insert here the execution data, if any)
/¥)

Figure 5-20. Object and load modules in load-and-go

following it define two data sets that are statement that invokes it:
to be concatenated so that they can be
searched for unresolved external references CALL
by automatic library call. The first data EF
set is the PL/I resident library LET
(SYS1.PLILIB) and the second is a private MAP
library called PRIVLIB. PRINT
RES
SIZE

Optional Facilities of the Loader Code the PARM parareter as fcllcws:

PARM = 'l[orptionlist] [/pgnparnl!
The loader provides a number of ortional

facilities that are selected by including where "option list" is a list cf lcader
the appropriate keywords from the following options, and "pgmparm" is a parameter to be
list in the PARM parameter of the EXEC passed to the main prc¢cedure cf the PL/I

68 0S PL/I Optimizing Compiler: Prcgrammer's Guide

program to be executed. In the examples
given below, the program parameter is
referred to as PP.

If both loader options and a prograr
parameter occur in the PARM parameter, the
loader options are given first and are
separated from the program parameter by a
slash. If there are loader options but nc
program parameter, the slash is omitted,
but if there are only program parameters
the slash must be coded. If there is more
than one option, the option keywords are
separated by commas.

The PARM field can have one of three
formats:

1. If the special characters / cr = are
used, the field must be enclosed in
single quotes. For example:

PARM='MAP,EP=FIRST/PP'
='MAP, EP=FIRST'
PARM="'/PP'

2. If these characters are not included,
and there is more than one loader
option, the options must be enclosed
in parentheses. For example:

PARM= (MAP,LET)

3. If these characters are not included,
and there is only one loader ortion,
neither quotes nor parentheses are
required. For example:

PARM=MAP

To overwrite the PARM parameter opticns
specified in a cataloged procedure, you
must refer to the PARM parameter by the
qualified name PARM.procstepname. For
example: PARM.GO.

The loader options are of two types:

1. Simple pairs of keywords: a positive
ferm (for example, CALL) that requests
a facility, and an alternative
negative form (for example NOCALL)
that rejects that facility. CALL,
LET, MAP, PRINT, and RES are of this

type.

2. [Keywcrds that permit you to assign a
value to a function (for exanmrle,
SIZE=10K). EP and SIZE are cf this
tyge.

The loader options are described in the
following sections, in alphabetic order.

Chapter 5:

CAIL Cption

The CALL option specifies that the loader
will attempt to resolve external references
by automatic likrary call. To preserve
compatibility with the linkage editcr, the
negative form of this option can be
specified as NCAL as well as by NOCAIL.

EP_Option

The EP option specifies the entry rcint
nare cf the program that is to be executed.
The format of the EF ortion is:

EP=nane

where "name" is an external name. If all
input modules are load ncdules you must
srecify EP=FLISTART.

IET Cption

The LET option specifies .that the lcader
will try to execute the proklem program
even if a severity 2 errcr has been found.

MAP Crtion

The MAP option specifies that the loader is
to print a map of the locad ncdule giving
the relative locations and lengths of
control sections in the module. Ycu must
specify the data set defined by the DD
statement with the name SYSLCUT tc have
this rar printed. The module map is
described in "Listing Prcduced by the
Ioader," later in this chapter.

PRINT Option

The PRINT option specifies that the data
set defined ky the DD statement with the
name SYSLOUT is to be used fcr rmessages,
the module map, and other loader
information.

RES Ortion

The RES cption specifies that the loader
will attempt to resclve external references
Ly a search of the link-pack area of main

The Linkage Editor and the Loader 69

storage. This search will be made after
the primary input to the loader has been
processed but before the data set defined
by the DD statement with the name SYSLIB is
opened.

SIZE Option

The SIZE option specifies the amount of
main storage, in bytes, to be allocated to
the loader. The format of the SIZE option
is:

specifies that yyyyyy bytes of
main storage are to ke
allocated to the loader.

SIZE=YyYyyYYyy

specifies that yyyK bytes of
main storage are to ke
allocated to the loader
(1K=1024).

SIZE=yyyK

The values can be enclosed, optionally,
in parentheses.

Listing Produced by the Loader

The loader can provide a listing on the
SYSLOUT data set; the SYSPRINT data set is
used by the problem program. The contents
of each is given in Figure 5-21.

Data set contents

SYSLOUT Loader explanatory messages and
diagnostic messages, and
optionally, a module map.

SYSPRINT PL/1I execution-time messages,

and problem program output.

Contents of SYSLOUT and
SYSPRINT data sets

Figure 5-21.

The SYSLOUT listing is described here;
the SYSPRINT listing is described in
Chapter 4.

The items in the SYSLOUT listing appear
in the following sequence:

1. Statement identifying the loader.
2. Module map (if specified).

3. Explanatory, error, or warning
messages.

4. Diagnostic messages.

70 0S PL/I Optimizing Compiler:

MODULE MAP

If the MAP option is specified, a ncdule
map is printed in the SYSLCUT listing. The
map lists all the control secticns in the
load module and all the entry point names
(other than the first) in each contrcl
section. The information for each
reference is:

e The control section or entry pcint name.

e An asterisk, if the ccntrcl secticn is
included by automatic likrary call.
¢ An identifier, as follows:

SD Section definition: the name of
the control section.

LR Label reference: identifying an
entry point in the control section
other than the rprimary entry
point.

CM Common area: an external file, or
a non-string element variatle
declared STATIC EXTERNAL without
the INITIAL attribute.

e Absolute address of the control section
or entry point.

Each reference is printed left tc right
across the rage and starts at a preset
position. This gives the inrressicn that
the references are arranged in columns, but
the correct way to read the map is line by
line, across the page, not down each
column.

The module map is followed by a similar
listing of the pseudo-registers. The
identifier used here is PR, and the address
is the offset from the beginning of the
pseudo-register vector (PRV). The tctal
length of the PRV is given at the end.

The total length of the ncdule tc be
executed, and the aksolute address cf its
primary entry point, are given after the
explanatory messages and befcre the
diagncstic messages.

EXPLANATORY AND DIAGNOSTIC MESSAGES

The loader generates messages descriking
errors cr conditions, detected during
processing by the loader, that may lead to
error. The format of these messages is
given in "Diagnostic Messages and Ccntrol
Statements™ in the linkage editor section
earlier in this chapter.

Programmer's Guide

When the module to be executed has been
processed, the loader prints out in full
all the messages referred to above. The
text of each message, an explanation, and
any reconmended programmer response, are
given in the linkage editor and locader
publication.

The warning message IEW1001 almost
always appears in the listing. The
explanation for this is the same as that
for IEWOU61, described under "Diagnostic
Message Directory," in the linkage editor
section earlier in this chapter.

Chapter 5: The Linkage Editor and the Loader

71

This chapter describes briefly the nature
and organization of data sets, the data
management services provided by the
operating system, and the record formats
acceptable for auxiliary storage devices.
The way in which a data set is associated
with a PL/I file is fully described in the
language reference manual for this
compiler. Methods of creating and
accessing data sets in PL/I are given in
Chapters 7 and 8.

Data Sets

In IBM System/360 Operating System, a data
set is any collection of data that can be
created by a program and accessed by the
same or another program. A data set may be
a deck of punched cards; it may be a series
of items recorded on magnetic tape or paper
tape; or it may be recorded on a direct-
access device such as a magnetic disk or
drum. A printed listing produced by a
program is a data set, but it cannot be
accessed by a program.

A data set resides on one or more
volumes. A volume is a standard physical
unit of auxiliary storage (for example, a
reel of magnetic tape or a disk pack) that
can be written on or read by an
input/output device; a serial number
identifies each volume (other than a
punched-card or paper-tape volume or a
magnetic-tape volume either without labels
or with nonstandard labels).

A magnetic-tape or direct-access volume
can contain more than one data set;
conversely, a single data set can span two
or more magnetic-tape or direct-access
volumes .

DATA SET NAMES

A data set on a direct-access device must
have a name so that the operating system
can refer to it. If you do not supply a
name, the operating system will supply a
temporary one. A data set on a magnetic-
tape device must have a name if the tape
has standard labels (see "Labels,"” later in
this chapter.) A name consists of up to
eight characters, the first of which must
be alphabetic. Data sets on punched cards,
paper tape, unlabeled magnetic tape, or

Chapter 6: Data Sets and Files

nonstandard unlabeled magnetic tape do nct
have nares.

You can place the name of a data set,
with information identifying the vclume on
which it resides, in a catalog that exists
on the volume containing the cgerating
system. Such a data set is termed a
cataloged data set. To catalcg a data set
use the CATLG subparameter cf the DISP
parameter of the DD statement. ToO retrieve
a cataloged data set, you dc nct need to
give the volume serial nurber or identify
the type of device; you need only specify
the name of the data set and its
disposition. The operating systen searches
the catalog for information associated with
the name and uses this information tc
request the operator to mount the vclume
containing your data set.

If you have a set of related data sets,
you can increase the efficiency of the
search for a particular data set by
establishing a hierarchy of indexes in the
catalog., For example, ccnsider an
installation that groups its data sets
under four headings: ENGRNG, SCIENCE,
ACCNTS, and INVNTRY, as shown in Figure
6-1. In turn, each of these groups is
subdivided; for example, the SCIENCE groug
has subgroups called PHYSICS, CHEM, MATH,
and BIOLOGY. The MATH subgroup itself

contains three subgrcups: ALGEBRA,
CALCULUS, and BOOL.
|
|
................................. 1
] L
ENGRNG SCIENCE ACCNTS INVNTRY
I
|
I
....................... 1
I
| T I N
PHYSICS CHEM MATH BIOLOGY
|
|
|
[TTTET T T e 1
T
ALGEBRA CALCULUS BOOL

Figure 6-1. A hierarchy of indexes

Chapter 6: Data Sets and Files 73

To find the data set BOOL, the names of
all the indexes of which it is part must be
specified, beginning with the largest group
SCIENCE, followed by the subgroup name MATH
and finally the data set name BOOL. The
names are separated by periods. The
complete identification needed to find the
data set BOOL is

SCIENCE.MATH. BOOL

Such an identifier is termed a qualified
name. The maximum length of a qualified
name is 44 characters, including the
separating periods; each component name has
a maximum length of eight characters. (Do
not use names that begin with the letters
SYS; if the name is qualified do not use P
as the nineteenth character. The names
assigned by the operating system to unnamed
temporary data sets are of this form, with
P as the nineteenth character, and these
data sets are deleted when the utility
program IEHPROGM is used with a SCRATCH
statement that includes the keywords VTOC
and SYS.)

some data sets are updated periodically,
or are logically part of a group of data
sets, each of which is related to the other
in time. You can relate such data sets to
each other in what is termed a generation
data group. Each data set in a generation
data group has the same name qualified by a
unique parenthesized generation number (for
example, STOCK(0), STOCK(-1), STOCK(-2)).
The most recently cataloged data set is
generation 0, and the preceding generations
are -1, -2, and so on. You specify the
number of generations to be saved when you
establish the generation data group.

For example, consider a generation data
group that contains a series of data sets
used for weather reporting and forecasting;
the name of the data sets is WEATHER. The
generations for the group (assuming that
three generations are to be saved) are:

WEATHER(O)
WEATHER (-1)
WEATHER (-2)

When WEATHER is updated, the new data
set is specified to the operating system as
WEATHER(+1). When it catalogs the new data
set, the operating system changes the name
to WEATHER(0), changes the former
WEATHER (0) to WEATHER(-1), the former
WEATHER(-1) to WEATHER(-2), and deletes the
former WEATHER(-2).

To find out how to create a generation

data group, refer to the job control
language and utilities publications.

74 0S PL/I Optimizing Compiler:

BLOCKS AND RECORDS

The items of data in a data set are
arranged in klocks separated by interblock
gaps (IBG)1.

A block is the unit of data transmitted
to and from a data set. Each block
contains one record, part of a record, or
several records. A Lklock cculd alsc
contain a prefix field of up to 99 bytes in
length depending on the code (ASCII cr
EBCDIC) in which the data is recorded.
These codes are discussed in "Data Ccdes,"
below. Specify the block size in the
BLKSIZE parameter of the DD statement or in
the BLKSIZE option of the ENVIRONMENT
attribute.

A record is the unit of data transmitted
to and from a program. When writing a PL/I
rrogram, you need consider crly the records
that you are reading or writing; but when
you describe the data sets that ycur
Frogram will create or access, you must be
aware of the relationship between blccks
and records. ‘

If a block contains two or more records,
the records are said to be blocked.
Blocking conserves storage space in a
volume because it reduces the nunber of
input/output operations required to process
a data set. Records are blccked and
deblocked automatically by the data
management routines.

| specify the record length in the LRECL
|parameter of the DD statement or in the
|RECSIZE option of the ENVIRONMENT
|attribute.

Data Codes: The normal code in which data
is recorded in System/360 is the Extended
Binary Coded Decimal Interchange Ccde
(EBCDIC) although source input can
optionally be coded in BCD (Binary Coded
Decimal). However, for magnetic tare only,
System/360 will accept data recorded in the
American Standard Code for Irnforrdtion
Interchange (ASCII). Use the'ASCII and
BUFOFF options of the ENVIRONMENT attribute
if you are reading or wrltlng data sets
recorded in ASCII.

A prefix’ f1e1d up to 99 bytes in length
may be present at the beglnnlng of each
block in an ASCII data set.’ The use of
this field is contrqlled by the BUFCFF
option. For a full description of the
options used for ‘ASCII. data-sets see the
language reference Manual for this
compiler,

- - — - o - - -

1 Although the teirm. "interrecord gag® is
widely used in operating. system manuals, it
is not used here; it has been. replaced by
the more accurate term "interblock gap."

Programmer's Guide

RECORD FORMATS
The records in a data set must have one of
the following formats:
e F fixed length
® V variable length (D- or Vv-format)
* U undefined length

All formats can be blocked if required,
but only fixed-length and variable-length
records are deblocked automatically by the

system; undefined length records must be
deblocked by your program.

Fixed-length Records (F-format Reccrds)

You can specify the following formats for
fixed-length records:

F Fixed-length, unklocked

FB Fixed-length, blocked

Fs Fixed-length, unktlocked, standard
FBS Fixed-length, blocked, standard

In a data set with fixed-length records,
as shown in Figure 6-2, all records have
the same length. If the records are
blocked, each block contains an equal
number of fixed-length records (although
the last block may be truncated if there
are insufficient records to f£ill it). 1If
the records are unblocked, each record
constitutes a block.

Unblocked records (F-format):

———————— [ontutartadededad |

r
| Record |IBG| Record |IBG|

Record |IEG|
........ L=

e e e —————n

Record |

IBGI Record

Figure 6-2. Fixed-length records

Because it can base blocking and
deblocking on a constant record length, the
operating system can process fixed-length

records faster than variable-length
records. The use of "standard" (Fs-format
and FBs-format) records further optimizes
the sequential processing of a data set on
a direct-access device. A standard format
data set must contain fixed-length records
and must have no emkedded empty tracks or
short blocks (apart from the last blcck).
With a standard format data set, the
operating systen can predict whether the
next klock of data will be on a new track
and, if necessary, can select a new
readswrite head in anticipation of the
transmission of that block. 2 PL/I grograrm
never places emkedded short klocks in a
data set with fixed-length reccrds. A data
set containing fixed-length records can be
processed as a standard data set even if it
is not created as such, providing it
contains no embedded shcrt klccks cr empty
tracks.

Variable-length Reccrds (C- cr V-fcrrmat
Records)

You can specify the fcllcwing formats for
variakle-length records:

\' Variable-length, unktlocked

VB variable-length, blccked

VS Variakle-length, unklocked, spanned
VBS Variable-~-length, blccked, spanned

D Variakle-length, unklocked, ASCII
DB Variable-length, blccked, ASCII

V-format permits bcth variable-length
records and variakle-length klocks. The
first four bytes of each reccrd and cf each
block ccntain control information for use
by the operating syster (including the
length in kytes of the record or block).
Because of these control fields, variakle-
length records cannot ke read backwards.
Illustrations of variable-lerngth reccrds
are shown in Figure 6-3.

vV-format signifies unklocked variable-
length records. Each reccrd is treated as
a klock containing only one record, the
first four kytes of the klock contain block
control information, and the next fcur
contain record control information.

VB-format signifies blocked variakle-
length records. Each klock ccntains as
many complete records as it can
accommodate. The first four bytes cf the
block contain klock control information,
and the first four bytes cf each reccrd
contain record control information.

Spanned Records: A spanned record is a
variable-length record in which the length
of the record can exceed the size of a
block. 1If this occurs, the record is

Chapter 6: Data Sets and Files 75

V-format:

ctfc2 Record 1 IBG |C11{C2 Record 2 IBG |C1|C2
VB-format:
ci1{c2 Record 1 Cc2 Record 2 IBG | C1 Record 3
VS-format:
spanned record
Cct1]C2 Record 1 IBG [C1[|C2 Record 2 IBG [C1|C2 Record 2 IBG
{entire) (first segment) (last segment)
VBS-format:
spanned record
c1|c2 Record 1 Cc2 Record 2 IBG | C1 Record 2 C2 Record 3
(entire) (first segment) {1ast segment)

C1: Block control information
C2: Record or segment control information

Figure 6-3. Variable-length records

divided into segments and accommodated in
two or more consecutive blocks by
specifying the record format as either VS
or VBS. Segmentation and reassembly are
handled automatically. The use of spanned
records allows you to select a block size,
independently of record length, that will
combine optimum use of auxiliary storage
with maximum efficiency of transmission.

VS-format is similar to V-format. Each
block contains only one record or segment
of a record. The first four bytes of the
block contain block control information,
and the next four contain record or segment
control information (including an
indication of whether the record is
complete or is a first, intermediate, or
last segment).

With REGIONAL(3) organization, the use
of VS-format removes the limitations on
block size imposed by the physical
characteristics of the direct-access
device., If the record length exceeds the
size of a track, or if there is nc room
left on the current track for the record,
the record will be spanned over one or more
tracks.

76 0S PL/I Optimizing Compiler:

VBS-format differs from VS-format in
that each klock contains as many complete
records or segments as it can acccrrcdate;
each block is, therefore, approximately the
same size (although there can be a
variation of up to four kytes, since each
segment must contain at least one byte of
data) .

ASCII Records: For data sets that are
recorded in ASCII use D-format as follows:

D-format records are similar to V-format
except that the data they contain is
recorded in ASCII.

DB-format records are sinilar to VB-
format except that the data they contain is
recorded in ASCII.

Undefined-length Records (U-format
Records)

U-format permits the processing of records
that do not conform to F- and v-forrats.
The orerating system and the compiler treat
each block as a record; your progran must

Programmer *'s Guide

perform any required blocking or
deblocking.

DATA SET ORGANI ZATION

The data management routines of the
operating system can handle five types of
data set, which differ in the way data is
stored within them and in the permitted
means of access to the data. The three
main types of data set and the
corresponding keywords describing their
PL/I organization® are given in Figure 6-4.

Type of Data Set PL/I Organization

Sequential CONSECUTIVE
Indexed sequential INDEXED
Direct REGIONAL

Figure 6~4. The three main types of

data set

The fourth type, teleprocessing, is
recognized by the compiler by the file
attribute TRANSIENT.

The fifth type, partitioned, has no
corresponding PL/I organization.

In a sequential (or CONSECUTIVE) data
set, records are placed in physical
sequence. Given one record, the location
of the next record is determined by its
physical position in the data set.
Sequential organization is used for all
magnetic tapes, and may be selected for
direct-access devices. Paper tape, punched
cards, and printed output are sequentially
organized.

An indexed sequential (or INDEXED) data
set must reside on a direct-access volume.
Records are arranged in collating sequence,
according to a key that is associated with
every record. An index or set of indexes
maintained by the operating system gives
the location of certain principal records.
This permits direct retrieval, replacement,
addition, and deletion of records, as well
as sequential processing.

- - - — - ——

1 Do not confuse the terms "sequential" and
"direct" with the PL/I file attributes
SEQUENTIAL and DIRECT. The attributes
refer to how the file is to be processed,
and not to the way the corresponding data
set is organized.

A direct (or REGIONAL) data set nust
reside on a direct-access volume. The
records within the data set can be
organized in three ways: REGIONAL(1),
REGIONAL(2), and REGIONAL(3); in each case,
the data set is divided intc regicns, each
of which contains one or more records. A
key that specifies the regicr nurber and,
for REGIONAL(2) and REGIONAL(3), identifies
the record, permits direct access tc any
record; sequential processing is also
possible.

A teleprocessing data set (asscciated
with a TRANSIENT file in a PL/I program)
must reside in main storage. Records are
placed in physical sequence; a key enbedded
in the record provides direct access to any
record.

In a partitioned data set, independent
groups of sequentially organized data, each
called a member, reside on a direct-access
volume. The data set includes a directory
that lists the location of each member.
Partitioned data sets are often called
libraries. The compiler includes no
special facilities for creating and
accessing partitioned data sets; however,
this is not necessary since each renker can
be processed as a CONSECUTIVE data set by a
PL/I program, and there is ready access to
the orerating system facilities for
partitioned data sets through job ccntrol
language. The use of partitioned data sets
as libraries is described in Chapter 10.

LABELS

The operating system uses lakels to
identify magnetic-tape and direct-access
volumes and the data sets they contain, and
to store data set attributes (for example,
record length and block size). The
attribute information must criginally come
from a DD statement or from your program.
once the label is written ycu need nct
specify the information again.

Magnetic-tape volumes can have standard
or nonstandard labels, or they can be
unlabeled. standard labels have twc parts:
the initial volume lakel, and header and
trailer labels. The initial vclume label
identifies a volume and its owner; the
header and trailer labels precede and
follow each data set on the volume. Header
labels contain syster inforration, device-
dependent information (for example,
recording technique), and data set
characteristics. Trailer lakels are almost
identical with header labels, and are used
when magnetic tape is read kackwards.

Direct-access volumes have standard

Chapter 6: Data Sets and Files 77

labels. Each volume is identified by a
volume label, which is stored at a standard
location on the volume. This label
contains a volume serial number and the
address of a volume table of contents
(VTOC). The table of contents, in turn,
contains a label, termed a data set control
block (DSCB), for each data set stored on
the volume.

DATA DEFINITION (DD) STATEMENT

A data definition (DD) statement is a job
control statement that defines a data set
to the operating system, and is a request
to the operating system for the allocation
of input/output resources. Each job step
must include a DD statement for each data
set that is processed by the step.

Chapter 1 describes the format of job
control statements. The operand field of
the DD statement can contain keywcrd
parameters that describe the location of
the data set (for example, volume serial
number and identification of the unit on
which the volume will be mounted) and the
attributes of the data itself (for example,
record format).

The DD statement enables you to write
PL/I source programs that are independent
of the data sets and input/output devices
they will use. You can modify the
parameters of a data set or process
different data sets without recompiling
your program; for example, you can cause a
program that originally read punched cards
to accept input from magnetic tape merely
by changing the DD statement.

Name of DD Statement

The name that appears in the name field of
the DD statement (ddname) identifies the
statement so that other job control
statements and the PL/I program can refer
to it. A ddname must be unique within a
job step; if two DD statements in one job
step have the same name, the second
statement is ignored. Except when
specifying the concatenation of two or more
data sets, a DD statement must always have
a name.

For input only you can concatenate two
or more sequential or partitioned data sets
(that is, link them so that they are
processed as one continuous data set) by
omitting the ddname from all but the first
of the DD statements that describe them.
For example, the following DD statements

78 0S PL/I Optimizing Compiler:

cause the data sets LIST1, LISTZ2, and LIST3
to be treated as a single data set fcr the
duration of the job step in which the
statements appear:

//GO.LIST DD DSNAME=LIST1,DISP=0LD
7/ DD DSNAME=LIST2,DISP=OLD
/77 DD DSNAME=LIST3,DISP=0LD

wWhen read from a PL/I prcgram the
concatenated data sets need not be on the
same volume, but the volumes must be on the
sanme type of device, and the data sets must
have similar characteristics (for example,
block size and record format). You cannot
process concatenated data sets backwards.

Parameters of DD Staterent

The operand field of the DD statement
contains keyword parameters that you can
use to give the following informaticn:

e The name of the data set (DSNAME
parameter).

e Description of the device and volume
that contain the data set (UNIT, VOLUME,
SPACE, LABEL, and SYSOUT parameters).

e Disposition of the data set before and
after execution of the job ster (CISP
parameter).

e Data set characteristics (DCB
parameter).

The following paragraphs sunrarize the
functions of these groups of parameters.
For full details of all the rarameters,
refer to the jok contral language
publications.

NAMING THE DATA SET

The DSNAME parameter specifies the name of
a newly defined data set or refers to the
name of an existing data set (for example,
DSNAME=ROOTS). You need not specify the
DSNAME parameter for a tempcrary data set
(one that exists only for the duration of
the job in which it is created); the
operating system will give it a tempcrary
name.

DESCRIBING THE DEVICE AND VOLUME

The UNIT parameter specifies the type of
input/output device to be allocated for the

Programmer's Guide

data set. You can specify the type by
giving the actual unit address, the type
number of the unit (for example, UNIT=2400
for the 2400 series Nine-track Magnetic
Tape Drive), or by naming a group of units
established at system generation (for
example, UNIT=SYSDA for any direct-access
device).

The VOLUME parameter identifies the
volume ‘on which the data set resides (for
example, VOLUME=SER=12345). It can also
include instructions for mounting and
demounting volumes.

The SPACE parameter specifies the amount
of auxiliary storage required to
accommodate a data set on a direct-access
device (for example, SPACE=(CYL,10)
specifies that 10 cylinders are to be
allocated).

The LABEL parameter specifies the type
and contents of the data set labels for
magnetic tape (for example, LABEL=4
indicates that the data set is the fourth
data set on the volume).

The SYSOUT parameter allows you to route
an output data set through a system output
device (for example, SYSOUT=A). A system
output device is any unit (but usuvally a
printer or a card punch) that is used in
common by all jobs. The computer operator
allocates all the system output devices to
specific¢ classes according to device tygpe
and -function. The usual convention is for
class A to refer to a printer and class B
to a card punch; the IBM-supplied cataloged
procedures assume that this convention is
followed. If you use the SYSOUT parameter,
the only other information you may have to
supply about the data set is the block
size, which you can specify either in the
DCB parameter of the DD statement or in
your PL/I program.

DISPOSITION OF THE DATA SET

The DISP parameter indicates whether a data
set exists or is new, and specifies what is
to be done with it at the end of the job
step (for example, DISP=(NEW,KEEP)
specifies that a data set is to be created
and that it is to be kept on the volume of
the end of the job step). At the end of a
job step, you can delete a data set, pass
it to the next step in the same job, enter
its name in the system catalog or have it
removed from the catalog, or you can keep
the data set for future use without
cataloging it.

The LEAVE and REREAD options of the
ENVIRONMENT attribute allow you to use the

DISP parameter to control the acticn taken
when the end of a magnetic-tape volume is
reached or when a magnetic-tape data set is
closed. For a description of these options
refer to the language reference manual for
this compiler.

Use of the Conditional Subparameters

If you wish use the conditicnal
subparameters of the DISP parameter for
data sets processed by PL/I rrograms, the
step abend facility must be used. The step
abend facility is obtained as fcllcws:

{ 1. The ERROR condition shculd be raised
or signaled whenever the program is to
terminate execution after a failure
that requires the application of the
conditional subparameters.

The resident library subroutine
IBMBEER must be changed to return a
non-zero return code., The mrethcd of
doing this is described in Chapter 12
under the heading "The ABEND
Facility".

DATA SET CHARACTERISTICS

The DCB (data control klock) parameter of
the DD statement allows you to describe the
characteristics of the data in a data set,
and the way it will be rrocessed, at
execution time. Whereas the other
parameters of the DD statement deal chiefly
with the identity, location, and disposal
of the data set, the DCB parameter
specifies information required for the

processing of the records themselves. The
subparameters of the DCB parameter are
described in Appendix A. For DCB use, see

"Data Control Block," later in this
chapter.

The DCB parameter contains subparameters
that describe:

e The organization of the data set and how
it will ke accessed (CYLOFL, DSORG,
LIMCT, NCP, NTM, and OPTCD
subparameters).

e Device dependent information such as the
recording technique for ragnetic tape or
the line spacing for a printer (CODE,
DEN, FUNC, MODE, PRTSP, STACK, and TRTCH
subparameters) .

e The record format (BLKSIZE, KEYLEN,
LRECL, RECFM, and RKP subrarareters).

Chapter 6: Data Sets and Files 79

e The number of buffers that are to be
used (BUFNC sukparameter).

¢ The rrinter or card punch control
characters (if any) that will be
inserted in the first kyte of each
record (RECFM subparameter).

You can specify BLKSIZE, BUFNO, LRECL,
KEYLEN, NCP, RECFM, RKP, and TRKOFL (or
their equivalents) in the ENVIRONMENT
attribute of a file declaration in your
EL/I program instead of in the DCB
parameter.

You cannot use the DCB parameter to
override information already estaklished
for the data set in your PL/I program (by
the file attrikutes declared and the other
attributes that are implied by them). LCB
subparameters that attempt to change
information already supplied are ignored.
In example of the DCB parameter is:

LCB=(RECFM=FB, BLKSIZE=400, LRECL=40)

This parameter specifies that fixed-
length records, 40 bytes in length, are to
be grouped together in a block 400 bytes
long.

Operating System Data Management

An object module produced by the optimizing
compiler uses the data management routines
of the operating system to control the
storage and retrieval of data. The
compiler translates each input and output
statement in a PL/I program into a set of
machine instructions that result in the
issuing of assembler language macro
instructions that request the data
management routines to perform the required
input or output operations. (These macro
instructions are described in the
supervisor and data management macro
instructions publication.)

The macro instructions are issued either
directly, by compiled code, or by
appropriate sukroutines from the transient
library. In the latter case, the compiled
code includes a branch to an interface
subroutine in the resident library that
initiates the flow of control through other
required library subroutines.

The data management routines ccntrol the
organization of data sets, as well as the
storage and retrieval of the records they
contain. They create and maintain data set
labels, indexes, and catalogs; they
transmit data between main storage and
auxiliary storage; they use the system
catalog to locate data sets; and they

80 0S PL/I Optimizing Compiler:

request the operator to mount and demount
volumes as required.

BUFFERS

The data management routines can provide
areas of main storage, terred kuffers, in
which data can be ccllected kefore it is
transmitted to auxiliary storage, or into
which it can be read befcre it is rade
available to a program. The use of buffers
permits the blocking and deklccking cf
records, and may allow the data management
routines to increase the efficiency cf
transmission of data ky anticipating the
needs of a program. Anticipatcry buffering
requires at least two kuffers: while the
program is processing the data in cne
buffer, the next block of data can be read
into another. Anticipatcry tuffering can
only ke used for data sets keing accessed
sequentially.

The cperating system can further
increase the efficiency cf transrission in
a program that involves many input/cutput
operations by using chained scheduling. In
chained scheduling, a series of read or
write orerations are chained together and
treated as a single oreraticn. Fcr chained
scheduling to ke effective, at least three
buffers are necessary. For more
information on chained scheduling see the
data management services puklication.

The data management routines have two
ways of making data that has been read intc
a buffer availalkle to a program. In the
move mode, the data is actually transferred
from the buffer into the area of main
storage occupied by the program. In the
locate mode, the program can process the
data while it is still in the buffer; the
data management routines pass the address
of the kuffer to the prcgram tc enable it
to locate the data. Similarly a program
can move output data intc the buffer or it
can build the data in the buffer itself.

ACCESS METHCDS

Data management has two access techniques
for transmitting data ketween main storage
and auxiliary storage:

The queued access technique deals with
individual recoxrds, which it klocks and
deblocks automatically. Records are
retrieved and written by mears of macro
instructions. The first time a macro
instruction is issued to retrieve a record,
the data management routines place a block

Programmer's Guide

of records in an input buffer and pass the
first record to the program that issued the
instruction (that is, they deblock the

records); each succeeding retrieval passes .

another record to the program. When the
input buffer is empty, it is automatically
refilled with another block. similarly,
another macro instruction places records in
an output buffer and, when the buffer is
full, writes out the records. Since the
queued access technique brings records into
main storage before they are requested, it
can be used only for records that have been
stored sequentially.

The basic access technique uses other
macro instructions for input and output.
These instructions move blocks, not
records. When a macro instruction is
issued to retrieve a block, the data
management routines pass a block of data to
the program that issued the instruction;
they do not deblock the records.

Similarly, another macro instruction
transmits a block to auxiliary storage.

The combination of data set
organization, as described earlier in this
chapter, and an access technique is termed
an access method. The access methods used
by the compiler are shown in Figure 6-5.

Queued sequential access method:
this combines the queued access
technique with sequential
organization.

QISAM: Queued indexed sequential access
method:
access technique with indexed
sequential organization.

Basic sequential access method:
this combines the basic access
technique with sequential
organization.

BISAM: Basic indexed sequential access
method: this combines the basic
access technique with sequential
organization.

BDAM: Basic direct access method: this
combines the basic access
technique with direct
organization.

Telecommunications access method:
this combines the queued access
technique with telecommunications
organization.

Figure 6-5. The access methods used by
the compiler

this combines the queued:

The PL/I library subroutines use QSAM
for stream-oriented transmissicn and all of
the akove methods for record-oriented
transmission, as shown in Figure 6-6. They
implement PL/I GET and PUT statements by
transferring the appropriate number cf
characters from or to the buffers, and use
GET and PUT macro instructicns in the
locate mode to £fill or empty the buffers.
(For paper tape, however, the library
subroutines use the move mode to permit
translation of the transmitted characters
before passing them to the PL/I program.)

DATA CONTROL BLOCK

A data control block (DCB) is an area of
main storage that contains information
about a data set and the volume that
contains it. The data management routines
refer to this information when they are
processing a data set; no data set can be
processed unless there exists a
corresponding DCB. For a PL/I program, a
PL/I library subroutine creates a DCE for
the associated data set when a file is
opened.

A data control block contains two types
of information: data set characteristics
and processing requirements. The
characteristics include reccrd forrmat,
record length, klock size, and data set
organization. The processing infcrmation
may specify the number of buffers to be
used, and it may include device-derendent
information (for example, printer line
spacing or magnetic-tape reccrding
density), and special processing options
that are available for some data-set
organizations.

The information in the DCB comes from
three sources:

1. The file attributes declared
implicitly or explicitly in the PL/I
program.

2. The data definition (DLC) statenment for
the data set.

3. If the data set exists, the data set
labels.

OPENING A FILE

The execution of a PL/I OPEN statement
associates a file with a data set. This
requires the merging of the information
describing the file and the data set. If
any conflict is detected between file

Chapter 6: Data Sets and Files 81

__ —————————————

r
| Data Set

| File Attributes | Access |
| Organization | | Methods |
[=== == e e oo eooeommeooeooo o |
i | | INPUT | BUFFERED | osaM |
| CONSECUTIVE | SEQUENTIAL | OUTPUT B e R P PR LRSS
| | | UPDATE | UNBUFFERED | BSAM
I ___ - - - - -
	INPUT	BUFFERED [
	SEQUENTIAL	ouTpUT	or	0ISAM
INDEXED		UPDATE	UNBUFFERED 1	
e ettt				
	DIRECT	INPUT	-	BISAM
		UPDATE		
l ...				
{ INPUT		BSAM		
	SEQUENTIAL	UPDATE	BUFFERED	
		===mmmmmmmee oo	or	=m==mmmmmme- --==-
{ i	ouTPUT	UNBUFFERED	BsAM	
REGIONAL R et e C L e e et				
		INPUT		
I	DIRECT	ouTPUT	-	BDAM
		UPDATE		
e				
TELEPROCESSING	TRANSIENT	INPUT	BUFFERED { TCAM	
		ouTPUT		
L e e e e e e e e 2 e e o e e 4

Figure 6-6.

PL/t PROGRAM

DD STATEMENT

‘DATA SET LABEL

Note: Information from the PL/1 program overrides that from the DD statement and the data set label.

Access methods for record-oriented transmi

DCL MASTER FILE ENV(FB BLKSIZE(400),
RECSIZE(40));

OPEN FILE(MASTER);

//MASTER DD UNIT=2400
VOLUME=SER= 1791,
DSNAME=LIST,
DCB=(BUFNO=3, masssmmmm

~
—

ssion

DATA CONTROL BLOCK

RECFM=F,
BLKSIZE=400,
LRECL=100)

Record format=F
Record length=100
Blocking factor=4
Recording density=1600

Information from the DD statement overrides that from the data set label.

Figure 6-7.

82 0S PL/I Optimizing Compiler:

How the operating system completes the DCB

Programmer's Guide

Record format FB
Block size 400
Record length 40
Device type 2400
Number of buffers 3
Recording density 1600

attributes and data set characteristics the
UNDEFINEDFILE condition will be raised.

Subroutines of the PL/I library create a
skeleton data control block for the data
set, and use the file attributes from the
DECLARE and OPEN statements, and any
attributes implied by the declared
attributes, to complete the data control
block as far as possible, as shown in
Figure 6-7. They then issue an OPEN macro
instruction, which calls the data
management routines to check that the
correct volume is mounted and to complete
the data control block. The data
management routines examine the data
control block to see what information is
still needed and then look for this
information, first in the DD statement, and
finally, if the data set exists and has
standard labels, in the data set labels.
For new data sets, the data management
routines begin to create the labels (if
they are required) and to f£ill them with
information from the data control block.

Neither the DD statement nor the data
set label can override information provided
by the PL/I program; nor can the data set
label override information provided by the
DD statement.

When the DCB fields have been filled in
from these sources, control returns to the
PL/I library subroutines. If any fields
have still not been filled in, the PL/I
OPEN subroutine provides default
information for some of them; for example,
if LRECL has not been specified, it is now
provided from the value given for BLKSIZE.

CLOSING A FILE

The execution of a PL/I CLOSE statement
dissociates a file from the data set with
which it was associated. The PL/I library
subroutines first issue a CLOSE macro
instruction and, when control returns from
the data management routines, release the
data control block that was created when
the file was opened. The data management
routines complete the writing of labels for
new data sets and update the labels of
existing data sets.

Auxiliary Storage Devices

The following paragraphs summarize the
salient operational features of various
types of auxiliary storage devices.

IBM 2520 AND 2540 CARD READER AND PUNCH

Both the card reader and card punch accept
F-format, V-format, and U-fcrmat reccrds;
the control kytes of V-format records are
not punched. Any attempt to block records
is ignored.

Each punched card correspcnds tc cne
record; you should therefore restrict the
maximum record length tc 80 kytes (EBCDIC
mode) or 160 bytes (column-binary mode).

To select the mode, use the MODE
subparareter of the DCB parameter of the DD
statement; if you omit this subparameter,
EBCDIC is assumed. (The column-binary mode
increases the packing density of
information on a card, punching two bytes
in each column. Only six bits of each byte
are punched; on input, the two high-order
bits of each byte are set tc zero; cn
output, the two high-order bits are lost.)
The Ccard Read Punch 2540 has five stackers
into which cards are fed after reading or
punching. Two stackers accert only cards
that have keen read, and two others accept
only those that have been punched; the
fifth (center) stacker can accept either
cards that have been read or those that
have been punched. The two stackers in
each pair are numbered 1 and 2 and the
center stacker is numkered 3, as shown in
Figure 6-8.

g-=======-READ-=—=—===== 1
I i | | | I
| I I | I |
| | | | | |
f 2 {r 2 1 3 { 2 1 1 |
| R e T - - —— - - -~ - - - - ————— - 3
L et PUNCH---~===—= L]
Figure 6-8. Card read punch 2540:

stacker numkers

The Card Read Punch 2520 has two

stackers, into which cards can be read ox
punched. The Card Reader 2501 has only one
stacker.

Cards are normally fed into the
appropriate stacker 1 after reading or
punching. You can use the STACK
subparameter of the DCB parameter of the DD
statement to select an alternative stacker
for reading or punching. For punching
only, you can select the stacker
dynamically by inserting an ANS or
Ssysten/ 360 code in the first byte of each
record; you must indicate which ccde you
are using in the RECFM subparameter of the
DD statement or in the ENVIRONMENT crtion.

Chapter 6: Data Sets and Files 83

The control character is not punched.

IBM 3505 AND 3525 CARD READER AND PUNCH

The 3505 Card Reader and the 3525 card
Punch are available only to System/370
users. These two devices are functionally
separate and operate independently of each
other.

The 3505 will read 80-column cards, and
provides, in addition to normal card
reading, the following facilities:

e Optical mark read (in EBCDIC or column
binary mode).

e Read column eliminate (in EBCDIC or
column binary mode).

e Stacker selection.

The 3525 is basically an 80-column card
punch, and can have the following
additional facilities:

e cCard reading facilities that optionally
include:

Reading in EBCDIC or column binary
mode.

Read column eliminate.

e Card punching in EBCDIC or column binary
node.

e cCard printing facilities that include
either:

Two-line printing.
or:

Multiline printing (up to 25
lines).

e Punch interpretation.

® Stacker selection.

The various operations of the 3505 and
the 3525 are described in the following
sections. 1In general, the operations to be
performed are selected by the FUNC, MODE,
and STACK subparameters of the DCB
parameter. The formats of these
subparameters are described in Appendix A
of this manual.

84 0S PL/I Optimizing Compiler:

Basic Card Reading and Punching

card reading or punching on a 3525 is
selected by specifying DCB=(FUNC=R) for
reading or DCB=(FUNC=P) for runching. If
the FUNC subparameter is not specified, the
default is FUNC=R for input files and
FUNC=P for output files that do not have
the PRINT attribute.

Apart from this function selecticn for
the 3525, support for the 3505 as a simple
card reader and the 3525 as a card reader
or punch is identical to that for the 2540
described earlier in this charpter.

EBCDIC or Column Binary Modes

Cards processed by a 3505 or a 3525 can
hold data coded in either EECDIC or column
binary mode. If EBCDIC is used, each card
can contain up to 80 characters. If column
binary is used, each card can contain up to
160 binary characters, two per card column.
EBCDIC and column binary data cannot be
intermixed.

In column binary mode, each card column
holds two 6-kit characters. The low-order
bit appears in row 12 of the card cclumn
for the first character, and in row 4 for
the second character. The binary values of
characters are transmitted to successive
bytes in main storage. The twc high-order
bits of each byte are set to_ zero (these
bits are not represented in the 6-bit
code). The characters are transmitted in
the order: first (tor) character, second
(bottom) character, and so on for each
column in the card, from column 1 tc column
80. :

The details of the coding and conversion
technique used for column binary data are
left to the program designer. The
TRANSIATE built-in function may provide a
convenient method of converting data to or
from column binary form.

Rules for using column binary mode are:

e The MODE subparameter of the DCB
parameter must specify column binary
(MODE=C) .

e The PL/I file must have the RECORL
attribute,

e The punch-interpret feature must not be
used.

e The file must be either an input file or
an output punch file. It cannct ke a
print file.

Programmer's Guide

A column binary output file must have a
record size of 160 bytes.

Stacker Selection

The stacker selection feature is optionally
available on the 3505 and is a standard

feature on a 3525.

of

1.

There are two methods
selecting a stacker:

The stacker can be selected
permanently for all cards in the file.
This method involves the STACK
subparameter of the DCB parameter.

For record-oriented output files on a
3525, the first byte of the record can
contain a stacker control character to
select the required stacker
dynamically. The use of such codes is
specified by the CTLASA or CTL360
environment options.

Optical Mark Read

The optical mark read (OMR) feature is
available only on the 3505 card reader.
This feature enables preprinted or pencil-
written marks on a punched card to be read

as

data. The following rules apply:
Optical mark read is specified by
MODE=EO (EBCDIC mode) or MODE=CO (column
binary mode) in the DCB parameter.

The associated PL/I file must have the
RECORD and INPUT attributes, and must
not have the TOTAL attribute.

Records must be F-format with a RECSIZE
of 80 (EBCDIC mode) or 160 (column
binary mode).

Up to 40 columns of EBCDIC data or 80
characters of column binary data can be
read optically from a single card.
Optical and punched data can be read
from the same card although there are
some restrictions, given below, on how
the data is recorded on the card.

Optical mark data can appear only in
alternate card columns and must be
separated by blank columns. Optical
mark and punched hole columns must also
be seperated by at least one blank
column. When the record is read in, the
data is compressed by removing the blank
column following each optical mark
column, and the record is padded with
blanks.

The columns containing optically-
readable marks must be srecified to the
program at execution-time by a fcrmat
descriptor card. This card must be the
first card in the deck of cards tc be
read by the file each time the program
is run. Operating prccedures for
running jobs that use OMR should ensure
that this point is not overlooked.

The OMR descriptor card has the
following format:

FORMAT (nl1l,n2),(n3,n4)...

where nl is the first column in a group
to be read in OMR rode, n2 is the last
colurn in the group, n3 is the first
column in the next grcup, n4 is the last
column in this group, and so on.
Remember that only every cther cclumn
between nl and n2 or n3 and n# can be
read in OMR mode. A maxinum of 40
columns of OMR data can ke accomodated
on an 80~-column card. nl and n2 (and
similarly n3 and n#) nust be either both
even or both odd, and n3 must be at
least 2 greater than n2.

The format descriptor record must begin
in column 2 and can continue through
column 71. If a continuation is
required, punch any character in column
72 and start the continuation in column
16 of the following card.

A blank must follow the keyword FORMAT.
Operands must be separated by a ccmma.
Example:

FORMAT (1,9),(70,80)

This specifies that columns 1 to 10 and
70 to 80 are reserved for OMR use and,
of these, columns 1, 3, 5, 7, 9, 70, 72,
74, 76, 78, and 80 will be scanned for
optical mark data.

Note that column 1 of the card always
corresponds with the first byte cf the
data in main storage. Consequently, if
an optical mark arpears in colurn 2,
column 1 must be blank and byte 1 will
also be blank.

If a marginal mark, weak mark, or poor
erasure is detected on a column, the
corresponding byte and the last Lyte of
the record are set to X'3F*'. The
TRANSMIT condition is raised once only
for all errors found in a card. The
card itself is stacked in the
alternative stacker to that normally
used by the file.

When an optical mark read file is
closed, the last card is fed and stacked
in the same stacker as the previous

Chapter 6: Data Sets and Files 85

card. This feed operation resets the
device into unformatted mode, ready for
the next file opening.

e (Optical mark read is not supported on
SYSIN. The 3505 must be allocated
exclusively to the user's job by
specifying the device type of the unit
address in the UNIT parameter of the DD
statement.

e When a file is opened for optical mark
reading, the value of the BUFFERS option
(for BUFFERED files) or the NCP option
(for UNBUFFERED files) is automatically
set to 1.

Read Column Eliminate

The read column eliminate (RCE) feature is
optionally available on the 3505 and on a
3525 with card reading facilities. This
feature permits the selective reading of
card columns. The columns to be ignored
when the card is read are specified in a
format descriptor card. The ignored
columns are replaced by blanks in EBCDIC
mode or zeroes in column binary mode before
the record is transmitted.

The following rules apply:

e Read column eliminate is specified by
MODE=ER (EBCDIC mode) or MODE=CR (column
binary mode) in the DCB parameter.

e An RCE format descriptor card must be
supplied. This card must be the first
card in the deck of cards to be read by
the program each time it is executed.
operating procedures for running jobs
that use RCE should ensure that this
point is not overlooked.

e The RCE descriptor card has the
following format:

FORMAT (nl1,n2),(n3,n)...

where nl is the first column in a group
of columns to be ignored and n2 is the
last column in the group, n3 is the
first column in the next group to be
ignored, n# is the last column in this
group, and so on.

The format descriptor card must begin in
column 2 and continue through to column
71. If a continuation is required,
punch any character in column 72 and
start the continuation in column 16 of
the following card.

A blank must follow the keyword FORMAT.
Operands must be separated by a conmma.

86 0S PL/I Optimizing Compiler:

Example:
FORMAT (20,30),(52,76)

This specifies that columns 20 through
30 and columns 52 thxough 76 are to be
ignored when the card is read.

e The PL/I file can have either the STREAM
or the RECORD attribute. Records must
be F-format.

e When an RCE file is closed, a card feed
operation is executed by the reader. If
several files are tc be read
consecutively - either for successive
programs in a single batch, or fcr
several files in a single program - a
non-data card must serarate the files.

e Read column eliminate is not supported
on SYSIN. The 3505 or 3525 must ke
allocated exclusively to the user's job
by specifying the device tyrpe of the
unit address in the UNIT parameter of
the DD statement.

Punch Interpret

A single file can be used tc punch and
interpret cards by specifying DCB=(FUNC=I).
Cards are punched norrally, and the same
data is printed on lines 1 and 3 of the
card. The first 64 characters are printed
on line 1; the remaining 16 characters are
right-justified on line 3.

A punch interpret file may have the
STREAM or RECORD and the BUFFERED or
UNBUFFERED attributes. Reccrds must be F
format, with a record size of 80, or 81 if
control characters are being used for
stacker selection.

Printing on Cards

The card printing feature of the 3525 is
available in two forms:

1. Two-line printing.
2. Multiline printing (up toc 25 lines).

Printing can be performed either as the
only operation on the card, or as one of a
number of operations on the same card. The
following rules apply to print-only files.
The additional requirements for printing
after reading or punching a card are
described under "Multiple Oreratiocons" later
in this chapter.

Programmer's Guide

The FUNC subparameter of the DCB
parameter must specify "W" if the 3525
has the multiline print feature, or "WT"
if it has the 2-line print feature. If
FUNC is omitted, FUNC=W is defaulted for
PL/I PRINT files.

The PL/I file may have either the RECORD
or the STREAM attribute.

The maximum number of characters that
can be printed on each line is 64. The
user must ensure that this limit is not
exceeded; in particular, on PRINT files,
LINESIZE should not exceed 64 or data
will be lost.

If the 3525 has the two-line print
feature, and is used by a file with the
PRINT attribute or by a file using
CTLASA or CTL360 control characters,
care should be taken to ensure that no
attempt is made to print on any line
other than lines 1 and 3. Such an
attempt will cause thé program to be
terminated without raising the PL/I
ERROR condition. If a PRINT file is
used, and a PAGESIZE of more than 3 is
specified, the pagesize is set to 3 when
the file is opened.

If the file is a non-PRINT file, and

control characters are not used, records.

are printed on lines 1 and 3
automatically.

If a 3525 with the multiple print
feature is used, the file should have a
maximum pagesize of 25. If a PAGESIZE
of greater than 25 is specified on a
PRINT file, the pagesize is set to 25
when the file is opened. Whatever the
page size, a PUT PAGE statement for a
PRINT file will always cause the file to
be positioned at line 1 of the next
card. Any attempt to print beyond line
25 will cause the program to be
terminated without raising the PL/I
ERROR condition.

All the standard ASA control characters
can be used, with the exception of "+"
(suppress space before printing). The
use of the "+" control character, or of
SKIP(0) on a PRINT file, will cause the
program to be terminated without raising
the PL/I ERROR condition.

0dd numbered lines on a card can be
reached using "skip to channel®" control
characters, channel numbers being
defined as follows:

channel number = (line number + 1)/2
Only channels 1 through 12 are valid.

Other lines can be reached by using
"space and print" control characters.

All lines can be reached by executing
sufficient WRITE or PUT cperationms.

Multiple Operations

Two or three files may be used in
association with each other to enable more
than one of the operations "read", "runch",
and "print"™ to ke performed on a single
card during one pass through a 3525. A DD
statement is required for each operation
that the device is to perform, and the
association of these data sets is specified
by means of the unit affinity (AFF)
parameter, together with the FUNC
subparameter of the DCB parameter.

For example, for as set of files that
are to perform the operations read-runch-
print the association of the data sets and
the set of operations are srecified as
follows:

//CARDIN DD UNIT=3525,DCE=(FUNC=RFW)
//PUNCH DD UNIT=AFF=CARDIN,DCB= (FUNC=RPW)
//PRINT DD UNIT=AFF=PUNCH, DCE=(FUNC=RPWX)

Valid FUNC options are listed in
Appendix A of this manual. Note that the
FUNC option must specify the complete set
of associated operations. "X" must ke
added to the FUNC option of the print data
set. If the 3525 has the two-line print
feature, T must also be coded on the FUNC
option of the print data set.

The following rules apply to multiple
operations:

e All the device-associated files rnust
have the RECORD attrikute, and must be
all BUFFERED or all UNBUFFERED. None of
the files can have the TOTAL option.
Records must be F-forrmat.

e If stacker selection is required, it can
only be specified on the runch file, if
there is one. Either stacker-select
control characters or static stacker
selection by means of the STACK
subparameter can be used.

e An associated data set carnct be
allocated to SYSIN or SYSCUT. The 3525
must be allocated exclusively to the
user's job by specifying the device tyre
of the unit address in the UNIT
parameter of the DD staternent.

¢ Data delimiter cards should not ke
punched or printed on, or the first card
of the following job will be lost.

Details of how to oren and close
associated files, and of the sequences of

Chapter 6: Data Sets and Files 87

operations that can be performed, are given
in the Language Reference Manual for this
compiler.

Data Protection

To avoid erroneous punching into card
columns that already contain data, a "data
protection" option can be used on a punch
file which is in association with a read
file. Data Protection is specified by a
"D" in the FUNC option of the DD statement
for the punch data set. The user must
provide an 80-byte data protection image
(DPI) and linkedit it into SYS1.,IMAGELIB
with a member name of the form FORMxxxx.
The DPI contains blanks in columns that are
to be protected, and any alphanumeric
character in columns that can be punched.
An assembler language program is used to
link edit the DPI; an example is given in
Figure 6-9.

| //UP EXEC ASMFCL
| //ASM.SYSIN DD *

FORMDPI CSECT
DC X'40° (protected column)
DC X'40° (protected column)
DC C'3456789A"' (punch columns)
DC 70X'40°" (protected columns)
END

/%

//LKED.SYSLMOD DD DISP=OLD,

/7 DSNAME=S5YS1,IMAGELIB (FORMXXXX)

Figure 6-9. An example of a program to

link edit the DPI

A particular DPI is selected by means of
the the FCB parameter of the DD statement
for the punch file. For example:

//7PUNCH DD UNIT=AFF=CARDIN,
// DCB= (FUNC=RPWD),
7/ FCB=XXXX

Data protection cannot be specified for
column binary cards.

PAPER TAPE READER

The paper tape reader accepts F-format and
U-format records; each U-format record is
followed by an end-of-record character.
Use the CODE subparameter of the DCB
parameter of the DD statement to request
translation of data from one of the six
standard paper-tape codes to System/360
internal representation (EBCDIC). Any
character found to have a parity error is

88 0S PL/I Optimizing Compiler:

not transmitted.

PRINTER

The printer accepts F-format, V-format, and
U-format records; the contrcl bytes cf V-
format records are not printed. Each line
of print corresponds to cne record; you
should therefore restrict your record
length to the length of one printed line.
Any attempt to klock records is ignored.

You can use the PRTSP sukparameter of
the DCB parameter of the DD statement to
request the line spacing of your output, or
you can control the spacing dynamically by
inserting an ANS or Systen/360 ccde in the
first byte of each record; you must
indicate which code you are using in the
RECFM subparameter of the DD statement or
in the ENVIRONMENT option. The ccntrol
character is not printed. If you do not
specify the line spacing, single stacing
(no blanks ketween lines) is assumed.

MAGNETIC TAPE

Magnetic-tape devices accept D-forrmat, F-
format, v-format, and U-format records for
both 9-track and 7-track mwagnetic tare with
the one exception that 7-track magnetic
tape will not accept V-forrmat reccrds
unless the data conversion feature is
available. (The data in the control bytes
of V-format records is in kinary form; in
the absence of the data conversion feature,
only six of the eight bits in each byte are
transmitted to 7-track tape.)

Nine-track magnetic tape is standard in
IBM System/360, but some 2400 series
magnetic-tape drives inccrpcrate features
that facilitate reading and writing 7-track
tape. The translation feature changes
character data from EBCDIC (the 8-bit code
used in System/360) to BCD (the 6-bit code
used on 7-track tape) or vice-versa. The
data conversion feature treats all data as
if it were in the form of a bit string,
breaking the string into groups of eight
bits for reading into main storage, cr intc
groups of six bkits for writing on 7-track
tape; the use of this feature rrecludes
reading the tape backwards. To use
translation or data conversicn, include the
TRTCH (tape recording technique)
subparameter in the DCB parameter of the DD
statement.

The maximum recording density available
depends on the model number cf the tarpe
drive; single~density tape drive units have

Programmer's Guide

a maximum recording density of 800 bytes
per inch, and dual-density tape drive units
have a maximum of 1600 bytes per inch. For
9-track tapes, a single-density drive
offers only the 800 bytes per inch density;
the standard density for a dual-density
drive is 1600 bytes per inch, but you can
use the subparameter DEN (density) of the
DD statement to specify 800 bytes per inch.
For 7-track tape, the standard recording
density for both types of drive unit is 200
bytes per inch; you can use the DEN
subparameter of the DCB parameter of the DD
statement to select alternatives of 556 or
800 bytes per inch.

Note: When a data check occurs on a
magnetic-tape device with short length
records (12 bytes on a read and 18 bytes on
a write), these records will be treated as
noise.

DIRECT-ACCESS DEVICES

Direct-access devices accept F-format, V-
format, and U-format records.

The storage space on these devices is
divided into conceptual cylinders and
tracks. A cylinder is usually the amount
of space that can be accessed without
movement of the access mechanism, and a
track is that part of a cylinder that is
accessed by a single read/write head. For
example, a 2311 disk pack has ten recording
surfaces, each of which has 200 concentric
tracks; thus, it contains 200 cylinders,

each of which contains ten tracks.

When you create a data set on a direct-
access device, you must always indicate to
the operating system how much auxiliary
storage the data set will require. Use the
SPACE parameter of the DD statement to
allocate space in terms of blocks, tracks,
or cylinders. If you request space in
terms of tracks or cylinders, bear in mind
that space in a data set on a direct-access
device is occupied not only Lky blocks of
data, but by control information inserted
by the operating system; if you use small
blocks, the control information can result
in a consideralkle space overhead. The
following reference cards contain takles
that will enakle you to deterrmine the
amount of space you will require:

e 2301 Drum
Order No.

Storage Unit,
GX20-1717

e 2302 Disk
Oorder No.

storage Drive,
GX20-1706

e 2303 Drum
Order No.

Storage Unit,
GX20-1718

e 2311 Disk Storage Drive,
Order No. GX20-1705

e 2314 storage Facility,
Order No. GX20-1710

e 2321 Data Cell Drive,
Oorder No. GX20-1704

e 3330 sSeries Disk Storage,
| Order No. GX20-1920

Chapter 6: Data Sets and Files 89

Chapter 7: Defining Data Sets for Stream Files

This chapter describes how to define data
sets for use with PL/I files that have the
STREAM attribute. It explains how to
create and access data sets with
CONSECUTIVE organization. The essential
parameters of the DD statements used in
creating and accessing these data sets are
summarized in tables, and several examples
of PL/I programs (complete with JCL) are
included to illustrate the text.

Data sets with the STREAM attribute are
processed by stream-oriented transmission,
which allows the PL/I program to ignore
block and record boundaries and treat a
data set as a continuous stream of data
items in character form.

For output, the data management
subroutines of the PL/I library convert the
data items from the program variables into
character form if necessary, and build the
stream of characters into records for
transmission to the data set.

For input, the library subroutines take
records from the data set and separate them
into the data items requested by the
program, converting them into the
appropriate form for assignment to the
program variables.

Because stream-oriented transmission
always treats the data in a data set as a
continuous stream, it can be used only to
process data sets with CONSECUTIVE
organization.

Creating a Data Set

Any data set created using stream-oriented
transmission must have CONSECUTIVE
organization, but it is not necessary to
specify this in the ENVIRONMENT attribute,
since it is the default organization.

Your program deals only with data items,
and not with records and blocks as they
will exist in the data set. Accordingly,
you need not concern yourself with the
actual structure of the data set keyond
specifying a block size (which is always
necessary), unless you propose to use
record-oriented transmission to access the
data set at a later date.

To create a data set, you must give the
operating system certain information either
in your PL/I program or in the DD statement

Chapter 7:

that defines the data set. The follcwing
paragrarhs indicate the essential
information, and discuss some of the
optional information you may surply; the
ENVIRONMENT attribute and the LINESIZE
option are discussed fully in the language
reference manual for this compiler.

ESSENTIAL INFORMATICN

You must supply the following infornation,
sunmmarized in Figure 7-1, when creating a
data set:

e Device that will write or punch ycur
data set (UNIT, S¥SOUT, or VOLUME
parameter of DD statement).

e Block size: you can srecify the block
size either in your PL/I program
(ENVIRONMENT attribute or LINESIZE
option) or in the LD statement (ELKSIZE
subparameter). If you dc¢ not specify a
record length, unklocked records are
assumed and the record length is
determined from the block size. If you
do not specify a record format, U-format
is assumed (except for PRINT files when
v-format is assumed: see "PRINT Files,"”
later in this chapter).

If you want to keep a magnetic-tare or
direct-access data set (that is, you do not
want the operating system tc delete it at
the end of your job), the DL statement must
name the data set and indicate how it is to
be disposed of (DSNAME and DISP
parameters). The DISP parameter alcmne will
suffice if you want to use the data set in
a later step but will not need it after the
end of your job.

When creating a data set cn a direct-
access device, you must specify the amount
of space required for it (SPACE parareter
of DD statement).

If you want your data set stored on a
particular magnetic-tarpe or direct-access
device, you must indicate the volume serial
number in the DD statement (SER or REF
subparameter of VOLUME parameter). If you
do not supply a serial number for a
magnetic-tape data set that you want to
keep, the operating system will allccate
one, inform the operator, and print the
number on your program listing.

If your data set is to fcllow ancther

Defining Data Sets for Stream Files 91

| Parameters of DD Statement |

| Storage Device |
| When required

What you must state | Parameters |

l-«-_--___-__-----____-_—-_-__-——-___---—_—---—------__-_-------_-------_--—_------_--_-I

| Data set to be on
| particulax volume

- - . - - - - - N - " e 45 S T - W T - S e S e - G D - - e - - - -

output device | UNIT= or SYSOUT= or |

Volume serial number| VOLUME=SER=
| VOLUME=REF=

| |

| a1l | Always | | VOLUME=REF* |
| | [=oommommeommeomoooooee e ===
| | | Block size? | DCB‘(BLKSIZE— eee) |
[=== oo ~====mmmmooe- ~smommeemoeooooooo ===
| Direct access only | Always | storage space | SPACE= |
| | required |

[=== mm oo oo oo oo o oo m oo oeooomooooooooooe -oommm-o-ee- --mmm---- |
| Magnetic tape only | Data set not first | Sequence number | LABEL= |
| | in volume and for { | |
[| magnetic tapes that | | |
| | do not have | | |
| | standard labels i | |
[== e oo oo oo e smmmmmmeeee- ===
	Data set to be used		
	by another job step	Disposition	DISP=
	but is not required		
	after end of job {		
Direct access and	======mmrmrmrce e et r et s c e e c e e - - e o e		
standard labeled	Data set to be kept	Disposition	DIspP=
magnetic tape	after end of job	==memmmr e r e ncccnee= e eccecccccan———	
	Name of data set	DSNAME=	
I I			
I |

|*Alternatively, you can specify the block size in your PL/I program by using either |
| the ENVIRONMENT attribute or the LINESIZE option. |

o o e e o o e e e e e e - = - T - - - - - - - ———— - - ¥ |

Figure 7-1. Creating a data set:

data set on a magnetic-tape volume, you
must use the LABEL parameter of the DD
statement to indicate its sequence number
on the tape.

EXAMPLE

The use of stream-oriented transmission to
create a data set on a 2311 disk drive is
shown in Figure 7-2. The data read from
the input stream by the standard file SYSIN
includes a field VREC that contains five
unnamed 7-character subfields; the field
NUM defines the number of these subfields
that contain information. The output file
WORK transmits to the data set the whole of
the field FREC and only those subfields of
VREC that contain information. The data
set has U~format unblocked recoxrds with a
maximum block size of 400 bytes (defined in
the statement that declares the file WORK).
All blocks except the last will contain
exactly 400 bytes.

92 OS PL/I Optimizing Compiler:

essential parameters of DD statement

Accessing a Data Set

A data set accessed using stream-oriented
transmission need not have been created by
stream-oriented transmission, but it must
have CONSECUTIVE organizatiocn, and all the
data in it must be in character form. You
can open the associated file for inrut, and
read the records the data set contains; or
you can open the file for output, and
extend the data set Ly adding records at
the end.

To access a data set, you must identify
it to the operating system in a DD
statement. The following paragrarhs, which
are summarized in Figure 7-3, indicate the
essential information you must include in
the DD statement, and discuss some of the
optional information you may sugrply. The
discussions do not apply to data sets in
the input stream, which are dealt with in
Chapter 6.

Programmer's Guide

//70PT7#2 JOB

//STEP1 EXEC PLIXCLG
//PLI.SYSIN DD *

PEOPLE: PROC OPTIONS (MAIN);

DCL WORK FILE STREAM OUTPUT ENV(U),
1 REC,
2 FREC,
3 NAME CHAR(19),
3 NUM CHAR(1),
3 PAD CHAR(25),
2 VREC CHAR(35),
IN CHAR(80) DEF REC;

ON ENDFILE(SYSIN) GO TO FINISH;

OPEN FILE(WORK) LINESIZE (400) ;

GET FILE (SYSIN) EDIT (IN) (A(80));

PUT FILE(WORK) EDIT(IN) (A(45+7+*NUM));
GO TO MORE;

CLOSE FILE (WORK) ;

END PEOPLE;

MORE:

FINISH:

/%
//GO.WORK DD DSN=PEOPLE, UNIT=2311,SPACE=(CYL, (2,1)),DISP=(NEW,KEEP),
/7 VOL=SER=D186

//GO. SYSIN DD *

R.C.ANDERSON 0 202848 DOCTOR

B. F. BENNETT 2 771239 PLUMBER VICTOR HAZEL

R.E.COLE 5 698635 COOK ELLEN VICTOR JOAN ANN OTTO
J.F.COOPER 5 418915 LAWYER FRANK CAROL DONALD NORMAN BRENDA
A.J.CORNELL 3 237837 BARBER ALBERT ERIC JANET

E.F.FERRIS 4 158636 CARPENTER GERALD ANNA MARY HAROLD

Ve

Figure 7-2. Creating a data set with stream-oriented transmission

ESSENTIAL INFORMATION If the data set is on paper tape cr
punched cards, you must specify the block
size either in your PL/I program
(ENVIRONMENT attribute) or in the CC

If the data set is cataloged, you need statement (BLKSIZE subparameter).
supply only the following information in
the DD statement: If the data set follows another data set
on a magnetic-tape volume, ycu must use the
LABEL parameter of the DD statement to

indicate its sequence nurber on the tape.

¢ The name of the data set (DSHNAME
parameter)., The operating system will
locate the information describing the
data set in the system catalog, and, if
necessary, will request the operator to
mount the volume containing it. MAGNETIC TAPE WITHOUT STANDARD LABELS

e cConfirmation that the data set exists

(DISP parameter). If you open the data
set for output with the intention of
extending it by adding records at the
end, code DISP=MOD; otherwise, to open
the data set for output will result in
its being overwritten.

If the data set is not cataloged, you
must, in addition, specify the device that
will read the data set and, for magnetic-
tape and direct-access devices, give the
serial number of the volume that contains
the data set (UNIT and VOLUME parameters).

Chapter 7:

If a magnetic-tape data set has nonstandard
labels or is unlabeled, you nust specify
the block size either in your PL/I program
(ENVIRONMENT attribute) or in the DD
statement (BLKSIZE subparameter). The
DSNAME parameter is not essential if the
data set is not cataloged.

PL/I data management includes no
facilities for processing ncnstandaxd
labels, which, to the operating system,
appear as data sets preceding or following
your data set. You can either process the

Defining Data Sets for Stream Files 93

| When required | What you must state | Paraneters |
| e e e e ---1
	Name of data set	DSNAME=
Always 0	mem=eemeeececececcceccce e ce e s mm e e e —— -	
	Disposition of data set	DISP=
=== e e e e e mm o mm—momm—— oo I		
	All devices	Input device
If data set not	---==—=-mmmmmcrrr e et e -==	
cataloged	Standard labeled	
	magnetic tape and{Volume serial number	VOLUME=SER=
[direct access	
S i 1		
Magnetic tape: if data set not	Sequence number	LABEL=

|first in volume or which does not | { |
|have standard labels | | |
e ey Sommoe—oomsooeoooo 1
|If data set does not have standard |[Block size? | DCB=(BLKSIZE=...) i
| labels | | |
R e e =-mommoomm e |
{*Alternatively, you can specify the block size in your PL/I program by using either |

| the ENVIRONMENT attribute or the LINESIZE option. |
L o o o o e e e e e o e e e e e e e = ——— " " = " — - -~ o - - - -) |

Figure 7-3. Accessing a data set: essential parameters of DD statement

//70PT7#4 JOB
//STEP1 EXEC PLIXCLG
//PLI.SYSIN DD #*

PEOPLE: PROC OPTIONS(MAIN) ;

DCL WORK FILE STREAM INPUT,
1 REC,
2 FREC,
3 NAME CHAR(19),
3 NUM CHAR(1),
3 SERNO CHAR(7),
3 PROF CHAR(18),
2 VREC CHAR(35),
IN CHAR(80) DEF REC;

ON ENDFILE (WORK) GO TQ FINISH;

OPEN FILE(WORK) ;
MORE: GET FILE(WORK) EDIT (IN,VREC) (A (45) ,A(7*NUM)) ;
PUT FILE(SYSPRINT) SKIP EDIT (IN) (A);
GO TO MORE;
FINISH: CLOSE FILE(WORK) ;
END PEOPLE;
/¥
//GO.WORK DD DSN=PEOPLE,UNIT=2311 ,VOL=SER=D186,DISP=(OLD, KEEP)

Figure 7-4. Accessing a data set with stream-oriented transmission

94 0S PL/I Optimizing Compiler: Programmer's Guide

labels as independent data sets or use the
LABEL parameter of the DD statement to
bypass them; to bypass the labels code
LABEL=(2,NL) or LABEL=(,BLP).

RECORD FORMAT

When using stream-oriented transmission to
access a data set you do not need to know
the record format of the data set (except
when you must specify a block size); each
GET statement transfers a discrete number
of characters to your program from the data
stream.

If you do give record format
information, it must be compatible with the
actual structure of the data set. For
example, if a data set is created with F-
format records, a record size of 600 bytes,
and a block size of 3600 bytes, you can
access the records as if they are U-format
with a maximum block size of 3600 bytes;
but if you specify a block size of 3500
bytes, your data will be truncated.

EXAMPLE

The program in Figure 7-4 reads the data
set created by the program in Figure 7-2
and uses the standard file SYSPRINr to list
the data it contains. (SYSPRINT is
discussed later in this chapter.) Each set
of data is read, by the GET statement, into
two vdriables: FREC, which always contains
45 characters; and VREC, which always
containg 35 characters. At each execution
of the GET statement, VREC consists of the
number of characters generated by the
expression 7%¥NUM, together with sufficient
blanks to bring the total number of
characters to 35. The DISP parameter of the
DD statement could read simply DISP=0LD; if
the second term is omitted, an existing
data set will not be deleted.

Print Files

Both the operating system and the PL/I
language include features that facilitate
the formatting of printed output. The
operating system allows you to use the
first byte of each record for a printer
control code; the control codes, which are
not printed, cause the printer to skip to a
new line or page. Tables of printer control
codes are given in Figures 8-5 and 8-6. In
a PL/I program, the use of a PRINT file
provides a convenient means of controlling

Chapter 7:

the layout of printed output in stream-
oriented transmission; the compiler
automatically inserts printer contrcl codes
in response to the PAGE, SKIP, and LINE
options and format items.

You can apply the FRINT attribute to any
STREAM OUTPUT file, even if you dc nct
intend to print the associated data set
directly. When a PRINT file is associated
with a magnetic-tape or direct-access data
set, the printer control codes have no
effect on the layout of the data set, but
appear as part of the data in the records.

The compiler reserves the first byte of
each record transmitted by a PRINT file for
an ANS printer control code, and inserts
the appropriate codes automatically. A
PRINT file uses only the five printer
control codes shown in Figure 7-5.

Code Acticn

b (blank) Space 1 line kefore printing
0 Space 2 lines kefore printing
- Space 3 lines before rrinting
+ No space before printing

1 Start new page

Figure 7-5. Printer control codes used
by a PRINT file

The compiler handles the FAGE, SKIP, and
LINE options or format items by padding the
remainder of the current record with blanks
and inserting the approrpriate contrcl code
in the next record. If SKIF or LINE
specifies more than a three line space, the
compiler inserts sufficient blank records
with aprropriate control codes to
accomplish the required spacing. In the
absence of a printer control option or
format item, when a record is full the
compiler inserts a blank code (single line
space) in the first byte of the next
record.

RECORD FORMAT

You can limit the length of the printed
line produced by a PRINT file either by
specifying a record length in your PL/I
program (ENVIRONMENT attribute), in a DD
statement, or by giving a line size in an
OPEN statement (LINESIZE option). The
record length must include the extra byte
for the printer control code, that is, it
must be one byte larger than the length of
the printed line (five bytes larger for v-
format records). The value you specify in
the LINESIZE option refers to the number of

Defining Data Sets for Stream Files 95

//70PT7#6 JOB

//STEP1 EXEC PLIXCLG
//PLI.SYSIN DD *

SINE: PROC OPTIONS (MAIN) ;

DCL TABLE FILE STREAM OUTPUT PRINT,

TITLE CHAR(13) INIT('NATURAL SINES'),

HEADINGS CHAR(90) INIT('
24 30 36 42
PGNO FIXED DEC(2) INIT(1),
FINISH BIT(1) INIT('0'B),
VALUES (0:359,0:9) FLOAT DEC(6) ;

ON ENDPAGE (TABLE) BEGIN;

6 12 18
54%),

PUT FILE(TABLE) EDIT('PAGE',PGNO) (LINE(55),COL(87) ,A,F(3));

IF FINISH='0'B THEN DO;
PGNO=PGNO+1;
PUT FILE (TABLE) EDIT(TITLE||"

(CONT' *D) ' ,HEADINGS)

(PAGE,A,SKIP(3),R);

PUT FILE(TABLE) SKIP(2);
END;
END;

DO I=0 to 359;
DO J=0 TO 9;
VALUES (I ,J)=SIND(I+J/10);
END;
END;

OPEN FILE(TABLE) PAGESIZE(52) LINESIZE(93);
PUT FILE(TABLE) EDIT (TITLE,HEADINGS) (PAGE,A,SKIP(3),A);

DO I=0 TO 71;
PUT FILE (TABLE) SKIP(2);
DO J=0 TO 4;
K=5+%I+J;

PUT FILE(TABLE) EDIT(K,VALUES(K,*))(F(3),10 F(9,4));

END;
END;
FINISH='1'B;
PUT FILE(TABLE) LINE(54);
CLOSE FILE(TABLE);
END SINE;
VA

//GO.TABLE DD DSN=SINES,UNIT=2311,DISP=(NEW,CATLG),VOI=SER=D186,

77/ SPACE=(CYL, (1,1))

Figure 7-6.

characters in the printed line; the
compiler adds the printer control bytes.

The blocking of records has no effect on
the appearance of the output produced by a
PRINT file, but it does result in more
efficient use of auxiliary storage when the
file is associated with a data set on a
magnetic-tape or direct-access device. If
you use the LINESIZE option, ensure that
your line size is compatible with your
block size: for F-format records, block
size must be an exact multiple of (line
size + 1); for v-format records, block size
must be at least nine bytes greater than
line size.

96 0S PL/I Optimizing Compiler:

Creating a data set using a PRINT file

Although you can vary the line size for
a PRINT file during execution by closing
the file and opening it again with a new
line size, you must do so with caution if
you are using the PRINT file to create a
data set on a magnetic-tape or direct-
access device: you cannot change the
record format established for the data set
when the file is first opened. If the 1line
size specified in an OPEN statement
conflicts with the record format already
established, the UNDEFINEDFILE condition
will be raised; to prevent this, either
specify v-format records with a block size
at least nine bytes greater than the
maximum line size you intend to use, or
ensure that the first OPEN statement
specifies the maximum line size. (Output
destined for the printer may be stored
temporarily on-a direct-access device,

Programmer's Guide

unless you specify a printer by using
UNIT=, even if you intend it to be fed
directly to the printer.)

Since PRINT files have a default line
size of 120 characters, you need not give
any record format information for them.
the absence of other information, the
compiler assumes V-format fecords; the
complete default information is:

In

BLKSIZE=129
LRECL=125

RECFM=VBA

- —— . - . - - - . . — D W W = T - - - - .

IBMBSTA1l CSECT
ENTRY IBMBSTAB
IBMBSTAB EQU *

r
|

1
|
|
| |
I DC C'IBMBSTAB' ‘ |
| DC H'14' OFFSET OF TAB COUNT |
| DC H'60' PAGESIZE |
| DC H'120' LINESIZE [
1 DC H'0' PAGELENGTH]
| * (FOR TERMINALS) |
| DC 3H'0' FILLERS [
|* (RESERVED FOR I
|* FUTURE USE)
*
: DC H'S' TAB COUNT
[DC H'25' TAB 1
| DC H'49' TAB 2
| DC H'73' TAB 3
| DC H'97' TAB U4
| DC H'121' TAB 5
| END
Lo o o o e v o e o e i > T S = - - = - - - - 4

Tab control library module
IBMBSTAB

Figqure 7-7.

EXAMPLE

Figure 7-6 illustrates the use of a PRINT
file and the printing options of the
stream-oriented transmission statements to
format & table and write it onto magnetic
tape for printing on a later occasion. The
table comprises the natural sines of the
angles from 0° to 359° 54' in steps of 6'.

The statements in the ENDPAGE on-unit
insert a page number at the bottom of each
page, and set up the headings for the
following page. After the last line of the
table has been written, the statement:

Chapter 7:

PUT FILE (TABLE) LINE(S")‘

causes the ENDPAGE condition to be raised
to ensure that a number appears at the foot
of the last page; the preceding statement
sets the flag FINISH to prevent a further
set of headings from being written.

The DD statement defining the data set
created by this program includes no record-
format information; the compiler infers the
following from the file declaration and the
line size specified in the statement that
opens the file TABLE:

Record format = VBA (the default for a
PRINT file)

98 (line size + one byte
for printer control
character + four bytes for
record control field)

Record size =

Block size = 102 (record length + four
bytes for block control

field)
The program in Figure 8-10 uses record-

oriented transmission to print the table
created by the program in Figure 7-6.

Tab Control Table

Data-directed and list-directed output to a
PRINT file is automatically aligned on
preset tabulator positions; the tab
settings are stored in a table, an
assembler language control section, in the
gran?ient library module IBMBSTAB (Figure
-7.

The standard settings are given in the
language reference manual for this
compiler. The functions of the fields in
the table are as follows:

OFFSET OF Halfword binary integer that

TAB COUNT: defines the field that
indicates the number of tabs
to be used.

PAGESIZE: Halfword binary integer that
defines the default page
size.

LINESIZE: Halfword binary integer that
defines the default line size.

PAGELENGTH: Halfword binary integer that

defines the default page
length for printing at a
terminal. The page length is
the number of lines between
perforations. It is used for

Defining Data Sets for Stream Files 97

r
|

| DCL 1 PLITABS STATIC EXT,
| 2 (OFFSET INIT (6),

| PAGESIZE INIT(60),
I LINESIZE INIT (120),
!
|
|
|
L

— e . .

NO_OF_TABS INIT (3),

TAB1 INIT(30),

TAB2 INIT(60), |

TAB3 INIT(90)) FIXED BIN(15,0); |
4

Figure 7-8. PL/I structure PLITAES for
modifying the standaxd tab
settings (alternative
method)

output to the terminal in a
TSO environment because,
unlike a printer, the terminal
does not use a control tage to
determine page length. The
default value is zero which is
a special convention to
indicate unformatted output.
For further information on how
the output is formatted at a
terminal, refer to the TSO
Terminal User's Guide.

FILLERS: Reserved for future use.

Tab count: Number of tab position entries
in table (maximum 255). If
tab count = 0, any specified
tab positions are ignored:
each data item is positioned
at the start of a new line.
Taby-Tabp Tab positions within the
print line, The first position
is numbered 1, and the highest
position is numbered 255. The
value of each tab should be
greater than that of the tab
preceding it in the table;
otherwise, it will be ignored.
The first data field in the
printed output begins at the
next available tab position.

The standard PL/I tab settings in
IBMBSTAB can be overriden. If the linkage
editor can resolve a reference to PLITABS
generated by the compiler, the transient
library module IBMBSTAB will not be used.
Instead, the stream-oriented input/output
routines will refer to the control section
PLITABS for the tab settings.

There are two methods of altering the
tab settings for a particular program.

One method is to create an assemblexr-
language control section called PLITABS and

98 0OS PL/I Optimizing Compiler:

include it in the link-editing of the
programe.

The alternative method is to include a
PL/I structure in the source program. The
organization of the structure is similar to
the assembler-language control section for
PLITABS given in Figure 7-7. The name of
the structure must ke PLITABS also and it
must be declared STATIC and EXTERNAL. An
example of a PL/I structure to create three
tab settings in positions 30, 60, and 90,
and use the defaults for page size and line
size, is given in Figure 7-8.

The equivalent fields for PAGELENGTH and
FILLERS are omitted from the structure, and
the value given in the offset field is set
to 6.

Note that the PAGESIZE field in PLITABS
is used by PLIDUMP to define the pagesize
for the dump output.

Standard Files

PL/I includes two standard files, SYSIN for
input and SYSPRINT for output. If ycur
program includes a GET statement that does
not include the FILE option, the congiler
inserts the file name SYSIN; if it includes
a PUT statement without the FILE ortion,
the comriler inserts the nawmé SYSPRINT.

If you do not declare SYSPFRINT, the
compiler will give the file the attribute
PRINT in addition to the norral default
attributes; the complete file declaration
will be:

SYSPRINT FILE STREAM OUTPUT PRINT EXTERNAL

Ssince SYSPRINT is a PRINT file, the
compiler also supplies a default line size
of 120 characters and a V-fcrmat record.
You need give only a minimum of information
in the corresponding DD staterxent; if your
installation uses the usual convention that
the system output device of class A is a
printer, the following is sufficient:

//SYSPRINT DD SYSOUT=A

If you use one of the IBM-supplied
cataloged procedures to execute your
program, even this DD statement is not
required, since it is included in the GO
procedure step.

You can override the attributes given to
SYSPRINT by the compiler by explicitly
declaring or opening the file. If you do
so, bear in mind that this file is also
used by the error-handling routines of the
compiler, and that any change you make in

Programmer 's Guide

the format of the output from SYSPRINT will
also apply to the format of execution-time
error messages. When an error message is
printed, eight blanks are inserted at the
|start of each line except the first. If
|you specify a line size of less than 72
characters, the messages will not be output
to SYSPRINT.

The compiler does not supply any special
attributes for the standard input file
SYSIN; if you do not declare it, it
receives only the normal default
attributes. The data set associated with
SYSIN is usually in the input stream; if it
is not in the input stream, you must supply
full DD information.

Chapter 7:

Defining Data Sets for Stream Files

99

Chapter 8: Defining Data Sets for Record Files

This chapter describes how to define data
sets for use with PL/I files that have the
RECORD attribute. It explains how to create
and access data sets for the three types of
organization: CONSECUTIVE, INDEXED, and
REGIONAL recognized by PL/I, and how to
create and access data sets for
teleprocessing. The essential parameters of
the DD statements used in creating and
accessing these data sets are summarized in
tables, and several examples of PL/I
programs (complete with JCL) are included
to illustrate the text.

Data sets with the RECORD attribute are
processed by record-oriented transmission
in which data is transmitted to and from
auxiliary storage exactly as it appears in
the program variables; no data conversion
takes place. A record in a data set
corresponds to a variable in the program.

Direct access Always |

Data set not first in |
volume and for magnetic |
tapes that do not have |
standard labels |

Magnetic tape |
only |
|
I

Direct access
and standard |
labeled magnetic|
tape |
| Data set to be kept |
| after end of job |

Data set to be used by |
another job step but not|
required at end of job |

| Data set to be on |
| particular device |
|

|*Alternatively, you can specify the block size in your PL/I program by

| ENVIRONMENT attribute.
Figure 8-1. Creating a CONSECUTIVE data set:

Chapter

———_—— " T > T . - - - - — - -

Consecutive Data Sets

A data set with CONSECUTIVE crganization
can exist on any type of auxiliary storage
device. Records are stored sequentially in
the order in which you write them.

CREATING A CONSECUTIVE DATA SET

When you create a CONSECUTIVE data set you
must specify:

®* Device that will write or punch your
data set (UNIT, SYSOUT, or VOLUME
parameter of DD statement).

Block size: you can specify the block
size either in your PL/I program
(ENVIRONMENT attrikute) or in the DD
statement (BLKSIZE subparameter). If
you do not specify a record length,
unblocked records are assumed and the
record length is determined from the
block size. If you do not specify a
record format, U-format is assumed.

What you must state | Parameters |
--- |
Output device | UNIT= orx |
| s¥souT= or |
| VOLUME=REF= |

Block size? | DCB=(BLKSIZE=... |

-_--—--_-—----—---__---_--___---__----_--_~|

Storage space required SPACE= |
|

------------------------------ -------------l
Sequence number LABEL= |
|

I |

I |
-- -—-l
Disposition DISP= |
|

|

--- '
Disposition | DIspP= |
......................... ------—-—---------I
Name of data set | DSNAME= |
........... ‘--------------_-----____-__-__--l
Volume serial number | VOLUME=SER= |
| or |

| VOLUME=REF= |

...................... --—-------------—----'
using the |

I
___ J

essential parameters of LD statement

8: Defining Data Sets for Record Files 101

If you want to keep a magnetic-tape or
direct-access data set (that is, you do not
want the operating system to delete it at
the end of your job), the DD statement must
name the data set and indicate how it is to
be disposed of (DSNAME and LCISP
parameters). The DISP parameter alone will
suffice if you want to use the data set in
a later step but will not need it after the
end of your job.

When creating a data set ¢n a direct-
access device, you must specify the amount
of space required for it (SPACE raraneter
of DD statement).

If you want your data set stored on a
particular magnetic-tape or direct-access
device, you must indicate the vclume serial
nurber in the DD statement (SER or REF
subparameter of VOLUME paranmeter).

If you do not supply a serial nunber for
a magnetic-tape data set that you want to
keep, the operating system will allccate
one, inform the operator, and print the
number on your progranr listing.

If your data set is to fcllcw ancther
data set on a magnetic-tape volume, you
must use the LABEL parameter of the DD
statement to indicate its sequence number
on the tape. The essential information for
creating a CONSECUTIVE data set is
summarized in Figure 8-1.

The DCB subparameters of the DD
statement that apply to CONSECUTIVE data
sets are listed in Figure 8-2; they are
described in Appendix A. You can specify
record format (RECFM), block size
(BLKSIZE), record size (LRECL), and number
of buffers (BUFNO) in the ENVIRONMENT
attribute of the DECLARE statement in your
PL/I program instead of in a DD statement.

ACCESSING A CONSECUTIVE DATA SET

You can access a CONSECUTIVE data set in
three ways. You can open the associated
file for input, and read the recoxrds the
data set contains; you can open the file
for output, and extend the data set by
adding records at the end; or you can open
the file for update, and read and rewrite
each record in turn. (The operating system
does not permit updating a CONSECUTIVE data
set on magnetic tape; you must read the
data set and write the updated records into
a new data set.)

102 0S PL/I Optimizing Compiler:

To access a data set, you must identify
it to the operating system in a DD
statement. The following paragrarhs, which
are summarized in Figure 8-3, indicate the
essential information you must include in
the DD statement, and discuss some of the
optional information you may supply. The
discussions do not apply to data sets in
the input stream, which are dealt with in
Chapter 6.

recording technique for
7-track tape

|Subparameter | Specifies |
l ...
| BLKSIZE | Maximum number of bytes per|
| | block

| BUFNO | Number of data management |
I | buffers |
| CODE | Paper tape: code in which |
i | the tape is punched |
DEN	Magnetic tape: tape
	recording density
FUNC	Card reader or punch:
	function to be performed
LRECL	Maximum number of bytes per
	record
MODE	Card reader or punch: mode
	or operation (column binary
	or EBCDIC and read column

	eliminate or optical mark
	read
OPTCD	Optional data-management
	services and data-set
	attributes
PRTSP	Printer line spacing (0, 1,
	2, or 3)
RECFM	Record format and
	characteristics
STACK	Card reader or punch:
	stacker selection
TRTCH	Magnetic tape: tape
L

Figure 8-2. DCB subparameters for

CONSECUTIVE data sets

Essential Information

If the data set is cataloged, you need
supply only the following informaticn in
the DD statement:

e The name of the data set (DSNAME
parameter). The orerating systemr will
locate the information describing the
data set in the system catalog, and, if

Programmer 's Guide

| Parameters of DD Statement |

|_---_n-_____---_-------____--___--——--___-__

----____-___--__---------------------—-_-|

| When required | What you must state | Parameters |
R ===
| | Name of data set | DSNAME= |
|Always Rt et Dt D D Ll il D |
| | Disposition of data set | DISP= |
P e |
| |A1ll devices | Input device | UNIT= or VOLUME=REF= |
|IIf data set not |----------c-eccecrmcrrm e s e -————— s~ -]
cataloged	standard labeled		
	magnetic tape and	Volume serial number	VOLUME=SER=
	direct access		
e ===			
Magnetic tape: if data set not	Sequence number	LABEL= i	
first in volume or which does not			
jhave standard labels			
__ ------—------'			
If data set does not have standard	Block sizel	DCB=(BLKSIZE=...)	

|labels |

——— o ———— " — T~ ———— T~ — " -~

____--_____-_-__---_-_-_--_--_-_-_--_----_-‘

jtAlternatively, you can specify the block size in your PL/I program by using either |
| the ENVIRONMENT attribute or the LINESIZE option. |

b e e e e e e e e e e e - - ————

Figure 8-3.

necessary, will request the operator to
mount the volume containing it.

e confirmation that the data set exists
(DISP parameter). If you open the data
set for output with the intention of
extending it by adding records at the
end, code DISP=MOD; otherwise, to open
the data set for output will result in
its being overwritten.

If the data set is not cataloged, you
must, in addition, specify the device that
will read the data set and, for magnetic-
tape and direct-access devices, give the
serial number of the volume that contains
the data set (UNIT and VOLUME parameters).

If the data set is on paper tape or
punched cards, you must specify the block
size either in your PL/I program
(ENVIRONMENT attribute) or in the DD
statement (BLKSIZE subparameter).

If the data set follows another data set
on a magnetic-tape volume, you must use the
LABEL parameter of the DD statement to
indicate its sequence number on the tape.

Magnetic Tape Without Standard Lakels

If a magnetic-tape data set has nonstandard
labels or is unlabeled, you must specify
the block size either in your PL/I program

Chapter 8:

-- -———l

Accessing a CONSECUTIVE data set: essential parameters of DD statement

(ENVIRONMENT attribute) or in the DD
statement (BLKSIZE subparameter). The
DSNAME parameter is nct essential if the
data set is not cataloged.

~ PL/I data management includes nc
facilities for processing nonstandard
labels which to the operating systen agppear
as data sets preceding or following your
data set. You can either prccess the
labels as independent data sets or use the
LABEL parameter of the DD staterent to
bypass them; to bypass the labels code
LABEL=(2,NL) or LABEL=(,BLP).

Record Format

If you give record-format informaticn, it
must be compatikle with the actual
structure of the data set. Fcr exanrle, if
a data set is created with F-format
records, a record size of 600 bytes, and a
block size of 3600 bytes, you can access
the records as if they are U-fcrmat with a
maximam block size of 3600 bytes; but if
you specify a block size of 3500 bytes,
your data will ke truncated.

EXAMPLE OF CONSECUTIVE DATA SETS

Creating and accessing CONSECUTIVE data

Defining Data Sets for Record Files 103

//70PT8#4 JOB

//STEP1 EXEC PLIXCIG
//PLI.SYSIN DD #

MERGE: PROC OPTIONS(MAIN);

DCL (IN1,IN2,0UT) FILE RECORD SEQUENTIAL,
(ITEML BASED(A) ,ITEM2 BASED(B)) CHAR(80) ;

ON ENDFILE(INl) BEGIN;
ON ENDFILE(IN2) GO TO FINISH;
NEXT2: WRITE FILE(OUT) FROM(ITEM2);
READ FILE(IN2) SET(B);
GO TO NEXT2;
END;

ON ENDFILE (IN2) BEGIN;
ON ENDFILE(IN1l) GO TO FINISH;
NEXT1: WRITE FILE (OUT) FROM(ITEM1) ;
READ FILE(IN1l) SET(A);
GO TO NEXT1;
END;

OPEN FILE(IN1l) INPUT,
FILE(IN2) INPUT,
FILE(OUT) OUTPUT;

READ FILE(IN1) SET(A);

READ FILE(IN2) SET(B);

NEXT: IF ITEML>ITEM2 THEN DO;
WRITE FILE(OUT) FROM(ITEM2) ;
READ FILE(IN2) SET (B);

GO TO NEXT;
END;

ELSE DO;

WRITE FILE(OUT) FROM(ITEM1);
READ FILE(IN1) SET(A);
GO TO NEXT;

END;
FINISH: CLOSE FILE(IN1),FILE(IN2),FILE(OUT);
END MERGE;
/*
//7GO.0UT DD DSN=DS3,UNIT=2311,DCPE=(RECFM=FB,BLKSIZE=400, IRECI=80),
/7 DISP=(NEW,KEEP),VOL=SER=D186,SPACE=(CYL, (1,1))

//7GO.IN1 DD *

(insert here data to be included in the input stream)
//GO.IN2 DD *

(insert here data to be included in the input stream)
/%

Figure 8-4. Creating and accessing a CONSECUTIVE data set

sets on magnetic tape are illustrated in PUNCHING CARDS AND PRINTING

the program of Figure 8-4. The program
merges the contents of two existing data
sets, DSl and DS2, and writes thew onto a

and record-oriented

new data set, DS3; each of the original You cannot use a PRINT file fcor reccrd-
data sets contains 15-byte fixed-length oriented transmission,

records arranged in EBCDIC collating transmission statements cannct include the
sequence. The two input files, IN1 and printing options (PAGE, SKIP, etc). You can
IN2, have the default attribute BUFFERED, still exercise some control cver the layout
and locate mode is used to read recorxds of printed output by including a printer
from the associated data sets into the control code as the first byte of each of
respective buffers. your cutput records; you can alsc use

similar control codes to select the stacker
to which cards punched by ycur prcgram are

fed.

104 0S PL/I Optimizing Compiler: Programmer's Guide

The operating system recognizes two
types of code for printer and card punch
commands, ANS code and machine code. You
must indicate which code you are using,
either in your PL/I program (ENVIRONMENT
attribute), or in the DD statement (RECFM
subparameter). If you specify one of these
codes, but transmit your data to a device
other than a printer or a card punch, the
operating system will transmit the control
bytes as part of your records. If you use
an invalid control code, "space 1 line" or
"stacker 1" will be assumed.

The ANS control codes, which are listed
in Figure 8-5, cause the specified action
to occur before the associated record is
printed or punched.

The machine control codes differ
according to the type of device. The codes
for the 1403 Printer are listed in Figure
8.6, and Figure 8-7 gives those for the
2540 card Read Funch. Contrcl codes for
the 3525 card printer are given in Figures
8-8 and 8-9.

Chapter 8:

| space 1 line before printing
| (blank code)

| Space 2 lines before printing
| space 3 lines before printing
| suppress space before printing
| skip to channel 1
| skip to channel 2
| Skip to channel 3
| Skip to channel 4
| Skip to channel 5
| skip to channel 6
| Skip to channel 7
| skip to channel 8
| Skip to channel 9
| Skip to channel 10
| skip to channel 11
| Skip to channel 12
| select stacker 1

| Select stacker 2

[}
]
|
]
1
1
1
|
[}
t
|
|
t
[]
|
t
t
1
[}
l
1
[}
[}
[]
]
t
[}
[}
]
t
[}
]
]
t
[]
]
]
[}
[}
]
'

| The channel numbers refer to the printer|
| carriage control tape. (See IBM 1403 |
| Printer Component Description.) |
L

Figure 8-5. ANS printer and card punch
control codes

Defining Data Sets for Reccrd Files 105

s = o —— S T —— — — —— — ———— ~ —————— - —— - - = - — - - - - -

Print and then act | Action | Act immediately
| | (no printing)

- - — - - - — - —— — — — —— Y — " - - - - W T~ - " W " — - - - - -

00000001 Print only (no space) -
00001011

r
I |
| |
| |
I I
| |
00001001	Space 1 line	
00010001	Space 2 lines	00010011
00011001	Space 3 lines	00011011
10001001	skip to channel 1	10001011
10010001 I Skip to channel 2	10010011]	
10011001 [Skip to channel 3 I 10011011		
I 10100001	Skip to channel 4	10100011
10101001 I Skip to channel 5	10101011	
10110001	Skip to channel 6	10110011
10111001	Skip to channel 7	10111011
I 11000001	Skip to channel 8] 11¢00011	
11001001	Skip to channel 9	11001011
I 11010001	Skip to channel 10	11010011
11011001	Skip to channel 11	11011011
11100001	Skip to channel 12	11100011
=== === o o oo e oo oo oooooooo—osoooooos ===		
The channel numbers refer to the printer carriage control tape. (See IBM 1403 Printer		
Component Description.)		
l. —— - > D G ame = J

Figure 8-6. 1403 printer control codes

""""""""""""""""""""""""""""""""" b} r L]
| code byte | Action | | CTL360 cocde | Action |
== === = m oo s | | bytes | l
| 00000001 | Select stacker 1 | | == er e e e e e |
01000001 | select stacker 2 | | 00001101 | Print on line 1 |
| 10000001 | Sselect stacker 3 | | 00010101 | Print on line 2 |
e e e e — e —— ———————— e —————— 4 | 00011101 | Print on line 3 |
| 00100101 | Print on line 4 |
Figure 8-7. 2540 Card Read Punch | 00101101 | Print on line 5 |
control characters | 00110101 | Print on line 6 |
| 00111101 | Print on line 7 |
""""""""""""""""""""""" 1 01000101 | Print on line 8
ICTLASA code| Action ! } 01001101 | Print on line 9 |
| == s e s oo e e I | o1010101 | Print on line 10 |
I b ISpace 1 line and print | | o1011101 | Print on line 11 |
! 0 |Space 2 lines and print | o1100101 | Print on line 12 |
! - |Space 3 lines and print | | 91101101 | Print on line 13
| 1 ISkip to channel 1 and print | | (1110101 | Print on line 14
! 2 |Skip to channel 2 and print | | 91111101 | Print on line 15
| 3 {Skip to channel 3 and print | | 319000101 | Print on line 16
| p |Skip to channel 4 and print | | 10001101 | Print on line 17
l > [Skip to channel 5 and print | | 30010101 | Print on line 18 |
| 6 ISkip to channel 6 and print | | 30011101 | Print on line 19 |
| 7 |Skip to channel 7 and print | | 10100101 | Print on line 20 |
l 8 [Skip to channel 8 and print [| 30101101 | Print on line 21
| J |Skip to channel 9 and print | | 39110101 | Print on line 22
| a [Skip to channel 10 and print | ;30111101 | Print on line 23
| B |Skip to channel 11 and print | | 33000101 | Print on line 24 |
! c Iskip to channel 12 and print | | 31001101 | Print on line 25 |
--- lecmcr e rcc v e e e ac e e e ————=]
Figure 8-8. 3525 card printer control Figure 8-9. 3525 card printer control
code (CTLASR) codes (CTL360)

106 OS PL/I Optimizing Compiler: Programmer's Guide

//0PT8#10 JoB

//STEP1 EXEC PLIXCLG
//PLI.SYSIN DD #*

PRT: PROC OPTIONS (MAIN);

DCL TABLE FILE RECORD INPUT SEQUENTIAL,
PRINTER FILE RECORD OUTPUT SEQL ENV(V BLKSIZE(102) CTLASA),

LINE CHAR(94) VAR;
ON ENDFILE(TABLE) GO TO FINISH;

OPEN FILE (TABLE) ,FILE (PRINTER) ;

READ FILE(TABLE) INTO(LINE);

WRITE FILE(PRINTER) FROM (LINE) ;

GO TO NEXT;

FINISH: CLOSE FILE(TABLE) ,FILE(PRINTER) ;
END PRT;

NEXT:

/¥
//7GO.TABLE DD DSNAME=SINES,DISP=0OLD
//GO.PRINTER DD SYSOUT=A

Figure 8-10.

There are two types of command for the
printer, one causing the action to occur
after the record has been transmitted, and
the other producing immediate action but
transmitting no data (you must include the
second type of command in a blank record).

The essential requirements for producing
printed output or punched cards are exactly
the same as those for creating any other
CONSECUTIVE data set (described above).

For a printer, if you do not use one of the
control codes, all data will be printed
sequentially, with no spaces between
records; each block will be interpreted as
the start of a new line. When you specify
a block size for a printer or card punch,
and are using one of the control codes,
include the control bytes in your block
size; for example, if you want to print
lines of 100 characters, specify a block
size of 101.

Example

The program in Figure 8-10 uses record-
oriented transmission to read and print the
contents of the data set SINES, created by
the PRINT file in Figure 7-6. Since the
data set SINES is cataloged, only two
parameters are required in the DD statement
that defines it. The output file PRINTER
is declared with the ENVIRONMENT option
CTLASA, specifying that the first byte of
each record will be interpreted as an ANS

Chapter 8:

Printing with record-oriented transmission

printer control code. The information
given in the ENVIRONMENT attribute cculd
alternatively have keen given in the DD
statement, as follows:

DCB=(RECFM=VA,BLKSIZE<=102)

Indexed Data Sets

A data set with INDEXED organization can
exist only on a direct-access device. Each
record in the data set is identified by a
key that is recorded with the reccrd. A key
is a string of not more than 255
characters; all the keys in a data set must
have the same length. The reccrds in the
data set are arranged according to the
collating sequence of their keys. Once an
INDEXED data set has been created, the keys
facilitate the direct retrieval, addition,
and deletion of records.

INDEXES

To provide faster access to the reccrds in
the data set, the operating system creates
and maintains a system of indexes tc the
records in the data set. The lowest level
of index is the track index. There is a
track index for each cylinder in the data
set; it occupies the first track (or
tracks) of the cylinder, and lists the keys
of the last records on each track in the
cylinder. A search can then be directed to
the first track that has a key that is

Defining Data Sets for Record Files 107

Master index

450 900 | 2000
®
Cylinder index
500 | 600 700 900 |-t
1000 | 1200 | 1500 | 2000 [®
Cylinder 1 Cylinder 11 Cylinder 12
Track
el 100 | 100 | 200 | 200 | jrqex b 1500 | L 2000
Data Data Data Data Prime

10 20 40 100 | data

Data | Data | Data Data | Prime
150 175 190 200 | data

Overflow

Fiqure 8-11.

higher than or equal to the key of the
required record.

If the data set occupies more than one
cylinder, the operating system develops a
higher level index called a cylinder index.
Each entry in the cylinder index identifies
the key of the last record in the cylinder.
To increase the speed of searching the
cylinder index, you can request in a DD
statement that the operating system develop
a master index for a specified number of
cylinders; you can have up to three levels
of master index; Figure 8-11 illustrates
the index structure. The part of the data
set that contains the cylinder and master
indexes is termed the index area.

When an INDEXED data set is created, all
the records are written in what is called
the prime data area. If more records are
added later, the operating system does not
rearrange the entire data set; it inserts
each new record in the appropriate position
and moves up the other records on the same
track. Any records forced off the track by
the insertion of a new record are placed in
an overflow area. The overflow area can
consist either of a number of tracks set
aside in each cylinder for the overflow
records from that cylinder (cylinder
overflow area), or a separate area for all
overflow records (independent overflow
area). Figure 8-12 shows how records are

108 0S PL/I Optimizing Compiler:

Index structure of an INDEXED data set

added to an INDEXED data set.

Each entry in the track index consists
of two rarts:

1. The normal entry, which points to the
last record on the track.

2. The overflow entry, which contains the
key of the first record transferred to
the overflow area and also points to
the last record transferred from the
track to the overflow area.

If there are no overflow records from
the track, both index entries point to the
last record on the track. An additional
field is added to each record that is
placed in the overflow area. It points to
the previous record transferred from the
same track; the first record from each
track is linked to the corresponding
overflow entry in the track index.

CREATING AN INDEXED DATA SET

When you create an INDEXED data set, your
program must write the records in the data
set sequentially in the order of ascending
key values; the associated file must be
opened for SEQUENTIAL OUTPUT.

Programmer's Guide

Normal entry

Overflow entry

[} T] 0
Track | Track 1
00 1 100 Track 200 E % 200 Tragk | Thaek
10 20 40 100
Prime
data
150 175 190 200
Overflow
) T T T
1 Track 1 Track 3 I Track 1 Track 3 Track
40 [1 100 |L record 1 190 : 2 200 : record 2 index
10 20 25 40
‘ Prime
data
101 150 175 190
I 1
100 : Tra1ck 200 : Trazck Overflow
i [
) T T T
Track Track 3 Track 1 Track 3 Track
| 1 |
26 : 1 100 ' record 3 190 : 2 200 : record 4 index
10 20 25 26
Prime
Data
101 150 175 190
1] T T B
Track Track Track 3 1 Track 3
| 1)
100 ! 1 200 ! 2 40 | record 1 199 ! record 2 Overflow

Figure 8-12.

Adding records to

Chapter 8:

an INDEXED data set

Defining Data

Sets for Reccrd Files 109

You can use a single DD statemznt to
define the whole of the data set (index
area, prime area, and overflow area), or
you can use two or three statements to
define the areas independently. If you use
two DD statements, you can define either
the index area and the prime area together,
or the prime area and the overflow area
together.

If you want the whole of the data set to
be on a single volume, there is no
advantage to be gained by using more than
one DD statement except to define an
independent overflow area (see "Overflow
Area," later in this chapter). But, if you
use separate DD statements to define the
index and/or overflow area on volumes
separate from that which contains the prime
area, you will increase the speed of direct
access to the records in the data set by
reducing the number of access mechanism
movements required.

When you use two or three DD statements
to define an INDEXED data set, the
statements must appear in the order: index
area; prime area; overflow area. The DD
statement must have a name (ddname), but
the name fields of a second or third DD
statement must be blank. The DD statements
for the prime and overflow areas must
specify the same type of unit (UNIT
parameter). You must include all the DCB
information for the data set in the first
DD statement; DCB=DSORG=IS will suffice in
the other statemernts.

An INDEXED data set consisting of fixed-
length records can be extended by adding
records sequentially at the end, until the
original space allocated for the prime data
is filled. The corresponding file must be
opened for sequential output and you must
include DISP=MOD in the DD statement.

Essential Information

To create an INDEXED data set, you must
give the operating system certain
information either in your PL/I program or
in the DD statement that defines the data
set. The following paragraphs indicate the
essential information, and discuss some of
the optional information you may supply:
the ENVIRONMENT attribute and the LINESIZE
option are discussed fully in the language
reference manual for this compiler.

You must supply the following
information when creating an INDEXED data
set:

e Device that will write or punch your
data set (UNIT or VOLUME parameter of DD

110 0S PL/I Optimizing Compiler:

statement).

e Block size: you can specify the klock
size either in your PL/I program
(ENVIRONMENT attribute or LINESIZE
option) or in the DD statement (BLKSIZE
subparameter). If you dc not specify a
record length, unltlocked records are
assumed and the record length is
determined from the block size.

If you want to keep a direct-access data
set (that is, you do not want the operating
system to delete it at the end of ycur
job), the DD statement must name the data
set and indicate how it is'tc be disposed
of (DSNAME and DISP parameters). The DISP
parameter alone will suffice if you want to
use the data set in a later step but will
not need it after the end of your jck.

If you want your data set stored cn a
particular direct-access device, you must
indicate the volume serial number in the DD
statement (SER or REF subparameter of
VOLUME parameter). If you dc not sugply a
serial number for a data set that you want
to keep, the operating system will allocate
one, inform the operator, and print the
number on your program listing. All the
essential parameters required in a LD
statement for the creation of an INDEXED
data set are summarized in Figure 8-13, and
Figure 8-14 lists the DCB sukparameters
needed.

Appendix A contains a description of the
DCB subrarameters.

You cannot place an INDEXED data set on
a system output (SYSOUT) device.

You must request space for the prime
data area in the SPACE parameter. Your
request must be in units of cylinders
unless you place the data set in a srecific
position on the volume (ky specifying a
track number in the SPACE parameter). In
the latter case, the number of tracks you
specify must be equivalent to an integral
number of cylinders, and the first track
nmust be the first track of a cylinder other
than the first cylinder in the volurme. You
can also use the SPACE parameter to specify
the amount of space to be used for the
cylinder and master indexes (unless you use
a separate DD statement for this purgose).
If you do not specify the space for the
indexes, the operating systemr will use part
of the independent overflow area; if there
is no independent overflow area, it will
use part of the prime data area.

In the DCB parameter, you must always
specify the data set organization
(DSORG=IS), and in the first (or only) DD
statement you must also specify the length
of the key (KEYLEN).

Programmer 's Guide

¢
|

| When required | What you must state | Parameters |
I Pl |
| | output device | UNIT= or VOLUME=REF= |
| | == e e ===
| | storage space required | SPACE= |
|Always | === e |
| | Data control block | {
| |information: refer to | DCB= (
| | figure 8-14. | |
T smmmmmmmmmmeoeeooeoe- |
| | Name of data set and | i
|More than one DD statement |area (index, prime, | DSNAME= |
| | ovexflow) | |
[=== == === oo oo oo oo |
|Data set to be used in another jcb | | |
|step but not required after end of |Disposition | DISP= |
}JOb | | }
|pata set to be kept after end of | Disposition | DISP= |
| 3ob P e |
| | Name of data set | DSNAME= |

|pata set to be on particular
|volume |

Figure 8-13.

Name of Data Set

If you use only one DD statement to define
your data set, you need not name the data
set unless you intend to access it in
another job. But, if you include two or
three DD statements, you must specify a
data set name, even for a temporary data
set.

The DSNAME parameter in a DD statement
that defines an INDEXED data set not only
gives the data set a name, but it also
identifies the area of the data set to
which the DD statement refers:

DSNAME=name (INDEX)
DSNAME=name (PRIME)
DSNAME=name (OVFLOW)

If the data set is temporary, prefix its
name with the characters "§&". If you use
one DD statement to define the prime and
index or prime and overflow area, code
DSNAME=name (PRIME) ; if you use one DD
statement, code DSNAME=name(PRIME), or
simply DSNAME=name.

Chapter 8:

| VOLUME=SER= or I
| VOLUME=REF= I

Creating an INDEXED data set: essential parameters of DD statement

Record Format and Keys

An INDEXED data set can contain either
fixed-length or variable-length reccrds,
blocked or unklocked. You must always
specify the record format either in your
PL/I program (ENVIRONMENT attribute) or in
the DD statement (RECFM subrarameter).

The key associated with each reccrd can
be contiguous with or emtedded within the
data in the record; you can save stcrage
space in the data set if you use blocked
records with embedded keys.

If the records are unblocked, the key cf
each record is recorded in the data set in
front of the record even if it is also
embedded within the record, as shown in (a)
and (b) of Figure 8-15. If blccked records
do not have embedded keys, the key of each
record is recorded within the block in
front of the record, and the key of the
last record in the block is alsc recorded
in front of the block, as shown in (c¢) of
Figure 8-15. When blocked records have
embedded keys, the individual keys are not
recorded separately in front of each recoxrd
in the block; the key of the last record in
the block is recorded in frcmnt of the
block, as shown in (d) of Figure 8-15.

If you use klocked records with non-

Defining Data Sets for Record Files 111

DCB Subparameters |

- - ———— - - — = ——— - -

When required |

| Block sizetl

These are always required |--=--==-c-c-ce--
|Data set organization

| Key length

- —— - —— - - - > " = -

|Cylinrder overflow area and
| number of tracks per cylinder for
| overflow records

|Include at least one of
|these if overflow is
|required

| Embedded key (relative key pcsition)

These are optional | Master index

- ——

...................... ---—----------------_l
To specify

| Sukparameters |

|
|oOPTCD=Y and CYLOFL= |
I |

|
| Independent overflow area

|OPTCD=1 |

IRKP= |

--__-_--__--__-n--------——--------—------I

|OPTCD=M |

-—-----——--—-—-——--——---0-----------—-——‘--I

| Autoratic processing of dummy records [|OPTCD=L |

' _________________
| Number of data management buffers?

| Number of tracks in cylinder index

|BUFNO= i

|for each master index entry | |

__-____--___-____---_—‘---_--_--_------—---I

|*Alternatively, can be specified in ENVIRONMENT attribute. |

e o o o e e e e e o o o o o o e e - — —— - - - - - -
Full DCB information must appear in the first, or only, DD staterent.

Note:
statements require only DSORG=IS.

Figure 8-14,

embedded keys, the record size that you
specify must include the length of the key,
and the block size must be a multiple of
this combined length. Otherwise, record
length and block size refer only to the
data in the record. Record format
information is shown in Figure 8-16.

If you use records with embedded keys,
you must include the DCB subparameter RKP
to indicate the position of the key within
the record. For fixed-length records the
value specified in the RKP subparameter is
one less than the byte number of the first
character of the key; that is, if RKP=1,
the key starts in the second byte of the
record. The value assumed if you omit this
subparameter is RKP=0, which specifies that
the key is not embedded in the record but
is separate from it.

For variable-length records, the value
specified in the RKP subparameter must be
the relative position of the key within the
record plus four. The extra four bytes take

112 0S PL/I Optimizing Compiler:

- —— - —— - . - -~ ———— -~ - - - - - = =]

Subsequent

DCB subparameters for an INDEXED data set

into account the 4-byte control field used
with variable-length reccrds. For this
reason you must never specify RKP less than
four. When deleting records you must
always srecify RKP equal to or greater than
five, since the first byte cf the data is
used to indicate deletion.

For unblocked records, the key, even if
embedded, is always recorded in a pcsition
preceding the actual data. Consequently,
the RKP subparameter need nct be srecified
for unblocked records.

Overflow Area

If you intend to add records to the data
set on a future occasion, ycu must request
either a cylinder overflow area or an
independent overflow area, cr both.

For a cylinder overflow area, include

Programmer 's Guide

(a) Unblocked records, non-embedded keys
l Key l Data 1 I KeyJ Data J I Key] Data J

(b) Unblocked records embedded keys
: ¢ Data # R, SEEEEGET Data Sy R Date ey

] ol] [l Tel] Gl Twl]
R

(c) Blocked records, non-embedded keys
rKeyT Keyl Data l Key [Data | Key] Data J | Key lKey I

t—— same key —————i

(d) Blocked records embedded keys
- Data =i swiiil Data sewisiiing, slasiein Data shediig,

2) N) I I 1 I O 1
4

(e} Unblocked varlable length records, RKP>4
e Data 2o o

I KeyTB1]R1l | Key[J
L— same key —J

(f} Blocked variable length records, RKP>4
Data o Lot Data iy som: Data st

— T [71] [key | IR1L [Key |]
) $

same key

same key

{g) Unblocked variable length records, RKP=4
.+ Data .

IKeleqR‘ll KeyI —]
t same key }

(h) Blocked variable length records, RKP=4.
- Data -, - Data =, «# Data ¥

[Key [B1[R1] Key | [R1] ey | |r1] K:yl |

t same key

Figure 8-15. Record formats in an INDEXED data set

Chapter 8: Defining Data Sets for Record Files 113

B ——————
I | RKP | LRECL | BLKSIZE |
R e T ——— e ——————— -
| |Not zero | R | R *B |
|Blocked R ittt bbb Db m—————e—— |
|records |Zero or | R + K | B*(R+K) |
| |omitted | |

I ...
| | Not zero | R | R
|Unblocked |=-=-=----s-ccrecccrnmecnnee
|records | Zero or | R | R

| |omitted | |

R = Size of data in record

=
1]

Length of keys (as specified in
KEYLEN subparameter)

B = Blocking factor

Example: For blocked records,
non-embedded keys, 100 bytes of
data per record, 10 records per
block, key length = 20:
LRECL=120,BLKSIZE=1200,RECFM=FB

ks e s e o S ——— ——— —— — i — f— ——

Record format information
for an INDEXED data set

Figure 8-16.

the DCB subparameter OPTCD=Y and use the
subparameter CYLOFL to specify the number
of tracks in each cylinder to be reserved
for overflow records. A cylinder overflow
area has the advantage of a short search
time for overflow records, but the amount
of space available for overflow records is
limited, and much of the space may be
unused if the overflow records are not
evenly distributed throughout the data set.

For an independent overflow area, use
the DCB subparameter OPTCD=I to indicate
that overflow records are to be placed in
an area reserved for overflow records from
all cylinders, and include a separate DD
statement to define the overflow area.
use of an independent area has the
advantage of reducing the amount of unused
space for overflow records, but entails an
increased search time for overflow records.

The

It is good practice to request cylinder
overflow areas large enough to contain a
reasonable number of additional records and
an independent overflow area to ke used as
the cylinder overflow areas are filled.

If the prime data area is not filled
during creation, you cannot use the unused
portion for overflow records, nor for any
records subsequently added during direct
access (although you can fill the unfilled
portion of the last track used). You can
reserve space for later use within the

114 0S PIv/I Optimizing Compiler:

prime data area by writing "dummy" records
during creation: see "Dumry Records,"
latexr in this chapter.

Master Index

If you want the operating system to create
a master index for you, include the DCB
subparameter OPTCD=M, and indicate in the
NTM subparameter the number of tracks in
the cylinder index you wish to be referred
to by each entry in the master index. The
operating system will automatically create
up to three levels of master index, the
first two levels addressing tracks in the
next lower level of the master index.

Durmy Recoxds

You cannot change the specification of an
INDEXED data set after you have created it.
Therefore, you must foresee your future
needs where the size and locaticn of the
index, rrime, and overflow areas are
concerned, and you must decide whether you
want the operating system to identify and
skip dummy (deleted) records.

If you code OPTCD=L, the crerating
system will identify any record that is
named in a DELETE statement by placing the
bit string (8)'1'B in the first byte.
Subsequently, during SEQUENTIAL processing
of the data set, such records will be
ignored; if they are forced cff a track
when the data set is being updated, they
will not be placed in the overflcw area.
Do not specify OPTCD=L when using blocked
or variable-length records with ncn-
embedded keys; if you do, the string
(8)'1'B will overwrite the key of the
"deleted" record.

You can include a dummy record in an
INDEXED data set by setting the first byte
of data to (8)'1"B and writing the record
in the usual way.

ACCESSING AN INDEXED DATA SET

You can open an INDEXED data set for
sequential or direct access, and for input
or update in each case. Sequential input
allows you to read the records in ascending
key sequence, and in sequential update you
can read and rewrite each record in turn;
during sequential access, if OPTCL=L is
specified when the data set is created,
durmy records are ignored. Using direct

Programmer's Guide

[T T e e e e e e e e e e —————— - -

e - e - — - — e - — . .- ——

| Parameters of DD Statement i

I____-_-_-__-—----—---—__-_-_-------_--------

| When required |

|If data set not cataloged

-_-----_---------------—---_-------—__-----'

What you must state | Parameters |
[Name of data set | DSNAME= |
"""""""""""""" e
[Data control block | bcB= I
| information | |
|Tnput device | UNIT= or VOLUME-REF= |
"""""""""""""" Vommmeszre |

| |Volume serial number |
L im o o o e e e o e e o e o e e e = — " = ——— -

Figure 8-17.

input, you can read records using the READ
statement, and in direct update you can
read or delete existing records or add new
ones.

To access an INDEXED data set, you must
define it in one, two or three DD
statements; the DD statements must
correspond with those used when the data
set is created. The following paragraphs
indicate the essential information you must
include in each DD statement. and Figure
8~17 summarizes this information.

If the data set is cataloged, you need
supply only the following information in
each DD statement:

¢ The name of the data set (DSNAME
parameter). The operating system will
locate the information that describes
the data set in the system catalog and,
if necessary, will request the operator
to mount the volume that contains it.

e confirmation that the data set exists
(DISP parameter).

e Full DCB information for the first, or
only, DD statement. Subsequent
statements require only DSORG=IS to be
coded. -

If the data set is not cataloged, you
must, in addition, specify the device that
will process the data set and give the
serial number of the volume that contains
it (UNIT and VOLUME parameters).

REORGANIZ ING AN INDEXED DATA SET

It is necessary to reorganize an INDEXED
data set periodically because the addition

Chapter 8:

- o T o > T " = 0 2> > e oo e

Accessing an INDEXED data set: essential parameters of DD statement

of records to the data set results in an
increasing number of records in the
overflow area. Therefcre, even if the
overflow area does not eventually become
full, the average time required for the
direct retrieval of a record will increase.
The frequency of reorganization depends on
how often the data set is urdated, cn how
much storage is availakle in the data set,
and on your timing requirements.

Reorganizing the data set also
eliminates records that are marked as
"deleted," but are still present within the
data set.

There are two ways to reorganize an
INDEXED data set:

1. Read the data set into an area of main
storage or onto a temporary
CONSECUTIVE data set, and then
recreate it in the original area of
auxiliary storage.

2. Read the data set sequentially and
write it into a new area of auxiliary
storage; you can then release the
original auxiliary storage.

EXAMPLES OF INDEXED DATA SETS

The creation of a simple INDEXED data set
is jllustrated in Figure 8-18. The data
set contains a telephone directory, using
the subscribers' names as keys to the
telephone numbers.

The program in Figure 8-19 updates this
data set and prints out its new contents.
The input data includes the following codes
to indicate the operations required:

Defining Data Sets for Record Files 115

//0PT8

#18 JoB

//STEP1 EXEC PLIXCLG

//7PLI.

SYSIN DD *

TELNOS: PROC OPTIONS (MAIN) ;

NEXTI

DCL DIREC FILE RECORD SEQUENTIAL KEYED ENV(INDEXED),

CARD CHAR(80),

NAME CHAR(20) DEF CARD POS(1),
NUMBER CHAR(3) DEF CARD POS(21),
IOFIEID CHAR(3);

ON ENDFILE(SYSIN) GO TO FINISH;
OPEN FILE(DIREC) OUTPUT;

N: GET FILE (SYSIN) EDIT (CARD) (A(80));
IOFIELD=NUMBER;

WRITE FILE (DIREC) FROM(IOQOFIELD) KEYFROM(NAME);

GO TO NEXTIN;

FINISH: CLOSE FIIE(DIREC);

END TELNOS;

/¥
//GO.DIREC DD DSNAME=TELNO(INDEX) ,UNIT=2311,SPACE=(CYL,1),
Va4 DCB= (RECFM=F, BLKS IZE=3, DSORG=IS, KEYLEN=20,0PTCD=LIY,CYLOFL=2) ,
7/ DISP=(NEW,KEEP) ,VOLUME=SER=D186

V4 DD DSNAME=TELNO(PRIME),UNIT=2311,SPACE=(CYL,4) ,DCB=DSORG=1S,
/7 DISP=(NEW,KEEP) ,VOLUME=SER=D186

7/ DD DSNAME=TELNO(OVFLOW) ,UNIT=2311,SPACE= (CYL,4),

// DCB=DSORG=1IS, DISP=(NEW, KEEP) , VOL=SER=D186
//GO.SYSIN DD #*

ACTION,G. 162

BAKER,R. 152

BRAMLEY ,0.H. 248

CHEESEMAN,D. 141

CORY, G. 336

ELLIOTT,D. 875

FIGGINS,S. 413

HARVEY,C.D.W. 205

HASTINGS, G.M. 391

KENDALL,J.G. 294

LANCASTER,W.R. 624

MILES,R. 233

NEWMAN,M.W. 450

PITT,W.H. 515

ROLF,D.E. 114

SHEERS,C.D. 241

SUTCLIFFE,M. 472

TAYLOR,G.C. 407

WILTON,L.W. 404

WINSTONE,E. M. 307

/*

Figure 8-18. Creating an INDEXED data set

F(?P

Add a new record
Change an existing record
Delete an existing record

Regional Data Sets

A data set with REGIONAL organization can
exist only on a direct-access device. A

116 0S PL/I Optimizing Compiler:

REGIONAL data set is divided into regions
that are numbered consecutively from zero.
The following paragraphs briefly describe
the three types of REGIONAL crganization.

REGIONAL(1): 1In this oxrganization a region
is a record. Each record in the data set
is identified by its region number, an
unsigned decimal integer not exceeding
16777215. Region numbers start from 0 at
the beginning of the data set.

Programmer's Guide

//0PT8#19 JOB

//STEP1 EXEC PLIXCLG
//PLI.SYSIN DD *

DIRUPDT: PROC OPTIONS (MAIN);

DCL DIREC FILE RECORD KEYED ENV(INDEXED),
ONCODE BUILTIN,
NUMBER CHAR(3),
NAME CHAR(20),
CODE CHAR(2);

ON ENDFILE(SYSIN) GO TO PRINT;

ON KEY (DIREC) BEGIN;

IF ONCODE=51 THEN PUT FILE(SYSPRINT) SKIP EDIT
(*NOT FOUND:',NAME) (A (15) ,A);

IF ONCODE=52 THEN PUT FILE(SYSPRINT) SKIP EDIT
('DUPLICATE: ',NAME) (A (15) ,Rn);

END;

OPEN FILE(DIREC) DIRECT UPDATE;

NEXT: GET FIILE (SYSIN) EDIT (NAME, NUMBER,CODE) (A(20) ,A(3),X(56),A(1));

PRINT:

IF CODE='A' THEN WRITE FILE(DIREC) FROM(NUMBER) KEYFROM (NAME) ;
ELSE IF CODE='C' THEN REWRITE FILE(DIREC) FROM(NUMBER)
KEY (NAME) ;
ELSE IF CODE='D' THEN DELETE FILE (DIREC) KEY(NAME);
ELSE PUT FILE(SYSPRINT') SKIP EDIT('INVALID CODE:',NAME)
(a(15),Rn);
GO TO NEXT;
CLOSE FILE(DIREC);
PUT FILE(SYSPRINT) PAGE;
OPEN FILE(DIREC) SEQUENTIAL INPUT;

ON ENDFILE (DIREC) GO TO FINISH;

NEXTIN: READ FILE(DIREC) INI'O(NUMBER) KEYTO(NAME);

PUT FILE(SYSPRINT) SKIP EDIT(NAME,NUMBER) (A) ;

GO TO NEXTIN;

FINISH: CLOSE FILE(DIREC);

END DIRUPDT;
/%
7/7/6GO. DIREC DD DSN=TELNO(INDEX), UNIT=2311,VOL=SER=D186 ,DISP=(OLD ,KEEP)
V7% DD DSN=TELNO(PRIME) ,UNIT=2311,VOl=SER=D186,DISP=(OLD, KEEF)
/77 DD DSN=TELNO(OVFLOW) ,UNIT=2311,VOL=SER=D186,DISP= (OLD,KEEP)
//GO.SYSIN DD *
NEWMAN, M. W. 516 c
GOODFELLOW, D. T. 889)
MILES,R. D
HARVEY,C.D.W. 209 A
BARTLETT, S.G. 183 .\
CORY, G. D
READ, K. M. 001 A
PITT,W.H.
ROLF,D.F. D
ELLIOTT,D. 291 c
HASTINGS,G.M. D
BRAMLEY ,0.H. 439 c
7%

Figure 8-19.

Updating an INDEXED data set

Chapter 8:

Defining Data Sets for Record Files

117

REGIONAL(1) data sets have no recorded
keys. Note, however, that PL/I REGIONAL(1)
DIRECT INPUT or UPDATE files can be used to
process data sets that do have recorded
keys. In particular, REGIONAL(2) and
REGIONAL({(3) data sets can be acessed by a
file declared as ENV(REGIONAL(1)).

REGIONAL(2): This organization is similar
to REGIONAL(1l), but differs, in that a key
is recorded with each record. The recorded
key is a string of not more than 255
characters. For files with the DIRECT
attribute, a record is written in the first
vacant space on the track that contains the
region number specified in the WRITE
statement; for retrieval, the search for a
record begins on the track that contains
the region number specified in the READ
statement, and may continue through the
data set until the record has been found.
For files that are created sequentially,
the record is written in the region
specified.

REGIONAL(3): This organization is similar
to REGIONAL(2), but differs in that each
region corresponds to one track of the
direct-access device and is not a record
position. Depending on the record length,
a region can contain one or more records.

The major advantage of REGIONAL
organization over other types of data set
organization is that it allows you to
control the relative placement of records;
by judicious programming, you can optinize
record access in terms of device
capabilities and the requirements of
particular applications. REGIONAL(1)
organization is most suited to applications
where there will be no duplicate region
numbers, and where most of the regions will
be filled (reducing wasted space in the
data set). REGIONAL(2) and REGIONAL(3) are
more appropriate where records are
identified by numbers that are thinly
distributed over a wide range. You can
include in your program an algorithm that
derives the region number from the number
that identifies a record in such a manner
as to optimize the use of space within the
data set; duplicate region numbers may
occur but, unless they are on the same
track, their only effect might be to
lengthen the search time for records with
duplicate region numbers.

REGIONAL(1) and REGIONAL (2) data sets
can contain only F-format unblocked
records, but a REGIONAL(3) data set can
have unblocked records of all three
formats, F, V, and U. The examples at the
end of this section illustrate typical
applications of all three types of REGIONAL
organization.

118 0s PI/1I Optimizing Compiler:

CREATING A REGIONAL DATA SET

You can use either sequential or direct~
access to create a REGIONAL data set.

In sequentlal creation, you must préseént
records in order of ascending region -
nurmbers; for REGIONAL(1) and REGIONAL(2)
the region number for each reccrd muist
exceed that of the preceding record since
each region can contain only cne record.

In all cases, dummy records (identified by
(8)'1'B in the first byte) are placed
automatically in regions whose nuiibers are
|skipped. The data set tan have up to 15
|extents, which may be on more than one
|volume.

For direct creation, one cf the PL/I
library subroutines formats the whole of
the data set when you open the
corresponding file. For REGIONAL(1) and
(2), and for REGIONAL(3) with F-fcrrat
records, formatting involves £filling the
data set with dummy recoxrds; for
REGIONAL(3) with U-format or V-format .
records, a record, called the capacity
record is written at the start of each
track to indicate an empty track. Curing
creation, you can present records in any

|order. The data set can have cnly cne
|extent, and can therefore reside on only
| one volume.

Essential Information

To create a REGIONAL data set, you nust
give the operating system certain
information either in your PL/I program or
in the DD statement that defines the data
set. The following raragrarhs indicateé the
essential information, and discuss some of
the optional information you may supply;
the ENVIRONMENT attribute and the LINESIZE
option are discussed fully in the language
reference manual for this ccnpiler.

You must supply the following
information when creating a REGIONAL data
set:

¢ Device that will write or punch ycur
data set (UNIT or VOLUME parameter of DD
statement).

e Block size: you can specify the klock
size either in your PL/I program
(ENVIRONMENT attribute or LINESIZE
option) or in the DD statement (BLKSIZE
subparameter). If you do not specify a
recoxrd length, unblocked records are
assumed and the record length is
determined from the block size.

Programmer's Guide

[mmmme e e e e e m e e e e e — e —————— = o = = - ——— - - o o e e o 1

when required

Parameters of DD Statement

| What you must state

| Parameters

- - - - - - - . - - . . A T W T o S = T - — - T — - - - - — -

- - - - - W = ————— - - — A = W e - - - - - - - - — - — - - - - -

|
|
|
| | output device | UNIT= or VOLUME=REF=
T e b |
	Storage space required	SPACE=
Always	====- R it it ket bbbttt Dt	
	Data control block	
	information: refer	DCB=
	to figure 8-21	
I e o = o - - - " = - - - — - - - — - - - - = e		
Pata set to be used in another jocb		
step but not required in another	Disposition	DIsSP=
ijob	‘	g
Data set to be kept after end of	Disposition	DIsSP=
job	=== e	
	Name of data set	DSNAME=
... B et		
Data set to be on particular	Volume serial number	VOLUME=SER= or
volume		VOLUME=REF=
o o o e o e o o e e e e - o = . = A o o o A o D T - . i > o A D ——— —— > o e W - - P ppp— |

Figure 8-20. Creating a REGIONAL data set: essential parameters of DD statement

| DCB Subparameters

I........_____._.....__...._..___..____-__-____--_--_.._,.-_-..__.._-_--..--—-.....__-_-___-......--___..-___....__

| When required |

These are always required

1 Alternatively, can be specified

|
|
| update.
.

Figure 8-21. DCB subparameters for

To specify

management buffers?

: in ENVIRONMENT attribute.
2 RECFM=VS must be specified in the ENVIRONMENT attribute for sequential input or

a REGIONAL data set

RECFM=F

Subparameters

or
RECFM=V2 REGIONAL(3) only

Chapter 8: Defining Data Sets for Record Files

or
RECFM=U REGIONAL(3) only

Block sizet | BLKSIZE=
Data set organization | DSORG=DA
Key length (REGIONAL(2) | KEYLEN=
and (3) only) |

Limited search for a {

recoxrd or space to add | LIMCT=

a record (REGIONAL(2) |

and (3) only) |

Number of data | BUFNO=

- — -~ - - - - - - - - - - - - - > = - - - - - - . - - - - - - - - - - — -

119

If you want to keep a data set (that is,
you do not want the operating system to
delete it at the end of your job), the DD
statement must name the data set and
jndicate how it is to be disposed of
(DSNAME and DISP parameters). The DISP
parameter alone will suffice if you want to
use the data set in a later step but will
not need it after the end of your job.

If you want your data set stored on a
particular direct-access device, you must
indicate the volume serial number in the DD
statement (SER or REF subparameter of
VOLUME parameter). If you do not supply a
serial number for a data set that you want
to keep, the operating system will allocate
one, inform the operator, and print the
number on your program listing. All the
essential parameters required in a DD
statement for the creation of a REGIONAL
data set are summarized in Figure 8-20, and
Figure 8-21 lists the DCB subparameters
needed. Appendix A contains a description
of the DCB subparameters.

You cannot place a REGIONAL data set on
a system output (SYSOUT) device.

In the DCB parameter, you must always
specify the data set organization as direct
by coding DSORG=DA. For REGIONAL(2) and
REGIONAL(3), you must also specify the
length of the recorded key (KEYLEN): refer
to the language reference manual for this
compiler for a description of how the
recorded key is derived from the source key
supplied in the KEYFRQM option.

For REGIONAL(2) and REGIONAL(3), if you
want to restrict the search for space to
add a new record, or the search for an
existing record, to a limited number of
tracks beyond the track that contains the
specified region, use the LIMCT
subparameter of the DCB parameter.
omit this parameter, the search will
continue to the end of the data set, and
then from the beginning of the data set
back to the starting point in the data set.

If you

ACCESSING A REGIONAL DATA SET

You can open an existing REGIONAL data set
for sequential or direct access, and for
input or update in each case. Using
sequential input with a REGIONAL(1l) data
set you can read all the records in
ascending region number sequence, and in
sequential update you can read and may
rewrite each record in turn. Segquential
access of a REGIONAL(2) or REGIONAL(3) data
set will give you the records in the order
in which they appear in the data set, which
is not necessarily region number order.

120 0S PL/I Optimizing Compiler:

Using direct input, you can read any record
by supplying its region number and, for
REGIONAL(2) and REGIOMAL(3), its recorded
key; in direct update, you can read orxr
delete existing records or add new ones.
The operating system ignores dumnmy records
in a REGIONAL(2) or REGIONAL(3) data set;
but a program that processes a REGIONAL(1)
data set must be prepared tc recognize
durmy records.

To access a REGIONAL data set, you must
identify it to the operating system in a DD
statement. The following paragraphs
indicate the minimum information you must
include in the DD statement; this
information is summarized in Figure 8-22.

If the data set is catalcged, you need

supply only the following information in
your DD statement:

o The name of the data set (DSNAME
parameter). The operating system will
locate the information that describes
the data set in the system catalog and,
if necessary, will request the operator
to mount the volume that contains it.

e Confirmation that the data set exists
(DISP parameter).

If the data set is not cataloged, you
must, in addition, specify the device that
will read the data set and give the serial
nunber of the volume that contains the data
set (UNIT and VOLUME parameters).

EXAMPLES OF REGIONAL DATA SETS

REGIONAL (1) Data_Sets

Creating a REGIONAL (1) data set is
illustrated in Figure 8-23.

The program uses the same data as that
in Figure 8-18, but interprets it in a
different way: the data set is effectively
a list of telephone numbers with the names
of the subscribers to whom they are
allocated. The telephone nunbers
correspond with the region numbers in the
data set, the data in each cccupied region
being a subscriber's name. The SPACE
parameter of the DD statement requests
space for 1000 twenty-byte records (that
is, for 1000 regions); since space is never
allocated in units of less than one track
and one 2311 track can accommodate 45
twenty-byte records, there will in fact be
1035 regions. Note that the data set has
no recorded keys because it is created
using a DIRECT OUTPUT file.

Programmer's Guide

L L L et L DL L e Lt

- — = - e -~ - -~ - -

1
| Parameters of DD Statement |
!

> > = - - - . - - - - -

| When required | What you must state | Paraneters |
Aways " |Name of data set | pswamE= |
} | IDisposition of data set | DISP= T I
|1t data set mot cataloged |Input deviee | onige ex |
1 l | VOLUME=REF= |
!L |Volume serial mamber | VoLuME—szm= '"j

Figure 8-22.

Updating a REGIONAL(1) data set is
illustrated in Figure 8-24. The data read
by the program is identical with that used
in Figure 8-19, and the codes are
interpreted in the same way. Like the
program in Figure 8-19, this program
updates the data set and lists its
contents. Before each new or updated
record is written the existing record in
the region is tested to ensure that it is a
dummy; this is necessary because a WRITE
statement can overwrite an existing record
in a REGIONAL(1l) data set even if it is not
a dummy. Similarly, during the sequential
reading and printing of the contents of the
data set, each record is tested and dummy
records are not printed.

REGIONAL(2) Data Sets

The use of REGIONAL(2) data sets is
illustrated in Fiqure 8-25, Figure 8-26,
and Figure 8-27. The programs in these
figures perform the same functions as those
given for REGIONAL(3), with which they can
usefully be compared.

The programs depict a library processing
scheme, in which loans of books are
recorded and reminders are issued for
overdue books. Two data sets, STOCK2 and
LOANS2, are involved. STOCK2 contains
descriptions of the books in the library,
and uses the 4-digit book reference numbers
as recorded keys; a simple algorithm is
used to derive the region numbers from the
reference numbers. (It is assumed that
there are about 1000 books, each with a
number in the range 1000-9999.,) LOANS2
contains records of books that are on loan;
each record comprises two dates, the date
of issue and the date of the last reminder.
Each reader is identified by a 3-digit

reference number, which is used as a region

number in LOANS2; the reader and book

Chapter 8:

Accessing a REGIONAL data set: essential parameters of DD statement

numbers are concatenated to form the
recorded keys.

In Figure 8-25, the data sets STOCK2 and
LOANS2 are created. The file LOANS, which
is used to create the data set LOANS2 is
opened for direct output merely tc fcrmat
the data set; the file is closed
immediately without any reccrds being
written onto the data set. It is assumed
that the number of books on loan will not
exceed 100; therefore the SPACE raraneter
in the DD statement that defines LOANS2
requests 100 blocks of 19 bytes (12 Lytes
of data and a 7-byte key: see Figure
8-26). Direct creation is alsc used for
the data set STOCK2 Lkecause, even if the
input data is presented in ascending
reference number order, identical region
numbers might be derived from successive
reference numbers.

Updating of the data set LOAN2 is
illustrated in Figure 8-26. Each item of
input data, read from a punched card,
comprises a book numker, a reader number,
and a code to indicate whether it refers to
a new issue (I), a returned kook (R), or a
renewal (A). The position cf the reader
number on the card allows the 8-character
region number to be derived directly by
overlay defining. The DATE built-in
function is used to obtain the current
date. This date is written in both the
issue date and reminder date porticns of a
new record or an updated record.

The program in Figure 8-27 uses a
sequential update file (LOANS) to rroccess
the records in the data set LOANS2, and a
direct input file (STOCK) tc¢ obtain the
book description from the data set STOCK2
for use in a repinder note. Each record
from LOANZ is tested to see whether the
last reminder was issued more than a month
ago; if necessary, a reminder note is
issued and the current date is written in
the reminder date field of the reccrd.

Defining Data Sets for Reccxrd Files 121

//70PT8#23 JOB
//STEP1 EXEC PLIXCLG
//PLI.SYSIN DD #*

CRRL: PROC OPTIONS (MAIN) ;
DCL NOS FILE RECORD OUTPUT DIRECT KEYED ENV(REGICNAL(1)),
CARD CHAR(80),
NAME CHAR(20) DEF CARD POS(1),
NUMBER CHAR(3) DEF CARD POS(21),
IOFIELD CHAR(20);
ON ENDFILE (SYSIN) GO TO FINISH;
OPEN FILE(NOS);
NEXT: GET FILE (SYSIN) EDIT (CARD) (A(80));

IOFIELD=NAME;

WRITE FILE (NGS) FROM(IOFIELD) KEYFROM(NUMBER);

GO TO NEXT;
FINISH: CLOSE FILE(NOS);

END CRR1;
/¥
| //GO.NOS DD DSN=NOSA,UNIT=2311,SPACE= (TRK, (23,3)) ,DCB= (RECFM=F,
7/ BLKSI ZE=20,DS ORG=DA) , DISP= (NEW,KEEP) , VOL=SER=D186
//GO.SYSIN DD *
ACTION,G. 162
BAKER,R. 152
BRAMLEY,O.H. 248
CHEESEMAN, L. 141
CORY,G. 336
ELLIOTT,D. 875
FIGGINS,E.S. 413
HARVEY,C.D.W. 205
HASTINGS,G.M. 391
KENDALL,J.G. 294
LANCASTER, W.R. 624
MILES,R. 233
NEWMAN,M.W. 450
PITT,W. H. 515
ROLF.D.E. 114
SHEERS, C. D. 241
SUTCLIFFE, M. 472
TAYLOR, G. C. 407
WILTON,L.W. 404
WINSTONE, E. M. 307
VA

Figure 8-23.

REGIONAL(3) Data Sets

The use of REGIONAL(3) data sets,
illustrated in Figure 8-28, Figure 8-29,
and Figure 8-30, is similar to the
REGIONAL(Z2) figures, above; only the
important differences are discussed here.

To conserve space in the data set
STOCK3, U-format records are used. In each
record, the author's name and the title of
the book are concatenated in a single
character string, and the lengths of the
two parts of the string are written as part
of the record. The average record
(including the recorded key) is assumed to

122 0S PIL/I Optimizing Compiler:

Creating a REGIONAL(1l) data set

be 60 bytes; therefore the average number
of records per track (that is, rer region)
is 25, and there will be 40 regions.

In Figure 8-28, the data set STOCK3 is
created sequentially; durlicate regicn
nunbers are acceptakle, kecause each region
can contain more than one record.

In Figure 8-29, the regicr nurmber for
the data set LOANS3 is oktained simply by
testing the reader number; there are only
three regions, kecause a 2311 track can
hold 36 nineteen-byte records.

The only notable difference between
Figure 8-30 and the corresponding

Programmer's Guide

//70PT8#24
//STEP1

JOB
EXEC PLIXCLG

//PLI.SYSIN DD *

ACR1: PROC OPTIONS (MAIN) ;
DCL NOS FILE RECORD KEYED ENV{(REGIONAL (1)),
NAME CHAR(20),
(NEWNO,OLDNQ) CHAR(3),
CODE CHAR(1),
IOFIELD CHAR(20),
BYTE1 CHAR(1) DEF IOFIELD POS(1);
ON ENDFILE(SYSIN) GO TO PRINT;
OPEN FILE (NOS) DIRECT UPDATE;
NEXT : GET FILE(SYSIN) EDIT (NAME, NEWNO,OLDNO,CODE)
(a(20),2 A(3) ,x(53) ,A(1));
IF CODE='A' THEN GO TO RITE;
ELSE IF CODE='C' THEN DO;
DELETE FILE(NOS) KEY (OLDNO);
GO TO RITE;
END;
ELSE IF CODE='D' THEN DELETE FILE (NOS) KEY (OLDNO);
ELSE PUT FILE(SYSPRINT) SKIP
EDIT('INVALID CODE:‘',NAME) (A(15),A);
GO TO NEXT;
RITE: READ FILE(NOS) KEY(NEWNO) INTO(IOFIEILD);
IF UNSPEC(BYTE1)=(8)'1'B THEN WRITE FILE(NOS) KEYFROM(NEWNO)
FROM(NAME) ;
ELSE PUT FILE(SYSPRINI') SKIP EDIT ('DUPLICATE:',NAME) (A(15),4);
GO TO NEXT;
PRINT: CLOSE FILE(NOS);
PUT FILE(SYSPRINT) PAGE;
OPEN FILE(NOS) SEQUENTIAIL INPUT;
ON ENDFILE(NOS) GO TO FINISH;
NEXTIN: READ FILE(NOS) INTO (IOFIELD) KEYTO (NEWNO) ;
IF UNSPEC(BYTE1)=(8)'1'B THEN GO TO NEXTIN;
ELSE PUT FILE(SYSPRINT) SKIP EDIT(NEWNO,IOFIEID) (A(5),3a);
GO TO NEXTIN;
FINISH: CLOSE FILE(NOS);
END ACR1;
/%
//G0.NOS DD DSN=NOSA,UNIT=2311,VOL=SER=D186,DISP=(QOLD ,KEEPY)
//GO.SYSIN DD *
NEWMAN,M. W 516450 C
GOODFELLOW,D.T. 889 A
MILES,R. 233 D
HARVEY,C.D.W. 209 A
BARTLETT,S.G. 183 A
CORY, G. 336 D
READ, K. M. 001 A
PITT,W.H. 515
ROLF,D.F. 114 D
ELLIOTT,D. 472875 C
HASTINGS,G. M. 391 D
BRAMLEY,O.H. 439248 C
Ve

Figure 8-24. Updating a REGIONAL (1) data set

Chapter 8: Defining Data Sets for Record Files 123

//70PT8#25 JOB

//STEP1 EXEC PLIXCLG
//PLI.SYSIN DD

CRR2: PROC OPTIONS(MAIN) ;

DCL STOCK FILE RECORD KEYED ENV(REGIONAL(2)),
LOANS FILE RECORD KEYED ENV(REGIONAL(2)),
NUMBER CHAR (4) ,

1 BOOK,

2 AUTHOR CHAR (25),

2 TITLE CHAR(50),

2 QTY FIXED DEC(3),
INTER FIXED DEC(5),
REGION CHAR(8);

OPEN FILE (LOANS) DIRECT OUTPUT;
CLOSE FILE(LOANRS);

ON ENDFILE(SYSIN) GO TO FINISH;

OPEN FILE (STOCK) DIRECT COUTPUT;

NEXT: GET FILE(SYSIN) LIST(NUMBER, BOOK);
INTER=(NUMBER-1000)/9; /% INTERMEDIATE FIXED DECIMAL ITEM */
REGION=INTER; /* USED TO ENSURE CORRECT PRECISION */
WRITE FILE(STOCK) FROM(BOOK) KEYFROM(NUMBER| |REGICN);
GO TO NEXT;

FINISH: CLOSE FILE(STOCK);

END CRR2;
Vi
| 77GO.LOANS DD DSN=LOANS2, UNIT=2311,SPACE=(19,100) ,DCB=(RECFM=F,
V24 BLKSIZE=19 ,DSORG=DA,KEYLEN=7) , DISP=(NEW, CATLG),
7/ VOLUME=SER=D186
//GO.STOCK DD DSN=STOCK2, UNIT=2311, SPACE=(19,100),DCB=(RECFM=F,
7/ BLKSIZE=19 ,DSORG=DA,KEYLEN=7) ,DISP=(NEW,CATLG),
/7 VOLUME=SER=D186

//GO.SYSIN DD #*

'1015' *W.SHAKESPEARE' 'MUCH ADO ABOUT NOTHING®' 1

*1214' 'L.CARROLL' 'THE HUNTING OF THE SNARK' 1

'3079* 'G.FLAUBERT' 'MADAME BOVARY' 1

'3083' 'V.M.HUGO' 'LES MISERABLES' 2

'3085' 'J.K.JEROME' 'THREE MEN IN A BOAT' 2

'4295' 'W.LANGLAND' 'THE BOOK CONCERNING PIERS THE PLOWMAN' 1
'*5999' *O.KHAYYAM' ‘'THE RUBAIYAT OF OMAR KHAYYAM' 3

'6591' 'F.RABELAIS' 'THE HEROIC DEEDS OF GARGANTUA AND PANTAGRUEL' 1
'8362' 'H.D.THOREAU' 'WALDEN, OR LIFE IN THE WOODS' 1

'9765' 'H.G.WELLS' 'THE TIME MACHINE' 3

/¥

Figure 8-25. Creating a REGIONAL(2) data set

REGIONAL(2) figure is in the additional with the addition of the TRANSIENT file
processing required for the anlysis of the attribute and of the PENDING ccnditicn.
records read from the data set STOCK3. The The compiler provides a link between PL/I
records are read into a varying-length message processing programs (MPPs) and the
character string and a based structure is Telecommunications Access Method (TCAM) of
overlaid on the string so that the data in the operating system.

the record can be extracted.

A TCAM message control program (MCP)
handles messages originating from and
destined for a number of remote terminals,

TELEPROCESS ING each of which is identified Ly a terminal
name carried with the message. These
messages are transmitted to and from your

Teleprocessing in PL/I is provided by an PL/I message processing program by means of

extension of record-oriented transmission queuves in main storage. (These queues are

124 OS PL/I Optimizing Compiler: Programmer's Guide

//70PT8#26 JOB
//STEP1 EXEC PLIXCLG
//PLI.SYSIN DD *
DUR2: PROC OPTIONS (MAIN) ;
DCL 1 RECORD,
2 (ISSUE,REMINDER) CHAR(6),

SYSIN FILE RECORD INPUT SEQUENTIAL,
LOANS FILE RECORD UPDATE DIRECT KEYED ENV(REGICNAL(2)),

CARD CHAR(80),

DATE BUILTIN,

BOOK CHAR(4) DEF CARD POs (1),
READER CHAR(3) DEF CARD POS(10),
CODE CHAR(1) DEF CARD POs (20),
REGION CHAR(S8) DEF CARD POS(5) ;

ON ENDFILE (SYSIN) GO TO FINISH;

OPEN FILE (SYSIN) ,FILE (LOANS);
ISSUE,REMINDER=DATE;

READ FILE (SYSIN) INTO(CARD);
IF CODE='I"

NEXT:

THEN WRITE FILE(LOANS) FROM(RECORD)

KEYFROM (READER| | BOOK| | REGION) ;

ELSE IF CODE='R'

THEN DELETE FILE (LOANS)

KEY (READER | | BOOK| | REGION) ;

ELSE IF CODE='A'

THEN REWRITE FILE(LOANS) FROM(RECORD)

KEY(READER| | BOOK| | REGION) ;

ELSE PUT FILE(SYSPRINT) SKIP LIST

(*INVALID CODE: *,BOOK,READER) ;

GO TO NEXT;
CLOSE FILE(SYSIN) ,FILE (LOANS) ;
END DUR2;

FINISH:

VA
//G0O.LOANS DD DSN=LOANS2, DISP=OLD
//GQ.SYSIN DD *

3085 095 X
5999 003 A
3083 091 R
3083 049 I
/%

Figure 8-26.

supported by corresponding queues on a
direct-access device in auxiliary storage.
Your PL/I program has access only to the
main storage queues by means of a single
buffer for each file.)

The exact message format (specified to
the compiler by means of the ENVIRONMENT
attribute) depends on the MPP. A message
may be a complete unit, or may consist of a
number of records so that it can be split
up for processing. You must have this
message format information to enakle you to
write the message processing program. Full
information on how to write an MPP is given
in the language reference manual for this
compiler. A full account of TCAM procedure
is given in the 0S: TCAM Message Processing
Program Services and OS: TCAM Message
control Program publications.

Chapter 8:

Updating a REGIONAL (2) data set

directly .

MESSAGE PROCESSING PROGRAM (MPP)

This program receives the terminal message
as input and produces output according to
the data in the message. Ycu can ccde this
program in PL/I.

An MPP is not mandatory at
teleprocessing installations, as for
example, an MCP is. If the messages you
transmit do not require processing, kecause
they are only switched between terminals,
an MPP is not required. However, ycu can
pass data to a problem program and you can
receive the output with a mininum of delay,
and most installations are likely to have a
set of processing programs available for
these purposes. These programs are stored
as load modules, either in main storage or
in a library in auxiliary storage.

Defining Data Sets for Record Files 125

//70PT8#27 JOB
//STEP1 EXEC PLIXCLG
//PLI.SYSIN DD +*

SUR2:

NEXT:

PROC OPTIONS (MAIN);

DCL LOANS FILE RECORD SEQUENTIAL UPDATE KEYED ENV(REGIONAL(2)),
STOCK FILE RECORD DIRECT INPUT KEYED ENV(REGIONAL(2)),
(TODAY, LASMTH) CHAR(6),

YEAR PIC '99' DEF LASMTH,
MONTH PIC '99' DEF LASMI'H POS(3),
1 RECORD,

2 (ISSUE, REMINDER) CHAR(6),
DATE BUILTIN,
LOANKEY CHAR(7),
READER CHAR(3) DEF LOANKEY POS(1),
BKNO CHAR(4) DEF LOANKEY POS (4),
INTER FIXED DEC(5),
REGION CHAR(S),
1 BOOK,

2 AUTHOR CHAR(25),

2 TITLE CHAR(50),

2 QTY FIXED DEC(3);

TODAY , LASMTH=DATE;

IF MONTH='01' THEN DO;
MONTH='12"';
YEAR=YEAR-1;
END;

ELSE MONTH=MONTH-1;

OPEN FILE(LOANS),FILE(STOCK);

ON ENDFILE(LOANS) GO TO FINISH;

READ FILE(LOANS) INTO(RECORD) KEYTO(LOANKEY) ;

IF REMINDER<LASMTH THEN DO;
REMINDER=TODAY;
REWRITE FILE (LOANS) FROM(RECORD);
INTER= (BKNO-1000)/79; /* INTERMEDIATE FIXED DECIMAL ITEM */
REGION=INTER; /% USED TO ENSURE CORRECT PRECISION */
READ FILE(STOCK) INTO(BOOK) KEY(BKNO||REGION);
PUT FILE(SYSPRINT) SKIP(4) EDIT (READER,AUTHOR,TITLE)

(A,SKIP(2));

END;
GO TO NEXT;
CLOSE FILE(LOANS) ,FILE (STOCK);
END SURZ2;

FINISH:

/*
//G0.LOANS DD DSN=LOADS2 ,DISP=0OLD
//G0.STOCK DD DSN=STOCK2, DISP=0LD

Figure 8-27.
HOW TO RUN AN MPP

An example of an MPP and the job control
language required to create it is shown in
Figure 8-31. The EXEC statement invokes
the cataloged procedure PLIXCL to compile
and link edit the PL/I message processing
program. The appropriate TCAM modules are
included in the program by the linkage
editor. The load module produced is stored
in the partitioned data set SY¥Sl1l.MSGLIB
under the member name MPPROC.

126 0S PL/I Optimizing Compiler:

Updating a REGIONAL(2) data set sequentially

MPP is declared as a telerrocessing file
that can process messages up to 100 bytes
long. similarly OUTMSG is declared as a
teleprocessing file that can receive
messages up to 500 bytes long.

The READ statement gets a record (that
is, a message) from the queue. The
terminal identifier is inserted intc the
KEYTO character string. The record is
placed in the INDATA variable for
processing. The appropriate READ SET
statement could also have been used here.

Programmer 's Guide

//70PT8#28 JOB
//STEP1 EXEC PLIXCLG
//7PLI.SYSIN DD *

Chapter 8:

/% ITEM USED TO ENSURE CORRECT PRECISION

CRR3: PROC OPTIONS(MAIN) ;
DCL STOCK FILE RECORD KEYED ENV(REGIONAL(3)),
1 CARD,
2 NUMBER CHAR(4),
2 AUTHOR CHAR(25) VAR,
2 TITLE CHAR(50) VAR,
2 QTY1 FIXED DEC(3),
(L1,12,X) FIXED DEC(3),
1 BOOK CTL,
2 (L3,L4) FIXED DEC(3),
2 QTY2 FIXED DEC(3),
2 DESCN CHAR(X) VAR,
INTER FIXED DEC(5),
REGION CHAR(8);
ON ENDFILE(SYSIN) GO TO FINISH;
OPEN FILE(STOCK) SEQUENTIAL OUTPUT;
NEXT: GET FILE(SYSIN) LIST(CARD);
L1=LENGTH(AUTHOR) ;
L2=LENGTH (TITLE) ;
X=L1+L2;
ALLOCATE BOOK;
L3=L1;
L4=L2;
QTY2=QTY1;
DESCN=AUTHOR| | TITLE;
INTER=(NUMBER-1000)/225; /* INTERMEDIATE FIXED DECIMAL */
REGION=INTER;
WRITE FILE(STOCK) FROM(BOOK) KEYFROM (NUMBER| |REGION);
FREE BOOK;
GO TO NEXT;
FINISH: CLOSE FILE({(STOCK);
END CRR3;"
/*
| //GO.STOCK DD DSN=STOCK3 ,UNIT=2311,SPACE= (TRK, (40,5)) ,DCB=(RECFM=U,
7/ BLKSIZE=110,DSORG=DA,KEYLEN=4) ,DISP=(,CATLG) ,VOL=SER=D186
//GO.SYSIN DD * .
'1015' 'W.SHAKESPEARE' 'MUCH ADO ABOUT NOTHING' 1
'1214' 'L.CARROLL' 'THE HUNTING OF THE SNARK' 1
'3079' 'G.FLAUBERT' 'MADAME BOVARY' 1
'3083' 'V.M.HUGO' 'LES MISERABLES' 2
'3085' 'J.K.JEROME' 'THREE MEN IN A BOAT' 2
'4295' 'W.LANGLAND' 'THE BOOK CONCERNING PIERS THE PLOWMAN®' 1
*5999' 'O.KHAYYAM' 'THE RUBAIYAT OF OMAR KHAYYAM' 3
'6591' 'F.RABELAIS' 'THE HEROIC DEEDS OF GARGANTUA AND PANTAGRUEL' 1
*8362' 'H.D.THOREAU' 'WALDEN, OR LIFE IN THE WOODS' 1
'9765' 'H,G.WELLS' 'THE TIME MACHINE' 3
/%
Figure 8-28. .Creating a REGIONAL (3) data set

Defining Data Sets for Record Files

127

//70PT8#29 JOB
//STEP1 EXEC PLIXCIG
//PLI.SYSIN DD *

DUR3:

NEXT:

FINISH:

/%

PROC OPTIONS (MAIN) ;

DCL 1 RECORD,
2 (ISSUE,REMINDER) CHAR(6),
SYSIN FILE RECORD INPUT SEQUENTIAL,
LOANS FILE RECORD UPDATE DIRECT KEYED ENV(REGIONAL(3)),
CARD CHAR(80),
BOOK CHAR(4) DEF CARD POS(1),
READER CHAR(3) DEF CARD POS (10),
CODE CHAR(1) DEF CARD POS(20),
DATE BUILTIN,
REGION CHAR(S);

ON ENDFILE (SYSIN) GO TO FINISH;

OPEN FILE (SYSIN) ,FILE (LOANS);
ISSUE, REMINDER=DATE;
READ FILE (SYSIN) INTO(CARD);
IF READER<'034' THEN REGION='00000000";
ELSE IF READER<'067' THEN REGION='00000001";
ELSE REGION='00000002";
IF CODE='I' THEN WRITE FILE(LOANS) FROM(RECORD)
KEYFROM (READER | | BOOK| | REGION) ;
ELSE IF CODE='R' THEN DELETE FILE (LOANS)
KEY(READER| | BOOK | | REGION) ;
ELSE IF CODE='A' THEN REWRITE FILE(LOANS) FROM(RECORD)
KEY (READER | | BOOK| | REGION) ;
ELSE PUT FILE(SYSPRINT) SKIP LIST
("INVALID CODE',BOOK,READER) ;
GO TO NEXT;
CLOSE FILE(SYSIN) ,FILE (LOANS) ;
END DUR3;

//G0O.LOANS DD DSN=LOANS3,DISP=OLD
//GO.SYSIN DD *

3085
5999
3083
3083
7k

095 X
003 A
091 R
o49 I

Figure 8-29. Updating a REGIONAL(3) data set directly

128 0S PL/I Optimizing Compiler: Programmer's Guide

//70PT8#30 JOB
//STEP1 EXEC PLIXCIG
//7PLI.SYSIN DD ¥

SUR3:

PROC OPTIONS (MAIN);

DCL LOANS FILE RECORD SEQUENTIAL UPDATE KEYED ENV (REGIONAL(3)),

NEXT:

FINISH:

/*

STOCK FILE RECORD DIRECT INPUT KEYED ENV(REGIONAL(3)),

(TODAY, LASMI'H) CHAR(6),
YEAR PIC '99' DEF LASMTH,
MONTH PIC '99' DEF LASMTH POS(3),
1 RECORD,

2(ISSUE, REMINDER) CHAR(6),
LOANKEY CHAR(7),
READER CHAR(3) DEF LOANKEY POS (1),
BKNO CHAR(4) DEF LOANKEY POS(4),
INTER FIXED DEC(5),
DATE BUILTIN,
REGION CHAR(8),
1 BOOK,

2 (11,L2) FIXED DEC(3),

2 QTY FIXED DEC(3),

2 DESCN CHAR(75)VAR,
AUTHOR CHAR(25) VAR,
TITLE CHAR(50) VAR;

TODAY, LASMTH=DATE;
IF MONTH='01' THEN DO;

MONTH="'12"';
YEAR=YEAR-1;
END;

ELSE MONTH=MONTH-1;
OPEN FILE (LOANS),FILE(STOCK);

ON ENDFILE(LOANS) GO TO FINISH;

READ FILE(LOANS) INTO(RECORD) KEYTO(LOANKEY) ;
IF REMINDER<LASMTH THEN DO;

REMINDER=TODAY;

REWRITE FILE (LOANS) FROM(RECORD);

INTER= (BKNO-1000) / 225; /% INTERMEDIATE FIXED DECIMAL
REGION=INTER; /*ITEM USED TO ENSURE CORRECT PRECISION
READ FILE(STOCK) INTO(BOOK) KEY(BKNO||REGION);
AUTHOR=SUBSTR (DESCN,1,L1) ;

TITLE=SUBSTR(DESCN, L1+1,L2);

PUT FILE (SYSPRINT) SKIP (4) EDIT (READER,AUTHOR,TITLE)

(A,SKIP(2));
END;
GO TO NEXT;
CLOSE FILE(LOANS) ,FILE (STOCK) ;
END SUR3;

//GO.LOANS DD DSN=LOANS3, DISP=OLD
//G0.STOCK DD DSN=STOCK3,DISP=0OLD

Figure 8-30. Updating a REGIONAL(3) data set sequentially

Chapter 8: Defining Data Sets fcr Reccrd Files

*/
*/

129

Va4 JOB

V4 EXEC PLIXCL
//PLI.SYSIN DD *

| MPPROC: PROC OPTIONS(MAIN);

DCL MPP FILE RECORD KEYED TRANSIENT ENV (TP (M) RECSIZE(100)),
OUTMSG FILE RECORD KEYED TRANSIENT ENV (TP (M)RECSIZE(500)),

INDATA CHAR(100),
OUTDATA CHAR(500),
TKEY CHAR(6);

OPEN FILE (MPP) INPUT,FILE (OUTMSG) OUTPUT;

READ FIIE (MPP) KEYTO(TKEY) INTO (INDATA) ;

| WRITE FILE (OUTMSG) KEYFROM(TKEY) FROM(OUTDATA) ;

ENDTP: CLOSE FILE (MPP) ,FILE (OUTMSG) ;
END MPPROC;
[/*

| //LKED. SYSLMOD DD DSNAME=SYS1l.MSGLIB(MPPROC),...

Figure 8-31.

The WRITE statement puts the data in
OUTDATA into the destination queue; the
terminal identifier is taken from the
character string in TKEY. An appropriate
LOCATE statement could also have been used.

Once the load module has been stored on
a direct-access device it can be restored
for execution at any time. The job control
statements to perform this might be:

Va4 JOB

//JOBLIB DD DSNAME=SYS1.MSGLIB,DISP=SHR
/7 EXEC PGM=MPPROC

| 77/MPP DD OQNAME=...

| /70UTMSG DD QNAME=...
//SYSPRINT DD SYSQUT=A

130 0S PL/I Optimizing Compiler:

PL/I message processing program

The JOBLIB DD statement is required to
make SYS1.MSGLIB available sc that the
operating system can find the prograr
MPPROC. The DD statement with the name DD1
associates the FL/I file with the rain
storage queue name (MPP).

Programmer's Guide

Chapter 9: Virtual Storage Access Method(VSAM)

The virtual Storage Access Method (VsSaM) is
both an access method and a form of data
set organization. VSAM is available only
to System/370 users. A virtual storage (or
relocate) version of the operating system
is required.

VSAM data sets can reside only on the
following direct access storage devices:

IBM 2305
IBM 2314
IBM 2319
IBM 3330
IBM 3340

VSAM Data Sets

There are two types of VSAM data sets:
entry sequenced data sets (ESDS) and key
sequenced data sets (KSDS). Key sequenced
data sets have an associated index; a KSDS
together with its index is referred to as
an indexed VSAM data set. An entry
sequenced data set has no associated index.

All VSAM data sets are cataloged, either
in a master catalog or in a user catalog.
The catalog entry is made when the data set
is "defined", and remains until the data
set is "deleted"”.

DATA FORMAT

The unit of data that is transmitted
between a PL/I program and a VSAM data set
is called a logical record. Logical
records have no defined record format; VSAM
will accept records of any length up to a
maximum value that is specified when the
data set is defined. : -

Logical records are grouped together in
control intervals, and control intervals in
turn are grouped in control areas. The
sizes of control intervals and control
areas are selected by the system to make
optimum use of the particular storage
device that is being used.

KEY SEQUENCED DATA SETS

Figure 9-1 illustrates the structure of a

key scyuenced data set. Each control
interval contains system cortrol
information, one or more logical records,
and some free space to allow for the later
addition of records. The amount of free
space in a control interval can be
specified as a percentage of the total
space when the data set is defined (see
"Creating VSAM Data Sets" later in this
chapter). sSimilarly, the user can specify
how many empty control intexvals are to be
left in each control area to allow for
future additions.

Logical records in a KSDS are ordered in
the collating sequence of an embedded key.
The order is maintained when records are
inserted into an existing data set, and
when existing records are increased cr
decreased in length. Deleted reccrds are
physically deleted from the data set. The
free space specification facility ingroves
the performance of update operations by
minimizing the moving of reccrds and the
splitting of control intervals and areas
when records are added or increased in
length.

Associated with each KSDS is an index
data set. The index is in the form cf a
tree structure that gives rapid access to a
specified key value. The lowest level of
the index data set is known as the
"sequence set®, and the rermaining levels
are known as the "index set". For direct
access, a logical record with a particular
key is located by means of a search through
successive levels of the index data set.
This process is illustrated in Figure 9-2.
For sequential access, only the sequence
set is used.

ENTRY SEQUENCED DATA SETS

The structure of an entry sequenced data
set is similar to that of a key sequenced
data set in that it contains logical
records within control interxrvals within
control areas. However, the logical
records are stored in the order in which
they are sukmitted when the data set is
created, and records cannct be subsequently
added (except at the end of the data set),
deleted, or changed in length. Any unused
space which exists in a control interval is
thus wasted space.

Chapter 9: Virtual Storage Access Method (vVvsaM) 131

CONTROL AREA

AN
Vo \
CONTROL INTERVAL CONTROL INTERVAL CONTROL INTERVAL
r == TEEEEETY ¢ " === 1 r = ===
| | | I I | 11
| LR | LR | Ps |sc| { LR |LR| LR | Fs {sc| | Fs |sc
| | | I | | 11| |
! cecrvcocccanccd lecoeoccaaa- P
LR = logical record
FS = free srpace
SC = system control information
Figure 9-1. Structure of Key Sequenced Data Set
——crcccce——————— - — - -—a
INDEX SET |
|
;::!:_ |
! 1 1 | highest-level index |
| [, 4 1
|
|
..... ==) |
| I O O I | | | | intermediate level index |
cwmand Lle—mee (
|
|
ST S C S SIS S, (S ———— - 3
. ——— S —— -
SEQUENCE SET |
|
[atetundel TN aiintabe 10 L |
O T I I I I i1 11 1| | lowest-level index |
| teeeeed La- -3t 1 |
|
|
leccar e —e e ——— - ——— -—— 4
r - - - - - J - - - - ---—‘---------1
| DATA SET |
| |
I ——menmeee- et --- 1 |
| cI | cI | cI { cI { cI | cI1 | |
| B R et R Rt |
| [N T T IR R I A 11 i (| |
l [L T e L L L J |
| |
¢ 4

Figure 9-2. Indexed VSAM Data Set

132 0S PL/I Optimizing Compiler: Programmer's Guide

Operations on VSAM Data Sets

ACCESS METHOD SERVICES

Access Method Services is a utility program
that enables various operations to be
performed on VSAM data sets. It is used to
define VSAM data sets, to delete them, to
print out their contents, and so on. A
full description of the use and syntax of
access method services is given in Q0S/VS
Access Method Services, Order No. GC35-
0009. The principal functions are listed
in Figure 9-3.

DEFINE To create VSAM catalogs and data
set entries within the VsSaM
catalogs.

ALTER To change VSAM catalog entries.

DELETE To remove entries from the VSAM
catalog.

LISTCAT To list entries within VSaM
catalogs.

REPRO To copy the contents of data sets
into other data sets.

PRINT To print the contents of data
sets.

EXPORT To produce backup or portable
copies of VsSaM data sets.

IMPORT To accept backup or portable
copies of VSAM data sets.

VERIFY To check the end-of-file

information in a catalog for
correspondence to the physical end
of the data set.
Figure 9-3. The principal Access
Method Services functions

CREATING VSAM DATA SETS

Before a VSAM data set can be created, VSAM
data space must be available on a suitable
direct access stcorage device. Space can be
obtained by using the DEFINE command of
Access Method services; this space is then
owned by VSAM and is used as a space pool
for the creation of VSAM data sets.

wWhen VSAM data space is available, the
characteristics of the VSAM data set that
is to be created are defined by means of a

Chapter 9: Virtual Storage Access Method (VSAM)

further DEFINE command. This causes an
entry for the VSAM data set to be made in
the VSAM master catalog, and the space
requested for the data set to be obtained
from the available VSAM space and
formatted. The data set can then be
"loaded" with data by the arplicaticn
program.

The use of the DEFINE command for these
purposes is illustrated in the examnrles
later in this chapter.

Note: The DEFINE command for the data
set may specify either SUBALLOCATION or
UNIQUE. SUBALLOCATION, which is the
standard default, specifies that the space
for the data set is to be a suballocation
of VSAM space on a specified volurme. If
UNIQUE is specified, the allocation is made
directly on a specified volure, and it is
not necessary to obtain VSAM space as
described in the preceeding raragrarhs. In
the rest of this chapter it is assumed that
SUBALLOCATION is in effect.

Creating a Key Sequenced Data Set

The example in Figure 9-4 illustrates the
creation of a key sequenced data set. This
example is similar to that shown in Chapter
8 for the creation of an INLCEXED data set;
the only changes in the PL/I program are
the replacement of INDEXED by VSAM in the
ENVIRONMENT option of the output file
declaration, and a modification to the
output record structure so that the records
contain embedded keys.

The first job step invokes Access Method
Services (PGM=IDCAMS) to obtain space for
the data set and to enter its
characteristics in the VSAM catalog.
first DEFINE command obtains VSAM data
space on volume HUR137. Note that the FILE
parameter in this DEFINE statement refers
to the DD statement with the ddname CD1.
This DEFINE command and the corresponding
DD statement may be omitted if sufficient
VSAM space is already availakle on the
required volume.

The

The second DEFINE statement defines the
VSAM "cluster"™ that contains the data set
and its associated index data set. It
specifies that the data set and its index
are to be placed on volume HUR137 and that
the name of the data set (the dsname) is
TELNO. The definition of the data set
includes the information that the embedded
key is 20 characters long and is at the
front of the logical records, that both the
average and the maximum lengths of logical
records are 23 bytes, that 20% of the space
in each control interval is to be left

133

//0PTo#4 JOB
/7 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//DD1 DD UNIT=2314,VOL=SER=HUR137,DISP=OLD
//SYSIN DD *
DEFINE SPACE(VCOL(HUR137) FILE(DDl1) CYL(10,10))
DEFINE CLUSTER (NAME(TELNO) VOL(HUR137)) -
DATA(CYL(4,1) KEYS(20,0) RECSZ(23,23) -
FREESPACE(20,30)) -
INDEX(CYL(1,1))
/*
/7 EXEC TL1LOCLG
//PLI.SYSIN DD *
TELNOS: PROC OPTIONS (MAIN);

DCL DIREC FILE RECORD SEQUENTIAL KEYED ENV(VSAM),
CARD CHAR (80),
NAME CHAR(20) DEF CARD POS(1),
NUMBER CHAR (3) DEF CARD POS(21),
OUTREC CHAR(23) DEF CARD POS (1);

ON ENDFILE(SYSIN) GOTO FINISH;
OPEN FILE(DIREC) OUTPUT;
NEXTIN:GET FILE (SYSIN) EDIT (CARD) (A(80));
WRITE FILE(DIREC) FROM(OUTREC) KEYFROM(NAME);
GOTO NEXTIN;
FINISH:CLOSE FILE(DIREC);
END TELNOS;

//GO.DIREC DD DSNAME=TELNO,DISP=0LD
//GO.SYSIN DD #*

ACTION,G. 162
BAKER, R. 152
BRAMLEY,O.H. 248
CHEESEMAN, D. 141
CORY,G. 336
ELLIOTT,D. 875
FIGGINS,S. 413
HARVEY,C.D.W. 205
HASTINGS,G. M. 391
KENDALL,J .G. 294
LANCASTER, W.K. 624
MILES,R. 233
NEWMAN, M. W. 450
PITT,W.H. 515
ROLF,D.E. 114
SHEERS, C.D. 241
SUTCLIFFE,M. 472
TAYLOR, G.C. 407
WILTON, L. W. 404
WINSTONE, E.M. 307
/%

Figure 9-4. Creating and Initializing a Key Sequenced Data Set

134 0S PL/I Optimizing Compiler: Programmer's Guide

//0PT9#5 JOB

//STEP1 EXEC TLI1LOCILG
//7PLI.SYSIN DD #*

DIRUPDT: PROC OPTIONS (MAIN) ;

DCL DIREC FILE RECORD KEYED ENV(VSAM),
ONCODE BUILTIN,
OUTREC CHAR(23),
NUMBER CHAR (3) DEF OUTREC POS(21),
NAME CHAR(20) DEF OUTREC,
CODE CHAR(2);

ON ENDFILE (SYSIN) GO TC PRINT;

ON KEY(DIREC) BEGIN;
IF ONCODE=51 THEN PUT FILE (SYSPRINT) SKIP EDIT
('NOT FOUND:' ,NAME) (A(15),Aa);
IF ONCODE=52 THEN PUT FILE(SYSPRINT) SKIP EDIT
("DUPLICATE:" ,NAME) (A(15),1);
END;

OPEN FILE (DIREC) DIRECT UPDATE;

NEXT: GET FILE (SYSIN) EDIT(NAME, NUMBER,CODE) (A(20),A(3),X(56) ,A(1));
IF CODE='A' THEN WRITE FILE(DIREC) FROM(OUTREC) KEYFROM(NAME);
ELSE IF CODE='C' THEN REWRITE FILE(DIREC) FROM(OUTREC)
KEY (NAME) ;
ELSE IF CODE='D' THEN DELETE FILE(DIREC) KEY (NAME);
ELSE PUT FILE(SYSPRINT) SKIP EDIT('INVALID CODE: ‘',NAME)
(A(15),R);
GO TO NEXT;

PRINT: CLOSE FILE (DIREC);
PUT FILE(SYSPRINT) PAGE;
OPEN FILE (DIREC) SEQUENTIAL INPUT;

ON ENDFILE(DIREC) GO TO FINISH;

NEXTIN: READ FILE(DIREC) INTO(OUTREC);
PUT FILE (SYSPRINT) SKIP EDIT (OUTREC) (3) ;
GO TO NEXTIN;

FINISH: CLOSE FILE (DIREC);
END DIRUPDT;

/¥

//G0O.DIREC DD DSNAME=TELNO, DISP=OLD

//GO.SYSIN DD *

NEWMAN, M. W. 516 c
GOODFELLOW,D.T. 889 A
MILES,R. D
HARVEY,C.D.W. 209 A
BARTLETT, S. G. 183 a
CORY,G. T
READ,K. M. 001 A
PITT,W.H.

ROLF,D.F. D
ELLIOTT,D. 291 C
HASTINGS,G. M. D
BRAMLEY ,O.H. 439 c
/¥

Figure 9-5. Updating a Key Sequenced Data Set

Chapter 9: Virtual Storage Access Method (VSAM)

135

//70PT9#6 JOB

7/ EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD =%

DEFINE CLUSTER(NAME(DS3) VOL(HUR137) CYL(1,1) RECSZ(80,80) -

NONI NDEXED)
/¥
//STEP1 EXEC TL1LOCLG
//7PLI.SYSIN DD *
MERGE: PROC OPTIONS (MAIN);

DCL (IN1,IN2) FILE RECORD SEQUENTIAL,

OUT FILE RECORD SEQUENTIAL ENV(VSAM),
(ITEM1 BASED(A), ITEM2 BASED(B)) CHAR(80);

ON ENDFILE(IN1) BEGIN;

ON ENDFILE(IN2) GO TO FINISH;
WRITE FILE(OUT) FROM(ITEM2) ;
READ FILE(IN2) SET (B);

GO TO NEXT2;

END;

ON ENDFILE(IN2) BEGIN;

ON ENDFILE(IN1) GO TO FINISH;
WRITE FILE (OUT) FROM(ITEM1) ;
READ FILE(IN1) SET (RA);

GO TO NEXT1;

END;

OPEN FILE(IN1) INPUT,
FILE(IN2) INPUT,
FILE(OUT) OUTPUT;

READ FILE(IN1) SET(A);

READ FILE(IN2) SET(B):

IF ITEML>ITEM2 THEN DO;

WRITE FILE(OUT) FROM(ITEM2) ;
READ FILE(IN2) SET (B);
GO TO NEXT;

END;

ELSE DO;

WRITE FILE(OUT) FROM(ITEM1);
READ FILE(IN1) SET(R);

GO TO NEXT;

END;

NEXT2:

NEXT1:

NEXT:

FINISH:
END MERGE;

/¥

//G0.0UT DD DSNAME=DS3 ,DISP=O0OLD

//7GO.IN1 DD *

CLOSE FILE(IN1),FILE(IN2),FILE(OUT);

(insert here data to be included in the input stream)

//7GO.IN2 DD *

(insert here data to be included in the input stream)

/%

Figure 9-6.

free, and that 30% of the control intervals
in each control area are also to be left
free.

The following job steps compile, link-edit,
and execute the PL/I program that loads the
initial information into the data set.

Note that the only information that need be
supplied in the DD statement for the data
set is the data set name that was defined
in the DEFINE statement, together with the
data set disposition (DISP=).

136 0S PL/I Optimizing Compiler:

Creating an Entry Sequenced Data Set

Accessing a Key Sequenced Data Set

The program in Figure 9-5 updates the data
set that was created in Figure 9-4 and
prints out its new contents. This example
is similar to that shown in chapter 8 for
updating an INDEXED data set.

Programmer's Guide

Creating and Accessing an Entry
Sequenced Data Set

The example in Figure 9-6 illustrates the
creation of an entry sequenced data set.
The example is similar to that given in
Chapter 8 for the creation of a CONSECUTIVE
data set.

The first job step in the example
invokes Access Method Services to define
and catalog the data set. It is assumed in
this example that VSAM already "owns" data
space on the specified volume. Note that
the VSAM "cluster" in this case contains
only the ESDS. NONINDEXED must be
specified in the DEFINE statement, to
indicate that the records contain no keys
and that an ESDS is required.

The PL/I program in this example merges
the contents of two existing data sets, Dsl
and DS2, and writes them onto the VSAM data
set defined in the previous job step. Each
of the original data sets contains 80-byte
fixed length records arranged in EBCDIC
collating sequence.

DD Statements for VSAM Data Sets

This section describes the minimum
information that must appear in DD
statements for VSAM data sets. The
additional facilities that are available
through the job control language are also
listed; further information on these
facilities is given in QS/VS VSAM
Programmer's Guide, Order No. GC26-3806.

If a DEFINE command is used to obtain
VSAM data space on a particular volume, a
DD statement must be provided to define the
volume. The ddname of this DD statement
must appear in the FILE parameter of the
DEFINE command. The DD statement must
contain the UNIT, VOLUME, and DISP
parameters. For example, if the DEFINE
command is:

DEFINE SPACE(.... FILE(DDN).....)

the corresponding DD statement must have
the form:

//DDN DD UNIT=xxxx,VOL=SER=yyyy,DISP=OLD

Once a data set has been defined using
the DEFINE command, it can be accessed by
specifying the dsname and a disposition of
OLD. Additional parameters can, however,
be specified. For VSAM data sets, the DCB
parameter is invalid; its place is taken by
the AMP parameter. The AMP parameter has

the following format:

Chapter 9: Virtual Storage Access Methcd (VSAM)

AMP='subparameter,subparaneter,..."'

The valid sukparameters cf the AMP
parameter are:
BUFSP=number specifies the amount of
storage to be set aside
for VvsAM buffers.
BUFND=number specifies the number of
data buffers required.
BUFNI=number specifies the number of
index buffers required.
RECFM=format specifies reccrd fcrmat.
The use of this
subparareter is described
under the heading "The
Compatibility Interface”
later in this chapter.
STRNO=number specifies how many
concurrent data-set
positioning requests VSAM
must be prerared tc
handle. For convenience,
the PL/I prcgranmer can
make STRNO equal to the
number of PL/I files that
will be open on the data
set at the same tirme.

TRACE specifies that a trace of
Access Method Control
Blocks (ACBs) is required
during processing.

AMORG must be specified if

VOL=SER infcrmation is

used to define a catalog

or a subset mount of a

multivolume data set.
|oPTCD={L|IL} specifies how deleted
records are to be handled
when the ccrpatibility
interface is being used
(see "The Ccrpatibility
Interface” later in this
chapter.)

The Compatibility Interface

PL/1I programs that are written to create
and access ISAM data sets (ENV(INDEXED))
can be used to access VSAM key sequenced
data sets without alteration. Two types of
access are possible: "native" access, in
which the data set is accessed exactly as
though the file had been declared with
ENV(VSAM), and access via the ISAM/VSAM
compatibility interface.

The fact that the data set being

137

accessed is a VSAM data set is detected by
the PL/I library routines when the file is
opened, and the required support is
provided. This support will normally be
native VSAM support; in order to force use
of the compatibility interface, the user
must code either RECFM=F|FB|V|VB or OPTCD=L
in the AMP parameter of the DD statement
for the data set. Use of the compatibility
interface must be forced if any of the
following situations exists:

e The PL/I program uses records with non-
embedded keys.

e The user requires the lengths of records
being read or written to be checked
against the record length specified for
the data set; the RECORD condition is to
be raised if an incorrect-length record
is encountered,

e Deleted records are to be retained in
the data set (IsAM deletion). If
deleted records are to be deleted from
the data set (VsSAM deletion), kut the
compatibility interface must be used for
some other reason, the programmer must
specify OPTCD=IL.

¢ The number of channel programs specified
(NCP) is greater than one. Note,
however, that the compatibility
interface is obtained automatically in
this case if a file declared with
ENV(INDEXED) is opened on a VSAM KSDS.

If the compatibility interface is used,
and RECFM is not specified either in the
program or in the AMP parameter, the
default is RECFM=V.

If a PIL/1I file declared with
ENV(INDEXED) is used to load a VSAM KSDS
with F-format records, and the key is not
embedded, the record size specified on the
DEFINE command for the VSAM data set must
be equal to the length of the user record
plus the length of the key.

Password Protection of VSAM Data Sets

VSAM provides a password protection option
that enables VSAM data sets to be protected
against unauthorized access or deletion.
Passwords are specified as a parameter of
the DEFINE command when a VSAM data set is
defined. 1In order to gain access to a
password-protected data set, the PL/I
programmer must specify the correct
password in the the ENVIRONMENT attribute
of the PL/I file.

There are three levels of password
protection of interest to the PL/I

138 OS PL/I Optimizing Compiler:

programmer:
1. Master Password - Specifying this
password allows the user to perform
any operation on a data set cr cn the
index and catalog records associated

with it.

2. Update Password - Specifying this
rassword allows the user to retrieve,
update, delete, or insert reccrds in a
data set.

3. Read-Only Password - Specifying this

password allows the user to retrieve
records form a data set, but not to
update, delete, or insert records.

Note that password protection is
effective only if the catalog that contains
the data set is itself password protected.

Sharing VSAM Data Sets
SHARING BETWEEN JOBS

Independent jobs running in the same system
may share VSAM data sets prcvided that both
jobs specify DISP=SHR in their DD
statements for the data set. The type of
sharing that is to be allowed on any
particular data set can be specifed in the
DEFINE command when the data set is
defined. The following four types cf
sharing are possible:

1. The
for
for

data set may ke used by one job
output or by any nurnber of jobs
input.

The
for
for

data set may be used by one job
output and by any number of jobs
input.

The data set may be fully shared, the
user being completely responsible for
read and write integrity.

As (3) above, but VSAM will refresh
the buffers for each request.

SHARING BETWEEN SUBTASKS IN A JOB

Subtasks can share VSAM data sets either
through separate DD statements or through
the same DD statement.

If separate DD statements are used, the
rules are the same as those for sharing
between jobs.

Programmer's Guide

If a single DD statement is used, the
data set can be fully shared. The value of
STRNO specified in the AMP parameter of the
DD statement should be equal to the number
of files that will be open on the data set
concurrently.

Chapter 9: Virtual Storage Access Method (VsaM) 139

Chapter 10: Libraries of Data Sets

Within the IBM operating system, the terms
"partitioned data set™ and "library" are :
used synomnymously to signify a type of data
set that can be used for the storage of
other data sets (usually programs in the
form of source, object or load modules). A
library must be stored on direct-access
storage and be wholly contained in one
volume. It contains independent,
consecutively-organized, data sets, called
members. Each member has a unique name,
not more than eight characters long, which
is stored in a directory that is part of
the library. All the members of one
library must have the same data
characteristics because only one data set
label is maintained.

Members can be created individually
until there is insufficient space left for
a new entry in the directory, or until
there is insufficient space for the member
itself. Members can be accessed
individually by specifying the member name.

DD statements or ALLOCATE commands are
used to create and access members.

Members can be deleted by means of the
IBM utility program IEHPROGM. This deletes
the member name from the directory so that
the member can no longer be accessed; but
the space occupied by the member itself
cannot be used again unless the library is
recreated using, for example, the IBM
utility program IEBCOPY. An attempt to
delete a member by using the DISP parameter
of a DD statement will cause the whole data
set to be deleted.

Types of Library

The following types of library may be used
with a PL/I program:

¢ The system program library
SYS1.LINKLIB. This can contain all
system processing programs such as
compilers and the linkage editor.

e Private program libraries. These
usually contain user-written programs.
It is often convenient to create a
temporary private library to store the
load module output from the 1linkage
editor until it is executed by a later
job step in the same job. The library
will be deleted at the end of the job.
Private libraries are also used for

automatic library call by the linkage
editor and the loader.

e The system procedure library,

» SYS1.PROCLIB. This contains the job
control procedures that have been
cataloged for your installation.

How to Use a Library

The ways in which the libraries described
above can be used are descriked in the
following sections.

BY THE LINKAGE EDITOR OR LOALER

The output from the linkage editor is
usually rlaced on a private program
library.

The automatic call library used as input
to the linkage editor or loader (see
Chapter 5) can be SYS1.LINKLIB, a rrivate
program library, or a sukroutine library.

In each case, the processing of
directory entries is performed by the
operating system.

When you are adding a memker to a
library, you must specify the member name
as follows:

e When a single module is produced as
output from the linkage editor, the
member name can be specified as part of
the data set name (see later in this
chapter).

¢ When more than one module is produced as
output from the linkage editor, the
member name for the first module can be
specified as part of the data set name
or in the NAME option or NAME control
statement. The merber nanes for the
subsequent modules must ke specified in
the NAME option or the NAME contxcl
statement.

BY THE OPERATING SYSTEM

When you request the executicn of a load
module in an EXEC statement or CALL

Chapter 10: Libraries of Data Sets 141

command, the operating system must be able
to retrieve the load module from a library.
For a CALL command, this library is
specified explicitly or implicitly in the
command. For an EXEC statement, the
following rules apply.

The operating system will assume the
load module is a member of SsyYsl.LINKLIB,
and will search in the directory for that
library for the name you have specified, °*
unless you have also specified that the
load module is in a private library, in one
of the following ways.

If the load mbdule has been added to the
private library in a previous step of the
job (usually a link-edit step) and the
member name was specified as part of the
data set name, then you can refer, in the
EXEC statement, to the DD statement
defining the library instead of specifying
the load module name. The library must
have been given the disposition PASS.

If the load module exists on the private
library before the job starts, then you
have several ways of defining the library.

You can define the library in a DD
statement, with the ddname JOBLIB,
immediately after the JOB statement.
library will be used in place of
SYS1.LINKLIB for all the steps of the job.
If any load module is not found on the
private library, the system will then look
for it on SYS1.LINKLIB.

This

You can define the library in a DD
statement with the ddname STEPLIB, at any
point in the job control procedure. The
private library will be used in place of
SYS1.LINKLIB, or any library specified in a
JOBLIB DD statement, for the job step in
which it appears (though it can also be
"passed” to subsequent job steps in the
normal way). If any load module is not
found on the private library, the system
will look for it on the library specified
in the JOBLIB DD statement (if used) or on
SYS1.LINKLIB. The STEPLIB DD statement can
be used in a cataloged procedure.

Alternatively, if you specify
SYS1.LINKLIB in the JOBLIB or STEPLIB DD
statements, and then concatenate the
private library to it, the private library
will be used only if a load module cannot
be first found on SYSl1l.LINKLIB.

BY YOUR PROGRAM

Libraries can be used directly by a PL/I
program.

42 0S PL/1I Optimizing Compiler:

If you are adding a new member to a
library, its directory entry will be made
by the orerating system when the associated
file is closed, using the menber name
specified as part of the data 'set name.

If you are accessing a member of a
library, its directory entry can be found
by the operating.system from the member
name that you specify as part of the data
set name. '

More than one member of the same library
can be processed by the same PL/I rrcgram,
but only one such output file can be open
at any one time. Different nembers are
accessed by giving the member name in a DD
statement.

Creating a Library

To create a library include in your job
step a DD statement containing the
information given in Figure 10-1. The
information required is similar to that for
a consecutively-organized data set (see
Chapter 8) except for the SPACE parameter.

Information Parameter of
Required LD statement
Type of device that will UNIT=
process the likrary
Serial number of the volume VOLUME=SER
that will contain the library
Name of the library DSNAME=
Amount of space required SPACE=
for the library
Disposition of the library DISP=

Information required
when creating a library

Figure 10-1.

SPACE PARAMETER

The SPACE parameter in a DD statement that
defines a library must always be of the
form:

SPACE=(units, (quantity,
increment,directory))

Although you can omit the third term
(increment) , indicating its absence by a
comma, the last term, specifying the number

Programmer's Guide

of directory blocks to be allocated, must
always be present.

The amount of auxiliary storage required
for a library depends on the number and
sizes of the members to be stored in it and
on how often members will be added or
replaced. (Space occupied by deleted
members is not released.) The number of
directory blocks required depends on the
number of members and the number of
aliases. Although you can specify an
incremental quantity in the SPACE parameter
that will allow the operating system to
obtain more space for the data set if
necessary, both at the time of creation and
when néew members are added, the number of
directory blocks is fixed at the time of
creation and cannot be increased.

If the data set is likely to be large orx
you expect to do a lot of updating, it
might be best to allocate a full volume.
Otherwise, make your estimate as accurate
as possible to avoid wasting space or time
recreating the data set.

The number of directory entries that a
256~byte directory block can contain
depends on the amount of user data included
in the entries. The maximum length of an
entry is 74 bytes, but the entries produced
by the linkage editor vary in length
between 34 bytes and 52 bytes, which is
equivalent. to between four and seven
entries per block.

For example, the DD statement:

//PDS DD UNIT=2311,VOLUME=SER=3412,
// DSNAME=ALIB,

// SPACE=(CYL, (50,,10)),

// DISP=(,CATLG)

requests the job scheduler to allocate 50
cylinders of the 2311 disk pack with serial
number 3412 for a new partitioned data set
named ALIB, and to enter this name in the
system catalog. The last term of the SPACE
parameter requests that part of the space
allocated to the data set be reserxrved for
ten directory blocks.

Creating a Library Member

The members of g library must have
identical characteristics otherwise you may
subsequently have difficulty retrieving
them. This is necessary because the volume
table of contents (VIoC) will contain only
one data set control block (DSCB) for the
library and not one for each member. When
using a PL/I program to create a member,
the operating system creates the directory
entry; you cannot place information in the

user data field.

When creating a library and a menker at
the same time, the DD statement must
include all the parameters listed under the
heading "Creating a Likrary," earlier in
this chapter (although you can omit the
DISP parameter if the data set is to be
temporary). The DSNAME paraneter nust
include the memker name in parentheses.

For example, DSNAME=ALIB (MEM1) names the
mexmber MEM1 in the data set ALIB. If the
membexr is placed in the library by the
linkage editor, you can use the linkage
editor NAME statement Qr the NAME compiler
option instead of including the merker name
in the DSNAME parameter. You must also
describe the characteristics of the nrember
(record format, etc.) either in the DCB
parameter or in your PL/I prcgram; these
characteristics will also apply to other
members added to the data set.

When creating a merber to be added to an
existing likrary, you will not need the
SPACE parameter; the original space '
allocation applies to the whole of the
library and not to an individual nenker.
Furthermore, you will not need to describe
the characteristics of the member, since
these are already recorded in the DSCB for
the library.

To add two or more members to a library
in one job step, you must include a LD
statement for each member, and you nust
close one file that refers to the library
before you open another.

Examples

The use of the cataloged procedure PLIXC to
compile a simple PL/I prograr and rlace the
object module in a new library named EXLIB
is shown in Figure 10-2. The DD statement
that defines the new library and names the
object module overrides the DD staterent
SYSLIN in the cataloged procedure. (The
PL/I program is a function procedure that,
given two values in the form of the
character string produced by the TIME
built-in function, returns the difference
in milliseconds.)

The use of the cataloged procedure
PLIXCL to compile and link edit a PL/I
program and place the load module in the
|existing library "PUBPGM" is shown in
Figure 10-3. (The PL/I program lists the
names of the members of a library.)

To use a PL/I program to add or delete
one or more records within a member of a
library, you must rewrite the entire member
in ancther part of the library; this is

Chapter 10: Libraries of Data Sets 143

//70PT10#2 JOB
//STEP1 EXEC PLIXC
//PLI.SYSLIN DD DSNAME=EXLIB(ELAPSE),UNIT=2311,VOL=SER=D186,
/77 SPACE=(CYL, (10,,2)) ,DISP= (NEW,KEEP)
//PLI.SYSIN DD *
ELAPSE: PROC(TIMEl,TIME2);

DCL (TIME1l,TIMEZ2) CHAR(9),
H1 PIC '99' DEF TIME1l,
M1 PIC '99' DEF TIME1l POS(3),
MS1 PIC '99999' DEF TIME1l POS(5),
H2 PIC '99' DEF TIMEZ2,
M2 PIC '99' DEF TIME2 POsS(3),
MS2 PIC '99999' DEF TIME2 POS (5),
ETIME FIXED DEC(7);

IF H2<H1 THEN H2=H2+24;
ETIME= ((H2*60+M2) *600000+MS 2)- ((H1*60+M1)*600000+MS1) ;
RETURN (ETIME) ;
END ELAPSE;
/*

Figure 10-2. Creating new libraries for compiled object modules

//0PT10#3 JOB
//STEP1 EXEC PLIXCL
//PLI .SYSIN DD #*
MNAME: PROC OPTIONS(MAIN);

DCL LINK FILE RECORD SEQUENTIAL INPUT,
1 DIRBIK,
2 COUNT BIT(16),
2 ENTRIES (254) CHAR(1),
1 ENTRY BASED(A),
2 NAME CHAR(S),
2 TTR CHAR(3),
2 INDIC,
3 ALIAS BIT(1),
3 TTRS BIT(2),
3 USERCT BIT(5),
(LEN,PTR) FIXED BIN(31);

ON ENDFILE (LINK) GO TO FINISH;

OPEN FILE(LINK);
NEXTBLK: READ FILE (LINK) INTO(DIRBLK) ;
LEN=COUNT;
PTR=1;
NEXTENT: A=ADDR(ENTRIES(PTR));
PUT FILE(SYSPRINT) SKIP LIST(NAME) ;
PTR=PTR+12+2*USERCT;
IF PTR+2>LEN THEN GO TO NEXTBLK;
GO TO NEXTENT;
FINISH: CLOSE FILE (LINK) ;
END MNAME;
Vzs
//LKED.SYSLMOD DD DSN=PUBPGM(DIRLIST),DISP=0LD,VOL=SER=D186,UNIT=2311

Figure 10-3. Placing a load module in an existing likrary

144 0S PL/I Optimizing Compiler: Programmer's Guide

//70PT10#4 JOB
//STEP1 EXEC PLIXCLG
//PLI .SYSIN DD *

NMEM: PROC OPTIONS(MAIN);

DCL OUT FILE RECORD SEQUENTIAL OUTPUT,

IOFIELD CHAR(80) BASED(A);
ON ENDFILE(IN) GO TO FINISH;

NEXT: READ FILE(IN) SET(A);
WRITE FILE (OUT) FROM (IOFIELD) ;
GO TO NEXT;

FINISH: END NMEM;

/¥

//G0.0UT DD DSN=ALIB(NMEM) ,UNIT=2311,VOL=SER=D186,
/7 DISP=(NEW, CATLG) ,SPACE=(CYL, (10,1,1)),

/77 DCB=(RECFM=FB,BLKSIZE=400,LRECL=80)

//GO.IN DD *

(insert here data to be included in the input stream)

VA]

Figure 10-4.

//70PT10#5 JOB
//STEP1 EXEC PLIXCLG
//PLI.SYSIN DD *

UPDTM: PROC OPTIONS (MAIN) ;

DCL (OLD,NEW) FILE RECORD SEQUENTIAL,
DATA CHAR(80);

ON ENDFILE(OLD) GO TO FINISH;

Creating a library member in a PL/I program

OPEN FILE(OLD) INPUT,FILE(NEW) OUTPUT TITLE('OLD');

NEXT: READ FILE(OLD) INTO(DATA);
IF DATA=' ' THEN GO TO NEXT;
WRITE FILE(NEW) FROM(DATA);
PUT FILE(SYSPRINT) SKIP LIST(DATA) ;
GO TO NEXT; ;
FINISH: CLOSE FILE(OLD) ,FILE (NEW) ;
END UPDTM;
7%
//GO.OLD DD DSNAME=ALIB(NMEM),DISP=OLD

Figure 10-5. Updating a library member

rarely an economic proposition, since the
space orjiginally occupied by the member
cannot be used again. You must use two
files in your PL/I program, but both can be
associated with the same DD statement. The
program shown in Figure 10-5 updates the
nmember created by the program in Figure 10~
4; it copies all the records of the
original member except those that contain
only blanks.

Library Structure

The structure of a likrary is illustrated
in Figure 10-6. The directory of a library
is a series of records (entries) at the
beginning of the data set; there is at
least one directory entry fcr each member.
Each entry contains a member name, the
relative address of the member within the
library, and a variakle amount of user
data. The entries are arranged in
ascending alphameric order of member names.

A directory entry can contain up to 62
bytes of user data (information inserted by
the program that created the member). An
entry that refers to a member (load module)

Chaptexr 10: Libraries of Data Sets 145

bit 0

1 2 3 4 5 6 7
O name | number of ptrsin number of halfwords in user byte 11 of
1 alias user data field data field (inc pointers) directory entry
| |
Note: | |
pointers contain relative L)
addresses of locations ~ -
within member. S~ -
~ -
~ -
~ - _ -
~
~ /”‘
| |
| |
byte O 7 8 9 10 11 12 61
track lati rel block
member name rack no. relative | ., on optional variable user data (max 62 bytes)
to start of d.s. tr
ack
I , I
| contents of a directory entry
— -— |
S -~ — -
-~ —
~ - -
~— -
—~ -
~— -
~— -—
— — -
S ~ _ o
M f
256 byte di — >
i yte directory block >
Directory entry Directory entry Directory entry Directory entry
for member A for member B for member C for member K
space from
member C deleted members
member B member K
member K (cont'd)
member K (cont'd) member A
member A (cont’d) available area

Figure 10-6. Structure of a library

146 0S PI/I Optimizing Compiler: Programmer's Guide

written by the linkage editor includes user
data in a standard format, described in the

manual System Control Blocks.

If you use a PL/I program to create a
member, the operating system creates the
directory entry for you and you cannot
write any user data. However, you can use
assembler language macro instructions to
create a member and write your own user
data; the method is described in the manual
Supervisor and Data Management Services.

Directory entries are stored in fixed-
length blocks of 256 bytes, each containing

a 2-byte count field specifying the number
of active bytes in a block, and as nany
complete entries as will fit into the
remaining 254 bytes. The directory is in
effect a sequential data set that ccntains
fixed-length unktlocked records, and can be
read as such.

The program illustrated in Figure 10-3
demonstrates a method of extracting
information from directory entries. The
program lists the names of all the members
of a library; the library must be defined,
when the program is executed, in a LC
statement with the name LINK.

Chapter 10: Libraries of Data Sets 147

Chapter 11: Cataloged Procedures

This chapter describes the standard
cataloged procedures supplied by IBM for
use with the 0s PL/I Optimizing Compiler,
explains how to invoke them, and how to
make temporary or permanent modifications
to them.

A cataloged procedure is a set of job
control statements stored in a system
library, the procedure library
(SYS1.PROCLIB). It comprises one or more
EXEC statements, each of which may be
followed by one or more DD statements. You
can retrieve the statements by naming the
cataloged procedure in the PROC parameter
of an EXEC statement in the input stream.
When the operating system processes this
EXEC statement, it replaces it in the input
stream with the statements of the cataloged
procedure.

The use of cataloged procedures saves
time and reduces errors in coding
frequently used sets of job control
statements. If the statements in a
cataloged procedure do not match your
requirements exactly, you can easily modify
them or add new statements for the duration
of a job. It is recommended that each
installation review these procedures and
modify them to obtain the most efficient
use of the facilities available and to
allow for installation conventions; refer
to "Permanent Modification," later in this
chapter.

Invoking a Cataloged Procedure

To invoke a cataloged procedure, specify
its name in the PROC parameter of an EXEC
statement. For example, to use the
cataloged procedure PLIXC, you could
include the following statement in the
appropriate position among your other job
control statements in the input stream:

//stepname EXEC PROC=PLIXC

You need not code the keyword PROC; if the
first operand in the EXEC statement does
not begin PGM= or PROC=, the job scheduler
interprets it as the name of a cataloged
procedure. The following statement is
equivalent to that given above:

//stepname EXEC PLIXC

wWhen the operating system meets the name
of a cataloged procedure in an EXEC

statement, it extracts the statements of
the cataloged procedure from the rrccedure
library and sukstitutes them for the EXEC
statement in the input job stream. If you
include the parameter MSGLEVEL=1 in your
JOB statement, the operating system will
include the original EXEC statement in its
listing, and will add the statements of the
cataloged procedure. In the listing,
cataloged procedure statements are
identified by XX or X/ as the first two
charactexrs; X/ signifies a statement that
has been modified for the current
invocation of the cataloged procedure.

An EXEC statement identifies a job step,
which can require either the execution of a
program or the invocation of a catalcged
procedure. A cataloged procedure includes
one or more EXEC statements, which identify
procedure steps. However, an EXEC
statement in a cataloged procedure cannot
invoke another cataloged prccedure; it must
request the execution of a program.

It may be necessary for you to modify
the statements of a cataloged procedure for
the duration of the jok step in which it is
invoked, either by adding DD staterents or
by overriding one or more parameters in the
EXEC or DD statements. For exarple,
cataloged procedures that invoke the
compiler require the additicn of a DD
statement with the name SYSIN to define the
data set containing the source statenments.
Also, whenever you use more than one
standard link-edit procedure step in a jokb,
you must modify all but the first cataloged
procedure that you invoke if you want to
execute more than one of the load modules.

Multiple Invocation_ of Catalcqed
Procedures

You can invoke different cataloged
procedures, or invoke the same cataloged
procedure several times, in the same job.
No special problems are likely to arise
unless more than one of these catalcged
procedures involves a link-edit procedure
step, in which case you must take the
following precautions to ensure that all
your load modules can be executed.

The linkage editor always places a load
module that it creates in the standard data
set defined by the DD statement with the
name SYSLMOD. In the absence of a linkage
editor NAME statement (or the NAME compiler

Chapter 11: cCataloged Prccedures 149

option), it uses the member name specified
in the DSNAME parameter as the name of the
module. In the standard cataloged
procedures, the DD statement with the name
SYSLMOD always specifies a temporary
library named §&GOSET, and gives the load
module the member name GO.

Cconsider what will happen if, for
example, you use the cataloged procedure
PLIXCLG twice in a job to compile, link
edit, and execute two PL/I programs, and 4o
not name each of the two load modules that
will be created by the linkage editor. The
li nkage editor will name the first load
module GO, as specified in the first DD
statement with the name SYSLMOD. It will
not be able to use the same name for the
second load module since the first load
module still exists in the library E&GOSET;
it will allocate a temporary name to the
second load module (a name that is not
available to your program). Step GO of the
cataloged procedure requests the operating
system to initiate execution of the load
module named in the first DD statement with
the name SYSLMOD in the step LKED, that is,
to execute the module named GO from the
library &8GOSET. Consequently, the first
load module will be executed twice and the
second not at all.

To prevent this, use one of the
following methods:

e Delete the library §&GOSET at the end of
the step GO of the first invocation of
the cataloged procedure by adding a DD
statement of the form:

//G0O.SYSLMOD DD DSN=§E&8GOSET,
DIsP=(OLD,DELETE)

e Modify the DD statement with the name
SYSLMOD in the second and subsequent
invocations of the cataloged procedure
50 as to vary the names of the load
modules. For example:

//LKED. SYSLMOD DD DSN=§EGOSET (GO1)
and so on.
e Use the NAME compiler option to give a
different name to each load module and
change your job control statements to

specify the execution of the load
modules with these names.

Dedicated Data Sets

Many of the processing programs in the
operating system, including the optimizing
compiler and the linkage editor, use
temporary workfiles. To avoid allocating

150 0S PL/I Optimizing Compilex:

data sets for these workfiles each time
they are required, an installation using
the MVT operating syster can dedicate one
or more data sets for temporary workfiles,
and these remain permanently allccated.

The standard cataloged prccedures allow
you to assign dedicated data sets to the
optimizing compiler and linkage editor.

The DD statements for workfiles have the
ddname SYSUT1. 1In these DD statements, the
DSNAME rarameter is coded:

DSNAME=§ £ ddname

where "ddname" is the ddname of that DD
statement. Your installaticn must have
assigned these names to the dedicated data
sets, otherwise you must override the DD
statement in the cataloged procedure in
order to specify the names used by ycur
installation.

If the system cannot assign the
dedicated data set to your jcb ster, it
creates a temporary data set instead. For
full details of dedicated data sets see the
0S _System Programmer's Guide.

Multitasking Using cataloged Procedures

When you use a cataloged prccedure tc link
edit a multitasking program, you must
ensure that the load module includes the
multitasking versions of the PL/I resident
library subroutines. To enakle you to
select the appropriate library, the
cataloged procedures that invoke the
linkage editor and the loader include a
symbolic parameter (ELKLBDSN) in the DSNAME
parameter of the DD statement SYSLIB, which
defines the data set to be used as the
automatic call library. This data set is
described in chapter 5. The default value
of this symkolic parameter is SYS1.PLIBASE,
which is the name of the non-multitasking
("base") library.

To ensure that the multitasking library
(SYS1.PLITASK) is searched before the base
library, include the parameter
LKIBDSN='SYS1,PLITASK' in the EXEC
statement that invokes the cataloged
procedure; for example:

//STEPA EXEC PLIXCLG,LKLBDSN=*SYSl1.PLITASK'

The DD statement SYSLIB is always
followed in the standard cataloged
procedures by another, unnamed, DD
statement that includes the rarameter
DSNAME=SYS1.PLIBASE. The effect of this
statement is to concatenate the base
library with the multitasking library, if
the latter is used; the base library can

Programmer's Guide

then be searched for any subroutine common
to multitasking and non-multitasking and
therefore not included in the multitasking
library. When the non-multitasking library
is selected, the second DD statement has no
effect.

The use of the symbolic parameter
§LKLBDSN means that for non-multitasking
programs, SYS1.PLIBASE is concatenated with
itself. This has no effect other than a
very small increase in job scheduling time,
but does avoid the need for different
cataloged procedures for link editing
multitasking and non-multitasking programs.

Moditying Cataloged Procedures

You can modify a cataloged procedure
temporarily by including parameters in the
EXEC statement that invokes the cataloged
procedure oxr by placing additional DD
statements after the EXEC statement.
Temporary modifications apply only for the
duration of the procedure step in which the
procedure is invoked and only to that
procedure step; they do not affect the
master copy of the cataloged procedure
stored in the procedure library.

Alternatively, you can modify a
cataloged procedure permanently by
rewriting the job control statements that
are stored in the procedure library.
Permanent modification should be made only
by system programmers responsible for
maintaining the procedure library. Some of
the considerations that may influence their
decisions to modify the standard cataloged
procedures are discussed below.

TEMPORARY MODIFICATION

Temporary modifications can apply to EXEC
or DD statements in a cataloged procedure.
To change a parameter of an EXEC statement,
you must include a corresponding parameter
in the EXEC statement that invokes the
cataloged procedure; to change one or more
parameters of a DD statement, you must
include a corresponding DD statement after
the EXEC statement that invokes the
cataloged procedure. Although you may not
add a new EXEC statement to a cataloged
procedure, you can always include
additional DD statements.

EXEC Statement

If a parameter of an EXEC statement that
invokes a cataloged procedure has an
unqualified name, the parameter applies to
all the EXEC statements in the catalcged
procedure. The effect on the cataloged
procedure depends on the parameters, as
follows:

e PARM applies to the first procedure step
and nullifies any other PARM parameters.

e COND and ACCT apply tc all the prccedure
steps.

e TIME and REGION apply toc all the
procedure steps and override existing
values.

For example, the statement:

//stepname EXEC PLIXCLG,PARM="SIZE(MAX)“',
REGION=144K

invokes the cataloged procedure PLIXCLG,
substitutes the option SIZE (MAX) fcor OBJECT
and NODECK in the EXEC statement for
procedure step PLI, and nullifies the PARM
parameter in the EXEC statement for
procedure step LKED; it also specifies a
region size of 144K for all three prccedure
steps.

To change the value of a parameter in
only one EXEC statement of a cataloged
procedure, or to add a new parameter to one
EXEC statement, you must identify the EXEC
statement by qualifying the name of the
parameter with the name of the procedure
step. For example, to alter the region
size for procedure step PLI cnly in the
preceding example, code:

//stepname EXEC PROC=PLIXCLG,
PARM="'SIZE (MAX) ' ,REGION.PLI=144K

A new parameter specified in the
invoking EXEC statement overrides
completely the corresponding parameter in
the procedure EXEC statement.

You can nullify all the options
specified by a parameter by coding the
keyword and equal sign without a value.
For example, to suppress the bulk of the
linkage editor listing when invoking the
cataloged procedure PLIXCLG, code:

//stepname EXEC PLIXCLG ,PARM.LKED=

DD _Statement

To add a DD statement to a cataloged

Chapter 11: cCataloged Procedures 151

procedure, or to modify one or more
parameters of an existing DD statement, you
must include, in the appropriate position
in the input stream, a DD statement with a
name of the form "procstepname.ddname". If
"ddname" is the name of a DD statement
already present in the procedure step
identified by "procstepname," the
parameters in the new DD statement override
the corresponding parameters in the
existing DD statement; otherwise, the new
DD statement is added to the procedure
step. For example, the statement:

//PLI.SYSIN DD *

adds a DD statement to the procedure step
PLTI of cataloged procedure PLIXC and the
effect of the statement:

//PLI.SYSPRINT DD SYSOUT=C

is to modify the existing DD statement
SYSPRINT (causing the compiler listing to
be transmitted to the system output device
of class C).

overriding DD statements must follow the
EXEC statement that invokes the cataloged
procedure in the same order as the
corresponding DD statements of the
cataloged procedure. DD statements that
are being added must follow the overriding
DD statements for the procedure step in
which they are to appear.

To override a parameter of a DD
statement, code either a revised form of
the parameter or a replacement parameter
that performs a similar function (for
example, SPLIT for SPACE). To nullify a
parameter, code the keyword and equal sign
without a value. You can override DCB
subparameters by coding only those you wish
to modify; that is, the DCB parameter in an
overriding DD statement does not
necessarily override the entire DCB
parameter of the corresponding statement in
the cataloged procedures.

PERMANENT MODIFICATION

To make permanent modifications to a
cataloged procedure, or to add a new
cataloged procedure, use the system utility
program IEBUPDTE, which is described in the
utilities publication. The following
paragraphs discuss some of the factors you
should have in mind when considering
whether to modify the standard cataloged
procedures for your installation. For
further information on writing installation
cataloged procedures see the system
programmer's guide.

152 0S PL/I Optimizing Compiler:

In general, installation ccnventicns
will dictate the options that you include
in the PARM, UNIT, and SPACE parameters of
the cataloged procedures, and also the
blocking factors for ocutput data sets.

If your installation uses the MVT
control program of the operating system,
you may need to modify sorme cr all cf the
REGION parameters.

The minimum region size for compilation
should be at least 8K bytes larger than the
largest value that will ke specified in the
SIZE compiler option, excluding SIZE (MAX).

In cataloged procedures that invcke the
linkage editor, a region size of 100K is
specified for the link-edit rrccedure step.

You can reduce this regicn size if you
are using the 44K F-level linkage editor.
In general, the region size should ke at
least 8K bytes larger than the design size
for the particular version cf the linkage
editor being used. You must alter the
region size if you are using the 128K F-
level linkage editor.

Under MVT, the operating system requires
up to 52K bytes of main storage within a
region when initiating or terminating a jok
step. If you specify a region size of less
than 52K bytes, completicn c¢f a jcb may be
held up until 52K bytes are available.

The minimum region size used by MVT is
dependent on the installaticn, and is
defined at system generation. There is
nothing to be gained in reducing the region
size below this value.

If your installation uses MFT only, you
can delete the REGION parameter from all
cataloged procedures, otherwise it will be
ignored.

IBM-Supplied Cataloged Procedures

The standard PL/I cataloged procedures
supplied for use with the optimizing
coppiler are:

e PLIXC Compile only

¢ PLIXCL Compile and link edit

¢ PLIXCLG Compile, link edit, and execute
e PLIXIG Link edit and execute

® PLIXCG Compile, load-and-execute

s PLIXG Load-and-execute

Programmer's Guide

The individual statements of the
cataloged procedures are not fully
described, since all the parameters are
discussed elsewhere in this publication.
These cataloged procedures do not include a
DD statement for the input data set; you
must always provide one. The example shown
in Figure 11-1 illustrates the JCL
statements you might use to invoke the
cataloged procedure PLIXCLG to compile,
link edit, and execute, a PL/I program.

//COLEGO JOB
//STEP1 EXEC PLIXCLG
//PLI.SYSIN DD =*

(insert here PL/I program to ke
compiled)

/¥)
Figure 11-1. Invoking a cataloged
‘procedure

No IBM-supplied cataloged procedure is
provided to produce an object module on
punched cards. You can temporarily modify
any of the cataloged procedures that have a
compile step to produce a punched card
output; an example is shown in Figure 11-2.

//stepname EXEC PLIXCLG,

// PARM. PLI=" OBJECT, DECK"
//PLI .SYSPUNCH DD SYSOUT=B
//PLI.SYSIN DD ...

Figure 11-2. Modifying a cataloged
procedure to produce a

punched card output

Compile Only (PLIXC)

This cataloged procedure, shown in Figure
11-3, comprises only one procedure step, in
which the options specified for the
compilation are OBJECT and NODECK. (IELOAA
is the symbolic name of the compiler.) In
common with the other cataloged procedures
that include a compilation procedure step,
PLIXC does not include a DD statement for
the input data set; you must always supply
an appropriate statement with the qualified

ddname PLI.SYSIN.

The OBJECT option causes the ccrrilerxr to
place the okject module, in a form suitable
for input to the linkage editor, in the
standard data set defined by the LD
statement with the name SYSLIN. This
statement defines a temporary data set
named &§&LOADSET on a magnetic-tape cr
direct-access device; if you want to retain
the object module after the end of ycur
job, you must substitute a permanent name
for &ELOADSET (that is, a name that does
not commence £&) and specify KEEP in the
approrpriate DISP parameter for the last
procedure step in which the data set is
used.

The term MOD in the DISP rarameter
allows the compiler to place more than one
object module in the data set, and PASS
ensures that the data set will be available
to a later procedure step providing a
corresponding DD statement is included
there.

The SPACE parameter allows an initial
allocation of 250 eighty-byte reccrds and,
if necessary, 15 further allocations of 100
records (a total of 1750 reccrds, which
should suffice for most applications).

Compile and Link-edit (PLIXCL)

This cataloged procedure, shown in Figure
11-4, comprises two procedure steps: PLI,
which is identical with cataloged procedure
PLIXC, and LKED, which invokes the linkage
editor (symkolic name IEWL) to link edit
the object module produced in the first
procedure step.

Input data for the compilation procedure
step requires the qualified ddname
PLI.SYSIN. The COND.parameter in the EXEC
statement LKED specifies that this
procedure step should ke bypassed if the
return code produced by the compiler is
greater than 9 (that is, if a severe or
unrecoverable error occurs during
conpilation).

The DD statement with the name SYSLIB
specifies the PL/I resident library, from
which the linkage editor will obtain
appropriate modules for inclusion in the
load module. The linkage editor always
places the load modules it creates in the-
standard data set defined by the LD
statement with the name SYSLMOD. This
statement in the cataloged procedure
specifies a new temporary libkrary &8GOSET,
in which the load module will be placed and
given the member name GO (unless you
specify the NAME compiler option for the

Chapter 11: Cataloged Procedures 153

//PLIXC
//PLI
//SYSPRINT
//SYSLIN
7/
//SY¥YSUT1
7/

Figure 11-3.

/7 PLIXCL
//PLIL
//SYSPRINT
//SYSLIN
/7
//SYSUT1
/7

//LKED
//SYSLIB
7/

/7 SYSLMOD
/7
//8YSUT1
/7
/7/SYSPRINT
//SYSLIN
/77

Figure 11-4.

//PLIXCIG
//PLI
//SYSPRINT
//SYSLIN
/7
//SYSUT1
/7

//LKED
//SYSLIB
V4
//SYSLMOD
V4
//SY¥YSuT1
/7
//SYSPRINT
//SYSLIN
V4

//GO

7/
//SYSPRINT

Figure 11-5.

PROC

EXEC PGM=IELOAA, PARM='OBJECT ,NODECK' ,REGION=100K

DD SYSOUT=A, DCB=(RECFM=VBA, LRECL=125,BLKSIZE=629)

DD DSN=§§¢LOADSET ,DISP= (MOD,PASS),UNIT=SYSSQ,
SPACE=(80, (250,100))

DD DSN=§§SYSUT1,UNIT=SYSDA,SPACE=(1024, (60,60),,CONTIG),
DCB=BLKSIZE=1024

Cataloged procedure PLIXC

PROC LKLBDSN='SYS1.PLIBASE'

EXEC PGM=IELOAA,PARM='OBJECT ,NODECK',REGION=100K

DD SYSOUT=A, DCB=(RECFM=VBA, LRECL=125,BLKSIZE=629)

DD DSN=§§LOADSET ,DISP= (MOD,PASS) ,UNIT=SYSSQ,
SPACE=(80, (250,100))

DD DSN=§§&SYSUT1,UNIT=SYSDA,SPACE= (1024, (60, 60),,CONTIG),
DCB=BLKS IZE=1024

EXEC PGM=IEWL,PARM='XREF,LIST',COND=(9,LT,PLI),REGION=100K

DD DSN=§LKLBDS N, DISP=SHR

DD DSN=SYS1.PLIBASE,DISP=SHR

DD DSN=§§GOSET (GO) , DISP=(MOD,PASS) , UNIT=SYSDA,
SPACE=(1024, (50, 20, 1) ,RLSE)

DD DSN=§§&SYSUT1,UNIT=SYSDA,SPACE= (1024, (200, 20)),
DCB=BLKSIZE=1024

DD SYSOUT=A

DD DSN=§§LOADSET, DISP=(OLD,DELETE)

DD DDNAME=SYSIN

Cataloged procedure PLIXCL

PROC LKLBDSN='SYS1.PLIBASE'

EXEC PGM=IELOAA, PARM='OBJECT,NODECK',REGION=100K

DD SYSOUT=A,DCB= (RECFM=VBA,LRECL=125, BLKSIZE=629)

DD DSN=§§LOADSET, DISP=(MOD, PASS) , UNIT=SYSSQ,
SPACE=(80, (250,100))

DD DSN=§§SYSUT1, UNIT=SYSDA,SPACE=(1024, (300,60) , ,CONTIG) ,
DCB=BLKSIZE=1024

EXEC PGM=IEWL, PARM='XREF,LIST',COND=(9,LT,PLI) ,REGION=100K

DD DSN=§LKLBDSN,DISP=SHR

DD DSN=SYS1.PLIBASE, DISP=SHR

DD DSN=§§GOSET (GO) ,DISP=(MOD, PASS) , UNIT=SYSDA,
SPACE= (1024, (50,20,1) ,RLSE)

DD DSN=§§SYSUT1, UNIT=SYSDA, SPACE=(1024, (200,20)),
DCB=BLKSIZE=1024

DD SYSOUT=A

DD DSN=§§LOADSET ,DIS P= (OLD,DELETE)

DD DDNAME=SYSIN

EXEC PGM=+.LKED.SYSLMOD,COND=((9,LT,PLI), (9,LT,LKED)),
REGION=100K

DD SYSOUT=A

Cataloged procedure PLIXCLG

154 0S PL/I Optimizing Compiler: Programmer's Guide

//PLIXLG PROC LKLBDSN='SYS1.PLIBASE'

//LKED EXEC PGM=IEWL,PARM='XREF,LIST' ,REGION=100K
//SYSLIB DD DSN=&LKLBDSN, DISP=SHR

/7 DD DSN=SY¥S1l.PLIBASE,DISP=SHR

//SYSLMOD DD DSN=§§&GOSET (GO) ,DISP= (MOD,PASS) ,UNIT=SYSSQ,

7/ SPACE=(1024, (50,20,1) ,RLSE)

//8YSUT1 DD DSN=§§SYSUT1 ,UNIT=SYSDA,SPACE= (1024, (200, 20)),
7/ DCB=BLKSIZE=1024

//SYSPRINT DD SYSOUT=A

//SYSLIN DD DNAME=SYSIN

/7/GO EXEC PGM=#,LKED.SYSLMOD,COND=(9,LT,LKED) ,REGION=100K
//SYSPRINT DD SYSOUT=A

Figure 11-6. Cataloged procedure PLIXLG

compiler procedure step). 1In specifying a
temporary library, the cataloged procedure
assumes that you will execute the load
module in the same job; if you want to
retain the module, you must substitute your
own statement for the DD statement with the
name SYSLMOD.

The last statement, DDNAME=SYSIN,
illustrates how to concatenate a data set
detined by a DD statement with the name
SYSIN with the primary input (SYSLIN) to
the linkage editor. You could place
linkage editor control statements in the
input stream by this means, as described in
Chapter 5.

Compile, Link-edit, and Execute
(PLIXCLG)

This cataloged procedure, shown in Figure
11-5, comprises three procedure steps, PLI
and LKED, which are identical with the two
procedure steps of PLIXCL, and GO, in which
the load module created in the step LKED is
executed. The third procedure step will be
executed only if no severe or unrecoverable
errors occur in the preceding procedure
steps.

Input data for the compilation procedure
step should be specified in a DD statement
with the name PLI.SYSIN, and for the
execution procedure step in a DD statement
with the name GO.SYSIN.

Link-edit and Execute (PLIXLG)

This cataloged procedure, shown in Figqure

11-6, comprises two procedure steps, LKED

and GO, which are similar to the procedure
steps of the same names in PLIXCLG.

In the procedure step LKED, the DD

statement with the name SYSLIN does not :
define a data set, but merely refers the
operating system to the LD statement SYSIN,
which you must supply with the qualified
ddname LKED.SYSIN. This DD statement
defines the data set frorm which the linkage
editor will oktain its primary input.
Execution of the procedure step GO is
conditional on successful executicn cf the
procedure step LKED only.

Compile, Load, and Execute (PLIXCG)

This cataloged procedure, shown in Figure
11-7, achieves the same results as PLIXCIG
but uses the loader instead of the linkage
editor. However, instead of using three
procedure steps (compile, link edit, and
execute), it has only two (ccrmpile, and
load-and-execute). In the second procedure
step, the loader prograr is executed; this
program processes the object module
produced by the compiler and executes the
resultant executable program immediately.
Input data for the compilaticn prccedure
step requires the qualified ddname
PLI.SYSIN.

The REGION parameter of the EXEC
statement GO specifies 100K kytes. Since
the loader requires about 17K bytes of main
storage, there are about 83K bytes for youx
program; if this is likely to be
insufficient, you must mcdify the REGION
parameter. The use of the loader imposes
certain restrictions on your PL/I prcgram;
before using this cataloged procedure,
refer to Chapter 5, which explains how to
use the loader.

Load and Execute (PLIXG)

This cataloged procedure, shcwn in Figufe
11-8, achieves the same results as PLIXLG

Chapter 11: Cataloged Procedures 155

//7PLIXCG PROC LKLBDSN='SYS1.PLIBASE'

//PLI EXEC PGM=IELOAA, PARM='OBJECT ,NODECK"',REGION=100K
//SYSPRINT DD SYSOUT=A, DCB=(RECFM=VBA,LRECL=125,BLKSIZE=629)
//SYSLIN DD DSN=§£§LOADSET ,DISP= (MOD,PASS) ,UNIT=SYSSQ,

V4 SPACE=(80, (250,100))

//SYSUT1 DD DSN=§&SYSUT1 ,UNIT=SYSDA,SPACE= (1024, (60,60),,CONTIG),
/77 DCB=BLKSIZE=1024

//GO EXEC PGM=LOADER, PARM='MAP,PRINT',REGION=100K,

77 COND=(9,LT,PLI)

//SYSLIB DD DSN=§LKLBDSN,DISP=SHR

Ved DD DSN=SYS1.PLIBASE, DISP=SHR

//SYSLIN DD DSN=§§&LOADSET ,DISP= (OLD,DELETE)

//SYSLOUT DD SYSOUT=A
//SYSPRINT DD SYsSOoUT=A

Figure 11-7. cCataloged procedure PLIXCG

//PLIXG PROC LKLBDSN='SYSl1l.PLIBASE'
//GO
//SYSLIB DD DSN=§LKLBDSN,DISP=SHR

Ved DD DSN=SYS1l.PLIBASE,DISP=SHR
//SYSLOUT DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

Figure 11-8. Cataloged procedure PLIXG

but uses the loader instead of the linkage
editor. However, instead of using two
procedure steps (link edit and execute), it
has only one. In this procedure step, the
loader program is executed. This program
processes and executes an object module
placed in the data set defined by a DD
statement with the name SYSLIN; ycu must
supply this statement with the qualified
name GO.SYSLIN.

156 0S PL/I Optimizing Compiler:

EXEC PGM=LOADER, PARM="MAP, PRINT',REGION=100K

The REGICN parameter of the EXEC
statement GO specifies 100K Lkyttes. Since
the loader requires about 17K bytes of main
storage, there are akout 83K bytes for your
program; if this is likely tc be
insufficient, you must modify the REGION
parameter. The use of the lcader inroses
certain restrictions on your PL/I program;
before using this cataloged rrccedure,
refer to Chapter 5, which explains how to
use the loader.

Programmer's Guide

Program checkout is the application of
diagnostic and test processes to a prcgram.
You should give adequate attention to
program checkout during the development of
a program so that:

¢ A program becomes fully operational
after the fewest possible test runs,
thereby minimizing the time and cost of
program development.

e A program is proved to have fulfilled
all the design objectives before it is
released for production work.

¢ A program has complete and clear
documentation to enable both operators
and program maintenance personnel to use
and maintain the program without
assistance from the original programmer.

The data used for the checkout of a program
should be selected to test all parts of the
program. Whilst the data should be
sufficiently comprehensive to provide a
thorough test of the program, it is easier
and more practical to monitor the behaviour
of the program if the volume of data is
kept-to a minimumn.

Conversational Program Checkout

The optimizing compiler can be used in
conversational mode when writing and
testing programs at a terminal. The
conversational features are available to
users where the TSO (Time sharing Option)
facilities of the operating system are
present. The conversational facilities
enable you to enter a PL/I program from a
terminal, through which you will receive
diagnostic messages for the compilation.
You can also communicate with the program
during execution using PL/I files
associated with the terminal. Thus a PL/I
- program can be checked out during its
construction, thereby saving a substantial
amount of elapsed time that can occur
between test compilation and execution runs
in batched processing.

The PL/I program is entered and
processed using the PLI, EDIT, and other
commands and features described in the
publication 0S TSO: PL/I Optimizing
Compiler.

Chapter 12: Program Checkout

Compile-time Checkout

At compile time, both the preprocessor and
the compiler can produce diagncstic
messages and listings according to the
compiler options selected fcr a particular
compilation. The listings and the
associated compiler opticns are discussed
in Chapter 4. The diagnostic messages
produced by the optimizing ccrpiler are
identified ky a numker prefixed "IEL".
These diagnostic messages are availakle in
both a long form and a short form. The
long messages are designed tc be as self-
explanatory as possikle. The short i
messages are designed for rerrcducticn at a
terminal when the compiler is being used in
a TSO environment. The short nressages are
obtained by specifying the SMESSAGE
compiler option. Each message is

reproduced in the publication: 0S PL/I
optimizing Compiler Messages. This

publication includes explanatory notes,
examples, and any action to ke taken.

Always check the corrilaticn listing forx
occurrences of these messages to determine
whether the syntax of the prcgrar is
correct. Messages of greater severity than
warning (that is, error, severe errcr, and
unreccverable error) should ke acted upon
if the message does not indicate that the
compiler has been akle to "fix" the error
correctly. You should arpreciate that the
compiler, in making an assumption as to the
intended meaning of any erroneous statement
in the source program, can introduce a
further, perhaps more sévere, error which
in turn can produce yet another erxrrcr, and
sO on. When this occurs, the result is
that the compiler produces a number cf
diagnostic messages which are all caused
either directly or indirectly by the one
error.

Other useful diagnostic aids produced by
the compiler are the attribute table and
cross-reference table. The attribute table,
specified by the ATTRIBUTES cption, is
useful for checking that program
identifiers, especially those whose
attributes are contextually and implicitly
declared, have the correct attributes. The
cross-reference table is requested by the
XREF option, and indicates, for each
program variable, the number of each
statement that refers to the variable.

To prevent unnecessary waste of time and
resources during the early stages of
developing programs, use the NOOPTIMIZE,

Chapter 12: Program Checkout 157

NOSYNTAX, and NOCOMPILE options. The
NOOPTIMIZE option will suppress
optimization unconditionally, and the
remaining options will suppress

compi lation, link editing, and execution
should the appropriate error conditions be
detected.

The NOSYNTAX option specified with the
severity level "W", "E", or "S" will cause
compilation of the output from the PL/I
preprocessor, if used, to be suppressed
prior to the syntax-checking stage should
the preprocessor issue diagnostic messages
at or above the severity level specified in
the option.

The NOCOMPILE option specified with the
severity level "W", "E", or "S" will cause
compilation to be suppressed after the
syntax-checking stage if syntax checking or
preprocessing causes the compiler to issue
diagnostic messages at or above the
severity level specified in the ogtion.

Linkage Editor Checkout

Wwhen using the linkage editor, check
particularly that any required overlay
structuring and incorporation of additional
object and load modules have been performed
correctly. Diagnostic messages produced by
the linkage editor are prefixed "IEW".
These messages are fully documented in the
publication: 0Os Linkaqgqe Editor and Loader.

When checking the processing performed
by the linkage editor, refer to the module
map produced by the linkage editor showing
the structure of the load module. The
module map names the modules that have been
incorporated into the program. The
compiler produces an external symbol
dictionary (EsD) listing if requested by
the ESD option. The ESD listing indicates
the external names that the linkage editor
is to resolve in order to create a load
module. The linkage editor is described in
Chapter 5.

Execution-time Checkout

At execution time, errors can occur in a
number of different operations associated
with running a program. For instance, an
error in the use of a job control statement
can cause a job to fail. Most errors that
can be detected are indicated by a
diagnostic message. The diagnostic
messages for errors detected at execution
time are also listed in the messages
publication for this compiler and

158 OS PL/I Optimizing Compiler:

identified by the prefix "IEM". The
messages are always printed on the SYSPRINT
file.

A failure in the executicr of a PL/I
program could ke caused ky one of the
following:

e TLogical errors in source rrcgranmns.
e Invalid use of PL/I.

¢ Unforeseen errors.

e Operating error.

e TInvalid input data.

e Unidentified program failure.

e A compiler or library subroutine
failure.

e System failure.

Logical Errors in Source Programs

Logical errors in source prcgrams can often
be difficult to detect. Such errors can
sometimes cause a cornriler cr library
failure to ke suspected. The more common
errors are the failure to ccnvert ccrrectly
from arithmetic data, incorrect arithmetic
operations and string manipulaticn
operations, and failure to match data lists
with their format 1lists,

Invalid Use of PL/I

It is possible that a misunderstanding of
the language, or the failure to provide the
correct environment for using PL/I, results
in an arparent failure of a FL/I program.
For example, the use of uninitialized
variakles, the use of controlled variables
that have not been allocated, reading
records into incorrect structures, the
misuse of array subscripts, the misuse of
pointer variakles, conversicn errors,
incorrect arithmetic operaticns, and
incorrect string manipulaticr operations
can cause this type of failure.

Unforeseen Errors

If an error is detected during execution of
a Pl/I program in which no on-unit is
provided to terminate execution or attempt
recovery, the job will be terminated

Programmer's Guide

abnormally. However, the status of a
program executed in a batch-processing
environment, at the point where the error
occurred, can be recorded by the use of an
ERROR on-unit that contains the statements:

ON ERROR BEGIN;
ON ERROR SYSTEM;
PUT DATA;

END ;

The statement ON ERROR SYSTEM; contained
in the on-unit ensures that further errors
caused by attempting to transmit
uninitialized variables 'do not result in a
permanent loop.

Operating Error

A job could fail because of an operating
error, such as running a job twice so that
a data set becomes overwritten or
erroneously deleted. Other operating
errors include getting card decks into the
wrong order and the failure to give
operators correct instructions for running
a job.

Invalid Input Data

A program should contain checks to ensure
that any incorrect input data is detected
before it can cause the program to fail.

Use the COPY option of the GET statement
if you wish to check values obtained by
stream-oriented input. The values will be
listed on the file named in the COPY
option. If no file name is given, SYSPRINT
is assumed.

Unidentified Program Failure

In most circumstances, an unidentified
program failure should not occur when using
the optimizing compiler. Exceptions to
this could include the following:

¢ When the program is executed in
conjunction with non-PL/I modules, such
as FORTRAN or COBOL.

e When the program obtains, by means of
record-oriented transmission, incorrect
values for use in label, entry, locator,
and file variables.

e Errors in job control statements,
particularly in defining data sets.

If execution of a program terminates
abnormally without an accompanying PL/I
execution-time diagnostic message, it is
probakle that the error that caused the
failure also inhibited the rroducticn of a
message. = In this situation, it is still
possible to check the PL/I scurce rrcgram
for errors that could result in overwriting
areas of the main storage regicn that
contain executakle instructions,
particularly the comrunicaticns regicn,
which contains the address tables for the
execution~time error-handling routine.
These errors may also ke present in modules
compiled by the checkout conpiler with
NODIAGNCSE and COMPATIBLE and executed in
conjunction with the modules produced by
the orptimizing compiler. The types of PL/I
program that might cause the main stcrage
to be overwritten erroneously are:

e Assignment of a value to a non-existent
array element. For exangle:

DCL ARRAY(10);

DO I =1 TO 100;
ARRAY(I) = VALUE;

To detect this type of error in a module
compiled by the optimizing compiler,
enable the SUBSCRIPTRANGE condition.

For each attempt to access an element
outside the declared range of sukscript
values, the SUBSCRIPTRANGE condition
will be raised. If there is no cn-unit
for this condition, a diagnostic message
will be printed and the ERROR condition
raised. This facility, although
expensive in execution tine and storage
space, is a valuable program-checkout
aid.

e The use of incorrect locator values for
locator (pointer and offset) variables,
This type of error is possible if a
locator value is obtained by means of
record-oriented transmission. Check
that locator values created in a
program, transmitted to a data set, and
subsequently retrieved for use in
another program, are valid for use in
the second program.

An error could also be caused by
attempting to free a non-kased variakle.
This could be caused by freeing a based
variable when its qualifying pcinter
value has been changed. ©For example:

DCL A STATIC,B BASED (P);
ALLOCATE B;

P = ADDR(A);

FREE B;

e The use of incorrect values for label,

Chapter 12: Program Checkout 159

entry, and file variables. Errors
similar to those described akove for
locator values are possible for label,
entry, and file values that are
transmitted and subsequently retrieved.

¢ The use of the SUBSTR pseudovariable to
assign a string to a position beyond the
maximum length of the target string.
For example:

DCL X CHAR(3);
I=3;
SUBSTR(X,2,I) = 'ABC';

The STRINGRANGE condition can be used to

detect this type of error in a module
compiled by the optimizing compiler.

Compiler or Library Subroutine Failure

If you are absolutely convinced that the
failure is caused by a compiler failure or
a library subroutine failure, you should
notify your management, who will initiate
the appropriate action to correct the
error. This could mean calling in IBM
personnel for programming support to
rectify the problem. Before calling IBM
for programming support, refer to the
instructions for providing the correct
information to be used in diagnosing the
problem. These instructions are given in
Appendix C, "Requirements for Problem
Determination and APAR Submission."
Meanwhile, you can attempt to find an
alternative way to perform the operation
that is causing the trouble. A bypass is
often feasible, since the PL/I language
frequently provides an alternative method
of performing a given operation.

System Failure

System failures include machine
malfunctions and operating system errors.
These failures should be identified to the
operator by a system message.

Statement Numbers and Tracing

The compiler FLOW option provides a
valuable program-checkout aid. The
FLOW(n,m) option creates a table of the
numbers of the last "n" branch-out and
branch-in statements, and the last "m"
procedures and on-units to be entered. (A
"branch-out" statement is a statement that
transfers control to a statement cther than

160 0S PL/I Optimizing Compiler:

that which immediately fcllows it, such as
a GOTO statement. A branch-in statement is
a statement that receives ccntrol frcm a
statement other than that which immediately
precedes it, such as a PROCELURE, ENTRY, or
any other lakeled statement.) The figure
you choose for "n" should be large enough
to provide a usable trace of the flow of
control through the programe.

Alternatively, if you do not specify the
FLOW option explicitly, defaults for the
FLOW option will be used.

The trace takle can be oktained by any
of the methods described belcw.

The trace is printed whenever an on-unit
with the SNAP option or a PUT ALL statement
is encountered. It gives both the statement
numbers and the names of the containing
procedures or on-units. For examgple, an
ERROR on-unit that results in both the
listing of the program variakles and the
statement number trace can be included in a
PL/I program as follows:

ON ERROR SNAP BEGIN;
ON ERROR SYSTEM;

PUT DATA;

END;

A flow trace can be specified as rart of
the output from the PL/I dump facility
PLIDUMP, discussed later in this charter.

Dynamic Checking Facilities

It is possible for a syntactically-ccrrect
program to produce incorrect results
without raising any PL/I errcr conditions.
This can be attributed to the use of
incorrect logic in the PL/I source rrogran
or to invalid input data. Letection of
such errors from the resultant output (if
any) can be a difficult task. It is
sometimes helpful to have a record of each
of the values assigned to a variable,
particularly lakel, entry, loop control,
and array subscript variables. This can ke
obtained by using the CHECK prefix option.
Note that, unless care is exercised, the
indiscriminate use of the facilities
described below will result in a flccd of
unwanted and unusable printout.

A CHECK prefix option can srecify
program variables in a list. Whenever a
variable that has been included in a check-
list is assigned a new value, the CHECK
condition is raised. The standard system
action for the CHECK condition is to print
the name and new value of the variakle that
caused the CHECK condition to be raised.

An example of a CHECK prefix options list
is:

Programmer's Guide

(CHECK(A,B,C,L)): /7* CHECKOUT PREFIX LIST */
TEST: PROCEDURE OPTIONS (MAIN) ;
DECLARE A etc.,

If the CHECK condition is to be raised
for all the variables used in a program,
the CHECK prefix option can be more simply
specified without a list of items. For
example:

(CHECK) :

TEST: PROCEDURE;

Control of Exceptional Conditions

During execution of a PL/I object program,
a number of exceptional conditions can be
raised, either as a result of program-
defined action, or as a result of exceeding
a hardware limitation. PL/I contains
facilities for detecting such conditions.
These facilities can be used to determine
the circumstances of an unexpected
interrupt, perform a recovery operation,
and permit the program to continue to run.
Alternatively, the facilities can be used
to detect conditions raised during normal
processing, and initiate program-defined
actions for the condition. Note that some
of the PL/I conditions are enabled by
default, some cannot be disabled, and
others have to be enabled explicitly in the
program. Refer to the language reference
manual for this compiler for a full
description of each condition.

Note that the SIGNAL statement can be
used to raise any of the PL/I conditions.
Such use permits any on-units in the
program to be tested during debugging.

The standard system action for the ERROR
condition for which there is no on-unit,
is, in batched processing, to raise the
FINISH condition, and in conversational
processing, to give control to the
terminal. The FINISH condition is also
raised for the following:

s When a SIGNAL FINISH statement is
executed.

¢ When a PL/I program completes execution
normally.

e On completion of an ERROR on-unit that
does not return control to the PL/I
program by means of a GOTO statewent.

e When a STOP statement is executed orx
when an EXIT statement is executed in a
major task.

The standard system action for the
FINISH condition in batched rrccessing is
to terminate the task, and, in
conversational processing, tc give ccntrol
to the terminal.

Use of the PL/I Preprocessor in Program
Checkout

During program checkout, it is often
necessary to use a number of the PL/I
conditions (and the on-units associated
with them) and subsequently to remove them
from the program when it is found tc be
satisfactory. The PL/I preprocessor can be
used to include a standard set of rrcgram-
checkout statements fromr the scurce
statement library. When the program is
fully operational, the ®INCLUDE statement
can be removed, and the resultant object
program compiled for executicn.

A standard set of PL/I rrcgram checkout
statements would include both the enabling
of any conditions that are disabled Ly
default and the provision of the
appropriate on-units. The %INCLUDE
statement that causes the inclusion of the
set of program checkout statements wculd
usually be placed after any on-units that
must remain in the program permanently in
order to cancel their effect during program
checkout.

On-Codes

On-codes can indicate more precisely what
type cf error has occurred where a
condition can be raised by ncre than one
error. For example, the ERROR condition
can be raised by a number of different
errors, each of which is identified by an
on-code. You can obtain the cn-ccde by
using the condition kuilt-in function
ONCODE in the on-unit. The cn-ccdes are
described in the language reference manual
for this compiler.

Dumps

should the checks given akove fail to
reveal the cause of the errcr, it may be
necessary to obtain a printout, or dump, of
the main storage region used by the
program. A dump can display the contents
of all buffers associated with PL/I files,
the PL/I file attributes for each file open
when the dump is taken, and a trace cf the
block invocations that occurred during

Chapter 12: Program Checkout 161

execution before the dump was taken.

A hexadecimal dump can also be obtained
to determine the machine instructions and
data present in main storage when the
failure occurred. The use of a hexadecimal
storage dump requires a knowledge of
assembler language programming and an
understanding of object program
organization.

Refer to the execution logic manual for
this compiler for information about the
organization of the okject programs
produced by the optimizing compiler, and
how to interpret a storage dump.

To obtain a formatted PL/I dump, you
must invoke the PL/I resident library dump
module by calling PLIDUMP. Note that a DD
statement with the ddname PLIDUMP or
PL1DUMP must be supplied to define the data
set for the dump.

| The data set defined by the PLIDUMP DD
|statement must have DSORG=PS specified or
|assumed by default, and must have one of
|the following attributes:

e It must be allocated to SYSOUT.

|
|
|* It must be allocated to the terminal or
| unit-record device.

|

I

e DISP=MOD must be specified.

The page size of the PLIDUMP output is
taken from the PAGESIZE field of PLITAES.

PLIDUMP can be invoked with twc optional
arguments. The first argument is a
character-string constant used to specify
the types of information to be included in
the dump. The second argument can be a
character-string expression or a decimal
constant with which you can identify the
output produced by PLIDUMP. The format of
the PLIDUMP statement is:

CALL PLIDUMPI ('options-list'
[,user-identificationl)];

The options-list is a contiguous string
of characters that may include the
following:

T To request a trace of active
procedures, begin blocks, on~units,
and library modules.

NT To suppress the output produced by T
above.

F To request a complete set of
attributes for all files that are
open, and the contents of the buffers
used by the files.

162 OS PL/I Optimizing Compiler:

NF To suppress the output produced by F
above.

S To request the termination of the
program after the corpleticn cf the

dunp. Note: The FINISH condition is
not raised.

(o] To request continuation of execution
after completion of the dump.

H To request a hexadecimal dump of the
main storage partition used by the
rrogram.

NH To suppress the hexadecimal dump.

B If T is specified, to produce a
separate hexadecimal dump of ccntrol
blocks such as the TCA and the LSA
chain that are used in the trace
analysis. If F is specified, to
produce a separate hexadecimal dump cf
control klocks used in the file
analysis, such as the FCB.

NB To suppress hexadecimal dumps of
control klocks.

A To request information relevant to all
tasks in a multitasking program.

E To request that an exit be made from
the current task of a multitasking
rFxogram and that execution of the
pFrogram continues after completion of
the requested dump.

o To request information relevant only
to the current task in a multitasking
program.

The defaults assumed for the above
options not specified explicitly are:

T F C A NH NB

The user-identificatiocn permits ycu to
specify a character-string expression or a
decimal constant to identify individual
dunmps. It cannot be specified without the
preceding argument in the argument 1list.

Trace Information

Trace information produced by PLILUMP
includes a trace through all the active
DSAs. (DSAs will be present for ccmpiled
blocks, such as procedures and on-units,
and for library routines.) For on-units,
the dump gives the values of any condition
built-in functions that could be used in
the on-unit, regardless of whether the on-
unit actuvally used the conditicn built-in
function. If a hexadecimal dump is also

Programmer's Guide

Return
Codes

Meaning

0000 Normal termination.

1-999 Return codes available for use
with PLIRETC.

1000 Code returned if a STOP
statement, an EXIT statement,
or a CALL PLIDUMP statement
with the "E" or "S" option is
executed, or if ISASIZE is
insufficient. This will be
added to any PLIRETC value.
2000 Code returned if ERROR is
raised and there is no ERROR
or FINISH on-unit containing a
GOTO statement. This value
will be added to any PLIRETC
value.

4000 Code returned if an interrupt
occurs in the PL/I error
handler or during program
initialization.

4004 Code returned if the PRV
(pseudo register vector) is
too large.

Code retlirned if PL/I program
has no main procedure.

4008

4012 Not enough main storage

available.

Code returned if the program
is about to enter a permanent
wait state.

4020

Code returned if a task in a
multitasking program has
terminated. without use of the
PL/1I termination routines.

4024

Return codes from
execution of a PL/I
program

Figure 12-1.

requested, the trace information will also
include:

e The address of each DSA (Dynamic Storage
Area).

e The address of the TCA (Task
Communications Area).

¢ The contents of the registers on entry
to the PL/I error-handler module
(IBMCERR) .

e The PSW or the address from which the

PL/I error handler module (IBMCERR) was
invoked.

e The addresses of the library module DSAs
back to the most recently-used compiled
code DSA. '

DSAs and the TCA are described in the
execution logic manual for this ccrpiler.
A table of statement numbers indicating the
flow of control through the program is
always produced.

File Information

File information produced by PLIDUMP
includes the default and declared
attributes of all open files, and the
contents of all buffers that are accessible
to the dump routine. The information is
given in BCD notation, and if hexadecimal
output is also requested, in hexadecimal
notation also. The address and ccntents of
the FCB are then printed.

Hexadecimal Dump

The hexadecimal dump is a dunp cof the
region of main storage containing the
program. The dump is given as three
columns of printed output. The left-hand
and middle columns contain the ccntents of
storage in hexadecimal notation. The third
column contains a BCD translaticn cf the
first two columns. For hexadecimal
characters that cannot be rerresented by a
printable BCD character, a full stop is
printed.

Return Codes

Both the compilation and the link editing
of a PL/I program will result in a return
code being passed to indicate the severity
of any errors found. It is possible to
pass a return code from a PL/I program,
either for examination in a subsequent jokt
step if execution of that step is
conditional upon the value cf the ccde
returned, or merely to indicate conditions
that were encountered during executicn.
conditional execution of a job step is
determined by use of the CONL rarameter of
the JOB or EXEC statement.

Return codes can be set in a PL/I
program by passing as an argument to the
CALL PLIRETC statement a code represented
as a variable with the attrikutes FIXED

Chapter 12: Program Checkcut 163

BINARY(31,0). The range of codes used
should be restricted to 1 through 999. If
a return code of greater than 999 ig
specified, the return code is set to 999
and a diagnostic message is issued. Codes
higher than 999 are returned if an error
causes the program to terminate. In some
cases the return code for the program will
be added to any code created by use of the
CALL PLIRETC statement. In other cases it
will overwrite any code set by use of the
CALL PLIRETC statement. Other error
situations, listed in Figure 12-1, will
also cause a program-generated return code
to be overwritten.

If a return code in the 4000-4024 range
is encountered and the cause cannot be
traced to a source program error, it may be
necessary to call in IBM program support
personnel. Appendix C, "Problem
Determination and APAR Submission",
describes the materials that will be
required for examination by IBM in such
circumstances.

The ABEND Facility

Standard system action when the ERROR
|condition is raised and there is either no
|ERROR on-unit, or an ERROR on-unit that
|terminates normally (that is, one that does

IBMBEER1 CSECT CSECT NAME

ENTRY IBMBEERA

|not contain a GOTO STATEMENT) is to
terminate without issuing an ARENL.
standard module IBMBEER in the PL/I
resident likrary is altered as indicated
below then the ABEND facility becomes
|available. IBMBEER will be called whenever
|the PL/I program is to be terminated as a

| result of the ERROR condition having been
|raised.

If the

Altering the Standard Module IEMBEER

A non-zero return should ke set in
register 15. The program termination
modules IBMBPIT and IEMTPIT call IEMBEER
and interrogate register 15 on return; a
non-zero value causes an ABEND to be
issued. The value in register 15 is
passed as a parameter to the ABEND which
allows the options of user completion code,
dump, and STEP ABEND to be selected.

| When IBMBEER is called, the content of
| register 1 will be set as follows to
|signify whether or not there is an ERROR
| on-unit :

] positive - ERROR on-unit
| negative - no ERROR on-unit

An example of a user-written IEMEEER
module is shown in Figure 12-2.

DEFINE ENTRY POINT

USING *,15 ADDRESSABILITY
IBMBEERA EQU * ENTRY POINT
I LTR R1,R1 BRANCH
i BNM ERRB IF ON-UNIT
I L 15,RETNCOD1 SET RETURN CODE NON-%ERO
BR 14 RETURN
| ERRB EQU *
I L 15 ,RETNCOD2
| BR 14
| *
DUMP EQU 128 128=DUMP, 0=NO DUMP
STEP EQU 64 64=STEP ABEND, 0=TASK ABEND

|USERCOD1 EQU 3001
| USERCOD2 EQU 3002
|RETNCOD1 DC ALl (DUMP+STEP)
[DC AL3 (USERCOD1)
|RETNCOD2 DC ALl (DUMP+STEP)
I DC AL3 (USERCOD2)

END

Figure 12-2.

164 0S PL/I Optimizing Compiler:

USER COMPLETION CODES (MUST BE GREATER
THAN O AND LESS THAN 4096)

Typical User-Written IBMBEER Module

Programmer's Guide

Chapter 13: Linking PL/I and Assembler-Language Modules

This chapter describes how to create
programs that combine routines written in
PL/I and assembler language. It explains
how a PL/I program invokes an assembler-
language routine and, conversely, how an
assembler-language routine invokes a PL/I
procedure.

Before describing any of the linkages in
detail, the chapter discusses the PL/I
environment that must be preserved when
invoking an assembler-language routine from
PL/I, and which must be created when
invoking a PL/I procedure from an
assembler-language routine.

The PL/I Environment

The PL/I environment is the term used to
describe a number of control blocks created
by routines that are provided by the 0S
PL/I Resident and Transient Libraries to
satisfy the storage-management and error-
handling requirements of a PL/I procedure.

When a PL/I program invokes an
assenmbler-language routine, the invoked
routine must ensure that the PL/I
environment is preserved. The PL/I
environment is preserved by observing the
standard IBM Systemv360 linkage
conventions, which include the storing of
register values in a save area, and by
ensuring that the content of register 12 is
not modified by the assembler routine if
PL/I is to handle interrupts that occur
during execution of the assembler routine.
Register 13 must be set to the address of a
new save area established by the assembler
routine.

ESTABLISHING THE PL/I ENVIRONMENT

The PL/I environment is established by the
0S PL/I Resident Library routine IBMBPIR
and the O0S PL/I Transient Library routine
IBMBPII for a non-multitasking program and
by IBMTPIR and IBMTPII for a multitasking
program. An assembler-larguage routine
that invokes a PL/I procedure for which the
PL/I environment has not been established
can use one of three standard entry points
to establish the environment. The routine
| IBMBPIR or IBMTPIR (with IBMBPII or
IBMTPII) is entered through a control
section which has three standard entry

Chapter 13:

Linking PL/I and Assemkler-Language Mcdules

points, PLISTART, PLICALLA, and PLICALLB;
these are described later in this chapter.

Use of FLIMAIN to Invoke a EL/I
Procedure

|Once IBMBPIR or IBMTPIR (with IBMBPII or
IBMTPII) has created the environment, it
transfers control tc the PL/I procedure
whose address is contained in the compiler-
generated control section PLIMAIN.
Normally, after link editing, PLIMAIN will
contain the entry point address of the
first, or only, PL/I main procedure in the
program. If the assembler-language routine
is to invoke a PL/I procedure that is not
the first, or only, main PL/I procedure in
the program, it must insert in PLIMRIN the
address of the entry point of the procedure
it is to invoke. The example in Figure
13-1 shows how this is done.

If there is no main procedure in the
program, the assembler routine should
contain an entry point called PLIMAIN at
which is held the address of the entry
point of the PL/I routine tc be invcked.
The example in Figure 13-2 shows how the
appropriate address is inserted intc the
location represented ky the entry point
PLIMAIN. If the assembler program does not
include an entry point called PLIMAIN in
these circumstances, a dummy module called
PLIMAIN will be included frcr the 0S PL/I
Resident Likrary.

Once the PL/I environment has been
established, it can, as shown in the
example in Fiqure 13-3, ke preserved, and
any PL/I procedure can be invcked
subsequently by loading the address of its
entry point into register 15, and executing
a branch-and-link-register instruction to
it.

PLISTART, PLICALLA, AND PLICALLB

PLISTART: PLISTART is used when the PL/I
environment must be established for a PL/I
procedure that can use for its dynamic
storage as much of the available space in
storage as it requires, or, alternatively,
as much as is specified. This entry point
is normally used when the PL/I procedure is
invoked directly from the operating system.
It enables an assembler routine tc¢ gass to

165

1A 1,ARGLIST
L 2,=V (PLIMAIN)
L 3,=V(MYPROG) TO THAT OF
ST 3,0(2) MYPROG
L 15,=V(PLICALLA)
BALR 14,15
ARGLIST DC Alargl)
DC X'80°"

DC AL3 (arg2)

Figure 13-1.

ENTRY PLIMAIN
1A 1,ARGLIST

L 2,=A(PLIMAIN)

L 3,=V(MYPROG) OF ENTRY TO
ST 3,0(2) MYPROG

L 15,=V (PLICALLA)

BALR 14,15

ARGLIST DC Alargl)
DC X'80°
DC AL3 (arg2)
PLIMAIN DS F

Figure 13-2.

a PIL/I procedure a parameter field
identical to that which can be specified in
the PARM field of a JCL EXEC statement.

PLICALLA: PLICALLA is used when the PL/I
environment must be established for a PL/I
procedure that can use for its dynamic
storage as much of the available space in
storage as it requires.

PLICALLB: PLICALIB is used when the PL/I
environment must be established for a PL/I
" procedure that can use for its dynamic
storage only a specified amount of the
available storage. PLICALLB can optionally
specify where that storage is to begin.

Further details and examples using
PLISTART, PLICALLA, and PLICALLB are given
later in this chapter.

THE DYNAMIC STORAGE AREA (DSA) AND SAVE
AREA

Whenever a PL/I procedure is invoked, it
requires for jits own use a block of storage
known as a dynamic storage area (DsA). A

166 0S PL/I Optimizing Compiler:

CHANGE ADDRESS IN PLIMAIN

FIRST ARGUMENT PASSED TO MYPROG
LAST ARGUMENT PASSED TC MYPROG

Inserting a PL/I entry point address in PLIMAIN

INSERT ADDRESS IN PLIMAIN

FIRST ARGUMENT PASSED TO MYPROG

LAST ARGUMENT PASSED TC MYPRCG

Establishing PLIMAIN as an entry in the assembler-language rcutine

DSA for a PL/I procedure consists of a save
area for the contents of registers, a
backchain address that points to the save
area for the previous routine, and storage
for automatic variables and niscellaneous
housekeeping items.

An assembler routine invcked fronm PL/I
should take the following action to
preserve the PL/I énvironment:

e If the assembler routine is to use the
PL/I error-handler, it must stcre the
contents of all registers in the
existing PL/I DSA and establish its own’
save area in which the backchain address
of the PL/I DSA must be stored. The
first two bytes of the save area must be
set to zero. The second word of the
save area is the backchain address. The
remainder of the save area would only be
used by a routine invoked frcm the
assembler routine or Ly the PL/I error-
handler, if used, for saving the
assemkler routine's registers.

e If the assembler routine is not tc¢ use
the PL/I error-handler and does not
invoke a further function routine, the
SPIE macro must be used to reset the

Programper's Guide

//0PT13#3 JOB

//STEP1 EXEC HASMHC, PARM.ASM='LOAD, NODECK'
//ASM, SYSLIN DD DSN=§&LOADSET ,UNIT=2314 ,DISP= (NEW,PASS),
// SPACE=(80, (200,100)) ,DCB=BLKSIZE=80

//ASM. SYSIN DD
MYPROG CSECT
ENTRY
STM
BALR
USING
1A
ST
ST
LR

*

SR

* % % *

*

* #*

ASSEM EQU

BALR
ENOUGH EQU
ST

ST
ST

MVC
MVI,

MVI
MVI

SR

SR

Figure 13-3. (Part 1 of 2).

*

ASSEM
14,12,12(13)
10,0

*,10

4, SAVEAREA
13,4 (4)
4,8(13)

13,4

1,1

15,=V(PLICALLA)
14,15

13,4.(13)
164,12(13)
1,12,243)
14

C'ASSEM'
ALl (5)

*
14,12,12(13)
10,0

*,10

0,104
1,76(13)
0,1
0,12(12)
ENOUGH
15,116(12)
14,15

*

0,76(1)

13, 4(1)
1,8(13)
72(4,1),72(13)

13,1
0(13),x'80"
1(13),X'00"
86(13),X'91"
87(13) ,x'CO"

5,5

1,1

Chapter 13:

ESTABLISH SUPERVISOR REGISTERS
ESTABLISH ADDRESSABILITY

CURRENT SAVE AREA ADDRESS

STORE CHAINBACK ADDRESS

STORE CHAIN FORWARD ADDRESS
STORE CURRENT SAVE AREA ADLCRESS

SET REGISTER 1 TO ZERO WHEN

A PARAMETERLESS ENTRY POINT TO
PROCEDURE THAT DOES NCT RETURN
A VALUE IS TO BE INVOKED

CALL THE PL/I PROCEDURE THAT
HAS OPTIONS(MAIN) AND SO SET
UP THE PL/I ENVIRONMENT AND

THEN CALL ASSEM.

ON RETURNING FROM PL/I
RESTORE REGISTERS

AND

RETURN TO THE SUPERVISOR.

THE NAME IN PIL/I FORMAT

STORE PL/I REGISTERS
FOR PROCEDURE "MAIN"

ESTABLISH ADDRESSABILITY
GET STORAGE FOR A NEW DSA
LENGTH REQUIRED 104 BYTES
ADDRESS OF START OF CURRENTLY-
AVAILABLE STORAGE

Is THERE ENOUGH SPACE LEFT?
YES

LOAD ADDR. OF OVERFLOW ROUTINE
AND BRANCH TO IT.

STORE ADDRESS OF START OF
REMAINING AVAILABLE STORAGE
IN NEW DSA AT OFFSET 76

SET BACK CHAIN

SET FORWARD CHAIN

COPY ADDRESS OF WORKSPACE FOR
USE BY THE PL/I LIBRARY
POINT 13 AT NEW DSA

SET FLAGS IN THE DSA TO
PRESERVE PL/I
ERROR-HANDLING

IN THE ASSEMBLER ROUTINE

R5 MUST BE ZERO WHEN CALLING
AN EXTERNAL PL/I PROCEDURE.

SET REGISTER 1 TO ZERO WHEN

A PARAMETERLESS ENTRY POINT TO
PROCEDURE THAT DOES NOT RETURN
A VALUE IS TO BE INVOKED

Invoking PL/I procedures from an assembler routine

Linking PL/I and Assemkler-Language Modules

167

L 15,=V (HEAD) CALL PL/I TO ‘'HEAD' PAGE
BALR 14,15

LOOP EQU %
LA 1, ARGTIST1
L 15 ,=V (PLIN) CALL PL/I TO READ AND ADD
BALR 14,15
*
L 3, RESULT
LTR 3,3 TEST RESULT AND
BM OUTLOOP BRANCH OUT IF IT IS NEGATIVE.
*
LA 1, ARGTLST2
L 15 ,=V (PLOUT) CALL PL/I TO OUTPUT RESULT
BALR 14,15
B LOOP
*
OUTLOOP EQU *
SR 1,1 SET REGISTER 1 TO ZERO
L 15,=V (FOOT) CALL PL/I TO 'FOOT' PAGE
BALR 14,15
*
L 13,4(13) RETURN TO THE PL/I PROC WITH
LM 14,12,12(13) OPTIONS (MAIN) .
BR 14
*
ARGTLST1 DC A(DATA)
ARGTLST2 DC X'80"
DC AL3(RESULT)
DATA DC F'123"

RESULT DC F'O°*
SAVEAREA DC 18F'0"
END MYPROG
VA
//STEP2 EXEC PLIXCIG
|7//PLI.SYSIN DD *
* PROCESS;
| MAIN: PROC OPTIONS(MAIN);
DCL ASSEM ENTRY;
CALL ASSEM;
END;
* PROCESS;
PLIN: A PROC(I) RETURNS(FIXED BIN(31));
DCL (I,J) FIXED BIN(31);
GET LIST(J);
RETURN(I+J);
HEAD: ENTRY;
PUT LIST('THE FIRST LINE OF OUTPUT AT THE TOF OF THE PAGE')

PAGE;
PUT SKIP(2);
END;
* PROCESS;

PLOUT: PROC (K);
DCL K FIXED BIN(31);
PUT LIST(K);
RETURN;
FOOT: ENTRY;
PUT LIST('END OF THE OUTPUT FOR THIS JOB') SKIP(2);
END;
/%
//G0O.SYSIN DD *
50 77 123 234 345 456 -23 -100 -123 =234
/%

Figure 13-3. (Part 2 of 2). 1Invoking PL/I procedures from an assembler routine

168 0OS PL/I Optimizing Compiler: Programmer's Guide

STM 14,11,12(13)
BALR 10,0
USING *,10

LA 4 ,SAVEAREA
ST 13,SAVEAREA+4

STORE PL/I REGISTERS IN PL/I DSA
ESTABLISH BASE REGISTER

STORE PL/I DSA ALDRESS IN SAVE AREA
LOAD SAVE AREA ADDRESS

LA 13, SAVEAREA

. ASSEMBLER

. ROUTINE

L 13,4(13) RESTORE PL/I REGISTERS
LM 14,11,12(@13) AND

BR 14 RETURN TO PL/I

SAVEAREA DC 20F'0"

Figure 13-4,

interrupt handler but only those
registers that it modifies must be
stored. The SPIE macro is discussed
later in this chapter.

The amount of storage allocated for a
save area or DSA must be a multiple of
eight bytes. The address of the next
available block of storage following the
save area or DSA must be stored at offset
76 of that save area or DSA. This address
is obtained by adding the address of the
save area of DSA to its length.

Calling Assembler Routines from PL/1

INVOKING A NON-RECURSIVE AND NON-
REENTRANT ASSEMBLER ROUTINE

When a PL/I program invokes a non-recursive
and non-reentrant assembler-language
routine, the- assembler-language routine
must follow System/360 linkage conventions
and save the registers for use by PL/I on
return from the assembler-language routine.
The register values are stored in the PL/I
DSA, the address of which is contained in
register 13 on entry to the assemkler-
language routine. This address must then be
stored in the backchain word in a save area
defined by the assembler routine itself.
The appropriate assembler instructions
should be executed immediately the
assembler routine is invoked in order to
achieve the given objectives. Before
returning to the PL/I routine, the
assembler routine must restore the
registers to the values held when the PL/I
‘'routine invoked the assembler routine. The
example in Figure 13-4 assumes that the
assembler routine uses register 10 as its
base register.

Chapter 13:

Linking PL/I and Assembler-Language Mcdules

ALLOCATE 80 BYTE SAVE AREA

Invoking a non-recursive and non-reentrant assembler routine

INVOKING A RECURSIVE OR REENTRANT
ASSEMBLER ROUTINE

A recursive or reentrant assembler routine
invoked from PL/I can use the PL/1 storage
overflow routine to attempt to obtain
further storage when the stcrage initially
available for dynamic use by the program is
used up.

A DSA established by the
| routine must have its first two bytes set
to X'00' if it is to handle any program
interrupts. such a DSA must ke at least 80
bytes in length to accommodate both the
save area and two fullwords required by
PL/I for its housekeeping. If the PL/I
error-handler is to service any program
interrupts in the assembler-language
routine, the DSA should ke at least 88
|bytes in length. The first kyte of the Dsa
|should ke set to X'80', the second byte set
|to X'00', and bytes 87 and 88 (the PL/I
error-handler enable cells) set to X'91CO".
In addition, a DSA can be as 1lcng as is
needed to store any values that are to be
presexved for use by a particular
invocation. Note that a DSA obtained in
this way must be a multiple cf 8 bytes in
length.

assenblerx

Termination of a recursive or reentrant
assembler-language routine will release its
DSA and cause control to be returned to the
invoking routine.

The example in Figure 13-5 shows how to
create and release a DSA in a recursive or
reentrant assembler routine.

USE OF REGISTER 12

If an assemkler routine that modifies
register 12 is to be invcked by a PL/I

169

STM 14,11,12(13) STORE CALLER'S REGISTERS IN CALLER'S DSA
BALR 10,0 ESTABLISH BASE REGISTER
USING *,10
LR 4,1 SAVE ANY PARAMETER LIST ADDRESS
* PASSED FROM CALLING ROUTINE
LA 0,96 PUT THE LENGTH OF THE REQUIRED DSA IN REG 0
L 1,76(13) LOAD THE ADDRESS OF THE NEXT AVAILABLE
* BYTE OF STORAGE AFTER THE CURRENT DSA
ALR 0,1 ADD ADDRESSES
CL 0,12(12) COMPARE RESULT WITH ADDRESS OF LAST AVAILABLE
* BYTE IN STORAGE THAT CAN BE USED
BNH ENOUGH
L 15,116(12) LOAD AND BRANCH TO THE PL/I STORAGE OVERFLOW
BALR 14,15 ROUTINE TO ATTEMPT TO OBTAIN MORE STORAGE
ENOUGH EQU #
ST 0,76 (1) STORE THE ADDRESS OF THE NEXT AVAILARLE
* BYTE IN STORAGE AFTER THE NEW DSA
ST 13,4 (1) STORE THE CHAIN-BACK ADDRESS OF THE PREVIOUS
* DSA IN THE CURRENT DSA
MVC 72(4,1),72(13) COPY ADDRESS OF LIBRARY
* WORKSPACE
LR 13,1 STORE THE ADDRESS OF THE NEW DSA IN REGISTER 13
MVI 0(13),X'80' SET FLAGS IN DSA TO
MVI 1(13),X'00' PRESERVE PL/I
MVI 86(13),X'91' ERROR-HANDLING
MVI 87(13),X'CO0' 1IN THE ASSEMBLER ROUTINE
- ASSEMBLER
- ROUTINE
L 13,4(13) RELEASE CURRENT DSA
LM 14,11,12(13) RESTORE CALLER'S REGISTERS
BR 14

Figure 13-5.

Invoking a recursive or reentrant assemkler routine

procedure, any program-check interrupts
will result in an unpredictable program
failure unless the routine establishes its
own error handling for program-check
interrupts. Consequently, the routine
should be amended to use a register other
than register 12 so that the PL/I error-
handler can be used, or it can issue a
supervisor SPIE or STAE macro to establish
its own program interrupt or abnormal
termination handling facilities. The
routine must subsequently restore PL/I
error-handling facilities kefore returning
to PL/I. This is discussed further in
"Overriding and Restoring PL/I Error-
handling in an Assembler-language Routine”
later in this chapter. (A routine that
changes the content of register 12 should
also store it on entry and restore it on
return.)

Calling PL/1 Procedures from Assembler

Language

The simplest way to invoke a single
external PL/I procedure from an assembler-

170 OS PL/I Optimizing Compiler:

language routine is to give the PL/I
procedure the MAIN option and invcke it
using entry point PLICALLA. BAll that is
required is to load the address of PLICALILIA
into register 15 and then to branch and
link to it. When PLICALLA is used in this
way, the PL/I environment is created and
control is then passed by way of PLIMAIN to
the first (or only) mrain PL/I procedure in
the program. Use of this technique will
cause the PL/I environxent tc be
established separately for each invocation.

ESTABLISHING THE PL/I ENVIRONMENT FOR
MULTIPLE INVOCATIONS

If the assembler routine is to invoke
either a number of PL/I routines cr the
same PL/I routine repeatedly, the creation
of the PL/I environment for each invccaticn
will be unnecessarily inefficient. The
solution is to create the PL/I environment
once only for use by all invccaticns of
PL/I procedures. This can ke achieved by
invoking a main PL/I procedure which
inmmediately reinvokes the assembler

Programmer 's Guide

routine. The assembler routine must
preserve the PL/I environment and is then
able to invoke any number of PL/I
procedures directly. The example in figure
13-3 contains an assembler-language routine
that establishes the PL/I environment once
only for multiple invocations of PL/I
procedures.

In this example, the assembler routine
MYPROG receives control initially from the
supervisor, and invokes the PL/I main
procedure MAIN using the entry point
PLICALLA to the PL/I initialization
routine. The PL/I procedure MAIN
immediately reinvokes the same assembler
routine at the entry point ASSEM. Note
that, in this example, this name must be an
odd number of characters to ensure that the
next instruction is halfword aligned. At
this entry point, the PL/I environment is
stored, and a new DSA, 104 bytes in length,
is created in a manner similar to that
previously given for creating a DSA in a
recursive or reentrant assembler-language
routine. If there is insufficient room for
the new DSA, the PL/I overflow routine is
invoked to attempt to obtain storage for
the DSA elsewhere in storage.

The instructions in the assembler
routine following the label ENOUGH through
to the instruction that loads the address
of the PL/I entry point HEAD are concerned
with setting up the DSA so that the correct
environment exists when the routine invokes
the external PL/I procedures PLIN and PLOUT
and the secondary entry points within themn.
These instructions should always ke present
in order to preserve the PL/I environment
set up by the main procedure for subsequent
use by any assembler-invoked PL/I
procedures.

Note that
procedure is
set to zero,

when an external PL/I
invoked, register 5 must be
and that a PL/I procedure,
such as PLIN in this example, that returns
a value will assign the walue to the last
address in the argument list, ARGTLST1.
This address is the address of the
assembler-defined storage for RESULT. The
constant X'80' in the first byte of the
fullword containing the address of RESULTS
in ARGTLST1 indicates that it is the last
fullword in the argument list.

If an assembler-language routine invokes
a PL/I procedure without passing any
parameters to it and without expecting any
value to be returned from it, register 1
must be set to zero. In this example, the
procedure PLIN contains a RETURN
{expression) statement, but when invoked
through the parameterless entry point HEAD,
does not return a value to the invoking
routine. Similarly, the procedure PLOUT
contains the parameterless entry point FOOT

Chapter 13:

and does not return a value.

ESTABLISHING THE PL/I ENVIRONMENT
SEPARATELY FCR EACH INVOCATICN

If it is necessary to reestaklish the PL/I
environrent each time a PL/I procedure is
invoked, use the entry pcint PLISTART,
PLICALLA, or PLICALLB to invoke the PL/I
initialization routines. The three entry
points are used as follows:

For PLISTART, the assembler language
routine must insert in register 1 the
address of a fullword which in turn
contains the address of a halfwcrd prefix
to a character string. The character
string, which must start on a fullwcrd
boundary, can contain a parameter string
similar to that which can be srecified in
the PARM field of a JCL EXEC statement; for
example, 'ISASIZE (4K) ,R/INPUT'. The
halfword prefix must contain the number of
characters in the string. This entry point
is useful when a PL/I routine is "attached"
by an assemkler routine, because the entry
point of the PL/I routine dces nct have to
be changed. The use of PLISTART is
illustrated in Figures 13-6 and 13-7.

For PLICALLA, the asserbler-language
routine must insert in register 1 the
address of the argument list that ccntains
the addresses of any arguments to be passed
to the PL/I procedure.

For PLICALLB, the assembler-language
routine must insert in register 1 the
address of an argument list that contains
the following:

¢ The address of the argurent list
containing addresses to ke passed to
PL/I, and optionally,

¢ The address of the length of storage to
be made available to the program in a
non-multitasking program cr the major
task in a multitasking program. The
default for this length is half the
available storage for a non-multitasking
program or 8K bytes for the majcr task
of a multitasking program. The length
of the initial storage area (ISA) passed
must be a multiple of eight bytes, so
that the ISA both starts and ends on a
double-word koundary.

e The start address of the initial storage
area (ISA) to be used by the PL/I
program. This storage must be aligned
on a doukle word. For further
information, refer to the discussion of
the ISASIZE option in Chapter 4.

Linking PL/I and Assemkler-Language Modules 171

LA

*

PLISTHWD DS
DC
DC

PLISTHW DC

PLISTCH DC

Figure 13-6.

LA
L

1,PLISTHWD

OF
X'80'

GET PLIST ADDRESS
ATTACH EP=PLIPROG ATTACH PL/I PROGRAM

FLAG LAST WORD OF PLIST

AL3(PLISTHW)
AL2(L'PLISTCH) LENGTH OF PARM STRING

C' ISASIZE(8K) ,R/INPUT'

Use of PLISTART for ATTACH

1, PLISTHWD
15,=V (PLI START)

BALR 14,15

*
*
DS
PLISTHWD DC
DC
PLISTHW DC
PLISTCH DC

Figure 13-7.

Option

REPORT
NOREPORT
SPIE
NOSPIE
STAE
NOSTAE
COUNT
NOCOUNT
FLOW
NOFLOW

Figure 13-8.

ARGLIST

DC
DC
*

Figure 13-9.

172 0s PL/I Optimizing Compiler:

"t 88T BUE
&

OoF
X80

PARM DATA

GET PLIST ADDRESS
GET PL/I ENTRY POINT

CALL PL/I ROUTINE

FLAG LAST WORD OF PLIST

AL3 (PLISTHW)

H'O"
AL2(0)

NULL PARM STRING

Use of PLISTART passing null parameter string

Value

X'80' in
X'40' in
X'20"' in
X'10"' in
X'08' in
X'04*' in
X'02' in
X'01' in
X'80"' in
X'40*' in

first byte
first byte
first byte
first byte
first byte
first byte
first byte
first byte
second byte
second byte

Coding the options word

1,ARGLIST
15,=V(PLICALLA)

14,15

A(argl)
Afarg2)

X'80"

The address of the length of storage to
be made available to each of the
subtasks in a multitasking program. The
default for this length is 8K bytes for
each subtask. This value is igncred for
a non-multitasking program. The length
of the ISA must be a multiple cf eight
bytes.

The address of the maximunr number of
concurrent subtasks that can be attached
at any one time. This value is ignored
in a non-multitasking program. The
default for this value is 20.

The address of the options word, in
which the execution-time options for a
program compiled by the crtinmizing

ADDRESS OF FIRST ARGUMENT PASSED TO PL/I1
ADDRESS OF SECOND ARGUMENT PASSED TO PL/I

END OF ARGUMENT LIST FLAG
AL3(argn or return-value) ADDRESS OF LAST ARGUMENT

OR RETURNED VALUE

Use of PLICALLA

Programmer's Guide

LA 1,ALIST
L 15,=V(PLICALLB)
BALR 14,15

ALIST DC A(ARGLIST)
DC A(LENGTH)

ADDRESS OF ARGUMENT LIST
LENGTH OF STORAGE FOR PL/I

* ON DOUBLE WORD BOUNDARY

Dc A(ISA)

ADDRESS OF ISA

NUMBER OF CONCURRENT SUBTASKS - NONE
END OF ARGUMENT LIST FLAG

ADDRESS OF FIRST ARGUMENT
ADDRESS OF SECOND ARGUMENT
END OF ARGUMENT LIST FLAG

ROUTINE'S STORAGE LIMITED TC 8K BYTES
ROUTINES ISA STARTS HERE

DC A(0) TASK ISA .- NOT USED

DC A (0)

DC X'80"

DC AL3 (OPTIONS) OPTIONS WORD
ARGLIST DC A(argl)

DC A(arg2)

DC X'80"'

DC AL3 (argn or return-value) ADDRESS OF LAST ARGUMENT
* OR RETURNED VALUE
LENGTH DC F'8192°
Isa DS 1024D
OPTIONS DC X'84000000°

Figure 13-10. Use of PLICALLB

compiler are specified. These options
are: REPORT; STAE; SPIE; COUNT; and
FLOW. They are described in Chapter 4.
The hexadecimal value for each option is
given in Figure 13-8.

Note that the firxst byte in the last
address word in each of these argument
lists must contain X'80'. The examples in
Figures 13-9 and 13-10 show the use of
PLICALLA and PLICALLB to invoke the first
(or only) main PL/I procedure in the
program. The PL/I programs in these cases
do not perform multitasking.

If it is necessary to reestablish the
PL/I environment for each invocation of a
PL/I procedure that is not the first (or
only) main procedure in the program, the
user of either entry point PLICALILA or
PLICALLB must insert in PLIMAIN the address
of the appropriate entry point to the
required PL/I procedure. The example in
Figure 13-1 sets the address in PLIMAIN to
that of the external entry name MYPROG.

If it is necessary to reestablish the
PL/I environment for each invocation of a
PL/I procedure where there is no main PL/I
procedure in the program, the use of either
entry point PLICALLA or PLICALLB must be
accompanied by the use of an entry point
called PLIMAIN in the assembler-language
routine. This entry point must contain the
address of the PL/I routine to be invoked.
Figure 13-2 shows how this is inserted.

Chapter 13:

REPORT AND NOSTAE REQUESTED

PL/I Calling Assembler Calling PL/I

The information given in the preceding
sections should be sufficient to write
programs that include a PL/I procedure that
invokes an assembler-language routine that
invokes a further PL/I procedure. Figure
13-3 contains an example of a rrogram that
performs this type of processing.

Assemblexr Calling PL/I Calling
Assembler

The information given in the preceding
sections should be sufficient to write
programs that include an assembler-language
routine that invokes a PL/I prccedure that
in turn invokes an assemkler-language
routine. Figure 13-3 contains an example
of a program that performs this type of
processing.

Overriding and Restoring PL /I Erxror-
handling

An assembler-language routine invcked from
PL/I can override PL/I error-handling by
issuing its own SPIE macro tc handle
program interrupts or STAE macro to handle
abnormal terminations. If the SPIE macro is
issued, the address of the FPL/I PICA must
be saved. A routine that cancels PL/I
error-handling must restcre the PL/I error-

Linking PL/I and Assemkler-Language Modules 173

PROGA CSECT

ENTRY ASSEM

ENTRY-POINT INVOKED FROM PL/I

ESTABLISH NEW ABEND HANDLER
ESTABLISH INTERRUPT HANDLER

RESTORE PL/I ERROR HANDLING

RESTORE PL/I ENVIRONMENT

STM 14,12,12(13) STORE PL/I ENVIRONMENT

BALR 10,0 ESTABLISH BASE REGISTER

USING *,10

STAE (operands)

SPIE (operands)

ST 1,SAVESPIE STORE OLD PICA ADDRESS

STAE O

L 1,SAVESPIE RESTORE PICA ADDRESS

SPIE MF=(E, (1))

L 13,4(0,13)

LM 14,12,12(13)

BR 14 RETURN TO PL/1
SAVESPIE Ds A

Figure 13-11.

handling facilities before returning to the
PL/I program. It does this by issuing
either a STAE macro with an operand of zero
or an execute form of the SPIE macro
restoring the saved PL/I PICA, according to
the macros used to cancel the PL/I error-
handling. The example in Figure 13-11
shows how these macros are used to cancel
and subsequently restore PL/I error-
handling.

Arguments and Parameters

Arguments are passed between PL/I and
assembler routines by means of lists of
addresses known as "parameter lists".
address in a parameter list occupies a
fullword in main storage. The last
fullword in the list contains X'80' in its
first byte to enable it to be recognized.

Each

Each address in a parameter list is
either the address of a data item or the
address of a control block that describes a
data item. Data items themselves are never
placed directly in parameter lists.

RECEIVING ARGUMENTS IN AN ASSEMBLER-
LANGUAGE ROUT INE

wWhen an assembler routine is invoked by a
PL/I routine by means of a CALL statement
or a function reference, the assembler
routine will receive the address of a
parameter list in register 1. The meaning
of the addresses in the parameter list
depends upon whether or not the entry point
of the assembler routine has been declared

174 0S PL/I Optimizing Compiler:

Method of overriding and restoring PL/I error-handling

with the ASSEMBLER option. These two cases
are discussed separately in the fcllcwing
paragrarhs. The ASSEMBLER option is fully
described in the language reference ranual
for this compiler.

Assembler Routine Entry Point Declarxed
with the ASSEMBILER Option

The ASSEMBLER option is provided tc
simplify the passing of arguments from PL/I
to assembler routines. It srecifies that
the parameter list set up by PL/I is to
contain the addresses of actual data itens,
rather than the addresses of control
blocks, irrespective of the tyrpes of data
that are being passed. Thus if, for
example, an array is passed from PL/I to an
assembler routine, the address in the
parameter list is that of the first element
of the array.

Note that if a particular data item is
not byte-aligned (for example, an unaligned
bit string), the address in the parameter
list is that of the .byte that contains the
start of the data item. Also, varying
length character and bit strings are
preceded in storage by a two-bkyte field
specifying the current length of the
string, and it is the address of this
prefix that is placed in the rarameter
list.

An assemkler routine whose entry point
has been declared with the ASSEMBLER opticn
can be invoked only by means of a CALL
statement.

Programmer's Guide

Assembler Routine Entry Point Declared
without the ASSEMBLER Option

If the entry point of the assembler routine
has not been declared with the ASSEMBLER
option, each address in the parameter list
is either the address of a data item or the
address of a control block, depending on
the type of data that is being passed.

For arithmetic element variables, the
address in the parameter list is that of
the variable itself. For all other problem
data types, the address in the parameter
list is that of a control block known as a
"locator/descriptor". For program control
data, the address in the parameter list is
that of a control block. The formats of
locator/descriptors and of control blocks
for program control data are given in the
execution logic manual for this compiler.

It is recommended that the use of this
type of linkage is avoided wherever
possible. Access to locator descriptors is
normally only necessary when the full
attributes of the the arguments are not
known by the assembler routine. The use of
function references (which cannot be used
with the ASSEMBLER option) can be avoided
by passing the receiving field as a
parameter to the assembler routine.

PASSING ARGUMENTS FROM AN ASSEMBLER-
LANGUAGE ROUTINE

In order to pass one or more arguments to a
PL/I routine, an assembler routine must
create a parameter list and set its address
in register 1. The last fullword in the
parameter list must have X'80' in its first
byte. If the PL/I routine executes a
RETURN (expression) statement, the last
address in the parameter list must be that
of the field to which PL/I is to assign the
returned value.

Each address in the parameter 1list must

Chapter 13:

be either the address of a data item or the
address of a control klock that describes a
data item, depending upon the type cf data
that is being passed. For arithmetic
element variables, the address in the
parameter list must be that of the of the
variable itself. For all cther prcklem
data types, the address in the parameter
list must be that of a lccatcr/descriptor.
For program control data, the address in
the parameter list must be that cf a
control block. The formats of locator
descriptors and of control klocks fcr
program control data are given in the
execution logic manual fcr this ccrrpiler.

In some cases, it is possible tc avoid
the use of locators/descriptors when passing
aggregates or strings by pretending that
the data is an arithmetic variable.
Suppose, for example, that an asserkler
routine is required to pass a fixed-length
character string of twenty characters to a
PL/I routine. The assembler routine can
place the address of the character string
itself in the parameter list, and the PL/I
routine can be written thus:

PP:PROC (X) ;
DCL X FIXED,
A CHAR (20) BASED (P);
P = ADDR(X);

Because X is declared to be arithmetic,
the address in the parameter list in
interpreted as the start of the data that
is being passed. This address is assigned
to P, and is subsequently used as a locator
for the kased character string A, which has
the attributes of the data that has
actually been passed.

This technique will work for all data
types except unaligned bit strings. Note
that the dummy arithmetic parameter need
not have the same length as the data that
is actually being passed; it is used simply
to enable the the passed address tc be
jdentified as the start of the data.

Linking PL/I and Assemkler-Language Modules 175

If you intend to use the PL/I sort
facilities, the version of 0S generated for
your installation must include either a
copy of the 0S type 1 sort/merge program
(Program Number 360S-SM-023) or a copy of
the 0S program product sort/merge program
(Program Number 5734 SMl). The PL/I sort
facilities make use of either 0S sort/merge
program to arrange records according to a
predetermined sequence.

Note: If any of the data sets used by the
sort program are to reside on an IBM 3330
or IBM 3333 device, the 0S program product
sort/merge program (Program Number 5734
SM1) must be used.

The sort/merge program includes user
exit points to enable user-written routines
to be entered at particular stages during
the sorting operation and which provide
access to records that are being sorted.
The PL/I sort facilities provide an
interface to enable the sort/merge program
to be invoked and to call PL/I procedures
through two of the user exits, E15 and E35.

This chapter describes the method of
invoking sort/merge from PL/I and the use
of the user exits E15 and E35. It should
|be used in conjuction with the relevant 0S
| Sort/Merge publication. The type 1 program
|is described in 0S Sort/Merge; the program
|product is described in the publications 0S
|Sort/Merge: Programmer's Guide and QS/VS
|sortsMerge: Programmer's Guide. These
|books are referred to collectively
|throughout the remainder of this chapter as
| "the sort/merge publication".

Storage Requirements

The minimum storage requirements for the
sort program when used in conjunction with
a PL/I program compiled by the optimizing
compiler is 12000 bytes or 26000 bytes in
an MVT environment. Additional storage
requirements exist if the sort program
handles records that are greater than 400
bytes in length and if it uses direct-
access devices for input, output, or
intermediate storage. Efficiency is
enhanced if additional main storage can be
|provided. Refer to the sort/merge
|publication for further information.

Chapter 14: PL/I Sort

ENTRY NAMES

A PL/1 program invokes the sort program by
means of a CALL statement that names one of
four entry points to a PL/I sort interface
subroutine provided by the 0S PL/I Resident
Library. The CALL statenment alsc gasses
arguments that specify the requirements for
the sorting operation. The arxguments
include a sequence of sort/merge control
statements in the form of character-string
expressions. The PL/I sort interface
subroutine has entry points for four types
of processing, shown in Figure 14-1.

Entry
Point Function
PLISRTA Invokes the sort/merge program
to retrieve reccrds from a data
set (SORTIN), sort them, and.
write themr in scrted sequence
onto ancther data set
(SORTOUT) .

PLISRTB Invokes the sort/merge program
and specifies the use cf user
exit E15. A PL/I procedure
invoked at user exit E15 will
supply all the records to be.
sorted. The sorted reccrxds are
written directly onto the data
set SORTOUT. :
PLISRTC Invokes the sort/merge program
and specifies the use of user
exit E35. The sort/merge
program retrieves records from
the data set SORTIN. The
sorted records are passed toa
PL/I procedure invoked at user
exit E35. This procedure will
handle any output that is
required.

PLISRTD Invokes the sort/merge rrogram
and specifies the use of user
exit E15 and user exit E35.
The use of these user exits is
exactly as described for
PLISRTB and PLISRTC.

Figure 14-1. sSort/merge program entry
points

After completion of the sort, the
sort/merge program passes a return ccde to
the invoking program to indicate whether

Chapter 14: PL/I sort 177

the sort is successful or not. The
invoking procedure must include a variable
with the attributes FIXED BINARY(31) to
receive this return code, and the name of
the variable must always be included in the
argument list of the CALL statement that
invokes sort/merge. The return codes and
their meanings, are:

0 Sort successful

16 Sort unsuccessful

PROCEDURES INVOKED BY WAY OF SORT USER
EXITS

Both external and intermal PL/I procedures
can be invoked by way of sort user exits.
The use of external PL/I procedures should
present no problems so long as their entry
names are declared in the main PL/I
procedure and they are link edited with the
main PL/I procedure to form a single
executable program.

All records passed to a PL/I procedure
from the sort/merge program, and all
records passed to the sort/merge program,
must be in the form of character strings.
A PIL/I procedure invoked by way of user
exit E35 must include a charactexr-string
parameter; a PL/I procedure invoked from
user exit E15 must pass a record to the
sort/merge program by means of a RETURN
statement with a character-string
expression as its argument.

Varying-length character strings can be
returned from an E15 exit procedure and
sorted as variable-length records.

Varying-length character strings cannot
be received as parameters in an E35 exit
procedure. However, a variable-length
record passed to an E35 exit procedure can
be declared as an adjustable-length
character string. For example:

E35X: PROC (VREC);
DCL VREC CHAR(*);

A sorting operation can also be
specified to handle fixed-length records
when the PL/I procedure is to pass varying-
length character strings to it. 1In this
situation, the strings are converted to
fixed-length records of maximum length by
having blanks added to them where
necessary.

Similarly, fixed-length character
strings passed from a PL/I procedure can be

178 OS PI/I Optimizing Compiler:

converted into variable-length records and
sorted.

A PL/I procedure invoked ky way of a
sort/merge user exit must pass a return
code to the sort program to indicate what
action should be taken when the PL/I
rrocedure next relinquishes control. This
is effected by invoking from within the
procedure the PL/I library interface
subroutine PLIRETC as follcws:

CALL PLIRETC(n);

where "n" can have one of the follcwing
values to specify the action required:

For procedures invoked by means of user
exit E15:

8 Do not return to this procedure.

12 1Include the record returned frcn
the procedure in the sort.

16 sStor the sort and return immediately
to the invoking rrocedure. (0S
program product sort/merge program
only.)

For procedures invoked by means cf user
exit E35:

4 Pass the next sorted record to the
E35 procedure.

8 Do not return to this groccedure.

16 Stop the sort and return immediately
to the invoking procedure. (0OS
program product sort/rerge prcgram
only.)

DATA SETS USED BY SCRT/MERGE

The execution step for a PL/I program that
uses PL/I sort requires job control DD
statements for some or all cf the fcllowing
data sets in addition to those required by
the PL/I program.

Input Data Sets

If the sort/merge program is tc read the
records to ke sorted from a data set,
include a DD statewment foxr the data set,
using the ddname SORTIN.

Programmer's Guide

Description

A character string containing the
sort/merge SORT statement; this
statement must be preceded and
followed by a blank character.
arg2 A character string containing the
sort/merge RECORD statement; this
statement must be preceded and
followed by a blank character.
arg3 Amount of main storage for the
sort/merge program.

the
is to
code.

Name of the variable in
invoking procedure that
receive the sort return

argl

PL/I
from user

arg5b Entry point name of the
procedure to be invoked

exit E15.

PL/I1
from user

argbé Entry point name of the
procedure to be invoked
exit E35.

arg?7 Replacement ddname characters (see
the section "Multiple Invocations
of SortsMerge," later in this
chapter).

arg8 Diagnostic message listing optiocon
(see the section "Sort/Merge
Message Listing Options,"” later in
this chapter).

arg9 Sorting technique option (see the
section "Sorts/Merge Sorting
Techniques," later in this
chapter).

Figure 14-2. Arguments used when
invoking sort/merge

Work Data Sets

The sort/merge program requires at least
three magnetic-tape or direct-access data
sets for use as intermediate storage; you
can increase efficiency by specifying the
direct-access data sets on separate direct-
access devices. If the volume of records to
be sorted demands more intermediate
storage, you can specify up to 32 data
sets. Provide a DD statement for each work
data set, using the ddnames SORTWKO1l to
SORTWK32.

Output Data_ Sets

If the sort/merge program is to write the
sorted records onto an output data set,
include a DD statement for the data set,
using the ddname SORTOUT.

Other Data Sets

For the sort program to execute
success fully, it must have access to the
following data sets:

SORTLIB The system sort/nmerge rrogram
library.
SYSOUT For sort/merge program

diagnostic messages.

The following data sets are needed if

the associated facility is to be used:

SORTCKPT If the sort/merge program is to
make use of the
checkpoint/restart facility.
SYSUDUMP For dumps of main storage if
required for dekugging the sort
program.
PLIDUMP For dumps of main storage if
required for dekugging the PL/I
program.

Invoking Sort/Merge from PL /1

The sort/merge program is invcked frcm a
PL/I rrogram ky one of the CALL statements
listed below. The number of arguments
required depends on the entry name invoked.

The arguments include sort/merge gprogranm
control statements that define the
processing to ke carried out and describe
the records to be sorted. (when the
sort/merge program is invoked as an
independent job step, these ccntrcl
statements are submitted by way of the
SYSIN input stream.) The ccntrol
statements are described in the sort/merge
publication. Note that the MERGE statement
cannot ke used when invoking the scrt/merge
program through the PL/I sort interface.
The general syntax of the CALL statement
for each of the four entry points is:

Chapter 14: PL/I Sort 179

MSORT: PROC OPTIONS (MAIN) ;

/% INVOKE THE SORT PROGRAM FOR THE FIRST TIME */

CALL PLISRTA (' SORT FIELDS=(7,74,CH,A) ',
' RECORD TYPE=F,LENGTH=(80) ',

100000,
[RETURN_CODE) ;

/* INVOKE THE SORT PROGRAM FOR THE SECOND TIME */

CALL PLISRTA ('

SORT FIELDS=(7,74,CH,A) °*,

' RECORD TYPE=F,LENGTH=(80) °*,

100000,
RETURN_CODE,
'TASK") ;

END MSORT;

Figure 14-3. Multiple invocations

of sort/merge
CALL PLISRTA(argl,arg2,arg3,argl,arg?,
arg8,arg9);

CALL PLISRTB(argl,arg2,arg3,argl,axg5,
arg7,arg8 ,arg9);

CALL PLISRTC (argl,arg2,arg3,argl,arg6,
arg7,arqg8 ,arg9);

CALL PLISRTD (argl,arg2,arg3,argl,arg5,
argb6,arg7 ,arg8,arg9?);

The arguments are described in Figure
14-2.

| Arguments arg7, arg8, and arg9 are
|optional. If an optional argument is nct
used, it need not be specified unless
another argument that follows it in the
given order is specified. In this case,
the unused argument must be specified as a
null string. The following sections
describe how to use the optional arguments.

|[Multiple Invocations of Sort/Merge

For multiple invocations of the sort/merge
program from a single job step, the
standard ddnames of sort data sets (SORTIN,
SORTOUT, SORTWK, and SORTCKPT) can be
changed by replacing up to the first four
characters of the ddnames with a similar
number of different characters. This is
achieved by specifying the optional
argument arg?7 in the CALL statements that
invoke the sort/merge program. For the

180 O0S PL/I Optimizing Compiler:

invocations of the sort/merge program using
modified ddnames, the optional argument
should ke a character string that contains
the replacement characters. Note that the
first character of the replacement string
must be alphaketic.

| For the invocation using the standard
|sort/mexge data sets, arg7 need not be
|specified unless arg8 is specified, when
|arg?7 should Le specified as a null string.

|
| An example of multiple invocation is
|given in Figure 14-3.

In this example, the first invocation of
the sort/merge progran requires CD
statements with the following ddnames:

//SORTIN DD ...
//SORTOUT DD ...
//SORTWKO1 DD ...

The second invocation of the scrt/merge
program requires DD statements with the
following ddnames:

//TASKIN DD ...
//TASKOUT DD ...
//TASKWKO01 DD ...

Programmer's Guide

|Sort/Merge Message Listing Options

It is possible to select one of five
options for specifying how the sort/merge
program diagnostic messages are to be
produced. The selected option can be
|specified as an optional argument (arg 8)
to the entry point used. The optional
argument should contain a character string
selected from those given in Figure 14-4.

NO No messages to be printed

AP 2All messages to be printed on the
printer

AC All messages to be printed on the
system console

CP Critical messages only to be printed
on the printer

CC Critical messages only to be printed
on the system console

Figure 14-4. Sort/merge message

listing options

| If no sort/merge listing option is
|specified, the diagnostic messages will be
|printed in the way specified when the

| sort/merge program was generated.

An example of a CALL PLISRTA statement
that does not modify the sort/merge ddnames
but that does specify a sort/merge program
message listing option is given in Figure
14-5.

CALL PLISTRA (' SORT FIELDs=(7,74 ,CH,A) ',
' RECORD TYPE=F,LENGTH=(80) °*,
100000,
RETURN_CODE,
'*, /¥ NULL DDNAME ARGUMENT */
'CP');
Figure 14-5. Specifying a sort/merge
message listing option

Sort/Merge Sorting Techniques

It is possible to select one of four
sorting techniques for use by the
sort/merge program. The techniques are
described in the sort/merge program
publication. The selected technique must
be specified in an optional argument (arg
/' 9) to the entry point used. The ortional

argument should contain cne cf the
character strings BALN, CRCX, OSCL,
according to the technique that is
required.

cr POLY

| If no sorting technique crticn is
|specified, the sort/merge program will use
|the method that is most efficient for the

| particular jok. Specifying that a
|particular technique is to ke used could
|therefore cause the sorts/merge operation to
|be performed less efficiently.

An example of a CALL PLISRTA statement
that neither modifies sort/merge ddnames
noxr specifies a sort/merge message listing
option but that does srecify a sorting
technique is given in Figure 1l4-6.

CALL PLISRTA (' SORT FIELDS=(7,74,CH,R) ',
* RECORD TYPE=F,LENGTH=(80) ',
100000,
RETURN_CODE,
[]

’
/* NULL DDNAME ARGUMENT */
(]

[4
/% NULL LISTING OPTION ARGUMENT /*
‘PCLY") ;
Figure 14-6. Specifying a scrt/merge
sorting technique option

Examples of Using PL/I Sort

SORTING RECORDS DIRECTLY FROM ONE DATA
SET TO ANOTHER (PLISRTA)

The example in Figure 14-7 illustrates the
use of entry point PLISRTA to retrieve
records from an input data set (SORTIN),
sort them, and write them directly in
sorted sequence onto an ocutrut data set
(SORTOUT) .

The PL/I program contains the following
elements:

e A declaration of the variable RETURN
CODE to receive the return code from the
sort/merge progrartt.

e A CALL statement to invoke the entry
point PLISRTA.

e Statements to test the return code.

The example uses the rmininunr cf data
sets; one for input, one for output, and
three direct-access storage extents cn a
single disk storage drive.

Chapter 14: PL/I Sort 181

//0PT14#7 JOB

//STEP1 EXEC PLIXCILG, PARM.PLI='SIZE(130K),O0BJECT'
//PLI.SYSIN DD *

EX106: PROC OPTIONS(MAIN);

DCL RETURN_CODE FIXED BIN(31,0);

CALL PLISRTA (' SORT FIELDS=(7,74,CH,A) ',
' RECORD TYPE=F,LENGTrH=(80) *,
45000,
RETURN_CODE) ;
IF RETURN_CODE = 16 THEN PUT SKIP EDIT ('SORT FAILED') (A);
ELSE IF RETURN_CODE = O THEN PUT SKIP EDIT ('SORT COMPLETE"')
(n) ;
ELSE PUT SKIP EDIT ('INVALID SORT RETURN CODE') (A);
END EX106;
/%

//GO.SORTIN DD *

003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD
002886 BOOKER R.R. ROTORUA, MILKEDGE LANE, TOBLEY
003077ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR
059334HO0OK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
073872HOME TAVERN, WESTLEIGH

000931FOREST, IVER, BUCKS

/¥ -

//GO.SORTOUT DD SYSOUT=A, DCB=(RECFM=F, BLKSIZE=80)

//G0O. SYSOUT DD SYSOUT=A

//GO.SORTLIB DD DSN=SYS1l. SORTLIB, DISP=SHR

//GO. SORTWKO1 DD UNIT=2314 ,SPACE= (TRK,20,,CONTIG)
//GO.SORTWK02 DD UNIT=2314, SPACE=(TRK, 20, ,CONTIG)

//G0O. SORTWK03 DD UNIT=2314 ,SPACE= (TRK,20,,CONTIG)

Figure 14-7.

|USING USER EXIT E15 TO PASS RECORDS TO
|BE SORTED (PLISRTB)

The example in Figure 14-8 illustrates the
use of entry point PLISRTB to enakle
records to be supplied to the sort by a
PL/1 procedure.

Like that in the previous example, the
main procedure invokes the sort/merge
program and tests the return code when
processing is complete. Note that records
to be sorted can be supplied only by the
procedure invoked by way of user exit E15
(in this case, procedure E15X).

Each time procedure E15X is invoked by
the sort/merge program, E15X reads a record
from the input stream and passes it to the
sort after the appropriate return code has
been passed.

USING USER EXIT E35 TO HANDLE SORTED
RECORDS (PLISRTC)

The example in Figure 14-9 illustrates the

182 0S PL/I Optimizing Compiler:

Invoking sort/merge via entry point PLISRTA

use of entry point PLISRTIC tc enable
records to ke supplied from the sort to the
PL/I procedure E35X. As in previous
examples, the main procedure invokes the
sort/merge program and tests the return
code when processing is complete. Each
tire prccedure E35X is invoked by the
sort/merge program, it receives a scrted
record as a parameter, prints it, and
requests the next record frcm the
sort/merge program ky passing it the
appropriate return code.

PASSING RECORDS TO BE SORTED, AND
RECEIVING SCRTED RECORDS (PLISRTD)

The example in Figure 14-10 illustrates the
use of entry point PLISRTD to enable
records to be supplied to the scrt from a
PL/I procedure and sorted reccrds tc be
supplied from the sort to a PL/I procedure.
As in previous examples, the main prccedure
invokes the sort/merge program and tests
the return code when processing is
complete. The use of the E15 user exit is
identical to that in Figure 14-8; the use
of the E35 user exit is identical to that

Programmer's Guide

//0PT14#8 JOB

//STEP1 EXEC PLIXCLG, PARM.PLI='SIZE(130K),OBJECT'
//PLI.SYSIN DD *

EX107: PROC OPTIONS(MAIN);

DCL RETURN_CODE "'FIXED BIN(31,0);

L]
’
[]
’

CALL PLISRTB (' SORT FIELDS=(7,74,CH,A)
' RECORD TYPE=F ,LENGTE=(80)
45000,
RETURN_CODE,
E15X) ;

IF RETURN CODE = 16 THEN PUT SKIP EDIT ('SORT FAILED') (A);

ELSE IF RETURN_CODE = 0 THEN PUT SKIP EDIT (

‘SORT COMPLETE') (Rn);

ELSE PUT SKIP EDIT ('INVALID SORT RETURN CODE') (A);

E15X: /% THIS PROCEDURE OBTAINS RECORDS FROM
PROC RETURNS (CHAR (80)) ;
DCL SYSIN FILE RECORD INPUT,
INFIELD CHAR (80) INIT(' ");
ON ENDFILE (SYSIN) BEGIN;
PUT SKIP(3) EDIT ('END OF SORT
CALL PLIRETC(8); /*
GOTO ENDE15;

END;

READ FILE (SYSIN)
CALL PLIRETC(12);
RETURN (INFIELD);
END E15X;

END EX107;

INTO (INFIELD);
/%
ENDE15:

VA

//GO.SYSIN DD *
003329HOOKER S.W. RIVERDALE,
002886BOOKER R.R. ROTORUA, MILKEDGE LANE, TOBLEY
003077ROOKER & SON, LITTLETON NURSERIES,
059334HOOK E.H.
073872HOME TAVERN, WESTLEIGH

000931FOREST, IVER, BUCKS

7%

//GO. SORTOUT DD SYSOUT=A,DCB= (RECFM=F , BLKSIZE=80)
//GO.SYSOUT DD SYSOUT=A

//GO. SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR
//GO.SORTWKO1 DD UNIT=2314, SPACE=(TRK, 20, ,CONTIG)
//GO. SORTWK02 DD UNIT=2314 ,SPACE= (TRK,20,,CONTIG)
//GO.SORTWK03 DD UNIT=2314, SPACE=(TRK, 20, ,CONTIG)

Figure 14-8.

in Figure 14-9.

The sequence of events is as follows:

1. The PL/I program invokes the
sort/merge program.
2. The sort/merge program invokes the E15
routine for each input record until
the return code is set to 8.
[]
3. The sort/merge program invokes the E35

routine for each sorted record until
all the sorted records have been
passed or until the E35 routine

SIGNAL END OF SORT INFUT

THE INPUT STREAM */

PROGRAM INPUT') (B);
*/

INPUT TO SORT CONTINUES */

SATCHWELL LANE, BACONSFIELD

SHOLTSPAR
109 ELMI'REE ROAD, GANNET PARK, NORTHAMPTON

Invoking sort/merge via entry point PLISRTB

requests no more records.

SORTING VARIABLE-LENGTH RECORDS

The following points should ke considered
when sorting variable-length records:

The portion of a variable-length record
that contains the control field or
fields on which the sort is to be
rerformed must be present and of the
same length for every reccrd to ke

Chapter 14: FL/I Sort 183

//70PT14#9 JOB

//STEP1 EXEC PLIXCLG,PARM.PLI='SIZE(130K) ,OBJECT'
//PLI.SYSIN DD *

EX108: PROC OPTIONS(MAIN) ;

DCL RETURN_CODE FIXED BIN(31,0);

CALL PLISRTC (' SORT FIELDS=(7,74,CH,a) ',
' RECORD TYPE=F,LENGTH=(80) °*,
45000,
RETURN_CODE,
E35X);
IF RETURN_CODE = 16 THEN PUT SKIP EDIT (*SORT FAILED') (A);
ELSE IF RETURN CODE = 0 THEN PUT SKIP EDIT ('SORT COMPLETE') (A);
ELSE PUT SKIP EDIT (*'INVALID SORT RETURN CODE') (A);

E35X: /% THIS PROCEDURE OBTAINS SORTED RECORDS */
PROC (INREC);
DCL INREC CHAR(80);
PUT SKIP EDIT (INREC) (R);
CALL PLIRETC(4); /* REQUEST NEXT RECORD FROM SORT */
END E35X;
END EX108;
/*
//7G0O.SYSOUT DD SYSOUT=A
//G0O.SORTLIB DD DSN=SY¥S1.SORTLIB,DISP=SHR
//GO.SORTWK01 DD UNIT=2314, SPACE={TRK, 20, ,CONTIG)
//7G0. SORTWK02 DD UNIT=2314 ,SPACE= (TRK,20, ,CONTIG)
//GO.SORTWK03 DD UNIT=2314, SPACE={TRK, 20, ,CONTIG)
//GO.SORTIN DD *
003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD
002996BOOKER S.W. ROTORUA, MILKEDGE LANE, TOBLEY
003077ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR
059334HO0OK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
073872HOME TAVERN, WESTLEIGH
000931FOREST, IVER, BUCKS
Vi

Figure 14-9. Invoking sort/mexge via entry point PLISRTC

184 0S PL/I Optimizing Compiler: Programmer's Guide

//0PT14#10 JOB

//STEP1 EXEC PLIXCLG,PARM.PLI="SIZE(130K) ,OBJECT'
//PLI.SYSIN DD *

EX109: PROC OPTIONS (MAIN);

DCL RETURN CODE FIXED BIN(31,0);

CALL PLISRTD (' SORT FIELDS=(7,74,CH,A) °,
' RECORD TYPE=F,LENGTH=(80) ',
45000,
RETURN_CODE,
E15X,
E35X);
IF RETURN_CODE = 16 THEN PUT SKIP EDIT ('SORT FAILED') (RA);
ELSE IF RETURN _CODE = 0 THEN PUT SKIP EDIT ('SORT COMPLETE') (A);
ELSE PUT SKIP EDIT ('INVALID SORT RETURN CODE') (A);

E15X: /¥ THIS PROCEDURE OBTAINS RECOCRDS FROM THE INPUT STREAM #*/
PROC RETURNS (CHAR(80));

DCL INFIELD CHAR(80) INIT(' ');

ON ENDFILE (SYSIN) BEGIN;
PUT SKIP(3) EDIT ('END OF SORT PROGRAM INPUT. °*,
* SORTED OUTPUT SHOULD FOLLOW') (A) ;
CALL PLIRETC(8); /* SIGNAL END OF SORT INPUT #*/
GOTO ENDE15;
END;

GET FILE (SYSIN) EDIT (INFIELD) (A(80));

PUT SKIP EDIT (INFIELD) (A);

CALL PLIRETC(12); /* INPUT TO SORT CONTINUES */
ENDE15: RETURN (INFIELD);

END E15X;

E35X: /¥ THIS PROCEDURE OBTAINS SORTED RECORDS */
PROC (INREC);

DCL INREC CHAR(80);
PUT SKIP EDIT (INREC) (R);

NEXT 2 CALL PLIRETC(4); /* REQUEST NEXT RECORD FROM SORT */
END E35X;
END EX109;
VA

//60.SYSOUT DD SYSOUT=A

//GO. SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR

//GO.SORTWKO1 DD UNIT=2314, SPACE=(TRK, 20, ,CONTIG)

//GO. SORTWK02 DD UNIT=2314 ,SPACE= (TRK,20,,CONTIG)
//GO.SORTWK03 DD UNIT=2314, SPACE=(TRK, 20, ,CONTIG)
//GO.SYSIN DD *

003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD
002996BOOKER S.W. ROTORUA, MILKEDGE LANE, TOBLEY
003077ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR
059334HO0K E.H. 109 ELMTREE ROAD, GANNET PARK, NCRTHAMPTON
073872HOME TAVERN, WESTLEIGH

000931FOREST, IVER, BUCKS

/¥

Figure 14-10. Invoking sort/merge via entry point PLISRTD

Chapter 14: PL/I Sort

185

//0PT14#11 JOB
//STEP1 EXEC PLIXCLG, PARM.PLI='SIZE(130K),OBJECT'
//7PLI.SYSIN DD *

/*% PL/I EXAMPLE USING PLISRTB TO SORT VARIABLE-LENGTH RECORDS */

EX1306: PROC OPTIONS(MAIN) ;
DCL RETURN_CODE FIXED BIN(31,0);
CALL PLISRTB (' SORT FIELDS=(11,14,CH,A
* RECORD TYPE=V,LENGTH= (84
45000
RETURN_CODE,
E15X) ;
IF RETURN_CODE = 0 THEN PUT SKIP EDIT (
ELSE IF RETURN_CODE=16 THEN PUT SKIP ED
ELSE PUT SKIP EDIT ('INVALID RETUR
E15X: PROC RETURNS (CHAR(80) VARYING) ;

DCL STRING CHAR(80) VAR;
ON ENDFILE(SYSIN) BEGIN;
PUT SKIP EDIT ('END
CALL PLIRETC(8);
GOTO ENDE15;
END;
GET EDIT(STRING) (A(80));
I=INDEX (STRING||' °*',' ")-1;
STRING = SUBSTR (STRING,1,I);

OF INPUT') (R);

/% RESET
/* STRING
/* OF THE
/* RECORD
PUT SKIP EDIT(I,STRING) (F(2),X(3),7);

CALL PLIRETC(12);

RETURN (STRING) ;

END15: END E15X;

END EX1036;
Vi
//7GO.SYSIN DD *
003329HQOKER S.W. RIVERDALE, SATCHWELL LANE,
002886 BOOKER R.R. ROTORUA, MILKEDGE LANE, TOBLEY
003077RO0OKER § SON,
059334HO0OK E.H. 109 ELMTREE ROAD,
073872HOME TAVERN, WESTLEIGH
000931FOREST, IVER, BUCKS
7%
//G0.SORTOUT DD SYSOUT=A,DCB=(RECFM=V,BLKSIZE=88)
//G0O. SYSOUT DD SYSOUT=A
//GO.SORTLIB DD DSN=SYSl. SORTLIB, DISP=SHR
//G0O. SORTWKO1 DD UNIT=2314 ,SPACE= (T'RK,20,,CONTIG)
//GO.SORTWKO02 DD UNIT=2314, SPACE=(TRK, 20, ,CONTIG)
//GO. SORTWKO03 DD UNIT=2314 ,SPACE= (TRK,20,,CONTIG)

GANNET PARK,

Figure 14-11. Sorting variable-length records

sorted. A sort cannot be performed on
control fields whose length or position
within the record is liable to alter.
Thus the control fields would be
expected within the minimum length given
for the records in the record statement.

The length of each record is recorded in
the first four bytes of the record.
Provision for this length field should
be made when you specify the sort
control fields in the SORT control
statement.

Varying-length strings passed from an
E15 procedure will have the PL/I length

186 0S PL/I Optimizing Compiler: Programmer's

.
14
L]
’

) , WORK=4
ere2l, 84)

! SORT COMPLETE') (A
IT(*SORT FAIIED') (
N CODE') (a);

);
A);

THE LENGTH CF THE */
FROM 80 TO LENGTH */
TEXT IN EACH INPUT*/

*/

BACONSFIELD

LITTLETON NURSERIES, SHOLTSPAR
NCRTHAMPTON

field converted into a length-field for
variakle-length records. The length
will be the current length of the
character string plus four bytes for the
length field. A fixed-length string
will have the length field added to form
a variable-length reccrd. Ccnseguently,
fixed-length strings of different
lengths can be returned frcr the same
procedure.

An E35 procedure can only use adjustable
strings to receive variable-length
records from the sort program.

The example in Figure 14-11 shows a

Guide

program to read fixed-length (80-Lkyte)
records from SYSIN, convert them to
varying-length strings, sort them, and
print them. The maximum length of each
variable-length record after conversion
from a string is 84 bytes including the
four-byte control field. The maximum block
size for these records in the SORTOUT data
set is 88 bytes. The sort field starts on
byte 7 of the string. Consequently, it is
defined as starting on byte 11 of the
record to allow for the four-byte control
field.

Chapter 14:

EFL/I sort 187

The PL/I Checkpoint/Restart feature
provides a convenient method of taking
checkpoints during the execution of a long-
running program in a batch environment. It
cannot be used in a TSO environment.

At points specified in the program,
information about the current status of the
program is written as a record on a data
set. If the program terminates due to a
system failure, this information can be
used to restart the program close to the
point where the failure occurred, avoiding
the need to rerun the program completely.

This restart can be either automatic or
deferred. An automatic restart is one that
takes place immediately (provided the
operator authorizes it when requested by a
system message). A deferred restart is one
that is performed later as a new job.

You can request an automatic restart
from within your program without a system
failure having occurred.

PL/I Checkpoint/Restart uses the
Advanced Checkpoint/Restart Facility of the
operating system. This is fully described
in the publication Advanced
Checkpoint/Restart.

To use checkpoint/restart you must do
the following:

® Request, at suitable points in your
program, that a checkpoint record is
written. This is done with the built-in
subroutine PLICKPT.

e Provide a data set on which the
checkpoint record can-be written.

e Also, to ensure the desired restart
activity, you may need to specify the RD
parameter in the EXEC or JOB statement
(see the publication JCL Reference).

Hote: You should be aware of the

restrictions affecting data sets used by
your program. These are detailed in the
publication Advanced Checkpoint/Restart.

Writing a Checkpoint Record

Each time you want a checkpoint record to
be written, you must invoke, from your PL/I
program, the built-in subroutine PLICKPT.

Chapter 15: Checkpoint/Restart

The CALL statement has the fcrm:

CALL PLICKPTI (ddname(,check-
idl,orgl,codelll];

| The four arguments are all optional. If
|an argument is not used, it need not be
|specified unless another argument that
|follows it in the given order is specified.
{In this case, the unused argument must be
|specified as a null string. The following
| paragrarhs describe the arguments.

"ddname" is a character string constant or
variakle specifying the name of the DD
statement defining the data set that is:to
be used for checkpoint records. If this
argument is omitted, the system will use
the default ddname SYSCHK.

"check-id" is a character string constant
or variable specifying the name that you
want to assign to the checkpoint record so
that you can identify it later, if
required. 1If this argument is omitted, the
system will supply a unique identification
and print it at the operator's console.

"org" is a character string constant or
variable with the attributes CHARACTER(2)
whose value indicates, in orerating systenr
terms, the organization of the checkpoint
data set. PS indicates sequential (that
is, CONSECUTIVE) organizaticn; PO
represents partitioned organization. If
this argument is omitted, PS is assured.

"code" is a variable with the attrikutes
FIXED BINARY (31), which can receive a
return code from PLICKPT. The return code
has the following values:

0 A checkroint has keen successfully
taken.

4 A restart has been successfully made.

8 A checkpoint has not been taken. The
PLICKPT statement should be checked.

12 A checkpoint has not been taken.
Check for a missing DD statement, a
hardware error, or insufficient space
in the data set. A checkroint will
fail if taken while a DISPLAY
statement with the REPLY option is
still incomplete or if the program is
using multitasking.

16 A checkpoint has been taken, but ENQ
macro calls are outstanding and will
not be restored on restart. This

Chapter 15: Checkpoint/Restart 189

situation will not normally arise for
a PL/I program.

Checkpoint Data Set

A DD statement defining the data set on
which the checkpoint records are to be
placed, must be included in the job control
procedure. This data set can have either
CONSECUTIVE or partitioned organization.
Any valid ddname can be used. If you use
the ddname SYSCHK, you do not need to
specify the ddname when invoking PLICKPT.

A data set name need be specified only
if you want to keep the data set for a
deferred restart. The I/0 device can be any
magnetic-tape or direct-access device.

If you want to obtain only the last
checkpoint record, then specify status as
NEW (or OLD if the data set already
exists). This will cause each checkpoint
record to overwrite the previous one.

If you want to retain more than one
checkpoint record, specify status as MOD.
This will cause each checkpoint record to
be added after the previous one.

If the checkpoint data set is a library,
then "check-id" is used as the member-name.
Thus a checkpoint will delete any
previously-taken checkpoint with the same
name.

For direct access storage, enough
primary space should be allocated to store
as many checkpoint records as you will
retain. You can specify an incremental
space allocation, but it will not be used.
A checkpoint record is approximately 5000
bytes longer than the area of main storage
allocated to the step.

No DCB information is required, but you
can include any of the following, where
applicable:

OPTCD=W, OPTCD=C, RECFM=UT, NCP=2, TRTCH=C

These subparameters are described in
Appendix A.

Performing a Restart

A restart can be automatic or deferred.
Automatic restarts can be made after a
system failure or from within the program
itself. All automatic restarts need to be
authorized by the operator when requested
by the system.

190 0S PL/I Optimizing Compiler:

AUTOMATIC RESTART AFTER A SYSTEM
FAILURE

If a system failure occurs after a
checkpoint has been taken, the automatic
restart will occur at the last checkpoint
if you have specified RD=R (or omitted the
RD parameter) in the EXEC or JOB statement.

If a system failure occurs before any
checkpoint has keen taken, then an
automatic restart, from the beginning of
the job step, can still occur if you have
specified RD=R in the EXEC cx JOB ’
statement.

If a system failure occurs after a
checkpoint has been taken, then you can
still force automatic restart from the
beginning of the job ster by srecifying
RD=RNC in the EXEC or JOB statement.

AUTOMATIC RESTART FROM WITHIN THE
PROGRAM

An automatic restart can be requested at
any point in your program. The rules
applying to the restart are the sare as for
a restart after a system failure. To
request the restart, you must execute the
statement: ' '

CALL PLIREST;

To effect the restart, the compiler
terminates the program abnormally, with a
system completion code of 4092. Therefore,
to use this facility, the system completicn
code 4092 must not have been deleted from
the table of eligible codes at systen
generation. :

DEFERRED RESTART

To ensure that automatic restart activity
is canceled, but that the checkroints are
still available for a deferred restart,
specify RD=NR in the EXEC or JOB statement
when the program is first executed.

If a deferred restart is subsequently
required, the program must ke submitted as
a new job, with the RESTART rarameter in
the JOB statement. The RESTART parameter
specifies the job step at which the restart
is to be made and, if you want to restart
at a checkpoint, the name of the checkpoint
record. The RESTART parameter has the form:

RESTART=(stepnamel, check-idl)

Programmer's Guide

For a restart from a checkpoint, you
must also provide, immediately before the
EXEC statement for the job step, a DD
statement, with the name SYSCHK, defining
the data set containing the checkpoint
record.

MODIFYING CHECKPOINT/RESTART ACTIVITY

You can cancel automatic restart activity
from any checkpoints taken in your program
by executing the statement:

CALL PLICANC;

However, if you have specified RD=R crx
RD=RNC in the JOB or EXEC statement,
automatic restart can still take rlace fronm
the beginning of the job step.

Also, any checkpoints already taken will
still be availakle for a deferred restart.

You can cancel any automatic restart,
and also the taking of checkroints, even if
requested in your program, ky specifying
RD=NC in the JOB or EXEC statement.

Chapter 15: cCheckpoint/Restart 191

Appendix A: DCB Subparameters

This appendix shows you how to code data
set information in the DCB parameter of the
DD statement and how to make use of
existing DCB information. It also contains
an alphabetic list of the subparameters
that apply to a PL/I program. These
subparameters are specified in the DCB
parameter of the DD statement. Chapter 3
shows you how to write a DD statement and
chapter 6 shows you how to use the name
(ddname) of the DD statement. For a full
description of the DD statement see the job
control language publications.

DCB Parameter

The DCB parameter enables you to add
information about your data set to the data
control block (DCB) generated when the
associated file in your PL/I program is
opened. The information to be added is
defined in one or more subparameters.
These subparameters correspond to the
operands of the DCB macro instruction and
are specified in the same way. For a full
description of macro instructions see the
supervisor and data management macro
instructions publication.

Code the DCB parameter as follows:
DCB=subparameter
or
DCB= (subparamet er,subparameter)
For example:
DCB=BLKSI ZE=80

DCB=(RECFM=FB, LRECL=80)

Using Existing DCB Information

You can use the DCB parameter to nake use
of DCB information that already exists
either in the label of a similar data set,
or that has been specified in the DCB
parameter of an earlier DD statement.

INFORMATION IN SIMILAR DATA SETS

You can copy DCB information from the label
of a similar data set by coding:

DCB=dsname

where "dsname®™ is the name cf the data set
containing the information you want to
copy. This data set must be catalcged, it
must be on a direct-access storage device,
and the volume containing it must be
mounted kefore execution of the