
Program Product 

Licensed Material - Property of I BM 
L Y24-5195-1 
File No. S370-30 

VSE/VSAM 
Access Method Services 
Logic 

Program Number 5746-AM2 

Component 5745-SC-AMS 

Release 2 

-~- ------ ----- _, __ - -. ---- - --~-===-=-:r = 



Second 1<:ditio11 (December 1979) 

This edition, L Y24-5 I 95- I, is a major revision of L Y24-5195-0. It applies to Release 2 of IBM 
Virtual Storage Extended/Virtual Storage Access Method (VSE/VSAM) Program Product 
5746-AM2. and to subse4uent releases and modifications until otherwise indicated in new 
editions or Technical Newsletters. Changes are periodically made to the information contained 
hen:in; hefore using this publication in connection with the operation of IBM systems, consult 
the I HM System/370 and 4300 Proce.1".1·ors Bihliography. GC20-000I, for the editions that are 
upplicable and cum:nt. 

Summ11ry of Amendments 

For a list of changes, see page iii. 

( 'hanges and additions to the text and illustrations are indicated by a vertical line to the left of 
the change. 

It is possible that this material may contain reference to, or information about, IBM products 
(machines and programs), programming, or services that are not announced in your country. 
Such references or information must not be construed to mean that IBM intends to announce 
such IBM products, programming, or services in your country. 

Publications are not stocked at the address given below; requests for copies of IBM publications 
should be made to your I BM representative or to the IBM branch office serving your locality. 

A form for reader's comments is provided at the back of this publication. If the form has been 
removed, comments may be addressed to I BM Corporation, Programming Publications, Dept. 
G60, P.O. Box 6, Endicott, NY, U.S.A. 13760. IBM may use or distribute any of the information 
you supply in any way it believes appropriate without incurring any obligation whatever. You 
may, of course, continue to use the information you supply. 

©Copyright International Business Machines Corporation 1979 

Licensed Material- Property of IBM 



Utcnscd Material - Property of I BM 

Summary of Amendments 
for L\'24-5195-1 
Release 2 
LY 24-5195-1 contains information about the following items: 

• Additional space classes 
• CANCEL command 
• Dedicated VSAM volume 
• Default models 
• Default volumes 

Summary of Amendments 
for VSE/VSAM Access Method Services Logic 

• Dynamic files 
• File disposition parameters 
• JCL simplification 
• Partition and processor independence 
• Interface between Access Method Services and the 

VSE/VSAM Space Management for SAM Feature. 

Additions, deletions, and corrections are included for the new 
items. Various editorial changes are also included to improve the 
usefulness of this book. 

Summary of Amendments iii 



Licensed Material- Property of IBM 

iv VSE/VSAM Access Method Services Logic 



Uccnscd Material- Property of IBM 

This book describes the internal logic of the routines 
of Access Method Services and provides diagnostic 
information. This information is directed to mainte­
nance personnel and development programmers 
who require an in-depth knowledge of the program's 
design, organization, and data areas. It is not re­
quired for effective use of Access Method Services. 

This volume is one of three logic manuals that de­
scribe the internal functioning of VSE/VSAM. The 
other two volumes are: 

• VSE/VSAM VSAM Logic, Volume 1: Catalog 
Management, Open/Close, DA DSM, I/P, Con­
trol Block Manipulation, L Y24-5 l 9 l. 

• VSE/VSAM VSAM Logic, Volume 2: Record 
Management, L Y24-5 I 92 

The interface between Access Method Services and 
the VSE/VSAM Space Management for SAM Fea­
ture is described in VSE/VSAM Space Management 
for SAM Feature Logic, L Y24.;5204. 

You should be familiar with general programming 
techniques and VSE/VSAM concepts and use be­
fore reading this book. If you are unfamiliar with 
these concepts, read: 

• VSE/ VSA M General Information, GC24-5143. 

• Using VSE/ VSA M Commands and Macros, 
SC24-5 I 44, which describes the general syntax 
of the Access Method Services language, the 
commands of this processor, VSAM macros, 
and how they are used. 

Preface 

Another book that may be helpful to you is: 

I • VSE/Advanced Functions Serviceability Aids and 
Debugging Procedures, SC33-6099, which de­
scribes how to analyze a main storage dump 
from VSE. 

This book is divided into six chapters: 

• "Chapter I: Introduction" describes the design 
philosophy of this processor, and defines terms 
used later in the book. 

• "Chapter 2: Method of Operation" describes 
how the program works. Emphasis is on the 
flow of data and the technology that is used 
rather than on the organization of modules. 

• "Chapter 3: Program Organization" shows how 
the processor is packaged into load modules. 
Relationships between the Access Method Ser­
vices processor and the operating system are 
given. 

• "Chapter 4: Microfiche Directory" relates the 
information in this book to the listings found on 
microfiche. 

• "Chapter 5: Data Areas" describes the control 
, blocks and other data areas that are internal to 
this processor. 

• "Chapter 6: Diagnostic Aids" shows how to 
analyze a dump of the processor and find specif­
ic modules and data areas. 

Preface v 



Licensed Material - Property of IBM 

vi VSE/VSAM Access Method Services Logic 



Licensed Material - Property of I BM 

Contents 

Chapter 1: Introduction ........................................................... 1-1 
Requirements ................................................................... 1-1 
The Access Method Services Processor .............................................. 1-1 
Naming Conventions ............................................................. 1-7 

Character Code Dependencies .................................................. 1-8 

Chapter 2: Method of Operation ................................................... 2-1 

Chapter 3: Program Organization .................................................. 3-1 
Overall Organization ............................................................. 3-1 

System Macros and Services Used by Access Method Services ........................ 3-3 
Services Provided for Processor Modules ......................................... 3-5 
Processor In vocation .......................................................... 3-7 
Processor Condition Codes ..................................................... 3-9 
User 1/0 Routines ............................................................ 3-9 

Overall Control Flow ............................................................. 3-9 

Chapter 4: Microfiche Directory ................................................... 4-1 

Chapter 5: Data Areas ............................................................ 5-1 
Block List - BLKLIST ............................................................ 5-2 
Buffer Pool Control Block - BUFS ................................................. 5-2 

Buffer Pool Control Block Description ........................................... 5-2 
Command Descriptor ............................................................ 5-2 

Verb Data Area ............................................................... 5-3 
Positional Parameter Appendage ............................................. 5-3 
Default Parameter Appendage ............................................... 5-4 
Needed Parameters Appendage .............................................. 5-4 
Incompatible Parameters Appendage ......................................... 5-4 
Parameter Data Area ....................................................... 5-5 
No Constant Appendage .................................................... 5-5 
Constant Appendage ....................................................... 5-6 
Default Data Appendage .................................................... 5-6 
ID Appendage .............................................................. 5-6 
Keyword Appendage ....................................................... 5-7 
Conflicting Parameters Appendage ........................................... 5-7 
Necessary Parameters Appendage ............................................ 5-7 
Prompt Appendage ......................................................... 5-7 
Subparameter Appendage ................................................... 5-8 

Command Descriptor PhaseTable- IDCRILT ....................................... 5-8 
CRA Access Parameter List ....................................................... 5-8 

Access Method Services/Catalog Communication Table (ACC) Description ........... 5-8 
CRA Access Translate Table (CTT) Description ................................... 5-9 
CRA Volume Timestamp Table (VTT) Description ................................ 5-9 

[)ump List ...................................................................... 5-9 
Individual Field Entry ...................................................... 5-9 
Array Header Entry ....................................................... 5-10 
Dump List Terminator Entry ............................................... 5-10 

Dynamic Data LIST- DARGLIST ............................................... 5-10 

ERROR Conversion Table (ERCNVTAB) ......................................... 5-11 
Field Management Parameter List - FM PL ........................................ 5-12 

Field Management Parameter List Description ................................... 5-12 
Field Management Field List (FMFL) Description ................................ 5-12 

Format List- FMTLIST ......................................................... 5-13 
Spacing ................................................................. 5-13 
Insert Data ............................................................... 5-13 
Default Text ............................................................. 5-14 
Block Format ............................................................ 5-15 
Replication .............................................................. 5-15 
Static Text ............................................................... 5-15 

Function Data Table - FDT ...................................................... 5-16 
ALTER FDT ............................................................... 5-20 

Contents vii 



Licensed Material- Property of IBM 

BLDINDEX FDT ........................................................... 5-21 
CANCEL FDT .............................................................. 5-21 
DEFINE FDT .............................................................. 5-22 
DELETE FDT .............................................................. 5-31 
EXPORT FDT .............................................................. 5-32 
EXPORTRA FDT ........................................................... 5-33 
IMPORT FDT .............................................................. 5-34 
IMPORTRA FDT ........................................................... 5-35 
LISTCAT FDT ............................................................. 5-36 
LISTCRA FDT ............................................................. 5-36 
PARM FDT ................................................................ 5-37 
PRINT FDT ................................................................ 5-37 
REPRO FDT ............................................................... 5-38 
RESETCAT FDT ........................................................... 5-40 
VERIFY FDT .............................................................. 5-40 

Global Data Table - G DT ....................................................... 5-41 
Global Data Table Description .............................................. 5-41 

Input Parameter Table - IPT ..................................................... 5-43 
Input Parameter Table Description ............................................. 5-43 

1/0 Adapter Historical Data Area- IODATA ....................................... 5-44 
1/0 Adapter Historical Area Description ..................................... 5-44 

Input/Output Communications Structure - IOCSTR ................................. 5-44 
Input/Output Communications Structure Description .......................... 5-44 

IOCSTR Extension - IOCSEX .................................................... 5-46 
IOCSTR Extension Description ............................................. 5-46 

Inter-Module Trace Table ........................................................ 5-47 
Inter-Module Trace Table Description ....................................... 5-47 

Intra-Module Trace Table ........................................................ 5-47 
Intra-Module Trace Table Description ....................................... 5-48 

Modal Verb and Keyword Symbol Table - IDCRIKT ................................ 5-48 
Modal Verb and Keyword Symbol Table Description ........................... 5-48 

Open Argument List - OPNAG L .................................................. 5-48 
Open Argument List Description ............................................ 5-49 

Open Close Address Array - OCARRAY ........................................... 5-50 
Open Close Address Array Description .......................................... 5-50 

Phase Table .................................................................... 5-51 
Phase Table Description ................................................... 5-51 

Positioning Argument List - OPRARG ............................................ 5-51 
Positioning Argument List Description ....................................... 5-51 

Print Control Argument List - PCARG ............................................ 5-51 
Print Control Argument List Description ..................................... 5-51 

Print Control Table - PCT ....................................................... 5-52 
Print Control Table Description ............................................. 5-52 

Reader/Interpreter Communication Area - COMMA REA ............................ 5-54 
Reader/Interpreter Communication Area Description .......................... 5-54 

Reader/Interpreter Historical Area - HDAREA ..................................... 5-55 
Reader/Interpreter Historical Area Description ................................ 5-55 

Scope Structure for UENQ - ENQSCOPE .......................................... 5-55 
Scope Structure for UENQ Description ....................................... 5-55 

System Adapter Historical Area - SA HIST ......................................... 5-56 
System Adapter Historical Area Description .................................. 5-56 

TEST Option Data Area ......................................................... 5-56 
TEST Option Data Area Description ......................................... 5-56 

Text Structure .................................................................. 5-57 
Text Structure Description ................................................. 5-58 
Text Entry Description .................................................... 5-58 

UG POOL Area ................................................................ 5-58 
UG POOL Area Description ................................................ 5-58 

UGSPACE Area ............................................................... 5-59 
UGSPACE Area Description ............................................... 5-59 

UIOINFO- Option Byte and Return Area .......................................... 5-59 
UIOINFO Option Byte Description .......................................... 5-59 
UIOINFO Return Area Description ......................................... 5-59 

UR EST Arguments ............................................................. 5-60 
PCRST- Change Subtitle Lines ............................................. 5-60 
PCRLWS- Change Line Width ............................................. 5-60 
PCRPDS - Change Page Depth ............................................. 5-60 

viii VSE/VSAM Access Method Services Logic 



Licensed Material- Property of IBM 

PCRFTS - Change Footing Lines ........................................... 5-61 
PCR DSCS - Change Default Spacing Character ............................... 5-61 
PCRPCS - Change Translate Table .......................................... 5-61 
PCRINP- Change Initial Page Number ...................................... 5-61 

Chapter 6: Diagnostic Aids ........................................................ 6-· I 
Trace Tables .................................................................... 6-1 

Inter-Module Trace Table ...................................................... 6-1 
Intra-Module Trace Table ...................................................... 6-1 
Dump Points ................................................................. 6-2 
Dumping Selected Areas of Virutal Storage ....................................... 6-3 

Test Option ..................................................................... 6-3 
TEST Keyword ............................................................... 6-3 
How to Use the Test Option .................................................... 6-4 
Trace and Dump Points to Module Cross Reference ................................ 6-5 
Module to Dump Points Cross Reference ........................................ 6-26 

ABORT Codes ................................................................. 6-36 
Reading a Dump ............................................................... 6-37 

How to Find Processor Phases ................................................. 6-38 
How to Find the Module and Registers at Time of the Dump ....................... 6-38 
How to Find the G DT ........................................................ 6-39 
How to Find Save Areas ...................................................... 6-39 
How to Find the Trace Tables ................................................. 6-44 
How to Find the FDT ........................................................ 6-45 
How to Find Automatic Storage Areas .......................................... 6-45 
How to Find Dynamic Storage Areas ........................................... 6-46 
UGPOOL ID List ............................................................ 6-48 
Sample Dump ............................................................... 6-52 

Debugging a Catalog Problem .................................................... 6-52 
Obtaining a Dump for a Catalog Problem ........................................ 6-52 
How to Find Catalog Management Argument Lists ................................ 6-58 

Debugging a Formatting Problem ................................................. 6-59 
Obtaining a Dump for a Text Processor Problem .................................. 6-70 
How to Find Text Processor Argument List ...................................... 6-71 

Debugging an 1/0 Problem ...................................................... 6-72 
Obtaining a Dump for an 1/0 Problem .......................................... 6-72 
How to Find 1/0 Argument Lists ............................................... 6-73 
Open Argument Lists ......................................................... 6-73 
UG ET and U PUT Argument Lists ............................................. 6-73 

Messages ...................................................................... 6-78 

Appendix A: Portable Data Sets Created by the EXPORT Command ................... A- I 
Control Records ................................................................ A-2 

Control Record Containing Timestamp Information ............................... A-2 
Control Records Containing Dictionary Information .............................. A-3 

Data Records .................................................................. A-4 
Data Records Containing Catalog Work Area .................................... A-5 
Data Records Containing Data Records From the Data Component ................. A-5 

Appendix B: Portable Data Sets Created by the EXPORTRA Command ................ B-1 
Control Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1 

Control Record Containing the Logical Record Length ............................ B-1 
Control Record Containing Timestamp Information ............................... B-1 
Control Records Containing Dictionary Information .............................. B-3 

Data Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-5 
Data Records Containing Catalog Work Area .................................... B-5 
Data Records Containing Data Records From the Data Component ................. B-6 
Associated Objects for User Catalog Pointers, NonVSAMs, and 

GDGs .................................................................. B-6 

Index .......................................................................... 1-1 

Contents ix 



Illustrations 

Figure.\' 

Diagram.\' 

Figure 1-1. 
Figure 1-3. 
Figure 1-4. 
Figure 1-6. 
Figure 3-1. 
Figure 3-2. 
Figure 3-3. 
Figure 3-4. 
Figure 5-1. 
Figure 6-1. 
Figure 6-2. 
Figure 6-3. 
Figure 6-4. 
Figure 6-5. 
Figure 6-6. 
Figure 6-7. 
Figure 6-8. 
Figure 6-9. 
Figure 6-10. 
Figure 6-11. 
Figure 6-12. 
Figure 6-13. 
Figure 6-14. 
Figure A-1. 
Figure A-2. 
Figure A-3. 
Figure A-4. 

Figure A-5. 
Figure A-6. 
Figure A-7. 

Figure B-1. 

Figure B-2. 
Figure B-3. 
Figure B-4. 
Figure B-5. 
Figure B-6. 
Figure B-7. 
Figure B-8. 

Licensed Material - Property of IBM 

The Structure of the Access Method Services Processor ................... 1-2 
Initialization of Access Method Services ................................ 1-3 
Reading and Parsing a Command ..................................... 1-4 
Performing a Function .............................................. 1-6 
Argument List for Processor Invocation ................................ 3-8 
Arguments Passed to and from User 1/0 Routine ....................... 3-10 
Flow of Control Through Main Functions ............................. 3-11 
Flow of Control Through Service11 .................................... 3-12 
IMPORT FDT Mapping ........................................... 5-19 
Example of Test Option Output ....................................... 6-5 
Sample Dump .................................................... 6-40 
How to Find the G DT .............................................. 6-45 
Format of A UTOTB L .............................................. 6-47 
Example of an Automatic Storage Area ............................... 6-47 
UG POOL Area Chain ............................................. 6-48 
llow to Find the CTG PL ........................................... 6-59 
Catalog Argument Lists in Storage Area of DEFINE FSR ............... 6-60 
Text Processor Format Structure Queue ............................... 6-71 
Text Processor Print Buffer .......................................... 6-72 
IOCSTR Chain ................................................... 6-74 
1/0 Control Blocks Before OPEN .................................... 6-75 
Input to UPUT Macro ............................................. 6-76 
Output from UGET Macro ......................................... 6-77 
Layout of Control Records and Data Records in the Portable Data Set ..... A-I 
General Format of Control Records .................................. A-2 
Control Record Containing Timestamp Information .................... A-2 
Control Record Containing Dictionary Information ..................... A-3 

Data Record Containing Catalog Work Area ........................... A-5 
Relationship of Dictionary and Catalog Work Area Information .......... A-5 
Special Record at Beginning of Data Records from the 
Data Component .................................................. A-5 
Layout of Control Records and Data Records in the 
Recovery Portable Data Set ......................................... B-2 
General Format of Control Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2 
Control Record Containing the Logical Record Length .................. B-2 
Control Record Containing Timestamp Information .................... B-2 
Control Record Containing Dictionary Information ..................... B-3 
Data Record Containing Catalog Work Area ........................... B-5 
Relationship of Dictionary and Catalog Work Area Information .......... B-6 
Special Record at Beginning of Data Records from the 
Data Component .................................................. B-6 

Access Method Services Visual Table of Contents ..................................... 2-3 
Access Method Services Overview .................................................. 2-4 

Initialization Visual Table of Contents .............................................. 2-7 
Diagram 1.0 Access Method Services Initialization Overview ...................... 2-8 
Diagram I. I System Adapter Initialization ..................................... 2-IO 
Diagram 1.2 1/0 Adapter Initialization - UIOINIT Macro ....................... 2-12 

Reader/Interpreter Visual Table of Contents ........................................ 2-15 
Diagram 2.0 Reader/Interpreter Overview ..................................... 2-16 
Diagram 2.1 Reader/Interpreter Initialization .................................. 2-18 
Diagram 2.2 Reader/Interpreter Get Next Command ........................... 2-20 
Diagram 2.2. I Reader I Interpreter IF-TH EN Modal Command ..................... 2-22 
Diagram 2.2.2 Reader/Interpreter ELSE Modal Command ........................ 2-24 
Diagram 2.2.3 Reader/Interpreter SET Modal Command ......................... 2-26 
Diagram 2.2.4 Reader/Interpreter DO Modal Command .......................... 2-28 
Diagram 2.2.5 Reader/Interpreter END Modal Command ......................... 2-30 
Diagram 2.3 Reader/Interpreter Prepare To Scan Command ..................... 2-32 
Diagram 2.4 Reader/Interpreter Scan Command ............................... 2-34 

x VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Diagram 2.4.1 
Diagram 2.4.2 
Diagram 2.5 

Reader/Interpreter Syntax Check Parameter ........................ 2-36 
Reader/Interpreter Build FDT ................................... 2-38 
Reader/Interpreter Termination .................................. 2-40 

Function Support Routine (FSR) Visual Table of Contents ............................ 2-43 
Diagram 3.1 ALTER FSR .................................................. 2-44 
Diagram 3.2 DEFINE FSR ................................................. 2-48 
Diagram 3.2.1 DEFINE FSR- DEFINE MASTERCATALOG .................... 2-50 
Diagram 3.2.2 DEFINE FSR- DEFINE USERCATALOG ....................... 2-56 
Diagram 3.2.3 DEFINE FSR - DEFINE NONVSAM ............................ 2-60 
Diagram 3.2.4 DEFINEFSR-DEFINESPACE ................................ 2-62 
Diagram 3.2.5 DEFINE FSR - DEFINE CLUSTER ............................. 2-64 
Diagram 3.2.6 DEFINE FSR - DEflNE ALTERNATEINDEX ................... 2-68 
Diagram 3.2.7 DEFINE FSR- DEFINE PATH ................................. 2-72 
Diagram 3.3 DELETE FSR . . . . . ........................................... 2-74 
Diagram 3.4 EXPORT FSR ................................................. 2-76 
Diagram 3.4.1 EXPORT FSR - CLUSTER or ALTERNATEINDEX ............... 2-78 
Diagram 3.5 IMPORT FSR ................................................. 2-82 
Diagram 3.5.1 IMPORT FSR - CLUSTER or ALTERNATEINDEX ............... 2-84 
Diagram 3.6 LISTC~AT FSR ................................................ 2-88 
Diagram 3.6. I LISTCAT FSR - Gets Information ................................ 2-92 
Diagram 3.7 PARM FSR ................................................... 2-94 
Diagram 3.8 PRINT FSR ................................................... 2-96 
Diagram 3.9 REPRO FSR .................................................. 2-98 
Diagram 3.9. I REPRO FSR - Catalog Reload .................................. 2-100 
Diagram 3.IO VERIFY FSR ................................................ 2-102 
Diagram 3.11 BLDINDEXFSR ............................................. 2-104 
Diagram 3.11.1 BLDINDEX FSR - Get Information and Verify .................... 2-10~ 
Diagram 3.11.2 BLDINDEX FSR - Obtain Resources and Sort Initialization ......... 2-1 IO 
Diagram 3.11.3 BLDINDEX FSR - Sort-Merge and Build Alternate 

Index ........................................................ 2-112 
Diagram 3.12 LISTCRAFSR ............................................... 2-116 
Diagram 3.12.1 LISTCRAFSR-ProcessCRA .................................. 2-118 
Diagram 3.13 EXPORTRA FSR ............................................. 2-120 
Diagram 3.13.1 EXPORTRA FSR- Field Management ........................... 2-122 
Diagram 3.13.2 EXPORTRA FSR - EXPORTRA Driver ......................... 2-124 
Diagram 3.13.2.1 EXPORTRA FSR - Export VSAM Data Set ....................... 2-126 
Diagram 3.13.2.2 EXPORTRA FSR - Export NonVSAM ........................... 2-128 
Diagram 3.14 IMPORTRA FSR ............................................. 2-130 
Diagram 3.14.1 IMPORTRA FSR - Cluster or Alternate Index ..................... 2-132 
Diagram 
Diagram 
Diagram 
Diagram 
Diagram 
Diagram 
Diagram 
Diagram 
Diagram 
Diagram 
Diagram 
Diagram 
Diagram 

3.14.2 
3.14.3 
3.14.4 
3.15 
3.15. I 
3.15.2 
3.15.3 
3.15.3.1 
3.15.4 
3.15.5 
3.15.6 
3.15.7 
3.16 

IMPORTRA FSR - User Catalog ................................ 2-134 
IMPORTRA FSR- NonVSAM ................................. 2-136 
IMPORTRA FSR-GDG Base .................................. 2-138 
RESETCAT FSR ............................................. 2-140 
RESETCAT FSR- Initialization ................................ 2-142 
RESETC'AT FSR - Copy Catalog to Work File .................... 2-144 
RESETCAT FSR- Merge CRAs to Work File ..................... 2-146 
RESETCAT FSR - Common VTOC Handler Functions ............ 2-148 
RESETCAT FSR- Reassign Cl numbers ......................... 2-150 
RESETCAT FSR- Check Associations ........................... 2-152 
RESETCAT FSR - Update the Catalog ........................... 2-154 
RESETCAT FSR- Update the CRA ............................. 2-156 
CANCEL FSR ................................................ 2-158 

Termination Visual Table of Contents ............................................. 2-161 
Diagram 4.1 Executive Controlled Termination ............................... 2-162 
Diagram 4.2 Processor Termination ......................................... 2-164 
Diagram 4.2.1 1/0 Adapter Termination - UIOTERM Macro ..................... 2-166 

System Adapter Visual Table of Contents .......................................... 2-169 
Diagram 5.0 System Adapter Overview ....................................... 2-170 
Diagram 5.1.l UCATLG Macro .............................................. 2-172 
Diagram 5.2.1 UABORT Macro .............................................. 2-174 
Diagram 5.2.2 USNAP Macro ................................................ 2-176 
Diagram 5.3.I UCALL Macro ................................................ 2-178 
Diagram 5.3.2 ULOAD Macro ............................................... 2-180 
Diagram 5.3.3 UDELETE Macro ............................................. 2-182 
Diagram 5.4.1 UGSPACEMacro ............................................. 2-184 

Illustrations xi 



Diagram 5.4.2 
Diagram 5.4.3 
Diagram 5.4.4 
Diagram 5.4.5 
Diagram 5.4.6 
Diagram 5.5. I 
Diagram 5.6. I 
Diagram 5.6.2 
Diagram 5.7.1 
Diagram 5.7.2 

Licensed Material - Property of IBM 

UFSPACE Macro ............................................. 2-186 
UGPOOL Macro .............................................. 2-188 
U FPOOL Macro .............................................. 2-190 
PROLOG Macro .............................................. 2-192 
U EPI L Macro ................................................. 2-194 
UTIME Macro ................................................ 2-196 
ULISTLN Macro .............................................. 2-198 
USAVERC Macro ............................................. 2-200 
UENQ Macro ................................................. 2-202 
UDEQ Macro ................................................. 2-204 

1/0 Adapter Visual Table of Contents ............................................ 2-207 
Diagram 6.0 1/0 Adapter Overview ......................................... 2-208 
Diagram 6.1 UOPEN Macro ............................................... 2-210 
Diagram 6.1.1 UOPEN Macro - Build IOCSTR ................................ 2-212 
Diagram 6.1.2 UOPEN Macro - Build Control Blocks ........................... 2-216 
Diagram 6.1.3 UOPEN Macro - Check Open ................................... 2-218 
Diagram 6.2 UC LOSE Macro .............................................. 2-220 
Diagram 6.3 U POSIT Macro ............................................... 2-222 
Diagram 6.4 UGET Macro ................................................. 2-224 
Diagram 6.5 UPUT Macro ................................................. 2-226 
Diagram 6.6 UCO PY Macro ............................................... 2-230 
Diagram 6.7 UV ER I FY Macro ............................................. 2-232 
Diagram 6.8 UIOINFO Macro .............................................. 2-234 

Text Processor Visual Table of Contents ........................................... 2-237 
Diagram 7.0 Text Processor Overview ........................................ 2-238 
Diagram 7.1 UESTS Macro ................................................ 2-240 
Diagram 7 .2 U EST A Macro ................................................ 2-242 
Diagram 7.3 UR EST Macro ................................................ 2-244 
Diagram 7.4 UR ES ET Macro .............................................. 2-246 
Diagram 7.5 UPRINT Macro ............................................... 2-248 
Diagram 7.5.1 UPRINTMacro-CONVERT .................................. 2-252 
Diagram 7.5.2 UPRINT Macro - PRINT ...................................... 2-254 
Diagram 7.6 UERROR Macro .............................................. 2-256 

Debugging Aids Visual Table of Contents ......................................... 2-259 
Diagram 8.0 Debugging Aids Overview ...................................... 2-260 
Diagram 8.1 UTRACE Macro .............................................. 2-262 
Diagram 8.2 UDUMP Macro ............................................... 2-264 
Diagram 8.2.1 UDUMP Macro - Dump Fields .................................. 2-266 

xii VSE/VSAM Access Method Services Logic 



Licensed Material- Property of IBM 

Requirements 

Chapter 1: Introduction 

Access Method Services is that part of the operating system that performs the 
utility-like functions required to establish and manage VSAM (Virtual 
Storage Access Method) data sets. (The terms "data set" and "file" are 
equivalent. We have used "data set" in this book.) Access Method Services 
allows you to define, print, delete, or copy VSAM data sets, build alternate 
indexes, recover data and catalog entries in the event of a catalog failure, 
convert ISAM or SAM data sets into VSAM data sets, alter or list the entries 
in a VSAM catalog, and create portable (or backup) copies. Features of its 
logic are: 

• The processor is organized into executable and non-executable modules. 
An executable module contains instructions that can be performed by the 
computer. A non-executable module contains nothing that can be per­
formed by the computer. In Access Method Services all descriptive 
information-such as, command descriptors-and static text-such as, 
messages-are centralized in non-executable modules. (In Access Me­
thod Services, there is generally a one to one correspondence between 
modules and phases. Consequently, this publication generally discusses 
modules. One exception is IDCAMS. For more information on ID­
CAMS, see "Program Organization.") 

• All external interfaces to Access Method Services are isolated in a small 
set of modules. Changing these modules allows this processor to run with 
another operating system or with access methods other than those sup­
ported by this release of Access Method Services. 

• Each module serves just one purpose and is coded to most efficiently 
accomplish that purpose. 

This book does not discuss VSAM, its concepts, or its data areas. For a 
discussion ofVSAM, see VSE/VSAM VSAM Logic, Volume 1, and 
VSE/VSAM VSAM Logic, Volume 2. 

The Access Method Services processor accepts commands and sometimes 
input data sets or catalogs. It produces output data sets and/ or printed 
reports. Details of the commands and the use of Access Method Services are 
found in Using VSE/VSAM Commands and Macros. 

This processor requires DOS/VSE as its operating system. The processor 
executes as a problem program. Virtual storage requirements for the proc­
essor are found in DOS/VSE System Generation. 

The Access Method Services Processor 
Figure 1-1 describes the structure of the processor. Figures 1-2 through 1-4 
describe in general how the processor functions. 

Figure 1-1 shows the executable elements of the Access Method Services 
processor as they form a structure within the operating system. As shown 
here, six of the elements form a "substructure" that supports the remaining 
elements, which form a "superstructure." 

Chapter 1: Introduction 1 - 1 



Function Support Routines 
(FSRs) 

Operating System 

l. The superstructure consists of the FSRs (Function Support Routines). There is one FSR for 
each command verb of Access Method Services. Any system interface or 1/0 function that is 
required by one of the FSRs is supplied through the substructure. The supentructure is thus 
insulated from the operating system by the substructure. 

2. The substructure consists of the Executive, the Reader/ Interpreter, the System Adapter, the 
1/0 Adapter, the Text Processor, and the Debugging Aids. The Executive routes control 
between the other components of Access Method Services-specifically, between the 
Reader/Interpreter and the FSRs. The Reader/Interpreter translates the commands for 
Access Method Services into an internal form, called the FDT (Function Data Table). The 
System Adapter similarly provides all system interfaces for the processor. The 1/0 adapter 
issues all 1/0 operations at the behest of any other routine in Access Method Services. The 
Text Processor prepares all printed materials, whether simple messages or listings, that are 
required to fulfill a command. The Debugging Aids writes diagnostic information when 
requested. 

3. The operating system supports the Access Method Services processor, just as the substructure 
supports the superstructure (the FSRs). However, the FSRs execute in total independence of 
the actual operating system in which Access Method Services is running. All requests for 
system services or 1/0 are made to the substructure, which receives the request and issues the 
appropriate request to the operating system. Thus additional access methods can be easily 
supported by Access Method Services, by merely augmenting the 1/0 Adapter appropriately. 
Access Method Services can be run in a different host operating system by changing the 
System Adapter and the 1/0 Adapter to match the new host. 

Figure l • l. The Structure of the Access Method Services Processor 

Ueellled Materlal-Pro,.rty of IBM 

Following the flow of logic reveals more of the processor than the structure of 
executable modules. Figure l ·2 and the two which follow show the sequence 
in which modules execute, important internal tables, and how non-executable 
modules are used. 

1 - 2 VSE/VSAM Access Method Services Logic 



Lleensed Material- Property of IBM 

Enter Processor 
(Subroutine Call) 

System Adapter 

Executive 

See Figure 3 

(Job Control 
Statement) 

G 
D 
T System Adapter 

1/0 Adapter 

Text Processor 

Historical 
Data Areas 

Fiaure 1-2. Initialization of Access Method Services 

The System Adapter is the external entry and exit point for Access Method 
Services. At entry time, the GDT (Global Data Table) is built by the System 
Adapter. The GOT is always passed as a parameter when any internal 
module is called, and through the GOT can be found the entry point for any 
service supplied by the substructure. The G DT contains the addresses for the 
various services provided by the System Adapter, the 1/0 Adapter, and the 
Text Processor. The GDT,also points to historical data areas that are built 
and maintained by various processor substructure modules. 

Control passes from the initialization effected by the System Adapter to the 
Executive. Figure 1-3 shows this transfer of control, and details the parsing 
operation of the processor. 

Chapter 1: Introduction 1 - 3 



Licensed Material - Property of IBM 

Input 
Commands 

Command 
Descriptor 

,.----, 
I Enter Processor 

' / -~--

,.----, ----
1 Enter Processor ~ 
'<_Sub-rou-tine-Cal-1) ~~I 

" 

11 
11 

1/0 Adapter 
I I 

I I 

System Adapter 
I 

I 
L 

System Adapter 

Executive 

(Job Control 
Statement) 

.- --. => g I 
I T 1-

I I 
I_ .J 

Text Processor 

------------ - - -I I I,...~--------~----......,,..... __________ _. --------r-+-------41 

Program 
Library 

I I 
I I 
I I Text 

Structure 

Figure 1-3. Reading and Parsing a Command (Part 1 of2) 

1 - 4 VSE/VSAM Access Method Services Logic 

I 
~ System Adapter 

L 

r 

1/0 Adapter 

Text Processor 

F 
D 
T 

1/0 Adapter 

-1 
'1 

Messages 



Licensed Material - Property of IBM 

1. The Executive calls the Reader/Interpreter, which reads a command from the input stream. 
The 1/0 Adapter performs the actual read at the behest of the Reader/Interpreter; the 
address for the "get" service is found in the GDT. 

2. To parse the command, the Reader/Interpreter compares it against a special table called a 
Command Descriptor. This Command Descriptor forms a non-executable phase, and is 
loaded from the core image library by a service of the System Adapter. There is a Command 
Descriptor for each possible verb to be recognized by Access Method Services. This Com­
mand Descriptor specifies each possible keyword, its permitted range of values, and any 
other information that is needed to parse and interpret the command. 

3. As a command is parsed, certain messages may be issued. To format these messages, the Text 
Processor is invoked (again through the GOT). The Text Processor determines the format of 
printed material and the text of fixed messages by using Text Structures. These Text 
Structures are also non-executable phases (loaded by the System Adapter when needed), and 
they describe page layout, static portions of the text, headings, footings, and other details of 
the printed page. Once a line of message is formatted, the 1/0 Adapter writes the line to the 
print file. 

4. As a command is parsed, the Reader/Interpreter builds an FDT (Function Data Table) from 
the values that it finds. The FDT is an encoded representation of the user's command. The 
FDT is passed back to the executive as the results of the parse. The Executive in tum passes 
the FDT to the appropriate FSR for processing. 

S. Control returns to the Executive, along with the FDT and the name of the FSR needed to 
process this command. Figure 1-4 depicts the FSR in action. 

Figure 1-3. Reading and Parsing a Command (Part 2 of2) 

Chapter 1: Introduction 1 -5 



Licensed Material - Property of IBM 

/ - - - - ... , 
f Enter Processor J 

'-~--­
( E:te;-Pr:es:-or ... 'b:d\J - -

(Job Control 
Statement) 

,.... -. 
_ ... >I G I 
-..,. D '-(S:br~ti~ ~II)/ ~I System Adapter I T I"' ~I System Adapter I 

Reader/ 
Interpreter Executive 

I 
J 

L 

I 

r 
I 
I 
I 
r 

I_ 

....,..I 1/0 Adapter 

'-

.J 

..., 
~I Text Processor I 

I ,_ - - - - -

F 
D 
T 

FSR ..------+- - - - - - -+--~ 

(Function Support 
Routine) 

------ - -system - -
Adapter 

0 

11 
I I 

Processor 
! I 
I I 

e ,-+--_ -~ 
1/0 Adapter L Li-----------... , 

0 
Messages and 
Listings 

1. The command at this point in time is described in the FDT. The FDT is an internal encoding 
of the original command, in a rigorous format with the values for all possible parameters in a 
prescribed order. 

2. Any data sets or user catalogs required for this particular function arc accessed through the 
1/0 Adapter. The address of this service is found in the GDT. 

3. Any printed output is prepared by the Text Processor, whose addresses are also found in the 
ODT. Static text and page layout instructions are found in the Text Structures, which are 
loaded by the System Adapter. 

4. Finally, all output is produced by another of the services of the 1/0 Adapter. 
5. Control returns to the Executive. If more commands remain, the Reader/Interpreter repeats 

its procedure, followed by the appropriate FSR. Control is routed back and forth between 
the Reader/Interpreter and the FSRs by the Executive in this fashion until all commands 
have been processed. 

Figure 1-4. Performing a Function 

1 - f) VSE/VSAM Access Method Services Logic 

Structures) 



Licensed Material - Property of IBM 

Naming Conventions 
The Access Method Services processor is named IDCAMS. The names of all 
modules that form this processor are seven or eight characters long, and begin 
with the characters IDC. The remaining characters of the name relate to its 
use. Executable modules and Command Descriptors have seven-character 
names, while Text Structures have eight-character names. 

The modules of the processor are grouped by their functional relationship. 
Each of these relationships is indicated by a two-character mnemonic identi­
fier, which appears as characters 4 and 5 of the module name. These identifi­
ers are listed in the following table: 

AL ALTER FSR MP 
BI BLDINDEX FSR PM 
CD Command Descriptor PR 
CL CANCELFSR RC 
DB Debugging Facility RI 
DE DEFINE FSR RM 
DI NonVSAM Access RP 

DL 
EX 
IO 
LC 
LR 
MP 

Method Macros RS 
DELETE FSR SA 
Executive TP 
1/0 Adapter TS 
LISTCAT FSR VY 
LISTCRA FSR XP 
IMPORTFSR 

IMPORTFSR 
PARMFSR 
PRINTFSR 
EXPORTRA FSR 
Reader /Interpreter 
IMPORTRA FSR 
REPROFSR 
RESETCAT FSR 
System Adapter 
Text Processor 
Text Structure 
VERIFYFSR 
EXPORTFSR 

The remaining characters of a module name indicate the function of that 
module. Two numeric digits are used for the name of a module and the entry 
point of a single-entry module. Two alphabetic characters indicate an entry 
point in a multiple-entry module. Thus the name "IDCPRO l" is the name of 
the first module for the PRINT FSR, and "IDCPRO l" is the only entry point 
to that module. "IDCSA02" is the second module for the System Adapter, 
and "IDCSAGS" is the entry point in that module for the "get space" service. 

The last two characters of a Command Descriptor are the mnemonic identifi­
er for the FSR for that Command Descriptor. Similarly, Text Structure 
names end with the FSR mnemonic identifier and a single digit (to allow for 
multiple Text Structures per FSR). For example the three modules for 
PRINT are: 

IDCPROl 
IDCCDPR 
IDCTSPRO 

PRINT FSR module 
PRINT Command Descriptor 
First Text Structure for PRINT 

Names for processor-wide data structures and fields are six characters long. 
The first three characters identify the structure. The last three characters 
indicate the function of the field. (In this publication, the data areas .are often 
referred to by the first three characters.) Values for a field (for exampler a bit 
in a flag field) have names that are eight characters long. The last two char­
acters of a value indicate the meaning of that value. For example, 
"IOCDSO" is a field of the 1/0 Communications Structure that defines the 
data set organization. One of its bits is named "IOCDSOAM," which means 
that this bit signifies a VSAM organization. 

Local names used internally by only one subcomponent follow no processor­
wide conventions. 

Chapter 1: Introduction 1 - 7 



IJceued Material- Property of IBM 

Cltaracter Code Dependencies 
Most of the character dependencies of this processor are isolated in the 
Command Descriptor modules and the Text Structure modules. For exam­
ple, all input text is translated by referring to the Command Descriptor 
modules, and all output text is controlled by the Text Structure modules and 
a parameter defining the output graphics. 

Most of the executable modules of the processor have no character dependen­
cies. However, some modules of the Reader/Interpreter and the Text Proc­
essor have character dependencies. Such character dependencies are identi­
fied in the prologue of each module. 

The character set used at execution time must be equivalent to that used 
during assembly of the character-dependent modules. The IBM-supplied 
version of these modules assumes EBCDIC character representations. If a 
different character representation is to be used during execution, then the 
character-dependent modules must be re-assembled. 

I - 8 VSE/VSAM Acceu Method Services Logic 



Licensed Material - Property of IBM 

Chapter 2: Method of Operation 

This chapter contains method of operation diagrams for each element within 
the substructure and superstructure of Access Method Services. Following 
each diagram is an extended description of the processing steps and the name 
of the modules and procedures used to perform each step within the diagram. 
Using these names, you can go either to the chapter "Microfiche Directory" 
or to the microfiche itself for more information. 

The following legend ~xplains the symbols used throughout this chapter. 

-> Data flow 

• Flow of control, entry and exit points 

II 111 1111 fJ:J> Data flow when existing data has been altered 

~· On page connector 

--0 Off page connector 

Pointer to more information 

Chapter 2: Method of Operation 2 -1 



Licensed Material - Property of IBM 

2-2 VSB/VSAM Acceu Method Services Lope 



I 
~ 

I 
2, 

i 
1· 
..., 
I 
w 

Access Method Services Visual Table of Contents 

l 1.0 l 
Initialization Reader/ 

Interpreter 

l l 

l 5.0 1 
System 1/0 
Adapter Adapter 

General 
Overview 

J 
2.0 

l 
l 

6.0 

I 3.0 

FSRs 

l 

I 7.0 

Text 
Processor 

J 
Termination 

J 

1 8.0 

Debugging 
Aids 

i 
i 
3: 

I 
!. 
I 

I 
~ 

i 



N 
I .. 
< rll 

~ 
~ 
~ 

I 
I 
Sf 

I· 
b 
~-

Access Method Services Overview 

INPUT 

Invoker's 
Parameter List 

Commands 

LJ 
Input Data Sets and 
VSAM Catalogs 

From Access Method Ser\'ices Invoker 

PROCESSING 

1. Initializes. ~ 
See Diagram ---v 

2. Reads and interprets rnmmands. 

See Diagram ----0 
3. Processes commands. ~.l 

See Diagrams---, To 
3.14 

4. Terminates. ~ 
See Diagram ---v 

Function Data Tahle ( FDTI 

OUTPUT 

Output Data Sets 
and VSAM Catalogs 

Messages and 
Reports 

D 
Register I 

Register 15 

I J 

I 
3: 

I 
I 

l a 
s. 
i 



f 
~ 

I 
2, 

i 
iii 
1-
~ 
I 
\A 

Extended Description for Access Method 
Services Ove"iew 

IDCEXOI 

Procedure: IDCEXO l 

Calls IDCEX02 

2 Procedure: MAIN, CALLRI 

lfMAXCOND indicates termination, go to Step 4. 
lfMAXCOND does not indicate termination: 

• Calls reader interpreter 

• EOFCOND is set to R/I return code. 

3 Procedure: MAIN, CALLFSR 

If EOFCOND indicates end-of-file, go to Step 4. 
lfEOFCOND does not indicate end-of-file: 

• FSR is called 

• MAXCOND is set to maximum ofMAXCOND and 
the return code for the FSR 

• FDT is freed 

• Text processor is reset 

• Return to Step 2. 

4 Procedure: IDCEXOl 

Calls IDCEX03. 

I 
~ 

I 
I 

l a 
s.. 
! 



Llceated Material - Property of IBM 

2-6 VSB/VSAM AGQlll Molhocl StrviGU Lope 



f .. 
hi 

!= 
[ 
e.. 

f 
f 
N 
I .... 

Initialization Visual Table of Contents 

1.0 

Initialization 
Overview 

l 
1 1.J 

System Adapter 
Initialization 

' 

1 ~ --

1/0 Adapter 
Initialization 

UIOINIT Macro 

l 
I 
I 

I ... 
i 



w 
I 

GD 

~ 
~ 
~ 
I: 

r 
I 
Ir 

t 
b 
11!-n 

Diagram 1.0. Access Method Services Initialization Overview 

INPUT 

t Options 

t DD Name 

t Page Number 

t 1/0 List 

From Access Method 
Services Invoker 

PROCESSING 

1. Initializes System ~da~~~ 
See Diagram~ 

2. Initializes 1/0 Ad~ 
See Diagram - ..... CY 

3. Initializes text lines. 

4. Establishes page length. 

5. Initializes page controls. 

GDTPRM 

GDTIOH 

GDTIPH 

GDTSAH 

toptions 

[[[i2 
too Name 

llllL----

I 11 I 

OUTPUT 

GDT 

System Adapter 
Historical Data Area 

IODATA 

PCT 

I 
~ 
I' 
:I. 
!. 
I 

l 
s. -= ~ 



f 
!"! 

I 
2, 

i 
iii 
1· 
N 
I 

'IO 

Extended Description Diagram 1.0 

IDCSAOI 

Procedure: IDCSAOl 

The System Adapter receives control from the invoker 
from either an EXEC statement or from a program. The 
System Adapter sets up the GOT, trace tables, and the 
System Adapter Historical Data Area. The System 
Adapter obtains storage for modules that are continuously 
used such as the System Adapter and the 1/0 Adapter. 
Diagram l. l shows System Adapter initialization in detail. 

IDCEX02 

Procedure: 1DCEX02 

2 IDCEX02 issues the UIOINIT anacro to cause the 1/0 
Adapter to initialize. The 1/0 Adapter initializes its 
Historical Data Area. IDCIOIT saves the addresses of 
alternate DD name list if supplied by the invoker. 
Diagram 1.2 shows 1/0 Adapter initialization in detail. 

IDCEX02 

Procedure: IDCEX02 

3 IDCEX02 issues a UESTS macro instruction to set up the 
Print Control Table, PCT. The address for the Text 
Processor Historical Data Area is in the G DTTPH field of 
the GOT. Since GDTTPH contains zero, the text 
processor builds the primary PCT. 

IDCEX02 

Procedure: IDCEX02 

4 IDCEX02 issues a COMRG macro instruction to get the 
address of the partition communication region. It then 
extracts the value of "SYSLST lines per page" from 
displacement 78 and uses this value in a UREST macro 
instruction to establish the SYSLST page depth. 

IDCEX02 

Procedures: IDCEX02, SCANPARM 

S If the invoker supplied a starting page number in the 
parameters, IDCEX02 issues a UREST macro instruction 
to set the page number. Control is given to the R/l to 
process the input as well as any parameters supplied on the 
EXEC statement that invoked Access Method Services. 

I 
I 
I 

j 
s.. 
I 



..., 
I 

0 

< 
UJ 

~ 
~ 
> 
~ 

r 
I 
gi 

i· 
b 
'R· 

Diagram 1.1. System Adapter Initialization 

INPUT 

List 

Options 

DD Name 

Page Number 

1/0 List 

From Access Method Service~ Invoker 

PROCESSING 

1. Obtains storage. 

2. Initializes the GOT. 

3. Initializes storage table. 

4. Initializes trace tables. 

5. Initializes Historical Dat::i Area. 

6. Establishes save area. 

OUTPUT 

GOT 

GDTHDR GDTPRM 

GDTTRl GDTTR2 

GDTABH 

Umacro entry point 

Save Area 
I 
3: • ;f 
:I. 
!. 
I 

J 
a. 
; 
3: 



0 
~ 
l ... 
!':> 

~ 
[ 
0 ..., 
0 
i 

i· 
tJ 
I --

Extended Description for Diagram 1.1 

IDCSAOl 

Procedure: IDCSAOl 

IDCSAOI issues a GETVIS instruction to obtain space for 
the following tables: 

• Global Data Table, GOT 
• Inter-Module-Trace Table 
• Intra-Module-Trace Table 
• System Adapter Historical 

Data Area 
• Storage Table, AUTOTBL 

lfthe initial GETVIS fails, IDCSAOl issues an ABORT 
message via EXCP and returns to the invoker of Access 
Method Services. 

IDCSAOl 

Procedure: IDCSAO l 

2 lDCSAOI puts the chatacters 'GDTb' in the first four 
bytes of the GOT. It puts the address of the invoker's 
parameter list, which is in Register I, in the G DTP RM 
field of the GOT. IDCSAOI puts the address of the System 
Adapter Historical Data Area in GDTSAH. lt also puts 
the address of the Inter-Module-Trace Table in G DTTR l 
and the address of the Intra-Module-Trace Table in 
G DTTR2. IDCSAO l puts the address of the System 
Adapter save area in GDTABH. Additionally it puts 
addresses for the processor-defined macro instructions, 
called U-macros, in the GDT. All remaining fields of the 
GDT contain zeros. 

IDCSAOl 

Procedure: IDCSAO l 

3 Rather than obtaining new storage each time IDCSA02, 
lDCSA03, IDCTPOI, or IDCIOOI is called, the System 
Adapter issues one GETVIS macro for each module and 
saves the storage address in the Storage Table, 
AUTOTBL. When one of the modules is called, it calls the 
PRO LOG routine that returns the address of the storage 
obtained for the module during System Adapter 
initialization. The storage address for IDCSA03, however, 
is kept in the G DTSPR field of the GOT because 
IDCSA03 contains the PRO LOG routine code and needs 
to get its storage without using the PRO LOG routine. 

IDCSAOl 

Procedure: IDCSAOl 

4 IDCSAOl initializes the Inter- and Intra-Module-Trace 
tables to blanks. It places the characters 'blNTERbb' and 
'bINTRAbb' before the respective tables. It also puts the 
characters 'SAOl' in the Inter-Module-Trace Table and in 
the save area provided by the Access Method Services 
invoker. 

IDCSAOl 

Procedure: IDCSAOl 

5 IDCSAOl sets the first UGPOOL storage area pointer in 
the System Adapter Historical Data Area to zero. It sets 
the last UGPOOL storage area pointer to the address of 
the first UGPOOL area pointer. 

IDCSAOl 

Procedure: IDCSAO l 

6 The System Adapter saves the current values of its 
registers in a save area pointed to by the GDTABH field 
in the GOT. The UABORT routine uses the register 
values to establish addressability before processing. 
Control goes to Diagram 1.0, step 2. 

I 
3: • ~ 
:s. 
!!. 
I 

f 
a. 
;; 
3: 



N 
I 

i:i 

< 
(IJ 

~ 
< 
~ 
~ 

r 
I 
I 
i 

Diagram 1.2. 1/0 Adapter Initialization - UIOINIT Macro 

INPUT 

GOT 

0 

From System Adapter Initialization 
Via Executive 

PROCESSING 

1. Obtains storage. 

2. Initializes IO DAT A. 

3. Establishes identifiers. 

OUTPUT 

GDT 

f GDTIOH 

I 
'IODATA 

IODEOD JO DOSS 

IODXTN IODSO 

IO DADD IODAEI 

Register 15 

r- o I 

I 
3: • i 
!. 
I 

! 
a. 
; 
3: 



0 
~ 

'O 

ii 
!':' 

3: 

i 
~ 

l 
"" I -\..:» 

Extended Description for Diagram 1.2 

IDCIOOl 

Procedure: IDCIOIT 

The 1/0 Adapter issues a UGPOOL to obtain storage for 
its Historical Data Area-IO DAT A. IDCIOIT puts the 
IODATA address in the GDTIOH field in the GOT. If 
storage is not obtained from either UGPOOL, the 1/0 
Adapter issues a UABORT to terminate the processor. 

IDCIOOl 

Procedure: IDCIOIT 

2 The 1/0 Adapter initializes IO DAT A. If the Access 
Method Services invoker supplied filenames for the system 
data sets, IDCIOIT puts the address of those filenames in 
the IO DADD field of IODA TA (this code is for 
compatibility with OS/VS; alternate filenames for system 
data sets cannot be used in VSE). If the invoker supplied 
the address a list of his own 1/0 programs, IDCIOIT puts 
that address in IODXTN. IDCIOIT puts the address of 
the Access Method Services End-of-Data routine in 
IODEOD. It puts the address for a synad routine for 
nonVSAM input data sets in lODOSS and the address for 
a synad routine for nonVSAM output data sets in IODSO. 
It also puts the address of the End-of-Data routine for 
VSAM data sets in IODAEI. 

IDCIOOl 

Procedure: IDCIOIT 

3 IDCIOIT initializes the IODSID to the characters '1000'. 
The 1/0 Adapter uses this identifier to keep track of data 
sets. UOPEN gives the first data set the 1/0 Adapter is 
required to open the identification of 1001, the second 
1002, and so on. The identification appears at the 
beginning of the storage area for each data set. IDCIOIT 
puts a return code of zero in Register 15 and gives control 
to Diagram 1.0, step 3. 

~ g 
I. 
:: 
i 
!!. 
I 

1 a 
9-
; 
:: 



Licensed Material - Property of IBM 

2-14 VSB/VSAM Acceu Method Services Logic 



f 
!'! 

I 
2, 

1 
!" 
..., 
I -VI 

Reader /Interpreter Visual Table of Contents I 
3: 

l e. 
2.0 

Reader/ 
Interpreter I 
Overview 

J 
a. 
i 

l 2.1 2.2 2.3 l 2.4 I 2.5 

Get Next Prepare Scan 
Initialization 

Command 
To Scan 

Command 
Termination 

Command 

l 
l 2.4.1 I 2.4.2 

Syntax 
Check Build FDT 

Parameter 

l 2.2.1 2.2.2 2.2.3 l 2.2.4 I 2.2.5 

IF-THEN ELSE SET DO END 
Modal Modal Modal Modal Modal 

Command Command Command Command Command 



N 
I 
;; 

< rn 
~ 
~ 
> 
3:: 

§ 
= 
I 
rn 
ft 

i· 
i 

Diagram 2.0. Reader/Interpreter Overview 

INPUT 

tGDT 

+ FDT UGPOOL ID 

• MAXCC 

t LASTCC 

IDCRILT 
IDCRIKT 

L::J 
Command 
Descriptor 

From Executive Controlled 
Termination or Initialization 

PROCESSING 

1. If entering from first command, 
continue to Step 2; if entering 
after first command, go to Step 3. 

2. Initializes. 
See Diagram -0 

3. Gets next command.~ 
See Diagram -u 

command. 4. Prepares to scan -0 
2.3 See Diagram 

5. Scans command. ~ 
See Diagram - CJ 

6. Terminates. ~ 
See Diagram -v 

GOT 

GDTRIH 

e 

0 

0 

e 

OUTPUT 

Input e Statements 

D e _FD-..T....._ ___ _ 

LAST CC 

I I 
MAX CC 

I I e Register 15 

I --, 

t GOT 

t FDT Address 

• FDT UGPOOL ID 
---------~ 

t MAXCC 

t LASTCC 

t FSR Name 

c: 
n 
fD 
1:11 

l 
3: 
ID ... 
fD 
:::L 
!. 
I 
"I 
1 a 
9--= 3: 



I 
!'::» 

I 
0 ..., 
~ 
£ g· 

IJ 
I 
:; 

Extended Description for Diagram 2.0 

IDCRIOI 

Procedure: RllNIT 

If entrance is from Initialization, processing continues 
with step 2. If entrance is from Executive Controlled 
Termination, processing continues with step 3. 

2 RUN IT initializes the Reader/Interpreter Historical Data 
Area, HDAREA. RUN IT loads the command descriptor 
name table, IDCRILT, and the modal command name 
table, IDCRIKT. RUNIT opens the input data set, 
SYSIPT, and RUNIT prepares the parameters from the 
EXEC statement for scanning, if they exist. Diagram 2.1 
shows the initialization procedure in detail. 

IOCRIOI 

Proce4lllres: GETNEXT, MODALSET, MODALIF, 
MODLELSE 

3 GETNEXT reads and processes modal commands until a 
functional command is encountered. The execution of the 
functional command depends' on the results from the 
modal commands. However, every command is 
completely checked for syntax. errors whether or not it is 
executed. Diagram 2.2 shows obtaining a command in 
detail. 

IOCRl82 

Procetlure: 1DCR102 

4 IDCRI02 loads the command descriptor for the functional 
command to be scanned. 1DCR102 initializes the Function 
Data Table, FDT. Diagram 2.3 shows the preparation for 
command scanning in detail. 

IDCRIOI 

Procedures: SCANCMD, KWDPARM, PCSPARM, 
INREPEAT, BUILDFDT, CONVERT, GETSPACE, 
DSIDCHK, ERRORl, ERROR2 

S SCANCMD and BUILDFDT check the functional 
command for correctness. If the command is incorrect, 
ERRORl or ERROR2 writes an error message. 
BUILDFDT and INREPEAT complete the FDT for 
correct commands. Diagram 2.4 shows the command 
scanning in detail. 

IDCR103 

Procedure: IDCR103 

6 IOCR103 deletes the work tables and temporary storage. If 
the command is to be executed, control is given to 
Executive Controlled Termination which gives control to 
the Function Support Routine, FSR, that executes the 
command. If the command is not to be executed due to 
syntax errors or due to the results of a modal expression, 
control returns to step 3 to get the next command. If the 
error is severe, control returns to Executive Controlled 
Termination, Diagram 4.1, with an indication that the 
processor cannot continue. Diagram 2.5 shows termination 
processing in detail. 

( 
~ 

i 
!!. 
I 

l 
s. 
i 



N 
I 

00 

< 
rll 

~ 
~ 
> 
~ 

i 
I 
rll 
ft 

~-
t"" 

~-

Diagram 2.1 Reader /Interpreter Initialization 

INPUT 

Register I 

EXEC Parameters 

t GDT 

f FDT UGPOOL ID 

t MAXCC 

t LASTCC 

IDCRILT 
IDCRIKT 

Options 

From Diagram 2.0 

PROCESSING 

1. Obtains storage for and initializes 
HD AREA. 

2. Loads IDCRILT. 

J. Loads IDCRIKT. 

4. Opens input data set. 

5. Checks parameter options. 

6. Prepares to scan parameters. 

OUTPUT 

GDT 

GDTRIH 

HD AREA 

LEFfMGN 

RIGHTMGN 

LOADTPTR 

KWDTPTR 

MODLFLGS 

IDCRIKT 

IDCRILT 

D 
Verb Name .PARM. 

Parameter Options 

~ 

l 
3: 
ID 
;­
:s. 
!.. 

l 
s. 
; 
3: 



f 
~ 

~ 
[ 
0 
"""> 

i 
iil 
i• 
N 
I 

:0 

Extended Description for Diagram 2.1 

IDCRIOI 

Procedure: RllNIT 

RllNIT obtains storage for HDAREA and sets the left 
margin field to 2 and the right margin field to 72. A user 
changes the margins using a PARM command. RllNIT 
initializes the rest of HDAREA to zero. If RllNIT cannot 
obtain storage, control is given to Reader/Interpreter 
Termination, Diagram 2.5, with an indication that causes 
the processor to end. 

IDCRIOI 

Procedure: RllNIT 

2 RllNIT loads the command name table, IDCRIL T, and 
places the address of IDCRIL T in the LOADTPTR field 
in HDAREA. IDCRIL T contains the name of each verb 
and corresponding command descriptor. 

IDCRIOI 

Procedure: RllNIT 

3 RllNIT loads the modal name table, IDCRIKT and 
places the address oflDCRIKT in the KWDTPTR field 
in HDAREA. IDCRIKT contains modal command 
keyword and verb name symbols, plus the length of each 
symbol. 

IDCRIOI 

Procedure: RllNIT 

4 RllNIT opens the input data set which has a default 
filename ofSYSIPT. If SYSIPT cannot be opened, control 
is given to Reader/Interpreter termination, Diagram 2.5, 
with an indication that causes the processor to end. 

IDCRIOI 

Procedure: RllNIT 

! The Reader /Interpreter checks for parameters supplied 
before SYSIPT is read. The invoker may supply 
parameters by putting them in the EXEC job control 
statement. Parameters may also be supplied through the 
data the user provides to the processor at the time the 
user's program invokes Access Method Services. If 
parameters are supplied, the G DTPRM field of the GOT 
contains the address of a fullword that contains the 
address of the parameters. The first 2 bytes of the 
parameters is the total length of the parameters. If no 
parameters are supplied, the length field is zero. 

IDCRIOI 

Procedure: RllNIT 

6 The parameters are printed on SYSLST and are treated as 
the parameters for a PARM command. The symbol for 
PARM in IDCRIKT is supplied as the verb name and the 
options are scanned by the Reader/Interpreter just as 
though a PARM command had been encountered in 
SYSIPT. After the pseudo PARM command is executed 
by the PARM FSR, Executive Controlled Termination 
gives Reader/Interpreter control to read the first 
command. Control goes to Diagram 2.2 to get the first 
command. 

I 
I 
I 

l a 
s. -11:11 

~ 



t;' Diagram 2.2. Reader/Interpreter Get Next Command 
~ 

< 
UJ rn 
......... 
< 
UJ 
> re 

i 
re 
0 

[ 
SC1 

j· 
t"" 
ti r;· 

INPUT 

IDCRIKT 

L::J 
Register 1 

EXEC Parameters 
·aoT 

FDTSpacelD 

MAX CC 

LASTCC 

From Diagram 2.0 

PROCESSING 

1. Extracts next command. 

2. Processes modal command. 

See Diagrams -Y 5 

3. Prepares to interpret functional 
commands. 

OUTPUT 

D 
MAX CC 

I I 
LAST CC 

HD AREA 
[ I 

MODFLGS 

HD AREA 

MODFLGS I 
~ 

i 
!. 
I 

i 
e. 
; 
::: 



j 
~ 

I 
2, 

1 :::. 
g 

N 
I 

N -

Extended Description for Diagram 2.2 

IDCRIOl 

Procedures: GETNEXT, GETRECRD, NXTFIELD, 
NEXTCHAR 

GETRECRD reads SYSIPT to get an input record and 
writes each input record on SYSLST. GETNEXT locates 
the verb on the input record and checks it against the 
symbols for the modal verbs IF, ELSE, SET, DO, and 
END in IDCRIKT. Ifa match is found, the verb is a 
correct modal verb and processing continues to step 2. If a 
match is not found, the verb is assumed to be a functional 
verb and processing goes to step 3. 

IDCRIOl 

Procedures: GETNEXT, MODALIF, MODLELSE, 
MODALSET 

2 GETNEXT sets condition codes and the MODLFLGS 
field in HDAREA depending on the modal command. 
Control returns to step l to get the next command. The 
modal commands are shown in detail in the following 
diagrams: 

IF-THEN, Diagram 2.2.1 
ELSE, Diagram 2.2.2 
SET, Diagram 2.2.3 
DO, Diagram 2.2.4 
END, Diagram 2.2.5 

IDCRIOI 

Procedure: G ETN EXT 

3 GETNEXTchecks the MODLFLGS field in HDAREA 
to determine if the function command should be executed. 
If the functional command is not to be executed, 
GETNEXT sets a flag. Every command is completely 
checked for syntax errors whether or not it is to be 
executed. If the functional command finishes an 
IF-THEN command, GETNEXT subtracts l from the 
number of nested IF-THEN commands and sets 
MODLFLGS for the finished IF-THEN command to 

zero. The functional commands are shown in detail in the 
following diagrams: 

ALTER, Diagram3.l 
BLDINDEX, Diagram 3.11 I CANCEL, Diagram 3.16 
DEFINE, Diagram 3.2 
DELETE, Diagram 3.3 
EXPORT, Diagram 3.4 
EXPORTRA, Diagram 3.13 
IMPORT, Diagram 3.5 
IMPORTRA, Diagram 3.14 
LISTCA T, Diagram 3.6 
LISTCRA, Diagram 3.12 
PARM, Diagram 3.7 
PRINT, Diagram 3.8 
REPRO, Diagram3.9 
RESETCAT, Diagram 3.15 
VERIFY, Diagram 3.10 

Control goes to Diagram 2.4 to scan the command. 

r 
l 
:: 
i 
:L 
!!. 
I 

I 
Sa 
; 
:: 



..., Diagram 2.2.1. Reader/Interpreter IF-THEN Modal Command 
I 

N 
N 

~ 
~ 
rll 
> 
~ 

i 
I 
f 
b 
~-

INPUT 

HD AREA 

NESTLVL 

MODLFLGS 

IDCRIKT 

LASTCC 

I 
MAX CC 

I 

.From Diagram 2.2 

... PROCESSING .---y 

~ 1. Increases IF-THEN commands 
count, if nested. 

--.--~ 2. Interprets IF clause. 

~ 3. Determines whether THEN or 

I ELSE clause is to be executed. 

I 

L-=> 4. Checks for THEN clause. 

OUTPUT 

HD AREA 

0 
NESTVL 

MODLFLGS 

"' 

I I 
~ 

HDAREA 

NESTLVL 

MODLFLGS 

I 
3: 

l 
!. 
I 

f 
a. 
i 



! ;; .. 
~ 

I 
0 ..., 

1 
;:. g 

tJ 
I 
tJ 
w 

Extended Description for Diagram 2.2.1 

IDCRIOl 

Procedure: MODALIF 

The value in the NESTL VL field of HD AREA is used as 
an index to the MODLFLGS field for the current 
IF-THEN command and the THEN and ELSE clauses 
that belong to the IF-THEN. MODALIF adds I to the 
number of nested IF commands in NESTLVL. There is 
one set of modal flags in HDAREA for each level of 
IF-THEN commands. The new level of MODLFLGS is 
initialized to zero. To see if too many IF-THEN 
commands are nested, MODALIF compares the number 
of nested IF-THEN commands to the number permitted, 
IO. 

When a syntax error is detected, MODALIF sets LASTCC 
to 16, and control is given to Reader/Interpreter 
termination, Diagram 2.5, to cause the Executive to 
terminate the processor. 

IDCRIOl 

Procedures: MODALIF, PACKCVB, NXTFIELD, 
NEXTCHAR 

2 MODALIF compares the characters following the IF with 
the symbols for LASTCC and MAXCC in IDCRIKT. 
MODALIF compares the operator with all possible 
operators: LT, GT, EQ, NE, GE, LE(<,>,=,"· 2::, ~). 
PACKCVB converts the decimal value following the 
operator to binary. If any errors are detected, the syntax 
error procedure in step 1 is followed. 

IDCRIOl 

Procedure: MODALIF 

3 MODALIF sets the THENFLAG to l to indicate that the 
THEN clause of the IF-THEN command is being 
processed. MODALIF compares the value of LASTCC or 
MAXCC with the number in the IF -THEN command 
and evaluates it for tru~ or false depending upon the 
operator. If the result is false, MODALIF sets the 
SKIPFLAG in HDAREA to I, indicating that commands 
in the THEN clause of the IF-THEN command are to be 
skipped-that is, the Reader/Interpreter is to check only 
the syntax of the commands in the THEN clause. 

IDCRIOl 

Procedure: MODALIF 

4 MODALIF compares the characters following the 
relational expression with the symbol for THEN in 

IDCRIKT. An error occurs ifTHEN does not follow IF, 
and the syntax error procedure in step l is followed. If a 
terminator follows the THEN keyword, there is a null 
THEN clause in the current IF-THEN command. 
Control returns to Diagram 2.2 to obtain the next 
command. 

r­
n g 
i. 
~ • i 
!. 
I 

l 
s. -1:11 
~ 



N 

' ~ 

< 
rll 

~ 
< 

~ 
f 
I 
I 
b 
I· 

Diagram 2.2.2. Reader /Interpreter ELSE Modal Command 

INPUT 

HD AREA 

MODLFLGS 

From Diagram 2.2 

PROCESSING 

1. Validates ELSE command. 

2. Determines if commands following 
ELSE are to be executed. 

3. Checks for completion of IF-THEN 
command. 

OUTPUT 

HD AREA 

MODLFLGS 

NESTLVL 

I 
!: 

I 
I 

J 
s. -= :: 



0 

f 
~ 

I 
2, 
0 

J. 
N 
I .., 
u. 

Extended Diagram for Diagram 2.2.2 

IDCRIOl 

Procedure: MODLELSE 

1 MODLELSE sets the ELSEFLAG in HDAREA for the 
current IF-THEN command to l, indicating that the 
ELSE clause of the IF-THEN command is being 
processed. The THEN FLAG is turned off. An error is 
caused by an ELSE without a prior IF-THEN, and the 
syntax error procedure in step l, Diagram 2.2. l, is 
followed. 

IDCRIOl 

Procedure: MODLELSE 

2 SKIPFLAG indicates whether the commands in the ELSE 
clause of the IF-THEN command should be executed or 
only checked for syntax errors. If SKIPFLAG is zero, the 
THEN clause of the IF-THEN command was executed; 
the ELSE clause should not be executed, and 
MODLELSE sets SKIPFLAG to l. IfSKIPFLAG isl, 
the THEN clause of the IF-THEN command was not 
executed; the ELSE clause should be executed, and 
MODLELSE sets SKIPFLAG to zero. However, ifthe 
entire IF-THEN-ELSE command is nested within 
another THEN or ELSE clause that is not being executed, 
neither the THEN clause or the ELSE clause of the nested 
IF-THEN-ELSE command is executed. 

IDCRIOt 

Procedures: MODLELSE, NXTFIELD, NEXTCHAR 

3 If a terminator immediately follows ELSE, there are no 
commands in the ELSE clause of the current IF-THEN 
command. MODLELSE subtracts l from NESTLVL since 
the IF command is completed. Control is given to 
Diagram 2.2 to obtain the next command whether or not a 
terminator follows the ELSE. 

I 
~ 
! 
!: 
I 
'l 
l 
s. 
; 
~ 



! Diagram 2.2.3. Reader/Interpreter SET Modal Command 
°' 
< rll 
Ill 

~ 
> 
~ 

I 
I 
g1 
3. a 
r-' 
0 
«!!!. 
n 

IDCRIKT 

MAX CC 

I 

HD AREA 

MODLFLGS 

NESTLVL 

l ... 
~ 1. Validates SET command. 

_I 'L 2. Sets LASTCC or MAXCC. 

z '//////////////// 3. Checks IF-THEN command 
completion. 

LAST CC 

I ..... 
MAX CC ., 
r 

HD AREA 

"7777/ 
_b,,, 

'/////////7////h 
MODLFLGS 

"¥"' NESTLVL 

I 
I 

~ 

l 
3: 

l 
!!. 
I 

l 
s. -= 3: 



l 
;f .. 
~ 

~ 
[ 
0 ..., 

f 
!-
N 
I 

N ..... 

Extended Description for Diagram 2.2.3 

IDCRIOt 

Procedures: MODALSET, PACKCVB, NXTFIELD, 
NEXTCHAR 

MODALSET compares the characters following SET with 
the symbols for LASTCC and MAXCC in IDCRIKT. 
MODALSET compares the operator with the symbols EQ 
and-. PACKCVB converts the decimal value following 
the operator to binary. If a syntax error is encountered, the 
processing in Diagram 2.2. l, step l is followed. 

IDCRIOt 

Procedure: MODALSET 

1 MODALSET obtains MAXCC or LASTCC and changes 
its value to the value specified in the SET command. If the 
command is SET LASTCC, MODALSET compares 
MAXCC and LASTCC, and the larger value is put into 
MAXCC. lfthe SET command is only being checked for 
syntax errors, neither MAXCC nor LASTCC is changed. 

IDCRIOt 

Procedure: MODALSET 

3 MODALSET determines that the current IF command is 
finished by checking that the SET command follows an 
ELSE keyword and that the SET command is not within a 
DO group. If both of these conditions are met, 
MODALSET subtracts 1 from NESTLVL in HDAREA, 
and returns control to Diagram 2.2 to obtain the next 
command. 

I 
I 
I 

J 
2. 

! 



it-.> 

~ Diagram 2.2.4. Reader/Interpreter DO Modal Command 
00 

~ 
11:1 

< Cll 
> 
~ 

i 
I 
Cll 

~ g· .. 
~ n· 

HD AREA 

;> 
NESTLVL 

NULL DO 

MODLFLGS 

~ 

1. Determines if DO is part of an 
IF-THEN command. 

2. Processes DO command within 
IF -THEN command. 

a. Immediately following THEN or 
ELSE. 

b. Not immediately following THEN 
or ELSE. 

HDAREA 

>: 
NESTLVL 

NULL DO 

MODLFLGS 

t: n 

l 
~ 

i 
I!. 
I 

f 
a_ 
;; 
a: 



f ;; .. 
!':' 

I 
2, 

j> 
;: 
1· 
N 
I 

~ 

Extended Description for Diagram 2.2.4 

IDCRIOt 

Procedures: GETNEXT, NXTFIELD, NEXTCHAR 

t If a DO command is not part of an IF-THEN command, 
control returns to Diagram 2.2 to obtain the next 
command. If a DO command is part of an IF-THEN 
command, processing continues to step 2. 

IDCRIOt 

Procedure1t: MODALIF, MODELSE, NXTFIELD, 
NEXTCHAR,GETNEXT 

2 a. If a DO command is part of an IF-THEN command 
and immediately follows a THEN or ELSE keyword, 
MODALIF or MODLELSE sets DOFLAG to I. 
Control returns to Diagram 2.2 for the first command 
of the DO group. 

b. If a DO command is part of an IF-THEN command, 
but it does not immediately follow a THEN or ELSE 
keyword, the DO command is unnecessary. 
GETNEXT increases the NULLDO field in 
HDAREA by l, and control returns to Diagram 2.2 for 
the first command of the unnecessary DO group. 

~ 
m 
l 
3: • 
~ 
I 

J 
s. -1:11 
3: 



N 

' ~ 

~ 
Ill 

< 
~ 
i 
I 
It 

I· 
b 
t!. n 

Diagram 2.2.S. Reader/Interpreter END Modal Command 

.. 
HD AREA 

~ 1. Determines if END is part of an 
IF-THEN command. MODLFLGS 

NULL DO 

2. Processes END command within 
IF-THEN command: 

a. When paired with an unneccessary 
DO command. 

b. When paired with a necessary DO 
command. 

HDAREA 

::> 
MODLFLGS 

NULL DO 

: I 
3: 
ID 

[ 
!. 

i 
2-
; 
3: 



n 

f 
~ 

I 
2. 

i ; 
1· 
N 
I 

w -

Extended Description for Diagram 2.2.S 

IDCRIOI 

Procedure: G ETN EXT 

GETNEXT checks the NESTLVL field in HDAREA; if 
NESTLVL contains a zero, no IF-THEN command is 
being processed and control returns to Diagram 2.2 to 
obtain the next command. IfNESTLVL contains a value 
other than zero, processing continues with step 2 

IDCRIOI 

Procedure: G ETN EXT 

2 An END encountered during the processing of an 
IF-THEN command must be paired with a DO 
command. If a DO command has not been found in the 
current IF-THEN command, the END is processed as a 
syntax error as in Diagram 2.2. l, step l. 

a. If the END command is paired with an unnecessary 
DO command, GETNEXT subtracts l from the count 
in the NULLDO field in HD AREA. Control returns to 
Diagram 2.2 to obtain the next command. 

b. If an END is paired with a necessary DO command, 
GETNEXT sets the DOFLAG for the current 
IF-THEN command to zero. An IF-THEN 
command is completed if the END is paired with a 
necessary DO that followed an ELSE. GETNEXT 
subtracts l from the count of nested IF-THEN 
commands in NESTLVL. Control returns to Diagram 
2.2 to obtain the next command. 

i 
c::s 

l 
:: 
! 
[ 
I 

J 
a. 
; 
:: 



9t Diagram 2 .3 Reader /Interpreter Prepare to Scan Command 
w 
N 

< rll rn 
"< rll 
> 
~ 

§ 
= 
~ 
[ 

I 
b 
~-

INPUT 

IDCRILT 

Command Verb Name 

I I 

Command 
Descriptor 

I EXOO I 

From Diagram 2.0 

PROCESSING 

1. Validates verb. 

2. Gets command descriptor. 

3. Builds PARMINFO table. 

4. Gets FSR name. 

5. Initializes FDT. 

OUTPUT 

PARMINFO Tahlc 

Command Descriptor 

COMMAREA 

FSR Load 
Module Name 

r----------, . . 
.. ----------t 
I EXOO I 

F l Vcrh Name l 
~[ - ==i 

r 
l 
~ 

l 
I 

j 
s. 
~ 



0 

f 
~ 

I 
0 ..., 
~ 
I-
~ 
I 
w 
w 

Extended Description for Diagram 2.3 

IDCRI02 
IDCRIOl 

Procedures: IDCR102, ERROR2 

1 Reader /Interpreter Initialization, Diagram 2.1, gives 
control to this section only if parameters were present 
before SYSIPT was read. Otherwise, control comes from 
Diagram 2.2. IDCRI02 compares the verb name with the 
valid functional verb names in IDCRILT. If a match is 
found, JDCR102 obtains the name of the verb's command 
descriptor from the table. If a match is not found or the 
load of the command descriptor fails due to phase not 
found, the verb is invalid, and ERROR2 prints a message 
on SYSLST. The remainder of the command is ignored, 
and control is given to Reader/Interpreter termination, 
Diagram 2.5 

IDCRI02 

Procedure: IDCRI02 

2 IDCRI02 uses the command descriptor name to load the 
command descriptor. A command descriptor is a load 
module describing all the parameters the command may 
have. Access Method Services defines a parameter as: 

• Positional data-positional parameters cannot have 
su bparameters. 

• Keyword with or without data-keyword parameters 
may have subparameters. 

Data is a constant or list of constants. 

Some examples of parameters are: 

• entryname ... in DELETE is a positional parameter. 

• VOLUMES ( 111111) is one parameter with a keyword 
VOLUMES and data of "111111". 

• VOLUMES ( 111111, 222222) is one parameter with 
keyword VOLUMES and data of"l 11111" and 
"222222". ( 111111, 222222) is a list of constants. Each 
constant is the same thing-that is a volume serial 
number. 

• KEYS (5, 40) is three parameters-KEYS, length with 
value 5, and offset with value 40. KEYS is a keyword 
while length and offset are each positional parameters. 
(length, offset) is not a list of constants because the 
second item, offset, is different from the first, length. 
length and offset are subparameters of KEYS. 

• KEYRANGES ((5, 40), (50, 60), (70, 80)) is three 
parameters-KEYRANGES, lowkey, and highkey. 

The subparameters of KEYRANGES, lowkey and 
highkey, are repeated. In Access Method Services each 
repetition of a parameter must be enclosed in 
parentheses. Since lowkey and highkey are positional 
parameters, they must always be in the same relative 
position. They are repeated as a pair to maintain their 
position. 

IDCRI02 
IDCRIOl 

Procedures: IDCRI02, SETFLAG 

3 The command descriptor contains an identification 
number for each parameter the command is permitted to 
have. Since the sections of the command descriptor that 
describe the parameters are in no set order, IDCRI02 
builds the PARMINFO Table to access information in the 
order of the parameter identification number. The 
PARMINFO Table consists of several sections. In the 
Descriptor Pointer section the first pointer in the array 
points to the Command Descriptor section that describes 
parameter with identification number l. The second 
pointer points to the Command Descriptor section that 
describes parameter with identification number 2, and so 
on. The PARMFLAG section contains one entry for each 
parameter identification possible in the command. 
PARMFLAG is used to keep track of which parameters 
have been found. When a parameter is found, SETFLAG 
sets the indicator for the parameter in PARMFLAG. 

In Access Method Services, a subparameter is a parameter 
that modifies another parameter. For example, in 
DEFINE SPACE (VOL ... ), VOL is a subparameter of 
SPACE. In this document the parameter that the 
subparameter modifies is called its superparameter. In this 
example, SPACE is the superparameter of VOL. A 
superparameter, then, is a parameter that is modified by 
other parameters. For each subparameter, IDCRI02 puts 
the number of its superparameter in the PARMINFO 
Table in the Superparameter ID section that the R/I uses 
to determine the relationship among parameters. 

IDCRI02 

Procedure: IDCRI02 

4 IDCRI02 obtains the FSR load module name from the 
command descriptor and places the name in the 
FSRLNAME field in COMMAREA. The Executive uses 
the FSR load module name to load the FSR that executes 
the command. 

IDCRI02 

Procedure: IDCRI02 

5 IDCR102 obtains storage for the Function Data Table, 
FDT. The verb uses 8 bytes of storage, and each parameter 
uses 4 additional bytes. IDCRI02 obtains more storage for 
the FDT if any parameter is repeated. The amount of 
storage for repeated parameters is calculated from the 
command descriptor. Because IDCRI02 uses a UGPOOL 
macro instruction to obtain storage, the identifier EXOO 
precedes the FDT. IDCRI02 initializes the FDT to zero 
and places the verb name in the first 8 bytes. The FDT 
contains the information from the command that an FSR 
needs to execute the command. The FDT is the interface 
between the R/I and the FSRs and consists of a primary 
array of addresses, one secondary array of addresses for 
each repeated parameter, and encoded data from the 
command. 

t"" 
n-
fD 

= i. 
~ 
ID 
fb 
E: 
I 

f 
s. 
; 
~ 



t;» Diagram 2.4 Reader/Interpreter Scan C"mmand 
~ 

< rll 

~ 
~ 
> 
~ 

f 
~ 
[ 
rll 
0 

~ g· 
gJ 

i. 

INPUT 

Command 
I . ·:i 

~ 
Command Descriptor 

I I 
PARM INFO 
Table 

D 

From Diagram 2.0 

PROCESSING 

1. Interprets each parameter until end of 
command or end of nested repetition, 
then goes to Step 2. 

a. Obtains parameter. 

b. Checks for errors. _..D 
See Diagram -v 

PARMINFO Table 

I I 

c. rou~6~~ameter data items I l 
See Diagram ----& 

2. Supplies defaults and checks for --------
errors. 

OUTPUT 

FDT 

D 
~ 
I 
l 
~ • i 
!!. 
I 

f 
s. 
; 
~ 



f 
0 .. 
!":> 

I 
0 
~ 

0 
i 
~-
::s 

..., 
I 
~ 
u. 

Extended Description for Diagram 2.4 

IDCRIOl 

Procedures: BUILDFDT, CONVERT, DSIDCHK, 
NAMESCAN, SCANCMD, KWDPARM, POSPARM, 
INREPEAT, GETDATA, GETSIMPL, GETQUOTD, 
ERRORl, ERROR2, NXTFIELD, NEXTCHAR, 
GFTRECRD 

If the Reader /Interpreter is processing a specified 
parameter, processing continues with step la. If the 
Reader /Interpreter is processing the end of a command or 
the end of a repeated parameter, processing continues with 
step 2. A parameter set is a parameter repeated as a group. 
Each repeated parameter set is treated separately from the 
command and from other repeated parameter sets. 
PARMFLAG for the parameters in a repetition is reset to 
zero for each group of repeated parameters in order to 
start the processing again for the new repeated group of 
parameters. 

a. SCANCMD extracts a parameter from the input 
record in storage. If the entire parameter is not in 
storage, GET REC RD reads SYSIPT until all the 
parameter is in storage. 

b. SCANCMD checks the parameter for syntax errors 
based upon the information for the parameter in the 
command descriptor. If errors are found, ERRORl or 
ERROR2 writes a message to SYSLST and sets 
LASTCC to 12. The rest of the command is skipped, 
and control is passed to R/l termination. 

c. As SCANCMD scans the command, BUILDFDT 
encodes the command into the FDT in order to 
describe the command to the FSR that will execute it. 
The data items are checked for additional errors (errors 
are processed as described in step l.b). Parameter 
scanning continues one parameter at a time until the 
end of a repeated parameter list is reached or until the 
command terminator is found. For positional 
parameters and data belonging to keywords, 
BUILDFDT checks to ensure that a string does not 
exceed the allowed length, that a number is not out of 
range, and that there are not too many elements in a 
list. 

IDCRIOl 

Procedures: DEFAULTS, SETDELT, NEEDNOTS 

2 The PARMINFO Table is used to access the description 
of each parameter. If a repeated group of parameters or a 
command is incomplete, default values are supplied to the 
FDT. The defaults, which are in the command descriptor, 

are always supplied whenever an input parameter is 
omitted, unless the defaults conflict with the input 
parameters. DEF A UL TS and SETDFL T check to ensure 
that the combination of defaults supplied for the 
command is meaningful, that is, no parameters that are 
syntactically correct but logically incorrect. PARMFLAG 
and the command descriptor are used to make 
inter-parameter checks for missing keywords and mutually 
exclusive keywords. If command scanning is not complete, 
control returns to step l to obtain the next parameter. 

( 
:: 
ID 

i 
!!. 
I 

f 
2-
; 
:: 



N 
I 
w 

°' 

~ 
l'll 

< {ll 

~ 

r 
I 
{ll 

i· 
r-' 
0 

~-

Diagram 2.4.1 Reader/Interpreter Syntax Check Parameter 

From Diagram 2.4 

INPUT PROCESSING 

Command 

I J 
1. Gets parameter number. 

Command Descriptor 

D 2. Indicates parameter is found. 

3. Checks constant for errors. 

4. Prepares to scan subparameters. 

OUTPUT 

Parameter Numher 

I I 

PARM INFO Tahlc 

I I 
FDTTBL 

D 

I 
I 
I 

J 
2--1:11:1 

3: 



0 ::r 
~ 
0 ... 
!'::> 

I 
0 ..., 
0 
'g 
~ g· 

..., 
I 
~ 
....J 

Extended Description for Diagram 2.4.1 

IDCRIOl 

Procedures: SCANCMD, KWDPARM 

1 The identification number is found differently for 
positional and keyword parameters. For a positional 
parameter, SCANCMD obtains the number of the 
parameter from the subparameter ID number list in the 
current superparameter's descriptor. For a keyword 
parameter, KWDPARM compares the keyword to every 
possible keyword permitted in the current level of 
parameter processing. When a match is found, 
KWDPARM saves the ID number of the keyword. 

IDCRIOl 

Procedure: SETFLAG 

2 SETFLAG uses the ID number of the parameter as an 
index to the FDT. SETFLAG puts the address of the FDT 
field in the same FDT field-the FDT field points to 
itself-to indicate that the parameter has been found. If 
the parameter has data, the FDT field will be changed 
later to the address of the data. Also, SETFLAG sets the 
PARMFLAG value to l for this parameter to indicate the 
parameter has been found in the command. 

IDCRIOl 

Procedures: GETDATA, CONVERT, PACKCVB, 
DSIDCHK, ERROR2 

3 If the parameter is a constant in the case of positional 
parameters, or if a constant is associated with the 
parameter in the case of a keyword parameter, 
G ETD AT A checks the constant for syntax errors. If an 
error is encountered, ERROR2 issues a message on 
SYSLST and sets LASTCC to 12. ln Access Method 
Services, a constant is one of the following: 

• dsname/password 
• dsname(membername)/password 
• dname/password 
• 'character string' 
• character string 
• X'hexadecimal digits' 
• decimal digits 
• B'binary digits' 

A list of constants is several constants in the same format 
following each other. A constant or a list of constants may 
belong to one parameter . 

IDCRIOl 

Procedure: SCANCMD 

4 lfthe keyword parameter has subparameters associated 
with it, SCANCMD processes the subparameters next. For 
example, ifthe following cpmmand is specified: 

VERB A( x) 8( C( p q ) D( rs E( x) ) ) F G( x) 

A, 8, C, D, E, F, and Gare keyword parameters. p, q, r, 
and s are positional parameters. x represents data. 

The command has the following structure for scanning: 

Ycrh 

I 
f I -T--
A B F G 

I ~ c 
I h I I I 

p E 

The structure is in levels of parameter dependency. The 
verb is on level zero. Parameters A, B, F, and Gare on 
level one. When the R/l scans level one and finds 
parameter B, the scanning begins one level lower with 
parameters C and D on level two. When parameter C is 
found, the scan again moves one level lower to scan the C 
subparameters. At the end of the C subparameters, the 
scan returns to level two to scan the next parameter on 
level two. At the end of the D subparameters, there are no 
more parameters on level two, and the scan returns to level 
one for parameter F. In other words, the parameters are 
processed in the same order that they appear on the input 
statement. R/l keeps the level number of the parameter 
being scanned in PARMLVL. R/I keeps the ID number of 
the superparameter for the level being scanned in 
SUPERID. R/I keeps the ID number of the parameter 
being scanned in PARMID. 

I 
3: 

~ 
!!. 
I 

l a 
s. 
; 
3: 



~ Diagram 2.4.2 Reader /Interpreter Build FDT 
w 
00 

< 
fll 
ti! ........ 
< 
fll 
> 
~ 
> 
I 
~ 

s. 
&. 
fll 
ft 

~-
fl> 

t"' 

~-

INPl'T 

lomnianJ Di:-.1.:rirtor 

I DI J - -=l \Cl h 

L ''t of <1JJ1c,,c, 
-1" -f" 

horn Di:.t~ram 2.4 

PROCESSING 

) • Determines tyre <lf rarameter: 

'-iun-rereated parameter. Step 2. 

Repeated rarameter. Ster 3. 

2. Puh address in FDT prirnar! 

veuor fur non-repeated parameter. 

3. Puh .1dJrcss 1n FDT arra_'. for 

repeated rarameter 

Ol'TPl'T 

I I) I 

I D 11 Bl 

\ nh 

l);it;1 "' Ctllllll <tllll ();it;1 

.\JT<I\ 1>! .\ddl"L'SSL'> 

I );1L1 ,,, 

C1n111t .111d l>.11.1 

~ g 
l 
3: ; 
::1 
!. 
I 

l a 
s. 
; 
~ 



n 

f 
!':> 
~ 

i 
~ 

1 
w 
I 
w 
\0 

Extended Description for Diagram 2.4.2 

IDCRIOl 

Procedures: PACKCVB, CONVERT, GETSPACE, 
MORESPACE 

1 The parameter type determines how it is encoded into the 
FDT. If the parameter cannot be repeated, processing 
continues with step 2; if the parameter can be repeated, 
processing continues with step 3. Refer to Diagram 2.3 for 
a definition of parameter. 

l A non-repeated parameter is one of the following: 

• A keyword with no data and no repeated 
su bparameters 

• A keyword with no data and repeated subparameters 

• A positional or keyword parameter with a single 
constant as data 

• A positional or keyword parameter with a list of 
constants as data 

Each category is encoded differently into the FDT as 
follows in the same order as above: 

• The address in the FDT points to itself 

• The address in the FDT points to a fullword containing 
the number of subparameter repetitions 

• The address in the FDT points to the single constant 

• The address in the FDT points to a halfword 
containing the number of constants and immediately 
preceding the list of constants 

Character string constants are not changed, but 
PACKCVB and CONVERT convert numbers and 
hexadecimal strings to binary before the address is put in 
the FDT. lfa list of constants is found, GETSPACE 
obtains space for the list when the first constant is 
processed. MORESPACE obtains additional space, if 
necessary. In the R/I listings, the word scaler is 
interchangable with the word constant. Control returns to 
Diagram 2.4 for the next parameter. 

IDCRIOl 

Procedures: SCANMD, INREPEAT, DEFAULTS, 
NEED NOTS 

3 Each repeated parameter-positional or keyword- is one 
of two repetition types. 

Repetition Type l 
The repeated parameter is not embedded in another 
repeated parameter. The objectname parameter in the 
IMPORT command has type l repetition. 

Repetition Type 2 
The repeated parameter is embedded within another 
repeated parameter. The lowkey parameter in the 
IMPORT command has type 2 repetition. 

The maximum number of repetitions for a parameter is in 
the command descriptor for the parameter. The R/I uses 
the repetition type to insert the addresses of the data 
associated with the parameter in a secondary FDT array of 
addresses. The address of the array is put in the primary 
FDT. For each repetition type the FDT array is different. 

Repetition Type 1 
The array is one-dimensional and contains one address 
for each possible occurrence of the parameter. 

Repetition Type 2 
The array is two-dimensional. There is one row for each 
possible occurrence of the type 1 or outer parameter. 
There is one column for each possible occurrence of the 
type 2 or inner parameter. 

Consider a command in the following format: 

VERB A( ( B( C D( (x y) ... )) E) ... ) F 

The type 1 parameters are B, C, D, and E because the 
entire parameter ( B( C D( (x y) ... )) E) can be repeated, 
but it is not embedded in another repeated parameter. 

The type 2 parameters are x and y because (x y) can be 
repeated, and it is embedded in another repeated 
parameter. A one dimensional array is built for each type 1 
parameter, B, C, D, and E, but a two dimensional array is 
built for each type 2 parameter, x and y. 

The data from each repetition of a parameter is treated as 
in step 2, but instead of putting the data address in the 
primary FDT array, R/I puts the address in the secondary 
array of addresses for the parameter. In the R/I listings, 
repetition type is called repeatedness nesting. Refer to the 
examples of FDT in the Data Areas chapter. Control 
returns to Diagram 2.4 for the next parameter. 

I 
3: • ! 
!!. 
I 

j 
s. -= 3: 



N 

~ Diagram 2.5 Reader/Interpreter Termination 

< fll 
l!I 
........ 
< 
fll 
> 
~ 

i 
I 
fll 
0 

i· 
b 
~-

INPUT 

HDAREA 

LOADTPTR 

KWDTPTR 

COMM AREA 

LAST CC 

EOFFLAG 

DESCNAME 

From Diagram 2.0 

PROCESSING 

1. Deletes tables. 

2. Updates condition code. 

3. Determines if command is to be executed. 

OUTPUT 

Register 15 

I I 
Register I 

GDT 

FDT Address 

FDT UGPOOL ID 

MAX CC 

LAST CC 

FSR Name 

r 
l 
3: 
ID 

[ 
!!. 
I 
~ 
! 
s. -= 3: 



f 
!'! 

i 
2, 

I 
N 
I 
~ 

Extended Description for Diagram 2.S 

IDCRI03 

Procedure: 1DCR103 

1 1DCRI03 deletes the command descriptor table for the 
current command and temporary storage. If end-of-file or 
a severe error is encountered, IDCR103 deletes the 
command name table (IDCRIL T), the modal name table 
(IDCRIKT), and HDAREA. 

IDCRI03 

Procedure: lDCRIOI, IDCR103 

2 If end-of-file is encountered on SYSIPT, IDCRI03 sets a 
flag in COMMAREA and IDCRIO I puts a nonzero value 
in register 15, indicating that the Executive is not to call 
the R/I again. If end-of-file has not been encountered and 
no severe errors were found, IDCRIOI sets register 15 to 
zero. If an error causes the R/l to terminate all processing, 
IDCRI03 prints an error message on SYSLST.1DCR103 
sets MAXCC to 16 which indicates that the Executive is 
not to call the R/l again. 

IDCRI03 
IDCRIOI 

Procedure: 1DCR103, lDCRIO I 

3 If the command had errors or was being scanned only for 
syntax errors due to a modal expression, IDCRI03 releases 
·he FDT and gives control to Diagram 2.2 to get the next 
command from SYSIPT. lfthe command is to be executed 
or severe errors were encountered, lDCRIOl gives control 
to Executive Controlled Termination Diagram 4.1. 

f 
l 
::: • ;; 
:L 
!!. 
I 

f 
s. 
; 
::: 



Licensed Material - Property of IBM 

2-42 VSB/VSAM Acceu Method Services Logic 



! ;; ... 
~ 

I 
2, 

f 
w 
I e 

Function Support Routine (FSR) Visual Table of Contents 

1 3.1 I 3.3 3.5 I 3.7 

ALTER DELETE IMPORT PARM 

3.2 3.4 3.6 

DEFINE EXPORT LISTCAT PRINT 

3.2.1 3.2.2 3.5.l 

MASTER- USER- CLUSTER or Catalog 
I'-~ ALTERNATE-CATALOG CATALOG INDEX Reload 

3.2.3 3.4.l 3.6.l 

CLUSTER or Gets NONVSAM I- ALTERNATE-
INDEX Information 

3.2.4 3.2.5 

SPACE I-~ CLUSTER 

3.2.6 3.2.7 

ALTERNATE-
lo-I ... PATH 

INDEX 

3.9 3.11 3.13 l 3.15 

REP RO BLDINDEX EXPORTRA RESETCAT r----

3.8 3.10 3.12 3.i4 

VERIFY LISTCRA IMPORTRA 

3.9.l 3.11.l 3.12.l 3.14.l 

Get Information ~ CLUSTER or 
lo-" Process CRA ~ AL TERNA TE-

and Verify INDEX 

3.11.2 3.13.l 3.14.2 

Obtain Resources 
Field USER-and Sort I'- I- I-

Initialization Management CATALOG 

3.11.3 3.13.2 3.14.3 

Sort-Merge and 
Build Alternate I'- Driver I- I- NONVSAM 
Index 

3.13.2.l 3.13.2.2 3.14.4 

Export VSAM Export - GDG BASE Data Set NonVSAM 

I 3.16 

CANCEL 

3.15.1 

~ Initialization 

3.15.2 

I-
Copy Catalog 
to Work File 

3.15.3 

Merge CRAs 
i--

to Work File 

3.15.4 

t- Reassign 
a numbers 

3.15.5 

~ 
Check 
Associations 

3.15.6 

Update the 
H Catalog 

3.15.7 

.._ Update the 
CRA 

i 
I. 
re 
l e. 

' j 
st. 

! 



N 
I 

t 

< 
UJ 

~ 
> a:: 

I 
I 
ff 

I· 
i 

Diagram 3.1. ALTER FSR 

INPUT 

Register I 

tGDT 

tFDT 

0 

VSAM 
Catalog 

From Executive 
Controlled Termination 

PROCESSING 

1. Opens user catalog. 

2. Obtains information from 
catalog. 

CTGPL -

3. Verifiesnewvaluesarecompatible. ' "-') .... '-''"'''u .......... 

4. Verifies entry type is valid for Alter; 
operation. 

S. Builds catalog parameter lists. 

6. Changes catalog entry. 

7. Writes message. 
~___,_,,e 

---:----./ e 
'---------~ 

CTGFV -

CTGFLs 

CTGFLs -

e 

OUTPUT 

VSAM 
Catalog 

E)Message 

D 
t GOT 

t FDT 

r 
l 
a: 
i 
!!. 
I 

i 
2-
; 
a: 



n 
.[ 
0 ... 
!':.> 

~ 
0 

[ 
0 _, 
0 
i e g· 

"' I 

~ 

Extended Description for Diagram 3.1 

IDCALOl 

Procedure: IDCALO I 

First, IDCALO I gets storage for the catalog parameter list. 
If a VSAM catalog is specified on the ALTER command, 
IDCALOI builds an OPNAGL and issues a UOPEN to 
open the catalog. UOPEN returns the address of the 
catalog ACB. If the open is not successful, the ALTER 
command is terminated, and control goes to Step 7. If a 
catalog dname is passed, IDCALO I compares the data set 
name returned from UOPEN (in IOCDSN) to that 
specified in the CATALOG parameter. If the compare is 
unequal, a message is written, the command is terminated 
and control goes to Step 7. 

If an attempt is made to rename a reserved default model 
or rename an object to a reserved default model name, an 
error message is issued and the command is terminated. A 
reserved default model name is any name that begins with 
"DEFAULT.MODEL." 

IDCALOl 

Procedure: LOCA TPRC 

2 Due to the arrangement of information in a VSAM 
catalog, in order to change part of a field the entire field 
must be retrieved and changed. If only NEWNAME, 
OWNERjNULLIFY OWNER, TOiFORiNULLIFY 
RETENTION, BUFFERSIZE, 
EXCEPTIONEXITjNULLIFY EXCEPTIONEXIT, 
NOUPG RADEiUPDATEjNOUPDA TE, or 
ADDVOLUMESiREMOVEVOLUMES is specified, 
control goes to Step 5. LOCATPRC builds a CTGPL and 
CTG FLs which reference the PASSW ALL, DSATTR, 
AMDSBCAT, RGATTR, NAMEDS, HURBADS, 
EN TYPE and CAT ACB catalog fields. This initial locate 
performed in LOCA TPRC is termed the primary locate. 

A test is built to limit the number of associations returned 
for NAMEDS to a maximum of five. Refer to the list in 
Step 5 for the contents of the catalog fields obtained with a 
particular CTG FL. LOCA TPRC issues a UCA TLG 
macro to retrieve the information from the catalog. If the 
return code is zero, LOCA TPRC uses the returned 
information to build a table, LOCT ABLE. If the return 
code is 40, the work area for VSAM is too small. 
LOCA TPRC increases the work area and reissues the 
UCATLG. lfthe return code is any other nonzero 
number, the ALTER command is terminated and control 
goes to Step 7. 

IDCALOl 

Procedure: CHECKPRC 

3 Following the primary locate, IDCALOI will invoke 
CHECKPRC if any of the following parameters were 
specified: UPGRADE, KEYS, RECORDSIZE, 
UNIQUEKEY. CHECKPRC will perform further 
verification of these parameters which will, in most cases, 
require additional locates (called 'secondary' locates). 
Password processing for the primary and secondary locates 
and for the Alter function itself is handled as follows: 

If KEYS and/or RECORDSIZE are not specified: 

a. On the primary locate, if a password is supplied, 
reference it from the CPL. Set the verify master 
password bit. 

b. If UPGRADE is specified, a secondary locate for the 
data HURBADS is required. If a password is supplied, 
reference it from the CPL. Turn off the verify master 
password bit. The password (which is that of the cluster 
level) will be verified as being read level or higher. 

c. On the Alter, if a password is supplied, reference it 
from the CPL. Turn off the verify master password bit. 
Password verification will be as in prior release (master 
password of catalog or entry being altered). 

If KEYS and/or RECORDSIZE are specified: 

a. On the primary locate, if a password is supplied, 
reference it from the CPL. Set the verify master 
password bit. 

b. On the secondary locates, if a password is supplied, 
reference it from the CPL. Turn off the verify master 
password bit. Turn on the bypass verification bit. No 
verification will take place and the requested 
information will be returned. 

c. On the Alter, processing is as described in b above. 

If UPGRADE was specified, CHECKPRC will verify that 
the ENTYPE is a G (alternate index). If UPGRADE was 
specified, CHECKPRC will verify that the high-used RBA 
is zero. This latter check will require a locate of the data 
HURBADS. lf UNIQUEKEY was specified when the 
attribute was previously NONUNIQUEKEY, 
CHECKPRC will verify that the high-used RBA of the 
data object is zero and that the data object is associated 
with an alternate index. If any of these error checks fail, a 
message is printed and processing is terminated. 

The major portion of the new CHECKPRC procedure will 
perform the validity checking required to alter the KEYS 

and/or RECORDSIZE values of an empty data set. This 
checking will require the following secondary locates, 
based on the ENTYPE returned from the primary locate: 

ENTYPE Locates Fields Requested 

D 1-C or G NAMEDS (a maximum 

c 

G 

R 

association of three 
associations) 

2-1 association 
C orG 

1-D association 

2-1 association 

1-D association 

2-1 association 

1-D association 
of AlX or 
cluster 

2-1 association 
of AlX or 
cluster 

AMDSBCAT 

AMDSBCAT, HURBADS, 
NAMEDS, ENTYPE, 
DSATTR, PASSWALL 

AMDSBCAT 

AMDSBCAT, HURBADS, 
NAM EDS, ENTYPE, 
DSATTR, PASSWALL 

AMDSBCAT 

AMDSBCAT, HURBADS, 
NAMEDS, ENTYPE, 
DSATTR, PASSWALL 

AMDSBCAT 

lfthe ENTYPE is none of the above, CHECKPRC will 
return to lDCALOl with a terminating condition code. 
The LOCATE for the index AMDSBCAT will be issued 
only for a KSDS. CHECKPRC will also verify that the 
HUR BADS is zero. If not, CHECKPRC will return to 
ID CALO I with a terminating condition code. If the object 
being altered is a relative record data set, CHECKPRC 
will verify that the average and maximum record size 
specified are equal and, if not, will return to IDCALO I 
with a terminating condition code. If the EN TYPE 
returned in the primary locate is C, G or R, CHECKPRC 
will save the control interval number of the data 
component which is to be altered. 

After retrieval of the appropriate AM DSBCA Ts, the 
following check will be made of the new average and 
maximum recordsizes and/or new key values. 

a. Data Object 

AMDRKP + AMDKEYLN - AMDLRECL 

or, if the object has the spanned attribute, 

AMDRKP + AMDKEYLN - AMDCINV - D.H.R.S 

t""' ;;-
fD 

= l 
::: 
i 
:::!.. e. 
I 

l 
~ 
2. 
;; 
::: 



w 
I 

~ 

< 
flJ 

~ 
< 
flJ 
> 
~ 

§ 
= 
I 
flJ 
ft 

i· 
l""' 

~-

b. DA TA object 

AMDCINV ~ AMDRKP + AMDKEYLN + D.R.H.S 
& AMDCIPCA * (AMDCINV - D.R.H.S) ~ 
AMDLRECL 

c. Index AMDCINV :!!: max (x,y) where: 

X = I.R.H.S + (2 * (AMDKEYLN + 2)) + (3 • 
AMDCIPCA) + D.R.H.S 

Y = I.R.H.S + (8 * AMDCIPCA) + (2 • SQRT 
(AMDCIPCA)) + D.R.H.S. 

l.R.H.S =index record header size= 24 

D.R.H.S =data record header size= 7 if non-spanned 

D.R.H.S =data record header size= 10 if spanned 

If any of these relationships do not hold, CHECKPRC 
will return to IDCALOl with a terminating condition code. 

If this is an alteration of an ESDS the index validity check 
will not be performed. If this is an alteration of an 
alternate index, the AMDRKP is a fixed value ofX'05'. lf 
relative key position is specified, it applies to the position 
of the alternate key within the base cluster record. 

If the object being altered is a alternate index and the 
KEYS parameter was specified, a further check must be 
made that requires retrieving the AMDSB of the base 
cluster's data component. The table below shows the 
locates that CHECKPRC will issue based on the 
ENTYPE returned from the primary locate. 

ENTYPE Locates Fields Requested 

D 

G 

R 

l-C association 
of G retrieved 
in secondary 
locate 

2-D association 
ofC 

l-C association 
retrieved in 
primary locate 

2-D association 
ofC 

l-D association 
of base cluster 
retrieved in 
primary locate 

NAMEDS (the first 
association) 

AMDSBCA T (the 
first association) 

NAMEDS 

AMDSBCAT 

AMDSBCAT 

Using the base cluster's data AMDSB, CHECKPRC will 
verify the following: 

AIX AMDAXRKP + AIX AMDKEYLN s; base cluster 
AMDLRECL 

or, if the base cluster has the spanned attribute, 

AIX AMDAXRKP + AIX AMDKEYLN s; base cluster 
AMDCINV-D.R.H.S 

where D.R.H.S = lO 

If either of these conditions are not true, CHECKPRC will 
return to IDCALOl with a terminating error. 

Assuming no terminating errors have been found, 
CHECKPRC will now set the appropriate return code to 
IDCALOl indicating what situation was encountered. The 
return code will eventually be passed back to the caller, and a 
message written. The table below shows the return code value 
which will be set: 

Previous KEYS 
KEYS and/or 
RECORDSIZE 
values were 
default values 

New values 
are equal 
to previous 
values 

4 

Previous KEYS 4 
and/or RECORDSIZE 
values were not 
default values 

New values 
are not equal 
to previous 
values 

0 

12 

If the return code is 0, the alter will be performed. If the 
return code is 4, KEYS and RECORDSIZE will not be 
altered but alters will be performed for any other 
parameters specified. A return code of 12 is treated as a 
terminating condition code. lfthe verification of the new 
values fails, the return code is 12. 

Control is returned to IDCALO l. 

IDCALOI 

Procedures: PARAMCHK 

4 lfonly NEWNAME, OWNERINULLIFY (OWNER), 
TOIFORINULLIFY (RETENTION), 
EXCEPTIONEXIT, NOUPGRADE, 
UPDATE!NOUPDATE, or BUFFERSPACE is specified, 
control goes to step 5. Otherwise, IDCALOI passes control 
to the internal procedure PARAMCHK. PARAMCHK 
verifies that the parameters specified on the ALTER 

command are valid for the entry type of the object to be 
altered. The WRITECHECK!NOWRITECHECK, 
INHIBIT!NOINHIBIT, and SHAREOPTIONS 
parameters are only allowed for data or index objects. The 
ERASEINOERASE, FREESPACE and 
UNIQUEKEY!NONUNIQUEKEY parameters are only 
allowed for data objects. An error is indicated if the 
ERASE, WRITECHECK, EXCEPTIONEXIT, or 
BUFFERSIZE option is specified for a SAM ESDS in 
NOCIFORMAT. lf PARAMCHK detects an error, 
control goes to step 7, otherwise, control goes to step 5. 

IDCALOI 

Procedure: AL TERPRC 

5 AL TERPRC uses the data from the ALTER command in 
the FDT and LOCT ABLE. AL TERPRC builds a 
CTGPL, a CTGFV, and several CTGFLs in order to 
change information in the catalog. Only fields that are 
specified in the ALTER command are changed in the 
catalog. If information in a field is not being changed, the 
CTGFL for the field is not built. The following table lists 
the data areas that pass information to VSAM and the 
keywords whose data is passed. 

I 
3: 

l 
I 
l 
1 
s. 
; 
3: 



f 
hl 

I 
2, 
0 

I-
.., 
I 

~ 

Data Area 
CTGPL 

BUFSIZE CTGFL 

DESTEXDT CTG FL 

DSATTR CTGFL 

OWNERID CTGFL 

PASSWALL CTGFL 

Keyword Data 
NEWNAME address 
FILE address 
ADDVOLUMES address 
REMOVEVOLUMES 
address 

BUFFERSPACE 

TOiFOR 
NULLIFY RETENTION 

ERASEiNOERASE 
SHAREOPTIONS 
UNINHIBIT!INHIBIT 

OWNER 
NULLIFY OWNER 

MASTERPW 
CONTROLPW 
UPDATEPW 
READ PW 
CODE 
ATTEMPTS 
AUTHORIZATION 
NULLIFY for any keywords 
just listed 

AMDSBCAT CTGFL FREESPACE 

EXCPEXIT CTGFL 

RGATTR CTGFL 

WRITECHECKI 
NOWRITECHECK 
KEYS 
RECORDSIZE-maximum 
UNIQUEKEYI 
NONUNIQUEKEY 

EXCEPTION EXIT 
NULLIFY 
EXCEPTION EXIT 

UPGRADEiNOUPGRADE 
UPDATE!NOUPDATE 

LRECL CTGFL RECORDSIZE-average 

If KEYS or RECORDSIZE was specified, CHECKPRC 
has saved the control interval number of the data 
component being altered. This number is moved to the 
CPL and is used instead of the data component name for 
faster access . 

Prior to IDCALOI issuing the UCATLG macro the 
CTGFVTYP field will be set to G if 
UPGRADE/NOUPGRADE is specified. 

CTGFVTYPwill be set to R ifUPDATE/NOUPDATE 
is specified. 

IDCALOt 

Procedure: IDCALO I 

6 IDCALOI issues a UCATLG macro to change the catalog 
entry. If the return code from UCATLG is nonzero, an 
error conversion table is built and a call is made to 
UERROR. UERROR will handle printing of the error 
message. If KEYS is specified for a KSDS or an alternate 
index, a second UCA TLG macro is issued to change the 
catalog entry of the associated index object. If the return 
code is nonzero, it builds an error conversion table and 
calls UERROR. UERROR will handle the printing of the 
error message. 

IDCALOt 

Procedure: IDCALOI 

7 ICDALOI also writes a message with LASTCC to 
SYSLST. lflDCALOI opened a VSAM catalog, it closes 
the catalog with a UCLOSE macro. Control goes to 
Executive Controlled Termination. 

~ 

l 
3: 
[ 
!!. 
I 

l 
s. 
! 



w 
l Diagram 3.2. DEFINE FSR 
OD 

~ 
~ 
< tlJ 

~ 
§ 
= 

I 
[ 
8 
{jO 

r""' 

~-

INPUT 

Rq~i..,kr 

r 

~ 
tGDT 

t FDT 

~ 

() 

VSAM 
Catalog 

From L\...:cuti\L' 
Contrnlkd Termination 

PROCESSING 

1. Initializes catalog parameter lists. 

2. Opens catalog. if specified. 

3. Determines ohjcct heing defined: ---~-~·..,, 

MASTERCATALOGD_ 
see Diagram-L/ 

USERCATALOG ~ 
See Diagram-tJ 

NONVSAM ~ 
See Diagram--tJ 

SPACE ~ 
see Diagram---u 

CLUSTER ~ 
see Diagram_[J' 

• ALTERNATE IND~.:_r-:-:~ 
See Diagram --a 

• PATH D. 
See Diagram -u 

4. Performs validity checking. 

5. Invokes VSAM catalog 
management. 

6. Writes message. 

~·J 

CHiPL 

-~1 

OUTPUT 

VSAM 

Catalo!! 

D I 
:: 
i 
!. 
I 

f 
s. -= :: 



g 
ii 
~ 

I 
2, 
0 
i 
Pl g· 
..., 
I 

~ 

Extended Description for Diagram 3.2 

IDCDEOI 

Procedure: IDCDEOl 

lDCDEOl issues a UGPOOL macro to obtain core for a 
CTGPL, four CTGFVs and two work areas. One work 
area is used by catalog management during its processing. 
The second is used by catalog management to return the 
volume serial of the recovery volume for the object 
defined if the catalog is recoverable. The CTG PL, 
CTGFVs and CTGFLs are used to pass information to 
VSAM catalog management. The CTGFVs are found 
through the CTGPL, and the CTGFLs are found through 
the CTGFVs. Refer to the VSE/VSAM LOGIC, Volume 
I, for more information on the CTGPL, CTGFV, and 
CTGFL. Refer to the Diagnostic Aids chapter for an 
illustration of the DEFINE FSR work area. The 
characters CA TPUST preceed the CTG PL. A call is made 
to IECDE02 to establish addressability for IDCDE02 to 
declarations common to all DEFINE modules. If a 
catname is supplied with a CATALOG parameter, 
IDCDEOI puts the address of the catname and the 
password in the CTGPL. 

IDCDEOl 

Procedure: IDCDEOI 

2 If the CATALOG parameter specifies a dname, lDCDEOI 
opens the catalog with a UOPEN macro. If the return code 
from UOPEN is zero, IDCDEOI compares the data set 
name returned from UOPEN (in IOCDSN) to that 
specified in the CATALOG parameter. If the compare is 
unequal, a message is written and control goes to Step 6. 
The 1/0 Adapter returns the address of the ACB for the 
catalog in the IOCSTR. IDCDEOI puts the address of the 
ACB in the CTGPL. IDCDEOI puts the address of the 
catalog ACB in the same CTGPL field where the address 
of the catname was placed. The ACB is used instead of the 
name for faster catalog access by VSAM catalog 
management. If the return code from the UOPEN is 
nonzero, a message is written with a UPRINT macro and 
control goes to step 6. Otherwise, IDCDEOI calls 
lDCDE03 to format the catalog parameter list. 

IDCDE03 

Procedure: IDCDE03 

3 lDCDEO l determines the type of DEFINE by testing for 
the following keywords: CLUSTER, 
MASTERCATALOG, USERCATALOG, NONVSAM, 

SPACE, ALTERNATEINDEX, PATH. The types of 
DEFINE are shown in detail in the following diagrams: 

MASTERCAT ALOG see Diagram 3.2. l 
USERCA T ALOG see Diagram 3.2.2 
SPACE see Diagram 3.2.3 
NONVSAM see Diagram 3.2.4 
CLUSTER see Diagram .3.2.5 
ALTERNATEINDEX see Diagram 3.2.6. 
PATH see Diagram 3.2.7. 

IDCDEOl 

Procedure: INTGCHK 

4 INTGCHK performs validity checking to insure: 

KSDS, ESDS, RRDS, and AIX 

• Space parameters have been properly specified. 

• User is warned when USECLASS has been ignored 
due to the absence of space parameters at the same 
level. 

• Volumes have been specified in both DAT A and 
INDEXFVTs. 

• If KEYLENGTH and KEY POSITION (in Data 
AMDSB) have not been specified supply defaults: 
length-64, relative key position==O. 

• If average and maximum recordsize have not been 
specified, specify defaults: average for 
non-spanned-4089, average for spanned-4086, 
maximum for non-spanned-4089, maximum for 
spanned-32,600 

• If UNIQUE is specified insure CTGFVIND (dname) 
has been set and build null volume FVT. 

• UNIQUE was not specified with a USECLASS other 
than zero. 

• RECORDSIZE was omitted with 
RECORDFORMAT FIXUNB or FIXBLK 

• If NOALLOCA TION was specified for a KSDS/ AIX, 
it should be specified in both the DATA and INDEX 
components. 

• If a default model has been defined, it should have the 
NOALLOCA TE attribute and should always have a 
volume list. 

• If the DEFAULTVOLUMES parameter is ignored 
due to override by the VOLUMES parameter, a 
warning message is given. 

• RECORDFORMA Twas not specified with 
INDEXED, NUMBERED, SPANNED, or 
RECOVERY. 

• NOCIFORMAT was not specified with 
WRITECHECK, ERASE, or EXECPTIONEXIT. 

• A component with ORDERED attributes has a volume 
list. 

• lf an ESDS, KSDS or AIX has the REUSABLE 
attribute make sure it is not unique nor have 
KEYRANGES been specified. 

• lf AMDRRDS indicates an RRDS, insure that the 
average and maximum LRECL are equal. 

• If the data AMDSB indicates an RRDS, insure that it 
does not also indicate spanned. 

• If record size is greater than 32,761 (maximum CI size), 
insure that it has the spanned attribute. 

• If KEYRANGES is specified, ensure key values do not 
exceed maximum key length. 

• Because USECLASS is effective only when space 
parameters (for example, CYL) are specified, modeled, 
or propagated at the same level, INTGCHK performs 
the final audit and application of USECLASS to the 
SPACPARM CTGFLs. 

SPACE 

• Space parameters have been properly specified. 

• Because USECLASS is effective only when space 
parameters (for example, CYL) are specified, modeled 
or propagated at the same level, INTGCHKperforms 
the final audit and application of USECLASS to the 
SPACPARM CTGFLs. 

IDCDEOl 

Procedure: lDCDEOl 

5 IDCDEOl invokes VSAM catalog management by issuing 
a UCATLG macro. lfa nonzero catalog management 
return code is received, and if it relates to volume 
allocation status, a UPRINT macro lists the volumes 
associated with the error conditions. 

For allocation of space on a fixed block device, a UPRINT 
macro prints specific extents to indicate possible rounding 
of actual extents to conform to device characteristics. 

If a list of names is returned, the list is written with a 
UPRlNT macro. If the return code from UCATLG is 
nonzero, IDCDEOl builds an error conversion table and 

~ 

l 
3: 

i 
!. 
I 

f 
s. 
; 
3: 



Licensed Material - Property of IBM 

2-50 VSE/VSAM Access Method Services Logic 



f .. 
~ 

I 
2, 

1 
~-

to.I 
I 

"" -

invokes UERROR. UERROR will handle printing of the 
error message. 

If a recovery volume serial is returned, it is printed with a 
UPRINT macro. 

IOCDEOl 

Procedures: IDCDEOI 

6 If a catalog was opened in step 2, IDCDEOI closes the 
catalog with a UCLOSE macro. A message with LASTCC 
is written with a UPRINT macro. IDCDEOI calls 
FREESTG to free all automatic storage for CSECT 
IDCDE02. IDCDEOI issues a UFPOOL to free all the 
storage obtained for the DEFINE FSR. Control goes to 
Executive Controlled Termination. 

f 
3: 

I 
I 

j 
s. 
i 



..., 
lo Diagram 3.2.1. DEFINE FSR - DEFINE MASTERCAT ALOG ..., 

< 
{I} 

tr.I 

< {I} 

> 
~ 

§ 
J: 

~ 
[ 
{I} 
ft 

~-
t'" 

~-

INPUT f '°"' ::·:::S::NG 

D 
1. Builds cluster CTGFV. 

2. Builds volume CTGFV. 

3. Builds data CTGFV. 

4. Builds index CTG F-Y 

5. Checb n1lume inftirmallun. 

CTGPL -
OUTPUT 

Cluster 
crc;Fv 

Volurrn: 
cn;iv 

();1t;1 

CHil\ 

I mk\ 

I Data J 

[]] 
I 

D 
I ();1t;i 

D 
r J);it;, ==i 

Cl --

~ 

l 
3: • ! 
!. 
I 
~ 
1 
~ 
s. 
; 
3: 



f ... 
!':> 

~ 
[ 
0 ..., 

~ 
i· 
tJ 
I 
V> 
~ 

Extended Description for Diagram 3.2.1 

IDCDE02, IDCDE03 

Procedures: CTLGPROC, ALLCPROC, NAMEPROC, 
PROTPROC 

In the DEFINE MASTERCATALOG command, you 
specify information under three main keywords: 
MASTERCATALOG, DATA, and INDEX. The 
DEFINE FSR builds a CTGFV to describe the cluster, 
data and index components of the mastercatalog as well as 
building a volume CTGFV. Information specified under 
MASTERCATALOG goes in the CLUSTER and 
VOLUME CTGFVs; information under DATA goes in 
the DATA CTGFV; and information under INDEX goes 
in the INDEX CTGFV. Ifnot enough information is 
specified under DATA or INDEX to build the DATA or 
INDEX CTGFV, information from 
MASTERCATALOG completes the DATA or INDEX 
CTG FV. If information is duplicated under DAT A or 
INDEX and under MASTERCATALOG-like 
WRITECHECK-information from DATA or INDEX 
overrides the information from MASTERCAT ALOG in 
the DATA or INDEX CTGFV. The exception is space 
information from TRACKS, CYLINDERS, BLOCKS, or 
RECORDS. Space information is never copied from 
MASTERCA T ALOG to the DAT A and INDEX 
CTGFVs. CTLGPROC sets the identification of 
CLSTRFVT in the 8 bytes before the CLUSTER 
CTGFV. An .. M" is set in the CTGTYPE field in the 
CTGPL to indicate that a master catalog is being defined. 
CTLG PROC puts the address of the objectname from 
NAME in the CLUSTER CTGFV. ALLCPROC builds a 
SPACPARM CTGFL with the primary and secondary 
space information from TRACKS, CYLINDERS, 
BLOCKS, or RECORDS along with DEDICATE and 
CLASS indicators. ALLCPROC sets the address of the 
recovery volume serial work area in the CTGFVWKA 
field of the cluster FVT. NAMEPROC issues a UTIME 
macro to get the creation date which is put in a 
DSETCRDT CTGFL. NAMEPROC also builds a 
DSETEXDT CTG FL with the information from 
TOIFOR.PROTPROC builds a PASSWALL CTGFL 
with information from MASTERPW, CONTROLPW, 
UPDATEPW, READPW, CODE, ATTEMPTS, and 
AUTHORlZA TlON. PROTPROC also builds a 
OWNERlD CTGFL with information from OWNER. 

-CLSTRFVT I 

MASTERCAT ALOG - CLUSTER --
CTGFV 

IDCDE02, IDCDE03 

Procedures: CTLG PROC, ALLCPROC 

2 The DEFINE FSR builds a VOLUME CTGFV with 
information specified under MASTERCATALOG. 
CTLGPROC sets the identification of VOLUMFVT in 
the 8 bytes preceding the VOLUME CTGFV. 
ALLCPROC builds a SPACPARM CTGFL with the 
primary and secondary space information from TRACKS, 
CYLINDERS, BLOCKS, or RECORDS along with 
DEDICATE and CLASS indicators. ALLCPROC puts 
the address of volser from VOLUME and the address of 
dname if specified from FILE in the VOLUME CTGFV. 

VOLUMFVTI 

MASTERCATALOG - VOLUME 
CTGFV 

IDCDE02, IDCDE03 

Procedures: CTLGPROC, NAMEPROC, KEYPROC, 
ALLCPROC 

3 CTLGPROC sets the identification of DATAFVT in the 8 
bytes preceding the DATA CTGFV. The DEFINE FSR 
builds the DATA CTGFV with information specified 
under MASTERCAT ALOG and under DAT A. If 
information is duplicated under MASTERCATALOG 
and under DA TA, the information in DAT A overrides 
information from MASTERCATALOG. The DEFINE 
FSR first puts the information from 
MASTERCATALOG in the DATA CTGFV; second, 

information from DATA is put in the DATA CTGFV 
overriding anything already in the DATA CTGFV. 

First, the information under MASTERCATALOG is put 
in the DATA CTGFV as follows: 

NAMEPROC issues a UTlME macro to get the creation 
date which is put in a DSETCRDT CTGFL. KEYPROC 
builds a AMDSBCAT CTGFL, but no information is put 
in yet. ALLCPROC puts the address of the volser if 
specified from VOLUME and the address of dname if 
specified from FILE in the DAT A CTG FV. 
WRITECHECK!NOWRITECHECK is put in the 
AMDSBCAT CTGFL. ALLCPROC builds a BUFSIZE 
CTGFL with information from BUFFERSPACE. 
ALLCPROC builds a DSATTR CTGFL for data set 
attributes and, in addition, sets the Recoverable or Not 
Recoverable indicator in DSA TTR. In the listings this is 
called the implicit pass. 

Second, the information under DAT A is put in the DAT A 
CTG FV as follows: 

ALLCPROC builds a SPACPARM CTGFL for primary 
and secondary space information from TRACKS, 
CYLINDERS, BLOCKS, or RECORDS. The value 
specified for CLASS is also set in the SPACEPARM 
CTGFL. ALLCPROC initializes the Recoverable/Not 
Recoverable flag in the DSATTR CTGFL. 
IfWRITECHECK!NOWRITECHECK is specified under 
DATA, it is overridden in the AMDSBCAT CTGFL. If 
BUFFERSPACE is specified under DATA, ALLCPROC 
builds a BUFSIZE CTGFL or modifies the existing one. 
In the listings this is called the explicit pass. 

MASTERCAT ALOG 

DATA 

;oATAFVTh I 

DATA 
CTGFV 

r""' 
n-
B 
l 
3: • ;-
:L 
!!. 
I 

l a 
2. -= 3: 



Licensed Material - Property of IBM 

2-54 VSE/VSAM Acc:eu Method Services Logic 



f 
!'! 

I 
2, 

i g-
1:' 

...., 
I 

\A 
\A 

IDCDE02, IDCDE03 

Procedures; CTLG PROC, NAMEPROC, KEYPROC, 
IXOPPROC,ALLCPROC 

4 CTLGPROC sets the identification of INDEXFVT in the 
8 bytes preceding the INDEX CTGFV. The DEFINE 
FSR builds the INDEX CTGFV with information 
specified under MASTERCAT ALOG and under INDEX. 
If information is duplicated under MASTER CATALOG 
and under INDEX, the information in INDEX overrides 
information from MASTERCATALOG. The DEFINE 
FSR first puts the information form 
MASTERCATALOG in the INDEX CTGFV; second, 
information from INDEX is put in the INDEX CTGFV 
overriding anything already in the INDEX CTGFV. First, 
the information under MASTER CATALOG is put in the 
INDEX CTGFV as follows: 

NAMEPROC issues a UTIME macro to get the creation 
date which is put in a DSETCRDT CTGFL. KEYPROC 
builds a AMDSBCA T CTG FL, but no information is put 
in yet. In IXOPPROC, IMBEDINOIMBED is put into the 
AMDSB. ALLCPROC puts the address of the volser from 
VOLUME and the address of dname if specified from 
FILE in the INDEX CTGFV. 
WRITECHECKINOWRITECHECK is put in the 
AMDSBCAT CTGFL. ALLCPROC builds a DSATTR 
CTG FL for data set attributes. In the listings this is called 
the implicit pass. 

Second, the information under INDEX is put in the 
INDEX CTGFV as follows: 

ALLCPROC builds a SPACPARM CTGFL for primary 
and secondary space information from TRACKS, 
CYLINDERS, BLOCKS, or RECORDS. The value 
specified for CLASS is also set in the SPACP ARM 
CTGFL. WRITECHECKINOWRITECHECK is 
overridden in the AMDSBCAT CTGFL. ALLCPROC 
initializes the Recoverable/Not Recoverable flag in the 
DSA TTR CTG FL. In the listings this is called the explicit 
pass. 

MASTERCAT ALOG 

INDEX 

IDCDEOl 

Procedure: INTGCHK 

~NDEXFVT I 

INDEX 
CTGFY 

5 For MASTERCA TA LOG four CTG FV's have been built: 
one for cluster information, data information, index 
information, and volume information. A SPACPARM 
CTGFL must be specified on the CTGFV for volume 
information. In addition, INTGCHK checks the other 
three CTG FY s for a SPACPARM CTG FY. The following 
table shows the possible CTGFVs where a SPACPARM 
CTGFL may have been built (in addition to the 
VOLUME CTGFV) and the action INTGCHK takes. 

SPACPARM CTGFL 

Cluster 

x 

x 

x 

x 
none 

Data Index 

x x 

x 

x 

none none 

Action 

IDCDEOl erases the 
SPACPARM CTGFL 
from the CLUSTER 
CTGFV. 

IDCDEOl erases the 
SPACPARM CTGFL 
from the CLUSTER 
CTGFV. 

This is an error; IDCDEOl 
terminates the DEFINE. 

OK; no action. 

This is an error; IDCDEOl 
terminates the DEFINE. 

INTGCHK insures that space parameters exist wherever 
CLASSIUSECLASS has been specified (or internally 
generated). If space parameters do not exist, 

CLASSIUSECLASS is dropped from the SPACPARM 
CTGFL. 

Note that for DEFINE MASTERCATALOG, primary 
useclass is not specified explicitly; it is logically generated at 
the data and index levels to agree with the value established 
for CLASS. Secondary useclass is always the same as primary 
useclass. 

The SPACPARM CTGFL is checked for a dname from FILE. 
Control goes to Diagram 3.2, step 4. If an error occurs, 
INTGCHK writes a message and control goes to step 6. 

r"'" 

( 
~ • ;-
:L 
!. 
I 

f 
a. -= ~ 



~ Diagram 3.2.2. DEFINE FSR - DEFINE USERCAT ALOG 
Ul 
0\ 

< 
rll 

~ 
~ 
=:: 

i 
=:: 

i 
I 
i 
(') 

INPUT 

CTGPL 

D 

~f Cnun ::::~::l~NG 

~ 1. Builds cluster CTGFV. 

2. Builds volume CTGFV. 

3. Builds data CTGFV. 

4. Builds index CTGFV. 

5. Checb nilume information. 

'---

MDTHL 

l I 

!\IDTBL 

r-- J 

!\llHBL 
[ - - ] 

I 
I 
I 

OlTTPLTT 

CHiPL n-°'"I<' 

LJ/~ 

\/111111111: 

CHiF\' 

Data 
CHiFV 

I mJn 
CHil\' 

J Data J 

CHiFL' 

[J 
Data 

CHil·L' 

[J 
(Data ( 

CHifT, --

Data 

D 
I 
I 
I 

l 
~ 
a. -= :: 



&1 
~ 
li 
""' ~ 

I 
0 ..., 

~ 
~ 
ir 
..., 
I 

\A 
...a 

Extended Description for Diagram 3.2.2 

IDCDEOl, IDCDE03 

Procedures: CTLGPROC, NAMEPROC, MODELPRC, 
PROTPROC,ALLCPROC 

1 In the DEFINE USERCATALOG command, you specify 
information under three main keywords: 
USERCATALOG, DATA, and INDEX. The DEFINE 
FSR builds a CTGFV to describe the cluster, data and 
index components of the usercatalog as well as building a 
VOLUME CTGFV. Information specified under 
USERCATALOG goes in the CLUSTER and VOLUME 
CTGFVs; information under DATA goes in the DATA 
CTGFV; and information under INDEX goes in the 
INDEX CTGFV. lfnot enough information is specified 
under DATA or INDEX to build the DATA or INDEX 
CTGFV, information from USERCATALOG completes 
the DATA or INDEX CTGFV. lfinformation is 
duplicated under DATA or INDEX and under 
USER CATALOG-like WRITECHECK-information 
from DATA or INDEX overrides the information from 
USERCATALOG in the DATA or INDEX CTGFV. The 
exception is space information from TRACKS, 
CYLINDERS, BLOCKS, or RECORDS along with 
DEDICATE and CLASS indicators. Space information is 
never copied from the cluster. 

If a MODEL is specified, the information in the command 
overrides the information in the MODEL. The MODEL 
has one catalog entry to describe its cluster, one entry for 
its data, and one entry for its index. The information in the 
MODEL's cluster catalog entry is used to build the 
CLUSTER CTGFV; information in the MODEL's data 
catalog entry is used to build the DATA CTGFV; and 
information in the MODEL's index entry is used to build 
the INDEX CTGFV. The order of precedence when 
modeling is shown below where 1 has the highest 
precedence: 

CLUSTER CTGFV 

I. USERCATALOG parameters 
2. Cluster object of model 

DATACTGFV 

1. DAT A parameters 
2. USER CATALOG parameters 
3. Data object of model 

INDEXCTGFV 

1. INDEX parameters 
2. USER CATALOG parameters 
3. Index object of model 

CTLG PROC sets the identification of CLSTRFVT in the 
8 bytes before the CLUSTER CTGFV. AU is put in the 
CTGTYPE field of the CTGPL to indicate that a user 
catalog is being defined. CTLGPROC puts the address of 
the objectname from NAME in the CLUSTER CTGFV. 
CTLGPROC checks for a MODEL keyword. If MODEL 
is specified, MODELPRC issues a UCATLG macro to 
retrieve information from the modeled catalog. The 
information from the cluster catalog entry of the modeled 
catalog is put in a table, MDLT ABL, and the Control 
Interval number for the data and index entries of the 
modeled catalog are saved. MDLTABL contains an 
address and the length of each field of information 
returned from the UCATLG. ln building the CLUSTER 
CTGFV, information is obtained from MDLTABL and is 
then overlaid by the information specified in the 
USERCA T ALOG parameters. NAMEPROC builds a 
DSETEXDT CTGFL with the information from 
TOiFOR. PROTPROC builds a PASSWALL CTGFL 
with information from MASTERPW, CONTROLPW, 
UPDATEPW, READPW, CODE, ATTEMPTS, and 
AUTHORIZATION. PROTPROC also builds a 
OWNERID CTG FL with ownerid from OWNER. 
ALLCPROC builds a SPACPARM CTGFL with the 
primary and secondary space information from TRACKS, 
CYLINDERS, BLOCKS, and RECORDS along with 
DEDICATE and CLASS indicators. NAMEPROC issues 
a UTIME macro to get the creation date which is put in a 
DSETCRDT CTGFL. ALLCPROC sets the address of 
the recovery volume serial work area in the CTG FVWKA 
field of the cluster FVT. 

~cLSTRFvT I 

CLUSTER 
Part nf MoJd 

1---1 LJSFRCAJ ALO(i I .. I CLUSTER 
CTCiFY 

IOCDE02, IOCDE03 

Procedures: CTLGPROC, ALLCPROC 

2 The DEFINE FSR builds a VOLUME CTGFV with 
information specified under USERCATALOG. No 
information is taken from a MODEL for the VOLUME 
CTG FV. CTLG PROC sets the identification of 
VOLUMFVT in the 8 bytes preceding the VOLUME 
CTG FV. ALLCPROC builds a SPACPARM CTG FL 
with the primary and secondary space information from 
TRACKS, CYLINDERS, BLOCKS, or RECORDS along 
with DEDICATE and CLASS indicators. ALLCPROC 

I 

puts the address of volser from VOLUMES and the 
address of dname if specified from FILE in the VOLUME 
CTGFV. 

~o'i:u'MrV°TI 

l 
-

I -- Volume USERCATALOG - CTGFV 

L I 

IDCDE02, IDCDE03 

Procedures: CTLGPPROC, NAMEPROC, KEYPROC, 
ALLCPROC, MODELPRC 

3 CTLG PROC sets the identification of DAT AFVT in the 8 
bytes preceding the DATA CTGFV. The DEFINE FSR 
builds the DA TA CTG FV with the information specified 
in USERCATALOG parameters. This information is then 
overlaid by the information specified in the DAT A 
parameters. 

Two passes are performed. On the first pass, called the 
implicit pass, the following occurs: 

If MODEL is not specified, the DATA CTGFV is built 
with information specified in the USER CATALOG 
parameters. 

If MODEL is specified, MODELPRC uses the saved 
Control Interval number for the data entry of the 
modeled catalog to get information from the dataentry. 
The information from the data entry of the modeled 
catalog is put in MDLTABL. The DATA CTGFV is 
built with information from MDLTABL and is then 
overlaid by the information specified in 
USERCATALOG parameters. 

NAMEPROC issues a UTIME macro to get the creation 
date which is put in a DSETCRDT CTGFL. KEYPROC 
builds a AMDSBCAT CTGFL, but no information is put 
in yet. ALLCPROC puts the address of the volser if 
specified from VOLUME and the address of dname if 
specified from FILE in the DATA CTGFV. 
WRITECHECKiNOWRITECHECK is put in the 
AMDSBCAT CTGFL. ALLCPROC builds a BUFSIZE 
CTGFL with information from BUFFERSPACE. 
ALLCPROC builds a DSATTR CTGFL for data set 
attributes and, in addition, sets the Recoverable/Not 
Recoverable flag of the field . 

r"" 
n-
fD 

l 
3:: 
ID ;-
:L 
!. 
I 

l 
~ 
s. -= 3:: 



Licensed Material - Property of IBM 

2-58 VSE/VSAM Accoss Method Services Logic 



f 
~ 

I 
2, 

1 a. 
8 

..., 
I 
\A 
\0 

On the second pass, called the explicit pass, the 
information in the DAT A CTGFV from the implicit pass 
is overlaid by the information specified in the DAT A 
parameters. 

Ifa DSETCRDT CTGFL does not exist, NAMEPROC 
builds one. Normally, a DSETCRDT CTGFL does exist. 
ALLCPROC builds a SPACPARM CTGFL for primary 
and secondary space information from TRACKS, 
CYLINDERS, BLOCKS, or RECORDS. The value 
specified for CLASS is also ~t into the SPACPARM 
CTGFL. If WRITECHECK!NOWRITECHECK is 
specified under DAT A, it is overridden in the 
AMDSBCAT CTGFL. IfBUFFERSPACE is specified 
under DATA, ALLCPROC builds a BUFSIZE CTGFL 
or modifies the existing one. ALLCPROC initializes the 
Recoverable/Not Recoverable flag in the DSA TTR 
CTGFL. 

DATA Part 
of MODEL 

IDCDEOl, IDCDE03 

USERCAT ALOG 

DATA 

-DATAFvT°til 

DATA 
CTGFV 

Procedures: CTLGPROC, NAMEPROC, KEYPROC, 
IXOPPROC, ALLCPROC, MODELPRC 

4 CTLGPROC sets the identification of INDEXFVT in the 
8 bytes preceding the INDEX CTGFV. The DEFINE 
FSR builds the INDEX CTGFV with the information 
specified in USERCA T ALOG parameters which is 
overlaid by the information specified in the INDEX 
parameters. Two passes are performed. On the first pass, 
called the implicit pass, the following occurs: 

If MODEL is not specified, the INDEX CTGFV is built 
with information specified in USER CATALOG 
parameters. 

If MODEL is specified, MODELPRC uses the saved 
Control Interval number for the index entry of the 
modeled catalog to get information from the index entry. 
The information from the index entry of the modeled 
catalog is put in MDLTABL. The INDEX CTGFV is 
built with information from MDL TABL and then 
overlaid by the information specified in the 
USERCAT ALOG parameters. 

NAMEPROC issues a UTIME macro to get the creation 
date which is put in a DSETCRDT CTGFL. 
KEYPROC builds a AMDSBCAT CTGFL, but no 
information is put in yet. In IXOPPROC, 
IMBEDINOIMBED is put into the AMDSBCA T. 
CTGFL. ALLCPROC puts the address of the volser 
from VOLUME and the address of dname if specified 
from FILE in the INDEX CTGFV. 
WRITECHECK!NOWRITECHECK is put in the 
AMDSBCAT CTGFL. ALLCPROC builds a DSATTR 
CTGFL for data set attributes. 

On the second pass, called the explicit pass, the 
information in the INDEX CTGFV from the implicit pass 
is overlaid by the information specified in the INDEX 
parameters. 

ALLCPROC builds a SPACPARM CTG FL for primary 
and secondary space information from TRACKS, 
CYLINDERS, BLOCKS, or RECORDS. The value 
specified for CLASS is also set into the SPACPARM 
CTGFL. WRITECHECK!NOWRITECHECK is 
overridden in the AMDSBCAT CTGFL. 

INDEX Part 
of MODEL 

IDCDEOl 

Procedure: INTGCHK 

USE RC AT ALOG 

INDEX 

.... INDExrvrl 

INDEX 
CTGFV 

5 For USERCATALOG four CTGFVs have been built­
one for cluster information, data information, index 
information, and volume information. A SPACPARM 
CTG FL must be specified on the CTG FV for volume 
information. In addition, INTGCHK checks the other 

three CTGFVs for a SPACPARM CTGFV. The following 
table shows the possible CTGFVs (in addition to the 
VOLUME CTGFV) where a SPACPARM CTGFL may 
have been built and the action INTGCHK takes: 

SPACEPARM CTGFL 

Cluster Data Index Action 

x x x IDCDEOl erases the 
SPACPARM CTGFL 
from the CL UST ER 
CTGFV. 

x x IDCDEOI erases the 
SPACPARM CTGFL 
from the CLUSTER 
CTGFV. 

x x This is an error; IDCDEOl 
terminates the DEFINE. 

x OK; no action. 

none none none This is an error; IDCDEOI 
terminates the DEFINE. 

INTGCHK insures that space parameters exist wherever 
CLASS!USECLASS has been specified (or internally 
generated). If space parameters do not exist, 
CLASS!USECLASS is dropped from the SPACPARM 
CTGFL. 

Note that for DEFINE USERCAT ALOG, primary useclass is 
not specified explicitly; it is logically generated at the data and 
index levels to agree with the value established for class. 
Secondary useclass is always the same as primary useclass. 

The SPACPARM CTG FL is checked for a dname from FILE. 
Control goes to Diagram 3.2, step 4. If an error occurs, 
INTGCHK writes a message and control goes to Diagram 3.2, 
step 5. 

I 
3: 

i 
!. 
I 

l a 
s. 
; 
3: 



'i' Diagram 3.2.3. DEFINE FSR-DEFINE NONVSAM 
~ 

< 
tll 

~ 
< 
tll 
> 
~ 

§ 
= 
~ 
0 

[ 
rn 
0 

~ 
~-
t""' 
0 

(IQ 
r;· 

INPUT 

CTGPL 

D 

From Diagram 3.2 

PROCESSING 

} • Builds non VSAM CTGFV. 

OUTPUT 

CTGPL -

NonVSAM 
CTGFV 

Data 

CTGFL~ 

~ 

l 
::: 
ID 
;­
:L e. 

i a 
Si -= ~ 



i 
t.:» 

' i 
2, 

f 
N 
I 
~ 

Extended Description for Diagram 3.2.3 

IDCDE02, IDCDE03 

Procedures: NVSAMPRC, ALLCPROC, PROTPROC, 
NAMEPROC 

NVSAMPRC sets the identification of NVSAMFVT in 
the 8 bytes preceding the area that is usually used for a 
CLUSTER CTGFV. NVSAMPRC puts the address of the 
NONVSAM CTGFV in the CTGFVT field of the 
CTGPL. NAMEPROC puts the address of objectname 
from NAME in the NONVSAM CTGFV. ALLCPROC 
puts the address of volser from VOLUMES in the 
NONVSAM CTGFV. ALLCPROC builds a DEVTYPE 
CTGFL for information from DEVICETYPES. If 
FILESEQUENCENUMBERS is specified, ALLCPROC 
puts the address of numbers from 
FILESEQUENCENUMBERS in the NONVSAM 
CTGFV. ALLCPROC sets the address of the recovery 
volume serial work area in the CTGFVWKA field. 
Control goes to Diagram 3.2, step 4. 

NYSAMFVTI L 

NONVSAM NONVSAM 
~ CTGFY 

~ g 
i. 
3: 
~ 
fD 
::1. 
!!. 
I 

f 
s. 
; 
3: 



! Diagram 3.2.4. DEFINE FSR - DEFINE SPACE 
N 

~ 
l!! 

< Ul 
> 
i:: 

i 
i:: 

i 
f 
i 

INPUT 

D 
From Diagram 3.2 

PROCESSING 

1. Builds volume CTGFV. 

2. Checks volume information. 

OUTPUT 

CTGPL 

Volume 

~ 

Data 

CTGFLs 

i 
3: 

i 
!. 
I 

J 
s. -= 3: 



i ... 
!':' 

I 
0 .., 

f. 
.., 
I 

~ 

Extended Description for Diagram 3.2.4 

IDCDEOl. IDCDE03 

Procedures: DSPACPRC, ALLCPROC 

1 DSPACPRC sets the identification of VOLUMFVT in the 
8 bytes preceding the VOLUME CTGFV. The address of 
the VOLUME CTGFV is put in the CTGPL in the field 
named CTGFVT because the VOLUME CTGFV is the 
only CTGFV for a DEFINE SPACE. ALLCPROC puts 
the address of the vo/ser if specified from VOLUMES and 
the address of dname if specified from FILE in the 
VOLUME CTGFV. ALLCPROC builds a SPACPARM 
CTGFL with primary and secondary space information 
from TRACKS, CYLINDERS, BLOCKS, or RECORDS 
along with DEDICATE and CLASS indicators. 

If RECORDS is specified, ALLCPROC builds a LRECL 
CTGFL with information from RECORDSIZE. 
ALLCPROC sets the address of the recovery volume serial 
work area in the CTGFVWKA field of the volume FVT. 

VOLUMFVTI 

SPACE -- VOLUME - CTGFV 

I 

IDCDEOl 

Procedures: INTGCHK 

2 For DEFINE SPACE only a VOLUME CTGFV is built. 
INTGCHK checks the VOLUME CTGFV to be sure a 
SPACPARM CTGFL is present. If the space is in units of 
records, the VOLUME CTGFV must contain the address 
ofa LRECL CTGFL. 

r­
n g 
i. 
~ ;-
[ 
I 
'l 
l 
s. -= ~ 



r Diagram 3.2.5. DEFINE FSR - DEFINE CLUSTER 
~ 

< 
fll 

~ 
~ 
~ 
i = 
~ 
[ 
{C1 

i· 
b 
~-

INPUT 

CTGPL 

D 

.horn :~:::S::NG 

1. Builds cluster CTGFV. 

2. Builds data CTGFY. 

3. Builds index CTGFY. 

4. Builds volume CTGFY if 
UNIQUE is specified. 

5. Checks volume information. 

<1 MrDTBL i I 

MDTBL rm- -- J 

MDTBL 

I I 

OUTPUT 

CTGPL 

Q
Clustcr 
CTGFV 

/ 

Data 
CTGFV 

Index 
CTGFV 

Volume 

CTGFV 

[D,;1;- .. ) 
CTGFLs 

0 
I Data .) 

CTGFLs 

0 
Data 

CTGFLs 

0 I 
~ 

I 
I 

J 
s. 
! 



f 
~ 

I 
~ 

f. 
~ 
I 

8: 

Extended Description for Diagram 3.2.5 

IDCDE02, IDCDE03 

Procedures: DSETPROC, NAMEPROC, MODELPRC, 
PROTPROC,ALLCPROC 

1 In the DEFINE CLUSTER command, you specify 
information under three main keywords: CLUSTER, 
DATA, and INDEX. The DEFINE FSR builds a CTGFV 
to describe the cluster, data, and index components of the 
cluster as well as building a VOLUME CTGFV if 
UNIQUE is specified. Information specified under 
CLUSTER goes in the CLUSTER CTGFV; information 
under DATA goes in the DATA CTGFV; and 
information under INDEX goes in the INDEX CTGFV. 
Nothing is put in the VOLUME CTGFV. Ifnot enough 
information is specified under DATA or INDEX to build 
the DATA or INDEX CTGFV, information from 
CLUSTER completes the DATA or INDEX CTGFV. If 
information is duplicated under DATA or INDEX and 
under CLUSTER-like WRITECHECK-information 
from DATA or INDEX overrides the information from 
CLUSTER in the DATA or INDEX CTGFV. The 
exception is space information from TRACKS, 
CYLINDERS, BLOCKS, or RECORDS. This space 
information is never copied from CLUSTER. 

Both explicit (MODEL parameter) and implicit (default) 
modeling are supported, but for any one component 
(CTGFVT), explicit and implicit modeling cannot be 
mixed, i.e., explicit models preclude implicit models. 

If MODELs are applied, the information in the command 
overrides the information in a MODEL. A MODEL has 
one catalog entry to describe its cluster, one entry for its 
data, and one entry for its index, ifthe MODEL is a keyed 
sequence data set. The information in a MODEL's cluster 
catalog entry is used to build the CLUSTER CTGFV; 
information in a MODEL's data entry is used to build the 
DATA CTGFV; and information in the MODEL's index 
entry is used to build the INDEX CTGFV. The order of 
precedence for any particular parameter when modeling is 
shown below where 1 takes the highest precedence: 

CLUSTER CTGFV 

I. CLUSTER parameters 
2. Cluster object of CLUSTER explicit or default model 
3. System default 

DATACTGFV 

l. DAT A parameters 
2. DAT A explicit model 
3. CLUSTER parameters 

4. Data object of CLUSTER explicit or default model 
5. System default 

INDEXCTGFV 

l. IND EX parameters 
2. INDEX explicit model 
3. CLUSTER parameters 
4. Index object of CL UST ER explicit or default model 
5. System default 

If MODEL is applied, MODELPRC issues a UCATLG to 
retreive information from the modeled VSAM data set. 
The information from the cluster catalog entry of the 
modeled data set is put in a table, MDLTABL, and the 
Control Interval number for the data and index entries of 
the modeled data set are saved. MDLTABL contains an 
address and the length of each field of information 
returned from the UCATLG. In building the CLUSTER 
CTGFV, information is obtained from MDLTABL is then 
overlaid by information specified in the CLUSTER 
parameters. 

DSETPROC sets the identification of CLSTRFVT in the 
8 bytes before the CLUSTER CTGFV. DSETPROC also 
sets the address of the recovery volume serial work area in 
the CTGFVWKA field. NAMEPROC issues a UTIME 
macro to get the creation date which is put in a 
DSETCRDT CTGFL. NAMEPROC puts the address of 
objectname from NAME in the CLUSTER CTGFV. 
NAMEPROC builds a DSETEXDT CTGFL with the 
information from TOI FOR. If a reserved name (default 
model name) prefix ("DEFAULT.MODEL.") is used, a 
check is made for additional valid qualifiers. PROTPROC 
builds a PASSWALL CTGFL with information from 
MASTERPW,CONTROLPW,UPDATEPW, 
READPW, CODE, ATTEMPTS, and 
AUTHORIZATION. PROTPROC also builds a 
OWNERID CTGFL with information from OWNER. 
ALLCPROC builds a SPACPARM CTGFL with the 
primary and secondary space information from TRACKS, 
CYLINDERS, BLOCKS, or RECORDS, along with 
USEC LASS. 

-CLSTRFVT I 

CLUSTER Part 
of CLUSTER ~ CLUSTER CLUSTER 
Modd CTGFV 

IDCDE02, IDCDE03 

Procedures: DSETPROC, NAMEPROC, KEYPROC, 
MODELPRC, ALLCPROC, PROTPROC 

2 DSETPROC sets the identification of DAT A FVT in the 8 
bytes preceding the DATA CTGFV. The DEFINE FSR 
builds the DATA CTGFV with the information specified 
in CLUSTER parameters. This information is then 
overlaid by the information specified in the DAT A 
parameters. Two passes are performed. 

On the first pass, called the implicit pass, the following 
occurs: 

If MODEL is not specified at the data level, the DATA 
CTG FV is built with information specified in the 
CLUSTER parameters. 

If MODEL is applied under CLUSTER or a default 
model exists for the cluster type (KSDS, RRDS, VSAM 
ESDS, SAM ESDS) and MODEL is not specified under 
DATA, MODELPRC uses the saved Control Interval 
number for the data entry of the applicable modeled data 
set to get information from the data entry. The 
information from the data entry of the modeled data set is 
put in MDLTABL. If the DEFAULTVOLUMES 
parameter is given at either the CLUSTER or the DATA 
level, nullify the volumes list pointer in the MDL TABL. 
The DATA CTGFV is built with information from 
MDL TABL and is then overlaid by the information 
specified in CLUSTER parameters. 

NAMEPROC issues a UTIME macro to get the creation 
date which is put in a DSETCRDT CTGFL. 
NAMEPROC also builds an EXCPEXIT CTGFL with 
exception exit information. KEYPROC builds a 
AMDSBCAT CTGFL, and ALLCPROC builds a 
DSATTR CTGFL, but no information is put in them yet. 
KEYPROC puts the length and offset from KEYS in the 
AMDSBCAT CTGFL. If no key values are specified, 
KEYPROC sets up default values. In addition, 
KEYPROC sets an indication in the AMDSB if 
SPANNED has been specified. KEYPROC also puts the 
address of (lowkey highkey) ... from KEYRANGES in the 
DATA CTGFV. lfNUMBERED has been specified, 
KEYPROC sets AMDRRDS in the AMDSB field. This 
FPL is being built by KEYPROC. ALLCPROC puts the 
address of dname from FILE and the address of vo/ser 
from VOLUMES in the DATA CTGFV. Volumes are not 
taken from the default model. ALLCPROC builds a 
SPACPARM CTGFL with the primary and secondary 
space information from TRACKS, CYLINDERS, 
BLOCKS, or RECORDS, along with USECLASS. 
ALLCPROC also builds a BUFSIZE CTGFL with 

f a 
::: 
ID 

i e. 
I 

f 
i. -= ::: 



N 
I 

°' °' 
< l:'ll 
ttl 

~ 
> 
~ 

I 
~ 
ft 

[ 
~ 

~-
i r;· 

information from BUFFERSPACE. The following are 
inserted by ALLOCPROC and PROTPROC: 

ORDEREDIUNORDERED 
cipercent and capercent from FREESPACE 
size from CONTROLINTERVALSIZE 
WRITECHECKINOWRITECHECK 

RECORDFORMAT 
maximum from RECORDSIZE are put in 

the AMDSBCAT CTGFL 

UNIQUEiSUBALLOCA TION!NOALLOCA TION and 
SPEED!RECO VERY are put in the DSA TTR CTG FL. 
ERASE!NOERASE and DOS shareoptions and the 
reserved for OS shareoptions from SHAREOPTIONS are 
put in the DSA TTR CTG FL. 

Protection information is obtained only from the explicit 
MODEL via MDLTABL in order to provide different 
protection at the CLUSTER and DAT A. PROTPROC 
builds a PASS WALL CTGFL with protection 
information from the MODEL as well as an OWNERID 
CTGFL with owner information from the MODEL. 
PROTPROC sets the appropriate bit of the A TTR l field 
of the DSATTR field to indicate REUSE!NOREUSE. 

On the second pass, called the explicit pass, the following 
occurs: 

If MODEL is not specified under DATA the 
information specified in the DAT A parameters overlays 
the information placed in the DAT A CTG FV on the 
implicit pass. 

If MODEL is applied under DAT A or a default model 
exists, MODELPRC issues a UCA TLG to get 
information from the data catalog entry of the modeled 
data set. The information from the data entry of the 
modeled data set is put in MDLTABL. If the 
DEFAULTVOLUMES parameter is given at either the 
CLUSTER or DATA level, nulify the volume list 
pointer in the MDLTABL. The information in 
MDL TABL overlays the information placed in the 
DATA CTGFV on the implicit pass. Finally, the 
information in the DATA CTGFV is overlaid with the 
information specified in the DAT A parameters. 

NAMEPROC puts the address of objectname from NAME 
in the DAT A CTG FV. If a reserved name was used at the 
CLUSTER level ("DEF A ULT.MODEL." prefix), the 
DAT A qualifier is added from the data component and 
this constructed name is forced. Using a pointer to the 
name of the EXCEPTIONEXIT routine, NAMEPROC 
builds and initializes the EXCPEXIT FPL and references 
it in the FVT field CTGFVEXT. KEYPROC sets the 
AMDSPAN flag of AMDATTR in the AMDSB to 
indicate the SPANNEDINONSPANNED option. 

KEYPROC puts length and offset from KEYS in the 
AMDSBCAT CTGFL. KEYPROC puts the address of 
(/owkey highkey) ... range list from KEYRANGES in the 
DATA CTGFV. ALLCPROC puts the address of dname 
from FILE and the address of vo/ser from VOLUMES in 
the DATA CTGFV. Note: the volume serial list is not 
merged with any other volume serial list. ALLCPROC 
also builds or modifies the SPACPARM CTGFL with 
primary and secondary space information from TRACKS, 
CYLINDERS, BLOCKS, or RECORDS, along with 
USECLASS; the LRECL CTGFL with average from 
RECORDSIZE; and the BUFSIZE CTG FL with size 
from BUFFERSPACE. PROTPROC builds or modifies 
the PASSWALL CTGFL with information from 
MASTERPW, CONTROLPW, UPDATEPW, 
READPW, CODE, ATTEMPTS, and 
AUTHORIZATION. PROTPROC also builds or 
modifies the OWNERID CTGFL with owneridfrom 
OWNER. The following are inserted by ALLCPROC and 
PROTPROC: 

ORDERED!UNORDERED 
cipercent and capercent from FREESPACE 
size from CONTROLINTERV ALSIZE 
WRITECHECK!NOWRITECHECK 

RECORDFORMAT 
maximum from RECORDSIZE or put in the 

AMDSBCAT CTGFL 

UNIQUE!SUBALLOCATION!NOALLOCATION and 
SPEEDIRECOVERY are put in the DSATTR CTGFL. 
ERASEiNOERASE and DOS shareoptions and the 
reserved for OS shareoptions from SHAREOPTIONS are 
put in the DSATTR CTGFL. 

DATA Part of 
CLUSTER MODI L 
(not u,cJ if 
MODEL 'pccilicJ 
under DAT:\I 

DATA Part ol 
DATA MOIJI l 

~----
' D:\ L\l\'Th I 
I 

I 

I 

~~',',',,\ 

L:_J ' 

IDCDE02, IDCDE03 

Procedures: DSETPROC, NAMEPROC, KEYPROC, 
ALLCPROC, MODELPROC, IXOPPROC, PROTPROC 

3 An INDEX CTGFV is built if any of the following are 
true: 

INDEXED is specified 
NONINDEXED or NUMBERED is not specified 
The MODEL under CLUSTER is an indexed data set 

In the listings an indexed data set is called a KSDS for Key 
Sequence Data Set. A non-indexed data set is called an 
ESDS for Entry Sequence Data Set. 

DSETPROC sets the identification of INDEXFVT in the 
8 bytes preceding the INDEX CTGFV. The DEFINE 
FSR builds the INDEX CTGFV with the information 
specified in the CLUSTER parameters, which is overlaid 
by the information specified in the INDEX parameters. 
Two passes are performed. 

On the first pass, called the implicit pass, the following 
occurs: 

If MODEL is not specified at the data level, the INDEX 
CTG FV is built with information specified in 
CLUSTER parameters. 

If MODEL is specified under CLUSTER or a default 
model exists for the CLUSTER type (KSDS, RRDS, 
VSAM ESDS, SAM ESDS) and MODEL is not 
specified under INDEX, MODELPRC uses the saved 
Control Interval number for the index entry of the 
applicable modeled data set to get information from the 
index entry. The information from the index entry of the 
modeled data set is put in MDLTABL. If the 
DEF A UL TVOLUMES parameter is given at either the 
CLUSTER or INDEX level, nullify the volume list 
pointer in the MDLTABL. The INDEX CTGFV is built 
with information from MDL T ABL and is then overlaid 
by the information specified in the CLUSTER 
parameters. 

NAMEPROC issues a UTIME macro to get the creation 
date which is put in a DSETCRDT CTGFL. 
NAMEPROC also puts the address of objectname from 
NAME in the INDEX CTGFV. Using a pointer to the 
name of the EXCEPTIONEXIT routine, NAMEPROC 
builds and initializes the EXCPEXIT FPL and references 
it in the FVT field CTGFVEXT. KEYPROC builds a 
AMDSBCAT CTGFL, and ALLCPROC builds a 
DSATTR CTGFL, but no information is put in them yet. 
IMBEDINOIMBED in the AMDSBCAT CTGFL. 
ALLCPROC puts the address of dname from FILE and 
the address of volser from VOLUMES in the INDEX 
CTGFV. Volumes are not taken from the default model. 

r­
n 
fD 
Cl 

i. 
3: 
ID 

! 
!!. 
I 

l a 
s. 
; 
3: 



i .. 
~ 

I 
0 _, 

1 
~-

N 
I 

~ 

ALLCPROC also builds a SPACPARM CTGFL with 
primary and secondary space information from TRACKS, 
CYLINDERS, BLOCKS, or RECORDS,along with 
USECLASS. The following is put in the AMDSBCA T 
CTGFL: 

ORDERED!UNORDERED 
WRITECHECK!NOWRITECHECK 
size from CONTROLINTERVALSIZE 

UNIQUE!SUBALLOCATION!NOALLOCATION is put 
in the DSA TTR CTG FL. Record size is not indicated 
because it is always fixed length for the index of a VSAM 
data set. 

Protection information is obtained only from the explict 
MODEL via MDL T ABL in order to provide different 
protection at the CLUSTER and INDEX. PROTPROC 
builds a PASSW ALL CTGFL with protection 
information from the MODEL as well as a OWNERID 
CTGFL with owner information from the MODEL. 
PROTPROC sets the appropriate bit of the ATTR l field 
of the DSATTR field to indicate REUSE!NOREUSE. 

On the second pass, called the explicit pass, the following 
occurs: 

If MODEL is not specified under INDEX the 
information specified in the INDEX parameters overlays 
the information placed in the INDEX CTGFV on the 
implicit pass. 

If MODEL is specified under INDEX or a default model 
exists, MODELPRC issues a UCA TLG to get 
information from the index catalog entry of the modeled 
data set. The information from the index entry of the 
modeled data set is put in MOLT ABL. If the 
DEF AUL TVOLUMES parameter is given at either the 
CLUSTER or the INDEX level, nullify the volumes list 
pointer in the MDL TABL. The information in 
MDL TABL overlays the information placed in the 
INDEX CTGFV on the implicit pass. Finally, the 
information in the INDEX CTGFV is overlaid with the 
information specified in the INDEX parameters. 

NAMEPROC puts the address of objectname from NAME 
in the INDEX CTGFV. If a reserved name was used at the 
CLUSTER level ("DEFAULT.MODEL." prefix), the 
INDEX qualifier is added for the INDEX component and 
this name is forced. Using a pointer to the name of the 
EXCEPTIONEXIT routine, NAMEPROC builds and 
initializes the EXCPEXIT FPL if specified under INDEX. 
IXOPPROC puts REPLICATE!NOREPLICATE and 
IMBED!NOIMBED in the AMDSBCAT CTGFL. 
ALLCPROC puts the address of dname from FILE and 
the address of volser from VOLUMES in the INDEX 
CTGFV. ALLCPROC also builds or modifies the 
SPACPARM CTGFL with primary and secondary space 

information from TRACKS, CYLINDERS, BLOCKS, or 
RECORDS, along with USECLASS. PROTPROC builds 
or modifies the PASSW ALL CTG FL with information 
from MASTERPW, CONTROLPW, UPDATEPW, 
READPW, CODE, ATTEMPTS, and 
AUTHORIZATION. PROTPROC also builds or 
modifies the OWNERID CTG FL with ownerid from 
OWNER. The following is put in the AMDSBCA T 
CTGFL: 

ORDERED!UNORDERED 
WRITECHECK!NOWRITECHECK 
size from CONTROLINTERV ALSIZE 

The following is put in the DSA TTR CTG FL: 

UNIQUE!SUBALLOCA TION !NOALLOCA TION 
ERASE!NOERASE 
DOS shareoptions and the reserved for OS shareoptions 
from SHAREOPTIONS 

INDEX Part of 
CLUSTFR MODFL 
tnot u'cd ii 
MODEL 'pccificd 
under INDEX! 

INDEX Part of 
INDEX MODEL 

IDCDE03 

CLLSTIR 

INDEX 

Procedures: DSETPROC, IDCDEOI 

iN01x1\T I 

INDEX 
CTC;f·\ 

4 If UNIQUE is specified, a null VOLUME CTGFV is 
built. DSETPROC puts the identification VOLUMFVT in 
the 8 bytes preceding the VOLUME CTGFV. The 
VOLUME CTGFV is not initialized because VSAM uses 
the VOLUME CTGFV for a work area. 

No Input 

IDCDEOl 

Procedure: INTGCHK 

-, 
I 
r 
I 

---

.. voLUMFvTI 

Volume 
CTGFV 

5 For a VSAM data set two or three CTGFVs have been 
built-one each for cluster, data, and index information. If 

a VOLUME CTGFV has been built, it does not have any 
information in it because VSAM uses it for a work space. 
The following table shows the possible places where a 
SPACPARM CTGFL may have been built and the action 
INTGCHK takes. 

For an INDEXED data set: 

SPACPARM CTGFL 

Cluster Data Index Action 

x x x If the data/index space 
parameter did not come from 
a model, this is an error; 
IDCD EO l terminates the 
DEFINE. 

x x This is an error; IDCDEOI 
terminates the DEFINE. 

x x This is an error; IDCDEOI 
terminates the DEFINE. 

x x OK; If index level space 
specification is taken from a 
model, nullify it. 

x OK; no action. 

x OK; no action. 

x This is an error; IDCDEOI 
terminates the DEFINE. 

none none none This is an error; IDCDEOl 
terminates the DEFINE. 

For an NONINDEXED data set: 

SPACEPARM CTGFL 

Cluster Data Action 

x x If the data level space parameters are 
from a model, this is an error; 
IDCDEOl terminates the DEFINE. 

x OK; no action. 

x OK; no action. 

none none This is an error; IDCDEOl terminates 
the DEFINE. 

INTGCHK insures that space parameters exist wherever 
USECLASS has been specified, propagated, or modeled. If 
space parameters do not exist, USECLASS is dropped from 
the SPACPARM CTGFL. 

INTGCHK checks the data CTGFV to be sure that Logical 
Record Length is specified with a LRECL CTG FL. If not, 
one is built with a default average recordsize. Control goes to 
Diagram 3.2, step 4. 

r--

i 
3: 

i 
!.. 
I 

l a 
s. -1:11:1 

3: 



N 

~ Diagram 3.2.6. DEFINE FSR - DEFINE ALTERNATE INDEX 
00 

< 
'"'1 
tr! 

< '"'1 
> ::: 
i 
f: 
::: 
[ 
'"'1 
0 

~· 
fjO 

{. 

INPUT 

CTGPL 

D 

.frnm :::~:;:ING 

1. Builds alternate index CTGFV. 

2. Builds data CTGFY. 

3. Builds index CTGFY. 

4. Builds volume CTGFY if 
UNIQUE is specified. 

5. Checks volume information. 

MDTBL 

f I 

MDTBL 

f I 

MDTBL 

[ l 

OUTPUT 

CTGPL I d ·x 

n-~;··J 
LJJ Lo 

Data 
CTGFV 

Index 
CTGFV 

Vnlume 
CfCllV 

f Data ) 

CTGFL' 

'O 
Data 

CTGFL' 

0 r 
I. 
3: • ;-
:L 
!!. 
I 

J 
2. -1:11 
3: 



I 
"1 

~ 

I 
0 ...., 
0 

I g· 

tJ 
I 

°' "° 

Extended Description for Diagram 3.2.6 

IDCDE02, IDCDE03 

Procedures: AIXPROC, NAMEPROC, MODELPRC, 
PROTPROC,ALLCPROC 

l In the DEFINE AIX command, you specify information 
under three main keywords: AIX, DAT A, and INDEX. 
The DEFINE FSR builds a CTGFV to describe the 
alternate index, data, and index components of the 
alternate index as well as building a VOLUME CTGFV if 
UNIQUE is specified. Information specified under 
ALTERNATEINDEX goes in the ALTERNATEINDEX 
CTGFV; information under DATA goes in the DATA 
CTGFV; and information under INDEX goes in the 
INDEX CTGFV. Nothing is put in the VOLUME 
CTG FY. If not enough information is specified under 
DATA or INDEX to build the DATA or INDEX 
CTGFV, information from ALTERNATEINDEX 
completes the DATA or INDEX CTGFV. lfinformation 
is duplicated under DAT A or IN DEX and under 
AL TERN A TEINDEX-like 
WRITECHECK-information from DATA or INDEX 
overrides the information from ALTERNATEINDEX in 
the DATA or INDEX CTGFV. The exception is space 
informi}tion from TRACKS, CYLINDERS, BLOCKS, or 
RECORDS. This space information is never copied from 
ALTERNATEINDEX. 

Both explicit (MODEL parameter) and implicit (default) 
modeling are supported, but for any one component 
(CTGFVT), explicit and implicit modeling cannot be 
mixed, i.e., explicit models preclude implicit models. 

If MODELs are applied, the information in the command 
overrides the information in a MODEL. A MODEL has 
one catalog entry to describe its alternate index, one entry 
for its data, and one entry for its index. The information in 
a MODEL's alternate index catalog entry is used to build 
the ALTERNATEINDEX CTGFV; information in a 
MODELS's data entry is used to build the DA TA 
CTGFV; and information in the MODEL's index entry is 
used to build the INDEX CTGFV. The order of 
precedence for any particular parameter when modeling is 
shown below where l takes the highest precedence: 

ALTERNATEINDEX CTGFV 

I. ALTERNATEINDEX parameters 
2. Cluster object of ALTERNATEINDEX explicit or 

def a ult model 
3. System default 

DATACTGFV 

I. DATA parameters 
2. DAT A explicit model 
3. ALTERNA TEINDEX parameters 
4. Data object of ALTERNATEINDEX explicit or 

default model 
5. System default 

INDEXCTGFV 

I. INDEX parameters 
2. INDEX explicit model 
3. ALTERNA TEINDEX parameters 
4. Index object of ALTERNATEINDEX explicit or 

default model. 
5. System default 

AIXPROC sets the identification of AIXFVT in the 8 
bytes before the ALTERNATEINDEX CTGFV. If MODEL 
is applied, MODELPRC issues a UCATLG to retrieve 
information from the modeled alternate index. The 
information from the alternate index catalog entry of the 
modeled data set is put in a table, MDLTABL, and the 
control interval number for the data and index entries of the 
modeled data set are saved. MDLTABL contains an address 
and the length of each field of information returned from the 
UCATLG. In building the ALTERNATEINDEX CTGFV, 
information is obtained from MOLT ABL and is then overlaid 
with information specified in the ALTERNATEINDEX 
parameters. NAMEPROC issues a UTIME macro to get the 
creation date which is put in an DSETCRDT CTGFL. lf a 
reserved name (default model name) prefix 
("DEFAULT.MODEL.") is used, a check is made for 
additional valid qualifiers. NAMEPROC puts the address of 
objectname from NAME in the CLUSTER CTGFV. The call 
to NAMEPROC for initialization of the alternate index level 
sets up a pointer to the related name and its password, if any, 
in the CTGFV. ALLCPROC will set the address of the 
recovery volume serial work area in the CTGFVWKA field of 
the alternate index (G) FVT. NAMEPROC builds a 
DSETEXDT CTGFL with the information from TOlfOR. 
PROTPROC builds a PASSWALL CTGFL with information 
from MASTERPW, CONTROLPW, UPDATEPW, 
READPW, CODE, ATTEMPTS, and AUTHORIZATION. 
PROTPROC also builds an OWNERID CTGFL with 
information from OWNER. The call to PROTPROC in the 
initialization of the AIX FVT inciudes an indication as to 
whether UPGRADE or NO UPGRADE has been specified. 
PROTPROC builds a RGA TTR FPL and initializes it 
depending upon the information passed by AIXPROC. If 
neither of these parameters was specified, a default of 
UPGRADE is set in RGATTR. ALLCPROC builds a 
SPACPARM CTGFL with the primary and secondary space 

information from TRACKS, CYLINDERS, BLOCKS, or 
RECORDS, along with USECLASS. 

r--AIXF\i-f-1 

AL TERNATEINDl'X 
P~rt of II I I ALTERNATEINDEX 
ALTFRNATEINDEXt-- ALTERNATIJNDEX~ CTGFV 

Model 

IDCDE02, IDCDE03 

Procedures: AIXPROC, NAMEPROC, KEYPROC, 
MODELPRC, ALLCPROC, PROTPROC 

2 AIXPROC sets the identification of DATAFVT in the 8 
bytes preceding the DATA CTGFV. The DEFINE FSR 
builds the DATA CTGFV with the information specified 
in AL TERNATEINDEX parameters. This information is 
then overlaid by the information specified in the DAT A 
parameters. Two passes are performed. 

On the first pass, called the implicit pass, the following 
occurs: 

If MODEL is not applied at the data level, the DAT A 
CTGFV is built with the information specified in the 
ALTERNATEINDEX parameters. 

If MODEL is specified under ALTERNATEINDEX or 
a default model exists and MODEL is not specified 
under DATA, MODELPRC uses the saved control 
interval number for the data entry of the modeled data 
set to get information from the data entry. The 
information from the data entry of the modeled data set 
is put in MDLTABL. lfthe DEFAULTVOLUMES 
parameter is specified at either the 
AL TERN A TEIN DEX or the DAT A level, nullify the 
volumes list pointer in the MDLTABL. 

The DA TA CTG FY is built with information from 
MDL TABL and is then overlaid by the information 
specified in ALTERNATEINDEX parameters. 

NAMEPROC issues a UTIME macro to get the creation 
date which is put in an DSETCRDT CTGFL. The calls to 
NAMEPROC in the initialization of the DATA FVT for 
an alternate index includes a pointer to the name of the 
EXCEPTION EXIT routine; NAMEPROC builds and 
initializes the EXCPEXIT FPL and references it in the 
FVT field CTGFVEXT. KEYPROC builds an 
AMDSBCAT CTGFL, and ALLCPROC builds a 
DSATTR CTGFL, but no information is put in them yet. 

KEYPROC puts the length and offset from KEYS in the 
AMDSBCAT CTGFL. lfno key values have been 

~ 

l 
~ • i 
!. 
I 

f 
s_ 
; 
~ 



tJ 
I 
--.I 
0 

~ 

~ 
Ul 

> 
~ 

§ 
= 
~ 
[ 
Ul 
ft 

i· 
~ ;:;· 

specified, KEYPROC sets up defaults. KEYPROC also 
puts the address of (lowkey highkey) ... from 
KEYRANGES in the DATA CTGFV. The calls to 
KEYPROC in the construction of the DATA FVT of an 
AIX includes an indication of 
UNIQUEKEY /NONUNIQUEKEY. KEYPROC 
initializes the AMDUNQ flag in the AMDSB to indicate 
the appropriate condition. KEYPROC sets the AMDRKP 
field to a fixed value of X'OS' and the AMDAXRKP field 
to the value specified for relative key position. KEYPROC 
sets the AMDSPAN flag in the AMDSB since all alternate 
indexes have the spanned attribute. The AMDSB FPL is 
built by KEYPROC. ALLCPROC puts the address of 
dname from FILE and the address of vo/ser from 
VOLUMES in the DATA CTGFV. Volumes are not 
taken from the default model. ALLCPROC builds a 
SPACPARM CTGFL with the primary and secondary 
space information from TRACKS, CYLINDERS, 
BLOCKS, or RECORDS, along with USECLASS. 
ALLCPROC also builds a BUFSIZE CTGFL with 
information from BUFFERSPACE. The following are 
inserted by ALLCPROC and PROTPROC: 

ORDEREDiUNORDERED 
cipercent and capercent from FREESPACE 
size from CONTROLINTERVALSIZE 
WRITECHECKiNOWRITECHECK 
maximum from RECORDSIZE and put in the 

AMDSBCAT CTG FL 

UNIQUEjSUBALLOCATIONjNOALLOCATION and 
SPEED!RECOVERY are put in the DSATTR CTGFL. 
ERASEiNOERASE, REUSEiNOREUSE, and DOS 
shareoptions and the reserved for OS shareoptions from 
SHAREOPTIONS are put in the DSATTR CTGFL. 

Protection information is obtained only from the explicit 
MODEL via MDLTABL in order to provide different 
protection at the ALTERNATEINDEX and DATA. 
PROTPROC builds a PASSWALL CTGFL with 
protection information from the MODEL as well as a 
OWNERID CTGFL with owner information from the 
MODEL. 

On the second pass, called the explicit pass, the following 
occurs: 

If MODEL is not applied under DATA, the information 
specified in the DAT A parameters overlays the 
information placed in the DATA CTGFV on the 
implicit pass. 

If M 0 DEL is specified under DAT A or a default model 
exists, MODELPRC issues a UCA TLG to get 
information from the data catalog entry of the modeled 
alternate index. The information from the data entry of 

the modeled alternate index is put in MDLTABL. If the 
DEF A UL TVOL UMES parameter is given at either the 
ALTERNATEINDEXor DATA level, nullify the 
volume list pointer in the MDLTABL. The information 
in MDL TABL overlays the information placed in the 
DA TA CTG FV on the implicit pass. Finally, the 
information in the DATA CTGFV is overlaid with the 
information specified in the DAT A parameters. 

NAMEPROC puts the address of objectname from NAME 
in the DATA CTGFV. lfa reserved name was used at the 
alternate level ("DEFAULT.MODEL." prefix), the 
DAT A qualifier is added from the data component and 
this constructed name is forced. KEYPROC puts length 
and offset from the keys in the AMDSBCAT CTGFL. 
KEYPROC puts the address of (lowkey highkey) ... from 
KEYRANGES in the DATA CTGFV. ALLCRPOC puts 
the address of dname from FILE and the address of vo/ser 
from VOLUMES in the DATA CTGFV. Note: the 
volume serial list is not merged with any other volume 
serial list. ALLCPROC also builds or modifies the 
SPACPARM CTGFL with primary and secondary space 
information from TRACKS, CYLINDERS, BLOCKS, or 
RECORDS, along with USECLASS; the LRECL CTGFL 
with average from RECORDSIZE; and the BUFSIZE 
CTGFL with size from BUFFERSPACE. PROTPROC 
builds or modifies the PASSWALL CTGFL with 
information from MASTERPW, CONTROLPW, 
UPDATEPW, READPW, CODE, ATTEMPTS, and 
AUTHORIZATION. 

PROTPROC also builds or modifies the OWNERID 
CTGFL with ownerid from OWNER. The following are 
inserted: 

ORDEREDiUNORDERED 
cipercent and capercent from FREESPACE 
size from CONTROLINTERV ALSIZE 
WRITECHECKiNOWRITECHECK 
maximum from RECORDSIZE are put in the 

AMDSBCAT CTGFL 

UN IQUEjSUBALLOCATIONjNOALLOCA TION and 
SPEEDjRECOVERYare put in the DSATTR CTGFL. 
ERASEjNOERASE, REUSEjNOREUSE, and DOS 
shareoptions and the reserved for OS shareoptions from 
SHAREOPTIONS are put in the DSATTR CTGFL. 

DATA Part of 
ALTERNATEINDEX 
MODEL (not used 
if MODEL 
specified under 
DATA) 

DATA Part of 
DATA MODEL 

IDCDEOl, IDCDE03 

ALTERNATEINDEX 

DATA 

~ATAFVThf 

DATA 
C'TGFV 

Procedures: AIXPROC, NAMEPROC, KEYPROC, 
ALLCPROC, MODELPROC, IXOPPROC, PROTPROC 

3 An INDEX CTGFV is always built for an alternate index. 

AIXPROC sets the identification of INDEXFVT in the 8 
bytes preceding the INDEX CTGFV. The DEFINE FSR 
builds the INDEX CTGFV with the information specified 
in ALTERNATEINDEX parameters, which is overlaid by 
the information specified in the INDEX parameters. Two 
passes are performed. 

On the first pass, called the implicit pass, the following 
occurs: 

If MODEL is not specified at the index level, the 
INDEX CTGFV is built with the information specified 
in ALTERNATEINDEX parameters. 

If MODEL is applied under CLUSTER and MODEL is 
not specified under INDEX, MODELPRC uses the 
saved control interval number for the index entry of the 
applicable modeled alternate index to get information 
from the index entry. The information from the index 
entry of the modeled alternate index is put in 
MDLTABL. If the DEFAULTVOLUMES parameter is 
specified at either the ALTERNATEINDEX or INDEX 
level, nullify the volume list pointer in the MDL TABL. 
The INDEX CTGFV is built with information from 
MDLTABL and then overlaid by the information 
specified in the AL TERNA TEINDEX parameters. 

NAMEPROC issues a UTIME macro to get the creation 
date which is put in a DSETCRDT CTGFL. The calls to 
NAMEPROC in the initialization of the DATA and 
INDEX FVTs for an alternate index includes a pointer to 
the name of the EXCEPTIONEXIT routine; 
NAMEPROC builds and initializes the EXCPEXIT FPL 
and references it in the FVT field CTGFVEXT. 
KEYPROC builds an AMDSBCAT CTGFL, and 

~ 
I 
l 
3: 

i 
!. 
I 

i a 
s. -= 3: 



Q 
~ 
~ .. 
!":> 

~ 

i 
0 ..., 
~ 
~­g 

~ 
I 

-.:a 

ALLCPROC builds a DSATTR CTGFL, but no 
information is put in them yet. IXOPPROC puts 
REPLICATEINOREPLICA TE and IMBEDINOIMBED 
in the AMDSBCAT CTGFL. ALLCPROC puts the 
address of the dname from FILE and the address of volser 
from VOLUMES in the INDEX CTGFV. Volumes are 
not taken from default model. ALLCPROC also builds a 
SPACPARM CTGFL with primary and secondary space 
information from TRACKS, CYLINDERS, BLOCKS, or 
RECORDS, along with USECLASS. The following is put 
in the AMDSBCAT CTGFL: 

ORDEREDIUN ORDERED 
WRITECHECKINOWRITECHECK 
size from CONTROLINTER V ALSIZE 

UNIQUEiSUBALLOCATIONiNOALLOCATION is put 
in the DSA TTR CTG FL. Record size is not indicated 
because it is always fixed length for the index of an 
alternate index. 

Protection information is obtained only from the explicit 
MODEL via MDL TABL in order to provide different 
protection at the ALTERNATEINDEX and INDEX. 
PROTPROC builds a PASSWALL CTGFL with 
protection information from the MODEL as well as a 
OWNERID CTGFL with owner information from the 
MODEL. 

On the second pass, called the explicit pass, the following 
occurs: 

If MODEL is not specified under INDEX, the 
information specified in the INDEX parameters overlays 
the information placed in the INDEX CTGFV on the 
implicit pass. 

If MODEL is applied under INDEX or a default model 
exists, MODELPRC issues a UCATLG to get 
information from the index catalog entry of the modeled 
alternate index. The information from the index entry of 
the modeled alternate index is put in MDLTABL. If the 
DEFAULTVOLUMES parameter is specified at either 
the ALTERNATEINDEX or the INDEX level, nullify 
the volumes list pointer in the MDL T ABL. The 
information in MDL TABL overlays the information 
placed in the INDEX CTGFV on the implicit pass. 
Finally, the information in the INDEX CTGFV is 
overlaid with the information specified in the INDEX 
parameters . 

N AMEPROC puts the address of objectname from NAME 
in the INDEX CTGFV. If a reserved name was used at the 
ALTERNATEINDEX level ("DEFAULT.MODEL." 
prefix), the index qualifier is added for the INDEX 
component and the constructed name is forced. 
IXOPPROC puts REPLICATEiNOREPLICATE and 

IMBEDJNOIMBED in the AMDSBCAT CTGFL. 
ALLCPROC puts the address of dname fromFILE and the 
address of volserfrom VOLUMES in the INDEX CTGFV. 
ALLCPROC also builds or modifies theSPACPARM 
CTGFL with primary and secondary space information 
from TRACKS.CYLINDERS, BLOCKS, or RECORDS, 
along with USECLASS. PROTPROC builds ormodifies 
the PASSWALL CTGFL with information from 
MASTERPW,CONTROLPW,UPDATEPW, 
READPW, CODE, ATTEMPTS, and 
AUTHORIZATION. PROTPROC also builds or 
modifies the OWNERID CTGFL with ownerid from 
OWNER. The following is put in the AMDSBCA T 
CTGFL: 

ORDEREDiUNORDERED 
WRITECHECKiNOWRITECHECK 
size from CONTROLINTERVALSIZE 

The following is put in the DSATTR CTGFL: 

UNIQUEiSUBALLOCA TIONINOALLOCA TION 
ERASEiNOERASE 
REUSEiNOREUSE 
DOS shareoptions and the reserved for OS shareoptions 
from SHAREOPTIONS 
l~DLX Part <>f 
<\LTIRNAHINDFX 
\10Dl L 11w1 

u'ed 1f \IODLL 
,pe..:ified under 
INDIX) 

ALTERNATEINDEX l[Ni)f'Xf"y"fl 

INDEX Part of 
INDEX MODEL 

IDCDE03 

Procedures: AIXPROC 

INDEX 

INDEX 
CTCFV 

4 If UNIQUE is specified, a null VOLUME CTGFV is 
built. AIXPROC puts the identification VOLUMFVT in 
the 8 bytes preceding the VOLUME CTGFV. The 
VOLUME CTGFV is not initialized because VSAM uses 
the VOLUME CTGFV for a work area. 

No Input 

-, 
I 
r 
I 

----

~YOLUMFvTI 

Volume 
CTGFV 

IDCDEOt 

Procedure: INTGCHK 

s For an alternate index two or three CTGFVs have been 
built--0ne each for alternate index, data, and index 
information. If a VOLUME CTGFV has been built, it 
does not have any information in it because VSAM uses it 
for a work space. The following table shows the possible 
places where a SPACPARM CTGFL may have been built 
and the action INTGCHK takes. 

SPACPARM CTGFL 

Alternate 
Index Data Index Action 

x x x If the data/index 
space parameters 
did not come from a 
model, this is an 
error; IDCDEOl 
terminates the 
DEFINE. 

x x This is an error; 
IDCDEOl 
terminates the 
DEFINE. 

x x This is an error; 
IDCDEOl 
terminates the 
DEFINE. 

x x OK; If index level 
space specification 
is taken from a 
model, nullify it. 

x OK; no action. 

x OK; no action. 

x This is an error; 
IDCDEOl 
terminates the 
DEFINE. 

none none none This is an error; 
IDCDEOl 
terminates the 
DEFINE. 

INTGCHK checks the data CTGFV to be sure that logical 
record length is specified with a LRECL CTGFL. Ifnot, 
an LRECL CTGFL is built with the default average 
recordsize. Control goes to Diagram 3.2, step 4. 

i 
l 
:: 
ID 

i 
e. 
I 

I 
s. -= :: 



N 

!a Diagram 3.2.7. DEFINE FSR - DEFINE PATH 
N 

~ 

i 
~ 

i 
I 
fr 

I· 
b 
~· 

from Diagram 3.2 

INPUT PROCESSING 

CTGPL 

D 
1. Builds Path-CTGFV. 

MDTBL CTGPL 

I I -
OUTPUT 

Path 
CTGFV ...---

Data 

CTGFLs -

I 
a: 
i 
!. 
I 

I 
s. 
; 
a: 



i .. 
h' 

~ 
[ 
2, 

i :::. 
8 

~ 
I 

...... w 

Extended Descripdon for Diagram 3.2. 7 

IDCDE02, IDCDE03 

Procedures: PATHPROC, NAMEPROC, MODELPRC 
PROTPROC,ALLCPROC 

In the DEFINE PATH command, you specify information 
under one main keyword: PA TH. The DEFINE FSR 
builds a CTOFV to describe the path. Information 
specified under PA TH goes in the PA TH CTOFV. 

If MODEL is specified, the information in the command 
overrides the information in a model. A model has one 
catalog entry to describe its path. The information in a 
model's path catalog entry is used to build the PA TH 
CTOFV. 

PATHPROC checks for a MODEL keyword under 
PATH. If MODEL is specified, MODELPRC issues a 
UCA TLO to retrieve information from the modeled 
VSAM data set. The information from the path catalog 
entry of the modeled data set is put in a table, 
MDL T ABL. MDL T ABL contains an address and the 
length of each field of information returned from the 
UCATLO. In building the PATH FVT, information is 
obtained from MDL TABL and is then overlaid by 
information specified in the PA TH parameters. 

PA THPROC sets the identification of PA THFVT in the 8 
bytes before the PATH CTOFV. NAMEPROC issues a 
UTIME macro to get the creation date which is put in a 
DSETCRDT CTOFL. NAMEPROC puts the address of 
objectname from NAME in the PATH CTOFV. 
NAMEPROC is supplied with the address necessary to 
reference the PA THENTR Y name and places its address 
in CTOFVNAM. The password of the PATHENTRY is 
referenced from CTOFVPWD. NAMEPROC builds a 
DSETEXDT CTGFL with the information from 
TOIFOR, PROTPROC builds a PASSWALL CTOFL 
with information from MASTERPW, CONTROLPW, 
UPDATEPW, READPW, CODE, ATTEMPTS, and 
AUTHORIZATION. PROTPROC also builds an 
OWNERID CTGFL with information from OWNER. 
The call to PROTPROC in the construction of the PA TH 
FVT includes the UPDATEINOUPDATE indication for a 
path. PROTPROC builds the RGATTR FPL and 
references it in the PATH FVT field CTGFVUPG. If 
neither of these parameters was specified, a def a ult of 
UPDATE is set in the RO A TTR. ALLCPROC sets the 
address of the recovery volume serial work area in the 
CTOFVWKA field of the PATH FVT. The CTGFVTYP 
field of the PATH FVT is set to R. 

I 
~ 
I 
I 

f 
s. 
i 



w 
I 

....J ,,., 

~ 

! 
i 
I 
I 
b 
~· 

Diagram 3.3. DELETE FSR 

INPUT 

Register I 

tGDT 

t FDT 

VSAM 
Catalog 

() 

NonVSAM Data Sets, 
VSAM Data Space, 
VSAM Unique Data Set 

I I 

From Executive 
Controlled Termination 

PROCESSING 

1. Initializes. 

2. For each item to be deleted: 

a. Gets entry type. 

b. Builds CTG PL. 

c. Deletes entry. 

3. Writes message. 

CTGPL 
~~ 

CTGPL 

D 

OUTPUT 

VSAM 
Catalog 

IYk'>'>age 

D 
+ (;)) [ 
+IHI 

L\STCC 

i 
l 
3: • 
~ 
I 

J 
a. 
; 
3: 



0 

! 
ii 
!'::» 

I 
0 
~ 

0 

1· 
N 
I ....,, 
v. 

Extended Descrlpdon For Diagram 3.3 

IDCDLOI 

Procedure: CATOPEN 

1 If a CATALOG is specified, CATO PEN builds an 
OPNAGL and issues a UOPEN to open the catalog. If the 
catalog does not open, CATOPEN prints an error message 
and the DELETE command is terminated. If the return 
code from UOPEN is zero, CATOPEN compares the data 
set name returned by UOPEN (in IOCDSN) to the name 
specified in the CATALOG parameter. If the compare is 
unequal, a message is written and the DELETE command 
is terminated. 

IDCDLOI 

Procedures: FINDTYPE, BUILDCPL, CATCALL, 
MORESP, IDCDLOl 

2 The following steps are performed for each entryname to 
be deleted. Control goes to step 3 to terminate the 
command when all entrynames have been deleted or a 
serious error is encountered. 

a. If the entry type is not specified in the command, 
FINDTYPE builds a CTGPL and CTGFL in which 
VSAM returns the entry type. FINDTYPE initializes 
the CTGPL and CTGFL once for the entire DELETE 
command, and they are used over and over for each 
entryname. FINDTYPE issues a UCA TLG macro to 
locate the entry type. If the return code is nonzero, 
FINDTYPE builds an error conversion table and 
invokes the UERROR macro to print a message, but 
the rest of the DELETE command is processed. 

PARAMCHK checks for invalid or insufficient 
parameters which were not checked by the 
Reader/Interpreter. The Reader /Interpreter cannot do 
all the necessary parameter checking if the user has not 
specified the entry type or if the entry type is 
NONVSAM. If there is an invalid parameter, 
PARAMCHK writes an error message, but the rest of 
the DELETE command is processed. 

b. BUILDCPL builds a CTGPL to delete the entry. 
BUILDCPL initializes the CTGPL once for the entire 
DELETE command, and it is used over and over for 
each entryname. BUILDCPL puts the following 
information in the CTG PL: the address of the 
entryname, the address of the dname, type of entry if 
specified on the command, PURGEINOPURGE, 
ERASEINOERASE, FORCE!NOFORCE, 
SCRATCHINOSCRA TCH, address of a password if 
specified, and the address of the catalog name or ACB 

address if CATALOG is specified. BUILDCPL also 
puts the address of a work area needed by VSAM in 
the CTGPL. The work area passed to catalog 
management is set initially to a size large enough to 
contain twelve names. BUILDCPL puts the address of 
the entry name and the address of the entry password 
in the CTGPL. If the entry type is nonVSAM and 
neither SCRATCH or NOSCRA TCH is specified, 
BUILDCPL sets SCRATCH in the CTGPL. If the 
entry was located from the catalog, BUILDCPL puts 
the entry type in the CTGPL. 

c. CATCALL deletes the entryname by issuing a 
UCATLG macro with the CTGPL built by 
BUILDCPL. If the return code is zero, VSAM has 
returned a list of deleted objects. CATCALL writes the 
name of each deleted object in the entry with a 
UPRINT macro. Control is given to step 2. If the 
return code is 160, the entry type is SPACE and the 
space was deleted, but the volume entry in the catalog 
could not be removed because there are still some 
VSAM data sets on the volume. This is not a DELETE 
error so the condition code to the user is zero, but 
CATCALL writes an explanatory message. 

A return code of 40 indicates that insufficient space 
remains in the work area to contain the names 
associated with the next structure segment to be deleted 
(e.g. an alternate index with its associated data, index 
and path names). Catalog management services has 
placed in the work area the names of those objects 
successfully deleted thus far, plus a factor indicating 
the amount of space necessary for the next structure. 
Should catalog give a return code of 40, CATCALL 
calls MORESP. MORESP sets the CTGOVRID bit to 
1 and the CTGERASE bit to 0 to prevent CMS from 
re-erasing the object being deleted. MORESP prints 
the names of those entries deleted thus far and 
calculates whether the current work area size can 
contain the next segment to be deleted. If enough space 
is available, the work area is reset to zero; otherwise the 
current work area is freed with a UGPOOL call 
(provided that it is not PL/S automatic storage) and a 
large enough work area obtained with a UGPOOL 
call. If the return from UGPOOL is nonzero, a 
message is written and control returns to Step 2 for the 
next entry. Otherwise, MO RESP reissues the 
UCA TLG macro with the same entry name. This 
process continues until the entire structure has been 
deleted or a terminating error occurs. If the return code 
from UCA TLG is not 40 or 160 an error message is 
printed by building an error conversion table and 
invoking the UERROR macro. 

IDCDLOI 

Procedures: CLEANUP, IDCDLOl 

3 If a catalog was opened by CATOPEN, CLEANUP closes 
the catalog with a UCLOSE macro. IDCDLOl prints a 
message with LASTCC. Control goes to Executive 
Controlled Termination, Diagram 4.1. 

I 
~ 

i 
I 

J 
a. 
i 



t;" Diagram 3.4. EXPORT FSR 
--.I 
0\ 

;;j 

~ 
~ 

i 
I 
sr 
~· 
b 
~-

INPUT 

GDT 
FDT 

0 

et 

From Executive 
Controlled Termination 

PROCESSING 

1. Tests for type of export. 

a. Exports a VSAM user catalog. 

b. Exports a cl=. ~ 
See Diagram -u 

2. Writes message. 

D 
OUTPUT 

VSAM User 
Catalog 

Portable Data Set 

D 
GDT 
FDT 

STCC 

I 
i: 

l 
!. 
I 
l 
l 
s. 
; 
i: 



f 
!':> 

I 
~ 

1 
1· 
N 
I 

....... ....... 

Extended Description for Diagram 3.4 
IDCXPOI 

Procedures: IDCXPOl, DELTPROC, LOCPROC, 
CTLGPROC,OPENPROC,PUTPROC,CLUSPROC 

I IDCXPOl tests the FDT for DISCONNECT in the 
EXPORT command. Step 1.a is done if DISCONNECT is 
specified, or step l.b is done if DISCONNECT is not 
specified. 

a. DEL TPROC builds a CTG PL to delete the user 
catalog entry in the VSAM catalog. DEL TPROC 
issues a UGPOOL for a work area in which VSAM 
puts deleted names. If a password is supplied, 
LOCPROC puts it in the CTGPL. CTLGPROC 
deletes the user catalog entry by issuing a UCA TLG 
macro with the CTG PL. If the return code is 40, the 
work area addressed from the CTG PL is too small. 
The former work area is released with a UFPOOL, and 
the returned size of the work area needed is used with a 
UGPOOL to get another work area. If the new work 
area is obtained, another UCA TLG macro is issued. If 
the return code from the first UCATLG is nonzero and 
not 40, or if the return code from the second UCATLG 
is nonzero, an error message is written by building an 
error conversion table and issuing the UERROR 
macro. 

b. LOCPROC gets catalog information about the cluster 
or alternate index, data, index, and path entries for the 
VSAM data set. OPENPROC opens the portable data 
set for output. PUTPROC writes catalog information 
and data records on the portable data set. CLUSPROC 
closes the portable data set and processes the 
disposition options, TEMPORARY!PERMANENT. 
Refer to Appendix A for a description of the portable 
data set. Diagram 3.4.1 shows exporting a cluster or 
alternate index in detail. 

IDCXPOI 

Procedure: IDCXPO l 

2 IDCXPO 1 writes a message with LASTCC. Messages 
listing the exported catalog or VSAM data set are written. 
IDCXPOl closes any open data sets with the UCLOSE 
macro. Control goes to Executive Controlled Termination, 
Diagram 4.1. 

r--

1 
~ 

i. 
!!. 
I 

j 
s. 
; 
~ 



~ Diagram 3.4.1. EXPORT FSR - CLUSTER or ALTERNATEINDEX 
""" 00 

~ 

i 
I 
~ 
[ 
le 

I· 
b 
~-

INPUT 

VSAM 
Catalog 

VSAM 
Data Set 

Portable Data Set 

From Diagram 3.4 

PROCESSING 

1. Obtains information for cluster 
(base cluster or alternate index 
cluster), data, and index. 

2. Opens portable data set. 

CTGPL -

3. Obtains information for associated , 
paths to the cluster .. Writes it to the ./ 
portable data set. Writes catalog 
information. 

4. Writes data records. 

S. Closes portable data set. CTGPL - CTGFV 
6. Processes disposition options. -

OUTPUT 

Portable Data Set 

VSAM I 
Catalog I I 

~ ;r 
:a. 
I!. 

VSAM I I I 
Data Set 

i 
I. 
; 
I: 



f 
~ 

i 
0 
~ 

0 

I. g 

N 
I 

...J 

'° 

Extended Description for Diagram 3.4.1 

IDCXPOI 

Procedures: LOCPROC, CTLGPROC, IDCXPOl, 
CLUSPROC 

t For the cluster or alternate index entry of the VSAM data 
set, LOCPROC builds a CTGPL and CTGFLs to retrieve 
information from the VSAM catalog. One CTGFL is built 
for each of the following pieces of information: 

Entry type 
Entry name 
Data set attributes 
Data set owner 
Data set creation date 
Data set expiration date 
Password 
Password prompting 
Password attempts 
User module name 
User module area 
Space infomation 
Buffer size 
Logical record length 
Low key on volume 
High key on volume 
AMDSB control block 
Exception exit 
Alternate index and path attributes 
Type and name of associated objects 
Catalog ACB 

CTLGPROC issues a UCATLG with the CTGPL and 
CTGFLs to retrieve the information from the catalog. If 
the work area is too small, CTLG PROC will enlarge it and 
reissue the UCATLG. lfthe LOCATE fails for a reason 
other than the work area is too small, an error message is 
written by building an error conversion table and issuing 
the UERROR macro. This processing occurs for all 
UCATLG requests issued by CTLGPROC. CLUSPROC 
tests to be sure that the type of catalog entry is a cluster or 
an alternate index. If it is not, an error message is written 
and the VSAM data set is not exported. Information is 
requested on all the fields even if the information is not 
available in the cluster or alternate index entry because 
VSAM ignores requests for fields that do not apply for this 
entry. 

LOCPROC builds a CTGPL and CTGFLs for the data 
entry of the VSAM data set. CTG FLs are built for each 
piece of information in the above list except the last two, 
type and name of data and index entry, and Catalog ACB. 
The Control Interval of the data entry is used to find the 
data entry. CTLGPROC issues a UCATLG with the 

CTGPL and CTGFLs to retrieve the information from the 
catalog. If the work area is too small, CTLGPROC 
enlarges it and reissues the UCA TLG. The returned 
information is saved. After retrieval of the data entry 
information, CLUSPROC examines the data set attributes 
to determine if the object has been flagged as not usable. If 
so, an error message is written and the VSAM data i;et is 
not exported. The data component maximum recordsize 
(RECORDMODE) or control interval size (CIMODE) is 
extracted from the AMDSB for use as the maximum 
recordsize value for the portable data set. CLUSPROC 
examines the data component AMDSB for 
NOCIFORMAT SAM ESDS. lfNOCIFORMAT SAM 
ESDS, an error message is written and the command is 
terminated. CLUSPROC tests for SAM ESDS and for the 
SAM ESDS feature. If SAM ESDS with the SAM ESDS 
feature is not installed, an error message is written and the 
command is terminated. 

The processing in the above paragraph (except for the data 
component AMDSB processing) is repeated for the index 
entry. 

CLUSPROC determines ifthe object being exported is an 
alternate index. Ifso, LOCPROC builds a CTGPL and 
CTG FLs for the base cluster associated with the alternate 
index. CTFGLs are built for entry type and entry name. 
CTLGPROC issues a UCATLG to retrieve this 
information. The entry name will be written to the 
portable data set as the related name. 

IDCXPOI 

Procedure: OPENPROC 

2 OPENPROC builds an OPNAGL and issues a UOPEN to 
open the portable data set for output. User specified tape 
label and rewind options are placed in the OPNAGL for 
UOPEN processing. If the return code is nonzero, an error 
message is written and the VSAM data set is not exported. 
Refer to Appendix A for a description of the portable data 
set. 

IDCXPOI 

Procedures: CLUSPROC, PUTPROC, CONTRBL 

3 CONTRBL constructs a dictionary for each CTGPL. The 
CTGFLs contain information returned by VSAM. If a 
fixed length field has no information, VSAM puts all 
binary ones in the CTGFL where the information would 
have been. If a variable length field has no information, 
VSAM puts zeros in the two byte length field that preceeds 
the field in the CTGFL where the information would have 
been. CONTRBL always turns off the temporary export 

flag and the inhibit update flag in the exported DSA TTR 
CTGFL. If INHIBITTARGET is specified, a flag is set in 
the portable data set timestamp record so IMPORT can 
process INHIBITTARGET. If export CIMODE is 
specified, a flag is set in the portable data set timestamp 
record so IMPORT can process CIMODE-format data. 
Flags are also set in the timestamp record when SAM 
ESDS and NOALLOCA TION files are exported. 
PUTPROC writes the dictionary followed by the 
information from the CTG FLs. If the length of the 
dictionary or catalog information is greater than the 
logical record length for the portable data set, PUTPROC 
writes the dictionary or catalog information in segments. 
PUTPROC writes the records with a UPUT macro. Refer 
to Appendix A for the format of the portable data set. After 
the catalog information pertaining to the cluster or 
alternate index and associated data and index objects has 
been written to the portable data set, CLUSPROC obtains 
information regarding all paths which have been defined 
over the object being exported. For the first path 
association LOCPROC builds a CTGPL and CTGFLs to 
retrieve the information from the VSAM catalog. 
CTGFLs are built for the same pieces of information as 
for the data and index objects. CTLG PROC issues a 
U CA TLG to retrieve the information which is then 
written to the portable data set. In addition, the name of 
the cluster or alternate index being exported and its 
password are written to the portable data set as the 
PATHENTR Y name and PATHENTR Y password. 
CONTRBL is called to construct the portability record. 
CLUSPROC retrieves information for all the remaining 
path associations and then writes it to the portable data set 
using the same CTGPL and CTGFLs which were set up 
for the first path association. Prior to calling CTLG PROC 
for each, the work area is cleared and the control interval 
number of the next associated path is placed in the 
CTGPL. 

IDCXPOl 

Procedures: RECPROC, LOCPROC, OPENPROC 

4 RECPROC calls OPENPROC to open the VSAM data set 
with a UOPEN macro and issues a UCOPY to copy all the 
records to the portable data set. RECPROC issues a 
UCLOSE to close the VSAM data set. Following a 
successful open, RECPROC compares the data set name 
returned by UOPEN to that specified by the caller as the 
entry name in the EXPORT command. If the compare is 
unequal, LOCPROC builds a CTGPL and CTGFLs to 
perform a LOCATE on the name returned by UOPEN. 
CTGFLs are built for ENTYPE and NAMEDS. 
CTLGPROC issues a UCATLG macro. If the ENTYPE 
returned is not that of a path, an error message is written 

I 
~ • 
i 
I 

f 
a. -= ~ 



Licensed Material - Property of IBM 

2-80 V~B/VSAM Access Method Services Logic 



f 
~ 

~ 
[ 
0 

""" 
~ 
; 
a· 
~ 
I 

00 -

and the command is terminated. If the ENTYPE is that of 
a path, a second LOCATE is performed using the control 
interval number of the pathentry object. A CTGFL is built 
for ENTNAME by LOCPROC and a UCATLG macro 
issued by CTLGPROC. If the name returned is not equal 
to the entry name specified in the EXPORT command, a 
message is written and the command terminated. 

When exporting a relative record data set in export 
RECORDMODE, the relative record number of each 
record written to the portable data set is placed by 
UCOPY in a 4-byte area immediately preceding the 
record itself. OPENPROC triggers this processing by 
setting the Export/Import flag in the OPNAGL of the 
input data set. 

OPENPROC triggers CIMODE processing of data (by 
UCOPY) by setting the "export CIMODE" flag and the 
"CNV processing" flag in the OPNAGL of the input data 
set. 

IDCXPOt 

Pnaeedwc CLUSPROC 

5 CLUSPROC issues a UCLOSE to close the portable data 
set. 

IDCXPOt 

Precellllres: DELTPROC, CLUSPROC, CTLGPROC, 
ALTRPROC, MORESP 

6 If PERMANENT is specified, DELTPROC builds a 
CTGPL. If ERASE or PURGE is specified DEL TPROC 
sets up the proper flags in the CTGFL. DELTPROC 
issues a UCATLG macro to delete the VSAM data set 
from the VSAM catalog. If the DELETE fails, an error 
message is written by building an error conversion table 
and issuing the UERROR macro. The names of all deleted 
entries are printed. If the VSAM catalog return code is 40, 
MO RESP is called to get a larger work area and to finish 
deleting the object. 

If TEMPORARY is specified, the temporary export field 
must be turned on in the catalog entry. ALTRPROC 
modifies the existing CTGPLs, builds a CTGFV, and 
modifies the existing CTG FLs for the fields that need to 
be changed in the VSAM catalog. The temporary export 
flag and, if INHIBITSOURCE is specified, the inhibit 
update flag is set in the DSA TTR CTG FL. An 
ENTNAME CTG FL for the entryname is also built. 
AL TRPROC places the address of the dname specified in 
the INFILE parameter in the CTGFV for catalog recovery 
purposes. 

CTLG PROC issues one UCA TLG for the data entry and 
one UCA TLG for the index entry if it exists. The data set 
attributes field does not appear at the cluster or alternate 
index entry. Control returns to Diagram 3.4, step 2. I 

3: 

i 
!!. 
I 

I 
9-

i 



N 
I 

~ 

~ 

~ 
~ 
§ 
I 

I 
UJ 

i· 
b 
~-

Diagram 3.5. IMPORT FSR 

INPUT 

tGDT 

tFDT 

0 

Portable Data Set 

VSAM 
Catalog 

VSAM 
User Catalog 

From Executive 
Controlled Termination 

PROCESSING 

1. Tests for IMPORT of user 
catalog or VSAM cluster. 

a. Imports user catalog. 

b. alternate mdex. m 3.5.I 
Imports c~uster or-& 

See D1agra 

2. Writes message. 

CTGPL -

OUTPUT 

VSAM 
Catalog 

VSAM 
User Catalog 

VSAM 
Catalog 

Message 

VSAM 
Cluster 
orAIX 

D 
Register I c J 

tGDT 

t FDT 

~ 

l 
3: 
[ 
!!. 
I 
l 
] 
s. -= a: 



(") 

:r 
! 
!':> 

~ 
[ 
s, 

i 
§• 

to.) 

I 
00 
w 

Extended Description for Diagram 3.5 

IDCMPOt 

Procedures: OPENPROC, IDCMPOl, CLUSPROC, 
FVTPROC, CPLPROC, CNCTPROC, LVLRPROC, 
CTLGPROC,RECPROC,ALTRPROC 

t IDCMPOl tests the FDT for the CONNECT keyword in 
the IMPORT command to determine ifa VSAM data set 
or a VSAM catalog is being imported. If CATALOG is 
specified, it is not opened because the catalog is assumed 
to be the job catalog or master catalog and the operating 
system has opened it. If CONNECT is specified, a VSAM 
user catalog is being imported, and step l.a is done. If 
CONNBCT is not specified, a VSAM data set is being 
imported, and step l.b is done. 

a. The following is repeated for every objectname in 
OBJECTS. (More than one user catalog can be 
imported with one IMPORT command.) CNCTPROC 
builds a CPL and an FVT for the connect operation. 
LVLRPROC builds a DEVTYPE CTGFL from the 
DEVICETYPES in the command. L VLRPROC builds 
a volume list from VOLUMES and puts the address of 
the volume list in the CTGFV. CNCTPROC puts the 
address of the objectname from OBJECTS in the 
CTGFV. lfthe objectname contains the reserved 
default model prefix, an error message is written and 
control goes to step 2. If no objectname is specified, an 
error message is written, and the catalog is not 
imported. The operation type field in the CTGFV is set 
to 'A' to indicate a catalog connect. CNCTPROC 
issues a UCA TLG to connect the catalog. If the return 
code is nonzero, an error message is written by 
building an error conversion table and issuing the 
UERROR macro. When all the catalogs have been 
connected, control goes to step 2. 

b. OPENPROC opens the portable data set. CLUSPROC 
writes the time of export with a UPRINT macro. 
CLUSPROC uses the catalog information in the 
portable data set to "define" the VSAM data set. 
OPENPROC opens the VSAM data set and 
RECPROC copies the data records from the portable 
data set to the VSAM data set. lfINHIBITT ARGET 
was specified when the VSAM data set was exported, 
AL TRPROC alters the catalog entry for the VSAM 
data set. Refer to Appendix A for the format of the 
portable data set. 

IDCMPOt 

Procedure: IDCMPO 1 

2 Based on the return code from CLUSPROC or 

CNCTPROC, IDCMPOl sets the value for LASTCC. lf 
LASTCC is less than 12, a completion message (with 
LASTCC) is written; otherwise a termination message 
(with LASTCC) is written. Control goes to Executive 
Controlled Termination. 

i 
I 
I 

j 
s. 
~ 



~ Diagram 3.5.1. IMPORT FSR - CLUSTER or ALTERNATEINDEX 
~ 

~ 

~ 
I 
~ 
[ 
~ 

i· 
b 
~· 

INPUT 

Portable Data Set 

VSAM 
Catalog 

From Diagram 3.5 

PROCESSING 

1. Opens portable data set. 

2. Writes time of export. 

3. Builds catalog parameter lists. 

4. Defines cluster or alternate 
index and any associated paths. 

5. Copies data. 

6. Closes portable data set. 

7. Processes INHIBITTARGET. 

~ 

CTGPL 
r---

CTGFV - CTGFL -

OUTPUT 

Message 

D 

Data Set 

I 
~ 

[ 
!!. 
I 

J 
s. 
~ 



&l 
.g 
& ... 
~ 

I 
g, 

i 
~. g 

N 
I 

00 
\A 

Extended Description for Diagram 3.5.1 
IDCMPOt 

Procedures: OPENPROC, IDCMPO 1 

t OPENPROC builds an OPNAGL and issues a UOPEN to 
open the portable data set. User specified tape label and 
rewind options are placed in the OPNAGL for UOPEN 
processing. The portable data set was created by an 
EXPORT command and contains catalog information and 
data records for the VSAM data set that was exported. 
Refer to Appendix A for the format of a portable data set. 
If the return code is nonzero, IDCMPO 1 writes a message. 
If the portable data set is open, IDCMPOl issues a 
UCLOSE to close the data set, and the IMPORT 
command is terminated. 

IDCMPOt 

Procedures: CLUSPROC, MSGPROC 

2 CLUSPROC gets the first record of the portable data set 
which contains the date and time the portable data set was 
created by the EXPORT FSR. (The record contains flags 
indicating whether EXPORT specified 
INHIBITTARGET and CIMODE or RECORDMODE.) 
MSGPROC writes the date and time with a UPRINT 
macro. 

IDCMPOt 

Procedures: CLUSPROC, CPLPROC, FVTPROC, 
BFPLPROC, BPASPROC, IUNIQPRC, LVLRPROC, 
RANGPROC,DVOLPROC,DVOLCHK 

3 The information for catalog parameter lists comes from 
three places, the portable data set's copy of the previous 
catalog entry, the IMPORT command, and both the 
portable data set and the IMPORT command. 

a. CLUSPROC via CPLPROC builds a CTGPL for a 
define operation. CLUSPROC issues a UGET macro 
to read the first catalog record in the portable data set. 
The catalog record contains the size of the data record 
that follows. FVTPROC builds from 2 to 3 CTG FV s, 
one each for the cluster or alternate index entry and its 
associated data and index entries. FVTPROC obtains 
the data set maximum logical record size 
(RECORD MODE) or control interval size (CIMODE) 
from the data component AMDSBCAT CTG FL and 
passes it to the 1/0 adapter via a function of the 
UCLOSE macro that allows a larger work-area data 
buffer. The value obtained becomes the portable data 
set maximum logical record size. FYTPROC tests the 
AMDSB for SAM ESDS and for the SAM ESDS 

I b. 

feature. If SAM ESDS with the SAM ESDS feature is 
not installed, an error message is written and the 
command is terminated. BFPLPROC builds CTGFLs 
with information from the portable data set. The 
exception is the PASSW ALL CTG FL which is built by 
BPASPROC. If the exported YSAM data set was 
UNIQUE, IUNIQPRC builds a CTGFV for volume 
information. No data is put in the volume CTGFV. If 
the object being imported is an alternate index, the 
related name (given in the RELATE parameter) is 
passed via the alternate index (G) FYT. A work area 
for the return of the catalog recovery volume serial 
number, if any, is passed via the cluster or alternate 
index FYT. 

CL USPROC puts the address of the optional dname 
from OUTFILE on the IMPORT command in the 
cluster CTG FY. L YLRPROC puts the address of the 
volser ... list from VOLUMES in the CTGFV for the 
objectname in the OBJECTS parameter. Information 
about VOLUMES is available in the portable data set 
and is used unless superceded by the VOLUMES or 
DEF A UL TVOL UMES subparameter. 

c. IfUSECLASS (OBJECTS parameter) is specified for 
an objectname, CLUSPROC changes the SPACPARM 
CTGFL(s) for the objectname. If objectname is cluster 
or alternate index, data and index (if present) 
SPACPARM CTGFLs are changed. If objectname is a 
data or index component, only the component 
SPACPARM CTGFL is changed. 

lfORDEREDjUNORDERED is specified for a 
particular objectname, CLUSPROC changes the 
AMDSBCAT CTGFL for the objectname. If 
KEYRANGES is specified for the index object, 
RANGPROC builds a list of key ranges and puts the 
address of the key range list in the CTG FY. If 
NEWNAME is specified for a particular object, 
CLUSPROC puts the address of the new name in the 
particular CTGFV. lfthe NEWNAME is a reserved 
default model name, an error message is issued and the 
command terminates. 

If DEFAULTYOLUMES is specified for a particular 
objectname, DYOLPROC builds an empty volume list 
CTGFL attached to the object CTGFY, unless 
VOLUMES has already been specified for the object 
or at the cluster level. lfYOLUMES or 
DEFAULTVOLUMES occurs at the cluster level, data 
and index volume list CTG FL pointers are nullified. 
After OBJECTS parameter processing completes, 
CLUSPROC propagates the cluster level volume list 
CTGFL to the data and index CTGFLs if they contain 
null volume list CTGFL pointers. DYOLCHK is 

called to ensure that no file with the unique attribute or 
object with the ordered attribute contains an empty 
(DEF AUL TVOLUMES) volume list CTGFL and to 
determine ifa DEFAULTVOLUMES specification 
was totally superceded by a VOLUMES specifications 
(warning condition). 

Data from the IMPORT command overrides data from 
the portable data set. 

IDCMPOt 

Procedures: CTLGPROC, CPLPROC, CLUSPROC, 
DELTPROC,DUPNPROC 

4 a. CTLGPROC issues a UCATLG macro to define the 
VSAM data set. If the return code is 40, the work area 
for VSAM catalog management is increased and the 
UCATLG is reissued. If the return code is 8, control 
goes to step 4b. Otherwise, control goes to step 4c. 

b. A duplicate cluster name exists on the VSAM catalog. 
CPLPROC builds a CTG PL to locate the catalog entry 
to determine if the duplicate cluster had a temporary 
EXPORT done against it or if it is an empty data set. 
DUPNPROC builds DSATTR, HURBADS and 
AMDSBCAT CTGFLs to obtain the data set attribute 
information, the high-used RBA and the AMDSB 
control block of the data component. If the temporary 
export flag is not on in either the data or index or the 
data set is not empty, the IMPORT is terminated. Ifthe 
data set is empty, checks are made to insure that the 
data set organization, data length, and relative key 
position in the catalog entry are the same as those 
which were exported; that the maximum VSAM 
LRECL of the catalog catalog entry is greater than or 
equal to that of the export data set; that the 
RECORD FORMAT characteristics (AMDRCFRM) 
and SAM LRECL value (AMDBLREC) in the catalog 
entry are the same as those which were exported if the 
data sets are ESDS. If any of these conditions are not 
met, a message is written and the IMPORT is 
terminated. If the OBJECTS parameter was specified 
for the empty data set, a warning message is issued. 
Control then goes to step 4.c. If the temporary export 
flag is on, CPLPROC builds a CTGPL to delete the 
duplicate VSAM data set. If ERASEjNOERASE or 
PURGEINOPURGE is specified, CPLPROC puts the 
information in the CTGPL so that VSAM will take the 
appropriate action. DELTPROC issues a UCATLG 
macro to delete the object. Then CTLGPROC reissues 
the UCA TLG macro to define the VSAM data set. If 
the UCATLG return code is nonzero, CTLGPROC 
issues an error message by building an error conversion 

I 
3: 

l 
I 

J 
i. -= 3: 



Licensed Material - Property of IBM 

2-86 VSE/VSAM Access Method Services Logic 



I 
~ 

I 
~ 

~ 
i· 
N 
I 

~ 

table and invoking the UERROR macro, and the 
IMPORT is terminated. 

c. If a recovery volume serial is returned for the define, a 
UPRINT macro is issued to print it. If the successful 
DEFINE was for a unique data set on a fixed block 
device, a message is printed for each volume indicating 
the actual blocks allocated for that volume. 

If the cluster or alternate index exported had any 
associated paths defined over it, the catalog entries for 
these paths were also exported. CL USPROC processes 
the catalog information for each path in a manner 
similar to that described in step 3.a. The 
PA THENTR Y name and password, if any, are passed 
for the path (R) FVT. The only subparameter of the 
OBJECTS parameter used for path objects is 
NEWNAME. If the NEWNAME is a reserved default 
model name, error messages are issued and the path is 
bypassed for import. If NEWNAME is omitted and 
any other subparameter is specified, an invalid 
OBJECTS parameter message is written, LASTCC is 
set to 8, and that path is not defined. CTLGPROC 
issues a UCA TLG macro to define each path. If the 
return code from UCA TLG is nonzero, a message is 
written by building an error conversion table and 
invoking UERROR, and LASTCC is set to 8. 
However, the IMPORT is not terminated. 
CLUSPROC ensures that all OBJECTS parameter 
objectnames have corresponding component!path 
names. Warning messages are printed for any 
mismatches, and LASTCC is set to the current value of 
LASTCC or 4, whichever is greater. 

IDCMPOt 

Procedures: OPENPROC, RECPROC 

S OPENPROC builds an OPNAGL and issues a UOPEN to 
open the newly defined VSAM data set. A flag is set in the 
OPNAGL to indicate RECORDMODE or CIMODE. If a 
password is specified via the OUTFILE or OUTPW 
parameter, this password is passed to UOPEN for use in 
building the ACB. Otherwise, the exported master 
password, if any, is used. If the OUTFILE parameter is 
omitted, the input file file-id and catalog name (if present) 
are passed to UOPEN for use in building the ACB. 
RECPROC issues a UCOPY to copy the data from the 
portable data set to the newly defined (or empty 
pre-defined) VSAM data set. 

When importing a relative record data set in 
RECORDMODE, the relative record number of each 
record on the portable data set is contained in a 4-byte 
area immediately preceding the record itself. UCOPY 

processing uses this relative record number in writing the 
records to the output data set. OPENPROC sets the 
Export/Import flag in the OPNAGL of the output data set 
to indicate to UCO PY that this is to be done. 

Following a successful open if the OUTFILE parameter 
was specified RECPROC compares the name specified via 
the OUTFILE parameter to the name of the object 
exported. If the compare is unequal, RECPROC builds a 
CTGPL and CTGFLs and issues a UCATLG macro to 
locate the entry type and associations of the name 
specified via OUTFILE. If the entry type returned is that 
of a path, RECPROC builds a CTG PL and CTG FL and 
issues a UCATLG macro to locate the entry name of the 
pathentry association (alternate index or cluster) and 
compares the name returned from the Locate to the name 
of the object exported. If the verification fails, a message is 
written and the IMPORT is terminated. 

IDCMPOt 

Procedure: CLUSPROC 

6 CLUSPROC issues a UCLOSE to close the portable data 
set. 

IDCMPOt 

Procedures: AL TRPROC, CPLPROC 

7 lflNHIBITTARGETwas specified when the VSAM data 
set was exported, the catalog entry must be altered. 
AL TRPROC builds a CTGFV and a DSATTR CTG FL 
for the data set attributes field with INHIBITT ARGET 
specified. CPLPROC builds a CTGPL to alter the VSAM 
data set. CTLGPROC issues a UCATLG macro to alter 
the VSAM data set to inhibit updating the VSAM data set. 
If the VSAM data set has an index component, the same 
steps are repeated to alter the index component to 
INHIBITTARGET. Control goes to Diagram 3.5, step 2. 

~ 

l 
:: • [ 
!. 
I 

j 
a -= :: 



.., 
I 

00 
00 

~ 
ltl 

~ 
> a: 

I 
~ 
l 
I 
I 
b 
1· 

Diagram 3.6. LISTCAT FSR 

Sets up common data area. 

2. Opens data sets. 

3. Initializes. 

4. For each entry in the command 
in the catalog: 

a. Gets catalog information. 

See Diag<am-8 

b. Writes catalog information. 

5. Writes message. 

no 
Catalog Information 

D 
Message 

D 

i 
I 
I 

l a 
s. 
; 
~ 



f 
!'-:> 

~ 
i 
0 

f 
1· 
...., 
I 

~ 

Extended Description for Diagram 3.6 

IDCLCOI, IDCLC02 

Procedures: IDCLCOl, IDCLC02 

t Before processing the catalog entries, IDCLCOl links to 
IDCLC02. IDCLC02 establishes addressibility and 
initializes an array of 4-byte pointers to point to several 
different work areas. These work areas are common work 
areas used by both IDCLCO 1 and IDCLC02. They are 
used to store pointers and variables and reside in 
IDCLC02's automatic storage. The address of the array of 
pointers is passed back to IDCLCOl in register 15. 

IDCLCOI 

Procedure: INITPROC 

2 lfOUTFILE is specified, INITPROC builds an OPNAGL 
and issues a UOPEN to open the alternate output data set. 
By opening the alternate file first, any LISTCA T error 
messages appear on the alternate file. If CATALOG is 
specified with dname as well as a catname, INITPROC 
builds an OPNAGL and issues a UOPEN for the catname 
and requests that the ACB be returned. INITPROC 
compares the catalog name returned by the UOPEN 
macro to the catname from the CATALOG parameter in 
the LISTCA T command. If the catalog names do not 
match, the LISTCA T command terminates and control 
goes to step 5. If a dname is not specified, but a catname is, 
INITPROC puts the address of the catname in the CTGPL 
to make VSAM open the catalog. If CATALOG is not 
specified in the LISTCA T command, INITPROC puts the 
address of44 blanks in the CTGPL to make VSAM find 
the catalog and open it. 

IDCLCOl 

Procedure: INITPROC 

3 INITPROC issues a ULOAD macro to load IKQDNT, 
the device name table. This table translates the 
hexadecimal UCB device type code to the external device 
name. (For example, the catalog UCB code X'3050200D' 
translates to the 3330-11.) INITPROC issues a UGPOOL 
macro to obtain storage for the CTGPL, CTGFLs, work 
areas, and DARGLIST. INITPROC puts the address of a 
work area for VSAM in the CTGPL. The returned catalog 
ACB from the UOPEN is put in the CTGPL. Also if 
password is specified in CATALOG, the address of the 
password is put in the CTG PL. INITPROC determines the 
number of catalog fields to be obtained for each catalog 
entry by the specification of NAME, VOLUMES, 
ALLOCATION, or ALL. Catalog fields are obtained by 
control blocks named CTGFLs. The table following this 

description shows the CTGFLs that are used for each type 
of catalog entry. 

IfNAME is specified, ~NITPROC initializes CTGFLs 2 
through 4. For VOLUMES, INITPROC initializes 2 
through 10. For ALLOCATION, INITPROC initializes 2 
through 14. For ALL, INITPROC initializes 2 through 28. 
INITPROC adds the DSA TTR to the end of the NAME, 
VOLUME, and ALLOCATION list ifNOTUSABLE is 
specified. If more than one entry type is being listed or if 
NOTUSABLE is specified, INITPROC adds the 
MULTITYP CTGFL to the beginning of the list of 
CTGFLs. 

IDCLCOl, IDCLC02 

Procedures: ENTPROC, LOCPROC, RTEPROC, 
CDIPROC, AUPROC, VPROC, FPLPROC, ANSVPROC, 
DEVTCONV 

4 If ENTRIES is specified, catalog information is found on 
each entryname in the command. If ENTRIES is not 
specifed, catalog information is found for each entry in the 
catalog. 

a. LOCPROC issues a UCA TLG to locate the catalog 
information for an entry. If a required password is not 
supplied, VSAM returns the entry type and entry name 
fields in a work area instead of through the CTGFLs. 
The catalog ACB is returned the first time information 
is successfully located in the catalog. LOCPROC saves 
the catalog ACB and removes the CATACB CTGFL 
from the list ofCTGFLs to be used to locate 
information on other catalog entries. Diagram 3.6.1 
shows getting catalog information in detail. 

b. RTEPROC test the entry type of the catalog entry. If 
the type is PATH, ALTERNATEINDEX, CLUSTER, 
DAT A, or INDEx, CDIPROC formats the 
information and writes it with a UPRINT macro. If the 
type is NONVSAM or USERCATALOG, AUPROC 
formats the information and writes it with a UPRINT 
macro. If the type is SPACE, VPROC formats the 
information and writes it with a UPRINT macro. 
DEVTCONV is involved to translate the hexadecimal 
UCB device type code to the external device name. 

Note: Information written for a SPACE entry does not 
come directly from the catalog because LISTCA T has 
a special interface with VSAM for all LISTCA T 
requests. VSAM manipulates information in the 
catalog to provide the special interface to LISTCAT. If 
the entry type is a cluster or alternate index, 
RTEPROC determines whether an association of the 
object-that is a data, index, or path entry-is to be 
listed. If it is, FPLPROC reinitializes the CTGFLs. 

ANSVPROC retrieves the information about the data, 
index, or path via the control interval rather than by 
name. Control returns to 4a to locate information 
about the data, index, or path. FPLPROC reinitializes 
the CTGFLs for the next catalog entry. If the type is 
not valid, R TEPROC writes a message. Control goes to 
step 4a for the next entry. Refer to Using VS EI VSA M 
Commands and Macros for a sample listing of 
LISTCA T output. 

IDCLCOI, IDCLC02 

Procedure: IDCLCOl, FREESTG 

5 IDCLCO 1 writes a summary of the entries listed and 
suppressed due to incorrect passwords. If INITPROC 
opened a VSAM catalog, lDCLCOl issues a UCLOSE to 
close the VSAM catalog. If an alternate output file w.il 

opened by INITPROC, lDCLCOl issues a UCLOSE to 
close the file. Any storage obtained during the processing 
of the LIST CATALOG command is released with a 
UFPOOL macro. lDCLCOl then calls FREESTG (in 
IDCLC02) to free the automatic storage acquired by 
IDCLC02. IDCLCO l then writes a message containing 
LASTCC. Control goes to Executive Controlled 
Termination, Diagram 4.1. 

i 
I 
I 

l 
s. 
; 
~ 



N 
~ CTGFLs Use4 for Each Type of Catalog Entry 
0 

~ 
~ 
~ 
> 
~ 

r 
I 
fl.> n 

~-
i. n 

CTGFLName Entry Type DATA 
CLUSTER 

1. MULTITYPE 

2. ENTYPE x x 

3.ENTNAME x x 

4. NAMEDS x x 

5. DSETEXDT x x 

6.DSETCRDT x x 

7. OWNERID x x 

8. RELCRA x x 

9. CATVOL x 

10. VOLDVCHR 

11. FPACPARM x 

12. HURBADS x 

13. HARBADS x 

14. FNTVOL x 

15. VOLTSTMP 

16. SYSEXTDS 

INDEX I NONVSAM 

--t-
x x 

x x 

x 

x x 

x x 

x x 

x x 

x x 

x 

x 

x 

x 

USER 1SPACE ALTER PATH 
CATALOG NATE 

I INDEX 

x x -~-~- x 

x x x x 

x x 

x x 

x x 

x x 
-------+---

x x 

x 

x 

I 

I 

x 

x 

Data in CTGFLs 

Identifies multiple catalog 
types to be listed. 

Entry type. 

Entry name. 

CI number and entry type 
of each association. 

----

Data set expiration date. 

Data set creation date. 

Data set owner. 

I VSAM release and catalog 
recovery information. 

Volume information for 
data set. 

Volume device character. 

Primary and secondary 
allocation. 

High used RBA. 

High allocated RBA. 
--

Physical description of 
data set. 

I Volume time stamp. -1 System allowed extents. 

~ g 
l 
~ • i 
!. 
I 

f 
a. -1:1:1 

~ 



n 
f 
! 
r! 

~ 
[ 

i 
1· 
N 
I 

:! 

Cl'GFLs v.Mf• FMllTne ef Qalac~ 

CFGn.N-. EmJTne DATA INDEX 
CLUSIDl 

17. NODSPACE 

18. NODSET 

19. FPACEHDR 

20. DSDIRECT 

21. FSPDSCRP 

22. PASSW ALL x x x 

23. AMDSBCAT x x 

24.DSATIR x x 

25. BUFSIZE x x 

26.LRECL x x 

27.RGATIR 

28. EXCPEXIT x x 

29.CATACB 

NONVSAM USER 
CATALOG 

SPACE ALTER PATH 
NATE 
INDEX 

x 

x 

x 

x 

x 

x x 

x x 

Data in Cl'GFLs 

Number of data space on 
volume. 

Number of data sets on 
volume. 

Characteristics and 
statistics of data space. 

Data Set directory for a 
data space. 

Physical description of 
data space. 

Password (security) 
information. 

AMDSB control block. 

Data set attributes. 

Minimum buffer size. 

Logical record size. 

AIX and PATH attributes. 

Exception exit module 
name. 

Catalog ACB address. 

I 
I 
I 

I ... 
i 



N 
I 

~ 

~ rn 
~ 
~ 

i 
I 
I 
i. n 

Diagram 3.6.1. LISTCAT FSR - Gets Information 

INPUT 

CTGPL 

VSAM 
Catalog 

CTGFLs 
..I: 

~ri 

From Diagram 3.6 

PROCESSING 

1. Initializes: 

• ENTRIES. 

• No ENTRIES. 

2. Locates information. 

3. Checks: 

• ENTRIES. 

• No ENTRIES. 

OUTPUT 

CTGPL CTGFLs 
..I: 

..I: 

pi 

I 
~ ;-
::!. 
!. 
I 

j 
a 
; 
3. 



i 
~ 

~ 
[ 
2, 

f. 
.., 
I 

~ 

Extended Description for Diagram 3.6.1 

IDCLCOI 

Procedures: ENTPROC, GNXTPROC 

1 If ENTRIES is specified, control goes to la. If ENTRIES 
is not specified, control goes to 1 b. 

a. ENTPROC puts the address of the entryname in the 
CTG PL. If only SPACE information is to be listed, 
ENTPROC treats the entryname as a six character 
volume serial number and extends it to 44 characters 
by padding on the right with binary zeros. ENTPROC 
puts the address of the volume serial number in the 
CTGPL. If password is supplied with CATALOG, 
ENTPROC puts the address of the password in the 
CTG PL. If there is no password supplied with 
CATALOG, and there is a password specified with the 
entryname, ENTPROC puts the address of the 
password in the CTGPL. lfthere is no entryname to be 
listed, control goes to Diagram 3.6, step 5. 

b. GNXTPROC sets the CTGPL to indicate that each 
catalog entry is to be located by the catalog index 
rather than by a specific name. For the first entry, 
GNXTPROC puts the address of 44 blanks in the 
CTGPL as a starting key in the catalog search for the 
first catalog entry. After the first entry, GNXTPROC 
adds one to the key-which is the previously retrieved 
entry name-to make the new key higher in the 
collating sequence than the old key. 

IDCLC02 

Procedure: LOCPROC 

2 LOCPROC issues a UCATLG macro with the CTGPL 
and CTG FLs to locate catalog information about the 
entry. 

IDLCLOI 

Procedures: ENTPROC, GNXTPROC 

3 If ENTRIES is specified, control goes to 3a. If ENTRIES 
is not specified, control goes to 3b. 

a. ENTPROC compares the type of entry information 
returned to the type of information requested in the 
LISTCA T command. If the entry type matches the 
type requested in the command, or the entry is a cluster 
or an alternate index, control goes to Diagram 3.6, step 
4b. If the entry type does not match the type requested 
in the command and the entry is not a cluster or an 
alternate index, or the entry is a cluster or an alternate 
index and the type specified is not data, index, or path, 

ENTPROC writes a message, but does not list the 
entry. If NOTUSABLE was requested and the 
retrieved entry is a data or index entry, a check is made 
to determine if the entry has been marked as unusable. 
If the entry has been marked as unusable, control goes 
to Diagram 3.6, step 4b; otherwise, control goes to 
Diagram 3. 6, step 4a for the next entryname in the 
LISTCAT command. If the UCATLG return code is 
nonzero, ENTPROC also writes a message. Control 
goes to Diagram 3.6, step 4a for the next entryname in 
the LISTCAT command. 

b. GNXTPROC saves the name of the retrieved entry to 
use as a key in locating information for the next entry 
in the catalog. If the return from the UCATLG macro 
is zero, control goes to Diagram 3.6, step 4b. lf the 
return code from UCA TLG indicates password 
verification failure or lack of workspace, GNXTPROC 
writes a message and control goes to Diagram 3.6, step 
4a for the next entry in the catalog. GNXTPROC 
checks for end-of-file and unrecoverable errors. When 
end-of-file or an unrecoverable error is encountered, 
control goes to Diagram 3.6, step 5 to terminate the 
LISTCA T command. 

~ 
I 
l 
::: • i 
!!. 
I 

f 
s. -= ::: 



~ Diagram 3.7. PARM FSR .. 
~ 

i 
~ 

i 
~ 

i 
Sf 

&· 
i. n 

INPUT 

Register I c 
t GDT 

t FDT 

c 
I 0 

From Executive 
• Controlled Termination 

... PROCESSING 
T 

:'V1 1. Processes TEST options: 

• OFF . 

• TRACE, AREAS, and FULL. 

I 2. Processes MARGINS option. 

3. Processes GRAPHICS option. 

4. Prints message. 

OUTPUT 

TEST Options 
Dat~ Area 

~ 

~ HD AREA 

LEFTMGN 

RIGHTMGN 

~ 
Message 

D 
Register I c 
tGDT 

tFDT 

(LASTCC 

i 
I 
I 

I 
2. 

~ 



&l 
~ 
! 
!':l 

I 
~ 

1 
N 
I 

'° Ui 

Extended Description for Diagram 3. 7 
IDCPMOt 

Procedures: TESTPARM, TESTSAVE 

1 If the address of the dump routine is in GDTDBG, a 
TEST option is currently in effect. TESTPARM frees the 
Debugging Aids Historical Data Area whose address is in 
GDTDBH, and it sets GDTDBH to zero. 

a. If the TEST keyword is followed by OFF, 
TESTPARM deletes the dump routine, IDCDBOl, 
whose address is in GDTDBG, and it sets GDTDBG 
to zero. Control goes to step 2. 

b. If the TEST keyword is followed by TRACE, AREAS, 
or FULL, TESTPARM issues a UGSPACE macro to 
obtain a new Test Option Data Area. TESTSA VE puts 
the information from the FDT in the new Test Option 
Data Area. lfGDTDBG is zero, TESTPARM issues 
the ULOAD macro to load dump routine. 
TESTPARM puts the address of the dump routine in 
GDTDBG. Although the trace tables record execution 
since Access Method Services invocation, the earliest 
time a trace table or dump can be printed is in the 
Executive prior to the second call to the 
Reader/Interpreter. This is because the TEST option is 
not on until the PARM command has been completed. 

IDCPMOl 

Procedure: MARG PARM 

2 MARGPARM checks the margins for validity. The left 
margin must be less than the right margin. If the margins 
are invalid, MARG PARM sets the left margin to 2 and the 
right margin to 72, the Access Method Services default 
margins. MARGPARM puts the margin values in the first 
two halfwords of the Reader/Interpreter Historical Data 
Area. 

IDCPMOl 

Procedure: G RPHPARM 

3 GRPHPARM puts the GRAPHICS parameter (CHAIN 
or TABLE) in a Text Processor Print Control Argument 
list. GRPHPARM issues a UREST macro for the Text 
Processor to use the new chain or table with Access 
Method Services output. The CHAIN parameter specifies 
one of several graphic character sets available. However, 
the CHAIN parameter does not specify a particular 
physical type chain. The TABLE parameter specifies a 
module in the core image library. 

IDCPMOl 

Procedure: IDCPMOl 

4 IDCPMOl prints a message containing LASTCC. Control 
goes to Executive Controlled Termination. 

I 
3: 
! ::s. 
!!. 
I 

J 
s. 
; 
3: 



~ 
I 
'Cl 

°' 

~ 
ri:i 

~ 
> 
!: 
> 
§ 
I 
!: 
0 
Ei-
&. 
rll 
0 

~-
t""' 
0 

~· 

Diagram 3.8. PRINTFSR 

INPUT 

I 1'C:gl!SU:::r I 

GOT 

FOT 

Input 
Data Set 

0 

I 

I 

~ 

I 

From Executive 
Controlled Termination • PROCESSING 

1. Opens data sets. 

2. Finds starting point. 

3. Sets up subtitle. 

4. Gets and prints records until ending 
point is reached. 

5. Writes message. 

OUTPUT 

Records 

D 
D 

GOT 

FOT 

I 
I 
I 

j 
a. 
~ 



f 
!':a 

I 
2, 

i 
1· 
w 
I 

~ 

Extended Description for Diagram 3.8 

IDCPROI 

Procedure: IDCPRO l 

1 IDCPROl builds an OPNAGL for the input data set. If the 
PRINT command specifies a FROMKEY or TOKEY 
parameter, IDCPROl opens the data set for key sequence 
record retrieval. If FRO MAD DRESS or TOAD DRESS is 
specified, IDCPROl opens the data set for sequential 
record retrieval. If the PRINT command specifies 
FROMNUMBER or TONUMBER, IDCPROl opens the 
data set for keyed sequential record retrieval. IDCPRO l 
puts any ENVIRONMENT parameters in the OPNAGL. 
The input data set .can be a VSAM catalog. IDCPRO l 
issues a UOPEN macro to open the input data set. If an 
output data set is specified with the OUTDDV AL 
keyword, IDCPROl builds an OPNAGL and issues a 
UOPEN for the output data set. If the return code from a 
UOPEN macro is nonzero, IDCPROl writes a message 
and terminates the PRINT command. 

IDCPROI 

Procedure: DELIMSET 

2 DELIMSET performs additional validity checking to 
verify that From/To parameters are consistent with data 
set organization. Ifthe parameter is invalid, an error 
message is written. Checks are made for invalid use of 

FROMADDRESS!TOADDRESS with RRDS and 
FROMNUM!TONUM with KSDS 

If FROMNUMBER is specified, DELIMSET issues a 
UPOSIT macro to position to the starting relative record 
number. If SKIP is specified for a VSAM relative record 
data set, DELIMSET issues a UPOSIT to position to the 
next relative record number beyond the skip count. A 
VSAM relative record data set is printed in relative record 
number order. 

If FROMKEY is specified, DELIMSET issues a UPOSIT 
macro to position to the starting key. IfFROMADDRESS 
is specified, DELIMSET issues a UPOSIT macro to 
position to the starting address. If SKIP is specified, 
DELIMSET issues as many UGET macros as there are 
records to skip. The way the data set is opened determines 
how the records are skipped. Any data set opened as an 
BSDS causes records to be printed in chronological order. 
A keyed data set opened as a KSDS causes records to be 
printed in key-sequence order. If no starting point is 
specified, the starting point is the first record in the input 
data set. 

IDCPROI 

Procedure: TEXTPSE'F 

3 TEXTPSET formats a subtitle line with static text and the 
input data set name from the IOCSTR. TEXTPSET issues 
a UPRINT macro to get the static text and insert it into the 
buffer in which the subtitle line is being built. No printing 
is done with this UPRINT macro. TEXTPSET issues a 
UESTA macro to give the subtitle to the Text Processor. 

IDCPROI 

Procedure: IDCPRO 1 

4 The following steps are repeated until the ending point in 
the input data set is found. IfTOKEY is specified, 
IDCPROl calculates the key location in the record from 
information in the IOCSTR. Retreiving records stops 
when the key in the input record is higher than the value 
in TOKEY. If TOADDRESS is specified, printing stops 
when the Relative Byte Address returned by the UGET 
macro equals the value supplied by TOAD DRESS. If 
COUNTY AL is specified, printing stops when the number 
of records printed equals the number supplied by 
COUNTY AL. IfTONUMBER is specified, retrieving and 
printing stops when the relative record number of the 
input record is higher than the TONUMBER value. If 
COUNT is specified for a VSAM relative record data set, 
printing stops when the number of valid relative record 
slots printed plus the number of invalid slots bypassed 
exceeds the value supplied by COUNT. Ifno ending point 
is specified, printing stops when the last record of the input 
data set is printed. 

a. IDCPROl issues a UGET to obtain a logical record. If 
the return code from the UGET macro is nonzero, 
IDCPROl checks the return code for a recoverable 
error. The recoverable errors are duplicate keys, 
records out of sequence, invalid length records, and 
1/0 errors in the data of a VSAM data set. After a 
non-recoverable error or 4 recoverable errors, printing 
stops. 

b. IDCPROl issues a UPRINT to print the logical record 
just obtained. A minimum of 3 lines is printed for each 
logical record from the input data set. The first line 
printed contains the record identification: key, address, 
sequence number (non VSAM except ISAM) or relative 
record number. The relative record number is printed 
for a relative record data set and indicates the slot 
number. Unused slots will be indicated by missing 
numbers. The second line is blank. The third and 
following lines contain the logical record from the 
input data set. The format of the logical records 
depends on whether HEX, CHARACTER, or DUMP 

was specified in the command. If an output data set is 
specified with the OUTDDVAL keyword, IDCPROl 
prints the records on that output data set. If the return 
code from the UPRINT macro is 12 or greater, 
IDCPRO l will terminate processing: there is no 
checking for recoverable errors. 

IDCPROI 

Procedure: IDCPRO l 

5 IDCPROl writes a message with LASTCC to SYSLST. 
IDCPROl issues a UCLOSE macro to close the input data 
set and any output data set other than SYSLST. SYSLST 
is not closed. Control returns to Executive Controlled 
Termination 

~ 
I 
i. 
:: • ;-
::L 
!!. 
I 

f 
2. -= :: 



~ Diagram 3.9. REPRO FSR 
IO 
OD 

~ 

i 
i 
I 
f 

I· 
i. n 

INPUT 

Register I 

tGDT 

f FDT 

Input 
Data Set 

0 

From Executive 
Controlled Termination 

PROCESSING 

1. Opens data sets. 

2. Processes catalogs. 

a. Reloads a catalog. ~ 
See Diagram ~ 

3. Finds starting point. 

4. Copies data set: 

• With ending point. 

• Without ending point. 

S. Writes message. 

OUTPUT 
CTGPL -

Input 
Data Set 

CTGFL -

D 
Register I 

fGDT 

f FDT I 
~ 
i 
!. 
I 

J 
a. 
! 



n 
( 
! 
h» 

I 
~ 

1 
1· 
N 
I 

~ 

Extended Description for Diagram 3.9 

IDCRPOI 

Procudures: IDCRPO I 

1 IDCRPOI builds an OPNAGL for the input data set. If 
FROMKEY or TOKEY is specified, IDCRPOI opens the 
input data set for key sequence processing. If 
FROMADDRESS or TOADDRESS is specified, 
IDCRPO I opens the input data set for sequential record 
retrieval. If FROMNUMBER or TONUMBER is 
specified, IDCRPO 1 opens the input data set for key 
sequence processing. IDCRPOI also builds an OPNAGL 
for the output data set, and it puts any ENVIRONMENT 
parameters in the OPNAGL. If REUSE or REPLACE is 
specified, IDCRPOI sets the OPNAGL for the output data 
set to reflect these parameters. UOPEN will open the 
output data set with the reset option. IDCRPO 1 issues one 
UOPEN macro that opens both the input and output data 
sets. If the return code from the UOPEN macro is nonzero, 
IDCRPO I writes a message on SYSLST and terminates 
the REPRO command. Following the open of both data 
sets, IDCRPO I checks for a nonrelative-record input data 
set together with a nonempty relative record output data 
set. If this error condition is detected, a message is written 
on SYSLST and the REPRO command is terminated. 

IDCRPOI 

Procedures: VERIFYC, CATRELOD, TRUENAME, 
CATRANS, CNVRTCI, CATCOMP 

2 If neither the input nor the output arc VSAM data sets, 
processing continues with step 3. Each VSAM data set is 
checked and verified to see if it is a catalog. If the output 
data set is not a catalog, processing continues with step 3. 
If the output data set is a catalog, the catalog reload 
switch, CATRELSW, is set on. The REPRO command is 
checked to see if beginning or ending delimiters were 
specified. If any were specified, a message is issued, 
processing is set for termination, and control goes to step 5. 
If no delimiters were specified, a catalog reload function is 
assumed, a message is issued, and the reload function is 
initiated. See Diagram 3.9. l. 

IDCRPOI 

Procedure: DELIMSET 

3 DELIMSET performs additional validity checking to 
verify that From/To parameters are consistent with input 
data set organization. If the parameter is invalid, an error 
message is written. Checks are made for invalid use of 
FROMADDRESS!TOADDRESS with relative-record 
data set and FROMNUM!TONUM with key-sequenced 

data set. If FROMKEY is specified, DELIMSET issues a 
UPOSIT macro to position to the starting key. If 
FROMADDRESS is specified, DELIMSET issues a 
UPOSIT macro to position to the starting address. If 
FROMNUMBER is specified, DELIMSET issues a 
UPOSIT macro to position to the starting relative record 
number. If SKIP is specified for a VSAM relative-record 
data set, DELIMSET issues a UPOSIT macro to position 
to the next relative-record number beyond the skip count. 
If SKIP is specified for a key-sequenced or 
entry-sequenced data set, DELIMSET issues as many 
UGET macros as there are records to skip. The way the 
data set is opened determines how the records are skipped. 
Any input data set opened as an ESDS causes records to 
be read in chronological order. A keyed data set opened as 
a KSDS causes records to be read in key-sequence order. 
If no starting point is specified, the starting point is the 
first record in the input data set. 

When copying from a non-relative-record data set into an 
empty relative-record data set, records are copied into 
consecutive relative-record locations. When copying from 
one relative-record data set to another, records are placed 
in the same slot in the output data set as they were in the 
input data set. 

IDCRPOI 

Procedure: IDCRPO 1 

4 a. If an ending point other than the end of the input data 
set is specified by the TO KEY, TOADDRESS, or 
COUNT keywords, the following steps are repeated 
until the ending point is found. IfTOKEY is specified, 
IDCRPOl calculates the key location in the record 
from information in the IOCSTR. Retrieving records 
stops when the key in the input record is higher than 
the value in TOKEY. IfTOADDRESS is specified, 
copying stops when the Relative Byte Address returned 
by the UGET macro equals the value supplied by 
TO ADDRESS. If COUNTY AL is specified, copying 
stops when the number of records copied equals the 
number supplied by COUNTY AL. If TO NUMBER is 
specified, copying stops when the relative-record 
number of the input record is higher than the 
TO NUMBER value. If COUNT is specified for a 
VSAM relative-record data set, copying stops when the 
number of valid relative-record slots copied plus the 
number of invalid slots bypassed exceeds the value 
supplied by COUNT. 

• IDCRPOl issues a UGET macro to obtain a logical 
record from the input data set. If the return code 
from the UGET is nonzero, It also checks the 
return code for a recoverable error. The recoverable 

errors are duplicate keys, records out of sequence, 
invalid length records, and 1/0 errors in the data of 
a VSAM data set. After a non-recoverable error or 
4 recoverable errors, copying stops. 

• IDCRPO I issues a UPUT to write the logical 
record to the output data set. If the return code 
from the UPUT macro is nonzero, IDCRPO I 
checks the return code for a recoverable error. After 
a non-recoverable error or 4 recoverable errors, 
copying stops. 

b. If no ending point is specified in the REPRO 
command, IDCRPOI issues a UCOPY macro to copy 
the input data set to the last record. 

IDCRPOJ 

Procedure: IDCRPO 1 

S IDCRPOI writes a message with LASTCC to SYSLST. It 
also closes the input and output data sets with one 
UCLOSE macro. Control returns to Executive Controlled 
Termination. 

~ 
I 
l 

I 
I 

l a 
s. 
; 
3: 



N 
I 

8 

~ 

~ 
~ 

i 
I 
11 

I· 
b 
~· 

Diagram 3.9.1 REPRO FSR - Catalog Reload 

INPUT 

VSAM 

From Diagram 3.9 

PROCESSING 

1. Issues starting message. 

2. Compares the target catalog and 
source data set. 

3. Reads and copies the source 
records into the target catalog. 

4. Updates the target catalog's 
control record (CCR): 

5. Returns to Diagram 3.9, 
step 5. 

OU'IPUT 

VSAM 

I 
~ 
I" 
i: 
I 

J 
a. 
! 



I 
!'! 

I 
s, 

i ::::. g 

~ 
I 

§ 

Extended Description for Diagram 3.9.1 

IDCRPOt 

Procedure: IDCRPO 1 

1 The message says that catalog reload had begun. 

IDCRPOt 

Procedure: CA TRELOD 

2 Additional checks are made at this time by using data 
from the first 10 records of the input and output data sets. 
If the data set names do not match, a message is issued, 
processing is set for termination, and further checks are 
made. Termination also occurs if the input data set record 
format does not match a VSAM catalog record format, if 
there is insufficient space in the output data set, and ifthe 
volume serial numbers or the device types do not match. 
Messages are issued for the corresponding errors. 

IDCRPOt 

Procedures: CATRELOD, SORSREAD, TARGREAD, 
GETPAIR, DUMPIT, TRUENAME, CATRANS, 
CONVRTCI, CATCOMP 

3 When all the checks are satisfied, the unloaded catalog is 
copied into the output data set. Each record is read from 
the input data set and translated. It is then compared to 
the target catalog. 

• If a record existed on both backup and target catalogs, 
the translated backup updates the target. 

• If a record existed only on the backup, then this record 
is inserted into the target catalog. 

• If a record existed only on the target catalog, then it is 
processed in one of two ways. 

a. If the target record is a true name record, then it is 
deleted. 

b. If the target record is a low key range record, then it 
is made a catalog free record and placed on the free 
chain. 

• In both cases where the keys are not equal, differences 
in true name entries between the backup and target 
catalogs are checked. 

a. If a target name record exists without a 
corresponding backup or vice versa, then a message 
is printed indicating this, provided that not more 
than 100 messages have been issued. A warning 
return code of 4 is attached to the message 

b. At the lOlth discrepancy, a message is issued saying 
that comparison is terminated. The only 
discrepancies to be printed afterwards will be for 
volume entries. 

IDCRPOt 

Procedure: CA TRELOD 

4 After both backup and target records have been processed 
sequentially by key to the end-of-file, one more record 
needs to be updated. 

• The catalog free chain pointers are counted and 
updated. The RBA fields are cleared so they will be 
correct for the next open of the catalog and the 
updated record is written back. 

The number of records copied is the number of backup 
records read if catalog reload has taken place; otherwise, it 
is the number of output records written. 

5 Control passes to Step 5, Diagram 3.9, step 5, to print final 
messages. 

I 
re • 
I 
I 

f 
a. 
i 



N 
I 

a 
~ 

~ 
~ 

i 
~ 
[ 

I 
r"" 
0 

~-

Diagram 3.10. VERIFY FSR 

INPUT 

GOT 

FDT 

0 

Catalog Data Set 

From Executive 
Controlled Termination 

PROCESSING 

1. Opens data set. 

2. Verifies data set. 

3. Closes data set. 

4. Writes message. 

OUTPUT 

Catalog Data Set 

Message 

D 
GOT 

FDT 

I 
::: 
l 
I!. 
I 

J 
a. 
; 
::: 



n 
f 
Ii 
h» 

~ 
[ 
2. 

1 
1· 
..... 
I 

a 

Extended Description for Diagram 3.10 
IDCVYOl 

Procedures: OPENPROC, IDCVYOI 

1 OPENPROC builds an OPNAGL to open the VSAM data 
set specified by the data set or FILE parameter for 
control interval update processing. A UOPEN m"'cro is 
issued to open the data set. If the open was not 
successful, LASTCC is set to 12 and control goes to step 
4. 

IDCVYOl 

Procedure: IDCVYO 1 

2 IDCVYO 1 issues a UVERIFY macro to verify the data set. 

IDCVYOI 

Procedure: TERMPROC 

3 TERMPROC issues a UCLOSE macro to close the data 
set. If the close was not successful, LASTCC is 4. 

IDCVYOI 

Procedure: IDCVYOl 

4 IDCVYOl prints a message containing LASTCC. Control 
goes to Executive Controlled Termination, Diagram 4.1. 

i 
I 
I 

I .. 
i 



N 
I 

2 

~ 

I 
r 
I 
f. 
b 
~· 

Diagram 3.11. BLDINDEX FSR 

LJ
VSAMData 
Space for 
External 
Sort 
(optional) 

2. 
3. 

From Executive 
Controlled Termination 

PROCESSING 

Opens base cluster; determines if 
external sort job control is present. 

Opens alternate index. 

Performs verification and obtains 
necessary information. 

See Diagram ---8 
4. Initializes for sort phase. 

a. Obtains virtual storage. 
b. Defines and opens sort work 

files (optional). 

See Diagram ---8 
S. Reads base cluster and performs sort. 

See Diagram -B 
6. Builds alternate index. 

7. Closes alternate index and sort work 
files; determines if additional alternate 
indexes are to be built. 

8. Closes base cluster. 

a. Deletes sort work files. 
b. Frees virtual storage. 

9. Writes message. 

CTGPL 

D I 
3: • i 
!. 
I 

J 
s. -= 3: 



i 
!'::> 

I 
2, 

t g 

N 
I 

~ 

Extended Description for Diagram 3.11 

IDCBIOl 

Procedures: OPENPROC, JCPROC 

I IDCBIOl calls OPENPROC to build an OPNAGL and 
issue a UOPEN to open the base cluster for input. 
OPENPROC sets the IN FILE dname or INDA T ASET 
entry name in the OPNAGL. OPENPROC also sets input 
processing in the OPNAGL. UOPEN processing 
determines ifthe base cluster is a KSDS or an ESDS and 
sets a flag in the IOCSTR returned to OPENPROC 
following the open. This flag will be used by BLDINDEX 
to determine if alternate index records are to contain 
prime key pointers or RBA pointers. UOPEN also sets the 
RPL to keyed sequential processing for a KSDS or 
addressed sequential processing for an ESDS. If the return 
code from UOPEN is nonzero, OPENPROC returns to 
IDCBIOl with LASTCC set to 12 and the BLDINDEX 
command is terminated. 

OPENPROC checks the high-used RBA of the base 
cluster returned in the IOCSTR. If the high-used RBA is 
zero, OPENPROC issues a message returns to IDCBIOl 
with LASTCC set to 12 and the BLDINDEX command is 
terminated. 

IDCBIOl calls JCPROC to determine if job control for an 
external sort has been provided. BLDINDEX will always 
perform an internal sort if enough virtual core has been 
provided by the caller. Otherwise, if the caller has 
provided appropriate data set identification, BLDINDEX 
will perform an external sort using two VSAM entry 
sequenced data sets. If you provide DLBL/EXTENT 
statements, you must also provide the following 
parameters: 
Filename - As provided via the WORKFILES 

parameter, or defaulted to IDCUTl and 
IDCUT2 

File-ID 

Volume -

Serial 
Numbers 

Access 
Method 

Required 

Required; must specify volume(s) 

containing VSAM data space 
accessable via a currently 
available catalog. 

'VSAM' required 

If the caller has specified the WORKFILES parameter, 
JCPROC issues a UIOINFO specifying the first dname of 
that parameter. Otherwise, the UIOINFO specifies a 
default dname of IDCUT 1. The UIOINFO requests a 
return of the data set name and volume serial number(s). 
If the return code from UIOINFO is zero, JCPROC issues 

another UIOINFO requesting the same information for 
the second dname specified via WORKFILES or the 
default dname ofIDCUT2 ifWORKFILES has not been 
specified. If both UIOINFOs are successful, JCPROC 
saves the pointers to the iriformation obtained. 

If WORK VOLUMES is specified, two data set names are 
generated and catalog management is called by 
DEFPROC to define the two work data sets. If neither 
WORKFILES, WORK VOLUMES, nor default JCL is 
provided, DEFAULTVOLUMES is utilized through 
catalog management. Parameter lists for DEFPROC 
which do the DEFINE are built now. 

IDCBIOl 

Procedures: MAINPROC, OPENPROC 

2 Steps 2 through 7 are performed for each alternate index 
specified in the OUTFILE parameter. 

IDCBIOl calls MAINPROC to control the building of the 
alternate index. MAINPROC calls OPENPROC to build 
an OPNAGL and issue a UOPEN for the alternate index. 
OPENPROC sets a flag in the OPNAGL to indicate that 
only the alternate index is to be opened. OPENPROC 
indicates the OUTFILE dname or OUTDATASET entry 
name in the OPNAGL. The OPNAGL specifies keyed 
sequential output processing and specifies open with reset. 
If the alternate index is nonempty and was defined with 
the reusable attribute, VSAM OPEN will reset it to an 
empty condition. If the return code is nonzero 
OPENPROC sets LASTCC to 8 and returns to 
MAINPROC where control is passed to Step 7. 

IDCBIOl 

Procedures: MAINPROC, LOCPROC 

3 In order to accomplish validity checking and obtain 
required information, MAINPROC calls LOCPROC to 
issue VSAM catalog locates. See Diagram 3.11. l. 

On return from LOCPROC, the following information has 
been obtained to be used in subsequent processing: 

Type of base cluster - returned from UOPEN of 
(KSDS or ESDS) base cluster; also in 

data AMDSB. 

Position and length 
of prime key (if base 
cluster is a KSDS) 

Length of alternate 
index record 

Length of 
alternate key 

Position of 
alternate key in 
base cluster record 

Unique or 
nonunique key 
indicator 

Number of records 
in the base cluster 

IDCBIOI 

- in base cluster data 
AMDSB control block. 

- in alternate index 
dataAMDSB. 

- in alternate index 
data AMDSB control 
block. 

- in alternate index 
AMDSB control block. 

- in alternate index 
AMDSB control block. 

- in base cluster 
AMDSB control block. 

Procedures: MAINPROC, INITPROC 

4 MAINPROC calls INITPROC to obtain resources for 
building the alternate index. Resources consist of virtual 
storage for buffers and work areas, virtual storage for the 
sort and defined and opened sort work files if it is 
determined that such are required. See Diagram 3.11.2. 

IDCBIOI 

Procedures: MAINPROC, CNTLPROC 

S MAINPROC calls CNTLPROC to read the base cluster 
and control the sort-merge process. See Diagram 3.11.3. 

IDCBIOI 

Procedures: CNTLPROC, BLDPROC, MERGPROC 

6 If an internal sort was performed, CNTLPROC passes 
each sort record to BLDPROC to build and write the 
alternate index records. Otherwise, CNTLPROC calls 
MERGPROC to perform the merge passes and build the 
alternate index. See Diagram 3.11.3 for BLDPROC and 
MERGPROC processing. 

i 
l 
3: • ! 
!!. 
I 
l 
l 
s. -= 3: 



Licensed Material - Property of IBM 

2-106 VSE/VSAM Access Method Services Logic 



f 
~ 

I: 

i 
2, 

i 
~. g 

11>,) 

I 

§ 

IDCBIOt 

Procedure: FINPROC 

7 IDCBIOl calls FINPROC to perform cleanup from the 
alternate index just built. FINPROC tests for an alternate 
index and sort work files and issues a UCLOSE for any of 
those data sets which are open. If BLDINDEX processing 
encounters any errors, FINPROC issues an appropriate 
message. Catalog error messages are issued by building an 
error conversion table and invoking the UERROR macro. 
FINPROC also issues a UFPOOL to free the sort core, 
buffers and work areas used in building this alternate 
index. A message indicating the success or failure of the 
alternate index build is written. The setting of LASTCC 
determines the message to be written. If LASTCC from 
the current-build is higher than the maximum value from 
previous builds, it is saved. LASTCC is cleared for 
subsequent builds. If the caller of the BLDINDEX has 
specified multiple alternate indexes, control returns to 
Step 2. 

IOCBIOt 

Procedures: TERMPROC, DELTPROC 

8 IDCBIOl calls TERMPROC to perform final cleanup. 
TERMPROC issues a UCLOSE to close the base cluster. 
If sort work files exist, DEL TPROC is called to build a 
CTGPL to delete them. 

A UCATLG macro is issued by DELTPROC to delete 
each sort work ftle. TERMPROC issues a UFPOOL to 
free all remaining core obtained via UG POOL. 

IDCBIOt 

Procedure: TERMPROC 

9 TERMPROC writes a termination message with the 
maximum LASTCC encountered. Control returns to 
Executive controlled termination via IDCBIOl. 

I 
I 
I 

f 
t-

i 



'I' Diagram 3.11.1. BLDINDEX FSR - Get Information and Verify 
~ 

~ 

I 
r 
I 
sr 
i· 
b 
«!!. n 

INPUT 

VSAM 
Catalog 

From Diagram 3.11 

PROCESSING 

1. Obtains information regarding the 
base cluster. 

2. Obtains information regarding the 
alternate index. 

3. Verifies the alternate index-base cluster 
relationship. 

LJ 
D 

CTGPL 

OUTPUT 

~Li 

.,)" 

I 
i 

I 
I 
1 
J 
a. 
i 



j 
~ 

I 
0 _, 
0 

l 
8 

..., 
I 

$ 

Extended Description for Diagram 3.11.1 
IDCBIOI 

Procedures: LOCPROC, CA TPROC 

l The caller of BLDINDEX may specify the alternate index 
and base cluster names or a path to either. The diagram 
below shows the relationship of the various objects 
involved: 

R 

c 

D 
2 

R"' Path 
c sQuster 
G ,. Alter.nate Index 
D• Data 
I •Index 

R 
3 

I 
(if KSDS) 

5 
D 

The number in each box indicates which of the locates 
described below retrieves information for that object. The 
purpose of this series of locates is: 

a. to retrieve the data AMDSB control block of the 
alternate index and base cluster, and 

b. to verify that the alternate index specified by the caller 
does indeed relate to the base cluster specified. 

If the caller specified a path over the alternate index, an 
additional locate to reach the G object will be required 
(Locate 4) is done. 

The building of the CTGPL and CTGPLs and the 
issuance of the UCATLG is actually done by CATPROC. 
LOCPROC makes successive calls to CATPROC to 
perform these functions. On each entry to CA TPROC, the 
CTGPL and CTGFLs are rebuilt for the specific locate 
being processed. LOCPROC calls CA TPROC for locates 1 
and 2 only on the first alternate index being built since 
these locates are against the base cluster. Appropriate 
information is saved. 

Locate 1 

Locate 1 retrieves the associations of the name specified 
via INFILE. CATPROC builds a CTGPL for a locate 
operation. CTG FLs are built for: 

ENTYPE - Entry Type 

NAM EDS 

CATACB 

Type and control interval number of 
the first three associations 

Catalog ACB 

The entry name used in this locate is the file ID specified 
by the caller on the INDATASET parameter or in the job 
control pointed to by the INFILE parameter. If the return 
code from catalog is nonzero, LOCPROC sets a locate 
error condition, sets LASTCC to 12 and returns control to 
MAIN PROC. MAINPROC returns to IDCBIO 1 where 
control is passed to Step 7 (Diagram 3 .11 ). Note: This 
same type of error processing follows all subsequent 
locates except that LASTCC is set to 8 for locates 3, 4, and 
5. 

If the Entry Type returned by catalog management is an R 
(path), LOCPROC tests that the first association is a C 
(base cluster). If the Entry Type is not an R, it must be a 
C. Otherwise LOCPROC issues a message, sets LASTCC 
to 12 and returns control to MAINPROC. 

Locate 2 

CA TPROC builds a CTGPL and CTG FLs to retrieve the 
base cluster data AMDSB. 

CTGPL: Entry "name" is the control interval number 
of the base cluster's data object (D) returned 
in Locate 1. 

CTGFL: ENTYPE - Entry Type 

NAMEDS - Type and control interval 
number of the first three 
objects associated with the 
data object 

AMDSBCA T - AMDSB control block 

The catalog ACB returned from Locate 1 is used in this 
and all subsequent locates. 

LOCPROC saves the first control interval number 
returned for NAMEDS which is the control interval 
number of the base cluster object. LOCPROC also moves 
the AMDSB control block to its own work area. 

IDCBIOl 

Procedure: LOCPROC, CA TPROC 

2 Locate 3 

Locate 3 is essentially the same as Locate I (minus the 
catalog ACB address) except that the name specified on 
the OUTDATASET parameter or via OUTFILE is used. 
If the entry type returned by catalog management is an R 
(path), LOCPROC tests that the first association is a G 
(alternate index). If the entry type is not an R, it must be a 
G. Otherwise, LOCPROC issues a message, sets LASTCC 
to 8 and returns control to MAINPROC. 

Locate 4 

If the Entry Type from Locate 3 was an R. CA TPROC 
builds a CTGPL and CTGFL to retrieve the alternate 
index associations. 

CTG PL: Entry"name" used is the control interval 
number of the alternate index (G) associated 
with the path (R) returned in Locate 3. 

ENTYPE: Entry type 

CTGFL: NAMEDS-Type and control interval 
number of the first three objects associated 
with the alternate index. The entry type 
returned by catalog management must be a G. 
Otherwise, LOCPROC issues a message, sets 
LASTCC to 8, and returns control to 
MAIN PROC. 

IDCBIOl 

Procedures: LOCPROC, CA TPROC 

3 LOCPROC must now verify that the alternate index 
specified by the caller is in fact related to the base cluster 
specified. LOCPROC compares the control interval 
number of the base cluster saved from Locate 2 of the 
control interval number of the third association returned 
from Locate 3 or 4. This should be, for an alternate index, 
the control interval number of the related base cluster. If 
the Cl numbers are not equal LOCPROC issues a 
message, sets LASTCC to 8 and returns control to 
MAIN PROC. 

Locate 5 

Locate 5 is the same as Locate 2 for the alternate index 
data AMDSB control block. 

Control returns to Diagram 3.1 l where control will be 
passed to Step 4 or Step 7 depending on the setting of 
LASTCC. 

f 
I. 

f 
I!. 
I 

l a 
s. 
~ 



! Diagram 3.11.2. BLDINDEX FSR - Obtain Resources and Sort Initialization 
c; 

~ 

i 
I 
I 
f. 
i 

INPUT 

Job control 
statements 

Sort Work Files (optional) 

From Diagram 3.11 

PROCESSING 

1. Determines requirements for sort. 

2. Obtains virtual storage. 

3. Defines and opens sort work files 
(optional). 

L_J~" 
C=:J 

OUTPUT 

CTGPL -

VSAM data 
sets for sort 
work files 

I 
i: • I 
£ 
I 

j 
i. 

i 



f 
~ 

I 
2, 

1 :::. 
g 

N 
I 

Extended Description for Diagram 3.11.2 
IDCBIOI 

Procedures: INITPROC 

INITPROC issues a UGPOOL macro to obtain virtual 
core for buffers and work areas, consisting of 1 2K buffer 
(to be used for output if an external sort is performed), the 
area required for the CPL/FVT /FPL complex to define 
the sort work files and the alternate index record output 
buffer. The first two areas are obtained at this time, even 
though they may not be used, so that if it is necessary to 
perform an external sort it will not fail due to lack of 
virtual storage. If the UGPOOL fails, INITPROC sets 
LASTCC to 8, issues a message and returns control to 
IDCBIOl, Step 7 (via MAINPROC). 

INITPROC calculates the requirements for both an 
internal sort and an external sort. If an external sort is 
performed, the records being sorted are blocked into a 
block 2048 bytes in length, using a logical record length of 
2041 bytes. Blocking and deblocking of sort records within 
the 2041-byte logical record is accomplished by 
BLDINDEX. The formulas used to determine sort work 
size are: 

Sort Record Size • Alternate Index Key 
Length + Prime Key Length 
(KSDS) or 4 (ESDS) 

Number of Records • ..,.204_1...,... ____ _ 
per Block Sort Record Size 

Total number • f# of Records in Base Cluster} + 10 
of 2K Blocks '\:# of Records per Block 

During the first phase of either an internal or external sort, 
the records being sorted are packed contiguously into a 
record sort area (RSA). The RSA size is always in 
increments of 2K so that it can be later used as an input 
buffer area during the merge phase of an external sort. The 
initial size of the RSA is calculated as 

Number of Records in Base Cluster • Sort Record Size 

and rounded up to the nearest multiple of 2K. This size is 
then adjusted as follows: 

a. If the RSA size is less than 4K, it is set at 4K. The 
number of records in the base cluster is obtained from 
a statistic maintained in the base cluster AMDSB 
control block. If this statistic is in error (which can 
happen if a system failure occurs during a close), it 
may be necessary to go into an external sort. In this 
case, space for two input buffers is required. 

b. If the EXTERNALSORT parameter has been 
specified by the caller of BLDINDEX, the RSA size is 
set at 32K-the minimum amount of storage which 
will be used for an external sort during the merge 
phase. 

IDCBIOl 

Procedures: INITPROC 

2 In addition to virtual storage for the RSA, virtual storage 
for the table (called the "heap") which drives the first 
phase of the sort is required. This is a table of 4-byte 
pointers. The amount required is calculated as follows: 

RSA Capacity = RSA Size 
Sort Record Size 

Heap Size - RSA Capacity * 4 

INITPROC issues a UGPOOL for the RSA size plus the 
heap size. If the UGPOOL fails, the initially calculated 
RSA size could not be obtained and it will be necessary to 
perform an external sort. The maximum amount of core 
used for an external sort is lOOK, the minimum 32K. If the 
maximum amount cannot be obtained, an attempt is made 
to obtain an intermediate RSA of 60K. INITPROC sets 
the RSA size to the next lower plateau-lOOK, 60K, 
32K~nd loops back to the start of Step 2. If the 
UGPOOL fails at the lowest plateau (32K), INITPROC 
sets LASTCC to 8, issues a message and returns control to 
IDCBIOl, Step 7 (via MAINPROC). 

IDCBIOI 

Procedures: INITPROC, DEFPROC, DELTPROC, 
OPENPROC 

3 If virtual storage was successfully obtained but the amount 
obtained for the RSA was less than the originally 
calculated required amount, INITPROC calls DEFPROC 
to define and open two sort work files to be used during 
the merge phase of an external sort. 

DEFPROC determines if large enough sort work files exist 
from a previous sort and, if so, bypasses the define process. 

If external sort work files exist but are not large enough, 
DEFPROC calls DELTPROC to build a CTGPL to delete 
each sort work file (specifying the PURGE option). 

If sort work files are to be defined, DEFPROC builds a 
CTGPL, a cluster CTGFV, a data CTGFV and the 
required CTGFLs to define the first external sort work 
file. DEFPROC issues a UTIME macro in order to 
provide the creation date in the define operation. The 
cluster FVT references the file-ID and the data FVT 
references the volume serial numbers obtained via (a) 

UIOINFO from the sort work job control statements, (b) 
built from the WORK VOLUMES parameter, or (c) built 
from the null volume list for the default-volume-define 
function of Catalog Management. Space allocation is in 
records: primary, the number of2K blocks calculated by 
INITPROC; secondary, 10% of primary, plus 10. The data 
set attributes specified are: ESDS, nowritecheck, 
unordered, speed, suballocation, noerase, reuse, default 
shareoptions, control interval size of 2048, logical record 
length of 2041. 

DEFPROC issues a UCA TLG macro to define the first 
work file, makes the necessary changes to the FVTs and 
issues a UCATLG for the second work file. DEFPROC 
next calls OPENPROC to build OPNAGL and open the 
two data sets just defined. The OPNAGLs specify 
sequential output using control interval processing with 
user buffers. If the define or open for either of the sort 
work files fails, DEFPROC sets a define error condition, 
sets LASTCC to 8 and returns control to INITPROC. If 
both sort work files are successfully defined and opened, 
DEFPROC returns to INITPROC with a flag indicating 
that an external sort is to be performed. INITPROC 
returns control to Diagram 3.11 where control will be 
passed to Step 5 or Step 7 depending on the setting of 
LASTCC. 

i 
I. 
3: 

i 
!!. 
I 

f 
s. 
! 



to.) 
I -t::; 
~ 

~ 
> 
~ 

r 
I 
f 

i· 
~ 
~-

Diagram 3.11.3. BLDINDEX FSR - Sort-Merge and Build Alternate Index 

INPUT 

Base 
Cluster 

(optional) 

From Diagram 3.11 

PROCESSING 

1. Initializes for sort phase. 

2. Reads base cluster, places records 
in record sort area, internally sorts, 
writes initial strings if record sort 
area cannot contain all records 
(optional). 

3. Performs merge passes (optional). 

a. Initializes for each pass. 

b. Merges strings. 

4. Builds alternate index. 

OUTPUT 

(optional). 

Alternate 
index 

I 
!: 

I 
I 

f 
s. 
~ 



f 
& ... 
~ 

I 
2. 

i' 
i· 
N 
I -~ 

Extended Description Diagram 3.11.3 

IDCBIOI 

Procedure: CNTLPROC 

l CNTLPROC initializes factors which will be used during 
the sort-merge including pointers to the record sort area 
(RSA), and the table of pointers which is used during the 
sort. CNTLPROC also initializes the output buffer with an 
RDF and CIDF in the event an external sort is performed 
(the sort work files are processed in control interval mode 
with user buffers). 

IDCBIOI 

Procedures: CNTLPROC, SORTPROC, BLDPROC, 
SPILPROC, DEFPROC 

2 In a loop CNTLPROC reads each base cluster record and 
passes it to SORTPROC. SORTPROC performs the 
function of building the sort records from the base cluster 
record, placing each record in the RSA and updating the 
table of pointers (called the'heap') to the records in the 
RSA. The heap is sorted when the RSA has reached 
capacity and/ or when the last base cluster record has been 
processed. 

Each sort record is formed by concatenating the prime key 
of the base cluster (KSDS) or its RBA (ESDS) to the 
alternate key. 

Alternate Key 
Prime Key (KSDS) 
or 
RBA(ESDS) 

If the base cluster record is not long enough to contain the 
alternate key, SORTPROC issues a warning message and 
sets the current condition code to 4. 

The heap sort consists of two phases. The first phase builds 
the heap into a tree of nodes having a parent-child 
relationship. Each parent node has two child nodes and 
the parent represents a key higher than either of the two 
children. At the end of the first phase the node at the top 
of the tree represents the highest key. The second phase 
removes the top node, places it at the bottom, reduces the 
heap by 1 and adjusts the parent-child relationships of the 
remaining nodes. This loop continues until the top of the 
heap represents the lowest key. 

If enough virtual core was available to contain all the sort 
records, the sorting takes place after the last base cluster 
record has been read, after which CNTLPROC passes 
each record to BLDPROC to build and write the alternate 
index records (see Step 4). Otherwise, sorting takes place 
each time the RSA is filled. After the heap is sorted, if the 
sort was caused by the RSA reaching capacity before 
end-of-file on the base cluster, SORTPROC calls 
SPILPROC to write out the records in the RSA in a string 
of 2K blocks to the external sort work file. 

SPILPROC determines if sort work files have already 
been defined and opened by INITPROC and, if not calls 
DEFPROC to perform that function. Normally, 
SPILPROC will find sort work files already defined and 
opened. However, if the statistic contained in the base 
cluster AMDSB control block as to the number of records 
in the base cluster was erroneously low and the calculated 
virtual storage for the sort was obtained, INITPROC will 
not have initialized sort work files. SPILPROC blocks the 
sort records into the 2K output buffer and issues a UPUT 
macro to write it. This is performed in a loop until all sort 
records in the RSA have been written out. 

CNTLPROC calls SORTPROC under the following 
conditions: 

• After each base cluster record has been read. The 
address of the record is contained in the IOCSTR of 
the base cluster. 

• At end-of-file on the base cluster. 

IDCBIOl 

Procedures: CNTLPROC, MERGPROC, BLDPROC 

3 After all base cluster records have been read, if the RSA 
was not large enough to contain all sort records, merge 
passes must be performed using the two external sort work 
files. SPILPROC has written out the first strings during 
the sort phase. During this phase the external sort work 
file is in create mode. The data set was opened with 
MACRF-CNV, UBF, OUT, SEQ. PUTs are issued with 
OPTCD-CNV, SEQ, NUP. Control intervals are written 
in physical sequence. At the end of the sort phase, 
CNTLPROC issues a UCLOSE macro to close the output 
sort work file followed by UOPEN to reopen it. This is 
necessary to get out of create mode. The second open 
specifies MACRF-CNV, UBF, DIR, UPD. Subsequently 
all PUTs will be issued with OPTCD-CNV, DIR, UPD. 

CNTLPROC then calls MERGPROC to control the 
merge passes. MERGPROC performs the function of 
merging strings of sort records originally built by 
SPILPROC using the two external sort work files. The 
order of merge is normally 16 or less using an area of 32K 
(the original RSA) for input buffers. In one case, the order 
of merge will be 2. That is, when the statistic of the 
number of records in the base cluster AMDSB was so 
erroneously low that an RSA of 4K was obtained. 

In general, the merge is accomplished in the following 
manner (assuming a 16-way merge) -

• Reading the first 2K block of the first n strings to be 
merged, where n is 16 ifthere are 16 or more input 
strings or where n is the total number of input strings if 
less than 16. 

• Using the first record of each string, build an array in 
the form of a tree. The tree is made of nodes with a 
single node at the top. Each parent node has two child 
nodes and the tree is built so that the record 
represented by the parent node is lower in value than 
either child. As the tree-add loop starts, the size of the 
tree is increased by l thus leaving an empty slot at the 
bottom. The parent of the empty slot is established and 
if the new record is higher than the parent, it goes into 
the empty slot at the bottom. However, if the new 
record is lower, the parent is moved down leaving an 

I 
I 
I 

f 
s. 
~ 



Licensed Material - Property of IBM 

2-114 VSE/VSAM A<:eeSS Method Services Logic 



n 
l 
ft .. 
~ 

I 
0 .., 

t 
~ 
I -I.A 

empty slot. The parent of the new empty slot is 
established and the process continues until the new 
record is found to be higher than the parent at which 
time it goes into the empty child slot. If the parent is 
moved from the top of the tree, the new record goes 
there and the process stops. 

• Output the lowest record on the tree. This output will 
be to BLDPROC (see Step 4) if this is the last or only 
merge pass or to the output string if this is not the last 
merge pass. 

• Update the tree filling the slot left empty from the step 
above. 

• Get the next record from the same string as the 
previous lowest record. Output it if it is lower than the 
current lowest, otherwise add it to the tree. 

• Continue this process until all records in all input 
strings currently being processed have been output. 

• Loop until all input strings for this merge pass have 
been output. 

• If more merge passes are required, make the previous 
output file the next input file and vice versa and repeat 
the merge passes until the number of input strings is 
equal to or less than the order of merge. 

IDCBIOI 

Procedures: BLDPROC 

4 BLDPROC is called either from CNTLPROC (if an 
internal sort was performed) or MERGPROC (on the last 
merge pass of an external sort). In either case, BLDPROC 
is passed sorted records one at a time. 

On the first entry to BLDPROC, the IOCSTR for the 
alternate index is initialized as well as the static portion of 
the alternate index record. On all subsequent entries, the 
alternate key of the sort record passed to BLDPROC is 
compared to the key of the alternate index record being 
built. If these keys are unequal, the alternate index record 
is to be written out. BLDPROC determines if the record 
was too short to contain all the prime key or RBA pointers 
and, if so, issues a warning message containing the number 
of excess pointers and sets the current condition code to 4. 
The record is written with a UPUT macro and the buff er 
reset for the next record. Before moving the prime key or 
RBA from the sort record to the alternate index record, 
BLDPROC checks if the alternate index was defined with 
the UNIQUEKEY attribute. If so and ifthe new prime 
key or RBA is not the first for this alternate index record, 
BLDPROC issues a warning message and sets the current 
condition code to 4. Only the first prime key or RBA is 

placed in the alternate index record. BLDPROC also 
checks that the record is long enough to contain the new 
prime key or RBA and, if not, increments an excess 
pointer counter. If all checks prove successful, the new 
prime key or RBA is moved to the alternate index record. 

After CNTLPROC passes the last sort record to 
BLDPROC (internal sort) or receives control back from 
MERGPROC (external sort), CNTLPROC calls 
BLDPROC one more time to write out the last alternate 
index record. Control is then returned to IDCBIOl via 
MAINPROC-Piagram 3.11, Step 7. 

I 
3: 

I 
I 

f 
s. -1:11 
3: 



'I' Diagram 3.12. LISTCRA FSR 
~ 

~ 

i 
r 
I 
I 
~ 
~-

FDT 

INPUT 

tGDT 

tFDT 

0 

Encoded 
Users 
LISTCRA 
Command 
Parameters 

From Executive 
Controlled Termination 
' PROCESSING 

General initialization and open the 
catalog if compare option specified. 

2. For each volume in the command: 

a. Opens the CRA. 

b. Compares, groups, sorts and prints 
the objects in the CRA. 

See D;agram--9 

c. Compares and prints any objects 
not yet printed. 

d. Closes the CRA and prints summary 
count table. 

J. Closes the catalog and writes 
completion message. 

CTT 

OUTPUT 

Catalog/CRA 
Compare List 

D 
Register I 

tGDT 

tFDT 

LASTCC 

D 
I 
~ r 
i 
I 

J 
a. 
! 



f 
~ 

I 
e. 

i g 

tJ 
I -=::i 

Extended Description for Diagram 3.12 

IDCLROI 

Procedures: AATOPLR, INITLZE, CATOPEN, ERROR 

I Routine addresses and the UOPEN argument are 
initialized in the work area. If the COMPARE option was 
specified, a UOPEN is issued for the catalog identified by 
the CATALOG dname parameter or by the CATALOG 
catname parameter (dname parameter omitted). If the 
OPEN is successful, a UVERIFY is issued and the catalog 
name is obtained using Access Method Services field 
management (IDCRC04). 

The volume serial is obtained via IDCRC04 and the 
catalog is locked to prevent it and its associated CRAs 
from being reset. If the COMPARE option was not 
specified on the OPEN of the catalog failed, the no 
compare indicator is set. 

IDCLROI, IDCLR02, IDCRC04 

Procedures: AATOPLR, CRAOPEN, PRTVOL, INTSORT, 
MEMSORT, DOVSAM, PRTVSAM, DOOTHR, 
PRTOTHR, PRTFIFO, GETPRT, PRTCMP, CLENCRA, 
SUM IT 

2 For each of the CRAs identified by the INVOLUMES 
volser parameter or INFILE dname parameter, the 
following is repeated: 

a. If the INFILE parameter was specified, a UIOINFO is 
issued to obtain the CRA volume serial. The UOPEN 
parameter list is set up with the volser and the catalog 
master password and the UOPEN and UVERIFY are 
issued for the CRA. If the COMPARE option was 
specified, the catalog and its CRAs are locked (UENQ) 
to prevent any concurrent updates. If they are 
successful and there is a match on the owning catalog 
name, a UREST is issued to print a subtitle for this 
CRA. The entire CRA is read to build the CI translate 
table (CTT) in space gotten by UGPOOL. 

b. The CRA volume record and its extensions are 
optionally compared to the corresponding catalog 
entry and printed by PRTVOL. The VSAM objects are 
then sorted into alphabetical order, optionally 
compared to corresponding catalog entries and printed 
by INTSORT, MEMSORT, DOVSAM, and 
PRTVSAM. Next, the nonVSAM objects are sorted, 
compared, and printed by INTSORT, MEMSORT, 
DOOTHR, and PRTOTHR. See Diagram 3.12.l. 

c. If either sort fails for lack of memory (from b. above), 
the objects are compared and/or printed in the order 
they appear in the CRA by PRTFIFO. Records 

already processed by the above procedures are skipped. 
If the object iu VSAM object, PRTVSAM is called 
and if it is a not, PRTOTHR is called. 

d. GETPRT is used to get the CRA copy of any other 
records, and the catalog record, if compare. These are 
printed and compared by PRTCMP. When all objects 
have been processed, the UDEQ macro is issued to 
release the update lockout for the catalog, the CRA is 
closed by CLENCRA, and a summary is printed by 
SUMIT. 

IDCLROt 

Procedures: AA TOPLR, CLEANUP 

3 The UCLOSE macro is issued to close the catalog data set 
and the UDEQ macro is issued to release the reset lockout 
from the catalog. The completion code message is printed 
and the UFPOOL macro is issued to free storage. Control 
is returned to the caller. 

i 
l 
::: 
i 
e. 
I 

l a 
s. 
! 



~ Diagram 3.12. l. LISTCRA FSR - Process CRA -00 

~ 

~ 
~ 

r 
I 
gi 
3. 
i 
b 
~-

INPUT 

D 
VSAM 
Catalog 

0 

From Diagram 3 .12 

PROCESSING 

1. Prints optionally compares volume records. ________ .,, 

a. Reads CRA and catalog volume 
records and extensions. 

b. Prints volume record and time stamps. 

2. Processes VSAM entries: 

a. Alphabetizes VSAM entries. 

b. Prints and optionally compares 
each entry and associated records 
and extensions. 

3. Processes nonVSAM entries: 

a. Alphabetizes nonVSAMs. 

b. Prints and optionally compares 
each entry and associated records 
and ex tensions. 

OUTPUT 
Catalog/CRA 
Compare List 

D 
CTT 

D 

l 
3: 

l 
I 

J 
a. 
~ 



n 
! 
& .. 
!':-

~ 
[ 
0 ..., 

1 
1· 
t-1 
I -~ 

Extended Description for Diagram 3.12.1 

IDCLROl, IDCLR02, IDCRC04 

Procedures: PRTVOL, SUMIT, GETPRT, VERTEXT, 
INTVEXT, TCICTCR, BLDVEXT, PRTMCWD, UPRINT, 
UIOINFO, PRTTIME 

1 a. PRTVOL uses GETPRT to read the CRA volume 
record and IDCRC04 to extract the identifying fields 
and, if compare, the equivalent information is gotten 
from the catalog in the same manner. If compare is 
specified, information is compared and, if not equal, 
the record is printed and the severest miscompared 
field is identified by PRTMCWD. If compare is not 
specified, all records are printed. Horizontal extension 
records are processed and vertical extension records are 
checked by VER TEXT and handled in the same way. 

b. The timestamps from the CRA volume record and on 
the CRA volume and, if compare, in the catalog 
records are printed by PR TTIME. 

IDCLROl, IDCLR02, IDCRC04 

Procedures: INTSORT, MEMSORT, DOVSAM, 
PRTVSAM, GETPRT, VERTEXT, INTVEXT, TCICTCR, 
BLDVEXT, ADDASOC, INTASOC, PRTMCWD, 
UPRINT, PRTAAXV, PRTOJVL, CKEYRNG, SUMIT 

2 a. The sort of the VSAM entries is initialized by 

b. 

INTSORT which scans the CTI counting the number 
ofVSAM entries, gets storage via UGPOOL for a sort 
table, initializes dummy first and last entries and then 
loops through the CTT entries calling IDCRC04 to 
extract the entry names to be sorted. The MEMSORT 
procedure orders the entries by adding forward and 
backward chain pointers to alphabetize. 

If compare was specified, the following procedure is 
passed through twice, the first time comparing only. 
When a miscompare is detected the procedure is 
restarted printing everything. From the entries in the 
sort table an association table is built containing the 
control intervals of all associated entries. Passing 
through this table all associated records are printed. 
For base cluster's AIX associations, only the entries' 
volumes are printed (to assist in recovery). The 
horizontal extension records are printed as are the 
vertical extension records. Throughout, the names of 
significant items are noted if they miscompared and 
these are printed. 

IDCLROl, IDCLR02, IDCRC04 

Procedures: INTSORT, MEMSORT, DOOTHR, 
PRTOTHR, GETPRT, VERTEXT, INTVEXT, TCICTCR, 
BLDVEXT, SUMIT, PRTMCWD, UPRINT, PRTOJAL, 
INTASOC 

3 a. The logic and procedures used here are the same as are 
used in 2a with the exception that non VSAM entries in 
the CTT are sorted. 

b. The logic and procedures used here are the same as 
used in Step 2b except that non VSAM entries are 
handled. 

For all of the steps above, GETPRT uses UGET to read 
the CRA record and the catalog record, if compare. 
IDCRC04 is used to extract all necessary fields from the 
records. These are printed and optionally compared by 
PRTCMP and PR TD MP (if the dump format was 
specified) and PRTDMPC (if compare was also specified). 
PRTOJVL is used to print, the object's volume. 

i 
i. 

I 
!. 
I 

f 
a. -= 3: 



"" I 
;::; 
c 

~ 

~ 
i 
I 
sea 

I· 
b ce. 
n 

Diagram 3.13 EXPORTRA FSR 

INPUT 

tGDT 

t FDT 

VSAM 
Catalog 

0 

From Executive 
Controlled Termination 

PROCESSING 

1. Initializes and builds the CRV. 

a. Initialization. 

b. Build the CRV. 

2. For each CRA specified: 

a. Opens the CRA. 

b. Checks the name chain. 

See DiaJ<Tam--8 

c. Exports the name chain. 

See Diagram-B 

OUTPUT 

G~~~u 
Message 

D 
Register I 

f GDT 

f FDT 

f LASTCC 

i 
I 
!. 
I 

i a 
s. 
~ 



n r 
1 ... 
~ 

~ 
[ 
0 ..., 

I 
~ 
I· 
~ 
I 

E 

Extended Description for Diagram 3.13 

IDCRCOl 

Procedure: INIT, SUBSP, BUILDCRV, BUILDNAM, 
MESSAGE 

1 a. SUBSP is called which issues a UGPOOL to obtain 
storage for the blocks associated with the name chain. 
This storage is allocated into small blocks to be used 
later. Storage is then obtained for the buffer pool VGO 
space, the CRV, the ACC and the VTT. 

b. If the CRA dname parameter form is specified, for 
each CRA volume, UIOINFO is used to obtain the 
volume serial number (for CRA dnamel option only), 
which is placed in the VTT. BUILDNAME is called to 
build the name chain. This procedure calls SUBSP to 
get a block of storage to be anchored to the CR V. The 
name pointer is placed in the block as it is read from 
theCRA. 

IDCRCOl, IDCRC02, IDCRC03, IDCRC04 

Procedures: OPENCRA, OPEN, TIMESTMP, SCANCRA, 
NAMETABL, DIRECT, EXTRACT, ERRCK, MESSAGE, 
COMPNAME, CKCATNM, CKNAMES, DUPNAMCK, 
SYNCH, OBJVOLCK, CRAOPEN, EXPORTDR, 
OPENCRA, MESSAGE 

2 a. OPENCRA initializes the buffer pool pointer required 
by field managment (IDCRC04). It then calls OPEN, 
which opens the CRA for direct processing and checks 
it for the correct owning catalog. OPENCRA then calls 
TIMESTAMP, which issues the UIOINFO macro to 
get the CRA volume timestamp and place it into the 
VTT and to get the device characteristics and place 
them in the CRV. It then calls SCANCRA to build the 

b. 

catalog Cl numbers and places them in the CTT and 
calls NAMETABL which places the record type and 
name pointer in the name block. If entries were 
specified, the name block is marked if a match is found 
with the input. OPENCRA then calls DIRECT which 
calls EXTRACT which interfaces with IDCRC04 to 
obtain the directory information from the CRA record. 
ERR CK calls MESSAGE if an error occurred in this 
procedure. For IDCRC04 see Diagram 3.13.1. 

CKN AMES is called to perform the following 
functions for each potentially exportable entry using 
EXTRACT: 

• Get the master password for VSAM entries. 

• Locate and flag to bypass export any OS/VS2 
paging data sets. 

• Collect the data and index associated Cl numbers 
for VSAM entries. 

• Locate and flag to bypass data copy any VSAM 
entries that have no data (high-used RBA is zero). 

• Locate and flag to bypass for export any 
NOCIFORMAT SAM ESDS entries. 

• Locate and flag to bypass for export any SAM 
ESDS entries if the SAM ESDS feature is not 
installed. 

• Collect the largest VSAM LRECL 
(RECORDMODE) or the largest data control 
internal size (CIMODE) for the nonempty files to 
be exported. 

• Locate and flag to bypass export any OS/VS2 
GOG bases. 

For those entries bypassed for export but named in the 
ENTRIES parameter, an error message is printed and 
LASTCC is set to 8. For SAM ESDS entries not 
named in the ENTRIES parameter, a warning message 
is printed and LASTCC is set to 4. 

DUPNAMCK is called to loop through all the names 
in the chain checking for duplicates. If one is found, it 
is marked so that it will be exported. A message is 
written indicating the duplicate name. SYNCH is 
called which checks each entry on the name chain for a 
CI number, checks the VSAM data sets for a data entry 
and ifthere is a data volume index, OBJVOLCK is 
called which matches the volume serials in the VGOs 
and VTT, matching the Cl and timestamp. 

c. EXPORTDR is called which closes the CRA as a data 
set and opens it as a catalog, then calls MESSAGE to 
write the "exporting CRA" message (however, ifthe 
name list is empty, the "nothing to export" message is 
issued instead). It checks the name chain for the CRA 
for null entries and nonmatches and marks them not 
exportable. It initializes the export table for each valid 
entry and calls IDCRC02 to export the entry. If the 
FDT parameter CIMO DE was specified, a CIMO DE 
flag is set in the export table. ENVIRONMENT 
parameters are obtained from the FDT and placed in 
the export table. See Diagram 3.13.2 for a description 
of IDCRC02. When the Export Driver (IDCRC02) 
returns, then the completion or error message is printed 
and processing continues with the next entry in the 
name chain for the CRA. 

~ 

l 
:: 
i 
!. 
I 

l a 
a_ 

~ 



N 
I 

Ei 

~ 
tl1 

~ 
> 
~ 

r 
I 
f. 
b 
~-

Diagram 3.13.1. EXPORTRA FSR - Field Management 

INPUT 

Register l 

I I 
l'MPL 

c 
'_r_J' 

-

FMFLs 

l·M\VA 

FM 
Output 
An\1 

... 

From Diagram 3. 13 

PROCESSING 

1. Initializes mocJule. 

2. Converts alphabetic field names to 
internal codes. 

3. For each RELREPNO: 

a. Handles any test fields to see 
if in formation is as expected. 

b. Places the field in the output area. 

OUTPUT 

Register 1 

I J 
FMPL 

c 
, .. ..L 

FMFLs 

FMWA 

FM 
Output 
Arca 

Register 15 

... 

@tu~ cc- l 

I 
:::: 

l 
I 

J 
i. 
; 
:::: 



~ 
! .. 
~ 

I 
2. 

i :::. 
8 

N 
I 

E 

Extended Description for Diagram 3.13.1 

IDCROM 

Procedure: IDCRC04 

I IDCRC04 is a service routine used by EXPORTRA and 
LISTCRA to compare and extract data from catalog and 
CRA records. Upon entry from either IDCRCO 1 or 
IDCLRO 1 it sets up addressability to the work area and 
initializes the current Cl number in the work. area for the 
callen get routine (either IDCRC03 or IDCLR02). 

IDCROM 

Procedures: PSCNC, PTRNS 

2 PSCNC is called which loops through each field 
management field list and calls PTRNS which compresses 
the name into a 4-character ID and places it into the 
FMFT along with its corresponding dictionary 
information and supplied JfOUP code. The tables are 
chained according to like group code. 

IDCRCCM. IDCLROZ. IDCRC03 

Procedures: PSCNF, PTSTS, PGVAL, PGREC, PCKLC, 
PBXPT, PLNRV, PTCMP, PLOC2, POREP, PSHIN 

3 PSCNF is called to process these field tables. It first 
processes the test field and then the one it is looking for so 
it may place the data in the output area. 

a. The field lists are tested by looping through all the Cl 
numben (PGV AL), interfacing with the callen get 
record routine, either IDCRC03 or IDCLR02 to obtain 
addressability to the block. containing a CI number 
(PGREC). It then locates the catalog fields within a 
given record by insuring the requested field actually 
exists in the group occurrence data (PCKLC) then sets 
up the address and length of extension pointers as 
requested via the RELREPNO specified on entry 
(PEXPT) and extracts the data from the found field 
and indicates its length (PLNRV). After the data is 
found, it is compared by PTCMP with the input data 
and a match or mismatch is indicated. 

b. PLOC2 is the highest-level procedure for placing the 
data in the output area. This procedure is called by 
PSCNF if the FMFT is not a test FMFT. It calls 
POREP to find the highest non-deleted RELREPNO 
with the desired group code and saves the address and 
length of the field which is checked by PG REC. 
PSHIN checks for enough space in the output area 
and, if there, moves the field to the output area or 
moves Fs if non-existent. POV AL and its 
subprocedures described above are used to find the 

fields requested and, after found, PSHIN moves the 
data to the output area. I 

I 
I 

j 
s. 
i 



t;" Diagram 3.13.2. EXPORTRA FSR - Driver 

~ 

~ 

~ 
~ 

r 
i 
f. 
b 
~-

INPUT 
Register I 

f GOT 

f IPT 

Data 
Sets and 
CRA 

0 

From Diagram 3.13 

PROCESSING 

Tests for export of a VSAM or non VSAM 
object. 

a. Exports a VSAM object. 

See Diagram--e.1 

b. Exports a nonVSAM object. 

See Diagram--§.2 

2. Termination processing. 

OUTPUT 

Messages 

D 
OEJ 
Portable Data Set 

Register I 

f GOT 

f IPT 

f LASTCC 

I 
:: 

i 
I 
l 
l 
a. -1:11:1 :: 



Extended Description for Diagram 3.13.2 
IDCRC02 

Procedures: OPENPROC, CLUSPROC, SA VEPROC, 
RECPROC, PUTPROC, NVSMPROC, ADSPROC, 
ALSPROC 

1 IDCRC02 tests the input parameter list for export of a 
VSAM or non VSAM object. OPENPROC opens the 
portable data set for output. ENVIRONMENT 
parameters from the export table are placed in the 
OPNAGL for UOPEN processing. If the object to be 
exported is a VSAM object then step l .a is done; if it is a 
non VSAM object, then step l. b is done. 

a. CLUSPROC gets catalog information for the cluster, 
data, index and paths from the CRA. SA VEPROC 
holds the control records containing the catalog 
information until catalog processing is completed, then 
writes them to the portable data set. OPENPROC 
opens the cluster data for input. RECPROC copies the 
data to the portable data set. PUTPROC writes a 
software end-of-file to the portable data set. 

b. NVSMPROC gets catalog information for the 
non VSAM object from the CRA. ALSPROC gets 
catalog information for any aliases connected with the 
non VSAM object. SA VEPROC holds the control 
records containing catalog information until catalog 
processing is completed, then writes them to the 
portable data set. 

IDCRC02 

2 IDCRC02 tests return codes from CLUSPROC, 
NVSMPROC, and GOG PROC. If any alias or path is not 
exportable, a warning message is issued. The portable data 
set is then closed if it is the last request or if a severe error 

~ occurred. 

1 
~ 

I 
2, 
0 

J. 
N 
I 

;::::; 
I.A 

I 
3: 

I 
I 

l 
a. 
;; 
3: 



N 
I 

i 

~ 
tll 

~ 
~ 

i 
I 
xa 

i· 
b 
I· 

Diagram 3.13.2.1. EXPORTRA FSR - Export VSAM Data Set 

INPUT 

VSAM 
Data 
Set 

Portable a·S·e 

From Dia~ram 3.13.2 

PROCESSING 

I. Obtains information for cluster, 
data, index, and paths from CRA. 

2. Opens the input data set. 

3. Writes catalog information. 

4. Writes data records, closes input 
data set. 

5. Writes software end-of-file. 

OUTPUT 

CTGPL 

~_.. ..... 

...... 
Portable a··se 

I 
~ 
~ 

i: 
I 

J 
s. 
i 



i .. 
~ 

I 
~ 

f. 
...., 
I -...., 

...,i 

Extended Description for Diagram 3.13.2.1 

IDCRC02 

Procedures: CTLGPROC, CLUSPROC, LOCPROC 

t For the cluster entry of the VSAM data set, LOCPROC 
builds a CTG PL and CTG FLs to retrieve information 
from the CRA. A CTGFL is built for the following catalog 
fields: 

ENTYPE, ENTNAME, DSATTR, OWNERID, 
DSETCRDT, DSETEXDT, BUFSIZE, LRECL, 
SPACPARM, PASSWORD, PASSATMP, USVRMDUL, 
USERAREC, LOKEYV, HIKEYV, VOLSER, 
AMDSBCAT, EXCPEXIT, RCATTR, NAMEDS and 
CATACB. 

CTLGPROC issues a UCATLG with the CTGPL and 
CTGFLs to retrieve the information from the CRA. 
CLUSPROC validity checks the catalog entry type and 
named fields. LOCPROC builds a CTGPL and CTGFLs 
for the data and index components of the VSAM cluster. 
CTLGPROC issues a UCATLG to obtain the same catalog 
information as obtained for the cluster except for the 
NAMEDS and CATACB fields. Path associations, if 
present, are processed with the same type of CTGPL and 
CTG FLs as used for data and index. 

A timestamp record is constructed as the first control record. 
Information is placed into it indicating the number of 
objects; whether the data set is KSDS, SAM ESDS, 
NOALLOCATE, or empty; and whether export CIMO DE 
was specified. 

IDCRC02 

Procedure: OPENPROC 

2 OPENPROC issues the UOPEN macro to open the 
VSAM data set for input and verifies the open. 
OPENPROC triggers CIMODE processing by setting the 
"export CIMODE" flag and the "CNV processing" flag in 
the OPNAGL of the input data set. 

IDCRC02 

Procedure: PUTPROC 

3 Control records containing catalog information for the 
cluster, data, index, and paths are written to the portable 
data set after catalog processing for the object to be 
exported has been completed . 

IDCRC02 

Procedure: RECPROC 

4 RECPROC copies the data to the portable data set and 
closes the input data set. 

IDCC02 

Procedure: CLUSPROC 

5 CLUSPROC writes a software end-of-file on the portable 
data set. 

r 
i. 
::: 
[ 
!. 
I 

l a 
a. 
; 
::: 



N 
I 

~ 
00 

;} 

~ 
!: 

I 
I 
ff 

&· 
b 
~-

Diagram 3.13.2.2. EXPORTRA FSR - Export NonVSAM 

INPUT 

VSAM 
Catalog 

Portable O'"SEJ 

From Diagram 3.13.2 

PROCESSING 

1. Obtains catalog information for a 
nonVSAM or user catalog object. 

2. Obtains catalog information for any 
alias associations. 

J. Writes catalog information to the 
portable data set. 

OUTPUT -----

Portable 

O'"l~~ 

I 
::: 

I 
I 

I 
s. 
! 



I 
~ 

I 
0 

i 
ii 

f 
..., 
I 

5i 

Extended Description for Diagram 3.13.2.2 

IDCRC02 

Procedures: LOCPROC, CTLGPROC 

I LOCPROC builds a CTGPL and multiple CTGFLs for a 
non VSAM or user catalog object to retrieve catalog 
information. A CTGFL is built for each of the following 
fields: 

ENTYPE, ENTNAME, VOLSER, DEVTYP, NAMEDS, 
CATACB 

CTLGPROC issues a UCATLG with the CTGPL and 
CTGFLs to retrieve the information from the catalog, and 
to validity check the ENTYPE and NAMEDS fields. 

IDCRC02 

Procedures: LOCPROC, CTLG PROC 

2 LOCPROC builds a CTGPL and multiple CTGFLs for 
any alias associations. A CTGFL is built for ENTYPE 
and ENTNAME catalog fields. CTLGPROC issues a 
UCA TLG to obtain the catalog information. 

IDCRC02 

Procedures: NVSMPROC, ALSPROC 

3 NVSMPROC and ALSPROC write control records 
containing the catalog information to the portable data set 
after catalog processing is completed. The first record 
written is the timestamp control record. It is flagged if 
export CIMODE processing has been specified. 

I 
~ 

l e. 
I 
'l 
J 
e. -= ~ 



N 
I 

~ 

~ 
Ill 

~ 

~ 
I 
~ 
[ 

I 
b 
~-

Diagram 3.14. IMPORTRA FSR 

INPUT 

tGDT 

tFDT 

0 

Portable Data Set 

VSAM 
Catalog 

VSAM 
User Catalog 

From Executive 
Controlled Termination 

PROCESSING 

1. Obtains OUTFILE data set 
name and opens portable 
data set. 

2. Imports object. 

a. VSAM cluster or· 
alternate index. 

See Diagram -9 
b. User catalog. _.D. 

See Diagram-u 

c. NonVSAM. Ll_ 
See Diagram~ 

d. GDG Base. D. 
See Diagram -u 

3. Writes message. 

CTGPL - CTGFV -

OUTPUT 

VSAM 
Catalog 

VSAM 
User Catalog 

VSAM 
Catalog 

VSAM 
Cluster, 
Alternate 
Index, User 
Catalog, 
NonVSAM, 
orGDG 
Base 

Register 1 

tGDT 

tFDT 

Message 

L--1 

I 
3: • i 
!. 
I 
'l 
] 
2-
; 
~ 



f 
i 
~ 

~ 
[ 

i 
II 

N 
I 

E 

Extended Description for Diagram 3.14 
IDCRMOl 

Procedure: IDCRMOl, OPENPROC 

1 lf the OUTFILE parameter is present, IOCRMO 1 issues a 
UIOINFO to obtain the data set name coded on the 
DLBL job control statement associated with the 
OUTFILE parameter (to be used later by ALTPROC). 
PENPROC builds an OPNAGL and issues a UOPEN to 
open the portable data set. User specified tape label and 
rewind options are placed in the OPNAGL for UOPEN 
processing. OPENPROC then issues a UGET to get the 
first record of the portable data set, which contains the 
record size of the data set. If the record size is larger than 
the record size used to open the portable data set, a special 
UCLOSE is issued which reallocates sufficient space for 
the record size. An actual close of the portable data set is 
not done. 

IDCRMOl 

Procedures: IDCRMOl, CLUSPROC, UCATPROC, 
NVSMPROC, CLUSPROC, GDGPROC 

2 For each item on the portable data set, IOCRMOl reads a 
timestamp record and prints a message indicating the time 
and date of the EXPORTRA operation. The timestamp 
record also indicates whether the portable data set is in 
CIMODE or RECORDMODE format and whether the 
me being imported is empty. 

On the basis of the timestamp record, one of CLUSPROC, 
UCATPROC, NVSMPROC, or GDGPROC is called to 
actually import the object. If the read for a timestamp 
record should fail, IDCRMO 1 assumes that an end-of-file 
has been found on the portable data set and passes control 
to step 3. 

IDCRMOt 

Procedure: IDCRMO 1 

3 IDCRMOl writes a completion or termination message 
with LASTCC. Control goes to Executive Controlled 
Termination. If LASTCC is less than 12, a completion 
message (with LASTCC) is written; otherwise a 
termination message (with LASTCC) is written. 

I 
i: 

I 
I 

f 
s. 
i 



~ Diagram 3.14.l. IMPORTRA FSR -CLUSTER or ALTERNATE INDEX 
;:; 
N 

< 
{IJ 
lit 

~ 
> 
~ 

I 
I 
{IJ 
n 

i· 
i 

INPUT 

Portable Data Set 

VSAM 
Catalog 

From Diagram 3.14 

PROCESSING 

1. Writes time of export. 

Builds catalog parameter lists. 

2. Defines cluster or alternate index 
Defines paths. 

3. For a non-empty data set: 

• Alters name of data set (OUTFILE 
parameter only). 

• Copies data. 
• Alters the name back (OUTFILE 

parameter only). 

For an empty data set: 
Reads the portable data set until EOF 
is reached. 

OUTPUT 

Message 

CTGPL D -

Data Set 

~ 
CTGFV - CTGFL - I 

3: • i 
!. 
I 

f 
a. 
E 



I .. 
!'! 

I 
e, 
0 
'i ;: 
1· 
N 
I -w 
w 

Extended Description for Diagram 3.14.1 

IDCRMOl 

Procedures: CLUSPROC, CPLPROC, GETPROC, 
FVTPROC, BFPLPROC, BPASPROC, IUNIQPRC 

1 CLUSPROC via CPLPROC builds a CTGPL for a define 
operation. CLUSPROC issues a UGET macro to read the 
catalog control records and calls G ETPROC to read the 
catalog data records. Control records are read for the 
cluster or alternate index and their data and index, if any, 
components. CLUSPROC then calls FVTPROC to build 
two or three FVTs. FVTPROC in turn calls BFPLPROC 
to build FPLs for the catalog information on the portable 
data set. FVTPROC tests the AMDSB for SAM ESDS 
and if the SAM ESDS feature is not installed an error 
message is written. A return code of 8 causes control to 
return to IDCRMOl, which bypasses this entry and 
continues importing the next entry. BPASPROC builds an 
FPL for security information. If the data or index 
component was originally defined as unique, IUNIQPRC 
builds a null volume FVT for each unique component. 
The OBJECTS list is scanned for USECLASS, 
VOLUMES, and DEFAULTVOLUMES information 
about the object to be defined; if found, such information 
overrides that found on the portable data set. The 
OBJECTS list is also scanned for FILE information. If 
found, a pointer to the dname is passed in the component's 
FVT. 

IDCRMOl 

Procedures: CTLGPROC, DELTPROC, CLUSPROC, 
CPLPROC, FVTPROC 

2 CTLGPROC issues a UCATLG macro to invoke VSAM 
catalog management. If VSAM issues a return code of 8, 
DEL TPROC issues a UCATLG to delete the object from 
the catalog, and then CTLGPROC issues a UCATLG to 
define the object. Should any of these UCA TLGs fail, or 
should the original define fail with a return code other 
than 8, an error conversion table is built for the UERROR 
function. UERROR is called to print the error message 
based on the catalog return code. 

If any nonzero allocation condition codes are returned by 
catalog management, volume allocation status error 
message(s) are printed. Control is passed to IDCRMOl for 
the next object. If the define is successful, control returns 
to CLUSPROC. 

If a recovery volume serial number is returned for the 
define, a UP RI NT macro is issued to print it. If the define 
was for a unique data set on a fixed block device, 

UPRINT macro(s) are issued to print the actual blocks 
allocated on each volume. 

If the cluster or alternate index has any associated paths, 
CLUSPROC builds catalog parameter lists for each path 
from control records on the portable data set. CPLPROC 
builds the CTG PL, and FVTPROC builds the FVTs and 
the FPLs. CLUSPROC calls CTLGPROC to issue the 
UCATLG macro to define the path. Then RECPROC is 
called to perform step 3. 

IDCRMOl 

Procedures: RECPROC, AL TRPROC, OPENPROC 

3 If the data set is empty, GETs (UGET macro) are issued 
to the portable data set until an EOF is reached. If the 
OUTFILE parameter is present,RECPROC calls 
AL TRPROC to rename the VSAM object to be loaded to 
the dummy name returned by the UIOINFO. RECPROC 
calls OPENPROC to build an OPNAGL with a flag set to 
indicate RECORDMODE or CIMO DE and to issue a 
UPOEN macro to open the newly-defined VSAM file. If 
the OUTFILE parameter is omitted, the newly defined 
file's file-id and catalog name (if present) from the 
CATALOG parameter are placed in the OPNAGL for 
UOPEN. RECPROC issues a UCOPY macro to copy data 
records from the portable data set to the VSAM object. 
UCLOSE closes the VSAM object. If the OUTFILE 
parameter is present, AL TRPROC is called to alter the 
name of the object just loaded back to that under which it 
was defined. 

Processing returns to Diagram 3.14, step 2, for the next 
item on the portable data set. 

I 
3: 
ID ;-
:L 
!!. 
I 

f 
s. 
;; 
3: 



N Diagram 3.14.2. IMPORTRA FSR- USERCATALOG I 

i 
-rom Diagram 3.14 

< INPUT PROCESSING • 
~ I Portable Data Set 
VJ 

~ 

I R ) I I i 1. Imports user catalog. 

I 
~ 

I I I· VSAM 
b Catalog 

~-
I I 

2. Writes message. 

VSAM I 
User Catalog I I 

==1-.J F h..JCTGFV 
.I----

t?7cTGFL r lrM 

I I I I 111 I 

I ~ 

OUTPUT 

I VSAM 
Catalog 

IVSAM 
User Catalog 

Message 

D 
GOT 

FDT 

I 
I 
I 

I 
i. 

i 



p 
.g 
£ 
~ 

f 
[ 
2, 

t 
8 

w 
I 

w 
VO 

Extended Description for Diagram 3.14.2 
IDCRMOl 

Procedures: CPLPROC, UCATPROC, GETPROC, 
LVLRPROC, NFVTPROC, CTLGPROC, CPLPROC, 
DELTPROC 

1 CPLPROC builds a CPL to be used to connect the user 
catalog pointer. UCATPROC then issues a UGET to get 
the catalog control record and calls G ETPROC to obtain 
the catalog data record. LVLRPROC builds a DEVTYPE 
FPL and a volume serial list on the basis of information 
supplied on the portable data set or furnished through the 
OBJECTS parameter. NFVTPROC builds an FVT for the 
define. CTLGPROC issues a UCATLG macro to connect 
the user catalog. If the VSAM catalog return code is 8, 
then CPLPROC builds a CPL to do a disconnect 
operation, and DEL TPROC actually invokes catalog to 
perform this operation. Should this succeed, a second 
attempt is made to connect the user catalog. 

IDCRMOt 

Procedure: ALISPROC 

2 For each alias item on the portable data set, ALISPROC 
prints a message indicating that aliases arc not processed 
in VSE. Control then returns to Diagram 3.14, step 2, for 
the next item on the portable data set. 

I 
3: 

I 
I 

j 
s. 
; 
3: 



N 
I 

i 

< ; 
~ 

~ 
I 
I 
xa 

f 
i. n 

Diagram 3.14.3. IMPORTRA FSR - NONVSAM 

INPUT 
Portable Data Set 

VSAM 
Catalog 

NonVSAM 
0-Jta Set 

From Diagram 3.14 

PROCESSING 

1. Imports nonVSAM data set. 

2. Writes message. 

CTGPL -

OUTPUT 

\!SAM 
Catalog 

NonVSAM 
Data Set 

D 
Register I 

f FDT 

I 
3: 
i 
:I. 
!. 
I 

J 
2. 

~ 



' !'! 

~ 
[ 
2, 

f ::. 
8 

N 
I 

~ ..... 

Extended Description for Diagram 3.14.3 

IDCRMOI 

Procedures: CPLPROC, NVSMPROC, GETPROC, 
LVLRPROC, NFVTPROC,CTLGPROC, CPLPROC, 
DELTPROC 

CPLPROC builds a CPL to be used to connect the user 
catalog pointer. NVSMPROC then issues a UGET to get 
the catalog control record and calls GETPROC to obtain 
the catalog data record. LVLRPROC builds a DEVTYPE 
FPL and a volume serial list on the basis of information 
supplied on the portable data set or furnished through the 
OBJECTS parameter. NFVTPROC builds an FVT for the 
defme. CTLGPROC issues a UCATLG macro to defme 
the non VSAM data set. If the VSAM catalog return code 
is 8, then CPLPROC builds a CPL to do a delete 
operation, and DEL TPROC actually invokes catalog to 
perform this operation. Should this succeed, a second 
attempt is made to def me the non VSAM data set. 

IDCRMOt 

Procedure: ALISPROC 

2 For each alias item on the portable data set, ALISPROC 
prints a message indicating that aliases are not processed 
in VSE. Control then returns to Diagram 3.14, step 2, for 
the next item on the portable data set. 

~ 

I 
3: 

I 
I 

l a 
a. 
; 
3: 



~ Diagram 3. I 4.4. l\IPORTRA - GOG BASE -w 
00 

< rn 
ttl 

< Cll 

> 
~ 

[ 
I 
rn 

~ 
ir 
DO 

t"' 

~-n 

INPUT 

Portable Data Set 

VSAM 
Catalog 

VSAM 
User 
Catalog 

From Diagram 3.14 

PROCESSING 

1. Writes a warning message. 

OUTPUT 

Message 

D 
Register 1 

f GDT 

fFDT 

I 
~ 

i 
!!. 
I 

j 
s. -= 3! 



f 
~ 

I 
2. 
i 
t 
N 
I -= 

Extended Descrlpdon for Diagram 3.14.4 
IDCRMOI 

Procedures: GDGPROC 

t GDGPROC issues a warning message indicating that 
GOG bases cannot be defmed in VSE. It then issues 
successive UGETs until an end-of-file indication is found. 

f 
I 
I 

j 
!. 

i 



..., 
I 

~ 

~ 
~ 
~ 
I 
I 
If 

i· 
i 

Diagram 3.15 RESETCAT FSR 

Register 1 

tGDT 

tFDT 

VSAM 
Catalog 

Catalog 

INPUT 

0 

to be reset 

From Executive 
Controlled Termination 

PROCESSING 

1. Does initialization for RESETCA T processing. 

See Diagram , 3.15.1> 

Steps 2, 3 and 4 are executed repeatedly until 
enough control intervals exist in the catalog for 
the catalog to be reset: 

2. Copies catalog to work file. 

See Diagram , 3.15.2> 

3. Merges the CRAs to the work file. 

See Diagram I 3.15.3> 

4. Ensures there are enough control intervals for 
reassignment. Extends catalog if enough control 
intervals are not available. Returns control to 
Step 2 if catalog is extended. 

5. Reassigns control interval numbers as necessary. 

See Diagram. I 3.15.-? 

6. Checks associations, control intervals and space. 

See Diagram I 3.15.) 

7. Updates catalog , 3.15.6> 

8. Updates CRA(s) if necessary. 

See Diagram B 
9. Releases Resources. 

OUTPUT 

Reset 
Catalog 

Register 1 

tGDT 

tFDT 

t LASTCC 

tr 
l 
~ 
If 
i: 
I 

J 
Si 

i 



I 
!"!' 

I 
0 ..., 
i 
i· 
N 
I 

~ 

Extended Description for Diagram 3.15 
IDCRSOl, IDCRS06 

Procedure: INIT, DSOPEN, CA TINIT, WFDEF 

1 INIT is the first procedure called by RESETCAT. It uses 
the UGPOOL macro to obtain work areas common to all 
ofRESETCAT, and initializes them. The catalog to be 
reset is opened, verified and validity checked. Next, 
exclusive control over the catalog is obtained via the 
UENQ macro. The catalog in which the work file will be 
defined is also opened and then the work file is defined 
and opened. An entry in the RESVOL table is created for 
each CRA volume identified by the CRAFILES 
parameter. Finally, INIT builds the CIXL T table. The 
CIXL T table is used to translate a catalog control interval 
number into a work file relative record number. 

The following three steps, Steps 2,3, and 4 form an 
iterative loop. These three steps are executed repeatedly 
until the catalog to be reset has enough control intervals. 

IDCRS01, IDCRS05, IDCRS06 

Procedure: COPYCAT, BLDVLST, SCNRLST, DSCLOSE 

2 COPYCAT performs the initial load of the work file from 
the catalog to be reset. The CIXL T table built by INIT 
maps every catalog DAT A control interval number (CIN) 
to a relative record number (RRN) slot in the work file. It 
also indicates whether the control interval is for the low 
key range (LKR) or high key range (HKR) portions of the 
catalog. LKR records from the catalog are written to the 
work file as normal RRDS records. HKR records are also 
written to the work file, however, for each HKR record 
written, a flag is set indicating that that control interval 
will later be reassigned. Dummy records (formatted 
control intervals with no data in them) are written to the 
work file to represent that portion of the catalog which 
extends from the first unformatted free control interval to 
the LKR high allocated control interval. A table 
(VOLSERTB) is built from all volume records read from 
the catalog. Free records and records which belong to a 
CRA specified for reset are maintained on an "available" 
chain and an "available" count is kept for these records. 
When processing is completed, the work file is closed. 

IDCRSOl, IDCRSOS, IDCRS06 

Procedures: MERGECRA, DSOPEN, SCNRLST, CKERR, 
PROCCRA,VOLCHK,DSCLOSE 

3 MERGECRA merges each reset CRA into the work file. 
Each CRA is opened. The cluster record is read and the 
catalog name is verified. The PROCCRA procedure is 

called to merge the CRA records into the work file and the 
VOLCHK procedure is called to perform the volume 
consistency check. 

IDCRSOI, IDCRSOS, IDCRS06, IDCRS07 

Procedures: ENSURECI, DSCLOSE, CATEOV, CKERR, 
DSOPEN, CA TINIT 

4 ENS URECI ensures that there are enough free control 
intervals for reassignment. If the number of control 
intervals to be reassigned are less than or equal to the 
number of control intervals available, a flag, RSENUFCI 
is set, indicating that enough control intervals are available 
for reassignment. However, if the control intervals to be 
reassigned are greater than the number available, 
ENSURECI forces the extension of the catalog by 
performing the following: 

The catalog is closed by calling DSCLOSE. Next, all 
storage obtained during COPYCAT processing is freed by 
issuing UFPOOL. The highest formatted work file relative 
record number is saved in RSWFHURR and CA TEOV is 
called to extend the catalog by writing free records into the 
catalog until the catalog has been extended and sufficient 
control intervals are available for the reset operation. If 
CA TEOV returns with an error condition, CKERR is 
called to terminate RESETCA T processing. 

After the catalog is successfully extended, DSOPEN is 
called to re-open and verify the catalog. CA TINIT is 
called to re-establish the catalog's geometry by building 
the CI to RRN translate table (CIXLT). 

IDCRSOl, IDCRS05 

Procedures: REASSIGN, ADDUPCR 

5 The REASSIGN procedure performs control interval 
(CIN) reassignment. The invalid and duplicate records on 
the reassign chain are assigned to valid CINs from the 
available chain. Each record on the reassign chain is read 
and an "available" record from the available chain is 
found. The reassign record is copied to the "available" 
record buffer; the CIN is changed to reflect the CIN of the 
"available" record. If there is a pointer to a duplicate 
record (DUPPTR), it is copied from the reassign record's 
processing field. The "available" record is then updated to 
reflect the reassigned record. The record whose DUPPTR 
points to the reassigned record's relative record number is 
found by following the duplicate record chain. The 
DUPPTR of this record is changed to reflect the 
"available" record's CIN. This record is then updated. 

IDCRS02, IDCRS03 

Procedures: ASSOC, PROCTYPE, VERDSDIR, PROCVOL 

6 The ASSOC procedure controls the checking of all control 
interval numbers (CIN) in all records being reset. This 
includes CINs in associations and data set directories. 
ASSOC also controls the checking for any space conflicts 
ofVSAM data sets. 

IDCRSOl, IDCRSOS, IDCRS07 

Procedures: UPDCA T, CKERR, ADDUPCR, ENTNMCK, 
SCNRLST, RENAMEP, UPDCCR, CRAUPCHN, 
DELTN, ADDTN 

7 UPDCA T updates the catalog from the work file. At this 
point, any records in the work file which do not match the 
catalog, must be written to the catalog. Each valid work 
file record is read and if the "update catalog" flag is on, 
the record is written to the catalog low key range (LKR). 
True names are deleted from and added to the catalog 
high key range (HKR) as necessary. If the "update CRA" 
flag is on, the control interval of the work file record is 
placed on the CRA update chain. The free record chain is 
rebuilt. 

IDCRSOl, IDCRS05, IDCRS06 

Procedures: UPDCRA, SCNRLST, DSOPEN, DSCLOSE, 
CK ERR 

8 UPDCRA updates CRAs from the work file. Each entry in 
RESVOL (a table containing an entry for each volume 
whose CRA is required in the reset operation) is obtained. 
If there are any updates to be made in the CRA, it is 
opened, updated, and closed. If any free records are placed 
in the CRA, the CCR record is updated. 

IDCRSOl, IDCRS05 

Procedures: WRAPUP, CLEANUP, CKERR 

9 If RESETCA T processing is successfully completed, 
WRAPUP is the last procedure called. WRAPUP ensures 
that all resources obtained by RESETCA T are freed, it 
prints the message that processing is complete and then 
returns control to the system . 

~ 
ftl 
1:1 

l 
3: 
ID 
g 
::L 
!. 
I 

f 
2. 
; 
3: 



N 
I 

~ 

~ 

i 
i 
I 
11 

t 
b 
'R· 

Diagram 3.15.1 RESETCAT FSR - Initialization 

Register 1 

tGDT 

tFDT 

VSAM 
Catalog 

Catalog 

INPUT 

0 

to be reset 

From Diagram 3.15 

PROCESSING 

1. Gets space for and initializes work areas. 

2. Opens the catalog to be reset. Opens the 
work file catalog. 

3. Defines and opens the work file. 

4. Builds volume entries from CRAFILES/ 
CRA VOLUMES volumes. 

J 

.........., 

_J 

I 
I 
I 

I 

l 

OUTPUT 

l 

RFSI·TCAT 
Work 
Areas 

Catalogs 
Opened 

Work file 
Defined, 
Opened 

RESVOL 
Table 

1-t-" 

I I r 
l 
~ 
i 
!. 
I 

f 
s. -= 3: 



f 
!':' 

I 
2, 

1 
1· 
t-.> 
I 

e 

Extended Description for Diagram 3.15.1 
IDCRSOI 

Procedures: IN IT 

INIT issues the UGPOOL macro to obtain storage for the 
following work areas: 

• CRA user buffer 

• Record Management control blocks (GRAB, 
BUFFER) 

• UJHCPL CVH parameter list 

• Control blocks for Catalog Management LOCATE 
macro (CPLs and FPLs) 

The FDT is checked to see if IGNORE is specified, if so, a 
flag, (RSIGNORE) is set in RSWORK. After obtaining 
the above storage, INIT formats the RESETCA T record 
management control blocks. Control blocks (CPL and 
FPL) of Catalog management are also formatted along 
with certain portions of the main work area. 

IDCRSOI, IDCRS05, IDCRS06 

Procedures: INIT, DSOPEN, CKERR 

2 DSOPEN is called to open the catalog to be reset. Validity 
checks are made on the catalog to ensure that it is 
recoverable. CK ERR is called if these checks fail. 

Exclusive use of the catalog is ensured by issuing the 
UEN.Q macro to obtain exclusive use of the ENQ name of 
the catalog (R vo/ser RSCOO). If it is determined that the 
catalog is in use by someone else, CKERR is called. 

DSOPEN is called to perform a VERIFY operation on the 
catalog, the high used RBA of the catalog is adjusted if 
necessary. 

UGPOOL is issued to obtain storage for the CIXL T table. 

IDCRSOI, IDCRSOS, IDCRS06 

Procedures: INIT, RECMGMT, WFDEF, DSOPEN, 
CK ERR 

3 RECMGMT is called (with the GETRCD option) to get 
control interval zero (Cl•O) from the catalog. The high 
allocation data Cl is computed (HARBADS/512) and 
saved in RSCAHACI. 

The primary and secondary extents of the work file are 
computed as follows: 

Primary • no. of records currently allocated in the 
catalog. 

Secondary- CMAXC1*2- primary)+ 125 
126 

where MAXCI • Largest CI number possible for a 
catalog. 

DSOPEN is called to open the catalog into which the 
work_ file is to be defined. 

The WFDEF procedure is called to define the work file. If 
it is found that the work file is defined in the catalog being 
reset, CKERR is called. 

DSOPEN is now called to open the work file. 

IDCRSOt, IDCRS05, IDCRS06 

Procedures: INIT, CKERR, CA TINIT 

4 The RES VOL table is constructed consisting of an entry 
for each CRA volume supplied by the invoker of 
RESETCAT with the CRAFILES or CRA VOLUMES 
parameter. Each entry consists of fields for volume serial 
number, device type, system logical unit (CRA VOLUMES 
only), and the file name of the DLBL statement 
(CRAFILES only). A pointer, RSVOLALL points to the 
first entry in the table and each entry is chained to the 
next. A flag indicates the last 'ALL' entry which is 
followed by the 'NONE' entries. 

If CRAFILES is specified, the volume serial number of 
the CRA is obtained via the UIOINFO macro. If 
CRAVOLUMES is specified, the volume serial number of 
the CRA is contained in the subparameters.The volume 
serial number of the CRA is inserted in RESVOL entry. If 
the catalog volume serial number is specified, its RESVOL 
entry is positioned as the first entry in the list. 

If no CRA is specified with the ALL subparameter, 
CKERR is called to flag an error condition. 

CA TINIT is called to build the CIXL T table. The CIXL T 
maps the catalog control intervals to the work file relative 
record numbers. There is an entry in CIXL T for each 
catalog extent. 

I 
I 
I 

j 
s. 
i 



w 
I 

t 

< 
flJ 

~ 
flJ 

~ 

f 
~ 
[ 
ff 

i· 
i 

Diagram 3.15.2. RESETCAT FSR- Copy Catalog to Work File 

INPUT 
Register 1 

tGDT 

tFDT 

VSAM 
Catalog 

to be reset J 

RESETCAT 
Work 
Areas 

0 

I 

I I 

I I 

I 

UJ I 

From Diagram 3.15 

~ PROCESSING 

~I I 
l. Checks catalog extents. I I 

I 
2. Processes high key range extents. 11 
3. Processes low key range extents · · formatted 

records. 

I 4.. Processes unformatted records. 

5. Closes the work file. 

I I I 

I I I 

OUTPUT 

0 e 

Initial loading of work file. 

~ 

l 
I ~ • ;f 

:L e. 
I 

I 1 a 
s. -tll 
~ 



~ 
1 .. 
~ 

a:: 
& 
8. 
2, 
0 
'i .. 
~-
8 

N 
I • u. 

Extended Description for Diagram 3.15.2 

IDCRSOI 

Procedures: COPYCAT 

1 The COPYCAT procedure obtains each entry from 
CIXLT and examines it to see ifthe first control interval 
number in the entry is greater than the catalog low key 
range (LKR) high allocated control interval. If so, it 
indicates COPYCAT processing is complete and control 
returns to the main procedure, IDCRSO 1. 

Another test is made to see if all 127 entries have been 
processed, if so, control returns to main line IDCRSO 1 
processing. 

2 If the CIXLT entry represents a high key range (HKR) 
extent, a flag is set indicating that this is an "invalid" 
record in the work file. A dummy record is formatted and 
written to the work file as follows: 

• If the relative record number (RRN) is greater than the 
high formatted relative record number in the work file, 
RECMGMT (ADDRCD) is called to add the record to 
the work fde. 

• If the RRN is not greater, RECMGMT (UPDRCD) is 
called to update the record in the work fde. 

3 If the CIXL T entry represents a LKR extent, the record is 
processed as a formatted record. If the Cl of the record is 
less than the next free unformatted catalog Cl, then 
GETRCD of the RECMGMT procedure is called to read 
the record from the catalog. The catalog record is moved 
to the work file buffer. If the record happens to be a free 
record (not currently used in the catalog), it is placed on 
the available chain. The count of available records is 
incremented. If it is not a free record and if it is a volume 
record, then a VOLSERTB entry consisting of volume 

4 

serial number and Cl number is formatted. BLDVLST is 
called to add this entry to the VOLSERTB table. In order 
to check to see if the record is also on a CRA specified for 
reset, SCNRLST is called. If it is a CRA record, a flag is 
set indicating that the record is to be deleted. The record is 
placed on the available chain and the available count is 
incremented. LKR records are written to the work file as 
follows: 

• If the RRN is greater than the high formatted RRN, 
ADDRCD is called to add the record to the work file. 

• ifthe RRN is not greater, then UPDRCD is called to 
update the record in the work file. 

If the Cl of the record is equal to or greater than the next 
free unformatted Cl in the catalog, then the "update 
catalog" flag is set in the work file processing field and a 

dummy free record is formatted. The dummy record is 
placed on the available chain and the available count is 
incremented. If the Cl of the record is equal to or greater 
than the End of Volume unformatted free Cl, then the 
"invalid" flag is set in the work file processing field. A 
dummy record is formatted. The unformatted dummy 
record is written to the work file as follows: 

• If the RRN is greater than the high formatted RRN, 
then ADDRCD is called to add the record to the work 
file. 

• If the RRN is not greater, UPDRCD is called to 
update the record in the work file. 

IDCRSOI, IDCRS06 

Procedures:COPYCAT,DSCLOSE 

5 The ''work file created" flag is tested; if it is off, 
DSCLOSE is called to close the work file. 

I 
3: 

l 
I 

i 
s. 
i 



N 
I 

i 

< 

~ 
fl) 

> a: 

f 
I 
Sf 

I· 
~ 
~-

Diagram 3.15.3. RESETCAT FSR - Merge CRA(s) to the Work File 

INPUT 

CRA 
Volumes 

~ 
~ 

l 
_I 

RESETCAT 
Work Areas 

~ 

From Diagram 3.15 

PROCESSING 

1. Opens the work file. 

Steps 2 through 5 are executed repeatedly for 
each entry in the RESVOL Table. 

2. Opens the CRA. 

3. Merges CRA records into work file. 

4. Closes the CRA. 

5. Performs volume consistency check. 

OUTPUT 

LJ 
Work file with merged CRA records. 

i 
~ 

l 
I 

J 
s. 
; 
3: 



f 
hJ 

~ 
[ 
2, 

1 
N 
I 

~ 

Extended Description of Diagram 3.15.3 

IDCRSOt, IDCRS06 

Proc~_s:MERGECRA, DSOPEN 

t The "work file open" flag is tested to see if the work file is 
already open, if off, DSOPEN is called to open the work 
file. 

Steps 2 through S form an inerative loop. These four steps 
are executed repeatedly for each entry in the RESVOL 
table. 

2 The SCNRLST procedure is called to obtain an entry 
from the RESVOL table indicating the volume serial 
number of a CRA specified for the reset operation. If 
SCNRLST finds that all entries are processed and if the 
"termination" flag is on, CKERR is called to print an 
error message and terminate processing. If SCNRLST 
successfully returns a CRA volume serial number, 
DSOPEN is called to open this CRA. If open fails, flags 
are set to terminate processing and to bypass the volume 
consistency check. If the open is successful, RECM GMT 
(with GETRCD option) is called to read the CRA cluster 
record (Cl•2). If the CRA entry name is not for the 
catalog being reset, then CKERR is called to print an error 
message. Flags are set to terminate processing and to 
bypass the volume consistency check. 

IDCRSOt 

Procedures: MERGECRA, PROCCRA 

3 PROCCRA is called to merge CRA records into the work 
file. 

Beginning with the volume record, each CRA record is 
read and merged. The CIN of the volume record is 
updated/added to VOLSERTB, so that Volume records 
may be located later. The work file record corresponding 
to the catalog control interval (CA TCI) of each CRA 
record (except CRA free records) is read. If the work file 
record is free or available, the CRA record replaces it. If 
the work file record has already been replaced or if the 
work file record does not belong to a reset CRA, the CRA 
record is written to the overflow area and maintained on 
the duplicate chain for that CA TCI. Records written to the 
overflow or "invalid" areas of the work file are placed on 
the "reassign chain" and a "reassign count" is kept for 
these records. Each time a free or available work file 
record is replaced, the "available" count is decremented. 

IDCRSOI, IDCRS06 

Procedures: MERGECRA, DSCLOSE 

4 If the "CRA open " flag is set, DSC LOSE is called to close 
the CRA. If close fails, flags are set to terminate processing 
and to bypass the volume consistency check. 

IOCRSOI, IOCRS03 

Procedures: MERGECRA, VOLCHK, HVTOC 

5 If the flag to bypass the volume consistency check is not 
on, VOLCHK is called to perform the volume consistency 
check. 

VOLCHK ensures that there is a one to one 
correspondence between each VSAM data space on a 
volume (format 1 label in the VTOC) and each space 
header in the volume record for that volume. This is done 
by calling the HVTOC procedure to read each label in the 
VTOC (through an interface with the common VTOC 
handler) and then comparing the VSAM-owned label with 
the corresponding volume record space header. If a format 
l label does not have a corresponding space header, the 
label is scratched by calling HVTOC. If a space header 
refers to a non-existent format l label, the space header is 
deleted. If the extents in a space header are not identical to 
the extents in the corresponding format 1 label, the extents 
in the space header are corrected. 

I 
I 
I 

f 
s. 
; 
3: 



t;1 Diagram 3.15.3.1 RESETCAT FSR - Common VTOC Handler Functions 
~ 

~ 

~ 
I: 

I 
~ 
l 
ff 

I· 
b 
I-

INPUT 

Register 1 

t 
t 
t 
t 
t 

New name for 
VTOC label 
(RENAME 
only) 

VTOC label to 
be renamed or 
scratched 

Volume LUB 
(OPEN only) 

Volume serial 
number (OPEN 
only) 

Name of 
function to 
be performed 

From Diagram 3.15.3 

PROCESSING 

Calls IJJHCVHO to perform the required 
common VTOC handler function. 

2. Returns. 

OUTPUT 

Appropriate 
CVH 
function 
performed 

I 
I 
I 

J 
a. 
~ 



I 
!'! 
I: 

i 
a. 

! 
i::. 
8 

N 
I 

i 

Extended Description for Diagram 3.15.3.1 

IOCRS07 

Procedure: HVTOC 

RESETCA T calls the HVTOC procedure to perform all 
common VTOC handler (CVH) functions. After 
examining the name of the function to be performed, 
HVTOC issues the appropriate CVH macro (OVTOC, 
CVTOC or various forms of PVTOC). This macro builds 
the CVH parameter list (IJJHCPL) and calls the topmost 
CVH module (IJJHCVHO). 

Valid names of HVTOC functions to be performed are as 
follows: 

CLOSE - close the VTOC 

OPEN!> - open the VTOC 

RADDR- read label from specified address 

RENME - rename the label 

RFMT4 - read the format-4 VTOC label 

RNEXT - read the next VTOC label 

SCRTH - scratch a label 

W ADDR - write label to specified address 

For more information on the CVH parameter list and the 
VSE CVH routines that perform the above functions, see 
DOSI VSE Fixed Block Architecture Logical /OCS. 

I 
I 
I 

l 
i 
S-

i 



N 
I 

i 

< 
flJ rn 
~ 
flJ 

~ 
§ 
I: 

I 
w 
~ 
§" .. 
t"' 

cg_ 
n 

Diagram 3.15.4. RESETCAT FSR - Reassign Cl Numbers 

INPUT 

8 
Ll 

VSAM 
Catalog 
to be reset 

J 
1 

RESETCAT 
Work 
Areas 

l-~ 

From Diagram 3.15 

PROCESSING 

1. Reads a work file record to be reassigned. 

2. Finds an available record. 

3. Updates available record and writes to work 
file. 

4. Processes duplicate chain. 

OUTPUT 

A 
LEJ 

CINs in work file reassigned 

I 
3: 

l 
I 

J 
e. 
i 



f 
~ 

I 
e. 
0 

1 
!• 
~ 
I -u. -

Extended Description of Diagram 3.15.4 

IDCRSOt, IDCRS06 

Procedures: REASSIGN, RECMGMT 

t Before it reassigns any records, the REASSIGN procedure 
determines whether any records need to be reassigned. If 
the reassign count is zero, it means no records need to be 
reassigned. Control is returned to mainline IDCRSO 1 
processing. Control is also returned if all records on the 
reassign chain have been read. 

RECMGMT (with GETRCD option) is called to read the 
next record on the reassigning chain. The reassign chain 
pointer is saved. 

IDCRSOt, IDCRS06 

Procedures: REASSIGN, RECMGMT 

2 The next record on the available chain is read via 
GETRCD. The available chain pointer is saved. If the 
"replaced from CRA" flag is set, then this record cannot 
be used, so the next record on the available chain is read 
until an available record is found. 

IDCRSOt, IDCRS06 

Procedures: REASSIGN, ADDUPCR, RECMGMT 

3 The reassign record is moved to the available record 
buffer. The reassign DUPPTR is copied to the available 
DUPPTR. Two flags, "replaced from CRA .. and "update 
catalog ... are set. ADDUPCR procedure is called to 
perform CRA update processing. A flag indicating that the 
record is reassigned is set. 

RECMGMT (with the UPDRCD option) is called to write 
the update available record to the work file. 

IDCRSOt, IDCRS06 

Procedures: REASSIGN, RECMGMT 

4 The relative record number (RRN) of the reassigned 
record is saved. RECMGMT (GETRCD) is called to read 
the record pointed to by the catalog control interval of the 
reassigned record or the DUPPTR. lfthe DUPPTR does 
not point to the RRN of the reassigned record, then the 
next record on the duplicate record chain is read. When 
the record is found, the DUPPTR is updated to point to 
the Cl of the available record. RECMGMT (UPDRCD) is 
called to write the record back to the work file. 

ti­;; 
g 
i. 
~ ; 
:L 
!. 
I 

f 
a. 
Ea 
3: 



N 
I 
y; 
N 

~ 

~ 
I 
I 
I 
b 
11· 

Diagram 3 .15 .5 RESETCAT FSR - Check Associations 

INPUT 

B 
L:J 

1 
1 

RESETCAT 
Work 
Areas 

i-~ 

From Diagram 3.15 

PROCESSING 

1. Processes all LKR records in the work file: 

a. Reads a work file record. 

b. Calls PROCTYPE for CRA records and 
entry types C, B, A, U or X. 

c. Verifies data set directories for D and I 
entry types. 

2. Processes all reset volumes. For each reset 
volume: 

a. Reads the volume record from the work 
file. 

b. Calls PROCVOL to process the volume 
record. 

OUTPUT 

A 
~ 

I 
I 
I 

f 
s. 
; 
3: 



f ;; .. 
!'! 

I 
2, 

j> 
a 
~· 

.., 
I -VII w 

Extended Description for Diagram 3.15.S 

IDCRS02, IDCRS06 

Procedures: ASSOC, RECMGMT, PROCTYPE, 
VERDSDIR 

t a. Each work file record is read sequentially up to the 
high allocated catalog control interval. Each record is 
checked to see if the "associations checked" flag is on. 
If it is, control goes to step 2. 

b. If the flag is not on and if the record is from a CRA 
being reset, then for each C,B,A,U or X record, the 
PROCTYPE procedure is called to process control 
interval numbers. 

For a given catalog entry type, PROCTYPE controls 
the process of scanning a catalog record for control 
interval numbers. It determines which other records 
which along with the given record are a part of a set of 
records. It verifies all control interval numbers in the 
entire set of records. Control interval numbers are also 
corrected if necessary. 

c. VERDSDIR is called to check data set directories if 
the entry type is Dor I. The VERDSDIR procedure 
verifies the data set directory entries for VSAM data 
sets which are not on reset volumes. It specifically 
looks for multivolume VSAM data sets where the 
primary volume is not a reset volume but a secondary 
volume is a reset volume. VERDSDIR changes work. 
file records to correct error conditions, namely it marks 
a volume group occurrence (VGO) unusable when no 
data set directory exists for that data set. 

IDCRS02, IDCRS06 

Procedures: ASSOC, RECMGMT 

2 a. For each reset volume, the volume record is read from 
the work file via RECMGMT (GETRCD). 

Procedures: ASSOC, RECMGMT, PROCTYPE, 
VERDSDIR 

b. The PROCVOL procedure is called to process the 
volume record. 

PROCVOL controls the checking of space conflicts for 
each volume record. PROCVOL calls PROCTYPE to 
find and verify each control number in a volume 
record and its extensions. PROCVOL verifies and, if 
necessary, corrects the volume space bit map . 

I 
~ 

I 
I 

f 
s. 
; 
~ 



...., 
I -u. .. 
< 
UJ 
l!I 

< UJ 

~ 

r 
I 
11 

i· 
b 
~-

Diagram 3.15.6 RESETCAT FSR - Update the Catalog 

INPUT 

8 u 
VSAM 
Catalog 
to be reset 

r 1 

RESETCAT 
Work 
Areas 

1-r-i 

From Diagram 3.15 

PROCESSING 

1.. Reads a work file record. 

2. Reads a catalog record. 

3. Writes a record to the catalog low key range 
(LKR) and rebuilds the free chain. 

4. Processes true names. 

5. Writes a record to the work file. 

6. Renames duplicate true names. 

7. Updates catalog control record (CCR) 

OUTPUT 

VSAM 
Catalog 
to be reset 

Records added and/or deleted from 
the catalog. 

I 
~ 

I 
I 

l 
3 
a. 
~ 



f 
!'! 

~ 
[ 
2, 

f g-., 

N 

' -Ull 
Ull 

Extended Description for Diagram 3.15.6 
IDCRS05. IDCRS06, IDCRS07 

Procedures: UPDCAT, CKERR, RECMGMT 

l UPDCA T ensures that all CRAs required for updating are 
available by checking the "update CRA unavailable" flag 
(RSBADVOL). If the check shows that a CRA is not 
available, the CKERR routine is called to print a message 
and terminate RESETCAT processing. 

Each catalog extent in the work file is processed by 
checking each entry in CIXL T. If the extent represents a 
HKR, it is ignored. Only LKR extents are considered. For 
each LKR extent, RECMGMT (GETRCD) is called to 
read a work file LKR record. 

IDCRS06, IDCRS07 

Procedures: UPDCAT, RECMGMT, ENTNMCK 

2 For each work file record read the "update catalog" flag 
(RSWUPCAT) is tested and if the flag indicates the 
catalog should be updated, the corresponding catalog 
record is read via the GETRCD routine. 

IDCRS06, IDCRS07 

Procedures: UPDCAT, ADDUPCR, RECMGMT 

3 After each catalog record is read, the "association 
checked" flag (RSW ASSCK) is tested. If it is not on, the 
ADDUPCR routine is called to prepare for update CRA 
processing. The ENTNMCK procedure is called to 
determine if the catalog record has a true name; if there is 
a true name, a flag is set and the true name is saved. Next, 
ENTNMCK is called again to see if the work file record 
has a true name. If it does, a flag is set 

If the record is free or the "association checked" flag is off, 
a deleted free work file record is formatted in the catalog 
buffer and placed on the free chain, otherwise the work 
file record is moved to the catalog LKR buffer. If the 
control interval number of the record is greater than or 
equal to the first unformatted free control interval, 
RECMGMT (ADDRCD) is called to add the record to the 
LKR. If the ClN is less than the first unformatted free 
CIN, the UPDRCD option ofRECMGMT is called to 
update the catalog record. 

IDCRSOS, IDCRS06, IDCRS07 

Procedures: UPDCAT, RECMGMT, DELTN, ADDTN 

4 If the catalog record has a true name and the work file 
record does not (or has a true name different from the 

catalog), then the true name is deleted from the catalog 
HKR by calling DEL TN, provided the CIN is correct. 

If the work file record has a true name and the catalog 
record does not (or has a true name different from the 
work file), AD DTN is called to write a true name record. 
If ADDTN indicates a duplicate record exists, the work 
file record is placed on the true name chain for a future 
rename operation (see Step 6). The •'write work file" 
(RSUCTWWF) flag is set. 

IDCRSOS, IDCRS06, IDCRS07 

Procedures: UPDAT, SCNLST, RECMGMT, CRAUPCHN 

S UPDCAT checks to see if the ••update CRA" flag 
(RS UPC RA) is on. If it is, the SCNRLST routine is called 
to scan the RESVOL table for the CRA volume serial 
number. Next, the work file record is placed on the CRA 
update chain for this CRA volume by the CRAUPCHN 
procedure. The ''write work file" flag is set. 

If the "write work file" flag (RSUCTWWF) is on, 
UPDRCD is called to update the work file record with the 
true name chain pointer and/ or the CRA update pointer. 

IDCRS06, IDCRS07 

Procedures: UPDCAT, RECMGMT, RENAMEP, ADDTN 

6 After all the catalog LKR extents have been processed, the 
true name chain is checked. If the chain is not empty, the 
GETRCD routine of RECMGMT is called to read a work 
file record on the true name chain. The ADDTN routine is 
called to add the true name to the catalog HKR. If a 
duplicate name is detected, then the RENAMEP 
procedure is called to assign a new name to the true name. 

IDCRS06, IDCRS07 

Procedures: UPDCAT, RECMGMT, UPDCCR 

7 The GETRCD routine of RECMGMT is called to read 
the CCR (control interval number 3). The following items 
in the CCR are updated by UPDCCR: 

• First unformatted free record 

• Count of deleted free records 

• Control interval number of first deleted free record 

• High RBA maintained in the CCR 

After the above items are changed, RECMGMT (with 
UPDRCD option) is called to write the updated CCR 
back to the catalog. 

( 
i 

I 
I 

f 
s. 
i 



! Diagram 3.15.7 RESETCAT FSR - Updates the CRA 

"' 0\ 

< {ll 

l!I 

< {ll 

~ 

i 
I 
ff 

i· 
fill 

i. 

l 

INPUT 

l 

RESETCAT 
Work Areas 
and Control 
Blocks 

B 
~ 

1-r-

From Diagram 3.15 

PROCESSING 

1. Updates the CRA if necessary. 

a. Opens the CRA. 

b. Reads a work file record. 

c. Writes a CRA record. 

d. Closes the CRA. 

OUTPUT 

C'RA Volumes updated if necessary. 

I 
3: 
[ 
!. 
I 

f 
e.. 

! 



f 
!':> 

I 
e, 

f 
1· 
w 
I 

\: 
~ 

Extended Description for Diagram 3.15. 7 
IDCRSOl, IDCRS05, IDCRS06 

Procedures: UPDCRA, SCNRLST, RECMG MT, CKERR 

1 a. The SCNRLST routine is called to obtain a CRA 
volume serial number entry from the RESVOL table. 
A check is made to see if this CRA needs to be updated 
by checking if the CRA update chain is empty. If the 
open is successful, the "CRA open" flag is set, if not, 
the "termination" flag is set. 

b. Each record in the CRA update chain is read from the 
work file RECMGMT (GETRCD). The control 
interval number of the next record in the chain is 
saved. If the record just read happens to be a free 
record, the CRA CCR record needs to be updated. If 
the CCR has not been read already, RECMGMT 
(GETRCD) is called to read it. The deleted free record 
count in the CCR is incremented, and the record is 
placed on the CRA free chain. 

c. The record read from the work file is moved to the 
CRA buffer. Control interval information is inserted 
and RECMGMT (UPDRCD) is called to write an 
updated record in the CRA. 

After all records in the CRA update chain have been 
proccsscd for a specific CRA, RECMGMT 
(UPDRCD) is called to write the updated CCR record 
back to the CRA. 

d. DSCLOSE is called to close the CRA. If the close fails, 
the "termination" flag is checked. If it is set, CKERR 
is called to print an error message and terminate 
RESETCA T processing. If the termination flag is not 
set, control returns to the caller. 

I 
3: • ;-
[ 
I 

j 
s. 
; 
3: 



N 
I -"' OD 

< flJ 

i 
I: 

i 
I 
ff 
i· 
• 
b 

CS!·. 

Diagram 3.16. CANCEL FSR 

INPUT 

Register 1 

f GDT 

t FDT 

f LASTCC 

FDT 

'JOB' keyword 

'STEP' keyword 

EXECUTIVE 

PROCESSING 

1. Set Access Method Services last-condi- . ........, 
tion code to 16 (termination). 

2. Issue normal command termination 
message but with condition code set 
to 16. 

3. In the CANCEL JOB situation, issue 
the UABORT macro with NODUMP 
indicator. 

4. In the CANCEL STEP situation, return 
to the EXECUTIVE with the termina­
tion code in LASTCC. 

EXECUTIVE 

OUTPUT 

LASTCC 

f 16 I 

Register 15 

{Cance1 ABORT code) 

I 
3: 

i 
!. 
I 

l a 
s. 
; 
3: 



{ 
~ 

I 
0 ..., 
~ 
I· 
N 
I -VII 

\C) 

Extended Description for Diagram 3.16 

IDCCLOt 

l Set the last-condition-code to 16. 

IDCCLOl 

Procedure: IDCCLO 1 

2 The message IDCCOO 1 I is issued. The condition code is set 
to 16. 

IDCCLOl 

Procedure: IDCCLO 1 

3 The UABORT code is 76. The value is negative to signal 
UABORT that no PDUMP is needed. 

If Access Method Services was called as a subroutine, 
UABORT returns control to the caller of Access Method 
Services witha value of 16 in register 15. 

If Access Method Services was not called as a subroutine, 
SVC06 is issued and the job stream is flushed to the next 
"/&"or "//JOB" card. 

IDCCLOl Procedure: IDCCLO 1 

4 If Access Method Services was called as a subroutine, 
UABORT returns control to the caller of Access Method 
Services with a value of 16 in register 15. 

If Access Method Services was not called as a subroutine, 
the job stream is flushed to EOF by the Access Method 
Services Executive. 

[ 
l 
3: • 
~ 
I 

I 
a. 
; 
3: 



Licensed Material - Property of IBM 

2-160 VSE/VSAM Acceu Method Services Logic 



f 
~ 

I 
e. 
i 
ii 
f 
D 

N 
I 

~ 

Termination Visual Table of Contents 

4.1 

Executive 
Controlled 

Termination 

4.2 

Processor 
Termination 

4.2.1 

1/0 Adapter 
Termination 
UIOTERM 

Macro 

I 
I 
!. 
I 

i 
s. 
~ 



N 
I 

~ 

< fl} 

~ 
fl} 

~ 

i 
I 
I 
b 
~-

Diagram 4.1. Executive Controlled Termination 

INPUT 

MAX CC 
'

From Reader/Interpreter <R/J) or an FSR 

PROCESSING 
.----- -

!>. I -=i 77Z(ZZZZZZZ41 1. Updates MAXCC. '7ZZZZ(ZZZZl(p 

Register I c I 
+ GDT 

4 FDT 

4 FDT ID 

4 MAXCC 

4 LASTCC 

4 FSR Name 

11 -~ 

If entrance is from R/I, processing 
continues with Step 2; if entrance 
is from an FSR, processing 
continues with Step 3. 

2. Determines if FSR is to be 
called. 

3. Releases FDT. 

OUTPUT 

MAX CC 

I - I 

Register I 

(' I 
t GDT 

t FDT 

0 

GDT ~R:g::~I :n 
4. Sets defaults in Print Control 

Tables. 
11 

::::1 I GDTTPH 

+ FDT PCT I 

4 FSR Code 

~ A 5. Determines if processor is to be 

terminated. 8 
See Diagram --··· 4.2 

I 
~ 
i e. 
I 

j 
s. 
! 



i • !':' 

f 
l 
e. 
f g. 
1:1 

w 
I 

5 

Extended Descrlpdon for Diagram 4.1 

IDCEXOI 

Procedure: MAIN 

I IDCEXO 1 compares the LASTCC code returned by the 
FSR or the R/I with MAXCC and puts the greater 
number in MAX CC. If control is from the R/I, MAXCC 
has already been properly set by IDCRIO 1. If entrance is 
from the R/I, processing continues with step 2; if entrance 
is from an FSR, processing continues with step 3. 

IDCEXOI 

Procedure: MAIN 

2 If MAXCC is less than 16 or an end-of-file has not been 
reached on SYSIPT, IDCEXOl gives control to an FSR. 
The R/I passes the FSR name to IDCEXOl. If MAXCC is 
areater than or equal to 16 or an end-of-file has been 
reached on SYSIPT, processing continues with step S. 

IDCEXOI 

Procedure: CALLFSR 

3 IDCEXO l releases storage for the FDT using a UFPOOL 
macro. The pool identification is EXOO, and the FDT is 
the only data in the pool. 

IDCEXOI 

Procedure: CALLFSR 

4 IDCEXO l sets the Print Control Table to Access Method 
Services default values by issuing a URESET macro 
instruction. 

IDCEXOI 

Procedure: MAIN 

5 The processor has terminated if one of the following 
conditions is met: 

• The R/I has detected end-of-file on SYSIPT. In this 
case, the R/I puts a nonzero value in Register IS. 

• An error has occurred so that processing cannot 
continue, and MAXCC contains a value greater than 
or equal to 16. 

If one of these conditions is met, control is given to 
Processor Termination, Diagram 4.2. If neither of the two 
conditions is met, control is given to the R/I, Diagram 2.0, 
to obtain the next command. 

r-r 
l 

I 
I 

f .. 
I 



to.) 

I 

i 

< 
~ 

~ 
~ 

> 
~ 

f 
I 
Sf 

&-
b 
~-

Diagram 4.2. Proce~or Termination 

INPUT 

MAX CC 

I I 
GOT 

f" GDITPH 

GDTDBH 

Debugging Aids 
Historical Data Area 

'PCT I PCT 2 

_f 

SYSIPT SYSLST 

DD 

From Diagram 4.1 

PROCESSING 

1. Writes maximum processor 
completion code. 

2. Terminates TEST options. 

J. Terminates Text Processor. 

4. Terminates 1/0 Adapter. D. 
See Diagram ~ 

S. Terminates System Adapter. 

OUTPUT 

Maximum Processor 

D 
GOT 

GDTPRM 

Invoker's 
Parameter List 

L::J 
Register 15 

I I I 
3: 

i 
!. 
I 

f 
s. 
! 



f .. 
!':> 

I 
e, 

i 
i· 
.... 
I 

~ 
Vii 

Extended Description for Diagram 4.2 
IDCEX03 

Procedure: IDCEX03 

1 IDCEX03 prints a message of the maximum processor 
condition code, MAXCC by using a UPRINT macro. 

IDCEX03 

Procedure: IDCEX03 

2 If TEST options were specified on a PARM command or 
on the EXEC statement that invoked Access Method 
Services, IDCPMOl has loaded the Debug Module, 
IDCDBOl. IDCEX03 sets GDTDBG, the address of the 
Debug Module, to zero after deleting the Debug Module 
by issuing the UDELETE macro. The address of the 
Debugging Aids Historical Data Area is in GDTDBH. 
IDCEX03 frees the debugging aids historical data area 
used by the UDUMP macro. It also sets GDTDBH to zero 
after the area is freed. 

IDCEX03 

Procedures: IDCEX03, SCANPARM 

3 IDCEX03 terminates the Text Processor by issuing a 
URESET macro. If the invoker of Access Method Services 
wants the last page number returned, IDCEX03 passes the 
address of the invoker's page number field to the 
URESET macro. 

IDCEX03 

Procedure: IDCEX03 

4 IDCEX03 terminates the 1/0 Adapter by issuing a 
UIOTERM macro. Diagram 4.2.1 shows 1/0 Adapter 
termination in detail. 

IDCSAOl 

Procedure: IDCSAO 1 

5 IDCSAO 1 terminates the System Adapter by freeing the 
storage for IDCSA02, IDCSA03, IDCTPO l, and 
IDCIOOl. The Storage Table, AUTOTBL, contains the 
storage addresses for IDCSA02, IDCTPOl, and IDCIOOl. 
The GDT contains the storage address for IDCSA03. 
IDCSAOl also frees the Inter-Module-Trace Table, the 
Intra-Module-Trace Table, the System Adapter Historical 
Data Area, and the GOT. When the System Adapter 
receives control, Register 15 contains MAXCC. IDCEXOl 
copied MAXCC into Register 15 for the Access Method 
Services invoker. Control returns to the invoker. 

I 
3: 

l 
I 

f 
s. 
; 
3: 



N 
I 

i 

~ 
~ a: 

r 
I 
I 
i 

Diagram 4.2. 1. 1/0 Adapter Termination - UIOTERM Macro 

INPUT 

Register I 

~fGDT : 

Open Data Set~ 

OU 
IODATA 

From Diagram 4.2 

PROCESSING 

1. Searches IOCSTR chain for 
open data sets. 

2. Tests for externally controlled 
data set. 

3. Closes data sets. 

• 
• 
• 

Processes error codes . 
Frees data set storage . 
Removes IOCSTR . 

4. Frees 1/0 Adapter storage. 

OUTPUT 

OCARRAY 

I J 
Closed Data Sets 

OU 
Register 15 [ --- I 

i 
I 
I 

j .. 
i 



j 
~ 

f 
[ 
e. 

f 
1· 
w 
I 

~ 

Extended Description for Diagram 4.2.1 
IDCIOOI 

Procedure: IDCIOOl 

1 IDCIOO 1 sets up a loop to close all open data sets, and sets 
the close all option in OCARRA Y that permits SYSIPT 
and SYSLST to be closed. 

IDC1002 

Procedure: CLOSERTN 

2 CLOSERTN examines the IOCSTR chain for the address 
oflOCSTRs to close. For a nonVSAM data set, 
CLOSERTN sets the address ofa SYNAD routine in the 
DCB to zero and puts the address of a CLOSE exit routine 
in the DCB. If the data set is not open, IOCFLGOP - 1, 
CLOSER TN determines if it is externally controlled. If so, 
CLOSER TN passes arguments to the external routine. 
This check is made for up to the first four IOCSTRs in the 
IOCSTR chain. Normally, only the SYSIPT and SYSLST 
IOCSTRs are in the chain at termination. 

IDCI002 

Procedure: CLOSERTN 

3 CLOSERTN issues a CLOSE macro with the address of 
up to four DCBs or ACBs. If an ABEND occurs during 
the closing of a non VSAM data set, the operating system 
close routine gives control to a CLOSE exit routine which 
sets a flag in IOCSTRN that will cause the 1/0 Adapter to 
print an error message. The message is written after 
control returns from the CLOSE SVC. Closing continues 
with the next data set. The following steps are performed 
for each data set: 

• For VSAM data sets, CLOSERTN issues a SHOWCB 
macro to return the ACB error code. If the ACB error 
code is not zero, BLDOCMSG writes a message. 
However, since SYSLST is the first data set closed, 
BLDOCMSG issues a UABORT macro. No test is 
made for non VSAM data sets. 

• For VSAM data sets, CLOSERTN checks the 
IOCSEX to see ifthere are any VSAM control blocks 
to free. When any length of the ACB, RPL, or EXLST 
is nonzero, ENVFREE issues a FREEMAIN macro to 
release the control block. For open nonVSAM data 
sets, ENVFREE issues a FREEVIS to free any buffers 
obtained by the operating system open routines. 

• CLOSERTN saves the address of the closed data set's 
IOCSTR and the address of the next IOCSTR in the 
chain. CLOSERTN issues a UFPOOL macro to free 

storage obtained for the closed data set. CLOSER TN 
searches the IOCSTR chain until the IOCSTR that 
points to the IOCSTR of the closed data set is found. 
CLOSER TN replaces the address of the closed data 
set's IOCSTR with the address of the next IOCSTR in 
the chain. 

IDCIOOI 

Procedure: IDCIOCL 

4 Processing returns to step 1 until all data sets have been 
closed. When all data sets are closed, the IOCSTR chain 
no longer exists. CLOSERTN issues a UFPOOL macro to 
free storage obtained by the I/0 Adapter. The only 
storage remaining to be freed is IODATA and the message 
area for VSAM data sets. IDCIOCL puts a return code in 
Register 15. Control then returns to the module that issued 
the UIOTERM macro. 

i 
I 
I 

l a 
s. 
i 



Lleeued Material - Property of IBM 

2-168 VSB/VSAM Aooe11 Method ServiOll Lop~ 



n r 
l 
~ 

I 
2, 

i 
1· 
..., 
I 

i 

System Adapter Visual Table of Contents 

5.1 

Error 
Handling 

5.2 

Processor 
Control 

5.3 

Catalog 
Management 
(No Diagram) (No Diagram) (No Diagram) 

5.1.1 

UCATLG 

J 5.2.1 ] 5.2.2 

UABORT USN AP 

5.3.1 5.3.2 

UCALL ULOAD 

5.4.1 

5.0 

System Adapter 
Overview 

5.4 

Storage 
Management 
(No Diagram) 

5.3.3 

UDE LE TE 

5.4.2 5.4.3 

UGSPACE UFSPACE UGPOOL 

Time of 
Day 

5.5 

(No Diagram) 

5.5.1 

UTIME 

5.6 ] 
Resource 
Control 

5.7 

Parameter 
Interrogation 
(No Diagram) (No Diagram) 

] 
J 5.7.1 l 5.7.2 

UENQ UDEQ 

J 5.6.1 ] 5.6.2 

ULISTLN USAVERC 

5.4.4 5.4.5 ] 5.4.6 

UFPOOL PRO LOG UEPIL 

i 
l 

I 
!. 
I 

J 
s. 
; 
~ 



llJ 

' :::; 
0 

~ rn 
"< rn 
> a: 

i 
I 
rn 

i· 
t"'" 
0 

~-

Diagram 5.0. System Adapter Overview 

INPUT 

From Module 
Issuing Umacro 

PROCESSING 

1. Issues macro to perform request: 

a. 

b. 

c. 

d. 

e. 

f. 

g. 

Catalog manageme~~--~ 
See Diagram-v 

Error handling. ~ 
See Diagrams----i..:..:.:y 

Processor control. -ffi>.3.1 
See Diagrams to 

5.3.3 

Storage management. 
See Diagrams:----t 

Time of day. ~ 
See Diagram [J' 

Parameter interrogation. 
See Diagram.s-----1 

Resource Control ~ 
See Diagrams~ 

2. Sets return code. 

OUTPUT 

Register 1 

System Macro 
Argument List 

Register 15 
C-- I 

I 
~ 

I 
I 

j 
2. -= ~ 



f 
~ 

~ 
l 
e. 

1 
N 
I 

:i -

Extended Description for Diagram 5.0 
IDCSAOI, IDCSA02, IDCSA03, IDCSAOS, IDCSA08 

Procedures: IDCSA01, IDCSA02, IDCSA03, IDCSA05, 
IDCSA08 

I The System Adapter and the 1/0 Adapter insulate the rest 
of the proc:essor from the operating system. Whenever the 
processor wants a service that requires an operating system 
dependent macro, like G ETVIS, the processor calls the 
System Adapter with a Umacro. Different versions of the 
System Adapter and 1/0 Adapter supply code for 
different operating systems. Except for the System 
Adapter and the 1/0 Adapter, the Access Method Services 
modules are oblivious to the operating system. System 
macros in the listings indicate the operating system the 
listing represents. 

Types of services provided by the System Adapter: 

a. Whenever information is to be added, deleted, or 
retrieved from the VSAM catalog, a UCATLG macro 
is issued. Although the VSAM CA TLG macro has the 
same parameters in OS/VS and VSE, the general code 
is different. The VSAM CATLG macro must be in a 
program that is assembled under the right operating 
system. Diagram 5.1.1 shows the UCA TLG macro in 
detail. 

b. Error handling is accomplished with UABORT and 
USN AP. For errors, when processing cannot continue, 
a UABORT is issued to print an error message and a 
dump and return control to the operating system. If the 
error condition is due to no space available, only an 
error message is printed; no dump is printed. For 
debugging information, a USNAP is issued to print the 
partition and return control to the Access Method 
Services module that issued the USNAP. Diagrams 
5.2.1 and 5.2.2 show the UABORT and USNAP 
macros in detail. 

c. Inter-processor module control is accomplished with 
UCALL and ULOAD. UCALL loads a module and 
gives control to it. It is used to transfer control from 
one module to another within Access Method Services. 
ULOAD just loads a module. It is mainly used for 
non-executable modules like static text structures. 
UDELETE does not take any action in DOS. 
Diagrams 5.3.1 through 5.3.3 show the UCALL, 
ULOAD, and UDELETE macros in detail. 

d. Storage management is performed with three types of 
macros: 

1. UOSPACE and UFSPACE, shown in Diagrams 
5.4.1 and 5.4.2. 

2. UGPOOL and UFPOOL, shown in Diagrams 5.4.3 
and 5.4.4. 

3. PRO LOG and UEPIL, shown in Diagrams 5.4.5 
and 5.4.6. 

The first type is used to obtain large amounts of 
storage. The caller must remember the address of the 
storage, and must issue a UFSPACE to release the 
storage. 

The second type is used for small amounts of storage. 
The caller does not need to remember the address of 
each pieee because all the pieces can be released with 
one UFPOOL at the end of the program. 

The third type is used to bypass PL/S-generated 
G ETMAIN and FREEMAIN macros. In a re-entrant 
enviroment, PL/S generates a GETMAIN macro for 
all data areas defined in the program, but a 
GETMAIN doesn't work on DOS. Each Access 
Method Services routine includes code at the beginning 
of the routine to replace the GETMAIN. This is the 
PRO LOG code. Control is transferred to the System 
Adapter that issues the appropriate operating system 
macro to obtain storage. Instead of issuing a PL/S 
return statement, that uses FREEMAIN, all routines 
issue a UEPIL macro. The UEPIL macro gives control 
to the System Adapter. The System Adapter frees 
storage and gives control to the routine that called the 
routine that issued the UEPIL. The PL/S-generated 
code to free storage and to return control is never 
executed. 

e. The time of day is obtained with a UTIME macro, 
shown in Diagram 5.5.1. Several data formats for the 
time and date are allowed. 

f. Parameter interrogation is performed by the ULISTLN 
and the USA VERC macros, shown in Diagrams 5.6.1 
and 5.6.2. 

g. Control of a resource is achieved with a UENQ macro. 
The resource may be released with a UDEQ macro. 
See Diagrams 5.7.1 and 5.7.2. 

2 At the end of most Umacros, a return code is put in 
register 15, and control returns to the module that issued 
the Umacro. The exceptions are UABORT, UCALL, and 
UEPIL. 

I 
I 
!. 
I 

f 
a. 
; 
3: 



..., 
I 
:::; ..., 

< 
rlJ 

~ 
I: 

I 
~ 
[ 
r 
I· 
b 
~-

Diagram 5.1.1. UCATLG Macro 

INPUT 

Register I 

t GDT 

Catalog 
Parameter List 

VSAM 
Catalog 

From Diagram 5.0 

PROCESSING 

1. Issues CA TLG macro instruction. 

2. Returns. 

OUTPUT 

VSAM 
Catalog 

Register 15 

I I 

( 
f 
I 
I. 
I 

i 
e. 
I 



I .. 
t! 

I 
2, 

I 
8 

N 
I 

::i w 

Extended Description for Diagram 5.1.1 

IDCSA02 

Procedure: IDCSA02 

1 IDCSA02 passes the catalog parameter list to VSAM with 
a CATLG macro. 

IDCSA02 

Procedure: IDCSA02 

2 IDCSA02 puts the return code from VSAM in register 15 
and returns control to the module that issued the 
UCATLG macro. 

i 
~ 

I 
I 

J 
s. 
I 



N Diagram S.2.1. UABORT Macro I 

~ 

~ INPUT 
Ill 

< ... Register 15 

~ I ----. I 

I Register 14 

t UABORT 
~ Entry Point I I 
l Register 13 

i rirmT I I 

i I I 1GDTABH 

GDTIOH 

I 

~ 

I I 

I I 

a From Diagram S.O 

PROCESSING 

1. Establishes addressability. 

2. Prints message. 

J. Prints full partition dump. 

4. Closes all open data sets. 

S. Returns to invoker of Access Method 
Services. 

OUTPUT 

Message 

D 
Full Partition 
Dump 

D 
Register 15 

I 16 I 

( 
I 
I 

f 
I. 

I 



f s ... 
!':> 

I 
2, 

f 
1· 
..., 
I 
:::; 
Vl 

Extended Description for Diagram 5.2.1 

IDCSAOI 

Procedure: IDCSAO 1 

1 The UABORT routine uses the registers saved in the save 
area pointed to by GDTABH to establish addressability. 
This is done so the UABORT routine can access storage 
areas obtained by the System Adapter and remain 
reentrant. 

IDCSAOI 

Procedure: IDCSAO l 

2 UABORT issues an EXCP to write a message to the 
programmer. 

IDCSAOI 

Procedure: IDCSAO l 

3 The UABORT routine issues the PDUMP macro and 
takes a full partition dump unless the UABORT code 
indicates a no-space-available condition, in which case no 
dump is issued. The partition beginning and ending 
addresses for the PDUMP are obtained by issuing the 
EXTRACT macro. The UABORT code is in register 15 in 
the dump. 

If register 15 is negative, it is complemented and no 
PDUMP is done. The CANCEL Access Method Services 
Command requires this interface. 

I DC SAO I 

Procedure: IDCSAO l 

4 G DTIOH provides the address of the IODA TA. The 
address of the IOCSTR chain is IODIOC. The UABORT 
routine goes through the chain of IOCSTRs and tests each 
one to'determine if it is open. The DTF, for nonVSAM 
data sets, or the ACB, for VSAM data sets, is checked to 
determine if the data set is open·or closed. If the data set is 
open, IDCSAOl issues a CLOSE macro to close the data 
set. The processing continues until the end of the chain is 
reached. 

IDCSAOl 

Procedure: IDCSAO 1 

S If Access Method Services was invoked through job 
control, IDCSAOl issues a CANCEL macro to cancel the 
job. If Access Method Services was invoked through a 
subroutine call, IDCSAOl returns control to the invoker 

with a code of 16 in register 15 to indicate that a 
catastrophic error has occurred. I 

3: • ;-
[ 
I 

f 
s. 
i 



N 
I 
::; 
~ 

< 
(IJ 

~ 
I 
I 
I 
t"" 

l n 

Diagram 5.2.2 USNAP Macro 

INPUT 

Register I 

GOT 

Identification 

From Diagram 5.0 

PROCESSING 

1. Issues PDUMP macro instruction. 

2. Returns. 

OUTPUT 

Full Partition Dump 

Identification 

I 
I 
I 

I 
s. 
;; 
J: 



f 
~ 

I 
a, 

i ;: 
1· 
N 
I 

=::; 
...a 

Extended Description for Diagram S.2.2 
IDCSA02 

Procedure: IDCSA02 

1 IDCSA02 issues an EXTRACT macro to determine the 
partition beginning and ending addresses for PD UMP. 
IDCSAOl then issues a PDUMP macro for a full partition 
dump. 

IDCSA02 

Procedure: IDCSA02 

2 IDCSA02 returns control to the module that issued the 
USNAP macro. 

I 
i 

i 
!. 
I 

J 
s. 
i 



N 
I 

=::i 
00 

~ 
~ 
fl) 

~ 

r 
I 
re 
I· 
i n 

Diagram 5.3.1. UCALL Macro 

INPUT 

Register I 

GOT 

Addresses of data to be 

From Diagram 5.0 

PROCESSING 

1. Issues CDLOAD macro. 

2. Frees storage. 

3. Rearranges arguments in calling 
module. 

4. Gives control to loaded module. 

OUTPUT 

Loaded Module 

GOT .. . . . I 

~ 

l 
3: 
! 
:L 
!!. 
I 
~ 

! 
s. 
;; 
3: 



f 
~ 

I 
2. 

1 :::. 
8 

...., 
I -~ 
'° 

Extended Description for Diagram 5.3.1 
IDCSA02 

Procedure: AMSSACL 

I IDCSA02 loads the program named by the UCALL macro 
with a COLOAD macro. 

IDCSA02 

Procedure: AMSSACL 

2 IDCSA02 checks the A UTOTBL for the number of 
outstanding storage requests for IOCSA02. The number is 
in the STATUS section for IDCSA02. If the number is 
greater than one, storage other than the storage addressed 
in the AUTOBL has been obtained for IDCSA02. The 
amount of storage is in the PL/S generated variable 
@SIZDATD and the address is in register 11. IDCSA02 
issues a FREE VIS and the number in ST A TUS is 
decreased by one. If the number in ST A TUS is one, a 
FREEVIS is not issued because the storage is saved for the 
next time IDCSA02 is given control. The status is reduced 
by one. 

IDCSA02 

Procedure: AMSSACL 

3 IOCSA02 copies the address of the GOT from the first 
parameter in the calling program to the second parameter 
in the calling program. IOCSA02 puts the address of the 
second parameter in the calling program, now the address 
of the GOT, in register I. Register one now points to a 
contiguous list of parameters for the called program. 

IDCSA02 

Procedure: AMSSACL 

4 IOCSA02 puts the address of the called program into 
register 15. IDCSA02 restores all registers, except I and 15, 
from the calling program's save area and gives control to 
the called program. 

I 
i: 

l 
I 

i 
s. 
; 
i: 



N 
I 

g 

< UJ 

i 
I 
~ 
[ 

I 
i n 

Diagram 5.3.2. ULOAD Macro 

INPUT 

t GDT 

Address of 
Fullword 

Name of 
Module to Load 

from Diagram 5.0 

PROCESSING 

1. Issues CDLOAD macro. 

2. Puts loaded program address in 
parameter list. 

3. Returns. 

OUTPUT 

Loaded Module 

Register I 

{ I 
tGDT 

Address of 
Loaded Module 

Name of 
Module to Load 

I 
I 
I 

I ._ 
i 



i 
i 
~ 

s: 
i 
2, 

f g-
ss 

~ 
I -~ 

Extended Description for Diagram 5.3.2 
IDCSA02 

Procedure: AMSSALD 

I IDCSA02 issues a CD LOAD macro using the name of the 
program given to the ULOAD macro. 

If the phase is not found, a UABORT is issued unless the 
caller has requested return of control. 

If the anchor table (created by CDLOAD for all models 
loaded into this partition) is full: 

• The phase table in IDCSA04 is searched for this phase 
name. 

• If the phase name is not found, UABORT(52) is 
issued. 

• If the phase is found and if the phase is already loaded, 
the normal exit is taken to the caller of ULOAD. 

• If the phase is not already loaded, a G ETVIS is issued 
for the amount of storage indicated in the phase table 
for this phase. A GETVIS failure is an ABORT 
condition. 

• The phase is loaded into the GETVIS area and an exit 
is taken to the caller. 

IDCSA02 

Procedure: AMSSALD 

2 IDCSA02 puts the address of the loaded program in the 
calling program at the address specified with the third 
parameter. 

IDCSA02 

Procedure: AMSSALD 

3 IDCSA02 returns control to the module that issued the 
ULOAD macro. 

i 
f ;-
[ 
I 

f 
s. 
i 



N 
I 

ii Diagram 5.3.3. UDELETE Macro 

< 
fl) 

~ 
~ 
i 
I 
ff 

i· 
b 
~-

INPUT 

Register I 

T 
• GOT I 

Name of 
Module to Delete 

horn Diagram 5.0 

PROCESSING OUTPUT 

1. Deletes module. 

2. Returns. 

I 
3: 

i 
I 

f 
s. 
i 



I 
~ 

~ 
[ 
2, 

1 
1· 
N 
I 

s 

Extended Description for Diagram S.3.3 

IDCSA02 

Procedure: IDCSA02 

IDCSA02 does not delete the module but lets the system 
paging mechanism delete the module when necessary. 

IDCSA02 

Procedure: IDCSA02 

2 IDCSA02 returns control to the module that issued the 
UDELETE macro. 

r 
l 
3: 

i 
!. 
I 

f 
s. 
I 



N 
I 

: 
< rn 

~ 
~ 

f 
I 
If 

I· 
i. n 

Diagram S.4.1. UGSPACE Macro 

INPUT 

Register I 

Address of Fullword 

Storage Initialization 
Indicator 

Bytes Needed 

From Diagram 5.0 

PROCESSING 

1. Obtains storage. 

2. Sets up UGSPACE area. 

3. Puts address in calling program. 

4. Initializes area, if necessary. 

5. Returns. 

OUTPUT 

UGSPACE Area 

Number of Bytes + 8 

b 
......._ t Storage T 

Register 1 

GOT 

Storage Initialization 
Indicator 

Storage Address 

Bytes Needed 

Register 15 

i=-- J 

I 
3: 

i 
I 

f 
a. -m 
3: 



f 
i 
!'! 

I 
2. 
i 
I· 
1::1 

N 
I -00 

"' 

Extended Descripdon for Diagram 5.4.1 
IDCSA02 

Procedure: IDCSA02 

I IDCSA02 issues a G ETVIS for the number of bytes 
requested plus 8 for the UGSPACE area that proceeds 
each storage area. If the return code from the G ETVIS is 
nonzero, the address of the storage area is set to zero and 
control is given to step S. lfthe return code is zero, control 
is given to step 2. 

IDCSA02 

Procedure: IDCSA02 

2 1DCSA02 puts the number of bytes in the storage area 
plus 8 in the first word of the UGSPACE area. IDCSA02 
sets the second word blank to distinguish a UGSPACE 
area from a UGPOOL area. 

IDCSA02 

Procedure: 1DCSA02 

3 1DCSA02 puts the address of the storage area, not the 
UGSPACE area, in the calling program at the address 
specified by the third parameter. 

IDCSA02 

Proceare: IDCSA02 

4 If SETZERO or SETBLANK was specified as the fourth 
parameter, IDCSA02 sets the storage area to zeros or 
blanks, respectively. If SETZERO or SETBLANK was 
not specified. the storage area is not changed. 

IDCSA02 

Procedure: IDCSA02 

5 1DCSA02 puts a return code in register 15 and returns 
control to the module that issued the UGSPACE macro. 

I 
I 
I 

f 
s. 
i 



N 
Diagram 5.4.2. UFSPACE Macro I 

; 
°' 
< INPUT Ill 
tll 

,-Reg;"" I 
< Ill 
> -
~ 

I ~I GOT : 
I i I 

I I 

fr Address of Storage to Free i 

I· 
UGSPACE or UGPOOL Area I r-

0 

1 
Stornge to Free + I 'R· 

l_ 

& Frnm Dfag'"m 5.0 

PROCESSING 

1. Checks for UGSPACE or UGPOOL 
area. If UGSPACE, continues to Step 
2: if UGPOOL, goes to Step 3. 

2. Calculates address. 

I 
3. Calculates address and removes area 

from chain. 

I 
4. Frees storage. 

5. Returns. 

L __ 

OUTPUT 

I 
~ • 8' 
i 
I 

l a 
s. -all 
3: 



f 
!':' 

f 
l 
e. 
i 
i 
8 

N 
I -~ 

Extended Description for Diagram 5.4.2 
IDCSA02 

Procedure: IDCSA02 

1 The address of the area to free is used by IDCSA02 to 
determine if the area was obtained with a UGSPACE or a 
UGPOOL. If the fullword at the address minus 4 contains 
blanks. the area was obtained with a UGSPACE. 

IDCSA02 

Procedure: IDCSA02 

2 If the storage area was obtained with UGSPACE. a 
UGSPACE area preceeds the area. The length of the area 
to free is at the tint word in the UGSPACE area. The 
address of the area to free is calculated by subtracting 8 
from the area address. 

IDCSA02 

Procedure: IDCSA02 

3 If the storage area was obtained with a UGPOOL, a 
UGPOOL area preceeds the storage. The length of the 
area to free is at the third word of the UGPOOL area. The 
address of the area to free is calculated by subtracting 16 
from the area address. The forward and backward chains 
are updated to remove this area from the chain. If this is 
the last area in the chain, the address of the last area in the 
chain in GPLAST in the System Adapter Historical Data 
area is updated by IDCSA02. 

IDCSA02 

Procedure: IDCSA02 

4 A FREEVIS macro is issued to release the storage plus its 
UGSPACE or UGPOOL area. 

IDCSA02 

Procedure: IDCSA02 

5 IDCSA02 returns control to the module that issued the 
UFSPACE macro. 

I 
f ;r 
i: 
I 

I 
I. 

I 



.., 
I 
;; 
OD 

§ 
~ 
i 
s: a. 
l 

I 
i 

Diagram 5.4.3. UGPOOL Macro 

INPUT 
Register I 

t GDT 

Address of 
Fullword 

Initialization 
Indicator 

I 
From Diagram 5 .0 

_ PROCESSING 

1. Obtains storage. 

2. Sets up UGPOOL area. 

3. Puts address of storage in calling 
program. 

4. Initializes area, if necessary. 

5. Returns. 

OUTPUT 

U< ;POOL Arca 
UGPOOL Area I 2K Pa)!c houndary 1 

t Next Area 

t Last Area 

Number of Bytes+ 16 

Identification 

h Storal!e T Arca r 
Register I 

tGDT 

lnitializa tion 
Indicator 

Address of 
Storage 

Bytes Needed 

Register 15 

I --==i 

tNcxt Arca 

tLast Arca 

24 

Identification 

1 Addr. of storage 

Length of storage 

Storage area 
on 2K page 
boundary 

T J 

I 
I 
I 

j 
s. 
;; 
~ 



E 
! 
~ 

~ 
[ 
0 ..., 
~ 
i· 
..., 
I 

i 

Extended Description for Diagram 5.4.3 

IDCSA01 

Procedure: IDCSA02 

I lfthe UGPOOL storage identification specifies 'PG' as the 
third and fourth characters, IDCSA02 issues a GETVIS 
for the number of bytes requested starting on a 2K page 
boundary. The address and length is saved. A second 
GETVIS is issued by IDCSA02 for a 24-byte area. The 
address and length of the first area obtained are placed in 
the fifth and sixth words of the 24-byte area. Otherwise, a 
GETVIS is issued for the number of bytes requested plus 
16 for the UGPOOL area. If the return code from the 
GETVIS is nonzero, the storage address in the calling 
program is set to zero and control is given to step 5, unless 
the GETVIS was for a 24-byte 'xxPG' storage area, in 
which case the space obtained on a 2K page boundary 
must be freed. A FREEVIS macro is issued to free the 
space and then the storage address in the calling program 
is set to zero and control is given to step 5. If the return 
code from the G ETVIS is zero, control is given to step 2. 

IDCSA01 

Procedure: IDCSA02 

1 The new storage area is chained to the other storage areas 
obtained with UGPOOL. The head of the chain is in 
G PFIRST and the tail is in G PLAST in the System 
Adapter Historical Data Area. The new storage area is 
chained by IDCSA02 to the tail of the list. IDCSA02 sets 
the forward chain pointer to zero. The backward chain 
pointer contains the address of the next to last area. The 
number of bytes in the storage area is the number of bytes 
requested plus 16 for the UGPOOL area. The 
identification from the calling module is put in the fourth 
word of the UGPOOL area. GPLAST is set to the address 
of the new storage area. The 24-byte area obtained for a 
'xx PG' storage area is treated in the same manner as all 
other UGPOOL areas and chained into the UGPOOL 
storage area chain. The number of bytes is 24. 

IDCSA01 

Procedure: IDCSA02 

3 IDCSA02 puts the address of the storage area, not the 
UGPOOL area, in the calling program at the address 
specified by the third parameter . 

IDCSA01 

Procedure: IDCSA02 

4 If SETZERO or SETBLANK was specified as the fifth 
parameter, IDCSA02 sets the storage area to zeros or 
blanks, respectively. If neither SETZERO or SETBLANK 
is specified, the storage is not changed. 

IDCSA02 

Procedure: IDCSA02 

5 IDCSA02 puts a return code in register 15 and returns 
control to the module that issued the UGPOOL macro. 

I 
3: 
! 
[ 
I 

l a 
s. 
; 
3: 



N 
I 

i 

; 
f 
I 
It 

f 
i 

Diagram S.4.4. UFPOOL Macro 

INPUT 

Register l 

GDT 

(optional) 

ALL 

.From Diagram 5.0 

~ PROCESSING 

I. Finds areas to free. ~ 
2. Removes matching areas from chain 

and frees storage. 

3. Returns to Step 2 until end of list. I 
I 

4. Returns. 
I 

OUTPUT 

I 
3: 

I 
I 

f 
8. 
; 
3: 



i 
~ 

i 
0 ..., 
0 

l· 
...., 
I 

§ 

Extended Description for Diagram S.4.4 

IDCSA02 

Procedure: IDCSA02 

IDCSA02 examines the list ofUGPOOL areas addressed 
from GPFIRST to find a match between the storage 
identifier supplied by the calling program and the 
identifier in the UGPOOL area. lfthe calling program 
specifies ALL as the third parameter, just the first two 
bytes of the identifiers are compared so that every storage 
area that matches is freed. If ALL is not specified, 
1DCSA02 compares four bytes of the identifiers to find the 
storage areas to be released. 

IDCSA02 

Procedure: IDCSA02 

2 If a match is found, IDCSA02 removes the UG POOL area 
from the chain and releases the UGPOOL area with its 
storage area with a FREEVIS macro. If the storage 
identification is 'xxPG ', the address and length of the area 
to be freed is in the fifth and sixth words of the area in the 
UGPOOL storage chain. IDCSA02 issues a FREEVIS for 
this area. The 24-byte area in the UGPOOL chain is then 
freed in the normal manner. 

IDCSA02 

Procedure: IDCSA02 

3 If the end of the chain has not been reached, IDCSA02 
compares the next UGPOOL area. The entire list is 
searched for matching identifiers regardless of whether 
ALL is specified or not. IDCSA02 returns control to step 2 
until the end of the chain is reached. 

IDCSA02 

Procedure: IDCSA02 

4 IDCSA02 returns control to the module that issued the 
UFPOOL macro. 

~ 
fD 

l 
3: 

i 
!. 
I 

I 
s. 
; 
3: 



w 
I 

~ 

< fll 

~ 
fll 

~ 

i 
I 
ff 

I· 
t" 
0 

~-

Diagram 5.4.5 PROLOG Macro 

INPUT 

Reg.i'>tcr 

(11,SIZDATD 

Byte., Needed 
for Data Arca'.> 

in Previous Module 

AUTOTBL 

From Diagram 5 .0 

PROCESSING 

1. Gets address of GDT. 

2. Gets address of storage for 
PROLOG. 

J. Saves registers in work area. 

4. Checks module identification m 
AUTOTBL. 

a. If a match is not found, goes 
to Step 5. 

b. If a match is found, tests 
count in AUTOTBL: if count is 
I, goes to Step 5; if count is 
0, goes to Step 6. 

5. Obtains storage. 

6. Updates Inter-Module Trace 
Table. 

7. Returns. 

System Adapter 
Work Arca 

D 

()llTPllT 

Numhcr of 
Bytes 

Module 
Identification 

:ntcr-Module 
Trace Tahle 

Previous Module's 
Work Arca 

Module As 
Identification 

I 
~ 

I 
I 

I 
s. 
! 



I 
!'-:» 

I 
0 ..., 

i 
g-· 

N 
I 

~ 
w 

Extended Description for Diagram S.4.S 

IDCSA03 

Procedure: IDCSA03 

The address of the G DT is the first parameter in the call to 
every Access Method Services module except the call to 
PROLOG. As an example, let's assume module A gives 
control to module 8. The first thing module B does is store 
registers in the save area in module A. The second thing 
module B does is obtain storage for the data in module 8. 
PL/S generates a GET MAIN macro instruction to obtain 
the storage. But GETMAIN doesn•t work on DOS. A call 
to the PROLOG routine is substituted for the GETMAIN 
when module 8 is compiled on VS. So, instead of doing a 
GETMAIN, module B calls PROLOG to get storage for 
module B's data areas. At the time module B gets control, 
register 1 contains the address of a parameter list. By 
convention within Access Method Services, the first 
parameter in the parameter list is always the address of the 
GOT. When PROLOG gets control, register 13 contains 
the address of the save area in module A.1DCSA03 uses 
this address to get the address of the GOT. 

IDCSA03 

Procedure: IDCSA03 

2 The address of the storage area PROLOG uses for its data 
areas is in GDTSPR.1DCSA03 uses this address to 
establish addressability to the data areas in PROLOG. 

IDCSA03 

Procedure: IDCSA03 

3 Module B's registers are saved in PROLOG because 
module B doesn't have a save area yet. IDCSA03 chains 
together the save area in module A and the save area used 
for module B's registers in PROLOG. 

IDCSA03 

Procedure: IDCSA03 

4 IDCSA03 compares the module identifications in 
AUTOTBL with the 4 character module identification 
module 8 passes as the first parameter to PRO LOG. If 
10CSA03 does not find a match, control goes to step 5. If 
a match is found, and module Bis IDCSA02, IDCIOOl, or 
lDCTPOl, lDCSAOl may have already obtained storage 
for it. A UTOTBL contains the address of storage already 
obtained for IDCSA02, IDCTPO l, and IDCIOO 1. 
IOCSA03 examines the number of times module B has 
been called. If the number is zero, module B is not using 

the storage whose address is in AUTOTBL. IOCSA03 
does not do a GETVIS and IDCSA03 gives to module B 
the storage from AUTOTBL for module B's data areas. 
IDCSA03 adds one to the number of times the module is 
called. If the count is greater than zero, the storage in 
AUTOTBL is already in use so 10CSA03 must do a 
GETVIS. One is added to the number of times the module 
is called. 

IDCSA03 

Procedure: IDCSA03 

5 If module B did not get storage from AUTOTBL, 
IDCSA03 issues a GETVIS. for the number of bytes 
needed. PL/S-2 always puts the number of bytes in a 
constant called @SlZDA TD which is the second 
parameter to PROLOG.1DCSA03 issues a GETVIS for 
the number of bytes in @SIZOATD plus 8 for header 
information. If the return code from GETVIS is nonzero, 
IDCSA03 issues a UABORT macro. IDCSA03 puts the 
total length of the storage area in the first word of the 
header. IDCSA03 puts Module B's identification from 
MOO IO in the second word of the header. 

IDCSA03 

Procedure: IDCSA03 

6 IDCSA03 adds module B's identification from MO DID to 
the end of the Inter-Module-Trace table. The first, oldest 
entry in the table is removed. 

IDCSA03 

Procedure: 1DCSA03 

7 IOCSA03 puts module B's module identification in the 
first word of module A's save area. IOCSA03 restores the 
registers, with the exception of register one, from the work 
area in PRO LOG to be as they were when module B gave 
control to PROLOG. Register one contains the address of 
the storage module B uses for its data area. IOCSA03 
returns control to module 8. 

f 
3: 

i e. 
I 

j 
s. 
; 
3: 



r Diagram 5.4.6. UEPIL Macro 
"' ... 

~ 

~ 
> 
~ 

i 
~ 

t 
g1 
3. a 
~ ce. n 

INPUT 

Register I 

GOT 

Register 13 

Storage Arca L: ~ =r 

AUTOTBL 

From Diagram 5.0 

PROCESSING 

I. Obtains storage. 

2. Checks AUTOTBL for module 
identification. 

3. Frees storage area. 

4. Updates Inter-Module Trace Table. 

5. Returns. 

OUTPUT 

Inter-Mod uh: 
Trace Tahh: 

Moduli.: Identification 

Rcgi~tcr I) 

I J 

I 
~ • 
I 
I 

I 
s. 
i 



f 
~ 

I 
2, 

I 
N 
I 

:0 
VI 

Extended Description for Diagram 5.4.6 

IDCSA03 

Procedure: IDCSA03 

I Let's assume module A gives control to module B. Module 
B completes its processing and is ready to return control to 
module A. When module B is compiled on VS, PL/S 
generates a FREEMAIN for exit code. Rather than having 
one version of all modules for VS and another for DOS, 
each module - with a very few exceptions - issues a UEPIL 
macro to return control. See the chapter "Diagnostic Aids" 
for an illustration of save areas. The UEPIL bypasses the 
PL/S generated FREEMAIN and allows the same module 
to operate on more than one operating system. When 
module B is ready to return control to module A, module 
B issues a UEPIL. UEPIL gets the address of the storage it 
is to use for data areas from GDTSPR. IDCSA03 saves the 
address of module B's storage area which is in register 13. 
IDCSA03 saves the address of module A's save area, 
which is obtained from module B's save area, and 
IDCSA03 sets the forward chain in module A's save area 
to zero. 

IDCSA03 

2 IDCSA03 compares module B's module identification 
against the module identifications in A UTOTBL. If a 
match is not found, control is given to step 3. If IDCSA03 
finds a match, the number of times the module has been 
called is compared to one. If the number is one, IDCSA03 
will not issue a FREEVIS but reduces, by one, the number 
of times the module has been called. If the number is 
greater than one, 1DCSA03 has acquired storage other 
than storage from the AUTOTBL and this storage must be 
released. IDCSA03 subtracts one from the number of 
times the module has been called. 

IDCSA03 

Procedure: IDCSA03 

3 IDCSA03 subtracts eight from the address of module B's 
storage area to get the address of the header information. 
1DCSA03 issues a FREEVlS with the length of the storage 
area as specified in the first word of the header. 

IDCSA03 

Procedure: IDCSA03 

4 IDCSA03 puts the address of module A's save area in 
register 13. IDCSA03 removes the oldest module 
identification entry in the Inter-Module-Trace table. 
1DCSA03 adds module A's module identification to the 

end of the Inter-Module-Trace table. 1DCSA03 obtains 
module A's module identification from the first word of 
the save area where module A saved registers when it was 
given control. 

IDCSA03 

Procedure: IDCSA03 

S IDCSA03 restores all registers, except register 15, from 
module A's save area. Register 15 contains the return code 
from module B, if module B provides it, or zero. 1DCSA03 
returns control to module A. 

i 
~ 

i 
!. 
I 

f 
s. 
; 
~ 



~ Diagram 5.5.1. UTIME Macro 
~ 
°' 

~ 

~ 
> 
~ 

i 
I 
r 
b 
~-

I 
INPUT 

tGDT 

(optional) 

(optional) 

Data Format Indicator 

Date 
Variable 

Time 
Variable 

• From Diagram 5.0 

... PROCESSING 

1. Does initialization. 

2. Checks data format indicator. 

3. Issues TIME macro. 

4. Adjusts days per month. 

5. Formats time and date, if specified. 

6. Returns. 

OUTPUT 

Register I E-- I 
tcor 

Date 

Time 

I 
I 
!. 
I 

J 
8-

! 



f ... 
~ 

I 
0 ..., 

f. 
N 
I 

::0 
-:I 

Extended Description for Diagram S.S. I 

IDCSA02 

Procedure: IDCSA02 

IDCSA02 calculates the number of arguments passed to 
UTIME. IDCSA02 passes the input parameter list and a 
variable containing the number of arguments to 
IDCSA05. 

IDCSAOS 

Procedure: IDSCA05 

2 If the caller incorrectly specifies the data format indicator, 
IDCSA05 issues a UABORT macro. 

IDCSAOS 

Procedure: IDSCA05 

3 If the caller specifies FORMAT, 1DCSA05 specifies a 
GETTIME macro. If CLOCK is specified, IDCSA05 
issues a STCK instruction. If the caller does not indicate 
the data format, ll)Ce.".~~ :::::.:::::. C0~.!~t.:: ~~~r~. 

IDCSAOS 

Procedure: IDCSAOS 

4 IDCSAOS adjusts the number-of-days-per-month table for 
leap years. If the year returned by the GETTIME macro is 
divisible by four, IDCSAOS sets the number of days in 
February to 29. 

IDCSAOS 

Procedure: IDCSA05 

S If the caller specifies FORMAT, IDCSAOS formats the 
time as HH:MM:SS, where HH is hours, MM is minutes, 
and SS is seconds. The data is in decimal digits. If the date 
was requested and format specified, IDCSAOS formats the 
date as MM/DD/YY, where MM is the month, DD is the 
day, and YY is the year. The data is in decimal digits. 

If CLOCK is specified, IDCSAOS returns the time from 
the time-of-day clock in microseconds. If the date is 
requested and no data format is indicated, or CLOCK is 
specified, IDCSA05 returns the date in packed-decimal 
format, OOYYDDDF, where YY is the year, DOD is the 
day, and F is the sign digit. 

IDCSAOS. IDCSA02 

Procedure: IDCSAOS, IDCSA02 

6 I DC SA OS moves the time and date to the calling program 
at the addresses specified by parameters two and three. 
IDCSAOS returns control to IDCSA02, which returns 
control to the module that issued the UTIME macro. 

I 
i: • i 
!. 
I 

J 
s. 
;; 
i: 



...., 
I 

~ 
00 

~ 

~ 
> 
~ 

I 
~ 

i 
I 
~ 
~-

Diagram 5.6.1. ULISTLN Macro 

INPUT 

Register I 

Argument List 

L T 

From Diagram 5.0 

PROCESSING OUTPUT 

1. Determines number of arguments. LISTPTR 

L T 
LISTLN 

f Nu~ber of Arguments 

I 
I 
I 

I 
s. 
;; 
~ 



f 
~ 

I 
2. 

i ;: 
::. 
8 

N 
I 

~ 

Extended Description for Diagram 5.6.1 
Unlike most Umacros ULISTLN generates in-line code 
that performs the function rather than a Branch to another 
module. The code stores the address of the parameter list 
in register 1 in a fullword named LISTPTR. The code 
seaches the argument list looking for the end of the list. 
The last argument in the list has a high order bit of one. 
The number of arguments in the list is put in a byte named 
LISTLN. If the end of the argument list is not found after 
255 arguments, the search stops and LISTLN contains 
255. Control continues with the next instruction in the 
program. 



~ Diagram 5.6.2. USAVERC Macro 

8 

~ 

i 
~ 

f 
I 
I 
b 
~-

INPUT 

Register 15 

[ I 

From Diagram 5.0 

PROCESSING OUTPUT 

1. Copies contents of Register 15. 
TEST RC 

I I 

t: 

l 
a: 
i 
!!. 
I 

f 
s. 
! 



j 
~ 

I 
2, 

i 
1· 
N 
I 

~ 

Extended Description for Diagram 5.6.2 
Unlike most Umacros USA VERC generates in-line code 
that performs the function rather than generating a Branch 
to another module. The code copies the contents of register 
IS which must be named RTNREG to a halfword named 
TESTRC. Control continues with the next instruction in 
the program. 

i 
I 
I 

f 
s. 
! 



~ I Diagram 5.7.1. UENQ Macro 
N s 

< 
{ll 

ttl 

~ 
> 
~ 

§ 
~ 

I 
{ll 
ft 

~-
r-' 
0 

~-

INPUT 

t GDT 

INT or 

EXT or 

VOL 

VO LID 

Resource-Name 

SHR or EXCL 

From Diagram 5.0 

PROCESSING 

1. Generate a DTL for the input 
parameters. 

2. Lock the resource. 

3. Analyze the return code. 

4. Return the address of the DTL for 
subsequent UDEQ request. 

OUTPUT 

DTL 

D 
B 
~ 

I 
I 
a: 
~ 
!!. 
I 

f 
s. 
;; 
a:' 



I 
~ 

f 
8. 

i 
§• 

N 
I s 

Extended Descrlpdon for Diagram 5. 7.1 
IDCSAOB 

Procedure: IDCSA08 

1 A parameter list is built for the IKQDTL macro using the 
input parameters. 

CONTROL is set to .. E .. (executive) or to ''S" (shared). 

SCOPE is set to "INT", "SHR", or X'OO'. The value 
X'OO' is used ifVOLID is present. 

VOLIDPTR is set to the address of a 6-byte volid or to 6 
bytes of X'OO'. The 6-bytes of X'OO' are used 
ifthe SCOPE parameter is present. If this 
parameter is used, the supervisor determines 
if the scope is internal or external by the 
device address on which the volume is 
mounted. 

GETVIS is specified as yes so that storage will be 
obtained for the DTL. (Must be freed by 
IKQUNLK). 

If an error occurs. an out-of-storage message is issued 
(UV0-4) and control is returned to the calling routine with 
a value of 16 in register IS. 

IDCSAOB 

Procedure: IDCSA08 

l The IKQLOCK macro is issued using the DTL from step 
1. RETOPT is set to "W AITC" or "RETURN". 

IDCSAOI 

Procedure: IDCSA08 

3 The return codes are translated as follows: 

Reg IS • O Resource has been locked. 
•4 (for CONDITION •NOWAIT) resource 

may become available at a future time (rc•4, 
8, 28 from lock manager, that is, SUPVR). 

• 8 This task already owns this lock (rc•24 from 
lock manager). 

• 12 Defmition error (rc•l2, 16, 20, 32, 36 from 
lock manager). 

for a lock manager return code of 4 or 24, no error 
message is issued. For a return code of 24, IKQUNLK is 
not called because the lock would be released in addition 
to freeing the DTL. for any other non-zero return code, a 
message is issued (UV0..8) and IKQUNLK is called to free 
theDTL. 

I 
I 
I 

I 
a. 
; 
3: 



N 
Diagram 5.7.2. UDEQ Macro I 

N 

~ 

~ INPUT 
tr! 

11 
< Register 1 
CIJ ri I > 
~ 
> 
§ GDT 
I 
~ ;. 
& 
CIJ 
ft 

~· \ QD 

t""' 
0 

~-

+ DTL 

-rnm Dfagum 5.0 

PROCESSING 

I ~ 1. Issues IKQUNLK macro. 

2. Returns 

I I I I 

OUTPUT 

@ E 

LOCK TABLE 

D 

I 
~ 
a 
:I. 
!. 
I 

J 
s. 
I 



~ 
1 
!'! 

I 
e, 

1 
N 
I 

~ 

Extended Description for Diagram 5. 7.2 
IDCSA08 

Procedure: IDCSA08 

1 IDCSA08 issues an lKQUNLK macro to release control 
of the resource. If the address of the DTL to be unlocked is 
zero. no unlock is necessary. 

IDCSA08 

Procedure: IDCSA08 

2 IDCSA08 returns contol to the module that issued the 
UDEQ macro. The return code is always 0. 

I 
I 
I 

j 
it 

i 



Licensed Material - Property of IBM 

2-206 VSE/VSAM Access Method Services Logic 



f 
~ 

I: 

t 
2-

1 a a· 
~ 
I s 

1/0 Adapter Visual Table of Contents 

l 6.1.1 

Build 
IOCSTR 

UOPEN 
Overview 

6.1 

6.1.2 

Build 
Control 
Blocks 

1 6.2 

UC LOSE 

l 6.1.3 

Check 
Open 

1 6.3 

UPOSIT 

6.0 

1/0 Adapter 
Overview 

UGET 

6.4 I 
UPUT 

c: ,, 
8 
fl) 

l 
3: • .. 
fD 
:L 
!!. 

I 
I 

I I ::p 
6.5 6.6 6.7 6.8 i 

I I UCO PY I I UVERIFY I I UIOINFO I a. 
; 
3: 



to.> 
I 

to.> 

~ 

~ 
~ 
~ 
> 
~ 

r 
I 
rll 
ft 

~-

i 

Diagram 6.0. 1/0 Adapter Overview 

INPUT 

Register 1 

I I 

£1GDT i T Argument Lists J 

From Module 
Issuing Macro 

PROCESSING 

1. Performs function indicated by 
macro: 

• UOPEN. ~ 
See Diagram --u 

UCLOSE. ~ 
See Diagram~ 

• 

UPOSIT. ~ 
See Diagram~ 

• 

UGET. ~ 
See Diagram~ 

• 

UPUT. ~ 
See Diagram~ 

• 

UCOPY. ~ 
See Diagram~ 

• 

UVERIFY. Ll. 
See Diagram~ 

• 

UIOINFO r:\.. 
See Diagram --v • 

2. Returns. 

OUTPUT 

IOCSTR 

Data Sets 

Register 15 r-- I 

I 
3: 

i 
!. 
I 

j 
s. -= 3: 



f ... 
~ 

I 
0 ....., 
0 
'R 

i· 
1-.) 

I 

~ 

Extended Description for Diagram 6.0 

IDCIOOI 

Procedure: IDCIOO l 

The type of I/0 processing depends upon the Umacro 
issued: 

• The UOPEN macro opens from one to four data sets. 

• The UCLOSE macro closes from one to four data sets 
that were opened by the I/0 Adapter. SYSIPT and 
SYSLST are not closed with this macro, but at 
processor termination with the UIOTERM macro. 
This is done to consolidate termination work. 

• The UPOSIT macro is used to position to a record in a 
data set on a direct access device. The type of 
positioning depends upon the data set organization: 

For VSAM data sets, the positioning may be by key, 
relative byte address (RBA), or relative record number. 

For ISAM data sets, the positioning is by key only. 

• The UGET macro is used to obtain a record from a 
data set opened with a UOPEN macro. If the data set is 
being processed with keys - ISAM or indexed VSAM -
the key is returned with the record. If the data set is 
being processed with control intervals - VSAM with 
block processing - a control interval is returned. If a 
relative-record data set (RRDS) is being processed, a 
relative record number is returned. Only ifthe VSAM 
data set is opened for update processing may the record 
be modified in the buffer. Data sets opened for update 
processing must be processed with a UGET followed 
by a UPUT on the same record just obtained. This is 
true regardless of whether or not the record has been 
changed. A UPUT must be issued after each UGET, 
for UPDATE, even if it is the last UGET before the 
data set is closed. Update processing is used when the 
REPLACE option has been specified for the REPRO 
function. 

• The UPUT macro is used to write records to a data set 
that was opened with the UOPEN macro. Multiple 
records can be written with one UPUT. If the data set 
is VSAM opened for block processing, the record must 
be a control interval. A UPUT must be issued for each 
UGET on a VSAM data set opened for update. 

• The UCOPY macro copies one data set to another data 
set if both data sets have been opened with the 
UOPEN macro. The input data set may be positioned 
to a starting point with the UPOSIT macro before the 
copy takes place. The UCOPY copies all records from 
the input data set starting at the beginning record and 

continuing until end-of-file or a terminating error. If 
the output data set has records before the UCO PY, the 
following applies: 

a. If the data set is VSAM with records in keyed 
sequential or relative record format, the input 
records are merged with the existing records. 

b. If the data set is VSAM with entry sequential 
record format, the input records are added after the 
existing records. 

c. If the data set is non VSAM, the input records are 
written over the existing records. The existing 
records are lost. ISAM data sets cannot be used for 
output for UCOPY. 

• The UVERIFY macro insures that the address for the 
end-of-file for the VSAM data set in the VSAM catalog 
is the same as the end-of-file address on the 1/0 device. 
If the two addresses are not identical, the VSAM 
catalog changes to match the 1/0 device. The data set 
must be VSAM opened for control interval output 
processing. A return code from the UOPEN macro 
indicates that the data set may need verification. The 
FSR should ignore the return code form UOPEN and 
issue the UVERIFY in all cases except where a zero 
IOCSTR address is returned from UOPEN. At 
UOPEN, VSAM just checks the VSAM catalog for 
information about the data set; it does not check the 
physical data set. If the UOPEN returns a code saying 
that there is no data in the data set, the physical data 
set may or may not have data. 

• The UIOINFO macro is used to obtain information 
concerning a data set. The macro analyzes an option 
byte passed by the caller to determine what kind of 
information is required. The types of information 
which may be requested are: 

Data-set name 
Volume serial list 
Device type 
Timestamp 

The caller may provide UIOINFO with a work area 
into which the requested information should be placed 
or he may provide an UGPOOL ID. In the latter case 
UIOINFO obtains the required amount of storage . 
(The caller is responsible for freeing this storage.) 

The data requested is formatted into the return area 
and control is returned to the caller. 

IDCIOOI 

Procedure: IDCIOO l 

2 A return code is put in register 15. If the return code is 
nonzero, error messages are written. Control returns to the 
module that issued the Umacro. 

[ 
l 
3: 
ID 
ft 
:L 
!. 
I 

J 
s. 
; 
3: 



"'1 
I 

"'1 
c; 

~ 
fl! 
......... 

~ 
~ 

I 
I 
f. 
b 
~· 

Diagram 6.1. UOPEN Macro 

INPUT 

Register I 

Addresses of 
I to 4 OPNAGLs 

From Diagram 6.0 

PROCESSING 

1. Builds IOCSTR for each 
OPNAGL. Issues LOCATE 
if OPEN is for a ca~ 

See Diagram ---~ 

2. Builds control block required 
to open the data s~ 

See Diagram LJ' 

3. Opens the data sets. 

4. Checks for successful open. 

See Diagram -------B 
5. Returns. 

OCARRAY 

I I 

OUTPUT 

"Iocs·· 
IOCSTR 

IOCSEX 

File Identification 

DTF 

Access Method 
Module 

OPNAGL 

Data Sets 

Register 15 

[ I 

I 
3: • i 
!. 
I 

j 
s. -= 3: 



I ... 
~ 

I 
a. 

f. 
N 
I 

~ 

Extended Description for Diagram 6.1 

IDCIOOl, IDCI002 

Procedures: IDCIOOP, OPENRTN, DSDATA 

1 IDClOOP builds an internal array (OCARRA Y) to 
describe the open to be performed. The rest of step 1 and 
all of step 2 are repeated for each open argument list 
(OPNAGL) that the calling module give to the UOPEN 
macro via register I. OPENRTN increments the identifier 
in IODSID by 1 to form a unique identifier for the data 
set. OPENRTN uses the identifier in a UGPOOL macro 
to obtain storage for an IOCSTR and IOCSEX for the 
data set and file identification save area. OPENRTN puts 
the IOCSTR into the chain of IOCSTRs addressed from 
IODIOC in the 1/0 Adapter Historical Data Area, 
IODATA. 

DSDA TA loads the VSAM IKQVLAB routine with a 
CD LOAD macro. The FILENAME and the address of a 
work area are passed as arguments.IKQVLAB reads the 
LABEL CYLINDER and returns information about the 
file in the work area. DSDATA saves the FILE ID and file 
organization. 

If the OPNAGL indicates that the open is for a catalog 
recovery area (CRA), the DSDAT A routine generates a 
data set name for the CRA, namely, 
CATALOG .RECOVERY.AREA. VOL.xxxxxx where 
xxxxxx is the volume serial number of the CRA's first 
extent. 

If the OPNAGL indicates that the open is for a catalog, 
OPENRTN issues a catalog Locate requesting the return 
of the catalog ACB address. Control is then passed to step 
s. 
If the open is not for a catalog, control is passed to Step 2. 

IDCI002 

Procedures: BUILDACB, BUILDDBK 

2 lfthe data set organization is VSAM, BUILDACB builds 
an EXLIST and an ACB control block. BUILDACB puts 
the addresses and length of the control blocks in the 
IOCSEX. lfthe data set organization is nonVSAM, 
BUILDDBK loads a module containing a DTF control 
block and the Access Method Module required to process 
the data set. BUILDDBK uses a table of module names 
and data set characteristics to find the right module to 
load. BUILDDBK updates the DTF with information 
from the OPNAGL. BUILDDBK uses a UGPOOL macro 
to obtain storage for subsequent GET /PUT operations. If 
the record format is spanned, one storage area is obtained, 

otherwise, two storage areas are obtained. The address of 
the ACB or DTF is put in IOCCBA in the IOCSEX. 

IDCI002 

Procedure: OPENRTN 

3 OPENRTN issues one OPEN macro for each ACB or 
DTF built in step 2. There are no exit routines. If OPEN 
detects an abend condition, OPEN abends. 

IDCI002 

Procedures: OPENRTN, CKNONOP, BUILDRPL 

4 OPENRTN and CKNONOP test each data set for a 
successful open. If the data set is VSAM, OPENRTN tests 
the results of the OPEN. If the data set is sequential 
nonVSAM, CKNONOP checks the open flags in the DTF. 
No checking is done on ISAM or device independent data 
sets. If the data set opened successfully, OPENRTN and 
CKNONOP set IOCMSGOP in the IOCSTR and 
IOCFLGOP in the IOCSEX. If address or control interval 
processing is not specified in the OPNAGL for a VSAM 
data set, OPENRTN determines ifthe data set has an 
index. A second test is performed to determine if the data 
set is a Relative Record data set (RRDS). For all VSAM 
data set, OPENRTN obtains data set information and 
BUILDRPL builds a RPL to process the VSAM data set. 
For an ISAM data set, CKNONOP issues a SETL macro 
to position to the first record. CKNONOP obtains data set 
information from the ISAM DTF and saves it in the 
IOCSTR. 

IDCl002, IDCIOOl 

Procedures: OPENRTN, DSDATA, BUILDACB, 
BUILDRPL, CKNONOP, IDCIOOP 

S If any errors occurred, any of the procedures that check for 
error conditions sets a nonzero return code in register 15. 
IDCIOOP returns control to the module that issued the 
UOPEN macro. 

r'"' 

[ 
::: 
i 
!. 
I 

l a 
a. 
; 
::: 



N 
I 

N 
;::; 

~ 

~ 
> 
~ 

§ 
= 
I 
~ 

I· 
{. 

Diagram 6.1.1. UOPEN Macro - Build IOCSTR 

INPUT 

IODATA 

IODXTN 

( 
\External Data Set List 

Label Cylinder 

From Diagram 6.1 

PROCESSING 

1. Checks if request is to open SYSIPT 
or SYSLST. 

2. Obtains storage for IOCSTR. 

3. Calls external routine if data set 
is externally controlled. 

4. Obtains data set identification and 
data set type. 

5. Issues LOCATE if OPEN is for a 
catalog. 

OUTPUT 

Data Identifier 

"IOCS" 

IOCSTR JJ .. ~ 
IOCSEX 

File Identification ]] 

~ g 
l 
3: • ; 
:I. 
!. 
I 

J 
s. -= 3: 



f 
~ 

~ 
[ 
e. 
~ 
~-
8 

N 
I 

N w 

Extended Description for Diagram 6.1.1 

IDCI002 

Procedure: OPENRTN 

OPENRTN tests the OPNAGL for an open request for 
SYSlPT or SYSLST. SYSlPT is tested in two ways: 

• SYSIPT is the Dname in the OPNAGL. 

• OPNTYPSI flag in OPNAGL is on. 

SYSLST is tested in two ways: 

• SYSLST is the Dname in the OPNAGL. 

• OPTYSO flag in OPNAGL is on. 

If the file is SYSIPT, OPENRTN checks IODICS for an 
address of an IOCSTR already built for SYS I PT. If an 
IOCSTR is built, SYSIPT is already open (or an open was 
attempted), and OPENR TN returns the address of the 
IOCSTR for SYSIPT in the area addressed by OPNIOC 
in the OPNAGL. No further processing is done on 
SYSIPT. Ifthe data set is SYSLST, OPENRTN checks 
IODOCS for an address of an IOCSTR already built for 
SYSLST. If an IOCSTR is built, SYSLST is already open 
and OPENRTN returns the address of the IOCSTR for 
SYSLST in the adrea addressed by OPNIOC in the 
OPNAGL. No further processing is done on SYSLST. 

If the data set is not open, continue to Step 2. 

IDCI002 

Procedures: OPENRTN, PRINTMSG 

2 OPENRTN increments by l the file identifier in IODSID 
to form a unique identifier for the data set. OPENR TN 
issues a UGPOOL macro with the file identifier to obtain 
storage for the IOCSTR plus 4 bytes for the characters 
'IOCS', the IOCSEX, and the.file id. file id is the name of 
the data set. Note: the file identifier that the 1/0 Adapter 
creates is different from the file id. If storage is not 
available, PRINTMSG writes a message. OPENRTN 
chains the new IOCSTR to the last IOCSTR in the chain. 
lfthe data set is SYSIPT or SYSLST, OPENRTN saves 
the address of the IOCSTR in the IODATA. OPENRTN 
checks the requested processing of the data set specified in 
OPNOPT in OPNAGL for input, update, or output, and 
copies it into the IOCSTR. Input is the default. The 
OPNAGL is used to pass information to the 1/0 Adapter 
in requesting a data set be opened. Information from the 
OPNAGL is placed in the IOCSTR and IOCSEX which 
are then used by the 1/0 Adapter to control processing of 
the data set once it is opened. The cross reference at the 

end of this Extended Description shows how OPNAGL 
information is transposed into the IOCSTR and IOCSEX. 

IDC1002 

Procedure: OPENRTN 

3 If the invoker of Access Method Services supplied a list of 
TLBL/DLBL names that he wants to control, the address 
of the list is in IODXTN. lf a list exists, OPENRTN 
compares each entry in the list with the Dname in 
OPNDDN in OPNAGL. If a match is found, OPENRTN 
puts the address of the external routine in IOCXAD. 
OPENRTN also builds a parameter list for the external 
routine and puts the address of the first parameter in the 
list in IOCXPM. OPENRTN then gives control to the 
external routine to do the open. For lack of any 
information about the external data set, OPENRTN sets 
the IOCSTR to indicate the data set is non VSAM with 
variable length records and logical record length of 32, 760. 
This does not restrict the type of data sets that can be 
externally controlled. It is just to make the data set appear 
as something to the FSR that requests the data set be used. 
If a data set is not externally controlled, control continues 
with step 4. 

IDCI002 

Procedures: DSDATA, PRINTMSG 

4 Information must be obtained from job control if: (a) the 
data set is not SYIPT or SYSLST, or (b) a DLBL name 
OPNDDN was passed as input to UOPEN. DSDATA 
issues a CD LOAD macro to load IKQVLAB, the VSAM 
Read Label Cylinder module. If the return code from 
CDLOAD is nonzero, DSDATA issues a UABORT 
macro. If the return code is 12 (indicating insufficient 
storage), DSDATA sets the UABORT code to 28, 
otherwise DSDATA sets th~ UABORT code to 64. 
DSDATA gives control to IKQVLAB. If the return code is 
nonzero, PRINTMSG writes a message and the UOPEN 
for the data set terminates. If the return code is zero, 
IKQVLAB placed information about the data set in a 
work area. Data set organization and file id are set in the 
IOCSTR and IOCSEX. For SYSIPT and SYSLST the.file 
id is assumed to be the FILENAME and the data set 
organization is assumed to be physical sequential with 
record size of 80 for SYSIPT and 121 for SYSLST. If the 
OPNAGL specifies device type of 2400, the data set is 
assumed to be a tape and the information returned by 
IKQVLAB is from a TLBL statement. If the device type is 
not 2400, DSDAT A checks the DLBL for ISAM or 
VSAM. If neither ISAM or VSAM is specified, the data 
set is assumed to be physical sequential non VSAM. 

For all data sets, DSDATA puts the file id in the file 
identification area addressed from the IOCSTR. 

Ifthe OPNAGL indicates that a catalog recovery area is 
being opened, DSDATA sets VSAM data set organization 
in the IOCSTR. If the OPNAGL indicates that a catalog 
recovery area is being opened, DSDATA generates a 
data-set name for the CRA. The name generated is: 
'CATALOG.RECOVERY.AREA.VOL.xxxxxx ', 
where xxxxxx is the volume serial number for the first 
CRA extent. 

IDCI002 

Procedures: OPENRTN, PRINTMSG 

5 If the data set to be opened is a VSAM catalog, as 
indicated by IOCINFCT, a VSAM Locate is issued via the 
System Adapater UCATLG macro. OPENRTN builds a 
CTGPL and one CTGFL. The name used in the Locate 
(pointed to by CTGCAT and CTGENT) is the name as 
returned from IKQVLAB and contained in LABDSN. 
CTGPSWD is set equal to OPNPWA if a password has 
been specified via the OPNPW A field. The address of the 
catalog dname passed in OPNDDN is placed in 
CTGDDUC. The CTGFL requests the return of the 
catalog ACB address, CATACB. If the return code is 
nonzero, PRINTMSG writes a message. For all VSAM 
catalogs, control passes to the final phase of UOPEN for 
VSAM data sets. 

r-

i 
I. 
3: 

i a. 
I 

f 
2. -= 3: 



Licensed Material - Property of IBM 

2-214 VSE/VSAM Access Method Services Logic 



f ... 
!'-! 

I 
Si 

l 
N 
I 

~ 
VI 

OPNAGL IOCSTR/IOCSEX Cross Reference Table 

OPNAGL 

OPNOPTIN 
OPNOPTOT 
OPNOPTUP 
OPNOPTBK 
OPNOPTKS 
OPNOPTCR 
OPNOPTDR 
OPNOPTSK 
OPNOPTCI 
OPNMODRS 

OPNMODAX 

IOCSTR/IOCSEX 

IOCMACIN = 'l' 
IOCMACOT == 'l' 
IOCMACUP = 'l' 
IOCMACBK == 'l' 
IOCMACCR == 'O' 
IOCMACCR = 'l' 
IOCMACDR == 'l' 
IOCMACSK = 'l' 
IOCMACCI = 'l' 
Not required 

Not required 

Description 

Input processing 
Output processing 
Update processing 
Control interval processing 
Keyed processing 
Addressed processing 
Direct processing 
Skip sequential processing 
Export CIMODE 
Open reusable data set 
with reset 
Open alternate index of 
path only 

OPNMODUB IOCMODUB • 'l' User buffers 
OPNMODRP IOCMODRP- 'l' Replace processing 
OPNTYPXM IOCMODXM • 'l' Export/import 
OPNTYPCI IOCINFCT- 'l' Open catalog 
OPNTYPRA IOCRCVRA • 'l' Open catalog recovery area 
OPNTYPRV IOCRCVXM • 'l' Recovery bit for VSAM 

If OPNOPTBK or OPNOPTKS is not specified, IOCMACCR is set to 'l '. 

ro-
[ 
l 
3: 
[ 
!. 
I 

J 
2--= 3: 



~ Diagram 6.1.2. UOPEN Macro - Build Control Blocks -°' 
~ 
~ 
~ 
> 
~ 

r 
I 
fCl 

~· 
{. 

OPNAGL 

IOCSTR 
~ V' 

OPNAGL ·~ 
V' 

IOCSTR 

D 

T 
1. For VSAM data sets, continue to 

Step 2; for nonVSAM data sets, 
go to Step 4. 

2. Obtains storage for control blocks. 
Builds EXLST. 

3. Builds ACB. 

4. Builds compare word and finds 
device type data. 

5. Checks for valid blocksize and 
unsupported device. 

6. Loads DTF and Access Method 
module. 

7. Obtains storage for 1/0 areas. 

8. Updates the DTF. 

-> 

:;> 
Compare Word 

I I 
~ Device Type Data 

I I 

~ 

> 

1> ...... 

J 

EXLST 

ACB 

DTF 

Access Method 
Module 

1/0 Areas 
I 
::: 
! 
:L e. 
I 

f 
s. -= ::: 



i 
~ 

E 
[ 
2, 

~ ; 
a· 
N 
I 

N 

~ 

Extended Description for Diagram 6.1.2 

IDCI002 

Procedure: BUILDACB 

I For VSAM data sets continue to step 2; for nonVSAM 
data sets go to step 4. 

IDCI002 

Procedure: BUILDACB 

2 BUILDACB issues a UGPOOL to obtain storage for the 
three VSAM control blocks: EXLST, ACB, and RPL. If 
OPNSTRNO isO, BUILDACB obtains storage for one 
RPL; otherwise the value of OPNSTRNO determines the 
number of RP Ls required. If the return code from 
UGPOOL is nonzero, BUILDACB sets an error condition 
and terminates UOPEN processing. 

BUILDACB first builds an EXLST control block issuing 
the EXLST macro. Only the EODAD exit will be taken if 
GETVSAM encounters an end-of-file. LERAD and 
SYN AD exits are specified, however, but they are set 
inactive. BUILDACB puts the pointer to the EODAD exit 
routine into the exit list. BUILDACB puts the address and 
length of the EXLST control block in IOCEXA and 
IOCEXL respectively. 

IDCI002 

Procedure: BUILDACB 

3 BUILDACB builds an ACB control block by issuing the 
ACB macro. The ACB macro generates IN, SEQ, ADDR 
for the MACRF field. These attributes are overriden with 
information contained in the IOCSTR/IOCSEX or 
OPNAGL. 

Bit Referenced 

IOCMACOT • 'l' 
IOCMACUP • 'l' 
IOCMACBK • 'l' 
IOCMACCR • 'O' 
IOCMACDR • 'l' 
IOCMACSK • 'l' 
IOCMODUB • 'l' 
OPNMODAX• 'l' 
OPNMODRS • 'l' 

ACBMACRF• 

OUT 
OUT 
CNV 
KEY 
DIR 
SKP 
UBF 
AIX 
RST 

In DOS, the CATALOG OPEN option is never specified 
since catalogs are opened as described in step 5, Diagram 
6.1. l. 

BUILDACB requests address processing if the data set 
organization (indexed or non-indexed) is not known. If the 

type of processing is set in the OPNAGL, BUILDACB 
uses it. The VSAM open routine will fill in the correct 
organization, if the specified organization is wrong. If the 
organization is not specified, address is set as the default 
because VSAM defaults to indexed and gives an error if 
the data set is not indexed. BUILDACB puts each 
password in an array of passwords to save the passwords 
until OPEN time and puts a pointer to the password in the 
ACB. 

If IOCRCVRA='l ', BUILDACB specifies the 
CRA=UCRA option for opening a catalog recovery area. 
If a VOLID or SYS NO is passed as input, (i.e., not 
DNAME) SYSNO is set in the ACB. VOLID is translated 
to SYSNO by IKQASNMT. 

Also, if IOC RCVRA =' l ', the third parameter passed to 
UOPEN is not an address ofan OPNAGL; rather it is an 
address passed by EXPORTRA. The contents of this 
address must be inserted into the ACBUAPTR field of the 
ACB. 

If the value of OPNSTRNO is greater than l, BUILDACB 
moves the value ofOPNSTRNO to the ACB. The address 
and length of the ACB are put in IOCCBA and IOCCBL, 
respectively. lfOPNMODRC in the OPNAGL isl, 
BUILDACB puts the address of the ACB in IOCCBP. 

lfOPNTYPXM is on, the request is from 
EXPORT(RA)/IMPORT(RA), and the number of data 
buffers in the ACB (ACBBUFND) is changed from 2 to 5. 

IDCI002 

Procedure: BUILDDBK 

4 A non VSAM data set cannot be opened as a catalog or 
opened for update. If either of these two conditions exist, 
BUILDDBK does not build control blocks for the data set. 
BUILDDBK builds a compare word, COMPWORD with 
data set organization, open options and record format. It 
saves the blocksize, record size, and the length of the 
required 1/0 areas. The information is in the OPNAGL, 
IOCSTR, and IOCSEX The Access Method Module uses 
the 1/0 areas. The length of the 1/0 area is the blocksize 
plus 8. 

IDCI002 

Procedure: BUILDDBK 

5 BUILDDBK compares the device type specified in the 
OPNAGL against the table of allowable devices, 
DEVTABLE. When a match is found, the track length, 
constants used to determine the number of fixed length 
blocks per track, and the device code defined inthe DTF 

are saved. If a device type is not specified in the 
OPNAGL, '2314bbt>t>' is used as a default. The data set is 
not opened and an error message is written if the following 
conditions are found: 

• Blocksize in OPNAGL is less than l. 

• Record format is fixed and blocksize is not a multiple of 
record size. 

• A non-supported device is specified. 

IDCI002 

Procedure: BUILDDBK 

6 BUILDDBK compares COMPWORD against a table of 
allowable data set characteristics and corresponding load 
module names, DOSACC. When a match is found, the 
length of the load module is used to obtain storage for the 
load module with a UGSPACE macro. BUILDDBK loads 
the module with a LOAD macro that puts it in the storage 
just obtained. The load modules are named IDCDlxx 
where xx is 01 through 15 and contain one or two DTFs 
along with the Access Method Modules needed to processs 
the data set. 

IDCI002 

Procedures: BUILDDBK, PRINTMSG 

7 BUILDDBK issues a UGPOOL macro to obtain storage 
for the 1/0 areas. The Access Method Module uses the 
1/0 areas as buffers. BUILDDBK puts the address of the 
storage in IOCWKA. If BUILDDBK finds no match in 
DOSACC or cannot obtain storage, the data set is not 
opened and PRINTMSG writes a message. If 
BUILDDBK cannot obtain storage for the load module, it 
issues a UABORT macro. 

IDCI002 

Procedure: BUILDDBK 

8 BUILDDBK updates the DTF with data set characteristics 
from the OPNAGL. Data set characteristics are record 
format, record size, blocksize, and device type. 
BUILDDBK updates the CCWs with the length of the 
data to get or put and the address of an 1/0 area. 

~ 
g 
i. 
3: 
Ill 

i 
!!. 
I 

l a 
s. 
; 
3: 



r Diagram 6.1.3. UOPEN Macro - Check Open 
~ 
00 

~ 

~ 
I 
I 
f 

I· 
i. 
ft 

IOCSTR 

CB ~ .... 

IOCSTR 

L 
~ DTF ..... 

Access Method 
Module 

... 
1. For VSAM data sets, continue to 

Step 2; for non VSAM data sets, 
go to Step 6. 

2. Checks for successful open. 

3. Determines type of processing. 

4. Obtains data set information. 

S. Builds an RPL. 

6. Obtains ISAM data set characteristics 
and positions to first record. 

7. Checks for successful open. 

IOCSTR 

TI~ 
TI RPL 

l ~ v 

Data Identifier 

Work Area 

DTF 

~ ,,,/ 

IOCSTR 

_i.,,> 
v 

-

-

i 
l 
3: 

i 
!!. 
I 

f 
s. 
i 



f 
~ 

I 
2, 

l 
N 
I 
N 

~ 

Extended Description for Diagram 6.1.3 

IDCI002 

Procedure: OPENRTN 

For VSAM data sets continue to step 2; for nonVSAM 
data sets go to step 6. 

IDCI002 

Procedure: OPENRTN 

2 OPENRTN checks the ACBOPEN flag ifthe open was 
successful. If the open was successful, OPENRTN sets 
flags in the IOCSTR and IOCSEX to indicate that the 
data set can be used and that it must be closed when 
finished. 

IDCI002 

Procedures: OPENRTN 

3 OPEN R TN makes another check to determine if the 
opened object is a path. If a path has been opened, keyed 
processing is assumed. If REPLACE processing has been 
specified for a path, PRINTMSG writes an error message. 
If the open object is not a path, the IOCSTR does not 
specify control interval or address processing, the type of 
processing is determined by checking the index portion of 
the file. If there is an index portion, keyed processing will 
be used. If there is no index portion, the type of processing 
is set to address processing. OPENRTN next checks the 
ACB to see ifthe data set is RRDS, if so, OPENRTN sets 
IOCMACCR•'O' (keyed) and IOCMACRR='l'. Thus, 
for a 

KSDS 
ESDS 
RRDS 

IDCI002 

IOCMACCR • 0, 
IOCMACCR • l, 
IOCMACCR • 0, 

Procedures: OPENRTN, PRINTMSG 

IOCMACRR=O 
IOCMACRR=O 
IOCMACRR= I 

4 OPENRTN obtains the ACB error code, logical record 
length or control interval, high-used RBA, key length, and 
relative key position. If the data set did not open, only the 
error code, not the data, is obtained, and PRINTMSG 
writes a message. If the data set opened successfully, 
OPENRTN moves the ACB information to the IOCSTR. 

IDCI002 

Procedures: BUILDRPL, PRINTMSG, OPENRTN 

S For any VSAM data set that is open, BUILDRPL builds a 
request parameter list (RPL) by issuing the RPL macro. 

Input work areas are required if the data set is opened for 
input or update processing. BUILDRPL issues a 
UGPOOL macro with the file identification to obtain 
storage for the maximum length record or one control 
interval for control interval processing. If 
IOCMODUB='l', the BUILDRPL procedure of 
IDC1002 will not issue a UGPOOL to obtain storage for 
an 1/0 area for input or update processing. In subsequent 
UGET requests the FSR will indicate his own buffers in 
IOCWORK. 

lflOCMODXM='l' and IOCMACRR=='l', indicating 
EXPORT /IMPORT and RRDS, BUILDRPL will get an 
extra four bytes for the work area (IOCWKA) if the data 
set is input (IOCMACIN='l'). This extra four bytes will 
be utilized in later UCO PY processing for exporting a 
relative record data set. The work area address specified 
for the RPL is the input work area plus 4 (IOCWKA+4). 
If no space is available for the work area, BUILDRPL sets 
an error return code, PRINTMSG writes a message, and 
OPENRTN turns off the open flag in the IOCSTR. 

BUILDRPL generates an RPL via the RPL macro and 
initializes the RPL with the address of the ACB, options, 
work area address, and maximum length of a data record. 
lfIOCMACRR='l', the OPTCD will indicate 'KEY'. If 
the RRDS is to be processed for output, IOCMACOT='l' 
or IOCMACUP='l', OPTCD will indicate 'SKP'. This 
will cause output RRDS to be processed in skip sequential 
mode. 

The RPL macro generates KEY, SEQ, NUP for the 
OPTCD field. These attributes are overridden with 
information indicated in IOCSTR/IOCSEX as follows: 

IOCSTR/IOCSEX 
IOCMACUP='l' 
IOCMACDR=' I' 
IOCMACSK=='l' 
IOCMACCR='l' 
IOCMACBK='l' 

RPLOPTCD= 
UPD 
DIR 
SKP 
ADR 
CNV 

The length of the RPL times ACBSTRNO is stored in 
IOCRPL. lf ACBSTRNO is greater than l, the first RPL 
is copied to each additional RPL area. 

IDCI002 

Procedures: CKNONOP, PRINTMSG 

6 For ISAM data sets, CKNONOP obtains the true file 
block length, key length and relative key position from the 
DTF after the file is open. If the true block length is 
greater than the block length in the OPNAGL, 
PRINTMSG writes an error message, and CKNONOP 
turns off the open flag in IOCSTR. This is an error 

condition because ISAM open routines build their own 
CCW with the real data set characteristics obtained from 
the DSCB. If the 1/0 area for the data set is not large 
enough for a physical block, the block will overlay storage 
not belonging to the 1/0 Adapter. If the true block length 
is equal or less than the value in the DTF, CKNONOP 
puts the values from the DTF in the IOCSTR. 
CKNONOP issues a SETL macro to position to the first 
record in the data set. 

IDCI002 

Procedure: CKNONOP 

7 CKNONOP checks the DTF open flags for sequential 
data sets. There are no open flags for ISAM or device 
independent data sets like SYSIPT and SYSLST. If the 
open flags are set for a sequential data set or tape data set, 
CKNONOP sets flags in the IOCSTR and IOCSEX. 
CKNONOP always sets open flags for ISAM and device 
independent data sets. If the DTF open flag is not set for a 
sequential data set, PRINTMSG writes an error message, 
and CKNONOP sets an error return code. 

~ 

I 
3: • ~ 
:L 
!. 
I 

I 
s. 
; 
3: 



~ 
I 
~ 
~ 
0 

~ 

~ 
r 
I 
r 
b 

4R· 

Diagram 6.2. UCLOSE Macro 

INPUT 

Register 1 

f GDT 

Addresses of 
1 to 4 IOCSTRs 

Open Data Sets 

From Diagram 6.0 

PROCESSING 

1. Obtains IOCSTRs to close. 

2. Builds list to close. (If the IOCRCVCL ....., 

flag is on in IOCSEX, skip to step 7 .) 

3. Closes data sets. 

4. Checks for successful close (VSAM 
data sets only.) 

5. Frees module storage for non­
VSAM data sets. 

6. Frees control blocks and work area 
storage for each data set. Removes 
IOCSTR from chain for each data 
set. 

7. Returns. 

OCARRAY 

I I 

IOCSTR Pointers 
I -] 
DTF I ACB Pointers 

I I 

OUTPUT 

DTF 

Register 15 

I J 
~ 

l 
I 
I 

l a 
s. 
i 



I 
~ 

I 
a, 
0 

l 
N 
I 

N 
N -

Extended Description for Diagram 6.2 

IDCIOOI 

Procedure: IDCIOCL 

I IDCIOCL puts the addresses of IOCSTRs in OCARRA Y. 
Even if the address is zero it is put in OCARRA Y. The 
address will be zero if a UOPEN was issued against a data 
set, but the IOCSTR could not be built. IDCIOCL sets the 
type of operation to "Close" in OCATYP in OCARRA Y. 

IDCI002 

Procedure: CLOSERTN 

2 Only a maximum of four data sets are closed with any one 
UCLOSE macro. CLOSER TN examines OCARRA Y for 
the addresses of IOCSTRs to close. If the address of an 
IOCSTR is not zero and CLOSE ALL is not requested, 
CLOSERTN checks the data set for SYSIPT and 
SYSLST. If the data set is SYSIPT or SYSLST, 
CLOSERTN does not close the data sets because they are 
needed until processor termination. 

If a UCLOSE macro is issued and the IOCRCVCL bit is 
on in IOCSEX, the work area pointed to by IOCWKA is 
freed via UFSPACE. Next, a work area whose size is 
specified in lOCTRN is obtained via UGPOOL and the 
address is returned in IOCWKA. Control then passes to 
step 7 (a data set close is not done when the IOCRCVCL 
bit is on). This allows reallocation of the record work area 
after the file is opened. If IOCIN FCT=' l ', indicating a 
close of a VSAM catalog, CLOSER TN merely frees up the 
control blocks associated with this catalog that were 
obtained by 1/0 Adapter. The issuer of the UCLOSE 
macro is given an RCOK return code. For any other 
nonzero IOCSTR, CLOSERTN saves the address. And, if 
the DTF or ACB is opened, CLOSERTN saves the 
address of the control block in preparation for closing. If 
the data set is not open, IOCFLGOP==O, CLOSERTN 
makes a check to determine if it is externally controlled. If 
it is externally controlled, CLOSER TN passes arguments 
to the external routine. CLOSERTN continues the above 
checking until: 

• lDClOO 1 specifies CLOSE ALL in OCARRA Y and 
CLOSERTN has checked all lOCSTR addresses in 
OCARRA Y. This happens during 1/0 termination. 

• lDClOO 1 does not specify CLOSE ALL in 
OCARRAY and CLOSERTN has checked all 
IOCSTR addresses in OCARRA Y. 

IDCI002 

Procedure: CLOSERTN 

3 For up to four open DTFs or ACBs, CLOSERTN issues a 
CLOSE macro for each open DTF or ACB. The return 
code from the CLOSE macro is saved. If an abend occurs, 
no exits are taken; CLOSE abends. 

For CRAs, CLOSERTN unassigns the logical unit 
number if lOCSYSNO is equal to the value obtained from 
the ASSGN macro by UOPEN. 

IDCI002 

Procedures: CLOSERTN, PRINTMSG 

4 For VSAM data sets, CLOSERTN checks the ACB error 
code. If the ACB error code is nonzero, PRINTMSG 
writes a message. No tests are made for non VSAM data 
sets or user catalogs. 

IDCI002 

Procedure: ENVFREE 

5 For nonVSAM data sets, ENVFREE issues a FREEVIS 
macro to release the storage used for the lDCDixx module 
where xx is from 01 to 15. For VSAM data sets the storage 
for the ACB, RPL, and exit list is freed in step 6 along with 
the IOCSTR and all other storage having the same 
IOCSID. 

IDCI002 

Procedure: CLOSER TN 

6 CLOSERTN saves the address of the IOCSTR that was 
closed and the address of the next IOCSTR in the chain 
after the IOSTR for the closed data set. CLOSER TN 
issues a UFPOOL to free all storage obtained for the data 
set that is closed. CLOSER TN passes the IOCSID field to 
UFPOOL which identifies all storage obtained for the data 
set. CLOSERTN seaches the IOCSTR chain until the 
IOCSTR is found that points to the closed IOCSTR. 
CLOSERTN replaces the address of the closed IOCSTR 
with the address of the next IOCSTR in the chain. 

IDCIOOI 

Procedure: IDCIOCL 

7 IDCIOCL puts a return code in register 15 and returns 
control to the module that issued the UCLOSE. 

I 
re • 
I 
I 

i 
s. 
E 



N 
I 

~ 

~ 

~ 
> 
I: 

i 
i 
f 
i. n 

Diagram 6.3. UPOSIT Macro 

INPUT 

GOT 

EJ 

From Diagram 6.0 

PROCESSING 

1. Checks data set. 

2. Positions in VSAM data set. 

3. Positions in ISAM data set. 

4. Writes error message for non VSAM 
and nonlSAM data sets. 

5. Returns. 

OUTPUT 

RPL 

DTF 

D 
Register 15 
[ - - - I 

I 
~ a 
::L 
f!. 
I 

f 
s.. 
i 



i ... 
!'! 

I 
e, 

~ 
I· 
N 
I 
N 
N 
~ 

Extended Description for Diagram 6.3 

IDCI003 

Procedure: 1DC1003 

If the IOCSTR address is zero or the data set is not open 
(lOCMSGOP-0), 1DCI003 issues a UABORT macro. If 
the data set is open for processing (lOCMSGOP= 1 ), and 
the data set is externally controlled (IOCFLFEX= 1 ), 
IOCI003 returns control, with a return code of zero, to the 
module that issued the UPOSIT. No provision is made for 
positioning in externally controlled data sets. 

IDCI003 

Procedures: PTAMOS, PRINTMSG 

2 For VSAM data sets, PT AMOS inserts the POINT 
argument in the RPL. VSAM uses the POINT argument 
in the RPL to position to the requested record. If the data 
set is open for adddress processing, PT AMOS puts the 
address of the Relative Byte Address (RBA) in the 
RPLARG field of the RPL. If the data set is RROS 
(lOCMACRR-' l '), the RPLARG field is set to contain 
the address of the relative record number which is 
contained in IOCREL. If control interval processing is 
specified (IOCMACBK-' l '), the RPLARG field is set to 
contain the address of the RBA which is contained in 
IOCRBA. Otherwise, PT AMOS puts the address of the 
key in IOCKYA into the RPLARG field. If the length of 
the key of the requested record is greater than the key 
length for the data set, PRINTMSG writes an error 
message and PT AMOS does not position to the requested 
record. PT AMOS expands every key to 256 bytes by 
adding binary zeros on the right. PT AMOS inactivates the 
end-of-data routine in the EXLIST control block. This is 
done to prevent the end-of-data routine from getting 
control if the record positioned to is beyond the end of the 
data set. If the end-of-data routine receives control, an 
abend would occur. PT AMOS issues the POINT macro to 
position to the record with the key or the next higher key . 
PT AMOS re-activates the end-of-data exit routine. If the 
return code from the POINT macro is 12, an I/0 error has 
occurred and a message is written. PRINTMSG prints the 
error message. If the return code from the POINT macro is 
8, a logic error has occurred and PT AMOS checks the 
logical error. If the results indicate that no record was 
found or repositioning beyond end-of-file, PT AMOS sets 
a return code of "no record found." For all other logic 
errors, PRINTMSG writes a message containing the 
return code unless the suppress message flag, 
IOCMSGSM has been set by the caller. 

IDCI003 

Procedure: PTISDS 

3 For an ISAM data set, PTISDS does not position the 
record if the length of the key supplied is greater than the 
key length for the data set. For valid key lengths, PTISDS 
does the positioning. PTIS DS expands the key to 256 bytes 
by padding on the right with binary zeros. PTISDS issues 
an ESETL macro because a SETL was issued when the 
data set was opened. PTISDS issues a SETL macro to 
position to the record with the key or next higher key. If 
the postioning is beyond the end of the data set, the SETL 
routine sets a flag in the DTF. If this flag is on, PTISDS 
returns a code of "no record found." If the flag is not on, 
positioning was successful and PTISDS returns a code of 
zero. 

IDCI003 

Procedures: PRINTMSG, 1DC1003 

4 If the data set is non VSAM and not ISAM, PRINTMSG 
writes an error message. If an error is detected, IDC1003 
turns off the open for processing idiciator, IOCMSGOP, 
so that no more I/O operations except close are permitted 
against the file. 

IDCIOOt 

Procedure: IDCIOPO 

S lOClOPO puts a return code in register 15 and returns 
control to the module that issued the UPOSIT. 

~ 
fD = l 
3: 
ID 

i 
!. 
I 

I 
s_ 
; 
3: 



~ Diagram 6.4. UGET Macro 
~ .... 

~ 

i 
i 
~ 
[ 
f 

i· 
b 
~· 

INPUT 

t GOT 

Data Set 

08 

From Diagram 6.0 

PROCESSING 

1. If entrance is from any module 
except UCOPY. control goes to Step 2; 
if entrance is from UCOPY. control 
goes to Step 3. 

2. Checks data set. 

3. Transfers control for externally 
controlled data set. 

4. Gets record and puts its address in 
IOCSTR. 
• VSAM records. 

• NonVSAM records. 

S. Returns. 

OUTPUT 

IOCSTR 

IOCDAD 

Length of Record 

IOCALN 

IOCKYA 

IOCRSA 

Register 15 C:- -- -- I 

i 
I 
I 

j 
9-

i 



f ... 
!':> 

~ 
[ 
s. 

f. 
8 

.... 
I .... .... 
'-"' 

Extended Description for Diagram 6.4 

If entrance is from any module except UCO PY, control 
goes to step 2. lf entrance is from UCOPY, control goes to 
step 3. 

IDCIOOI 

Procedure: IDCIOGT 

l lfthe address of the IOCSTR is zero or the file is not open 
for processing, (IOCMSGOP-0), IDCIOGT issues a 
UABORT macro to terminate processing. If end-of-file 
has previously been encountered, (IOCFLGEF== 1 ), on an 
input data set, IDCIOGT returns control to the module 
that issued the UGET. This check allows more than one 
module to issues UGETs on the same data set and both 
modules will get end-of-file indications by a return code. 

IDCIOOI 

Procedure: GET EXT 

3 If the data set is externally controlled, GETEXT passes an 
argument list to the external routine so the external routine 
can perform the 1/0 operation. GETEXT tests the return 
code from the external routine. If the return code is zero, 
GETEXT moves the address and length of the data record 
just read to the IOCSTR and GETEXT increments the 
count of successful UGETs. lfthe return code is 
end-of-file, GET EXT sets the end-of-file flag in the 
IOCSTR and GETEXT sets the return code to end-of-file. 
If the return code is 12, indicating that no more 1/0 
operations can be performed against the data set, 
G ETEXT turns off the open for processing flag 
(IOCMSGOP). For any other return code, GETEXT sets 
a return code of 4. IDCIOGT returns control to the 
module that issued the UGET. 

IDCIOOl 

Procedures: GETVSAM, CHANGE, VSAMERR, 
PRINTMSG, GETNONVS, IROSEOD, IRSISYN, 
IRAMEOD 

4 For VSAM data sets continue with 4.a, for nonVSAM data 
sets go to 4. b. 

a. If any of the IOCSTR change processing flags are set, 
indicating a change in processing modes, the 
CHANGE procedure makes the appropriate change in 
the RPL. The following IOCSTR settings specified by 
the issuer of U GET are reflected in the RPL: 

IOCSTR 

IOCCHPSQ 
IOCCHPDR 
IOCCHPSK 
IOCCHPKS 
IOCCHPCR 
IOCCHPBK 
IOCCHPKG 
IOCCHPKE 
IOCCHPUP 
IOCCHPNU 

RPLOPTCD= 

SEQ 
DIR 
SKP 
KEY 
ADR 
CNV 
KOE 
KEQ 
UPD 
NUP 

The CHANGE procedure will set all change 
processing flags to 'O', and the IOCSTR will be 
changed to reflect the new processing option. 

If the data set is RRDS, (IOCMACRR='l'), RPLARG 
is set to the address of IOCREL so that VSAM will 
return the relative record number to UGET. 

If user buffer is specified (IOCMODUB=='l'), the caller 
has placed the address of the input work area in 
IOCWORK. This address will be placed in the RPL 
work area field. 

For OPTCD=CNV or ADR with DIR or SKP, the 
caller has placed an RBA in IOCRBA. The address of 
IOCRBA will be placed in the RPLARG field. In this 
situation, the RBA will not be moved to IOCRBA 
following the GET. 

For OPTCD==KEY with DIR or SKP, the caller has 
placed the address of the key in IOCKYA and its 
length in IOCK YL. RPLARG is set equal to IOCK YA 
and RPLKEYLN is set equal to IOCK YL. If 
IOCMACCI is set on (indicating export CIMO DE 
processing), and the input data set is a KSDS/ AIX, 
register 0 is set to X'30' before the GET is issued. 

GET VS AM issues a GET macro in the move mode, 
specifing the address of the RPL built when the data 
set was opened. If end-of-file is encountered, the 
VSAM EODAD exit routine, IRAMEOD, sets the 
end-of-file flag in the IOCSTR and sets the return code 
to indicate end-of-file. GETVSAM tests the return 
code from GET. If the return code is nonzero, an error 
code has been placed in the RPL. If the return code is 
z.ero, the VSAM GET routine has read the record or 
control interval. G ETVSAM moves the record address, 
record length, and RBA from the RPL to the IOCSTR. 
If the data set is being processed by key, GETVSAM 
places the address of the key in the record just read in 
the IOCSTR~ lfthe return code from the GET is 
nonzero, VSAMERR obtains the error code from the 
RPL and PRINTMSG writes the message. The call to 
VSAMERR by UGET to print logical error messages 

is bypassed if the suppress messages flag, 
IOCMSGSM, has been set by the UGETcaller. 

b. For nonVSAM data sets, GETNONVS issues a GET 
specifying the DTF address. For spanned records the 
address of the work area for the data set which was 
obtained when the data set was opened, is given the the 
GET macro. The GET routine puts the complete 
record in the work area. GETNONVS gets the length 
of variable length records from the Record Descriptor 
Word (ROW). If the input IOCSEX indicates a catalog 
recovery area for import (IMPORTRA), the 
GETNONVS routine strips off the 4-byte header 
record prepended to it when the record was exported 
via EXPORTRA (see UPUT Diagram 6.5). For 
nonspanned records register 8 has been specified as the 
IOREG in the DTF. For undefined records the length 
is found in the RECLEN register defined in the DTF. 
The GET routine puts the address of the record in 
register 8. 

For ISAM data sets with fixed unblocked records, the 
key is returned preceeding the data; however, register 8 
has the address of the data. GETNONVS subtracts the 
key length from the data address to get the address of 
the key. If an error or end-of-file occurs attempting an 
ISAM GET, the GET routine sets flags in the DTF. 
GETNONVS tests the flags. If end-of-file has 
occurred, GETNONVS sets a return code. If an error 
has occurred, PRINTMSG writes a message and 
GETNONVS sets a return code. If no errors or no 
end-of-file has occurred, GETNONVS assumes the 
GET is successful and the record address and record 
length are set in IOCDAD and IOCDLN, respectively. 
GETNONVS puts the address of the key in IOCKYA. 

For non-ISAM data sets, if an error or end-of-file 
occurs, the EODAD exit routine, IROSEOD, or 
SYN AD exit routine, IRSISYN, gets control. If 
end-of-file occurs, IRSOEOD sets a return code. If an 
error has occurred, PRINTMSG writes a message and 
IRSISYN sets a return code. If no errors or no 
end-of-file has occurred, GETNONVS assumes the 
GET is successful and the record address and record 
length are set in IOCDAD and IOCDLN, respectively. 

IDCIOOl 

Procedure: IDCIOGT 

5 IDCIOGT puts a return code in register 15 and returns 
control to the module that issued the UGET. 

r 
i. 
::: 
I 
!. 
I 

I 
s. 
; 
::: 



~ Diagram 6.5. UPUT Macro ..., 
°' 

~ 

~ 
> 
~ 

r 
~ 
[ 
fl.I 
ft 

~-
GD 

b 
~-

INPUT 

Register I 

GOT 

Type Identification 

Length of Record 

Number of Records 

From Diagram 6.0 

PROCESSING 

1. If entrance is from any module 
except UCOPY, continue to Step 2: if 
entrance is from UCOPY, go to 
Step 3. 

2. Checks for multiple requests. 

3. Transfers control for externally 
controlled data set. 

4. Writes the record. 

VSAM records. 

Non VSAM records. 

5. Returns. 

OUTPUT 

00R8 
IOCSTR 

k~~~N I 
Register 15 

l I 

I 
3: • i 
!!. 
I 

f 
~ -tzl 
3: 



f ... 
~ 

a: 
ft 

[ 
0 ..., 
0 

l g 

N 
I 

!j 

Extended Description for Diagram 6.S 

If entrance is from any module except UCO PY, control 
goes to step 2. If entrance is from UCO PY, control goes to 
step 3. 

IDCIOOt 

Procedure: lDClOPT 

2 IDCIOPT uses the type identification to determine 
whether or not the record is a message. An omitted 
identification or an identification of zero indicates a data 
record. A nonzero value indicates a message is to be 
written. lf the address for the lOCSTR is zero or the open 
for processing flag, lOCMSGOP, is off, lDClOPT issues a 
UABORT macro. lflOCPNM is zero, only one record is 
written with UPUT and the length of the record is 
assumed to be in IOCDLN. lf IOCPNM is nonzero, one or 
more records are written with this UPUT. IOCDLN 
contains the total length of all the records, and each record 
is preceeded by a two byte length field for that record. 
IDCIOPT sets lOCPNM to one if it was initially zero. For 
multiple records, lDClOPT puts the length of the first 
record in lOCDLN and lDClOPT puts the address of the 
data for the first record in IOCDAD. 

IDCIOOt 

Procedure: PUTEXT 

3 If the data set is externally controlled, PUT EXT constructs 
an arguments list. PUTEXT gives control to the external 
routine addressed in lOCXDAD. lf the return code from 
the external routine is zero, PUTEXT increments the 
number of successful UPUTs. lf the return code is 12, 
PU TEXT turns off the open for processing flag 
(lOCMSGOP) so that no processing can be done against 
this data set. PUTEXT returns control to step 2 for the 
next record. 

IDCIOOt 

Procedures: PUTVSAM, CHANGE, VSAMERR, 
PRINTMSG, PUTNONVS, IRSOSYN, PUTREP 

4 For VSAM data sets continue with 4.a, for nonVSAM data 
sets go to 4. b. 

a. PUTVSAM checks to see if IOCMACER is set by the 
caller of UPUT, if so, PUTVSAM issues the ERASE 
macro with a pointer to the RPL. ln this case, a UGET 
for update must previously have been issued by the 
caller. If IOCMACEN is set by the UPUT caller, 
PUTVSAM issues the ENDREQ macro with a pointer 
to the RPL. 

If any IOCSTR flag indicating a change in processing 
modes, has been set by the caller, CHANGE makes the 
appropriate change in the RPL. The following 
IOCSTR settings specified by the issuer of UPUT are 
reflected in the RPL: 

IOCSTR 
IOCCHPSQ 
IOCCHPDR 
IOCCHPSK 
IOCCHPCR 
IOCCHPBK 
IOCCHPKG 
IOCCHPKE 
IOCCHPUP 
IOCCHPNU 

RPLOPTCD= 
SEQ 
DIR 
SKP 
ADR 
CNV 
KOE 
KEQ 
UPD 
NUP 

CHANGE will set all change processing flags to 'O', 
and the IOCSTR will be changed to reflect the new 
processing option. 

PUTVSAM puts the record length and address in the 
RPL. 

If IOCMACRR='l', indicating a PUT to an RRDS, 
the RPLARG field in the RPL is set to the address of 
IOCREL. lf OPTCD=CNV,DIR, RPLARG field is 
set to the address of IOCRBA. 

If user buffers are specified, (IOCMODUB= l ), the 
output area address in the RPL is obtained from 
IOCWORK rather than IOCDAD. 

PUTVSAM issues a PUT macro to write the record. 
The record may be a logical record or a control 
interval. If the return code from the PUT is zero, 
PUTVSAM increments the number of successful 
UPUTs in IOCRRN. lfthe return code is nonzero, 
VSAMERR obtains the error code from the RPL. If 
the error code indicates a logic error, VSAMERR 
determines if it is a duplicate record or a 
record-out-of-sequence, PRINTMSG writes the 
appropriate message. Otherwise, the error is assumed 
to be an 1/0 error, and PRINTMSG writes a message. 
The call to VSAMERR by UPUT to print logical error 
messages is bypassed if the suppress messages flag, 
IOCMSGSM, has been set by the UPUT caller. 

PUTVSAM will provide replace processing under the 
following conditions: 

• A return code from PUT indicating a logical error (08) 

• RPL feedback code indicating duplicate record. 

• Replace processing specified by caller 
(IOCMODRP=l) 

In the PUTREP routine, IOCWKA is checked to 
determine if an input work area exists. If not, a 
UG POOL is issued to obtain an input work area. The 
RPL is modified to permit update processing. A GET 
for update is issued followed by a PUT. The IOCSTR 
for the PUT will reference the address of the original 
PUT record in IOCDAD. After the PUT, the RPL is 
reset for no update processing. 

If the return code for an 1/0 error is greater than 4, 
VSAMERR turns off the open for processing flag 
(IOCMSGOP). PUTVSAM returns control to step 2 
for the next record. 

b. PUTNONVS checks the length of the record against 
the IOCTRN to be sure that the record can be written. 
If the length is too long, PRINTMSG writes an error 
message and control returns to step 2 for the next 
record. For the SYSLST data set, PUTNONVS 
compares the record length to the maximum and 
truncates the record if it is longer than the maximum. 
The record is processed according to the record format. 

• For spanned records, PUTNONVS constructs a 
Record Descriptor Word (RDW) in the first four 
bytes of the work area. PUTNONVS moves the 
record to the work area making one spanned logical 
record. The address of the work area will be 
specified in the PUT macro. 

If the output IOCSEX indicates export of a catalog 
recovery area (IOCRCVM=' l '), a 4-byte header 
must be prepended to each record of the portable 
data set. The header consists of 4 bytes of binary 
zeros. However, if the data-length (IOCDLN) and 
the data pointer (IOCDAD) in the IOCSTR are 
both zero, then the 4-byte "header" is written as a 
software end-of-file and consist of X'00008000'. 

• For variable blocked records, PUTNONVS checks 
to be sure the block will fit in the IO AREA being 
used as the buffer. If the block is too long, 
PUTNONVS issues the TRUNC macro to write 
the current buffer and to start processing in the 
other 1/0 area. 

• For variable records, PUTNONVS constructs a 
ROW in the first four bytes of the area in the buffer 
and PUTNONVS moves the record following the 
ROW. 

PUTNONVS issues a PUT macro. The address of 
the next area is returned by the PUT 
macr~xcept for spanned records-and is saved. 
lf the records are variable blocked, PUTNONVS 
saves the number of bytes remaining in the current 
area. If an I/0 error is detected during the PUT 

f 
~ 

i 
!. 
I 

f 
2. 
; 
~ 



Licensed Material - Property of IBM 

2-228 VSE/VSAM Acceu Method Services Lope 



f 
~ 

I 
2. 

i ; 
1· 
t-) 
I 

~ 

IDCIOOt 

macro, IRSOSYN sets error data. PRINTMSG 
writes the message. IRSOSYN turns off the open 
for processing flag, IOCMSGOP. lfthere are no 
erron, PUTNONVS increments the count of 
successful UPUTs in IOCRRN. PUTNONVS can 
use device independent, magnetic tape, or 
sequential disk DTF processing. PUTNONVS 
returns control to step 2 for the next record. 

Procedure: IDCIOPT 

S When all the records have been written, IDCIOPT puts a 
return code in register 15 and returns control to the 
module that issued the UPUT macro. 

I 
~ 

I 
I 

f 
s. 
;; 
~ 



~ Diagram 6.6. UCOPY Macro 
~ 
0 

~ 
tr:I 

~ 
> 
~ 

§ 
g: 

~ 
[ 

J. 
"" 

i 

INPUT 

Register I 

fGDT 

IOCSTR for Output Data Set 

IOCSTR for Input Data Set 

Input Data Set 

LJ BC. 

From Diagram 6.0 

PROCESSING 

1. Obtains input record. 

2. Tests return code. 

3. Puts record on output IOCSTR 
and writes record. 

4. Tests return code. 

5. Returns to step 1 until an error 
is encountered or end-of-file is 
reached. 

6. Returns. 

OUTPUT 

Return Code 

I I 
IOCSTR for Output Data Set 

I OCR RN 

IOCDAD 

IOCACN 

Return Code 
IOCKYA c --- - J IOCREA 

IOCDLN EjCI 
Input Data Set 

LJ 
Register 15 

I I 

I 
~ 

i 
!!. 
I 

f 
s. 
a; 
~ 



I 
'"' !-:> 

I 
e, 

1-
t-.) 

I 
t-.) 
~ 

Extended Description for Diagram 6.6 

IDCIOOl 

Procedure: IDCIOCO 

IDCIOCO obtains a record from the input data set by 
calling procedures used for a UGET macro. The UGET 
procedure returns control to this point in the UCO PY 
routine. Arguments to the UGET procedures are set up 
just as though a UGET had been issued. If export 
CIMODE processing has been requested, the control 
interval is retrieved. For each input control interval that 
contains a segment of a spanned record, the segment is 
checked for a consistent level number; only a valid 
segment is written. If the segment is invalid, message 
IDC13291 is written and the remaining segments are 
ignored. 

IDCIOOl 

Procedures: IDCIOCO, PRINTMSG 

2 IDCIOCO tests the return code from the UGET 
procedures. If the return code is zero, the UGET 
procedure read the record successfully. If the output 
IOCSTR indicates RRDS (IOCMACRR=l) and the input 
IOCSTR indicates nonRRDS (IOCMACRR==O), an 
incremental counter is maintained. This counter is 
incremented by one each time a record is successfully 
retrieved from the nonRRDS. This count is placed in the 
output IOCREL prior to UPUTing the record. 

If the return code indicates end-of-file, control goes to step 
6. If the return code indicates an error, IDCIOCO 
increments the number of errors for UCO PY. If the 
UG ET routine has set a message, PRINTMSG writes it. 
Processing continues with the next input record if the 
number of errors is less than four, and the open for 
processing flag (IOCMSGOP) is on. If the number of 
errors is 4 or IOCMSGOP is off, IDCIOCO turns off 
IOCMSGOP and UCOPY quits. 

IDCIOOl 

Procedure: IDCIOCO 

3 • If the output IOCSTR does not indicate export 
CIMODE processing: 

IDCIOCO moves the length and address of the 
record just read from the input IOCSTR to the 
output IOCSTR. lfthe input and output IOCSTR 
both indicate RRDS, IOCREL is moved from the 
input IOCSTR to the output IOCSTR before issuing 
the UPUT. This will result in exact recreation of the 

correlation between the relative record number in the 
input and output RRDS. 

If the input IOCSTR indicates IOCMACRR='l' and 
the input IOCSEX indicates IOCMODXM='l', this 
is an EXPORT of an RRDS. It is required that the 
relative record number be carried in the portable data 
set. The relative record returned in IOCREL when 
the record is retrieved is placed in the 4-byte field 
immediately preceding the record. The RRDS record 
plus the 4-byte field is then written to the portable 
data set. 

If the output IOCSTR indicates IOCMACRR='l' 
and the output IOCSEX indicates IOCMODXM='l', 
this is an IMPORT of an RRDS. Records retrieved 
from the portable data set have the relative record 
number prepended to the RRDS record. This relative 
record number is moved to the output IOCREL. The 
address of the beginning of the RRDS record is set to 
its logical beginning (the address of the retrieved 
record +4) and the length of the record to be written 
is reduced by 4 bytes. 

• If the output IOCSTR does indicate export CIMODE 
processing: 

For a spanned record, a GET is issued for each 
segment, and the spanned record is built in a work 
area. When all segments are retrieved, a PUT is 
issued for the record. 

For a non-spanned record, the control interval is 
deblocked, and a PUT is issued for each record 
contained in it. 

IDCIOCO writes the record by calling the same 
procedures used for the UPUT macro. IDCIOCO sets up 
the arguments to the procedures just as though a UPUT 
macro has been issued. The UPUT procedure returns 
control to this point in the UCOPY routine. 

IDCIOOl 

Procedure: IDCIOCO 

4 IDCIOCO tests the return code from the UPUT 
procedures. If the return code is zero, the UPUT 
procedure wrote the record successfully. If the return code 
indicates an error, IDCIOCO increments the number of 
errors for the UCO PY. 

IDCIOOl 

Procedures: PRINTMSG, IDCIOCO 

5 Control goes to step l for the next record. Processing 

continues if the number of errors is less than four, and 
IOCMSGOP is on. PRINTMSG writes a message if the 
message has been formatted. If the number of errors is 4, 
IDCIOCO truns off IOCMSGOP and UCOPY quits. 

IDCIOOl 

Procedure: IDCIOCO 

6 IDCIOCO puts a return code in register 15, and returns 
control to the module issuing the UCOPY. 

r-

[ 
3: • i 
!. 
I 

l 
3 
s. 
; 
3: 



~ Diagram 6. 7. UVERIFY Macro 
N w 
N 

~ 
rt! 
........ 

~ 
> 
~ 

f 
~ 
n 

[ 
rn n 
~ 
~r ...., 
t""' 

~-

INPUT 

Register I 

tGDT 

Catalog Data Set 

From Diagram 6.0 

PROCESSING 

1. Checks data set. 

2. Updates end-of-file indicator in 
VSAM catalog. 

3. Returns. 

OUTPUT 

VSAM 
Catalog 

Register 15 

I I 

~ 

l 
3: 

i 
!!. 
I 

f 
s. -1:111 

3: 



f 
~ 

I 
2, 

f. 
N 
I 

N 
w 
w 

Extended Description for Diagram 6. 7 
IOCIOOI 

Procedure: IDCIOVY 

1 The second argument is assumed to be a valid IOCSTR 
address. The UVERIFY does not continue if: 

• The file is not VSAM. 

• No RPL has been built for a VSAM file. 

• The VSAM file is not open. 

No error message is written for the last two conditions 
because message have been written at open. 

IOCIOOI 

Procedure: IDCIOVY 

2 IDCIOVY issues a VERIFY macro. 

IOCIOOI 

Procedures: VSAMERR, PRINTMSG, IDCIOVY 

3 If the return code is not zero, VSAMERR obtains the error 
code from the RPL. If the error is a logic error, 
PRINTMSG writes a message. If the error is an 1/0 error, 
PRINTMSG writes an error message. If the error code 
returned in the RPL is not 4, which indicates that the error 
occurred in the data, VSAMERR turns off the open for 
processing flag (IOCMSGOP). IDCIOVY puts a return 
code in register 15 and returns control to the module that 
issued the UVERIFY. 

~ 

l 
~ • i 
!. 
I 

l 
3 
g,. 
; 
~ 



N 
I 

N 
~ 
~ 

~ 
t?1 

......... 
< 
{ll 

> 
a:: 

r 
a:: ;. 
8. 
{ll 
n 
3. 
B 
t""" 
0 

'?9. 
() 

Diagram 6.8. UIOINFO Macro 

INPUT 

CDT 

Option byte 

Return area pointer 

Caller-supplied data 

UGPOOL storage ID 

Direct 
address 

8 

From Diagram 6.0 

PROCESSING 

1. Obtains information requested. 

2. Obtains storage for return area if not 
supplied by caller. 

3. Formats requested information into 
return area. 

OUTPUT 
Register 1 

Option byte 

Return area pointer 

Cal~~r-_supplied data 

t UGPOOL storage ID 

r-

i 
fll a. 
3: 
ID 
~ 
::L 
!. 
I 
~ 
'I 
::l 
"< 

e. 
; 
:: 



i 
& ... 
!':> 

I 
2, 

i' 
!· 
N 
I 

N 
~ 
\A 

Extended Description for Diagram 6.8 

IDCI003 

Procedure: DSINFO 

UIOINFO analyzes the option byte passed by the caller 
and determines what kind of information is required. Data 
set name, volume serial list and Logical Unit Blocks 
(LUB) require that UIOINFO obtain job control 
information. UIOlNFO issues CD LOAD to load 
IKQVLAB, the VSAM read label cylinder module.and 
then gives control to IKQVLAB. The work area passed to 
IKQVLAB is that of the existing work area in IDCI002's 
automatic storage. If the return code from IKQVLAB is 
nonzero, UIOINFO sets a return code and returns control 
to the calling procedure. If the return code from 
CDLOAD was nonzero, DSINFO issues a UABORT 
macro. If the return code is 12 (insufficient storage was 
available), DSINFO sets the UABORT code to 28; 
otherwise, DSINFO sets the UABORT code to 64. 

If device type information is requested, UIOINFO issues a 
CDLOAD macro for IKQVDTPE and passes control to it 
providing a pointer to the label information that will be 
returned from IKQVLAB. Label information is not 
needed if the VOLID is already known. In that case, 
IKQVDTPE does a GETVCE using the VOLID. The 
reading oflabel information is needed only to find a 
VOLID. lt is assumed that the volume is already assigned; 
if not, a job control error is returned. 

lftimestamp information is requested, UIOINFO issues 
an OVTOC macro to open the VTOC on the volume. It 
next issues a PVTOC macro with the read option to read 
the format-4 label of the VTOC. When processing is 
complete, a CVTOC macro is issued to close the VTOC. 

IDCI003 

Procedure: DSINFO 

2 All of the information that UIOINFO obtains in Step l is 
placed in IDCI002's automatic storage work area. During 
this process UIOlNFO calculates the actual length of the 
data to be passed back to the caller. The caller can either 
pass a return area to UIOINFO or pass a UGPOOL ID. If 
the caller passes a return area, UIOINFO determines if it 
is large enough (the length is contained in bytes 0 and I of 
the return area). If not, UIOINFO places the total size 
needed in bytes 2 and 3 of the return area. sets a return 
code, and passes control back to the caller. 

If the caller has passed a UGPOOL ID, UIOINFO issues 
a UGPOOL macro for the required amount of storage 

with the storage identification passed by the caller. In this 
case the caller is responsible for freeing this storage. 

IDCI003 

Procedure: DSINFO 

3 UIOINFO formats the requested information into the 
return area and passes control back to the caller. 

r-

1 
i. 
3: • ; 
:::!. 
!. 
I 
l 
1 
3 
a. 
; 
3: 



Licensed Material - Property of IBM 

2-236 VSE/VSAM Access Method Services Logic 



f .. 
~ 

I 
2, 

~ 
~­g 

N 
I 

N w ...... 

Text Processor Visual Table of Contents 

7.0 

Text Processor 
Overview 

J 7.1 l 7.2 7.3 l 
UESTS UESTA UR EST UR ES ET 

7.4 1 7.5 

UPRINT 

I 
l 7.5.1 l 

CONVERT PRINT 

l 7.6 

UERROR 

~ 
m 
i. 
3: 
ID 
~ 
:L 
!. 
I 

l a 
s. -= 3: 



N 
I 

N 
w 
00 

< 
{ll 

~ 
> 
3: 

f 
I 
r 
t"" 
0 

~-

Diagram 7.0. Text Processor Overview 

INPUT 

Register I 

Argument List 

Register 

Argument List 

PCT 

Dynami<.: 
Text 

Argument List 

ERCNVTAB 

From Module 
Issuing Macro 

PROCESSING 

1. For page control continue to Step 2: 
for line control, go to Step 3. 

2. Manipulates PCT based upon macro 
specified: 

UESTS -[) See Diagram 

UESTA -[) See Diagram 

UR EST -CV See Diagram 

• URESET -[) See Diagram 

3. Formats, converts, and prints lines: 

UPRINT 
See Diagram -[) 

4. Formats error messages: 

UERROR 
See Diagram -0 

OUTPUT 

PCT 

Register 15 

r--- I 

Printed Lines 

D 
Register 15 

I I 

Printed Lines 

CJ 
Register 15 

r- 1 

r"' 

[ 
f 
i: 
I 

J 
s. 
; 
~ 



n 
! 
!i 
~ 

~ 

[ 
e, 

~ 
iii 
~-

N 
I 

N w 
\0 

Extended Description for Diagram 7 .0 

IDCTPOI 

Procedure: IDCTPOl 

For page control continue with step 2; for line control go 
to step 3. 

2 The page control macros use the argument list to change 
the Print Control Table, PCT. The page control macros 
are: 

VESTS, which establishes the PCT with data from a 
static text module. 

UESTA, which establishes the PCT with data from 
storage. 

UREST, which changes the PCT after a UESTS or 
UEST A macro has been issued. 

URESET, which sets Access Method Services defaults 
in the PCT. 

Each page printed by Access Method Services has three 
sections: 

0 to 3 subtitles 

2 Header line 
Data line 

3 0 to 3 footing lines 

The title section contains the main title line and from zero 
to three subtitle lines. All lines in the title section are 
printed at the top of each page. The main title line is the 
first line on each page followed by subtitle lines. The 
header and data section contains any header and data 
lines. The header lines are kept in static text modules and 
are printed on page overflow conditions The footing 
sections contains from zero to three lines printed at the 
bottom of each page. At least one vertical space precedes 
them. More vertical spaces can appear depending upon the 
control characters in the first footing line. A new page 
results from any of the page control macros, a page eject 
on a line, or a request to print a line that would cause more 
lines on a page than specified. If there is not enough space 
on a page for all the header lines and one data line, none 
are printed. A page is ejected, and title and header lines 
are printed on the next page. Footing lines are always 
printed on each page. Vertical spacing is done before the 
line is printed. 

The page control macros give the facility to change the 
following items in the PCT: 

Item Def a ult Limits 

Main title line l 

Page number 107 l to line width minus 
location field length 

Time-of-day 75 l to line width minus 
location 8 for field length 

Date location 91 l to line width minus 8 
for field length 

Subtitle line no subtitles 0 to 3 lines 

Footing line no footing 0 to 3 lines 

Line width 120 133 maximum 

Page depth 54 999 maximum 

Default vertical l vertical l, 2, 3, or vertical 
space character space spaces 

Translate table standard 
for print chain tables 

3 The UPRINT macro formats data within a line, converts 
data to a printable form, and prints the line or lines. 
IDCTPOl uses the PCT to format the line and the page. 
The line to be printed is described by two kinds of input: 
static text and dynamic text. Static text is unchanging data 
and format structures that reside in a module referred to as 
a static text module. Dynamic text is any changing data 
and format structures that reside in storage. Format 
structures, FMTLIST, describe how the line is to be 
formatted. The types of formatting are: 

Vertical spacing 
Inserting data into a line 
Extracting fields from a block of data in storage 
Extracting data from a static text module 
Defining default data 
Repeating any of the above actions 

The types of conversion are: 

Binary to hexadecimal 
Binary to hexadecimal with apostrophe 
Binary to dump 
Binary to decimal 
Packed decimal to unpacked decimal 
EBCDIC, no translation 

The types of vertical spacing are: 

Absolute spacing 

The line is printed at a given line number on the 
page. If data has been printed at that line number, 
the page is ejected, and the line is printed at the first 
data line number on the next page. If the line 
number is within the title section or header lines, 
the line is printed at the line number immediately 
following the header lines. If the line number is 
within the footing section, the page is ejected, and 
the line is printed immediately following the header 
lines on the next page. 

Relative spacing 

The line is printed at a number of vertical spaces 
counted from the last printed line. If there is not 
enough room on the page to print the line, the page 
is ejected, and the line is printed after the title 
section and header lines on the following page. 

Eject 

The line is printed after the title section and header 
lines on the following page. 

4 The UERROR macro formulates prose messages for the 
return and reason codes caused by catalog errors. It 
instigates multilevel message requests to the UPRINT 
macro. Formatting and printing of the multilevel message 
is handled by the UPRINT macro. 

c:: 
n 
tD 

l 
3: 
~ 
tD .. 
!: 
I 

l a 
~ 
; 
3: 



~ Diagram 7.1. UESTS Macro 
tJ 

~ 

< 
{ll 

trl 
......... 
< 
{ll 

> 
a':: 
> 
§ 
= 
a':: 
0 

[ 
~ 
~ g· 
rA 

t""' 
«i 
t;· 

INPUT 

GDTTPH 

From Diagram 7.0 

PROCESSING 

1. If entrance is from first UESTS 
macro, continue to Step 2; if 
entrance is after first UESTS 
macro, go to Step 3. 

2. Performs initial processing. 

3. Prints existing lines. 

4. Remakes secondary PCT. 

5. Gets input from static text 
module. 

6. Initializes values in work table. 

7. Puts data in PCTs. 

8. Returns. 

e 

e 

P04WT 

OUTPUT 

Stack Buffer 

Printed Lines 

D 

.PCTI ePCT2 

~I 

Register 15 

I I 

~ 
I 
l 
~ 
ID 

i 
!!. 
I 

J 
9--= ~ 



f ... 
!':» 
~ 
ft 

[ 
~ 
0 
'i 

i· 
..., 
I 

~ 

Extended Description for Diagram 7. t 

IDCTP04, IDCTPOl 

Procedures: ESTSCONT, INITPCT, STACKPUT 

I If entrance is from the first UESTS macro, processing 
continues with step 2. If entrance is after the first UESTS 
macro has been issued, processing continues with step 3. 

2 ESTSCONT passes control to INITPCT which tests the 
G DTTPM to determine if this is the first UESTS macro 
issued. If G DTTPH in the GOT is not zero, a PCT already 
exists, and control is given to step 3. The first time a 
UESTS macro is issued the GDTTPH is zero, which 
means that no PCT exists. When no PCT exists, INITPCT 
obtains and initializes a PCT. INITPCT issues a 
UGSPACE macro for the primary PCT. UGSPACE puts 
the address of the primary PCT in GDTTPH. (The GOT 
refers to the PCT as the Text Processor Historical Data 
Area.) The Text Processor (TP) uses two Print Control 
Tables-a primary PCT and a secondary PCT. Each PCT 
has the same fields. The primary PCT contains default 
values. INITPCT creates it during processor initialization, 
and deletes it at processor termination. It exists throughout 
Access Method Services processing. The secondary PCT 
contains current values which are different from the 
default values in the primary PCT. INITPCT creates it 
and deletes it many times during Access Method Services 
processing. The address of the secondary PCT is in the 
primary PCT. When the Text Processor uses a PCT, ifthe 
secondary PCT exists, it is used instead of the primary 
PCT. 

Rather than writing each line as it is completed, the Text 
Processor saves time by putting completed lines in an area 
of storage called the stack buffer. When the stack buffer is 
full, ST ACKPUT writes it. ESTSCONT issues a 
UGSPACE macro for storage for the stack buffer and puts 
the address of the stack buffer in the fields PCTBUF and 
PCTBNL in the primary PCT. ESTSCONT opens the 
System output data set with a UOPEN macro. Control is 
given to step 4. 

IDCTP04 

Procedure: ST ACK FL 

3 Because controls governing the writing like page depth 
and line width are changing, the lines formatted under the 
current control values must be written before the controls 
change. STACKFL writes the stack buffer with a UPUT 
macro . 

IDCTP04 

Procedure: IN IT PCT 

4 Prior to making any changes INITPCT gives control to 
ST ACKFL to flush the stack buffer. If a secondary PCT 
exists-that is PCTSPP in the primary PCT is not 
zero-INITPCT releases the secondary PCT with a 
UFPOOL macro. INITPCT copies some data from the 
secondary PCT to the primary PCT before the secondary 
PCT is freed. INITPCT issues a UGPOOL macro for a 
secondary PCT. INITPCT sets the identification, 
PCTIDN, in the secondary PCT to 'PCT2', and sets the 
PCTSPP field to zero. 

IDCTPOS 

Procedure: IDCTP05 

5 If a static text module is used once, it is likely that it will 
be used again on the next call to the Text Processor. 
Rather than loading and deleting a static text module each 
time it is used, the static text module is kept in storage 
until a different static text module is needed. The address 
of the static text module in storage is kept in PCTSTM in 
the PCT. The static text identification passed by the 
calling program to the Text Processor as input is used to 
reference the appropiate module. IDCTP05 concatenates 
the first three bytes of the static text identification with 
'IDCTS' to form the module name. IDCTP05 compares 
the module name to the name of the static text module in 
storage in PCTSTM. lfthe names don't match, IDCTP05 
deletes the static text module in storage with a UDELETE 
macro, and IDCTP05 loads the requested static text 
module with a ULOAD macro. IDCTP05 puts the name 
of the loaded module in PCTSTM and the address of the 
module in the field PCTSME in the PCT. If a secondary 
PCT exists, it is used; otherwise the primary PCT is used. 

IDCTP05 uses the low-order byte of the static text 
identification as an index to obtain the correct static text 
entry. IDCTP05 copies the entry from the static text 
module into storage that IDCTP05 obtains with a 
UGSPACE macro. This is done so the static text entry is 
available if the static text module is deleted. 

IDCTP04 

Procedure: P04SETUP 

6 P04SETUP puts data from the static text entry into a work 
table. P04SETUP uses the work table to make the input 
from UESTS, UEST A, and UREST into the same format. 

ll>CTP04 

Procedure: PCTSETUP 

7 PCTSETUP forces a page overflow so the next line will 
start on a new page. If no secondary PCT exists, 
PCTSETUP initializes the primary PCT with the 
minimum values needed to control a page, which are: 

• A translate table for a print chain 
• A page number increment 
• A line number where the first line is printed 
• A line number where the last line is printed. 

For initializing either the primary PCT or the secondary 
PCT, PCTSETUP verifies the input data and puts it into 
the appropiate PCT. 

IDCTP04 

Procedure: ESTSCONT 

8 ESTSCONT deletes the storage for the static text entry 
with a UFSPACE macro. ESTSCONT puts a return code 
in register 15, and control returns to the module that 
issued the UESTS macro. 

t: 
f') 
fD 
:::s 

i. 
3: 
ID 
i; 
:::!. 
!. 
I 

i 
s. -= 3: 



"' I 

"' t; 

~ 
~ 
~ 
> 
~ 

r 
I 
fl.I 

I· 
{. 

Diagram 7.2. UESTA Macro 

INPUT 

] Rcgi.,tcr I 

c ~ 1. 

tGDT 
2. 

/ t IOCSTR 
3. 

Print Control 
Argument Li.,t 

4. 

CiDT c GDTll'll 

PCl I 5. -
PCTSPP t.,PCT2 

hom lJia!!ram 7 .0 l PROCESSING 
T 

Prints existing lines. 

Remakes secondary PCT. 

Initializes values in work area. 

Puts data in PCTs. 

Returns. 

=> 
1] _c P04WT 

-i-/' 

'..J 

J I :;.> 

~ 

()llTPlTT 

Printed Linc., 

D 
PCT I 

PC PS PP J.a.. PCT 2 

Rcgi.,tcr 15 

L I 

I 
a: • ! 
!. 
I 

l a 
s. 
; 
a: 



i .. 
!"! 

I 
0 ..., 

~ 
I· 
N 
I 

~ w 

Extended Description for Diagram 7 .2 

IDCTP04 

Procedures: ESTACONT, INITPCT 

I EST A CONT determines if a primary PCT exists. 
ESTACONT invokes INITPCT to get storage for the 
PCT. ESTACONT then invokes P04SETUP to build the 
work table; EST ACONT then invokes PCTSETUP which 
initializes the PCT. Because controls governing the writing 
(like page depth and line width) are changing, the lines 
formatted under the current control values must be written 
before the control values change. INITPCT writes the 
stack buffer with a UPUT macro. 

IDCTP04 

Procedure: INITPCT 

2 If a secondary PCT exists-that is PCTSPP in the primary 
PCT is not zero-INITPCT releases the secondary PCT 
with a UFPOOL macro. INITPCT issues a UGPOOL 
macro for a new secondary PCT. INITPCT sets the 
identification, PCTIDN, in the secondary PCT to 'PCT2', 
and INITPCT sets the PCTSPP field to zero. UGPOOL 
puts the address of the new secondary PCT in the field 
PCTSPP in the primary PCT. INITPCT copies all the data 
in the primary PCT into the secondary PCT. INITPCT 
copies some data from the secondary PCT to the primary 
PCT before the secondary PCT is deleted. 

IDCTP04 

Procedure: P04SETUP 

3 P04SETUP puts data from the input into a work table. 
PCTSETUP uses the work table to make the input from 
UESTS, UEST A, and UREST into the same format. 

IDCTP04 

Procedure: PCTSETUP 

4 PCTSETUP forces a page overflow so the next line will 
start on a new page. If no secondary PCT exists, 
PCTSETUP first initializes the primary PCT with the 
minimum values needed to control a page which are: 

• A translate table for a print chain 
• A page number increment 
• A first page number 
• A line number where the first line is printed 
• A line number where the last line is printed 

For initializing either the primary PCT or the secondary 
PCT, PCTSETUP verifies the data in the work table and 
puts it into the appropiate PCT. 

IDCTP04 

Procedure: EST ACONT 

S ESTACONT puts a return code into register 15, and 
control returns to the module that issued the UESTA 
macro. 

!:"'" 

if 
1:1 

l 
f 
i: 
I 

l a 
2--= 3: 



~ Diagram 7.3. UREST Macro 
av 
t 

;;i 
ft! 

~ 
> 
~ 

§ 
= ~ 
0 

[ 
{ll 

~ 
~· 

i. n 

INPUT 

Register I 

Argument List 

PCT I PCT 2 

PCTSPP 

From Diagram 7.0 

PROCESSING 

1. Prints existing lines. 

2. Initializes values in the work 
area. 

3. Puts data in PCT. 

4. Returns. 

P04WT [--- I 

OUTPUT 

Printed Linc~ 

D 
PCT I PCT 2 

~ 

Register 15 
r ·- -- I 

rs= 

= I. 
3: 
! 
:L 
!. 
I 

l 
s. -to 
~ 



n 

I 
!':' 

~ 
[ 
0 ..., 
0 
'g 
iii 
§• 

N 
I 

~ 
VO 

Extended Description for Diagram 7 .3 

IDCTP04 

Procedures: RESTCONT, STACKFL 

I A primary PCT must exist. If it does not, RESTCONT 
issues a UABORT macro. Because controls governing the 
writing (like page depth and line width) are changing, the 
lines formatted under the current control values must be 
written before the control values change. ST ACK FL 
writes the stack buffer with a UPUT macro. 

IDCTP04 

Procedure: P04SETUP 

2 P04SETUP puts data from the input into a work table, 
P04WT. PCTSETUP uses the work table to make the 
input from UESTS, UESTA, and UREST into the same 
format. 

IDCTP04 

Procedures: RESTCONT, PCTSETUP 

3 The UREST macro allows the user to change any 
combination of the following: 

• Subtitle lines 
• Footing lines 
• Line width 
• Page depth 
• Default space character 
• Translate table 
• Starting page number 

A value of zero in any of the parameter lists causes the 
item to be reset to the Access Method Services default. 
RESTCONT evaluates the input parameter list. If the 
secondary PCT exists, PCTSETUP modifies it. Otherwise, 
PCTSETUP modifies the primary PCT. 

IDCTP04 

Procedure: RESTCONT 

4 RESTCONT puts a return code into register 15, and 
control returns to the module that issued the UREST 
macro. 

r­
n 
I 
i. 
3: 
ID ;­
:1 
!. 
I 

1 a 
9-
; 
3: 



~ Diagram 7.4. URESET Macro ...... 
~ 

~ 
l:'tl 

~ 
> 
~ 

r 
~ n 

[ 
g> 

~· 
C'I> 

t"' 

~· 

INPUT 

Rcgi~ter I 

tGDT 

1 IOCSTR 

Page Numher 

GDTTPH 

PCTSPP PCT 2 

• From Diagram 7.0 

... PROCESSING OUTPUT 

Printed Linc:~ 

1. Prints existing lines. D 
Register I 

2. Returns last page number. 

3. Frees secondary PCT and subpool. t GOT 

t IOCSTR 

Page Numhcr 

Register 15 

4. Returns. I J 

~ 

l 
3: • ; 
::L 
!!. 
I 

f 
s. 
; 
3: 



i 
~ 

I 
0 
~ 

j> 

I· 
..., 
I 

~ 

Extended Description for Diagram 7 .4 

IDCTP04 

Procedures: RESETCON, ST ACK FL 

1 A primary PCT must exist. If it does not, RESETCON 
issues a UABORT macro. If a secondary PCT exists, 
RESETCON forces a page overflow so the next line will 
begin on a new page. Because controls governing the 
writing (like page depth and line width) are changing, the 
lines formatted under the current control values must be 
written before the control values change. ST ACKFL 
writes the stack buffer with a UPUT macro. 

IECTP04 

Procedure: RESETCON 

2 If the invoker of Access Method Services requested that 
the last page number be passed, RESETCON converts the 
current page number to binary and places it in the 
invoker's parameter list. 

IDCTP04 

Procedure: RESETCON 

3 Before the secondary PCT is deleted, RESETCON copies 
some data into the primary PCT. One UFPOOL macro 
releases the secondary PCT, subtitle lines, footing lines, 
and any static text entries addressed from the secondary 
PCT in PCTSQP because everything was obtained with 
subpool identification 'TPOl'. RESETCON sets the 
address of the secondary PCT to zero in the primary PCT 
in PCTSPP. This resets all page control values to the 
values contained in the primary PCT. 

IDCTP04 

Procedure: RESETCON 

4 RESETCON puts a return code into register 15, and 
control returns to the module that issued the URESET 
macro. 

c: g 
:::I 
fl) 

l 
::: 
ID 

[ 
!!. 
I 

J 
s. 
; 
::: 



~ Diagram 7 .5. UPRINT Macro 
~ 
00 

~ 

~ 
> 
~ 

§ 
• 
I 
Sf 

~· 
~ 
'R· 

INPUT 

Register 

GDT 

IOCSTR 

Static Text 
List Module 

horn Dia~ram 7 .II 

PROCESSING 

1. If entrance is from module issuing 
UPRINT, continue to Step 2: if 
entrance is from PRINT or 
CONVERT, go to Step 3 . 

2. Locates format list. 

3. Processes format list. 

CONVERT ~ 
See Diagram --u 

PRINT ~ 
See Diagram --u 

Space 

Static text 

Insert text 

Default 

• Block 

Replication 

End of format list 

4. Returns. 

OlTPllT 

f-ormat Li ... t 

Register 15 r-- -- I 
r-

( 
::: • ~ 
:L 
!!?. 
I 

f 
s. 
; 
::: 



(') 
t:r 

i 
~ 

~ 

i 
0 -. 
0 
'i 

i· 
N 
I 

N 

it 

Extended Description for Diagram 7 .S 

If entrance is from a module issuing a UPRINT macro, 
continue with step 2; if entrance is from PRINT, Diagram 
7.5.2, or CONVERT, Diagram 7.5. I, go to step 3. 

IDCTPOt. IDCTP05 

Procedures: IDCTPPR, IDCTP05 

2 The format list, FMTLIST, and Print Control Table, 
(PCT), must be found. If a secondary PCT exists, 
IDCTPPR uses it; otherwise, IDCTPPR uses the primary 
PCT. The format list, FMTLIST, can be in one of three 
locations: 

• In the FSR 
• In a list of static text entries chained from the PCT 
• In a static text module 

If the format list is in the FSR, DARGSTID in the 
Dynamic Argument List, DARGLIST, is zero. The calling 
program gives the address of the FMTLIST to UPRINT 
as the fourth argument. 

IDCTPPR compares the static text identification in 
DARGSTID against the static text identification of each 
entry addressed from the Print Control Table in field 
PCTSQP. If a match is found, IDCTPRR uses that 
F MTLIST in the static text entry as input to UPRINT. If a 
match is not found, IDCTPRR must obtain the FMTLIST 
from a static text module. 

IDCTP05 concatenates the name of the static text module 
in DARGSMOD with the characters ·mcTS' and 
compares it with the name of the static text module in 
storage. The name of the static text module currently in 
storage is kept in PCTSTM in the PCT. If the names do 
not match, IDCTP05 deletes the module named in 
PCTSTM with a UDELETE macro, and IDCTP05 loads 
the module named in DARGSMOD with a ULOAD 
macro. IDCTP05 puts the name and address of the newly 
loaded module in the PCT. IDCTP05 finds the particular 
static text entry by using DARGSENT as an index to the 
static text module. IDCTP05 copies everything in the static 
text entry after the length field and puts the static text 
identification and the address of the next entry in the list at 
the beginning of each entry on the list. IDCTP05 then 
chains the copy into the list of static text entries addressed 
from PCTSQP so it will be readily available when it is 
used again. See "Text Structure" in the chapter 
"Diagnostic Aids" for a discussion of static text entries. 

IDCTPOt 

Procedures: IDCTPPR, SPACE, STATIC, INSERT, 
BLOCK, REDO 

3 IDCTPPR takes action on the format list substructures in 
FMTLIST depending upon the structure type. The line 
buffer is a work area where each line is formatted. 
IDCTPPR processes substructures in order of their 
appearance in the FMTLIST. lfthe high order bit in 
FMTFLGS is on, this substructure is the last in the 
FMTLIST. If there is formatted data in the line buffer, 
IDCTPPR calls LINEPRT to write the line. (See diagram 
7.5.2.) IDCTPPR sets a return code in register 15, and 
control returns to the module that issued the UPRINT 
macro. 

Types of substructures: 

• Space 

If this is the first substructure in the FMTLIST, 
SPACE saves the spacing type character from the 
FMTLIST for LINEPRT, and control returns to Step 2 
for the next substructure. If the space substructure is 
not the first substructure in the FMTLIST, SPACE 
transfers control to PRINT. After control returns from 
PRINT, the new spacing type character is saved for the 
next line. (For more information on PRINT, see 
diagram 7.5.2.) Control returns to Step 2 for the next 
substructure. 

• Static text 

STATIC passes the address of the input data, length of 
input data, type of conversion, position in the output 
line, and length of output field to IDCTPPR. (See 
diagram 7.5.1.) 

• Insert data 

INSERT compares the insert reference number in 
FMTRFNO against every DARGINS field in the 
Dynamic Data List. If the same number is found in 
DARGINS, INSERT gives the following information 
to CVPSTRM: the length in DARGINL, the address 
in DARGDTM, the type of conversion from 
FMTCNVF, the output field length from FMTOLEN, 
and the position for the field in the output line from 
FMTOCOL. (See diagram 7.5.l.) lfthe same number 
is not found in any DARGINS, INSERT ignores the 
insert-data substructure, and control returns to Step 2 
for the next substructure. If the next substructure is a 
default-text substructure, INSERT processes the 
default structure. 

• Default text 

If a default-text substructure does not immediately 
follow an insert substructure that does not have a 
matching reference number in DARGINS, INSERT 
ignores the default-text substructure, and control 
returns to Step 2 for the next substructure. INSERT 
uses the default-text substructure instead of a matching 
DARG INS to describe input for an insert-data 
substructure. lNSERT takes the values for input and 
output from the default-text substructure only. 
Nothing is taken from the insert substructure. Control 
is given to IDCTPPR. (See diagram 7 .5. l.) 

• Block format 

BLOCK obtains input information from DARGDBP 
and DARGILP. lfthe DARGBPL flag is set on (more 
than one block is to be used for input data), then 
BLOCK adds the offset count in BLKLRIO to the 
address in BLKLPTR to get the address of the input 
data. BLOCK uses the input length specified in 
BLKLILP. The block number in the format list, 
FMTBLKNO, is used as an index into the BLKLIST. 

If the DARGBPL flag is not set, then BLOCK adds the 
offset count in FMTIOFF to the address in 
DARGDBP to get the address of the input data. If the 
input length in FMTILEN is zero or 32,767, BLOCK 
uses the input length in DARGILP. If the length in 
FMTOLEN is zero or 32,767, the output length is the 
length of the converted input data. 

All this data is given to IDCTPPR. (See diagram 7 .5.1.) 

• Replication 

REDO compares the reference number in FMTRFNO 
against every DARGREP field. If the same number is 
not found, REDO ignores the replication substructure 
and control returns to Step 2 for the next substructure. 
If the same number is found in DARGREP, REDO 
uses the count in DARGPCT for loop control to set up 
the number of times the following substructures are 
repeated. REDO obtains the number of substructures 
to repeat from FMTRBC. At the end of each time 
through the substructures REDO prints a line because 
the output positions for each field are unchanging. (See 
diagram 7.5.2.) REDO saves the value in FMTRIO 
and adds to each address of block data in the 
substructures being repeated. 

If the DARGBPL flag is set on (more than one block is 
to be used for input data), then REDO calculates the 
redo input offset from the BLKLRIO field of the block 
list. The block number in the format list, 
FMTBLKNO, is used as an index into the BLKLIST. 

t: n 
fD ::s 

i. 
~ 
Ill 

~ ... e: 
I 

l ... 
~ 
2. 
;; 
~ 



Licensed Material - Property of IBM 

2-250 VSE/VSAM Access Method Services Logic 



I ... 
~ 

I 
s, 
0 
'i 

!· 
tJ 
I 
tJ 
VO 

If the DARGBPL flag is not set, the redo input offset is 
obtained from the format list redo input offset field, 
FMTRIO. 

IDCTPOI 

Procedure: IDCTPPR 

4 I DCTPPR puts a return code in register 15 and returns 
control to module that issued the UPRINT macro. 

r-

i 
~ 

i 
!!. 
I .,, 
i a 
s. 
; 
~ 



N 

~ Diagram 7.5. J. UPRINT Macro - CONVERT 
u. 
N 

~ 
f!! 

~ 
> 
a":: 

f 
I 
~ 
§" 
b 
~-

INPUT 

1-ormat Li.,t 

Dynamic 
Ar~umcnt Li ... 1 

Linc Buffer 

I ~ 

From L>ia~ram 7.5 

PROCESSING 

1. Converts data according to type of 
con version. 

2. 

3. 

4. 

• Binary to hexadecimal. 

• Binary to hexadecimal with 
apostrophe. 

• Binary to dump. 

• Binary to decimal. 

• Packed decimal to unpacked 
decimal. 

EBCDIC (no translation). 

Puts field in line buff er m correct 
output column. 

Prims line buffer, if full. [Y 
See Diagram -- 7.5.2 

Returns. 

OllTPllT 

I 

Linc Buffer 

i 
l 
3: • i e. 
I 

l a 
s. 
; 
3: 



n 

i .. 
~ 

~ 
[ 
e. 
0 
'g 
e g· 

..., 
I 

N 
Ul 
w 

Extended Description for Diagram 7 .S.1 

IDCTPOI 

Procedures: CONVERT, BHCONV, BHDCONV, 
BDCONV, PUPCONV, EBCDIC 

1 CONVERT checks the conversion type from FMTCNVT 
and converts the field accordingly. Output fields can 
overlap. When a line of conversion is finished, LINEPRT 
prints the line. (See diagram 7.5.2.) 

Control returns to the caller in diagram 7.5. (See diagram 
7.5.) Types of conversion: 

Binary to hexadecimal 

BHCONV converts bytes of binary data to their 
equivalent printable hexadecimal. BHCONV prints 
two characters for each byte. The maximum input 
length is 32,767. lfthe length of the converted data 
is greater than the length of the output field, 
BHCONV truncates the data on the right. If the 
length of the converted data is less than the length 
of the output field, BHCONV does not change the 
remaining fields to the right. If the converted data 
extends beyond one line, BHCONV continues the 
data on the next line. 

Binary to hexadecimal with apostrophe 

BHCONV converts bytes of binary data to their 
equivalent printable hexadecimal. BHCONV prints 
two characters for each byte. The output is 
preceded by a ·x· and followed by 'a'. The 
maximum input length is ( ( line width - starting 
position)/2) - 3. If the length of the converted data 
is greater than the length of the output field, 
BHCONV truncates the data on the right. If the 
length of the converted data is less than the length 
of the output field, BHCONV does not change 
remaining fields to the right of the trailing 
apostrophe. If the converted data extends beyond 
one line, BHCONV truncates the data on the right. 

Binary to dump 

BHDCONV converts bytes of binary data to their 
equivalent printable hexadecimal. BHDCONV 
prints two characters for each byte. This type of 
conversion forces the output to begin on a new line. 
IDCTPPR is called to put the current line in the 
stack buffer prior to calling CONVERT (See 
diagram 7.5.2.) BHDCONV formats the output line 
like a standard ABEND dump with relative 
addresses on the left of the page, eight segments in 
the center, and a 32 byte EBCDIC translation with 
non-printable characters replaced by periods on the 

right of the page. The output starts in column one 
and BHDCONV uses 32 bytes of input per line. 
The maximum input length is 32, 767. 

Binary to decimal 

BDCONV converts bytes of binary data to their 
equivalent packed decimal, then calls PUPCONV 
for further conversion to unpacked decimal. Sign 
suppression, leading zero suppression and left 
alignment can be used. The input length is one to 
four bytes, and the maximum output length is 16 
bytes including the sign. If the length of the 
converted number is greater than the length of the 
output field, BDCONV truncates the number on 
the left. If the converted number extends beyond 
one line, PUPCONV truncates the number on the 
right. 

Packed decimal to unpacked decimal 

PUPCONV converts bytes of packed decimal data 
to their equivalent printable unpacked decimal. 
Sign suppression, leading zero suppression and left 
alignment can be used. Eight bytes is the maximum 
input length, and 16 bytes including sign is the 
maximum output length. If the length of the 
converted number is greater than the length of the 
output field, PUPCONV truncates the number on 
the left. If the converted number extends beyond 
one line, PUPCONV truncates the number on the 
right. 

EBCDIC, no translation 

EBCDIC assumes the input is in printable 
EBCDIC and no conversion is done. If align right is 
specified, the EBCDIC character string is aligned to 
the right in the print field. The print column 
specified is added to the print field length to 
determine the last printable position. Unwanted 
blanks following a nonblank character can be 
eliminated by specifying blank suppression on the 
following field. If blank suppression is specified on 
an EBCDIC field, EBCDIC moves that field left 
into the prior EBCDIC field so there is only one 
blank between the two fields. Blank suppression 
can be specified only on fields that immediately 
follow EBCDIC fields. The maximum input length 
is 32,767. If the output extends beyond one line, 
EBCDIC prints additional lines. 

IDCTPOI 

Procedure: CONVERT, BHCONV, BHlCONV, BDCONV, 
PUPCONV, EBCDIC 

2 The conversion routines put the converted data in the 
correct column. FMTOCOL in the FMTLIST specifies the 
output column. If blank suppression is on 
(FMTCNVF=X'OOIO'), the output column is in PCTAPC 
in the PCT. and FMTOCOL is an offset from the output 
column in PCT APC. In this case, the conversion routines 
find the output column by adding the value in PCT APC to 
the value in FMTOCOL. The output column for each field 
is calculated separately from other fields. Output fields 
may overlap due to specification of output columns in 
FMTOCOL. 

IDCTPOI 

Procedures: CONVERT, BHCONV, BHDCONV, 
PUPCONV, EBCDIC 

3 When the line buffer is full or a new line is to start, the 
conversion routines call LINEPRT to print the line. See 
Diagram 7.5.2. 

IDCTPOI 

Procedures: CONVERT, BHCONV, BHDCONV, 
PUPCONV, EBCDIC 

4 When all the data specified by the FMTLIST substructure 
is converted, control returns to the caller in Diagram 7.5. 

r""' 
;; 
~ :s 
~ 
0. 

3: 
ID 
~ 
:i e. 
.,, .. 
0 

'1 .. 
~ 
9. 
; 
3: 



N 
I 

N 
v­... 

~ 

~ 
I:: 

f 
f 
ff 

i· 
i. n 

Diagram 7.5.2. UPRINT \1acro PRINT 

INPlT 

t;rD 

Line Buffer 

Stack Buffer 

From Diagram 7.5 and 7.5.1 

PR<>CESSING 

I. Returns data to caller, if requested, 
otherwise, continues with step 2. 

2. Determines if line will fit on current page. 

3. Processes header and message. 

4. Translates line. 

5. Prints stack buffer if full. 

6. Clears line buffer and returns. 

C>l'.TPlT 

PCTl PCT2 

PCTAHP 

Printed Lines 

D 
i 
i. 
f 
i 
!. 
I 

f 
s. -= 3: 



n 
g-

"O 
ft 
'1 

!':» 

I 
0 ..., 
~ 
'1 
SD 

g· 
::s 

IV 
I 
IV 
V\ 
V\ 

Extended Description for Diagram 7.5.2 

IDCTPOl 

Procedures: LINEPRT, LINERET 

LINEPRT tests the return area pointer in the argument list 
for zero. If it is not zero, procedure LINERET places the 
formatted line in the return area without checking for or 
setting page-related data such as carriage control, 
headings, etc. Only as many characters are returned as 
allowed by the return area length. 

IDCTPOl 

Procedures: LINEPRT, STACKPUT 

2 LINEPRT tests the print data set supplied with the 
UPRINT macro to determine if it is a change from the 
current print file. If the print data sets are changing, 
ST ACK PUT writes the stack buffer with a UPUT macro. 
Then LINEPRT puts the page number and next line 
number for the new print data set in PCTCPN and 
PCTNLI respectively. LINEPRTputs the page number 
and next line number for the old print data set in PCTSPN 
and PCTSNL for the standard print data set or in 
PCTAPN and PCTANL for an alternate print data set. 
LIN EPR T compares the current line number from 
PCTNLI with the pagesize in PCTPPD to determine ifthe 
current line with its spacing will fit on the current page. If 
the line will not fit, LIN EPR T ejects a page, and 
LIN EPR T prints all title lines on the new page. If the 
vertical spacing is more than three lines, LINEPRT writes 
blank lines until the line number is within three lines of 
the line number where the line is to be written and the 
spacing character can handle spacing. 

IDCTPOl 

Procedure: LINEPRT 

3 LIN EPR T tests the flags in the static text entry to 
determine if this static text entry describes a header line or 
a message. 

a. If it is a header line, LINEPRT puts the address of the 
translated header line in PCTAHP so it can be written 
again when a page overflows as well as when they are 
first given to the Text Processor. Unless all header 
lines. spaces, and one data line will fit on a page, a 
page overflow occurs, and LINEPRT ejects a page. 
The number is in HSDP in the static text entry. A 
UGPOOL is done for storage for the kept header line. 
Once a header is given to UPRINT, it can only by 
removed by another header, UESTS, UEST A, or 
URESET macro. 

b. If it is a message line, LINEPRT writes the stack buffer 
with a UPUT macro. 

IDCTPOt 

Procedure: LINEPRT 

4 LINEPRT translates the formatted line using the translate 
table supplied for the print chain and addressed from 
PCTTRP. The CHAIN or TABLE parameter of the 
PARM command determines the translate table. In Access 
Method Services translate tables, all non-printable bit 
combinations are changed to periods. 

IDCTPOt 

Procedures: LINEPRT, STACKPUT 

5 LINEPRT puts the translated line preceded by a two byte 
length field in the stack buff er. When the stack buff er is 
full, ST ACK PUT issues a UPUT against the entire buffer. 
Lines in the stack buffer are in variable format with as 
many trailing blanks removed as possible. The minimum 
line size is IO bytes. If the line is a message, ST ACKPUT 
issues a UPUT against the message alone. This is done 
because all messages go to the standard SYSLST data set. 
STACKPUT passes an identification number with the 
UPUT macro. The identification number for all data lines 
is zero and for messages is the message number. Therefore, 
STACKPUT must issue a separate UPUT for each 
message. If an alternate data set is being processed, there is 
no way to keep messages for the standard data set until 
ready to print, because there is only one stack buffer. 

IDCTPOl 

Procedure: LINEPRT 

6 LINEPRT fills the line buffer with blanks and control 
returns to the caller, FORMAT or CONVERT. 

r""' 
;; 
ft :s 
fjl) 

g_ 
::: e 
ftl .. e: 
I .,, 
i 
:l 
'< 

s. 
; 
::: 



~ 

~ Diagram 7.6 UERROR MACRO 
VO 

°' 

~ 
~ 
< 
i:n 

> 
~ 

I 
~ 

[ 
i:n 
ft 

:! 
§" 
"' r-' 
0 

~-

INPUT 

Register I 

Argument List 

tGDT 

t ERCNVTAB 

Static Text 
Module 

LJ 

From Module Issuing 
UERROR Macro 

PROCESSING 

I. Determine type of error to be converted. 

• Catalog Error 

2. Retrieve verbal text description of catalog 
return code. 

3. Initialize DARGLIST to print primary and 
secondary message pair. 

4. UPRINT. 

5. Return to invoker. 

OUTPUT 

Printed Lines 

D 
Register 15 

I I 

i 
l 
3: 

i 
!!. 
I 

J 
9--= 3: 



f .. 
hi 

I 
2, 

I 
N 
I 

N 
VO 
~ 

Extended Description for Diagram 7 .6 

IDCTP06 

Procedure: IDCTP06 

The Error Conversion Table (ERCNVTAB) indicates the 
type of error to be converted. The only allowable error is a 
catalog error. 

IDCTP06 

Procedure: CATERCNV 

2 Retrieve the verbal text description from the UERROR 
static text module (IDCTSTP6). CATERCNV uses the 
numeric catalog error code to index the appropriate verbal 
text entry in the static text module. The UPRINT macro is 
used to return the verbal text. 

IDCTP06 

Procedure: CA TERCNV 

3 The DARGLIST is initialized to print the primary and 
secondary message pair. In a batch environment, both 
messages are issued to the SYSLST data set. 

IDCTP06 

Procedure: 1DCTP06 

4 Print the message pair via the Text Processor UPRINT 
macro. 

IDCTP06 

Procedure: 1DCTP06 

5 Control is returned to the issuer of the UERROR macro. 

r­
t) 
g 
i. 
3: 
~ 
8 .. 
E: 
.,, 
i a 
2. 
; 
3: 



Licensed Material ..._ Property of IBM 

2-258 VSE/VSAM Access Method Services Logic 



f ;r ... 
!'! 

I 
s, 

f 
(• 

w 
I 

~ 
'O 

Debugging Aids Visual Table of Contents 

8.0 

Debugging Aids 
Overview 

T 
1 8.1 

UTRACE Macro 

I 
3: 

i 
I 

I 
s. 
I 

UDUMP Macro 

8.2.1 

Dump Fields 



~ 
I 

~ 
0 

< 
'"'1 
tl1 

~ 
'"'1 
> 
=::: 

§ 
= 
=::: 
(t 

[ 
'"'1 

I-
r"' 

~-

Diagram 8.0. Debugging Aids Overview 

INPUT 

Intra-Module 
Trace Table 

Register I 

Argument List 

From Procedure 
Issuing Macro 

PROCESSING 

1. Updates Intra-Module Trace 
Table. 

See Diagram --E> 
2. Dumps information based on options 

specified: 

See Diagram -[V 

• TRACE 

• AREAS 

• FULL 

>I 

>I 

_..)! 

OUTPUT 

Intra-Module 
Trace Table 

Trace Tables 

D 
Trace Tables and 
Selected Areas 

D 
Trace Tables and 
Full Region Dump 

D 
~ 
fD 
1:1 

i. 
3: • ;-
:L 
~ 

I 

l a 
0 .... -= 3: 



n 
~ 

'O 
0 ... 
~ 

3: 
0 

[ 
0 ..., 
0 
'i 
iil 
g· 

N 
I 

N 

°' 

Extended Description for Diagram 8.0 

IDCDBOI 

Procedure: IDCDBO l 

When a module issues a UT RACE macro instruction, the 
PL/S compiler generates inline code that updates the 
Intra-Module Trace Table. Diagram 8.1 shows the 
UTRACE macro instruction in detail. Processing 
continues with the statement following the UTRACE 
macro. 

2 The output of the UDUMP macro instruction depends 
upon the TEST keyword options specified either in the 
PARM command or from the EXEC statement. 

• If TRACE is specified, UDUMP prints the Inter- and 
Intra-Module Trace Tables each time a UDUMP 
macro is executed. 

• If AREAS is specified, UDUMP prints the Inter- and 
Intra-Module Trace Tables and items given to the 
UDUMP macro only for the areas specified. 

• If FULL is specified, UDUMP prints Inter- and 
Intra-Module Trace Tables and a full region dump 
only for the dump identifiers specified. 

Diagram 8.2 shows the UDUMP macro instruction in 
detail. Control returns to the module issuing the UDUMP 
macro. 

f""' 
;; 
ti ::s 
I. 
3: • ~ 
::!. 
!. 
I 

J 
2-
; 
3: 



N 
I 

~ 
N 

< 

= < (ll 

> 
I: 

f 
I 
fr 

i· 
b 
'R· 

Diagram 8.1. UTRACE Macro 

INPUT 

GOT 

GDTTR2 

Intra-Module 
Trace Table 

New Identification 

I I 

From Diagram 8.0 

PROCESSING OUTPUT 

1. Removes oldest identifier. 

2. Adds new identifier. 

GOT 

( f GDTT~ 
I 

Intra-Module 
Trace Table 

I 
I: • i 
I. 
I 

I 
s. -at 
3: 



i ... 
!":> 

iC 

i 
2, 

f. 
w 
I 

~ 
w 

Extended Description for Diagram 8.1 

IDCDBOI 

Procedure: IDCDBO 1 

The inline code generated by the UTRACE macro gets the 
address of the Intra-Module-Trace Table from the 
GDTTR2 field in the GOT. The inline code shifts the 
Intra-Module-Trace Table left so that the oldest identifier 
at the beginning of the table is lost. 

2 The module provides the UTRACE macro with the new 
identifier to add to the Trace Table. The generated inline 
code puts the new identifier at the end of the Trace Table. 
The new identifier is 4 bytes long; the first two characters 
are characters 4 and 5 of the module name; the last two 
characters are assigned by the module. The identifier may 
either be four characters in quotes or the address of four 
characters. Control continues with the next instruction. 

t"" 

I 
l 
3: 
! 
:::!. 
e. 
I 

l a 
9.. 
; 
3: 



! Diagram 8.2. UDUMP Macro 
~ 

< 

~ 
~ 
I: 

f 
I 
I 
b 
'R· 

Register I 

c -
~I GDT -

J '~Dump List 

L 
Full Dump Identifier 

J 
GOT 

-
GDTDBG 

GDTDBH 

-
Inter-Module 
Tra1:e Tahlc ...., 

J 
Intra-Module ........._.____ 
Trace Table --

L -
-

-

I ... 
=> 1. Checks for PARM command 

with TEST options. 

Ir=> 2. Initializes. 

I 

~ 3. Dumps trace tahks. 

4. Dumps hst of fiel~ 
See Diagram 8.2. l 

5. Dumps region. 

6. Terminates. 

l r 
GOT 

:> I 
GDTDBG 

GDTTRI 

GDTTR:! 

l 
i 

~ I 

l l => 

~ 

I 
__,~ v 

=> 

l 

Trace Tables 

D 
Fields from 
Selected Areas 

D 
Full Rl~gion 

D 
GOT ..-- I 

1
GDTDBG 

1
GDTTRI 

..... 

GDTTR2 

__. 

___, 

J 

I 
~ • ~ 
:L 
!!. 
I 
'l 
1 a 
s. 
; 
~ 



n 
::r 
~ 
0 ... 
~ 

3: 
0 

[ 
0 
~ 

0 
'g 
~ 
5· 
=-

tJ 
I 
tJ 

°' "" 

Extended Description for Diagram 8.2 

IDCPMOI 

Procedure: IDCPMOl 

l The PARM command with the TEST keyword must be 
specified in order for any dumping to take place, or the 
TEST keyword must be specified in the PARM field of the 
EXEC statement. The PARM FSR, IDCPMOl, has loaded 
the dump routine, IDCDBOI, and has put the address of 
the dump routine in the GDTDBG field in the GOT, if 
dumping is to take place. lf GDTDBG is nonzero, control 
goes to Step 2. lf GDTDBG is zero, the dump routine is 
not loaded and no dumping takes place; control returns to 
the module issuing the UDUMP macro. 

IDCDBOl 

Procedure: IDCDBOl 

2 IDCDBOl obtains the calling module identifier from the 
last entry in the Inter-Module Trace Table. It issues a 
UTRACE macro to put the caller's module identification 
in the Intra-Module Trace Table. Both the Inter-Module 
and the Intra-Module Trace Tables are saved so that the 
trace tables will not be updated during the dumping 
operation and the information in the trace tables at the 
time the UDUMP was issued is preserved. IDCDBOl turns 
off the TEST options by saving the address of the dump 
routine and setting G DTDBG to zero. This prevents any 
dumps during the processing of the current dump 
operation. lDCDBOI also issues a ULISTLN macro to get 
the number of arguments passed via the UDUMP macro. 
If there are three arguments, IDCDBOl has received a list 
of items to dump. 

IDCDBOl 

Procedure: I DC D BO 1 

3 IDCDBOl uses the Test Option Data Area, whose address 
is in GDTDBH, to determine whether or not to print the 
trace tables. The trace tables are printed if any one of the 
following conditions is present: 

• TESTRACE contains a nonzero value, indicating that 
the trace tables are to be printed each time UDUMP is 
executed. 

• IDCDBOl compares the calling module identifier from 
the Inter-Module Trace Table with the module 
identifiers in the AREANAME. If a match is found, it 
prints the trace tables. 

• IDCDBOl compares the full dump identifier provided 
by the module issuing the UDUMP macro with the full 

dump identifiers in FD UM PIO. If a match is found, it 
prints the trace tables. 

IDCDBOI 
IDCDB02 

Procedures: IDCDBOI, IDCDB02 

4 If three arguments are given to the UDUMP macro, the 
third is a list of areas to be dumped. IDCDB02 converts 
and prints each item in the list. If the calling module 
identifier from the Inter-Module Trace Table matches a 
name in AREANAME, IDCDBOl invokes IDCDB02 to 
process the list. Otherwise, the list is ignored. Diagram 
8.2. l shows dumping fields in detail. 

IDCDBOl 

Procedure: IDCDBOl 

S IDCDBOl compares the full dump identifier provided by 
the module issuing the UDUMP macro with full dump 
identifiers in FDUMPID. lfno match is found, processing 
continues with step 6. IDCDBOl adds l to REALBEG and 
checks the number with FDUMPBEG to determine if the 
current pass is within the dumping range. If it is, 
IDCDBOl compares REALCNT with FDUMPCNT to 
determine if all the dumps requested have been given. If 
they have not, IDCDBOl adds l to SNAPID and issues a 
USNAP macro to dump the region. UPRINT writes a 
message stating the full dump identifier (SNAPID). 

IDCDBOI 

Procedure: IDCDBO l 

6 IDCDBOl puts the address of the trace tables in GDTTRl 
and G DTTR2 and resets the TEST options by placing the 
address of the dump routine in GDTDBG. Control returns 
to the module that issued the UDUMP macro. 

r­
n 

l 
a: • fr 
:L e. 
I 

l a 
2. 
; 
3: 



~ Diagram 8.2.1. UDUMP Macro - Dump Fields 
~ 
°' 

< 
tn 
tl1 
....... 
< 
tn 
> 
~ 

§ 
fl> 
fl> 

~ 
ft 
;.. 
&. 

INPUT 

Dump List 

From Diagram 8.2 

PROCESSING 

1. Gets type of dump list entry: 

a. Array Header 

b. Individual Field 

g.i I . Hexadecimal 
~ • Bit String 
g· • Character 

~ I • Fixed Binary 
IJQ 

n· 
c. Dump List Terminator 

2. Prints data lines. 

OUTPUT 

Printed 
Data Lines 

D 
~ 
m 
i. 
::: 
ID 

! 
!. 
I 

l 
3 
s. 
; 
::: 



f 
!":> 

3: 

i 
0 _, 

l 
~ 

~r 

..... 
I ..... 
°' -.I 

Extended Description for Diagram 8.2.1 

JDCDB02 

Procedures: ARRA YHDR, IDCDB02, NAMEFLD, 
ITEMDUMP. HCONVERT, BCONVERT, CCONVERT, 
FCONVERT 

1 IDCDB02 processes each entry in the Dump List until the 
end of the list is reached. 

a. If the type in the Dump List is 'A'. the entry is an 
Array Header. If there is any formatted dump data in 
the line, ARRA YHDR issues a UPRINT to print the 
line. Each array begins on a new line, and an Array 
Header cannot occur within the elements of another 
array. If an Array Header does occur within the 
elements of another array, UPRINT prints an error 
message, the Array Header is ignored, and the 
following field entries are processed as though the 
Array Header had not been in the Dump List. A 
UPRINT macro prints the name of the array from the 
Dump List. ARRA YHDR obtains the looping array 
control from the Dump List. The number of bytes in 
each input element of the array is used to address the 
elements of the array. 

b. If the type in the Dump List is H, 8, C, or F, 
NAMEFLD formats the name of each field in the line. 
If the field is part of an array, NAMEFLD adds a 
subscript of the element number to the field name. 
NAMEFLD also checks the input data type and 
converts and formats the data as follows: 

• Type H 
HCONVERT converts hexadecimal data to 
printable form and prints 2 characters per byte of 
input; each four bytes of input is converted and 
followed by a blank. 

• Type 8 
BCONVERT converts bit string data to printable 
form and prints eight characters followed by a 
blank per byte of input. The printed output is 
enclosed in quotes. 

• TypeC 
CCONVERT converts character input to printable 
form and prints one character per byte of input. 
The printed output is an unbroken string of 
characters enclosed in quotes. 

• Type F 
FCONVERT converts fixed binary data to 
printable decimal. Leading zeros are suppressed. If 
the input is 2 or 4 bytes long, FCONVERT prints a 

sign: no sign is printed if the input is I or 3 bytes 
long. 

c. If the first byte of the dump list entry is X'FF'. 
IDCDB02 terminates processing of the list. Control 
returns to the main dump routine, IDCDBOI. 

IDCDB02 

Procedure: ITEMDUMP 

2 IDCD802 logically divides the page into four columns. A 
maximum of four different fields may be printed on a line. 
Each printed field is preceded by its name from the Dump 
List entry and an equal sign. As soon as one line of data is 
formatted, a UPRINT macro prints the line. 

r-
r 
l 
3: 
!t a 
:1 
!!. 
I 

l 
~ 
s. 
;; 
3: 



Licensed Material - Property of IBM 

2-268 VSE/VSAM Access Method Services Logic 



Overall Organization 

Chapter 3: Program Organization 

This chapter describes the organization of the Access Method Services 
processor: the physical packaging of routines into load modules. 

The final authorities for any program are the compili~r and assembly listings 
for that program. This chapter complements those li:~tings, and assumes that 
they are at hand. You should have them available for any in-depth analysis. 
This chapter directs you to a specific module of the processor; the listings for 
that module provide further detail. The next chapter, "Microfiche 
Directory," can help you relate the listings to this book. 

The processor consists of executable modules, organi.zed into seven general 
areas, and non-executable modules (Command Descriptors and Text Struc­
tures). As described in the "Introduction," six of the:;e areas form a substruc­
ture that provides services and control for the remaining area. This substruc­
ture is made up of the Executive, the System Adapter, the 1/0 Adapter, the 
Text Processor, the Reader/Interpreter, and Debugging Aids. The seventh 
area consists of the Function Support Routines (FSRs), of which there are 
currently fifteen, one for each verb supported by the processor. 

Several modules are link-edited together into one phase (named IDCAMS), 
which is loaded when the processor is invoked. 

This phase is the root phase and consists of: 

IDCEXOl 

IDCIOOl 

IDCSAOl 

IDCSA02 

IDCSA03 

IDCTPOl 

Executive main routine 

1/0 Adapter main routine 

System Adapter initialization/termination routine 

System Adapter services routine 

System Adapter prologue/epilogue routine 

Text Processor main routine 

IDCSA08 System Adapter services routine 

The following phases are loaded when required using CDLOAD and remain 
loaded until termination: 

IDCEX02 

IDCEX03 

IDCI002 

IDCI003 

IDCSAOS 

IDCTP04 

IDCTPOS 

IDCTP06 

IDCDBOl 

IDCDB02 

Executive initialization, called by IDCEXOl 

Executive termination, called by IDCEXOl 

1/0 Adapter Open/Close, called by IDCIOOl 

1/0 Adapter positioning and UIOINFO processing, called by IDCIOOl 

System Adapter time routine, called by IDCSA02 

Text Processor page control, called by IDCTPOl 

Text Processor Text Structure loading, called by IDCTPOl or IDCTP04 

Text Processor error message processor called by IDCTPOl 

Dump routine, called by any routine 

Symbolic dump, called by IDCDBOl 

Chapter 3: Program Organization 3 -1 



Licensed Material - Property of IBM 

The following phases are loaded by the system when their services are re­
quired: 

IDCDIOl 

IDCDI02 

IDCDI03 

IDCDI04 

IDCDIOS 

IDCDI06 

IDCDI07 

IDCDI08 

IDCDI09 

IDCDilO 

IDCDill 

IDCDI12 

IDCDI13 

IDCDI14 

IDCDilS 

SYSLST DTF and put phase 

SYSIPT DTF and get phase 

Fixed and fixed blocked sequential access method SDDTF and get phase 

Fixed and fixed blocked sequential access method SDDTF and put phase 

Variable and variable blocked sequential access method SDDTF and get 
phase 

Variable and variable blocked sequential access method SDDTF and put 
phase 

Undefined sequential access method SDDTF and get phase 

Undefined sequential access method SDDTF and put phase 

Spanned and spanned block sequential access method SDDTF and get phase 

Spanned and spanned block sequential access method SDDTF and put phase 

Fixed and fixed blocked sequential access method MTDTF and get/put 
phase 

Variable and variable blocked sequential access method MTDTF and get/put 
phase 

Spanned and spanned blocked sequential access method MTDTF and 
get/put phase 

Undefined sequential access method MTDTF and get/put phase 

Fixed and fixed blocked indexed sequential access method ISDTF and get 
phase 

The FSRs and the Reader /Interpreter are alternately called by the Executive 
(IDCEXO 1) to perform their duties. The Reader /Interpreter is entered at 
IDCRIOl and loads IDCRILT and IDCRIKTwhen needed. The FSRs are 
named as follows: 

IDCALOl ALTER 
IDCBIOl BLDINDEX 
IDCCLOl CANCEL 
IDCDEOl DEFINE 
IDCDLOl DELETE 
IDCXPOl EXPORT 
IDCMPOl IMPORT 
IDCLCOl LISTCAT 
IDCLROl LISTRCRA 
IDCPMOl PARM 
IDCPRO 1 PRINT 
IDCRCOl EXPORTRA 
IDCRMOl IMPORTRA 
IDCRPOl REPRO 
IDCRSOl RESETCAT 
IDCVYO 1 VERIFY 

3 - 2 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

System Macros and Services Used by Access Method Services 
All requests for services from the operating system are issued by either the 
System Adapter or the 1/0 Adapter. The following lists all system and 1/0 
macros issued by the processor, along with the issuing module's name and the 
label at the point of issue. These labels all begin with "L" contain a mnemon­
ic for the macro, and end with a single digit. Thus they are easy to locate with 
the cross-reference table of the listing. 

The adapters provide the services in the following list to the rest of the 
processor. Non-system services are also provided by the adapters and by the 
Text Processor. Services are represented in the listings by a call to the appro­
priate service-module entry point. 

System and 1/0 Macros Used by Access Method Services 

Macro 

CANCEL 

CATLG 

CCB 

CD LOAD 

CLOSE 

COMRG 

CVTOC 

DIM OD 

DTFDI 

DTFIS 

DTFMT 

DTFSD 

ENDREQ 

EOJ 

ERASE 

EXCP 

EXTRACT 

I FREEVIS 

GET 

GE TIME 

GETVIS 

Module 

IDCSAOl 

IDCSA02 

IDCSAOl 
IDCI003 

IDCI002, IDCI003 
IDCSAOl 
IDCSA02 
IDCRSOl 

IDCI002, IDCSAO l 

IDCSA05 
IDCEX02 

IDCI003 
IDCRS07 

IDCDIOl, IDCDI02 

IDCDIOl, IDCDI02 

IDCDI15 

IDCDlll 
IDCDI12 
IDCDI13 
IDCDI14 

IDCDI03, IDCDI04 
IDCDI05, IDCDI06 
IDCDI07, IDCDI08 
IDCDI09, IDCDilO 

IDCRPOl 

IDCSAOl 

IDCRPOl 

IDCI003 
IDCSAOl 

IDCSA02 
IDCSAOl 
IDCRIOl 

IDCI002 

IDCSA03 
IDCSAOl 

IDCSA02 

IDCIOOl 

IDCSA05 

IDCSA03 
IDCSAOl 
IDCSA02 

Label 

LCANCELl, LCANCEL2 

LCATLGl 

LCCB l, LCCB2 
LCCBl 

LCDLOADl 
LCDLDl 
LCDLD2, LCDLD3 
LCDLOADl 

LCLOSEl 

LCOMRG l, LCOMRG2 
LCOMRG5 

LCVTOCl 
LCVTOCl 

LDTFDil 

LDTFISl 

LDTFMTl, LDTFMT2 
LDTFMT 1, LDTFMT2 
LDTFMT l, LDTFMT2 
LDTFMTl, LDTFMT2 

LDTFSDl 
LDTFSDl 
LDTFSDl 
LDTFSDl 

LEOJl 

LEXCPl, LEXCP2 
LEXCP, LEXCP2, LEXCP3 

LEXTRCTl 
LEXTRCT2 
LEXTRCTl 

LFREEVl, LFREEV2, 
LFREEV3, LFREEV 4 
LFREEVl, LFREEV2 
LFREEV5, LFREEV6, 
LFREEV7, LFREEV8, 
LFREEV9 
LFREEV 11, LFREEV 13, 
LFREEV14, LFREEV15 

LGETl, LGET2, 
LGET3, LGET4, LGET5 

LGETIMEl, LGETIME2 

LGETVl 
LGETV3, LGETVlO 
LGETV5, LGETV6 

Chapter 3: Program Organization 3-3 



Licensed Material - Property of IBM 

System and 1/0 Macros Used by Access Method Services 

Macro Module Label 

ISM OD 

LOAD 

MTMOD 

OPEN 

OVTOC 

PD UMP 

POINT 

PUT 

PVTOC 

SDMODFI 

SDMODFO 

SDMODUI 

SDMODUO 

SDMODVI 

SDMODVO 

SETL 

TRUNC 

VERIFY 

IDCI002 

IDCDllS 

IDCSA02 
IDCI002 

IDCDll l, IDCDl12 
IDCDl13, IDCDI14 

IDCI002 

IDCI003 
IDCRS07 

IDCSA02 
IDCSAOl 

IDCI003 

IDCIOOI 

IDCI003 
IDCR07 

IDCDI03 

IDCDI04 

IDCDI07 

IDCDI08 

IDCDIOS, IDCDI09 

IDCDI06, IDCDllO 

IDCI002, IDCI003 

IDCIOOI 

IDCIOOI 

LOETV7, LOETV8 
LOETVI 

LLDD2, LLDD3 
LLOADI 

LOPENI 

LOVTOCI 
LOVTOCI 

LPDUMPI 
LPDUMP2 

LPOINTI 

LPUTI, LPUT2 
LPUT3, LPUT4 

LPVTOC I, LPVTOC2, 
LPVTOC3, LPVTOC4, 
LPVTOCS, LPVTOC6 

LSETLI 

LTRUNCI 

LVRFYI 

WAIT IDCI003 LWAITI, LW AIT2 
IDCSAOI LWAITl, LWAIT2, L W AIT3 

The Global Data Table (GDT) contains a branch vector to the various entry 
points in the adapters which provide these services. A routine obtains a 
service by loading the appropriate entry points address into a register and 
performing a BALR. Standard linkage is used: register 1 points to a list of 
argument addresses, register 13 points to a save area, register 14 contains the 
return address, and register 15 contains the entry point address. The excep­
tion is the call to SAABT: register 1 is not used, register 13 contains the 
address of a save area in the System Adapter, register 14 contains the address 
of SAABT and register 15 contains an abort code. 

3 - 4 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Services Provided for Processor Modules 
The following is a list of the services provided by the adapters and the Text 
Processor, the appropriate module name in each case, and the entry point 
name. Calls to the services are generated by macros defined by Access 
Method Services. The macros are collectively called Umacros. The listings 
contain only the calling sequence and not the Umacro. This publication 
discusses the Umacros in order to combine the calling sequence with the 
service performed as a function. The rightmost column lists the arguments 
that may be included with each of these Umacros. These arguments represent 
the addresses of the named items. When the argument is preceded by the 
symbol t, then it is the address of a fullword pointer to the named item. 
Brackets ([ ]) indicate an optional argument. 

Internal Services Provided for Processor Modules 

Service Module Entry Point 

PROLOO IDCSA03 IDCSAPR 

UABORT IDCSAOl SAABT 

UCALL IDCSA02 IDCSACL 

UCATLO IDCSA02 IDCSACA 

I UCLOSE IDCIOOl IDCIOCL 
IDCI002 

UCOPY IDCIOOl IDCIOOl 

UDELETE IDCSA02 IDCSADE 

UDEQ IDCSA08 IDCSADQ 

UDUMP IDCDBOl IDCDBOl 

UENQ IDCSA08 IDCSANQ 

UEPIL IDCSA03 IDCSAEP 

UERROR IDCTP06 IDCTPER 

UESTA IDCTPOl ID CT PEA 

UESTS IDCTPOl IDCTPES 

UFPOOL IDCSA02 IDCSAFP 

UFSPACE IDCSA02 IDCSAFS 

UOET IDCIOOl IDCIOOT 

Descrlpdon 

Initialize a routine on entry; get storage. 

Handle unrecoverable error condition while 
processing. 
Load (if necessary) an executable module and 
and pass control to it. 

Catalog request. 

Close one or more data sets. 

Copy a data set. 
\, 

No operation in DOS/VSE. 

Release control of a resource 

Print diagnostic output and storage dump. 

Gain control of a resource 

Free storage on exit from a routine. 

Verbalize catalog error messages. 

Establish a PCT (print control table) from 
information in storage. 

Establish a PCT (print control table) from 
information in Text Structures. 

Release a named pool of storage. 

Release unnamed storage. 

Read a record. 

Arguments 

module identification 
size of storage for module 

UABORT code (in register 15) 

ODT 
entry point name 
[list of arguments for called module] 

ODT 
t catalog parameter list 

GOT 
tIOCSTR[ ... ] 

GOT 
t input IOCSTR 
t output IOCSTR 

GOT 
module name 

GOT 
tDTL (from UENQ) 

GOT 
Dump Identifier 
[ t symbolic dump list] 

GOT 
'SHR' I 'EXCL' 
'NOW AIT' I 'WAIT' 
resource name 
reserved (not used) 
Scope (see "Scope Structure 

for UENQ - ENQSCOPE") 
tDTL (output) 

GOT 
module identifier 
[return code] 

GOT 
ERCNVTAB 

GOT 
alternate IOCSTR or zero for SYSPRINT 
PCARG 

ODT 
alternate IOCSTR or zero for SYSPRINT 
Text Structure identification 

GOT 
pool identification 
("ALL"] 

ODT 
address of storage to free 

ODT 
tIOCSTR 

Chapter 3: Program Organization 3 -5 



Licensed Material - Property of IBM 

Internal Services Provided for Processor Modules 
Service Module Entry Point Description Arguments 

UOPOOL IDCSA02 IDCSAOP Allocate a named pool of storage and GDT 
optionally initialize it. size of storage to obtain 

return storage address 
pool identification 
["SETZERO" I "SETBLANK"] 

UGSPACE IDCSA02 IDCSAGS Allocate unnamed storage, and optionally GDT 
initialize it. size of storage to obtain 

return storage address 
["SETZERO" I "SETBLANK"] 

UIOINFO IDCIOOl IDCIOSI Return file-ID, volume serial numbers, GDT 
IDCI003 and/or device type information about a given option flags 

filename. twork area 
filenamelvolid 
logicalunitno,timestamp 
(pool identification] 

UIOINIT IDCIOOl IDCIOIT Initialize the 1/0 Adapter. GOT 
(tzero] 
[ t external routine list] 

UIOTERM IDCIOOl IDCIOTM Close all data sets that were opened with GOT 
UOPEN and free all storage still used by 
the 1/0 Adapter. 

ULISTLN lnline None Copies the contents of register 1 into a 
fullword named LISTPTR and puts the 
number of arguments addressed by register 
1 in a byte named LISTLN. Maximum 
value is 255. 

ULOAO IDCSA02 IDCSALD Load (if necessary) a module; do not pass GDT 
control to it. module name 

returned loaded module address 
[RETPNF•l] returns control on 

phase not found 

UOPEN IDCIOOl IDCIOOP Open one or more data sets. GDT 
IDCI002 [ {OPNAOL[ ... ]!OPNAOL,CRAAPLIST}] 

UPOSIT IDCIOOl IDCIOPO Position to a logical record. ODT 
IDCI003 tlOCSTR 

UPRINT IDCTPOl IDCTPPR Format (and usually write) one or more GDT 
lines. alternate IOCSTR or zero for SYSPRINT 

tOAROLIST 
[tFMTLIST] 

UPUT IDCIOOl IDCIOPT Write a record. ODT 
tIOCSTR 
[ID code] 

URESET IDCTPOl ID CT PRE Re-initialize PCT (print control table) GOT 
for the next function. alternate IOCSTR or zero for SYSPRINT 

invoker's page 
number field 

URE ST IDCTPOl IDCTPRS Modify an existing PCT (print control ODT 
table). alternate IOCSTR or zero for SYSPRINT 

argl 
arg2 
argn 

USAVERC Inline None Copies the low order half of 
code register 1 S into a halfword named 

TESTRC. 

USN AP IDCSA02 IDCSASN Call for a dump of the partition. GDT 
SNAP dump-ID number 

UTIME IDCSA02 IDCSATI Get date and time of day. ODT 
field for returned time 
[field for returned date] 
["FORM"i"KLOK"] 

UTRACE lnline None Adds the current identification to 
code the Inter-Module Trace Table. 

UVERIFY IDCIOOl IDCIOVR Issue VSAM VERIFY macro. ODT 
tlOCSTR 

3-6 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Processor Invocation 
Invocation of the Access Method Services processor is via standard 
DOS/VSE job control(// EXEC IDCAMS, SIZE== AUTO), or via a sub­
routine call. If tape or nonsequential non VSAM files are to be processed by 
Access Method Services, use the LB L TYP statement to reserve storage for 
label information. Entry and exit to the Access Method Services processor 
occurs through IDCSAOI, a module of the System Adapter. For a subroutine 
call, you must load phase IDCAMS which occupies 27 ,000 bytes and branch 
to the load address plus six. Standard linkage is used; that is, register 1 points 
to the argument list, register 13 points to a save area, register 14 contains the 
return address, and register 15 contains the entry point address. On return 
from the Access Method Services processor to a subroutine caller, all registers 
except register 15 are restored. Register 15 contains the value of MAXCC 
(see the section: "Processor Condition Codes" below.) 

The argument list, as shown in Figure 3-1, can be a maximum of four full­
word addresses pointing to strings of data. The last address in the list con­
tains a "l" in the sign field. The first three possible strings of data begin with 
a two-byte length field. A null element in the list can be indicated by either 
an address of zeros or a length of zero. 

Chapter 3: Program Organization 3 -7 



Licensed Material - Property of IBM 

REG l Argument List 8 

--~ 

... 
_t ____________ ~--------------------...., .. ____ L_E_N_G_T_H __ ...... .._ ___ o_P~TIONS OPTIONS 

A LENGTH: Halfword which specifies the 
T DNAMES number of bytes in the OPTIONS field. 

t PAGE NUMBER 

t IOLIST 

n 

t DNAME 1 

t IOROUTINE 1 

USER DATA1 

• 
• 
• 

~ DNAMEn 

t IOROUTINEn 

+USER DATAn 

...... r-

n: Fullword which specifies the number 
of groups of three fields that follow. 
Each group consists of a DNAME, an I/O 
routine, and user data. 

DNAME: Address of a 10-byte character 
string, the first two characters of which are 
'DD', the next 8 characters are the DNAME 
field value which may appear in the FILE, 
IN FILE, or OUT FILE parameters of any 
Access Method Services command. The 
SYSIPT (DDSYSIPT) and SYSLST 
(DDSYSLST) DLBL names may also appear 
if the invoker wishes to manage these files. 
The appearance of this name causes 
invocation of the associated IO ROUTINE 
for all I/O operations on the data set 
associated (normally via the DLBL or TLBL 
statements) with DNAME. 

IOROUTINE: Address of the program 
which is to be invoked to process 1/0 
operations upon the data set associated 
with DNAME. This routine is invoked 
instead of a system access method for all 
operations against the data set. 

USER DAT A: Address of a data area 
that the user can use for any purpose. 

OPTIONS: Character string which contains 
system options from PARM field of EXEC 

statement or options set up by the invoker. 

LENGTH 

LENGTH: Halfword, in DOS/VSE, this value 
must be 0. 

LENGTH PAGE NUMBER 

LENGTH: Halfword which specifies the number 
of bytes in the PAGE NUMBER field. 

PAGE NUMBER: 1-4 byte character string 
which may specify the starting page number 
of system output listing. This value is reset 
to the current page number upon 
completion of the present invocation of the 
Access Method Services processor. The 
number will he truncated to fit the space . 

Figure 3-1. Argument List for Processor Invocation 

3 - 8 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Processor Condition Codes 

User 1/0 Routines 

Overall Control Flow 

The processor's condition code is LASTCC, which can be interrogated in the 
command stream with modal commands. The possible values, their mean­
ings, and examples of causes are in the following table. The table illustrates 
the value of LASTCC. 
Code Meaning 

0 The function was executed as directed and expected. Informational messages may have 
been issued. 

4 Some annoyance in executing the complete function was met, but it was possible to 
continue. The results might not be exactly what the user wants, but no permanent harm 
appears to have been done by continuing. A warning message was issued. 

8 A function could not perform all that was asked of it. The function was completed, but 
specific details were bypassed. 

12 The entire function could not be performed. 

16 Severe error or problem encountered. Remainder of command stream is flushed and 
processor returns condition code 16 to the operating system. 

The LASTCC condition code is reflected in its related message numbers. The 
first numeric character of the message number equals the condition code 
divided by 4. 

MAXCC, which can also be interrogated in the command stream, is the 
highest value of LASTCC thus far encountered. 

If the user has supplied his own 1/0 routine, the 1/0 Adapter invokes the 
user routine. Again, standard linkage is used. Figure 3-2 shows the argu­
ments passed to the user routine. Each field begins on a fullword boundary. 

When writing a user 1/0 routine, the user must be aware of three things. 
First, the processor handles the user data set as if it were a nonVSAM data set 
that contains undefined records (maximum length-32,760 bytes) with a 
physical sequential organization. The processor does not test for a 
DLBL/TLBL statement for the data set. Therefore, the name can be any­
thing. Second, the processor formats data in various ways. The user must 
know what the format is so that the user's routine can be coded to handle the 
correct type of input and format the correct type of output. (See "Diagnostic 
Aids" for more information). Third, each user supplied 1/0 routine must 
handle any error messages and provide to the processor a return code in 
register 15. The processor uses the return code to determine what it is to do 
next. 

The permissible code are: 

0 Operation successful. 

4 End of data for a GET operation. 

8 Error occurred during a GET /PUT operation but continue processing. 

12 Do not allow any further calls (except for CLOSE) to this routine. 

Figure 3-3 illustrates the overall control flow through the processor. Entry 
and exit are through IDCSAO l. IDCEXO 1 is the main controller; it alternates 
control between the Reader/Interpreter and the FSRs to process each com­
mand. When all commands are processed or a severe error has occurred, 
IDCEXOl gives control to IDCEX03. After IDCEX03 completes, IDCEXOI 
returns to IDCSAO l. 

Chapter 3: Program Organization 3-9 



Register 1 USER DATA 

IO FLAGS 

IO INFO 

NAME 

Record 

For a GET this information is returned to the 

processor by the user's 1/0 routine in the 8-byte 

area passed to the routine. 

For a PUT the processor gives this information to the 

user's 1/0 routine. 

(Eight bytes) 

Figure 3-2. Arguments Passed to and from User 1/0 Routine 

Licensed Material - Property of IBM 

User data obtained from the 
processor invocation parameter list. 

Flags 

Fullword of flags: 

Byte I 
<Orerationl 

Byte 2 

Bytes 3.4 
( Rernrd type 
for PUT only) 

Value 
() 

..i 
8 
12 

32 

6-l -

Meaning 
OPEN 
CLOSE 
GET 
PUT 

Indicates IOINFO 
contains the 
address of a 
DD name on 
OPEN or CLOSE 

OPEN for output 

128 - OPEN for input 

() 

n 

Normal data 
record is lo 

he written 

Message serial 
number converted 
to binary if IDC 
message is to be 
written 

All modules in Figure 7 call the modules in Figure 8 for services (like writing 
a record). The addresses of the entry points to the service modules are kept in 
the GOT. All modules in Figure 8 also call each other for services. 

3- 10 VSE/VSAM Access Method Services Logic 



() 

.[ 
(; ... 
~ 

f 
0 

o;;: 

e. 
I· 
~ 

I 

:: 

"11 
ciQ" 
c: ... 
0 

\f 
~ 

"11 IDCSAOl 
0 Initiator/ ~ 
0 ...., Terminator 
n 
0 a ... g,, 
~ IDCEXOl ::r a Main Line c: 

CJQ ::r 
~ 
ID 
5· 
"11 c: 
::s 
Sl 
()" 
::s 
00 

From and to Access Method 
Services Invoker 

IDCEX02 
Executive 
Initiator 

., ~ 

Command 
Name 
Table 
IDCRILT 
IDCRIFF 

IDCRI02 

Structures 
(FDP Mapping 
Macros) 

IDCRI03 
Reader/ 

Interpreter 
Terminator 

Function 
Support Routine 

IDCEX03 
Executive 

Terminator 

I:"' n-
~ ::s 
Wl 
~ ca. 

Modal Verb 3: 
& Keyword • f;" 
Table .. 

[ IDCRIKT 

.,, .. 
~ 

Command '1 
Descriptors :::. « 
(Static s. 
Modules) ; 

3: 



I/O Services 

IDCIOOl 

1/0 Main 

Entry/Exit Services 

IDCSA03 

Prologue 
Epilogue 

IDCI002 

Open/Close 

IDCI003 

Position 

IDCSA02 

System 
Adapter 
Main 

Figure 3-4. Flow of Control Through Services 

Text Formatting 
Services 

IDCTPOl 

Text 
Processor 
Main 

IDCTP04 

-4-_...,.. Setup 

---
IDCTPOS 
Get Text 

Structure 

IDCTP06 
Verbalize 

-4'-+-~ Return Codes 

Operating System Services 

IDCSAOl IDCSA08 

Abort Enqueue 
Dequeue 

IDCSAOS 

Time 

3- 12 VSE/VSAM Access Method Services Logic 

Licensed Material - Property of IBM 

Debugging 

IDCDBOl 

Dump 
Main 

IDCDB02 
Symbolic 
Dump 



Licensed Mnteriul - Property of IBM 

Chapter 4: Microfiche Directory 

This chapter contains a directory to the microfiche listings for all modules of 
the processor. This directory describes the contents of each module by 
function and label, allowing you to quickly find any desired code. 

The processor is written in PL/S, a high-level, IBM proprietary system 
language. Listings that are produced for microfiche consist of the PL/S 
source code, a cross-reference and attribute table, and the assembly code. See 
the IBM publication Guide to PL/S II, for a more detailed explanation of 
PL/S and its listings. 

Each module is designed with no explicit GOTOs or branches. All condition­
al phrases are contained within IF-THEN-ELSE clauses and DO-WHILE 
clauses of PL/S. All loops are controlled by DO statements. Extensive use of 
closed subroutines (procedures) is made. 

The microfiche for each module begins with the PL/S portion, which con­
tains all commentary and is the most readable form of the program. All 
major data arieas are defined at the beginning of the listing. IF-THEN-ELSE 
clauses and DO-loops are indented to denote levels of logic. The cross­
reference and attribute table shows each use of each data area. The assembly 
listing is keyed back to the PL/S source statement numbers. 

The listings are extensively commented. Each module begins with a prologue 
commentary that lists all standard information for that module. Throughout 
the listing, additional comments are boxed and structurally indented to make 
them easy to find. Each internal procedure has a small prologue to further 
describe its function. 

Note: The listings use CPL, FVT, and FPL instead of CTGPL, CTGFV, and 
CTGFL, respectively. See VSE/ VSAM VSAM Logic, Volume 1 for a de­
scription of these data areas. 

In the followltng tables, the module name appears in the first (leftmost) 
column. The second column contains an entry-point label, the label of an 
internal procedure (subroutine), or the label of data used externally-that is, 
by another module. The third column differentiates between entry points 
(EP), procedures (PR), and data used externally (DE). 

Chapter 4: Microfiche Directory 4 - I 



Licensed Material - Property of IBM 

CSECT/Load 
Module Name Label Use Description 

IDCALOI ALTER FSR; modify an existing catalog entry. 
Translate the encoded command parameters into 
the necessary catalog parameter lists and call 
IDCSACA for a catalog request (UCATLG 
macro). 

I DC ALOI EP Only entry point to this module. 

LOCATPRC PR Locates catalog fields that must be altered in 
context. Procedure only locates those fields that 
contain multiple attributes. Thus, since the user 
may wish to change only one of several attributes, 
the original field must serve as the basis for 
alteration. 

ALTERPRC PR Builds the VSAM catalog management interface for 
the alter request. 

CHECK PRC PR Does validity checking on certain attributes to 
ensure compatibility between old values and new 
values. 

INDEXPROC PR If KEYS has been specified on the ALTER 
command, INDEXPRC builds the parameter list to 
alter the associated index object. 

PARAMCHK PR Verifies that parameters specified on the command 
are valid for the type of object to be altered. 

IDCAMS EP Root phase frH Access Method Services; consists of 
IDCSAOI, IDCSA02, IDCSA03, IDCEXOI, 
IDCIOOI, and IDCTPOI. See the directory for 
these modules for further description. 

IDCBIOI BLDINDEX FSR; build one or more alternate 
indexes over a defined, nonempty base cluster. 

IDCBIOI EP Only entry point to this module. 

OPENPROC PR Opens the data sets required by the BLDINDEX 
FSR--base cluster, alternate index and, optionally, 
sort work files-by issuing UOPEN. 

JCPROC PR Issues the UIOINFO macro to determine if caller 
supplied sort work job control; obtains data set 
name and volume serial. 

MAINPROC PR Controls the build process for one alternate index 
by calling OPENPROC, LOCPROC, INITPROC, 
CNTLPROC. 

FINPROC PR Closes alternate index, sort work files, and issues 
alternate index final status message. 

TERMPROC PR Closes base cluster, frees resources, and prints 
termination message. 

LOCPROC PR Controls sequence of catalog locates to obtain 
information regarding base cluster and alternate 
index: verifies relationship. 

CATPROC PR Constructs CPL and FPLs for catalog locate and 
calls VSAM catalog management via UCATLG. 

DEFPROC PR Constructs CPL, FVTs and FPLs and calls VSAM 
catalog management to define sort work files: opens 
defined files. 

DELTPROC PR Constructs CPL and calls VSAM catalog 
management to delete sort work files. 

INITPROC PR Determines resources required for building 
alternate index and obtains core for work areas and 
sorting. 

CNTLPROC PR Controls actual build by reading base cluster and 
calling SORTPROC and MERGPROC or 
BLDPROC to perform sort-merge and write 
alternate index records. 

SORTPROC PR Constructs sort records; performs the entire internal 
sort or the initial sort phase of an external sort. 

4-2 VSE/VSAM Access Method Services Logic 



Licensed Muterilll- Property of IBM 

CSECT/l...oad 
Module Name l...ahel Use Description 

SPILPROC PR Writes out initial strings to first sort work file in an 
external sort. 

BLDPROC PR Builds and writes the alternate index records from 
the sequenced sort records. 

MERGPROC PR Performs the merge passes of an external sort. 

IDCCDAL Command Descriptor for ALTER verb. 

IDCCDBI Command Descriptor for BLDINDEX verb. 

IDCCDCL Command Description for CANCEL verb. 

IDCCDDE Command Descriptor for DEFINE verb. 

IDCCDDL Command Descriptor for DELETE verb. 

IDCCDLC Command Descriptor for LISTCAT verb. 

IDCCDLR Command Descriptor for LISTCRA verb. 

IDCCDMP Command Descriptor for IMPORT verb. 

IDCCDPM Command Descriptor for PARM verb. 

IDCCDPR Command Descriptor for PRINT verb. 

IDCTDRC Command Descriptor for EXPORTRA verb. 

IDCCDRM Command Descriptor for the IMPORTRA verb. 

IDCCDRP Command Descriptor for the REPRO verb. 

IDCCDRS Command Descriptor for the RESETCAT verb. 

IDCCDVY Command Descriptor for VERIFY verb. 

IDCCDXP Command Descriptor for EXPORT verb. 

IDCCLOI IDCCLOI EP CANCEL FSR; stops Access Method Services 
processing and optionally cancels the current job. 

IDCDBOI Debug module (UDUMP macro). 

IDCDBOI EP Only entry point to this module. 

IDCDB02 Debug module (symbolic dump). 

IDCDB02 EP Only entry point to this module. 

ARRAYHDR PR Processes any array header elements (TYPE="A") 
occurring in the dump list. 

ITEM DUMP PR Processes any individual dump list elements. 

NAMEFLD PR Inserts the symbolic name of the dump element into 
the proper position of the output line. 

HCONVERT PR Converts the value of the current dump item to 
hexadecimal representation. 

BCONVERT PR Converts the value of the current dump item to 
binary representation. 

CCONVERT PR Converts the value of the current dump item to 
character represen talion. 

FCONVERT PR Converts the value of the current dump item to 
fixed-integer representation. 

IDCDEOI DEFINE FSR; define a new VSAM data set as a 
cataloged object. 

IDCDEOI EP Only entry point to this module. 

INTGCHK PR Performs validity checking on completed catalog 
parameter list. 

IDCDE02 Common processing routines for all define types. 

IDCDE02 EP Initializes registers and obtains storage. 

NAMEPROC EP Initializes the data set creation and expiration dates 
in the CTGFL and the object name in the CTGFV. 

ALLCPROC EP Initializes several allocation and option related 
parameters in the CTGFL and CTGFV. 

KEYPROC EP Initializes the record management control block 
and the key range "pseudo-field" in the CTGFL. 

IXOPPROC EP Initializes index options. 

Chapter 4: Microfiche Directory 4-3 



Licensed Material - Property of IBM 

CSECT/Load 
Module Name Label Use Description 

PROTPROC EP Initializes the security combination and owner 
identification fields and the SHAREOPTIONS and 
ERASEjNOERASE flags in the CTGFL. 

MODELPRC PR Handles the retrieval of model objects to be used in 
defining components of VSAM user catalogs and 
data sets. 

FREESTG EP Frees automatic storage for IDCDE02 CSECT. 

IDCDE03 Routes control to proper routine. 

IDCDE03 EP Calls proper procedure to construct parameter list 
for the different object types. 

CTLGPROC PR Oversees the construction of the VSAM CTGPL, 
CTGFV, and CTGFL for defining a VSAM master 
or user catalog. 

DSETPROC PR Oversees the construction of VSAM key sequenced 
and entry sequenced data sets. 

AIXPROC PR Oversees the construction of the VSAM catalog 
interface for defining alternate index data sets. 

PATHPROC PR Oversees the construction of the VSAM catalog 
interface for defining paths. 

DSPACPRC PR Oversees the construction of the VSA M catalog 
interface for defining VSAM data spaces. 

NVSAMPRC PR Oversees the construction of the VSAM catalog 
interface for defining a nonVSAM data set into a 
VSAM catalog. 

IDCDIOI SYSLST DTF and put phase. 

IDCDI02 SYSI PT DTF and get phase. 

IDCDI03 Fixed and fixed blocked sequential access method 
SD DTF and get phase. 

IDCDI04 Fixed and fixed blocked sequential access method 
SDDTF and put phase. 

IDCDI05 Variable and variable blocked sequential access 
method SDDTF and get phase. 

IDCDI06 Variable and variable blocked sequential access 
method SDDTF and put phase. 

IDCDI07 Undefined seqeuntial access method SDDTF and 
get phase. 

IDCDI08 Undefined sequential access method SDDTF and 
put phase. 

IDCDI09 Spanned and spanned block sequential access 
method SDDTF and get phase. 

IDCDI 10 Spanned and spanned block sequential access 
method SDDTF and put phase. 

IDCDll I Fixed and fixed blocked sequential access method 
MTDTF and get/put phase. 

IDCDll2 Variable and variable blocked sequential access 
method MTDTF and get/put phase. 

IDCDl13 Spanned and spanned blocked sequential access 
method MTDTF and get/put phase. 

IDCDll4 Undefined sequential access method MTDTF and 
get/put phase. 

IDCDI 15 Fixed and fixed blocked indexed sequential access 
method DTF and get phase. 

IDCDLOI DELETE FSR; delete a catalog entry from the 
VSAM catalog. 

IDCDLOl EP Only entry point to this module. 

CATOPEN PR Opens the user catalog if required. 

4-4 YSE/VSAM Access Method Services Logic 



Lken .. ed Material - Property of IBM 

CSECT/Load 
Module Name Label Use Description 

FINDTYPE PR Locates tht: entry to be deleted in order to 
determine its type when type is not specified in 
command. 

PARAMCHK PR Checks for invalid type specification and other 
command parameter errors. 

BUILDCPL PR Constructs the CTGPL from parameters specified 
in the DELETE command and indicated in the 
FDT. 

CATCALL PR Calls VSAM catalog management to delete a single 
catalog entry. 

MOR ESP PR Obtains a larger catalog work area and reinvokes 
catalog management. 

CLEANUP PR Performs termination functions and closes the user 
catalog, if required. 

IDCEXOI Main-line for Executive; routes control through 
processor. 

IDCEXOI EP Only entry point to this module; entered from 
IDCSAOI. 

MAIN PR Flip-flop control between Reader/Interpreter and 
FSR required for each command. 

CALLRI PR Invoke Reader/Interpreter to parse the next 
command. 

CALLFSR PR Invoke FSR named by the result of parse by 
Reader /Interpreter. 

IDCEX02 Executive, initialize the processor. 

IDCEX02 EP Only entry point to this module. 

SCAN PARM PR Scan processor invocation parameter list. 

IDCEX03 Executive, terminate processing. 

IDCEX03 EP Only entry point to this module. 

SCANPARM PR Scan invoker's parameter list to return next 
available page number. 

IDCIOOI Supply all 1/0 services to the remainder of the 
processor. At each of the following entry points, 
I DCIOO I converts the service request to the 
appropriate system macros and issues those macros. 

IDCIOIT EP First call to 1/0 Adapter: initialize the adapter for 
subsequent calls. 

IDCIOOP EP Open I to 4 data sets (UOPEN macro), by calling 
IDCI002. 

IDCIOTM EP Close any data sets still open (UIOTERM macro). 

IDCIOCL EP Close I to 4 data sets (UC LOSE macro), by calling 
IDCI002. 

IDCIOPO EP Position to a specific record in a data set (UPOSIT 
macro), by calling IDCI003. 

IDCIOSI EP Obtain various pieces of information about data set. 

IDCIOGT EP Read a record (UGET macro). 

IDCIOPT EP Write a record (UPUT macro). 

IDCIOVY EP Verify data set (UV ERi FY macro). 

IDCIOCO EP Copy a data set (UCOPY macro). 

CHANGE PR Handles change of processing modes for RPL. 

GETEXT PR Call an external routine to get a data record. 

GETVSAM PR Get a logical record or control interval from a 
VSAM data set. 

IRAMEOD PR End-of-data-set exit routine for VSAM data sets. 

GETNONVS PR Get a logical record from a nonVSAM data set. 

IROSEOD PR End-of-data-set exit routine for nonVSAM data 
sets. 

Chapter 4: Microfiche Directory 4-5 



Licensed Material - Property of IBM 

CSEC'T/Loud 
Module Name Label lJse Description 

PUT EXT PR Call a user-supplied routine for output. 

PUTVSAM PR Put a logical record to a VSAM dat<i set. 

PUTNONVS PR Put a logical record to a nonVSAM data set. 

PUTREP PR Handle PUT (Replace) processing. 

VSAMERR PR Build VSAM error message argument list. 

BLDAMSG PR Prepare an error message. 

PRINTMSG PR Print a message. 

IDCIOSI DE Amount of storage IDCIOOI needs. Used by 
IDCSAOI. 

IRSISYN PR Exit routine for 1/0 errors when attempting a GET 
on a nonVSAM. nonlSAM data set. 

IRSOSYN PR Exit routine for 1/0 errors when attempting a PUT 
on a nonVSAM, nonlSAM data set. 

IDCI002 Open/Close routine This routine can open or close 
I to 4 data sets with one call. 

IDCI002 EP Only entry point to this module. 

OPENRTN PR Open a data set. 

CKNONOP PR Check that a nonVSAM data set was opened 
successfully. 

CLOSER TN PR Close data sets that were opened by the 1/0 Open 
routine. 

ENVFREE PR Free storage used for a data set; system areas. 
buffers, control blocks, DTF. and access load 
module. 

DSDATA PR Issue CDLOAD and CALL for IKQVLAB, which 
returns the label information. 

BUILDRPL PR Build RPL for VSAM data set and get input 
workareas for buffers. 

BUILDAC'B PR Build ACB and EXLST for VSAM data set to be 
opened. 

BUILDDBK PR Load DTF and access module and modify DTF for 
a nonVSAM data set to be opened. 

BLDOCMSG PR Set up an error message. 

PRINTMSG PR Call Text Processor to print error message. 

IDCI003 Perform POINT, SETL and UIOINFO operations. 

IDCI003 EP Only entry point to this module. 

PTAMDS PR Point to VSAM logical record. 

PTISDS PR SETL to ISAM logical record. 

BLDAMSG PR Prepare error message. 

PRNTMSG PR Print message. 

DSINFO PR Find volume/data set information. 

IDCLCOI LISTCAT FSR; produces a listing of all or part of a 
VSAM catalog. This module initializes and 
manages the routing of VSAM catalog entries. 

IDCLCOI EP Only entry point to this module. 

INITPROC PR Interrogates the FDT and initializes the catalog and 
DADSM parameter lists and workareas. Issues 
ULOAD for IKQDNT, the device name table. 

GNXTPROC PR Manages the request for all or a specified subset of 
the catalog entry types in alphameric sequence. 

ENTPROC PR Manages the request for specific entries from the 
catalog. 

RTEPROC PR Routes control to the appropriate formatting 
procedure. Then routes control for formatting the 
associated data sets in a cluster or alternate index 
grouping. 

4 ·- 6 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

CSECT/Load 
Moduh.• Name Label Use Description 

I D('L('02 This module locates, formats, and lists the VSAM 
catalog entries. 

ID('LC02 EP This entry point is used to establish addressability, 
acquire automatic storage and initialize the 
common data area pointers. 

FREESTG EP Issues a U EPI L umacro to free the automatic 
storage acquired by I DCLC02. 

FPLPROC EP Re-initializes the string of CTG FLs prior to each 
catalog locate request, by using SA VEAR EA copy 
stored at the original CTGFL-build time. 

LISTPROC EP Issues the Text Processor macro UPRINT and 
zeros out the Dynamic Data Area Argument List 
upon exiting. 

AUPROC EP Repetitively builds the Text Processor Dynamic 
Data Argument List for formatting and listing the 
VSAM catalog fields for nonVSAM or user catalog 
entry. Repeatedly invokes LISTPROC to print the 
data. 

LOCPROC EP Issues VSAM catalog locate request and obtains 
additional catalog work space if required. After the 
first successful locate, sets the catalog ACB 
information in the CTGPL and establishes the 
LISTC subtitle with the catalog name. 

CDIPROC EP Formats the VSAM catalog data for cluster, 
alternate index, data, index, and path associations. 
Issues the locate request to obtain associated data 
set names for listing the cluster-data set-index-path 
and alternate index-data set-index-path 
associations. Builds the Text Processor argument 
list and invokes LISTPROC to print the data. 

VPROC EP Repetitively builds the Text Processor Dynamic 
Data Argument List for formatting and listing the 
VSAM catalog fields for a volume record entry. 
Repeatedly invokes LISTPROC to print the data. 

ERRPROC EP Completes the Dynamic Data Argument List with 
either an Access Method Services or catalog return 
code, when required. Issues the UPRINT macro to 
list the informational or error messages. Issues 
UERROR macro to list VSAM catalog (SVC26) 
error messages. Zeros out the Dynamic Data 
Argument List upon return to the caller. 

ANSVPROC EP Retrieves the list of associated C. I. numbers and 
types from the work area and creates a save area 
copy. 

DEVTCONV PR Translates the hexadecimal UCB device type code 
to the external device name. 

IDCLROI AATOPLR EP Only entry point to this module-Top control 
segment. 

ADDASOC PR Add an association to association table. 

BUFSHUF PR Moves record from last (general) buffer to "home" 
buffer for this record type. 

BLDVEXT PR Builds the vertical extension table. 

CATO PEN PR Opens the catalog data set and ENQs on it. 

CKEYRNG PR Checks the data object for key range. If yes, prints 
high key. 

CLEANUP PR Closes the catalog and DEQs from it and prints 
condition codes. 

CLENCRA PR Closes the CRA and frees storage associated. 

CRAOPEN PR Opens the CRA and calls the procedure to build the 
CTT. 

Chapter 4: Microfiche Directory 4- 7 



Licensed Material- Property of IBM 

CSECT/Load 
Module Name Label Use Description 

CTTBLD PR Reads CRA control record, gets storage for CTT, 
scans CRA, and builds CTT. Controls sequential 
dump. 

DOOTHR PR Goes through SORTTBL forward chain containing 
nonVSAM names and calls PRTOTHR to print the 
objects. 

DOVSAM PR Goes through SORTTBL forward chain containing 
VSAM names and calls PRTVSAM to print them. 

ERROR PR Using entry subscript for error table, prints the 
error message, continues or aborts according to last 
condition code. 

GETPRT PR Gets copy of CRA record, calls IDCRC04 to obtain 
fields requested and, if COMPARE, gets the 
catalog record. 

INITLZE PR Initializes switches, adapter parameter list, 
IDCRC04 parameter list, opens the alternate 
output file, and gets table space. 

INTASOC PR Initializes an association table for a base object. 

INTSORT PR Gets storage for sort table, builds the entries in it 
from the CTT for the object type specified. 

INTVEXT PR Initializes VEXTTBL by calling IDCRC04 
requesting extension pointers and places them in 
the table. 

MEMSORT PR Adds forward and backward pointers in sort table. 

PRTAAXV PR Prints associated AIXs volumes. 

PRTCMP PR Prints and/or compares information in CRA for 
one entry. 

PRTDMP PR Prints unformatted CRA record. If compare, calls 
PRTDMPC to print corresponding catalog 
information and underscore miscompares. 

PRTDMPC PR Prints unformatted catalog record corresponding to 
CRA record being printed. The miscompares are 
underscored. 

PRTFlfO PR Print CRA without sorting using the same 
procedures as if sorting. 

PRTMCWD PR Prints miscompare message indicating most severe 
fields in error. 

PRTOJAL PR Print alias(s) associated with an object. 

PRTOJVL PR Pririt volumes and high keys associated with an 
object. 

PRTOTHR PR Print and/or compare all nonVSAM objects and 
their extensions. 

PRTTIME PR Print timestamps of volumes after converting them 
to MM/DD/YY HH/MM/SS. 

PRTVOL PR Print and/or compare volume record and its 
extensions. 

PR TV SAM PR Print and/or compare VSAM structures and 
associated records. 

SUMIT PR Sum or print number of objects processed. 

TCICTCR PR Translate control interval from catalog to CRA. 

VERT EXT PR Loops through the VERTEXT and extensions and 
prints them. 

IDCLR02 EP Formats the buffer pool and reads CRA and 
catalog records. 

IDCMPOl IMPORT FSR; reconstruct a VSAM cluster or 
alternate index from a portable copy that was 
created by I DCXPO 1. Any associated. paths are 
also recreated IDCSACA is called (UCATLG 
macro) to add the necessary entries to the VSAM 

4- 8 VSE/VSAM Access Method Services Logic 



Licensed Muteriul- Property of IBM 

cs1<:cr/toad 
Module Name Label Use Description 

catalog, and a UCO PY macro is issued to copy the 
data set by logical records. When the input data set 
is a catalog. no copy is performed: instead the 
catalog is connected by a call to IDCSACA. 

I DCM POI EP Only entry point to this module. 

C'LUSPROC PR Reads catalog and data records from the portable 
volume. Uses catalog information plus information 
from the command to perform a catalog define for 
the cluster or alternate index. Copies data into the 
object after successful definition in the catalog. 

CNCTPROC' PR Connects one or more user catalogs. 

DUPNPROC PR This procedure is called when a duplicate entry 
name is found in the catalog when trying to define 
the data set to be imported. A locate will be 
performed. If the entry has the temporary export 
flag set in the attributes field, a delete is then 
performed so that the imported data set may be 
defined. If the entry is empty, checks are made for 
matching attributes so that import can be 
performed into a predefined empty data set. 

C'PLPROC' PR Constructs a CTGPL to be used for a catalog 
define, alter, delete, or locate operation. 

IUNIQPRC PR Checks the DSA TTR field in the CTG FV to see if 
the cluster being defined is a unique data set. If so, 
a null space (volume) CTGFV must be supplied for 
catalog define. 

ALTRPROC PR Constructs a CTG PL and CTG FV to be employed 
by the catalog alter interface. 

LVLRPROC PR Constructs CTGFL for DEVTYPE lists and 
constructs list of volume serial numbers. 

CTLGPROC PR Invokes the VSAM catalog management to perform 
the operation indicated in the CTG PL. 

DELTPROC PR Deletes any temporarily exported data sets found 
by DUPNPROC. 

OPENPROC PR Performs all opens required for opening a VSAM 
object or user catalog for input or opening the 
portable volume for output. 

RANGPROC PR Processes all information dealing with key ranges. 

BFPLPROC PR Constructs a CTGFL from dictionary and 
workarea information. 

RECPROC PR Copies the data from the portable data set to the 
VSAM object being imported. The VSAM object is 
opened by OPEN PROC. The UCOPY macro is 
employed to perform the copy. The UCLOSE 
macro is employed to close the object. 

MVDAPROC PR Moves data from one location in virtual storage to 
another as specified by input arguments. 

MSGPROC PR Uses the Text Processor interface to list messages. 

FVTPROC PR Constructs CTGFVs and CTGFLs from 
information in the dictionary. Obtains portable file 
LRECL and passes it to the 1/0 Adapter. 

BPASPROC PR Constructs PASSWALL CTGFL and moves 
information into PASSWALL. 

GETPROC PR Gets a data record and moves it into a buffer. 
Reconstructs the original record if it has been 
segmented. 

DVOLPROC PR Constructs the special volumes CTG FLfrom the 
DEFAULTVOLUMES parametq. 

DVOLCHK PR Performs diagnostics to assure that 
DEFAULTVOLUMES volumes CTGFLs were 
constructed only for components whose attributes 

Chapter 4: Microfiche Directory 4-9 



Licensed Material - Property of IBM 

C'SECT/Load 
Module Name Label Use Description 

are compatible with DEFAUL TVOLUMES. Also 
checks to warn if DEFAUL TVOLUMES was 
specified but ignored. 

IDCPMOI PARM FSR: establish or change the processor 
parameters. Processor parameters (TEST. 
MARGINS. and GRAPHICS) can be established 
through the PARM field of the EXEC card. This 
FSR provides an alternate way to set these options. 

The results of changing TEST appear in the area 
whose address is in GDTDBH. The results of 
changing MARGINS appear as the first two 
halfwords in the area whose address appears in 
GDTRIH. and GRAPHICS is recorded in the 
PCT. 

IDCPMOI EP Only entry point to this module. 

TESTPARM PR Resets the previous test option if necessary. 
Processes new test option. Obtains and initializes 
the Test Option Data Area. 

TESTSAVE PR Extracts the specified test parameters from the FDT 
and places them in the Test Option Data Area to be 
used by the Access Method Services dump routine. 

MARG PARM PR Processes the input command source margins 
specified. The left and right margin values are 
placed into the Reader/Interpreter Historical Data 
Area to be used by the Reader/Interpreter when 
processing subsequent command input. 

GRPtlPARM PR Determine graphics option chosen and issue 
UR EST macro to establish the specified translate 
table. 

IDCPROI PRINT FSR: print the contents of a data set in 
EBCDIC. hexadecimal. or dump format. Page 
layout is established with a call to I DCTPEA 
(UESTA macro) and lines of data are printed by 
calling IDCTPPR (UPRINT macro). 

IDCPROI EP Only entry point to this module. 

TEXT PS ET PR Communicates the page layout and record layout 
for the listing to the Text Processor. 

DELI MS ET PR Establishes the boundaries for printing a subset of 
the input data set. 

IDCRCOI EP This is the highest level of control and the only 
entrypoint to this module. The function loops 
through the CRAs opening them. writes them and 
their associated objects to the portability data set 
and closes them. 

BUILDCRV PR Obtains space for CRV. ACC. and VTT. obtains 
volume and device type information on CRAs .• and 
constructs the name chain for all entries in the 
CR As 

BUILDNAM PR Builds the name chain extension block of storage. 

CHKCATNM PR Reads a CRA record and checks the owning 
catalog, then issues an ENQ on the owning catalog. 

CK NAMES PR Gathers passwords for VSAM data sets. flags empty 
data sets, bypasses OS/VS-only data sets, collects 
the association Cl numbers. and determines the 
largest logical record length. 

COMPNAME PR Compresses the blanks from the right of the object 
name and places it in the space obtained in the 
procedure SUBSP. 

DIRECT PR Gets space and reads in the directory. 

DUPNAMCK PR Scans the name chain for duplicate names and 
prints message if one is found. 

4- 10 VSE/VSAM Access Method Services Logic 



Uccnscd Muterial - Property of IBM 

CSECT/Load 
Module Name Label Use Description 

ERR CK PR If an error is considered severe, the catalog is closed 
and the error message is printed. 

EXPORTDR PR Prints start of export of CRA message, calls 
IDCRC02 to export and prints completion message. 

EXTRACT PR Sets up the FMPL and calls IDCRC04 to extract 
data fields from CRA records. 

INIT PR Calls SUBSP to obtain storage and then initializes 
the buffer pool. 

MESSAGE PR Handles the printing of all messages. 

NAMETABL PR Checks the name on the CRA record and if it is a 
cluster, AIX, nonVSAM or catalog connector, it 
builds the name into the name chain. 

OBJVOLCK PR Checks the timestamp and Cl on the volumes with 
that of the CRA for each object. 

OPEN PR Builds the OPNAGL and issues the open for the 
CRA. It then checks the owning catalog name for 
the major owning catalog. 

OPENCRA PR Calls procedures to open the CRA, get its 
timestamp, build the name table and the directory 
entry. 

SCA NC RA PR Reads the catalog record, gets storage for CTT and 
loops all CRA records putting Cl numbers in the 
CTT and calls NAMETABL to build the name 
table. 

SUBSP PR Handles the obtaining and allocation of small 
pieces of storage associated with the name table 
from one large block. 

SYNCH PR Checks the entire name chain for entries specified 
in the input. It also checks for valid associations, 
Cls, and volumes. 

TERM PR Dequeues from owning catalog, closes the 
portability data set, and releases storage. 

TIMESTMP PR Reads the volume timestamp using UIOINFO and 
places it in the volume timestamp table. 

IDC'RC02 Creates a portable data set of VSAM clusters, 
catalog information for nonVSAM, and associated 
aliases. 

IDCRC02 EP Only entry point to this module. 

ALSPROC PR Bypasses portable file information for OS/VS2 
alias associations of nonVSAM data sets. 

CLUSPROC PR Obtains catalog information and data for VSAM 
clusters. 

CONTROL PR Builds control records containing catalog 
information. 

CTLGPROC PR Invokes catalog management with a CTGPL for 
Locate. 

GDGPROC PR Bypasses portable file information for OS/VS2 
GDG bases. 

LOCPROC PR Builds a CTGPL and multiple CTGFLs for catalog 
locates. 

MVDAPROC PR Moves data in storage from one location to another 
and clears work area storage. 

NVSMPROC PR Gets catalog information for nonVSAM data sets. 

OPENPROC PR Opens the VSAM cluster for input and the portable 
data set for output. 

PRNTPROC PR Prints messages for association errors. 

PUTPROC PR Writes a control record containing catalog 
information to the portable data set. 

Chapter 4: Microfiche Directory 4-11 



Licensed Material - Property of IBM 

CSE CT/Load 
Module Name Label Use Description 

RECPROC PR Copies the data for a VSAM cluster to the portable 
data set. 

SAVEPROC PR Saves control records containing catalog 
inf(Jrmation until processing for that object's 
catalog information is complete and then writes all 
records to the portable data set. 

llKRC03 EP Handles format of buffer pool and reading of 
catalog or C RA records. 

IDCRC04 EP This is the only entry point to this module. 

PCKLC PR Insures the requested catalog field exists in a group 
occurrence being processed. 

PEXPT PR Sets up address and length of extension pointers as 
per argument passed. 

PG REC PR Obtains addressability to the desired Cl block. 

PG REP PR Finds highest non-deleted RELREPNO with 
desired group code. 

PGVAL PR Find the field and extract the requested data. 

PLNRV PR Locate non-replicated values 

PLOCZ PR Locate field and dictionary information. 

PLVAL PR Locate fixed or variable length field in physical 
record and group occurrence. 

PSCNC PR Loops through all FMFLs to convert names to 
internal notation. 

PSCNF PR Moves requested data to area specified by caller. 

PSHIN PR Inserts the data found into requested field. 

PTCMP PR Compares sub-fields between input data and 
"found" data. 

PTRNS PR Format and build compressed name table, insure 
group codes if special name obtained from caller. 

PTSTS PR Tests for existence of field and if there, places 
dictionary information into work area. 

IDCRIOI Consists of CSECTs IDCRIOI, IDCRI02, and 
IDCRI03. IDCRIOI is the Reader/Interpreter 
main-line routine. Its functions are: 

I. On first entry only, load a table of Command 
Descriptor phase names and a table of modal 
command verbs, initialize the 
Reader/Interpreter Historical Data Area, and 
obtain PARM options input if it exists in the 
PARM field of the EXEC statement. 

2. Scan the input stream for a command verb. 

3. Handle modal commands (IF, ELSE, DO, END, 
and SET) to determine which command to 
process next. 

4. Having found a function command verb, invoke 
IDCRI02 to find and load the appropriate 
Command Descriptor module and initialize the 
FDT. 

5. Scan parameter set, using the Command 
Descriptor, to check syntax and semantics and to 
build FDT. 

6. Invoke IDCRI03 for clean-up activity following 
each function command, and return to 
IDCEXOI if the function command is to be 
executed-that is, if it contains no syntax or 
semantic errors detectable by the 
Reader /Interpreter. 

IDCRIOI EP Only entry point to this module. 

RllNIT PR Initialize Reader/Interpreter processing. 

4- 12 YSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

CS ~:CT/ Load 
Module Name Label Use Description 

SCANCMD PR Control command scanning and FDT building. 

GETNEXT PR Get next function command verb name and pointer 
to its parameter set. lntepreter modal commands. 

MODALSET PR Process SET modal command. 

MODALIF PR Process IF modal command. 

MODLELSE PR Process ELSE modal command. 

BYPASTRM PR Prepare to obtain next verb name. 

KWDPARM PR Process a keyword after searching the Command 
Descriptor for its match. 

POSPARM PR Process a positional parameter. 

GETDATA PR Set up to extract constant or list of constants. 

GETSIMPL PR Extract an unquoted constant. 

GETQUOTD PR Extract a constant from within apostrophes. 

BUILDFDT PR Place constants into FDT (converting if needed). 

CONVERT PR Convert EBCDIC to binary, decimal. or 
hexadecimal. 

DSIDCHK PR Check data set name item for adherence to naming 
conventions. 

GETSPACE PR Allocate space for an FDT element. 

MORSPACE PR Allocate additional space for a list of constants in 
an FDT element. 

IN REPEAT PR End of repetition of a subparameter list has 
occurred; prepare for another of the subparameter 
list repetitions. 

DEFAULTS PR Add defaults to parameters explicitly specified. 

ERRSETUP PR Make special preparations to print semantic error 
message. 

NEEDNOTS PR Check parameters to ensure that certain semantic 
requirements have not been violated. Check for 
mutually exclusive parameters, and required 
parameters. 

SKIPCMD PR Bypass remainder of current command. 

SETFLAG PR Flag that a particular parameter was found in the 
input or was implied by defaults. 

PACKCVB PR Convert EBCDIC string to fullword binary 
number. 

NXTFIELD PR Extract next field from the input stream. 

SCANSEP PR Scan past the next syntactic separator (comma, 
blanks, and/or comments). 

NEXTCHAR PR Extract the next character of the input stream. 

GETRECRD PR Read the next input record and print it. 

SCAN ENDS PR Find left and right scanning limits of command text 
in the input record just read. 

DSPLCALC PR Calculate offset into an array of pointers or counts. 

ERROR I PR Process an error whose message is static. 

ERROR2 PR Process an error that requires variable data to be 
inserted into the message. 

IDCRI02 Search the table of Command-Descriptor phases 
for the name of the phase that corresponds to the 
current command, and then load that phase. 
Initialize the FDT. 

IDCRI02 EP Only entry point to this module. 

IDCRI03 Reader /Interpreter function command termination. 
Free working space and delete unneeded phases. 

IDCRI03 EP Only entry point to this module. 

Chapter 4: Microfiche Directory 4-13 



Licensed Material- Property of IBM 

CSl<:CT/Load 
Module Name Label Use Description 

ILX'RIFF Last entry indicator for Module Name Table for 
command descriptors used by the 
Reader/Interpreter. 

IDCRIKT Modal command verb and keyword table. used by 
the Reader/Interpreter. 

IDC'RILT Load Module Name Table for command 
descriptors used by the Reader/Interpreter. 

IDC'RMOI EP Only entry point to this module. 

ALISPROC' PR Reads data records and checks for allowable type in 
the DOS system. 

ALTRPROC PR Constructs the CPL and FVT to be used to alter the 
names of the objects. 

BFPLPROC' PR Constructs the skeleton FPL or constructs the FPL 
from the dictionary and work area inf()rmation 
passed by EXPORTRA on the portable volume. 

BPASPROC PR Constructs passwall FPL. 

CLUSPROC PR Reads catalog and data records from the portability 
volume and defines the object copy. 

C'PLPROC PR Constructs the catalog parameter list to be used for 
UC ATLG operations. 

CTLGPROC PR Invokes VSAM catalog management to perform 
operation indicated in CPL. 

DELTPROC PR Performs all delete operations using catalog 
management. 

FVTPROC' PR Constructs FVT and FPLs from information in 
dictionary passed as an argument. 

GETPROC PR Gets a data record via UGET. reconstructs it and 
places it in the buffer. 

GDOPROC PR If this procedure is called in DOS, it writes an error 
message. 

I UN IQ PRC PR Checks the DSATTR field in the CTG FV to see if 
the cluster being defined is a unique data set. If so, 
a null space (volume) CGTFV must be supplied for 
catalog define. 

LVLRPROC' PR Constructs the FPL from the DEVICETYPES 
parameter or LISTVOLS from the RANGES 
parameter. 

MSGPROC' PR Uses the Text Processor to list messages. 

MVDAPROC PR Moves data from one location in storage to another 
as specified by input arguments. 

NFVTPROC PR Constructs the FVT and FPLs for nonVSAM 
objects. 

NVSMPROC PR Reads catalog and data records from the portability 
data set and performs the define of nonVSAM 
entries. 

OPENPROC PR Performs all opens of VSA M objects for output or 
the portability data set for input. 

RANGPROC PR Processes key range information building the 
RANGES list. 

RECPROC PR Copy data from portability data set to VSAM 
cluster. 

UCATPROC PR Reads catalog and data records from portable 
volume and performs a define of user catalog 
pointers and aliases. 

DVOLPROC PR Contructs the special volumes CTG FL from the 
DEFAULTVOLUMES parameter. 

DVOLCMK PR Performs diagnostics to assure that 
DEFAULTVOLUMES volumes CTGFLs were 
constructed only for components whose attributes 

4- 14 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of I BM 

CSECT/Load 
Module Name Label Use Description 

are compatible with DEFAULTVOLUMES. Also 
checks to warn if DEFAULTVOLUMES was 
specified but ignored. 

IDCRPOI REPRO FSR; copy a SAM, ISAM, or VSAMdata 
set to a SAM or VSAM data set; unload or reload 
catalogs. Data set types are determined at open 
time, when IDCIOOP is called (UOPEN macro). 

When records are skipped at the beginning, a series 
of UG ETs is issued until the required record is 
reached. 

When records are skipped at the end, a series of 
UGETs and UPUTs is issued. 

When the copy is to the end of the data set, then a 
single call is made to IDCIOCP (UCOPY macro), 
which copies the data set from the first record to be 
copied through the end of the data set. The 
UPOSIT macro is employed to position to a 
FROM KEY or FROMADDRESS starting point. 

IDCRPOl EP Only entry point to this module. 

DELIMSET PR Establishes the boundaries for copying a subset of 
the input data set. 

CATRELOD PR Checks for sufficient space, matching names for 
target and backup catalogs, and for agreement with 
volume serial number and device types. 

SO RS READ PR Reads a record from the backup catalog during a 
catalog reload. 

TARGREAD PR Reads a record from the target catalog during a 
catalog reload. 

GETPAIR PR Reads a record from both the backup and target 
catalogs for the initial checking performed before a 
catalog reload begins. 

DUMPIT PR Activated by the PARM test function in order to 
trace all 1/0 for catalog record. 

TRUENAME PR Maps the RBA boundaries of the backup truename 
ranges. 

CATRANS PR Locate and translate control interval numbers from 
source catalog to target catalog. 

CNVRTCI PR Converts control interval numbers from source 
catalog values to target catalog values. 

CATCOMP PR Indicates differences in truename entries between 
backup and target catalogs. 

VERIFYC PR Opens a data set for control interval processing in 
order to compare the end-of-data-set and 
end-of-key-range information stored in the VSAM 
catalog with the true data in the data set. Reopens 
the data set for normal keyed processing. 

IDCRSOl RESETCAT FSR; synchronize a catalog with the 
CRA (s) of its owned volume. 

IDCRSOI EP Only entry point to this module. 

A ERROR PR Exit if not enough storage is available to establish 
automatic storage for RESETCAT modules. 

CATINIT PR Initialize RES ETC A T's description of the catalog. 

CLEANUP PR Ensure all resources are freed. 

COPYCAT PR Copy the catalog to the workfile. 

INIT PR Perform the main initializations of RESETCAT. 

MERGECRA PR Merge and reset CRA into the workfile. 

PROCCRA PR Process the records of the current CRA. 

REASSIGN PR Perform control interval reassignment. 

UPDCRA PR Update the CRAs from the workfile. 

Chapter 4: Microfiche Directory 4-15 



Licensed Material - Property of IBM 

CSECT/Load 
Module Name Label Use Description 

WRAPUP PR Handle clean-up operations after successful 
RESETCAT processing. 

IDCRS02 Performs various checking functions. 

ASSOC PR Does association checking. 

CINALTER PR Alter control interval numbers in catalog records. 

LOCDIT PR Locates a specific control interval number in a 
catalog record. 

PROCCI PR Ensure that a control interval number is in the list 
of control interval numbers for records being 
processed. 

PROCTYPE PR Scan a catalog record for control interval numbers. 

SCA NCI PR Scan record for control intervals. 

SETCI PR Update the workfile to reflect new control interval 
numbers for reassigned CINs. 

VERA PR Verify aliases for nonVSAM and GDG 
associations. 

VERC PR Verify associations for clusters. 

VERDSDIR PR Verify initial space claims. 

VERCI PR Verify associations on a set of records. 

VERG PR Verify associations for alternate indexes. 

VERR PR Verify associations for PA THs. 

VERU PR Verify associations for users catalogs. 

VERX PR Verify the alias chain. 

IDCRS03 Contains procedures for controlling space. 

CATRCDSU PR Establish base record offsets for catalog low key 
range records. 

CHKBITS PR Compare bits in the bit map. 

CHKDSDIR PR Check a data set directory entry against a data or 
index component. 

CHKUNQ PR Check extents for unique data spaces. 

GETFIT PR Get a free entry in tables for ASSOC procedure. 

GETNEXTE PR Translate an index into a table into a virtual 
address. 

GETT AB PR Get and initialize a table for ASSOC procedure. 

MARKUNUS PR Mark a volume group occurrence (VGO) unusable. 

PROCVOL PR Resolve space conflicts. 

SETBMAP PR Check space conflicts for data or index type catalog 
entries. 

VERB PR Verify associations for G DG base records. 

VLNRESET PR Verify space requested from objects being reset 
against non-reset volumes. 

VLRESET PR Verify space requested from objects being reset 
against reset volumes. 

VOLCHK PR Volume consistency routine. 

IDCRS04 Performs field management processing. 

DELGO PR Delete a group occurrence. 

FIND PR Locate requested information from a set of catalog 
records. 

MODGO PR Modify a group occurrence. 

IDCRS05 Association processing. 

ADDTN PR Add a true name to the catalog. 

ADDUPCR PR Prepare for update CRA processing. 

BLDRLST PR Add an entry to the reset volume table. 

BLDVLST PR Add an entry to the volume serial table. 

4- 16 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

CSECT/Load 
Module Name Label Use Description 

CK ERR PR Print an error message. 

CRAUPCHN PR Add a workfile record to a specific "update CRA" 
chain. 

OELTN PR Delete a true name from the catalog. 

ENTNMCK PR Determine if a catalog record has a valid entry 
name. 

GENNAME PR Generate a true name. 

GETVIA PR Get a record by control interval number via a 
specific CRA. 

SCNRLST PR Obtain the next CRA volser entry. 

SCNVLST PR Scan the list of volumes. 

IDCRS06 Handles 1/0 functions; defines and deletes the 
work file. 

DSC LOSE PR Close a VSAM data set. 

DSOPEN PR Open a VSAM data set. 

RECMGMT PR Perform 1/0 requests. 

WFDEF PR Define the work file for RES ETC AT processing. 

WFDEL PR Delete the workfile. 

IDCRS07 This module contains system dependent code 
designed specifically for RESETCAT functions. 

CATEOV PR Extend the catalog. 

CNVTCCHH PR Convert CCHH or 8888 to TTnn. 

ENSUREC'I PR Ensure that there are enough control intervals for 
reassignment. 

EOVPANCI PR Format catalog free records until the catalog is 
extended. 

EOVPCCCR PR Update and write the CCR. 

EOVPCHAC PR Get the high allocated control interval numbers for 
the Low Key Range (LKR) and High Key Range 
(HK R) of the catalog. 

EOVPRBAP PR Build a table of high RBA field pointers for record 
management control blocks. 

EOVPRCCR PR Read the catalog control record (CCR) and update 
the high allocated control intervals in the record 
management control blocks. 

EOVPWFLR PR Write a deleted free record to the catalog. 

EOVPXIO PR Perform 1/0 for the catalog. 

HVTOC PR Process all common VTOC handler functions. 

RENAMEP PR Rename duplicate true name entries. 

UPDCAT PR Update the catalog from the workfile. 

UPDCCR PR Update the catalog control record (CCR). 

IDCSAOl Entry and exit module for the Access Method 
Services processor. Interface between the operating 
system and the processor. Create the G DT and call 
IDCEXOI. 

IDCSAOl EP Entry point for DOS Job Control invocation. 

IDCSASl EP Entry point for subroutine call invocation. It is six 
bytes beyond I DC SAO 1. 

PRNTERR PR Print an error message using EXCP. 

GETCORE PR Issue G ETV IS to allocate storage. 

IDCSA02 Supply all system services to the remainder of the 
processor, except prologue and epilogue At each of 
the following entry points, IDCSA02 converts the 
service request to the appropriate system macros, 
and issues those macros. 

Chapter 4: Microfiche Directory 4-17 



Licensed Material - Property of IBM 

CSECT/Load 
Module Name Label Use Description 

IDCSACL EP Load an executable module and branch lo il 
(UCALL macro). 

IDCSALD EP Load a module bul do nol branch lo il (ULOAD 
macro). 

IDCSADE EP Nol functional in DOS/VSE. 

IDCSAGS EP Gel space, a request for non-pooled storage 
(UGSPACE macro). 

IDCSAFS EP Free space, release pooled or non-pooled storage 
(UFSPACE macro). 

IDCSAGP EP Gel pool, a request for pooled storage (UG POOL 
macro). 

IDCSAFP EP Free pool, release pooled storage (UFPOOL 
macro). 

IDCSATI EP Get dale and time of day by calling I DCSA05 
(UTIME macro). 

IDCSACA EP Issue the VSAM CATLG macro (UCATLG 
macro). 

IDCSASN EP Provide core dump (USN AP macro). 

COREINIT PR Initialize an area of storage to binary zeros or 
blanks. 

IDCSAS2 DE Amount of storage IDCSA02 needs. Used by 
IDCSAOl. 

IDCSA03 Prologue and epilogue for all routines This module 
is called at entry to and exit from all other modules. 

IDCSAPR EP Prologue entry point, acquire storage. 

IDCSAEP EP Epilogue entry poinl (UEPIL macro), release 
storage. 

GETCORE PR Gel requested amount of storage. 

IDCSAS3 DE Amount of storage IDCSA03 needs Used by 
IDCSAOI. 

IDCSA04 Phase table containing load status information of 
other phases. Used by the System Adapter. 

IDCSA05 Get date and time of day (invoked by IDCSA02). 

IDCSA05 EP Only entry point to this module. 

IDCSA08 Acquire control of a resource. Release control of a 
resource. 

ID(TPOl Text Processor: provide formatting for printed 
output. Each of the following entry points 
represents a service provided by the Text Processor. 
This module includes all conversion routines and 
controls the printing of each line of output text. 

IDCTPES EP Establish a PCT from static text (UESTS macro). 

IDCTPEA EP Establish a PCT from storage ( U EST A macro). 

IDCTPER EP Establish linkage to error message processor 
(UERROR). 

IDCTPRS EP Modify an existing PCT (UREST macro). 

IDCTPRE EP Re-initialize Text Processor for the next function 
(URESET macro). 

IDCTPPR EP Print one or more lines (UPRINT macro). 

SPACE PR Set up line spacing. 

REDO PR Initiate replication. 

STATIC PR Set up static text. 

BLOCK PR Set up block data. 

INSERT PR Routine to insert data into predefined format, or 
use static text when an insert is missing and default 
data is called for. 

4 - 18 VSE/VSAM Ac<.:ess Method Services Logic 



Licensed Material - Property of IBM 

CSECT/Load 
Module Name Label Use Description 

CONVERT PR Converts data and sets it into the print line. 

BHCONV PR Convert binary data to hexadecimal characters or 
hex-apostrophe representation. 

BllDCONV PR Convert binary data to hex-dump format. 

EBCDIC PR Sets up transfer of EBCDIC characters to a print 
line. 

PUPCONV PR Convert packed-decimal data to unpacked-decimal 
characters. 

BDCONV PR Convert binary data to packed-decimal data, and 
call PUPCONV for conversion to 
unpacked-decimal characters. 

IDCTPSI DE Amount of storage IDCTPOI needs. Used by 
IDCSAOI. 

ERROR PR Process error condition. 

STACK PUT PR Buffers data lines. Does a UPUT on the line when 
the stack is full, a message is to be printed, or the 
print file is changed. 

LINERET PR Returns formatted lines to the caller. 

LINEPRT PR Controls title lines, headings, spacing; translates 
data lines; and calls STACKPUT. 

IDCTP04 Initialize and modify PCT; set up all page controls, 
define headings and footings, and define format of 
page. 

IDCTP04 EP Only entry point to this module. 

ESTSCONT PR Get space for PCT and initialize it (VESTS macro). 

ESTACONT PR Get space for PCT and initialize it from storage 
parameters (UESTA macro). 

P04SETUP PR Set up working table for PCT initialization. 

RESTCONT PR Initialize working table for modifying existing PCT 
(UREST macro). 

PCTSETUP PR Verify and initialize elements of PCT. 

RESETCON PR Re-initialize Text Processor for next function, 
return page number, and clear PCT. 

INITPCT PR Get and initialize PCT. 

STACK FL PR Print lines in stack buffer. 

IDCTP05 Read Text Structures into storage for use by either 
IDCTPO I or IDCTP04. 

IDCTP05 EP Only entry point to this module. 

IDCTP06 Formats error messages for any FSR. 

IDCTP06 EP Only entry point to this module. 

IDCTSALO Text Structure for ALTER messages. 

IDCTSBIO Text Structure for BLDINDEX message. 

IDCTSDEO Text Structure for DEFINE messages. 

IDCTSDLO Text Structure for DELETE messages. 

IDC'TSEXO Text Structure for Executive routines messages. 

IDCTSIOO Text Structure for 1/0 Adapter routines messages. 

IDCTSLCO Text Structure for LISTC AT listing. 

IDCTSLCI Text Structure for LISTCAT messages. 

IDCTSLRO Text Structure for LISTCRA listing. 

IDCTSLRI Text Structure for LISTCRA messages. 

IDCTSMPO Text Structure for IMPORT and IMPORTRA 
messages. 

IDCTSPRO Text Structure for PRINT listings and 
PRINT /REPRO messages. 

IDCTSRCO Text Structure for EXPORTRA messages. 

Chapter 4: Microfiche Directory 4-19 



Licensed Material - Property of IBM 

CSECT/Load 
Module Name Label Use Description 

IDCTSRIO Text Structure f()r Reader/Interpreter routines 
messages. 

IDCTSRSO Text structure for RESETCAT messages. 

IOCTSTPO Text Structure for Text Processor routines: contains 
print chain definitions. 

IDCTSTPI Text Structure for Text Processor routines 
messages. 

ID('TSTP6 Text Structure for VERROR messages. 

IDCTSUVO Text Structure for any routine (universal messages). 

lDCTSXPO Text Structure for EXPORT messages. 

IDCVYOI VERIFY FSR; check a VSAM data set against its 
catalog entries and correct any discrepancies that 
may be found, by calling IDCIOVR (UV ERi FY 
macro). 

IDCVYOI EP Only entry point to this module. 

OPENPROC PR Opens the VSAM data set to be verified. 

TERMPROC PR Closes the VSAM data set that was verified. 

IDCXPOI EXPORT FSR: create a portable copy ofa VSAM 
cluster or alternate index. Copy is done by issuing a 
UCOPY macro. When the input data set is a 
catalog, no copy is performed. Instead, the catalog 
is disconnected by a call to IDCSACA. 

IDCXPOI EP Only entry point to this module. 

CLUSPROC PR Gets catalog information and data for a cluster 
object and calls CONTRBL to write all the 
information to a portable volume. Processes the 
disposition options. If it is a permanent option, the 
cluster will be deleted. If it is a temporary option, 
the temporary export flag is turned on by issuing a 
catalog alter. 

DSCTPROC PR Disconnects a user catalog. 

LOCPROC PR Builds a CTGPL and multiple CTGFLs for use by 
catalog locate. CTGFLs used to locate catalog 
information to be exported. 

CTLGPROC PR Invokes the VSAM catalog management to perform 
the operation indicated in the CTG PL. 

OPENPROC PR Performs all opens required for opening a VSAM 
cluster for input or opening the portable volume for 
output. 

ALTRPROC PR Constructs the CTG PL and CTG FV for a catalog 
alter operation so that th.e data set attributes catalog 
field (DSATTR) can be modified. 

DELTPROC PR Constructs a CTG PL for a catalog delete operation 
so that a cluster or alternate index can be deleted or 
a user catalog disconnected. Invokes VSAM 
catalog management to delete clusters or alternate 
indexes. 

PUTPROC PR Writes a catalog record to the portable volume. 

RECPROC PR Copies the data from the VSAM cluster to be 
exported to the portable data set, record by record. 

MVDAPROC PR Copies data from one part of virtual storage to 
another or, optionally, zeros out part of virtual 
storage. 

CONTRBL PR Writes catalog information to a portable volume. 

MOR ESP PR Obtains a larger work area for VSAM catalog 
management and reinvokes catalog. 

4- 20 VSE/YSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Chapter 5: Data Areas 

The data areas in this chapter are described in four columns, which are 
interpreted as follows: 

Offset: The numeric address of the field relative to the beginning of the area. 
The first number is the offset in decimal, followed (in parentheses) by the 
hexadecimal equivalent. 

Bytes and Bit Pattern: The size (number of bytes) of the field and its align­
ment relative to the fullword boundary. A v indicates variable length. 

Examples: 

4 A four-byte field beginning on a word boundary . 

. . 3 A three-byte field beginning on a halfword boundary and 
running into the next word. 

This column also shows the bit patterns of a byte when they are significant 
(as in a flag byte). When the column is used to show the state of the bits (0 
or 1) in a flag byte, it is shown as follows: 

x ....... 

1 ..... .. 

0 ..... .. 

.... .. xx 

The eight bit positions (0-7) in a byte. For ease of scanning, 
the high-order (leftmost) four bits are separated from the 
low-order four bits. 

A reference to bit 0. 

Bit 0 is on. 

Bit 0 is off. 

A reference to bits 6 and 7 . 

Bit settings that are significant are shown and described. Bit settings that 
are not shown are considered to be reserved and set to zero. 

Field Name: A name that identifies the field and appears in the assembly 
listings. A sub-field or value name is indented from the field's name. An* 
indicates the field is not named. 

Description: Content, Meaning, Use: A description of the use of the field. 

Chapter 5: Data Areas 5 - l 



Block List (BLKLIST) 

Licensed Material - Property of IBM 

The Block List contains addresses and offsets for each data block to be used 
by the text processor block data routine when one more than one data block 
is required. 
Created by Modified by 

Calling routine IDCTPOl 

Bytes and 
Offset Bit Pattern 

0 (0) 8Xn 

2 

2 (2) .. 2 

4 (4) 4 

Used by 

IDCTPOl 

Field Name 

BLKLARY 

BLKLRIO 

BLKLILP 

BLKLPTR 

Size 

Variable 

Description: Content, Meaning, Use 

The following fields are repeated n times, 
where n equals the number of data blocks 
being used. The FMTBLKNO field of a 
block data format list is used as the index 
into this array. 

Off set to add to all offsets contained in 
block-format sub-structures. 

Length of block whose address is in 
BLKLPTR. 

Address of a block of data. 

Buffer Pool Control Block (BUFS) 
The Buffer Pool Control Block is used by EXPOR TRA to control 1/0 
buffers. It is passed from IDCRCO 1 through field management (IDCRC04) 
to IDCRC03. 
Created by Modified by Used by Size 

IDCRCOl IDCRC03 IDCRC03 28 

Buffer Pool Control Block Description 

Command Descriptor 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0 (0) 4 BUFPOOL Address of first buffer. 

4 (4) 4 BU FPL Address of chain of buffers. 

8 (8) 4 BUFIOCS Address of the IOCSTR. 

12 (C) 4 BUFGDT Address of the G DT. 

16 (10) 4 BUFCTT Address of the CTT 

20 (14) 4 BUFWKARA Address of the work area. 

24 (18) 2 BUFSIZE Size of buff er pool. 

26 (lA) .2 BUFSWS Indicator Flags. 

1 ....... BUFORMAT I-Buffer pool formatted 
O=Buffer pool not formatted 

. xxx xxxx Reserved . 

xxxx xxxx Reserved. 

There is a Command Descriptor for each verb supported by this processor. 
The Command Descriptor is a load module that contains directions for 
parsing the command, performing semantic checking, and building an FDT 
from the commands. The name of the load module for each verb is found in 
a directory, which is itself a load module named IDCRILT. IDCRILT is 
loaded upon the first entry to IDCRIOl. 

The name of each load module and the corresponding verb, as supplied by 
IBM, is as follows: 
IDCCDAL ALTER 
IDCCDBI BLDINDEX 
IIDCCDCL CANCEL 
IDCCDDE DEFINE 
IDCCDDL DELETE 
IDCCDXP EXPORT 

IDCCDRC EXPORTRA 
IDCCDMP IMPORT 
IDCCDRM IMPORTRA 
IDCCDLC LISTCAT 
IDCCDLR LISTCRA 

IDCCDPM PARM 
IDCCDPR PRINT 
IDCCDRP REPRO 
IDCCDRS RESETCAT 
IDCCDVY VERIFY 

S - 2 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Verb Data Area 

Positional Parameter Appendage 

Each Command Descriptor consists of a series of variable-length entries. The 
first entry is always the verb-data entry, which names the FSR load module 
to use. Subsequent entries define default values, syntactic and semantic 
requirements, the structure of all possible parameters, and the structure of the 
FDT to be built from this command. 

Created by 

IBM-Supplied 

Modified by 

None 

Used by 

IDCRIOl 

Size 

Variable 

A Command Descriptor always begins with the Verb Data Area. This data 
area names the FSR for this command, gives the total number of parameters, 
and provides offsets to other data areas in the Command Descriptor. 

Offset 

0(0) 

4(4) 

6(6) 

6(6) 

lO(A) 

12(C) 

20(14) 

21(15) 

22(16) 

23(17) 

Bytes and 
Bit Pattern 

4 

2 

.. 2 

2 

.. 2 

8 

.l 

.. l 

... 1 

Field Name 

DESCID 

PCLDSPLl 

VDATALEN 

PARMCNT 

MAX ID 

LOAD NAME 

POSDSPL 

DGRPDSPL 

VNGRPDSP 

NTGRPDSP 

Description: Content, Meaning, Use 

Descriptor identification, contains the 
last four letters of the Command De­
scriptor module name. For example, 
'CDAL' for the Alter Command Descrip­
tor, IDCCDAL. 

Not used in VSE. 

Number of halfwords in Verb Data Area 
(used to compute the address of the first 
Parameter Data Area). 

Number of Parameter Data Areas in this 
Command Descriptor. 

Largest parameter ID number that is 
used in this Command Descriptor. 

Load module name of FSR that 
processes this command. 

Number of halfwords from the beginning 
of the Verb Data Area to Positional Par­
ameter appendage of the Verb Data 
Area. 

Number of halfwords from the beginning 
of the Verb Data Area to Default Param­
eter appendage of the Verb Data Area. 

Number of halfwords from the beginning 
of the Verb Data Area to Needed Param­
eters appendage of the Verb Data Area. 

Number of halfwords from the beginning 
of the Verb Data Area to Incompatible 
Parameters appendage of the Verb Data 
Area. 

This appendage contains the parameter ID number of each positional param­
eter that is not a subparameter of other parameters. This appendage may 
follow the Verb Data Area or any Verb Data Area appendage. 

Offset 

0(0) 

2(2) 

Bytes and 
Bit Pattern 

2 

2xn 

Field Name 

VPOSCNT 

VPOSIDn 

Description: Content, Meaning, Use 

Number, n, of ID numbers that follow: 

List of ID numbers for positional 
parameters. 

Chapter 5: Data Areas 5 -3 



Default Parameter Appendage 

Needed Parameters Appendage 

Licensed Material - Property of IBM 

This appendage contains the parameter ID number of each default parame­
ter. The parameter IDs are grouped into arrays. The first parameter in each 
array is the default if none of the parameters in that array is supplied in the 
command. This appendage may follow the Verb Data area or any Verb Data 
Area appendage. 

Bytes and 
Offset Bit Pattern Field Name 

0(0) 2 DGRPTOT 

Each array contains: 

2 

2xn 

DGRPCNT 

DGRPIDn 

Description: Content, Meaning, Use 

Number of arrays that follow. 

Number, n, of ID numbers that follow: 

List of ID numbers. 

This appendage contains the parameter ID number of any necessary parame­
ter that is not a subparameter of another parameter. The parameter IDs are 
grouped into arrays. At least one of the parameters in each array must be 
supplied through the command. This appendage may follow the Verb Data 
Area or any Verb Data Area appendage. 

Bytes and 
Offset Bit Pattern Field Name 

0(0) 2 VNGRPTOT 

Each array contains: 

2 

2xn 

VNGRPCNT 

VNGRPIDn 

Description: Content, Meaning, Use 

Number of arrays that follow: 

Number, n, of ID numbers that follow: 

List of ID numbers. 

Incompatible Parameters Appendage 
This appendage contains the parameter ID numbers for each parameter in 
groups of incompatible parameters. The parameter IDs are grouped into 
arrays. Only one parameter in each array may be supplied through the 
command. 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 2 NTGRPTOT Number of arrays that follow: 

Each array contains: 

2 NTGRPCNT Number, n, of ID numbers that follow: 

2xn NTGRPIDn List of ID numbers. 

S - 4 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Parameter Data Area 

No Constant Appendage 

The Parameter Data Area follows the Verb Data Area, and describes the 
syntax and subparameters of a parameter. Usually there is one Parameter 
Data Area for each parameter. However, one Parameter Data Area can 
describe several parameters if the parameters have the same syntax and data. 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) PDEFLEN Number of halfwords in this Parameter 
Data Area including appendages. 

1( 1) 3 OCCURNUM Number of times this parameter can be 
repeated in the command. 

4(4) IDDSPL Number of halfwords from the beginning 
of this Parameter Data Area to the ID 
Appendage. 

5(5) KWDDSPL Number of halfwords from the beginning 
of this Parameter Data area to the Key-
word Appendage. 

6(6) NOTDSPL Number of halfwords from the beginning 
of this Parameter Data area to the Con-
flicting Parameters Appendage. 

7(7) NGRPDSPL Number of halfwords from the beginning 
of this Parameter Data area to the Neces-
sary Parameters Appendage. 

8(8) PDEDSPL Number of halfwords from the beginning 
of this Parameter Data area to the 
Prompt Appendage. 

9(9) KWDGRPID Not used in VSE. 

lO(A) Reserved. 

l l(B) 1 FLAGS Flags: 
1. ...... SCLRDATA Indicates the user supplies data with this 

parameter. 
.1 ...... LEVELl Indicates this parameter is not a 

subparameter. 
.. 1 ..... REPEATED Indicates the user may repeat the 

subparameters of this parameter. 
... 1. .... SCALAR Indicates the user supplies a single 

constant with this parameter. 
.... 1 ... LIST Indicates the user may supply several 

"like" constants with this parameter. 
..... l.. DEFAULT Indicates this parameter has a default 

value. 
...... 1. SUBLIST Indicates this parameter has subparame-

ters. 
.... ... x Reserved . 

This appendage follows the above section if the parameter has subparame­
ters. In other words, if SUBLIST-= I, this appendage immediately follows the 
FLAGS field described above. 

Offset 

12(C) 

14(E) 

lS(F) 

Bytes and 
Bit Pattern 

2 

Field Name 

PCLDSPL2 

SUBDSPL 

REP MAX 

Description: Content, Meaning, Use 

Not used in VSE. 

Number of halfwords from the beginning 
of this Parameter Data Area to the Sub­
parameter Appendage. 

Maximum times this parameter's 
subparameters may be repeated in the 
command. 

Chapter 5: Data Areas 5 - 5 



Constant Appendage 

Default Data Appendage 

ID Appendage 

Licensed Material - Property of IBM 

This appendage follows the basic Parameter Data area if the parameter has 
constants. In other words, if SCLRDAT A= 1 this appendage immediately 
follows the FLAGS field described above. 

Offset 

12(C) 

16(10) 

20( 14) 

21(15) 

22(16) 

23(17) 

Bytes and 
Bit Pattern Field Name 

4 HIVALUE 

4 LOWVALUE 

1 
1 ..... .. 
.1 .... .. 

.. 1. .. .. 

... 1 .. .. 

.... 1 .. . 

..... 1 .. 

...... 1. 

.... ... x 

MAXLNGTH 

LISTMAX 

CF LAG 
NUMBER 
ANYSTRNG 

DSNAM 
GENERIC 
VO LID 

USERID 
PWORDOPT 

Description: Content, Meaning, Use 

The greatest value a number constant 
may have. 

The least value a number constant may 
have. 

The maximum length of the constant 
after any conversion. 

Maximum number of times this constant 
may be repeated in a list of subparame­
ters. 

Reserved. 

Flags: 
Indicates the constant is a number. 
Indicates the constant is a character 
string. 
Indicates the constant is a data set name. 
Not used in VSE. 
Indicates a volume serial number may 
replace a data set name. 
Not used in VSE. 
Indicates the character string or data set 
name may be followed by a password. 
Reserved . 

This appendage follows the Constant Appendage if the parameter data has a 
default constant In other words, if DEFAULT= l, this appendage immedi­
ately follows the CFLAGS field described above. 

Offset 

24( 18) 

25(19) 

Bytes and 
Bit Pattern Field Name 

DEFLTLEN 

DEFLTVAL 

Description: Content, Meaning, Use 

Length of following field. 

Default constant as it would appear in 
the command. 

This appendage contains the offset from the beginning of the primary Param­
eter Data List, PDL, to the Parameter Data Entry, PDE, for each parameter 
this Parameter Data Area describes. This appendage may follow any other 
Parameter Data appendage. 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 2 ID COUNT Number of sets of two fields that follow. 
There is a set of fields for each parame-
ter. 

Each set contains: 

2 IDNUM Parameter ID number. 

2 PDEOFSTl Not used in VSE. 

5 - 6 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Keyword Appendage 
This appendage contains every keyword for each parameter this Parameter 
Data Area describes. This appendage may follow any other Parameter Data 
appendage. 

Offset 

0(0) 

Each set contains: 

0(0) 

l(l) 

Bytes and 
Bit Pattern Field Name 

v 

KWDCOUNT 

KWDLEN 

KWDITEM 

Description: Content, Meaning, Use 

Number of sets of fields that follow. 
There is a set of two fields for each key­
word. 

Length of the following keyword. 

Keyword. 

Conflicting Parameters Appendage 
This appendage contains the parameter ID of each parameter tha may not 
appear with the parameters this Parameter Data Area describes. This ap­
pendage may follow any Parameter Data appendage. 

Oft' set 

0(0) 

2(2) 

Bytes and 
Bit Pattern Field Name 

2 NOTCOUNT 

2xn NOTIDn 

Description: Content, Meaning, Use 

Number n of parameter IDs that follow. 

List of IDs of conflicting parameters. 

Necessary Parameters Appendage 

Prompt Appendage 

This appendage contains the parameter IDs of parameters that must appear 
with the parameters this Parameter Data Area describes. The parameters are 
grouped into arrays. One parameter in each array must appear. This append­
age may follow any other Parameter Data appendage. 

Bytes and 
Offset Bit Pattern 

0(0) 2 

Each array contains: 

0(0) 2 

2xn 

Field Name 

NGRPTOT 

NGRPCNT 

NGRPIDn 

Description: Content, Meaning, Use 

Number of arrays that follow: 

Number, n, ofID numbers that follow. 

List of parameter ID numbers for 
necessary parameters. 

This appendage, although it can be present in VSE, is not used. It contains 
an offset from the beginning of the prompt POL to the PDE for prompting 
information needed by parameters this Parameter Data Area describes. This 
appendage may follow any other Parameter Data appendage. 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 2 PDECNT Number of sets of fields that follow. 

Each set contains: 

2 PDEPRMID Not used. 

2 PDEPCLID Not used. 

2 PDEOFST2 Not used. 

Chapter 5: Data Areas 5- 7 



Subparameter Appendage 

Licensed Material - Property of IBM 

This appendage contains all the subparameter IDs. This appendage may 
follow any other Parameter Data appendage. 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0(0) 2 SUBCOUNT Number of sets of fields that follow. 
There is a set of two fields for each sub-
parameter. 

Each set contains: 

2 PARMTYPE Identifies this subparameter as position-
al, 'P', or keyword, 'K'. 

2 SUB ID Subparameter ID. 

Command Descriptor Phase Table-IDCRIL T 
IDCRIL T contains a table of all verbs accepted by the processor and the 
Command Descriptor phase names that are required to parse them. 

Created by 

IBM-Supplied 

Offset 

0(0) 

2(2) 

16Xn 

CRA Access Parameter List 

Modified by 

None 

Bytes and 
Bit Pattern Field Name 

2 LNAMECNT 

16Xn 

8 TBIVERB 

8 TBILNAME 

8 FFFF 

Used by 

IDCRI02 

Size 

258 

Description: Content, Meaning, Use 

Number of table entries. 

n table entries. 

Verb character string. 

Corresponding Command Descriptor 
phase name. 

End-of-table indicator (set to C'FF '). 

The CRA Access Parameter List provides VSAM catalog management with 
information necessary to access the CRA as a catalog. It is pointed to by the 
ACB when the UCRA bit in the ACB is on for the OPEN of a CRA by 
EXPOR TRA. The CRA Access Parameter List consists of three control 
blocks. The ACB points directly to the ACC (Access Method 
Services/Catalog Communication Table) which in tum points to the CTT 
(CRA Access Translate Table) and the VTT (CRA Volume Timestamp 
Table). 

Created by 

IDCRCOI 

Modified by 

None 

Used by Size 

VSAM Catalog Variable 
Management 

Access Method Services/Catalog Communication Table (ACC) Description 
Bytes and 

Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0 (0) 

4 (4) 

5 (5) 

8 (8) 

5 - 8 VSB/VSAM Access Method Services Logic 

4 

.3 

4 

ACCTRANT 

• 
ACCDSNCI 

ACCVOLTT 

Address of the CRA Access Translate 
Table (CTT). 

Reserved. 

Control Interval number used when 
LOCA TEs are performed via true names. 

Address of the Volume Timestamp 
Table. 



Licensed Material - Property of IBM 

CRA Access Translate Table (CTT) Description 
Bytes and 

Offset Bit Pattern Field Name 

0 (0) 

4 (4) 

4 

4xn 

CTTENTNO 

CTTENTRY 

CTTENTYP 

.3 CTTCATCI 

Description: Content, Meaning, Use 

Number of entries in the table. 

Variable number (n) of 4-byte entries. 

Type of CRA record. 

Catalog control interval number of the 
CRA control interval for this entry. 

CRA Volume Timestamp Table (VTT) Description 
Bytes and 

Dump List 

Individual Field Entry 

Offset Bit Pattern Field Name Description: Content, Meaning, Use 

Number of entries in the table. 

Variable number (n) of 14-byte entries. 

0(0) 

4 (4) 

4 

14xn 

VTTENTNO 

VTTENTRY 

6 VTTVOLSR Volume serial number for the timestamp 
of this entry . 

...... 8 VTTTMSTP The timestamp that is in the format 4 
label on this volume. 

The Dump List tells the UDUMP macro which areas to dump. The Dump 
List consists of entries that describe the individual fields. If one or more 
fields are to be repeated, they can be described as an array where each group 
of fields is an element in the array. In such cases, the array is preceded by a 
Dump List entry called an array header. The array header causes the fields to 
be repeated. The end of the Dump List is indicated by an entry called the 
dump list terminator. 

Individual entries are printed as name=data. Each field in an array is printed 
as name(n)=data. The array name is printed before the array elements. All 
arrays start on a new line. 

Created by Modified by 

All routines IDCDBOl 

Bytes and 
Offset Bit Pattern Field Name 

0 (0) 8 DMPIMNM 

8 (8) 4 DMPITMPT 

12 (C) 2 DMPITMLN 

14 (E) .. 1 . DMPITMTP 

15 (F) . . . 1 

Used by 

IDCDB02 

Size 

Variable 

Description: Content, Meaning, Use 

Name to be printed with the field. The 
name is aligned left and padded with 
blanks. 

Address of field to be dumped. 

Number of bytes to dump. For hexadeci­
mal, bit, or character strings the number 
is from 1to256. For fixed binary, the 
number is from 1 to 4. 

Type of data in field: 

H Hexadecimal printed as two 
characters per byte. 

B Bit string printed as eight 
characters per byte. 

C Character printed as one 
character per byte. 

F Fixed binary printed as a signed 
number for halfwords or full­
words or as an unsigned number 
for one or three bytes. Leading 
zeros are suppressed. 

Reserved . 

Chapter 5: Data Areas 5- 9 



Licensed Material - Property of IBM 

Array Header Entry 
Bytes and 

Offset Bit Pattern Field Name Description: Content. Meaning, Use 

0 (0) 8 DMPARYNM Name to be printed at the start of the 
array. The name is aligned left and pad-
ded with blanks. 

8 (8) 2 DMPARYSZ Number of bytes in each input element 
of the array. The number can be from I 
to 32,767. 

lO(A) .. 2 DMPARYIC Number of following individual items 
that are in the array. The number can be 
from I to 32,767. 

12 (C) 2 DMPARYEX Number of times to repeat the individual 
fields. The number can be from 1to99. 

14(E) . . 1. DMPARYTP Array header type-contains A . 

15 (F) ... I "' Reserved. 

Dump List Terminator Entry 
Bytes and 

Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0 (0) DMPTRM End of dump list indicator-contains 
X'FF'. 

Dynamic Data List-DARGLIST 
The dynamic data argument list describes variable data to be printed. It is 
always an argument for a print request (UPRINT macro). 

Created by Modified by Used by Size 

Calling routine None IDCTPOI Variable 

Offset 

0 (0) 

4 (4) 

8 (8) 

Bytes and 
Bit Pattern 

4 

4 

4 

Each DARGSTI D contains: 

3 

. . . I 

12 (C) 2 

14 (E) .. 2 

16 (10) 2 

18(12) .. 1 

S - 10 VSE/VSAM Access Method Services Logic 

Field Name 

DARGDBP 

DARGRETP 

DARGSTID 

DARGSMOD 

DARGSENT 

DARGILP 

DARGCNT 

DARGRETL 

DARGIND 

Description: Content, Meaning, Use 

Contains the address of the block of data, 
the address of the BLKLIST, or zero. 

Zero if printing is to occur; nonzero if no 
printing is to occur. If nonzero, contains 
the address of the area in which the for­
matted print lines are to be returned from 
the Text Processor (and not printed). 
Data will be returned to the specified lo­
cation. The data is truncated to the 
length (DARGRETL) of the provided 
area if necessary. Spacing control char­
acters are not returned. 

Zero if a format list is also passed as a 
parameter. If nonzero, contains the Text 
Structure identification (STID) for static 
text element to be used as the format list. 

Last three characters of the text-structure 
module name. 

Static text entry . 

Length of block whose address is in 
DARGDBP. 

Number of insert and replication 
elements contained in DARGARY. 

Length of the return-data area (that is, 
DARGRETP). 

Offset to add to the print column in the 
format list (FMTOCOL). 



Licensed Material - Property of IBM 

Offset 

19 {13) 

20 (14) 

Bytes and 
Bit Pattern 

.. '1 

.1 ...... 

.0 ...... 

.. 1 ..... 

x .. x xxxx 

Sxn 

2 

.. 2 

4 

Field Name 

DARGFLGS 

DARGBPL 

DARGFUL 

DARGARY 

DAR GINS 
DARGREP 
DARGINL 

DARGPCT 

DARGDTM 

Description: Content, Meaning, Use 

DARGLIST flags: 

DARGDBP contains the address of the 
BLKLIST, which contains addresses of 
multiple data blocks. 

DARGDBP contains the address of a 
single data block referred to by the for­
mat list. 

Output recordsize is greater than 32K. 

Reserved. 

Group array. The following fields are 
repeated n times, where n n = 
DARGCNT. 

Insert reference number. 
Replication reference number. 
Input data length of the field pointed to 
byDARGDTM. 
Replication count, number of times to 
replicate a series of format substructures 
(FMTLIST). 
Dynamic data pointer, address of field to 
use for this insert. This field is not used 
for replication structures. 

Error Conversion Table-ERCNVT AB 
The Error Conversion Table is passed whenever a UERROR macro is issued. 
It contains the information necessary to convert numeric error codes into 
prose messages. 

Created by 

All routines 

Offset 

0 (0) 

1 (1) 

2 (2) 

3 (3) 

4 (4) 

8 (8) 

12 (C) 

16(10) 

Modified by 

None 

Bytes and 
Bit Pattern Field Name 

l 

1 ..... .. 

.1 .... .. 

.l 

1 ....... 

.1 ...... 

.. 1. .... 

... 1 .... 

.. 1 

... 1 

4 

4 

4 

4 

ER TYPE 

ERCATLG 

EROSCAT 

ERO PER 

ERCATLC 

ERCATDE 

ERCATDL 

ERCATAL 

EROSOPER 

ERDSNM 

ERCATRC 

Used by Size 

IDCTP06 32 

Description: Content, Meaning, Use 

Type of error code to be converted. 

VSAM Catalog management error. 

OS/VS Catalog error. Not used in VSE. 

VSAM Catalog operation being 
performed when error occurred. Only 
one operation type allowed per UER­
ROR invocation. 

CMS Locate. 

CMS Define. 

CMS Delete. 

CMS Alter. 

OS/VS Catalog operation being 
performed. Not used in VSE. 

Reserved . 

Reserved. 

Reserved. 

Address of data set name or volume 
serial number associated with the Cata­
log Management request. The data set 
name is contained in a 44 byte field pad­
ded with blanks; the volume serial num­
ber is contained in a 44 byte field padded 
with binary zeros. 

VSAM Catalog Management return 
code. 

Chapter 5: Data Areas 5 - 11 



Licensed Material - Property of IBM 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

20 (14) 4 ERCPLPT Address of Catalog Parameter List 
(CTGPL) issued that resulted in error 
condition. 

24 (18) 4 Reserved. 

28 (lC) 4 Reserved. 

Field Management Parameter List-FMPL 
The Field Management Parameter List is passed whenever module IDCRC04 
is called within EXPORTRA and LISTCRA. It contains information and 
pointers which enable IDCRC04 to extract data from records within the 
catalog or CRA. 
Created by 

IDCRCOI 
IDCLROl 

Modified by 

IDCRC04 

Field Management Parameter List Description 

Offset 

0 (0) 

1 ( 1) 

4 (4) 

8 (8) 

12 (C) 

16 (10) 

17 (11) 

18 (12) 

20 (14) 

24 (18) 

Bytes and 
Bit Pattern 

1 
.3 

4 

4 

4 

. l 

.. 2 

4 
4xn 

Field Management Field List (FMFL) Description 

Offset 

0 (0) 

l (l) 

2 (l) 

3 (l) 

4 (4) 

8 (8) 

12 (C) 

16 (10) 

5- 12 VSE/VSAM Access Method Services Logic 

Bytes and 
Bit Pattern 

l 

. 1 

.. l 

... 1 

xxxx xxx. 

....... 1 

4 

4 
4 

8xn 

4. 
.4 

Field Name 

FMPLFLNO 

FM PL BC IN 

FMPLGRTN 

FMPLWKAR 

FMPLUPTR 

FMPLRTCD 

• 
FMPLENTH 

FMPLOAR 

FMPLFMFL 

Field Name 

FMFLDLNO 

FMFLTSTC 

FMFLGRPC 

FMFLINDS 

• 
FMFLSUCC 

FMFLWKAR 

FMFLDNAM 

FMFLTCHN 

FMFLDATA 

FMFLENTH 

FMFLADDR 

Used by 

IDCRC04 

Size 

Variable 

Description: Content, Meaning, Use 

Number of FMFL pointers. 

Control interval number of the base 
record. 

Address of the GET routine. 

Address of the field management work 
area. 

Value passed to user GET routine at 
Input/Output processing time. 

Return code from a call to IDCRC04. 

Reserved . 

Length of the output area provided by 
caller. 

Address or the output area. 

Array of variable number (n) of 4-byte 
FMFL pointers. 

Description: Content, Meaning, Use 

Number oflength/data pairs passed by 
caller. 

Compare test condition code . 

Field group code supplied by caller. 

FMFL indicator flags . 

Reserved . 

Bit indicating success of test. O•test is 
successful. I •test is unsuccessful. 

Work area for field management. 

Pointer to 8-byte field name. 

Address of next test FMFL. 

Variable number (n) of Length/Data 
pointer pairs. 

4-byte length of supplied data. 

4-byte address of supplied data. 



Licensed Material - Property of IBM 

Format List-FMTLIST 

Spacing 

Insert Data 

The format list defines the format of printed output. This list consists of 
several substructures, each identified by its flag byte. Format lists exist in the 
Text Structures, where they are referenced by STID numbers (Static Text 
Identifiers). Optionally, they may be passed as an argument of the UPRINT 
macro, in which case the DARGLIST argument does not furnish a STID. 

Created by 

Calling routine 

Offset 

0 (0) 

Modified by 

None 

Bytes and 
Bit Pattern Field Name 

FMTFLGS 
FMTEOLF 
FM TS CF 
FMTIDF 
FMTBDF 
FMTREPF 
FMTSTF 
FMTDFF 
FMTHDF 

1 
1. ..... . 
.1. ... .. 
.. 1. .. .. 
... 1 .. .. 
.... I. .. 
..... 1.. 
...... 1. 
....... 1 

Used by 

IDCTP9l 

Size 

Variable 

Description: Content, Meaning, Use 

Flags: 
End of structure. 
Space control. 
Insert data. 
Block data. 
Replication. 
Static text. 
Default data. 
Header line. 

Interpretation of each substructure of the format list depends on the value of 
FMTFLGS. Each of the possible substructures is shown below. 

The spacing substructure of the format list specifies the line spacing or 
carriage control to use while printing. The default spacing is used only when 
a line is not immediately preceded by a spacing substructure. A spacing 
substructure imbedded in an entry causes printing of the previously format­
ted data and signals the start of a new line. 

Bytes and 
Offset Bit Pattern 

0 (0) l 

1 (1) . 1 

2 (2) .. 2 

4 (4) 

s (5) . l 

Field Name 

FMTFLGS 

FMTSPF 

FM TS PT 

• 

Description: Content, Meaning, Use 

Flag byte: X'40'. 

Reserved . 

Space factor: if FMTSPT is equal to "A", 
this is the absolute line number to use for 
printing this line. If FMTSPT is equal to 
"R", this is the number of spaces to take 
before printing. Page overflow results in 
printing on the first line of the next page. 

Spacing type: "A" signifies absolute line 
number in FMTSPF, and "R" signifies 
relative line number. "E" signifies page 
eject. 

Reserved . 

The insert-data substructure refers to data defined in the dynamic data 
argument structure, and identified by reference number. This represents 
variable data to be inserted into the printed line. 

Offset 

0 (0) 

1 (l) 

2 (2) 

Bytes and 
Bit Pattern 

1 

. l 

.. 2 

Field Name 

FMTFLGS 

FMTBLKNO 

FMTRFNO 

Description: Content, Meaning, Use 

Flag byte: X'20' or X'AO'. (X'AO' also 
denotes end-of-structure.) 

Block number (starting with 0). This 
value is used as the index into the 
BLKLIST array for more than one data 
block. 

Insert reference number: identification 
number for dynamic data insert that de­
fines the input data to be used for for­
matting. 

Chapter 5: Data Areas 5- 13 



Default Text 

Offset 

4 (4) 

6 (6) 

8 (8) 

10 (A) 

11 (B) 

Bytes and 
Bit Pattern 

2 

"2 

2 

" l 

l. ...... 

.1 ...... 

.. l. .... 

... 1 .... 

.... 1 ... 

. . . l 

1 ....... 

.1 ...... 

.. l. .... 

... 1 .... 

.... 1 ... 

Field Name 

FMTOCOL 

FMTOLEN 

FMTCNVF 

FMTBH 

FMTBHA 

FMTBHD 

FMTBD 
FMTPU 

FMTCNVF 

FMTZS 

FMTAL 

FMTSS 
FMTBS 

FMTAR 

Licensed Material - Property of IBM 

Description: Content, Meaning, Use 

Reserved. 

Print line column for beginning of this 
field, or (if FMTBS is equal to one) the 
offset from the column indicated by field 
PCT APC. (PCT APC is the last non­
blank in the previous field.) 

Output field length. If FMTOLEN is 
equal to zero or 32,767, then the full, 
converted input length is used. 

Flags to define conversion and format­
ting to be done: 

Byte to printable, hexadecimal represen­
tation. 
Byte to hexadecimal, preceded by X' and 
followed by a single quote. 
Standard dump format. FMTOCOL and 
FMTOLEN are ignored. 
Binary to unpacked decimal characters. 
Packed to unpacked decimal characters . 

Conversion flags (continued) . 

Suppress leading zeros by replacing with 
blanks. 
Aligned left; the high-order nonzero digit 
is put in first print column as specified by 
FMTCOL. 
Suppress signs. 
Suppress all trailing blanks but one of 
the preceding field; add the off set in 
FMTOCOL to the value in PCT APC for 
the print column. 
Align EDCDIC character strings to the 
right. The print column is added to the 
print field length to determine the last 
printable position. 

The default-text substnicture is only used when it immediately follows an 
insert-data substructure. When examining the insert structure, the value in 
DARGINS is compared to the value in FMTRFNO. If the values are not 
equivalent, the next format structure is examined to determine whether it is a 
default structure. If the flag FMTD FF is on in this next structure, the struc­
ture is used. In all other cases, it is skipped over. 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0 (0) FMTFLGS Flag byte: X'02' or X'82'. (X'82' also 
denotes end-of-structure.) 

l (l) .1 Reserved. 

2 (2) "2 FMTILEN Length of the default text. 

4 (4) 2 FMTIOFF Offset from the beginning of the format 
structures to the default text (which fol-
lows the format structures). 

6 (6) "2 FMTOCOL Print line column, same as for insert 
substructure. 

8 (8) 2 FMTOLEN Output field length, same as for insert 
substructure. 

lO(A) "2 FMTCNVF Conversion flags, same as for insert 
substructure. 

5-14 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Block Format 

Replication 

Static Text 

The block format substructure of the format list defines a block of variable 
data from which fields are extracted for printing. 

Offset 

0 (0) 

l (l) 

2 (2) 

4 (4) 

6 (6) 

8 (8) 

lO(A) 

Bytes and 
Bit Pattern 

. l 

.. 2 

2 

.. 2 

2 

.. 2 

Field Name 

FMTFLGS 

FMTBLKNO 

FMTILEN 

FMTIOFF 

FMTOCOL 

FMTOLEN 

FMTCNVF 

Description: Content, Meaning, Use 

Flag byte: X'lO' or X'90'. (X'90' also 
denotes end-of-structure.) 

Block number (starting with 0). This 
value is used as the index into the 
BLKLIST array for more than one data 
block. 

Length of the input field. If FMTILEN 
is zero or if FMTILEN is greater than 
DARGILP minus FMTIOFF, then the 
input length in DARGILP is used. 

Offset from the beginning of the input 
data block at which this field begins. The 
beginning of the data block is in 
DARGDBP. 

Print line column, same as for insert 
substructure. 

Output field length, same as for insert 
substructure. 

Conversion flags, same as for insert 
substructure. 

The replication substructure defines substructures of the format list that are 
to be repeated. The replication substructure always precedes the first sub­
structure to be repeated. 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0 (0) l FMTFLGS Flag byte: X'08'. (May not have 
end-of-list flag on.) 

l ( l) . l Reserved. 

2 (2) .. 2 FMTRFNO Reference number to identify the 
dynamic argument that contains the rep-
lication count. 

4 (4) 2 FMTRBC Number of substructures that follow that 
are to be replicated. 

6 (6) .. 2 FMTRIO Offset to add to all offsets contained in 
block-format substructures being repli-
cated, to access the input fields. 

The static text substructure defines data from the Text Structures to be placed 
in the printed line. 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0 (0) FMTFLGS Flag byte: X'04' or X'84'. (X'84' also 
indicates end-of-structure.) 

l (l) . l Reserved . 

2 (2) .. 2 FMTSTL Length of static text field. 

4 (4) 2 FMTSTO Offset to static text which follows format 
structures. 

6 (6) .. 2 FMTOCOL Print line column or column offset, same 
as for insert substructure. 

8 (8) 2 FMTOLEN Output field length, same as for insert 
substructure . 

10 (A) .. 2 FMTCNVF Conversion flags, same as for insert 
substructure. 

Chapter 5: Data Areas 5 - 15 



Licensed Material - Property of IBM 

Function Data Table-FDT 
The Function Data Table is an encoded representation of a command. The 
Reader/Interpreter parses a command and constructs the FDT from inform­
ation found in that command. All defaults are resolved; no conflicts are 
allowed among the values of an FDT. 

The FDT is not one structure, but rather several small structures that are 
pointed to by a primary vector of addresses, called the FDTTBL. For a 
parameter that appears in a repeated subparameter list, a secondary vector 
results. Figure 5-1 shows this vector and illustrates the various small struc­
tures to which it points. 

The FDT primary vector, FDTTBL, is variable in length. It consists of the 
command's verb as an 8-byte EBCDIC string, followed by a variable number 
of fullword pointers. The number of pointers depends on the specific com­
mand. There is one pointer per parameter defined in the Command Descrip­
tor. If a pointer is reserved or is not used because the respective parameter 
has not been specified, the pointer contains zero. 

There are seven possible data formats for FDT entries. Each type is de­
scribed below; the data format number corresponds to the number in the 
"Data Format Number" column in the descriptions of the various FDTs. 

5- 16 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Data Sub-
Format field Subfield Length 
Number Type Level Description Mode (bytes) Notes 

pointer pointer 4 May point to data, 
to itself (indicating 
that the parameter is 
specified), or may 
be binary zeros 
(parameter is not 
specified). 

2 character 
length binary 
value character variable 

string 

3 numeric binary 4 
value 

4 character 
list 

number of binary 2 
items in list 

1 for each item: 
2 length binary 
2 value character variable 

5 binary 
word list 

number of binary 2 
items in list 

1 for each item: 
2 length binary l 
2 value binary 4 

6 name 
password length binary 1 
password characters 8 
asterisk binary l Not used. 
name flag bit string l Bit 0 on = unquali-

tied name; bit 0 off 
= qualified name. 

member name binary Unused. 
length 

membername characters 8 Unused. 
name length binary l 
name value characters 44 

7 dname/ 
password 

password length binary l 
password characters 8 
dname length binary l 
dname characters 8 

Chapter 5: Data Areas 5 - 17 



Licensed Material - Property of IBM 

Figure 5-1 shows the FDT mapping for IMPORT when the following param­
eters are specified: 

IMPORT INFILE(SOURCE -
ENV (PDEV(2400) BLKSIZE(6000) REWIND)) -
OUTPW(RECPW) -
PURGE -
OBJECTS( -

(EXAMPLE.KSDS1 -
USECLASS(7 P) -
KEYRANGES( -

) -

(ABBOTT GESTNER) -
(GESTRICH MERCY) -
(MESHING ZUBRINSKI) -

) -
(EXAMPLE.KSDS1.DATA -

NEWNAME(EXAMNEW.KSDS1.DATA) -
VOLUMES(VSER03,VSER04) -
ORDERED -
KEYRANGES( -

(ABBOTT MERCY) -
(MESHING ZUBRINSKI) -

) -
FILE(D1) -
) -

(EXAMPLE.KSDS1 .INDEX -
VOLUMES(VSER03,VSER04,VSER05) -
FILE(D2) -
) -
) 

The first five columns in the FDT descriptions are self-explanatory. The last 
three columns have the following meanings: 
Points to data-information supplied by the specified parameter. 

itself-address of the pointer itself if the parameter has been specified. 
list-additional information is given in the "Notes" column. 

Data Format Number corresponds to Data Format 1-7, described above. 

Notes additional information and references to subparameters of the specified 
parameter. 

S - 18 VSE/VSAM Access Method Services Logic 



"'J1 
.;Q" 
!:; 
n 
Y' 

~ 
"C 
0 
~ Parm. PARAMETER 
>-i No. NAME 
"'J1 
0 IMPORT >-i 
~ 1 INFILE 
S» 

"O 2 OUTF!LE 
"O 3 OBJECTS Ei" 
(JQ 4 object name 

5 NEWNAME 

6 FILE 

VOLUMES 
KEY RANGES 
DEVICETYPE 

10 ORDERED 
11 UNORDERED 
12 lowkey 

13 high key 

14 CONNECT 

15 dname of INFILE 

16 ENVIRONMENT 

17 PURGE 

18 NOPURGE 

19 ERASE 

20 NO ERASE 

21 BLOCKSIZE 

22 PRIMEDATADEVICE 

23 RECORDSIZE 

24 

25 OUTPW 
26 STD LABEL 
27 NO LABEL 

28 NO REWIND 

29 REWIND 

30 UNLOAD 

31 
32 
33 CATALOG 
34 

35 
36 
37 USE CLASS 

(j I 
38 primary 

::r 39 secondary 
S» 
'tj 
t;" 
--; 

VI 

0 
s::.:> 

; 
~ 
0 
s::.:> 
1:1> 

VI 

I 

::0 

FDT FIELD 
NAME 

FDTVERB 
(cont). 

IN 

OUT DD 
OBJTSCNT 
OBJNMPTR 
NEWNMPTR 
OBJFLPTR 
LISTVPTR 
RANGEPTR 
DEVPTR 
ORDPTR 
UNORDPTR 
LOWKYPTR 
HIKEYPTR 

CON 
INDD 

ENV 
PRG 
NPRG 
ERAS 
NERAS 

BLKSZ 
PDEV 

RECSZE 
Unused 
OUTPW 

ISLBL 
INLBL 
INREW 
IREW 
IUNLD 
Unused 

Unused 
CAT 
Unused 

Unused 
Unused 
USCLPTR 
PUSCPTR 
SUSCPTR 

OFFSET FDT BASE 
POINTERS 

4 

B 
12 
16 

20 
24 
28 

32 
36 
40 
44 
48 
52 

56 
60 
64 
68 
72 
76 
80 
84 

88 
92 .. 
96 

100 
104 

108 
112 
116 
120 
124 

128 
132 

136 
140 
144 
148 
152 
156 
160 

~-~ 
I ·§§ •ITIB 

Note· Pointer to itself indicates that the parameter 

has been specified, but either the parameter 
has no value (keyword only) or the values 
are provided through other subparameters of 

the current parameter. A null pointer indicates 
that the parameter was not specified. 

t"" n-
fD 

= {IJ 
fD 
Q. 

3: 
ID ;-... 
~ 

"Cl a 
1 ... 
~ 
s. 
;; 
3: 



Licensed Material - Property of IBM 

ALTER FDT 

Parm Offset Parm Name Sub-Parm of FDT Points Data Format Notes 
No. Fleldname to Number 

0(0) FDTVERB ALTERbbb 

s (S) tntrynamt/ ENTRY data 6 
password 

2 12 (C) CATALOG CAT itself Sec parms 3 and 4. 

3 16 (10) catnamt/ CATALOG CATLG data 6 
password 

4 20 (14) dnamt CATALOG CATON data 2 

5 24 (IS) NEWNAME NEWNM data 6 

6 2S (IC) FILE INDD data 2 
7 32 (20) unused • contains zeros 

8 36 (24) MASTERPW MAS TR data 2 

9 40 (2S) CONTROLPW CNTVL data 2 

10 44(2C) UPDATEPW UPDAT data 2 

11 48 (30) READ PW READ data 2 

12 52 (34) CODE COD NM data 2 

13 56 (3S) ATTEMPTS ATTP data 3 

14 60 (3C) AUTHORIZATION AUTH itself 1 Sec parms IS and 16. 
15 64 (40) 111trypol11t AUTHORIZATION USVR data 2 

16 6S (44) string AUTHORIZATION USAR data 2 
17 72 (4S) unused • contains zeros 

IS 76 (4C) TO TO data 3 
19 SO (SO) FOR FOR data 3 

20 S4 (54) OWNER OWNER data 2 

21 SS (58) ERASE ERASE itself 

22 92 (SC) NO ERASE NERAS itself 

23 96 (60) SHAREOPTIONS SHARE itself See parms 48 and 49. 

24 100 (64) unused • contains zeros 

25 104 (6S) NULLIFY NULLF itself See parms 26-29, 42-4S, SS, and 68. 

26 lOS (6C) MASTERPW NULLIFY NMSTR itself 

27 112 (70) CONTROLPW NULLIFY NCNTV itself 

2S 116 (74) UPDATEPW NULLIFY NU PDT itself 

29 120 (7S) READ PW NULLIFY NREAD itself 

30 124 (7C) unused • contains zeros 

31 12S (SO) FREESPACE FSPAC itself Sec parms 32 and 33. 
32 132 (S4) clptrctnt FREESPACE FSPCI data 3 

33 136 (8S) captrctnt FREESPACE FSPCA data 3 

34 140 (SC) WRITECHECK WRTCK itself 

35 144 (90) NOWRITECHECK NWT CK itself 

36 14S (94) BUFFERSPACE BUFSZ data 3 

37 152 (9S) ADDVOLUMES ADDVL list 4 For each item in the list, there is a list of 
volume serial numbers. 

3S 156 (9C) REMOVEVOLUMES REMVL list 4 For each item in the list, there is a list of 
volume serial numbers. 

39 160(AO) unused • contains zeros 

40 164 (A4) INHIBIT INHIB itself 

41 16S (AS) UNINHIBIT UNHIB itself 

42 172 (AC) OWNER NULLIFY NOWNR itself 
43 176 (BO) CODE NULLIFY NCDNM itself 

44 1SO(B4) RETENTION NULLIFY NRETN itself 

45 IS4 (BS) AUTHORIZATION NULLIFY NAUTH itself See parms 46 and 47. 

46 ISS (BC) MODULE NULLIFY, NMDNM itself 
AUTHORIZATION 

47 192 (CO) STRING NULLIFY, NSTRG itself 
AUTHORIZATION 

4S 196 (C4) crosspartltlon/ SHAREOPTIONS SHARI data 3 
valut 

49 200 (CS) reserved for OS SHAREOPTIONS SHAR2 data 3 

50 204 (CC) unused • contains zeros 

5-20 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Parm Offset Parm Name Sub-Parm of FDT Points Data Format Notes 
No. Fleldname to Number 

51 208 (DO) unused • contains zeros 
52 212 (04) unused • contains zeros 
53 216 (D8) unused • contains zeros 
54 220(DC) unused • contains zeros 
SS 224(£0) EXCEPTIONEXIT EEXT data 2 
56 228 (E4) KEYS KEY itself 1 See parms 57 and 58. 
57 232 (ES) length KEYS KEYLN data 3 
58 236 (EC) offset KEYS KEYPS data 3 
59 240 (FO) RECORDSIZE RECSZ itself l See parms 60 and 61. 
60 244 (F4) average RECORDSIZE AREC data 3 
61 248 (F8) maximum RECORDSIZE MREC data 3 
62 252 (FC) UNIQUEKEY UNQK itself 
63 256 (100) NONUNIQUEKEY NUNQK itself 

64 260 (104) UPGRADE UPG itself 
65 264 (108) NOUPGRADE NUPG itself 

66 268 (lOC) UPDATE UPD itself 

67 272(l10) NOUPDATE NUPD itself 
68 276 (114) EXCEPTION EXIT NULLIFY NEEXT itself 

BLDINDEX FDT 

Parm Offset Parm Name Sub-Parm of FDT Point• Data Format Notes 
No. Fleldname to Number 

0(0) FDTVERB BLDINDEX 
8 (8) IN FILE IFILE data 7 

2 12 (C) unused • contains zeros 
3 16 (10) OUTFILE OFILE data 4/7 Count of number of dnames followed by 

the lilt of dname/ptu1Word1 in data format 
7. 

4 20 (14) unused • contains zeros 
s 24 (18) catname/ CATALOG CAT data 6 

password 
6 28 (lC) WORKFILES WFILE itself 1 See parms 7 and 8. 
7 32 (20) dnamel WORKFILES WFLEl data 2 
8 36 (24) dname2 WORKFILES WFLE2 data 2 
9 40 (28) EXTERNALSORT ESORT itself 1 
10 44 (2C) INTERN ALSO RT ISORT itself 

11 48 (30) INDATASET IDS data 6 bue cluster data set name with optional 
pauword. 

12 52 (34) OUTDATASET ODS data 4/6 AIX data set names with 
optionalpauwords. 

13 S'i (38) WORK VOLUMES WVOL data 4 list ofVOLIDs for sort word volumes 
(CHAR(6)). 

CANCEL FDT 

Parm Offset Parm Name Sub-Parm of FDT Points Data Format Notes 
No. Fleldname to Number 

0(0) FDTVERB CANCEL 
l 8 (8) JOB JOB itself 
2 12 (C) STEP STEP itself 

Chapter S: Data Areas S - 21 



Licensed Material - Property of IBM 

DEFINE FDT 

Parm Offset Parm Name Sub-Parm of FDT Points Data Format Notes 
No. Fleldname to Number 

0 (0) FDTVERB DEFINEbbb 

1 s (8) CATALOG CAT itself 1 See parms 2 and 3. 

2 12 (C) catnamt/ CATALOG CATLG data 6 
password 

3 16 (10) dnamt CATALOG CATON data 2 

4 20 (14) MASTERCATALOG MCAT itself Sec parms 16, 39, 43, 47, 51, 55, 59, 63, 73, 
75, 77, 108, 113, 139, 142, 145, 148, 168, 
170, 186, 276, 279, 283, 284, 408, 433, and 
469. 

24 (18) USERCATALOG UCAT itself See parms 26, 149, 198-215, 218-220, 277, 
280, 285, 286, 409, 434, and 470. 

6 2S (IC) CLUSTER CLST itself See parms 17, 24, 25, 27, 40, 44, 48, 52, 56, 
60, 64, 74, 76, 78, 81, 90, 91, 94, 100, IOI, 
104, 105, 109, 114, 119, 127, 128, 133, 136, 
140, 143, 146, 161, 169, 171, 176, 177, 180, 
187, 189, 192, 221, 258, 262, 265, 266, 269, 
272, 274, 431, and 473. 

7 32 (20) unused • contains zeros 

s 36 (24) DATA DATA itself See parms 22, 31, 41, 45, 49, 53, 57, 61, 67, 
79, 84, 92, 93, 97, lll, 117, 122, 129, 130, 
134, 137, 150-152, 165, 172, 173, 178, 179, 
183, 188, 190, 193, 222, 259, 263, 267, 270, 
273, 275, 278, 281, 403, 404, 437, and 475. 

9 40 (2S) INDEX INDEX itself See parms 23, 35, 42, 46, 50, 54, 58, 62, 70, 
80, 87, 102, 103, 106, 107, 112, 118, 131, 
132, 135, 138, 155-157, 174, 175, 191, 194, 
260, 264, 268, 271, 438, and 476. 

10 44 (2C) SPACE SPACE itself See parms 110, 115, 141, 144, 147, 160, 162, 
196, 407, 435, and 471. 

11 48 (30) NONVSAM ALIEN itself See parms 19, 116, 125, 126 and 282. 

12 S2 (34) unused • contains zeros 

13 S6 (3S) unused • contains zeros 

14 60 (3C) ALTERNATEINDEX AIX itself See parms 195, 261, 338-402, 405, 406, 432, 
and477. 

IS 64 (40) PATH PATH itself See parms 410-430. 

16 6S (44) NAME MASTERCATALOG METRY data 6 

17 72 (4S) NAME CLUSTER CETRY data 6 

18 76 (4C) unused 

19 80 (SO) NAME NONVSAM AETRY data 6 

20 S4 (S4) unused 

21 8S (SS) unused 

22 92 (SC) NAME DATA DETRY data 6 

23 96 (60) NAME INDEX IETRY data 6 

24 100 (64) INDEXED CLUSTER CINDX itself 

2S 104 (6S) NONINDEXED CLUSTER CNIDX itself 

26 108 (6C) MODEL USERCATALOG UMODL itself See parms 253-255. 

27 112 (70) MODEL CLUSTER CMODL itself Sec panns 28-30. 

28 116 (74) tntrynamt/ CLUSTER, CENAM data 6 
password MODEL 

29 120 (78) catnamt/ CLUSTER, CMDCT data 6 
password MODEL 

30 124 (7C) dnamt CLUSTER, CMDNM data 2 
MODEL 

31 128 (SO) MODEL DATA DMODL itself See parms 32-34. 

32 132 (S4) tntrynamt/ DATA, MODEL DEN AM data 6 
password 

33 136 (8S) catnamt/ DATA, MODEL DMDCT data 6 
password 

34 140 (SC) dnamt DATA, MODEL DMD NM data 2 

3S 144 (90) MODEL INDEX IMODL itself l See parms 36-38. 

36 14S (94) tntrynamt/ INDEX, MODEL IENAM data 6 
password 

S-22 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Parm Offset Parm Name 
No. 

37 

38 

39 

40 
41 

42 

43 

44 

45 

46 

47 

48 

49 

so 
Sl 

S2 

53 

54 

SS 

S6 

57 

SB 

59 

60 

61 

62 

63 

64 
6S 

66 

67 

68 

69 

70 

71 

72 

73 

74 

7S 

76 

77 

7B 

79 

80 

81 

82 

B3 

84 

BS 

B6 

152 (98) 

156 (9C) 

160 (AO) 

164 (A4) 

16B (AB) 

172 (AC) 

176 (BO) 

lBO (B4) 

1B4 (BB) 

lBB (BC) 

192 (CO) 

196 (C4) 

200 (CB) 

204 (CC) 

20B (DO) 

212 (04) 

216 (DB) 

220(DC) 

224 (EO) 

22B (E4) 

232 (EB) 

236 (EC) 

240 (FO) 

244 (F4) 

24B (FB) 

2S2 (FC) 

2S6 (100) 

260 (104) 
264 (108) 

26B (lOC) 

catnamt/ 
password 

dnamt 

MASTERPW 

MASTERPW 

MASTERPW 

MASTERPW 

CONTROLPW 

CONTROLPW 

CONTROLPW 

CONTROLPW 

UPDATEPW 

UPDATEPW 

UPDATEPW 

UPDATEPW 

READ PW 

READ PW 

READ PW 

READ PW 

CODE 

CODE 

CODE 

CODE 

ATTEMPTS 

ATTEMPTS 

ATTEMPTS 

ATTEMPTS 

AUTHORIZATION 

AUTHORIZATION 

tntrypoint 

string 

272 (110) AUTHORIZATION 

276 ( 114) tntrypoint 

2BO (l l B) string 

284 (l lC) AUTHORIZATION 

2BB ( 120) tntrypoint 

292 (124) string 

296 (l2B) TO 

300(12C) TO 

304 (130) 

30B (134) 

312(13B) 

FOR 

FOR 

OWNER 

316(13C) OWNER 

320 (140) OWNER 

324 (144) OWNER 

32B (14B) SHAREOPTIONS 

332 (14C) crosspartitlon/ 
Yalut 

336 (ISO) reserved for OS 

340 (154) SHAREOPTIONS 

344 (lSB) crosspartition/ 
Yalut 

34B (lSC) reserved for OS 

Sub-Parm of 

INDEX, MODEL 

INDEX, MODEL 

MASTERCATALOG 

CLUSTER 

DATA 

INDEX 

MASTERCATALOO 

CLUSTER 

DATA 

INDEX 

MASTERCATALOO 

CLUSTER 

DATA 

INDEX 

MASTERCATALOO 

CLUSTER 

DATA 

INDEX 

MASTERCATALOO 

CLUSTER 

DATA 

INDEX 

MASTERCATALOG 

CLUSTER 

DATA 

INDEX 

MASTERCATALOO 

CLUSTER 

MASTERCATALOO, 
AUTHORIZATION 

MASTERCATALOO, 
AUTHORIZATION 

DATA 

DATA, 
AUTHORIZATION 

DATA, 
AUTHORIZATION 

INDEX 

INDEX, 
AUTHORIZATION 

INDEX, 
AUTHORIZATION 

MASTERCATALOO 

CLUSTER 

MASTERCATALOO 

CLUSTER 

MASTERCATALOO 

CLUSTER 

DATA 

INDEX 

CLUSTER 

CLUSTER, 
SHAREOPTIONS 

CLUSTER, 
SHAREOPTIONS 

DATA 

DATA, 
SHAREOPTIONS 

DATA, 
SHAREOPTIONS 

FDT 
Fleldname 

IMDCT 

I MD NM 

MMSTR 

CMS TR 

DMSTR 

IMS TR 

MCINT 

CCINT 

DCINT 

ICINT 

MU PDT 

CU PDT 

DUPDT 

IUPDT 

MREAD 

CREAD 

DREAD 

IREAD 

MCODE 

CCODE 

DC ODE 

I CODE 

MATTP 

CATTP 

DATTP 

IATTP 

MAUTH 

CAUTH 

MEPNM 

MSTRO 

DAUTH 

DEPNM 

DSTRO 

IAUTH 

IEPNM 

ISTRO 

MTO 

CTO 

MFOR 

CFOR 

MOWNR 

COWNR 

DOWNR 

IOWNR 

CS HAR 

CSHRl 

CSHR2 

DSHAR 

DSHRl 

DSHR2 

Point• Data Format Notet 
to Number 

data 

data 

data 

data 

data 

data 

data 

data 

data 

data 

data 

data 

data 

data 

data 

data 

data 

data 

data 

data 

data 

data 

data 

data 

data 

data 

itself 

itself 

data 

data 

itself 

data 

data 

itself 

data 

data 

data 

data 

data 

data 

data 

data 

data 

data 

itself 

data 

data 

itself 

data 

data 

6 

2 

2 
2 
2 

2 
2 

2 

2 
2 

2 

2 

2 

2 

2 
2 

2 

2 

2 
2 

2 

2 
3 

3 

3 

3 

2 

2 

1 

2 

2 

1 

2 

2 

3 

3 

3 

3 

2 

2 

2 

2 

1 

3 

3 

l 

3 

3 

See panm 65 and 66. 

See panna 256 and 257. 

See panm 6B and 69. 

See panna 71 and 72. 

See panm B2 and B3. 

See panna 85 and 86. 

Chapter S: Data Areas S -23 



Parm Offset Parm Name 
No. 

87 352 (160) SHAREOPTIONS 

8S 356 (164) crosspartition/ 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 
114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

12S 

129 

130 

131 

132 

133 

134 

valut 

360 ( 168) reserved for OS 

364 (16C) ERASE 

368 (170) 

372 (174) 

376 (17S) 

NO ERASE 

ERASE 

NO ERASE 

380 (l7C) KEYS 

384 (180) length 

388 (184) offset 

392 (188) KEYS 

396 ( l 8C) length 

400 (190) offstt 

404 (194) REPLICATE 

40S (198) NOREPLICATE 

412 (l9C) REPLICATE 

416 (lAO) NOREPLICATE 

420 ( 1A4) IMBED 

424 (1A8) NOIMBED 

428 (lAC) IMBED 

432 (180) NOIM8ED 

436 (184) FILE 

440 (188) FILE 

444 (1 BC) FILE 

448 (lCO) FILE 

452 (1C4) FILE 

456 ( 1 C8) VOLUMES 

560 (ICC) VOLUMES 

464 (lDO) VOLUMES 

468 (104) VOLUMES 

472 (108) VOLUMES 

476 (lDC) VOLUMES 

480 (lEO) KEYRANOES 

484 (1E4) lowkty 

488 (1 ES) hlghkty 

492 (lEC) KEYRANOES 

496 (lFO) lowkty 

SOO (lF4) highkey 

504 (IFS) DEVICETYPES 

508 (lFC) FILESEQUENCENO 

512 (200) ORDERED 

516 (204) UNORDERED 

S20 (208) ORDERED 

524 (20C) UNORDERED 

52S (210) ORDERED 

532 (214) UNORDERED 

536 (218) SUBALLOCATION 

540 (21C) SUBALLOCATION 

Sub-Parm of 

INDEX 

INDEX, 
SHAREOPTIONS 

INDEX, 
SHAREOPTIONS 

CLUSTER 

CLUSTER 

DATA 

DATA 

CLUSTER 

CLUSTER, KEYS 

CLUSTER, KEYS 

DATA 

DATA, KEYS 

DATA, KEYS 

CLUSTER 

CLUSTER 

INDEX 

INDEX 

CLUSTER 

CLUSTER 

INDEX 

INDEX 

MASTERCAT ALOO 

CLUSTER 

SPACE 

DATA 

INDEX 

MASTERCATALOO 

CLUSTER 

SPACE 

NONVSAM 

DATA 

INDEX 

CLUSTER 

CLUSTER, 
KEYRANOES 

CLUSTER, 
KEYRANOES 

DATA 

DATA, 
KEYRANOES 

DATA, 
KEYRANOES 

NONVSAM 

NONVSAM 

CLUSTER 

CLUSTER 

DATA 

DATA 

INDEX 

INDEX 

CLUSTER 

DATA 

s- 24 VSE/VSAM Access Method Services Logic 

Licensed Material - Property of IBM 

FDT 
Fleldname 

Points Data Format Notes 
to Number 

IS HAR 

ISHRl 

itself l See parms 88 and 89. 

data 3 

ISHR2 

CE RAS 

CNERS 

DERAS 

DNERS 

CKEY 

CKYLN 

CKYPS 

OKEY 

DKYLN 

DKYPS 

CREPL 

CNREP 

IREPL 

IN REP 

CIMBD 

CNIBD 

data 

itself 

itself 

itself 

itself 

itself 

data 

data 

itself 

data 

data 

itself 

itself 

itself 

itself 

itself 

itself 

IIMBD itself 

INIBD itself 

MIN DD data 

CINDD data 

SINDD data 

DINDD data 

IINDD data 

MVSER data 

CVS ER data 

SVSER data 

AVSER data 

DYSER data 

IVS ER data 

CRANO data 

CROLOPTR list of 
pointers 

CROHIPTR list of 
pointers 

DRANO data 

DROLOPTR list of 
pointers 

DRGHIPTR list of 
pointers 

ADE VT data 

AFSNO data 

CORDR 

CU ORD 

DORDR 

DUO RD 

IORDR 

IUORD 

CSUBA 

DSUBA 

itself 

itself 

itself 

itself 

itself 

itself 

itself 

itself 

l 

3 

3 

l 

3 

3 

2 

2 

2 

2 

2 

4 

4 

4 

4 

4 

4 

3 

2 

2 

3 

2 

2 

4 

See parms 95 and 96. 

key length 

key offset 

See parms 98 and 99. 

key length 

key offset 

dname 

dname 

dname 

dname 

dname 

A single serial number (character 6). 

A list of volume serial numbers (character 
6). 

A list of volume serial numbers (character 
6). 

A list of volume serial numbers (character 
6). 

A list of volume serial numbers (character 
6). 

A list of volume serial numbers (character 
6). 

Count ofsub-parms. Sec parms 120 and 
121. 

Each pointer points to 
a low kcyrange value. 

Each pointer points to 
a high keyrangc value. 

Count ofsub-parms. See parms 123 and 
124. 

Each pointer points to 
a low kcyrangc value. 

Each pointer points to 
a high keyrangc value. 

A list of device types (character 8). 

A list of file sequence numbers. 



Licensed Material - Property of IBM 

Parm Offset Parm Name 
No. 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

1

148 

149 

ISO 

151 

lS2 

153 

154 

155 

156 

157 

158 

159 

160 

161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 
173 

174 

175 

176 

177 
178 

179 

180 

181 

182 

183 

184 

185 

186 

544 (220) 

548 (224) 

552 (228) 

SUBALLOCATION 

UNIQUE 

UNIQUE 

556 (22C) UNIQUE 

S60 (230) TRACKS 

S64 (234) 

568 (238) 

TRACKS 

TRACKS 

572 (23C) CYLINDERS 

576 (240) CYLINDERS 

580 (244) CYLINDERS 

584 (248) RECORDS 

588 (24C) RECORDS 

592 (250) RECORDS 

596 (254) ORIGIN 

600 (258) ORIGIN 

604 (2SC) TRACKS 

608 (260) CYLINDERS 

612 (264) RECORDS 

616 (268) primary 

620 (26C) secondary 

624 (270) TRACKS 

628 (274) CYLINDERS 

632 (278) RECORDS 

636 (27C) 

640 (280) 

644 (284) 

648 (288) 

primary 

secondary 

CANDIDATE 

RECORDSIZE 

652 (28C) RECORDSIZE 

656 (290) average 

660 (294) maximum 

664 (298) RECORDSIZE 

668 (29C) average 

672 (2AO) maximum 

676 (2A4) WRITECHECK 

680 (2A8) WRITECHECK 

684 (2AC) NOWRITECHECK 

688 (2BO) NOWRITECHECK 

692 (2B4) WRITECHECK 

696 (2B8) NOWRITECHECK 

700 (2BC) WRITECHECK 

704 (2CO) NOWRITECHECK 

708 (2C4) SPEED 

712 (2C8) RECOVERY 

716 (2CC) SPEED 

720 (200) RECOVERY 

724 (204) FREESPACE 

728 (2D8) cipercent 

732 (2DC) capercent 

736 (2EO) FREESPACE 

740 (2E4) cipercent 

744 (2E8) capercent 

748 (2EC) BUFFERSPACE 

Sub-Parm of 

INDEX 

CLUSTER 

DATA 

INDEX 

MASTERCATALOG 

CLUSTER 

SPACE 

MASTERCATALOG 

CLUSTER 

SPACE 

MASTERCAT ALOG 

CLUSTER 

SPACE 

MASTERCATALOG 

USERCATALOG 

DATA 

DATA 

DATA 

DATA, TRACKS 

DATA, TRACKS 

INDEX 

INDEX 

INDEX 

INDEX, TRACKS 

INDEX, TRACKS 

SPACE 

CLUSTER 

SPACE 

CLUSTER, 
RECORDSIZE 

CLUSTER, 
RECORDSIZE 

DATA 

DATA, 
RECORDSIZE 

DATA, 
RECORDSIZE 

MASTERCAT ALOG 

CLUSTER 

MASTERCATALOG 

CLUSTER 

DATA 

DATA 

INDEX 

INDEX 

CLUSTER 

CLUSTER 

DATA 

DATA 

CLUSTER 

CLUSTER, 
FREESPACE 

CLUSTER, 
FREESPACE 

DATA 

DATA, 
FREESPACE 

DATA, 
FREESPACE 

MASTERCATALOG 

FDT 
Fieldname 

ISUBA 

CUN IQ 

DUN IQ 

IUNIQ 

MTRKS 

CTR KS 

STRKS 

MCYLD 

CCYLD 

SCYLD 

MR CDS 

CR CDS 

SR CDS 

MO RIO 

UORIG 

DTRKS 

DCYLD 

DR CDS 

DTKPR 

DTKSC 

ITRKS 

ICYLD 

IR CDS 

ITKPR 

ITKSC 

SCAND 

CRSIZ 

SRSIZ 

CARSZ 

CMRSZ 

DRSIZ 

DARSZ 

DMRSZ 

MWCK 

CWCK 

MNWCK 

CNWCK 

DWCK 

DNWCK 

IWCK 

INWCK 

CSPED 

CRECV 

DSPED 

DRECV 

CFSPC 

CCIFS 

CCAFS 

DFSPC 

DCIFS 

DCAFS 

MBFSZ 

Points Data Format Notes 
to Number 

itself 

itself 

itself 

itself 

itself 

itself 

itself 

itself 

itself 

itself 

itself 

itself 

itself 

data 

data 

itself 

itself 

itself 

data 

data 

itself 

itself 

itself 

data 

data 

itself 

itself 

itself 

data 

data 

itself 

data 

data 

itself 

itself 

itself 

itself 

itself 

itself 

itself 

itself 

itself 

itself 

itself 

itself 

itself 

data 

data 

itself 

data 

data 

data 

3 

3 

3 

3 

3 

3 

3 

1 

3 

3 

3 

3 

Sec parms 300 and 301. 

Sec parms 302 and 303. 

Sec parms 304 and 305. 

Sec parms 310 and 311. 

See parms 312 and 313. 

Sec parms 318 and 319. 

See parms 320 and 321. 

Sec parms 322 and 323. 

Sec parms 324 and 325. 

See panns 153 and 154. 

Sec parms 330 and 331. 

See parms 332 and 333. 

Sec parms 158 and 159. 

Sec parms 334 and 335. 

See parms 336 and 337. 

Sec parms 163 and 164. 

Sec parms 251and252. 

Sec parms 166 and 167. 

Sec parms 181 and 182. 

Sec parms 184 and 185. 

Chapter 5: Data Areas 5 - 25 



Licensed Material - Property of IBM 

Par• Off1et P1rmN1me Sub-Parm of FDT Points Data Format Notes 
No. Fleldname to Number 

117 752(2FO) BUFFERSPACE CLUSTER CBFSZ data 3 
188 756 (2F4) BUFFERSPACE DATA DBFSZ data 3 
189 760(2F8) CONTROL· CLUSTER CC INV data 

INTERVALSIZE 

190 764(2FC) CONTROL· DATA DC INV data 3 
INTERVALSIZE 

191 768 (300) CONTROL· INDEX ICINV data 3 
INTER VALSIZE 

192 772 (304) DEFAULTVOLUMES CLUSTER CDVCL itself 
193 776 (308) DEFAULTVOLUMES DATA DDVOL itself 
194 780(30C) DEFAULTVOLUMES INDEX IDVOL itself 
195 784 (310) DEFAULTVOLUMES ALTERNATEINDEX ODVOL itself 
196 788 (314) ORIGIN SPACE SO RIG data 
197 792 (318) unuaed • contains zeros 
198 796 (31C) NAME USERCATALOO UETRY data 6 

199 800 (320) MASTERPW USERCATALOG UMSTR data 2 
200 804(324) CONTROLPW USERCATALOG UCINT data 2 
201 808 (328) UPDATEPW USERCATALOG UUPDT data 2 
202 812 (32C) READ PW USERCATALOO UREAD data 2 

203 816 (330) CODE USERCATALOG UCODE data 2 

204 820 (334) ATTEMPTS USERCATALOG UATTP data 3 
205 824 (338) AUTHORIZATION USERCATALOG UAUTH itself l See parms 206 and 207. 
206 828 (33C) 1ntrypolnt USERCATALOG, UEPNM data 2 

AUTHORIZATION 
207 832 (3«>) string USERCATALOG, USTRG data 2 

AUTHORIZATION 
208 836(344) TO USERCATALOO UTO data 3 

209 840(348) FOR USERCATALOG UFOR data 3 
210 844(34C) OWNER USERCATALOG UOWNR data 2 
211 848 (350) FILE USERCATALOG UINDD data 2 dname 
212 852 (354) VOLUMES USERCATALOG UV SER data 4 A single serial number (character 6). 
213 856 (358) TRACKS USERCATALOG UTRKS itself See parms 306 and 307. 
214 860 (35C) CYLINDERS USERCATALOG UCYLD itself See parms 314 and 315. 
215 864 (360) RECORDS USERCATALOG UR CDS itself See parms 326 and 327. 
216 868 (364) unused • contains zeros 
217 872 (368) unuHd • contains zeros 
218 876 (36C) WRITECHECK USERCATALOG UWCK itself 
219 880 (370) NOWRITECHECK USERCATALOO UNWCK itself 
220 884 (374) BUFFERSPACE USERCATALOG UBFSZ data 
221 888 (378) RECORDFORMAT CLUSTER CRFMT itself See Parms 223-228 
222 892 (37C) RECORDFORMAT DATA DRFMT itself See Parms 229-234 
223 896(380) UNDEF RECORDFORMAT CUNDF itself 

224 900 (384) FIXUNB RECORDFORMAT CFUNB itself 
225 904(388) PIXBLK RECORDFORMAT CFBLK data 3 
226 908 (38C) VARUNB RECORDFORMAT CVUNB itself 
227 912 (390) VARBLK RECORDFORMAT CVBLK itself 
228 916 (394) NOCIFORMAT RECORDFORMAT CNCIF itself 

229 910(398) UNDBF RECORFORMAT DUNDF itself 
230 924(39C) FIXUNB RECORDFORMAT DFUNB itself 1 
231 928 (3AO) FIXBLK RECORDFORMAT DFBLK data 3 
232 932 (3A4) VARUNB RECORDFORMAT DVUNB itself 
233 936 (3A8) VARBLK RECORDFORMAT DVBLK itself 
234 940(3AC) NOCIFORMAT RECORDFORMAT DNCIF itself 

235 944(380) throuah 
250 1007 (3EF) unuaed ·contain• zeros 
251 1008 (3FO) """"'' SPACE, SARSZ data 3 

RECORDSIZE 
252 1012 (3P4) maximum SPACE, SMRSZ data 3 

RECORDSIZE 
253 1016 (3P8) 1ntrynam1/ USERCATALOO, UENAM data 6 

5-26 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Parm Offset Parm Name Sub·Parmof FDT Points Data Format Notes 
No. Fleldname to Number 

password MODEL 

254 1020 (3FC) catname/ USERCATALOO, UMDCT data 6 
password MODEL 

m 1024 (400) dname USERCATALOO, UMDNM data 2 
MODEL 

256 1028 (404) entrypoint CLUSTER, CEPNM data 2 
AUTHORIZATION 

257 1032 (408) string CLUSTER, CSTRO data 2 
AUTHORIZATION 

258 1036 (40C} NOALLOCATION CLUSTER CNOAL itself 

259 1040 (410) NOALLOCATION DATA DNOAL itself 

260 1044 (414) NOALLOCATION INDEX INOAL itself 

261 100 (418) NOALLOCATION ALTERNATEINDEX ONOAL itself 1 

262 1052 (41C) EXCEPTIONEXIT CLUSTER CE EXT data 2 

263 1056 (420) EXCEPTIONEXIT DATA DEEXT data 2 

264 1060 (424) EXCEPTIONEXIT INDEX IEEXT data 2 

26's 1064 (428) NUMBERED CLUSTER CNUMD itself 

266 1068 (42C) REUSE CLUSTER CRUS itself 

267 1072 (430) REUSE DATA DRUS itself 

268 1076 (434) REUSE INDEX IRUS itself 

269 1080 (438) NORE USE CLUSTER CNRUS itself 

270 1084(43C) NO REUSE DATA DNRUS itself 

271 1088 (440) NOREUSE INDEX INRUS itself 

272 1092 (444) SPANNED CLUSTER CSPND itself 

273 1096 (448) SPANNED DATA DSPND itself 

274 1100 (44C} NONSPANNED CLUSTER CNS PD itself 

275 1104 (450) NONSPANNED DATA DNSPD itself 

276 1108 (454) RECOVERABLE MASTERCATALOO MRVBL itself 

277 1112 (458) RECOVERABLE USERCATALOO URVBL itself 

278 1116 (4SC) RECOVERABLE DATA DRVBL itself 

279 1120 (460) NOTRECOVERABLE MASTERCATALOO MNRVL itself 

280 1124 (464) NOTRECOVERABLE USERCATALOO UNRVL itself l 

281 1128 (468) NOTRECOVERABLE DATA DNRVL itself 1 

282 1132 (46C) FILE NO NV SAM AINDD data 2 dname 

283 1136 (470) IM BED MASTERCATALOO MIMBD itself 

284 1140 (474) NOIMBED MASTERCATALOO MNIBD itself 

285 1144 (478) IM BED USERCATALOO UIMBD itself 

286 1148 (47C) NOIMBED USERCATALOO UNIBD itself 

287 1152 (480) through 
299 1203 (483) unused • contains zeros 

300 1204 (484) primary MASTERCATALOO, MTKPR data 3 
TRACKS 

301 1208 (488) secondary MASTERCATALOO, MTKSC data 3 
TRACKS 

302 1212 (4BC) primary CLUSTER, CTKPR data 3 
TRACKS 

303 1216 (4CO) secondary CLUSTER, CTKSC data 3 
TRACKS 

304 1220 (4C4) primary SPACE, TRACKS STKPR data 3 

305 1224 (4C8) secondary SPACE, TRACKS STKSC data 3 

306 1228 ( 4CC) primary USERCATALOO, UTKPR data 3 
TRACKS 

307 1232 (4DO) secondary USERCATALOO, UTKSC data 3 
TRACKS 

308 1236 (404) unused • contains zeros 

309 1240 (4D8) unused - contains zeros 

310 1244 (4DC) primary MASTERCATALOO, MCLPR data 3 
CYLINDERS 

311 1248 (4EO) secondary MASTERCATALOO, MCLSC data 3 
CYLINDERS 

312 1252 (4E4) primary CLUSTER, CCLPR data 3 
CYLINDERS 

Chapter S: Data Areas s -27 



Licensed Material - Property of IBM 

Parm Offaet Parm Name Sub-Parm of FDT Point• Data Format Note1 
No. Fleldname to Number 

313 1256 (4E8) 11condary CLUSTER., CCLSC data 3 
CYLINDERS 

314 1260 (4EC) primary USER.CATALOG, UCLPR. data 3 
CYLINDERS 

315 1264 (4PO) 11condary USER.CATALOG, UCLSC data 3 
CYLINDERS 

316 1268 (4P4) unused • contains zeroa 
317 1272 (4P8) unused • contains zeros 

318 1276 (4PC) primary SPACE, SCLPR. data 3 
CYLINDERS 

319 1280 (500) 11condary SPACE, SCLSC data 3 
CYLINDERS 

320 1284(504) primary MASTER.CATALOG, MR.CPR. data 3 
RECOR.OS 

321 1288 (508) 11condary MASTER.CATALOG, MRCSC data 3 
RECOR.OS 

322 1292 (SOC) primary CLUSTER., CR.CPR. data 3 
RECOR.OS 

323 1296 (510) s1condary CLUSTER., CRCSC data 3 
RECOR.OS 

324 1300 (514) primary SPACE, RECORDS SR CPR data 3 

325 1304(518) s1condary SPACE, RECORDS SRCSC data 3 

326 1308 (51C) primary USER.CATALOG, UR.CPR data 3 
RECOR.OS 

327 1312 (520) secondary USERCATALOO, UR.CSC data 3 
RECOR.OS 

328 1316 (524) unused • contains zeroa 

329 1320 (528) unused • contains zeroa 
330 1324 (52C) primary DATA, DCLPR data 3 

CYLINDERS 

331 1328 (530) s1condary DATA, DCLSC data 3 
CYLINDERS 

332 1332 (534) primary DATA, RECORDS DR.CPR data 3 

333 1336 (538) secondary DATA, RECORDS DRCSC data 3 

334 13"40 (53C) primary INDEX, ICLPR data 3 
CYLINDERS 

335 1344 (5"40) secondary INDEX, ICLSC data 3 
CYLINDERS 

336 1348 (544) primary INDEX, RECOR.OS IR CPR data 3 

337 1352 (548) secondary INDEX, RECOR.OS IR.CSC data 3 

338 1356 (54C) NAME ALTER.NATEINDEX OETRY data 6 

339 1360(550) MODEL ALTER.NATEINDEX GMODL itself l See parms 3"40-342. 

3"40 1364 (554) 1ntrynam1/ ALTER.NATEINDEX, GENAM data 6 
password MODEL 

341 1368 (558) catnam1/ ALTER.NATEINDEX, GMDCT data 6 
password MODEL 

342 1372 (55C) dnam1 ALTERNATEINDEX, GMDNM data 2 
MODEL 

343 1376 (560) MASTER.PW ALTER.NATEINDEX GMSTR. data 2 

344 1380 (564) CONTR.OLPW ALTER.NATEINDEX GCINT data 2 

345 1384 (568) UPDATEPW ALTERNATEINDEX GUPDT data 2 

346 1388 (56C) R.EADPW ALTER.NATEINDEX GREAD data 2 

347 1392 (570) CODE ALTER.NATEINDEX GCODE data 2 

348 1396 (574) ATTEMPTS ALTER.NATEINDEX OATTP data 3 
349 1400 (578) AUTHORIZATION ALTERNATEINDEX OAUTH itself l See parms 350 and 35 l. 

350 1404 (57C) 1n1rypolnt AL TER.NATEINDEX, GEPNM data 2 
AUTHORIZATION 

351 1"408 (580) strln1 ALTER.NATEINDEX. GSTR.G data 2 
AUTHORIZATION 

352 1412 (584) TO ALTERNATEINDEX OTO data 3 

353 1416 (588) POR. ALTER.NATEINDEX OFOR data 3 

354 1420 (58C) OWNER. ALTER.NATEINDEX GOWNR. data 2 

m 1424 (590) SHAR.EOPTIONS ALTER.NATEINDEX GSHAR. itself l 

356 1428 (594) crosspartltlon ALTER.NATEINDEX GSHR.I data 3 

5-28 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Parm Offset Parm Name 
No. 

3S7 

3S8 

3S9 

360 

361 

362 

363 

364 

36S 

366 

367 

368 

369 

370 

371 

372 

373 

374 

m 
376 

377 

378 

379 

380 

381 

382 

383 

384 

38S 

386 

387 

388 

389 

390 

391 

392 

393 

394 

39S 
396 

397 

398 

399 

400 

401 
402 

1432 (S98) crosssysttm 

1436 (S9C) ERASE 

1440 (SAO) NOERASE 

1444 (SA4) KEYS 

1448 (SAS) ltngth 

14S2 (SAC) of!stt 

14S6 (SBO) REPLICATE 

1460 (SB4) NOREPLICATE 

1464 (SB8) IMBED 

1468 (SBC) NOIMBED 

1472 (SCO) FILE 

1476 (SC4) VOLUMES 

1480 (SC8) KEYRANOES 

1484 (SCC) lowkty 

1488 (S DO) hlghkty 

1492 (504) ORDERED 

1496 (SD8) UNORDERED 

I 500 (SOC) SUBALLOCATION 

1504 (SEO) UNIQUE 

1S08 (SE4) TRACKS 

1Sl2 (SES) primary 

1Sl6 (SEC) stcondary 

1S20 (SFO) CYLINDERS 

1S24 (SF4) primary 

1S28 (SF8) stcondary 

1S32 (SFC) RECORDS 

1S36 (600) primary 

1 S40 (604) stcondary 

1S44 (608) RECORDSIZE 

1548 (60C) avtragt 

I SS2 (610) maximum 

1SS6 (614) WRITECHECK 

1S60 (618) NOWRITECHECK 

1S64 (61C) SPEED 

1S68 (620) RECOVERY 

1572 (624) FREESPACE 

1 S76 (628) clptrctnt 

1S80 (62C) captrctnt 

1S84 (630) BUFFERSPACE 

1S88 (634) CONTROL· 
INTERV ALSIZE 

1S92 (638) RELATE 

1S96 (63C) EXCEPTIONEXIT 

1600 (640) REUSE 

1604 (644) NOREUSE 

1608 (648) UNIQUEKEY 

1612 (64C) NONUNIQUEKEY 

Sub-Parm of 

ALTERNATEINDEX 

ALTERNATEINDEX 

AL TERNATEINDEX 

AL TERNATEINDEX 

ALTERNATEINDEX, 
KEYS 

ALTERNATEINDEX, 
KEYS 

AL TERNATEINDEX 

ALTERNATEINDEX 

AL TERNATEINDEX 

ALTERNATEINDEX 

AL TERNATEINDEX 

ALTERNATEINDEX 

ALTERNATEINDEX 

ALTERNATEINDEX, 
KEYRANOES 

ALTERNATEINDEX, 
KEYRANOES 

AL TERNATEINDEX 

ALTERNATEINDEX 

ALTERNATEINDEX 

AL TERNATEINDEX 

AL TERNATEINDEX 

AL TERNATEINDEX, 
TRACKS 

AL TERNATEINDEX, 
TRACKS 

ALTERNATEINDEX 

ALTERNATEINDEX, 
CYLINDERS 

ALTERNATEINDEX, 
CYLINDERS 

ALTERNATEINDEX 

ALTERNATEINDEX, 
RECORDS 

ALTERNATEINDEX, 
RECORDS 

AL TERNATEINDEX 

ALTERNATEINDEX, 
RECORDSIZE 

ALTERNATEINDEX, 
RECORDSIZE 

AL TERNATEINDEX 

AL TERNATEINDEX 

AL TERNATEINDEX 

AL TERNATEINDEX 

ALTERNATEINDEX 

ALTERNATEINDEX, 
FREESPACE 

ALTERNATEINDEX, 
FREESPACE 

AL TERNATEINDEX 

ALTERNATEINDEX 

ALTERNATEINDEX 

ALTERNATEINDEX 

ALTERNATEINDEX 

ALTERNATEINDEX 

ALTERNATEINDEX 

ALTERNATEINDEX 

FDT 
Fleldname 

GSHR2 

GERAS 

ONERS 

OKEY 

GKYLN 

GKYPS 

GREPL 

GNREP 

GIMBD 

GNIBD 

GINDD 

GVSER 

GRANO 

GRGLOPTR 

GRGHIPTR 

GORDR 

GU ORD 

GSUBA 

GUNIQ 

GTRKS 

GTKPR 

OTKSC 

GCYLD 

GCLPR 

GCLSC 

GR CDS 

GRCPR 

GRCSC 

GRSIZ 

GARSZ 

GMRSZ 

GWCK 

GNWCK 

GS PED 

GRECV 

GFSPC 

GCIFS 

OCAFS 

GBFSZ 

GCINV 

OREL 

GEEXT 

GRUS 

GNRUS 

GUNQK 

GNUQK 

Points Data Format Notes 
to Number 

data 

itself 

itself 

itself 

data 

data 

itself 

itself 

itself 

itself 

data 

data 

data 

list of 
pointers 

list of 
pointers 

itself 

itself 

itself 

itself 

itself 

data 

data 

itself 

data 

data 

itself 

data 

data 

itself 

data 

data 

itself 

itself 

itself 

itself 

itself 

data 

data 

data 

data 

data 

data 

itself 

itself 

itself 

itself 

3 

3 

3 

2 

4 

3 

2 

2 

3 

3 

3 

3 

3 

1 

3 

3 

1 

3 

3 

3 

3 

6 

2 

See parms 361 and 362. 

key length 

key offset 

dname 

A list of volume serial numbers (character 
6). 

Count ofsub-parms. See parms 370 and 
371. 

Each item points to 
a low keyrange value. 

Each item points to 
a high keyrange value. 

See parms 377 and 378. 

See parms 3 80 and 3 81. 

See parms 383 and 384. 

See parms 386 and 387. 

See parms 393 and 394. 

Chapter 5: Data Areas 5 - 29 



Parm Offset Parm Name 
No. 

403 

404 
405 

406 

407 

408 

409 

410 

411 

412 

413 

414 

415 

416 

417 

418 

419 

420 

421 

422 

523 

424 

425 

426 

427 

428 

429 

430 

431 

432 

433 

434 

435 

436 

437 

438 

439 

440 

441 

442 

443 

444 
445 

446 

447 

448 

449 

450 

451 

1616 (650) UNIQUEKEY 

1620 (654) NONUNIQUEKEY 

1624 (658) UPGRADE 

1628 (65C) NOUPORADE 

1632 (660) DEDICATE 

1636 (664) DEDICATE 

1640 (668) DEDICATE 

1644 (66C) NAME 

1648 (670) MODEL 

1652 (674) entryname/ 
password 

1656 (678) catname/ 
password 

1660 (67C) dname 

1664 (680) MASTERPW 

1668 (684) CONTROLPW 

1672 (688) UPDATEPW 

1676 (68C) READPW 

1680 (690) CODE 

1684 (694) ATTEMPTS 

1688 (698) AUTHORIZATION 

1692 (69C) entrypoint 

1696 (6AO) string 

1700 (6A4) TO 

1704 (6A8) FOR 

1708 (6AC) OWNER 

1712 (6BO) FILE 

1716 (6B4) UPDATE 

1720 (6B8) NOUPDATE 

1724 (6BC) PATHENTRY 

1728 (6CO) BLOCKS 

1732 (6C4) BLOCKS 

1736 (6C8) BLOCKS 

1740 (6CC) BLOCKS 

1744 (6DO) BLOCKS 

1748 (604) unused - contains zeros 

1752 (608) BLOCKS 

1756 (6DC) BLOCKS 

1760 (6EO) primary 

1764 (6E4) primary 

1768 (6E8) primary 

1772 (6EC) primary 

1776 (6FO) primary 

1780 (6F4) unused· contains zeros 

1784 (6F8) primary 

1788 (6FC) primary 

1792 (700) secondary 

1796 (704) secondary 

1800 (708) secondary 

1804 (70C) secondary 

1808 (710) secondary 

Sub-Parm of 

DATA 

DATA 

AL TERNATEINDEX 

ALTERNATEINDEX 

SPACE 

MASTERCAT ALOG 

USER CATALOG 

PATH 

PATH 

PATH, MODEL 

PATH, MODEL 

PATH, MODEL 

PATH 

PATH 

PATH 

PATH 

PATH 

PATH 

PATH 

PATH, 
AUTHORIZATION 

PATH, 
AUTHORIZATION 

PATH 

PATH 

PATH 

PATH 

PATH 

PATH 

PATH 

CLUSTER 

ALTERNATEINDEX 

MASTER CATALOG 

USER CATALOG 

SPACE 

DATA 

INDEX 

CLUSTER, 
BLOCKS 

ALTERNATEINDEX, 
BLOCKS 

MASTERCATALOG, 
BLOCKS 

USERCATALOO, 
BLOCKS 

SPACE, BLOCKS 

DATA, BLOCKS 

INDEX, BLOCKS 

CLUSTER, 
BLOCKS 

ALTERNATEINDEX, 
BLOCKS 

MASTERCATALOG, 
BLOCKS 

USERCATALOG, 
BLOCKS 

SPACE, BLOCKS 

5- 30 VSE/VSAM Access Method Services Logic 

FDT 
Fieldname 

DUNQK 

DNUQK 

GUPG 

ONUPG 

SPED 

MDED 

UDED 

RETRY 

RMODL 

RENAM 

RMDCT 

RMDNM 

RMS TR 

RC INT 

RUPDT 

RREAD 

RCODE 

RATTP 

RAUTH 

REPNM 

RSTRG 

RTO 

RFOR 

ROWNR 

RINDD 

RUPD 

RNUPD 

RPENT 

CBLKS 

GBLKS 

MBLKS 

UBLKS 

SBLKS 

DBL KS 

IBLKS 

CBLKR 

GBLKR 

MBLKR 

UBLKR 

SBLKR 

DBLKR 

IBLKR 

CBLKC 

GBLKC 

MBLKC 

UBLKC 

SBLKC 

Licensed Material - Property of IBM 

Points Data Format Notes 
to Number 

itself 

itself 

itself 

itself 

itself 

itself 

itself 

data 

itself 

data 

data 

data 

data 

data 

data 

data 

data 

data 

itself 

data 

data 

data 

data 

data 

data 

itself 

itself 

data 

itself 

itself 

itself 

itself 

itself 

itself 

itself 

data 

data 

data 

data 

data 

data 

data 

data 

data 

data 

data 

data 

6 

6 

6 

2 

2 

2 

2 

2 

2 

3 

l 

2 

2 

3 

3 

2 

2 

6 

l 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

See parms 412-414. 

See parms 422 and 423. 

dname 

See parms 439 and 447. 

See parms 440 and 448. 

See parms 441 and 449. 

See parms 442 and 450. 

See parms 443 and 451. 

See parrns 445 and 453. 

See parms 446 and 454. 



Licensed Material- Property of IBM 

Parm Offset Parm Name Sub-Parm of FDT Points Data Format Notes 
No. Field name to Number 

452 1812 (714) unused • contains zeros 

453 1816 (718) secondary DATA, BLOCKS DBLKC data 3 

454 1820 (71C) secondary INDEX, BLOCKS IBLKC data 3 

455 1824 (720) through 
468 1879 (757) unused • contains zeros 

469 1880 (758) CLASS MASTERCATALOG MCLAS data 3 

470 1884 (7SC) CLASS USERCATALOG UCLAS data 3 

471 1888 (760) CLASS SPACE SC LAS data 3 

472 1892 (764) unused· contains zeros 

473 1896 (768) USECLASS CLUSTER CUSCL itself See parma 482 and 483. 

474 1900 (76C) unused • contains zeros 

475 1904 (770) USECLASS DATA DUSCL itself See parma 485 and 486. 

476 1908 (774) USECLASS INDEX IUSCL itself See parma 487 and 488. 

477 1912 (778) USECLASS AL TERNATEINDEX GUSCL itself 

478 1916 (77C) unused • contains zeros 

479 1920 (780) unused • contains zeros 

480 1924 (784) unused • contains zeros 

481 1928 (788) unused· contains zeros 

482 1932 (78C) primary CLUSTER, CPU SC data 3 
USEC LASS 

483 1936 (790) secondary CLUSTER, CS USC data 2 
USECLASS 

484 1940 (794) unused • contains zeros 

485 1944 (798) primary DATA, DPUSC data 3 
USECLASS 

486 1948 (79C) secondary DATA, DSUSC data 2 
USEC LASS 

487 1952 (7AO) primary INDEX, I PU SC data 3 
USECLASS 

488 1956 (7A4) secondary INDEX, ISUSC data 2 
USEC LASS 

489 1960 (7A8) primary AL TERNATEINDEX, GPUSC data 3 
USEC LASS 

490 1964 (7 AC) secondary ALTERNATEINDEX, GS USC data 2 
USECLASS 

DELETE FDT 

Parm Offset Parm Name Sub·Parmof FDT Points Data Format Notes 
No. Fleldname to Number 

0(0) FDTVERB DELETEbb 

8 (8) entryname/ NTRY data 4/6 Count of repetitions 
password followed by data format 6 data. 

2 12 (C} CATALOG CATLG itself See parnu 3 and 4. 

3 16 (10) catname/ CATALOG CAT data 6 
password 

4 20 (14) dname CATALOG CATDD data 2 

s 24 (18) FILE INDD data 2 

6 28 (IC) PU ROE PURGE itself 

7 32 (20) NOPURGE NOPUR itself 

8 36 (24) ERASE ERASE itself 

9 40 (28) NO ERASE NO ERA itself 

10 44 (2C} unused • contains zeros 

11 48 (30) CLUSTER CL UST itself 

12 52 (34) SPACE SPACE itself 

13 56 (38) USERCATALOG UCAT itself 

14 60 (3C) MASTERCATALOG MCAT itself 

IS 64 (40) NONVSAM ALIEN itself 

16 68 (44) SCRATCH SCR itself 

17 72 (48) NOSCRATCH NSCR itself 

Chapter S: Data Areas S-31 



Licensed Material - Property of IBM 

Parm Offset Parm Name Sub-Parm of FDT Points Data Format Notes 
No. Fleldname to Number 

18 76 (4C) unused • contains zeros 

19 80 (SO) unused - contains zeros 

20 84 (S4) unused· contains zeros 

21 88 (S8) AL TERNATEINDEX AIX itself 

22 92 (SC) PATH PATH itself 

23 96 (60) FORCE FRC itself 

24 100 (64) NOFORCE NFRC itself 

EXPORT FDT 

Parm Offset Parm Name Sub-Parm of FDT Points Data Format Notes 
No. Fleldname to Number 

0 (0) FDTVERB EXPORTbb 

8 (8) entryname/ ENT data 6 
password 

2 12 (C) IN FILE INDD data 2 

3 16 (10) OUT FILE OUT itself 1 See parms 4 and S. 

4 20 (14) dname OUTFILE OUTDO data 2 

s 24 (18) ENVIRONMENT OUTFILE ENVIR itself See parms 20-26. 

6 28 (IC) TEMPORARY TEMP itself 

7 32 (20) PERMANENT PERM itself 

8 36 (24) INHIBITSOURCE INHBS itself 

9 40 (28) INHIBITARGET INHBT itself 

10 44 (2C) ERASE ERASE itself 

11 48 (30) NO ERASE NOERS itself 

12 52 (34) PURGE PURGE itself 

13 56 (38) NOPURGE NPRG itself 

14 60 (3C) DISCONNECT DISCT itself 

15 64 (40) NOINHIBITSOURCE NIN HS itself 

16 68 (44) NOINHIBITTARGET NINHT itself 

17 72 (48) CIMODE CIM itself 

18 76 (4C) RECORDMODE RECM itself 

19 80 (50) unused - contains zeros 

20 84 (54) PRIMEDAT ADEVICE OUTFILE, PDEV data 2 
ENVIRONMENT 

21 88 (58) BLOCKSIZE OUTFILE, BLKSZ data 3 
ENVIRONMENT 

22 92 (SC) STD LABEL OUTFILE, OSLBL itself 
ENVIRONMENT 

23 96 (60) NO LABEL OUTFILE, ONLBL itself 
ENVIRONMENT 

24 100 (64) NO REWIND OUTFILE, ON REW itself 
ENVIRONMENT 

25 104 (68) REWIND OUTFILE, OREW itself 
ENVIRONMENT 

26 108 (6C) UNLOAD OUT FILE, OUNLD itself 
ENVIRONMENT 

S- 32 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

EXPORTRA FDT 

Parm Offset Parm Name Sub-Parm of FDT Points Data Format Notes 
No. Fleldname to Number 

0 (0) FDTVERB EXPORTRA 

I 8 (8) FORCE FRC itself 

2 12 (C) NOFORCE NFRC itself 

16 (10) OUT FILE OUT itself Sec parms 11 and 13. 

4 20 (14) CRA CRACNT data Count of the number ofCRAs (dnamel) 
provided. Sec parms 5-9, 14, and 15. 

24(18) dnamel CRA CRADDPTR list of 2 Each points to the CRA dnamel it 
pointers• relates to in the order that they appear in 

the EXPORTRA command. 

6 28(1C) ALL CRA ALLNTPTR list of Each points to itself. 
pointers• 

7 32 (20) NONE CRA NONEPTR list of Each points to itself. 
pointers• 

36 (24) ENTRIES CRA ENTREPTR list of 3 Each count indicates the 
counts number of entries specified for the related 

CRA. Sec parms 14 and 15. 

9 40 (28) INFILE CRA IFILEPTR list of 2 Each pointer points to the dname2 to 
pointers• be used for a CRA. 

10 44 (2C) MASTERPW MRPW data 2 

II 48 (30) ENVIRONMENT OUTFILE ENVIR itself l See parms 12 and 16-21. 

12 52 (34) PRIMEDAT ADEVICE OUTFILE, PDEV data 2 
ENVIRONMENT 

13 S6 (38) dname OUTFILE OUTDO data 2 

14 60 (3C) entryname CRAENTRIES ENTNMPTR list of 6 Each pointer points to an entryname 
pointers• in the associated CRA. 

15 64 (40) dname3 CRAENTRIES ENTDNPTR list of 2 Each pointer points to the dname used 
pointers• to export the associated entryname in the 

ENTNMPTR. 

16 68 (44) BLOCK SIZE OUTFILE, BLKSZ data 3 
ENVIRONMENT 

17 72 (48) STD LABEL OUTFILE, OSLBL itself 
ENVIRONMENT 

18 76 (4C) NO LABEL OUTFILE, ONLBL itself 
ENVIRONMENT 

19 80 (50) NOREWIND OUTFILE, ONREW itself 
ENVIRONMENT 

20 84 (54) REWIND OUTFILE, OREW itself 
ENVIRONMENT 

21 88 (SS) UNLOAD OUTFILE, OUNLD itself 
ENVIRONMENT 

22 92 (SC} CIMODE CIM itselt 

23 96 (60) RECORDMODE RECM itself 
24 100 (64) CRAVOLUMES CRAVLCNT data Count of the number ofCRA VOLUMES 

(volser) provided. Sec Parms 25-29 

25 104 (68) volser CRAVOLUMES VOLIDPTR list of 2 Each points to the CRA VOLUMES 
pointers• volser it relates to in the order that they 

appear in the EXPORTRA command. 

26 108 (6C} ALL CRAVOLUMES ALLVLPRT list of Each points to itself. 
pointers• 

27 112 (70) NONE CRAVOLUMES NONEVPTR list of Each points to itself. 
pointers• 

28 116 (74) ENTRIES CRAVOLUMES ENTVLPTR list of Each count indicates the number 
counts of entries specified for the related 

CRAVOLUMES volser. See Parm 29. 

29 120 (78) entryname ENTRIES, ENTNVPTR list of 6 Each pointer points to an entryname 
CRAVOLUMES pointers• in the CRA identified by the volser 

parameter. 

"' One pointer per object. 

Chapter 5: Data Areas 5 - 33 



Licensed Material - Property of IBM 

IMPORT FDT 

Parm Offset Parm Name Sub·Parmof FDT Points Data Format Notes 
No. Fleldname to Number 

0(0) FDTVERB IMPORTbb 

l 8 (8) INFILE IN itself 1 See parms 15 and 16. 

2 12 (C) OUTFILE OUTDO data 7 dname /password 

3 16 (10) OBJECTS OBJTSCNT data 3 Count of the number of names specified. 
See parms 4-11, 37-39. 

4 20 (14) objectname OBJECTS OBJNMPTR list of 6 44-character entrynamc for 
pointers• each object. 

24 (18) NEWNAME OBJECTS NEWNMPTR list of 6 44-character entrynamc for 
pointers• each object. 

6 28 (lC) FILE OBJECTS OBJFLPTR list of 2 Dname for each object. 
pointers• 

7 32 (20) VOLUMES OBJECTS LISTVPTR list of 4 List of volume serial numbers for 
pointers• each object. 

8 36 (24) KEYRANOES OBJECTS RANOEPTR list of 3 Each count indicates the number of 
counts low /high kcyrangc pairs for the related 

object name. See parms 12 and 13. 

9 40 (28) DEVICETYPE OBJECTS DEVPTR list of 5 Device type of each object. 
pointers• 

10 44(2C) ORDERED OBJECTS ORDPTR list of Pointer to itself. 
pointers• 

11 48 (30) UNORDERED OBJECTS UNORDPTR list of Pointer to itself. 
pointers• 

12 52 (34) lowkey OBJECTS, LOWKYPTR list of 1/2 Each pointer points to another list 
KEYRANOES pointers• of pointers (one per low kcyrange value). 

13 56 (38) ltlghkey OBJECTS, HIKEYPTR list of 1/2 Each pointer points to another list 
KEYRANOES pointers• of pointers (one per high keyrange value). 

14 60 (3C) CONNECT CON itself l 

IS 64 (40) dname IN FILE INDD data 2 dname 

16 68 (44) ENVIRONMENT INFILE ENV itself See parms 21-23 and 26-30. 

17 72 (48) PUROE PRO itself 

18 76(4C) NOPUROE NPRO itself 

19 80 (50) ERASE ERAS itself 

20 84 (54) NO ERASE NERAS itself 1 

21 88 (58) BLOCKSIZE INFILE, BLKSZ data 3 
ENVIRONMENT 

22 92 (SC) PRIMEDATADEVICE INFILE, PDEV data 2 Device type. 
ENVIRONMENT 

23 96(60) RECORDSIZE INF I LE, REC SZE data 3 
ENVIRONMENT 

24 100 (64) unused • contains zeros 

25 104 (68) OUTPW OUTPW data 2 fHUSWOrd 

26 108 (6C) STD LABEL INF I LE, ISLBL itself 
ENVIRONMENT 

27 112 (70) NO LABEL INF ILE, INLBL itself 
ENVIRONMENT 

28 116 (74) NO REWIND INF ILE, INREW itself 
ENVIRONMENT 

29 120 (78) REWIND IN FILE, IREW itself 
ENVIRONMENT 

30 124 (7C) UNLOAD INFILE, IUNLD itself 
ENVIRONMENT 

31 128 (80) unused • contains zeros 
32 132 (84) unused • contains zeros 

33 136 (88) CATALOO CAT data 6 catname/password 

34 140 (SC) unused • contains zeros 
35 144 (90) unused • contains zeros 
36 148 (94) unused - contains zeros 
37 152 (98) USECLASS OBJECTS USCLPTR list of Points to itself. 

pointers• Sec parms 38 and 39. 

• One pointer per object. 

S-34 VSE/VSAM Access Method Services Logic 



Licensed Material- Property of IBM 

Parm Offset Parm Name Sub-Parm of FDT Points Data Format Notes 
No. Fleldname to Number 

38 156 (9C) primary OBJECTS, PUSCPTR data 3 USECLASS 

39 160 (AO) secondary OBJECTS, SUSCPTR data 2USECLASS 

IMPORTRA FDT 

Parm Offset Parm Name Sub-Parm of FDT Points Data Format Notes 
No. Fleldname to Number 

0 (0) FDTVERB IMPORTRA 

8 (8) IN FILE IN itself l See parms 15 and 16. 

2 12 (C) OUTFILE OUTDO data 2 dname 
16 (10) OBJECTS OBJTS data 3 Count of the number of object names 

specified. See parms 4-9, 37-39. 

4 20 (14) objectname OBJECTS OBJNMPTR list of 6 Each points to the 
pointers• 44-character entryname for an object. 

24 (18) DEFAULTVOLUMES OBJECTS DVOLPTR list of Each points to itself. 
pointers• 

6 28 (lC) FILE OBJECTS OBJFLPTR list of 2 Each points to the 
pointers• dname for an object. 

7 32 (20) VOLUMES OBJECTS LISTVPTR list of 4 Each points to a 
pointers• list of volume serial numbers for each 

object. 

8 36 (24) unused • contains zeros 

9 40 (28) DEVICETYPE OBJECTS DEVTPTR list of 5 Each points to the 
pointers• device type of each object. 

10 44 (2C) unused • contains zeros 

11 48 (30) unused • contains zeros 

12 52 (34) unused - contains zeros 

13 56 (38) unused - contains z~ros 

14 60 (3C) unused • contains zeros 

15 64 (40) dname INFILE INDD data 2 

16 68 (44) ENVIRONMENT INF ILE ENV itself See parms 21-22, 26-30. 
17 72 (48) unused - contains zeros 

18 76 (4C) unused • contains zeros 

19 80 (50) unused • contains zeros 

20 84 (54) unused· contains zeros 

21 88 (58) BLOCKSIZE INFILE, BLKSZ data 3 
ENVIRONMENT 

22 92 (5C) PRIMED AT ADEVICE IN FILE, PDEV data 2 Device type. 
ENVIRONMENT 

23 96 (60) unused • contains zeros 

24 100 (64) unused • contains zeros 

25 104 (68) unused • contains zeros 

26 108 (6C) STD LABEL IN FILE, ISLBL itself 
ENVIRONMENT 

27 112 (70) NO LABEL INF ILE, INLBL itself 
ENVIRONMENT 

28 116 (74) NO REWIND INF ILE, INREW itself 
ENVIRONMENT 

29 120 (78) REWIND INFILE, IREW itself 
ENVIRONMENT 

30 124 (7C) UNLOAD IN FILE, IUNLD itself 
ENVIRONMENT 

31 128 (80) unused • contains zeros 

32 132 (84) unused • contains zeros 

33 136 (88) CATALOG CAT data 6 catname/password (dname) 
34 140 (SC) unused • contains zeros 

35 144 (90) unused • contains zeros 

36 148 (94) unused - contains zeros 

37 152 (98) USEC LASS OBJECTS USCLPTR list of Points to itself. 

• One pointer per object. 

Chapter 5: Data Areas 5-35 



Llcen1ed Material - Property of IBM 

Parm Offset Parm Name Sub·Parmof FDT Points Data Format Notes 
No. Fleldname to Number 

pointers• See panns 38 and 39. 

38 156 (9C) primary OBJECTS, PUSCPTR data 3 
USECLASS 

39 160 (AO) secondary OBJECTS, SUSCPTR data 2 
USECLASS 

LISTCAT FDT 

Parm Offset Parm Name Sub-Parm of FDT Points Data Format Notes 
No. Fleldname to Number 

0(0) FDTVERB LISTCATh 

8 (8) CATALOG CAT itself See panns II and 12. 

2 12 (C) OUTFlLE OUTDO data 2 

3 16 (10) ENTRlES ENT data 6 

4 20 (14) unused • contains zeros 

s 24 (18) CLUSTER CL UST itself 

6 28 (IC) DATA DATUM itself 

7 32 (20) lNDEX INDEX itself 
8 36 (24) SPACE SPACE itself 
9 40 (28) NONVSAM ALIEN itself 
10 44 (2C) USERCATALOG UCAT itself I 

II 48 (30) catname/ CATALOG CATNM data 6 
password 

12 S2 (34) dname CATALOG CA TDD data 2 

13 S6 (38) unused • contains zeros 

14 60 (3C) NAME NAME itself 

l5 64 (40) ALL FALL itself 
16 68 (44) VOLUME VOL itself 
17 72 (48) ALLOCATlON ALLOC itself 
18 76 (4C) unused • contains zeros 
19 80 (SO) unused • contains zeros 
20 84 (S4) unused • contains zeros 

21 88 (58) unused • contains zeros 

22 92 (SC) ALTERNATEINDEX AIX itself 

23 96 (60) PATH PATH itself 
24 100 (64) NOTUSABLE NUSE itself 

LISTCRA FDT 

Parm Offset Parm Name Sub-Parm of FDT Points Data Format Notes 
No. Fleldname to Number 

0(0) FDTVERB LISTCRAb 

I 8 (8) lNFILE IF ILE list 4 Listof CRA dname.J. 

2 12 (C) COMPARE CMPR itself I 
3 16 (10) NOCOMPARE NCMPR itself 
4 20 (14) DUMP DUMP itself 
s 24 (18) NAME NAME itself 

6 28 (lC) CATALOG CAT itself See panns 7 and 8. 
7 32 (20) catname/ CATALOG CATNM data 6 

password 

8 36 (24) dname CATALOG CATON data 2 
9 40 (28) MASTERPW MRPW data 2 ptu.JWord 

10 44 (2C) SEQUENTlALDUMP SD UMP itself 1 

11 48 (30) lNVOLUMES INVOL list 4 List of CRA volsm. 

S - 36 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

PARM FDT 

Parm Offset Parm Name Sub-Parm of FDT Points Data Format Notes 
No. Fleldname to Number 

0 (0) FDTVERB PARMbbbb 

8 (8) TEST TEST itself See parnu 2-5. 

2 12 (C) OFF TEST TOFF itself 

3 16 (10) TRACE TEST TRACE itself 1 

4 20 (14) AREAS TEST AREA list 2 

5 24 (18) FULL TEST FULL itself See parms 6-8. 

6 28 (IC) dumpld FULL, TEST FIDPTR data 2 

7 32 (20) count I FULL, TEST BEGINPTR data 3 Starting count for full dump. 

36 (24) count2 FULL, TEST COUNTPTR data 3 Number of full dumps desired. 

9 40 (28) GRAPHICS GRAPH itself See parms 10 and 11. 

10 44 (2C) CHAIN GRAPHICS CHAIN itself See parma 15-21. 

11 48 (30) TABLE GRAPHICS TABLE data 2 

12 52 (34) MARGINS MARG itself 1 See parma 13 and 14. 

13 56 (38) ltftmargln MARGINS LMARG data 3 

14 60 (3C) right margin MARGINS RMARG data 3 

15 64 (40) AN CHAIN,GRAPHICS CHNAN itself 

16 68 (44) HN CHAIN,GRAPHICS CHNHN itself 

17 72 (48) PN CHAIN, GRAPHICS CHNPN itself 

18 76 (4C) QN CHAIN,GRAPHICS CHNQN itself 

19 80 (SO) RN CHAIN, GRAPHICS CHNRN itself 

20 84 (54) SN CHAIN,GRAPHICS CHNSN itself 

21 88 (S8) TN CHAIN.GRAPHICS CHNTN itself 

PRINT FDT 

Parm Offset Parm Name Sub-Parm of FDT Points Data Format Notes 
No. Fleldname to Number 

0(0) FDTVERB PRINTbbb 

1 8 (8) INFILE INDN itself See parms 9 and 16. 

2 12 (C) unused - contains zeros 

3 16 (10) FROMKEY FMKYC data 2 

4 20 (14) FROMADDRESS FMRBA data 3 

24 (18) SKIP SKIP data 3 Number ofrecords to skip. 

6 28 (IC) TO KEY TOKYC data 2 
7 32 (20) TO ADDRESS TORDA data 3 

8 36 (24) COUNT COUNT data 3 Number of records to print. 

9 40 (28) dnamt/ INFILE INPDD data 7 
password 

10 44 (2C) unused • contains zeros 

11 48 (30) unused • contains zeros 

12 52 (34) HEX FHEX itself 

13 S6 (38) CHARACTER FCHAR itself 

14 60 (3C) DUMP FD UMP itself 

IS 64 (40) unused • contains zeros 

16 68 (44) ENVIRONMENT IN FILE IENV itself See parms 17-29 and 32-36. 

17 72 (48) RECORDFORMAT IN FILE, lRFMT itself See parms 23-29. 
ENVIRONMENT 

18 76 (4C) BLOCKSIZE INF ILE, IBKSZ data 3 
ENVIRONMENT 

19 80 (SO) RECORDSIZE IN FILE, IRCSZ data 3 
ENVIRONMENT 

20 84 (54) unused • contains zeros 

21 88 (58) HINDEXDEVICE INFILE, IHDEV data 2 
ENVIRONMENT 

22 92 (SC) PRIMEDATADEVICE INF ILE, IPDEV data 2 
ENVIRONMENT 

Chapter S: Data Areas 5-37 



Licensed Material - Property of IBM 

Parm Offset Parm Name Sub-Parm of FDT Points Data Format Notes 
No. Fleldname to Number 

23 96 (60) FIXUNB IN FILE, IFUNB itself 
ENVIRONMENT, 
RECORDFORMAT 

24 100 (64) FIXBLK IN FILE, IFBLK itself 
ENVIRONMENT, 
RECORDFORMAT 

25 104 (68) VARUNB INF ILE, IVUNB itself 
ENVIRONMENT, 
RECORDFORMAT 

26 108 (6C) VARBLK INF ILE, IVBLK itself 
ENVIRONMENT, 
RECORD FORMAT 

27 112 (70) SPNUNB INF ILE, ISUNB itself 
ENVIRONMENT, 
RECORD FORMAT 

28 116 (74) SPNBLK IN FILE, ISBLK itself 
ENVIRONMENT, 
RECORDFORMAT 

29 120 (78) UNDEF IN FILE, IUNDF itself 
ENVIRONMENT, 
RECORDFORMAT 

30 124 (7C) FROMNUMBER FMNUM data 3 

31 128 (80) TO NUMBER TONUM data 3 

32 132 (84) STD LABEL INFILE, ISLBL itself 
ENVIRONMENT 

33 136 (88) NO LABEL INF ILE, INLBL itself 
ENVIRONMENT 

34 140 (SC) NO REWIND INF ILE, INREW itself 
ENVIRONMENT 

35 144 (90) REWIND IN FILE, IREW itself 
ENVIRONMENT 

36 148 (94) UNLOAD IN FILE, IUNLD itself 
ENVIRONMENT 

REPRO FDT 

Parm Offset Parm Name Sub-Parm of FDT Points Data Format Notes 
No. Fleldname to Number 

0(0) FDTVERB REPRObbb 
8 (8) IN FILE INDN itself See parms 9, 16-29, and 53-57. 

2 12 (C) OUTFILE OUTDN itself See parms 10, 32-45, and 58-62. 
3 16 (10) FROMKEY FMKYC data 2 
4 20 (14) FROMADDRESS FMRBA data 3 
5 24 (18) SKIP SKIP data 3 Number of records to skip. 
6 28 (lC) TO KEY TOKYC data 2 
7 32 (20) TO ADDRESS TOR BA data 3 

36 (24) COUNT COUNT data 3 
9 40 (28) dname/ IN FILE INPDD data 7 

password 
10 44 (2C) dname/ OUTFILE OUTDO data 7 

password 
11 48 (30) unused • contains zeros 
12 52 (34) unused • contains zeros 
13 56 (38) FROMNUMBER FMNUM data 3 
14 60(3C) TO NUMBER TONUM data 3 
IS 64 (40) unused • contains zeros 
16 68 (44) ENVIRONMENT INFILE IENV itself See parms 17-29. 
17 72 (48) RECORDFORMAT INFILE, IRFMT itself See parms 23-29 and 40-45. 

ENVIRONMENT 
18 76 (4C) BLOCKSIZE INF ILE, IBKSZ data 3 

ENVIRONMENT 
19 80 (50) RECORDSIZE IN FILE, IRCSZ data 3 

ENVIRONMENT 
20 84 (54) unused • contains zeros 
21 88 (58) HINDEXDEVICE IN FILE, IHDEV data 2 

ENVIRONMENT 

S- 38 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Parm Offset Parm Name Sub-Parm of FDT Polat1 Data Format Note1 
No. Fleldname to Nu•ber 

22 92 (SC) PRIMEDAT ADEVICE IN FILE, IPDEV data 2 
ENVIRONMENT 

23 96 (60) PIXUNB INFILE, IFUNB itself 
ENVIRONMENT, 
RECORDFORMAT 

24 100 (64) FIXBLK INFILE, IPBLK itself 
ENVIRONMENT, 
RECORDFORMAT 

25 104 (6S) VARUNB IN FILE, IVUNB itself 
ENVIRONMENT, 
RECORDFORMAT 

26 lOS (6C) VARBLK INF ILE, IVBLK itself 
ENVIRONMENT, 
RECORDFORMAT 

27 112 (70) SPNUNB IN FILE, ISUNB itself 
ENVIRONMENT, 
RECORDFORMAT 

28 116 (74) SPNBLK INFILE, ISBLK itself 
ENVIRONMENT, 
RECORDFORMAT 

29 120 (7S) UNDEF IN FILE, IUNDF itself 
ENVIRONMENT, 
RECORDFORMAT 

30 124 (7C) unused • contains zeros 
31 128 (80) unused • contains zeros 
32 132 (84) ENVIRONMENT OUTFILE OENV itself See panm 33-45. 
33 136 (SS) RECORDFORMAT OUTFILE, ORF MT itself 

ENVIRONMENT 
34 140 (8C) BLOCKSIZE OUTFILE, OBKSZ data 3 

ENVIRONMENT 
35 144 (90) RECORDSIZE OUTFILE, ORCSZ data 3 

ENVIRONMENT 
36 148 (94) unused • contains zeros 
37 152 (9S) HINDEXDEVICE OUTFILE, OHDEV data 2 

ENVIRONMENT 
38 156 (9C) PRIMEDAT ADEVICE OUTFILE, OPDEV data 2 

ENVIRONMENT 
39 160 (AO) FIXUNB OUT FILE, OFUNB itself 

ENVIRONMENT, 
RECORDFORMAT 

40 164 (A4) FIXBLK OUTFILE, OFBLK itself 
ENVIRONMENT, 
RECORDFORMAT 

41 168 (AS) VARUNB OUTFILE, OVUNB itself 
ENVIRONMENT, 
RECORDFORMAT 

42 172 (AC) VARBLK OUTFILE, OVBLK itself 
ENVIRONMENT, 
RECORDFORMAT 

43 176 (BO) SPNUNB OUTFILE, OSUNB itself 
ENVIRONMENT, 
RECORDFORMAT 

44 180(84) SPNBLK OUTFILE, OSBLK itself 
ENVIRONMENT, 
RECORDFORMAT 

45 1S4 (BS) UNDEF OUTFILE, OUNDF itself 
ENVIRONMENT, 
RECORDFORMAT 

46 1S8 (BC) unused • contains zeros 
47 192 (CO) unused • contains zeros 
48 196 (C4) unused • contains zeros 
49 200 (CB) REPLACE REP itself 
50 204(CC) NO REPLACE NREP itself 
51 208 (DO) REUSE RUS itself 
52 212 (04) NO REUSE NRUS itself 
53 216 (D8) STD LABEL INF ILE ISLBL itself 
54 220 (DC) NO LABEL INF ILE INLBL itself 
55 224 (EO) NO REWIND IN FILE IN REW itself 
56 228 (E4) REWIND IN FILE IREW itself 
57 232 (ES) UNLOAD IN FILE IUNLD itlelf 

Chapter 5: Data Areas S-39 



Licensed Material - Property of IBM 

Parm Offset Parm Name Sub-Parm of FDT Points Data Format Notes 
No. Fleldname to Number 

S8 236 (EC) STD LABEL OUTFILE OSLBL itself 
S9 240 (FO) NO LABEL OUTFILE ONLBL itself 
60 244 (F4) NO REWIND OUTFILE ON REW itself 
61 248 (F8) REWIND OUTFILE OREW itself 
62 2S2 (FC) UNLOAD OUTFILE OUNLD itself 

RESETCAT FDT 

Parm Offset Parm Name Sub-Parm of FDT Points Data Format Notes 
No. Fleldname to Number 

0(0) FDTVERB RESETCAT 
8 (8) CATALOG CAT itself See parms 2 and 3. 

2 12 (C) catname/ CATALOG CATNM data 6 
password 

3 16 (10) dname CATALOG CATON data 2 
4 20 (14) password MASTERPW MRPW data 2 
s 24 (18) WORKFILE WFDN itself Seeparm 16. 
6 28 (IC) WORKCAT WCATP itself See parms 17 and 18. 
7 32 (20) IO NORE ION itself 
8 36 (24) NOIGNORE NION itself 
9 40 (28) CRAFILES CF ILE data 3 Count of the number of CRAs provided. 

See parms 10-12. 
10 44 (2C) dname CRAFILES CRADN list of 2 Each pointer points to a dname for 

pointers• the CRA it relates to, in the order they 
appear in CRAFILES. 

11 48 (30) ALL CRAFILES ALLP list of Each pointer points to itself. 
pointers• 

12 S2 (34) NONE CRAFILES NONE list of Each pointer points to itself. 
pointers• 

13 S6 (38) unused - contains zeros 
14 60 (3C) unused - contains zeros 
IS 64 (40) unused - contains zeros 
16 68 (44) dname/ WORKFILE WFILE data 7 

password 
17 72 (48) wcatname/ WORKCAT WCAT data 6 

password 
18 76 (4C) wdname WORKCAT WCATD data 2 
19 80 (SO) CRAVOLUMES CRVOLCNT data 3 Count to the number of CRAs provided. 

See parms 20, 21, 22. 
20 84 (SS) volser CRAVOLUMES CRVSR list of 4 Each pointer points to a volser for the 

pointers• CRA it relates to. The volsers are pointed 
to in the order that they appear in 
CRA VOLUMES. 

21 88 (SS) ALL CRAVOLUMES ALLY list of Each pointer points to itself. 
pointers• 

22 92 (SC) none CRAVOLUMES NON EV list of Each pointer points to itself. 
pointers• 

23 96 (60) WORK VOLUMES WVOL data 4 List of workfile volume serial numbers, 
optional password specified with the first 
volume. 

VERIFY FDT 

Parm Offset Parm Name Sub-Parm of FDT Points Data Format Notes 
No. Fleldname to Number 

0(0) FDTVERB VERIFYbb 
8 (8) FILE IN data 7 dname/password 

2 12 (C) DATASET DSET data 6 entryname/password 

• One pointer per object. 

S-40 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Global Data Table-GDT 

Global Data Table Description 

The G DT is the directory for the services and data areas of the processor. It 
contains a branch vector for the services provided by the System Adapter, the 
1/0 Adapter, and the Text Processor. It also points to the invoker's parame­
ter list, trace tables, and historical tables. The G DT is always the first param­
eter passed to any routine. The G DT is contained in the storage associated 
with module IDCSAO 1. 

Created by 

IDCSAOl 

Offset 

0 (0) 

4 (4) 

8 (8) 

12 (C) 

16 (10) 

20 (14) 

24 (18) 

28 (lC) 

32 (20) 

36 (24) 

40 (28) 

44 (2C) 

48 (30) 

52 (34) 

56 (38) 

60 (3C) 

64 (40) 

68 (44) 

72 (48) 

76 (4C) 

80 (50) 

84 (54) 

88 (58) 

Modified by 

All service 
routines 

Bytes and 

Used by 

All routines 

Bit Pattern Field Name 

4 GDTHDR 

4 GDTPRM 

4 GDTTRl 

4 GDTTR2 

4 GDTDBH 

4 GDTSTH 

4 GDTRIH 

4 GDTTPH 

4 GDTSAH 

4 GDTIOH 

4 GDTDBG 

4 GDTSTC 

4 GDTPRT 

4 GDTESS 

4 GDTESA 

4 GDTRST 

4 GDTRES 

4 GDTCAL 

4 GDTGSP 

4 GDTFSP 

4 GDTGPL 

4 GDTFPL 

4 GDTLOD 

Size 

188 

Description: Content, Meaning, Use 

Global Data Table header; contains 
'GDTb'. 

Address of parameter list from invoker of 
the processor. (See "Processor 
Invocation" in "Program Organization" 
for details.) 

Address of Inter-Module Trace Table. 

Address of Intra-Module Trace Table. 

Address of Debugging-Aids historical 
area. (See also "TEST Option data 
area.") 

Reserved. 

Address of Reader /Interpreter historical 
area. 

Address of Text Processor historical area, 
the primary Print Control Table (PCT). 

Address of System Adapter historical 
area. 

Address of 1/0 Adapter historical area. 

Address of entry point for dump routine, 
IDCDBOl, (UDUMP macro). 

Reserved. 

Address of entry point to print, 10-
CIOPR, (UPRINT macro). 

Address of entry point to establish PCT 
from Text Structure, IDCTPES, (UESTS 
macro). 

Address of entry point to establish PCT 
from storage, IDCTPEA, (UEST A ma­
cro). 

Address of entry point to modify PCT, 
IDCTPRS, (UREST macro). 

Address of entry point to reset PCT, 
IDCTPRE, (URESET macro). 

Address of entry point to call, 
IDCSACL, (UCALL macro). 

Address of entry point 

Address of entry point to free storage, 
IDCSAFS, (UFSPACE macro). 

Address of entry point to get storage, 
IDCSAGP, (UGPOOL macro). 

Address of entry point to free storage, 
IDCSAFP, (UFPOOL macro). 

Address of entry point to load module, 
IDCSALD, (ULOAD macro). 

Chapter 5: Data Areas 5 - 41 



Licensed Material - Property of IBM 

Bytes and 
onset Bit Pattern Field Name Description: Content, Meaning, Use 

92 (SC) 4 GDTDEL Address of entry point to delete module, 
IDCSADE, (UDELETE macro). 

96 (60) 4 GDTPRL Address of entry point for prologue, 
IDCSAPR. 

100(64) 4 GDTEPL Address of entry point for epilogue, 
IDCSAEP, (UEPIL macro). 

104 (68) 4 GDTTIM Address of entry point for time, IDCSA-
TI, (UTIME macro). 

108 (6C) 4 GDTIIO Address of entry point for 1/0 initializa-
tion, IDCIOIT, (UIOINIT macro). 

112 (70) 4 GDTTIO Address of entry point for 1/0 termina-
tion, IDCIOTM, (UIOTERM macro). 

116 (74) 4 GDTRIP Reader/Interpreter name pointer. 

120 (78) 4 GDTTOH 1/0 Adapter data pointer. 

124 (7C) 4 GDTOPN Address of entry point to open data sets, 
IDCIOOP, (UOPEN macro). 

128 (80) 4 GDTCLS Address of entry point to close data sets, 
IDCIOCL, (UCLOSE macro). 

130 (84) 4 GDTGET Address of entry point to get a logical 
record, IDCIOGT, (UGET macro). 

134 (88) 4 GDTPUT Address of entry point to put a logical 
record, IDCIOPT, (UPUT macro). 

140 (8C) 4 GDTPOS Address of entry point to position to a 
logical record, IDCIOPO, (UPOSIT ma-
cro). 

144 (90) 4 GDTCPY Address of entry point to copy logical 
records, IDCIOCO, (UCOPY macro). 

148 (94) 4 GDTCAT Address of entry point for manipulating 
VSAM catalog, IDCSACA, (UCA TLG 
macro). 

IS2 (98) 4 GDTABT Address to abort, SAABT in IDCSA02, 
(UABORT macro). 

lS6 (9C) 4 GDTABH Address of U ABORT register save area. 

160 (AO) 4 Reserved. 

164 (A4) 4 GDTSNP Address of entry point to snap dump, 
IDCSASN, (USNAP macro). 

168 (A8) 4 GDTSPR Address of IDCSA03's storage. 

172 (AC) 4 GDTVFY Address of entry point to VERIFY data 
set, IDCIOVY (UVERIFY macro). 

176 (BO) 4 GDTENQ Address of entry point to UENQ macro. 

180 (84) 4 GDTDEQ Address of entry point to DEQ macro. 

184 (88) 4 GDTIFO Address of entry point to UIOINFO 
macro. 

188 (BC) 4 GDTERR Address of entry point to UERROR 
macro. 

5 - 42 VSE/VSAM Accea Method Services Logic 



Licensed Material - Property of IBM 

Input Parameter Table-IPT 
The Input Parameter Table is a parameter list passed by IDCRCOI to 
IDCRC02 within EXPOR TRA. It is an array of five pointers. Each object 
pointed to is described after the IPT pointers. 

Created by 

IDCRCOl 

Input Parameter Table Description 

Offset 

0 (0) 

4 (4) 

8 (8) 

12 (C) 

16 (10) 

Modified by 

IDCRC02 

Bytes and 
Bit Pattern Field Name 

4 

4 

4 

4 

4 

Used by 

IDCRC02 

Size 

20 

Description: Content, Meaning Use 

Address of control block describing the 
object to be exported. 

Address of control block describing the 
output (portable) data set. 

Address of the input dname. 

Address of the output dname. 

Address of the prime data device (PDEV 
su bparameter). 

Description of control block describing object to be exported. 

0 (0) 1 OBJTYP Type of object. 

1 (1) .3 OBJVAL The catalog control interval number of 
the entrys. 

4 (4) 

8 (8) 

4 

l 

RESINP 

OBJPLN 

Reserved 

Password length. 

9 (9) 8 OBJPAS Password 

Description of control block describing output (portable) data set. 

0 (0) 4 OUTLEN RECORDMODE: Maximum record 
length of data components. 

4 (4) 

8 (8) 

12 (C) 

16 (10) 

I 11 (11) 

4 
4 

4 

1 

1 ....... 
.1 ...... 
.. 1. .... 

... 1 .... 

.... xxxx 

1 ....... 

'1. ..... 

"1. .... 

... 1 .... 

.... 1 ... 

.... . xxx 

SAVOIOCS 

USBKSZ 

RESOUTP 

OUTFLGS 

OPNFLG 
ENDFLG 
EMPTY OS 

CIMO DE 

PARM OPTS 

STD LABEL 

NO LABEL 

NO REWIND 

UNLOAD 

NOINDNAME 

CIMODE: Maximum control interval 
size of data components. 

Pointer to output IOCS. 

User supplied output blocksize. 

Reserved. 

Status of output data set. 

This flag is on if output data set is open. 
This flag is on if this is the last request. 
This flag is on if the object contains no 
data records. 
This flag is on if output is to be in export 
control interval mode. 
Reserved . 

Flags for parameter options. 

Standard label option. 

No label option. 

No rewind option. 

Unload option. 

No INPUT dname. 

Reserved . 

The third pointer in the IPT points to an 8-byte input dname (INDDNM). 

The fourth pointer in the IPT points to an 8-byte output dname (OUTDDNM). 

The fifth pointer in the IPT points to an 8-byte field describing the prime data device (PDEV 
subparameter) (PDEVNM). 

Chapter 5: Data Areas 5 - 43 



Licensed Material - Property of IBM 

1/0 Adapter Historical Area-IODATA 
The 1/0 Adapter historical area is pointed to by GDTIOH. It is built on the 
first call to the 1/0 Adapter (UIOINIT macro), and contains information 
that is common to all modules of the 1/0 Adapter. 

Created by 

IDCIOOI 

Modified by 

IDCIOOl 

Used by 

IDCIOOl 
IDCI002 

Size 

68 

1/0 Adapter Historical Area Description 

Offset 

0 (0) 

4 (4) 

8 (8) 

12 (C) 

16 (10) 

20 (14) 

32 (20) 

36 (24) 

40 (28) 

44 (2C) 

48 (30) 

52 (34) 

56 (38) 

60 (3C) 

64 (40) 

Bytes and 
Bit Pattern 

4 

4 

4 

4 

4 

2 .. 

.. 2 

12 

4 

4 

4 

4 

4 

4 

4 

4 

4 

Field Name 

IODIOC 

IODMSG 

IODADD 

IODXTN 

IODSID 

IODMID 

IODINC 

• 
IODEOD 

IODOSS 

IODOSO 

IODICS 

IO DOCS 

• 
IODAEI 

• 

Input/Output Communications Structure-IOCSTR 

Description: Content, Meaning, Use 

First IOCSTR in chain. 

Reserved--contains zeros. 

Address of the alternate DD list. 

Address of the external 1/0 routine list. 

Identifier: 

Module identifier. 

Pool identifier . 

Reserved. 

Address of end-of-data routine for 
non VSAM data sets. 

NonVSAM input SYNAD routine 
address. 

NonVSAM output SYNAD routine 
address. 

Address of Access Method Services 
system-input IOCSTR. 

Address of the Access Method Services 
system-output IOCSTR. 

Reserved. 

Reserved. 

Address ofVSAM EODAD routine. 

Reserved. 

An IOCSTR exists for each open data set, or for any on which an open has 
been attempted. It contains all information about the data set that may be 
required by the processor. An IOCSTR is built at open time, and a pointer to 
the IOCSTR is returned to the requester of the open, in the OPNIOC field of 
the OPNAGL. A UGPOOL area immediately precedes the IOCSTR. The 
UGPOOL area contains the identifier assigned to the data set by the 1/0 
Adapter. All other requests for 1/0 service include this IOCSTR as one of 
the parameters for the request. 

Created by 

IDCI002 

Modified by 

All routines 

Used by 

All routines 

Size 

68 

Input/Output Communications Structure Description 
Bytes and 

Offset Bit Pattern Field Name 

-4 (-4) 4 

0 (0) 4 IOCDAD 

4 (4) 4 IOCDLN 

8 (8) 4 IOCTRN 

12 (C) IOCKYL 

S-44 VSE/VSAM Access Method Services Logic 

Description: Content, Meaning, Use 

Always contains 'IOCS'. 

Address of data area. 

Length of data record. 

Transmission length: LRECL for logical 
processing or control interval for block 
processing. 

Key length in bytes. 



Licensed Material - Property of IBM 

Bytes and 
Oft' set Bit Pattern Field Name Description: Content, Meaning, Use 

13 (D) .3 IOCRKP Relative key position, value assumes 
VSAM or ISAM meaning. 

16 (10) IOCDSO Data set organization: 

1 ....... IOCDSOAM VSAM data set. 
.1 ...... IOCDSOPS NonVSAM sequential data set. 
.. 1. .... IOCDSOIS Indexed sequential (ISAM) data set. 
... 1 .... IOCDSOPO Partitioned data set. 

17 (11) . l IOCRFM Non VSAM record format: 

1 ....... IOCRFMFX Fixed-length records. 
.I ...... IOCRFMVR Variable-length records, not spanned. 
.. 1 ..... IOCRFMUN Undefined-length records. 
... 1 .... IOCRFMSF Spanned records. 
.... 1 ... IOCRFMBK Blocked records . 
.... . xxx Reserved . 

18 (12) .. l IOCMAC Macro form used: 

1 ....... IOCMACIN Input processing. 
. 1 ...... IOCMACOT Output processing . 
.. 1. .... IOCMACUP Update processing. 
... 0 .... IOCMACCR Keyed sequence . 
... 1 .... Entry sequence. 
.... 0 ... IOCMACBK Logical records . 
.... 1 ... Blocks or control intervals . 
..... 0 .. IOCMACDR Sequential processing. 
.... . 1 .. Direct processing . 
.... .. x. • Reserved . 
....... 0 IOCMACCI Export RECORDMODE processing . 
....... 1 Export CIMO DE processing. 

19 (13) ... l IOCMAC2 
l ....... IOCMACSK Skip sequential processing. 
.1 ...... IOCMACAS Asynchronous processing (OS/VS only). 
.. 1 ..... IOCMACRR Relative record processing. 
... 1 .... IOCMACCP Change processing . 
.... 1. .. IOCMACEN PUT-ENDREQ processing. 
.... . 1 .. IOCMACPA Reprocessing flag . 
...... 1. IOCMACER PUT-ERASE processing 
.... ... x Reserved . 

20 (14) 1 IOCCHP Change processing modes. 
1 ....... IOCCHPSQ Change to sequential. 
.1 ...... IOCCHPDR Change to direct. 
.. 1 ..... IOCCHPSK Change to skip sequential. 
... 1 .... IOCCHPKS Change to keyed . 
.... 1 ... IOCCHPCR Change to addressed . 
..... 1 .. IOCCHPBK Change to control interval. 
...... 1. IOCCHPUP Change to update. 
....... 1 IOCCHPNU Change to no update. 

21 (15) . 1 IOCMSG Message flags: 
1 ....... IOCHPKE Change to key equal. 
.1 ...... IOCHPKG Change to greater than or equal. 
.. 1 ..... IOCMSGOP Data set is open . 
... 1 .... IOCMSGOE VSAM OPEN error. 
.... 1 ... IOCMSGCE VSAM CLOSE error . 
..... 1 .. IOCMSGAE VSAM action error. 
.... .. 1. IOCMSGSM Suppress logical error messages . 
.... ... x Reserved . 

22 (16) 6 IOCVOLSR Volume serial number of opened data 
set. 

28 (lC) 4 IOCHURBA High-used RBA. 

32 (20) 4 IOCDSN Address of data set name. 

The data set name usually follows the I OCSTR extension. 

36 (24) 4 IOCCBP Control block address. 

40 (28) 4 IOCRBA Record RBA (VSAM). 

44 (2C) 4 IOCKYA Address of key. 

Chapter 5: Data Areas 5-45 



Offset 

48 (30) 

50 (32) 

52 (34) 

56 (38) 

60 (3C) 

64 (40) 

Bytes and 
Bit Pattern 

2 

.. 2 

4 

4 

4 

4 

Field Name 

IOCPTL 

IOCPNM 

IOCRRN 
IOCSYSNO 

IOCWORK 

IOCREL 

IOCEXT 

Licensed Material - Property of IBM 

Description: Content. Meaning. Use 

Length of key supplied for position 
request. 

Number of stacked puts. 

Relative record number. 
For CRAs this field is passback from 
UOPEN and contains the two-byte field 
(in CCB format) that was passed back to 
UOPEN from IKQASNMT (ASSIGN 
macro). On UCLOSE, if this field is 
nonzero, IKQASNMT is called to unas­
sign this logical unit. 

Address of input work area. 

Relative record number. 

IOCSTR extension address. 

IOCSTR Extension-IOCSEX 

IOCSTR Extension Description 

The IOCSTR Extension is built immediately after the IOCSTR. However, 
for flexibility and to make the IOCSTR easily extensible, field IOCEXT 
points to the IOCSEX. 
Created by 

IDCI002 

Offset 

0 (0) 

4 (4) 

8 (8) 

Modified by 

IDCIOOl 

Bytes and 
Bit Pattern Field Name 

IOCCBA 

IOCRPL 

IOCCBL 

4 

4 

2 

Used by 

IDCIOOl 

Size 

45 

Description: Content. Meaning. Use 

Address of ACB or DTF. 

Address of VSAM RPL. 

Length of ACB or DTF. 

10 (A) .. 2 IOCLRP Length of RPL. 

12 (C) 4 IOCWKA Address of input work area. 

At decimal displacements 16 and 20, one of the two following sets of fields appears: 

16 (10) 4 IOCXAD External routine address. 

16 (10) 4 IOCEXA VSAM exit list address. 

20 ( 14) 4 IOCXPM External routine parameter address. 

20 ( 14) 2 IOCEXL VSAM exit list length. 

22 (16) .. 2 

The data area then continues as follows. 

24 (18) 4 IOCNIO 

28 (1 C) 4 IOCSID 

32 (20) IOCFLG 

1. ...... IOCFLGEX 
.1 ...... IOCFLGDF 
.. 1 ..... IOCFLGEF 
... 1 .... IOCFLGIO 
.... 1 ... IOCFLGOP 
.... . 1 .. IOCFLGOE 
...... 1. IOCFLGSP 

33 (21) . l IOCDEV 

1 ....... IOCDEVDA 
.1 ...... IOCDEVMT 
.. 1 ..... IOCDEVUR 

34 (22) .. 1 IOCINF 

1. ...... IOCINFPT 
. 1 ...... IOCINFAE 
.. x ..... IOCINFND 
... x .... IOCINFQX 

Reserved. 

Address of next IOCSTR in chain. 

Storage pool identifier. 

Extension flags: 

Externally controlled data set. 
Data set is defined. 
End-of-file on external data set. 
SYSLST or SYSIPT. 
Data set is open. 
Reserved . 
Access Method Services system-print 
data set. 

Device type flags: 

Direct access. 
Magnetic tape. 
Reserved . 

Information flags: 

Reserved. 
Reserved . 
Reserved . 
Reserved. 

S - 46 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Offset 

35 (23) 

36 (24) 

40 (28) 

42 (2A) 

44 (2C) 

Bytes and 
Bit Pattern 

.... l. .. 

..... 1 .. 

...... l. 

.... ... x 

... 1 

1 ....... 
. 1. ..... 
.... 1 ... 
.... . 1 .. 
...... 1. 
....... 1 

1 ....... 
.1 ...... 

.. l. .... 

... x xxxx 

Field Name Description: Content, Meaning, Use 

IOCINFAC ANSI control character . 
IOCINFDO VSEdataset. 
IOCINFCT Opened as a catalog. 
IOCINFRl Reserved . 

IOCMOD Additional information flags: 

IOCMODPD Reserved-contains zero. 
IOCMODRR Return RPL address . 
IOCMODUB User buffering . 
IOCMODXM Export/import . 
IOCMODRP Replace processing. 
IOCMODEX Exclusive control. 

IOCDLM Address ofVSE load module. 

IOCDNM Module length. 

IOCVLN Length ofVSE variable blocked 
remainder. 

IOCRCV Flags for recovery. 

IOCRCVXM Recovery bit for VSAM. 
IOCRCVRA OpenCRA. 

IOCRCVCL Skip close . 

• Reserved-contains zero . 

Inter-Module Trace Table 
The Inter-Module Trace Table contains information on the flow of control 
between modules. The table is pointed to by G DTTR 1. The oldest identifier 
is at the beginning of the table. The latest identifier is at the end of the table. 
Each time a UPROL or UEPIL macro is issued the oldest identifier is re­
moved and the new identifier is added at the end. A UPROL adds the 
identifier of the current module. A UEPIL adds the identifier of the module 
to which control is being returned. The UDUMP macro prints the table on 
SYSLST. 

Created by 

IDCSAOl 

Inter-Module Trace Table Description 

Offset 

-6 (-6) 

0 (0) 

Modified by 

UEPIL 
UPROL macros 

Bytes and 
Bit Pattern Field Name 

6 

100 • 

Each entry contains the following: 
4 • 

• 

Intra-Module Trace Table 

Used by 

IDCDBOl 

Size 

100 

Description: Content, Meaning, Use 

Table identification 'INTERb'. 

Inter-Module Trace Table with 20 
entries. 

Identifier provided by module issuing 
UEPIL or UPROL macros. The identifi­
er is the last four characters of the mo­
dule name. 

Blank 'b' . 

The Intra-Module Trace Table contains information on the flow of control 
within modules. The table is pointed to by G DTTR2. The oldest identifier is 
at the beginning of the table. The latest identifier is at the end of the table. 

Created by Modlfted by Used by Size 

IDCSAOl UTRACE macro IDCDBOl 100 

Chapter 5: Data Areas 5 -47 



Intra-Module Trace Table Description 

Oft' set 

-6 (-6) 

0 (0) 

Bytes and 
Bit Pattern Field Name 

6 

100 

Each entry contains the following: 

4 

Modal Verb and Keyword Symbol Table-IDCRIKT 

Licensed Material - Property of IBM 

Description: Content, Meaning, Use 

Table identification 'INTRAb'. 

Intra-Module Trace Table with 20 
entries. 

Identifier provided by module issuing 
UTRACE. The first two characters are 
the mnemonic identifier which are char­
acters 4 and 5 of the module name. For 
example, EX refers to the Executive. 

Blank 'b'. 

Load module IDCRIKT contains the Modal Verb and Keyword Symbol 
Table, which acts as the "Command Descriptor" for the modal commands. 

Created by 

IBM-Supplied 

Modified by 

None 

Modal Verb and Keyword Symbol Table Description 
Bytes and 

Offset Bit Pattern Field Name 

0 (0) PARMSMLN 

1 ( l) .9 PARMSYM 

lO(A) .. l SETSMLN 

11 (13) ... 9 SETSYM 

20 (14) IFSMLN 

21 (15) . 9 IFSYM 

30 (IE) .. 1 THENSMLN 

31 (IF) ... 9 THENSYM 

40 (28) ELSESMLN 

41 (29) .9 ELSESYM 

50 (32) .. I DOSMLN 

51 (33) ... 9 DOSYM 

60 (3C) ENDSMLN 

61 (30) .9 ENDSYM 

70 (46) .. 1 LSTCCLN 

71 (47) ... 9 LSTCCSYM 

80 (50) MAXCCLN 

81 (51) .9 MAXCCSYM 

Open Argument List-OPNAGL 

Used by 

IDCRIOl 

Size 

90 

Description: Content, Meaning, Use 

Length of PARM character string. 

PARM character string. 

Length of SET character string. 

SET character string. 

Length of IF character string. 

If character string . 

Length of THEN character string. 

THEN character string. 

Length of ELSE character string. 

ELSE character string. 

Length of DO character string. 

DO character string. 

Length of END character string. 

END character string. 

Length of LASTCC character string. 

LASTCC character string. 

Length of MAX CC character string. 

MAXCC character string. 

The OPNAGL defines a request to open a data set. The address of the 
OPNAGL is passed as a parameter to the 1/0 Adapter from any routine that 
requires the open function. 
Created by Modified by Used by Size 

I Routine that IDCI002 IDC1002 80 
requests an open 

S - 48 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Open Argument List Description 
Bytes and 

Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0 (0) OPNOPT Open options (determine data set usage). 

1 ....... OPNOPTIN Input data set. 
.1 ...... OPNOPTOT Output data set. 
.. l. .... OPNOPTUP Update mode of processing. 
... 1 .... OPNOPTBK Block processing . 
.... 1 ... OPNOPTKS Keyed processing . 
..... 1 .. OPNOPTCR Addressed processing. 
.... .. 1. OPNOPTDR Direct processing . 
.... ... 1 OPNOPTSK Skip sequential processing . 

1 (1) .1 OPNRFM NonVSAM output record format 
Required. 

1 ....... OPNRFMFX Fixed. 

.1 ...... OPNRFMVR Variable. 

.. 1. .... OPNRFMUN Undefined . 

... 1 .... OPNRFMSF Spanned . 

.... 1 ... OPNRFMBK Blocked . 

2 (2) .. 1 OPNTYP Data set type: 

1 ....... OPNTYPSI System input (SYSIPT) is to be opened. 
OPNIOC is the only other required field. 

.1 ...... OPNTYPSO System output (SYSLST) is to be 
opened. OPNIOC is the only other re-
quired field. 

.. 1 ..... OPNTYPCI Catalog to be opened. 

... 1 .... OPNTYPXM Export/import. 

.... 1 ... OPNTYPRA Catalog recovery area. 

..... l.. OPNTYPEX Exclusive control. 

.... .. 1. OPNTYPRV VSAM recovery processing . 

....... 1 OPNTYPSY Reserved. Not used in VSE 

3 (3) ... 1 OPNMOD Open modifiers. 

1 ....... OPNMODPD Reserved--contains zero. 
.1 ...... OPNMODAC Reserved--contains zero. 
.. 1. .... OPNMODRC Return control block address. 
... 1 .... OPNMODRR Return RPL address. 
.... 1. .. OPNMODAX Open alternate index. 
..... 1 .. OPNMODRS Open with reset. 
.... .. 1. OPNMODUB User buffering . 
.... ... 1 OPNMODRP Replace processing . 

4 (4) 4 OPNIOC Address of pointer of IOCSTR. This 
field is always present. After a successful 
open, the pointer contains the address of 
the IOCSTR built by the 1/0 Adapter. 

8 (8) 4 OPNDDN Address of eight-byte D name (not 
present when SYSIPT or SYSLST is be-
ing opened but required at all other 
times). The D name is the TLBL/DLBL 
name with one blank on the right. 

12 (C) 4 OPNPWA Address of an optional eight-byte 
password, used only with VSAM data 
sets. 

I •6(10) 4 OPNDSN Pointer to 44-byte data-set name. 

20 (14) 4 OPNCBP Reserved--contains zeros. 

24 (18) 4 OPNDEVDT Address of device that non VSAM data 
set resides on. 

28 (lC) 4 OPNDEVIX Address of device that ISAM index data 
set resides on. 

32 (20) 4 OPNREC Logical record length, optional. 

36 (24) 4 OPNBLK Block size, optional. 

40 (28) OPNKYL Reserved. 

41 (29) . 1 OPNDSO Data set organization. 
1 ....... OPNDSOAM VSAM data set. 

Chapter 5: Data Areas 5-49 



Offset 

42 (2A) 

43 (28) 

44 (2C) 

48 (3C) 

49 (31) 

so (32) 

52 (34) 

56 (38) 

Bytes and 
Bit Pattern 

.1 .. "" 
"I. .... 
... 1 .... 
"" xxxx 

.. I 
1 ....... 
.I ...... 
.. x ..... 
... 0 .... 
... 1 .... 
"" 0 ... 
.... 1 ... 
"" .0 .. 
.... . I .. 
...... 0. 
.... "I. 
.... ... x 

... I 

4 

l 
I ....... 

. xxx .... 

l 
1 ....... 

. xxx xxxx 

2 

4 

24 

Field Name 

OPNDSOPS 
OPNDSOIS 
OPNDSOPO 

OPNOPT2 
OPNOPTAS 
OPNOPTUM 

OPNOPTRW 

OPNOPTUL 

OPNOPTSL 

OPNOPTCI 

OPNSTRNO 

OPNVOL 

OPNFRM2 
OPNFRMNB 

OPNOPT3 
OPNOPTSN 

OPNCAT 

Licensed Material - Property of IBM 

Description: Content, Meaning, Use 

NonVSAM data set. 
ISAM data set. 
Partitioned data set. 
Reserved. 

Second option byte. 
Asynchronous processing (OS/VS only). 
PSNAME is in OPNAGL. 
Reserved . 
REWIND option . 
NO REWIND option . 
No unload option. 
UNLOAD option . 
NO LABEL option. 
STDLABEL option . 
Export RECORDMODE option . 
Export CIMODE option. 
Reserved . 

Number of strings. 

Pointer to volume serial number. 

Format related flags. 
Process records without SAM blocking. 
Set 'u' mode processing in AMDSB if 
data set is SAM ESDS. 
Reserved . 

OPTION related flags. 
Points to a 2-byte logical unit number 
and not to a data-set name. 
Reserved . 

Reserved. 

Pointer to a 44-byte catalog name to be 
used to open the given data set. 

Reserved. 

Open Close Address Array-OCARRA Y 
The Open Close Address Array is used to pass the address of the OPNAGL 
or IOCS for up to four data sets at once from IDCIOOI to IDCI002. It is 
used within the 1/0 Adapter. 

Created by Modified by Used by Size 

IDCIOOI None IDCI002 20 

Open Close Address Array Description 
, Bytes and 

Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0 (0) OCATYP Type of operation: I - open, 2 - close. 

I (I) .1 OCAOPT Options: 
1 ....... OCAOPTCA Close all open data sets. 

2 (2) .. I OCANUM Number of data sets to open. 
. . . I Reserved . 

4 (4) 4 OCADDR(I) Address ofOPNAGL for open or 
address of IOCSTR for close. 

8 (8) 4 OCADDR(2) Address of OPNAG L for open or 
address of IOCSTR for close. 

12 (C) 4 OCADDR(3) Address ofOPNAGL for open or 
address of IOCSTR for close. 

16 (10) 4 OCADDR(4) Address ofOPNAGL for open or 
address of IOCSTR for close. 

S-SO VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Phase Table 

Phase Table Description 

The Phase Table is a phase (IDCSA04) loaded by IDCSAOl at initialization 
time. This phase contains an entry for each of the other phases within the 
Access Method Services system, excluding phase IDCAMS, IDCSA04, and 
the DTFs. Each entry contains phase status information that is needed for 
loading the particular phase during Access Method Services execution; only if 
the CDLOAD anchor table is full. One such entry is described below; the 
total size of all entries is 768. 
Created by Modified by Used by Size 

IBM-Supplied IDCSA02 IDCSA02 768 
IDCSA03 IDCSA03 

Bytes and 
Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0 (0) 8 PLAN AME Name of phase this entry describes. 

8 (8) 4 PLAADDR Address of phase or 0 if not loaded via 
phase table. 

12 (C) PLAUSE Number of requests to load this phase. 

13 (E) 3 PLALN Phase size in hex. 

Positioning Argument List-OPRARG 
OPRARG contains the address of the IOCSTR defining the data set to be 
positioned. It is used within the 1/0 Adapter. 

Created by Modified by Used by Size 

IDCIOOl None IDCI003 12 

Positioning Argument List Description 
Bytes and 

Offset Bit Pattern Field Name Description: Content, Meaning, Use 

0 (0) OPRTYP Type of operation: l indicates POINT or 
SETL and 3 indicates UIOINFO. 

l ( l) OPRPNO Total number of parameters passed to 
UIOINFO. 

2 (2) .2 Reserved. 

4 (4) 4 OPRICS Address of input IOCSTR (the data set 
to be positioned). 

8 (8) 4 OPROCS Address of output IOCSTR. 

Print Control Argument List-PCARG 
The Print Control Argument List is used to build a PCT (Print Control 
Table). This list is an argument of the UESTS macro or the UEST A macro, 
used to establish a PCT. The list is in a static text module or in storage. 

Created by Modified by Used by Size 

Calling Routine None IDCTP04 33 

Print Control Argument List Description 

Offset 

0 (0) 

4 (4) 

Bytes and 
Bit Pattern 

4 

4 

Field Name 

PCMTLP 

PCSTLP 

Description: Content, Meaning, Use 

If PCARG is in a static text module, this 
is an offset from the beginning of the 
PCARG to a main title line, fully­
formatted. If PCARG is in storage, this 
is the address of a main title line, fully­
formatted. 

If PCARG is in a static text module, this 
is an offset from the beginning of the 
PCARG to one, two, or three contiguous, 
fully-formatted lines for the subtitle. If 

Chapter 5: Data Areas 5 - 51 



Offset 

8 (8) 

12 (C) 

16 (10) 

18 (12) 

20 (14) 

22 (16) 

24 (18) 

26 (IA) 

28 (IC) 

30 (IE) 

32 (20) 

Bytes and 
Bit Pattern 

4 

4 

2 

.. 2 

2 

.. 2 

2 

.. 2 

2 

.. 2 

Field Name 

PCFLP 

PC PCP 

PCP NL 

PCPTL 

PCPDL 

PC MT LC 

PCS TLC 

PCFLC 

PCLW 

PCPD 

PC DSC 

Licensed Material - Property of IBM 

Description: Content, Meaning, Use 

PCARG is in storage, this is the address 
of subtitle lines. The first byte of each 
line contains the spacing character (0, I, 
2, or 3), and the number oflines is found 
inPCSTLC. 

If PCARG is in a static text module, this 
is an offset from the beginning of the 
PCARG to one, two, or three contiguous, 
fully-formatted footing lines. If PCARG 
is in storage, this is the address of footing 
lines. The first byte of each line contains 
the spacing character (0, I, 2, or 3), and 
the number of lines is found in PCFLC. 

If PCARG is in a static text module, this 
is an offset from the beginning of the 
PCARG to a 256-byte print chain trans­
late table. If PCARG is in storage, this is 
the address of a 256-byte print chain 
translate table. 

Print column number where the page 
number field begins. 

Time field location. 

Date field location. 

Number oflines at PCMTLP . 

Number oflines at PCSTLP. 

Number oflines at PCFLP. 

Print line width. 

Page depth. 

Default space character, used when space 
character is not given; invalid, or on 
overflow. Valid values are l, 2, or 3. 

Print Control Table-PCT 

Print Control Table Description 

The Print Control Table contains the current page specifications for printing: 
page width and depth, pointers to heading and footing lines, etc. One PCT, 
called the primary PCT, contains the default values established at processor 
initialization time. An optional PCT, called the secondary PCT, contains 
page specifications that are unique to a particular FSR, and is cleared be­
tween commands. Both PCTs have the same format. 
Created by 

IDCTP04 

Offset 

0 (0) 

4 (4) 

Modified by 

IDCTP05 
IDCTPOl 

Bytes and 
Bit Pattern Field Name 

PCTIDN 4 

4 
1 ....... 

.1 ...... 

.. 1 ..... 

PCTFLG 
PCTHIF 

PCTH2F 

PCTHAF 

Used by 

IDCTPOI 

Size 

108 

Description: Content, Meaning, Use 

Identification field: the primary PCT 
contains "PCT l" in this field; the sec­
ondary PCT contains "PCT2". 

Action flags: 
A new header is being entered. This bit 
is set by IDCTP05 and reset by IDCTPO 1 
as soon as the first header line is printed. 
More than one header line is to be saved. 
This bit is set when the first line is print­
ed by IDCTPO 1 and reset when the last 
line has been printed. The count in 
PCTHLC controls this bit. 
A header has been set up. This bit is set 
byIDCTP03. 

S - 52 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Bytes and 
Oft' set Bit Pattern Fleld Name Description: Content, Meaning, Use 

... 1 .... PCTLLM Last line was a message . 

.... l. .. PCTAPF Alternate print file flag . 

8 (8) 4 PCTSPP Address of secondary PCT. This field is 
ignored in the secondary PCT. 

12 (C) 4 PCTIOC Address of IOCSTR to be used with 
UPUTmacro. 

16 (10) 2 PCTCPN Current page number on active data set. 

18 (12) .. 2 PCTNLI Next absolute line number on the current 
page of active data set. 

20 (14) 4 PCTIOS Address of IOCSTR for SYSLST. 

24 (18) 2 PCTSPN Current page number on standard data 
set. 

26 (lA) .. 2 PCTSNL Next absolute line number on the current 
page of standard data set. 

28 (lC) 4 PCTIOP Address of IOCSTR for alternate print 
data set. 

32 (20) 2 PCTAPN Current page number on alternate data 
set. 

34 (22) .. 2 PCTANL Next absolute line number on the current 
page of alternate data set. 

36 (24) 8 PCTSTM Name of the Static Text module 
presently in virtual storage. 

44 (2C) 4 PCTSME Entry point for Static Text module 
presently in virtual storage. 

48 (30) 4 PCTSQP Address of queue of format structures 
that are retained until the completion of 
the function or the issuance of a URE-
SET. 

52 (34) 4 PCTAHP Address of the last header line that was 
used, needed on an overflow. 

56 (38) 4 PCTMLP Address of main title lines, already fully 
formatted. 

60 (3C) 4 PCTSLP Address of subtitle lines, already fully 
formatted. 

64 (40) 4 PCTTRP Address of translate table. 

68 (44) 4 PCTPLW Print line width for the output device. 

72 (48) 2 PCTMLC Number of main title lines. 

74 (4A) .. 2 PCTSLC Number ofsubtitle lines . 

76 (4C) 4 PCTFLP Address of footing lines, already fully 
formatted. 

80 (50) 2 PCTFLC Number of footing lines. 

82 (52) .. 1 PCTHLC Number of heading lines. 

83 (53) ... 1 PCTHSC Total number oflines consumed by the 
currently active header and the first data 
line. 

84 (54) 2 PCTPNL Page number location in the main title 
line. 

86 (56) .. 2 PCTPMN Signals that this is a message. Before 
writing a message it contains -1. During 
writing a message it contains the message 
number. 

88 (58) 2 PCTAPC "Floating" print column number, used 
with blank suppression . 

90 (5A) .. 2 PCTPPD Total number of lines and spaces that 
may be printed on one page. 

92 (5C) 2 PCT DSC Default space count, used for overflow or 
in place of an invalid spacing request. 

Chapter 5: Data Areas 5-53 



Licensed Material - Property of IBM 

Bytes and 
Offset Bit Pattern Field Name Description: Content. Meaning. Use 

94 (5E) 2 PCTPNI Page number increment, added to 
PCTCPN at each page eject. 

96 (60) 2 PCTFDL Absolute line number for the first data 
line on each page. 

98 (62) .. 2 PCTLDL Absolute line number of the last data 
line. 

100 (64) 2 PCTFLN Absolute line number for the first footing 
line. 

102 (66) .. 2 PCTLNM Lines in print stack. 

104 (68) 4 PCTBUF Buffer address. 

108 (6C) 4 PCTBNL Address in buffer for next line. 

Reader/Interpreter Communication Area-COMMAREA 
The COMMAREA is only used within the Reader/Interpreter to pass in­
formation between the phases of the Reader/Interpreter. 

Created by 

IDCRIOI 

Modified by 

IDCRIOI 
IDCRI02 
IDCRI03 

Used by 

IDCRIOI 
IDCRI02 
IDCRI03 

Size 

55 

Reader/Interpreter Communication Area Description 
Bytes and 

Offset Bit Pattern Field Name Description: Content, Meaning. Use 

0 (0) 4 RECRDPTR Address of the beginning of the record 
currently being scanned. 

4 (4) 4 FDTADDR Address of the primary pointer vector for 
the FDT. 

8 (8) 4 DESCPTR Address of the Command Descriptor 
currently being used. 

12 (C) 4 WORKPTR Address of local work area. 

16 (10) 2 RISTATUS Internal error code for the 
Reader /Interpreter; set to nonzero if an 
error is discovered. 

18 (12) 2 SCAN IN DX Offset into the current record of the last 
character that was extracted. 

20 (14) 2 SCNLIMIT Location of the final character in the 
current record that may be scanned. 

22 (16) 2 LAST CC Last processor condition code. 

24 (18) 2 MAX CC Maximum processor condition code. 

26 (IA) 8 FSRLNAME FSR phase name to be invoked if this 
command is executed. 

34 (22) 4 POOLID Storage area identification code for all 
space used for the FDT. 

38 (26) 8 VERB NAME Verb from the current input command. 

46 (2E) 8 DESCNAME Module name for the current Command 
Descriptor. 

54 (36) l Miscellaneous flags: 
1 ....... GOODCMD Current command is valid; have 

Executive invoke the FSR. 
.1 ...... EOFOK End of input stream may legitimately 

occur. 
.. l. .... OPTSFLAG Current command came from parameter 

options specified by the invoker of Ac-
cess Method Services. 

... 1 .... SCANONLY Current command is being scanned only 
for syntax errors. 

.... 1 ... SKIPP AST Current command has just been 
bypassed. 

S-S4 VSE/VSAM Access Method Setvices Logic 



Licensed Material - Property of IBM 

Reader /Interpreter Historical Area-HD AREA 
The Reader /Interpreter Historical Area is created and initialized on the first 
call to the Reader/Interpreter. It contains information that must be saved 
across commands, such as input source margins and table locations. 

Created by Modified by Used by Size 

IDCRIO 1 IDCRIO 1 IDCRIO 1 46 
IDCRI02 IDCRI02 
IDCPMOl 

Reader /Interpreter Historical Area Description 
Bytes and 

Offset Bit Pattern 

0 (0) 2 

2 (2) .. 2 

4 (4) 4 

8 (8) 4 

12 (C) 4 
16 (10) 

17 (11) . 2xn 

Each set contains the following: 

Field Name 

LEFTMGN 

RIGHTMGN 

LOADTPTR 

KWTBLPTR 

ADDRIOCS 

NESTLVL 

MODLFLGSn 

1 NULL DO 

.1 

1 ....... DO FLAG 

. 1 ...... THEN FLAG 

.. 1 ..... ELSEFLAG 

... 1 .... SKIPFLAG 

l Scope Structure for UENQ-ENQSCOPE 

Description: Content, Meanln1, Use 

Leftmost column to use in the input 
statement. Default to column 2. 

Rightmost column to use in the input 
statement. Default to column 72. 

Address of the Command Descriptor 
module table, IDCRIL T. 

Address of modal command verb table, 
IDCRIKT. 

Address of IOCSTR for input data set. 

IF· THEN nesting level where current 
command appears . 

Modal flags. A set of modal flags is used 
for each level of IF -THEN nesting. n is 
the number in NESTL VL. 

Number of unneeded "DO" commands 
for which no matching "END" com­
mands have been encountered at the cur­
rent NESTL VL. 

Flags: 

Current command is part of a "DO" 
group . 
Current commands are associated with a 
true "IF" condition. 
Current commands are associated with a 
false "IF" condition. 
Current commands are to be only 
checked for proper syntax. 

The scope parameter to ENQ is used for cross system sharing of DASO. The 
structure is created by the caller of UENQ and passed as the sixth parameter. 

Created by Modified by Used by Size 

CallerofUENQ N/A IDCSANQ 7 

Scope Structure for UENQ Description 

Offset 

0 (0) 

Bytes and 
Bit Pattern 

1 
10 .... .. 
01 .... .. 

00 ...... 

6 

Flelcl Name 

ENQSFLAG 
ENQSEXT 
ENQSVOL 

ENQSVID 

Description: Content, Meaning, Use 

Scope is external, that is, cross system. 
Scope is to be determined by supervisor 
using a volume serial number 
(ENQSVID). 
Int lock is required, that is, internal or 
intra-system. 

VOLID that is used by the supervisor to 
find the correct DASO device. If the de­
vice is shareable, an EXT lock is set. If 
the device is not shareable, an INT lock 
(intra-system) is set. 

Chapter 5: Data Areas S - SS 



Licensed Material - Property of IBM 

System Adapter Historical Area-SAHIST 
The System Adapter's historical area is pointed to by the field GDTSAH. It 
contains information that is shared between System Adapter modules. 

Created by Modified by Used by Size 

IDCSAOl IDCSA02 IDCSA02 16 

System Adapter Historical Area Description 

Offset 

0 (0) 

4 (4) 

8 (8) 

12 (C) 

TEST Option Data Area 

IDCSA03 IDCSA03 

Bytes and 
Bit Pattern Field Name 

4 GPFIRST 

4 GPLAST 

4 AUTOPTR 

4 PLAPTR 

Description: Content, Meaning, Use 

First UGPOOL storage area pointer. 

Last UGPOOL storage area pointer. 

Address of A UTOTBL. 

Address of phase table. 

The TEST Option Data Area is used to gather debugging information re­
quested by a PARM command with TRACE, AREAS, or FULL options. 
The TEST Options Data Area is three tables. The first table, TESTDAT A, is 
present if any PARM command with TRACE, AREAS, or FULL has been 
executed. The address ofTESTDATA is in GDTDBH. 

The second table, AREADA TA, exists if a PARM command with an 
AREAS option has been executed. If AREADAT A exists, it immediately 
follows TESTDATA. 

The third table, FULLDATA, exists if a PARM command with a FULL 
option has been executed. If FULLDA TA exists, it immediately follows 
AREADATA, or if AREADATA does not exist, FULLDATA immediately 
follows TESTDATA. 

Created by 

IDCPMOl 

TEST Option Data Area Description 

Offset 

TEST AREA: 

0 (0) 

4 (4) 

8 (8) 

10 (A) 

AREADATA: 

0 (0) 

4 (4) 

Modified by 

IDCPMOl 
IDCDBOl 

Bytes and 
Bit Pattern Field Name 

4 AREAPTR 

4 FULLPTR 

2 .. 

.. 2 

4 

2xj 

SNAPID 

TES TRACE 

AREAINDX 

AREADUMP 

Each entry contains the following: 

2 AREA NAME 

5 - 56 VSE/VSAM Access Method Services Logic 

Used by 

IDCPMOl 
IDCDBOl 

Size 

Variable 

Description: Content, Meaning, Use 

Address of areas identifier table, 
AREADA TA. Zero indicates the table 
does not exist. 
Address of full dump table FULLDA-
T A. Zero indicates the table does not ex­
ist. 

Number oflast full region dump. 

A nonzero value means print the trace 
tables each time a UDUMP macro is is­
sued. A zero value means print the trace 
tables only for modules specified in 
AREAS and FULL options. 

Number of entries in areas identification 
table. One entry exists for each area 
identifier specified in the PARM com­
mand. 

Areas identifier table containing j entries. 

Two character module identifier where 
information is gathered. If there is an 
odd number of area names, two bytes are 
added to the end of the table. 



Licensed Material - Property of IBM 

Text Structure 

Offset Bytes and 
Bit Pattern Field Name Description: Content, Meaning, Use 

FULLDATA: 

0 (0) 4 FULLINDX Number of entries in Full Region Dump 
Table. One entry exists for each full 
dump. 

4 (4) 12xk FU LLD UMP Full Region Dump Table containing k 
entries. 

Each entry contains the following: 

4 FDUMPID Four character module identifier where 
dump is taken. 

2 .. FDUMPBEG Number of the pass through the dump 
point when dumping is to 
begin-between I and 32,767. 

.. 2 FDUMPCNT Number of dumps to take- between l 
and 32,767. 

2 .. REALBEG Current number of passes through this 
dump point. 

.. 2 REALCNT Number of dumps already taken at this 
dump point. 

Text Structures are load modules that contain text (messages and static text 
items) and format information to use while preparing printed output. This 
information can be default page dimensions or layout, message text, headings 
for listings, and similar directions that are used by the Text Processor. There 
are 18 Text Structure modules, as named in the following table along with the 
function associated with each. Some FSRs use Text Structures from other 
FSRs. 

IDCTSALO ALTER IDCTSMPO IMPORT /IMPORTRA 
IDCTSBIO BLDINDEX IDCTSPRO PRINT /REP RO 
IDCTSDEO DEFINE IDCTSRCO EXPORTRA 
IDCTSDLO DELETE IDCTSRIO Reader /Interpreter 
IDCTSEXO Executive IDCTSRSO RESETCAT 
IDCTSIOO 1/0 Adapter IDCTSTPO Text Processor (print chains) 
IDCTSLCO LISTCAT IDCTSTPl Text Processor (messages) 

IDCTSTP6 UERROR 
IDCTSLCl LISTCAT IDCTSUVO Universal (any module) 

(messages) IDCTSXPO EXPORT 
IDCTSLRO LISTCRA 
IDCTSLRl LISTCRA 

(messages) 

A Text Structure consists of an index and text entries. The index is simply a 
list of halfword displacements from the beginning of the Text Structure to the 
beginning of the text entry being indexed. The Text Structure identification 
number is used as the index number. A halfword count of the number of 
entries precedes the index. 

Note: An index entry of -1 indicates that the corresponding text entry is 
nonexistent. 

All text entries contain heading fields and one of the following: 

• A format list as described under FMTLIST immediately followed by any 
static text such as messages referenced by the format list. 

• A print control argument list as described under PCARG immediately 
followed by any static text such as title lines and translate tables refer­
enced by the print control argument list. 

• Character code tables which support the GRAPHICS parameter of the 
PARM command. 

Chapter 5: Data Areas 5 - 57 



Text Structure Description 

Text Entry Descrlpdon 

UGPOOLArea 

UGPOOL Area Description 

Licensed Material - Property of IBM 

Created by Modified by Used by Size 

IBM-Supplied None IDCTPOl Variable 
IDCTP05 

Bytes and 
Oft' set Bit Pattern Field Name Description: Content, Meaning, Use 

0 (0) 2 INDEX Number (n) of entries in this index. 

2 (2) 2Xn INDEXn Offset to the appropriate text entry. 

The following description shows only the header fields of each text entry. For 
the remainder of the description, see FMTLIST or PCARG. The text entry 
begins at offset 2 x n + 2 from the beginning of the Text Structure module. 

Bytes and 
Oft' set Bit Pattern Field Name Description: Content, Meaning, Use 

0 (0) 2 TXTn Length in bytes of the text entry that 
follows (not including these header 
fields). 

2 (2) 2 FLGnA Flag byte: 

I. ...... Message entry. 
. 1 ...... Header entry . 

.. I. .... Secondary message entry. 

The following two fields only exist If this is a text entry for a header line: 

4 (4) 2 HDLJn The number of printable header lines. 

6 (6) 2 HDSPn The number of page lines occupied by 
header lines, intervening blank lines, and 
the first line of printed data. 

When the UGPOOL Umacro is used, an area of storage is allocated to the 
user and this area is linked into a chain with other areas allocated by UG­
POOL. Each such area is preceded by 16 bytes, as shown here. 

Created by 

IDCSA02 

Oft' set 

0 (0) 

4 (4) 

8 (8) 

12 (C) 

Modified by 

None 

Bytes and 
Bit Pattern Field Name 

4 GPFORWRD 

4 GPBACK 

4 GPLEN 

4 GPID 

Used by 

IDCSA02 

Size 

16 

Description: Content, Meaning, Use 

Address of next UGPOOL area. 

Address oflast UGPOOL area. 

Number of bytes requested plus 16. 

Area identification code. 

The storage area in the UGPOOL chain/or an 'xxPG' storage identification has 
the following format: 

0(0) 4 GPFORWRD AddressofnextUGPOOLarea. 

4 (4) 4 GPBACK Address oflast UGPOOL area. 

8 (8) 4 GPLEN Length of this area - 24 (X'00000018') 

12 (C) 4 GPID Area identification code. 

16 (10) 4 GPADRPG Address of 'xxPG' storage area. 

20 (14) 4 GPLENPG Length of 'xxPG' storage area. 

5-58 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

UGSPACE Area 

UGSPACE Area Description 

When the UGSPACE Umacro is used, an area of storage is allocated for the 
user of the U macro. Each such area is preceded by eight bytes of control 
information, as shown here. 

Created by 

IDCSA02 

Offset 

0 (0) 

4 (4) 

Modified by 

None 

Bytes and 
Bit Pattern Field Name 

4 GSLEN 

4 GSID 

Used by Size 

IDCSA02 8 

Description: Content, Meaning, Use 

Number of bytes requested plus 8. 

bbbb for UGSPACE area. 

UIOINFO-Option Byte and Return Area 
The UIOINFO option byte is used by an FSR to indicate the type of data to 
be retrieved by the UIOINFO macro. The data retrieved is passed back by 
UIOINFO in the return area. 

UIOINFO Option Byte Description 

Offset 

0(0) 

UIOINFO Return Area Description 

Offset 

0 (0) 

Bytes and 
Bit Pattern 

l 
1 ... "" 
.1 .. "" 

"l. .. .. 
... 1 .. .. 
.... 1 .. . 
"" .1 .. 
.... "l. 

Bytes and 

Field Name 

IOINFOPT 
IOINFDVT 
IOINFVOL 

IOINFDSN 
IOINFSUP 
IOINFTMS 
IOINFOPT 
IOINFVID 

Bit Pattern Field Name 

4 

Description: Content, Meaning, Use 

Retrieve 8-byte device type. 
Retrieve up to five volume serial 
numbers. 
Retrieve 44-byte data set name. 
Suppress error message. 
Retrieve format-4 time stamp. 
Retrieve up to five Logical Unit Blocks. 
Parameter 4 passed to UIOINFO is a 
6-byte volid, not a dname. 

Description: Content, Meaning, Use 

Header. 

Bytes: 
0-1 Length of entire area (including 

header). 
2-3 Length of all data returned 

(including header). 

Data returned for each type of information requested is placed consecutively 
in the work area. The format for the different types of information follows: 

Bytes and 
Bit Pattern Field Name 

48 

n 

Description: Content, Meaning, Use 

Data set name. 

Bytes: 
0-1 Identifier-X'OOOl'. 
2-3 Length of data returned. 
4-47 Data set name. 

Volume serial number list (variable). 

Bytes: 
0-1 Identifier-X'0002'. 
2-3 Length of data returned. 
4-9 First volume serial number. 

(n+ 1 )-(n+6) Last volume serial 
number. 

Chapter 5: Data Areas 5 - 59 



UREST Arguments 

PCRST-Chan1e Subtitle Lines 

PCRLWS-Chan1e Line Width 

PCRPDS-Chan1e Pa1e Depth 

Bytesud 
Bit Pattern Field Name 

12 

20 

n 

Licensed Material - Property of IBM 

Descripdon: Content, Meaning, Use 

Device type. 

Bytes: 
0-1 ldentifier-X'0003'. 
2-3 Length of data returned. 
4-7 Device type code. 
8-11 Maximum block size for device. 

Timestamp. 

Bytes: 
0-1 Identifier-X'0004'. 
2-3 Length of data returned. 
4-11 New timestamp. 
12-19 Old timestamp. 

Logical Unit (LUB) List (variable). 

Bytes: 
0-1 Identifier-X'0005' 
2-3 Length of data returned. 
4-5 First LUB in same 

format as in a CCB. 

(n+ I )-(n+2) Last LUB 

Any combination of the following structures can be passed to UREST as 
arguments. The UREST macro changes default items in the Print Control 
Table. The structures determine which items UREST will change. 

Created by 

All routines 

Offset 

0(0) 

2 (2) 

4(4) 

Offset 

0(0) 

2 (2) 

Offset 

0(0) 

2 (2) 

Modified by Used by 

None IDCTPOI 

Bytes and 
Bit Pattern Field Name 

2 PCRSST 

.. 2 PCRSTLC 

4 PCRSTLP 

Bytes and 
Bit Pattern Field Name 

2 PCRLWT 

.. 2 PCRLW 

Bytes and 
Bit Pattern Field Name 

2 PCRPDT 

.. 2 PCRPD 

Size 

Variable 

Description: Content, Meaning, Use 

Structure identifier; contains 'ST'. 

Number of subtitle lines provided. The 
maximum is three. 

Address of from one to three contiguous, 
fully formatted subtitle lines. The num­
ber of bytes in each line is the line width 
plus one for the spacing character. The 
spacing character is first in each line and 
must be I, 2, or 3. 

Description: Content, Meaning, Use 

Structure identifier; contains 'L W'. 

New line width in decimal. 

Description: Content, Meaning, Use 

Structure identifier; contains 'PD'. 

New page depth in decimal. 

S - 60 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

PCRFTS-Change Footing Lines 

Offset 
0 (0) 

2 (2) 

4 (4) 

Bytes and 
Bit Pattern 
2 

.. 2 

4 

PCRDSCS-Change Default Spacing Character 
Bytes and 

Offset Bit Pattern 

0 (0) 

2 (2) 

PCRPCS-Change Translate Table 

Offset 

0 (0) 

2 (2) 

4 (4) 

PCRINP-Change Initial Page Number 

Offset 

0(0) 

2 (2) 

4 (4) 

2 

.. l 

Bytes and 
Bit Pattern 

2 

.. 2 

4 

Bytes and 
Bit Pattern 

2 

.. 2 

4 

Field Name 
PCRFT 

PC RF LC 

PCRFLP 

Field Name 

PCRDSCT 

PC RD SC 

Field Name 

PC RP CT 

PCRPCC 

PCRPCP 

Field Name 

PCRPNT 

PCRPNP 

Description: Content, Meaning, Use 
Structure identifier; contains 'FT'. 

Number of footing lines provided. The 
maximum is three. 

Address of from one to three contiguous, 
fully formatted footing lines. The num­
ber of bytes in each line is the line width 
plus one for the spacing character. The 
spacing character is first in each line and 
must be 0, l, 2, or 3. 

Description: Content, Meaning, Use 

Structure identifier; contains 'SC'. 

New default space character. Must be 
the character l, 2, or 3. 

Description: Content, Meaning, Use 

Structure identifier, contains 'PC'. 

If the request is for a print chain 
provided by Access Method Services, this 
field contains the characters for the print 
chain identification as in the GRAPH­
ICS parameter of the PARM command. 
Otherwise, it contains zero. 

Address of a load module name. The 
load module consists solely of a 256-byte 
translate table. If the request is for a 
standard print chain, this field contains 
zero. 

Description: Content, Meaning, Use 

Structure identifier; contains 'PN'. 

Reserved. 

Address of page number field. The first 
two bytes of the page number field con­
tain the number (from 1 to 4 in binary) of 
following bytes that contain the page 
number. The page number is one to four 
bytes in EBCDIC. 

Chapter 5: Data Areas 5 - 61 



Licensed Material - Property of IBM 

S - 62 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Trace Tables 

Inter-Module Trace Table 

Intra-Module Trace Table 

Chapter 6: Diagnostic Aids 

This chapter explains the diagnostic aids provided for Access Method 
Services, explains how to find key areas in a dump, and offers suggestions 
for isolating different types of problems. Before attempting to diagnose a 
problem with the aids in this chapter, you should be familiar with 
DOS/ VSE Serviceability Aids and Debugging Guide. This manual and other 
publications that may be helpful are listed in the preface to this book. 

Four major diagnostic aids are provided by the processor: 

• Trace tables, which provide a trace of the flow of control between 
phases and CSECTs and within phases and CSECTs. 

• Dump points, which provide the facility to dump selected areas of 
virtual storage and take a full region dump. 

• The Test option, which you can set to print out the trace tables or to 
obtain dumps at selected points. 

• ABORT codes and full partition dumps, which are produced when the 
processor detects an unrecoverable condition. 

The processor maintains two trace tables during each execution: the Inter­
Module Trace Table, which records the flow of control between phases and 
CSECTs, and the Intra-Module Trace Table, which records the flow of 
control within phases and CSECTs. 

You can find the trace tables in any full partition dump, or you can print 
them using the Test option. The section "Reading a Dump" in this chapter 
explains how to find the tables in a dump; the section "'Test Option" in this 
chapter explains how to print them. 

The Inter-Module Trace Table begins with the characters INTER and 
contains the IDs of the last twenty phases and CSECTs that had control. 
The IDs are the last four characters of the phase or CSECT name. For 
example, if the trace looks like this: 

INTER ... SA01 EX01 RI01 RI02 

then you know that IDCRI02 had control at the time of the dump. 

The Inter-Module Trace Table is updated by the System Adapter not only as 
each phase or CSECT is entered, but also upon return from a phase or 
CSECT. Thus, ifRIOl calls TPOI which calls 1001 and then returns back to 
RIO l, the trace table looks like this: 

INTER ... RI01 TP01 I001 TP01 RI01 

The Intra-Module Trace Table begins with the characters INTRA and 
contains the last twenty trace points encountered within phases and 
CSECTs. Each phase and CSECT has trace points placed at key locations, 
for example, at the start of procedures. 

The IDs of the trace points consist of four characters: the first two charac­
ters are the mnemonic identifier of the phase or CSECT being traced, and 
the last two characters identify a specific point within the phase or CSECT. 

Chapter 6: Diagnostic Aids 6 - I 



Dump Points 

Licensed Material- Property of IBM 

(The mnemonic identifiers are listed in the section "Naming Conventions" 
in the chapter "Introduction".) 

The section "Trace and Dump Points to Module Cross Reference" in this 
chapter contains a list of all the trace points, identifies the phase or CSECT 
and procedure in which the trace point occurs, and explains the situation at 
the trace point. For example, if the Intra-Module Trace Table looks like 
this: 

INTRA ... SAGSIOOPSACLSAGP 

by referring to this list, you would know that the last trace point encoun­
tered was at the start of the routine in CSECT IDCSA02 that processes a 
UGPOOL macro request. 

For the period of time the Test option is set, the dumping routine 
(IDCDBO l) places dump points in the Intra-Module Trace Table; thus, the 
trace table contains all the dump points encountered as well as the trace 
points. All the dump points you may find in the Intra-Module Trace Table, 
in addition to the trace points are explained in the section "Trace and Dump 
Points to Module Cross Reference" in this chapter. 

Trace points within a phase or CSECT can be found by examing the micro­
fiche listings for occurrences of the UT RACE macro; the UT RACE macro 
sets the trace IDs into the trace table. The expansion of the UTRACE 
macro for trace ID DLLC looks like this: 

OLDERID2=NEWERID2; 
NEWID2 = 'DLLC' 

Each module has built-in dump points that invoke diagnostic dumping 
routines if the Test option is in effect. The dump points, set up by the 
UDUMP macro, have been placed at key locations in each module (for 
example, around calls to other processor and non-processor modules). Each 
dump point specifies the information that can be dumped at that point. 
Some dump points allow symbolic dumping of selected areas of virtual 
storage (for example, parameter lists or return codes); all dump points allow 
dumping of the full region and printing of the trace tables. 

Dump points can be found by examining microfiche listings for occurrences 
of the UDUMP macro. The expansion of the UDUMP macro for the dump 
point DLVL looks like this: 

IF GDTDBG = NULLPTR 
THEN; 
ELSE 

CALL IDCB010(GDTTBL, 'DLVL'); 

Only the trace tables and the full region can be dumped at this point because 
only two parameters, the GDTTBL and the dump ID, are passed to the 
dumping routine. 

The section "Module to Dump Points Cross Reference" in this chapter 
contains a list of all the dump points within each module, indicates what 
information can be dumped and explains the situation at the dump point. 
The section "Test Option" in this chapter explains how to take a full region 
dump. 

6 - 2 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Dumping SeleL'ted Areas of Virtual Storage 

Test Option 

TEST Keyword 

Certain Access Method Services modules have the dumping of selected 
areas of virtual storage built in. Dumping of these selected areas occurs at a 
dump point as described above. The areas dumped vary with each dump 
point and are identified with descriptive codes. The list in the section 
.. Module to Dump Points Cross Reference" in this chapter indicates which 
modules contain dumps of selected areas and the footnotes to that list 
describe the areas dumped. 

Dump points at which selected areas are printed can be found by examining 
the microfiche listings for occurrences of the UDUMP macro. The expan­
sion is as described above for a full region dump except that the address of a 
parameter list describing the areas to be dumped is passed to the dumping 
routing as a third parameter. 

Dumping of selected areas can occur with or without a full region dump in 
addition, as described in the section "Test Option" in this chapter. 

You can use the Test option to activate the printing of diagnostic output at 
selected points within Access Method Services. The Test option is con­
trolled by the TEST keyword as explained in the following section "TEST 
Keyword". 

The Test option provides you with the ability to print: 

• The Inter-Module and Intra-Module Trace Tables. The format and 
interpretation of these tables are described in the section "Trace Tables" 
in this chapter. 

• Selected areas of virtual storage. The facility for dumping selected areas 
of virtual storage is described in the section "Dump Points" in this 
chapter. 

• Full region dump. The facility for taking a full region dump is de-
scribed in the section "Dump Points" in this chapter. 

Each variation of the Text option provides an additional level of informa­
tion. The possible variations are: ( l) print the trace tables only; (2) print the 
trace tables and selected areas of virtual storage; (3) print the trace tables 
and selected areas of virtual storage and take a full region dump. 

You can enter the TEST keyword either in the PARM field of the EXEC 
card that invokes the processor, or on a PARM command. By using the 
PARM command, you can turn the Test option on and off or change the 
Test option for different function commands. 

The format of the TEST keyword and its subparameters is: 

PARM TEST( {ITRACEI 
I AREAS( ID-list ) ..• )I 
IFULL(( dumplist ) ..• )II 
IOFFI}) 

where the subparameters are defined as follows: 

TRACE specifies that the inter-module and intra-module trace tables are to 
be printed at every dump point encountered. 

AREAS names the modules for which selected areas are to be printed, in 
addition to the trace tables. The trace tables are printed at each dump point 

Chapter 6: Diagnostic Aids 6 - 3 



Licensed Material- Property of IBM 

encountered within the named modules; if a dump point specifies selected 
areas to be dumped, these areas are printed also. ID-list is a string of two­
character mnemonic identifiers separated by commands and/or blanks. The 
mnemonic identifiers are listed in the section "Naming Conventions" in the 
chapter "Introduction". The mnemonic identifier, however, for the dump 
points within System Adapter dump points is ZZ. The maximum number of 
identifiers is IO. For example, AREAS(EX,PR) specifies that selective 
dumping is to occur in the Executive modules and the PRINT FSR. 

FULL names the dump points at which full region dumps are to be pro­
duced, in addition to the selected areas and the trace tables. The trace tables 
and selected areas are produced each time the dump point is encountered; a 
full region dump is produced as specified in dumplist. dumplistconsists of a 
string of triplets enclosed in parentheses. The maximum number of triplets 
is I 0. Each triplet is of the form: 

( ident I begin I count 11) 
where the arguments of the triplet are defined as follows: 

How to Use the Test Option 

ident is a four-character dump point. The dump points are identified in 
UDUMP macros and are listed in the module to Dump Points Cross 
Reference list. 

begin specifies the iteration through the named dump point at which you 
wish the full region dump to be produced. For example, a begin value of 
2 specifies that a full region dump is not to be produced until the second 
encounter of the dump point. The default value is l, and the maximum is 
32,767. 

count specifies the number of times the full region dump is to be pro­
duced, once the value of begin has been satisfied. The default value is I, 
and the maximum is 32,767. 

For example, FULL((EX I F,4,2),(ALO I)) specifies that one full region dump 
is to be produced the fourth time that point EX l F is encountered, another 
full region dump is to be produced the fifth time the point is encountered, 
and one full region dump is to be produced the first time that point ALO I is 
encountered. Trace tables and any selected areas are to be printed each time 
dump points EX l F and ALO l is encountered. 

OFF turns off the Test option. No further dumping of trace tables, selected 
areas, or region will occur until another PARM command specifies one of 
the other subparameters. This subparameter must occur alone; it may not be 
coded with any other subparameter of the TEST keyword. 

Each time a PARM command is specified, the TEST parameters override 
the TEST parameters in effect from the previous PARM command. 

Figure 6-1 shows a section of the output from the command: 

PARM TEST ( FULL (LCTP,2,1) ) 

The trace tables and the selected area, DARG LIST, are printed each time the 
dump point LCTP is encountered. A full region dump is produced the 
second time that dump point LCTP is encountered. 

If a problem occurs and you have no idea which modules are involved, run 
the job again with the TRACE keyword. From the Inter-Module Trace 
Table you should be able to tell the modules involved. The TRACE key­
word, however, produces a large amount of output. 

6-4 VSE/VSAM Access Method Services Logic 



Ucensed Material - Property of IBM 

06/C'i/13 PAGE 

PARM TF<T ( FULL (LrTP,2,1) ) 

IOCC'OC'll FlJf\CTICN CP•PLFTEr:, HIGHEST CCNUTJCf\ rCl)E WVi C' 

L!q(6T ENTQV ( MN01.rLOIJl040/CLMR l ALL 

10C0q?41 [)UlllP ROUTlf\E INvrKEO AT 'LCTP' 

1NHR-Mf11)UU= HAU: DO! SA02 Lro1 SAIJ2 LCCl <MJ2 LCOl <AC2 LCCl SA02 LrOl SA('2 l.CCl SA02 LCOl SA02 Lro1 5A02 LCCl Cf'Cl 
TNTRA-Mnf)\JLE TRACE: Rl17 Pll\JN SACL RJTM SHP PJOG SArF EX!F EXFS <:ACL LCilll SAGD <:AGP SAGP SAGP SAGP SAGD <:AGF SAGO LCTP 

OARGL !ST = rocrcccc "Ol"ecClC IPC°F((l ccccrccr: Cl ?l'.'O'CCC Selected fields: 

LT ST C6/C~/lo 

GR 0-7 8COPl"HlC (ICOR12FR Cl)'COCl"OC' OCl 7FFFF OC'JRlUO 
GP A-F 0009C:A74 nc0qqqc;o f-00 POI- ~C OOCEC'70P OC'C8\l-4F 
(Q 0-7 C04C'lf'FF C1CCF24C FFF<'F<=FF FFFFFFFF C"COOC'CC 
(Q 11-F OMOOOOIJ nori~OC".11) COOl'CONlC OOOCIJOQ C C"00CCCC 

oooroo OOC'OCO<'O c 00000(10 00000000 OOOCOO".'O ()1)')0000'1 

0"002C 07Cl)C'0CO OOOORCG( 040DDrOC' OOOOAP"2 00'.JOOOOIJ 
0")0040 OC'OlCCee 0 ECOCCl"O 0001ons OIJOCOCIJC ESP<;ffCC 
0001" 60 04ornoco 00000866 no or 'lOOC OOOOA09C 04C 800CC 
ccoc 80 OOOOC~4C cccrorc0 C'JC20CC1 ccc2ccr1 lCCFCfllC 
0000 A(' ocooonr.o O<'"COCOO 2onooow C'OOCO 2C C OCCOCC'CG 
CCOC'CC cccnccor. --SAME--
('004 AO FC'F6tlFO F561F1F3 180C'l80r' 'JCOCt;O"JC ri:~ococc 
0004(0 (l(lOqR<=FF 1)0(1 E05"o 00CR549F OOCOCOlC 00 l 7FFF" 
0004EC' 3A,244?6. 442BOCOC FFC 3A02 380P3P<=Q F6FCF5Fl 
000500 4A<;RQCOO 3(1)(37~( ?7CCCC10 oocr:oc 1 c OCIJOCCCC 
oco~ 20 OOOC'IC'JO'l 04A011EO roooo5 PR 40400340 40404C4C 
COO'i4C OC'OOe2FO OOC02F6 CA8EOR4A roOC3AeA COC01H6 
0005 60 ono11Roo 07C05C9F 001G0f12\ oor 50Co c CCOC'eF68 
OCO'i8C 608CC8CO cc0crc;~f CCC'(lgq7(' oonc~C6P OOIJ~l:218 

000'5AC 00000000 COOC'7~Ffl 0000000C OOOC"D"'C oocnc6>8 
0005((' OOOC'~CS6 ocr:o9F48 COOOC794 OO'JOOOOC OOCCC !PC 
C005EC OC'IOBlOlR 0o:rnocco roO<'IJ0CC' 0000000 c ')('000000 
')00600 OC'OC00CC CCC'CCCCO COOOCOO'i '17FSCC<' l COCCF240 
OC062C OC'0<'64 'Ir: 000000011 ooonoooo 0007C7FF OOOOAC'i4 
('0064" FFCCC'C45 

ooceoe<;c 
CCCEO?OP 
IJCCCOCor 
ccccoooc 

(11'.'0CC4AC 
OCOOOOC'IO 
C1H2~3E 

00000502 
ocoooooc 
cccccccc 

rcccococ 
CS~7CED2 

F3FlF5FI: 
cccrccoc 
4C4C4COC 
CCOC4CFC 
ccccoooc 
COOCl:21C 
C'CIJCOCOC' 
ccccs•1c 
00003246 
OCOCE31C 
occccccc 

5EC2C6 

Text Processor 
Argument List 

MOCCO l~ OCC9RFFF 
COCECUC occe1c5e 
OOCC'OCOC OOCOQO(IC 
C 2CCCOCC CC')CI) 20C 

oocococc CCCCOOC'C 
0 7CC 200C 00000 96 E 
C4UCCCC COOCOP~E 
C4Cr:occo OCC'l"Cll38 
cocccoco OCC'COOOC 
cccccccE CCCOOCC(' 

C1C<;EZE3 4C'404(14( 
AOCCCECC OCC53A2f' 
CCCC35E4 OCCOF E 20 
cocr317c 34 E40CCC 
4C4r404C 4C4C4000 
COCC5P<;E OCOCA'JFE 
OOCC89AC 00006268 
CC!CCClC C'CCC7C4C 
CIJC'C422C oocooocc 
CCCC?3~C CCC'C31A4 
cccocccc occooooo 
COCCEP.:!e OCCC'6 "DC 
CCC1CC?5 Cl4500CC 
E 5 4 4ccc;o2ce 

PAGE 

................ ................ ................ ................ ................ z ............... ................ •••• .,NK., .... •• ... ............ ................ ........... - .... ................ 
06/05/ 13 •••••••• .. , •• , •• L 15T 

················ , ••• R •• K ••• ,. E •• 
•••••••••••••• • c rn51?151: ••• u •••• 
. . . . . . ·* ........ ••••••••••••• u •• ............ 
••• r ••• e •••• •• .. ••• ~ ... ~ •• t •••• e ......•......... ................. ............... ............... 
••••••• 8 •••••••• ................ ................ •• J ............. ................ ................ 
••••••••••••• 9 •• •• 2 • • T • • • • • • • • • 
.............. G. 

Figure 6-1. Example of Test Option Output 

If you suspect which modules are involved, you can rerun the job with the 
AREAS keyword and specify the identifiers of several suspected modules. 
You will obtain trace output for only the specified modules. 

Once you know the procedure within a module that has caused the problem, 
select the dump points at which uou would like a full dump (using the 
Module to Dump Points Cross Reference list or by examining the micro­
fiche for dump points), and rerun the job with the FULL keyword. The 
AREAS and FULL keywords can be used in combination to obtain trace 
tables and selected areas throughout several modules, but a full region 
dump only at selected points. 

Trace and Dump Points to Module Cross Reference 
The following list contains all trace and dump points, identifies the contain­
ing module and procedure and explains the situation at the trace or dump 
point. When the test option is set, both the trace and dump points are placed 
in the Intra-Module Trace Table. The trace tables are printed with all 
variations of the Test option as explained in the section "TEST Keyword". 

Chapter 6: Diagnostic Aids 6 - 5 



Licensed Material- Property of IBM 

Trace and Dump Points to Phase or CSl<:CT Cross Reference 

Trace or Dump Phase or 
Point cs1<:cr Procedure Type Situation at Dump or Trace Point 

ALOI IDCALOI IDCALOI dump Before calling the catalog to alter 
an object. 

trace Start of ALTER FSR. 

AL02 IDCALOI IDCALOI dump End of ALTER FSR. 

AL03 IDCALOI LOCATPRC dump After calling the catalog to locate 
an object. 

AL04 IDCALOI IDCALOI dump Before issuing ALTER request for 
index object if KEYS specified. 

AL31 IDCALOI LOCATPRC trace Start of procedure that locates the 
entry to be altered. 

AL41 I DC ALOI ALTERPRC trace Start of procedure that builds the 
catalog parameter list. 

AL51 IDCALOI CHECK PRC trace Entry to CHECK PRC. 

dump After locating data component of 
the alternate index for which UP-
GRADE has been specified. 

AL52 IDCALOI CHECKPRC dump After locating associated cluster or 
alternate index of the data object 
specified on ALTER command. 

AL53 IDCALOI CHECKPRC dump After locating associated index 
component. 

AL54 IDCALOl CHECKPRC dump After locating the data component 
of the path's base cluster. 

AL55 IDCALOI CHECKPRC dump After locating the cluster com po-
nent of the alternate index's base 
cluster. 

AL56 IDCALOI CHECK PRC dump After locating the data component 
of the alternate index's base cluster. 

AL61 IDCALOI INDEXPRC dump On entry to INDEXPRC. 

AL81 IDCALOI PARAMCHK trace On entry to PARAMCHK proce-
du re. 

BIBI IDCBIOI BLDPROC trace First entry to procedure that builds 
and writes the alternate index re-
cords. 

BICI IDCBIOI CNTLPROC trace Start of procedure that controls 
reading base cluster, sorting and 
writing alternate index. 

BIC2 IDCBIOI CNTLPROC dump After completion of sort if an 
internal sort; after completion of 
sort phase and before merge passes 
if an external sort. 

BIDL IDCBIOI DELTPROC trace Start of procedure that deletes sort 
work files. 

dump After return from UCATLG to 
delete each sort work file. 

BIDI IDCBIOI DEFPROC trace Start of procedure that defines sort 
work files. 

BID2 IDCBIOI DEFPROC dump After return from UCATLG to 
define each sort work file. 

BIFI IDCBIOI FINPROC trace Start of procedure that closes 
alternate index and prints status 
message. 

Bill IDCBIOI INITPROC trace Start of procedure that obtains 
resources for building alternate in-
dex. 

Bll2 IDCBIOI INITPROC dump After obtaining or failing to obtain 
sort core. 

6-6 VSE/VSAM Access Method Services Logic 



Licensed Material- Property of IBM 

Trace and Dump Points to Phase or CSECT Cross Reference 

Trace or Dump Phase or 
Point CSECT Procedure Type Situation at Dump or Trace Point 

BIJI IDCBIOI JCPROC trace Start of procedure that issues 
UIOINFO to obtain sort work file 
job control data. 

BIJ2 IDCBIOI JCPROC dump After return from each call to 
UIOINFO. 

BILI IDCBIOI LOCPROC trace Start of procedure that controls 
catalog locates to obtain informa-
tion about the base cluster and al-
ternate index. 

BIL2 IDCBIOI CATPROC dump After return from UCATLG for 
each locate request. 

BIMI IDCBIOI MERGPROC trace Start of procedure that performs 
the merge passes of an external sort. 

BIM2 IDCBIOI MERGPROC trace Start of each merge pass of an 
external sort. 

BIM3 IDCBIOI MERGPROC dump After the tree of nodes has been 
initialized for each merge pass of an 
external sort. 

BIM4 IDCBIOI MERGPROC dump After processing one set of strings 
during the merge pass of an exter-
nalsort. 

BIPI IDCBIOI OPENPROC trace Start of procedure that opens data 
sets. 

BIP2 IDCBIOI OPENPROC dump After return from UOPEN to open 
a data set. 

BISP IDCBIOI SPILPROC trace Start of procedure that writes out a 
sorted string in the sort phase of an 
external sort. 

BISR IDCBIOI SORTPROC dump Before sorting the records in the 
record sort area. 

BIOi IDCBIOI IDCBIOI trace Start ofBLDINDEX FSR. 

8102 IDCBIOI MAINPROC trace Start of procedure that controls 
building of one alternate index. 

BI03 IDCBIOI MAINPROC dump After return from procedure which 
locates information about the base 
cluster and alternate index. 

BI04 IDCBIOI MAINPROC dump After the alternate index has been 
built; before close. 

CLOI IDCCLOI IDCCLOI trace Start of CANCEL command. 

CL02 I DCC LOI I DCC LOI trace After printing of command -
complete message. 

CL03 IDCCLOI I DCC LOI trace If CANCEL STEP. Just before 
return to executive. 

CPl4 IDCRPOI VERIFYC trace When either the source or target 
catalog cannot be verified during a 
reload. 

DB2A IDCDB02 ARRAYHDR trace Start of procedure that processes an 
array header dump element. 

DB2B IDCDB02 BCONVERT trace Start of procedure the converts a 
dump item to binary representa-
tion. 

DB2C IDCDB02 CCONVERT trace Start of procedure that converts a 
dump item to character representa-
tion. 

DB2F IDCDB02 FCONVERT trace Start of procedure that converts a 
dump item to fixed representation. 

DB2H IDCDB02 HCONVERT trace Start of procedure that converts a 
dump item to hex representation. 

Chapter 6: Diagnostic Aids 6-7 



Licensed Material - Property of I BM 

Trace and Dump Points to Phase or CSECT Cross Reference 

Trace or Dump Phase or 
Point CSECT Procedure Type Situation at Dump or Trace Point 

DB21 IDCDB02 ITEM DUMP trace Start of procedure that processes an 
individual dump list element. 

DB2N IDCDB02 NAMEFLD trace Start of procedure that processes 
the dump element symbolic name. 

DEOI IDCDEOI IDCDEOI dump Before calling the catalog to define 
an object. 

DE02 IDCDEOI IDCDEOI dump End of DEFINE FSR, before 
completion message is issued. 

DE03 IDCDE02 MODELPRC dump After calling the catalog to locate a 
model object. 

DE04 IDCDE02 MODELPRC dump End of procedure that built the 
model table. 

DEi l IDCDEOl IDCDEOI trace Start of DEFINE FSR. 

DE20 IDCDE03 IDCDE03 trace On entry to IDCDE02 module. 

DE21 IDCDE03 CTLGPROC trace Start of procedure that defines a 
master or user catalog. 

DE22 IDCDE03 DSETPROC trace Start of procedure that defines a 
VSAM data set. 

DE23 IDCDE03 DSPACPRC trace Start of procedure that defines a 
data space. 

DE24 IDCDE03 NVSAMPRC trace Start of procedure that defines a 
nonVSAM data set. 

DE25 IDCDE03 AIXPROC trace Start of procedure that defines an 
alternate index. 

DE26 IDCDE03 PATHPROC trace Start of procedure that defines a 
path. 

DE30 IDCDE02 IDCDE02 trace Entry to IDCDE02. 

DE31 IDCDE02 NAMEPROC trace Start of procedure that builds 
CTGFLs with name and date in-
formation. 

DE32 IDCDE02 ALLCPROC trace Start of procedure that builds 
CTG FLs for allocation informa-
tion. 

DE33 IDCDE02 KEYPROC trace Start of procedure that builds 
CTG F Ls for key range and 
AMDSBCAT information. 

DE34 IDCDE02 PROTPROC trace Start of procedure that builds 
CTGFLs for protection informa-
tion. 

DE35 IDCDE02 IXOPPROC trace Start of procedure that initializes 
index fields in the AMDSBCAT. 

DE36 IDCDE02 MODELPRC trace Start of procedure that locates the 
model object entry. 

DE37 IDCDE02 FREESTG dump End of DEFINE FSR. 

DLBC IDCDLOI BUILDCPL trace Start of procedure that builds the 
CTGPL for the delete request. 

DLBG IDCDLOI IDCDLOI dump Start of DELETE FSR. 

DLCL IDCDLOI CLEANUP trace Start of procedure that closes the 
user catalog. 

DLCT IDCDLOI CATCALL trace Start of procedure that calls the 
catalog with a delete request. 

DLLC IDCDLOI FINDTYPE trace Start of procedure that locates the 
type of the entry to be deleted. 

DLMS IDCDLOI MORESP trace Entry to MORESP. 

DLND IDCDLOI IDCDLOl dump End of DELETE FSR, before data 
sets are closed and the completion 
message is issued. 

6-8 VSE/VSAM Access Method Services Logic 



Licensed Muteri11I- Property of IBM 

Trace and Dump Points to Phase or CSECT Cross Reference 

Trace or Dump Phase or 
Point CSECT Procedure Type Situation at Dump or Trace Point 

DLOP IDCDLOI CATOPEN trace Start of procedure that opens the 
user catalog. 

DLPC IDCDLOI PARA MC HK trace Start of procedure that checks for 
invalid parameters. 

DLVL IDCDLOI FINDTYPE dump Before and after calling the catalog 
to locate the entry type. 

DLVS IDCDLOI CATCALL dump Before and after calling the catalog 
to delete an entry. 

DLVT IDCDLOI MOR ESP dump Either side ofUCATLG macro in 
MO RESP. 

EXFS IDCEXOI CALLFSR dump Before each call to an FSR. 

EXIF IDCEXOI CALLFSR trace Before each call to an FSR. 

EXIM IDCEXOI MAIN trace Before calling the 
Reader /Interpreter for the first 
time. 

EXIR IDCEXOl CALLRI trace Before each call to the 
Reader /Interpreter. 

EXMN IDCEXOI IDCEXOI dump All Reader/Interpreter and FSR 
processing is complete. 

EXRI IDCEXOI CALLRI dump Before each call to the 
Reader /Interpreter. 

EX2X IDCEX02 SCAN PARM trace Before processing the caller's 
parameter list. 

EX3S IDCEX03 SCAN PARM trace Before processing the caller's 
parameter list. 

IOAC IDCI002 BUILDACB dump After ACB and EXLST have been 
built, at end of procedure. 

trace Start of procedure that builds the 
ACB and EXLST. 

IOCL IDCIOOI IDCIOCL trace Start of routine that closes data set. 

IOCP IDCIOOI IDCIOCO trace Start of routine that copies a data 
set. 

IODC IDCI002 BUILDDBK trace Start of procedure that builds a 
DTF. 

IODS IDCI002 DSDATA dump After obtaining file information 
from the label cylinder. 

IOEG IDCIOOI GETEXT dump End of procedure that gets a record 
from the user routine. 

trace Start of procedure that gets a record 
from the user routine. 

IOEP IDCIOOI PUT EXT dump After control returns from an 
external user routine. 

trace Before record is passed to an 
external user routine. 

IOE2 IDCIOOI GETNONVS trace Start of end-of-file routine for a 
nonVSAM data set. 

IOGR IDCIOOI PUT REP dump After the GET for update. 

IOGT IDCIOOI IDCIOGT trace Beginning of routine that gets a 
data record from a data set. 

IOIF IDCI003 DSINFO trace Entry to UIOINFO processing. 

IOIT IDCIOOI IDCIOIT trace Start of initialization routine. 

1011 IDCI003 DSINFO dump After return from IKQVDTPE. 

IOOP IDCIOOl IDCIOOP trace Start of routine that opens data sets. 

IOOT IDCI003 PTISDS trace Before SETL macro is issued. 

IOPL IDCIOOl PUT REP trace Entry to PUT (Replace) routine. 

Chapter 6: Diagnostic Aids 6-9 



Licensed Material - Property of IBM 

Trace and Dump Points to Phase or CSECT Cross Reference 

Trace or Dump Phase or 
Point CSECT Procedure Type Situation at Dump or Trace Point 

IOPO IDCIOOI IDCIOPO trace Start of routine that positions to a 
data record in an opened VSAM or 
ISAM data set. 

IDCI003 IDCI003 dump After positioning is complete, 
before returning control to IDCIO-
PO. 

IOPR IDCIOOI PUT REP dump After the PUT for update. 

IOPT IDCIOOI IDCIOPT trace Start of routine that writes data 
records to an opened data set. 

IORP IDCI002 BUILDRPL dump After RPL is built, at end of 
procedure. 

IOS2 IDCIOOI GETNONVS trace Start of SYN AD routine for 
nonVSAM read error. 

IOS4 IDCIOOI PUTNONVS trace Start of SYN AD routine for 
nonVSAM put error. 

IOTM IDCIOOl IDCIOTM trace Start of termination routine that 
closes all data sets and frees space. 

IOUO IDCIOOl IDCIOSI trace Entry to UIOINFO entry process-
ing. 

IOVE IDCIOOl GETVSAM trace Start of end-of-file exit routine for 
a VSAM tile. 

IOVG IDCIOOI GETVSAM dump End of procedure that gets a record 
or control interval from a VSAM 
data set. 

trace Before the GET macro is issued for 
a VSAM data set. 

IOVP IDCIOOI PUTVSAM dump End of procedure that writes a 
VSAM record. 

trace Before the PUT macro is issued for 
a VSAM data set. 

IOVR IDCIOOl VSAMERR dump After detection ofa VSAM 1/0 
error. 

IOVT IDCI003 PTAMDS trace Start of procedure that positions to 
a VSAM record or control interval. 

IOVY IDCIOOI IDCIOVY dump After VERIFY macro is issued. 

trace After VERIFY macro is issued. 

1002 IDCI003 DSINFO dump After formatting work area. 

IOlC IDCI002 CLOSER TN dump Before CLOSE macro is issued. 

1010 IDCI002 OPENRTN dump Before OPEN macro is issued. 

102C IDCI002 CLOSER TN dump At completion of all UC LOSE 
processing. 

102P IDCIOOI PUTNONVS dump After writing a spanned record. 

trace After writing a spanned record. 

1020 IDCI002 OPENRTN dump After OPEN macro is issued. 

1021 IDCI002 OPENRTN dump At completion of all UOPEN 
processing. 

LCAL IDCLC02 LOCPROC dump After calling the catalog to locate 
an entry. 

LCAU IDCLC02 AUPROC trace Start of procedure that formats 
catalog fields for a nonVSAM or 
user catalog entry. 

LCBL IDCLC02 LOCPROC dump Before calling the catalog to locate 
an entry. 

LCCL IDCLC02 CDIPROC trace Start of procedure that formats 
catalog fields for a cluster, data, or 
index entry. 

6- IO VSE/VSAM Access Method Services Logic 



Licensed Material- Property of IBM 

Trace and Dump Points to Phase or CSECT Cross Reference 

Trace or Dump Phase or 
Point cs1<:cr Procedure Type Situation at Dump or Trace Point 

LCDC IDCLC02 DEVTCONV trace Start of procedure that converts 
UCB code. 

LCEN IDCLCOI ENTPROC trace Before retrieving each entry in a list 
of entries. 

LCER IDCLC02 ERRPROC trace Start of procedure that issues 
messages. 

LCFP IDCLC02 FPLPROC trace Start of procedure that reinitializes 
CTGFLs for each locate request. 

LCIN IDCLCOI INITPROC trace Start of procedure that initializes 
the catalog parameter list and work 
areas. 

LCLT IDCLC02 LISTPROC trace Start of procedure that prints 
catalog data. 

LCMG IDCLC02 ERRPROC dump Before UPRINT macro is issued to 
print a message. 

LCNX IDCLCOI GNXTPROC trace Before retrieving each entry when 
processing a full catalog. 

LCRT IDCLCOI RTEPROC trace Start of procedure that directs the 
retrieved entry to the proper for-
matting procedure. 

LCR2 IDCLCOI RTEPROC trace Start of section of procedure that 
processes associations of a cluster, 
or AIX 

LCSA IDC'LC02 ANSVPROC trace Start of procedure that retrieves the 
list of types and Cl numbers. 

LCTP IDCLC02 LISTPROC dump Before UPRINT macro is issued to 
print catalog data. 

LCVL IDCLC02 VPROC trace Start of procedure that formats 
catalog fields of a space entry. 

LCWA IDCLC02 LOCPROC dump After calling the catalog to locate 
an entry. 

LC02 IDCLC02 IDCLC02 dump When IDCLC02 is called the first 
time to establish addressability. 

LC98 IDCLC02 FREESTG dump End of LISTC AT FSR, before 
freeing storage in IDCLC02. 

LC99 IDCLCOI IDCLCOI dump End of LISTCAT FSR, before 
freeing storage in IDCLCOI. 

LRAA IDCLROI AATOPLR dump Entry point for I DCLRO I 

LRAD IDCLROI ADDASOC dump Start of procedure that adds an 
association to the association table. 

LRBL IDCLROI BLDVEXT dump Start of procedure that builds 
virtual extension table. 

LRBU IDCLROI BUFSHUF dump Start of procedure that moves a 
record to its "home" buffer. 

LRCA IDCLROI CATOPEN dump Start of procedure that prepares to 
open the catalog. 

LRCK IDCLROI CKEYRNG dump Start of procedure that checks for 
key range. 

LRCR IDCLROI CRAOPEN dump Start of procedure that opens the 
CRA. 

LRCT IDCLROI CTTBLD dump Start of procedure that builds Cl 
translate table. 

LRCI IDCLROI CLEANUP dump Start of procedure that cleans up 
before exit. 

LRC2 IDCLROI CLENCRA dump Start of procedure that closes the 
CRA and prints the completion 
message. 

Chapter 6: Diagnostic Aids 6- l l 



Licensed Material- Property of IBM 

Trace and Dump Points to Phase or CSECT Cross Reference 

Trace or Dump Phase or 
Point CSECT Procedure Type Situation at Dump or Trace Point 

LRDO IDCLROl DOOTHR dump Start of procedure that controls 
printing nonVSAM information. 

LRDV IDCLROl DOV SAM dump Start of procedure that controls 
printing VSAM information. 

LRER IDCLROl ERROR dump Start of procedure that handles 
errors. 

LRGE IDCLROI GETPRT dump Start of procedure that gets and 
print records. 

LRIA IDCLROI INTASOC dump Start of procedure that initializes 
association tables. 

LRIN IDCLROI INITLZE dump Start of procedure that initializes 
the FSR. 

LRIS IDCLROI INTSORT dump Start of procedure that initializes 
the sort table. 

LRIV IDCLROl INTVEXT dump Start of procedure that initializes 
the virtual extension table. 

LRME IDCLROI MEMSORT dump Start of procedure that sorts the 
entries in sort table. 

LRPA IDCLROI PRTAAXV dump Start of procedure that prints 
associated AIXs and volumes. 

LRPC IDCLROI PRTCMP dump Start of procedure that prints and 
compares information. 

LRPD IDCLROl PR TD MP dump Start of procedure that prints dump 
if specified. 

LRPE IDCLROl PRTDMPC dump Start of procedure that prints dump 
of catalog record and underscores 
miscompares. 

LRPF IDCLROI PRTFIFO dump Start of procedure that prints CRA 
in order of Cl number. 

LRP.I IDCLROl PRTOJAL dump Start of procedure that prints an 
object's aliases. 

LRPK IDCLROI PRTOJVL dump Start of procedure that prints an 
object's volumes. 

LRPM IDCLROI PRTMCWD dump Start of procedure that prints 
miscompare words. 

LRPO IDCLROl PRTOTHR dump Start of procedure that prints 
nonVSAM objects. 

LRPT IDCLROI PRTTIME dump Start of procedure that prints 
timestamps. 

LRPV IDCLROl PR TV SAM dump Start of procedure that prints 
VSAM structures. 

LRPW IDCLROI PRTVOL dump Start of procedure that prints 
volume records. 

LRSM IDCLROI SUMIT dump Start of procedure that prints 
number of entries processed. 

LRTC IDCLROI TCICTCR dump Start of procedure that translates 
the catalog Cl to the CRA. 

LRVE IDCLROI VER TEXT dump Start of procedure that handles 
vertical extension records. 

LRZY IDCLROI ERROR dump After error message has been 
printed. 

LRZZ IDCLROI ERROR dump After error that forced an ABORT 
of this execution. 

6- 12 VSE/VSAM Access Method Services Logic 



Licensed Material- Property of IBM 

Trace and Dump Points to Phase or CSECT Cross Reference 

Trace or Dump Phase or 
Point CSECT Procedure Type Situation at Dump or Trace Point 

LR02 IDCLR02 IDCLR02 dump Entry point for module that gets a 
record for Recovery Field manage-
ment routine. 

MPBF lDCMPOl FPLPROC trace Start of procedure that constructs a 
CTGFL. 

MPBU I DCM POI IDCMPOI trace Start of IMPORT FSR. 

MPCP IDCMPOI CLUSPROC trace Start of procedure that imports a 
cluster or alternate index. 

MPCT IDCMPOI CLUSPROC trace Before processing information from 
the portable data set to define a 
cluster or alternate index. 

MPDC IDCMPOI DELTPROC dump After the first UCATLG. 

MPDD IDCMPOI DELTPROC dump After the second UCATLG. 

MPDL IDCMPOl DELTPROC trace Entry to DEL TPROC. 

MPDN IDCMPOl DUPNPROC trace Start of procedure to process a 
duplicate entry found in the cata-
log. 

MPFN IDCMPOl I DCM POI dump End of IMPORT FSR, prior to 
closing data sets. 

MPFV IDCMPOl FVTPROC trace Start of procedure that constructs a 
CTG FV and CTG FLs. 

MPGK IDCMPOl DVOLCHK trace Entry to DVOLCHK 

MPGL IDCMPOl DVOLPROC trace Entry to DVOLPROC 

MPLV IDCMPOl LVLRPROC trace Start of procedure that constructs 
CTGFLs for device and volume in-
formation. 

MPMG IDCMPOl MSGPROC trace Start of procedure that issues 
messages. 

MPOP IDCMPOl OPENPROC trace Start of procedure that opens either 
the portable data set or the newly 
defined data set. 

MPPS lDCMPOl BPASPROC trace Start of procedure that constructs 
the PASSWALL CTGFL for pro-
tection information. 

MPPT IDCMPOl CLUSPROC trace After imported cluster or alternate 
index has been successfully defined 
and the contents of the portable 
data set copied into the new cluster 
or alternate index. 

MPSP IDCMPOI CTLGPROC trace Start of procedure that calls the 
catalog to locate, alter, or define an 
entry. 

MPUC IDCMPOI CNCTPROC trace Start of procedure that connects a 
user catalog. 

MPUQ IDCMPOl IUNIQPRC trace After a data or index has been 
found to be unique. 

MPZZ IDCMPOl CTLGPROC dump Before and after calling the catalog 
to locate, alter, or define an entry. 

PMGP IDCPMOI GRPHPARM trace Start of procedure that processes 
the graphics option. 

PMMG IDCPMOl MARG PARM trace Start of procedure that processes 
the margins option. 

PMTP IDCPMOl TESTPARM trace Start of procedure that initializes 
the TEST option. 

PMTS lDCPMOl TESTSAVE trace Start of procedure that initializes 
the Test Option Data Area. 

PROl IDCPROl IDCPROl dump End of PRINT FSR. 

PRl 1 IDCPROl IDCPROl trace Start of PRINT FSR. 

Chapter 6: Diagnostic Aids 6- 13 



Licensed Material- Property of IBM 

Trace and Dump Points to Phase or CSECT Cross Reference 

Trace or Dump Phase or 
Point CSECT Procedure Type Situation at Dump or Trace Point 

PRl8 IDCPROI IDCPROI trace Before termination processing. 

PR21 IDCPROI TEXT PS ET trace Start of procedure that sets up the 
text processor interface. 

PR31 IDCPROI DELIMSET trace Start of procedure that establishes 
the beginning and ending delimi-
ters of the data set to be printed. 

RCOI IDCRC02 IDCRC02 trace Start of main procedure. 

RC02 IDCRC02 IDCRC02 dump Start of main procedure. 

RC03 IDCRC02 IDCRC02 trace Return in main procedure from 
procedures which processed catalog 
information for objects. Start of 
termination processing. 

RC04 IDCRC02 IDCRC02 dump Return in main procedure from 
procedures which processed catalog 
information for objects. Start of 
termination processing. 

RC05 IDCRC02 CLUSPROC trace Start of procedure which processes 
VSAM objects. 

RC06 IDCRC02 CLUSPROC dump Start of procedure which processes 
VSAM objects. 

RC07 IDCRC02 CLUSPROC trace Before routine which calls LOC-
PROC for data and index process-
ing. 

RC09 IDCRC02 CLUSPROC trace Start build of timestamp informa-
tion for portability data set. 

RCll IDCRC02 CLUSPROC trace Start of processing for path 
associations for VSAM objects. 

RCl3 IDCRC02 LOCPROC trace Start of procedure which builds 
CPL and FPL's for catalog locate 
functions. 

RCl5 IDCRC02 CTLGPROC trace Start of procedure which issues 
catalog locates. 

RCl6 IDCRC02 CTLGPROC dump Start of procedure which issues 
catalog locates. 

RCl7 IDCRC02 OPENPROC trace Start of procedure to open input 
and output data sets. 

RCl9 IDCRC02 PUTPROC trace Start of procedure which writes 
control records to the output data 
set. 

RC21 IDCRC02 RECPROC trace Start of procedure which copies the 
data from the input data set to the 
output data set. 

RC23 IDCRC02 MVDAPROC trace Start of procedure which moves 
control record information in core 
and clears work areas in core. 

RC25 IDCRC02 CONTRBL trace Start of procedure which builds 
control record information. 

RC27 IDCRC02 NVSMPROC trace Start of procedure which processes 
nonVSAM objects. 

RC28 IDCRC02 NVSMPROC dump Start of procedure which processes 
nonVSAM objects not associated to 
GDG's. 

RC29 IDCRC02 NVSMPROC tra<:e Before timestamp processing for 
nonVSAM objects not associated to 
GDG's. 

RC31 IDCRC02 SAVEPROC trace Start of procedure which saves 
control record information and 
writes control information to the 
output data set. 

6- 14 VSE/VSAM Access Method Services Logic 



Lkcnscd Material - Property of IBM 

Trncc and Dump Points to Phase or CSECT Cross Reference 

Trnce or Dump Phase or 
Point CSECT Procedure Type Situation at Dump or Trnce Point 

RC33 IDCRC02 ALSPROC trace Start of procedure which processes 
catalog information for alias associ-
ations for nonVSAM objects. 

RC42 IDCRC02 PRNTPROC trace Start of procedure which prints 
error messages for associations. 

RC79 IDCRCOI TERM both Before special processing to 
terminate request (closing output 
data set). 

RC80 IDCRCOI INIT both Before initializing to begin 
processing. 

RC81 IDCRCOI BUILDCRV both Before building the CRY. 

RC82 IDCRCOI EXPORTDR both Before looping down name chain to 
call IDCRC02 to export data sets. 

RC83 IDCRCOI SYNCH both Before scanning the name chain for 
a CRA to check it. 

RC84 IDCRCOI OBJVOLCK both Before checking synchronization of 
an entry across multiple volumes. 

RC85 IDCRCOI DUPNAMCK both Before checking the name chain for 
duplicates. 

RC86 IDCRCOI BUILDNAM both Before constructing a block for the 
name chain. 

RC87 IDCRCOI COMPNAME both Before compressing a name for the 
name list. 

RC88 IDCRCOI SUBSP both Before allocating space for the 
name chain. 

RC89 IDCRCOI MESSAGE both Before printing any message from 
IDCRCOI. 

RC90 IDCRCOI EXTRACT both Before using internal Field 
Management to get information 
from CRA. 

RC91 IDCRCOI OPENCRA both Before opening or closing or CRA 
and doing all other work (e.g. Build 
CTT). 

RC92 IDCRCOI OPEN both Before the opening of the CRA. 

RC93 IDCRCOI CKCATNM both Before checking owning catalog 
name of CRA being opened. 

RC94 IDCRCOI TIMESTMP both Before obtaining format 4 times-
tamp for CRA being opened. 

RC95 IDCRCOI SCANCRA both Before scanning CRA to build the 
CTT table. 

RC96 IDCRCOI ERRCK both After opening a CRA. 

RC97 IDCRCOI NAMETABL both Before marking or adding a name 
to the name chain. 

RC98 IDCRCOI DIRECT both Before obtaining the directory for a 
volume. 

RC99 IDCRCOI CKNAMES both Before gathering information on 
name in name list from CRA. 

RIBT IDCRIOI BYPASTRM dump Start of procedure that bypasses the 
remainder of the current modal or 
null command. 

RICV IDCRIOI CONVERT dump Start of procedure that converts a 
constant from EBCDIC to binary 
or hexadecimal. 

RIDC IDCRIOI DSPLCALC dump Start of procedure that calculates 
the position within a secondary 
FDT vector in which to place an 
FDT pointer. 

Chapter 6: Diagnostic Aids 6- 15 



Licensed Material - Property of IBM 

Trace and Dump Points to Phase or CSECT Cross Reference 

Trace or Dump Phase or 
Point CSECT Procedure Type Situation at Dump or Trace Point 

RIDF IDCRIOI DEFAULTS dump Start of procedure that adds default 
parameters to the FDT. 

RIEX IDCRIOI IDCRIOI dump Start of Reader/Interpreter phase. 

RIEi IDCRIOI ERROR I dump Start of procedure that issues a 
message without inserted text. 

RIE2 IDCRIOI ERROR2 dump Start of procedure that issues a 
message with inserted text. 

RIGN IDCRIOI GETNEXT dump Start of procedure that scans the 
input command. 

RIGQ IDCRIOI GETQUOTD dump Start of procedure that scans a 
quoted constant. 

RIGR IDCRIOI GETRECRD dump Start of procedure that obtains the 
next input record. 

RllD IDCRIOI DSIDCHK trace Check restrictions on a data set 
name and place in FDT. 

RllR IDCRIOI IN REPEAT dump Start of procedure that scans a 
repeated parameter set. 

RIMC IDCRIOI MORSPACE dump Start of procedure that allocates 
more FDT space for a list of con-
slants. 

RIME IDCRIOI MODLELSE dump Start of procedure that scans an 
ELSE modal command. 

RIMI IDCRIOI MODALIF dump Start of procedure that scans an IF 
modal command. 

RIMS IDCRIOI MODALSET dump Start of procedure that scans a SET 
modal command. 

RINN IDCRIOI NEEDNOTS dump Start of procedure that checks the 
input command for conflicting or 
missing parameters. 

RINS IDCRIOI NAMESCAN dump Start of procedure that checks data 
set names. 

RIPC IDCRIOI PACK CYB dump Start of procedure that converts a 
decimal constant into a binary full-
word. 

RIPP IDCRIOI POSPARM dump Start of procedure that scans a 
positional parameter. 

RISC IDCRIOI SCANCMD dump Start of procedure that scans the 
input command parameters. 

RISD IDCRI02 IDCRI02 dump Start of phase that prepares to scan 
a command parameter set. 

RISE IDCRIOI SCAN ENDS dump Start of procedure that checks the 
input record for a continuation del-
imiter and determines the scanning 
limits of the record. 

RISF IDCRIOI SETFLAG dump Start of procedure that notes the 
occurrence of a parameter in the 
FDT. 

RISK IDCRIOI SKIPCMD dump Start of procedure that bypasses the 
remainder of a function command. 

RIST IDCRIOI SETDFLT dump Start of procedure that puts 
parameter defaults in the FDT. 

RITM IDCRI03 IDCRI03 dump Start of phase that performs 
command termination functions. 

RIO! IDCRIOI SCANCMD trace Start of scanning for a parameter. 

RI02 IDCRIOI SCANCMD trace Scanning a first-level parameter. 

RI03 IDCRIOI SCANCMD trace Scanning a subparameter. 

6- 16 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Trace and Dump Points to Phase or CSECT Cross Reference 

Trace or Dump Phase or 
Point CSECT Procedure Type Situation at Dump or Trace Point 

RI04 IDCRIOI GETNEXT trace Modal command other than ELSE 
within an IF. 

RIOS IDCRIOI GETNEXT trace Found a functional command. 

RI09 IDCRIOI KWDPARM trace Found a keyword subparameter. 

Rill IDCRIOI GETDATA trace Start of extracting a scalar value. 

Rll2 IDCRIOI GETDATA trace Extract a character string. 

Rll6 IDCRI02 IDCRI02 trace Prior to loading the command 
descriptor. 

Rl17 IDCRI02 IDCRI02 trace Beginning of the code sequence to 
build the PARMINFO table. 

Rl24 IDCRIOI CONVERT trace Start converting a binary number. 

Rl27 IDCRIOI CONVERT trace Start converting a hexadecimal 
number. 

Rl30 IDCRIOI CONVERT trace Change converted digits into a 
binary fullword. 

Rl3S IDCRIOI IN REPEAT trace Loop to reset parameter occurrence 
flags for possible parameters in the 
sublist. 

Rl36 IDCRIOI IN REPEAT trace End of last repeated sublist. 

Rl44 IDCRIOI SETDFLT trace Found that default is allowable; 
ready to put in FDT. 

Rl45 IDCRIOI SETDFLT trace Move a defaulted unquoted 
constant to FDT. 

Rl49 IDCRIOI NXTFIELD trace Extract a filed from input (verb, 
keyword, or scalar). 

RISO IDCRIOI NXTFIELD trace Extract a keyword field. 

RISI IDCRIOI NXTFIELD trace Extract a quoted scalar. 

RIS6 IDCRIOI NEXTCHAR trace End-of-file already found in input. 

RIS7 IDCRIOI NEXTCHAR trace Extract first character of a new 
command. 

RIS9 IDCRIOI NEXTCHAR trace End-of-file found while looking for 
next character. 

Rl60 IDCRIOI SCAN ENDS trace Skip leading blanks and comments 
if preceding record indicated con-
tinuation. 

Rl61 IDCRIOI SCAN ENDS trace Bypass a leading comment. 

Rl62 IDCRIOI SCAN ENDS trace Bypass leading blanks. 

Rl66 IDCRIOI DSPLCALC trace Calculate displacement into the 
FDT for a parameter in a first-level 
repeated parameter list. 

R199 IDCRI03 IDCRI03 trace End of IDCRI03. 

RMAL IDCRMOI ALISPROC trace Entry to ALISPROC. 

RMAT IDCRMOI ALTRPROC trace Entry to AL TR PROC. 

RMBF IDCRMOI BFPLPROC trace Entry to BFPLPROC. 

RMBG IDCRMOI IDCRMOI trace Entry to IDCR MO I. 

Chapter 6: Diagnostic Aids 6- 17 



Licensed Material - Property of IBM 

Trace and Dump Points to Phase or CSECT Cross Reference 

Trace or Dump Phase or 
Point CSl<~Cr Procedure Type Situation at Dump or Trace Point 

RMCE IDCRMOI CLUSPROC trace Exit from CLUSPROC. 

RMCL IDCRMOI CPLPROC dump After the CPL has been built. 

RMCP IDCRMOI CLUSPROC trace Entry to CLUSPROC. 

RMCT IDCRMOI CLUSPROC trace Begin reading of cluster or alternate 
index information from the porta-
ble data set. 

RMDC IDCRMOI DELTPROC dump After the first UCT ALO in 
DELTPROC. 

RMDD IDCRMOI DELTPROC dump After the second UCATLG in 
DELTPROC. 

RMDL IDCRMOI DELTPROC trace Entry to DEL TPROC. 

RMDN IDCRMOI NVSMPROC trace Duplicate nonVSAM entry found. 

RMDU IDCRMOI UCATPROC trace Duplicate user catalog found. 

RMDV IDCRMOI CLUSPROC trace A duplicate VSAM entry has been 
found. 

RMEL IDCRMOI IDCRMOI trace End of the loop for importing 
objects. 

RMEV IDCRMOI CLUSPROC trace End of cluster or alternate index 
define sequence. 

RMFN IDCRMOI IDCRMOI dump Termination of IDCRMOI. 

RMFV IDCRMOI FVTPROC trace Entry to FVTPROC. 

RMGD IDCRMOI GDGPROC trace Entry to G DG PROC. 

RMGK IDCRMOI DVOLCHK trace Entry to DVOLCHK. 

RMGL IDCRMOI DVOLPROC trace Entry to DVOLPROC. 

RMLV IDCRMOI LVLRPROC trace Entry to LVLPROC. 

RMMG IDCRMOI MSGPROC trace Entry to MSG PROC. 

RMOP IDCRMOI OPENPROC trace Entry to OPEN PROC. 

RMNF IDCRMOI NFVTPROC trace Entry to NFVTPROC. 

RMNV IDCRMOI NVSMPROC trace Entry to NVSMPROC. 

RMPL IDCRMOI CPLPROC trace Entry to CPLPROC. 

RMPS IDCRMOI BPASPROC trace Entry to BPASPROC. 

RMPT IDCRMOI CLUSPROC trace Beginning of path definition 
sequence. 

RMRG IDCRMOI RANG PRC trace Entry to RANG PROC. 

RMSP IDCRMOI CTLGPROC trace Entry to CTLGPROC. 

RMUC IDCRMOI UCATPROC trace Entry to UCATPROC. 

RMUQ IDCRMOI IUNIQPRC trace A unique data or index component 
has been detected. 

RMZZ IDCRMOI CTLGPROC dump Before and after the UC A TLG in 
CTLGPROC. 

RPCI IDCRPOI CNVRTCI dump On exit from procedure that 
translates control interval numbers 
on the backup catalog. 

RPDI IDCRPOI CATRELOD dump At the end of all reload error 
checking before any updates have 
been done to the target catalog. 

RPKS IDCRPOI IDCRPOI trace When a KSDS with shareoption 4 
in non-load mode has been detect-
ed (after open). The file must be 
closed and reopened with KEYED 
in the ACB. 

RPRO IDCRPOI IDCRPOI trace Failure to reopen a file. 

6- 18 VSE/VSAM Access Method Services Logic 



Lkensed Muteriul- Property of IBM 

Trace and Dump Points to Phase or CSECT Cross Reference 

Trace or Dump Phase or 
Point CSl<Tf Procedure Type Situation at Dump or Trace Point 

RPTU IDCRPOI TRUENAME dump On exit from procedure, having 
built truename range table. 

RPTI IDCRPOI CATRELOD trace Start of procedure that performs 
catalog reload. 

RPT2 IDCRPOI TRUENAME trace Start of procedure that maps the 
RBA boundaries of the backup 
truename ranges. 

RPT3 IDCRPOI CATRANS trace On entry to procedure that locates 
control interval numbers to be 
translated. 

RPT4 IDCRPOI CNVRTCl trace On entry to procedure that converts 
control interval numbers from the 
backup catalog. 

RPT5 IDCRPOI CATCOMP trace On entry to procedure that 
compares truename records. 

RPT6 IDCRPOI VERIFYC trace On entry to procedure that issues 
VERIFY against a catalog. 

RPOI IDCRPOl lDCRPOI dump End of REP RO FSR. 

RPlO lDCRPOl DUMPIT dump After read or write to backup or 
target catalog. 

RP12 lDCRPOI lDCRPOI trace After all data sets have not been 
opened successfully. 

RPl3 IDCRPOI lDCRPOI trace Start of loop that copies the data set 
by issuing UG ET and UPUT mac-
ros. 

RPl8 IDCRPOI IDCRPOI trace After all records have been copied 
to output data set. 

RP21 lDCRPOI DELIMSET trace Start of procedure that sets up the 
beginning and ending delimiters of 
the input data set. 

RSAD lDCRS05 ADDUPCR trace Upon entry to routine which 
updates the CRA for a particular 
record. 

RSAE IDCRSOI A ERROR trace On entry to routine that exists if 
enough storage is not available to 
establish automatic storage re-
quired for RESETCAT modules. 

RSAS IDCRS02 ASSOC trace On entry to routine that initiates 
association checking. 

RSAT IDCRS05 ADDTN trace On entry to routine that adds a true 
name to the catalog. 

RSAI lDCRS02 ASSOC dump At end of procedure that initiates 
association checking. 

RSA2 lDCRS05 ADDUPCR dump At end of procedure that prepares 
for update CRA processing. 

RSBR lDCRS05 BLDRLST trace On entry to routine that adds an 
entry to the reset volume table. 

RSBV lDCRS05 BLDVLST trace On entry to routine that adds an 
entry to the volume serial table. 

RSBI lDCRS05 BLDVLST dump End of procedure that adds an 
entry to the volume serial table. 

RSB2 lDCRS05 BLDRLST dump At end of procedure that adds an 
entry to the reset table. 

RSCA IDCRS02 CINALTER trace On entry to routine that alters 
control interval numbers in catalog 
records. 

RSCC lDCRS07 CNVTCCHH trace On entry to routine that converts 
CCHH or BBBB to TTnn. 

Chapter 6: Diagnostic Aids 6- 19 



Licensed Material - Property of IBM 

Trace and Dump Points to Phase or CSl<:CT Cross Reference 

Trace or Dump Phase or 
Point cs1<:cr Procedure Type Situation at Dump or Trace Point 

RSCE IDCRS07 CATEOV trace On entry to routine that extends the 
catalog. 

RSCH IDCRS03 CHKDSDIR trace On entry to routine that checks a 
data set directory entry against a 
DATA or INDEX component. 

RSCI IDCRSOI CATI NIT trace On entry to routine that initializes 
RES ETC A T's description of the 
catalog. 

RSCK IDCRS05 CK ERR trace On entry to routine that prints a 
message if one is associated with 
the error message given. 

RSCL IDCRSOI CLEANUP trace On entry to routine that ensures all 
RESETCAT resources are free. 

RSCO IDCRSOI COPYCAT trace On entry to procedure that copies 
the catalog to the workfile. 

RSCR IDCRS05 CRAUPCHN trace On entry to routine that adds a 
work file record to a specific 
"update CRA" chain. 

RSCU IDCRS03 CATRCDSU trace On entry to routine that establishes 
base record offsets for catalog low 
key range records. 

RSCI IDCRSOI CATINIT dump End of procedure that builds CIN 
to RRN table. 

RSC2 IDCRSOI COPYCAT dump End of procedure that copies the 
catalog to the work file. 

RSC3 IDCRSOI CLEANUP dump Before freeing the resources used 
by RESETCAT. 

RSC4 IDCRS05 CK ERR dump Before RES ETC AT FSR is 
terminated due to an error. 

RSC? IDCRS07 CATEOV dump At conclusion of routine that 
extends the catalog. 

RSDA IDCRS07 HVTOC trace On entry to routine that processes 
all common VTOC handler func-
lions. 

RSDC IDCRS06 DSC LOSE trace On entry to procedure that closes a 
VSAM data set. 

RSDE IDCRS04 DELGO trace On entry to routine that deletes a 
group occurrence. 

RSDO IDCRS06 DSOPEN trace On entry to procedure that opens 
VSAM data sets. 

RSDT IDCRS05 DEL TN trace On entry to procedure that deletes a 
true name from the catalog. 

RSDI IDCRS06 DSOPEN dump End of procedure that opens a 
VSAM data set. 

RSD2 IDCRS06 DSC LOSE dump End of procedure that closes a 
VSAM data set. 

RSD3 IDCRS04 DELGO dump End of procedure that deletes a 
group occurrence. 

RSD4 IDCRS07 HVTOC dump At conclusion of routine that 
processes all common VTOC han-
dler functions. 

RSEN IDCRS05 ENTNMCK trace On entry to routine that determines 
if a catalog record has a valid entry 
name. 

RSES IDCRSOI ENSURECI trace On entry to routine that ensures 
there are enough free Cls for reas-
signment. 

RSEI IDCRS05 ENTNMCK dump End of procedure that determines if 
a record has a true name. 

6- 20 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of I BM 

Trace and Dump Points to Phase or CSECT Cross Reference 

Trace or Dump Phase or 
Point cs~:cr Procedure Type Situation at Dump or Trace Point 

RSE2 IDCRSOI ENSURECI dump A start of procedure prior to 
ensuring enough free Cls. 

RSFI IDCRS04 FIND trace On entry to routine that locates 
requested information from a set of 
catalog records. 

RSFI IDCRS04 FIND dump End of routine that finds one or all 
group occurrences. 

RSGE IDCRS05 GENNAME trace On entry to routine that generates a 
true name. 

RSGF IDCRS03 GETFIT trace On entry to routine that gets a free 
entry in tables for ASSOC. 

RSGN IDCRS03 GETNEXTE trace On entry to routine that translates 
an index into a table into a virtual 
address. 

RSGT IDCRS03 GETT AB trace On entry to routine that gets and 
initializes a table for ASSOC. 

RSGV IDCRS03 GETVIA trace On entry to routine that gets a 
record by control interval number 
via a specific CRA. 

RSGI IDCRS03 GETVIA dump End of procedure that locates 
records in the workfile. 

RSIN IDCRSOI INIT trace On entry to routine which performs 
the main initializations for RESET-
CAT. 

RSI! IDCRSOl INIR dump End of procedure that initializes 
data areas and obtains resource. 

RSME IDCRSOI MERGCRA trace On entry to routine that merges 
each reset CRA into the work file. 

RSMO IDCRS04 MODGO trace On entry to procedure that modifies 
a group occurrence. 

RSMU IDCRS03 MARK UN US trace On entry to routine that marks a 
Volume Group Occurrence (VGO) 
unusable. 

RSMI IDCRSOI MERGECRA dump End of procedure that merges and 
resets CRA into the workfile. 

RSM2 IDCRS04 MODGO dump End of procedure that modifies a 
group occurrence. 

RSPC IDCRS02 PROCTYPE trace On entry to routine that scans a 
catalog record for CINs. 

RSPI IDCRS02 PROCCI trace On entry to routine that ensures a 
CIN is in the list of CINs for re-
cords being processed. 

RSPR IDCRSOl PROCCRA trace On entry to routine that processes 
the records of the current CRA. 

RSPV IDCRS03 PROCVOL trace On entry to routine that resolves 
space conflicts. 

RSPI IDCRSOl PROCCRA dump End of procedure that merges the 
records of a reeset CRA into the 
work file. 

RSP2 IDCRS03 PROCVOL dump Before freeing resources used by 
PROCVOL routine. 

RSP3 IDCRS02 PROCTYPE dump After processing a set of records for 
associations. 

RSP4 IDCRS02 PROCCI dump End of procedure that ensures that 
a CIN is in the list of CINs. 

RSRC IDCRS06 RECMGMT trace On entry to routine that performs 
all 1/0 operations for RESETCAT. 

Chapter 6: Diagnostic Aids 6-21 



Licensed Material- Property of IBM 

Trace and Dump Points to Phase or CSECT Cross Reference 

Trace or Dump Phase or 
Point CSECT Procedure Type Situation at Dump or Trace Point 

RSRE IDCRSOI REASSIGN trace On entry to routine that performs 
control interval reassignment. 

RSRN IDCRS07 RENAMEP trace On entry to routine that renames 
duplicate true name entries. 

RSRI IDCRSOI REASSIGN dump End of procedure that assigns new 
CINs to records on the reassign 
chain. 

RSR2 IDCRS06 RECMGMT dump End of procedure that performs all 
1/0 requests. 

RSR4 IDCRS07 RENAMEP dump Before freeing resources used by 
the RENAMEP procedure. 

RSSB IDCRS03 SETBMAP trace On entry to routine that checks 
space conflicts for Dor I type cata-
log entries. 

RSSC IDCRS02 SCANCI trace On entry to routine that scans 
records for control intervals. 

RSSE IDCRS02 SETCI trace On entry to routine that updates the 
workfile to reflect new CINs for re-
assigned CINs. 

RSSR IDCRS05 SCNRLST trace On entry to routine that obtains the 
next CRA volser entry for reset. 

RSST IDCRS03 SETBITS trace On entry to routine that maps 
extents to a bit map. 

RSSV IDCRS05 SCNVLST trace On entry to routine that scans 
through the list of volumes. 

RSS2 IDCRS02 SETCI dump End of procedure that updates the 
workfile records from the associa-
tions tables. 

RSS3 IDCRS03 SET BITS dump At end of procedure that sets up a 
single bit map. 

RSS5 IDCRS05 SCNVLST dump End of procedure that locates an 
entry in the volume serial table. 

RSS6 1DCRS05 SCNRLST dump End of procedure that locates an 
entry in the reset volume table. 

RSUA IDCRS03 UNALLOC trace On entry to routine which unallo-
cates suballocated space from tern-
porary space maps. 

RSUC IDCRSOI UPDCRA trace On entry to routine which updates 
the CRAs from the workfile. 

RSUP IDCPS07 UPDCAT trace On entry to routine which updates 
the catalog from the workfile. 

RSUR IDCRS07 UPDCCR trace On entry to procedure which 
updates the CCR for the catalog. 

RSUI IDCRS07 UPDCAT dump End of procedure that updates the-
catalog from the workfile. 

RSU2 IDCRSOI UP DC RA dump End of procedure that updates the 
CRAs from the workfile. 

RSVB IDCRS03 VERB trace On entry to routine which verifies 
associations for G DG base records. 

RSVC IDCRS02 VERC trace On entry to routine which verifies 
associations for clusters. 

RSVE IDCRS02 VERDSDIR trace On entry to routine which verifies 
that data set directory entries for 
VSAM data sets not on reset vol-
umes. 

RSVG IDCRS02 VERG trace On entry to routine which verifies 
associations for AIXs. 

6- 22 VSE/VSAM Access Method Services Logic 



Licensed Material- Property of IBM 

Trace and Dump Points to Phase or CSECT Cross Reference 

Trace or Dump Phase or 
Point cs1<:cr Procedure Type Situation at Dump or Trace Point 

RSVN IDCRS03 VLNRESET trace On entry to routine which verifies 
space requested from objects being 
reset against non-reset volumes. 

RSVO IDCRSOI VO LC HK trace On entry to volume consistency 
routine (VOLCHK). 

RSVP 1DCRS02 VERR trace Upon entry to routine which 
verifies associations for PA THs. 

RSVR IDCRS02 VERCI trace On entry to routine which checks 
validity of each CIN found in a set 
of records. 

RSVS IDCRS03 VLRESET trace On entry to routine which verifies 
space requested against reset vol-
umes. 

RSVU IDCRS02 VERU trace On entry to routine which verifies 
associations for user catalogs. 

RSVX IDCRS02 VERX trace On entry to routine which verifies 
alias associations. 

RSV! IDCRS03 VOLCHK dump End of procedure that checks 
format- I labels against space head-
ers. 

RSV2 IDCRS02 VERDSDIR dump After verifying initial space claims. 

RSV3 IDCRS02 VERCI dump After verifying associations on a set 
of records. 

RSV4 IDCRS03 VERB dump Before freeing resources used by 
procedure which verifies G DG data 
sets. 

RSWF IDCRS06 WFDEF trace Upon entry to routine which 
defines an RRDS as a workfile for 
RESETCAT processing. 

RSWL IDCRS06 WFDEL trace On entry to routine which deletes 
the workfile. 

RSWR IDCRSOI WRAPUP trace On entry to routine which handles 
clean up operations after successful 
RESETCAT processing. 

RSW2 IDCRS06 WFDEF dump Before the UCATLG work area is 
freed. 

RSW3 IDCRS06 WFDEL dump End of procedure that deletes the 
work file. 

RSOO IDCRSOI IDCRSOI dump End of RESETCAT FSR. 

RSOI IDSCROl IDCRSOI trace Upon entry to main RESETCAT 
module. 

SAAB IDCSAOl SAA BT dump In UABORT routine when a dump 
is not to be printed for a "no space 
available" condition. 

SACA IDCSA02 IDCSA02 trace Start of routine that processes 
UCATLG macro. 

SACL IDCSA02 IDCSA02 trace Start of routine that processes 
UCALL macro. 

SADE IDCSA02 IDCSA02 trace Start of routine that processes 
UDELETE macro. 

SADQ IDCSA08 IDCSA08 trace Start of routine that processes 
UDEQ macro. 

SAEP IDCSAOI PRNTERR trace Entry to routine which prints an 
error message via EXCP. 

SAFP IDCSA02 IDCSA02 trace Start of routine that processes 
UFPOOL macro. 

SAFS IDCSA02 IDCSA02 trace Start of routine that processes 
UFSPACE macro. 

Chapter 6: Diagnostic Aids 6-23 



Licensed Material - Property of IBM 

Trace and Dump Points to Phase or CSECT Cross Reference 

Trace or Dump Phase or 
Point CSECT Procedure Type Situation at Dump or Trace Point 

SAGP IDCSA02 IDCSA02 trace Start of routine that processes 
UGPOOL macro. 

SAGS I DCSA02 IDCSA02 trace Start of routine that processes 
UGSPACE macro. 

SALD IDCSA02 IDCSA02 trace Start of routine that processes 
ULOAD macro. 

SANQ IDCSA08 IDCSA08 trace Start of routine that processes 
UENQ macro. 

SASN IDCSA02 IDCSA02 trace Start of routine that processes 
USNAP macro. 

SATI IDCSA02 IDCSA02 trace Start of routine that processes 
UTI ME macro. 

SA05 IDCSA05 IDCSA05 trace Before the Tl ME macro is issued. 

I TPCC IDCTPOI IDCTPPR trace Before the call to the CONVERT 
routine is issued. 

TPEA IDCTP06 IDCTP06 dump Start of UERROR procedure. 

TPEB IDCTP06 IDCTP06 dump Before a converted UERROR 
message is printed. 

TPER IDCTPOI ERROR dump Start of procedure that prints a text 
processor error message. 

TPEI IDCTP06 IDCTP06 trace Start of UERROR procedure. 

TPE2 IDCTP06 CATERCNV trace Entry point to routine that converts 
catalog error messages to prose. 

TPIN IDCTPOI IDCTPPR dump At end of phase; the format 
structure for a UPRINT macro has 
been processed. 

TPSI IDCTPOI IDCTPPR dump After initialization of text processor 
parameters. 

TP21 IDCTPOI CONVERT dump Start of procedure that converts 
data to a printable form. 

TP2N IDCTPOI CONVERT dump End of procedure that converts data 
to a printable form. 

TP31 IDCTPOI LINEPRT dump Start of procedure that formats 
pages and prints titles, headings, 
footings, and other lines requested. 

TP3N IDCTPOI LINEPRT dump End of procedure that prints lines. 

TP4A IDCTP04 ESTACONT dump End of procedure that processes the 
UESTA macro. 

TP4G IDCTP04 INITPCT trace Get print control table after freeing 
any previous secondary PCT and 
before GETVIS for the new PCT. 

TP41 IDCTP04 ESTSCONT trace Start of establishment of print 
control table. 

TP4R IDCTP04 RESTCONT dump End of procedure that processes 
UREST macro. 

TP4S IDCTP04 ESTSCONT dump End of procedure that processes 
UESTS macro. 

TP5E IDCTP05 IDCTP05 trace Start of procedure that gets a static 
text module. 

TP51 IDCTP05 IDCTP05 dump Start of phase that loads the static 
text phase. 

TP5N IDCTP05 IDCTP05 dump End of phase that loads the static 
text phase. 

VYBG IDCVYOI IDCVYOI dump Start of VERIFY FSR. 

VYCL IDCVYOI TERMPROC trace Start of procedure that closes the 
data set that was verified. 

VYND IDCVYOI IDCVYOI dump End of VERIFY FSR. 

6- 24 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Trace and Dump Points to Phase or CSl<:CT Cross Reference 

Trace or Dump Phase or 
Point cs1<:cr Procedure Type Situation at Dump or Trace Point 

VYOP IDCVYOI OPENPROC trace Start of procedure that opens the 
VSAM data set to be verified. 

VYST IDCVYOl IDCVYOI trace Start of VERIFY FSR. 

XPAO IDCXPOl CLUSPROC trace Before retrieving from the catalog 
the entries associated with the clus-
ter or alternate index being export-
ed. 

XPAP IDCSPOI ALTRPROC trace Start of procedure that modifies the 
CTG PL to set the temporary export 
flag on. 

XPBG IDCXPOl IDCXPOl trace Start of EXPORT FSR. 

XPCP IDCXPOl CLUSPROC trace Before retrieving the catalog entry 
for the object to be exported. 

XPCR IDCXPOI CONTRBL trace Before constructing control records 
for the portable data set. 

XPCW IDCXPOI CON TR BL trace Before writing control records to 
the portable data set. 

XPDP IDCXPOI DELTPROC trace Start of procedure that sets up the 
CTG PL to delete a cluster or alter-
nate index or disconnect a user cat-
a log. 

XPED IDCXPOI IDCXPOI trace End of EXPORT FSR. 

XPFN IDCXPOI IDCXPOI dump End of EXPORT FSR, before data 
sets are closed and space freed. 

XPLP IDCXPOI LOCPROC trace Start of procedure that builds the 
CTGPL and CTGFLs for a locate 
request. 

XPMS IDCXPOl MOR ESP trace Entry to MORESP. 

XPOP IDCXPOl OPENPROC trace Start of procedure that opens either 
the portable data set or the cluster 
or alternate index to be exported. 

XPPM IDCXPOl CLUSPROC trace Before processing the permanent or 
temporary export option. 

XPPP IDC'XPOI PUTPROC trace Start of procedure that writes a 
record to the portable data set. 

XPRP IDCXPOI RECPROC trace Entry to RECPROC. 

XPSP IDCXPOI CTLGPROC trace Start of procedure that calls the 
catalog for a locate, alter, or delete 
request. 

XPTM IDCXPOI CLUSPROC trace Before calling the procedure to 
alter the CTG PL to set the tempo-
rary export flag. 

XPUC IDCXPOl DSCTPROC trace Start of procedure that disconnects 
a user catalog. 

XPWC IDCXPOl CLUSPROC trace Before writing the catalog informa-
tion to the portable data set. 

XPZX IDCXPOI MORESP dump Just after the UC A TLG macro. 

XPZY IDCXPOI DELTPROC dump Just after the UCATLG macro. 

XPZZ IDCXPOI CTLGPROC dump After calling the catalog to locate, 
alter, or delete an entry. 

XPOI IDCXPOl IDCXPOl dump Start ofEXPORT FSR. 

ZZCA IDCSA02 IDCSA02 dump Before and after CATLG macro is 
issued to invoke catalog manage-
ment routines. 

Chapter 6: Diagnostic Aids 6-25 



Licensed Material - Property of IBM 

M<>dule tlJ Dump Points Cross Reference 
The dump points, set up by UDUMP macros, have been placed at key 
locations in each phase and CSECT, for example, around calls to other 
processor and non-processor phases or CSECTs. Each dump point specifies 
the information that can be dumped at that point. Some dump points allow 
symbolic dumping of selected fields, for example, parameter lists or return 
codes; all dump points allow dumping of the full partition and printing of 
the trace tables. 

The following list contains the dump points within each phase or CSECT 
and procedure, indicates what information can be dumped at each point 
(either a full dump or selected areas), and explains the situation at the dump 
point. As explained in the section, ••TEST Keyword" in this chapter, full 
region dumps are taken at all dump points in this list. Selected areas can be 
printed with either the AREAS or FULL variation of the Test option. 
Details of the selected areas are given in the footnotes following the list. 

Phase or CSECT to Dump Points Cross Reference 

Phase or 
CSECT 

IDCALOI 

IDCBIOI 

6 - 26 VSE/VSAM Access Method Services Logic 

Procedure Dump Point Type 

CHECKPRC ALSI dump 

AL52 dump 

AL53 dump 

AL54 dump 

AL55 dump 

AL56 dump 

IDCALOI ALOI dump 

AL02 dump 

AL04 dump 

INDEXPRC AL61 dump 

LOCATPRC AL03 dump 

CATPROC BIL2 dump 

CNTRLPRC BIC2 dump 

DEFPROC BID2 dump 

DEL TPROC BIDL dump 

IN ITPROC Bll2 dump 

JCPROC BIJ2 dump 

MAINPROC BI03 dump 

Situation at Dump Point 

After locating data component of 
the alternate index for which UP­
GRADE has been specified. 

After locating associated cluster or 
the alternate index of the data ob­
ject specified on ALTER com­
mand. 

After locating associated index 
component. 

After locating the data component 
of the path's base cluster. 

After locating the cluster compo­
nent of the alternate index's base 
cluster. 

After locating the data component 
of the alternate index's base cluster. 

Before calling the catalog to alter 
an object. 

End of ALTER FSR. 

Before issuing ALTER request for 
index objects if KEYS specified. 

On entry to INDEXPRC. 

After calling the catalog to alter an 
object. 

After return from UCATLG for 
each locate request. 

After completion of sort if an 
internal sort. After completion of 
sort phase and before merge passes 
if an external sort. 

After return from UCATLG to 
define each sort work file. 

After return from UCATLG to 
delete each sort work file. 

After obtaining or failing to obtain 
sort storage. 

After return from each call to 
UIOINFO. 

After return from procedure that 
locates information about the base 
cluster and alternate index. 



Licensed Material- Property of IBM 

Phase or CSl<:Cr to Dump Points Cross Reference 

Phase or 
CSECT Procedure Dump Point Type Situation at Dump Point 

BI04 dump After the alternate index has been 
built, before CLOSE. 

MERGPROC BIM3 dump After the tree has been initialized 
for each merge pass of an external 
sort. 

BIM4 dump After processing one set of strings 
during the merge pass of an exter-
nal sort. 

OPENPROC BIP2 dump After return from UOPEN to open 
a data set. 

SORTPROC BISR dump Before sorting the records in the 
record sort area. 

IDCDEOI IDCDEOI DEOI dump Before calling the catalog to define 
an object. 

DE02 dump End of DEFINE FSR, before 
completion message is issued. 

IDCDE02 MODELPRC DE03 dump After calling the catalog to locate a 
model object. 

DE04 dump End of procedure that built the 
model table. 

FREESTG DE37 dump End of DEFINE FSR. 

IDCDLOI CATCALL DLVS dump Before and after calling the catalog 
to delete an entry. 

FINDTYPE DLVL dump Before and after calling the catalog 
to locate the entry type. 

IDCDLOl DLBG dump Start of DELETE FSR. 

DLND dump End of DELETE FSR, before data 
sets are closed and the completion 
message is issued. 

MO RESP DLVT dump Before and after the UCATLG 
macro in MORESP. 

IDCEXOl CALLFSR EXFS dump Before each call to an FSR. 

CALLRI EXRI dump Before each call to the 
Reader /Interpreter. 

IDCEXOI EXMN dump All Reader/Interpreter FSR 
processing is complete. 

IDCIOOl GETEXT IOEG dump End of procedure that gets a record 
from the user routine. 

GETVSAM IOVG dump End of procedure that gets a record 
or control interval from a VSAM 
data set. 

IDCIOVY IOVY dump After VERIFY macro is issued. 

PU TEXT IOEP dump After control returns from an 
external user routine. 

PUT REP IOGR dump After the GET for update. 

IOPR dump After the PUT for update. 

PUTVSAM IOVP dump End of procedure that writes a 
VSAM record. 

VSAMERR IOVR dump After detection of a VSAM 1/0 
error. 

IDCI002 BUlLDACB IOAC dump After ACB and EXLST have been 
built, at end o( procedure. 

BUILDRPL IORP dump After RPL is built, at end of 
procedure. 

CLOSER TN IOlC dump Before CLOSE macro is issued. 

102C dump At end of all UC LOSE processing. 

Chapter 6: Diagnostic Aids 6- 27 



Licensed Material - Property of IBM 

Phase or cs•:cr to Dump Points Cross Reference 

Phase or 
cs•:cr Procedure Dump Point Type Situation at Dump Point 

DSDATA IODS dump After obtaining file information 
from the label cylinder. 

OPENRTN 1010 dump Before OPEN macro is issued. 

1020 dump After OPEN macro is issued. 

1021 dump At end of all UOPEN processing. 

IDCl003 DSINFO 1011 dump After return from IKQVDTPE. 

1002 dump After formatting the work area. 

IDCI003 IOPO dump After positioning is complete, 
before returning control to IDCIO-
PO. 

IDCLCOI IDCLCOI LC99 dump End of LISTCAT FSR, before 
freeing sto91ge in IDCLCOI. 

ERRPROC LCMG selected Before UPRINT macro is issued 
areas 1 to print a message. 

FREESTG LC98 dump End of LISTC AT FSR, before 
freeing storage in IDCLC02. 

IDCLC'02 IDCLC02 LC02 dump When IDCLC02 is called the first 
time to establish addressability. 

LISTPROC LCTP selected Before UPRINT macro is issued 
areas2 to print catalog data. 

LOCPROC LCAL selected After calling the catalog to locate 
areas·' an entry. 

LCBL selected Before calling the catalog to 
areas4 locate an entry. 

LCWA selected After calling the catalog to locate 
areas~ an entry. 

IDCLROI AATOPLR LRAA dump Entry point for IDCLROI. 

ADDASOC LRAD dump Start of procedure that adds an 
association to the association table. 

BLDVEXT LRBL dump Start of procedure that builds 
vertical extension tables. 

BUFSHUF LRBU dump Start of procedure that moves a 
record to its "home" buffer. 

CATOPEN LCRA dump Start of procedure that prepares to 
open the catalog. 

CKEYRNG LRCK dump Start of procedure that checks for 
key range. 

CLEANUP LRCI dump Start of procedure that cleans up 
before exit. 

CLENCRA LRC2 dump Start of procedure that closes the 
CRA and prints completion mes-
sage. 

CRAOPEN LRCR dump Start of procedure that opens the 
CRA. 

CTTBLD LRCT dump Start of procedure that builds Cl 
translate table. 

DOOTHR LRDO dump Start of procedure that controls 
printing nonVSAM information. 

DOV SAM LRDV dump Start of procedure that controls 
printing VSAM information. 

ERROR LRER dump Start of procedure that handles 
errors. 

LRZY dump After error message has been 
printed. 

LRZZ dump After error that forced an ABORT 
of this execution. 

6- 28 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Phase or CS ECT to Dump Points Cross Reference 

Phase or 
CSECT Procedure Dump Point Type Situation at Dump Point 

GETPRT LRGE dump Start of procedure that gets and 
prints records. 

INITLZE LRIN dump Start of procedure that initializes 
the FSR. 

INTASOC LRIA dump Start of procedure that initializes 
association tables. 

INTSORT LRIS dump Start of procedure that initializes 
the sort table. 

INTYEXT LRIY dump Start of procedure that initializes 
the vertical extension table. 

MEMSORT LRME dump Start of procedure that sorts the 
entries in sort table. 

PRTAAXY LRPA dump Start of procedure that prints 
associated AIXs and volumes. 

PRTCMP LRPC dump Start of procedure that prints and 
compares information. 

PR TD MP LRPD dump Start of procedure that prints dump 
if specified. 

PRTDMPC LRPE dump Start of procedure that prints dump 
of catalog record and underscores 
miscompares. 

PRTFIFO LRPF dump Start of procedure that prints CRA 
in order of Cl number. 

PRTMCWD LRPM dump Start of procedure that prints 
miscompare words. 

PRTOJAL LRPJ dump Start of procedure that prints an 
objects aliases. 

PRTOJYL LRPK dump Start of procedure that prints an 
object's volumes. 

PROTHR LRPO dump Start of procedure that prints 
nonVSAM objects. 

PRTTIME LRPT dump Start of procedure that prints 
timestamps. 

PRTVOL LRPW dump Start of procedure that prints 
volume records. 

PR TY SAM LRPY dump Start of procedure that prints 
VSAM structures. 

SUMIT LRSM dump Start of procedure that prints 
number of entries processed. 

TCICTCR LRTC dump Start of procedure that translates 
the catalog Cl to the CRA. 

VER TEXT LRVE dump Start of procedure that handles 
vertical extension records. 

IDCLR02 IDCLR02 LR02 dump Entry point for module that gets a 
record for Recovery Field manage-
ment routine. 

IDCMPOI CTLGPROC MPZZ dump Before and after calling the catalog 
to locate, alter, or define an entry. 

DELTPROC MPDC dump After the first UCATLG. 

MPDD dump After the second UCATLG. 

IDCMPOI MPFN dump End of IMPORT FSR, prior to 
closing data sets. 

IDCPROI IDCPROI PRO! dump End of PRINT FSR. 

IDCRCOI CKNAMES RC99 dump Before gathering information on 
name in name list from CRA. 

DIRECT RC98 dump Before obtaining a directory for a 
volume. 

Chapter 6: Diagnostic Aids 6- 29 



Licensed Material - Property of IBM 

Phase or CS'4:C'r to Dump Points Cross Reference 

Phase or 
c:s•:cr Procedure Dump Point Type Situation at Dump Point 

NAMETABL RC97 dump Before marking or adding a name 
to the name chain. 

ERR CK RC96 dump After opening a CRA. 

SCA NC RA RC95 dump Before scanning CRA to build the 
CTT table. 

TIMESTMP RC94 dump Before obtaining format 4 times-
tamp for CRA being opened. 

CKCATNM RC93 dump Before checking owning catalog 
name of CRA being opened. 

OPEN RC92 dump Before the opening of the CRA. 

OPENCRA RC91 dump Before opening or closing a CRA 
and doing all other work (e.g. Build 
CTT). 

EXTRACT RC90 dump Before using internal Field 
Management to get information 
from CRA. 

MESSAGE RC89 dump Before printing any message from 
IDCRCOI. 

SUBSP RC88 dump Before allocating space for the 
name chain. 

COMPNAME RC87 dump Before compressing a name for the 
name list. 

BUILDNAM RC86 dump Before constructing a block for the 
name chain. 

DUPNAMCK RC85 dump Before checking the name chain for 
duplicates. 

OBJVOLCK RC84 dump Before checking Sync. of entry 
across multiple volumes. 

SYNCH RC83 dump Before scanning the name chain for 
a CRA to check it. 

EXPORTDR RC82 dump Before looping down name chain to 
call IDCRC02 to export data sets. 

BUILDCRV RC81 dump Before building the CRV. 

INIT RC80 dump Before initializing to begin 
processing. 

TERM RC79 dump Before special processing to 

I IDCRC02 

terminate request (closing output 
data set.) 

CLUSPROC RC06 dump Start of procedure that processes 
VSAM objects. 

CTLGPROC RCl6 dump Start of procedure that issues 
catalog locates. 

IDCRC02 RC02 dump Start of main procedure. 

IDCRC02 RC04 dump Before termination processing. 

NVSMPROC RC28 dump Start of procedure that processes 
nonVSAM objects not associated 
with GDG's. 

IDCRIOI BYPASTRM RIBT dump Start of procedure that bypasses the 
remainder of the current modal or 
null command. 

CONVERT RICV dump Start of procedure that converts a 
constant from EBCDIC to binary 
or hexadecimal. 

DEFAULTS RIDF dump Start of procedure that adds default 
parameters to the FDT. 

DSPLCALC RIDC dump Start of procedure that calculates 
the position within a secondary 

6-30 VSE/VSAM Access Method Services Logic 



Ucensed Material- Property of IBM 

Phase or CSECT to Dump Points Cross Reference 

Phase or 
cs~:cr Procedure Dump Point Type Situation at Dump Point 

FDT vector in which to place an 
FDT pointer. 

ERROR I RIEi dump Start of procedure that issues a 
message without inserted text. 

ERROR2 RIE2 dump Start of procedure that issues a 
message with inserted text. 

GETNEXT RIGN dump Start of procedure that scans the 
input command. 

GETQUOTD RIGQ dump Start of procedure that scans a 
quoted constant. 

GETRECRD RIGR dump Start of procedure that obtains the 
next input record. 

IDCRIOI RIEX dump Start of Reader /Interpreter 
module. 

INREPEAT RllR dump Start of procedure that scans a 
repeated parameter set. 

MODALIF RIMI dump Start of procedure that scans an IF 
modal command. 

MODALSET RIMS dump Start of procedure that scans a SET 
modal command. 

MODLELSE RIME dump Start of procedure that scans an 
ELSE modal command. 

MORSPACE RIMC dump Start of procedure that scans an 
FDT space for a list of constants. 

NAMESCAN RINS dump Start of procedure that checks data 
set names. 

NEEDNOTS RINN dump Start of procedure that checks the 
input command for conflicting or 
missing parameters. 

PACKCVB RIPC dump Start of procedure that converts a 
decimal constant into a binary full-
word. 

POSPARM RIPP dump Start of procedure that scans a 
positional parameter. 

SCANCMD RISC dump Start of procedure that scans the 
input command parameters. 

SCANENDS RISE dump Start of procedure that checks the 
input record for a continuation del-
imiter and determines the scanning 
limits of the record. 

SETDFLT RIST dump Start of procedure that puts P 
defaults in the FDT. 

SETFLAG RISF dump Start of procedure that notes the 
occurrence of a parameter in the 
FDT. 

SKIPCMD RISK dump Start of procedure that bypasses the 
remainder of a function command. 

IDCRI02 IDCRI02 RISD dump Start of module that prepares to 
scan a command parameter set. 

IDCRI03 IDCRI03 RITM dump Start of module that performs 
command termination functions. 

IDCRMOI CPLPROC RMCL dump After the CPL has been built. 

CTLGPROC RMZZ dump Before and after the UCATLG in 
CT LG PROC. 

DELTPROC RMDC dump After the first UCATLG in 
DELTPROC. 

RMDD dump After the second UCATLG in 
DELTPROC. 

Chapter 6: Diagnostic Aids 6-31 



Licensed Material - Property of IBM 

Phase or CSECT to Dump Points Cross Reference 

Phase or 
CSECT Procedure Dump Point Type Situation at Dump Point 

IDCRMOI RMFN dump Termination oflDCRMOI. 

IDCRPOI IDCRPOI RPOI dump End of RE PRO FSR. 

CATRELOD RPDI dump At the end of all reload error 
checking before any updates have 
been done to the target catalog. 

CNVRTCI RPCI selected On exit from procedure that 
areas0 translates control interval numbers 

on the backup catalog. 

DUMP IT RPIO selected After read or write to backup or 
areas7 target catalog. 

TRUENAME RPTU selected On exit from procedure having 
areasx built truenamerange table. 

IDCRSOI CATINIT RSC! dump End of procedure that builds CIN 
to RRN table. 

COPYCAT RSC2 dump End of procedure that copies the 
catalog to the workfile. 

CLEANUP RSC3 dump Before freeing the resources used 
by RESETCAT. 

ENSURECI RSE2 dump At start of procedure prior to 
ensuring enough free control inter-
vals 

INIT • RSI! dump End of procedure that initializes 
data area and obtains resources. 

MERGECRA RSM! dump End of procedure that merges and 
resets CRA into the work file. 

PROCCRA RSPI dump End of procedure that merges the 
records of a reset CRA into the 
work file. 

REASSIGN RSRI dump End of procedure that assigns new 
control interval numbers to records 
on the reassign chain. 

UPDCRA RSU2 dump End of procedure that updates the 
CRA from the workfile. 

IDSCROI RSOO dump End of RESETCAT FSR. 

IDCRS02 ASSOC RSA! dump End of procedure that ititiates 
association checking. 

PROCTYPE RSP3 dump After processing a set of records for 
associations. 

PROCCI RSP4 dump End of procedure that ensures that 
a contol interval number is in the 
list of control interval numbers. 

SETCI RSS2 dump End of procedure that updates the 
workfile records from the associa-
tions tables. 

VERDSDIR RSV2 dump After verifying initial space claims. 

VERCI RSV3 dump After verifying associations on a set 
of records. 

IDCRS03 GETVIA RSGI dump End of procedure that locates 
records in the workfile. 

PROCVOL RSP2 dump Before freeing resources used by 
PROCVOL routine. 

SETBITS RSS3 dump At end of procedure that sets up a 
single bit map. 

VOLCHK RSV! dump End of procedure that checks 
Format I DSCBs against space 
headers. 

6- 32 VSE/VSAM Access Method Services Logic 



Uccnscd Material- Property of IBM 

Phase or CSECT to Dump Points Cross Reference 

Phase or 
CSECT Procedure Dump Point Type Situation at Dump Point 

VERB RSV4 dump Before freeing resources used by 
procedure which verifies G DG data 
sets. 

IDCRS04 DELGO RSD3 dump End of procedure that deletes a 
group occurrence. 

FIND RSFI dump End of routine that finds one or all 
group occurrences. 

MODGO RSM2 dump End of procedure that modifies a 
group occurrence. 

IDCRS05 ADDUPCR RSA2 dump End of procedure that prepares for 
update CRA processing. 

BLDVLST RSBI dump End of procedure that adds an 
entry to the volume serial table. 

BLDRLST RSB2 dump End of procedure that adds an 
entry to the reset volume table. 

CK ERR RSC4 dump Before RESETCAT terminates due 
to an error. 

ENTNMCK RSEI dump End of procedure that determines if 
a record has a true name. 

SCNVLST RSS5 dump End of procedure that locates an 
entry in the volume serial table. 

SCNRLST RSS6 dump End of procedure that locates an 
entry in the reset volume table. 

IDCRS06 DSOPEN RSDI dump End of procedure that opens a 
VSAM file. 

DSC LOSE RSD2 dump End of procedure that closes a 
VSAM file. 

RECMGMT RSR2 dump End of procedure that performs all 
1/0 requests. 

WFDEF RSW2 dump Before the UCATLG work area is 
freed. 

WFDEL RSW3 dump End of procedure that deletes the 
work file. 

IDCRS07 CATEOV RSC7 dump At conclusion of routine that 
extends the catalog. 

HVTOC RSD4 dump At conclusion of routine that 
processes all common VTOC han-
dler functions. 

RENAMEP RSR4 dump Before freeing resources used by 
the RENAMEP procedure. 

UPDCAT RSUI dump End of procedure that updates the 
catalog from the workfile. 

IDCSAOI SA ABT SAAB dump In UABORT routine, when a dump 
is not to be printed for a "no space 
available" condition. 

IDCSA02 IDCSA02 ZZCA dump Before and after CA TLG macro is 
issued to invoke catalog manage-
ment routines. 

Chapter 6: Diagnostic Aids 6 - 33 



6- 34 

Licensed Material - Property of IBM 

Phase or CSl<:Cr to Dump Points Cross Reference 

Phase or 
cs1<:cr 

IDCTPOl 

1DCTP04 

IDCTP05 

IDCTP06 

IDCVYOI 

IDCXPOI 

Procedure Dump Point 

CONVERT TP21 

TP2N 

ERROR TPER 

IDCTPPR TPSl 

TPIN 

LINPRT TP31 

TP3N 

ESTACONT TP4A 

ESTSCONT TP4S 

RESTCONT TP4R 

IDCTP05 

1DCTP06 

IDCVYOI 

IDCXPOI 

TPEB 

TP51 

TP5N 

TPEA 

VYBG 

VYND 

XPFN 

XPOI 

CTLGPROC XPZZ 

DEL TPROC XPZY 

MO RESP XPZX 

Type 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

dump 

Situation at Dump Point 

Start of procedure that converts 
data to a printable form. 

End of procedure that converts data 
to a printable form. 

Start of procedure that prints a text 
processor error message. 

After initialization of text processor 
parameters. 

At end of phase; the format 
structure for a UPRINT macro has 
been processed. 

Start of procedure that formats 
pages and prints titles, headings, 
footings, and other lines requested. 

End of procedure that prints lines. 

End of procedure that processes the 
UESTA macro. 

End of procedure that processes the 
UESTS macro. 

End of procedure that processes the 
UREST macro. 

Before a converted UERROR 
message is printed. 

Start of phase that loads the static 
text phase. 

Start of phase that loads the static 
text phase. 

Start ofUERROR procedure. 

Start of VERIFY FSR. 

End of VERIFY FSR. 

End of EXPORT FSR, before data 
sets are closed and space freed. 

Start of EXPORT FSR. 

After calling the catalog to locate, 
alter, or delete an entry. 

Just after the UCATLG macro. 

Just after the UCATLG macro. 

Selected Area Footnotes: 

The following list describes the selected areas pointed at the specified dump points. On the 
printed output, the area title precedes each area dumped. 

Dump Point 

I. LCMG 

2. LCTP 

3. LCAL 

VSE/VSAM Access Method Services Logic 

Area Title 

ERR DARO 

DARO LIST 

CATRC 

CTGENT 

CTGPSWD 

CTGPL 

Area Description 

Text processor argument list (DARO LIST) used for 
printing messages 

Text processor argument list (DARO LIST) used for 
printing the catalog area 

VSAM catalog return code 

VSAM locate key (either the entryname or the Cl number) 

User supplied password 

VSAM catalog parameter list 



Licensed Material- Property of IBM 

Dump Point Arca Title 
CTGFL array 
FPL (1) 

FPL (nn) 

MULTIFPL 

4. LCBL Same as LCAL 

5. LCWA CTGWKAPT 

CTGWKA array 
WKA(l) 

WKAEND 

6. RPCI OLDCI# 

NEWCI# 

7. RPIO DLOUTREC 

FUPOTREC 

INSOTREC 

UPOUTREC 

RDCCREC 

UPCCREC 

RDINPREC 

RDOUTREC 

2ND-HALF 

8. RPTU SORSTABL 

TARGTABL 

Arca Description 
VSAM field parameter list. 
Note: The number of FPLs 
(nn) varies with the amount 
of catalog information 
requested (i.e., NAME, HISTORY, 
VOL, etc.) 

VSAM field parameter list if a special function FPL is 
required 

Workarea address of VSAM returned cataloged fields 

VSAM returned catalog fields 
Note: This workarea is dumped 
as an array of 256 byte 
blocks and the last block 
less than 256 bytes is 
indicated as WKAEND. 

Cl number of backup catalog record to be converted 

Converted Cl number in the target catalog (i.e., OLDCI# 
converted to NEWCI#) 

A record in the high key range of the target catalog which 
was deleted because it did not exist in the backup catalog 

A record in the low key range of the target catalog which 
was converted to a free record because it did not exist in the 
backup catalog 

A record which was inserted into the target catalog because 
it existed in the backup catalog but not in the target catalog 

A record which was used to update the target catalog 
because the same record existed in both the backup and the 
target catalogs 

Catalog control record of the target catalog before it was 
updated 

Catalog control record of the target catalog after it was 
updated with results of the reload operation 

A record from the backup catalog before any action is 
taken 

A record from the target catalog before any action is taken 

The second half of the record printed just above 

A table which maps the extents of the high key range of the 
backup catalog. Each entry maps one extent and contains: 

Word 1 - High RBA of the extent 

Word 2 - Number of Cl's in the extent 

The table is used to convert a Cl number in the backup 
catalog to the appropriate Cl number for the target catalog 
(see 'RPCI' above). 

Same as SOR ST ABL for the target catalog 

Chapter 6: Diagnostic Aids 6 - 35 



ABORT Codes 

Licensed Material-Property of IBM 

Whenever an unrecoverable error is detected by the processor, the routine 
that detects the error issues a UABORT macro. The System Adapter then 
issues message IDC49991 on SYSLST giving the ABORT code and, with the 
exception of code 28 and code 68, produces a full partition PD UMP with the 
ABORT code in register 15; the ABORT code indicates the type of error 
that occurred. 

The following list identifies the ABORT codes set by the processor and the 
phase or CSECT and procedure that sets each ABORT code. The list also 
explains the situation that caused the ABORT condition. 

ABORT Codes 

ABORT Phase or 
Code cs•:cr Procedure Situation that Caused ABORT 

24(18) IDCTPOI IDCTPOl The pointer to the Print Control Table in the G DT 
is not set. 

1DCTP04 IDCTP04 The pointer to the Print Control Table in the GOT 
is not set. 

28( IC) IDCIOOl IDCIOIT Storage was not available for the 1/0 Adapter 
historical area and message area. 

IDCI002 BLDOCMSG A message that sufficient storage was not avilable 
could not be issued because the SYSLST data set 
is not open. 

BUILDDBK Storage was not available to load the phase that 
contains the DTF and access method routines 
(IDCDixx). 

IDCSAOI GETCORE Storage was not available for the automatic 
storage required for I DCSA02, I DCSA03, 
IDCIOOI. or IDCTPOI. 

IDCSA02 IDCSA02 The CD LOAD Anchor Table was full and storage 
was not available to load the phase requested by a 
UC ALL or ULOAD macro. 

1DCSA02 IDCSA02 The CD LOAD Anchor Table was not full but 
storage was not available for CD LOAD to load the 
phase. 

IDCSA03 GETCORE Storage was not available for the automatic 
storage required by a phase. 

IDCTPOl LINEPRT Storage not available for new header line. 

IDCTPOl ERROR Storage not available to save Conversion Table 
(CVPSTRU). 

IDCTP05 IDCTP05 Storage not available for static text entry. 

IDCTP04 ESTSCONT Storage not available for Print Line Stack Buffer. 

IDCTP04 PCTSETUP Storage not available for Print Chain Translate 
Table. 

IDCTP04 PCTSETUP Storage not available for primary or secondary 
Print Control Table. 

IDCTP04 PCTSETUP Storage not available for sub-title line or footing 
line change. 

32(20) IDCIOOl IDClOGT The pointer to the IOCSTR is zero, or the open 
flag in the IOCSTR is not set, indicating that the 
data set to be accessed has not been opened sue-
cessfully. 

IDCIOPT The pointer to the IOCSTR is zero, or the open 
flag in the IOCSTR is not set, indicating that the 
data set to be accessed has not been opened sue-
cessfully. 

IDCI003 IDCI003 The pointer to the IOCSTR is zero, or the open 
flag in the IOCSTR is not set, indicating that the 
data set to be accessed has not been opened sue-
cessfully. 

6- 36 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Reading a Dump 

ABORT Codes 

ABORT Phase or 
Code CSECT Procedure Situation that Caused ABORT 

36(24) IDCI002 BLDOCMSG The SYSLST data set could not be opened, or the 
SYSLST data set has already been closed and a 
message cannot be issued. 

IDCTPOI STACK PUT An attempt to write to the output data set has 
failed. 

40(28) IDCIOOI IDClOCL The length of the UC LOSE argument list is 
invalid. The length must be greater than 1 and less 
than 6. 

IDCIOOP The length of the UOPEN argument list is invalid. 
The length must be greater than 1 and less than 6. 

IDClOPT The length of the UPUT argument list is invalid. 
The length must be greater than 1 and less than 4. 

IDClOSI The length of the UIOINFO argument list is 
invalid. The length must be greater than three and 
less than 6. 

IDCSA02 IDCSA02 The argument list ofa UGSPACE, UGPOOL, or 
UFPOOL macro is invalid. 

152(34) 

IDCSA05 IDCSA05 The argument list for the UTIME macro is invalid. 

IDCSA02 IDCSA02 The phase to be loaded (because the CDLOAD 

I 

Anchor Table is full) was not found in the Phase 
Table. 

64(40) IDCSAOl IDCSAOl The CDLOAD macro failed loading phase 
IDCSA04 which contains the Phase Table. 

IDCSA02 IDCSA02 The CDLOAD macro failed loading a phase 
because the phase was not found. 

68(44) IDCSAOl IDCSAOl The initial GETVIS for IDCSAOI's automatic 
storage failed. 

72(48) IDCRS05 CK ERR An internal RESETCAT error occurred. This 
situation should not occur in a working program. 

76(4C) IDCCLOl IDCCLOl CANCEL command was executed in the com-
mand stream, with CANCEL JOB option. 

You can find U ABORT macros by examining the microfiche listings. The 
expansion of a UABORT macro for an ABORT code of60 looks like this: 

RESPECIFY(REG13,REG14,REG15) RSTD; 
REG15 60; 
REG14 = GDTABT; 
REG13 = GDTABH; 
GEN(BR REG14); 
RESPECIFY(REG13,REG14,REG15)UNRSTD; 

This section describes how to find phases and data areas belonging to the 
processor in a full partition dump, either a PDUMP or a system dump. 

PDUMPs are produced by the processor on two different occasions. If the 
Test option is set and the FULL keyword is specified, the processor pro­
duces as many PDUMPs as requested, at the points requested. The proc­
essor prints a message following each such PDUMP to identify the point at 
which the dump was produced. If an ABORT condition occurs, the proc­
essor again produces a PDUMP except in the case of ABORT conditions 28 
and 68. An ABORT PDUMP can be distinguished from a system dump 
because there is no system error message and the ABORT dump is preceded 
by message IDC49991 giving the ABORT condition code. 

All executable phases, CSECTs, and certain data areas belonging to the 
processor are preceded by an EBCDIC character string to identify it. Phases 
and CSECTs are preceded by their full name, for example, IDCTPOlb. (The 

Chapter 6: Diagnostic Aids 6 - 37 



Licensed Material - Property of IBM 

date of compilation, in character form, follows the name.) Data areas are 
preceded by a four-byte identifier, either specific to the data area, or for the 
storage area in which it is built. For example, the Global Data Table is 
preceded by the characters GDTh. The FDT is built in storage owned by the. 
Executive, and it is found in the storage areas preceded by the characters 
EXOO. 

How to Find Processor Phases 
The System Adapter normally loads phases using the CDLOAD macro. 
Thus, you can use the Anchor Table to find where each phase has been 
loaded. 

If, however, the Anchor Table is full, the System Adapter obtains storage for 
the phase to be loaded using the G ETVIS macro and loads the phase into 
this area. You can find where these phases have been loaded from the Phase 
Table. The fourth word of the System Adapter historical area points to the 
Phase Table; however, the Phase Table normally follows the Global Data 
Table and the trace tables in a dump. The section "Data Areas" shows the 
format of the Phase Table. 

Figure 6-2, Part 2, shows how the Phase Table appears in a dump. You can 
tell that no phases have been loaded using the Phase Table .because all the 
phase addresses contain zeros. 

How to Find the Module and Registers at Time of the Dump 
The best way to determine which phase or CSECT caused the dump and to 
find the registers of that phase or CSECT varies according to the type of 
dump you have. 

In a system dump, standard methods explained in your operating system's 
Debugging Guide should be used. 

In a PDUMP caused by an ABORT condition, the last entry in the Inter­
Module Trace Table identifies the phase or CSECT that issued the UA­
BORT macro. Register 15 of the registers at the top of the dump contains 
the ABORT code set in the UABORT macro. Once you know the ABORT 
code and the phase or CSECT that issued the UABORT macro, you can use 
Figure 6-2 to determine the internal procedure that issued the UABORT 
macro and the situation that caused the procedure to issue the macro. The 
last entry in the Intra-Module Trace Table may be a trace point within the 
phase or CSECT that issued the UABORT macro. 

The registers at the time that the UABORT macro was issued are not saved 
by the processor and cannot be found in a dump. 

If you have a PDUMP produced at a dump point, the trace tables printed 
after the dump tell you at what point the dump occurred. The next to the 
last ID in the Inter-Module Trace Table identifies the phase or CSECT that 
called the dumping routine; the last ID in the Intra-Module Trace Table 
identifies the exact dump point at which the dump was produced. You can 
use the trace tables printed after the dump to trace the flow of control before 
the dump point. These trace tables are better to use for this purpose than the 
trace tables in the dump because the printed trace tables do not contain all 
the trace points encountered while producing the dump. The trace tables in 
the dump have been filled with dump-related trace points. 

You can find the registers at the time the UDUMP macro was issued in the 
save area where IDCDBOI saved the caller's registers. Register 13 at the top 
of the dump points to IDCDBOI's save area. The first word of this save area 
contains the characters DBO I; the word immediately preceding the previous 

6 - 38 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

How to Find the GDT 

How to Find Save Areas 

save area in the save area chain contains the ID of the phase or CSECT that 
issued the UDUMP macro. 

Figure 6-2, Part l, illustrates how to find the phase or CSECT that caused 
the dump and its registers in a PDUMP produced through the Test option. 
In this example, module IDCSA02 called for a dump at the dump point 
'ZZCA'. Module IDCDBOl saved the registers of module IDCSA02 in the 
latter's save area. 

The Global Data Table (GOT) is preceded by the identifier GDTt>, (see 
Figure 6-2, Part l) so you may be able to find it by scanning down the right 
side of the dump. The GOT follows right after the first phase (IDCAMS) of 
the processor and the Anchor Table. A more systematic way of finding the 
GOT depends upon the type of dump you have. Figure 6-3 shows the two 
methods of finding the G DT and is referred to in the following paragraphs. 

In a PDUMP produced as the result of an ABORT condition, you must use 
Method l shown in Figure 6-3. The GOT is contained in the System 
Adapter's (I DC SAO l) automatic storage area. Register 11 of the registers at 
entry to POUMP points to the automatic storage area ofIOCSAOl. The 
GOT is at location G DTTBL in the storage area; you must examine the 
microfiche listing for IDCSAO l to find the offset of location G DTTBL. Add 
the offset of location G DTTB L to the contents of register l l to obtain the 
address of the GDT. 

In a system dump, if the dump occurred after the call to IDCSAOl but 
before IDCSAOl calls IDCEXOl, then you must again use Method 1. Add 
the contents of register 11 of the registers at the top of the dump to the offset 
of G DTTB L, to find the GOT. 

If the system dump occurred after IDCSAOl called IDCEXOl, use Method 2 
shown in Figure 6-3. The address of the GOT was passed as a parameter 
from IDCSAOl to IDCEXOI. You must find the save area where IDCEXOl 
saved the registers belonging to I DC SAO 1. The first word of this save area 
contains EXO l. Register l in this save area contains the address of a param­
eter !ist. The first word in the parameter list contains the address of the 
GOT. 

In a PD UMP produced as a result of the Test option, you can most easily 
find the GOT using Method 2. Find the save area where IDCEXO l saved 
the registers belonging to IDCSAO 1. Register l in this save area contains the 
address of a parameter list. The first word in the parameter list contains the 
address of the GOT. 

The GOT is the "anchor" for all areas of the processor. In the GOT are 
found pointers to the trace tables, to the historical areas, and to the entry 
points of the System Adapter, the 1/0 Adapter, and the Test Processor. 

Figure 6-2, Part 1, shows the GDT as it appears in a dump. 

The first word of the standard save area for processor phases and CSECTs 
contains the ID of the phase or CSECT that saved its caller's registers in that 
save area. (The ID is the last four characters of the phase or CSECT name.) 
For example, if the first word of the save area contains DEOl, then you 
would know that IDCDEO 1 saved its caller's registers in this area. The 

Chapter 6: Diagnostic Aids 6 - 39 



'·nQO('C 
onQf'1 ?C 
oror 41" 

er GC 'r 
rcrir oc 
orcr "' 
rQf"IC '( 
rcri. AC 
Cf'\Ot:J( 

0004 Ff 
Cl''fH:f'IG 

ror::: .?"' 
('" c r: 4(' 

G•JO~r-r 

('Jf'i:: O'"I 

CCC' AC 
('/"\l"li:.("'J 

f'l("'IC::.FC· 

0<'0' cc 
crir\i, /r 
OC'0,4C 
ocr6 6( 

000'°C 
rno~ l1('t 

r'.)Qo r r 
roo1- ~(' 

C'CC?ro 
0rc12C 
cro140 
C'(Q1'(' 

('()0780 
c-co1or 
era 7r ri 
QQQ7F!1 
ooooro 
Q'.)QA2C 
ccoo 4r 
COC 0 'n 
ooo 0 or 
C~CPAr 

QrQoCC 
l)QQPFQ 
cc rorn 
ooco2r 
OC0940 
occo'r 
flCQqR(I 

Q!1CCA( 
ocr.qrr. 

c~ pr C"(' 

(C';Ot)("() 

Cc co ?C 
(,0%40 
('c;Q('~( 

0 c CO PG 
C qqr AC 
ossrrc 
(cGQ>C 
r qo 1 er 
(CC} ?C 
c QQl 41' 
('Qql AO 
( c;ql Pr 

roq[ AC 
ccg1ro 
ccqF(' 
(lQO?QI') 
Ccc??C 
r)Qq;l4( 

('C:G4QC 
coq47r 
(GQ44C 
Cc c4 AC 
ca%or 
Qcc4AO 
ccsi.cc 

\ f(T 

ar:--0•0>-<r -l.?· 0 cnc0or:rr r:0r.rc 'J rrcc.c.c.~c "Con~4r: ~ 

CCC"C'or OCC-"lr"' 
crcrorcr ccccorrr 

"'C'"~<":tl74 (\ f('QP')'-·J( 1r1c CG"',;;lf.-4· 
f"r .. rc0 i: c: f"l llJCi= ?4f'I 
Qr"(C'r:C"' crnrcrro 00':0~"'::( rclJr':,..CJC 

rccrcrro rr'·roccn c000000c norc'C0C 
r7crcrco rQ('('Q.rqr r4r')';Q(t"( Q(Hi(QP::'l? 

0('C1C'.t-P ('CCCCCC'r Ct1Cl'"!•S 0 r"'00C0C')Q 
C4Cr('f'l"'I') rnr.("ICOf\i', ('QQr()t"'LJ(' ""11(11r''C 

C"C'('r:r: 4n C~C'r00C'C nQC?0081 
rooorccc r rrrnoan ooncr ,, c 
C')C0~0"0 --<::t.VF--
C'l~.t-r l c0 r ~1-1 cl i=~ 1 '10".) l Q')( OC00f"'l'J0C 
f"\f'QQPr CC r0rr~-J'Q• (''.)QPC:::4C:I= l"'\l"'\('("l"\(:l( 
-:i.tJ•2t.4?~ t.4..,Pl"\')00 • 7 c:r•QO? :i~ro•ci;-c 

4t,caoi;nn •1rrcrqc 0"'.0C"01C 
"crrcooo C4•Cl l'C co0r~' 0 P 404U'4C 

C'·"r11oon C700t::.rc:i: f'!'l('t:C'J'JC 
"rQ('('Q('') (lf"l'1')Qcc:i: N)orc;~1c 00"Ci::r-1...o 

rocrrc~c ec0r7c:::i:o cot:"n00rc ronr0~0r 

r"Cf'".'tif"'c;f rc0r:cc::4o rQQQQ?c4 0CQr')C0C 

ore 0 1" 1 o CC 'Cfl!JCO C00°Qr0r 0·1ornrr C 
t'0C''0'JCC r 1 CC'<:OC00 Ct;(HH)00"" ')?r:cocl"\ 1 
onc-01-4-:ir ro('\roof'\O "00')0C"Jr nnc1r 7r-r: 
i:cc0nn4c::: 00r('r")r('o 00orrc::::_-4 ooor-:i"ot: 
i:i::c•r1c? nL;kr::rc;r;7 r~i:=sr,-:i.,-1 i::7rr_i::.r_cq 
4')rGr7ro i::c:::r-:ir1i:1 4Q~("lfO...,? roc:cr4r-:i 
r1n•r1r4 4()c:::pc::;p,~? cc;r1c-:i.r1 l44f't:;Plle 
I) !=IC:: 0( J t= ~ (}" -:l:r 1{ 4 l.l)')tl ':P( 2 f: '5(} r' "l.f' 1 

r; 3 r ! r 4 4 0 c::; tl c::; pr ? ~ ') ( l c :i, c l ,.. '· 4() s p c::; pr 2 
c::pr7c:c::r1 r·•r1r44(' i:;p_c::;nr7:.-i:;; r1r•r1r4 

(lf440'1tl qirJF".ifl r:~rl(44f t:.8'::P•2c:c::: 
r-:i.r4r ?l=n r ?l.('')"t:;P c:::P.C?C7'.':4 r:4r4r140 

00CAM~'1 "COf\11100 MOO>OCC MCC'lf\1C 
('r"Q('f'ACO AC1'0~PO~ 4"001:4~( 0C0('1::P'.:i:= 

~4<4f\C4A rc~cococ C00COOOC 0Cn00C0C 
('oQA('C:r\C l\(j PQ4P tQ7ASrAP (\CrCCC~C 

Cf'01('CQA CQA•()(QA 008"V)f'A"l. 0(P'l("IQ4 ~ 

(\rP'lcca'l 0ca'locw~ coPior:~A 0co"'.:lno 1n 
0G02C0C~ rcncqc40 rnrQQCQC 000rrcrR 

4pu=:icn11= 4lP.PIJ01C p::ii=cGkiJ'l 015i:1~471c 

('6PCrf,Pf"'I ('lf-O(\Q6Rf'\ (IAP('410.P no1c~6P( 

Gl1"'4l?11 477(CJ'.lOQ 4lr=C<;?.r:? q41::••("'1f 

A(\0F44(\'/ o51eC7F S2CQC 0 QF C2P0CP!S 
Cf.PnrAP" ('IL-0(0AQ(' r1-.ooofdl(' nfdl0(1htlQ 

qi;i:i:~QO? !. ,...-,lP4l 414')"300? rlQ4COC0? 

4COt:r7P 4PRC'04CF Agqoooc-3 4l~ac~?o 

s?Fi-:i.c11:i;o1 q4i:c:ci:::Q? pr:i:1..c?>:.i.-:i. 
Q7"JC<Cr 0t0<470Q 
rr1rrnt coco~c14 
Ct:..A~4770 f)tititi4(tir. ('"-.Oti,40,ti( ns1rr'?'1C 

G?P~ti"C'" t;,flQCA004 12P~478C' 0;i:1r~17c 

tT<T 

OOt""C0C"'l 0C"rnr,...~ cc:oror-:c nc0c,,ooc 
oooccul. ocrrcoor ooor 1'0C' ocrccc1c 
7i::cr("ll')~ (C(4("l{C::: t:71=C1=?40 (l('('CP•"1C 

Qr;(lqP7~0 CCr"-~A7Cf' 71"0':'lli::7 r:qr4r-:.rc; 
rC(4(1f1 r1crr:c:::4Q r,1)000['()( "00tiQr')0 
COOti14Pf'\ 1r:oco""lr4 f'1rt..r").c-:l, i::7i::•r 1i:o 

(lFCPi40 001'A?7R0 001).127'(' 7<QrC 0 IP 
71'."('('c:;[)tin (Or4r-:ir;c (00"1.1=•4( CCQflC,1H1C 

ccoAcArQ rcCAG~Oc "CC~r"~ 
(Qf4f1r:'Q (gt::IJF24C Of'\('tiU?Of' 00CtiP7('C 
OCCAPFQC HQCC?l P (q(4Cl'.'C r<;c(P40 
04i:oi:14c rcctirro~ rcctir:rcc 7r::.rrccc 1 

7FQQr4c:? rc:r4r•i:-~ C:?Et1c~i::r rooM.:."r 
(('(P04CO f'C"'P0L.0C 71=Q('lr:'.?rp (GrLor•1·4 

('lr?r1:if" r~r1i:~4(' f'IC(P'4':'0 
OOCC2Q(''1 7F0"f.?QI= r.t-r7rc:::rc 
c-:ir".:ICtJ:? (lC(f"'Pf.QC ('r'1(': 0 t:OI ?Fr('cr"P 
7<f\QC4ro rqr7nocc [1(JC>C4 (Q([C7Pr 
OCCfJrr;on rcocrror F<'C.CnAC' OC'lCGO~C 

ooccc0rr --""F--
o,.cc;cQco (';rl !fll='.Fi:'. ('lQl)Gq4}!= QQflC<:;f.'J7 

F= Fr 1C != c != i:: Cc: C q('l )t c: c r: Fl= i:::::: i:: 

i: c ".' l i: ( i: i:: c i: r:: r r: i= c i: FF i:: i: i: c i: i= i: I'.: r.: i: i= i:: r i: 

Q71= C('C: FC: r i:r O I= F i:-:i; Ff'lf\rQ 7t::I= c: FI= ( 1 I= i: ( 

CCCCC!Cl Oj<C<CCf 
FF FF i:: r: i::c: - -<:fl~ E- -

~---'---'----, I) ('"1 Gr M~C ?r c 

COG 
'--------~CCC 

:::~~1'-'lCf' r1t~;c?~ (4(•rc('" o;oocri 0 rF 
r4c:;::rocc cccc~i:r7 ct.crcccc onrc00-:i. 0 

l~f'lqr1,.. OCC'C0CrJ" C'CCCCCCC t;C"C0'1CC 
rcr~f"CC 0CCC~crc CCCCCrcc nccOCO"r 

CCOC'C'JC( OCCCOC'CC rHCF?~., t.(t..(t,(t.( 
r'"11c-. b/"\~rrrr(' ')('rr.~~.;n 

I c ·1 F 1 i::: ';- i:: er cc?"' c 4 cc c r~ i::? c 
0fCC'O'"':i;( ('f'IQC.,,l 1r -:i4c400rr 

4(4(4(0( 4r4r4C4C 4(4C4Q'1C 
0C(1(4f'C( ('('('f't:QC::i:'. Ot:C('QCfC 

ccrcoonc C"C(FCA[ CCCCh?'P 
orcr'' 1c re lrcc 1c ~ccpr,4r 

MCCOCCC ccrr4?;•' ccccrccr 
00t1"r1or ocr:cci:;7r:- cocr•-:i.c,c :"OO('•-:i.i:i4 

00°corcr CC2C'l4' cccccccc ((((00CC 
rrcnr.?4': CC1""1Ct•1r COCCfP-:l.P OOrf'IAJr'( 

croot\ri:4 ccccr:rr:c rrr1cc"~ n4c:orrc 
ci:r:rp7i:;o (CJ[2rp::t: (4('"lf'C::41) '*ccc;n:i0a 
C?[Pi:i::.r-::i rp=•4Ci:'C rcr;_::ri:<Ec:: ri.r•rc::4( 
rt::4()4('c:t::o c::pczr-;::i: F?l=('F?4\ ":Pt:Pf?Fc::: 

r? i: i:; r l r • r 1r44( ') P i:: P(? F k( 1 ""' ll l.4C 
rt.LoC't:Pt;P r;Fi::c1r-; 'll44~~P i:;Pr?r:~c1 

ri::~1r•r1 r_44cc:::pi:p (;i::i:r1r-::i r1r44ci::.p 
r: i:: r tr-: --::i cl c 4 4" c:: ::> ~ ci r 2 F i::r l n • 
4('t:Pk\-l(? tt::f l[':I~ l r44cr C(L. 

r4r4,7n 4rcccrcc ccccoccc 
c1ncorc" ncococq? c·or,..,r .. tic 0Cr:'O"rr·c 

cr': 0 r'CC craccccr rrccrccc ccccocrc 
rn~o·nr C"0010C1C f'"'(CCCCP CC':?(1 4f'.f 
C''CCCOC" rc 0 ?0C~· CCF ~cci::• CCF~f)Oq"­

cc~ 1 CCf i cri::~oo 0 • 

rocccr 0 1 Q"J,,Q'rn-:irr 

r ,c.. nc er P,.. 4 o P('0 7P t 

cocc4cc;c (PECCI-PC 0'PCQf 0 ( 

QHl(4lPO ('CFC':PCC (~t:.44lF( 

4Jf"~CC I c::pp((7f4 CJ((~CCF ":71="FGfC( 

4kf-(P4l2 4}fQ(Ckjf ('71=FQrPQ 

c;:;cCC7'-f" ir:i11r•cr c1c 0 1Cr4 
1Pti}4"ltl(' 40C746AC 04i:tii:::AlC 

qi::cc7ci: C2P?FCOC c7ccci::Fk C:2C4('7C:l 
tirccc::pqc tif(t..t:."('r PQACC?CC .'lC~CG?rc 

c1uc;10 r 0 ?'C24' 4occc4>1 
c2tir4J~1 cr1i:4?~0 ci::.i:ii:;c:4rr: 

C4•uccr 0 >c 0 1cor 40ccccu 4lAA01cc 
ACC4477~ Ctirtic1c~ Af'\(t:Lo71C 8"-1rc:::i=iA( 

oc~o0orc "C'~coroc rccocccr OC"Cl'CCC 
(}I=" CF l. lo( fQ ( c CP C( CC rec; ll 0(' 

CC':CP•(r HC'CClFC (C(L.(J..f"l r?C(:'."44( 

r-f i::rF?4C C'(f'<:f[Pf ('('(C(\PO 7i:f'l('?FC 
71='')0(4):4 rcr4r•c-1 E2ft:F7F( ((Clll4P( 

coc,1rrc ccc,1crc ncrcs2c rqr4r °F; 
rrc4c-:i.rc rcr:ci: 14( cccritrcc CC0ti?roc 
('"('.fiCP>"f; 7FQOC 14? ccr4(-:tfc; rcr,;,?F •4(' 

f7[C(F<C CCCAIACC OCCAAICC 1'CCOCt2 
7cc0CfCr: rcrtic•r• f4rlf44C f"((tiP:i:rc 
CO':f..(APC OCCH~Pr 7t:((("2t rcr4r'?r,7 

(Cf4(<C4 c;ccq4c CC'Ctr6CC QC'1ArAGC 
Cf'Cf~LCC 7FCCC2"'2 rc:r4r•('J rt..r4,..,'-4C 
r:•i:ci:14c CCt:'P0((1C c,....cPcrr~r 1rococ"'r 
ti:r,1r1;{:; rcr2c.-=Ft: rc-r44(4( O<::"r?>:iOC 
cr:r::r~P(C ocrrAPQ( Fi:CiAl=C (Cf"'l?f)Of:~ 

rcr?rPf"' c•r1r:::4c C'C(rC?RC 0cr:r•;:qc 
7FCC(CPF rc[7[<fc c'ClE?rf 
ncccococ crcccccr ccccoccc 

c0ccct:"lf ccccci:•~ cccccccf crci::r:i:-i:::i= 
CfF!=p::i=i: i::Fr:oocti:- p i:'.FFC:J:f:- t=('7f'.RQFI=" 

FCCCCFH HHFfH FUH((( CQrCcP~( 
or;c::PCOCC Q(('CCCi;C i:cr:i:r:rr:-F ci:ci:rFF( 

!=!'.=FFFP::r p::i:f FfCC CCCCCCCF 
FJ:FrJ=FC!=-" 

....... * ....... . 

••• 0 ••• f-., •••••••• 

······*········· 
••••••• i=i •••••••• 

••••••••••••• c •• 
....... ... . .. . (. 
•••••••••• NM •••• 
VLASUf,JKQVLt'<f,1 
lK~Vl H f, l<(VCf 

ALA1 H~VALAC H 
HOVAlAr HfiVALA 
LAC HPVALAn $$P 
fBVt.LAC $t 0 VALAr 

AC $$PVALAC HPV 
(CR('2 E$ft:l.Df"'IL~P 

......... ,[,.. !. 

.4 •••••••••••••• 

·········'"······ 
,f.I ••••••• c. \( .... 

•• 1 •••••••••••• 

••••••••• c: ••• t •• ................ 
•• K., ••• K. • ••• •. 

•••••• •••••••!<• 

••• u •••••••••••• 
•••• rru >C 2 •••• 
............ r r c r 
I nr T pr~ •••••••• 
•••• , • • D f !Jf 1c1'P( 

AC5 ••• , •••••••• 
•••• tr co r LT •••• 
• • • • • • • • • • • • T~C T 

JLr 0 re 2 •••••••• 
•••••••• I f)rR I"~ 
•o 1 ••••••••••• 1 
•••• tccrcuvc •• u. 
• • • • • • • • • • • H 1 rcr 
1 KCVC AT ••••• • •. 
•••••••• !K~VC<E~ 
(Lr<: •••••••••••• 
••• ~!KCVLA5• •• G. 

••••• r. •••••••••• 

••••••• r •••••••• 

Licensed Material - Property of IBM 

• • • • • • ~ K • • • • • • • • 

.. •• •••• l l CT 

•••• 0 •• \( ••••• i:: •• 
fCc:: 1.,, l c::f ••• U ••• , 
............. u •• 

••• \ii ••• 0 •• ! .... P 

••• 1 ••••••••••••• 

•• 2 •• T ....... .. 

• ••• !K(VCCN HC 
<CV(AT CIKCVU' 

f!P[V5n2 $HV 
PVALAC H"VALI[ 
C HOVALlr $!"VA 
VALAr HPVALI[ ! 

ffP\liHlif $te\IAL 

ALAC $$PVALAC rr 
t ! p CCII.I(:( ••••••• 

...... .r ....... . 
·········Q·····" 

[, ...... - .. [ .... . 

...... [,. ....... . 
• ••• • r•.<.<. •• •. 
• • • • K • • • • • • • • • • • 

!CCSAC4 •• , ••••• 
••••••• Z!CCHC« 
cc 2 ••••••••••• c 
•••• 1cr1otxO •••• 
•••••••••••• I CC\ 
rrco re 1 •••••••• 
•••••••• rcco r KT 

'P JC •••••••••••• 
•••• rrcc co• •.•. 
•••••••••••• J[(P 

lCfCPC 1 ••••••• , 
•• L ••••• !CCCCCL 
LC 1 •••••••••••• 
• • F, !KCVP• 
•••••••• , •• O l KCV 
IKCVL A e •• P ••• E. 
•• C.., •• IKCVLA<F 

............ c .•. 
•.•.•••... c .•• f. 
.P ............. . 

(<;Cl)?r l=F i: p:: Ft= F rF i: r i: C' F( "CCCCC~ CCF 0 FFC( CCCCCCCC ••••••••••• c ••• e •••••••••• o ..... 
cqos4c cccccoon --qME--

occcccc 0 rccccuc cncoc~or rnocnccc cocococr ccccccr.c ccrrcocc ccccoorc 
ci:::f?i:':;F'l ('l(lf'QQ8Q! rncqnnqp 4Q(ICl'):lq OC'CQl7PG (l('t'JCC.P8C CQCCCPl'IO cc11crrc F X(' l .......... . 
Ct:'C'CCCC0 rcr;ccnc FCorco1i::. PC""":Clc: C"ccq-~~ ccr·ucrP Ctlt-lPCr ocrc;qc,c:::r ••••••• ~ ••••••• f, 

ocrssoon 4COPnr 0 • coononor ooccoc"C c 0 crcrrr r.ccrcccc cocccrcc oc~rro<'r 

cqq1i::c 

('.Gg80() 

(CCP 2C 
( qq~40 
ccc;Qf( 
f'lcqq P( 

C qq~ A(' 

C c;qpr C 
rqgq4c 
cqqo,c 
(' C CQ pr 
[OQQA0 
cc qqr c 
c.oqoi=r. 
(GOA QC 
(' q q ~? r 
OQGA4f' 
cc;q" f-(' 

(G<;l P0 
(OQf.,fi(I 

rcq'(('. 
('QQA !='.( 

coqoco 
C<;qJ:t ?r: 

CCCcrrs0 POrPC'?' COOr~roc nrcrnnnr CC! lCUC CCCCCOCC CCrccnc 
AOOfl('Ol') i:icnr0c1i:; rocqpr::::F t"\ I I ~((JCjCHC ccicccpcc 4(('QQ(':t:;~ 
orocc•0< rcrcqfFC c1oqsq•c I'· GDT ccccrcoc crcrrcu ccccocrc 

g~~~~~~; ~~~~~~~~ cccncroc ncccooc rQ4, caccccc~ rccsqco ococq n4 

:::::::::::.._1 _.....,G_o.,...T _ __.1::::: v 
Ql)QArCPP ('Q1'!1(1Ql\(l rr('AQOCP Q('.('CCC0o Qr1cCHC or.rcqfC( (~(((('(( C(CCQr('( 
r:rca•4i::p (((Pl+4( CC'0P~44f- rr:cF•l.4( CCCPt.t::2 CCCPCff'F C'CCFU2C t"\CrF('t;f 
O"<'ROA?r: 00"8M·,1? rnoi::iOf-il4 oc0Fr"-1l'I crcPt•ci: cccn:14 rcc~c~"- 0 f"ICf'PlPtP 

n('(\PJP?4 rcocococ COC"C0C( '111C 0 1 Pl f ~C: 0 JP?A CQCPJP'f ccc•1ooc CCCP!P 0 ( 

000Pll=l4? ('f'lf)Pf'f."Ji: ()QnP~<qr OCCcqpl)( COCCCf'~C CCOPOf-44 OCC~qi:i4p 

. . • . . c •.•...•... 

Inter-Module 
Trace Table 

4Crqrsn r<;[S4C40 (4(?'0Fl 4('C?C 1'0 F?4rror' C(C l4CC4 (4r°FUJ rnTcP CPCJ <AC 
4f'(4f?Cf) '"lt.()r4nJ.. l=QF14"=? r1r:ci:71,( r4r?F(l==l CAOl rLCl <:.fl.(2 
C7'C'l40 rqrfCCFl 4r<>n10r >}4('4C? Frei~------. ~01 1rc1 TPOl CF 
Fl4('(4,.., i:ri::-140c7 rp:0F?4r 4('fcf'li::=J rcr1 l ORr:l SA02 ll\1' 

r•r-::.4f'lr:--.i 01i:?rc:4r F•n7~?rt:. 4":rcr,,._r-7 r•4c '-·-----..,..... CC TD2T lP(~1 tCP 
40E1r1i:2 f1k4('••i;7 ·~(14(\:::-::i r1r-;;rc4c r.•r7F2l" TP?.f.. TP(( TP?I 

r1i::7rc:::4c F"Jr1r•r-:i, 40F'l.r?t:? fC.4('.t•r1 F?[C:::4('~'; P2N 1PCC lP2t 'TD 
0CCQtiP.f'lQ F?r1i::oi::;i ('f'lQ?IJ'.l.J..( f'CCCfil"r F-~r7~CF1 OO')C()f"'.lO ("l(l(Cll4PC' •••• 5AC2 •••••••• 

OCr-P•~qO l"'.1C('~qt,[Q cocr.c;i:ior t7rp=cr::1 C',...COC<''CC rcccc;pcc C<:CCCCCC ~CC ,.. ••••••• o ..... sac1 
r.ccccrcc --<h•F-- ~-.__..__ __ ~ 

Address of first 
UGPOOL Area 

Figure 6-2. Sample Dump (Part I of5) 

6-40 YSE/YSAM Access Method Services Logic 

CCT •••••• , ••••• 

2 CLC! cer1 uc1 
CP~l TPCl IC 1 r--------, 
C l TPC l T 

Intra-Module 
Trace Table 

PA lP2J TP2~ TP 
T l C PT TPC ( H 2 l 
H2~ TPrr TP2! T'-------~ 

2~ S~~~ !CC!. ••• 
TPC I •••• , ••••••• 



Licensed Material- Property of IBM 

LI ST 06/0~/l~ 

('Q<;RRQ (C(4f'0 c1<0F54C cocoooor OOC003CO 
CCJCJRAO (CJ 5 E1FC<341) OCOOCCICC rOOCC2?0 
C9'lP '34C OOOOOOOC OOC~07FO 

ccicie Phese Table = 24C cnocoooi: ccc~oci<t' 
fc'lC"--------''240 000(11)000 OOOC0100 
CG9r.20 C9C4C3nCJ c9no<34C cooccocc oooco1qo 
C'CJcC40 (qC4C1E' fl1FCF440 llOCCOOCC CCOCl lRO 
O'l'lC60 C'lC4nO E2F4E5FC' (0000000 OOOC02AO 
cqcicRo cqc4c3n E2\5ElFO rooooooc oooco400 
O'lCJC AO C'lC4C3E3 E2C3C3FC OOOCOOOC' COOC l 2AC 
oqciccc cqc4C3E3 004n1<0 cnocoooc ooooosqo 
C<:CJCEO (qC4C3E3 F2F301Fl COOl'COOC OCCCOIFO 
OCJ'lOOO C'lC4C3E' F2C'lDbFC COOOOOOO OOCCOlOC 
CG9(12(l CGC4C 0 E; F2Cl03FQ COCOCOOC OOOCOICO 
CCJ'l040 C'lC4C3C3 C4C4034C OOCOCOCC OCCi:'03~0 
O'lCJDf>O cqc4no C401CG40 00000001' COOCl'l400 
QqCJO~(l cqc4c~c; C4f11n44C 00000000 000002?0 
CCJ'lDAC CCJC40C; C4E1Cl4C 00000000 0001)031C 
O'l'lOCO (Q(4C3C3 C4E•EB40 OOOOOC'OC OOOCOll'.'O 
C9'lnEc (q(4(;(4 C5FCFl4C coocoocc ocrC41F~ 
('9qFOO CCJC4C3C4 03FCq40 OOOOOOOC OCOCOEllO 
CG<;FU CGC4C30q 01FCF140 cooooooc ooocoeoo 
Q9qF40 CCJC4C304 n1<~Fl40 Ol'lOOOOCC COCC31".'0 
0'l'lf60 CCJC4nC1 Q4FOF14C 00001)1)00 C00001~0 
CCJ'lEBC FOFOFOFO FCFOFCFC COOCO".lOC OOOOOMC 
Cc9EAO OCCOCCOO --SA"E--
C'lCJFOC ooccooco oOOE040A oooooooc ocooco'c 
CqCJF 20 ()COOCOOC --SA~E--
rqCJF6(' 00000001) AOOB1444 OOOCJGACA OOC'GSR•[ 
Oq9FRO 00Qc<;AE4 C'OOqA050 00000"C2 C'OllPl 1q3 
CCJCJFAO OOO'lA048 OCl'<;A050 000CJA04P OCCGA05C 
cqqFcc cocorooo --s u•E--
cqq~ EC oricoorco oct'coooo rooooocc 0oaroooc 
OCJAl'O!' 'lCCOCOllC oooor:ioco "0000C'CO OOOOl'lC'OC 
r - .• - • 

Save area where 0801 saved (~g ~~g~~~~i 
caller's registers ISA02); lCA FCFl 41lf? 

registers are those of CSECT JFl 4oe;o 1 <c 
that called for dump 

190 8000001
, 

CCJAllEO 
(qA\00 
C'lA120 
CCJ614C 
QQAll>C 
C~AlAC 
('QA}(Q 

Cc A I EC 
C<;A2CC 
OqA24C 
CG A UC 
CcA?AC 
OQA2 AO 
CGA2CC 

I) E OA 000Pl64F 
C4C FCFl ccce1•ee 
OCCOO'lOO IJl)QPlCl>O 
CCCGAICO OCOP\64F 
OOOOMOO --~AME--
8MeCfllA COOOOOOC 
OOOccCJ'iO (lC"A7C 11 
CCC9A2PO ".'00Al2CC 
COCOCOCO --~AME-­

OOMC<;Qp OCOACcFC 
COC0011'l0 --~ •"E-­
CCCCCCCO CCCCCCCC 
AOOAU 18 000AF7?E 
03C9fGE3 0440F2Cl 

LIS 1 

(<;Al)AC OOOOCIJCO --SAME--
CqAFCC OCCOOCCO CCOCCCOC 
O'lAF2C OOOR32DC ROOA32nh 
C<AE4C cccrCQCQ --SA~E--

COOOOIJCO OOOll'JOOC 
COOEC4CA fCCeo•r.e 
OOOR".lf\qC FIOOCCOl" 
c1Joooooc occcrooc 

C(l0("QQF4 (lOl)cAl<:R 
ooo P 12 oc oorsciq50 
oooqqqo;c eooe1193 

CIJOOCOOO OO(ICOOl'IC 

CCOOCOQC. 0000000C 
A00A857'i OOO•OSRC 
r6C140Cc cc<Gfq4c 

Ct/05113 

ccoooocr ocoroooc 
conoocc otJncnooc 

('Q6FbC OOOOCC'lC' i:-cor.oo~c ~OOqA10R OQCCA?cC 
cqAF BO 00000000 OOOQ(lQl)O ooooocor OOOCOMC 
rqA<Ac ococroco cr.ccoccc cool"cooc occcoooc 
fqAFCO OOCOCOOO CC?SQCCO CCOOC~4~ OOOC'lCt;C 
CCJAEEO 00000000 (1Q()n0l)l)O OOO!'OOOC coooooor. 
Cc6F"O O~C'4CC4 f13F~D34C PCIC'Cl 40EqEcC3 
OQ AF 20 40C4C3C2 C 340C4C~ OF340C4 C3 E « 24C 
O<;A<40 O?F2C940 E3P,1°2f15 40F"'IC?C3 C34CP~1 
QqAF60 01001'.'100 PCOl.--------.·oc0c 

o 0 AF AO ooococco ooric Save area where :oooc 
rqAFAC CCCCCCOO --~1 DL01 saved 

~:~~~~ ggg6~6~g ~gg~ EX01's registers 

0qP(l 2C CCCCCCCC -- c~ME--

:~coc 
'1)0110 

(q(4C'Co E1FCF240 COCOCOOC 00('00250 
c sc 4C 3C ~ otFCF 24C cccococc ococ2qoo 
CGC4C3C4 C2FCF14C COCOOOCC OC'OC04EC 
(c(4C3CG CGF('Fl4C CCCCCOCC OOOC5FCC 
CG(4f31'~ fGFCF34C COCCCCCC OOOOOoAO 
CSC4C3CS CGC2E34C CCCCCOCC CCCCOCAC 
C'lC40E3 O?FOF54C rcoocooo 000004FO 
CSC4nE3 E2C4C3FC cccocccc GCCCC2oC 
(q(4C3E' E2E301FO COOOCCCO OCOOOAOC 
(C(4C?E? E2C3C3Fl cc~occcc 000004AC 
fQ(40E3 F?f1D1FC CcOOCOOC OOCC02AC 
(q(4C3E3 E2C1CqFC CCCCCCCC CCOC0460 
CGC4C3E3 E20GCGFr CCCOCOCC OCCCOCRO 
(q(4(3E' E2C4C~FC rocccocc OCCCCtOC 
CCJC4C3C3 C4C4C540 coccoi:-co OOC'022CC 
CGC4C3C3 C4CGC14C CCCCCCCC OCCCOllC 
rqc4C3C' C4f1C34C crcoooco ool'.I006FO 
ccC4C3C3 C4C4Cl4C CCCOCCCO OOCC042C' 
CCJC4C3C3 f4C3C'40 CCCOCOCO OOOC'02AO 
CGC4C'C3 C3FCF14C C'CCOCOCC OCOC4GOC 
CGC4C3Cl OGFCF140 CCCCCCCC COOOOPA(' 
(c(4C3E1 C?FCF140 COCCCCCC CCOOCOC 
CGC4C3C I 03FC F 140 OCCCCOCC OCOOl %C 
CGC4C'E~ EeFCF14C CCCOCCCC CCCC03EC 
OMOOOOC occoococ CC'Ct'r.oco 00000000 

cCOllCOCC OCCCCCCC CCCC'CCCC C'CCCOOOC 

OCCG«AE CCC~S~5C ccce12C7 OOOPl 15( 
("QCqqc;~c OCOPrfbC Q(lCq<;FCC 400Pl o4( 
CCOOCC I e OCCOOCO 2 COCCCC CC 00000000 

OCQqA1EC OCOCCCOC CCCC'CCCC CCCCllOOC 
cccocccc cccccccc cccccoco cooooooc 

CCCEC1CC CCCGAHP C4C2FCF1 4C'E2C JFC 
4CC4C2F~ Fl4CC4n3 FCF140F2 (\FCF?40 
C1FCFl4C CSUFCFI 4CE'C1F" Fl4((4r; 
Fl4CC4(2 FCF\400() E2CIFCF2 CCOAoqqc 
oo~c;eFFF occe11s3 cocscs~c ~cceOt5C 
OCCIJCOOC CCOOOOCC COCOCOCC OCOOOOOO 
CCCACACC CCCSSPPC CQC<Alfe CCCOOCCC 
COO<;PFFF ocoe1 IS3 cocc~G50 1CCP065( 
COCCCCCC COOC'CCOC CCCCCCCC CCOOOCC'C 

CCOPc1•2 OCOCOCE4 COCPCPCC CCCPQeqc 
6~CRC650 OOCCJA!rr' OOOR164F COfJSA2R4 
eCCGt2PE CCCA2?U ECC~C1~2 P(CGA2CC 

cccooccc ccccoccc cccocccc ocrooooc 

COCOCCC0 ccccccoc CCCCCC'CO noce1CEC 
l)(lr,PCBqc OCCOOCE4 rococooo IJOOO(lCl)O 
E2C!C4C~ 4CC5E1FI U4CC'E1 ct<£4CF£ 

f'CC'lCCC~ ocogqq50 CO(P?2EC 8CCGAEFt 
oocooccc occcccoc cccococc ooccoooc 

cccocccc occccoc crcocccc C'COOMC'·C 
C'OCOOC'CC OCCGFCg4 eNAGtU OCCCOOOC 
orcQH8P cccccccc CC'CCCCCC CCCCCO!'C 
CCCSAAH ccccoccc crcocccc OCOO()CCC 
CC'COOCCC OCCOCCCC CCCCCCCC CCCCC4D' 
Cl4CESEG foC14CC4 C'E5C34C C4C'C?C' 
E2CIC3C! 4CEGEcC3 Cl4C'F'C1 C3C34CE3 
F?C940E' C1F2C~4C CGUC?E3 4CCCCCCC 
OCCCOC'CO 000(10000 CCCCCOCC OCOCOCl'C' 
CCCUCCC CCCCOCCC CCCOCCCC CCCCOCC'C 

cc0ccccc ccccoccc cccr.cccr rcoooo('\c 
01'000(100 OCOCOCOC CCCCCOCC CCCCOOC'C 

('q81'8(1 0000024F f<;F1FCFI (403 OFl cccc;c;•')C CCCPIAFP 4CCEViFF ccc•cccc 0ccc;qPRC 
OCJROAC OC'QCJRl'll) ooncoooo "000000('1 oooroo;c •CCOCCI~ RC'OCOC15 C('C<PFFF OCC•?'lCP 
cqBCCC' OA I c r.CcGqG5C CCOq~OAe 4CCF1 H4 oocc;c;ccc "CCCOCCC cocccccc OOC'COCf'C 
OqRo..--.-..-----------. rocc;o}RC cro 0 orco CC081AGC COCCC5oC 8COCQCIC 
cc;e1 Address of parameter list; CA!hl ..-------· .... Geoa• 40CP11A4 ccccoccc 
O'lfll second word in list contains ccccc• Parameter List c;P1•r cccoccco ocooooc,c 
cqp\ address of FDT oooqR from IDCEX0 1 tHCC cccccccc ccccRc•• 
C'qBI -- OOOCO• Q(l(IOC CCCGGPBO OCO<JB \RC 
(CJ BIBO OCOO(ICCO !'OMOO(lll COOOO'i3C POOCCCI~ e 5 occseFFF ccce2cce C~Hl ere 
C'll\lAO OOOOCOOll IJOO<JR(IB• 400Pl7A4 OOCSCJCJ'iC Q()O<c<;<;IJ CCOP.Oe1c Pocceu2 OOCSR;>6( 
QQB\C!) OQOCJP.262 RO"qe2n OCOllOIJ')C OCCC!'OJC r.cooccco cc 0 cccocccc CCCOO~"C 
CQPl Er. OOCOOOOO --~ ft"E--
CCf\?40 OOC'C'OOOll OMCOOl'.lO COCOOCOIJ OQIJCl'.'OOC 
('qB260 OOOCMCO ()COOOCD<J (Q01C74C' D~C~F2(b 
CQB2RC E2ClC?r.? 4C'CQ(GF1 F?4orqcc F4Fqccq 
('QB2A(I ~4F4400'l C'lF2Cb4C cqcqo5n'i 40E2ClC> 
oqa2cri 40E2ClC4 C'i40RCC'l (4C3C403 FCF l4COC 
ccR2Fc ~cccccoo --s A"E--
C9B3CC' 41FOF016 1orq(4(3 C5E1FrF2 4041'.'41JF1 
CQR;20 5BFIMIJO 5BFFOQ6(1 ('1004\EC COIC051F 
cc934r, DC14~0RO OCOA!rne C1CC'eC5P R05PC203 
OQJn6(l A04A5CAO RC4C4BC RCE8~C3C P"~C4\;C 

OqR'AO R04CCoEF 020?PO'i0 (}l>A~pA(l R04A'i0A0 
C<;f13AC CCBAC?OI Rl5PC\1C ~02oe1sr <;RAC004P 
oq111co 50FOe054 q2ROA'l~4 •P.FnA01r 4l !Cec4c 
(q83Er ClR2o0Ff) RC•C41FO POF450"C A0~4G28C 

(qB40(' CJCElOllCC qocnc20 5AAORC4P 5B3CACOC 
oqB420 Cl 7ElR33 5030POF• ~03QP('E\ 1e2;o;eAO 
OGA44r D?01AOFA AOr4qpc •0044?\(\ Cl44';p2( 
0<1846(1 CJ8flC".lOC cs;Cl)C2(' ClFE4?FC rl445el)C 
cqp4AC' C('OCC1FE 1'0C'QP4•C ocoqP4A4 OllOCCCOC 
QqP,4AC FOF ?OCl'.'0 C 'iE ?<CCI COCCCOOC' OOOCOOOO 
('QB4CO OCOOOCOO IJ01100CM "0000000 COCCCCCC 
C9P4EC 04(20305 n2E'lC5r.q ~bOOOOOO 00000()')0 
CGB~CO 0000C16A C~E1FCF2 H~1F')FI cr.r.cocpe 
OCJB520 0('QqP<54 (lCIJOllOOO (IQ()Q05F~ OOOCC~'C 

Figure 6-2. Sample Dump (Part 2 of 5) 

ccccc. Address of FDT :eic ccccococ 
4CC'lC • _ \CCq CGF4Fg4( 
(<;FCFl4C QC(c(4Cf 4~[9(CF' Fl4COSCS 
n4ncgc9 E'C440E2 f!CtC?40 cscscqoq 
ooocr.cc~ cccccccc cccccocc 0cocriccc 

n4RF('F l FCCCGCEC cocccscr. ~POCC }?4 
OQQgo4g~ CCCGP4gc \ePl~CCC HC4qPQl 
PC4e1rc0 !FAA4CAC PCF44~EC COE45FAC 
PUC~C3C pr~4G2PC PC~458FC AChC4llC 
PIJ4(~PFI;' AC344llf R<'4CC~EF 1222418( 
50t0P<'4( 4IFCCl?r 5CFCec~r, 4}F0Al'iP 
C5EF4(FC O(F45FAC PC4P~OAC R04(41FC 
P0545RFC AC't44llC PQ4CC~EF 41F~C1~2 

C25EerF<; 3005C25E 3CCnecFg C203305F 
AOC4JCA3 41E<'Cl44 siec~ccc 471CC144 
AGcec1ec AC08411C Cl44C2C' PUCACCC 
DCC45PCC Cl?41PlP 411\COCC CAQAqREC 
CllQCClfC CCCCCCCC 07C~C~El F2E2C<Ei 
oo~ccooc occoor"o cococcco 0000(11)00 
CCCCCCCC CCCCCCCC C'OCC'CIC3 C?UOtCC 
occcct'cc ooooocor cocccccc occcoooc 
Cl)(G<;FCC 1ccqe3c;c COCP344C oo~qqpR( 
sc~occ1c •CCCOCl' CC'CGEFFF QCCf2CCP 

!fJ(SAC~ 

lCCEXr3 
!OCJCC3 ••••••• C 
10coec2 ••••••• c 
IOCRIO? 
!OCR IL l 
!OCT P04 
trJClSUvO •••••• •• 
IOCTSEXO •••••••• 
IOCTHCC •••••••• 
IOCTS .. PO •• ••• ••• 
ICCTSTPI •• •••• •• 
I DC TS I CO •••••••• 
IDClSALO •••••••• 
IDCCCDL 
I DCC CPR 
I DCC OPM 
ICCCCXF 
IOCCDVY 
IDCOEC l ••• , ••• C 
ICCDLC 1 
!OCRPC l 
IOC~PC' 1 
JDC P~O l • •• ,.,. E 
00000(100 •••••••• 

••••..••••• c •.•• 
••• u ••• &. ...... . 
....... &. •••••• E 

2 DLCl !)POI CLCl 
CPCl TPQl !CCI 1 
"l TP(•l CBOl TPO 

CPC I ........ - •• c 

........... 4 ... ~ 
••• £ ........... £ 
........... £ .. .. 

••• Q ........... . 

...... ? ........ . 

.on~ 5AFP RI<;~ 

....... r ...... .. 

•.••..••••• o •••• 

Lf CLVL 5ACA llC 
cLRC CLCT CLV5 

P2I 102"1 1PCC 1P 

.... EXCICLCI .... 

....... E ....... 

.... ...... . ~ .... 

.............. ( 
• • • • • • .G •, • • • • • • 

•••••• ,RI PP p I SF 
5 AGP P 112 RI 4g P 
44 RlS~ Rlfl.N C:AC 

SADE • !OCCLOl • 

• cc .. ICCEX02 -, 
.!. .... - ...... .. 
.• t ..... P ..... K. 
•• £ ...... ¥£..&.. 
.... K •• EA ..... £. 
.. K ... A.E •• * .. .. 
EC ....... O •••••• 
A. EO .r .. o .4(0 •••• 

t ... E .. Vt. .... •• 
K •• v ........ A ••• 
........... OA. •• 

02 •• nc ........ . 

MPLNKIERC ...... . 
•••• E>C21PCJ .. .. 
........... 4 .. .. 

P ~GE 51 

ICCEXC2 ....... & 
I CC !Cl'2 
1cccec 1 
!CCR IC 1 
!CCR 103 
tee R !Kl 
!OCTP(I< 
ICClSCLC ....... & 
IOCTSTPC ....... . 
ICC15LC1 •• •••• .. 
!CCTSXPO •• •• •• •• 
ICCHPRC ••••••• -
!CCTSRIC •• •• ... . 
ICC1 ~DEC ....... . 
!DCC COE 
1rcccPF 
I CCC CAL ....... c 
I CCC [l'P 
!CCCCLC 
Tr.CLCO l 
!CCPROl 
ICCXFCl 
IOOLOl 
lC\VYt'l 

...... ,£..,P ... ~ 

... E .......... . 

.. ..... CCRCl 5AC 
CPC'l CLO! SA02 

FO lCCl HO! ce 
l C8Cl ,SA02 .. R. 
........... £- •• & 

........... ¥ ... . 
••••••••••• £ ... £ 

....... L ...... .. 
- •• £ .......... .. 
....... 1 .. c. ... . 

....... u ...... .. 
~ACE DIF EHS 5 

....... &. ...... 6 

• • • • • • • ••,••••CL 
A ZZCA CLVL CLFC 
SACA ZZCA TPU l 
21 H2N 1cn ••• 

ICC ........... .. 

............... !-' 

... E ........... . 

••• £. ........ .. 

... ~ ........... . 

... F .......... .. ........... ~ ... . 

... £ ........... -

Pill Rll2 Rl4G 
101 ~!CF R P1 RI 
l Pl1~ S.6FP pp;q 

3.C10 ••••••• ,. A • 
.......... £. ... . 
........ 4 ... L'. • 
•• E ........ O .. .. 
... c ........... . 
E .... CA.EC .t.C •• 
.. o.4 .... t .... o 
... o ......... CA. 
K .. S .. K •••• GK ... 
...... A ....... A, 
........ t.K .... . 
.... A .......... . 
.. ,- .... ~NEX25EX 

•• ........ ALLFCR 

............... !-' 

Chapter 6: Diagnostic Aids 6-41 



MA540 
CcA56C 
(qA6CC 
CCA"2C 
CqAh4C 
C'98MO 
0 9B68C 
Oq86AO 
C 9R6C 0 
C986EC 
098700 
C9A720 
(9874(' 
09876(' 
CqA78C 
QqP?AO 
09R7CO 
C987E0 
C9AR00 
C<;PR20 
C9RA40 
098860 
09RARO 
09BR An 
09RRCC 
Q98AEO 
(qROQO 
('9R9'0 
O<;R940 
OoBo6r 
C 9A9 RO 
OoBo AO 
OqPoro 
ooeqEo 
('9RA1'0 
CqBA20 
C'98A 40 
C9AA60 
098A 81' 
C9BAA(I 
09AArC 
CcAAEO 
OoAROC 
09 BR 20 
C9BR40 
COAA60 
C'lBRRO 
Co SA AO 
09AACO 
ccaRrn 
cqsroo 
C9BC2" 
QqR( 4n 

('OR( 60 

0R0620 
080640 
C\80660 
0RC680 
0806 A(I 
QA01'CC 
0A06U 
080700 
0A0720 
rRC740 
C'A0760 
QR(? BC 
OA07EO 
ORQROO 
OAOA 2C 
OP0840 
0A0A8C 
OBOAAO 
l'BOACO 
OROBEC 
0AQ96(\ 
OA0980 
OAOqAO 
ORQOC,Q 
OR09EO 
OPOAOO 
O!IOA 20 
CBOA 41'.' 
OBOA6(1 
OBOABO 
OAOAAC 
CAOACO 
OPOAEC 
OBOA CO 
CBOA20 
QRQR4(1 
OBOR60 
0AOA80 
CAVA AO 
CPO A CC 
QA OREO 
QR Or 0(1 
CBCC20 
OAOC 40 
ORC\ 60 
0 !ICC AO 
CR OC A(I 
ORor co 
0A0(E0 
cRcnco 
OR0f'21'1 
QPOD40 
QAQrl6C 
QAOfl AO 

LI ST 

I)() --~A"'E-­
OCCcFl)RO ocoqqAFC 
cq060002 C'COCCCl)Q 
OOC9FC94 C'O'lCOOOO 
CCCOCOCO --SA"'E--
47FCFQ16 lCC'lC4C? 
5ACCPFCC 58Fl0000 
ACC4CRC1 OCJ4"CAC 
416C'C00l 587CA2CO 
4700A04A 5870AC4C 
Rl3Al84F 4C4CA?20 
A27445EO R334184F 
404CAo20 5e70hC4C 
70001277 47PCBCF4 
45ECPCPA 1A4F4040 
A27Cc2RO A27C58FC 
4C'FOA322 58F0AC4A 
5AFl'A048 58FOFOOC 
BJq2<PFO 300Rl2FF 
40CC'41'.lCO 0640400 2 
9?ACA 27A C8FC5C7C 
A324C2C3 FC5FCCIO 
5AFC<C4A 411CA274 
c;cqcC7FE D20~306C 
A27C41 FO BFEC50FC 
184FP44 47R0A278 
82AC!HF 50EOFCOC 
58EOFOCA 12EE478!' 
50EOFQOr 45FOB•n2 
5P30A048 5C•CA274 
AC48'i010 A2744IFO 
9AOCAQP4 ('7<ECJAEC 
58FOA048 5AF0FO!C 
947FA3F.0 <J!80A:EO 
45EOP604 J 84F4040 
41 FOro IC' 50•C A 278 
AOl)Q(?FF ~PECACCA 
30COr2'll A?<JP30lt 
02036394 3MCC201 
A3A0'01F IPFF4o•C 
5P3Q7nl( 12334770 
5e307CIC 5e103C08 
A3F85R70 AC5A507(' 
A40A5870 AO~R507C 
5P5FAoF4 D5C!5CQO 
A4F2C21J3 A:P€5004 
A5!(1C2'll A3Q(RF86 
A5'164P40 5Cr2404C 
4R405002 404CA 3AO 

LI ST 

CUO"IP 

4C4C• li04C4C 4C4C4C4C 4C40404Q 404C404C 

I UGPOOL ID 
404C''---v...-..-----'•IJ4C4C 4C4C404C 404040E2 CIC31):4C 

rooooos4 C9D6ocoo 
CIJCO'lOOC OCOOOOOC 
ooocoooc ooc €23• 

cooq F [~4 ooocococ CCI COCO CC cccccccc 
I' '2 00082566 COOA?CAE 000AA294 

JCCC CCCCCCCC CCCCOCOC 
1/0 Adapter 

E307Ft)F4 4C4C4C' Historical Data ;cEC COCCC5PC 41CCHFF 
5AFF0060 070041' Area :?4A COC9C6E• 18Al5CDC 
DOOBIBDA IJ7CCA2f'-------... 1coc 5010t3IP 5r!CA2CC 
9!80700C 477CRC6e 4A7CPFe~ 5C7CA2CC 4H(IPF€8 4<JtQRF'lE 
D'i02700C AF•C4770 POPC587C A(545070 A2?441 IC A27445FC 
5R70A04C D5C27CCC CCCC4?70 ACPC5e?O AC545C1C A2744!1C 
4040A32C 587CAC4C O'i027t'CO CC'C3417C ACCe4oEO A43Cl84F 
rsc21oor (0064770 PICE49tC PF~C'4?7C eCF45e7C AC54587C 
9640A3E(' 47FC8CFe 94eFA3EO 5€oCAC'i4 sr:CA274 41106274 
n2C'iP3C AC4e5C30 A2744IFC cc:c5CFC A21E41FC A32C5CFC 
'064411(1 A27405FF 47FC€330 9CECA07C C2C3AOP8 lOOC!PFF 
58FOFOIC !83F!2FC 4770PHC ~~ECA:EO 47FCP!t4 947fA3F'C 
~25EA324 F005025E FOCOP24 C20°FC5F ccccsiec A?EC477C 
47808192 183F45EO AOSCC!e~ A~EC47EC P22F4!40 A3PCD72E 
415030Cr <r5C4C04 ct404CC3 5P"CAC4P 5050:>14 5C4CA2?e 
4lllJA274 !15FF5P50 A04858FC 50CCC25E A324FOC5 D25F•CCC 
50506274 4!FCPFDC 5CFOA21E 4IFC3C6P 50FCA27( 92AOA27C 
C5EF184F 12444780 P22PqF( oc IC5EcC AC4F"EEC scse5eDc 
:Q685A5C AC4P50'iC A27441F~ CC2e5CFO A27A5AFC ACPA51JFC 
A2A041FC A3IC50FC A2E4S2FC AZE45EFC 504441 !C A274C<EF 
18F4'iAFC AQ7(q8QC ACP4(7FE 5AFCA'I" 5AECFCCC !2EE41AC 
0 AFOA31C 5AEC•C04 12EE47eC B2AOPEF °CECFOC4 5eFQAelC 
P2A41AEF "CFOFCC8 'iPFCA310 "PECFCCC 12EE47EC P2(PIAEF 
45E086C4 !R4F404C P22"•30 AC485A:c :ca12;3 47eCB:c2 
4lFCCOl4 5CFCA27e 'l2POA21e 'i8FC:C2e 4! l0A274 O"EF5A3C 
A31050FC' A27A'iEF0 304(4110 A2740°EF 48FCA322 5EFCAC7C 
AO?CO?FE 47FQA3(E qqCAcce C2C:Al04 lOCO!eFF 40FCA3?2 
183F5AEO A!0450EC A?lC12FF 411CP?t4 S6ECA3EO 4?FCA31'8 
4770P37[ 58FC1C()8 !2FF47e0 8'7C!P3F 45ECAC~C 4'iECA'D2 
A3225P3C A0485P30 3C2Al2B 47e0P38A 5P30AC4A 5C30A274 
q2A(IA27A 58FC'!C2e 4J!CA274 C"EF4FFO A:225EEC ACC?oAOC 
C?FE47FO P43AQOEC Cl'CCC72<J A'E4AoP4 5P3C~31C 02C3A'A4 
C203A~8F 3CC4r20l A3'63rJP r2C3A'AC 3CCAC2C! A<9(30!A 
0AA30!C Q2CIA3AA 30!2C2Cl A0 AC3C\4 C2C!A 0 ~F 3ClC02Cl 
'02040FC A'A29PEC COCCC?FE 41FCPtCC <JC'EUI 14 5870A04e 
P45C41FC 00185eFC 7CS8'PCC ?C~CC7F5 C47FA3EC o87CAC4e 
12774780 R474! e17 45EOPECE C72qA384 AOP45P1C AC'i45C7C 
A3FC587C A05C507C A4CC5P70 ACt05C7C A4C4581C ACt45C7C 
A4QC587(1 A0H"C7C A4!C417C !1CCl47FC PHCIEF1 AAFCCC02 
PFEf'477C A4F25840 5M41244 4770P4U C2CIA 0 SA •FPt47FC 
02CIA•qA 5C020501 5(\Ci'.'PFF~ 477CP"IC •e4C°CC4 1244477C 
47FOP'il( 1)2')3A 0 8r 50~4PCI Ao<c•co2 r'iCl'CCC AFF2417C 
A39E!244 477rP53A c2~1nqE PFCtC"OI •ocr:·eFF4 4770A55e 
12444770 A5CfC201 A'.'•CPFSe C'iCJ<CCC PFFf477C P576484C 

CA /{1<11' 

D4D<JC3C! E304fl4C3 C!E3QC07 OCCP0008 
06CAIOCO 4COCOOCO COC!OOOF C2071)506 
OCOCOOOC flCflEOOC8 C009000C I PO CC CO I 
oqC!E3C3 C80'E2Cl cqoooco~ COOPOOOC 
060A!OCO 4CCOOOOO 00010011 C20c050t 
OOC'CC'COD l'ICOEOOIC COCOOOOO OOOC'000C 
COCCCOCO --'SA"E--

oc0rcocc CCCFCCIO COllCOOC IPCCOCl)I 
rJ5F5E2C! C4C5C5F: F2CIC400 OCC'60CCP 
uceCFlo 4CCCCCCC COC\CCIC 02C7F2C: 
COCCCOCE OCl!OCO! ccc~cocc 16CC00CI 
E2C3C<;CI F3f3(PQ4 C'if2C3C9 OC051'.'0Ce 
oocococc cccccccc cccrcccc ccccoccc 

000PC8CO CCCPOOOO C5E7FCFC 
000A04 A4 000 804C 4 
ocoecsrc oCCP06CC 
OC'OCOIJOO 00000000 
CCCOOOOO --SA"'E-­
OCOCCOOO ccocoooo COOC'OOOO cooccon 
OOORCBBO OOOP0700 COOC'005r C5E7FQF~ 

occococo ococoooo coocoooc ooocoooc 
OOCOOCOI' --SAME--
000P2AAO OCOP0800 COOOQOF4 C~E1FC<C 
FOFl4RC1 QOFQ<CF! F0F4F04C 404C4C4C 
41)404040 40404040 404COC'CO OCI 

c cc oocooooc 
C4C5coc• uc~4C4C onc 0 re~c ccccoccc 
OCOPOPoC CC'CCOOOC cccccoco ocr.ooooc 

OOC1COC4 C3C?C£C< 4C4(4C4C CCC00405 
4C 40404C41' 41'404040 404C404C 

UCC COl'COOCIC 

~ggggggg ~0~~~~00 C'OOOOC'OC' 001 ent~~~~rr:::r;a~'!::ord 20CC OOQAC W 
00000110 09(9FCn f7rtFCF2 001 parameter C61A OCCS9PAC 
OCIOR<'~IJA ('COCOOOO CC'OOOC'OC' OOt'----,,--.,......,..-.,...,..,--.,...----,..,._,.1c I 7 CCC •6C l P 
ooo•~Cl9 OC09'Vi5C COORQ9eF 4CCA(A9( CrJCcCG<( eCCAF1~C ccc~cc;~c 8C'('~CF!E 

8(10ArFIR OOP07F0 C040C4f2 F()F14CE: C7FQFJ4C C<(SFCFI 4Q(4(?FC Fl4COSCG 
FQF!40E? CJFCF24C C9C9F0F2 40C4C2FO FJ4([q(<; FCF24CE2 C!FCF:'40 CGC<;FCF2 
000AF5qO F24C09Co FOF240E2 C!FCC24C llGCGFCF2 4CCSCCFC F!4CC4C2 FCF!4CDc 
C9FCF140 (4(2FQFI 40F3C7F? (94CPC7 F?(q40E' C1F2[F40 f"l(?F2c: coce0•1c 
c 'l40E307 00(\PIJRBO [?FI 054( cc;c GF 2C 5 4( C9(qFc F54CE 2C I 00U~OCC oocooooc 
oocoocoo ocoonooc ooocoooc CCC'Cl'COC cc;cqFIF7 4CE2CIC7 C740CSCS F(FJ4CCG 
(qFCF240 09(9071)7 4Q[Q(QE2 C64CO<JC<J FJ'l40C<J (9FJF24C' C9CCF4FS 4CF2Clr1 
0740Cq(q •IF24C'flO C9F4Fq4C nsCSFCFI 4C8<JCGC4 C~4CCSCS F3F740C<; (qF4F44C 
COC9E2Ch 40C4C2F'l Fl40C9CG FCF240F2 (\F(\F24C rccsFCF2 4CE2CIFC F24COcrs 
0000C?4A C4C2FOF! C9CoFOF? OOOP09AA CCCGGFCC FOFl4CC9 (qF()F!4<' C4C2FCF I 
40C9(qFQ F!4C'E2C! F0F;>4009 C9•CF!4C C4C2FCF! 4(CSCCFC F!4CC4C2 FCF14CC<; 
C9FCF140 C4C2FQFJ 40<2()('< C44CF?C! OOC<;~Q5C 8COArFP POCACEIR C'CCGQG5C 
BOQACC\R FQ•24009 C'007074C C9CCE2C6 4CCQr<;FI Fl4CC9(9 F!F24(1[G C<F4F94C 
E2CIC7C7 40C9C9F! F240cqcc <4FS4CCG C9•CFl4C cscsr•ct 4CCGCSF3 F74Cosrs 
OOO~C90C rq<?C64C C9C9C5C5 40COOOOC ccaooacc ccccococ C5E1FOCC ccocococ 
occoc~oc --<;AME--
00000000 000 P0C30 OOOOOOOC 000<'('00C 
47FQFQl6 10(9(4(3 C401FOFI 404C40F7 
5AFICQOn 58FFQ060 070041EC CCICC5!F 
OCl4<CA0 D008180A C700P!CC AINC20P 
F005025E •coo•211 C203F05F CCD?58AC 
4!FOcro2 'iCFQPJD4 ~281'.lPIC4 58FCAPe 
R'IOR~JO 41A(R2FC <QA0P264 414CP2C8 
C2EA!P2F 5RACAC5C 4020AOOC' IPAA5e5C 
cooE<q•c 501C4770 rocf5q•C' 504C4770 
CQEAC47F R20?'l47F P2D34IA(' 000147F0 
(2341831 OJACA2'12 4770C1'A 4IACRUC 
45FOC3DA 1nc1q32 47~QC132 IP3247CQ 
R2024780 Cl5~5€AO PQ4(5AA0 A04Cl2H 
45FOC6!8 l82Fl932 47ROCl72 le324S3C 

OOCCOCCO CCCCCCC'C CCCCCCCC CCCBC<nE 
F•4eFCF2 F•QQ90EC COCCC5CC 5ROCCCC4 
CQ(PICJE ccce1EFC JPPl5CCC PCC4Geo1 
e04PI000 5PACPC4e 5RFC'AOCC C2CER27' 
AC2812AA 4780CC7A 5RA!'PC4P 5CACRICC' 
4l!C•ICC C<EF4!AC A'IC50H P2'iCr71'.' 
5RAQP04C 58AOAC 14 12~A47EC cceC45EC 
AC4r "'AC ~C:C477C CCCE"oAC 5C•P477C 
rcCE 0 G•O "C'447ec CCEt<HC R20247FC 
C2205PAC ec5C4RAC AIJCC4<JbC CCA447RC 
"C•OPICC 4IAC•204 ~C~CPIC4 4llQRICC 
c1 •Aq?4Q P2C44Qo0 er A2478C ( 17;01AC 
478Cfl72 4!ACP2C4 ~0•CPHC 4\!CBlnC 
cr•247•C f!AC4!AO P2fC"CAC A\0(4!AO 

Figure 6-2. Sample Dump (Part 3 of 5) 

6- 42 VSE/VSAM Access Method Services Logic 

••••••• & .... 

••• , •••••••• IC •• 
tn •••••••••••••• 

.oo •• ICCTP04 7 
••••• 1 ••••• - •••• 
•••.•• t ••••• p ••• 

• • • • • • • • N. • • • • • • . . . . . . ~ ... 
······"'······· • • • • • • • 4 •• • .o .P 

...... t. 
••••••• o •••••••• 
c ••• o ••• co ••••• 

• c ••• oo.K ••• c.K. 
••• o ••••••••.••• 

•• & •• t & 
••••• o & •••••••• t 
•• K.O ••• t& ... o •. 
• o& ••••••••••••• 
•••• K •••••• t .. tt 
••• O., &O., ,(' •• &O 
••• • •••• • 4 ..... . 
.... Lo •• o .... c. 
•• c ......... t.c • 
t.C. •• .K ••• ~ .. 
•••• t. ••• o .. to .. 
.. & •••• o •. to ••• o 
••••••••••••• c •• 
• o ••• oo ....... t. 
••••••••••••• c .. 
••• M,. 
.c •. t(\ ••••••• c .. 
•• •• ••• H., .C .. •• 
• • K .... ,K ... ,.K, 

I<••••• K • • • • • t< • • • 
....... a •• c ... . 
........ ·* .c ... . 

·"· ... t ...... •(. 
.... .. t. ...... t. 
... 4N,t ...... 2. 
.2K,.,t.K ••• t.L 
,.K ...... O .. K ... 
• • • E. 

t. ••,., • ,.K, 

•R(AT,MCAT.,.,., ............. ~[ 
RATO<.SCR ..... , • 
............. NC 

............ EXCC 

....... n ... v .... 

• , • , .... •, ,*EXOt: 

••••••• , •• ,4EXOC 
0! ,CLCC!C4Q 

•••• R IC1SAC2 •••• 
.. . o .......... ?* 

•• • .... & •••• 
..... TPO. CPCI T 
01 <;AC2 RIC2 rec 
•• 5.2 RJ02 S~02 
IC I CPCl TP2 l lP 
1 TP,.,.PlN Rl<E 

IC2 RIPP RISF RI 
F R 112 R 14<; PI CI 
RISF OPOl RIC2 S 
... ,CAC!RIC2 •••• 

RIO! SA02 RICI 
IOI CACI SALO S• 
.,,.02 R,PP PISF 
SAGP Rl!2 RJ4:; R 

.,,.J<F PINN ••• 

................ 
• QQ,. !DCDL~l 7 
.1 ..... - ........ 
.,t, •• .,P.,.,,K, 
C.K.O ... K,Q.,K., 
,(,KSC.• ... •.C' .. 
....... CE ..... C 
P ...... E ...... £ 
.... t ••••••• £ •• 
., ,. ,K., .L..,. 0 1' 
P.,.,.,K.,A .... . 
•• c ....... A .... C 
,K.,A,., 0 ,.,, 

•• F ....... A •• .,. 

Licensed Material - Property of IBM 

PAGE < 4 

••• t ... t ....... . 

~. 1~1 • ........... 
• ..... G ... FV.,E. 
• ,K, ••• , t. •• E ... 
•••• t .... - ••• - •• 
...... & ....... .. 
.......... & ... .. 
~ •••••••• I-' •••••• 
... - ..... 4 •••••• ........ ( ...... . 
... c •• t~ ... O •• EC 
• c ...... K •• , ... , 
••. - ••••. c •••.•• 
C •• ,K.C ........ . 
............. F, 

.. t..EL.t 
... Ct.K,..(,K.C, 
(( ••• C •• EC ...... 
•.• c ••••..•••••• 
... c .• tc ... c •. tc 
•.••••• at ...... . 
..... c .... o .... . 
• ••.•••• t.o •• c .. 
• c •••• c ...... 1-' •• 

•.••• c •••••••••• 
••••••••• o •••••• 
•• ,1-'K ... •• •• C •• 

•••••••••• ... o .. 
............. .,K 
............ t. •• 
....... c ..... h. 

• • p • • • • • • • • • K • • • 
.... K ••••• K, .... 
•• t< ••••• l<.,, •• K. 
••••• c ...••••••• 

.... F •• ,. ..... C. 

..... -& ...... • c. 

....... c .. • 1.c .. 
t ...... kK ..... ,C 
t .. c ..... t .... . 
f,,K ... t.~.t..2 .. 
K ..... ~.E .. 4 .... 

• • • .~ • E • ·' • • • • • 

• • • • • •••••••• SC 

SCRAT(f·,NSCR,. ,, 

CEL ETF 

•••••••••••••• 15. 

....... ~ ...... .. 

...£ .. 7• ... s. .. . 
~Cl HC! ceo1 RI 
I R 102 SAC 2 RIC 2 
Pl02 RICI CPCI P 
21 1F2~ 1P2~ .. ,. 

RIC'i <A., ...... 
Pll? SA(P RICI R 
II Pll2 Rl4<; <oG 
PI CF PI? 7 Pl 4 4 

AC2 HC'2 SA02 RI 
.... Cl RICI CPCI 
CPCI RIO! CRC! P 
... t ........... t 

R 111 R 112 R 14 c 
IC I I' IC F PI~ 7 PI 
........ Exe ..... 

............... c 
~.C23 .......... r 
.......... £ .... . 
• • • •,,,, ,C,, K,,, 
............ s ... 
.......... t .. tP, 

.... t. ...... t ... 
, •, • t.,, .W •, 0 K ,(' 

e .... t. ........ . 
E,,,,,, • t, ,M,,,, 

A., .~ ...... A .. . 
.. • .... •E. .... .. 
.......... & .... . 



Licensed Material - Property of IBM 

L 151 C6/C~/l 0 

QA\460 47ACC8511 58AOA2h4 Q204AIJ17 C8AQPC4C 
AQ34\2AA 47AIJC87( 
e264G620 ACC! ieu 
<;6Q2AQC1 5PA(A(4f 
002P\26A 47•QC8CC 
A264%02 EOOC5EFC 
410060\P <q\CP264 
<.HOC<l~f 4\ACA0()2 
5AJQFOOP 48FC\~rc 

•OCCP4QC 58ACAC4C 
4Bfr.FCOC 4CFCCCH 
50•Cl'J04 47Frr<;r,p 
4\AA\(IQC 5Rl0P?64 
f0004CE(I C0t5eqo 
rcoc41 H cQOl''iO•O 
~•Eo•n4r :RECl'C4P 
41FCCC!C coECol4C 
CCFEC78• P'2•P32P 
4\FCCCF2 <QF(P\1)4 
•26450Fr •1r45eFC 
(AF(5AA(I P('4P'i0AC 
4AAC•27C \2AA4leO 
~ooccrc;F rzo2Aone 
c2c1•oor U<lon202 
0 03Ce\04 4l?CP25C 
4•A(IP32A \2A047A0 
ACOPCCCC qzc !ACOE 
Aono4115 A2rFs:«: 

OR\480 ACl?•PAO RQ4r5e•o 
O•l4A0 l2AA47eO CP025PAO 
('l•\4CO 4780C8AC •A•Co2~4 

QA\4Ft: ACQ158A0 RC4C<;PA0 
OP 150" F0\44110 CS"85PE0 
QA19" 47FCC<;J8 5PACP23A 
Q•\540 C93(4AFQ A~nt)\2<F 

(IP\560 5NQAOl)C 5A<!'PC4C 
QA\5A(I (Q7(5PA('I A2~402\P 
OB\56(1 920084\r 5PFCP\3Q 
QA\5(0 4\A('P4\C 58\('P2A4 
CA\5EO 58\CFCOB 5E\C'CA8 
0Rl60C' CAl~~AEO B1'P4EEC 
O"lh20 
QA\640 
1'.'P lA60 
QA \f,P( 
OB I ~AO 
OA If.CC 
QA \hFC 
081711(1 
QA \7 2C 
QA 1740 
QA\7f>O 
QR \7 80 
Cf\ I ?AO 
QR \1 Cl' 
CAJ?FC 
OA \PQ(I 
(IA l A ?0 
08 l A40 
QA\P60 
O• l A PC 
CA l A AC 

ll'OC4 701) 
Bl 3f0200 
61"!'1 l <;8 FC 
FQQC'A?l~ 

58ACPC48 
PQ485C00 
58AQAQ2A 
A('2P4 l l'l 
A4\(•Q30 
413CR?70 
'iOACPJOQ 
05EF47FQ 
l A4! ••AO 
UC24\F'i 
5PACP250 

r i1f.5<;oo 
AC\?FOQC 
COllCQ7< E 
n2~3F05F 

50AC8!CO 
A\OC4\FO 
!26A47PC 
A\nno5« 
•00002(11 
5C>CACOC 
41'0CCAC 
fBhC!A22 
A 2"C020? 
P2F F<;QFQ 
fl 2r\ ACOC 

8\l)AC2P0 R\l'IP5pFQ 
gRQCP\54 r7<EcAEC 
FCO•D?5E <coOA27' 
4\ 3Cen• 'iO~CP\[4 

OCC4'i8EO A\04Qoor 
OrC45p00 ((r4\PJP 

OR------~ PQQAI'.' 

C((?'•AC· •C4P'i0AC 
A03r4J lC' A\CC05Cf 
Pl4f07FE 47F((C•2 
C,2(1FQ<;F CCF65PFQ 
c2•08lll4 5AFCACPC 
P\q(Q7FF \PFF<;€FQ 
41 l !Onoo COOIGPF( 
F FFF,: i: ( 6 t: J:" I= Fl= er ( 

CA 8-byte header 
O A for IDCDL01 's 

111...-------, 40~ 
'.IC· 4r,"1 

QA 

o•u~c 
QA I• •C' 
QA \AAO 
Co lACC 
co IA 
QR \A 

QA \A 
(IA IP 
('I A 

QP \P . 
QA l A CO 
OP \P EC 
CA IC 01' 

Oil IC 20 
o• 1r 40 
OR \r tC 
GR lC CC 
CA\rEO 
CA rncc 
OB lTJ21J 
QA \n 40 
o• l'l60 
C 0 lOPC 
('A \r\AC 
CP lOCC 
QP \FCC 
CP\F 2C 
O~l•4C 

OR IF l>C 
:JP \F PC 
()R IF AO 
CA IF CC 
OP IF FC 
0° ?OCO 
OP 20 2C 
OR2Q41' 
QA 2C'· 60 
OP 20 AO 
QA 2r AO 
OA20CO 
OR2Q FQ 
QR2\('C 
QA2120 
!'~2140 
OA2H<' 
0A21 B" 
c•n•o 
0~2\CC 

OA2l FO 
QAnCO 
G• 22 20 
QR2240 
Q•Z? PC 
C'B2?0C 
0 P 23 AO 
IJR 73AC 
CP2•CO 
0•242C 
CA 244C 
"~246" 
QP24~0 

rA2460 
OP24CO 
CA 25r( 
CA?5 20 
c•z•40 
QA 256C 

•COi J0C 

0 I) 

ccccc450 r4~,coF1 F2CJFCFZ oocs•c•• 
OQOAlr'iB oon00000 ooooonoc coo•1r~c 
C C CCQ<;<;c;sc C(IOP\OAP 400F~C!C 

Address of parameter list; )t'rcoono 
second word in list points to :>l'.'O on •oo 
word containing address of rec o 1c< 4 

CTGPL OOl'P\C'iP 
CAif l Fl'.C 

OllOP.HF4 "00P\r,5r N'OC''JOOC' MOCCCOC 
OCOA IC 'iA cccoocco ccoccocr OCIJ p I UC 
0Al6l•cr C'Cll•!O'iC rQ('AJA•P 4CCA(CJ( 

(6/Q~/I' 

CC'COrorn --SAME-­
OOOOCOOQ cooro~QQ COO'lC 
ccrccooc --<•ME--

Address of 
CTGPL 

ccccccco IJCUQOOO CO'll"OOOC 0 C 
CCC'OCOOC' OQC'OOQOO 00000000 000•1 ClA 
<2ClC3C' 4CrsrsF3 C44CE2r! rtC74CCS 
CoE240F2 r1r3r340 r4c>r2r? 4or•~er.2 

4rEsFsn r J4rfqFQ c1c140C4 c>e•n•c 
O!OO~OCO 002cc100 IJl'QPlq\6 ococoooc 
accccoco CCcP\CPC 1AO('C100 OQl'0000C 
ccocr.cco co~0ocoo 01Jonoooc 00000000 
COCOC'lC'IJ --<A•E--
0000r?4A f4C?FCF\ OC·COOOOC OOCPJOPP 
OOCCCOOO --SAME--
OOOOOCCO 00(1C00CC COQCOIJOO COCCCCGC 
600•flElR ooocococ ccooonoo oooocooc 
C(ICOCOOO --SA•E--
OCCB!r~C 0cnooooc coocoroc cccooooc 
cncccooo --s••E--
QCQCCcco OCCPZl'C C'lCCCCCC 
OOQOC'4A C4C2FOF\ E3C7FOF! 
OUP2C5C 0(Ce2CF4 COCAC•oc 
QOQ<Jggso OOO<J0950 COOP20QA 
ecc•c•JB AQ('A2Ql'4 004CC4C? 
FQF?4C~<l CSFCF34C C4C2FQF\ 
orcg•JEC F34CCgcg FQF\4Cn 
O>FOF\40 C4C?FOF\ 40Cg(QF4 
F\4CCOC<J OOOA223C cqf3f74C 
OOCIE~04 40E2Cg(q FOF\4Ccg 
con5oc40 UC ir ~<p 40C<lC<lE' 
Ch40C'if7 C6E240E2 ClC3C34C 
F2Clc~r1 40F2c1Fll 
FCF340E2 C lFCF24Q 
4CE2rJFO F240f40? 
ClFC'F240 C4C?Fl)F\ 
C64CCSC<J 05054CF 2 
r5E7F\rf, 40C'iE7C6 
E50!4CF2 C IC3Cl4C 
OOCCOOOO --q•E-­

J=240Cgcc 
C<J(qf('F3 
F0Fl40C4 
4ncqC"F0 
CIC 3034C 
E240E?CI 
FOEgc>n 

ccrccCQC 
ooog • l"O 
OOOP!C6C 
60C AGO\ C 
FQF \40()9 
4CCSC~FC 

E7F(F\4C 
F<l4Q< 2C l 
Q<;(<;F 41= .G 

(<l(4C64Q 
044CF2Cl 
C4C°C2C7 
l=CF~4CC4 

4(f)<;(<;FQ 
C2FCF\4C 
F\4CMCS 
r.scsur,4 
C3C'34CC4 
40co•orc 

COCCC03A F2CJFCF° COOOO"OC' QOQ<;A4•C 
or:cococ11 --s•ME--
OC'cooooo ccocoooo COOOC33P cccccccc 
QC(CCQCQ --SAMF--
CCQC'C22o E3~1F(<~ E2C\FU2 CCCC64P( 
ocr•24~0 000•20E4 COC<lCTJ08 OOCA160A 
ccccc<;5Q occsgccc COCA24CA toooc1c 
ocoqc<;~O C'CCAl\16 elJOAll2C eOOE 0 376 
C5E7(~F2 4QF2(!C3 0340C403 C2C74CC4 
C3Cl4CE<J FGC,Cl4C cocrcccc rcccoooc 
OCCOl"QOC --< o•E--
COCA?PCIJ Cf('A0Ql0 FFFFFF46 QOOCOOOC 
Co4or,gcq o5n54CF2 c1c3034r ogcc;un4 
r•E7F1Ch 4CC5F7Ch E240E?r\ C3C'40C4 
F~C'4CP C!f3C\4C' fqF<JC3Cl 4C'F?Clf3 

Figure 6-2. Sample Dump (Part 4 of 5) 

5••0•040 l2U41EC 
5°AOP264 "ZF5AC12 
<pFCPC4C 5SAQFC4• 
5PACAC24 !2U41P0 
~•AQP2t4 Q6C4ACO! 
Fr!OlqFA 4lECC<;C4 
5CAOICCe ~··c•C4C 
5P\OP2t4 5QACl~lP 
4<;<C(C<;F 41CCCSt7 
5•<QAC•4 12n41eo 
<•AQAOce !EH':F•C 
seACP\ 3P •EACACOC 
5CAO\C'C4 !EH5PFO 
~C4C•A9C SCCE41H 
<r1eqPQ Ptr2417C 
l2EE4??~ 046<J5Cl 
~·•oeC4E 5PFCACCC 
C?CJe 0 2P rc•e5PAC 
qzpQP\C4 5PFQAC2P 
•0<;441\C PJCCC~EF 

Pl(C4!FC CCF25CFC 
(P6A4qAC CCH477C 
rrcr<;zc• ACce1•t< 
AOC8CCCF q20HOOP 
•ceCP!Cf S2FCP\IH 
CPFE\EC• 4PCCCC<lC 
4131JCOC l 4 ?FCC PF P 
1CC0477C CPC•OiQI 
PHIJ4!5C CCPC5C5Q 
4A~cccs• !'l3447cc 
S0FCPJC4 C<ACPC4E 
PC4(<RFC FC\4\2FF 
411oe1cc c•EFIF2F 
PJS4SPCC P\S(C7FF 
C~CCCHE CCCICCOZ 
<"FFFFr4 FFFFFFC~ 

(?(7(4(' c•r4r4ro 
E•F2C4C 0 f!C!C~c• 

C'OCCCCOC OCCCCCCC 

CPU58AO R264Q2C l 
5POCRC4C 5EACACIC 
417CCeec 5G•CFC4C 
cPC658AO PU49644 
JPH5PFC PC4C5SOC 
41M1F0!6 50ACEC'Ce 
••ACAC!C !2H47eC 
58N'P264 4\FCB32e 
C2l•P4CC ACCC47FC 
CgP.'•C726 84lDA41C 
CCPP.C20'i P4\CACCC 
•C 60C06 5eF~RC4C 
EU4~<aC FC!f477C 
<;CJCC~E!G rr•C49AC 
(A4f'EAC BU4'iEFC 
FQCC4770 (646g6()2 
C2~FP273 FCC~02'iE 
•02•12u 47ecc•A2 
4l lC8lCO ('~EF5e•c 

40FCP27C ~8ACRC4E 
PJr4C2EC P\C45eF( 
CP2C586C P2'iQ4!3C 
47F(CR4( 'ieACR2'iC 
4\2QQCOP. 5AACPC4P 
58FCAC30 41\CR!DC 
8HCC~2C 5CCCccrc 
5PAIJE250 Je534C5C 
AIJUCOC 47FOCPCE 
P\C44\~C E25C5C5C 
CBSC\~F2 58FOP.14C 
~EFCACCC Ci~EA273 
47ECCC70 5CACA!CC 
\22?47EO CC'C4!FC 
c;PF(P\<;4 nFf<;•nc 
rCC4CCCt CCOlOCOe 
cocccocc ccccoc2r 
C6C7C4C' C3C'C40! 
E3EP(7(5 404CC4r3 
CCCCCCCC 0CCCOCOC 

• • H& • • •., M,,. • •, 
.............. !-' • 
•••• L ......... . .................. . . . . . . . . . . . . . . .. 
0 ••• '· ••••••••• o 
.c I. •••••••••••• 
! •• c •••••• '· •••• 
&O ••• C ••• , C. ,0 •• 
! .. , •• K ........ , 
•••. ,r •.• cc • • c •• 
........ & •••• 01c 
•• o ............ . 

.............. &. 

.,K.,,C ... •••• •• ......... () ..... . 
c ••• K.C ... o .... . 
•••• t. ••• c.2&c.~ 
•• & •••• o •• &c.~.c 
.............. &. 

• ,&, •• K •• , •• K,,. 
•• •• &. •• K.,. •• K, 
& ....... &..~ ••• & 
••• o •••.•••••••• 
•••• .tK.,. , • ., •• 
• P.5.,to ....... v 
•• .&K •••• B ... ,&. 
.c •.. o .o ••.•.•.. 
............. c .. 
C.K.C ••• K.r,,f,C 
.. ,. t .. M. • .M.C •, 

..... c ......... . 

, •••• I .. OLCUVCCL 
VLCLPCCL8CUCTCL 
'='! •••••••••••••• 

PAGE SS 

•••.~."••,A 
..... v ......... . 
.c .... c ••. H ••• c 
•••••••• ~<. ..... 
••••••••••• o •••• 
c .... • 1 • •• c.&. •• 
£. ............. . 
•••• t •••••••• c •• 
.C •••• I .K •• , ••• 0 
.C •••••• I, P, •• ,. 
.......... K ••••• 
............. o •• 
&. ••••• c •••• c ••• 

C • •• ,K •••• , •., .0 
....... •c ....... 
..... Q •• K ••• c.K. 
K .............. . 
•• • ~.c ......... . ........ (\ ..... . 
... o.nc.~ ... ~.o 
............. &.. 
••••••••• o •••• & 

&..c ••• c.c ...... 

••••• c.e ••• & ... & 
..... CK ... ., .C .. 
•• .£..&&.M.t.t£& 
........... 2 •••• 
......... O .. K ... 
... cc ....... &. .. 
.•...••..•..•.• c 

... ~ ... c ....... . 
PGCL~DCLCHLLCCL 

V5CLCLE~1YPE Cl 

•••••••••••••• /IL LF(Rflj'eL~KlERr ••• 

COC<ll\CC 7CCPlH• COCPCt3F OCOGQPPC 
c~o·c•gc PCCOOCl' OQCCEFfF CCCP?cCe 
cc~«c~c cccec•1c eocse<f2 cccccrcc 

•oc•CC44 occocccc CCC<;<;BPC OCCPtc<e 
RC'OCOOl~ OOC<;PffC C1JC•2CCP 0616\"N 
ccce 1c~c cccccccc crcccccc ccccoocc 
oocccocc occcccoc ccc•tofc occ•oec:c 
C0Cf!C5C OCOEl'•P. 40CECC IC CCCP!C5f 
cr~ococc ACCPCCP 7 ccccccco ccccs••c 
l'OC•CPGC BCOOCC!' CCCCFFFF C'CCE2CCE 
c~~ocrcc occooccc cocccocr ocoooocc 

:OOOC~ CC~COCCC oocccs•c CCCA!CEC 

cccccccc crcccccc CCCPtcc• cc 

, •• & Cl CI~ A ( 2., • , 

••••••• &. ...... 

. . . *.... . .... . Li 

. .......... ~ ... . 
••• 4 •• ·* ....... . 

....... *.... . .. 

000".IQOCO CCCIOCCO cccoco~c cc Pointer to 
r c F c; F c; 4 c E2 c l c • c ~ 4 o e< E 7 F 1 et address of 1 u ~ AF P R 
r 7•CC4C' ~oC'4CC4 c 0 E•c?4C E2 CTGPL CL•G CL< 
C4r>C7C' 40C4r 0 r 2 C 0 4CCC•C r> Lo-------' ZCA OLVL 
cccccc~ 1 oc<:PlCP• C6cre1cc ocoeC\B<lE 
IJllCPCPq OCCP\CtC CC C C CCCCOCOC 
oc ••co co occcc 1c"r 

CTGPL 
cccc;<;F(C ((((("-_-_ -------_JOCO 

C(cccs•c FCC•lFEF cccrcccc occsqg~o 
cocccccc ccccccoc crcccccc ccccoocc 

cc~ococc cccccc~c cocccccc ccccoccc 

cccoccu ccccococ cocccccc ocre1 cse 
oor.ggFt;C 7QCADC AC coc p34• e CCC<;gAAC 
00CElCFC 8COCCCl~ COC<;EFFF CCCPl l<J' 
Ol:C9SS~C P.CCeJ\<;3 ecCS62PC QC('OQ<;~C 

CQFl'IF\4C C4C2FCFl 4CC<;C<JFC F\4CF2CI 
F'4CE2Cl FCF24CC9 C<JFCF34C E2C\FQF2 
C4C2FOFl 40C5E7FC FHCE2Cl FCF24CC4 
C7C74C[<; CcF!Fi4C cg(OF4FC 4COCCcFC 
4CCq(<;E2 Ct4CCS(<; cccccccc COC'c•He 
Co(<;f3F7 •OCSCSF4 F44CCSC<; 0'2Cf4Cn<; 
(t[740[S C~fgfq4~ E?C\C4C<; 40C5E7F\ 
4((4Cefl Cl4CC40' r°C340C4 C3F<;034( 
C?F0Fl4C ccccFCP 4CF?CIFC F24COS(C 
F\4((5F7 F(F\4CC4 C2FOFl4C C~E7FCF l 
C4C1FCFl 4CC4C2FC Fl4CC4C' FCF\4CO 
C4C640C9 CgF3F74C C<;(cF4F4 4CCcCSF2 
4C~2C !Cf. C74(C<;CS F<JFc40E2 C!C4C54C 
O?C2f74C C'<C!C2C7 40C4C'r.3 C34CC4D' 
IJOCe21CS OCOCOCOO C~E7FOGA CC6400C'C 

caorocco ccr0ococ oocccccc ccccoccc 

cccccocc occcccoc cccccccc ccccoccc 

CC(gqfOC 6COCFCC Cl'CPCh2C 'lCOG<JPRO 
l"OCOOCC p occcococ OOCc EFFF OCOGA ~gr 
CCOS<;<l5" QCce223• OCCA537A PCQ<;ABOC 
PC7F(FJ CC'<CE2Cl f4C54CC5 E7F\U4C 
r.>(2(74r C4C3C3C' 40C4C3E5 0'40E 2C I 
ccccr.ccc ccr.oococ cr.cocccc coccococ 

OOCOCCC<; (Cf!F740 CS(<;F4F4 4Crscce; 
4CF2ClC6 D74CC9C<J fgFo4(1E2 C!C4C54C 
C'C2C14C (4[ 0 C<C7 4((4C3C' n4CC40' 
c14oocco occcococ cccocccc ocr;cooco 

.......... c ..... 

• ,. • CPC\,. , ••••• 

•.. * ••••........ 

.... OPC\1PCJ., •• 
•• • 11o ••• u .•••.. . -
••• & ••• &. ... - ••• 
• , •• •• .u. OBCl R 
C'2 01r3 CAO! RIO 
, ••• 3 P!Ol 0(11 
LC! OP.Cl R\4S 5A 
l RJ. ••• 137 0\44 
•• T~ SPIC! RICF 
INN SHL RIH 56 
F EHS SACL CLP( 
~ACA SAQ2 RIC' c 
(3 SAC2 Rl03 RIC 

<A02 CLC'l CPO! 
A02 CBC! RIO\ RI 
f Pl~N SACL Pl1~ 

EX\F oXFS SACL C 
VL SAC A ZZCA ... 

, ••• SAC1, •• , •••• 

•• •• 1P(556C2.,. • 
... - ... u ....... . 
... & ••• &. ••• - ••• 
••• r.. .......... . 
EXFS S0CL CLP~ 0 
CA l lC 6 ••••••• , 

F R 1r-.N SAC PJ1M 
f'\F DFS ACL ( 
VL SAr• Zl A s•c 

....... c ........ 

............... f' 

••• £. ......... .. 

...... , .... H •• ., ................. 

.............. ·* 
••••••••••••••• f' 

P tG E !CC 

.... r·· .. ·"· ... 
, , ••• , •• , •• R IN~ 
1c~ ~ACE DJF D 
C CllC CLVl SAO 
OLFC rLEC •• c ••• 

... & ........... & 

••. L .......... & 
!Cl CPCl 0101 56 
~ 5ttC2 RIC~ 5.AC2 
ceo EXCI SAC< c 
(P Rll2 Pl4G RIC 

Pl5F Pl. ...... Y 
P137 P\44 Pl~F P 
fp R\<;<; 5ACF Hl 

CLPC CLLC CLVL 
eo P!03 Sb02 RI 
l EXCl CPI''! OCl 
CLCl CPC! CLCl S 
OF P!37 Pl44 OJ< 

SHP R !Sq 5HE 
LPG CLP( CLLC CL 
... T. ... EXC ..... 

... &. ••••••••••• 
1PC!. SoCE PlF 
LeG CLLC OlVl <A 

••• PP? <144 R\S 
SAFP 01qq SACE 

LP( [LF( rLLC Cl 
l ............. . 

Chapter 6: Diagnostic Aids 6-43 



Licensed Material- Property of IBM 

LIST 0610~/13 P~GE 21S 

i1ei=Ec ooooooco ooocoooo cooooooo 00000000 onoococo cccoocoo occococc ccccococ 
i1qooo ooooooco ooococoo coooooco ccoc~coc cocococc cccccccc cccccocc ococoooc 
l 7'l02C OCCCCCCC' --SA!OE--
l 7'l7EC ooooccoo coocoooc cocooccc ococoooc roccccoc o~coocco cocoocoo ocnooooc 
l 7'l800 0COOC000 00000000 (11)000000 OCOCOOOC CCCCOOCC CCCOOCCC CCC'OOOCC CCOCC'COC 
17'>A2C OOCOCOOO --SAP'E--
l?ql=EC ccccccco ccccoono oooooooc ccccococ ccaococc ccccocoo crcccccc occcoocc 
17Aooo 00000000 00000000 oooooooc ooocoooc ooooccco rcccoccc coc~cocc rcccoooc 
17AC2C OOCOCOOO --SA!OE--
l7A7FO OOOOIJ".lOO OCOCOOOC COOOOOCC C'OOCCCOC CCCCCCCC CCCCOCCC CCCCCOCC CCCOOOOO 
l 7A80C OCOOCOOO OOOCOOOO 00000000 OOOCQIJOC OC'COOOCC CCOCCCCC CCCCCCCC CCCCOOOC 
17A820 CCCCOOCO --SAME--
17AFF.C OOOCCIJCO ccccococ cooccooc ooocococ coryococc cccccccc ucccccc C'COCOCOC 
i 1Aooo 00000000 C'Ooooooo oooooooc 00000000 00000000 cccoocor co coco cc ocrcoooc 
i1eo2c ccccccco --SAME--
17E'7EO oocooo11n oooroooo cooooooo ococcocc cccocccc ccccoccc cccccccc coccoroc 
l7BACO 00000000 00000000 00000000 oooonooo occococo cccoocoo cococccc ccrcococ 
l 7BA20 OCOOCOCO --SAME-~ 

l 7Al=EO occooooo rocooooc OOCOCOOC' 0000'10'JC ooooocco ccccoccc cccccccc ccccococ 
i1cooo oroooooo 00000000 cooooooo 00000000 oooonoro occoocco coccccco 00000000 
17C020 OOOCOCCC --SA!OE--
l 7C7EC COOMOOO 00000000 OOOOOOCC CCOCOOOC OOCOCOCC CCCCCCCC CCCCCCCC CCCCOOOO 
17CAOC ocooccoo ococococ coooorco corcoocc cr~ooccc occo".looo cocccoco cooooo".lr. 
l 7C82C OOCOCOOO --SA"E--
l 7Cl=FC occoccco coocoooo coooocac ocoooooo cocrcccc rcccocoo cccccccc ccccococ 
170000 oooorooo 00000000 oooooooc ooococoo oocooccc C'ccoooco cocococc oooooooc 
11cc2c ocrrcoro --s~~E--
1101fc oocococo ro0cccco oooocooc ooocoooc oococccc cccccccc cocccocc ccccoo0c 
i 10Roo ooooccoo 00000000 coooonoo ocrrocc·c cocococc ccccccoc cccccocc ccocoooc 
17082C CCCCCOOC' --S~!OE--

170FF.O cccccoco ccccoccc ci:oocooo ococcocc or:cccccc ocrcccoc cccccccc ococccoc 
17EOOC 011000000 001100000 oooroooo oocrnooc oooooccc cccoccoo cococooo ocoooooc 
17E02C OOCOCOOO --S~P'E--

17E7F.0 00000000 oocooooo coooocco ccocccric cocccccc occccccc cccccccr occcoot:'o 
17EBOO ooooooon 00000000 cooooooo ocoooooc crcocrcc occccccc cocccccc ccccococ 
l 1ER2C CCCCCOCO --SAME--
l7EFFC OOCOOIJCO rcl'COOOO CCOOOOOO OCOCCOCC COCOOCCC CCCCCCCC CCCCCCOO OCCCOCOC 
i1Fooo 00000000 00000000 coocoo0c rcoooooo 00coooco cccocccc cococccc ncccoooo 
l 7F02C OOCCCOCO --SAME--
l 7F7EO OC'OOCOOO OOOC'OOOO COOOOOOG ccocococ crcocccc cccccccc cccccccc occcoooc 
l 7F8CC OC'O(IOCOO ooocoooo oooooocc OOrJO(IOnc cccoccco ococococ ccccccco occcoooc 
17F82C OCCOCOOC --SA!OE--
17FFEC cocoocoo 00000000 ('OCCCClOC OOOCOCI cccc cr:cccccc ccccoooc 

Dump point at 
which dump 

!~;~:=:~g~t~ ;~:~~; ~:~~ ~~~~ ;!g~ ~;i~ ~'.....__w_a_s_p_ro_d,.u_c_e_d__. SAC2 CRC! SAC2 0801 SAC2 CLOl CACI DLOl CBOl [LCl S~C2 reo1 
CLLC CLVL SHA lZCA 7lCA CLVL CLPC OLBC CLCT 8L\/S ZZCA 

TrCO'l2~1 S~AP DUMP 001 PRrCUCEC AT DU~F PC!~l 'Z7CA' CSECT that 
called for dump 

IOCC''l24T CLJ!OP RCUTHE INVCKEI: AT '7ZCA' 

JNTER-~OOULF TRACE: SAC2 CLCl CRCl CLCl CPCl CLC'l St02 CPC'l <t02 rFCl SAC2 CLO! CPCl CLOl CBCl DLCl 5AC2 cec1 5AC2 Cl'Cl 
TNTRA-MPDULE TRACE: Ryqq SADE EXlF EXl=S <ACL CLPG CLPC CLLr CLVL SAC~ ZZCA ZZCA CLVL DLPC OLPC CLCT CLVS SAr.A ZZCA ZZCA 

TDC30C7T VSA~ CATALCG RETURN-CCCE TS 5t 
TOC0551T **FNTRV MN01.CLC010411 NCT DELETEO 

TDCCOOll FU~CTIO~ CO~PLETEr. HIGHEST CCNCITIC~ rr~E ~A< p 

Figure 6-2. Sample Dump (Part 5of5) 

remainder of the save area is set up following standard register saving 
conventions. Each module's save area is contained in the first 18 fullwords 
of the module's automatic storage area. 

Figure 6-2, Part 2 shows a save area as it appears in a dump. The start of the 
save area chain is normally the psuedo save area built by the System Adap­
ter. This is a three-word area which immediately follows the System Adap­
ter Historical Data Area. The first word contains the identifier "SAO l ". The 
third word contains a pointer to the next save area. The forward chain is 
formed from the third word of each save area. 

How to Find the Trace Tables 
The trace tables can easily be found once you have found the GOT. The 
third word of the GOT (including the GOT identifier) points to the Inter­
Module Trace Table; the fourth word of the GOT points to the Intra­
Module Trace Table. 

Several areas in a dump may look as if they contain the trace tables; howev­
er, these areas may simply be areas used in constructing the trace tables. 

Figure 6-2, Part l, shows how the trace tables appear in a dump. Note that 
the last (twentieth) trace point in the Intra-Module Trace Table is SASN. 

6-44 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of I BM 

Method 1. 

Register I I 
of registers 
at top of 
dump 

Method 2. 

Reg I I Automatic Storage 
I r----..... of IDCSAOI L ...._____ l 1 

Glohal Data Tahk 

Location GDTTBL 

Parameter Li'>! 

~~s::dx~; ~~~;~~~. r~~~s~~~:s o Wl_E_x_o_1 ____ _ li--------f-"1~~:lbData Table 

't 
1 save area has identification of Previous Save Area 

"SAOI." 

T 
Figure 6-3. How to Find the U DT 

How to Find the FDT 

100 l is not part of the trace table. Also note that if, in the Inter-Module 
Trace Table, the sequence SA02 SA02 occurs, the second SA02 is really the 
ID for IDCI002. 

J 

You can find the Function Data Table (FDT) for an FSR after the FSR has 
received control by finding the save area in which the FSR saved the regis­
ters belonging to IDCEXOl. The first word of this save area contains the ID 
of the FSR, for example, PRO l for the PRINT FSR. The previous save area 
in the save area chain contains EXO l in the first word. Register l in the save 
area where the FSR saved registers contains the address of a parameter list. 
The second word of that parameter list contains the address of the FDT. 

All FDTs are built by the Reader/Interpreter in a UGPOOL storage area 
obtained by the Executive; the UGPOOL area has an ID of EXOO. The first 
two words of the FDT contain the name of the command. 

Figure 6-2, Part 3, shows how an FDT looks in a dump. Part 2 of Figure 6-2 
shows the register belonging to IDCEXOl and saved by IDCDLOl. Register 
l points to the parameter list. Part 4 of Figure 6-2 shows the parameter list 
and Part 3 shows the FDT. 

How to Find Automatic Storage Areas 
The automatic storage area for a phase or CSECT is that storage area 
obtained whenever the phase or CSECT is entered; dynamic storage areas, 
on the other hand, are those storage areas obtained by the phase or CSECT 
as it is executing. All automatic storage areas, as well as dynamic storage 
areas, are obtained by the System Adapter. 

Chapter 6: Diagnostic Aids 6 - 45 



Licensed Material- Property of IBM 

The automatic storage area for most processor phases and CSECTs is 
preceded by an eight-byte header. The first four bytes contain the number 
of bytes in the automatic storage area (including the eight-byte header), and 
the last four bytes contain the phase or CSECT ID. However, for commonly 
called CSECTs, namely, IDCIOOI, IDCSA02, IDCSA03, and IDCTPOI, no 
header precedes the storage area, unless the CSECT has been called recur­
sively. On recursive calls (that is, the CSECT has been called again within 
the original call), the storage area that is obtained is preceded by an eight­
byte header. 

The best way to find the automatic storage area for a phase or CSECT 
depends upon the phase or CSECT. 

The address of the automatic storage area for CSECT IDCSA03 is kept in 
the GOT. 

The addresses of the automatic storage areas for CSECTs IDCIOO I, 
IDCSA02, and IDCTPOI are kept by the System Adapter in the AU­
TOTBL. Figure 6-4 shows the format of the AUTOTBL and how to find it. 
However, ifone of these CSECTs has been called recursively, indicated by a 
use count in the AUTOTBL greater than one, another automatic storage 
area has been obtained. You must find the second and third storage areas 
using the CSECT's data register or save area register as explained in the 
next paragraphs. 

Figure 6-2, Part l, shows how the System Adapter Historical Area and 
AUTOTBL appear in a dump. 

To find the automatic storage area for any phase or CSECT, you can exam­
ine the microfiche listings to find which register has been used by the compi­
ler as the data register. This register points to the automatic storage area. 

For all processor phases and CSECTs, the first item in the automatic storage 
area is the save area. Thus, you can also use register 13, which contains the 
address of the save area, to find the automatic storage area belonging to that 
phase or CSECT. Alternatively, you can follow the save area chain as 
explained in the section "How to Find Save Areas" 

Figure 6-5 shows the automatic storage area for IDCEXOI. IDCEXOl has 
called IDCDLO l; therefore, IDCDLO l has saved the registers belonging to 
IDCEXO I in the save area. 

Figure 6-2, Part 4, shows an automatic storage area as seen in a dump. 

How to Find Dynamic Storage Areas 
A phase or CS ECT obtains storage areas dynamically by issuing either a 
UGSPACE or a UGPOOL macro. 

To find a storage area obtained via a UGSPACE macro, you must examine 
the microfiche listings to see where the phase or CSECT has saved the 
address of that particular storage area. To find a storage area obtained via a 
UGPOOL macro, you can again examine the microfiche listings or you can 
follow the UGPOOL storage chain maintained by the System Adapter. 

Figure 6-6 shows how to find the chain of UG POOL areas from the System 
Adapter's historical area. 

6- 46 VSE/VSAM Access Method Services Logic 



Licensed Material- Property of IBM 

GDT 

32 (20) GDTSAH 

Field 

ID 

Use Count 

Size 

Address 

ID 

Number 
of Bytes 

4 

2 

2 

.4 

Figure 6-4. Format of AUTOTBL 

Data Register of IDCEXOI 

Reg 13 of IDCEXOI 

System Adapter 
Historical Area 

8 (8) AUTOPTR 

AUTOTBL 

Use 
Count 

Contents 

CSECT ID 

Size Address l An entry exists for IDCIOOI, 
IDCSA02. and IDCTPOI. 

Number of automatic storage areas obtained for the CSECT: 

0 - no storage area being used 
I - the storage area whose address is in this table is the 

only storage area being used 
>I - another storage area has been obtained for the 

CSECT 

Number of bytes in automatic storage area 

Address of automatic storage area 

EXOI 

Previous Save Area 

Next Save Area * 
Automatic Storage 
Area of IDCEXOI 

T T 
*When IDCDLOI returns to IDCEXOI, 
this field will contain zeros. 

Figure 6-5. Example of an Automatic Storage Area 

Chapter 6: Diagnostic Aids 6-47 



GOT 

0 (0) GPFIRST 

4 (4) GPLAST 

Figun: 6-6. UGPOOL Area Chain 

UGPOOL ID List 

Licensed Material - Property of IBM 

First 
UGPOOL Area 

Second 
UGPOOL Area 

Third (last) 
UGPOOL Area 

() (0) 0 

12 (C) GPID 

() (0) 

12 (C) GPID 

This field contains UGPOOL 
area identification. 

The following list contains the UGPOOL IDs used by different phases and 
CSECTs when they obtain storage. The list of UG POOL areas also contains 
the name of the internal procedure that issues the UGPOOL macro, and the 
contents stored in the UGPOOL area. 

Figure 6-2 shows the UGPOOL chain as it appears in a dump. Part l of 
Figure 6-2 shows the start of the chain in the GOT. Part 3 of Figure 6-2 
shows a portion of the chain. 

Contents of UGPOOL Areas 

Phase or 
CSECT 

IDCALOI 

IDCBIOI 

IDCDEOI 

IDCDE02 

UGPOOL 
I[) Procedure 

ALOO 

BIOi 

BIPG 

BIPG 

ALTERPRC 

IDCALOI 

LOCATPRC 

INDEXPRC 

JCPROC 

INITPROC 

INITPROC 

DEOO IDCDEOI 

DEOO ALLCPROC 

Contents of UG POOL Area 

One of the following: PASS WA LL field or 
volume list. 

CTGPL, CTGFV, and CTGFLs. 

Catalog work area for locate requests. 

CTGPL, CTGFV, and CTGFL to alter index 
KEY field. 

Area obtained by UIOINFO to contain sort work 
file data set name and volume serial list; passed 
back to JCPROC. 

One 2048 byte buffer, followed by area for define 
CPL FVTs and FPLs, followed by alternate in­
dex record output buffer; area starts on page 
boundary. 

Record sort area followed by table which 
controls the sort. 

CTG PL and CTG FY s. 

One of the following: volume list, file sequence 
list, device type list, DSA TTR, or CTG FLs. 

6 - 48 VSE/VSAM Access Method Services Logic 



Licensed Materi11I- Property of IBM 

Contents of UGPOOL Arca 

Ph11sc or lJGPOOL 
CSECT ID Procedure Contents of UGPOOL Area 

KEYPROC One of the following: MADSBCAT CTGFL and 
IDAAMDSB field, or key range list. 

MODELPROC One of the following: CTG PL and CTG F Ls used 
to locate a model object, or catalog locate work 
area. 

NAMEPROC Creation and expiration date and EXCEPTION 
EXIT CTG FLs. , 

PROTPROC PASSWALL CTGFL, OWNERID CTGFL, 
PASSWALL field, RGATTR FPL, RGATTR, 
and User Authorization Record. 

IDCDLOI DLOl MO RESP Larger VSAM catalog management services 
work area if necessary. 

IDCIOOl 1000 IDCIOIT 1/0 Adapter historical area. 

IDCIOCO Work area where the copy routine builds 
spanned records that were exported in Cl mode. 
The UG POOL ID is the same as the ID for the 
associated IOCSTR. 

IOnn PUT REP Work area where VSAM moves records during 
GET. The UGPOOL ID is the same as the ID 
for the associated IOCSTR. 

IDCI002 IOnn BUILDACB ACB, RPL and EXLST for a VSAM data set. 
The UGPOOL ID is the same ID as the associat-
ed IOCSTR. 

BUILDDBK IOAREA for nonVSAM files. The UGPOOL ID 
is the same as the ID for the associated IOCSTR. 

BUILDRPL Work area where VSAM moves records during 
GET. The UGPOOL ID is the same as the ID 
for the associated IOCSTR. 

CKNONOP Work area used to assemble a nonVSAM 
spanned record. The UG POOL ID is the same as 
the ID for the associated IOCSTR. 

CLOSER TN If the UC LOSE is issued with the IOCRCVCL 
flag set, a new VSAM buffer is acquired. The 
U G POOL ID is the same as the ID for the associ-
ated IOCSTR. 

IOnn OPENRTN toes prefix. IOCSTR, IOCSEX. and file ID. 
Each data set that is opened is assigned a unique 
UGPOOL ID, starting with 1001; the next data 
set that is opened is assigned an ID of 1002. All 
areas associated with this data set have the same 
UGPOOL IDs. 

IDCI003 DSINFO Area in which data set name, volume serial 
numbers, device type, and/or format-4 times-
tamp is returned to the caller if an area is not 
supplied by the caller. The UGPOOL ID is sup-
plied by the caller. 

IDCLCOI LCOO INITPROC Main CTG PL used for all locate requests except 
when locating the entry names of associated en-
tries. This area also contains a save area for the 
CTGPL. 

LCOI INITPROC All CTGFLs, followed by the CTGFL save area. 

LC02 INITPROC Catalog work area referenced by the main 
CTGPL. 

LC03 INITPROC CTG PL used to locate entry names of associated 
entries; this area also contains a save area for the 
CTGPL. 

LC04 INITPROC Catalog work area referenced by the CTG PL 
used to locate entry names of associated entries 
of cluster or alternate index. 

Chapter 6: Diagnostic Aids 6-49 



Licensed Material- Property of IBM 

Contents of UGPOOL Area 

Phase or UGPOOL 
cs•:cT ID Procedure Contents of UG POOL Area 

LC05 INITPROC String of control interval numbers and types of 
associated entries of a cluster or alternate index. 

LC06 INITPROC Text processor argument list. 

LC07 INITPROC Abbreviations used in catalog listing, loaded 
from static text phase. 

LCll INITPROC String of control interval numbers and types of 
associated entries of a data, index, or path. 

IDCLC02 LC08 LOCPROC Larger catalog work area. UGPOOL LC02 is 
released. 

LC09 ANSVPROC Larger area for string of control interval numbers 
and types of associated entries. UG POOL LC05 
or LC 11 is released. 

IDCLROI LROI ADDASOC Association table extension area. 

BLDVEXT Vertical extension table extension area. 

INITLZE Space for ASSOCTBL, ASSOCTB2 and 
VEXTTBL. 

INTASOC Association table extension area. 

LR02 CTTBLD Cl translate table (CTT). 

LR03 INITLZE Input/output buffers. 

LR04 INSORT Sort table. 

IDCMPOI MPOl BFPLPROC Obtain one or two FPLs. 

BPASPROC PASSWALL CTGFL. 

CLUSPROC Buffer to read data records from the portable 
data set. 

CTLGPROC Larger catalog work area. 

DELTPROC Larger VSAM catalog management services 
work area if necessary. 

DVOLPROC Volume serial list for DEFAULTVOLUMES. 

LVLRPROC One of the following: volume list for define, or 
DEVTYPES CTGFL. 

RANGPROC Range list. 

FVTPROC FVT and pointers to FPLs. 

IDCRCOI RC50 OPEN Storage for OPNAG L. 

RCS! SUPSP Name table storage. 

RC52 DIRECT Buffer for directory record. 

RC54 SCANCRA CRA translate table. 

IDCRC02 RC02 IDCRC02 Control record output buffer. 

ALSPROC Control record output buffer. 

ASOCPROC Control record output buffer. 

CLUSPROC Control record output buffer. 

CTLGPROC Catalog work area. 

GDGPROC Control record output buffer. 

LOCPROC CPL, FPL, and work area for catalog. 

NVSMPROC Control record output buffer. 

SAVEPROC Input record save area. 

IDCRIOI EXOO GETSPACE FDT--data substructures. 

MORSPACE FDT--data list substructures. 

SCANCMD FDT-secondary pointer vectors. 

Rinn IN REPEAT FDT-temporary space for secondary pointer 
vectors. nn is the ID of the parameter associated 
with the secondary pointer vector. 

IDCRI02 EXOO IDCRI02 Reader/Interpreter tables and FDT. 

6- 50 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of I BM 

Contents of UG POOL Arca 

Phase or UGPOOt 
('.SECT ID Procedure Contents of UGPOOL Area 

Rinn IDCRI02 FDT-temporary space for secondary pointer 
vectors. nn is the ID of the parameter associated 
with the secondary pointer vector. 

IDCRMOI RMOI ALISPROC Catalog data record buffer. 

BFPLPROC Obtain one or two FPLs. 

BPASPROC Contain PASSWALL field information. 

CLUSPROC Buffer area for data record containing catalog 
locate area. Also volume list. 

CPLPROC Catalog parameter list. 

CTLGPROC Larger catalog work area. 

DELTPROC Larger catalog work area. 

DVOLPROC Volume serial list for DEF AUL TVOLUMES. 

FVTPROC FVT and pointers to FPLs. 

LVLRPROC Volume serial list. DEVTYP FPL and associated 
device type lists. List of FILESEQUENCE num-
bers and associated FPL. 

NFVTPROC FVT and total number of FPLs. 

NVSMPROC Buffer for data record. 

RANGPROC Storage for range list. 

UCATPROC Storage for data record. 

IDCRSOI RSOl IDCRSOI Automatic storage modules IDCRSOI -
IDCRS07. 

RSOI INIT Work area used for Umacro parameter lists, 
record access blocks, IJJHCPL parameter list 
and control interval translate table. 

RS03 INIT Area obtained by U IOI N FO for catalog data set 
information. 

RSPG INIT CRA user buffer. 

IDCRS03 RS03 VOLCHK UIOINFO return area and DSCB read in area. 

RSIO GETT AB Tables obtained as needed for association 
checking. 

RSI! PROCVOL Work areas used for bit maps. 

RSl2 VERB Work area used for GOG association checking. 

IDCRS04 RS04 NINIT Work area used for FIND processing. 

RS04 NXPND Extension to FIND work area. 

IDCRS05 RSOI BLDRLST RES VOL table. 

RS02 BLDVLST VOLSERTB table. 

IDCRS06 RS03 WFDEF Work area used for UCATLG parameter list to 
define the workfile, area obtained by UIOINFO 
for workfile data set information. 

IDCRS07 RS03 RENAMEP UIOINFO return area and work area. 

RENMBK UIOINFO return area and work area. 

RS05 RENMSETV CVH work area for RENAME. 

IDCTPOI TP03 LINEPRT Header line. 

IDCTP04 TPOI INITPROC Secondary Print Control Table. 

PCTSETUP One of the following: Print Control Table, 
sub-title lines, or footing lines. 

Chapter 6: Diagnostic Aids 6-51 



Sample Dump 

Contents of UGPOOL Arca 

Phase or 
CSECT 

IDCTP05 

IDCXPO I 

UGPOOL 
ID Procedure 

TPOI 

XPOI 

IDCTP05 

ALTRPROC 

CONTRBL 

CTLGPROC 

DELTPROC 

LOCPROC 

Licensed Material - Property of I BM 

Contents of UGPOOL Arca 

Entry from a static text format structure. 

CTG FV and CTG FLs for catalog alter request. 

Output buffer for control records. 

Larger catalog work area. 

CTG PL for catalog delete request. 

One of the following: CTG PL and CTG FLs for 
catalog locate request, or catalog work area for 
locate request. 

The dump in Figure 6-2 was obtained through the Test option at the ZZCA 
dump point. The commands that were specified are: 

PARM TEST( FULL( ZZCA,3,1 ) ) 

DELETE MN01 .CL001040/CLMR 

Various fields within the dump are marked; these fields are discussed more 
fully in this chapter. 

Debugging a Catalog Problem 
There may be a problem within Catalog Management routines or within 
Access Method Services routines that invoke Catalog Management if one of 
the following situations occurs: a system error occurs within Catalog Man­
agement routines, the return code from the catalog indicates a non-user 
error, or the printed output from the catalog is incorrect. To determine 
whether the problem exists in Access Method Services or in Catalog Man­
agement, you must examine the argument lists passed between the processor 
and Catalog Management. 

This section explains how to obtain a dump that contains the Catalog 
Management argument lists and how to find the argument lists within the 
dump. 

To determine whether the argument lists passed between the processor and 
Catalog Management are correct, see the section "Method of Operation" in 
this book and in VSE/VSAM VSAM Logic, Volume 1, which is listed in the 
preface to this book. The section •'Method of Operation" explains what 
argument lists are passed to Catalog Management by each FSR; 
VSE/VSAM VSAM Logic, Volume 1 explains the contents of the argument 
lists and also explains the arguments that are returned by Catalog Manage­
ment. 

Obtaining a Dump For a Catalog Problem 
If you do not have a system dump within Catalog Management, you can use 
the Test option to obtain a dump within Access Method Services before and 
after the call to Catalog Management. 

The list of Phase or CSECT to Dump Cross Reference contains all the dump 
points within the processor; you can specify these dump points on the FULL 
option of the TEST keyword to obtain a full partition dump. Most FSRs 
that issue a UCATLG macro to call Catalog Management have dump points 
before and after the macro. In addition, the System Adapter routine that 
issues the CA TLG macro has a dump point before and after the macro. 

Some FSRs have unique dump points around different types of calls to 
Catalog Management. For example, IDCDLO l has dump points DLVL 

6 - 52 VSE/VSAM Access Method Services Logic 



Licensed Material- Property of IBM 

around the call to locate the entry type and dump points DLVS around the 
call to delete the entry. Some FSRs have the same dump point around all 
calls to Catalog Management, for example, IDCMPOI. Some FSRs have 
dump points at which you can obtain selected fields in addition to a full 
partition dump, for example, dump points LCBL and LCAL in IDCLCO l. 

The System Adapter dump point ZZCA can always be used, for any FSR, to 
obtain dumps before and after a call to Catalog Management. 

To determine at which iterations of a dump point you wish a full region 
dump, you must determine how many calls to Catalog Management have 
been made by the FSR before the call that caused the problem. You can 
either use the following list or rerun the job with the AREAS option. 

Instead of using the Sequence of Catalog Calls Made by FSRs, you can 
rerun the job with the AREAS option of the TEST keyword to determine 
which iteration of a dump point you need to use. For example, if you wish 
to use dump point ZZCA to obtain a dump, rerun the job with the following 
Test option: 

PARM TEST( AREAS( ZZ ) ) 

From the trace output you can see how many times dump point ZZCA was 
encountered before the problem occurred. 

The following list summarizes the sequence of calls each FSR makes to 
Catalog Management. For example, assume that the LISTCAT FSR, 
IDCLCOl, while listing all the information for a KSDS cluster entry, listed 
the cluster name under the index entry incorrectly. Referring to the list, you 
would know that the call to the catalog that retrieved that name was the 
seventh call the LISTCAT FSR made to Catalog Management. 

Sequence of Catalog Calls Made by FSRs 

FSR Sequence of calls to catalog management 

IDCALOl I. A call to open the catalog if the dname subparameter of the CATALOG 
parameter was specified. 

2. A call to locate catalog fields if one of the following fields is being 
nullified or altered: MASTERPW, CONTROLPW, UPDATEPW, 
READPW, CODE, ATTEMPTS, AUTHORIZATION, 
ERASE!NOERASE, SHAREOPTIONS, FREESPACE, 
WRITECHECK!NOWRITECHECK, 
UNINHIBIT!INHIBIT,UPGRADE, UNIQUEKEY, NONUNIQUE­
KEY, KEYS, or RECORDSIZE. 

If UPGRADE was supplied: 

1. A call to locate the associated data component of the alternate index to 
verify that it is empty. 

2. A call to alter the alternate index entry. 

If RECORDSIZE was supplied for the data object: 

1. A call to locate the cluster or alternate index associated with the data 
object. 

2. A call to locate the index associated with the cluster or alternate index 
related to the data object. 

3. A call to alter the data entry. 

If RECORDSIZE was supplied for the cluster or alternate index object: 

1. A call to locate the associated data object. 

2. A call to locate the associated index object. 

3. A call to alter the data entry. 

If RECORDSIZE was supplied for the path object: 

1. A call to locate the data object of the related alternate index or cluster. 

Chapter 6: Diagnostic Aids 6 - 53 



6- 54 

Licensed Material - Property of IBM 

Sequence of Catalog Calls Made by FSRs 

FSR Sequence of calls to catalog management 

IDCBIOI 

VSE/VSAM Access Method Services Logic 

2. A call to locate the index object of the related alternate index cluster. or 
cluster. 

3. A call to alter the data entry. 

If KEYS was supplied for the data object: 

I. A call to locate the cluster or alternate index associated with the data 
object. 

2. A call to locate the index associated with the cluster or alternate index 
related to the data object. 

3. A call to locate the alternate index's base cluster, if the data object is 
associated with an alternate index. 

4. A call to locate the data object of the base cluster. 

5. A call to alter the data entry. 

6. A call to alter the related index object key values. 

If KEYS was supplied for the cluster object: 

I. A call to locate the associated data object. 

2. A call to locate the associated index object. 

3. A call to alter the data entry. 

4. A call to alter the related index object key values. 

If KEYS was supplied for the alternate index object: 

I. A call to locate the associated data object. 

2. A call to locate the associated index object. 

3. A call to locate the base cluster object. 

4. A call to locate the base cluster's data object. 

5. A call to alter the data entry. 

6. A call to alter the related index object key values. 

If KEYS was supplied for the path object: 

I. A call to locate the data object of the related alternate index or cluster. 

2. A call to locate the index object of the related alternate index or cluster. 

3. A call to locate the base cluster's data object, if the path is related to an 
alternate index. 

4. A call to alter the related entr's data object. 

If KEYS was supplied: 

I. 

I. 

2. 

3. 

4. 

5. 

A call to alter the related index object's key values. 

A call to locate the catalog ACB, entry type and associations of the name 
specified for the base cluster-may be the base cluster itself or a path 
over the base cluster. 

A call to locate the AMDSB of the base cluster's data component. 

A call to locate the entry type and associations of the name specified for 
the alternate index-may be the alternate index itself or a path over the 
alternate index. 

If locate 3 returned a path over the alternate index, a call to locate the 
entry type and associations of the alternate index. 

A call to locate the AMDSB of the alternate index's data component. 

If an external sort is performed: 

I. Two calls to define each sort work file. 

2. Two calls to delete each sort work file. 



Ucensed Material - Property of I BM 

Sequence of Catalog Calls Made by FSRs 

FSR Sequence of calls to catalog management 

IDCDEOI 

IDCDE02 

IDCDLOI 

IDCLCOI 

I. A call to open the catalog if the dname subparameter of the CATALOG 
parameter was specified. 

2. A call to define the entire entry. 

I. A call to open the catalog specified if the MODEL parameter was 
specified with the dname. subparameter. This call occurs prior to the 
first locate for cluster. data or index described in 3. 

2. One or more calls to locate each object that is modeled, as follows: 
threecalls if the MODEL keyword is specified in the cluster parameter 
list for a KSDS cluster; two calls if the MODEL keyword is specified in 
the cluster parameter list for an ESDS cluster or in both the data and 
index parameter lists; one call if the MODEL keyword is specified in a 
data parameter list or an index parameter list only. 

I. A call to open the catalog if the dname subparameter of the CATALOG 
parameter was specified. 

For each entry: 

I. A call to locate the entry type, if the type was not specified on the 
command. 

2. A call to delete the entire entry. 

3. An iterative series of calls to delete any remaining parts of a structure as 
necessary. 

I. A call to open the catalog if the dname subparameter of the CATALOG 
parameter was specified. 

For each cluster entry: 

I. A call to locate the cluster entry. 

2. A call to locate the name of the data entry associated with the cluster 
entry. 

3. A call to locate the name of the index entry associated with the cluster 
entry, only for KSDS clusters. 

4. Repetitive calls to locate the names of the alternate indexes and paths 
associated with the cluster entry (if any exist). 

5. A call to locate the data entry. 

6. A call to locate the name of the cluster entry associated with the data 
entry. 

7. A call to locate the index entry. only for KSDS clusters. 

8. A call to locate the name of the cluster entry associated with the index 
entry. 

9. Repetitive calls to locate the path entries (if any exist). 

10. Repetitive calls to locate the cluster, data, and index (for key-sequenced 
files) associated with the path entries. 

Chapter 6: Diagnostic Aids 6-55 



6- 56 

Licensed Material - Property of I BM 

Sequence of Catalog Calls Made by FSRs 

FSR Sequence of calls to catalog management 

IDCLROI 

VSE/VSAM Access Method Services Logic 

For each alternate index entry: 

I. A call to locate the alternate index entry. 

2. A call to locate the name of the data entry associated with the alternate 
index entry. 

3. A call to locate the name of the index entry associated with the alternate 
index entry. 

4. A call to locate the name of the cluster entry associated with the 
alternate index entry. 

5. Repetitive calls to locate the names of the paths associated with the 
alternate index entry (if any exist). 

6. A call to locate the data entry. 

7. A call to locate the name of the alternate index entry associated with the 
data entry. 

8. A call to locate the index entry. 

9. A call to locate the name of the alternate index entry associated with the 
index entry. 

I 0. Repetitive calls to locate the path entries (if any exist). 

11. Repetitive calls to locate the alternate index, data and index (of alternate 
index), and data and index (of cluster) associated with the path entries. 

For each data entry: 

I. A call to locate the data entry. 

2. A call to locate the name of the cluster or alternate index entry associat­
ed with the data entry. 

For each index entry: 

I. A call to locate the index entry. 

2. A call to locate the name of the cluster or alternate index entry associat-
ed with the index entry. 

For each path entry: 

I. A call to locate the path entry. 

2. For a path over a duster, a call to locate the name of the cluster, and 
data and index (of cluster) associated with the path entry. 

3. For a path over an alternate index, a call to locate the name of the 
alternate index, data and index (of alternate index), and data and index 
(of cluster) associated with the path entry. 

For each nonVSAM entry: 

I. A call to locate the nonVSAM entry. 

For each space entry: 

I. A call to locate the space entry. 

2. One or more calls to locate each file ID in a space entry, for example, 
three calls if three data sets are defined in the data space. 

For each user catalog entry: 

I. A call to locate the user catalog entry. 

I. A call to open the catalog if the dname subparameter of the CATALOG 
parameter was specified. 



Licensed Maatcrial- Property of IBM 

Sequence of Catalog Calls Made by FSRs 

FSR Sequence of calls to catalog management 

IDCMPOl 

IDCRCOI 

IDCRMOl 

IDCRPOI 

IDCRSOI 

IDCRS06 

I. A call to define the cluster or alternate index. 

2. A call to locate the cluster entry, if the previous define failed bacause of 
a duplicate entry in the catalog. 

3. A call to locate the data entry, only for a duplicate cluster entry. 

4. A call to locate the index entry. only for a duplicate KSDS cluster entry 
or alternate index entry and if the temporary export flag is not set in the 
data entry. 

5. A call to delete the entry, if there is a duplicate nonempty entry. 

6. An iteractive series of calls to delete any remaining parts of a structure 
as necessary. 

7. A call to define the cluster again, if there was a duplicate entry. 

8. A call to delete the defined entry, if an error occurred copying data into 
the defined entry. 

9. An iterative series of calls to delete any remaining parts of a structure as 
necessary. 

10. A call to alter the data entry, if the INHIBITTARGET keyword was 
specified at export time. 

11. A call to alter the index entry, if the INHIBITTARGET keyword was 
specified at export time for a KSDS cluster or an alternate index. 

l. A call to locale the cluster entry. 

2. A call to locate the data entry. 

3. A call to locate the index entry only for a KSDS cluster or an alternate 
index. 

I. A call to define the object. 

2. A call to delete the object if a duplicate name is indicated following the 
first call to catalog. 

3. A series of calls to catalog to delete the remainder of the structure. 

4. A call to define the object if a duplicate name was found. 

5. A call to alter the name of the object if it is a VSAM entry to the dummy 
name specified on the OUTFILE ddcard. 

6. A call to alter the name of the object back to its original name if the 
previous call was exported. 

7. A call to delete the object defined if import fails after the define. 

8. A series of calls to catalog to delete the remainder of the structure. 

For VSAM data sets: 

l. A call to identify the INFILE data set type. 

2. A call to identify the OUTFILE data set type. 

I. A call to locate the catalog volume serial number. 

2. A call to locate the catalog data set name. 

3. A call to locate the catalog volume serial number and timestamp. 

4. A call to locate the catalog ACB and data attributes. 

5. A call to locate the ACB of the catalog in which the workfile was 
defined. 

I. A call to define the workfile. 

2. A call to delete the worktile. 

Chapter 6: Diagnostic Aids 6 - 57 



Licensed Material - Property of IBM 

Sequence of Catalog Calls Made by FSRs 

FSR Sequence of calls to catalog management 

IDCXPOl I. 

2. 

3. 

4. 

5. 

6. 

7. 

A call to locate the cluster or alternate index entry. 

A call to locate the data entry. 

A call to locate the index entry, only for a KSDS cluster or an alternate 
index. 

A call to locate the related base cluster name if the object being exported 
is an alternate index. 

A series of iterative calls to locate catalog information about the path 
objects associated with the object. 

A call to alter the data entry, if TEMPORARY, INHlBITSOURCE, or 
INHlBITTARGET was specified on the command. 

A call to alter the index entry, ifTEMPORARY, INHIBITSOURCE, or 
INHIBITTARGET was specified on the command, and the object is a 
KSDS cluster or an alternate index. 

8. A call to delete the entry if PERMAN ENT was specified on the 
command. 

9. A series of iterative calls to the delete any remaining parts of the 
structure. 

How to Find Catalog Management Argument Lists 
The Catalog Parameter List (CTGPL) is the one argument list always 
passed between Access Method Services and Catalog Management. The 
CTGPL may point to a catalog work area, a CTGFV, or one or more 
CTG FLs. Thus, once you find the CTG PL, you can find all the Catalog 
Management argument lists. 

The best way to find the CTG PL in a dump depends upon the type of dump 
you have: a system dump within Catalog Management, a PDUMP taken at 
a dump point within an FSR, or a PDUMP taken at the ZZCA dump point 
in the System Adapter. 

In a system dump within Catalog Management, register 1 of the registers 
saved when Catalog Management was entered contains the address of the 
CTGPL. 

In a PD UMP taken at a dump point within an FSR, the address of the 
CTGPL is stored at location CTGPLPTR in the FSR's automatic storage 
area. You must examine the microfiche listings to determine the offset of 
location CTG PLPTR in the automatic storage area. 

In a PDUMP taken at dump point ZZCA within the System Adapter, the 
address of the CTGPL is again stored at location CTGPLPTR in the FSR's 
automatic storage area. However, the address of the CTGPL is also passed 
as an argument from the FSR to IDCSA02 when the UCATLG macro is 
issued. Figure 6-7 shows how to find the address of the CTG PL using 
register l at entry to IDCSA02. Register I contains the address of a parame­
ter list. The second word of the parameter list points to a full word that 
contains the address of the CTG PL. 

In addition to the CTG PL, Catalog Management returns to the processor a 
code in register 15 that indicates the result of the catalog request. The best 
way to find the return code in a dump again depends upon the type of dump 
you have: a PDUMP taken at a dump point within an FSR, or a PDUMP 
taken at dump point ZZCA. 

In a PDUMP taken at a dump point within an FSR, you must examine the 
microfiche listings to determine where the FSR has stored the return code. 
However, any nonzero return code is always printed by the FSR in a subse­
quent message. 

6 - 58 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Save Arca 

IDCSA02 has saved registers o (OJ 
passed by FSR. 1-----------t 

Previous save area has 4 ( 4) Previous Save Arca 
FSR's identification. 

24 (18) Reg I 

t 

Figure 6-7. How to Find the CTGPL 

T T 

In a PDUMP taken at a dump point within the System Adapter, the catalog 
return code is stored at location TESTRC in IDCSA02's automatic storage 
area. You must examine the microfiche listings to determine the offset of 
TESTRC in the automatic storage area. 

Some FSRs have headings before the storage areas that contain the Catalog 
Management argument lists. These headings may help you find the Catalog 
Management argument lists in a dump. Figure 6-8 shows the DEFINE 
FSR's storage area that contains the argument lists set up for a define 
request. 

Debugging a Formatting Problem 
If data is misformatted, the problem may be in the parameters given to the 
UPRINT macro. The UPRINT parameters are: ( l) the address of the GOT; 
(2) the address of an alternate IOCSTR or zero; (3) the address of and a 
DARO LIST data area in storage; and (4) the address of a FMTLIST data 
area, if it is in storage. If the FMTLIST is in a static text module, the fourth 
parameter is zero and the DARO LIST contains information to find the 
FMTLIST. The DARGLIST and the FMTLIST control the formatting of 
the data. The DARO LIST in general contains information about the input 
data within the FMTLIST. The FMTLIST controls the order of formatting 
by the placement of the substructures. Refer to the "Data Areas" chapter 
for a detailed description of the GOT, IOCSTR, DARGLIST, and 
FMTLIST. Problems are most likely to occur between the DARGLIST and 
the FMTLIST. The examples show how the Text Processor uses the DAR­
O LIST and FMTLIST to format the data. With each example is a flowchart 
with blocks keyed to the FMTLIST substructure. 

Chapter 6: Diagnostic Aids 6 - 59 



I_ -: --- -_ = _I 
DE 0 0 

CATPLIST 

CLSTRFVT 

VOLUMFVT 

INDEXFVT 

DATAFVTb 

DEFINWKA 

T J 

} UGPOOL Area Header 

) 

CTGFV for cluster information. For 
nonVSAM data sets, the heading 
is NVSAMFVT. 

) CTGFV for volume information. 

) CTGFV for index information. 

) CTGFV for data information. 

) Catalog work area for generated names. 

If any of the above CTGFVs are not set up for a define request, 
the heading and CTGFV area contains zeros. 

Figure 6-~. Catalog Argument Lists in Storage Area of DEFINE FSR 

Example I 

Licensed Material - Property of I BM 

A module wants to space one line then print data starting in column 10. The 
data is in the module's storage rather than in a static text module. 

The output is: 

70 characters of data starting in column 10 

In the module's storage is: 

• the data to be printed 

• a DARGLIST 

• a FMTLIST 

6 - 60 VSE/VSAM Access Method Services Logic 



Licensed Material- Property of IBM 

The data is: 

Offset Name Contents Comments 

0 any, INFO for 70 characters of EBCDIC 
example data 

The DARO LIST is: 

Offset Name Contents Comments 

0 DARGDBP tlNFO Address of the block of data to be 
printed. 

4 DARGRETP 0 The line is to be printed rather 
than just formatted and returned 
to the module without printing. 

8 DARGSTID 0 No static text module is 
used-the FMTLIST and data 
are in the module's storage. 

12 DARGILP 70 Number of characters to print. 

14 DARGCNT 0 No insert or replication substruc-
tu res occur in the FMTLIST. 

16 DARGRETL 0 Since no data is returned, the 
length of the return area whose 
address is in DARGRETP. 

18 DARGIND 0 Indicates printing is to start in the 
column indicated in FMTLIST. 
No DARGA RY is defined be-
cause no insert or replication sub-
structures are used in the 

FMTLIST. 

The FMTLIST is: 

Offset Name Contents Comments 

Qo FMTFLGS X'40' Identities these 6 bytes as a 
spacing substructure. 

none 0 Unused. 

2 FMTSPF Space one line. 

4 FM TS PT C'R' Space the number of lines in 
FMTSPR relative to the last line 
printed. 

5 none 0 Unused. 

e 6 FMTFLGS X'90' Identifies these 12 bytes as a 
block substructure and the end of 
the FMTLIST. 

7 none 0 Unused. 

8 FMTILEN 70 or 0 If 70 is specified, it is used as the 
length of the data. If 0 is speci-
fled, the length of the converted 
data is used as the length to print. 
Since no conversion is being done 
in this example, the result is the 
same if 70 or 0 is specified. 

10 FMTIOFF 0 Get the data starting with the first 
byte. 

12 FMTOCOL 10 Place the data in output column 
to. 

14 FMTOLEN 70 Number of bytes to print. 0 
would give the same result since 
no conversion is being done. 

16 FMTCNVF 0 No conversion is being done on 
the data addressed by 
DARGDBP. 

Chapter 6: Diagnostic Aids 6- 61 



Example II 

Licensed Material- Property of IBM 

Discussion: The spacing substructure causes one line to be spaced. 

The next substructure is identified as a block data substructure. The address 
of the block of data is in DARO DBP. No conversion is to be done on the 
data. The Text Processor moves the 70 bytes in the next line. 

• 

Start 

Space 1 
line 

Format 
block 
data 

A module wants to space 2 lines, print a header, space 2 more lines, and 
print all of a block of data no matter how many lines the block of data takes 
with single spacing between subsequent lines. The header is in static text 
module IDCTSALO at entry X'03'. The block of data is in the module. 
Also, if there is no record number for the headu,. the module wants to print 
the word UNKNOWN. 

The output is: 

(I blank line) 
RECORD NUMBER 002 
(I blank line) 
xxxxxxx converted data for as many lines as necessary 

The module has in its storage: 

• the data for the record number in the header, in this example x·o2' 
• the block of data to convert and print 

• a DARGLIST 

Already existing in a static text module is: 

• a FMTLIST 

• text for the header, in this example the characters 'RECORDbNUMBER' 

6 - 62 VSE/VSAM Access Method Services Logic 



Licensed Material- Property of IBM 

The data is: 

Offset Name Contents Comments 

0 any, RECNUM one byte with the 
for example value x·o2· 
any. DUMPIT 2000 bytes of The binary data will be 
for example binary data converted to printable hexadeci-

mal. 

The DARG LIST is: 

Offset Name Contents Comments 

0 DARGDBP tDUMPIT Address of the block of data to 
convert. 

4 DARGRETP 0 The lines are lo be printed rather 
than just formatted and returned 
to the module without printing. 

8 DARGSTID C'ALO', X'03' Static text identification to locate 
the FMTLIST-the FMTLIST 
IDCTSALO at entry 3. 

12 DA RGI LP 2000 The length ofDUMPIT. 

14 DARGCNT One insert data appears in 
DARGARY. 

16 DARGRETL 0 The length of the converted data 
is used as the number of bytes to 
print. 

18 DA RGI ND 0 Printing starts in the column 
indicated in FMTLIST. 

19 none 0 Unused. 

20 DARGA RY none DARGARY is the name of the 
rest of DARGLIST. 

20 DARGINS 4 This number is matched with a 
insert substructure in FMTLIST. 

22 DARGINL The number X'02' occupies one 
byte. 

24 DARGDTM tRECNUM Address of the number X'02' in 
the module. 

At entry x·o3· in static text module IDCTSALO is: 

Offset Name Contents Comments 

0 TXT 71 Length of the FMTLIST and the 
data that follows the FMTLIST. 

2 FLG 0 This static text entry is for data 
not a message or header. .4 FMTFLGS X'40' Identifies these 6 bytes as a 
spacing substructure. 

5 none 0 Unused. 

6 FM TS PF 2 Space 2 lines. 

8 FM TS PT C'R' Space the lines relative to the last 
printed line. 

9 none 0 Unused 

0 10 FMTFLGS X'04' Identifies these I 0 bytes as a 
static text substructure-the data 
is immediately after the 
FMTLIST. 

II none 0 Unused. 

12 FMTSTL 13 Number of bytes in 
C'RECORDbNUMBER'. 

14 FMTSTO 54 Number of bytes the data 
C'RECORDbNUMBER' is from 
the first substructure in 
FMTLIST. 

Chapter 6: Diagnostic Aids 6- 63 



Licensed Material - Property of IBM 

Offset Name Contents Comments 

16 FMTOCOL The data 
C'RECORDhNUMBER' is to be 
printed in column I. 

18 FMTOLEN 0 0 indicates the output length is 
the same as the input length for 
this data. 

820 FMTFLG x·20· Identifies these 12 bytes as an 
insert substructure. 

21 none 0 Unused. 

22 FMTRFNO 4 This number is matched with the 
number in DARO INS in order to 
get the address of the data x·o2·. 

24 none () Unused. 

26 FMTOCOL 15 The data X'02' is printed in 
column 15. 

28 FMTOLEN 3 The converted data is to take up 3 
columns. 

30 FMTCNVF x·1000· The data X'02' is to be converted 
from byte to zoned decimal. 

E> 32 FMTFLGS x·o2· Identifies these 8 bytes as a 
default text substructure. 

33 none 0 Unused. 

34 FMTILEN 7 Number of bytes in the data 
C'UNKNOWN'. 

36 FMTIOFF 67 Number of bytes the data 
C'UNKNOWN' is from the first 
substructure in FMTLIST. 

38 FMTOCOL 15 The data C'UNKNOWN' is 
printed in column 15. 

940 FMTFLGS X'40' Identifies these 6 bytes as a 
spacing substructure. 

41 none 0 Unused. 

42 FMTSPF 2 Space 2 lines. 

44 FM TS PT C'R' The 2 lines are spaced relative to 
the last printed line. 

45 none 0 Unused. 

046 FMTFLGS X'90' Identifies these 12 bytes as a 
block data substructure and the 
last substructure in FMTLIST. 

47 none 0 Unused. 

48 FMTILEN 0 Zero means use the length of the 
block data in DARGlLP. 

50 FMTIOFF 0 Start at the first byte of the block 
data. 

52 FMTOCOL Start the block of data in output 
column I. 

54 FMTOLEN 0 Zero means print the block data 
until the input is exhausted no 
matter how many lines it takes. 

56 FMTCNVF X'8000' Convert the block of data from 
binary to printable hexadecimal. 

58 any C'RECORDhNUMBER' Data for the second substructure. 

71 any C'UNKNOWN' Data for the default text substruc-
tu re. 

6-- 64 VSE/VSAM Access Method Services Logic 



Ucensed Material- Property of IBM 

Discussion: 

The first spacing substructure causes two lines to be spaced. 

The static text 'RECORDhNUMBER' is put in the next line. 

The insert number in the insert substructure is matched with the insert 
number in DARGLIST. The number X'02' from the module is converted to 
zoned decimal and placed in column 15. 

The next spacing substructure causes 2 more lines to be spaced. 

The block data substructure causes the data addressed by DARO DBP to be 
converted to printable hexadecimal until all the bytes in DARGILP have 
been converted and printed. If the module wants to print the same lines 
again but with a different record number and different block data, only 
DARODBP, and DARODTM need to be changed. If there had not been a 
reference number 4 in DARO LIST the data C'UNKNOWN' will be print­
ed instead of the record number '002'. This allows more freedom for the 
module to vary the output just by changing insert reference numbers in the 
DARO LIST. 

Chapter 6: Diagnostic Aids 6 - 65 



• 
• 

• 

• 

Start 

Space 2 lines 

Put text 
RECORDbNUMBER 

in line 

Put text 
'UNKNOWN' 

in line 

Space 2 
lines 

Format all 
• data in 

block 

6- 66 VSE/VSAM Access Method Services Logic 

Put in 
X'02' • 

Licensed Material- Property of IBM 



Licensed Material - Property of IBM 

Example Ill 

• 

A module wants to space 3 lines then print repeating fields on different lines 
so the output would appear as: 

(2 blank lines) 
field A Field B X'field Cl' 

X'fie/d C2' 
.field DI 
field D2 

field El 
field £2 

The module has in storage: 

• all the data to be printed 

• a DARO LIST 

• a FMTLIST 

The data is: 

Offset Name 

0 A 

4 B 

8 Cl 

10 DI 

12 El 

13 C2 

15 D2 

17 E2 

The DARO LIST is: 
Offset Name 

0 

4 

8 

12 

14 

16 

19 

18 

20 

22 

DARGDBP 

DARGRETP 

DARGSTID 

DA RGI LP 

DARGCNT 

DARGRETL 

none 

DARGIND 

DARGREP 

DARGPCT 

The FMTLIST is: 
Offset Name 

() FMTFLGS 

I none 

2 FM TS PF 

4 FM TS PT 

5 none 

Contents 

four bytes of EBCDIC data 

four bytes of packed 
decimal data 

two bytes of binary data 

two bytes of binary data 

one byte of EBCDIC data 

two bytes of binary data 

two bytes of binary data 

one byte of EBCDIC data 

Contents 

A 

0 

0 

18 

0 

0 

0 

7 

2 

Contents 

X'40' 

0 

3 

C'R' 

Comments 

Comments 

The lines are to be printed rather 
than just formatted and returned 
to the module. 

No static text module is used. 

Number of bytes from field A 
through field E2. 

There is one repetition substruc­
ture in the FMTLIST. 

The length of the converted data 
is used as the number of bytes to 
print. 

Unused. 

Printing starts in column 
indicated in FMTLIST. 

Number that is matched with a 
repetition substructure in 
FMTLIST. 

The group offields identified by 
repetition substructure 7 in 

FMTLIST is to be printed twice. 

Comments 

Identifies these 6 bytes as a 
spacing substructure. 

Unused. 

Space 3 lines. 

Space the lines relative to the last 
printed line. 

Unused. e6 FMTFLGS 

0 

X'IO' Identifies these 12 bytes as a 
block data substructure. 

Chapter 6: Diagnostic Aids 6 - 67 



Licensed Material- Property of IBM 

Offset Name Contents Comments 

7 none 0 Unused. 

8 FMTILEN 4 Number of bytes in field A. 

10 FMTIOFF 0 Field A begins zero bytes from 
the block of data whose address is 
in DARGDBP. 

12 FMTOCOL Print field A starting in column 1. 

14 FMTOLEN 4 Number of bytes the converted 
field A occupies in the printed 
line. 

16 FMTCNVF 0 No conversion is done on field A. 

918 FMTFLOS x·10· Identifies these 12 bytes as a 
block data substructure. 

19 none 0 Unused. 

20 FMTILEN 4 Number of bytes of storage field 
B occupies. 

22 FMTIOFF 4 Field B starts 4 bytes from the 
block of data whose address is in 
DARGDBP. 

24 FMTOCOL 10 Print field B starting in column 
to. 

26 FMTOLEN 10 Number of bytes the converted 
field B occupies in the printed 
line. 

28 FMTCNVF X'0880' Convert field B from packed 
decimal to unpacked decimal 
with zero suppression. 

Ci) 30 FMTFLGS x·os· Identifies these 8 bytes as a 
replication substructure. 

31 none 0 Unused. 

32 FMTRENO 7 Matched with a number in 
DARGLIST to find the number 
of iterations. 

34 FMTRBC 3 The data identified in the next 3 
substructures is to be repeated. 

36 FMTRIO 5 The number of bytes from field 
C 1 to field C2 in storage. This 
number is added to the address of 
the first field each time the field is 
repeated . 

• 38 FMTFLGS X'IO' Identifies these 12 bytes as a 
block data substructure for fields 
Cl and C2. 

39 none 0 Unused. 

40 FMTILEN 2 Number of bytes fields C 1 and 
C2 each occupy in storage. 

42 FMTIOFF 8 Number of bytes from field A to 
field Cl. 

44 FMTOCOL 22 Print fields C 1 and C2 starting in 
column 22. 

46 FMTOLEN 7 Number of bytes the converted 
fields C 1 and C2 each occupy in 
the printed line. 

48 FMTCNVF X'4000' Convert fields Cl and C2 from 
binary to printable hexadecimal 
enclosed in X'data '. 

Gso FMTFLGS x·w· Identifies these 12 bytes as a 
block data substructure for fields 
DI and D2. 

51 none 0 Unused. 

6- 68 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of I BM 

Offset Name 

52 FMTILEN 

54 FMTIOFF 

56 FMTOCOL 

58 FMTOLEN 

60 FMTCNVF 

Contents 

2 

10 

31 

6 

X'IOOO' 

Comments 

Number of bytes fields DI and 
02 each occupy in storage. 

Number of bytes from field A to 
field 0 I. 

Print fields 0 I and 02 starting in 
column 31. 

Number of bytes the converted 
fields 0 I and 02 each occupy in 
the printed line. 

Convert fields 0 I and 02 from 
binary to printable decimal. 

(962 FMTFLGS X'90' Identifies these 12 bytes as a 
block data substructure for fields 
EI and E2 and the last su bstruc­
tu re in the FMTLIST 

63 none 

64 FMTILEN 

66 FMTIOFF 

68 FMTOCOL 

70 FMTOLEN 

72 FMTCNVF 

Discussion: 

0 

12 

39 

x·oooo· 

Unused. 

Number of bytes fields El and E2 
each occupy in storage. 

Number of bytes from field A to 
field EI. 

Print fields EI and E2 each 
starting in column 39. 

Number of bytes the converted 
fields EI and E2 each occupy in 
the printed line. 

No conversion is done on fields 
El and E2. 

The first spacing substructure causes 3 lines to be spaced. 

The block data substructures for fields A and B describe the location of A 
and B within the block addressed in DARODBP. Field A is not converted. 
Field Bis converted from packed decimal to zoned decimal and leading 
zeros are replaced with blanks. 

The replication substructure number is matched with an identification 
number in DARGREP. When a match is found, the DAROPCT immedi­
ately after DARO REP tells how many times to repeat the substructures. If 
the module wants to use the same FMTLIST and print another group of 
fields C, D, and E, only DARO PCT needs to be changed. The replication 
substructure tells how many substructures to repeat and an offset that is 
used to find the group of fields being repeated. On the first repetition the 
offset is not used, on the second it is added once; on the third repetition it is 
added twice. 

The next substructure describe Cl and C2. On the first repetition the value 
in FMTIOFF is added to the value in DARODBP to find field Cl. To find 
field C2, FMTIOFF and FMTRIO in the repetition substructure are added 
to DARO DBP. Each time a group of substructures is repeated a new line is 
printed because the output columns for each substructure do not change. 
For example, in order to print both Cl and C2 in column 22, a new line 
must be printed. Both Cl and C2 are converted to printable hexadecimal 
preceded by X' and followed by a single quote. 

Fields D l and D2 are described by the next substructure. D l and D2 are 
converted to printable decimal. 

The substructure for fields El and E2 is also the end of FMTLIST. El and 
E2 are converted. 

Chapter 6: Diagnostic Aids 6 - 69 



Start 

• Space 3 lines 

e Format field A 

Format field B 
in same line 
as A 

End 

Licensed Material- Property of IBM 

After El is formatted, the three substructures following the repetition 
substructure are repeated. A new line is started because FMTOCOL keeps 
the output the columns the same each time a field is printed. Fields C2, 02, 
and E2 are put in the next line. The FMTLIST is finished after E2 is print­
ed. 

On the first repetition, Cl, Bl, and El 
are formatted in the same line as A and B. 
On the second repetition, C2, D2 and E2 
are formatted in the next line. 
This is because the same block data 
substructure-therefore the same output 
column-is used for each repetition 
of a field. 

Format 
Cl or C2 

0 
Format 
Dl or D2 

Format 
El or E2 

Obtaining a Dump For a Text Processor Problem 
If you do not have an system dump within the Text Processor routines or an 
ABORT snap dump within the Text Processor, you can use the Test option 
to obtain a dump. You may want to obtain a dump within the routine that 
invoked the Text Processor or within the Text Processor itself. 

The Phase or CSECT to Dump Points Cross Reference contains all the 
dump points within the processor; you can specify these dump points on the 
FULL option of the TEST keyword to obtain a full partition dump. 

The Text Processor has dump points before and after it converts data to 
printable form. You should use these dump points if there is an error in 
converting the data. 

6 - 70 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

H()W f() Find Text Processor Argument Lists 

GDT 

PCT! 

8 (8) PCTSPP 

If you suspect a problem within the Text Processor, the two structures you 
should locate in a dump are the Print Control Table (PCT) and the Dynam­
ic Data Argument List (DARGLIST). The PCT and the DARGLIST are 
described in the section ''Data Areas" in this book. The eighth word of the 
GOT contains the address of the PCT; the address of the DARGLIST is the 
third parameter passed to I DCTPO l for a print request (UP RI NT macro). 

Two other structures that you may find helpful to locate in a dump are the 
queue of format structures and the print buffer. 

Figure 6-9 shows the queue of format structures maintained by the Text 
Processor. There is an entry in the queue for each format structure that has 
been used by the current function. Each entry in the queue contains the 
four-byte text structure ID specified in the DARGLIST. The first three 
bytes contain the last three characters of the text-structure phase name; the 
fourth byte contains the entry number of the format structure within the 
text-structure phase. 

Figure 6- l 0 shows the print buffer maintained by the Text Processor. It 
contains the records, other than messages, that have not been printed. The 
records to be printed are kept in the print buffer until the buffer becomes 
full or a message must be printed. The primary and secondary PCTs contain 
the address of the first record in the buffer and the address of the next empty 
space in the buffer. If both addresses are equal, the buffer is empty. 

UGPOOL ID .- - -
: T P 0 I ,_ - -

UGPOOL ID 
- - -

I 
I T PO I 

'-

Secondary PCT 

PCT2 

PCTSQP 

Chain of static text entries 
after 3 UPRINTs referring to 
different static text entries. 

Header Format List 

Static Text Entry ~ 

___________________ _____, 

Static Text Entry 

--~~~""---~~..._-H_e_ad_e_r_._~F-(_>r_m_a_t_L_is_t~~ 
Static Text 
Identifier 

() 

Static Text Entry 

Header 

Figure 6-9. Text Processor Format Structure Queue 

Chapter 6: Diagnostic Aids 6 - 71 



GOT 

28 (JC) GDTTPH 

Primary PCT 

PCTI 

8 (8) PCTSPP 

I:: 

Record I Record 2 

Record 3 (continued) 

Record ..i Record 5 

Each record has the following f.irmat: 

Licensed Material - Property of IBM 

Secondary PCT 

PCT2 

104 (68) PCTBUF _.-
108 (6C) PCTBNL 

Records in buffer after 5 UPRINT macros 
have been issued. No messages are kept 
in buff er. 

---·----'~'~'~~~D-ata~~lt)==J I \ 
Length of 
Entire Record 
(2 Rytesl 

Spacing 
Control 
Character 
(I Byte) 

Figure 6-10. Text Processor Print Buffer 

Debugging an 1/0 Problem 
There may be an 1/0 problem within system 1/0 routines or within Access 
Method Services if an ABORT condition occurs in the I/0 Adapter or if a 
system error occurs within the system I/0 routines. To determine whether 
the problem exists in the routines that invoke the I/0 Adapter, in the 1/0 
Adapter itself, or in the system I/0 routines, you must examine the argu­
ment lists passed between the I/0 Adapter and the invoking routines, and 
the 1/0 Adapter and the system I/0 routines. 

This section explains how to obtain a dump that contains the I/0 argument 
lists and how to find the argument lists in a dump. 

Obtaining a Dump for an I/ 0 Problem 
If you do not have a system dump within system 1/0 routines or an ABORT 
PDUMP within the I/0 Adapter, you can use the Test option to obtain a 
dump. You may want to obtain a dump within the routine that invoked the 
1/0 Adapter or within the I/0 Adapter itself. 

The Phase or CSECT to Dump Points Cross Reference contains all the 
dump points within the processor; you can specify these dump points on the 
FULL option of the TEST keyword to obtain a full partition dump. 

The 1/0 Adapter has dump points before and after it issues the OPEN 
macro (dump points IO 10and1020) and before it issues the CLOSE macro 

6 - 72 VSE/VSAM Access Method Services Logic 



Licensed Material-Property of IBM 

(dump point IO l C). You should use these dump points if there is an error 
opening or closing data sets. The 1/0 Adapter has a dump point (IOVR) 
after issuing a VSAM 1/0 request which returns a non-zero return code. 
You should use this dump point if you wish to obtain a dump in a VSAM 
1/0 error situation. 

How to Find 1/0 Argument Lists 

Open Argument Lists 

The Input/Output Communications Structure (IOCSTR), which is con­
structed for each data set that has been opened, contains pointers to most of 
the control blocks used by the system 1/0 routines. The IOCSTR is also the 
argument list that is passed between the 1/0 Adapter and the routines that 
invoke the 1/0 Adapter, except for the initial open request. Thus, once you 
find the IOCSTR, you can find most of the other arguments passed between 
the 1/0 Adapter and other routines. The section "Data Areas" in this book 
explains the format of the IOCSTR. 

Figure 6-l l shows the chain of IOCSTRs constructed for all opened data 
sets; however, the data sets may not have been opened successfully. The 1/0 
Adapter historical area contains a pointer to the start of the chain. 

You can find the address of the IOCSTR for a particular 1/0 request by 
finding the parameter list passed to IDCIOO l by the invoking routine. 
Register l of the registers saved by IDCIOO l contains the address of a 
parameter list. The second word of the parameter list contains the address 
of the IOCSTR. The third, fourth, and fifth words may also contain ad­
dresses of additional IOCSTRs. 

Figure 6-12 shows how the 1/0 control blocks are connected before an 
OPEN macro is issued. The IOCSTR addresses can be found from the 
IOCSTR chain as shown in Figure 6-9. The IOCSBLT table, which con­
tains pointers to the IOCSTRs for the data sets being opened, can be found 
at location IOCSBLT in IDCIOOl's automatic storage area. The OPEN­
LIST table, which contains pointers to the DTFs and ACBs for the data sets 
being opened, can be found at location OPENLIST in IDCIOOl's automatic 
storage area. 

In a system dump within the system open routine, register 0 points to a word 
that contains either the address of the ACB or the address of the DTF. 

UG ET and UPUT Argument Lists 

This section contains some examples of input and output from the UGET 
and UPUT macros. These examples may be helpful in determining whether 
the IOCSTR and records for a UPUT request have been passed correctly to 
the 1/0 Adapter, and whether the IOCSTR and records for a UGET request 
have been returned correctly by the 1/0 Adapter. 

Figure 6-13 shows the IOCSTRs and records passed to the 1/0 Adapter via 
a UPUT macro. 

Figure 6-14 shows the IOCSTRs and data returned by the 1/0 Adapter after 
a UGET macro is processed. 

Chapter 6: Diagnostic Aids 6 - 73 



GDT 

36 (24) GDTIOH 

1/0 Adapter 
Historical Area 

T 

- - - I UGPOOL ID - the last two numbers 
identify the data set. 

Second 
IOCSTR 

Licensed Material - Property of I BM 

rIO~ - - - - , UGPOOL ID - the last two numbers 
identify the data set. 

24 (18) IOCNIO 

File ID 

IOCSTR chain after two UOPEN 
macros have been issued. 

Figure 6-11. IOCSTR Chain 

6- 74 VSE/VSAM Access Method Services Logic 

IOCS 

20 (18) IOCDSN 

44 (2C) IOCEXT 

\IOCSEX 

I File ID 

0 
0 means this is 
the last IOCSTR. 



Licensed M11teri11I - Property of IBM 

IOCSBLT 

20 ( 14) IOCDSN 

/ 

Two data sets are to be opened, one 
VSAM and one non-VSAM data set. 

IOCEXT 

File ID 

Figure 6-12. 1/0 Control Blocks Before OPEN 

Access 
Module 

T 

T 

Chapter 6: Diagnostic Aids 6 - 75 



Example 1. VSAM or NonVSAM Data Set - Single Record Passed via UPUT 

IOCSTR 

0 (0) IOCDAD 

4 (4) Length 

38 (16) IOCPNM 0 

Data 

0 indicates there are 
no records stacked. 

Example 2. VSAM or NonVSAM Data Set - Multiple Records Passed via UPUT 

IOCSTR 

0 (0) IOCDAD 

4 (4) Length 

38 (16) IOCPNM 3 3 indicates there are 
---------three records stacked. 

Figure 6-13. Input to UPUT Macro 

fl - 76 VSE/VSAM Access Method Services Logic 

L2 Data L3 

Licensed Material - Property of I BM 

The data may have an 
embedded key. 

The data may have 
an embedded key. 



Licensed Mnterial - Property of IBM 

() (()) 

4 (4) 

2X t I Cl 

() (()) 

4 (4) 

2X (IC) 

Example I. 

IOCSTR 

IOCDAD 

L..:ngth 

I OCR BA 

Example 2. 

IOCSTR 

IOCDAD 

Length 

I OCR BA 

YSAM Data Set with Address Processing 

-- ......... 
[ Logical Record 

" -..,. 

This fi..:ld contaim tho.: L..:ngth 
relative hytt: address 
() () iC' f I g <11 record. 

VSAM Data Set with Control Interval Processing 

--.... 
[ Control Interval 

y 

This field contains the 
relative hyte address 

Length 

of tho.: control 1ntervdl. 

Example 3. VSAM Data Set with Keyed Processing 

IOCSTR 

J 
ll 
1 

J 
j 
1 

() (()) 

4 (4) 

IOCDAD 

Length ._ __ o_a_ta __ """ ___ K_..:~·y __ ...... ______ ....,~ 
32 (2()) IOCKY A 

Example 4. NonVSAM, NonISAM Data Set 

IOCSTR 

IOCDAD - ............ 
Length [ 

.... 

Length 

Logi..:al Record 

-..,. 

L..:ngth 

Example 5. ISAM Data Set with Fixed Record Formal 

IOCSTR 

J 
~ 
1 

() (()) IOCDAD 

4 (4) Length .___K __ eY ____ ..._ _____ o __ a1_a ______ --t~ 

32 (20) IOCKYA Length 

Example 6. ISAM Data Set with Fix-Blocked Record Format 

IOCSTR 
() (()) IOCDAD 

4 (4) Length 

32 (2()) IOCKYA 
Length 

Figure 6-14. Output from UGET Macro 

The key may be 
in any position. 

All spanned records 
are reconstructed . 

The key may he 
in any position. 

The key must he hefore 
the physical hlock. 

Chapter 6: Diagnostic Aids 6-77 



Licensed Material - Property of I BM 

Messages 
The following list shows all the messages printed by the processor. For each 
message, the following information is listed: the text-structure identifier 
used internally by the processor to identify the message; the module that 
causes the message to be printed; the procedure within that module that 
detects the situation that causes the message to be printed; and the situation 
that causes the message to be printed. After the text is the entry within the 
text structure. 

Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDCOOOll UV0-1 IDCALOI IDCALOI Function was completed without a 
severe error. 

IDCBIOI TERMPROC Function was completed without an 
error or without a severe error in 
processing the base cluster. 

IDCCLOI I DCC LOI Function will CANCEL Access 
Method Services as requested. 

IDCDEOI IDCDEOI Function was completed without a 
severe error. 

IDCDLOI IDCDLOI Function was completed without a 
severe error. 

IDCLCOI IDCLCOI Function was completed without a 
severe error. A II or part of the de-
sired catalog listing was generated. 

IDCLROI CLEANUP Function was completed without a 
severe error. 

IDCMPOl IDCMPOI Function was completed without a 
severe error. 

IDCPMOI IDCPMOI Function was completed without a 
severe error. 

IDCPROI I DC PRO I Function was completed without 
error, or ( 1) an end-of-file was 
reached in the input data set before 
the ending delimiter specified by 
the user, or (2) a recoverable 1/0 
error occurred while retrieving or 
printing a record, or (3) an error oc-
curred closing data sets. 

IDCRCOl EXITTHE Function was completed without a 
severe error. 

IDCRMOl IDCRMOl Function was completed without a 
severe error. 

IDCRPOI IDCRPOl Function was completed without 
error, or ( 1) an end-of-file was 
reached in the input data set before 
the ending delimiter specified by 
the user, or (2) a recoverable 1/0 
error occurred while copying a re-
cord, or (3) an error occurred clos-
ing data sets. 

IDCRSOI WRAPUP Function was completed without a 
severe error. 

IDCVYOI IDCVYOI Function was completed without a 
severe error. 

IDCXPOl IDCXPOI Function was completed without a 
severe error. 

IDC00021 UV0-2 IDCEX03 IDCEX03 Access Method Services completed 
processing. 

IDC00051 UV0-5 IDCPROl IDCPROl Printing of records is completed. 

IDCRPOI IDCRPOl Copying of records is completed. 

6-78 VSE/VSAM Access Method Services Logic 



Licensed Materilll- Property of IBM 

Mcss11ges to Module Cross Ref ere nee 

Message STID Module Procedure Situation That Caused Message 

IDCOl771 DE0-28 I DCM POI CLUSPROC IMPORT has successfully defined a 
unique data set on a fixed block de-
vice and is printing the actual 
blocks allocated on each volume. 

IDCRMOI CLUSPROC IMPORTRA has successfully 
defined a unique data set on a fixed 
block device and is printing the ac-
tual blocks allocated on each vol-
ume. 

IDCDEOI IDCDEOI Possible rounding of fixed block 
extents. Actual extents are printed. 

IDC02041 RI0-5 IDCRI03 IDCRI03 The preceding command was 
scanned for syntax-checking pur-
poses only. 

IDC02061 RI0-7 IDCRIOI SCANSEP An extra comma was found 
between parameters. 

IDC02221 RI0-23 IDCRIOI NXTFIELD A semicolon was found within a 
quoted constant. 

IDC02331 RI0-34 IDCRIOI SCANCMD Too many closing parentheses were 
found at the end of a command or 
subparameter list. 

IDC02341 RI0-35 IDCRIOI IN REPEAT Too few parentheses were found at 
the end of a command. 

SCANCMD Too few parentheses were found at 
the end of a command. 

IDC02961 DE0-31 IDCDEOI IDCDEOI A default model had been success-
fully defined. 

IDC05081 DE0-9 IDCDEOI IDCDEOI Define of the data set failed due to 
a space allocation error. 

I DCM POI CTLGPROC Define of the data set being 
imported failed due to a space alto-
cation error. 

IDCRMOI CTLGPROC Define of the data set being 
imported failed due to a space alto-
cation error. 

IDC05091 DEO-IO IDCDEOl IDCDEOl Define of the data set failed due to 
a space allocation error. 

IDCMPOI CTLGPROC Define of the data set being 
imported failed due to a space alto-
cation error. 

IDCRMOI CTLGPROC Define of the data set being 
imported failed due to a space allo-
cation error. 

IDC05101 DE0-11 IDCDEOI IDCDEOI Define of the YSA M catalog failed 
due to a space allocation error. 

IDC051 II DE0-12 IDCDEOI IDCDEOI Define of the data space failed due 
to a space allocation error. 

IDC05121 DE0-13 IDCDEOI IDCDEOI Data and index name generation. 

IDC05201 DE0-21 IDCDEOI IDCDEOI The message identifies the recovery 
volume serial number. 

IDCMPOI CLUSPROC The message identifies the recovery 
volume serial number. 

IDCRMOI CLUSPROC The message identifies the recovery 
volume serial number. 

IDC05261 ALO-I IDCALOI IDCALOI Alter of the data object is comp let-
ed. 

IDC05501 DL0-1 IDCDLOI CATCALL The catalog returned the name 
MO RESP and type of a successfully deleted 

entry in the catalog work area. 

Chapter 6: Diagnostic Aids 6-79 



Licensed Material - Property of IBM 

Messages to Module Cross Reference 

Message STIO Module Procedure Situation That Caused Message 

IDCMPOI DELTPROC The object with the same name as 
the object being imported was de-
leted successfully from the catalog. 

DELTPROC The object being imported was 
deleted successfully from the cata-
log after an error occurred copying 
data into the object. 

IDCRMOI DELTPROC The object with the same name as 
the object being imported was de-
leted successfully from the catalog. 

DELTPROC The object being imported was 
deleted successfully from the catlog 
after an error occurred copying 
data into the object. 

IDCXPOI DELTPROC The object being exported was 
MO RESP deleted successfully from the 

catalog. 

IDC'055 I I DL0-8 IDCDLOI IDCDLOI A catalog object was not deleted 
because of a catalog locate error, a 
command parameter error, or a cat-
alog delete error. 

IDCXPOI DELTPROC The object being exported could 
MO RESP not be deleted from the catalog. 

The catalog return code indicates 
the reason. 

IDC'05551 DL0-5 IDCDLOl CATCALL The volume entry was not deleted 
although empty space on the vol-
ume was deleted successfully. The 
catalog return code was 160. 

IDC057 l I PR0-19 IDCRPOI IDCRPOI Reloading of a catalog was 
initiated. 

IDC05941 XP0-5 IDCXPOI CLUSPROC The portable data set was created 
successfully. 

IDC06031 MP0-11 IDCMPOl CLUSPROC The user catalog was connected 
successfully. 

IDC06041 MP0-12 IDCMPOl CLUSPROC The first record of the portable data 
set contained the timestamp written 
at the time of export. 

IDCRMOl IDCRMOl The first record ofa group of 
associated objects on the portable 
data set contained the timestamp 
written at the time of the export. 

IDC06221 MP0-22 IDCRMOl UCATPROC An existing duplicate catalog entry 
was deleted to allow a user catalog 
entry to be imported. 

IDC06261 MP0-26 IDCRMOI CLUSPROC The object named has been 
UCATPROC successfully imported. 
NVSMPROC 

IDC06521 BI0-13 IDCBIOl FINPROC The alternate was built with no 
errors. 

IDC06651 LRl-16 IDCLROl CLENCRA Informational message stating the 
number of entries that did not com-
pare. 

IDC06691 RC0-14 IDCRCOI IDCRCOl Informational message stating the 
CRA from which the entries are 
processed. 

IDC06701 RC0-15 IDCRCOI EXPORTDR Informational message stating that 
data set is on portability data set. 

IDC06721 RC0-17 IDCRCOI CKCATNM Informational message stating the 
catalog name for which CRA's are 
being processed. 

6- 80 VSE/VSAM Access Method Services Logic 



Licensed Material- Property of IBM 

Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC06741 RC0-20 IDCRCOI EXPORTDR Secondary message containing the 
object name for which the export 
driver was called. 

SYNCH Object named was invalid in the 
CRA in comparison with the data 
set. 

DUPNAMCK Object name appeared twice in the 
CRA. 

CK NAMES Object named was not of a type 
DOS supports, or is a SAM ESDS 
which cannot be exported. 

IDCMPOI DVOLCHK DEFAULTVOLUMES parameter 
was invalidly specified or ignored 
due to VOLUMES parameter over-
ride. 

IDCRMOI DVOLCHK DEFAULTVOLUMES parameter 
was invalidly specified or ignored 
due to VOLUMES parameter over-
ride. 

IDC06761 RC0-5 IDCRCOI TERM Informational message stating that 
the portability data set was created 
successfully. 

IDC08741 LRl-5 IDCLROI INTSORT Space could not be obtained for the 
sort table. The objects are printed 
first in, first out. 

IDC08771 LRl-8 IDCLROI CLENCRA Informational message stating the 
number of objects that did not com-
pare. 

IDC08881 RC0-23 IDCRCOI EXPORTDR Informational message stating that 
the exported entry contained no 
data. 

IDC09221 EX0-5 IDCDB02 ITEM DUMP An invalid dump item was specified 
in the dump argument list. 

IDC09231 EX0-6 IDCDB02 ARRAYHDR Invalid array header parameters 
were specified in the dump argu-
ment list. 

IDC09241 EX0-7 IDCDBOI IDCDBOI The dump routine was invoked 
through a UDUMP macro. 

IDC09251 EX0-8 IDCDBOI IDCDBOI A dump was requested through a 
UDUMP macro. 

IDCI 1721 DE0-25 IDCDEOI INTGCHK USECLASS was specified at the 
data or index level, but was ignored 
because it was not accompanied by 
space parameters (CYLINDERS, 
for example) at the same level. 

IDCl2931 UV0-13 IDCDEOI INTGCHK DEFAULTVOLUMES parameter 
was explicitly specified but was ov-
erridden by explicit specification of 
the VOLUMES parameter at an-
other component level. 

IDCDE02 ALLCPROC ORIGIN was specified along with 
the DEDICATE parameter. ORI-
GIN was ignored. 

IDCMPOI DVOLCHK DEFAULTVOLUMES parameter 
was specified but was overridden 
by specifications of the VOLUMES 
parameter at another component 
level. 

IDCRMOl DVOLCHK DEFAULTVOLUMES parameter 
was specified but was overridden 
by specifications of the VOLUMES 

Chapter 6: Diagnostic Aids 6- 81 



Licensed Material - Property of IBM 

Messages to Module Cross Ref erencc 

Message STID Module Procedure Situation That Caused Message 

parameter at another component 
level. 

IDCl2941 RCO-IO IDCRCOI CKNAMES SAM ESDS encountered in CRA 
and bypassed for export because 
the SAM ESDS feature is not in-
stalled or because NOCIFORMAT 
SAM ESDS cannot be exported. 

fl)Cl3291 100-49 IDCIOOI IDCIOCO Two or more segments of a spanned 
record are not at the same update 
level. 

IDC15021 DE0-5 IDCDE02 MODELPRC Security information was sup-
pressed when a model object was 
retrieved from the catalog. 

IDC 15431 AL0-18 IDCALOI CHECKPRC New KEY /RECORDSIZE values 
equal to old default values. 

IDCl5441 AL0-19 IDCALOI CHECK PRC New KEY /RECORDSIZE values 
equal to old non-default values. 

IDCl5611 LCl-2 IDCLC02 ANSVPROC The UG POOL request for a larger 
catalog work area failed. More 
space was required to process clus-
ter associations. 

LOCPROC The UGPOOL request for a larger 
catalog work area failed. A catalog 
entry required more space. 

CDIPROC The UGPOOL request for a larger 
catalog work area failed. More 
space was required for block calcu-
lations. 

VPROC The UGPOOL request for a larger 
catalog work area failed. More 
space was required to convert 
SPACEMAP to blocks. 

IDC15621 LCl-3 IDCLCOI ENTPROC Only space entries were requested; 
however, an entry in the entry list is 
greater than six characters. 

IDCl5641 LCl-5 IDCLCOI RTEPROC An entry retrieved from the catalog 
is not a type that can be listed. 

IDCl5651 LCl-6 IDCLCOI ENTPROC An entry retrieved from the catalog 
and specified in the user's entry list 
is not one of the types requested by 
the user. 

IDCl5661 LCl-8 IDCLCOI ENTPROC Either (I) the correct password was 
not supplied for a cluster entry and 
so the data and index association 
information could not be processed, 
or (2) the correct password was not 
supplied for an entry and the user 
requested more information than 
merely entry names, or (3) another 
type of catalog locate error occur-
red. 

GNXTPROC Either the correct password was not 
supplied for an entry and the user 
requested more information than 
merely entry names, or another 
type of catalog locate error occur-
red. 

RTEPROC Either (I) the correct password was 
not supplied for a cluster entry, 
and, even though the user requested 
only entry names, the names of the 
data and index association were not 
returned by the catalog, or (2) the 

6- 82 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Messages to Module Cross Reference 

Message STIO Module Procedure Situation That Caused Message 

correct password was not supplied 
for a data or index entry associated 
with a cluster entry, and field in-
formation other than entry names 
was not returned by the catalog, or 
(3) a non-supported entry type was 
returned from the catalog. 

IDCl5671 LCl-9 IDCLCOI RTEPROC Retrieval of a data or index entry 
associated with a cluster entry was 
attempted, using the control inter-
val number of the associated entry 
contained in the cluster entry. How-
ever, the entry could not be found 
in the catalog. 

IDCLC02 CDIPROC Retrieve! of a data or index entry 
associated with a cluster entry was 
attempted, using the control inter-
val number of the associated entry 
contained in the cluster entry. How-
ever, the entry could not be found 
in the catalog. 

VPROC Retrieval of the data set names 
associated with a data space was at-
tempted using the control interval 
number of the associated entry con-
tained in the data space. However, 
the entry could not be found in the 
catalog. 

IDCl5741 PR0-22 IDCRPOI CATCOMP More than 100 true name entries 
failed a comparison test during cat-
alog reload. Processing continues 
but comparison does not. 

IDC\5751 PR0-23 IDCRPOI CATCOMP A true name record existed on a 
backup or target catalog without a 
corresponding record on the bac-
kup or target catalog. 

IDC15951 XP0-6 IDCXPOI CLUSPROC Passwords were suppressed when 
the object to be exported was re-
trieved from the catalog. 

IDCl6141 MP0-7 IDCMPOI CLUSPROC The object name specified by the 
user does not match the object 
names found in the portable data 
set. 

IDCl6271 MP0-25 IDCMPOI DUPNPROC The OBJECTS parameter was 
specified for a component being 
imported into an empty data set. 

IDC 16441 BI0-5 IDCBIOI SORTPROC The base cluster record identified 
BI0-17 in the message was too short to 

contain the entire alternate key. 

IDCl6451 810-6 IDCBIOI BLDPROC Multiple occurrances of the same 
BI0-8 alternate key have been encoun-

tered in building an alternate index 
defined with the UNIQUEKEY at-
tribute. 

IDCl6461 BI0-7 IDCBIOI BLDPROC The alternate index record 
identified in the message was too 
short to contain all the base cluster 
pointers. 

IDCl6531 BI0-14 IDCBIOl FINPROC The alternate index was built but 
nonterminating errors were en-
countered. 

IDCl6611 RC0-6 IDCRCOl EXPORTDR Informational message stating that 
the data set exported was out-of-
synch. 

Chapter 6: Diagnostic Aids 6- 83 



Licensed Material - Property of IBM 

Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDCl6621 RC0-7 IDCRCOI EXPORTDR Informational message stating that 
the data set was not exported and 
was out-of-synch. 

IDCl6631 RC0-8 IDCRC02 CLUSPROC Catalog field could not be located 
for a path to a VSAM cluster. 

ALISPROC Catalog field could not be located 
for an OS/VS2 alias for a 
nonVSAM file or OS/VS2 genera-
tion data group. 

ASOCPROC Catalog field could not be located 
for an OS/VS2 alias for a 

1 mc 16641 

nonVSAM file. 

RC0-9 IDCRC02 NVSMPROC An OS/VS catalog has been 
connected to a DOS system and 
contains nonsupported objects. 

IDCl6671 RC0-12 IDCRCOI OBJVOLCK Volumes are out of synch because 
data set is not on both volumes. 

IDCl6781 RC0-2 IDCRCOI EXPORTDR An error occurred while processing 
an association for an object being 
exported. 

IDCl6791 RC0-4 IDCRCOI EXPORTDR The timestamps or Cl of a multivo-
lume data set were not equal. 

IDCl8701 LRl-1 IDCLROI GETPRT An 1/0 error occurred while 
reading the CRA. 

IDCLR02 IDCLR02 An 1/0 error occurred while 
reading the CRA. 

IDCl8711 LRl-2 IDCLROI GETPRT An 1/0 error occurred white 
reading the catalog. 

IDCLR02 IDCLR02 An 1/0 error occurred while 
reading the catalog. 

IDCl8751 LRl-15 IDCLROI TCICTCR The CI from the catalog record 
could not be found in the CTT ta-
ble therefore it could not be trans-
lated. 

IDCLR02 IDCLR02 The Cl from the catalog record 
could not be found in the CCT ta-
ble therefore it could not be trans-
lated. 

IDCl8781 LRl-9 IDCLROI CATOPEN IDCRC04 encountered an error 
white searching for the catalog 
name in the cluster record of the 
catalog. 

CKEYRNG IDCRC04 encountered an error 
while searching for the high key 
value in a given CRA record. 

CRAOPEN IDCRC04 encountered an error 
while searching for the owning cat-
alog name in the CRA record. 

CTTBLD IDCRC04 encountered an error 
while searching for the entry type 
of the catalog Cl in the CRA re-
cord. 

GETPRT IDCRC04 encountered an error 
while searching for the entry type 
or the entry name in the CRA re-
cord. 

INTASOC IDCRC04 encountered an error 
while searching for the associated 
entry type or entry name fields in 
the CRA records. 

6- 84 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Messages to Module Cross Ref crcncc 

Message STID Module Procedure Situation That Caused Message 

INTSORT IDCRC04 encountered an error 
while searching for the name in a 
given CRA record. 

INTVEXT IDCRC04 encountered an error 
while searching for the extension 
pointer in a given CRA record. 

PRTCMP I DCRC04 encountered an error 
while searching for the used length 
field in a given CRA record. 

IDC18781 LR 1-9 IDCLROI PRTDMP IDCRC04 encountered an error 
while searching for the used length 
field in a given CRA record. 

PRTOJVL I DCRC04 encountered an error 
while searching for the volume in-
formation or high key value in a 
given CRA record. 

PRTVOL IDCRC04 encountered an error 
while searching for the volume ti-
mestamp information in a given 
catalog or CRA record. 

1DC18801 LRl-11 IDCLROI PRTVOL Timestamp for the format-4 record 
could not be read for the CRA vol-
ume. 

IDCl8851 LRl-17 IDCLROI PRTMCWD IDCRC04 encountered an error 
while searching for mismatched 
fields in a given CRA record. The 
CRA record had previously been 
read and had indicated that mis-
matches existed. 

IDC18871 RC0-22 IDCRCOl SCANCRA 1/0 error encountered on a CRA 
record. 

TIMESTAMP Volume timestamp could not be 
obtained. 

IDC19271 EX0-12 IDCPMOI MARG PARM Margin values specified are invalid. 

1DC20351 TP6-3 IDCTP06 IDCTP06 An error was detected in the 
information transmitted in the error 
conversion table when attempting 
to convert a numeric error code to a 
prose message. 

IDC22851 RC0-24 IDCRCOI IDCRCOI The name list built for this CRA is 
empty. No other errors occurred. 
The CRA has nothing to export. 

IDC25521 DL0-2 IDCDLOI PARAMCHK The type of the entry lo be deleted 
was retrieved from the catalog, but 
the type is not one the user is al-
lowed to delete. 

IDC25531 DL0-3 IDCDLOI PARAMCHK The type of the entry to be deleted 
was retrieved from the catalog, but 
the type conflicts with the erase op-
tion. 

IDC25561 DL0-6, IDCDLOI MORESP No storage is available for a larger 
DL0-7 catalog work area. 

IDC25631 LCl-4 IDCLC02 AUPROC The allocation request conflicts 
with a nonVSAM or user catalog 
entry specified in the entry list. 

VPROC The allocation request conflicts 
with a space (volume) entry speci-
fied in the entry list. 

IDCLCOI INITPROC Either the allocation request 
conflicts with the type specification 
of cluster, alternate index, path, 
space, non VSAM, or user catalog, 
or the volume request conflicts with 

Chapter 6: Diagnostic Aids 6- 85 



Licensed Material - Property of IBM 

Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

the type specification of cluster. al-
ternate index or path. 

IDC26161 MP0-16 IDCMPOI CLUSPROC A path import operation failed. 

IDCRMOI CLUSPROC A path import operation failed. 

IDC26181 MP0-18 IDCMPOI CLUSPROC An invalid object's subparameter 
was found. 

IDC26201 MP0-20 IDCRMOI ALISPROC A recovery portable data set being 
imported contains objects not de-
finable in DOS/VSE. 

GDGPROC A recovery portable data set being 
imported contains objects not de-
finable in DOS/VSE. 

FVTPROC A recovery portable data set being 
imported contains a SAM ESDS. 
The SAM ESDS feature is not in-
stalled and the data set cannot be 
imported. 

IDCMPOI FVTPROC A recovery portable data set being 
imported contains a SAM ESDS. 
The SAM ESDS feature is not in-
stalled and the data set cannot be 
imported. 

IDC26211 MP0-21 IDCRMOI IDCRMOI The object named could not be 
imported. 

IDC26401 BIO-I IDCBIOI LOCPROC The file identified via OUTFILE is 
not an alternate index. 

IDC26421 BI0-3 IDCBIOI LOCPROC The alternate index identified in 
the message is not related to the 
base cluster identified via INFILE. 

IDC26471 BI0-8 IDCBIOI INITPROC Storage was not available to obtain 
buffers and work areas. 

IDC26481 BI0-9 IDCBIOI JCPROC DLBL statements for sort work 
FINPROC files are either missing or in error. 

IDC'26491 BI0-10 IDCBIOI DEFPROC A sort work area was obtained 
smaller than that required and job 
control for sort work files was miss-
ing or in error. 

IDC26501 BIO- I I IDCBIOI DEFPROC An internal sort could not be 
completed and job control for sort 
work files was missing or in error. 

IDC26511 BI0-12 IDCBIOI DEFPROC Define of sort work files failed. 

IDC26541 BI0-15 IDCBIOI FINPROC The alternate index was not built 
due to severe errors. 

IDC26551 BI0-16 IDCBIOI CATPROC Catalo& information was not 
returned for a locate request. 

IDC26561 BI0-19 IDCBIOI CATPROC A VSAM catalog locate failed with 
a nonzero return code. 

IDC26601 RC0-3 IDCRCOI CKNAMES The object named is from an 
OS/VS volume and is of a type that 
is not supported in DOS. 

IDCRC02 CLUSPROC The object named is from an 
OS/VS volume and contains asso-
ciations not supported in DOS. 

NVSMPROC The object named was not a 
non VSAM data set or a user cata-
log. 

IDC26661 RC0-11 IDCRCOI SYNCH The selected entry was not found in 
the selected C RA. 

IDC26681 RC0-13 IDCRCOI OBJVOLCK A required volume was not 
supplied in the CRA keyword. 

6- 86 VSE/VSAM Access Method Services Logic 



Licensed Muteriul - Property of I BM 

Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC26711 RC0-16 IDCRCOI CKCATNM The CRA has a different name than 
the others being processed. 

IDC26731 RC0-19 IDCRCOI BUILDCRV The volume serial number could 
not be obtained for CRA dname. 
The volume is not processed. 

IDCLROI CR AO PEN The volume serial number cannot 
be obtained from INFILE dname. 
The volume is not processed. 

IDC26751 RC0-21 IDCRCOI DUPNAMCK The same name was found in more 
than one CRA. 

IDC26771 RC0-1 IDCRCOI EXPORTDR The data set was not exported 
because of the error indicated in 
previous messages. 

IDC28721 LRl-3 IDCLROI CRAOPEN The catalog specified in the input 
for compare was not the owning 
catalog found in the CRA. 

IDC28731 LRl-4 IDCLROI CATOPEN Catalog could not be opened, 
therefore the compare option was 
ignored. 

CRAOPEN The CRA opened belongs to a 
catalog other that the one specified 
in the compare. 

IDC28761 LRl-6 IDCLROI CRAOPEN A verify was issued after opening a 
CRA and it failed. 

IDC28791 LRl-10 IDCLROI CA TOP EN IDCRC04 could not find the 
catalog name from the cluster re-
cord or the volume serial of the cat-
alog so it could not lock out reset-
ting of the catalog CRAs while they 
are being listed or the lock request 
failed. 

CRAOPEN The lock request to prevent 
concurrent updates to the catalog 
and CRAs failed. 

IDC28821 LRl-13 IDCLROI CTTBLD LISTCRA encountered an error 
reading the catalog control record. 

IDC28841 LRl-7 IDCLROI CATOPEN A verify was issued after opening a 
catalog and it failed. 

IDC28861 RC0-18 IDCRCOI ERR CK CRA can not be opened or locked 
because of some errors encoun-
tered. 

IDC29501 TPl-1 IDCTPOI IDCTPOI Either ( I) no format list or static 
text identification was passed as in-
put, or (2) no valid bits in 
FMTFLGS were turned on, or (3) 
the input or output length specified 
was less than I. 

IDC29511 TPl-2 IDCTPOI IDCTPOI The output column specified is not 
within the print line. 

IDC29521 TPl-3 IDCTPOI BDCONV For binary to decimal conversions, 
the input data length was more 
than 4 or the converted length was 
more than 16. 

PUPCONV For packed to unpacked conver-
sions, the converted length was 
more than 15, or the input data 
length was more than 8. 

IDC29531 TPl-4 IDCTPOI REDO A REDO structure is nested. 

IDC29541 TPl-6 IDCTP05 IDCTPOS The requested static text entry was 
not in the specified module. 

Chapter 6: Diagnostic Aids 6-87 



Licensed Material- Property of IBM 

Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC29551 TPl-7 IDCTPOI PUPCONV An invalid packed decimal field 
was passed by the caller. 

IDC30031 UV0-3 IDCALOI IDCALOI The VSAM catalog could not be 
opened, or another severe error oc-
curred. 

IDCBIOI TERMPROC Either (I) a severe error was 
encountered in processing the base 
cluster, or (2) the EXTERNAL-
SORT parameter was specified but 
the job control for sort files was 
missing or in error. 

IDCDEOI IDCDEOI The VSAM catalog to contain the 
defined object could not be opened, 
or another severe error occurred. 

IDCDE02 MODELPRC The VSAM catalog containing the 
model object could not be opened. 

IDCDLOI CATO PEN The VSA M catalog could not be 
opened. 

IDCLCOI IDCLCOI A severe error occurred. Listing of 
the catalog was not attempted or 
terminated if begun. 

IDCLROI ERROR A severe error has occurred. 

IDCMPOI IDCMPOI A severe error occurred. 

lDCPROI IDCPROI Either (I) an error occurred 
opening the input or alternate out-
put data sets, or (2) a unrecoverable 
error occurred while retrieving or 
printing a record, or (3) more than 
three 1/0 errors occurred while re-
trieving records. 

TEXT PS ET The static text subtitle line could 
not be retrieved. 

DELIMSET An incompatible use of delimiters 
was found during a data set print 
operation. 

IDCRCOl EXITTHE Function was not completed 
because a severe error was encoun-
tered. 

IDCRMOI IDCRMOl A severe error occurred. 

IDCRPOI IDCRPOI Either (I) an error occurred 
opening the input or output data 
sets, or (2) a unrecoverable error 
occurred while copying the data set, 
(3) more than three 1/0 errors oc-
curred while copying the data set, 
(4) an error occurred while attempt-
ing a catalog reload, or (5) a nonre-
lative record input data set did not 
have a non-empty relative record 
output data set. 

DELIMSET An incompatible use of delimiters 
was found during a data set copy 
operation. 

IDCRSOS CK ERR A severe error occurred which 
prevented further processing. 

IDCVYOI IDCVYOI The VSAM data set to be verified 
could not be opener, or the verify 
was not successful. 

IDCXPOI IDCXPOI A severe error occurred. 

IDC3004J UV0-4 IDCALOI ALTERPRC Storage was not available for one of 
the following: the volume list or the 
PASSWALL field. 

6- 88 VSE/VSAM Access Method Services Logic 



Liccnst>d Material- Property of IBM 

Messages to Module Cross Reference 

Message STID Module Procedure 

IDCALOI 

INDEXPRC 

LOCATPRC 

IDCDEOI IDCDEOI 

IDCDE02 ALLCPROC 

KEYPROC 

MODELPRC 

NAMEPROC 

PROTPROC 

IDCIOOI PUT REP 

IDCI002 BUILDACB 

BUILDDBK 

BUILDRPL 

CKNONOP 

DSDATA 

OPENRTN 

IDCLCOI INITPROC 

IDCLROI ADDASOC 

BLDVEXT 

CTTBLD 

INITLZE 

INTASOC 

IDCMPOI FPLPROC 

BPASPROC 

Situation That Caused Message 

Storage was not available for the 
CTGPL, CTGFV, and CTGFLs. 

Storage was not available for the 
index parameter list if KEYS was 
specified. 

Storage was not available for the 
catalog work area. 

Storage was not available for the 
CTGPL and CTGFV. 

Storage was not available for one of 
the following: CTG FLs, the vol­
ume list, the file sequence list, or 
the device type list. 

Storage was not available for one of 
the following: the AMDSBCAT 
CTGFL and the AMDSBCAT 
field, or the key range list. 

Storage was not available for the 
catalog parameter list or the catalog 
work area. 

Storage was not available for the 
CTGFLs. 

Storage was not available for the 
CTGFLs needed to set up the pro­
tection attributes. 

Storage was not available for the 
input work area. 

Storage was not available for the 
ACB or the EXLST. 

Storage was not available for the 
required 1/0 areas. 

Storage was not available for the 
input work area or the RPL. 

No storage is available for the input 
work area required to process span­
ned, nonVSAM records. 

No space available to read the 
Label Cylinder. 

Storage was not available for the 
IDCSTR. 

Storage was not available for one of 
the following: catalog parameter 
lists, catalog work areas, or the stat­
ic text used in the catalog listing. 

Storage was not available for the 
association table extension. 

Storage was not available for the 
VEXTTBL extension. 

Storage was not available for the Cl 
translate table. 

Storage was not available for the 
initial ASSOCTBL and 
VEXTTBL. 

Storage was not available for the 
association table extension. 

Storage was not available for 
CTGFLs. 

Storage was not available for the 
PASSWALL field. 

Chapter 6: Diagnostic Aids 6- 89 



Messages to Module Cross Reference 

Message STID Module Procedure 

CLUSPROC 

CPLPROC 

CTLPROC 

DELTPROC 

FVTPROC 

LVLPROC 

IDCPMOI TESTPARM 

IDCRCOI IDCRCOl 

IDCRC02 CLUSPROC 

CTLGPROC 

IDCRC02 

LOCPROC 

NVSMPROC 

SAVEPROC 

IDCRIOI GETSPACE 

IDCRI02 

IN REPEAT 

RIINIT 

SCANCMD 

IDCRMOI ALISPROC 

BFPLPROC 

BPASPROC 

CLUSPROC 

CPLPROC 

CTLGPROC 

DELTPROC 

6- 90 VSE/VSAM Access Method Services Logic 

Licensed Material- Property of IBM 

Situation That Caused Message 

Storage was not available for the 
catalog work area. 

Storage was not available for the 
CTGPL. 

Storage was not available for the 
catalog work area. 

Storage was not available for the 
catalog work area. 

Storage was not available for the 
CTGFV. 

Storage was not available for one of 
the following: the catalog work 
area. CTGFLs, or volume serial 
lists. 

Storage was not available for the 
Test Option Data Area. 

Storage was not available for one of 
the tables required by EXPOR­
TRA. 

Storage was not available for the 
control record output buffer. 

Storage was not available for the 
catalog work area. 

Storage was not available for the 
output buffer area. 

Storage was not available for the 
CPL, FPL and the catalog work 
area. 

Storage was not available for the 
control record output buffer. 

Storage was not available for the 
input record save area. 

Storage was not available for The 
FDT. 

Storage was not available for one of 
the following: work space or the 
FDT. 

Storage was not available for the 
FDT. 

Storage was not available for the 
Reader/Interpreter Historical Data 
Area. 

Storage was not available for the 
FDT. 

Storage was not available for the 
catalog data record buffer. 

Storage was not available for the 
FPLs. 

Storage was not available for the 
PASSWALL information. 

Storage was not available for the 
buffer area or volume list. 

Storage was not available for the 
catalog parameter list. 

Storage was not available for the 
catalog parame~er list. 

Storage was not available for the 
catalog work area. 



Licensed Material - Property of IBM 

Messages to Module Cross Reference 

Message STID Module Procedure 

FVTPROC 

LVLRPROC 

NFVTPROC 

NVSMPROC 

RANGPROC 

UCATPROC 

IDCRSOI IDCRSOl 

INIT 

IDCRS03 GETTAB 

IDCRS03 PROCVOL 

IDCRS03 VERB 

IDCRS04 NINIT 

IDCRS04 NXPND 

IDCRS05 BLDRLST 

IDCRS05 BLDVLST 

IDCRS06 WFDEF 

IDCRS07 RENMSETV 

IDCSA08 IDCSANQ 

IDCXPOl ALTRPROC 

CLUSPROC 

CTLGPROC 

DELTPROC 

LOCPROC 

Situation That Caused Message 

Storage was not available for the 
FVT or FPLs. 

Storage was not available for the 
volume serial list, the device types 
list, or the file sequence number 
list. 

Storage was not available for the 
FVT or FPLs. 

Storage was not available for the 
control record buffer. 

Storage was not available for the 
range list. 

Storage was not available for the 
data record. 

Storage was not available for 
automatic storage for modules 
IDCRS02- IDCRS07. 

Storage was not available for any 
one of the following: the record ac­
cess buffers (RAB), the CRA user 
buffer, record management and 
umacro work area, catalog manage­
ment work area, IKQMDADS par­
ameter list, the CIXL T table, the 
UIOINFO return area. 

Storage was not available for the 
association work area. 

Storage was not available for the 
space bit map. 

Storage was not available for the 
GOG level difference string work 
area. 

Storage was not available for the 
FIND work area. 

Storage was not available to expand 
the FIND work area. 

Storage was not available for the 
RESVOL ~able. 

Storage was not available for the 
VOLSERTB. 

Storage was not available for the 
CPL, FPL, and DEFINE work 
area. 

Storage was not available for the 
RENAME volume list. 

Storage was not available for DTL 
(UENQ request). 

Storage was not available for the 
CTGFV. 

Storage was not available for the 
control record output buffer. 

Storage was not available for the 
second catalog work area obtained 
when the first work area was too 
small. 

Storage was not available for the 
CTGPL or the catalog work area. 

Storage was not available for the 
CTG PL or the catalog work area. 

Chapter 6: Diagnostic Aids 6 - 91 



Licensed Material - Property of IBM 

Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

MO RESP Storage was not available for the 
catalog work area. 

1DC30061 UV0-6 IDCPROI DELIMSET Beginning positioning failed. 

IDCRPOI DELIMSET Beginning positioning failed. 

IDC30071 (See note IDCALOI I DC ALOI The catalog return code was 
at end nonzero for an alter request. 
of list) 

CHECK PRC The catalog return code was 
nonzero for a locate request. 

LOCATPRC The catalog return code was 
nonzero for a locate request. 

IDCBIOI FINPROC The catalog return code was 
nonzero for a locate request against 
the base cluster or alternate index, 
or for a define request for external 
sort work files. 

IDCDEOI IDCDEOI The catalog return code was 
nonzero for a define request. 

IDCDE02 MODELPRC The catalog return code was 
nonzero for a request to locate a 
model object. 

IDCDLOI CATCALL The catalog return code was 
nonzero for a delete request. This 
message is not issued for a return 
code of 160, however, because 160 
indicates a normal condition. 

FINDTYPE The catalog return code was 
nonzero for a locate request. 

MOR ESP The catalog return code was 
nonzero for a delete request. 

IDCLC02 LOCPROC The catalog return code was 
nonzero for a locate request. 

IDCMPOI CTLGPROC The catalog return code was 
nonzero. 

DELTPROC The catalog return code was 
nonzero for a delete request. 

IDCRC02 CTLGPROC The catalog return code was 
nonzero for a locate request. 

IDCRMOI CTLGPROC The catalog return code was 
nonzero for a define or alter re-
quest. 

DELTPROC The catalog return code was 
nonzero for a delete request. 

IDCRSOI INIT The catalog return code was 
non-zero for a locate request. 

IDCRS06 WFDEF The catalog return code was 
non-zero when defining the work-
file. 

WFDEL The catalog return code was 
non-zero when deleting the work-
file. 

IDCXPOI CTLGPROC The catalog return code was 
nonzero for a delete, alter, or locate 
request. 

DELTPROC The catalog return code was 
nonzero for a delete request. 

MO RESP The catalog return code was 
nonzero for a delete request. 

6- 92 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC30091 (See note IDCALOl IDCALOI The catalog return code was 
at end nonzero for an alter request. 
of list) 

CHECKPRC The catalog return code was 
nonzero for a locate request. 

LOCATPRC The catalog return code was 
nonzero for a locate request. 

IDCBIOl FINPROC The catalog return code was 
nonzero for a locate request against 
the base cluster or alternate index, 
or for a define request for external 
sort work files. 

IDCDEOI IDCDEOI The catalog return code was 
nonzero for a define request. 

IDCDE02 MODELPRC The catalog return code was 
nonzero for a request to locate a 
model object. 

IDCDLOl CATCALL The catalog return was nonzero for 
a delete request. This message is 
not issued for a return code of 160, 
however, because 160 indicates a 
normal condition. 

FINDTYPE The catalog return code was 
nonzero for a locate request. 

MOR ESP The catalog return code was 
nonzero for a delete request. 

LOCPROC The catalog return code was 
nonzero for a locate request. 

IDCLC02 LOCPROC The catalog return code was 
nonzero for a locate request. 

IDCMPOl CTLGPROC The catalog return code was 
nonzero. 

DELTPROC The catalog return code was 
nonzero for a delete request. 

IDCRC02 CTLGPROC The catalog return code was 
nonzero for a locate request. 

IDCRMOI CTLGPROC The catalog return code was 
nonzero for a define or alter re-
quest. 

DELTPROC The catalog return code was 
nonzero for a delete request. 

IDCRSOI INIT The catalog return code was 
non-zero for a locate request. 

IDCRS06 WFDEF The catalog return code was 
non-zero when defining the work-
file. 

WFDEL The catalog return code was 
non-zero when deleting the work-
file. 

IDCXPOI CTLGPROC The catalog return code was 
nonzero for a delete, alter, or locate 
request. 

DELTPROC The catalog return code was 
nonzero for a delete request. 

MO RESP The catalog return code was 
nonzero for a delete request. 

IDC30101 UV0-11 IDCALOl IDCALOl The file identified in the DLBL 
statement does not match that giv-
en in the CATALOG parameter. 

IDCDEOI IDCDEOI The file identified in the DLBL 

Chapter 6: Diagnostic Aids 6-93 



Licensed Material- Property of IBM 

Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDCDE02 MODELPRC statement does not match that 
given in the CATALOG parameter. 

IDCDLOI CATO PEN The file identified in the DLBL 
statement does not match that giv-
en in the CATALOG parameter. 

IDCLCOI INITPROC The file identified in the DLBL 
statement does not match that giv-
en in the CATALOG parameter. 

I DCM POI RECPROC The file identified in the OUTFILE 
parameter does not match the name 
given in the IMPORT command or 
any paths over it. 

IDCXPOI RECPROC The file identified in the INFILE 
parameter does not match that giv-
en in the EXPORT command or 
any paths over it. 

IDC30121 TP6-9 IDCTP06 CATERCNV Verbalization of catalog return 
code 8. The entry name supplied by 
the user is not in the specified cata-
log. 

IDC30131 TP6-IO IDCTP06 CATERCNV Verbalization of catalog return 
code 8. The file name supplied by 
the user is already in the catalog. 

IDC30141 TP6-l I IDCTP06 CATERCNV An error occurred during a VSAM 
catalog operation. 

IDC30161 TP6-12 IDCTP06 CATERCNV Verbalization of catalog return 
code 4. An error occurred white a 
VSAM catalog was being opened or 
closed or the user catalog specified 
by the command cannot be found. 

IDC3017l TP6-13 IDCTP06 CATERCNV Verbalization of catalog return 
code 20. The catalog or the catalog 
recovery area (CRA) is full. 

IDC30181 TP6-14 IDCTP06 CATERCNV Verbalization of catalog return 
code 56. The maximum number of 
attempts to supply the correct pass-
word was exceeded by the operator, 
or the user-specified verification 
routine failed to authorize use of 
the file. 

IDC30191 TP6-15 IDCTP06 CATERCNV Verbalization of catalog return 
code 60. Invalid catalog action re-
quest for the entry named. 

IDC3020I TP6-16 IDCTP06 CATERCNV Verbalization of catalog return 
code 68. Either an attempt was 
made to extend a unique VSAM 
file, or a specified volume either 
cannot accommodate an initial al-
location, or cannot be extended 
when required. 

IDC30211 TP6-l7 IDCTP06 CATERCNV Verbalization of catalog return 
code 72. Either an illegal system 
symbolic unit was assigned or no 
system symbolic unit was assigned. 

IDC30221 TP6-18 IDCTP06 CATERCNV Verbalization of catalog return 
code 80. The object specified in the 
RELATE parameter of a DEFINE 
command does not exist, or is im-
proper for the type of object being 
defined. 

IDC30231 TP6-19 IDCTP06 CATERCNV Verbalization of catalog return 
code 84. An attempt to delete an 
entry failed because its expiration 

6-94 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

date has not been reached, and the 
PURGE option was not specified. 

IDC30241 TP6-21 IDCTP06 CATERCNV Verbalization of catalog return 
code 148. A volume owned by an-
other catalog was specified. 

IDC30251 TP6-22 IDCTP06 CATERCNV Verbalization of catalog return 
code 156. A volume does not con-
tain a data space with sufficient 
room for allocation of another 
VSAM file. 

IDC30261 TP6-23 IDCTP06 CATERCNV Verbalization of catalog return 
code 172. A DEFINE operation 
specified the name of a file with the 
UNIQUE attribute, but there is al-
ready a file on the volume with the 
same name. 

IDC30271 TP6-24 IDCTP06 CATERCNV Verbalization of catalog return 
code 176. During the definition of 
a data space, an attempt was made 
to perform a VSAM allocate func-
tion, but there was no space in the 
VTOC for an additional label. 

IDC30281 TP6-25 IDCTP06 CATERCNV Verbalization of catalog return 
code 184. The catalog is currently 
open and cannot be deleted. 

IDC30291 TP6-26 IDCTP06 CATERCNV Verbalization of catalog return 
code 192. The maximum logical re-
cord length specified is greater than 
32, 761 for a nonspanned file. 

IDC30301 TP6-27 IDCTP06 CATERCNV Verbalization of catalog return 
code 196, 200. The data component 
control interval size specified is 
greater than 32,767; or the index 
component control interval size is 
greater than the maximum block 
size of the index device. 

IDC303 ll TP6-28 IDCTP06 CATERCNV Verbalization of catalog return 
code 204. The KEY specification 
extends beyond the end of the max-
imum logical record. 

IDC30321 TP6-29 IDCTP06 CATERCNV Verbalization of catalog return 
code 208. The buffersize specified 
during a DEFINE operation is too 
small to contain the minimum 
number of control intervals for the 
VSAM file being defined. 

IDC30331 TP6-30 1DCTP06 CATERCNV Verbalization of catalog return 
code 248. This condition arises 
when a function requires a volume 
that is not owned by the referenced 
VSAM catalog. 

IDC30441 TP6-39 IDCTP06 CATERCNV Verbalization of catalog return 
code 16. The CYLINDER parame-
ter was specified in the DEFINE 
command but the extents found on 
the corresponding 
DLBL/EXTENT statements do not 
start or end on a cylinder boundary. 

IDC30451 TP6-40 IDCTP06 CATERCNV Verbalization of catalog return 
code 152. An attempt was made to 
delete a non-empty VSAM catalog. 

IDC30461 TP6-41 IDCTP06 CATERCNV Verbalization of catalog return 
code 100. An attempt was made to 
define a unique file on a volume 

Chapter 6: Diagnostic Aids 6- 95 



Licensed Material - Property of IBM 

Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

that does not contain a catalog re-
covery area (CRA). 

IDC30471 TP6-42 IDCTP06 CATERCNV Verbalization of catalog return 
code 216. A space allocation at-
tempt failed because the new extent 
specified in a EXTENT statement 
overlapped the volume table of 
contents (VTOC), an existing file or 
other extents specified in the DLBL 
statement. 

IDC30481 TP6-43 IDCTP06 CATERCNV Verbalization of catalog return 
code 240. A DLBL or EXTENT 
statement is missing or in error or a 
system logical unit error was detect-
ed. 

IDC'317 II DE0-24 IDCDE02 ALLCPROC Value specified for CLASS, 
primary USEC LASS, or secondary 
USECLASS is invalid. 

I DCM POI CLUSPROC OBJECTSparame~rUSECLASS 

has an invalid primary or secondary 
value. 

IDCRMOI CLUSPROC OBJECTS parameter USECLASS 
has an invalid primary or secondary 
value. 

IDC3173 DE0-26 IDCDEOI INTGCHK A nonzero USECLASS was 
specified for a CLUSTER/ AIX or 
component that has the UNIQUE 
allocation attribute. 

IDCMPOI CLUSPROC A nonzero USECLASS was 
specified for a CLUSTER/ AIX or 
component that has the UNIQUE 
allocation attribute. 

IDCRMOI CLUSPROC A nonzero USEC LASS was 
specified for CLUSTER/ AIX or 
component that has the UNIQUE 
allocation attribute. 

IDC31901 AL0-24 IDCALOI PARAMCHK One of the parameters specified on 
the command is invalid for the en-
try type. 

IDC32001 RIO-I IDCRIOI SCANCMD The number of positional parame-
ters found (PPARMCNT) exceeds 
the number defined in the descrip-
tor for the current subparameter list 
(SUBCOUNT). 

IDC3201 RI0-2 IDCRIOI BUILDFDT The input constant length 
(UNITINDX) exceeds the maxi-
mum length defined by the descrip-
tor. 

CONVERT The input constant length 
(UNITINDX) exceeds the maxi-
mum length defined by the descrip-
tor. 

NXTFIELD The input constant length 
(UNITINDX) exceeds the maxi-
mum length that the 
Reader/Interpreter can handle 
(UNITMAX). 

PACKCVB The input constant length 
(UNITINDX) exceeds the maxi-
mum length defined by the descrip-
tor. 

6- 96 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of I BM 

Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC32021 RI0-3 IDCRIOI ERROR I The remainder of a command was 
bypassed due to an error in it. 

ERROR2 The remainder of a command was 
bypassed due to an error in it. 

IDC32031 RI0-4 IDCRIOI DSIDCHK A data set name does not have the 
correct syntax. 

IDC32051 RI0-6 IDCRIOI SCANCMD The closing parentheses of a 
subparameter list was found before 
any parameters were found in the 
list or an opening parentheses was 
found before any keyword was 
found. 

IDC32071 RI0-8 IDCRIOI ERROR I A severe error occurred. The 
condition code is set to 16, and the 
Reader/Interpreter will terminate 
processing. 

ERROR2 A severe error occurred. The 
condition code is set to 16, and the 
Reader/Interpreter will terminate 
processing. 

IDC32081 RI0-9 IDCRIOI KWDPARM A keyword parameter, defined as 
having a subfield, does not have a 
left parentheses following the key-
word. 

IDC32091 RI0-10 IDCRIOI KWDPARM A keyword's subfield does not have 
a closing parenthesis following it. 

POSPARM A list of constants is not delimited 
on the right by a closing parenthe-
sis. 

IDC32101 RIO-I I IDCRIOI INREPEAT The next repetition of a repeated 
subparameter list does not begin 
with a left parenthesis. 

IDC321 ll RI0-12 IDCRIOI KWDPARM The descriptor does not define the 
input keyword as part of the cur-
rent parameter list. 

NXTFIELD An input keyword exceeds the 
maximum allowable length for a 
keyword. 

IDC32121 RI0-13 IDCRIOl POSPARM A positional parameter that is not 
defined as a list begins with a left 
parenthesis. 

IDC32131 RI0-14 IDCRIOl SET FLAG An internal table (PARM FLAG) 
indicates that the keyword just 
found was found previously in this 
command. 

IDC32141 RI0-15 IDCRIOI GETDATA A numeric constant begins with a B 
or X, but an apostrophe does not 
follow directly after this character. 

IDC32161 RI0-17 IDCRIOI ERROR I The remainder of a command, 
being scanned for syntax-checking 
purposes only, was bypassed due to 
an error in it. 

ERROR2 The remainder of a command, 
being scanned for syntax-checking 
purposes only, was bypassed due to 
an error in it. 

IDC32171 RI0-18 IDCRIOl GETQUOTD A password-delimiting slash 
appears following a constant that 
does not allow a password. 

GETSIMPL A password-delimiting slash 
appears following a constant that 
does not allow a password. 

Chapter 6: Diagnostic Aids 6-97 



Licensed Material - Property of I BM 

Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC'32181 RI0-19 IDCRIOI IN REPEAT The number of sublist repetitions 
(REPCOUNT) for the current re-
peated sublist exceeds the maxi-
mum repetitions allowed 
(REPMAX) for this parameter ac-
cording to the descriptor. 

IDC32191 RI0-20 IDCRIOI IDCRI02 The input verb name does not 
match any name in IDCRIL Tor 
the command descriptor phase 
could not be found in the core im-
age library. 

IDC32201 RI0-21 IDCRIOI CONVERT A numeric constant contains a 
invalid digit. 

PACKCVB A numeric constant contains an 
invalid digit. 

IDC3221 I RI0-22 IDCRIOI CONVERT A numeric constant has a value 
outside the value range specified in 
the descriptor for this parameter. 

PACKCVB A numeric constant is too large to 
fit into a binary fullword. 

IDC32231 RI0-24 IDCRIOI BUILDFDT The number of constants found in a 
list (SCLRCNT) exceeds the num-
ber allowed (LISTMAX). 

I IDC32251 RI0-26 IDCRIOI NEEDNOTS A parameter required for this 
command is missing, or parameter 
required when another parameter is 
coded is missing. 

IDCDEOI INTGCHK A parameter required for this 
command is missing, or parameter 
required when another parameter is 
coded is missing. 

IDC32261 RI0-27 IDCRIOI NEED NOTS An input parameter conflicts with 
some other input parameter. 

IDC32871 100-16 IDCI002 BUILDACB During CRA OPEN, IKQASNMT 
couldn't mount the CRA volume 
because the operator cancelled the 
mount request. Any return code 
from IKQASNMT that is not 0 or 4 
will also cause this message. Exam-
pies are: Lock Table full, G ETV IS 
failure, or incorrect NEWPAC re-
sponse. 

IDC32881 100-11 IDCI002 BUILDACB During CRA OPEN, IKQASNMT 
couldn't successfully do an auto as-
sign for the CRA. 

IDC32891 UV0-8 IDCSA08 IDCSANQ IKQLOCK passed back a supervi-
sor lock manager error code. No 
message if lock is held by another 
task or is held by this task (i.e., re-
cursion). See Appendix 8, code 
246. 

IDC32911 MP0-15 IDCMPOI DVOLCHK DEFAULTVOLUMES parameter 
was specified for an object which 
has the UNIQUE or ORDERED 
attribute. 

IDCRMOI DVOLCHK DEFAULTVOLUMES parameter 
was specified for an object which 
has the UNIQUE or ORDERED 
attribute or has the default model 
reserved name 
("DEFAULT.MODEL."). 

6- 98 VSE/VSAM Access Method Services Logic 



Uccnscd Material-Property of IBM 

Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC32921 DE0-32 IDCDEOI INTGCHK VOLUMES parameter is required 
with UNIQUE or ORDERED 
component and for default models. 

IDC32951 XP0-8 IDCXPOl CLUSPROC The requested file is NOCIFOR-
MAT or CIFORMAT SAM. 

IDCRCOl CK NAMES The requested file is NOCIFOR-
MAT or CIFORMAT SAM. 

IDC32971 DE0-30 IDCDE02 NAMEPROC The name for a VSAM object was 
specified with the prefix 
"DEFAULT.MODEL." but not 
followed by the valid qualifiers for 
the file type given. 

IDCDEOl INTGCHK The name for a VSAM object was 
specified with the prefix 
"DEFAULT.MODEL." but not 
followedby the valid qualifiers for 
the file type given. 

IDCMPOl CNCTPROC The specified name for the user 
catalog (connect) contains the pre-
fix "DEFAULT.MODEL." 

IDC32981 AL0-5 IDCALOI IDCALOI An attempt was made to either 
rename a file to a default model 
name or rename a default model 
name. 

I DCM POI CLUSPROC An attempt was made to either 
rename a file to a default model 
name or rename a default model 
name. 

1002991 UV-12 IDCDEOl INTGCHK Inconsistent parameters specified, 
modeled, or defaulted. 

IDC33001 100-1 IDCI002 BLDOCMSG An error occurred during open of a 
data set. 

IDC33011 100-2 IDCI002 BLDOCMSG An error occurred during close of a 
data set. 

IDC33021 100-3 IDCIOOl BLDAMSG An error occurred while accessing a 
data set. 

IDCI003 BLDAMSG An error occurred while accessing a 
data set. 

IDCRS06 REC ERR A logical 1/0 error occurred while 
processing a CRA, catalog or the 
work file. 

IDC33031 100-4 IDCI002 BUILDDBK The data set to be opened for 
update processing is not a VSAM 
data set. 

IDC33041 100-5 IDCI002 DSDATA A Job Control statement specified 
for file to OPEN was not found. 

IDC33051 100-6 IDCI002 DSDATA An attempt was made to open an 
ISAM data set for output. 

IDC33061 100-7 IDCI002 BUILDDBK Cannot open an ISAM file for 
address processing. 

DSDATA The data set to be opened for 
physical sequential processing is an 
ISAM data set. 

IDC33071 100-8 IDCI002 BUILDDBK The data set to be opened for keyed 
processing is not a VSAM or ISAM 
data set. 

IDC33081 100-10 IDCIOOl VSAMERR A record with the same key or 
relative record number as the input 
record already exists in the output 
data set. 

Chapter 6: Diagnostic Aids 6- 99 



Licensed Material - Property of IBM 

Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC33091 100-12 IDCIOOI PUTNONVS The length for a record to be 
written is invalid. 

PUTVSAM Length invalid for RRDS. 

IDC33IOI 100-13 IDCI003 PTAMDS The key provided is longer than the 
key length of the data set. 

PTISDS The key provided is longer than the 
key length of the data set. 

IDC331 II 100-14 IDCI003 IDCI003 The data set to be positioned is not 
a VSAM or ISAM data set. 

IDC33121 I00-15 IDCI002 CK NO NOP The DTF OPEN flag was not set by 
the system OPEN routines for mag-
netic tape or for a sequential disk 
file. 

IDC33141 100-17 IDCIOOI VSAMERR The record to be written has a lower 
key than the last record in the data 
set. 

IDC33161 100-19 IDCI002 BUILDDBK The data set to be opened is not a 
VSAM catalog. 

IDC33171 100-20 IDCIOOI VSAMERR Physical error detected in a VSAM 
file. 

IDCI002 DSDATA 1/0 attempting to read the Label 
Cylinder. 

IDCI003 PTAMDS Physical error detected by VSAM 
POINT routines. 

IDC33181 100-21 IDCI002 BUILDDBK (I) Invalid environment or 
DLBL/TLBL parameters specified, 
(2) the blocksize is less than one, (3) 
the blocksize is invalid for a fixed 
length record format file, (4) the 
blocksize is invalid for a variable 
length record format file, or ( 5) for 
SAM files, Fixed Unblocked, 
RECSZ is given but is not equal to 
BLKSZ. 

CKNONOP The blocksize specified for an 
ISAM file is less than the file's true 
block size. 

DSDATA Invalid parameters specified on the 
DLBL/TLBL statement. 

IDC33201 100-23 IDCI002 BUILDDBK I. Invalid device type specified for 
prime data. 

2. Invalid device type specified 
for high level index of an ISAM 
file. 

3. Tape device specified as the 
high level index of an ISAM 
file. 

IDC33211 100-24 IDCI002 CKNONOP An open ABEND error was 
detected. 

IDC33221 100-25 IDCIOOI IDCIOVY The data set to be verified is not a 
VSAM data set. 

IDC33231 100-34 IDCI002 OPENCAT A user catalog open error occurred. 

IDC33241 100-36 IDCI002 OPENCAT A user catalog open error has 
occurred and problem determina-
tion information has been returned 
by catalog management. 

IDC33251 100-45 IDCIOOI GETNONVS The blocksize specified for the 
portable data set is different than 
that of the portable data set. 

IDC33261 100-46 IDCI002 OPENRTN The REPLACE option has been 
specified for output through a path. 

6- 100 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of IBM 

Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC33271 100-47 IDCIOOl VSAMERR Duplicate record in the upgrade set. 

IDC33281 100-48 IDCl002 BUILDDBK ISAM processing was requested for 
an FBA device. 

IDC335 l l 100-9 IDCIOOl VSAMERR An error was detected by a VSAM 
macro. The error was not a dupli-
cate record or a record out of se-
quence. 

IDCI002 CLOSER TN The ACB was not closed successful-
ly. 

OPENRTN The ACB was not opened success-
fully. 

IDC1003 PTAMDS A logical error occurred during a 
VSAM point operation. 

IDCRS06 REC ERR A logical 1/0 error occurred while 
processing a CRA, catalog or the 
work file. 

IDC35001 DE0-3 IDCDE03 IDCDE03 The object parameter list (FDT) 
supplied is not a valid subcommand 
type. 

IDC35011 DE0-4 IDCDE02 MODELPRC The entry type of an model object is 
not the same as that of the object 
being defined, or the entry type of a 
model object conflicts with the 
specification of INDEXED, NON-
INDEXED or NUMBERED. 

IDC35031 DE0-1 IDCDE02 ALLCPROC The number of elements in the 
volume list does not match the 
number of elements in the file se-
quence list. 

IDC35041 DE0-2 IDCDE02 KEYPROC The length of the key range list 
retrieved from a model exceeded 
the space allotted for the list by 
IDCDEOI. 

1DC35051 DE0-6 IDCDEOl IDCDEOI Space allocation was incorrectly 

I 
specified for a VSAM catalog, data 
set, or data space. 

IDC35071 DE0-8 IL>CDEOl IDCDEOl The record size was required but 
not specified for a VSAM data set 
or data space. 

IDC35131 DE0-14 IDCDEOl IDCDEOI A file name was not specified with 
the UNIQUE attribute. 

IDC35141 DE0-15 IDCDE02 KEYPROC The key ranges specified by the 
user overlap. 

IDCMPOI RANGPROC The key ranges specified by the 
user overlap. 

IDC35151 DE0-16 IDCDE02 ALLCPROC The average record size exceeds the 
maximum record size. 

IDC35161 DE0-17 IDCDEOl IDCDEOI Key length and position were not 
specified for a key sequenced data 
set. 

IDC35171 DE0-18 IDCDE02 ALLPROC Unequal record sizes were specified 
for a relative record data set. 

IDC35181 DE0-19 IDCDEOl IDCDEOl REUSE cannot be specified with 
UNIQUE or KEYRANGES. 

IDC35191 DE0-20 IDCDEOl IDCDEOl A REUSE conflict exists between 
data and index. 

IDC35211 DE0-22 IDCDEOI IDCDEOl A RECORDSIZE greater than 
32761 was specified for a nonspan-
ned data set. 

IDC35221 DE0-23 IDCDEOl IDCDEOl SPANNED cannot be specified for 
a relative record data set. 

Chapter 6: Diagnostic Aids 6- 101 



Licensed Material- Property of IBM 

Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC35241 DE0-25 IDCDEOI INTGCHK Key range values are longer than 
key length. 

IDCDE02 KEYPROC Key ranges are not in ascending 
order. 

IDC35251 AL0-23 IDCALOI CHECK PRC The password supplied is insuffi-
cient to alter key values. 

IDC35271 AL0-3 IDCALOI LOCATPRC The entry retrieved from the 
catalog was an invalid type for alter 
requests, or required fields could 
not be located. 

IDC35281 AL0-4 IDCALOI LOCATPRC Passwords were suppressed when 
the object ot be altered was re-
trieved from the catalog. 

IDC35371 AL0-12 IDCALOI CHECK PRC UNIQUEKEY or UPGRADE was 
specified for a nonalternate index. 

IDC35381 AL0-13 IDCALOI CHECK PRC UNIQUEKEY or UPGRADE was 
specified for a nonempty alternate 
index. 

IDC35391 AL0-14 IDCALOI CHECKPRC KEYS or RECORDSIZE was 
specified for a nonempty object. 

IDC35401 AL0-15 IDCALOI CHECKPRC A conflict between the control 
interval and KEYS or RECORD-
SIZE exists. 

IDC35411 AL0-16 IDCALOI CHECKPRC A conflict exists between the 
alternate index and the base cluster. 

IDC35421 AL0-17 IDCALOI CHECK PRC Unequal record sizes were specified 
for a relative record data set. 

IDC35451 AL0-20 IDCALOI CHECK PRC Invalid values were specified for 
KEYS or RECORDSIZE. 

IDC35461 AL0-21 IDCALOI CHECKPRC Invalid value specified for KEYS. 

IDC35471 AL0-22 IDCALOI CHECKPRC KEYS or RECORDSIZE is invalid 
with entry type. 

IDC35701 PR0-18 IDCRPOI IDCRPOI Delimiters were specified for a 
catalog reload. 

IDC35721 PR0-20 IDCRPOI CATRELOD Target catalog is too small to 
contain the backup catalog during 
catalog reload. 

IDC35731 PR0-21 IDCRPOI CATRELOD Either the catalog name, the 
volume serial number, or the device 
type did not match during a catalog 
relo<.d. 

IDC35821 PR0-14 IDCRPOI IDCRPOI The organization of the input data 
set is incompatible with that of the 
output data set. 

IDC35831 PR0-17 IDCRPOI DELIMSET Invalid delimiters were specified 
for a data set copy operation. 

IDCPROI DELIMSET Invalid delimiters were specified 

I 
for a data set copy operation. 

IDC35921 XP0-3 IDCXPOI CLUSPROC The object retrieved from the 
catalog for export is not a cluster or 
an alternate index. 

6- 102 VSE/VSAM Access Method Services Logic 



Licensed Material- Property of IBM 

Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC35931 XP0-4 IDCXPOI CLUSPROC The catalog did not return the entry 
type, or data component name, or 
LRECL when the object to be ex-
ported was located. 

IDCRCOl SYNCH No data association could be found. 

IDCRC02 CLUSPROC Either (I) the catalog did not return 
the entry type, data component 
name, or LRECL when the object 
to be exported was located, or (2) 
the entry type was not a cluster or 
alternate index. 

CONTRBL The catalog did not return the entry 
type, data component name or 
LRECL when the object to be ex-
ported was located. 

NVSMPROC The catalog did not return the entry 
type, or data component name 
when the object to be exported was 
located. 

IDC35961 XP0-7 IDCXPOl CLUSPROC The data set to be exported has 
been marked as not usable. 

IDC36021 MP0-9 IDCMPOl IDCMPOI Import of the data set failed after a 
successful define. 

IDCRMOI IDCRMOI Import of the data set failed after a 
successful define. 

IDC36061 MP0-1 IDCMPOI CLUSPROC The portable data set's timestamp 
record was not valid, or the special 
record preceding the data records 
was not valid. 

IDCRMOl IDCRMOl The portable data set's timestamp 
record was not valid. 

ALISPROC A catalog control record for an alias 
entry was not read. 

CLUSPROC The special record preceding the 
data records was not valid. 

GDGPROC A catalog control record for an 
OS/VS generation data group was 
not valid. 

NVSMPROC A catalog control record for a 
non VSAM entry was not valid. 

UCATPROC A catalog control record for a user 
catalog was not valid. 

IDC36071 MP0-13 IDCMPOl DUPNPROC The temporary flag is not set in the 
catalog entry with the same name 
as the object being imported. If 
NEWNAME is specified, the tern-
porary flag is not set in the entry 
with the new name. 

IDC36081 MP0-10 IDCMPOl CNCTPROC The VSAM catalog could not 
connect the user catalog. 

IDC36091 MP0-5 IDCMPOI CLUSPROC The VOLUMES parameter was not 
specified. 

IDC36101 MP0-6 IDCMPOl CNCTPROC The OBJECTS parameter, volumes 
list, or device list was not specified 
for connect of a user catalog. 

IDC36121 MP0-8 IDCMPOI DUPNPROC The catalog entry with the same 
name as the object being imported 
is not a cluster or alternate index. 

IDC36131 MP0-14 IDCMPOI CLUSPROC The open of the portable data set 
was not successful. 

Chapter 6: Diagnostic Aids 6- 103 



Licensed Material - Property of IBM 

Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDCRMOI IDCRMOI The open of the portable data set 
was not successful. 

IDC36171 MP0-17 I DCM POI DUPNPROC The attributes of a predefined data 
set conflict with those of the data 
set to be imported. 

IDC36191 MP0-19 IDCRMOI ALTRPROC The catalog return code was 
nonzero when attempting to re-
name a catalog entry. 

IDC36241 MP0-24 IDCRMOI IDCRMOI The UIOINFO issued to obtain the 
output data set name failed. 

IDC36411 810-2 IDCBIOl LOCPROC The file identified in INFILE is not 
a base cluster. 

IDC36431 BI0-4 IDCBIOI OPENPROC The base cluster is empty. 

IDC38831 LRl-14 IDCLROI ERROR More than 50 errors occurred while 
trying to complete the LISTCRA. 

IDC42271 RI0-28 IDCRIOI GETNEXT An ELSE command appears 
without a matching IF-THEN com-
mand (THEN FLAG is not on with 
DOFLAG oft). 

IDC42281 RI0-29 IDCRIOI GETNEXT An END command appears 
without a matching DO command 
(DOFLAG is oft). 

IDC42291 RI0-30 IDCRIOI MODAllF An IF command relational 
expression does not follow the re-
quired format. 

IDC42301 RI0-31 IDCRIOI MODALSET A SET command assignment 
expression does not follow the re-
quired format. 

IDC42321 RI0-33 IDCRIOI MODALIF A THEN keyword does not appear 
in an IF command. 

IDC42361 RI0-37 IDCRIOI IDCRI03 End-of-file occurred, but EOFOK 
flag is off, indicating that end-of-
file occurred in the middle of a 
command. 

IDC42371 RI0-38 IDCRIOI MODALIF The current IF command nesting 
level (NESTLVL) exceeds the max-
imum level allowed (IFNSTMAX). 

IDC49991 IDCSAOI PRNTERR UABORT error message printed 
via EXCP. See "ABORT Codes" 
section for ABORT codes. 

IDCOI002l RS0-3 IDCRSOI INIT Informational message indicating 
the catalog to be reset and the ti-
mestamp on the volume. 

IDCOIOl 11 RS0-12 IDCRSOI PROCCRA Informational message indicating 
the CRA to be reset and the times-
tamp on the volume. 

IDCOI0371 RS0-47 IDCRSOI UPDCAT Informational message indicating 
that RESETCAT processing has 
been completed for the indicated 
catalog. 

IDCI 10031 RS0-4 IDCRS06 RECMGMT IGNORE was specified and an l/O 
error was encountered. 

IDCllOl51 RS0-16 IDCRS06 RECMGMT IGNORE was specified and an l/O 
error was encountered. 

IDCI 10221 RS0-48 IDCRS06 PROCTYPE An object contains a dependency 
RS0-22 IDCRS02 PROCTYPE on a record that does not exist. 

6- 104 VSE/VSAM Access Method Services Logic 



Licensed Material-Property of IBM 

Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDCl 10231 RS0-24 IDCRS02 VERA An entry is chained to a 
VERC record of a type different 
VERG than anticipated or the object 
VERR noted consists of an 

RS0-23 IDCRS02 VERC imcomplete set of records. 
VERO If the control interval number of 

the expected association is not giv-
en then no association for that ob-
ject exists in the base record; an as-
sociation for that type is required 
for the entry name noted. 

IDC110291 RS0-31 IDCRS03 VLNRESET The suballocated data 
VLRESET space has been corrected to reflect 

what is on the volume. This correc-
tion occurs if entries are deleted by 
RESETCAT or space stated as su-
ballocated is not suballocated (that 
is, the space map is incorrect on en-
try to RESETCAT). 

IDC 110311 RS0-33 IDCRS03 CHKUNQ The unique data or index compo-
nent has less space described than 
the data space. Informational mes-
sage to indicate that space exists 
which is not in use. 

IDCl 10331 RS0-35 IDCRS03 CHKUNQ A unique file, on a 
VLNRESET volume not being reset has no 

corresponding DATA or INDEX 
component. 

IDCl 10361 RS0-46 IDCRS03 CHKDSDIR The file named may have invalid 
space information. The extents oc-
cu pied by the named file are not in 
conflict with any other VSAM file 
or with the system; however, a self-
checking field failed to check. 

I IDCI 10401 RS0-38 lDCRS03 VOLCHK The VSAM Format l Label did not 
have a corresponding header in the 
vollY,11e record. Therefore, the cata-
lo~ Cloes not account for the space 
allocated to the file. 

lDCl 10411 RS0-39· IDCRS03 VOLCHK The extents in the space header for 
the data space noted were not iden-
tical to the extents in the corre-
sponding Format l Label. 

IDCI 10421 RS0-40 IDCRS03 VOLCHK The space header for the data space 
referred to a nonexistent Format l 
Label. 

IDCl 10431 RS0-41 IDCRS03 VOLCHK The timestamp for the volume 
record did not match the timestamp 
in the VTOC. 

lDCl 10441 RS0-42 IDCRS03 VOLCHK The attempt to scratch the file for 
the reason stated in message 
IDC 110401 failed. 

IDC210091 RS0-10 IDCRSOl INIT A multivolume file 
IDCRS03 MARKUNUS existed on a volume prior to reset. 

IDC210201 RS0-21 IDCRS05 ADDUPCR A volume needed for the 
IDCRS07 RENMSETV reset was not specified in a 

CRAFILES or CRAVOLUMES 
parameter. 

IDC210241 RS0-25 IDCRS02 VERX The alias chain for a USERCATA-
LOG or NONVSAM entry is inval-
id. 

IDC210251 RS0-26 IDCRS03 VERB The records associating the G DG 
file with the GOG base are in error. 

Chapter 6: Diagnostic Aids 6- 105 



Licensed Material- Property of IBM 

Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC210261 RS0-27 IDCRS02 SETCI A previous message indicated an 
error which resulted in this entry 
being deleted from the catalog. 

IDC2I0271 RS0-28 IDCRS03 VLNRESET The CRA extents or catalog 
IDCRS03 VLRESET extents have no matching extents in 

any data space. 

IDC'210301 RS0-32 IDC'RS03 MARKUNUS The entry noted claims space on 
volume. That space is not allocated 
to that entry. 

IDC2I0321 RS0-34 IDCRS02 VERCI An object of the type 
IDCRS03 VERB specified was defined over the entry 

named as entryname. However, the 
records describing the object could 
not be found. Therefore, an object 
of the type specified was deleted 
from the given entryname's descrip-
tion. No name for the deleted ob-
ject is given because the record with 
its name cannot be found. 

IDC'2 I0341 RS0-36 IDCRS03 VLNRESET The space map, which 
VLRESET indicates what space is available for 

suballocation on a volume, is not 
the correct length in the catalog. 

IDC2I0451 RS0-43 IDCRS07 RENAMEP An attempt was made to reset an 
object which bears the same name 
as some other object in the catalog. 

IDC210461 RS0-44 IDCRS07 RENAMEP An attempt was made to reset a 
unique object into a catalog which 
contains an object of the same 
name. 

IDC'2I0471 RS0-45 IDCRS07 RENAMEP An attempt was made to reset a 
unique object into a catalog which 
contained an object of the same 
name. 

IDC3IOOOI RS0-1 IDCRSOI INIT The catalog specified for reset is not 
a recoverable catalog. 

IDC3I0041 RS0-5 IDCRS06 WFDEF DEFINE failed for the workfile. 

IDC310051 RS0-6 IDCRSOl INIT The work file was defined in the 
catalog to be reset. 

IDC3I0061 RS0-7 IDCRS07 CATEOV A physical 1/0 error when 
accessing the catalog was encoun-
tered while the catalog was being 
extended. 

IDC310071 RS0-8 IDCRS07 CATEOV A logical 1/0 error was encoun-
tered while extending the catalog. 

IDC310081 RS0-9 IDCRSOI INIT An error was encountered when 
trying to access the file specified in 
the CAT A LOG parameter. 

IDC310IOI RS0-11 IDCRSOI MERGECRA The CRA was specified for reset, 
but it belongs to a catalog other 
than the catalog to be reset. 

IDC310121 RS0-13 IDCRS06 RECMGMT The workfile relative record 
number limit has been exceeded. 

IDC3IOl31 RS0-14 IDCRSOI MERGECRA A preceding message indicates that 
either Open failed for the CRA, 
Close failed for the CRA, or the 
CRA does not belong to the catalog 
to be reset. 

IDC310141 RS0-15 IDCRS06 WFDEL DELETE failed for the workfile. 

IDC3IOl61 RS0-17 IDCRSOI INIT The CRAFILES or CRA VO-
LUM ES parameter specified no 
CRA with the ALL option; there-

6- 106 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of I BM 

Messages to Module Cross Reference 

Message STIO 

IDC310171 RS0-18 

IDC310181 RS0-19 

IDC3l0191 RS0-20 

IDC310351 RS0-37 

IDC310381 RS0-49 

IDC310391 RS0-50 

Module 

IDCRSOI 

IDCRSOI 

IDCRSOI 

IDCRSOl 
IDCRS03 

IDCRSOl 

IDCRSOI 
IDCRS06 

Procedure 

INIT 

UPDCAT 

INIT 

UPDCAT 
VLNRESET 

UPDCRA 

INIT 
WFDEF 

Situation That Caused Message 

fore, no volume was specified for 
reset. 

Some other task is open to the 
catalog requested to be reset. 

RESETCAT required a volume 
that could not be allocated. 

The CRAFILES (via dnames) or 
CRAVOLUMES parameter speci-
fied the same volume serial number 
more than once 

In a CRA, either the volume 
record for the volser indicated does 
not exist or one of its secondary re-
cords does not exist. 

Either Open or Close failed for the 
CRA. 

The DLBLjob control 
statement named in a CATALOG, 
CRAFILES, WORKCAT, or 
WORKFILE parameter cannot be 
found. 

IDC310481 RS0-51 IDCRS03 VOLCHK Error accessing the VTOC. 

Note: The listed procedures call UERROR to issue the IDC30071 and IDC30091 messages. 
UERROR issues the messages as follows: 

Message STID Module Procedure 

IDC30071 

IDC30091 

TP6-l 

TP6-2 

I DCTP06 I DCTP06 

IDCTP06 IDCTP06 

Chapter 6: Diagnostic Aids 6- 107 



Licensed Material- Property of IBM 

6- 108 VSE/VSAM Access Method Services Logic 



Licensed Material - Property of I BM 

Control 
Record 

Appendix A: Portable Data Sets Created by the EXPORT Command 

Control 
Record 

When a VSAM cluster or alternate index is exported via the Access Method 
Services EXPORT command, catalog information needed to define the 
VSAM data set plus all the records from the data component are written to a 
non VSAM set called the portable data set. The following list shows the 
attributes of the portable data set. 

Attributes of Portable Data Sets 

Attribute 

LRECL 

BLKSIZE 

REC FM 

DSORG 

DEVTYPE 

Value 

The larger of: 
(a) Maximum VSAM data set record size +4 
(b) 264 (for nonRRDSs) or 268 (for RRDSs). 

As specified by the user. The default is 2048. 

VBS 

PS 

Tape or disk. 

The portable data set contains two major types of records: control records 
and data records. Control records contain one of two types of information: 
a times tamp or a dictionary. Data records also contain one of two types of 
information: a catalog work area or a data record from the data component 
of the cluster or alternate index exported. Figure A-1 shows the general 
layout of control records and data records in the portable data set. The 
types of records and the types of information within those records are 
explained in this appendix. 

Data 
Record 

Control 
Record 

Data 
Record 

Control 
Record 

Data 
Record 

1 Other Dictionary information and 
Catalog Work Areas may appear here. 

Data Records from Data Set 

Figure A-I. Layout of Control Records and Data Records in the Portable Data Set 

Appendix A: Portable Data Sets Created by the Export Command A - I 



Control Records 

Licensed Material - Property of I BM 

Control records all have the same general format as shown in Figure A-2. 
The first four bytes of each control record contain header information. The 
next four bytes contain associated data. The remainder of the record con­
tains the timestamp or dictionary information. 

Control Record Containing Timestamp Information 

0 

Header 

The first record on every portable data set is a control record that contains 
timestamp information, as well as other fields. The format of this record is 
shown in Figure A-3. 

The first two bytes of the header contain the length of this control record. 
The next two bytes indicate that this control record contains timestamp 
information. There is no associated data, and those four bytes are reserved. 

4 8 

Associated Data 

Figure A-2. General Format of Control Records 

0 2 3 4 8 

OOlC X'FF' X'FF' Reserved Timestamp and other information 

Header Associated Data Variable Data 

Figure A-3. Control Record Containing Timestamp Information 

A - 2 VSE/VSAM Access Method Services Logic 

27 



0 

Licensed Material- Property of IBM 

The format of the timestamp information is: 
Oisplaccmcnt I Description 

8 (8) Number of cluster components and paths being exported. 

9 (9) Flags: 
Bit Meaning When Set 

0 Reserved (zero). 
I Reserved. 
2 I indicates path associations are present. 

0 indicates no paths are present. 

3 If bit 2 is I: 

I indicates that the base object has both data and index components. 
0 indicates that the base object has only a data component. 

4-7 Reserved. 

10 (A) Access Method Services release number in EBCDIC. 

11 (B) 

12(C) 

20 ( 14) 

0 I indicates export Cl MODE. 
0 indicates export RECORDMODE: 

I indicates a file with NOALLOCATE attribute. 
0 indicates a file without NOALLOCATE attribute. 

2 I indicates a SAM ESDS file (in Cl-format). 
0 indicates a file that is not SAM ESDS. 

3-7 Reserved. 

Time of EXPORT in EBCDIC, in the form hh.mm.ss, where hh is the 
number of hours, mm the number of minutes, and ss the number of seconds. 

Date of EXPORT in EBCDIC, in the form mm/dd/yy, where mm is the 
month in digits, dd the day, and yy the year. 

I The displacement is from the beginning of the 1:ontrol rc1:orJ. 

Control Records Containing Dictionary Information 

2 3 

OOD4 X'FF' Type 

Header 

A control record containing dictionary information is written for the cluster 
or alternate index being exported and for each component within that 
cluster or alternate index. In addition, one control record is written for each 
path association of the object being exported. These records in essence 
describe the data record containing the catalog work area which follows. 
The format of control records containing dictionary information is shown in 
Figure A-4. 

The first two bytes of the header contain the length of this control record. 
The next two bytes indicate that this record contains dictionary information 
and the type of component that the associated catalog work area informa­
tion describes. The type of component is indicated by 'C' for cluster, 'D' for 
data, 'I' for index, 'G' for alternate index, or 'R' for path. 

The associated data portion of the control record contains the length of the 
associated catalog work area (two bytes) and the number of records into 
which the associated catalog work area is broken (2 bytes). 

4 6 8 

Number of 
Length of Catalog records for Dictionary and other information 
Work Area Catalog 

Work Area 

Associated Data Variable Data 

Figure A-4. Control Record Containing Dictionary Information 

Appendix A: Portable Data Sets Created by the Export Command A - 3 



Data Records 

Licensed Material - Property of IBM 

The variable data portion of the control record contains the dictionary 
information. This portion of the control record begins with a four-byte field 
that contains the number of entries in the dictionary. The entries themselves 
follow. Each entry consists of a pair of four-byte fields. The first four bytes 
contain the length of the associated catalog field in the catalog work area. 
(Remember, the catalog work area information is in a data record immedi­
ately following one of these control records.) The second four bytes contain 
the displacement of that field within the associated data record. If an 
associated catalog field contains no information, both four-byte fields in the 
dictionary entry contain zeros. The dictionary entries always point to the 
associated fields in the order shown in the following list. 

Order of Associated Catalog Fields 

Associated Field in 
Order Catalog Work area 

ENTYPE 

2 ENTNAME 

3 DSATTR 

4 OWNER ID 

5 DSETCRDT 

6 DSETEXDT 

7 BUFSIZE 

8 LRECL 

9 SPACEPARM 

IO PASSWORD 

II PASSPRMT 

12 PASSATMP 

13 USVRMDUL 

14 USERAREC 

15 LOKEYV 

16 HIKEYV 

17 VOLS ER 

18 AMDSBCAT 

19 UNUSED 

20 UNUSED 

21 UNUSED 

22 UNUSED 

23 UNUSED 

24 UNUSED 

25 UNUSED 

26 UNUSED 

27 UNUSED 

28 EXCPEXIT 

29 RGATTR 

30 RELATE! 
PATH ENTRY 

31 PASS REL 

Description 

Component type. 

Component name. 

Data set attributes. 

Data set owner. 

Data set creation date. 

Data set expiration date. 
j 

Minimum buffer size. 

Logical record size. 

Primary and secondary space. 

Four eight-character passwords. 

Password prompting code name. 

Maximum number of attempts for password. 

User security verification module. 

User authorization record. 

Low key on volume. 

High key on volume. 

Volume serial numbers. 

AM DSB, from which the remaining fields are taken. 

Reserved. Contains zeros. 

Reserved. Contains zeros. 

Reserved. Contains zeros. 

Reserved. Contains zeros. 

Reserved. Contains zeros. 

Reserved. Contains zeros. 

Reserved. Contains zeros. 

Reserved. Contains zeros. 

Reserved. Contains zeros. 

Exception exit. 

Alternate index or path attributes. 

Alternate index related name or pathentry name. 

Master password of pathentry component. 

Data records contain one of two types of information: the catalog work area 
or data records from the data component. 

A - 4 VSE/VSAM Access Method Services Logic 



() 

Licensed Material- Property of IBM 

Data Records Containing Catalog Work Area 
Following each control record that contains dictionary information there is 
a data record that contains the catalog work area for a given component. 
The format of these records is shown in Figure A-5. 

The first two bytes of each record contain the total possible length of the 
catalog work area. The next two bytes contain the length of the work area 
used for this component. Following these first four bytes are the fields from 
the catalog work area. The order of these fields is basically as described in 
the preceding topic. If there is no information for one of the fields, the field 
is completely omitted. 

Figure A-6 shows the relationship of the dictionary and catalog work area 
information. · 

Data Records Containing Data Record., From the Data Component 

2 

Following all of the control records and data records that contain dictionary 
information is a special record which marks the beginning of the data 
records from the data component. This special record is eight bytes in 
length. The record always has the format shown in Figure A-7. 

Fallowing this special record are all of the data records from the data 
component being exported. 

4 

.____~~~~~~~~~11JJJ Total 
Possible Length for this Component Information from Catalog Work Area 
Length 

1:igure A-5. Data Record Containing Catalog Work Area 

Control Record Containing Dictionary Information 

--------..---__,.--------.-----------------.--------n ll 
Number 

0004 X'FF' Type Length of X'25' 
Records 

X'Ol' I X'04' 
I 

Data Record Containing Catalog Work Area Information 

Total Possible Length 
Length for this 

Component 

X'2C' I X'05' 
I 

Figure A-6. Relationship of Dictionary and Catalog Work Area Information 

0 2 3 

X'0008' 01 Reserved 

Figure A-7. Special Record at Beginning of Data Records from the Data Component 

X'OO' X'OO' X'03' I X'3B' 
I 

Appendix A: Portable Data Sets Created by the Export Command A - 5 



Licensed Material-Property of IBM 

A - 6 VSE/VSAM Access Method Services Logic 



Licensed Material- Property of IBM 

Appendix B: Portable Data Sets Created by the EXPORTRA Command 

Control Records 

When the EXPORTRA command of Access Method Services executes, it 
produces a portable data set which contains catalog information obtained 
from a CRA (Catalog Recovery Area) and data records for VSAM clusters 
and alternate indexes, and also catalog information for user catalog point­
ers. In addition, portable data sets created by EXPORTRA (referred to as 
recovery portable data sets in this appendix) on OS/VS systems may contain 
catalog information for nonVSAM, alias, and generation data group (GOG) 
base objects. The following list shows the attributes of the portable data set. 

Attribute 

LRECL 

BLKSIZE 

REC FM 

DSORG 

DEVTYPE 

Value 

The largest of: 

• Export RECORDMODE: Maximum VSAM data set record size+ 16 

• Export Cl MODE: Maximum VSAM data set data component control 
interval size+ 16, or 

• 268 

As specified by the user (the default is 2048) 

VBS 

PS 

(Tape or disk) 

Each record of the recovery portable data set has a special 4-byte header 
added that precedes the record itself. Information for unrelated objects on 
the recovery portable data set is separated by one or more software ends of 
file. These ends of file are special records that consist only of the 4-byte 
header. Only Figure B- l indicates that this particular type of header pre­
cedes each data record~ the other figures do not show it. 

The recovery portable data set contains two major types of records: control 
records and data records. Control records contain one of two types of 
information: a timestamp or a dictionary. Data records also contain one of 
two types of information: a catalog work area or a data record from the data 
component of the cluster exported. Figure B- l shows the general layout of 
control records and data records in the recovery portable data set. The types 
of records and the types of information within those records are explained in 
this appendix. 

Control records all have the same general format as shown in Figure B-2. 
The first four bytes of each control record contain header information. The 
next four bytes contain associated data. The remainder of the record con­
tains the timestamp, dictionary information, or logical record length. 

Control Record Containing the Logical Record Length 
The first record of every recovery portable data set is a control record 
containing the logical record length of the portable data set itself. The 
format of this record is shown in Figure B-3. 

Control Record Containing Timestamp Information 
The first record for each item on the recovery portable data set is a control 
record that contains timestamp information, as well as other fields. The 
format of this record is shown in Figure B-4. 

The first two bytes of the header contain the length of this control record. 
The next two bytes indicate that this control record contains timestamp 
information. There is no associated data, and those four bytes are reserved. 

Appendix B: Portable Data Sets Created by the EXPORTRA Command B- I 



LRECL Control 
Record 

Control 
Record 

Data 
Record 

Control 
Record 

Licensed Material - Property of IBM 

Data 
Record 

Control 
Record 

Data 
Record ..---........ ---.. .. ,----·~--..... """---"~--..... ,.,,,,,--_.,....., __ -...,,.,,,,,--_.,.. ... __ ..... ,,.. __ ,.,... __ -.. .... ,--_,, ......... __ .... 

the Portable 
Data Set 

Software 
• • • End(s) 

of File 
Data Records from Data Set 

Figurt: B-1. Layout of Control Records and Data Records in the Recovery Portablt Data Set 

_o~~~~~~~~--4~~~~~~~~--s~~~~~~~~it-, 
Associated Data or Variable Data-Timestamp or ~ 

Header Logical Record Length Dictionary 
~~~~~--~~~~---~~~~t 

Figure 8-2. General Formal of Control Records 

0 2 3 4 8 

0008 LRECL 

Figure B-3. Control Record Containing the Logical Record Length 

0 2 3 4 8 27 

OOlC X'FF' X'FF' Reserved Timestamp and other information 

Header Associated Data Variable Data 

Figure B-4. Control Record Containing Timestamp Information 

8 - 2 VSE/VSAM Access Method Services Logic 



0 

Licensed Material- Property of IBM 

The format of the timestamp information is: 

Displacement I 

8(8) 

9(9) 

IO(A) 

I l(B) 

12(C) 

20( 14) 

Description 

The maximum number of components associated with this item. 

Flags: 

Bit Meaning When Set 

0 Reserved 
I I indicates an inhibited target. 

0 indicates a noninhibited target. 
2 I indicates path associations are present. 

0 indicates no paths are present. 
3 If bit 2 is I: 

I indicates that the base object has both data and index components. 
0 indicates that the base object has only a data component. 

4 I - always I for a recovery portable data set. 
5 I indicates a nonVSAM object. 

0 indicates an object other than a nonYSAM. 
6 I indicates a G DG base object. 

0 indicates an object other than a G DG base. 
7 I indicates a user catalog pointer. 

0 indicates a pointer for an object other than a user catalog. 

Access Method Services release number in EBCDIC. 

0 I indicates export CIMODE. 
0 indicates export RECORDMODE. 
I indicates a file with NOALLOC ATE attribute. 
0 indicates a file without NOALLOCATE attribute. 

2 I indicates a SAM ESDS file (in Cl-format). 
0 indicates a file that is not SAM ESDS. 

3 Reserved. 
4 I indicates that an empty file is being exported. 

0 indicates that a non-empty file is being exported. 
5-7 Reserved. 

Time of export in EBCDIC, in the form hh.mm.ss, where hh is the number 
of hours, mm the number of minutes, and ss the number of seconds. 

Date of export in EBCDIC, in the form mm/dd/yy, where mm is the 
month in digits, dd the day, and yy the year. 

I The displacement is from the heginning of the control record. 

Control Records Containing Dictionary Information 

2 3 

OOD4 X'FF' Type 

Header 

A control record containing dictionary information is written for each object 
being exported and for each component associated with that object. These 
records in essence describe the data record containing the catalog work area 
which follows. The general format of control records containing dictionary 
information is shown in Figure B-5. 

The first two bytes of the header contain the length of this control record. 
The next two bytes indicate that this record contains dictionary information 
and the type of component that the associated catalog work area informa­
tion describes. The type of component is indicated by 'C' for cluster, 'D' for 

4 6 8 
J 
1 

Number of 
Length of Catalog Records for 

Dictionary and Other Information 
Work Area Catalog 

Work Area 
J 
1 

Associated Data Variable Data 

Figure 8-5. Control Record Containing Dictionary Information 

Appendix B: Portable Data Sets Created by the EXPORT RA Command B - 3 



Licensed Material- Property of IBM 

data, 'I' for index, ·a· for alternate index, 'R' for path, 'A' for nonVSAM, 'B' 
for G DG base, 'X' for alias, or 'U' for user catalog pointer. 

The associated data portion of the control record contains the length of the 
associated catalog work area (2 bytes) and the number of records into which 
the associated catalog work area is broken (2 bytes). 

The variable data portion of the control record contains the dictionary 
information. This portion of the control record begins with a four-byte field 
that contains the number of entries in the dictionary. The entries themselves 
follow. Each entry consists of a pair of four-byte fields. The first four bytes 
contain the length of the associated catalog field in the catalog work area. 
(Remember, the catalog work area information is in a data record immedi­
ately following one of these control records.) The second four bytes contain 
the displacement of that field within the associated data record. If an 
associated catalog field contains no information, both four-byte fields in the 
dictionary entry contain zeros. 

The number of dictionary entries and their order depends upon the type of 
object being described. Dictionary formats are described for each possible 
kind of item in the following list. 
Order of Associated Catalog Fields 

Cluster or Alternate Index 

Order 

2 
3 

4 

5 

6 

7 

8 

9 

10 

II 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

B - 4 VSE/VSAM Access Method Services Logic 

Associated Field in 
Catalog Work Area 

ENTYPE 

ENTNAME 

DSATTR 

OWNERID 

DSETCRDT 

DSETEXDT 

BUFSIZE 

LRECL 

SPACEPARM 

PASSWORD 

PASSPRMT 

PASSATMP 

USVRMDUL 

USERAREC 

LOKEYV 

HIKEYV 

VOLS ER 

AMDSBCAT 

UNUSED 

UNUSED 

UNUSED 

UNUSED 

UNUSED 

UNUSED 

UNUSED 

UNUSED 

UNUSED 

EXCPEXIT 

RGATTR 

RELATE! 

Description 

Component type. 

Component name. 

Data set attributes. 

Data set owner. 

Data set creation date. 

Data set expiration date. 

Minimum buffer size. 

Logical record size. 

Primary and secondary space. 

Four eight-character passwords. 

Password prompting code name. 

Maximum number of attempts for password. 

User security verification module. 

User authorization record. 

Low key on volume. 

High key on volume. 

Volume serial numbers. 

AM DSB from which the next 9 fields are taken. 

Reserved. Contains zeros. 

Reserved. Contains zeros. 

Reserved. Contains zeros. 

Reserved. Conatains zeros. 

Reserved. Contains zeros. 

Reserved. Contains zeros. 

Reserved. Contains zeros. 

Reserved. contains zeros. 

Reserved. Contains zeros. 

Exception exit. 

Alternate index or path attributes. 

Alternate index related name or 



0 

Licensed Material- Property of IBM 

Order of Associated Catalog Fields 

Associated Field in 
Order Catalog Work Arca Description 

Data Records 

PATH ENTRY 

31 PASS REL 

NonVSAM 

I ENTYPE 

2 ENTNAME 

3 VOLS ER 

4 DEVTYP 

5 FILESEQ 

6 OWNER ID 
7 DSETC'RDT 

8 DSETEXDT 

User Catalog Pointers 

I ENTYPE 

2 ENTNAME 

3 VOLS ER 

4 DEVTYP 

Aliases 

I ENTYPE 

2 ENTNAME 

GOG Bases 

I ENTYPE 

2 ENTNAME 

3 GDGLIMIT 

4 GDGATTR 

5 OWNER ID 
6 DSETCRDT 

7 DSETEXDT 

path entry name. 

Master password of path entry component. 

Entry type. 

Entry name. 

Volume serial numbers. 

Device types. 

File sequence numbers. 

Data set owner. 

Data set creation date. 

Data set expiration date. 

Entry type. 

Entry name. 

Volume serial numbers. 

Device types. 

Entry type. 

Entry name. 

Entry type. 

Entry name. 

GDG limit value. 

GDG attributes. 

Data set owner. 

Data set creation date. 

Data set expiration date. 

Data records contain one of two types of information: the catalog work area 
or data records from the data component of a VSAM cluster. 

Data Records Containing Catalog Work Area 

2 

Following each control record that contains dictionary information there is 
a data record that contains the catalog work area for a given component. 
The format of these records is shown in Figure B-6. 

The first two bytes of each record contain the total possible length of the 
catalog work area. The next two bytes contain the length of the work area 
used for this component. Following these first four bytes are the fields from 
the catalog work area. The order of these fields is basically as described in 

4 

.___~~~~~~~~--11JJJ Total 
Possible Length for this Component Information from Catalog Work Area 
Length 

Figure B-6. Data Record Containing Catalog Work Area 

Appendix B: Portable Data Sets Created by the EXPORTRA Command B - 5 



Licensed Material - Property of IBM 

the preceding topic. If there is no information for one of the fields, the field 
is completely omitted. 

Figure B-7 shows the relationship of the dictionary and catalog work area 
in formation. 

Data Records Containing Data Records From the Data Component 
For a VSAM cluster or alternate index, following all of the control records 
and data records that contain dictionary information is a special record 
which marks the beginning of the data records from the data component. 
This special record is eight bytes in length. The record always has the 
format shown in Figure B-8. 

Fallowing this special record are all of the data records from the data 
component being exported. 

Associated Objects/or User Catalog Pointers, Non VSAMs, and GDGs 
The aliases of a user catalog pointer or a non VSAM are exported as associ­
ated objects. Similarly, the non VSAMs that belong to a G DG base are 
exported as associated objects of the G DG; these non VSAMs may, in turn, 
have aliases. An item and its associated objects are preceded by one time­
stamp control record and followed by one software end-of-file. 

Control Record Containing Dictionary Information 

Number 
0004 X'FF' Type Length of X'25' 

Records 

Data Record Containing Catalog Work Area Information 

Total Possible Length 
Length for this 

Component 

X'OJ' X'04' 

Figure B-7. Relationship of Dictionary and Catalog Work Area Information 

0 2 3 

X'0008' 01 Reserved 

Figure B-8. Special Record at Beginning of Data Records from the Data Component 

B - 6 VSE/VSAM Access Method Services Logic 

X'2C' X'05' X'OO' X'OO' X'03' X'38' 



Licensed Material - Property of IBM 

ABORT codes 6-36 
ACC 5-8 
Access Method Services/Catalog Communication Table 5-8 
Access Method Services 

functions 1-1 
initialization overview 2-8 
introduction 1-1 
logic f ea tu res 1-1 
overview 2-4 
requirements 1-1 
structure 1-2 
visual table of contents 2-3 

ALTER 
FDT 5-20 
IDCALOl 4-2 
method of operation 2-44 

associated catalog fields A-3, 8-4 
associated objects B-6 
attributes of portable data sets A-1 
automatic storage areas, finding 6-45 
AUTOTBL 6-46 

BL DIN DEX 
FDT 5-21 
lDCBIOl 4-2 
method ofoperation 2-104 

get information and verify 2-108 
obtain resources and sort initialization 2-110 
sort-merge and build alternate index 2-112 

BLKLIST 5-2 
Block List 5-2 
Buffer Pool Control Block (BUFS) 5-2 
BUFS 5-2 

CANCEL 
FDT 5-21 
IDCCLOl 4-3 
macro 3-3 
method of operation 2-158 

catalog management 
argument lists, finding 6-58 

sequence of calls made by FSRs 6-53 
debugging 6-52 
obtaining a dump 6-52 
order of associated catalog fields A-3, B-4 

CA TLG macro 3-3 
CCB macro 3-3 
CDLOAD macro 3-3 
character code dependencies 1-8 
CLOSE macro 3-3 
Command Descriptor Phase Table (lDCRIL T) 5-8 
Command Descriptor 5-2 

areas 
Parameter Data Area 5-5 
Verb Data Area 5-2 

for ALTER (IDCCDAL) 4-3, 5-2 
for BLDINDEX (IDCCDBI) 4-3, 5-2 
for CANCEL (lDCCDCL) 4-3, 5-2 
for DEFINE (IDCCDDE) 4-3, 5-2 
for DELETE (lDCCDDL) 4-3, 5-2 
for EXPORT (lDCCDXP) 4-3, 5-2 
for EXPORTRA (IDCCDRC) 4-3, 5-2 

for IMPORT (IDCCDMP) 4-3, 5-2 
for IMPORTRA (IDCCDRM) 4-3, 5-2 
for LISTCAT (IDCCDLC) 4-3, 5-2 
for LISTCRA (IDCCDLR) 4-3, 5-2 
for PARM (IDCCDPM) 4-3, 5-2 
for PRINT (IDCCDPR) 4-3, 5-2 
for REPRO (IDCCDRP) 4-3, 5-2 
for RESETCA T (IDCCDRS) 4-3, 5-2 
for VERIFY (IDCCDVY) 4-3, 5-2 
format 5-2 
introduction 1-5 

COMMAREA 5-54 
COMRG macro 3-3 
control flow 3-9 
control records A-1, B-1 

containing directory information A-3 to A-5 
containing logical record length B-3 
containing timestamp information A-2, B-1 
general format A-2, B-1 

control routing, IDCEXO l 4-5 
CRA Access Parameter List 5-8 
CRA Access Translate Table 5-9 
CRA Volume Timestamp Table 5-9 
CTT 5-9 
CVTOC macro 3-3 

DARO LIST 5-10 
data areas 5-1 

AUTOTBL 6-46 
Block List (BLKLIST) 5-2 
Buffer Pool Control Block (BUFS) 5-2 
Command Descriptor 5-3 
Command Descriptor Phase Table (IDCRIL T) 5-8 
CRA Access Parameter List 5-8 
Dump List 5-9 
Dynamic Data List (DARGLIST) 5-10 
Error Conversion Table 5-11 
Field Management Parameter List (FMPL) 5-12 
Format List (FMTLIST) 5-13 
Function Data Table (FDT) 5-16 

ALTER FDT 5-20 
BLDINDEX FDT 5-21 
CANCEL FDT 5-21 
DEFINE FDT 5-22 
DELETE FDT 5-31 
EXPORT FDT 5-32 
EXPORTRA FDT 5-33 
IMPORT FDT 5-34 
IMPORTRA FDT 5-35 
LISTCA T FDT 5-36 
LISTCRA FDT 5-36 
PARM FDT 5-37 
PRINT FDT 5-37 
REPRO FDT 5-38 
RESETCAT FDT 5-40 
VERIFY FDT 5-40 

Global Data Table (GDT) 5-41 
I/0 Adapter Historical Area (IO DAT A) 5-44 
I/0 Communication Structure (IOCSTR) 5-44 
Input Parameter Table (IPT) 5-43 
Inter-Module Trace Table 5-47 
Intra-Module Trace Table 5-47 
IOCSTR Extension (IOCSEX) 5-46 

Index 

Index I-1 



Modal Verb and Keyword Symbol Table (IDCRIK T) 5-48 
Open Argument List (OPNAGL) 5-48 
Open Close Address Array (OCARRA Y) 5-50 
Phase Table 5-50 
Positioning Argument List (OPRARG) 5-51 
Print Control Argument List (PCARG) 5-51 
Print Control Table (PCT) 5-52 
Reader/Interpreter Communication Area 
(COMMAREA) 5-54 
Reader/Interpreter Historical Area (HDAREA) 5-55 
Scope Structure for UENQ (ENQSCOPE) 5-55 
System Adapter Historical Area (SAHIST) 5-56 
TEST Option 5-56 
Test Structure 5-57 
UG POOL Area 5-58 
UGSPACE Area 5-59 
UIOINFO Area 5-59 
UREST arguments 5-60 

data records A-4, B-5 
containing catalog work area A-5, B-5 
containing data records A-1, B-1 
relationship to control record A-1, B-1 

debugging a formatting problem 6-59 
debugging aids 

introduction 1-1 
method of operation 

overview 2-260 
UDUMP 2-264, 3-5 
UDUMP - dump fields 2-266 
UTRACE 2-264, 3-6 

modules 
IDCDBOl 4-3 
IDCDB02 4-3 

visual table of contents 2-259 
DEFINE 

FDT 5-22 
IDCDEOI 4-3 
method of operation 2-48 

ALTERNATEINDEX 2-68 
CLUSTER 2-64 
MASTER CATALOG 2-50 
NONVSAM 2-60 
PATH 2-72 
SPACE 2-62 
USER CATALOG 2-56 

DELETE 
FDT 5-31 
IDCDLOl 4-4 
method of operation 2-74 

Diagnostic Aids 6-1 
abort code 6-36 
debugging a catalog problem 6-52 

how to obtain a dump 6-52 
debugging a formatting problem 6-59 

how to obtain a dump 6-59 
debugging a text processor problem 6-70 
debugging an 1/0 problem 6-72 

how to find 1/0 argument list 6-73 
how to obtain a dump 6-72 
OPEN argument lists 6-73 
UGET and UPUT argument list 6-73 
VSAM control block manipulation argument list 6-71 

dump points 6-2, 6-26 
dump, finding elements of 

automatic storage areas 6-45 
catalog management argument lists 6-58 

1-2 VSE/VSAM Access Method Services Logic 

Licensed Material - Property of IBM 

dynamic storage areas 6-46 
FDT 6-45 
GOT 6-39 
1/0 argument lists 6-73 
modules 6-38 
phases 6-38 
registers 6-38 
save areas 6-39 
trace tables 6-44 

dump, sample 6-40 
message to module cross reference 6-78 
module to dump points cross reference 6-26 
TEST option 6-3 
trace and dump points to module cross reference 6-5 
trace tables 

inter-module 5-47, 6-1 
intra-module 5-47, 6-1 

DIMOD macro 3-3 
DTFDI macro 3-3 
DTFIS macro 3-3 
DTFMT macro 3-3 
DTFSD macro 3-3 
Dump List 5-9 
dump, reading 6-37 

finding 
automatic storage areas 6-45 
catalog management argument lists 6-58 
dynamic storage areas 6-46 
FDT 6-45 
GOT 6-39 
1/0 argument lists 6-73 
modules 6-38 
phases 6-38 
registers 6-38 
save areas 6-39 
trace tables 6-44 

points 6-2, 6-26 
sample dump 6-40 

Dynamic Data List (DARGLIST) 5-10 
dynamic storage areas, finding 6-46 

ENDREQ macro 3-3 
ENQSCOPE 5-55 
EOJ macro 3-3 
ERASE macro 3-3 
ERCNVT AB 5-11 
Error Conversion Table (ERCNVT AB) 5-11 
EXCP macro 3-3 
executable load modules 

IDCALOI 4-2 
IDCAMS 4-2 
IDCBIOI 4-2 
IDCCLOl 4-3 
IDCDBOl 4-3 
IDCDB02 4-3 
IDCDEOl 4-3 
IDCDE02 4-3 
IDCDE03 4-4 
IDCDIOl 4-4 
IDCDI02 4-4 
IDCDI03 4-4 
IDCDI04 4-4 
ID~DI05 4-4 
IDCDI06 4-4 
IDCDI07 4-4 
IDCDI08 4-4 



Licensed Material - Property of IBM 

IDCDI09 4-4 
IDCDllO 4-4 
IDCDll l 4-4 
IDCDI12 4-4 
IDCDI13 4-4 
IDCDI14 4-4 
IDCDl15 4-4 
IDCDLOI 4-4 
IDCEXOl 4-5 
IDCEX02 4-5 
IDCEX03 4-5 
IDCIOOl 4-5 
IDCI002 4-6 
IDCI003 4-6 
IDCLCOl 4-6 
IDCLC02 4-7 
IDCLROl 4-7 
IDCLR02 4-8 
IDCMPOl 4-8 
IDCPMO l 4-10 
IDCPRO l 4-10 
IDCRCOl 4-10 
IDCRC02 4-11 
IDCRC03 4-12 
IDCR C04 4-12 
IDCRIFF 4-14 
IDCRIK T 4-14 
IDCRIL T 4-14 
IDCRIOl 4-12 
IDCRI02 4-13 
IDCRI03 4-13 
IDCRMOl 4-14 
IDCRPO l 4-15 
IDCRSO 1 4-15 
IDCRS02 4-16 
IDCRS03 4-16 
IDCRS04 4-16 
IDCRS05 4-16 
IDCRS06 4-17 
IDCRS07 4-17 
IDCSAO l 4-17 
IDCSA02 4-17 
IDCSA03 4-18 
IDCSA04 4-18 
IDCSA05 4-18 
IDCSA08 4-18 
IDCTPO l 4-18 
IDCTP04 4-19 
IDCTP05 4-19 
IDCTP06 4-19 
IDCVYO l 4-20 
IDCXPO l 4-20 

executive controlled termination 2-162 
Executive 

introduction 1-1 
modules 

IDCEXOl 4-5 
IDCEX02 4-5 
IDCEX03 4-5 

EXPORT 
FDT 5-32 
IDCXPOl 4-20 
method of operation 2-7 6, 2-120 

ALTERNATEINDEX 2-78 
CLUSTER 2-78 
export non VSAM 2-128 
export VSAM data set 2-126 

EXPORTRA driver 2-124 
field management 2-122 

portable data seta A-1 
EXPORT RA 

FDT 5-33 
modules 

IDCRCOl 4-10 
IDCRC02 4-11 
IDCRC03 4-12 
IDCRC04 4-12 

portable data sets B-1 
external entry point 3-7 
external exit point 3-7 
EXTRACT macro 3-3 

FDT 5-16 
finding the 6-45 
introduction 1-5 

Field Management Parameter List (FMPL) 5-12 
finding 

automatic storage areas 6-45 
catalog management argument lists 6-58 
dynamic storage areas 6-46 
FDT 5-16,6-45 
GOT 5-41, 6-39 
1/0 argument lists 6-73 
modules 6-38 
phases 6-38 
registers 6-38 
save areas 6-39 
trace tables 6-44 

flow of control 3-9 
FMPL 5-12 
FMTLIST 5-13 
Format List 5-13 
format, debugging a problem 6-59 
FREEVIS macro 3-3 
FSRs 

introduction 1-1 
Function Data Table 5-16 
Function Support Routines 

(see desired routine 
ALTER 
BLDINDEX 
CANCEL 
DEFINE 
DELETE 
EXPORT 
EXPORTRA 
IMPORT 
IMPORTRA 
LISTCAT 
LIS TC RA 
PARM 
PRINT 
REP RO 
RESETCAT 
VERIFY) 
visual table of contents 2-43 

GOT 5-41 
finding the 6-39 
introduction 1-1 

GET macro 3-3 
GETTIME macro 3-3 
G ETVIS macro 3-3 

Index I-3 



Global Data Table 5-41 
finding the 6-39 
introduction 1- l 

HDAREA 5-55 
hierarchy of modules 3-1 

1/0 Adapter Historical Area 5-44 
1/0 adapter initialization 2-12 
1/0 adapter termination 2-160 
1/0 Adapter 

introduction 1-1 
method of operation 

overview 2-208 
UCLOSE 2-220, 3-5 
UCOPY 2-230, 3-5 
UGET 2-224, 3-5 
UIOINFO 2-234, 3-6 
UIOINT 3-6 
UIOTERM 3-6 
UOPEN 2-210, 3-6 
UOPEN - build control blocks 2-216 
UOPEN - build IOCSTR 2-212 
UOPEN - ckeck open 2-218 
UPOSIT 2-222, 3-6 
UPUT 2-226, 3-6 
UVERIFY 2-232, 3-6 

modules 
IDCIOOl 4-5 
IDCI002 4-6 
IDCI003 4-6 

visual table of contents 2-207 
1/0 argument lists, finding 6-73 
1/0 Communication Structure 5-44 
1/0 macros 3-3 
1/0 problem, debugging 6-72 
IDCALOl 4-2 
IDCAMS 4-2 
IDCBIOl 4-2 
IDCCDAL 4-3, 5-2 
IDCCDBI 4-3, 5-2 
IDCCDCL 4-3, 5-2 
IDCCDDE 4-3, 5-2 
IDCCDDL 4-3, 5-2 
IDCCDLC 4-3, 5-2 
IDCCDLR 4-3, 5-2 
IDCCDMP 4-3, 5-2 
IDCCDPM 4-3, 5-2 
IDCCDPR 4-3, 5-2 
IDCCDRC 4-3, 5-2 
IDCCDRM 4-3, 5-2 
IDCCDRP 4-3, 5-2 
IDCCDRS 4-3, 5-2 
IDCCDVY 4-3, 5-2 
IDCCDXP 4-3, 5-2 
IDCCLOl 4-3 
IDCDBOl 4-3 
IDCDB02 4-3 
IDCDEOl 4-3 
IDCDE02 4-3 
IDCDE03 4-4 
IDCDIOl 4-4 
IDCDI02 4-4 
IDCDI03 4-4 
IDCDI04 4-4 
IDCDI05 4-4 

1-4 VSE/VSAM Access Method Services Logic 

IDCDI06 4-4 
IDCDI07 4-4 
IDCDI08 4-4 
IDCDI09 4-4 
IDCDllO 4-4 
IDCDil l 4-4 
IDCD112 4-4 
IDCDI13 4-4 
IDCDI14 4-4 
IDCDl15 4-4 
IDCDLOl 4-4 
IDCEXOl 4-5 
IDCEX02 4-5 
IDCEX03 4-5 
IDCIOOl 4-5 
IDCI002 4-6 
IDCI003 4-6 
IDCLCOl 4-6 
IDCLC02 4-7 
IDCLROl 4-7 
IDCLR02 4-8 
IDCMPOl 4-8 
IDCPMOl 4-10 
IDCPROl 4-10 
IDCRCOl 4-10 
IDCRC02 4-11 
IDCRC03 4-12 
IDCRC04 4-12 
IDCRIFF 4-14 
IDCRIKT 4-14, 5-48 
IDCRILT 4-14 
IDCRIOl 4-12 
IDCRI02 4-13 
IDCRI03 4-13 
IDCRMOl 4-14 
IDCRPOl 4-15 
IDCRSOl 4-15 
IDCRS02 4-16 
IDCRS03 4-16 
IDCRS04 4-16 
IDCRS05 4-16 
IDCRS06 4-17 
IDCRS07 4-17 
IDCSAO l 4-17 
IDCSA02 4-17 
IDCSA03 4-18 
IDCSA04 4-18 
IDCSA05 4-18 
IDCSA08 4-18 
IDCTPOl 4-18 
IDCTP04 4-19 
IDCTP05 4-19 
IDCTP06 4-19 
IDCTSALO 4-19, 5-57 
IDCTSBIO 4-19, 5-57 
IDCTSDEO 4-19, 5-57 
IDCTSDLO 4-19, 5-57 
IDCTSEXO 4-19, 5-57 
IDCTSIOO 4-19, 5-57 
IDCTSLCO 4-19, 5-57 
IDCTSLCl 4-19, 5-57 
IDCTSLRO 4-19, 5-57 
IDCTSLRl 4-19, 5-57 
IDCTSMPO 4-19, 5-57 
IDCTSPRO 4-19, 5-57 
IDCTSRCO 4-20, 5-57 
IDCTSRIO 4-20, 5-57 

Licensed Material - Property of IBM 



Licensed Material - Property of IBM 

IDCTSRSO 4-20, 5-57 
IDCTSTPO 4-20, 5-57 
IDCTSTPl 4-20, 5-57 
IDCTSTP6 4-20, 5-57 
IDCTSUVO 4-20, 5-57 
IDCTSXPO 4-20, 5-57 
I DCVYO l 4-20 
IDCXPO l 4-20 
IMPORT 

FDT 5-34 
IDCMPOl 4-8 
method of operation 2-84, 2-130 

ALTERNATEINDEX 2-84 
CLUSTER 2-84 
cluster or alternate index 2-132 
GOB base 2-138 
nonVSAM 2-136 
user catalog 2-134 

IMPORTRA 
FDT 5-35 
IDCRMOl 4-14 

initialization 
1/0 adapter 2-12 
IDCEX02 4-5 
system adapter 2-10 
visual table of contents 2-7 

Input Parameter Table (IPT) 5-43 
Inter-Module Trace Table 5-47, 6-1 
internal services 3-5 
Intra-Module Trace Table 5-47, 6-1 
invoking user I/O routine 3-9 

arguments passed 3-9 
IOCSEX 5-46 
IOCSTR 5-44 
IOCSTR Extensions 5-46 
IODATA 5-44 
IPT 5-43 
ISMOD macro 3-4 

job control 3-7 

LASTCC 3-9 
LISTCAT 

FDT 5-36 
IDCLCOl 4-6 
IDCLC02 4-7 
method of operation 2-88 

gets information 2-92 
LISTCRA 

FDT 5-36 
method of operation 2-116 

process CRA 2-118 
modules 

IDCLROl 4-7 
IDCLR02 4-8 

LOAD macro 3-4 

macros used, system and 1/0 3-3 
CANCEL 3-3 
CATLG 3-3 
CCB 3-3 
CDLOAD 3-3 
CLOSE 3-3 
COMRG 3-3 
CVTOC 3-3 

DIMOD 3-3 
DTFDI 3-3 
DTFIS 3-3 
DTFMT 3-3 
DTFSD 3-3 
ENDREQ 3-3 
EOJ 3-3 
ERASE 3-3 
EXCP 3-3 
EXTRACT 3-3 
FREEVIS 3-3 
GET 3-3 
GETTIME 3-3 
GETVIS 3-3 
ISMOD 3-4 
LOAD 3-4 
MTMOD 3-4 
OPEN 3-4 
OVTOC 3-4 
PDUMP 3-4 
POINT 3-4 
PUT 3-4 
PVTOC 3-4 
SDMODFI 3-4 
SDMODFO 3-4 
SDMODUI 3-4 
SDMODUO 3-4 
SDMODVI 3-4 
SDMODVO 3-4 
SETL 3-4 
TRUNC 3-4 
VERIFY 3-4 
WAIT 3-4 

MAXCC 3-7 
message to module cross reference 6-78 
messages 6-7 8 
method of operation 2-1 

(see specific element desired) 
legend 1-7 

microfiche directory 4-1 
Modal Verb and Keyword Symbol Table (IDCRIKT) 5-48 
module to dump points cross reference 6-26 
modules, finding 6-38 
MTMOD macro 3-4 

naming conventions 
example 1-7 
for Command Descriptors 1-7 
for data areas 1-7 
for executable load modules 1-7 
for multiple entry-point modules 1-7 
for single entry-point modules 1-7 
for Text Structures 1-7 
mnemonic identifiers 1-7 

nonexecutable load modules 
command descriptors 5-2 

IDCCDAL 4-3, 5-2 
IDCCDBI 4-3, 5-2 
IDCCDCL 4-3, 5-2 
IDCCDDE 4-3, 5-2 
IDCCDDL 4-3, 5-2 
IDCCDLC 4-3, 5-2 
IDCCDLR 4-3, 5-2 
IDCCDMP 4-3, 5-2 
IDCCDPM 4-3, 5-2 
IDCCDPR 4-3, 5-2 

Index 1-5 



IDCCDRC 4-3, 5-2 
IDCCDRM 4-3, 5-2 
IDCCDRP 4-3, 5-2 
IDCCDRS 4-3, 5-2 
IDCCDVY 4·3, 5·2 
IDCCDXP 4-3, 5·2 
IDCRIFF 4·14 
IDCRIKT 4-14, 5-48 
IDCRILT 4-14, 5-8 

text structures 5-57 
IDCTSALO 4-19, 5-57 
IDCTSBIO 4-19, 5-57 
IDCTSDEO 4-19, 5-57 
IDCTSDLO 4-19, 5.57 
IDCTSEXO 4-19, 5-57 
IDCTSIOO 4-19, 5-57 
IDCTSLCO 4-19, 5-57 
IDCTSLC I 4-19, 5-57 
IDCTSLRO 4-19, 5-57 
IDCTSLR l 4-19, 5-57 
IDCTSMPO 4-19, 5-57 
IDCTSPRO 4-19, 5·57 
IDCTSRCO 4·20, 5·57 
IDCTSRIO 4·20, 5-57 
IDCTSRSO 4·20, 5.57 
IDCTSTPO 4-20 
IDCTSTP l 4-20 
IDCTSTP6 4-20 
IDCTSUVO 4-20 
IDCTSXPO 4-20 

OCRRAY 5-50 
Open Argument List (OPNAGL) 5-48 
Open Close Address Array (OCRRA Y) 5-50 
OPEN macro 3-4 
OPNAGL 5-48 
OPRARG 5-51 
Order of Associated Catalog Fields A-3, B-4 
overview, Access Method Services 2·4 
OVTOC macro 3-4 

parameter data area 5-5 
PARM 

FDT 5-37 
IDCPMO 1 4-10 
method of operation 2-94 
TEST option 6-3 

parsing the command 1-5 
PCARG 5-51 
PCT 5·52 
PDUMP macro 3-4 
phase table 5-50 
phases, finding 6-38 
POINT macro 3-4 
portable data set 

(see also EXPORT, EXPORTRA, IMPORT) 
attributes of A-1, B·l 
major types of records A-1, B-1 

control A-2, B-1 
data A-1, B-5 

special record A-5, B-6 
types of control information A· l, B-1 

dictionary A-3, B-3 
timestamp A-2, B-1 

types of data information A- I 
catalog work area A-5, B-5 

1-6 VSE/VSAM Access Method Services Logic 

Licensed Material - Property of IBM 

data record A·5, B-5 
Position Argument List (OPRARG) 5-51 
Print Control Argument List (PCARG) 5-51 
Print Control Table (PCT) 5-52 
PRINT 

FDT 5-37 
IDCPROl 4-10 
method of operation 2-96 

processor condition codes 3-7 
LASTCC 3-9 
MAXCC 3-7 

processor invocation 3-7 
arguments passed 3-8 

processor termination 2-164 
program organization 

introduction 3-1 
overall organization 3-1 
root phase 3-1 

PROLOG 3-5 
PUT macro 3-4 
PVTOC macro 3-4 

Reader/Interpreter Communication Area (COMMAREA) 5-54 
Reader/Interpreter Historical Area (HDAREA) 5-55 
Reader /Interpreter 

character code dependencies l ·8 
introduction 1-1, 1-4 
method of operation 

build FDT 2-38 
do modal command 2-28 
else modal command 2-24 
end modal command 2-30 
get next command 2-20 
if-then modal command 2-22 
prepare to scan command 2-32 
scan command 2-34 
set modal command 2-26 
syntex check parameter 2-36 
termination 2-40 
visual table of contents 2-15 

modules 
IDCRIO l 4-12 
IDCRI02 4-13 
IDCRI03 4-13 

reading a dump 6-37 
register, finding 6-38 
REP RO 

FDT 5-38 
IDCRPOl 4-15 
method of operation 2-98 

catalog reload 2-100 
requirements 

storage 1-1 
system 1-1 

RESETCAT 
FDT 5-40 
method of operation 2-140 

check associations 2-152 
common VTOC handler functions 2-148 
copy catalog to work file 2·144 
initialization 2-142 
merge CRAs to work file 2-146 
reassign CI numbers 2-150 
update the catalog 2-154 
update the CRA 2-156 



Licensed Material - Property of IBM 

modules 
IDCRSO l 4-15 
1DCRS02 4-16 
1DCRS03 4-16 
IDCRS04 4-16 
1DCRS05 4-16 
IDCRS06 4-17 
1DCRS07 4-17 

return codes 3-9 
root phase 3-1 

SAHIST 5-56 
save areas, finding 6-39 
scope sturcture for UENQ (ENQSCOPE) 5-55 
SDMODFI macro 3-4 
SDMODFO macro 3-4 
SDMODUI macro 3-4 
SDMODUO macro 3-4 
SDMODVI macro 3-4 
SDMODVO macro 3-4 
SETL macro 3-4 
storage requirements 1-1 
substructure 1-1, 1-2 

Executive 1-2 
1/0 Adapter 1-2 
Reader /Interpreter 1-2, 1-4 
System Adapter 1-2, 1-3 
Text Processor 1-2 

superstructure 1-1, 1-2 
FSRs 1-2 

System Adapter Historical Area (SAHIST) 5-56 
System Adapter 

initialization 2-10 
introduction 1-2, 1-3 
method of operation 

overview 2-170 
PROLOG 2-192, 3-5 
UABORT 2-174, 3-5 
UCALL 2-178, 3-5 
UCATLG 2-172, 3-5 
UDELETE 2-182, 3-5 
UDEQ 2-204, 3-5 
UENQ 2-202, 3-5 
UEPIL 2-194, 3-5 
UFPOOL 2-190, 3-5 
UFSP ACE 2-186, 3-5 
UGPOOL 2-188, 3-6 
UGSPACE 2-184, 3-6 
ULISTLN 2-198, 3-6 
ULOAD 2-180, 3-6 
USA VERC 2-200, 3-6 
USNAP 2-176, 3-6 
UTIME 2-196, 3-6 

modules 
IDCSAO l 4-17 
IDCSA02 4-17 
IDCSA03 4-18 
IDCSA04 4-18 
IDCSA05 4-18 
IDCSA08 4-18 

visual table of contents 2-169 
system macros 3-3 
system requirements 1-1 

termination 
IDCEX03 4-5 
visual table of contents 2-161 

TEST keyword 6-3 
Test Option Data Area 5-56 
TEST option 6-3 

how to use 6-4 
module to dump points cross reference 6-26 
TEST keyword 6-3 
trace dump points to module cross reference 6-5 

Text Processor 
character code dependencies 1-8 
debugging 6-71 
how to find argument list 6-71 
introduction 1-1 
method of operation 

overview 2-238 
UERROR 2-256, 3-5 
UEST A 2-242, 3-5 
UESTS 2-240, 3-5 
UPRINT 2-248, 3-6 
UPRINT - CONVERT 2-252 
UPRINT- Print 2-154 
URESET 2-246, 3-6 
UREST 2-244, 3-6 

modules 
IDCTPOl 4-18 
IDCTP04 4-19 
IDCTP05 4-19 
IDCTP06 4-19 

obtaining a dump 6-70 
visual table of contents 2-237 

Text Structures 5-57 
for ALTER messages (IDCTSALO) 4-19, 5-57 
for BLDINDEX messages (IDCTSBIO) 4-19, 5-57 
for DEFINE messages (IDCTSDEO) 4-19, 5-57 
for DELETE messages (IDCTSDLO) 4-19, 5-57 
for Executive messages (IDCTSEXO) 4-19, 5-57 
for EXPORT messages (IDCTSXPO) 4-20, 5-57 
for EXPORTRA messages (IDCTSRCO) 4-20, 5-57 
for 1/0 Adapter messages (IDCTSIOO) 4-19, 5-57 
for IMPORT /IMPORTRA messages 
(IDCTSMPO) 4-19, 5-57 

for LISTCAT listing (IDCTSLCO) 4-19, 5-57 
for LISTCAT messages (IDCTSLCl) 4-19, 5-57 
for LISTCRA listing (IDCTSLRO) 4-19, 5-57 
for LISTCRA messages (IDCTSLRl) 4-19, 5-57 
for PRINT listings (IDCTSPRO) 4-19, 5-57 
for Reader /Interpreter messages (IDCTSRIO) 4-20, 5-57 
for RESETCAT messages (IDCTSRSO) 4-20, 5-57 
for Text Processor (IDCTSTPO) 4-20, 5-57 
for Text Processor messages (IDCTSTP l) 4-20, 5-57 
for universal messages (IDCTSUVO) 4-20, 5-57 
for VERROR messages (IDCTSTP6) 4-20, 5-57 
format 5-57 

timestamp information A-2, B-1 
trace and dump points to module cross reference 6-5 
trace tables 

finding the 6-44 
Inter-Module 5-47, 6-1 
Intra-Module 5-47, 6-1 

TRUNC ~aero 3-4 

UABORT 3-5 
UCALL 3-5 
UCATLG 3-5 
UCLOSE 3-5 
UCOPY 3-5 
UDELETE 3-5 

Index 1-7 



Licensed Material - Property of I BM 
L Y24-5195-1 

UDEQ 3-5 
UDUMP 3-5 
UENQ 3-5 
UEPIL 3-5 
UERROR 3-5 
UESTA 3-5 
UESTS 3-5 
UFPOOL 3-5 
UFSPACE 3-5 
UGET 3-5 
UGPOOL 3-6 
UGPOOL Area 5-58 
UGPOOL Area contents 6-48 
UGPOOL ID list 6-48 
UGSPACE 3-6 
UGSPACE area 5-59 
UIOINFO 3-6 
UIOINFO area 5-59 
UIOINIT 3-6 

macro 2-12 
UIOTERM 3-6 

macro 2-166 
ULISTLN 3-6 
ULOAD 3-6 
UOPEN 3-6 
UPOSIT 3-6 
UPRINT 3-6 
UPUT 3-6 
URESET 3-6 

--­_...__._ -
-----~ - _. ----- --.. ---- - - -----_.__._ .. -_ _..._ .. -

® 

UREST 3-6 
UREST arguments 5-60 
USAVERC 3-6 
User 1/0 Routines 3-9 
USNAP 3-6 
UTIME 3-6 
UTRACE 3-6 
UVERIFY 3-6 

VERIFY 
FDT 5-40 
IDCVYOl 4-20 
macro 3-4 
method of operation 2-102 

visual table of contents 
Access Method Services 2-3 
debugging aids 2-259 
function support routine 2-43 
1/0 adapter 2-207 
initialization 2-7 
Reader /Interpreter 2-15 
system adapter 2-169 
text processor 2-237 

VTT 5-9 

WAIT macro 3-4 
WAIT macro 3-4 

< 
(/) 
m -< 
(/) 
)> 
s: 
)> 
0 

Q 
en 
en 

s: 
C'O 
..+ :r 
0 
0.. 
(/) 
CD 

< c:;· 
CD 
en 
r 
0 cc c:;· 

'Tl 

Cii 
z 
p 
(/) 
w 
-..J 
9 
w 
9 
'"'C .., 
5· 
~ 
0.. 
:;· 
c 
Cn 
)> 



VSE/VSAM 
Access Method Services Logic 
LY24-5195-1 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. This form may be used to communicate 
your views about this publication. They will be sent to the author's department for 
whatever review and action, if any, is deemed appropriate. Comments may be written 
in your own language; use of English is not required. 

IBM may use or distribute any of the information you supply in any way it believes 
appropriate without incurring any obligation whatever. You may, of course, continue 
to use the information you supply. 

Note: Copies of I BM publications are not stocked at the location to which this form is 
addressed. Please direct any requests for copies of publications, or for assistance in using 
your I BM system, to your I BM representative or to the I BM branch office serving your 
locality. 

• Does the publication meet your needs? 

• Did you find the material: 

Easy to read and understand? 

Organized for convenient use? 

Complete? 

Well illustrated? 

Written for your technical level? 

• What is your occupation? 

• How do you use this publication: 

As an introduction to the subject? 

For advanced knowledge of the subject? 

To learn about operating procedures? 

Your comments: 

Yes 

D 

D 
D 
D 
D 
D 

D 
D 
D 

No 

D 

D 
D 
D 
D 
D 

As an instructor in class? 

As a student in class? 

As a reference manual? 

If you would like a reply, please supply your name and address on the reverse side of this 
form. 

Thank you for your coope:ation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments.) 

D 
D 
D 

READER'S 
COMMENT 
FORM 



L Y24-5195-1 

Reader's Comment Form 

Fold and Tape 

Fold 

Please Do Not Staple 

1111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Department G60 
P. 0. Box, 6 
Endicott,'New York 13760 

Fold and Tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold 

If you would like a reply, please print: 

Your Name ---------------------------­
Company Name --------------- Department _____ _ 

Street Address--------------------
City _______________________ _ 

State _____________ Zip Code -------

-~- ----- - IBM Branch Office serving you ---------------- - - -- ~---.. ----- - - --------~-·-® 

< 
CJ) 
m 
.......... 

< 
CJ) 
)> 
s: 
)> 
(') 

Q 
Cl) 
Cl) 

s: 
~ :r 
0 a. 
CJ) 
('!) 

:2 c:;· 
Cl) 
Cl) 

r 
0 c.c c:;· 

,, 
Cii 
z 
!=> 
CJ) 
w 
-..J 
0 w 
9 

-0 .., 
:;· 

a 
:;· 
c 
en 
)> 

r 
-< 
I\) 
.i::i. 
u, -(0 

'f -




