Program Product

Licensed Material — Property of IBM
LY?24-5195-1
File No. S370-30

VSE/VSAM
Access Method Services
Logic

Program Number 5746-AM2
Component 5§745-SC-AMS
Release 2

Scecond Edition (December 1979)

This edition, LY24-5195-1, is a major revision of LY24-5195-0. 1t applies to Release 2 of IBM
Virtual Storage Extended/Virtual Storage Access Method (VSE/VSAM) Program Product
§746-AM2, and to subsequent releases and modifications until otherwise indicated in new
editions or Technical Newsletters. Changes are periodically made to the information contained
herein; before using this publication in connection with the operation of 1BM systems, consult
the I1BM Sysiem/ 370 and 4300 Processors Bibliography, GC20-0001, for the editions that are
applicable and current.

Summary of Amendments
For a list of changes, see page iii.

Changes and additions to the text and illustrations are indicated by a vertical line to the left of
the change.

It is possible that this material may contain reference to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your country.
Such references or information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

Publications are not stocked at the address given below; requests for copies of IBM publications
should be made to your IBM representative or to the IBM branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, Programming Publications, Dept.
G60, P.O. Box 6, Endicott, NY, U.S.A. 13760. IBM may use or distribute any of the information
you supply in any way it believes appropriate without incurring any obligation whatever. You
may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1979

Licensed Material — Property of IBM

Licensed Material — Property of IBM

Summary of Amendments
for LY24-5195-1
Release 2

LY 24-5195-1 contains information about the following items:

Additional space classes
CANCEL command
Dedicated VSAM volume
Default models

Default volumes

e o ¢ o o

Summary of Amendments

for VSE/VSAM Access Method Services Logic

Dynamic files

File disposition parameters

JCL simplification

Partition and processor independence

Interface between Access Method Services and the
VSE/VSAM Space Management for SAM Feature.

Additions, deletions, and corrections are included for the new
items. Various editorial changes are also included to improve the
usefulness of this book.

Summary of Amendments iii

Licensed Material — Property of IBM

iv VSE/VSAM Access Method Services Logic

Licensed Material — Property of IBM

This book describes the internal logic of the routines
of Access Method Services and provides diagnostic
information. This information is directed to mainte-
nance personnel and development programmers
who require an in-depth knowledge of the program’s
design, organization, and data areas. It is not re-
quired for effective use of Access Method Services.

This volume is one of three logic manuals that de-
scribe the internal functioning of VSE/VSAM. The
other two volumes are:

o VSE/VSAM VSAM Logic, Volume 1: Catalog
Management, Open/Close, DADSM, 11P, Con-
trol Block Manipulation, LY24-5191.

o VSE/VSAM VSAM Logic, Volume 2: Record
Management, LY24-5192

The interface between Access Method Services and
the VSE/VSAM Space Management for SAM Fea-
ture is described in VSE/VSAM Space Management
for SAM Feature Logic, LY24-5204.

You should be familiar with general programming
techniques and VSE/VSAM concepts and use be-

fore reading this book. If you are unfamiliar with

these concepts, read:

* VSE/VSAM General Information, GC24-5143,

s Using VSE/VSAM Commands and Macros,
SC24-5144, which describes the general syntax
of the Access Method Services language, the
commands of this processor, VSAM macros,
and how they are used.

Preface

Another book that may be helpful to you is:

e VSE/Advanced Functions Serviceability Aids and
Debugging Procedures, SC33-6099, which de-
scribes how to analyze a main storage dump
from VSE.

This book is divided into six chapters:

e “Chapter I: Introduction” describes the design
philosophy of this processor, and defines terms
used later in the book.

“Chapter 2: Method of Operation” describes
how the program works. Emphasis is on the
flow of data and the technology that is used
rather than on the organization of modules.

“Chapter 3: Program Organization” shows how
the processor is packaged into load modules.
Relationships between the Access Method Ser-
vices processor and the operating system are
given.

“Chapter 4: Microfiche Directory” relates the
information in this book to the listings found on
microfiche.

“Chapter 5: Data Areas” describes the control
+blocks and other data areas that are internal to
this processor.

“Chapter 6: Diagnostic Aids” shows how to
analyze a dump of the processor and find specif-
ic modules and data areas.

Preface v

Licensed Material — Property of IBM

vi VSE/VSAM Access Method Services Logic

Licensed Material — Property of IBM

Contents

Chapter 1: Introduction 1-1
Requirements I-1
The Access Method Services Processor i 1-1
Naming Conventionst 1-7
Character Code Dependencies i i i, 1-8
Chapter 2: Method of Operation i, 2-1
Chapter 3: Program Organization 3-1
Overall Organization e 3-1
System Macros and Services Used by Access Method Services 3-3
Services Provided for Processor Modules 3-5
Processor INVOCAtioN 37
Processor Condition Codes 39
User I/ORoutines ... i 3-9
Overall Control FLow e 39
Chapter 4: Microfiche Directory 4-1
Chapter §: Data Areas 5-1
Block List - BLKLIST ... o 5-2
Buffer Pool Control Block - BUFS 5-2
Buffer Pool Control Block Description 5-2
Command DesCriplor e 5-2
Verb Data ATea 5-3
Positional Parameter Appendage i 5-3
Default Parameter Appendageo i 5-4
Needed Parameters Appendage 0 i 5-4
Incompatible Parameters Appendage i 5-4
Parameter Data Area e 5-5

No Constant Appendageo i 5-5
Constant Appendaget 5-6
Default Data Appendage i i 5-6

ID APPENdageo 5-6
Keyword Appendage e 5-7
Conflicting Parameters Appendageoirriiiiree i, 5-7
Necessary Parameters Appendage i 5-7
Prompt Appendage o 5-7
Subparameter Appendage 5-8
Command Descriptor Phase Table - IDCRILTo i it 5-8
CRA Access Parameter List i 5-8
Access Method Services/Catalog Communication Table (ACC) Description 5-8
CRA Access Translate Table (CTT) Descriptiono.ooiviiiii i 5-9
CRA Volume Timestamp Table (VTT) Descriptionccoiiionn. 5-9
Dump List .. e 5-9
Individual Field Entry 5-9

Array Header Entry 5-10
Dump List Terminator Entry 5-10
Dynamic Data LIST - DARGLIST e 5-10
ERROR Conversion Table (ERCNVTAB) ... oo e 5-11
Field Management Parameter List — FMPL 5-12
Field Management Parameter List Description 5-12
Field Management Field List (FMFL) Description 5-12
Format List - FMTLISTo 5-13
PG ..ttt 5-13

Insert Datao e 5-13
Default Text e 5-14

BIock FOMMAlo e e 5-15
Replication e 5-15

SHALIC Tt e e 5-15
Function Data Table - FDT i 5-16
ALTER FDT o e e e 5-20

Contents vii

viii

Licensed Material — Property of IBM

BLDINDEX FDT o i e e e 5-21
CANCEL FD T L e e e e 5-21
DEFINE FDT o 5-22
DELETE FDT L e e e e e e 5-31
EXPORT FDT L e e 5-32
EXPORTRA FDT . e 5-33
IMPORT FDT L e e 5-34
IMPORTRA FDT . e 5-35

L ST AT FDT o e e 5-36
LISTO R A FDT o e 5-36
PARMEDT o 5-37
PRINT FDT oo e e 5-37
REPRO FDT . e 5-38
RESETCAT FDT i e e 5-40
VERIFY FDT o e e 5-40
Global Data Table - GDT e i e 5-41
Global Data Table Description s 5-41

Input Parameter Table = IPT e e 5-43
Input Parameter Table Description i 5-43
1/0 Adapter Historical Data Area - IODATA i it 5-44
1/0 Adapter Historical Area Descriptiono 5-44
Input/Output Communications Structure - IOCSTR i, 5-44
Input/Output Communications Structure Description 5-44
TOCSTR Extension —IOCSEX e 5-46
TOCSTR Extension Description i, 5-46
Inter-Module Trace Table 5-47
Inter-Module Trace Table Description o i i 5-47
Intra-Module Trace Table 5-47
Intra-Module Trace Table Description i, 5-48

Modal Verb and Keyword Symbol Table - IDCRIKT, 5-48
Modal Verb and Keyword Symbol Table Description 5-48

Open Argument List—-OPNAGL o e 5-48
Open Argument List Description i i 5-49

Open Close Address Array - OCARRAY e 5-50
Open Close Address Array Description 5-50
Phase Table 5-51
Phase Table Description i e 5-51
Positioning Argument List -OPRARG i i 5-51
Positioning Argument List Descriptiono o 5-51

Print Control Argument List - PCARG i 5-51
Print Control Argument List Description5-51

Print Control Table - PCT e 5-52
Print Control Table Description i 5-52
Reader/Interpreter Communication Area- COMMAREA 5-54
Reader/Interpreter Communication Area Description 5-54
Reader/Interpreter Historical Area- HDAREAoooiin... 5-55
Reader/Interpreter Historical Area Description 5-55

Scope Structure for UENQ - ENQSCOPE e 5-55
Scope Structure for UENQ Description 5-55
System Adapter Historical Area - SAHIST i 5-56
System Adapter Historical Area Description 5-56

TEST Option Data Area e 5-56
TEST Option Data Area Descriptionviiieii i, 5-56
TeXUSIIUCIUTE . . vttt ettt et et e et e et e e s 5-57
Text Structure Description 00 i ... 5-58

Text Entry Description i e 5-58
UGPOOL Area ... i e e e 5-58
UGPOOL Area Descriplioncooviiiint it 5-58
UGSPACE AT€a ...ttt e e e e 5-59
UGSPACE Area Description ottty 5-59
UIOINFO - Option Byte and Return Area, 5-59
UIOINFO Option Byte Description oo, 5-59
UIOINFO Return Area Description ... 5-59
UREST AIZUMENTS . ..ottt ittt et et e e i 5-60
PCRST - Change Subtitle Lines 5-60
PCRLWS - ChangeLine Width i i 5-60

PCRPDS - Change Page Depth i, 5-60

VSE/VSAM Access Method Services Logic

Licensed Material — Property of IBM

PCRFTS - Change Footing Lines oo i, 3-61
PCRDSCS - Change Default Spacing Character 5-61
PCRPCS - Change Translate Table 5-61
PCRINP - Change Initial Page Number P S-61
Chapter 6: Diagnostic Aids e 6-1
Trace Tableso o e 6-1
Inter-Module Trace Table 6-1
Intra-Module Trace Tableo 6-1
Dump PoOints .. 6-2
Dumping Selected Areas of Virutal Storageo 6-3
Test OPUION . 6-3
TEST Keywordo 6-3
How to Use the Test Oplion e e 6-4
Trace and Dump Points to Module Cross Reference 6-5
Module to Dump Points Cross Reference, 6-26
ABORT Codes ... o e e e e e 6-36
Reading a Dump e 6-37
How to Find Processor Phases i 6-38
How to Find the Module and Registers at Time of the Dump 6-38
Howto Find the GDTo e s 6-39
How to Find Save Areast 6-39
How to Find the Trace Tables i 6-44
How to Find the FDT ... e 6-45
How to Find Automatic Storage Areas ..ottt 6-45
How to Find Dynamic Storage Areasuutrunririinen, 6-46
UGPOOL ID List . ..o e e 6-48
Sample Dump ... 6-52
Debugging a Catalog Problem 6-52
Obtaining a Dump fora Catalog Problem L. 6-52
How to Find Catalog Management Argument Lists 6-58
Debugging a Formatting Problem 6-59
Obtaining a Dump for a Text Processor Problem 6-70
How to Find Text Processor Argument List 6-71
Debuggingan /O Problem 6-72
Obtaining a Dump foran I/O Problem 6-72
How to Find 1/O Argument Lists it i 6-73
Open Argument Lists e 6-73
UGET and UPUT Argument Lists 6-73
MESSABES . . 6-78
Appendix A: Portable Data Scts Created by the EXPORT Command A-1
Control ReCORdso A-2
Control Record Containing Timestamp Information A-2
Control Records Containing Dictionary Information A-3
Data Records i A-4
Data Records Containing Catalog Work Area o, A-5
Data Records Containing Data Records From the Data Component A-S
Appendix B: Portable Data Sets Created by the EXPORTRA Command B-1
Control ReCOTds oo e B-1
Control Record Containing the Logical Record Length B-1
Control Record Containing Timestamp Information B-1
Control Records Containing Dictionary Information B-3
Data Records i e B-5
Data Records Containing Catalog Work Areao i B-5
Data Records Containing Data Records From the Data Component B-6
Associated Objects for User Catalog Pointers, NonVSAMs, and
GG it s B-6
Index ..o e 1-1

Contents ix

Licensed Material — Property of IBM

[llustrations
Figures
Figure [-1. The Structure of the Access Method Services Processor 1-2
Figure 1-3. Initialization of Access Method Services 1-3
Figure 1-4. Reading and Parsinga Command oo 1-4
Figure 1-6. Performinga Function i i 1-6
Figure 3-1. Argument List for Processor Invocation 3-8
Figure 3-2. Arguments Passed to and from User /O Routine 3-10
Figure 3-3. Flow of Control Through Main Functions 3-11
Figure 3-4. Flow of Control Through Servicesoooia 3-12
Figure 5-1. IMPORTFDT Mapping i 5-19
Figure 6-1. Exampleof Test Option Output ..., 6-5
Figure 6-2. Sample Dump 6-40
Figure 6-3. HowtoFindthe GDT 6-45
Figure 6-4. Formatof AUTOTBL i i 6-47
Figure 6-5. Example of an Automatic Storage Area ..., 6-47
Figure 6-6. UGPOOL AreaChain i, 6-48
Figure 6-7. Howto Findthe CTGPL i i 6-59
Figure 6-8. Catalog Argument Lists in Storage Area of DEFINEFSR 6-60
Figure 6-9. Text Processor Format Structure Queue ... un, 6-71
Figure 6-10. Text Processor Print Buffer..........ot 6-72
Figure 6-11. TOCSTR Chain e e 6-74
Figure 6-12, 1/0 Control Blocks Before OPEN, 6-75
Figure 6-13. Inputto UPUT Macro i i 6-76
Figure 6-14. Output from UGETMacro ... 6-77
Figure A-1. Layout of Control Records and Data Records in the Portable Data Set A-1
Figure A-2. General Format of Control Records ..., A-2
Figure A-3. Control Record Containing Timestamp Information A-2
Figure A-4. Control Record Containing Dictionary Information A-3
Figure A-5. Data Record Containing Catalog Work Area.ooue. A-S
Figure A-6. Relationship of Dictionary and Catalog Work Area Information A-5
Figure A-7. Special Record at Beginning of Data Records from the
Data Component i s A-5
Figure B-1. Layout of Control Records and Data Records in the
Recovery Portable DataSet e B-2
Figure B-2. General Format of Control Records oot B-2
Figure B-3. Control Record Containing the Logical Record Length B-2
Figure B-4. Control Record Containing Timestamp Information B-2
Figure B-5. Control Record Containing Dictionary Information B-3
Figure B-6. Data Record Containing Catalog Work Area........................ ... B-5
Figure B-7. Relationship of Dictionary and Catalog Work Area Information B-6
Figure B-8. Special Record at Beginning of Data Records from the
Data Component i B-6
Diagrams
Access Method Services Visual Tableof Contents i, 2-3
Access Method Services OVEIVIEW 2-4
Initialization Visual Table of Contents o i 2-7
Diagram 1.0 Access Method Services Initialization Overview 2-8
Diagram 1.1 System Adapter Initialization i 2-10
Diagram [.2 1/O Adapter Initialization - UIOINIT Macro 2-12
Reader/Interpreter Visual Tableof Contents i i, 2-15
Diagram 2.0 Reader/Interpreter Overviewt 2-16
Diagram 2.1 Reader/Interpreter Initialization 2-18
Diagram 2.2 Reader/Interpreter Get Next Command 2-20
Diagram 2.2.1 Reader/Interpreter IF-THEN Modal Command 2-22
Diagram 222 Reader/Interpreter ELSE Modal Command 2-24
Diagram 223 Reader/Interpreter SET Modal Command 2-26
Diagram 224 Reader/Interpreter DO Modal Command 2-28
Diagram 2.2.5 Reader/Interpreter END Modal Command 2-30
Diagram 2.3 Reader/Interpreter Prepare To Scan Command 2-32
Diagram 2.4 Reader/Interpreter Scan Command 2-34
X VSE/VSAM Access Method Services Logic

Licensed Material — Property of IBM

Diagram 2.4.1 Reader/Interpreter Syntax Check Parameter 2-36
Diagram 2.4.2 Reader/Interpreter Build FDT i, 2-38
Diagram 2.5 Reader/Interpreter Termination, 2-40
Function Support Routine (FSR) Visual Table of Contents 2-43
Diagram 3.1 ALTER FSR . 2-44
Diagram 3.2 DEFINE FSR .. 2-48
Diagram 3.2.1 DEFINE FSR - DEFINE MASTERCATALOG 2-50
Diagram 3.22 DEFINE FSR - DEFINE USERCATALOG 2-56
Diagram 3.2.3 DEFINEFSR - DEFINENONVSAM, 2-60
Diagram 3.24 DEFINEFSR -DEFINESPACE 2-62
Diagram 3.2.5 DEFINEFSR-DEFINECLUSTER 2-64
Diagram 3.2.6 DEFINE FSR - DEFINE ALTERNATEINDEX 2-68
Diagram 3.2.7 DEFINE FSR - DEFINEPATH 2-72
Diagram 3.3 DELETE FSR ..o e 2-74
Diagram 3.4 EXPORTESR ... 2-76
Diagram 34.1 EXPORT FSR - CLUSTER or ALTERNATEINDEX 2-78
Diagram 3.5 IMPORT FSR ... 2-82
Diagram 3.5.1 IMPORT FSR - CLUSTER or ALTERNATEINDEX 2-84
Diagram 3.6 LISTCAT FSR o e 2-88
Diagram 3.6.1 LISTCAT FSR - Gets Information 2-92
Diagram 3.7 PARM FSR ... e 2-94
Diagram 3.8 PRINT FSR .. 2-96
Diagram 3.9 REPRO FSR oo e 2-98
Diagram 3.9.1 REPRO FSR ~Catalog Reload 2-100
Diagram 3.10 VERIFY FSR . e 2-102
Diagram 3.11 BLDINDEX FSR ... o 2-104
Diagram 3.11.1 BLDINDEX FSR - Get Information and Verify 2-108
Diagram 3.11.2 BLDINDEX FSR - Obtain Resources and Sort Initialization 2-110
Diagram 3.11.3 BLDINDEX FSR - Sort-Merge and Build Alternate

Index ... o 2-112
Diagram 3.12 LISTCRA FSR ... 2-116
Diagram 3.12.1 LISTCRAFSR-ProcessCRA 2-118
Diagram 3.13 EXPORTRAFSR ... 2-120
Diagram 3.13.1 EXPORTRA FSR - Field Management 2-122
Diagram 3.13.2 EXPORTRA FSR - EXPORTRA Driver 2-124
Diagram 3.13.2.1 EXPORTRA FSR - Export VSAM DataSet....................... 2-126
Diagram 3.13.2.2 EXPORTRA FSR - Export NonVSAM 2-128
Diagram 3.14 IMPORTRAFSR ... 2-130
Diagram 3.14.1 IMPORTRA FSR - Cluster or Alternate Index 2-132
Diagram 3.14.2 [IMPORTRA FSR -UserCatalog 2-134
Diagram 3.143 IMPORTRA FSR-NonVSAM i, 2-136
Diagram 3.14.4 [IMPORTRAFSR-GDGBase.............c.cooiiiiiiiineaanan, 2-138
Diagram 3.15 RESETCATFSR 2-140
Diagram 3.15.1 RESETCAT FSR - Initialization 2-142
Diagram 3.15.2 RESETCAT FSR - Copy CatalogtoWork File 2-144
Diagram 3.15.3 RESETCAT FSR - Merge CRAstoWork File 2-146
Diagram 3.15.3.1 RESETCAT FSR - Common VTOC Handler Functions 2-148
Diagram 3.154 RESETCAT FSR - Reassign Clnumbers 2-150
Diagram 3.15.5 RESETCAT FSR - Check Associations 2-152
Diagram 3.15.6 RESETCAT FSR - Update the Catalog 2-154
Diagram 3.15.7 RESETCAT FSR - Updatethe CRA, 2-156
Diagram 3.16 CANCEL FSR L e e 2-158
Termination Visual Tableof Contents i ... 2-161
Diagram 4.1 Executive Controlled Termination 2-162
Diagram 4.2 Processor Termination i, 2-164
Diagram 4.2.1 1/0 Adapter Termination - UIOTERM Macro ., 2-166
System Adapter Visual Tableof Contents i i 2-169
Diagram 5.0 System Adapter Overview it 2-170
Diagram 5.1.1 UCATLG MACro ...t e et es 2-172
Diagram 5.2.1 UABORT MACIO ... e 2-174
Diagram 522 USNAPMACro it e 2-176
Diagram 5.3.1 UCALLMacro........... 2-178
Diagram 5.3.2 ULOADMacroo e 2-180
Diagram 5.3.3 UDELETEMaAcCroo ot 2-182
Diagram 54.1 UGSPACEMacro ...l e, 2-184

Ilustrations Xi

Xii

Licensed Material — Property of IBM

Diagram 542 UFSPACEMACIOottt i i 2-186
Diagram 543 UGPOOLMACIOottt i 2-188
Diagram 544 UFPOOLMACroottt 2-190
Diagram 54.5 PROLOGMACIOoit ittt 2-192
Diagram 54.6 UEPILMacro.oovtiii it 2-194
Diagram 5.5.1 UTIMEMACIOottt et 2-196
Diagram 5.6.1 ULISTLN MAacroovvtttitii i i it 2-198
Diagram 562 USAVERCMACIOoviviiiiii i 2-200
Diagram 57.1 UENQMAaCIOoviit i it 2-202
Diagram 572 UDEQMacrooiviriiiiii et 2-204
1/0 Adapter Visual Table of Contentsoovoriint it iniennnenenn... 2-207
Diagram 6.0 I/O Adapter OVerviewo.iviiiiiinne i 2-208
Diagram 6.1 UOPENMACTO ..ottt cii e 2-210
Diagram 6.1.1 UOPEN Macro-Build IOCSTRcooiviun 2-212
Diagram 6.1.2 UOPEN Macro - Build Control Blocks 2-216
Diagram 6.1.3 UOPEN Macro-Check Openccooviiiiiinannn... 2-218
Diagram 6.2 UCLOSE MaCIO .. vittrt ettt ettt nnas 2-220
Diagram 6.3 UPOSITMAcro ..ottt 2-222
Diagram 6.4 UGET MACIO . ..o et i i 2-224
Diagram 6.5 UPUT MACIO ...ttt cs it 2-226
Diagram 6.6 UCOPY MACIO ... oot e 2-230
Diagram 6.7 UVERIFY Macroo 2-232
Diagram 6.8 UIOINFOMACIO . .o vie et i e 2-234
Text Processor Visual Tableof Contents, 2-237
Diagram 7.0 Text Processor Overview ..., 2-238
Diagram 7.1 UESTS MAacroot e 2-240
Diagram 7.2 UESTAMACIO ..ot e 2-242
Diagram 7.3 URESTMacro . ..ot 2-244
Diagram 7.4 URESETMAECroottt 2-246
Diagram 7.5 UPRINTMACIO ... et 2-248
Diagram 7.5.1 UPRINT Macro-CONVERTcooiiiiivninn., 2-252
Diagram 7.52 UPRINT Macro-PRINT o, 2-254
Diagram 7.6 UERRORMACIO . .ot 2-256
Debugging Aids Visual TableofContentsciiiiiiiivennin... 2-259
Diagram 8.0 Debugging Aids Overviewc.vviiiiniiniininnnnn.. 2-260
Diagram 8.1 UTRACEMACIO .. i e et 2-262
Diagram 8.2 UDUMPMACIO . ..ot 2-264
Diagram 82.1 UDUMPMacro-DumpFields.................................. 2-266

VSE/VSAM Access Method Services Logic

Licensed Material — Property of IBM

Requirements

Chapter 1: Introduction

Access Method Services is that part of the operating system that performs the
utility-like functions required to establish and manage VSAM (Virtual
Storage Access Method) data sets. (The terms “data set” and “file” are
equivalent. We have used “data set” in this book.) Access Method Services
allows you to define, print, delete, or copy VSAM data sets, build alternate
indexes, recover data and catalog entries in the event of a catalog failure,
convert ISAM or SAM data sets into VSAM data sets, alter or list the entries
in a VSAM catalog, and create portable (or backup) copies. Features of its
logic are:

® The processor is organized into executable and non-executable modules.
An executable module contains instructions that can be performed by the
computer. A non-executable module contains nothing that can be per-
formed by the computer. In Access Method Services all descriptive
information—such as, command descriptors—and static text—such as,
messages—are centralized in non-executable modules. (In Access Me-
thod Services, there is generally a one to one correspondence between
modules and phases. Consequently, this publication generally discusses
modules. One exception is IDCAMS. For more information on ID-
CAMS, see “Program Organization.”)

¢ All external interfaces to Access Method Services are isolated in a small
set of modules. Changing these modules allows this processor to run with
another operating system or with access methods other than those sup-
ported by this release of Access Method Services.

¢ Each module serves just one purpose and is coded to most efficiently
accomplish that purpose.

This book does not discuss VSAM, its concepts, or its data areas. Fora
discussion of VSAM, see VSE/VSAM VSAM Logic, Volume 1, and
VSE/VSAM VSAM Logic, Volume 2.

The Access Method Services processor accepts commands and sometimes
input data sets or catalogs. It produces output data sets and/or printed
reports. Details of the commands and the use of Access Method Services are
found in Using VSE/VSAM Commands and Macros.

This processor requires DOS/VSE as its operating system. The processor
executes as a problem program. Virtual storage requirements for the proc-
essor are found in DOS/VSE System Generation.

The Access Method Services Processor

Figure 1-1 describes the structure of the processor. Figures 1-2 through 1-4
describe in general how the processor functions.

Figure 1-1 shows the executable elements of the Access Method Services
processor as they form a structure within the operating system. As shown
here, six of the elements form a “substructure” that supports the remaining
elements, which form a “superstructure.”

Chapter 1: Introduction 1-1

Licensed Material — Property of IBM

Function Support Routines

o (FSRs)

e e

Reader/ System 1/0 Text Debuggin

Executive Interpreter| Adapter | Adapter Processor Aids

Qperating System

1. The superstructure consists of the FSRs (Function Support Routines). There is one FSR for
each command verb of Access Method Services. Any system interface or 1/0 function that is
required by one of the FSRs is supplied through the substructure. The superstructure is thus
insulated from the operating system by the substructure.

2. The substructure consists of the Executive, the Reader/Interpreter, the System Adapter, the
I/0 Adapter, the Text Processor, and the Debugging Aids. The Executive routes control
between the other components of Access Method Services—specifically, between the
Reader/Interpreter and the FSRs. The Reader/Interpreter translates the commands for
Access Method Services into an internal form, called the FDT (Function Data Table). The
System Adapter similarly provides all system interfaces for the processor. The 1/0 adapter
issues all 1/0 operations at the behest of any other routine in Access Method Services. The
Text Processor prepares all printed materials, whether simple messages or listings, that are
required to fulfill a command. The Debugging Aids writes diagnostic information when
requested.

3. The operating system supports the Access Method Services processor, just as the substructure
supports the superstructure (the FSRs). However, the FSRs execute in total independence of
the actual operating system in which Access Method Services is running. All requests for
system services or I/O are made to the substructure, which receives the request and issues the
appropriate request to the operating system. Thus additional access methods can be easily
supported by Access Method Services, by merely augmenting the I/O Adapter appropriately.
Access Method Services can be run in a different host operating system by changing the
System Adapter and the I/O Adapter to match the new host.

Figure 1-1. The Structure of the Access Method Services Processor

Following the flow of logic reveals more of the processor than the structure of
executable modules. Figure 1-2 and the two which follow show the sequence
in which modules execute, important internal tables, and how non-executable
modules are used.

1-2 VSE/VSAM Access Method Services Logic

Licensed Material — Property of IBM

Enter Processor

(Job Control
Statement)

Enter Processor System Adapter) g
(Subroutine Call) T p——a=] System Adapter
e 1/0 Adapter
Executive
l | Text Processor
See Figure 3
Historical
EEEEE—
Data Areas

Figure 1-2. Initialization of Access Method Services

The System Adapter is the external entry and exit point for Access Method
Services. At entry time, the GDT (Global Data Table) is built by the System
Adapter. The GDT is always passed as a parameter when any internal
module is called, and through the GDT can be found the entry point for any
service supplied by the substructure. The GDT contains the addresses for the
various services provided by the System Adapter, the I/O Adapter, and the
Text Processor. The GDT also points to historical data areas that are built
and maintained by various processor substructure modules.

Control passes from the initialization effected by the System Adapter to the
Executive. Figure 1-3 shows this transfer of control, and details the parsing
operation of the processor.

Chapter 1: Introduction 1-3

Licensed Material — Property of IBM

o = -

(Job Control
Statement)

—

—=zZ=>p
T

e - —

Enter Processor |}
{ Enter Processor

\ (Subroutine Call) J i

.
———— = System Adapter l

! |
L — -1

I
|
|
Commands :
(5
i
|
|

|
— ®={ System Adapter

| -

r——=--=-

— ol I/0 Adapter

Executive

r——=-=--

1
_—— >J Text Processor I
| |

.

-
|
[
|
|
|
1~
|
|
|
1/0 /’:dlamer |

I See Figure 4

|
|
| FD

T

Reader/ v
Interpreter

Syslem Adapter Text Processor

- 0
[
[
I]

1/0 Adapter
===
; |

|

Command Text
Descriptor '1 Structure

-

Program
Library Messages

_—

Figure 1-3. Reading and Parsing a Command (Part 1 of 2)

1-4 VSE/VSAM Access Method Services Logic

Licensed Material — Property of IBM

5.

The Executive calls the Reader/Interpreter, which reads a command from the input stream.
The 1/0 Adapter performs the actual read at the behest of the Reader/Interpreter; the
address for the “get” service is found in the GDT.

To parse the command, the Reader/Interpreter compares it against a special table called a
Command Descriptor. This Command Descriptor forms a non-executable phase, and is
loaded from the core image library by a service of the System Adapter. There is a Command
Descriptor for each possible verb to be recognized by Access Method Services. This Com-
mand Descriptor specifies each possible keyword, its permitted range of values, and any
other information that is needed to parse and interpret the command.

As a command is parsed, certain messages may be issued. To format these messages, the Text
Processor is invoked (again through the GDT). The Text Processor determines the format of
printed material and the text of fixed messages by using Text Structures. These Text
Structures are also non-executable phases (loaded by the System Adapter when needed), and
they describe page layout, static portions of the text, headings, footings, and other details of
the printed page. Once a line of message is formatted, the I/O Adapter writes the line to the
print file.

As a command is parsed, the Reader/Interpreter builds an FDT (Function Data Table) from
the values that it finds. The FDT is an encoded representation of the user’s command. The
FDT is passed back to the executive as the results of the parse. The Executive in turn passes
the FDT to the appropriate FSR for processing.

Control returns to the Executive, along with the FDT and the name of the FSR needed to
process this command. Figure 1-4 depicts the FSR in action.

Figure 1-3. Reading and Parsing a Command (Part 2 of 2)

Chapter 1: Introduction

1-5

Licensed Material — Property of IBM

— e — — oy

Id

{ acc (Job Control
Enter Processor) Statement)
N e e =~
Enter Processor 8 | o - =~ G - = i
(Subroutine Call) PERESAD I v
- ——— | System Adapter | T F — —®| System Adapter |
! ! Lo - — — — - J
L = — I
————— |
I ['
- - -= = - | r — 1/0 Adapter
! (5
| | - - — - — —
| Reader/ .
Interpreter Executive | |
_____ M
L J | | |
_____ — - Text Processor I
P r 1
| |
| |

NProgram

J|> FSR — System - — Library

(Function Support (Text
Routine) Adapter Structures)

Hogm

Text |1
Proces’solr
‘ 1

E | L Messages and
[/0 Adapter L

Listings

User Catalog
and Data Sets

User Catalog
and Data Sets

1. The command at this point in time is described in the FDT. The FDT is an internal encoding
of the original command, in a rigorous format with the values for all possible parametersin a
prescribed order.

2. Any data sets or user catalogs required for this particular function are accessed through the
I/0 Adapter. The address of this service is found in the GDT.

3. Any printed output is prepared by the Text Processor, whose addresses are also found in the
GDT. Static text and page layout instructions are found in the Text Structures, which are
loaded by the System Adapter.

4. Finally, all output is produced by another of the services of the I/O Adapter.

5. Control returns to the Executive. If more commands remain, the Reader/Interpreter repeats
its procedure, followed by the appropriate FSR. Control is routed back and forth between
the Reader/Interpreter and the FSRs by the Executive in this fashion until all commands
have been processed.

Figure 1-4, Performing a Function

1-6 VSE/VSAM Access Method Services Logic

Licensed Material — Property of IBM

Naming Conventions

The Access Method Services processor is named IDCAMS. The names of all
modules that form this processor are seven or eight characters iong, and begin
with the characters IDC. The remaining characters of the name relate to its
use. Executable modules and Command Descriptors have seven-character
names, while Text Structures have eight-character names.

The modules of the processor are grouped by their functional relationship.
Each of these relationships is indicated by a two-character mnemonic identi-
fier, which appears as characters 4 and 5 of the module name. These identifi-
ers are listed in the following table:

AL ALTER FSR MP IMPORT FSR

BI BLDINDEX FSR PM PARMFSR

CDh Command Descriptor PR PRINTFSR

CL CANCEL FSR RC EXPORTRAFSR

DB Debugging Facility RI Reader/Interpreter

DE DEFINE FSR RM IMPORTRA FSR

DI NonVSAM Access RP REPROFSR
Method Macros RS RESETCAT FSR

DL DELETE FSR SA System Adapter

EX Executive TP Text Processor

I0 I/0 Adapter TS Text Structure

LC LISTCAT FSR VY VERIFY FSR

LR LISTCRA FSR XP EXPORTFSR

MP IMPORT FSR

The remaining characters of a module name indicate the function of that
module. Two numeric digits are used for the name of a module and the entry
point of a single-entry module. Two alphabetic characters indicate an entry
point in a multiple-entry module. Thus the name “IDCPRO1” is the name of
the first module for the PRINT FSR, and “IDCPRO1” is the only entry point
to that module. “IDCSA02” is the second module for the System Adapter,
and “IDCSAGS” is the entry point in that module for the “get space” service.

The last two characters of a Command Descriptor are the mnemonic identifi-
er for the FSR for that Command Descriptor. Similarly, Text Structure
names end with the FSR mnemonic identifier and a single digit (to allow for
multiple Text Structures per FSR). For example the three modules for
PRINT are:

IDCPRO1 PRINT FSR module
IDCCDPR PRINT Command Descriptor
IDCTSPRO First Text Structure for PRINT

Names for processor-wide data structures and fields are six characters long.
The first three characters identify the structure. The last three characters
indicate the function of the field. (In this publication, the data areas are often
referred to by the first three characters.) Values for a field (for example, a bit
in a flag field) have names that are eight characters long. The last two char-
acters of a value indicate the meaning of that value. For example,
“IOCDSO?” is a field of the I/O Communications Structure that defines the
data set organization. One of its bits is named “IOCDSOAM,” which means
that this bit signifies a VSAM organization.

Local names used internally by only one subcomponent follow no processor-
wide conventions.

Chapter 1: Introduction 1-7

Licensed Material — Property of IBM

Character Code Dependencies

1-8

Most of the character dependencies of this processor are isolated in the
Command Descriptor modules and the Text Structure modules. For exam-
ple, all input text is translated by referring to the Command Descriptor
modules, and all output text is controlled by the Text Structure modules and
a parameter defining the output graphics.

Most of the executable modules of the processor have no character dependen-
cies. However, some modules of the Reader/Interpreter and the Text Proc-
essor have character dependencies. Such character dependencies are identi-
fied in the prologue of each module.

The character set used at execution time must be equivalent to that used
during assembly of the character-dependent modules. The IBM-supplied
version of these modules assumes EBCDIC character representations. If a
different character representation is to be used during execution, then the
character-dependent modules must be re-assembled.

VSE/VSAM Access Method Services Logic

Licensed Material — Property of IBM

Chapter 2: Method of Operation

This chapter contains method of operation diagrams for each element within
the substructure and superstructure of Access Method Services. Following
each diagram is an extended description of the processing steps and the name
of the modules and procedures used to perform each step within the diagram.
Using these names, you can go either to the chapter “Microfiche Directory”
or to the microfiche itself for more information.

The following legend explains the symbols used throughout this chapter.

> Data flow

’ Flow of control, entry and exit points

mm(b Data flow when existing data has been altered

. > ‘ On page connector

| > Off page connector

_— Pointer to more information

Chapter 2: Method of Operation 2-1

Licensed Material — Property of IBM

2-2 VSE/VSAM Access Method Services Logic

7 30deqd

uon®ed0 Jo PO

€7

Access Method Services Visual Table of Contents

Main Functions

General
Overview

]

1.0 2.0 3.0 4.0
Initialization Reader/ FSRs Termination
Interpreter
Service Functions
I 5.0 J 6.0 I 7.0 l 8.0
System 1/0 Text Debugging
Adapter Adapter Processor Aids

I Jo Kyiadorg — [ejIo)spN pIsuadYT

p-1

918077 5901A108 OO #8900V WVSA/ASA

Access Method Services Overview

INPUT

Register |

From Access Mcthod Services Invoker

PROCESSING

| =—>

Invoker's
Parameter List

Commands

Input Data Sets and
VSAM Catalogs

1. initializes.
See Diagram

2. Reads and interprets commands.

See Diagram

3. Processes commands.
See Diagrams

4. Terminates.
See Diagram

2.0

3.1

' To

3.14

OUTPUT

Function Data Table (FDT)

Output Data Sets
and VSAM Catalogs

Messages and
Reports

Register 1

Maodificd Invoker's
Parameter List

Register 15

Wl Jo &iiadord — [WHANIBIA Pasuady]

z 30vdey)

uonwiedQ jo poylo

Extended Description for Access Method
Services Overview

IDCEXO01
1 Procedure: IDCEXO01
Calls IDCEX02

2 Procedure: MAIN, CALLRI

If MAXCOND indicates termination, go to Step 4.
If MAXCOND does not indicate termination:

® Calls reader interpreter
e EOFCOND is set to R/I return code.
3 Procedure: MAIN, CALLFSR

If EOFCOND indicates end-of-file, go to Step 4.
1If EOFCOND does not indicate end-of-file:

¢ FSR is called

* MAXCOND is set to maximum of MAXCOND and
the return code for the FSR

e FDT isfreed
® Text processor is reset
e Return to Step 2.

4 Procedure: IDCEXO01
Calls IDCEXO03.

WA Jo fuiodorg — [spaIs pasuddy]

Licensed Material — Property of IBM

2-6 VSE/VSAM Access Method Services Logic

7 30dwy)

uopwedQ JO POmeN

L=t

Initialization Visual Table of Contents

1.0

Initialization
Overview

System Adapter
Initialization

1.2

1/0 Adapter
Initialization
UIOINIT Macro

WE1 J0 Auddoid — [SUNIA POsEdN]

Diagram 1.0. Access Method Services Initialization Overview
From Access Method

8-

é Services Invoker
m
] INPUT PROCESSING OUTPUT
> Register 1 | GDT GDT
§ (i l — 1. Initalizes System Adaptery GDTPRM
See Diagram 1.1 GDTIOH
> T
g } Options GDTTPH
E. f DD Name
-3 { Page]?lumber GDTSAH System Adapter
g $1/0 List Historical Data Area
g- {Options
%. fDD Name
| T fPage’]?lumber
| $1/0 List
2. Initializes 1/O Adapter. /‘_\'_l"‘ IODATA
See Diagram ——] 1.2
3. Initializes text lines. <
PCT

4. Establishes page length.

5. Initializes page controls. <:—'J |

A1 Jo Qaadord — [epiayepy pasuady

uonwiedQ jo poyiel :Z 191dey)

6-T

Extended Description Diagram 1.0

IDCSA01
Procedure: IDCSAQ!L

1 The System Adapter receives control from the invoker
from either an EXEC statement or from a program. The
System Adapter sets up the GDT, trace tables, and the
System Adapter Historical Data Area. The System
Adapter obtains storage for modules that are continuously
used such as the System Adapter and the 1/0 Adapter.
Diagram 1.1 shows System Adapter initialization in detail.

IDCEX02
Procedure: IDCEX02

2 IDCEXQ2 issues the UIOINIT macro to cause the 1/0
Adapter to initialize. The 1/O Adapter initializes its
Historical Data Area. IDCIOIT saves the addresses of
alternate DD name list if supplied by the invoker.
Diagram 1.2 shows 1/0 Adapter initialization in detail.

IDCEX02
Procedure: IDCEX02

3 1DCEXO2 issues a UESTS macro instruction to set up the
Print Control Table, PCT. The address for the Text
Processor Historical Data Area is in the GDTTPH field of
the GDT. Since GDTTPH contains zero, the text
processor builds the primary PCT.

IDCEX02
Procedure: IDCEX02

4 IDCEXO02 issues a COMRG macro instruction to get the
address of the partition communication region. It then
extracts the value of “SYSLST lines per page” from
displacement 78 and uses this value in a UREST macro
instruction to establish the SYSLST page depth.

IDCEX02
Procedures: IDCEX02, SCANPARM

§ If the invoker supplied a starting page number in the
parameters, IDCEXO02 issues a UREST macro instruction
to set the page number. Control is given to the R/I to
process the input as well as any parameters supplied on the
EXEC statement that invoked Access Method Services.

W1 Jo Kiadoid — SN PIsRdN]

7] S901AI9G POYIOI 5000V WVSA/ASA 01-T

o180

Diagram 1.1. System Adapter Initialization

INPUT

Register |

Parameter List

{ Options

§DD Name

Page Number

1/0 List

From Access Method Services Invoker

PROCESSING

OUTPUT

|

Obtains storage.

Initializes the GDT.

Initializes storage table.

Initializes trace tables.

Initializes Historical Data .Area.

Establishes save area.

GDT

GDTHDR {GDTPRM
A GDTTRI | GDTTR2

GDTSAH |GDTABH

Umacro entry point

AUTOTBL

Inter-Module Trace Table

L]

Intra-Module Trace Table,

System Adapter
Historical Data Area

Save Area

Wdl Jo aadoid — (LIS Pasuadr]

uoneredQ jo poyioN :Z wndey)

-7

Extended Description for Diagram 1.1

IDCSAO1
Procedure: IDCSAO!

1 IDCSAOI issues a GETVIS instruction to obtain space for
the following tables:

Global Data Table, GDT
Inter-Module-Trace Table
Intra-Module-Trace Table
System Adapter Historical
Data Area

¢ Storage Table, AUTOTBL

If the initial GETVIS fails, IDCSAOQ1 issues an ABORT
message via EXCP and returns to the invoker of Access
Method Services.

IDCSA01
Procedure: IDCSAOL

2 IDCSADOI puts the chatacters ‘GDT®’ in the first four
bytes of the GDT. It puts the address of the invoker’s
parameter list, which is in Register 1, in the GDTPRM
field of the GDT. IDCSAO! puts the address of the System
Adapter Historical Data Area in GDTSAH. It also puts
the address of the Inter-Module-Trace Table in GDTTRI
and the address of the Intra-Module-Trace Table in
GDTTR2. IDCSAOI puts the address of the System
Adapter save area in GDTABH. Additionally it puts
addresses for the processor-defined macro instructions,
called U-macros, in the GDT. All remaining fields of the
GDT contain zeros.

IDCSA01
Procedure: IDCSAO!

3 Rather than obtaining new storage each time IDCSA02,
IDCSAQOQ3, IDCTPOI, or IDCIOOI is called, the System
Adapter issues one GETVIS macro for each module and
saves the storage address in the Storage Table,
AUTOTBL. When one of the modules is called, it calls the
PROLOG routine that returns the address of the storage
obtained for the module during System Adapter
initialization. The storage address for IDCSA03, however,
is kept in the GDTSPR field of the GDT because
IDCSAO03 contains the PROLOG routine code and needs
to get its storage without using the PROLOG routine.

IDCSAO01
Procedure: IDCSAO1

4 1DCSAOI initializes the Inter- and Intra-Module-Trace
tables to blanks. It places the characters ‘6INTERbY and
‘BINTRAbBY’ before the respective tables. It also puts the
characters ‘SAO1’ in the Inter-Module-Trace Table and in
the save area provided by the Access Method Services
invoker.

IDCSAO01
Procedure: IDCSAO!

5§ IDCSAO!I sets the first UGPOOL storage area pointer in
the System Adapter Historical Data Area to zero. It sets
the last UGPOOL storage area pointer to the address of
the first UGPOOL area pointer.

IDCSAO1
Procedure: IDCSAOIL

6 The System Adapter saves the current values of its
registers in a save area pointed to by the GDTABH field
in the GDT. The UABORT routine uses the register
values to establish addressability before processing.
Control goes to Diagram 1.0, step 2.

W4l Jo Ayiadorg — [epasely posuadyy

=T

515077 §991AISS POYI 85990 INVSA/TSA

Diagram 1.2. 1/0 Adapter Initialization ~ UIOINIT Macro

INPUT

Register |

From System Adapter Initialization
Via Executive

PROCESSING

GDT

External Data
Routine List

1. obains storage.

2. Initializes IODATA.

3. Establishes identifiers.

OUTPUT

Y

i

GDT

GDTIOH

I0DATA

IODEOD | 10DOSS

IODXTN | 10DSO

IO0DADD | 10DAEI

Register 15

| 0

W41 Jo A11ado1g — [BHIIBIA] PISUIDF]

uonesadQ Jo poqiel 7 1dey)

£1-T

Extended Description for Diagram 1.2
IDCI001
Procedure: IDCIOIT

1 The 1/0 Adapter issues a UGPOOL to obtain storage for
its Historical Data Area—IODATA. IDCIOIT puts the
I0ODATA address in the GDTIOH field in the GDT. If
storage is not obtained from either UGPOOL, the 1/0
Adapter issues a UABORT to terminate the processor.

IDCIO01
Procedure: IDCIOIT
2 The 1/0 Adapter initializes IODATA. If the Access

Method Services invoker supplied filenames for the system

data sets, IDCIOIT puts the address of those filenames in
the IODADD field of IODATA (this code is for

compatibility with OS/VS; alternate filenames for system
data sets cannot be used in VSE). If the invoker supplied

the address a list of his own 1/0 programs, IDCIOIT puts

that address in IODXTN. IDCIOIT puts the address of
the Access Method Services End-of-Data routine in
IODEOD. It puts the address for a synad routine for

nonVSAM input data sets in IODOSS and the address for
a synad routine for nonVSAM output data sets in IODSO.

It also puts the address of the End-of-Data routine for
VSAM data sets in IODAEL

IDCI1001
Procedure: IDCIOIT

3 IDCIOIT initializes the IODSID to the characters ‘1000’,

The 1/0 Adapter uses this identifier to keep track of data
sets. UOPEN gives the first data set the /O Adapter is
required to open the identification of 1001, the second
1002, and so on. The identification appears at the
beginning of the storage area for each data set. IDCIOIT

puts a return code of zero in Register 15 and gives control

to Diagram 1.0, step 3.

WA Jo &11adoid — [BEIBIA Pasuad|]

Licensed Material — Property of IBM

2-14 VSE/VSAM Access Method Services Logic

z andeyd

uonesedQ jo poqieN

s1-T

Reader/Interpreter Visual Table of Contents

2.0
Reader/
Interpreter
Overview
2.1 2.2 2.3 2.4 2.5
Get Next Prepare
Initialization To Scan Termination
Command Command
Command
l 2.4.1 1 2.4.2
Syntax
Check Build FDT
Parameter
L2.2.1 2.2.2 l 2.2.3 l 2.2.4 1 2.2.5
IF-THEN ELSE SET
Modal Modal Modal
Command Command Command Command Command

WHI Jo £)10d01g — [SHAIE PIsudN]

91-T

91307 $901AIOS POYIOIN §5900V WVSA/FSA

Diagram 2.0. Reader/Interpreter Overview

INPUT

From Executive Controlled
Termination or Initialization

PROCESSING

OUTPUT

Register |

l

{GDT

4+ FDT UGPOOL ID

+ MAXCC

LASTCC

-

IDCRILT
IDCRIKT

)|

SYSIPT

)i

Command
Descriptor

(

If entering from first command, GDT

continue to Step 2; if entering
after first command, go to Step 3.

Initializes. _:>
See Diagram

Gets next command.

See Diagram —

GDTRIH
QDAREA

‘IDCRILT

IDCRIKT

@ —0

Prepares 10 scan command. ——:—:>e

See Diagram —

Scans command.

See Diagram —

Terminates.

See Diagram ——

2.3

D ——0

D —F—0

Input
Statements

FDT

LASTCC

Register |

4 GDT

4 FDT Address

¢+ FDT UGPOOL ID

¢ MAXCC

¢ LASTCC

4 FSR Name

A1 Jo A11ddolg — [BIIIBIA PISUNF]

uone1sdQ Jo pomolN T 30deyd

L=t

Extended Description for Diagram 2.0

IDCRIO1
Procedure: RIINIT

t If entrance is from Initialization, processing continues
with step 2. If entrance is from Executive Controlled
Termination, processing continues with step 3.

2 RIINIT initializes the Reader/Interpreter Historical Data
Area, HDAREA. RIINIT loads the command descriptor
name table, IDCRILT, and the modal command name
table, IDCRIKT. RIINIT opens the input data set,
SYSIPT, and RIINIT prepares the parameters from the
EXEC statement for scanning, if they exist. Diagram 2.1
shows the initialization procedure in detail.

IDCRI01

Procedures: GETNEXT, MODALSET, MODALIF,
MODLELSE

3 GETNEXT reads and processes modal commands until a
functional command is encountered. The execution of the
functional command depends’on the results from the
modal commands. However, every command is
completely checked for syntax errors whether or not it is
executed. Diagram 2.2 shows obtaining a command in
detail.

IDCRI102
Procedure: IDCR102

4 [IDCRIO02 loads the command descriptor for the functional
command to be scanned. IDCRI02 initializes the Function
Data Table, FDT. Diagram 2.3 shows the preparation for
command scanning in detail.

IDCRIO1

Procedures: SCANCMD, KWDPARM, PCSPARM,
INREPEAT, BUILDFDT, CONVERT, GETSPACE,
DSIDCHK, ERRORI, ERROR2

5 SCANCMD and BUILDFDT check the functional
command for correctness. If the command is incorrect,
ERRORI or ERROR2 writes an error message.
BUILDFDT and INREPEAT complete the FDT for
correct commands. Diagram 2.4 shows the command
scanning in detail.

IDCRI103
Procedure: IDCRI03

6 I1DCRIO3 deletes the work tables and temporary storage. If
the command is to be executed, control is given to
Executive Controlled Termination which gives control to
the Function Support Routine, FSR, that executes the
command. If the command is not to be executed due to
syntax errors or due to the results of a modal expression,
control returns to step 3 to get the next command. If the
error is severe, control returns to Executive Controlled
Termination, Diagram 4.1, with an indication that the
processor cannot continue. Diagram 2.5 shows termination
processing in detail.

NI Jo Kriadorg — [l pasuady|

8-

918077 §301A19S POYIOIN 55900V WVSA/TSA

Diagram 2.1 Reader/Interpreter Initialization

INPUT

Register |

EXEC Parameters
{ GDT

{ FDT UGPOOL ID
} MAXCC
{ LASTCC

-

IDCRILT
IDCRIKT

—
SYSIPT
Data Set

GDTPRM

ﬁength I Options]

V_V

\VA

1. Obuains storage for and initializes

From Diagram 2.0

PROCESSING

OUTPUT

HDAREA.

Loads IDCRILT.

Loads IDCRIKT.

Opens input data set.

Checks parameter options.

Prepares to scan parameters.

——

|

|

GDT

GDTRIH

HDAREA

LEFTMGN

RIGHTMGN

LOADTPTR

KWDTPTR

MODLFLGS

IDCRIKT

l

IDCRILT

Q

L]

Parameter Options

Verb Name 'PARM’

T Parameter Options

]

JNE] JO A319do1d — [BLIDIBJA] POSUIN]

uoneiedQ Jo poqiep :Z dey)

61-T

Extended Description for Diagram 2.1

IDCRIO1
Procedure: RIINIT

1 RIINIT obtains storage for HDAREA and sets the left
margin field to 2 and the right margin field to 72. A user
changes the margins using a PARM command. RIINIT
initializes the rest of HDAREA to zero. If RIINIT cannot
obtain storage, control is given to Reader/Interpreter
Termination, Diagram 2.5, with an indication that causes
the processor to end.

IDCRI01
Procedure: RIINIT

2 RIINIT loads the command name table, IDCRILT, and
places the address of IDCRILT in the LOADTPTR field
in HDAREA. IDCRILT contains the name of each verb
and corresponding command descriptor.

IDCRI01
Procedure: RIINIT

3 RIINIT loads the modal name table, IDCRIKT and
places the address of IDCRIKT in the KWDTPTR field
in HDAREA. IDCRIKT contains modal command
keyword and verb name symbols, plus the length of each
symbol.

IDCRIO1
Procedure: RIINIT

4 RIINIT opens the input data set which has a default
filename of SYSIPT. If SYSIPT cannot be opened, control
is given to Reader/Interpreter termination, Diagram 2.5,
with an indication that causes the processor to end.

IDCRI01
Procedure: RIINIT

8 The Reader/Interpreter checks for parameters supplied
before SYSIPT is read. The invoker may supply
parameters by putting them in the EXEC job control
statement. Parameters may also be supplied through the
data the user provides to the processor at the time the
user’s program invokes Access Method Services. If
parameters are supplied, the GDTPRM field of the GDT
contains the address of a fullword that contains the
address of the parameters. The first 2 bytes of the
parameters is the total length of the parameters. If no
parameters are supplied, the length field is zero.

IDCRI101
Procedure: RIINIT

6 The parameters are printed on SYSLST and are treated as
the parameters for a PARM command. The symbol for
PARM in IDCRIKT is supplied as the verb name and the
options are scanned by the Reader/Interpreter just as
though a PARM command had been encountered in
SYSIPT. After the pseudo PARM command is executed
by the PARM FSR, Executive Controlled Termination
gives Reader/Interpreter control to read the first
command. Control goes to Diagram 2.2 to get the first
command.

W1 Jo Auiadorg — [epayspy pesuaoyy

0z-t

918077 §301A108 POYION 55950V WVSA/ASA

Diagram 2.2. Reader/Interpreter Get Next Command

From Diagram 2.0

INPUT PROCESSING OUTPUT

IDCRIKT] Input Records
:I:_\—_'> 1. Extracts next command. >

SYSIPT
MAXCC
Register 1 r
| —— ::: > 2. Processes modal command. T :> LASTCC
EXEC Parameters . 2.2. — l
See Diagrams —— to HDAREA
GDT 2.2.5
FDT Space ID
MODFLGS
Maxcc <
{LASTCC
MAXCC
] HDAREA
LASTCC 3. Prepares to interpret functional >
[I commands.
MODFLGS

Wd1 Jo G1adoig — [epIa)e pasuady]

z dey)

.
.

uopnesedQ JO PO

12-1

Extended Description for Diagram 2.2
IDCRIO1

Procedures: GETNEXT, GETRECRD, NXTFIELD,
NEXTCHAR

1 GETRECRD reads SYSIPT to get an input record and
writes each input record on SYSLST. GETNEXT locates
the verb on the input record and checks it against the
symbols for the modal verbs IF, ELSE, SET, DO, and
END in IDCRIKT. If a match is found, the verbis a
correct modal verb and processing continues to step 2. If a
match is not found, the verb is assumed to be a functional
verb and processing goes to step 3.

IDCRI01

Procedures: GETNEXT, MODALIF, MODLELSE,
MODALSET

2 GETNEXT sets condition codes and the MODLFLGS
field in HDAREA depending on the modal command.
Control returns to step 1 to get the next command. The
modal commands are shown in detail in the following
diagrams:

IF-THEN, Diagram 2.2.1
ELSE, Diagram 2.2.2
SET, Diagram 2.2.3

DO, Diagram 2.2.4
END, Diagram 2.2.5

IDCRI01
Procedure: GETNEXT

3 GETNEXT checks the MODLFLGS field in HDAREA
to determine if the function command should be executed.
If the functional command is not to be executed,
GETNEXT sets a flag. Every command is completely
checked for syntax errors whether or not it is to be
executed. If the functional command finishes an
IF—THEN command, GETNEXT subtracts | from the
number of nested IF-THEN commands and sets
MODLFLGS for the finished IFTHEN command to

zero. The functional commands are shown in detail in the
following diagrams:

ALTER, Diagram 3.1
BLDINDEX, Diagram 3.11
CANCEL, Diagram 3.16
DEFINE, Diagram 3.2
DELETE, Diagram 3.3
EXPORT, Diagram 3.4
EXPORTRA, Diagram 3.13
IMPORT, Diagram 3.5
IMPORTRA, Diagram 3.14
LISTCAT, Diagram 3.6
LISTCRA, Diagram 3.12
PARM, Diagram 3.7
PRINT, Diagram 3.8
REPRO, Diagram 3.9
RESETCAT, Diagram 3.15
VERIFY, Diagram 3.10

Control goes to Diagram 2.4 to scan the command.

N JO A11d01g — [EHIIBIA PISUON]

w-T

018077 $991AI9S POYISIN 55990V INVSA/TSA

Diagram 2.2.1. Reader/Interpreter IF-THEN Modal Command

INPUT

From Diagram 2.2

PROCESSING

OUTPUT

HDAREA

NESTLVL

MODLFLGS

IDCRIKT

[

LASTCC

MAXCC

L

——

1. Increases IF-THEN commands ‘—l:>

count, if nested.

HDAREA

NESTVL

MODLFLGS

2. Interprets IF clause.

3. Determines whether THEN or <tr T

ELSE clause is to be executed.

4. Checks for THEN clause.

HDAREA

NESTLVL

MODLFLGS

W1 Jo Apadoig — [BUIEIA PIsURFT

7 I0dey)

uonesadQ Jo pOYIoN

€T

Extended Description for Diagram 2.2.1

IDCRIO1
Procedure: MODALIF

The value in the NESTLVL field of HDAREA is used as
an index to the MODLFLGS field for the current
IF—THEN command and the THEN and ELSE clauses
that belong to the IF—THEN. MODALIF adds | to the
number of nested IF commands in NESTLVL. There is
one set of modal flags in HDAREA for each level of
IF—THEN commands. The new level of MODLFLGS is
initialized to zero. To see if too many IF—THEN
commands are nested, MODALIF compares the number
of nested IF—THEN commands to the number permitted,
10.

When a syntax error is detected, MODALIF sets LASTCC
to 16, and control is given to Reader/Interpreter
termination, Diagram 2.5, to cause the Executive to
terminate the processor.

IDCRIO1

Procedures: MODALIF, PACKCVB, NXTFIELD,
NEXTCHAR

2

MODALIF compares the characters following the IF with
the symbols for LASTCC and MAXCC in IDCRIKT.
MODALIF compares the operator with all possible
operators: LT, GT, EQ, NE, GE, LE (<, >, =, %, =, <).
PACKCYVB converts the decimal value following the
operator to binary. If any errors are detected, the syntax
error procedure in step 1 is followed.

IDCRIO1
Procedure: MODALIF
3 MODALIF sets the THENFLAG to | to indicate that the

THEN clause of the [IF—THEN command is being
processed. MODALIF compares the value of LASTCC or
MAXCC with the number in the IF ~-THEN command
and evaluates it for truc or false depending upon the
operator. If the result is false, MODALIF sets the
SKIPFLAG in HDAREA to 1, indicating that commands
in the THEN clause of the IF—THEN command are to be
skipped—that is, the Reader/Interpreter is to check only
the syntax of the commands in the THEN clause.

IDCRI01
Procedure: MODALIF
4 MODALIF compares the characters following the

relational expression with the symbol for THEN in

IDCRIKT. An error occurs if THEN does not follow IF,
and the syntax error procedure in step | is followed. If a
terminator follows the THEN keyword, there is a null
THEN clause in the current IFTHEN command.
Control returns to Diagram 2.2 to obtain the next
command.

NI Jo fyiadosg — peayspy pasuady

»T-T

518077 $991A105 PO 58990V NVSA/HSA

Diagram 2.2.2. Reader/Interpreter ELSE Modal Command

INPUT

From Diagram 2.2

PROCESSING

HDAREA

MODLFLGS

E—

Validates ELSE command.

Determines if commands following
ELSE are to be executed.

Checks for completion of IF-THEN
command.

OUTPUT

VoV

HDAREA

MODLFLGS

NESTLVL

W] Jo &uadoad — spa)eAl Pasuadl]

uoneiadQ Jo poyl :z 19dey)

sT-T

Extended Diagram for Diagram 2.2.2

IDCRIO1
Procedure: MODLELSE

1

MODLELSE sets the ELSEFLAG in HDAREA for the
current IF—THEN command to |, indicating that the
ELSE clause of the IF—-THEN command is being
processed. The THENFLAG is turned off. An error is
caused by an ELSE without a prior IFTHEN, and the
syntax error procedure in step 1, Diagram 2.2.1, is
followed.

IDCRIO1
Procedure: MODLELSE
2 SKIPFLAG indicates whether the commands in the ELSE

clause of the IF—THEN command should be executed or
only checked for syntax errors. If SKIPFLAG is zero, the
THEN clause of the IF—THEN command was executed;
the ELSE clause should not be executed, and
MODLELSE sets SKIPFLAG to 1. If SKIPFLAG is |,
the THEN clause of the IF--THEN command was not
executed; the ELSE clause should be executed, and
MODLELSE sets SKIPFLAG to zero. However, if the
entire IFTHEN—ELSE command is nested within
another THEN or ELSE clause that is not being executed,
neither the THEN clause or the ELSE clause of the nested
IF—THEN—ELSE command is executed.

IDCRI0}
Procedures: MODLELSE, NXTFIELD, NEXTCHAR
3 Ifaterminator immediately follows ELSE, there are no

commands in the ELSE clause of the current IF-THEN
command. MODLELSE subtracts 1 from NESTLVL since
the IF command is completed. Control is given to
Diagram 2.2 to obtain the next command whether or not a
terminator follows the ELSE.

W41 Jo Auadosd — [84938 Pasuddyy

9=t

91807 8901A10S POYIOI 55900V WVSA/ASA

Diagram 2.2.3. Reader/Interpreter SET Modal Command

From Diagram 2.2

PROCESSING

OUTPUT

INPUT
IDCRIKT —:>
MAXCC
UL L
HDAREA
MODLFLGS
LA LA L
NESTLVL

1. Validates SET command.

2. Sets LASTCC or MAXCC.

3. Checks IF-THEN command
completion.

mzmm

2777727777777 0>

LASTCC

|

MAXCC

L

HDAREA

MODLFLGS

NESTLVL

NI Jo Ayradoig — [epiajely pasuady]

uone1sdQ Jo poyiely iz 1ndey)

IX A4

Extended Description for Diagram 2.2.3

IDCRIO1

Procedures: MODALSET, PACKCVB, NXTFIELD,
NEXTCHAR

1 MODALSET compares the characters following SET with
the symbols for LASTCC and MAXCC in IDCRIKT.
MODALSET compares the operator with the symbols EQ
and =, PACKCVB converts the decimal value following
the operator to binary. If a syntax error is encountered, the
processing in Diagram 2.2.1, step 1 is followed.

IDCRIO1
Procedure: MODALSET

2 MODALSET obtains MAXCC or LASTCC and changes
its value to the value specified in the SET command. If the
command is SET LASTCC, MODALSET compares
MAXCC and LASTCC, and the larger value is put into
MAXCC. If the SET command is only being checked for
syntax errors, neither MAXCC nor LASTCC is changed.

IDCRIO01
Procedure: MODALSET

3 MODALSET determines that the current IF command is
finished by checking that the SET command follows an
ELSE keyword and that the SET command is not within a
DO group. If both of these conditions are met,
MODALSET subtracts 1 from NESTLVL in HDAREA,
and returns control to Diagram 2.2 to obtain the next
command.

W1 Jo Kyiodord — [BIAEIN pasuad)]

8T-7

91807 §901AI0S POYIIIN 55990V IVSA/TASA

Diagram 2.2.4. Reader/Interpreter DO Modal Command

INPUT

HDAREA

NESTLVL

NULLDO

MODLFLGS

>

From Diagram 2.2

PROCESSING

OUTPUT

1. Determines if DO is part of an
[F-THEN command.

2. Processes DO command within
IF-THEN command.

a. Immediately following THEN or
ELSE.

b. Not immediately following THEN
or ELSE.

HDAREA

NESTLVL

NULLDO

MODLFLGS

WA Jo fuiadoig — [BLIRIEIA PISUIINT

uonesedQ Jo poqiepy :z 3ndey)

-t

Extended Description for Diagram 2.2.4

IDCRI01
Procedures: GETNEXT, NXTFIELD, NEXTCHAR

1 1fa DO command is not part of an IFTHEN command,
control returns to Diagram 2.2 to obtain the next
command. If a DO command is part of an IF—THEN
command, processing continues to step 2.

IDCRI01

Procedures: MODALIF, MODELSE, NXTFIELD,
NEXTCHAR, GETNEXT

2 a. Ifa DO command is part of an IF—THEN command
and immediately follows a THEN or ELSE keyword,
MODALIF or MODLELSE sets DOFLAG to 1.
Control returns to Diagram 2.2 for the first command
of the DO group.

b. If a DO command is part of an IFTHEN command,
but it does not immediately follow a THEN or ELSE
keyword, the DO command is unnecessary.
GETNEXT increases the NULLDO field in
HDAREA by 1, and control returns to Diagram 2.2 for
the first command of the unnecessary DO group.

] Jo Aysadorg — (Bl PASUN]

0t-2

918077 $901A108 POIOIN $5900Y INVSA/TSA

Diagram 2.2.5. Reader/Interpreter END Modal Command

INPUT

From Diagram 2.2

PROCESSING

OUTPUT

HDAREA

MODLFLGS

NULLDO

1. Determines if END is part of an
IF-THEN command.

2. Processes END command within
IF-THEN command:

a. When paired with an unneccessary
DO command.

b. When paired with a necessary DO
command.

HDAREA

MODLFLGS

NULLDO

W Jo L11adorg — [eLIIBIA pasuady]

uone1adQ Jo poqie | :z 3deyd

1€-7

Extended Description for Diagram 2.2.5

IDCRIO1
Procedure: GETNEXT

1

GETNEXT checks the NESTLVL field in HDAREA; if
NESTLVL contains a zero, no IFTHEN command is
being processed and control returns to Diagram 2.2 to
obtain the next command. If NESTLVL contains a value
other than zero, processing continues with step 2

IDCRIO1
Procedure: GETNEXT
2 An END encountered during the processing of an

IF—THEN command must be paired with a DO
command. If a DO command has not been found in the
current IFTHEN command, the END is processed as a
syntax error as in Diagram 2.2.1, step 1.

a. If the END command is paired with an unnecessary

DO command, GETNEXT subtracts | from the count
in the NULLDO field in HDAREA. Control returns to
Diagram 2.2 to obtain the next command.

. 1f an END is paired with a necessary DO command,

GETNEXT sets the DOFLAG for the current
IF—THEN command to zero. An IF—THEN
command is completed if the END is paired with a
necessary DO that followed an ELSE. GETNEXT
subtracts | from the count of nested IFTHEN
commands in NESTLVL. Control returns to Diagram
2.2 to obtain the next command.

W41 jo faadord — [BHIBI PasUdd|]

Te-7

180T $301AIOS POYIOI 55900V IWVSA/ASA

Diagram 2.3 Reader/Interpreter Prepare to Scan Command

INPUT

From Diagram 2.0

PROCESSING

OUTPUT

IDCRILT

Command Verb Name

L 1

Command

Descriptor

:ll——___—:(>
>

>

—>

|

1. validates verb.

2. Gets command descriptor.

3. Builds PARMINFO table.

4. Gets FSR name.

5. Initializes FDT.

PARMINFO Table

(Command Descriptor

| |

COMMAREA
FSR Load
Module Name
r-=—=-—-=-=--A
o - - - - - -
' EX00 '
B Verb Name
T

W4 Jo Ayradorg — [epiajey pasuady]

uoneixdQ Jo poyiel iz 3ndeyd

€T

Extended Description for Diagram 2.3

IDCRI02
IDCRIO1

Procedures: IDCR102, ERROR2

Reader/Interpreter Initialization, Diagram 2.1, gives
control to this section only if parameters were present
before SYSIPT was read. Otherwise, control comes from
Diagram 2.2. IDCRI02 compares the verb name with the
valid functional verb names in IDCRILT. If a match is
found, IDCRI02 obtains the name of the verb’s command
descriptor from the table. If a match is not found or the
load of the command descriptor fails due to phase not
found, the verb is invalid, and ERROR? prints a message
on SYSLST. The remainder of the command is ignored,
and control is given to Reader/Interpreter termination,
Diagram 2.5

IDCRI102
Procedure: IDCRI102
2 IDCRIO2 uses the command descriptor name to load the

command descriptor. A command descriptor is a load
module describing all the parameters the command may
have. Access Method Services defines a parameter as:

¢ Positional data—positional parameters cannot have
subparameters.

¢ Keyword with or without data—keyword parameters
may have subparameters.

Data is a constant or list of constants.
Some examples of parameters are:
® entryname... in DELETE is a positional parameter.

¢ VOLUMES (111111) is one parameter with a keyword
VOLUMES and data of “111111".

e VOLUMES (111111, 222222) is one parameter with
keyword VOLUMES and data of “111111” and
222222, (111111, 222222) is a list of constants. Each
constant is the same thing—that is a volume serial
number.

e KEYS (5, 40) is three parameters—KEYS, length with
value 5, and offset with value 40. KEY'S is a keyword
while length and offset are each positional parameters.
(length, offset) is not a list of constants because the
second item, offset, is different from the first, length.
length and offset are subparameters of KEYS.

* KEYRANGES ((5, 40), (50, 60), (70, 80)) is three
parameters—KEYRANGES, lowkey, and highkey.

The subparameters of KEYRANGES, lowkey and
highkey, are repeated. In Access Method Services each
repetition of a parameter must be enclosed in
parentheses. Since lowkey and highkey are positional
parameters, they must always be in the same relative
position. They are repeated as a pair to maintain their
position.

IDCRI102
IDCRI01

Procedures: IDCRI102, SETFLAG

3 The command descriptor contains an identification
number for each parameter the command is permitted to
have. Since the sections of the command descriptor that
describe the parameters are in no set order, IDCR102
builds the PARMINFO Table to access information in the
order of the parameter identification number. The
PARMINFO Table consists of several sections. In the
Descriptor Pointer section the first pointer in the array
points to the Command Descriptor section that describes
parameter with identification number 1. The second
pointer points to the Command Descriptor section that
describes parameter with identification number 2, and so
on. The PARMFLAG section contains one entry for each
parameter identification possible in the command.
PARMFLAG is used to keep track of which parameters
have been found. When a parameter is found, SETFLAG
sets the indicator for the parameter in PARMFLAG.

In Access Method Services, a subparameter is a parameter
that modifies another parameter. For example, in
DEFINE SPACE (VOL ...), VOL is a subparameter of
SPACE. In this document the parameter that the
subparameter modifies is called its superparameter. In this
example, SPACE is the superparameter of VOL. A
superparameter, then, is a parameter that is modified by
other parameters. For each subparameter, IDCRI02 puts
the number of its superparameter in the PARMINFO
Table in the Superparameter 1D section that the R/1 uses
to determine the relationship among parameters.

IDCRI102
Procedure: IDCRI02

4 IDCRIO2 obtains the FSR load module name from the
command descriptor and places the name in the
FSRLNAME field in COMMAREA. The Executive uses
the FSR load module name to load the FSR that executes
the command.

IDCRI02
Procedure: IDCR102

5

IDCRI02 obtains storage for the Function Data Table,
FDT. The verb uses 8 bytes of storage, and each parameter
uses 4 additional bytes. IDCRI02 obtains more storage for
the FDT if any parameter is repeated. The amount of
storage for repeated parameters is calculated from the
command descriptor. Because IDCRI02 uses a UGPOOL
macro instruction to obtain storage, the identifier EX00
precedes the FDT. IDCRIO02 initializes the FDT to zero
and places the verb name in the first 8 bytes. The FDT
contains the information from the command that an FSR
needs to execute the command. The FDT is the interface
between the R/1 and the FSRs and consists of a primary
array of addresses, one secondary array of addresses for
each repeated parameter, and encoded data from the
command.

W41 Jo fyiadosg — [epiajepy pasuadyy

O

91807 §901AJ0§ POYIOI 85900V WVSA/TSA

Diagram 2.4 Reader/Interpreter Scar Cummand

INPUT

From Diagram 2.0

PROCESSING

Command

SYSIPT

Command Descriptor

L

]

PARMINFO
Table

1. Interprets each parameter until end of
command or end of nested repetition,
then goes to Step 2.

OUTPUT

a. Obtains parameter.

:|:>

PARMINFO Table

|

<

b. Checks for errors.
See Diagram —2.4.]

c. Puts parameter data items

in FDT.
See Diagram ——— 2.4.2

2. Supplies defaults and checks for

€rrors.

FDT

Wl Jo K110do1g — [ep0)ely Pasuady]

uoneIedQ Jo PO :Z 1dey)

se-¢C

Extended Description for Diagram 2.4
IDCRI01

Procedures: BUILDFDT, CONVERT, DSIDCHK,
NAMESCAN, SCANCMD, KWDPARM, POSPARM,
INREPEAT, GETDATA, GETSIMPL, GETQUOTD,
ERRORI1, ERROR2, NXTFIELD, NEXTCHAR,
GFTRECRD

1

If the Reader/Interpreter is processing a specified
parameter, processing continues with step 1a. If the
Reader/Interpreter is processing the end of a command or
the end of a repeated parameter, processing continues with
step 2. A parameter set is a parameter repeated as a group.
Each repeated parameter set is treated separately from the
command and from other repeated parameter sets.
PARMFLAG for the parameters in a repetition is reset to
zero for each group of repeated parameters in order to
start the processing again for the new repeated group of
parameters.

a. SCANCMD extracts a parameter from the input
record in storage. If the entire parameter is not in
storage, GETRECRD reads SYSIPT until all the
parameter is in storage.

b. SCANCMD checks the parameter for syntax errors
based upon the information for the parameter in the
command descriptor. If errors are found, ERRORI1 or
ERROR?2 writes a message to SYSLST and sets
LASTCC to 12. The rest of the command is skipped,
and control is passed to R/1 termination.

¢. As SCANCMD scans the command, BUILDFDT
encodes the command into the FDT in order to
describe the command to the FSR that will execute it.
The data items are checked for additional errors (errors
are processed as described in step 1.b). Parameter
scanning continues one parameter at a time until the
end of a repeated parameter list is reached or until the
command terminator is found. For positional
parameters and data belonging to keywords,
BUILDFDT checks to ensure that a string does not
exceed the allowed length, that a number is not out of
range, and that there are not too many elements in a
list.

IDCRIO1
Procedures: DEFAULTS, SETDELT, NEEDNOTS
2 The PARMINFO Table is used to access the description

of each parameter. If a repeated group of parameters or a
command is incomplete, default values are supplied to the
FDT. The defaults, which are in the command descriptor,

are always supplied whenever an input parameter is
omitted, unless the defaults conflict with the input
parameters. DEFAULTS and SETDFLT check to ensure
that the combination of defaults supplied for the
command is meaningful, that is, no parameters that are
syntactically correct but logically incorrect. PARMFLAG
and the command descriptor are used to make
inter-parameter checks for missing keywords and mutually
exclusive keywords. If command scanning is not complete,
control returns to step | to obtain the next parameter.

W1 Jo A31ado1d — [BHBIBIA PISUDYT

9¢-T

918077 $30IAI9S POYIS 58900V IVSA/TSA

Diagram 2.4.1 Reader/Interpreter Syntax Check Parameter

INPUT

From Diagram 2.4

PROCESSING

Command ‘I—_—"‘>
I | -

Command Descriptor

1. Gess parameter number.

2. indicates parameter is found.

3. Checks constant for errors.

4. Prepares to scan subparameters.

Parameter Number

|

1

OUTPUT

V

PARMINFO Table

FDTTBL

W4l Jo Aysadorgd — [epae PIsudIN

uoneredQ Jo poyey :z Indeyd

Le-t

Extended Description for Diagram 2.4.1

IDCRI01
Procedures: SCANCMD, KWDPARM

The identification number is found differently for
positional and keyword parameters. For a positional
parameter, SCANCMD obtains the number of the
parameter from the subparameter 1D number list in the
current superparameter’s descriptor. For a keyword
parameter, KWDPARM compares the keyword to every
possible keyword permitted in the current level of
parameter processing. When a match is found,
KWDPARM saves the 1D number of the keyword.

IDCRI01
Procedure: SETFLAG

2

SETFLAG uses the ID number of the parameter as an
index to the FDT. SETFLAG puts the address of the FDT
field in the same FDT field—the FDT field points to
itself—to indicate that the parameter has been found. If
the parameter has data, the FDT field will be changed
later to the address of the data. Also, SETFLAG sets the
PARMFLAG value to | for this parameter to indicate the
parameter has been found in the command.

IDCRIO1

Procedures: GETDATA, CONVERT, PACKCVB,
DSIDCHK, ERROR2

3

If the parameter is a constant in the case of positional
parameters, or if a constant is associated with the
parameter in the case of a keyword parameter,
GETDATA checks the constant for syntax errors. If an
error is encountered, ERROR2 issues a message on
SYSLST and sets LASTCC to 12. In Access Method
Services, a constant is one of the following:

dsname/password
dsname(membername)/password
dname/password

‘character string’

character string

X‘hexadecimal digits’

decimal digits

B'binary digits’

A list of constants is several constants in the same format
following each other. A constant or a list of constants may
belong to one parameter.

IDCRIO1
Procedure: SCANCMD

4 If the keyword parameter has subparameters associated

with it, SCANCMD processes the subparameters next. For
example, if the following command is specified:

VERBA(Xx)B(C(pgq)D(rsE(x)))FG(x)

A,B,C,D, E F, and G are keyword parameters. p, g, r,
and s are positional parameters. x represents data.

The command has the following structure for scanning:

Verb

——0

The structure is in levels of parameter dependency. The
verb is on level zero. Parameters A, B, F, and G are on
level one. When the R/I scans level one and finds
parameter B, the scanning begins one level lower with
parameters C and D on level two. When parameter C is
found, the scan again moves one level lower to scan the C
subparameters. At the end of the C subparameters, the
scan returns to level two to scan the next parameter on
level two. At the end of the D subparameters, there are no
more parameters on level two, and the scan returns to level
one for parameter F. In other words, the parameters are
processed in the same order that they appear on the input
statement. R/I keeps the level number of the parameter
being scanned in PARMLVL. R/1 keeps the ID number of
the superparameter for the level being scanned in
SUPERID. R/I keeps the ID number of the parameter
being scanned in PARMID.

N1 Jo K11adoig — (B PsUIINT

8¢-T

215077 S90IAIOG POYIOI 55900V INVSA/HSA

Diagram 2.4.2 Reader/Interpreter Build FDT

INPUT

Command Descriptor

DT

Verb

?:>
>

(

List of addresses

N
-

Irom Diagram 2.4

PROCESSING

1. Determines tvpe of parameter:

e Non-repeated parameter. Step 2.

e Repeated parameter. Step 3.

2. Puis address in FDT primary
vector for non-repeated parameter.

3. Puns address in FDI array for
repeated parameter.

ouUTPUT
FDI
FDTTBI
Verh

(I)Al;l or Count and Data

12

i

Array of Addresses

1ata o
Count and Data

NM] Jo A11adoid — [BLIDIBIA] PASTAIN]

uoneiedQ Jo poqiepy (7 ideyd

6€-T

Extended Description for Diagram 2.4.2

IDCRIO1

Procedures: PACKCVB, CONVERT, GETSPACE,
MORESPACE

1 The parameter type determines how it is encoded into the
FDT. If the parameter cannot be repeated, processing
continues with step 2; if the parameter can be repeated,
processing continues with step 3. Refer to Diagram 2.3 for
a definition of parameter.

2 A non-repeated parameter is one of the following:

® A keyword with no data and no repeated
subparameters

» A keyword with no data and repeated subparameters

* A positional or keyword parameter with a single
constant as data

® A positional or keyword parameter with a list of
constants as data

Each category is encoded differently into the FDT as
follows in the same order as above:

e The address in the FDT points to itself

¢ The address in the FDT points to a fullword containing
the number of subparameter repetitions

¢ The address in the FDT points to the single constant

e The address in the FDT points to a halfword
containing the number of constants and immediately
preceding the list of constants

Character string constants are not changed, but
PACKCVB and CONVERT convert numbers and
hexadecimal strings to binary before the address is put in
the FDT. If a list of constants is found, GETSPACE
obtains space for the list when the first constant is
processed. MORESPACE obtains additional space, if
necessary. In the R/I listings, the word scaler is
interchangable with the word constant. Control returns to
Diagram 2.4 for the next parameter.

IDCRIO1

Procedures: SCANMD, INREPEAT, DEFAULTS,
NEEDNOTS

3 Each repeated parameter—positional or keyword— is one
of two repetition types.

Repetition Type 1
The repeated parameter is not embedded in another
repeated parameter. The objectname parameter in the
IMPORT command has type | repetition.

Repetition Type 2
The repeated parameter is embedded within another
repeated parameter. The Jowkey parameter in the
IMPORT command has type 2 repetition.

The maximum number of repetitions for a parameter is in
the command descriptor for the parameter. The R/1I uses
the repetition type to insert the addresses of the data
associated with the parameter in a secondary FDT array of
addresses. The address of the array is put in the primary
FDT. For each repetition type the FDT array is different.

Repetition Type 1

The array is one-dimensional and contains one address
for each possible occurrence of the parameter.

Repetition Type 2
The array is two-dimensional. There is one row for each
possible occurrence of the type 1 or outer parameter.
There is one column for each possible occurrence of the
type 2 or inner parameter.

Consider a command in the following format:
VERBA((B(CD((xy»)..)E)..)F

The type | parameters are B, C, D, and E because the
entire parameter (B(C D((x y) ...)) E) can be repeated,
but it is not embedded in another repeated parameter.

The type 2 parameters are x and y because (x y) can be
repeated, and it is embedded in another repeated
parameter. A one dimensional array is built for each type 1
parameter, B, C, D, and E, but a two dimensional array is
built for each type 2 parameter, x and y.

The data from each repetition of a parameter is treated as
in step 2, but instead of putting the data address in the
primary FDT array, R/I puts the address in the secondary
array of addresses for the parameter. In the R/I listings,
repetition type is called repeatedness nesting. Refer to the
examples of FDT in the Data Areas chapter. Control
returns to Diagram 2.4 for the next parameter.

W41 Jo K)iadoid — [B|A)8 Al PasSUAdNT

or-T

913077 §901A108 POYIAIN 85900V INVSA/FSA

Diagram 2.5 Reader/Interpreter Termination

INPUT

HDAREA

From Diagram 2.0

PROCESSING

LOADTPTR

KWDTPTR

IDCRIKT

IDCRILT

L

COMMAREA

LASTCC

EOFFLAG

DESCNAME

1. Deletes tables.

OUTPUT

2. Updates condition code.

3. Determines if command is to be executed.

Register 1S

L

Register |

C

tGDT

{ FDT Address

{ FDT UGPOOL ID

MAXCC

t LASTCC

t FSR Name

W1 Jo A1adoid — [BHDIBIA] PASUDY]

7 10ydey)

uoneledQ jo poep

-7

Extended Description for Diagram 2.5

IDCRIO3
Procedure: IDCRI03

1

IDCRIO03 deletes the command descriptor table for the
current command and temporary storage. If end-of-file or
a severe error is encountered, IDCRI03 deletes the
command name table (IDCRILT), the modal name table
(IDCRIKT), and HDAREA.

IDCRI103
Procedure: IDCRI01, IDCRI03

2

If end-of-file is encountered on SYSIPT, IDCRIO03 sets a
flag in COMMAREA and IDCRIO01 puts a nonzero value
in register 15, indicating that the Executive is not to call
the R/I again. If end-of-file has not been encountered and
no severe errors were found, IDCRI0I sets register 15 to
zero. If an error causes the R/I to terminate all processing,
IDCRIO03 prints an error message on SYSLST. IDCR103
sets MAXCC to 16 which indicates that the Executive is
not to call the R/I again.

IDCRI03
IDCRI01

Procedure: IDCR103, IDCR101
3 If the command had errors or was being scanned only for

syntax errors due to a modal expression, IDCRI03 releases
-he FDT aad gives control to Diagram 2.2 to get the next
command from SYSIPT. If the command is to be executed
or severe errors were encountered, IDCRIO1 gives control
to Executive Controlled Termination Diagram 4.1.

g1 Jo Auadoag — [Nl pasudd|]

Licensed Material — Property of IBM

2-42 VSE/VSAM Access Method Services Logic

7 1idwyd

uoneiedQ Jo poNION

-7

Function Support Routine (FSR) Visual Table of Contents

| 3.6
3.1 3.3 3.5 3.7 3.9 3.11 3.13 3.15
CANCEL
ALTER DELETE IMPORT PARM REPRO BLDINDEX EXPORTRA RESETCAT
3.15.1
Initialization
3.2 3.4 3.6 3.8 3.10 3.12 3i4
g 3.15.2
DEFINE EXPORT LISTCAT PRINT VERIFY LISTCRA IMPORTRA
Copy Catalog
to Work File
3.2.1 3.2.2 3.5.1 3.9.1 3.11.1 3.12.1 3.14.1 3.153
MASTER- | L1 USER- CLUSTER or Catalog | | Get Information CLUSTER or Merge CRAs
ALTERNATE-) Process CRA ALTERNATE- ;
CATALOG CATALOG INDEX Reload and Verify r- INDEX to Work File
3.15.4
3.2.3 3.4.1 3.6.1 3.11.2 3.13.1 3.14.2 Reassign
Obtain R CI numbers
CLUSTER or tain Resources .
NONVSAM f— ALTERNATE- lGef“ ; and Sort = ;‘e‘d r— USER-
INDEX nformation Initialization anagement CATALOG 3155
Check
Associations
3.2.4 3.2.5 3.11.3 3.13.2 3.14.3
Sort-Merge and 3.15.6
SPACE = CLUSTER Build Alternate e Driver — NONVSAM
Index Update the
Catalog
3.2.6 3.2.7 3.13.2.1 3.13.2.2 3.14.4 3.15.7
ALTERNATE- Export VSAM Export Update the
INDEX PATH Data Set NonVSAM GDG BASE CRA

I Jo Ayiodord — BB PIsUDT

w-l

130T $201AI98 POYIOJN §8800Y INVSA/ISA

Diagram 3.1. ALTER FSR

INPUT

Register 1

From Executive
Controlled Termination

PROCESSING

L

J

{GDT

t FDT

I 0

1

VSAM
Catalog

1. Opens user catalog.

2. Obuains information from
catalog.

3. Verifies new values are compatible.

4. Verifies entry type is valid for Alter;

operation.

5. Builds catalog parameter lists.

6. Changes catalog entry.

7. Writes message.

CTGPL

CTGFLs

"“_l—'”>

|~ LOCTABLE

CTGPL

§_—_L_—:>

RCTGFV
Q\ CTGFLs

©0

OUTPUT

=0 —

VSAM
Catalog

:> @M essage

Register 1

l

{ GDT

4 FDT

(LASTCC

L

]

A Jo Auiadorg — [BHIIBIAl PISUIIT

uoneradQ Jo poyiol 7 191dey)

Sp-T

Extended Description for Diagram 3.1

IDCALO1
Procedure: IDCALO!

1

First, IDCALO! gets storage for the catalog parameter list.
If a VSAM catalog is specified on the ALTER command,
IDCALOL! builds an OPNAGL and issues a UOPEN to
open the catalog. UOPEN returns the address of the
catalog ACB. If the open is not successful, the ALTER
command is terminated, and contro! goes to Step 7. If a
catalog dname is passed, IDCALO! compares the data set
name returned from UOPEN (in IOCDSN) to that
specified in the CATALOG parameter. If the compare is
unequal, a message is written, the command is terminated
and control goes to Step 7.

If an attempt is made to rename a reserved default model

or rename an object to a reserved default model name, an
error message is issued and the command is terminated. A
reserved default model name is any name that begins with
“DEFAULT.MODEL.”

IDCALO1
Procedure: LOCATPRC

2 Dueto the arrangement of information in a VSAM

catalog, in order to change part of a field the entire field
must be retrieved and changed. If only NEWNAME,
OWNER|NULLIFY OWNER, TO|[FOR|NULLIFY
RETENTION, BUFFERSIZE,
EXCEPTIONEXIT|{NULLIFY EXCEPTIONEXIT,
NOUPGRADE|UPDATE|NOUPDATE, or
ADDVOLUMESREMOVEVOLUMES is specified,
control goes to Step 5. LOCATPRC builds a CTGPL and
CTGFLs which reference the PASSWALL, DSATTR,
AMDSBCAT, RGATTR, NAMEDS, HURBADS,
ENTYPE and CATACB catalog fields. This initial locate
performed in LOCATPRC is termed the primary locate.

A test is built to limit the number of associations returned
for NAMEDS to a maximum of five. Refer to the list in
Step 5 for the contents of the catalog fields obtained with a
particular CTGFL. LOCATPRC issues a UCATLG
macro to retrieve the information from the catalog. If the
return code is zero, LOCATPRC uses the returned
information to build a table, LOCTABLE. If the return
code is 40, the work area for VSAM is too small.
LOCATPRC increases the work area and reissues the
UCATLG. If the return code is any other nonzero
number, the ALTER command is terminated and control
goes to Step 7.

IDCALO1
Procedure: CHECKPRC
3 Following the primary locate, IDCALOI will invoke

CHECKPRUC if any of the following parameters were
specified: UPGRADE, KEYS, RECORDSIZE,
UNIQUEKEY. CHECKPRC will perform further
verification of these parameters which will, in most cases,
require additional locates (called ‘secondary’ locates).
Password processing for the primary and secondary locates
and for the Alter function itself is handled as follows:

If KEYS and/or RECORDSIZE are not specified:

a. On the primary locate, if a password is supplied,
reference it from the CPL. Set the verify master
password bit.

b. If UPGRADE is specified, a secondary locate for the
data HURBADS is required. If a password is supplied,
reference it from the CPL. Turn off the verify master
password bit. The password (which is that of the cluster
level) will be verified as being read level or higher.

c. On the Alter, if a password is supplied, reference it
from the CPL. Turn off the verify master password bit.
Password verification will be as in prior release (master
password of catalog or entry being altered).

If KEYS and/or RECORDSIZE are specified:

a. On the primary locate, if a password is supplied,
reference it from the CPL. Set the verify master
password bit.

b. On the secondary locates, if a password is supplied,
reference it from the CPL. Turn off the verify master
password bit. Turn on the bypass verification bit. No
verification will take place and the requested
information will be returned.

c. On the Alter, processing is as described in b above.

If UPGRADE was specified, CHECKPRC will verify that
the ENTYPE isa G (alternate index). If UPGRADE was
specified, CHECKPRC will verify that the high-used RBA
is zero. This latter check will require a locate of the data
HURBADS. If UNIQUEKEY was specified when the
attribute was previously NONUNIQUEKEY,
CHECKPRC will verify that the high-used RBA of the
data object is zero and that the data object is associated
with an alternate index. If any of these error checks fail, a
message is printed and processing is terminated.

The major portion of the new CHECKPRC procedure will
perform the validity checking required to alter the KEYS

and/or RECORDSIZE values of an empty data set. This
checking will require the following secondary locates,

based on the ENTYPE returned from the primary locate:

ENTYPE Locates

D 1-Cor G
association

2-1 association

CorG

C 1-D association

2-1 association

G 1-D association

2-1 association

R 1-D association
of AIX or
cluster

2-1 association
of AlX or
cluster

Fields Requested

NAMEDS (a maximum
of three
associations)

AMDSBCAT

AMDSBCAT, HURBADS,
NAMEDS, ENTYPE,
DSATTR, PASSWALL

AMDSBCAT

AMDSBCAT, HURBADS,
NAMEDS, ENTYPE,
DSATTR, PASSWALL

AMDSBCAT

AMDSBCAT, HURBADS,
NAMEDS, ENTYPE,
DSATTR, PASSWALL

AMDSBCAT

If the ENTYPE is none of the above, CHECKPRC will
return to IDCALOI with a terminating condition code.
The LOCATE for the index AMDSBCAT will be issued
only for a KSDS. CHECKPRC will also verify that the
HURBADS is zero. If not, CHECKPRC will return to

IDCALO! with a terminating condition code. If the object

being altered is a relative record data set, CHECKPRC
will verify that the average and maximum record size
specified are equal and, if not, will return to IDCALO1
with a terminating condition code. If the ENTYPE

returned in the primary locate is C, G or R, CHECKPRC

will save the control interval number of the data
component which is to be altered.

After retrieval of the appropriate AMDSBCATS, the
following check will be made of the new average and
maximum recordsizes and/or new key values.

a. Data Object

AMDRKP + AMDKEYLN - AMDLRECL
or, if the object has the spanned attribute,

AMDRKP + AMDKEYLN - AMDCINV - D.H.R.S

Wl jo Ayadorg — [BHANBIA pasudd|T

-

91807 5901AJPS POYIOI §5900V IWVSA/ISA

b. DATA object

AMDCINY 2 AMDRKP + AMDKEYLN + D.R.H.S
& AMDCIPCA * (AMDCINV - D.R.H.§) 2
AMDLRECL

¢. Index AMDCINV 2 max (x,y) where:

X =LRHS + 2 * (AMDKEYLN +2)) + (3 *
AMDCIPCA) + DR.H.S

Y =LR.H.S + (8 * AMDCIPCA) + (2 * SQRT
(AMDCIPCA)) + D.R.H.S.

LR.H.S = index record header size = 24
D.R.H.S = data record header size = 7 if non-spanned
D.R H.S = data record header size = 10 if spanned

1f any of these relationships do not hold, CHECKPRC
will return to IDCALO! with a terminating condition code.

If this is an alteration of an ESDS the index validity check
will not be performed. If this is an alteration of an
alternate index, the AMDRKP is a fixed value of X'05°. If
relative key position is specified, it applies to the position
of the alternate key within the base cluster record.

If the object being altered is a alternate index and the
KEYS parameter was specified, a further check must be
made that requires retrieving the AMDSB of the base
cluster’s data component. The table below shows the
locates that CHECKPRC will issue based on the
ENTYPE returned from the primary locate.

ENTYPE Locates Fields Requested
D 1-C association NAMEDS (the first
of G retrieved association)
in secondary
locate
2-D association AMDSBCAT (the
of C first association)
G 1-C association NAMEDS
retrieved in
primary locate
2-D association AMDSBCAT
of C
R 1-D association AMDSBCAT
of base cluster
retrieved in
primary locate

Using the base cluster’s data AMDSB, CHECKPRC will
verify the following:

AIX AMDAXRKP + AIX AMDKEYLN < base cluster
AMDLRECL

or, if the base cluster has the spanned attribute,

AlIX AMDAXRKP + AIX AMDKEYLN < base cluster
AMDCINV-D.R.H.S

where D.R.H.S = 10

If either of these conditions are not true, CHECKPRC will
return to IDCALO1 with a terminating error.

Assuming no terminating errors have been found,
CHECKPRC will now set the appropriate return code to
IDCALOI indicating what situation was encountered. The
return code will eventually be passed back to the caller, and a
message written. The table below shows the return code value
which will be set:

New values New values
are equal are not equal
to previous to previous
values values

Previous KEYS 4 0

KEYS and/or

RECORDSIZE

values were

default values

Previous KEYS 4 12

and/or RECORDSIZE

values were not

default values

If the return code is 0, the alter will be performed. If the
return code is 4, KEYS and RECORDSIZE will not be
altered but alters will be performed for any other
parameters specified. A return code of 12 is treated as a
terminating condition code. If the verification of the new
values fails, the return code is 12.

Control is returned to IDCALO!.

IDCALO1
Procedures: PARAMCHK

4 Ifonly NEWNAME, OWNER|NULLIFY (OWNER),
TO|FOR(NULLIFY (RETENTION),
EXCEPTIONEXIT, NOUPGRADE,
UPDATE|NOUPDATE, or BUFFERSPACE is specified,
control goes to step 5. Otherwise, IDCALOI passes control
to the internal procedure PARAMCHK. PARAMCHK
verifies that the parameters specified on the ALTER

command are valid for the entry type of the object to be
altered. The WRITECHECK [NOWRITECHECK,
INHIBIT|NOINHIBIT, and SHAREOPTIONS
parameters are only allowed for data or index objects. The
ERASE|NOERASE, FREESPACE and
UNIQUEKEY|NONUNIQUEKEY parameters are only
allowed for data objects. An error is indicated if the
ERASE, WRITECHECK, EXCEPTIONEXIT, or
BUFFERSIZE option is specified for a SAM ESDS in
NOCIFORMAT. If PARAMCHK detects an error,
control goes to step 7, otherwise, control goes to step 5.

IDCALO1
Procedure: ALTERPRC

5 ALTERPRC uses the data from the ALTER command in
the FDT and LOCTABLE. ALTERPRC builds a
CTGPL, a CTGFYV, and several CTGFLs in order to
change information in the catalog. Only fields that are
specified in the ALTER command are changed in the
catalog. If information in a field is not being changed, the
CTGFL for the field is not built. The following table lists
the data areas that pass information to VSAM and the
keywords whose data is passed.

eI Jo K1dorg — [SHIASI pasuadNT

g mdeyy

uonesadQ Jo poqieN

-7

Data Area Keyword Data

CTGPL NEWNAME address
FILE address
ADDVOLUMES address
REMOVEVOLUMES
address

BUFSIZE CTGFL BUFFERSPACE

DESTEXDT CTGFL TO|FOR
- NULLIFY RETENTION

DSATTR CTGFL ERASE|NOERASE
SHAREOPTIONS
UNINHIBIT|{INHIBIT

OWNERID CTGFL OWNER
NULLIFY OWNER

PASSWALL CTGFL MASTERPW
CONTROLPW
UPDATEPW
READPW
CODE
ATTEMPTS
AUTHORIZATION
NULLIFY for any keywords
just listed

AMDSBCAT CTGFL FREESPACE
WRITECHECK|
NOWRITECHECK
KEYS
RECORDSIZE-maximum
UNIQUEKEY]|
NONUNIQUEKEY

EXCPEXIT CTGFL EXCEPTIONEXIT
NULLIFY
EXCEPTIONEXIT

RGATTR CTGFL UPGRADE|NOUPGRADE
UPDATE(NOUPDATE

LRECL CTGFL RECORDSIZE-average

If KEY'S or RECORDSIZE was specified, CHECKPRC
has saved the control interval number of the data
component being altered. This number is moved to the
CPL and is used instead of the data component name for
faster access.

Prior to IDCALOI issuing the UCATLG macro the
CTGFVTYP field will be set to G if
UPGRADE/NOUPGRADE is specified.

CTGFVTYP will be set to R if UPDATE/NOUPDATE
is specified.

IDCALO1
Procedure: IDCALO!
6 IDCALOI issues a UCATLG macro to change the catalog

entry. If the return code from UCATLG is nonzero, an
error conversion table is built and a call is made to
UERROR. UERROR will handle printing of the error
message. If KEYS is specified for a KSDS or an alternate
index, a second UCATLG macro is issued to change the
catalog entry of the associated index object. If the return
code is nonzero, it builds an error conversion table and
calls UERROR. UERROR will handle the printing of the
error message.

IDCALO1
Procedure: IDCALO1

ICDALOI also writes a message with LASTCC to
SYSLST. If IDCALOI opened a VSAM catalog, it closes
the catalog with a UCLOSE macro. Control goes to
Executive Controlled Termination.

JAMI JO Auadol — eI pISUIIN]

8y-T

518077 $901AI08 POYIOIN 85900V INVSA/ASA

Diagram 3.2. DEFINE FSR

From Eaccutive
Controlled Termination

PROCESSING

OuUTPUT

INPUT
Register | :
J I
Y GDT
t FDT

VSAM
Catalog

4.
5.

Inivalizes catalog parameter lists.

Opens catalog, it specitied.

Determines object being defined:

MASTERCATALOG
See Diagram—

USERCATALOG
See Diagram—

NONVSAM
See Diagram—

SPACE
See Diagram—-—

CLUSTER
See Diagram___

ALTERNATE INDEX
See Diagram —]

PATH
See Diagram —

3.2.1

3.2.2

3.2.3

324

3.2.6

Performs validity checking.

Invokes VSAM catalog
management.

6. writes message.

CTGPL

CTGEVS

——

CTGELs

<7_J

VSAM

Catalog

Message

Register |

t GDT

(tron

(LASTCC

L

] Jo Apsadorg — [BUOIBIA pasuadr]

uone1edQ Jo poypely :z 1ndeyd

6h-T

Extended Description for Diagram 3.2

IDCDEO1
Procedure: IDCDEO!

1 IDCDEQOI issues a UGPOOL macro to obtain core for a
CTGPL, four CTGFVs and two work areas. One work
area is used by catalog management during its processing.
The second is used by catalog management to return the
volume serial of the recovery volume for the object
defined if the catalog is recoverable. The CTGPL,
CTGFVs and CTGFLs are used to pass information to
VSAM catalog management. The CTGF Vs are found
through the CTGPL, and the CTGFLs are found through
the CTGFVs. Refer to the VSE/VSAM LOGIC, Volume
1, for more information on the CTGPL, CTGFV, and
CTGFL. Refer to the Diagnostic Aids chapter for an
illustration of the DEFINE FSR work area. The
characters CATPLIST preceed the CTGPL. A call is made
to IECDEDQ2 to establish addressability for IDCDEOQ2 to
declarations common to all DEFINE modules. If a
catname is supplied with a CATALOG parameter,
IDCDEOI puts the address of the catname and the
password in the CTGPL.

IDCDEO1
Procedure: IDCDEOI

2 If the CATALOG parameter specifies a dname, IDCDEOI
opens the catalog with a UOPEN macro. If the return code
from UOPEN is zero, IDCDEO! compares the data set
name returned from UOPEN (in IOCDSN) to that
specified in the CATALOG parameter. If the compare is
unequal, a message is written and control goes to Step 6.
The 1/0 Adapter returns the address of the ACB for the
catalog in the IOCSTR. IDCDEQ1 puts the address of the
ACB in the CTGPL. IDCDEO! puts the address of the
catalog ACB in the same CTGPL field where the address
of the catname was placed. The ACB is used instead of the
name for faster catalog access by VSAM catalog
management. If the return code from the UOPEN is
nonzero, a message is written with a UPRINT macro and
control goes to step 6. Otherwise, IDCDEOI calls
IDCDEDO3 to format the catalog parameter list.

IDCDEO3
Procedure: IDCDEO3

3 IDCDEO! determines the type of DEFINE by testing for
the following keywords: CLUSTER,
MASTERCATALOG, USERCATALOG, NONVSAM,

SPACE, ALTERNATEINDEX, PATH. The types of
DEFINE are shown in detail in the following diagrams:

MASTERCATALOG see Diagram 3.2.1
USERCATALOG see Diagram 3.2.2
SPACE see Diagram 3.2.3

NONVSAM see Diagram 3.2.4
CLUSTER see Diagram 3.2.5
ALTERNATEINDEX see Diagram 3.2.6.
PATH see Diagram 3.2.7.

IDCDEO1
Procedure;: INTGCHK

4

INTGCHK performs validity checking to insure:
KSDS, ESDS, RRDS, and AIX
¢ Space parameters have been properly specified.

e User is warned when USECLASS has been ignored
due to the absence of space parameters at the same
level.

e Volumes have been specified in both DATA and
INDEX FVTs.

e If KEYLENGTH and KEY POSITION (in Data
AMDSB) have not been specified supply defaults:
length=64, relative key position=0.

e If average and maximum recordsize have not been
specified, specify defauits: average for
non-spanned=4089, average for spanned=4086,
maximum for non-spanned=4089, maximum for
spanned=32,600

e If UNIQUE is specified insure CTGFVIND (dname)
has been set and build null volume FVT.

¢ UNIQUE was not specified with a USECLASS other
than zero.

* RECORDSIZE was omitted with
RECORDFORMAT FIXUNB or FIXBLK

e If NOALLOCATION was specified for a KSDS/AIX,
it should be specified in both the DATA and INDEX
components.

¢ If a default model has been defined, it should have the
NOALLOCATE attribute and should always have a
volume list.

e Ifthe DEFAULTVOLUMES parameter is ignored
due to override by the VOLUMES parameter, a
warning message is given.

* RECORDFORMAT was not specified with
INDEXED, NUMBERED, SPANNED, or
RECOVERY.

* NOCIFORMAT was not specified with
WRITECHECK, ERASE, or EXECPTIONEXIT.

* A component with ORDERED attributes has a volume
list.

¢ Ifan ESDS, KSDS or AIX has the REUSABLE
attribute make sure it is not unique nor have
KEYRANGES been specified.

* If AMDRRDS indicates an RRDS, insure that the
average and maximum LRECL are equal.

¢ Ifthe data AMDSB indicates an RRDS, insure that it
does not also indicate spanned.

® Ifrecord size is greater than 32,761 (maximum CI size),
insure that it has the spanned attribute.

* If KEYRANGES is specified, ensure key values do not
exceed maximum key length.

¢ Because USECLASS is effective only when space
parameters (for example, CYL) are specified, modeled,
or propagated at the same level, INTGCHK performs
the final audit and application of USECLASS to the
SPACPARM CTGFLs.

SPACE
* Space parameters have been properly specified.

® Because USECLASS is effective only when space
parameters (for example, CYL) are specified, modeled
or propagated at the same level, INTGCHKperforms
the final audit and application of USECLASS to the
SPACPARM CTGFLs.

IDCDEO1
Procedure: IDCDEOI
5 IDCDEOI invokes VSAM catalog management by issuing

a UCATLG macro. If a nonzero catalog management
return code is received, and if it relates to volume
allocation status, a UPRINT macro lists the volumes
associated with the error conditions.

For allocation of space on a fixed block device, a UPRINT
macro prints specific extents to indicate possible rounding
of actual extents to conform to device characteristics.

If a list of names is returned, the list is written with a
UPRINT macro. If the return code from UCATLG is
nonzero, IDCDEO! builds an error conversion table and

] Jo Auiadorg — epraye pasuady

Licensed Material — Property of IBM

2-50 VSE/VSAM Access Method Services Logic

z dwy)

uopeaedO Jo poIO

16-7

invokes UERROR. UERROR will handle printing of the
error message.

If a recovery volume serial is returned, it is printed with a
UPRINT macro.

IDCDE0]
Procedures: IDCDEO!

6 If a catalog was opened in step 2, IDCDEOI closes the
catalog with a UCLOSE macro. A message with LASTCC
is written with a UPRINT macro. IDCDEOI calls
FREESTG to free all automatic storage for CSECT
IDCDEQ2. IDCDEO! issues a UFPOOL to free all the
storage obtained for the DEFINE FSR. Control goes to
Executive Controlled Termination.

WEI Jo &1adosg — [epajepy posuadyy

-t

918077 8901AI9S POYISN 55990 NVSA/ISA

Diagram 3.2.1. DEFINE FSR — DEFINE MASTERCATALOG

INPUT

From Diagram 3.2

PROCESSING

OUTPUT

CTGPL

1. Builds cluster CTGFV.

2. Builds volume CTGEV.

3. Builds data CTGFV.

4. Builds index CTGFV.

5. Checks volume information.

CTGPL

Cluster
CTGFV

/'| Data I

CTGELs

Volume
CTGEV

\/'l Data I

CIGELs
B

Data
CTGEN
/'I Data I
CHGELS
RS
Indes
CTGEN

/'l Data l

CHGELS

g1 Jo friadorg — [eId)RN PISUIDN]

uonezedQ Jo poylop :z 1adey)

£6-T

Extended Description for Diagram 3.2.1

IDCDEO02, IDCDE03

Procedures: CTLGPROC, ALLCPROC, NAMEPROC,
PROTPROC

1 Inthe DEFINE MASTERCATALOG command, you
specify information under three main keywords:
MASTERCATALOG, DATA, and INDEX. The
DEFINE FSR builds a CTGFYV to describe the cluster,
data and index components of the mastercatalog as well as
building a volume CTGFV. Information specified under
MASTERCATALOG goes in the CLUSTER and
VOLUME CTGFVs;, information under DATA goes in
the DATA CTGFYV; and information under INDEX goes
in the INDEX CTGFV. If not enough information is
specified under DATA or INDEX to build the DATA or
INDEX CTGFV, information from
MASTERCATALOG completes the DATA or INDEX
CTGFYV. If information is duplicated under DATA or
INDEX and under MASTERCATALOG—like
WRITECHECK —information from DATA or INDEX
overrides the information from MASTERCATALOG in
the DATA or INDEX CTGFV. The exception is space
information from TRACKS, CYLINDERS, BLOCKS, or
RECORDS. Space information is never copied from
MASTERCATALOG to the DATA and INDEX
CTGFVs. CTLGPROC sets the identification of
CLSTRFVT in the 8 bytes before the CLUSTER
CTGFV. An “M” is set in the CTGTYPE field in the
CTGPL to indicate that a master catalog is being defined.
CTLGPROC puts the address of the objectname from
NAME in the CLUSTER CTGFV. ALLCPROC builds a
SPACPARM CTGFL with the primary and secondary
space information from TRACKS, CYLINDERS,
BLOCKS, or RECORDS along with DEDICATE and
CLASS indicators. ALLCPROC sets the address of the
recovery volume serial work area in the CTGFVWKA
field of the cluster FVT. NAMEPROC issues a UTIME
macro to get the creation date which is putina
DSETCRDT CTGFL. NAMEPROC also builds a
DSETEXDT CTGFL with the information from
TO|FOR.PROTPROC builds a PASSWALL CTGFL
with information from MASTERPW, CONTROLPW,
UPDATEPW, READPW, CODE, ATTEMPTS, and
AUTHORIZATION. PROTPROC also builds a
OWNERID CTGFL with information from OWNER.

-
CLSTRFVT

MASTERCATALOG}F——®1 CLUSTER
CTGFV

IDCDEO02, IDCDEO3
Procedures: CTLGPROC, ALLCPROC
2 The DEFINE FSR builds a VOLUME CTGFYV with

information specified under MASTERCATALOG.
CTLGPROC sets the identification of VOLUMFVT in
the 8 bytes preceding the VOLUME CTGFV.
ALLCPROC builds a SPACPARM CTGFL with the
primary and secondary space information from TRACKS,
CYLINDERS, BLOCKS, or RECORDS along with
DEDICATE and CLASS indicators. ALLCPROC puts
the address of volser from VOLUME and the address of
dname if specified from FILE in the VOLUME CTGFV.

.————l

VOLUMFVT

MASTERCATALOGf—®{ VOLUME

CTGFV
IDCDEO02, IDCDE03
Procedures: CTLGPROC, NAMEPROC, KEYPROC,
ALLCPROC

3 CTLGPROC sets the identification of DATAFVT in the 8

bytes preceding the DATA CTGFV. The DEFINE FSR
builds the DATA CTGFYV with information specified
under MASTERCATALOG and under DATA. If
information is duplicated under MASTERCATALOG
and under DATA, the information in DATA overrides
information from MASTERCATALOG. The DEFINE
FSR first puts the information from
MASTERCATALOG in the DATA CTGFV, second,

information from DATA is put in the DATA CTGFV
overriding anything already in the DATA CTGFV.

First, the information under MASTERCATALOG is put
in the DATA CTGFYV as follows:

NAMEPROC issues a UTIME macro to get the creation
date which is put in a DSETCRDT CTGFL. KEYPROC
builds a AMDSBCAT CTGFL, but no information is put
in yet. ALLCPROC puts the address of the volser if
specified from VOLUME and the address of dname if
specified from FILE in the DATA CTGFV.
WRITECHECK|NOWRITECHECK is put in the
AMDSBCAT CTGFL. ALLCPROC builds a BUFSIZE
CTGFL with information from BUFFERSPACE.
ALLCPROC builds a DSATTR CTGFL for data set
attributes and, in addition, sets the Recoverable or Not
Recoverable indicator in DSATTR. In the listings this is
called the implicit pass.

Second, the information under DATA is put in the DATA
CTGFYV as follows:

ALLCPROC builds a SPACPARM CTGFL for primary
and secondary space information from TRACKS,
CYLINDERS, BLOCKS, or RECORDS. The value
specified for CLASS is also set in the SPACEPARM
CTGFL. ALLCPROC initializes the Recoverable/Not
Recoverable flag in the DSATTR CTGFL.
IfWRITECHECK|NOWRITECHECK is specified under
DATA, it is overridden in the AMDSBCAT CTGFL. If
BUFFERSPACE is specified under DATA, ALLCPROC
builds a BUFSIZE CTGFL or modifies the existing one.
In the listings this is called the explicit pass.

MASTERCATALOG \ DATAFVTH |
DATA
el
DATA

CTGFV

W1 Jo A)iddoid — [BlId)B]N pasuady]

Licensed Material — Property of IBM

2-54 VSE/VSAM Access Method Services Logic

7 wdvyd

.
.

uop®IdQ Jo POYISN

§6-T

IDCDE02, IDCDE03

Procedures; CTLGPROC, NAMEPROC, KEYPROC,
IXOPPROC, ALLCPROC

4 CTLGPROC sets the identification of INDEXFVT in the
8 bytes preceding the INDEX CTGFV. The DEFINE
FSR builds the INDEX CTGFV with information
specified under MASTERCATALOG and under INDEX.
If information is duplicated under MASTERCATALOG
and under INDEX, the information in INDEX overrides
information from MASTERCATALOG. The DEFINE
FSR first puts the information form
MASTERCATALOG in the INDEX CTGFV; second,
information from INDEX is put in the INDEX CTGFV
overriding anything already in the INDEX CTGFYV. First,
the information under MASTERCATALOG is put in the
INDEX CTGFYV as follows:

NAMEPROC issues a UTIME macro to get the creation
date which is put in a DSETCRDT CTGFL. KEYPROC
builds a AMDSBCAT CTGFL, but no information is put
in yet. In IXOPPROC, IMBED|NOIMBED is put into the
AMDSB. ALLCPROC puts the address of the volser from
VOLUME and the address of dname if specified from
FILE in the INDEX CTGFV.
WRITECHECK|NOWRITECHECK is put in the
AMDSBCAT CTGFL. ALLCPROC builds a DSATTR
CTGFL for data set attributes. In the listings this is called
the implicit pass.

Second, the information under INDEX is put in the
INDEX CTGFYV as follows:

ALLCPROC builds a SPACPARM CTGFL for primary
and secondary space information from TRACKS,
CYLINDERS, BLOCKS, or RECORDS. The value
specified for CLASS is also set in the SPACPARM
CTGFL. WRITECHECK|NOWRITECHECK is
overridden in the AMDSBCAT CTGFL. ALLCPROC
initializes the Recoverable/Not Recoverable flag in the
DSATTR CTGFL. In the listings this is called the explicit
pass.

MASTERCATALOG \ INDEXFVT

INDEX
2. CTGFV

INDEX

IDCDEO1
Procedure: INTGCHK

8 For MASTERCATALOG four CTGFV’s have been built:
one for cluster information, data information, index
information, and volume information. A SPACPARM
CTGFL must be specified on the CTGFV for volume
information. In addition, INTGCHK checks the other
three CTGFVs fora SPACPARM CTGFV. The following
table shows the possible CTGFVs where a SPACPARM
CTGFL may have been built (in addition to the
VOLUME CTGFYV) and the action INTGCHK takes.

SPACPARM CTGFL
Cluster Data Index
X X X

Action

IDCDEQOI erases the
SPACPARM CTGFL
from the CLUSTER
CTGFV.

IDCDEQOI erases the
SPACPARM CTGFL
from the CLUSTER
CTGFV.

This is an error; IDCDEO1
terminates the DEFINE.

X OK; no action.

This is an error; IDCDEO!
terminates the DEFINE.

INTGCHLK insures that space parameters exist wherever
CLASS|USECLASS has been specified (or internally
generated). If space parameters do not exist,

X X

none none none

CLASS|USECLASS is dropped from the SPACPARM
CTGFL.

Note that for DEFINE MASTERCATALOG, primary
useclass is not specified explicitly; it is logically generated at
the data and index levels to agree with the value established
for CLASS. Secondary useclass is always the same as primary
useclass.

The SPACPARM CTGFL is checked for a dname from FILE.

Control goes to Diagram 3.2, step 4. If an error occurs,
INTGCHK writes a message and control goes to step 6.

WE1 Jo A)iddord — [BpIaE N pasuady|

96-2

91807 59014108 POTIOI 55990V WVSA/TSA

Diagram 3.2.2. DEFINE FSR — DEFINE USERCATALOG

INPUT

From Diagram 3.2

PROCESSING

CTGPL

2.

3.

4.

5.

Builds cluster CTGFV.

Builds volume CTGFV.

Builds data CTGFV.

Builds index CTGFV.

Checks volume information.

oOUTPUT
MDTBL CTGPL
r Cluster
CTGEFV

MDTBL

L

MDTBL

/'I Data l

CTGELs

Volume
CTGrv
'l Data l
CTGEFLs
Data
CTGHY
Data
CTGEFLs
Index
CTGEY
Data
CTGELS

Wl Jo fi1adoid — [SHABIA PIsudIN]

uoneiadQ Jo poyep 'z 199deyd

L$-T

Extended Description for Diagram 3.2.2

IDCDE02, IDCDE03

Procedures: CTLGPROC, NAMEPROC, MODELPRC,
PROTPROC, ALLCPROC

In the DEFINE USERCATALOG command, you specify
information under three main keywords:
USERCATALOG, DATA, and INDEX. The DEFINE
FSR builds a CTGFV to describe the cluster, data and
index components of the usercatalog as well as building a
VOLUME CTGFYV. Information specified under
USERCATALOG goes in the CLUSTER and VOLUME
CTGFVs; information under DATA goes in the DATA
CTGFYV; and information under INDEX goes in the
INDEX CTGFV. If not enough information is specified
under DATA or INDEX to build the DATA or INDEX
CTGFV, information from USERCATALOG completes
the DATA or INDEX CTGFV. If information is
duplicated under DATA or INDEX and under
USERCATALOG—like WRITECHECK —information
from DATA or INDEX overrides the information from
USERCATALOG in the DATA or INDEX CTGFV. The
exception is space information from TRACKS,
CYLINDERS, BLOCKS, or RECORDS along with
DEDICATE and CLASS indicators. Space information is
never copied from the cluster.

1f a MODEL is specified, the information in the command
overrides the information in the MODEL. The MODEL
has one catalog entry to describe its cluster, one entry for
its data, and one entry for its index. The information in the
MODEL’s cluster catalog entry is used to build the
CLUSTER CTGFYV, information in the MODEL'’s data
catalog entry is used to build the DATA CTGFV; and
information in the MODEL'’s index entry is used to build
the INDEX CTGFYV. The order of precedence when
modeling is shown below where 1 has the highest
precedence:

CLUSTER CTGFV

1. USERCATALOG parameters
2. Cluster object of model

DATA CTGFV

1. DATA parameters
2. USERCATALOG parameters
3. Data object of model

INDEX CTGFV

1. INDEX parameters
2. USERCATALOG parameters
3. Index object of model

CTLGPROC sets the identification of CLSTRFVT in the
8 bytes before the CLUSTER CTGFV. A U is put in the
CTGTYPE field of the CTGPL to indicate that a user
catalog is being defined. CTLGPROC puts the address of
the objectname from NAME in the CLUSTER CTGFV.
CTLGPROC checks for a MODEL keyword. If MODEL
is specified, MODELPRC issues a UCATLG macro to
retrieve information from the modeled catalog. The
information from the cluster catalog entry of the modeled
catalog is put in a table, MDLTABL, and the Control
Interval number for the data and index entries of the
modeled catalog are saved. MDLTABL contains an
address and the length of each field of information
returned from the UCATLG. In building the CLUSTER
CTGFYV, information is obtained from MDLTABL and is
then overlaid by the information specified in the
USERCATALOG parameters. NAMEPROC builds a
DSETEXDT CTGFL with the information from
TO|FOR. PROTPROC builds a PASSWALL CTGFL
with information from MASTERPW, CONTROLPW,
UPDATEPW, READPW, CODE, ATTEMPTS, and
AUTHORIZATION. PROTPROC also builds a
OWNERID CTGFL with ownerid from OWNER.
ALLCPROC builds a SPACPARM CTGFL with the
primary and secondary space information from TRACKS,
CYLINDERS, BLOCKS, and RECORDS along with
DEDICATE and CLASS indicators. NAMEPROC issues
a UTIME macro to get the creation date which is putin a
DSETCRDT CTGFL. ALLCPROC sets the address of
the recovery volume serial work area in the CTGFVWKA
field of the cluster FVT.

-= ==
CLSTRFVT

CLUSTER e s ‘ CLUSTER
Part of Madcl =1 USERCATALOG TGV

IDCDEO2, IDCDE03
Procedures: CTLGPROC, ALLCPROC
2 The DEFINE FSR builds a VOLUME CTGFV with

information specified under USERCATALOG. No
information is taken from a MODEL for the VOLUME
CTGFV. CTLGPROC sets the identification of
VOLUMFVT in the 8 bytes preceding the VOLUME
CTGFV. ALLCPROC builds a SPACPARM CTGFL
with the primary and secondary space information from
TRACKS, CYLINDERS, BLOCKS, or RECORDS along
with DEDICATE and CLASS indicators. ALLCPROC

puts the address of volser from VOLUMES and the
address of dname if specified from FILE in the VOLUME
CTGFV.

- = -

VOLUMFVT

Volume
CTGFV

USERCATALOG -

IDCDE02, IDCDE03

Procedures: CTLGPPROC, NAMEPROC, KEYPROC,
ALLCPROC, MODELPRC

3 CTLGPROC sets the identification of DATAFVT in the 8
bytes preceding the DATA CTGFV. The DEFINE FSR
builds the DATA CTGFV with the information specified
in USERCATALOG parameters. This information is then
overlaid by the information specified in the DATA
parameters.

Two passes are performed. On the first pass, called the
implicit pass, the following occurs:

If MODEL is not specified, the DATA CTGFYV is built
with information specified in the USERCATALOG
parameters.

If MODEL is specified, MODELPRC uses the saved
Control Interval number for the data entry of the
modeled catalog to get information from the dataentry.
The information from the data entry of the modeled
catalog is putin MDLTABL. The DATA CTGFV is
built with information from MDLTABL and is then
overlaid by the information specified in
USERCATALOG parameters,

NAMEPROC issues a UTIME macro to get the creation
date which is put in a DSETCRDT CTGFL. KEYPROC
builds a AMDSBCAT CTGFL, but no information is put
in yet. ALLCPROC puts the address of the volser if
specified from VOLUME and the address of dname if
specified from FILE in the DATA CTGFV.
WRITECHECK|NOWRITECHECK is put in the
AMDSBCAT CTGFL. ALLCPROC builds a BUFSIZE
CTGFL with information from BUFFERSPACE.
ALLCPROC builds a DSATTR CTGFL for data set
attributes and, in addition, sets the Recoverable/Not
Recoverable flag of the field.

g1 Jo 1adorg — [spaIBLy pasuady]

Licensed Material — Property of IBM

2-58 VSE/VSAM Access Method Services Logic

7 wdeyd

.
.

uonesedQ Jo POYISIN

65-1

On the second pass, called the explicit pass, the
information in the DATA CTGFYV from the implicit pass
is overlaid by the information specified in the DATA
parameters.

If a DSETCRDT CTGFL does not exist, NAMEPROC
builds one. Normally, a DSETCRDT CTGFL does exist.
ALLCPROC builds a SPACPARM CTGFL for primary
and secondary space information from TRACKS,
CYLINDERS, BLOCKS, or RECORDS. The value
specified for CLASS is also set into the SPACPARM
CTGFL. If WRITECHECK|NOWRITECHECK is
specified under DATA, it is overridden in the
AMDSBCAT CTGFL. If BUFFERSPACE is specified
under DATA, ALLCPROC builds a BUFSIZE CTGFL
or modifies the existing one. ALLCPROC initializes the
Recoverable/Not Recoverable flag in the DSATTR
CTGFL.

DATA Part

- ——
|] USERCATAL DATAFVTH!
o USERCATALOG \
DATA
2,
DATA
IDCDE02, IDCDEO3

CTGFV
Procedures: CTLGPROC, NAMEPROC, KEYPROC,
IXOPPROC, ALLCPROC, MODELPRC

4 CTLGPROC sets the identification of INDEXFVT in the
8 bytes preceding the INDEX CTGFV. The DEFINE
FSR builds the INDEX CTGFYV with the information
specified in USERCATALOG parameters which is
overlaid by the information specified in the INDEX
parameters. Two passes are performed. On the first pass,
called the implicit pass, the following occurs:

If MODEL is not specified, the INDEX CTGFYV is built
with information specified in USERCATALOG
parameters.

If MODEL is specified, MODELPRC uses the saved
Control Interval number for the index entry of the
modeled catalog to get information from the index entry.
The information from the index entry of the modeled
catalog is put in MDLTABL. The INDEX CTGFV is
built with information from MDLTABL and then
overlaid by the information specified in the
USERCATALOG parameters.

NAMEPROC issues a UTIME macro to get the creation
date which is put in a DSETCRDT CTGFL.
KEYPROC buildsa AMDSBCAT CTGFL, but no
information is put in yet. In IXOPPROC,
IMBED|NOIMBED is put into the AMDSBCAT.
CTGFL. ALLCPROC puts the address of the volser
from VOLUME and the address of dname if specified
from FILE in the INDEX CTGFV.
WRITECHECK|NOWRITECHECK is put in the
AMDSBCAT CTGFL. ALLCPROC builds a DSATTR
CTGFL for data set attributes.

On the second pass, called the explicit pass, the
information in the INDEX CTGFV from the implicit pass
is overlaid by the information specified in the INDEX
parameters.

ALLCPROC builds a SPACPARM CTGFL for primary
and secondary space information from TRACKS,
CYLINDERS, BLOCKS, or RECORDS. The value
specified for CLASS is also set into the SPACPARM
CTGFL. WRITECHECK|NOWRITECHECK is
overridden in the AMDSBCAT CTGFL.

INDEX Part R —_—— _|
of MODEL |—e—1 USERCATALOG 1. INDEXFVT
INDEX
CTGFV
| 7
INDEX
IDCDEO1
Procedure: INTGCHK

§ For USERCATALOG four CTGFVs have been buiit -

one for cluster information, data information, index
information, and volume information. A SPACPARM
CTGFL must be specified on the CTGFV for volume
information. In addition, INTGCHK checks the other

three CTGFVs for a SPACPARM CTGFV. The following
table shows the possible CTGFVs (in addition to the
VOLUME CTGFV) where a SPACPARM CTGFL may
have been built and the action INTGCHK takes:

SPACEPARM CTGFL
Cluster Data Index Action

X X X IDCDEQOI erases the
SPACPARM CTGFL
from the CLUSTER
CTGFV.

X X IDCDEQO]1 erases the
SPACPARM CTGFL
from the CLUSTER
CTGFV.

X X This is an error; IDCDEO!
terminates the DEFINE.

X OK; no action.

none none none This is an error; IDCDEOI
terminates the DEFINE.

INTGCHK insures that space parameters exist wherever
CLASS|USECLASS has been specified (or internally
generated). If space parameters do not exist,
CLASS|USECLASS is dropped from the SPACPARM
CTGFL.

Note that for DEFINE USERCATALOG, primary useclass is
not specified explicitly; it is logically generated at the data and
index levels to agree with the value established for class.
Secondary useclass is always the same as primary useclass.

The SPACPARM CTGFL is checked for a dname from FILE.
Control goes to Diagram 3.2, step 4. If an error occurs,
INTGCHK writes a message and control goes to Diagram 3.2,
step 5.

WHI Jo Ayradosd — [eHIEIN Posuady]

09-¢

1807 $I0IAIE POYIRI 55900 WVSA/HSA

Diagram 3.2.3. DEFINE FSR-DEFINE NONVSAM

INPUT

From Diagram 3.2

PROCESSING

OUTPUT

CTGPL | C

1.

Builds nonVSAM CTGFV.

CTGPL

NonVSAM
CTGFV

CTGEHLS

A1 J0 £119do1g — [BLISIBIA PISUSIFT

UoNReILAQ JO poepy T I0deyD

19-2

Extended Description for Diagram 3.2.3
IDCDE02, IDCDE0O3

Procedures: NVSAMPRC, ALLCPROC, PROTPROC,
NAMEPROC

1 NVSAMPROC sets the identification of NVSAMFVT in
the 8 bytes preceding the area that is usually used for a
CLUSTER CTGFV. NVSAMPRC puts the address of the
NONVSAM CTGFV in the CTGFVT field of the
CTGPL. NAMEPROC puts the address of objectname
from NAME in the NONVSAM CTGFV. ALLCPROC
puts the address of volser from VOLUMES in the
NONVSAM CTGFV. ALLCPROC builds a DEVTYPE
CTGFL for information from DEVICETYPES. If
FILESEQUENCENUMBERS is specified, ALLCPROC
puts the address of numbers from
FILESEQUENCENUMBERS in the NONVSAM
CTGFV. ALLCPROC sets the address of the recovery
volume serial work area in the CTGFVWKA field.
Control goes to Diagram 3.2, step 4.

-
NVSAMFVTI

NONVSAM —o{ NONVSAM
CTGFV

A J0 A110dog — (e8I PSURDNT

97

018077 §90JAI9§ POYIOIN 85900V WVSA/ASA

Diagram 3.2.4. DEFINE FSR — DEFINE SPACE

INPUT

CTGPL

From Diagram 3.2

PROCESSING

OUTPUT

1. Builds volume CTGFV.

2. Checks volume information.

CTGPL

Volume
CTGFV

\

CTGFLs

W1 Jo f113do1g — [BLISIBIAl PASUIIN]

uopeIedQ Jo POYRI 7 Ideyd

€9-7

Extended Description for Diagram 3.2.4

IDCDEO2, IDCDE03
Procedures: DSPACPRC, ALLCPROC

DSPACPROC sets the identification of VOLUMFVT in the
8 bytes preceding the VOLUME CTGFV. The address of
the VOLUME CTGFYV is put in the CTGPL in the field
named CTGFVT because the VOLUME CTGFV is the
only CTGFV for a DEFINE SPACE. ALLCPROC puts
the address of the volser if specified from VOLUMES and
the address of dname if specified from FILE in the
VOLUME CTGFV. ALLCPROC builds a SPACPARM
CTGFL with primary and secondary space information
from TRACKS, CYLINDERS, BLOCKS, or RECORDS
along with DEDICATE and CLASS indicators.

1If RECORDS is specified, ALLCPROC builds a LRECL
CTGFL with information from RECORDSIZE.
ALLCPROC sets the address of the recovery volume serial
work area in the CTGFVWKA field of the volume FVT.

-
VOLUMFVTI

SPACE | VOLUME
CTGFV

IDCDEO1
Procedures: INTGCHK

2

For DEFINE SPACE only a VOLUME CTGFYV is built.
INTGCHK checks the VOLUME CTGFYV to be sure a
SPACPARM CTGFL is present. If the space is in units of
records, the VOLUME CTGFYV must contain the address
ofa LRECL CTGFL.

el Jo £adosg — [vjaa3spN pasuady

4

918077 §901AJ9§ POYIOI 58900V IWVSA/HSA

Diagram 3.2.5. DEFINE FSR — DEFINE CLUSTER

From Diagram 3.2

INPUT PROCESSING OUTPUT
MDTBL CTGPL
Cluster
e CTGFV
CTGPL ,/'l Data |
1. Builds cluster CTGFV. CTGFLs
R MDTBL

2. Builds data CTGFV.

3. Builds index CTGFV.

4. Builds volume CTGFV if
UNIQUE is specified.

S. Checks volume information.

MDTBL

Data
CTGFV
/'| Data I
CTGFLs
EN
Index
CTGFV
Data
CTGFLs
KN
Volume
CTGFV

M Jo &13adorg — [epIdISIA PISUINT

uoneiadQ jo pogR T 31deqD

9-T

Extended Description for Diagram 3.2.5

IDCDE02, IDCDE03

Procedures: DSETPROC, NAMEPROC, MODELPRC,
PROTPROC, ALLCPROC

1 Inthe DEFINE CLUSTER command, you specify
information under three main keywords: CLUSTER,
DATA, and INDEX. The DEFINE FSR builds a CTGFV
to describe the cluster, data, and index components of the
cluster as well as building a VOLUME CTGFYV if
UNIQUE is specified. Information specified under
CLUSTER goes in the CLUSTER CTGFV; information
under DATA goes in the DATA CTGFV; and
information under INDEX goes in the INDEX CTGFV.
Nothing is put in the VOLUME CTGFV. If not enough
information is specified under DATA or INDEX to build
the DATA or INDEX CTGFYV, information from
CLUSTER completes the DATA or INDEX CTGFV. If
information is duplicated under DATA or INDEX and
under CLUSTER—like WRITECHECK —information
from DATA or INDEX overrides the information from
CLUSTER in the DATA or INDEX CTGFV. The
exception is space information from TRACKS,
CYLINDERS, BLOCKS, or RECORDS. This space
information is never copied from CLUSTER.

Both explicit (MODEL parameter) and implicit (default)
modeling are supported, but for any one component
(CTGFVT), explicit and implicit modeling cannot be
mixed, i.c., explicit models preclude implicit models.

If MODELS are applied, the information in the command
overrides the information in a MODEL. A MODEL has
one catalog entry to describe its cluster, one entry for its
data, and one entry for its index, if the MODEL is a keyed
sequence data set. The information in a MODEL’s cluster
catalog entry is used to build the CLUSTER CTGFV;
information in a MODEL’s data entry is used to build the
DATA CTGFV; and information in the MODEL's index
entry is used to build the INDEX CTGFV. The order of
precedence for any particular parameter when modeling is
shown below where 1 takes the highest precedence:

CLUSTER CTGFV

1. CLUSTER parameters
2. Cluster object of CLUSTER explicit or default model
3. System default

DATA CTGFV

1. DATA parameters
l 2. DATA explicit model
3. CLUSTER parameters

4. Data object of CLUSTER explicit or default model
5. System default

INDEX CTGFV

1. INDEX parameters

2. INDEX explicit model

3. CLUSTER parameters

4. Index object of CLUSTER explicit or default model
5. System default

If MODEL is applied, MODELPRC issues a UCATLG to
retreive information from the modeled VSAM data set.
The information from the cluster catalog entry of the
modeled data set is put in a table, MDLTABL, and the
Control Interval number for the data and index entries of
the modeled data set are saved. MDLTABL contains an
address and the length of each field of information
returned from the UCATLG. In building the CLUSTER
CTGFY, information is obtained from MDLTABL is then
overlaid by information specified in the CLUSTER
parameters.

DSETPROC sets the identification of CLSTRFVT in the
8 bytes before the CLUSTER CTGFV. DSETPROC also
sets the address of the recovery volume serial work area in
the CTGFVWKA field. NAMEPROC issues a UTIME
macro to get the creation date which is putina
DSETCRDT CTGFL. NAMEPROC puts the address of
objectname from NAME in the CLUSTER CTGFV.
NAMEPROC builds a DSETEXDT CTGFL with the
information from TO|FOR. If a reserved name (default
model name) prefix (“DEFAULT.MODEL.”) is used, a
check is made for additional valid qualifiers. PROTPROC
builds a PASSWALL CTGFL with information from
MASTERPW, CONTROLPW, UPDATEPW,
READPW, CODE, ATTEMPTS, and
AUTHORIZATION. PROTPROC also builds a
OWNERID CTGFL with information from OWNER.
ALLCPROC builds a SPACPARM CTGFL with the
primary and secondary space information from TRACKS,
CYLINDERS, BLOCKS, or RECORDS, along with
USECLASS.

“cLsTRFVT |
CLUSTER Part
of CLUSTER - CLUSTER —&=1 CLUSTER
Model CTGFV

IDCDE02, IDCDE03

Procedures: DSETPROC, NAMEPROC, KEYPROC,
MODELPRC, ALLCPROC, PROTPROC

2 DSETPROC sets the identification of DATA FVT in the 8

bytes preceding the DATA CTGFV. The DEFINE FSR
builds the DATA CTGFYV with the information specified
in CLUSTER parameters. This information is then
overlaid by the information specified in the DATA
parameters. Two passes are performed.

On the first pass, called the implicit pass, the following
occurs:

If MODEL is not specified at the data level, the DATA
CTGFYV is built with information specified in the
CLUSTER parameters.

If MODEL is applied under CLUSTER or a default
model exists for the cluster type (KSDS, RRDS, VSAM
ESDS, SAM ESDS) and MODEL is not specified under
DATA, MODELPRC uses the saved Control Interval
number for the data entry of the applicable modeled data
set to get information from the data entry. The
information from the data entry of the modeled data set is
putin MDLTABL. If the DEFAULTVOLUMES
parameter is given at either the CLUSTER or the DATA
level, nullify the volumes list pointer in the MDLTABL.
The DATA CTGFYV is built with information from
MDLTABL and is then overlaid by the information
specified in CLUSTER parameters.

NAMEPROC issues a UTIME macro to get the creation
date which is put in a DSETCRDT CTGFL.
NAMEPROC also builds an EXCPEXIT CTGFL with
exception exit information. KEYPROC builds a
AMDSBCAT CTGFL, and ALLCPROC builds a
DSATTR CTGFL, but no information is put in them yet.
KEYPROC puts the length and offset from KEYS in the
AMDSBCAT CTGFL. If no key values are specified,
KEYPROC sets up default values. In addition,
KEYPROC sets an indication in the AMDSB if
SPANNED has been specified. KEYPROC also puts the
address of (lowkey highkey)... from KEYRANGES in the
DATA CTGFV. If NUMBERED has been specified,
KEYPROC sets AMDRRDS in the AMDSB field. This
FPL is being built by KEYPROC. ALLCPROC puts the
address of dname from FILE and the address of volser
from VOLUMES in the DATA CTGFYV. Volumes are not
taken from the default model. ALLCPROC builds a
SPACPARM CTGFL with the primary and secondary
space information from TRACKS, CYLINDERS,
BLOCKS, or RECORDS, along with USECLASS.
ALLCPROC also builds a BUFSIZE CTGFL with

JAM] Jo Ay1adosg — [8pa)e N pasuady

99-7

913077 S901AIOE POYIII §5990V IWVSA/TSA

information from BUFFERSPACE. The following are
inserted by ALLOCPROC and PROTPROC:

ORDERED|UNORDERED

cipercent and capercent from FREESPACE

size from CONTROLINTERVALSIZE

WRITECHECK|NOWRITECHECK
RECORDFORMAT

maximum from RECORDSIZE are put in
the AMDSBCAT CTGFL

UNIQUEISUBALLOCATION|NOALLOCATION and
SPEED|RECOVERY are put in the DSATTR CTGFL.
ERASE|NOERASE and DOS shareoptions and the
reserved for OS shareoptions from SHAREOPTIONS are
put in the DSATTR CTGFL.

Protection information is obtained only from the explicit
MODEL via MDLTABL in order to provide different
protection at the CLUSTER and DATA. PROTPROC
builds a PASSWALL CTGFL with protection
information from the MODEL as well as an OWNERID
CTGFL with owner information from the MODEL.
PROTPROC sets the appropriate bit of the ATTRI field
of the DSATTR field to indicate REUSE|NOREUSE.

On the second pass, called the explicit pass, the following
occurs:

If MODEL is not specified under DATA the
information specified in the DATA parameters overlays
the information placed in the DATA CTGFYV on the
implicit pass.

If MODEL is applied under DATA or a default model
exists, MODELPRC issues a UCATLG to get
information from the data catalog entry of the modeled
data set. The information from the data entry of the
modeled data set is put in MDLTABL. If the
DEFAULTVOLUMES parameter is given at either the
CLUSTER or DATA level, nulify the volume list
pointer in the MDLTABL. The information in
MDLTABL overlays the information placed in the
DATA CTGFYV on the implicit pass. Finally, the
information in the DATA CTGFYV is overlaid with the
information specified in the DATA parameters.

NAMEPROC puts the address of objectname from NAME
in the DATA CTGFYV. If a reserved name was used at the
CLUSTER level (“DEFAULT.MODEL.” prefix), the
DATA qualifier is added from the data component and
this constructed name is forced. Using a pointer to the
name of the EXCEPTIONEXIT routine, NAMEPROC
builds and initializes the EXCPEXIT FPL and references
it in the FVT field CTGFVEXT. KEYPROC sets the
AMDSPAN flag of AMDATTR in the AMDSB to
indicate the SPANNED|NONSPANNED option.

KEYPROC puts length and offset from KEYS in the
AMDSBCAT CTGFL. KEYPROC puts the address of
(lowkey highkey)... range list from KEYRANGES in the
DATA CTGFV. ALLCPROC puts the address of dname
from FILE and the address of volser from VOLUMES in
the DATA CTGFYV. Note: the volume serial list is not
merged with any other volume serial list. ALLCPROC
also builds or modifies the SPACPARM CTGFL with
primary and secondary space information from TRACKS,
CYLINDERS, BLOCKS, or RECORDS, along with
USECLASS; the LRECL CTGFL with average from
RECORDSIZE; and the BUFSIZE CTGFL with size
from BUFFERSPACE. PROTPROC builds or modifies
the PASSWALL CTGFL with information from
MASTERPW, CONTROLPW, UPDATEPW,
READPW, CODE, ATTEMPTS, and
AUTHORIZATION. PROTPROC also builds or
modifies the OWNERID CTGFL with ownerid from
OWNER. The following are inserted by ALLCPROC and
PROTPROC:

ORDERED|UNORDERED

cipercent and capercent from FREESPACE

size from CONTROLINTERVALSIZE

WRITECHECK|NOWRITECHECK
RECORDFORMAT

maximum from RECORDSIZE or put in the
AMDSBCAT CTGFL

UNIQUE|SUBALLOCATION|NOALLOCATION and
SPEED|RECOVERY are put in the DSATTR CTGFL.
ERASE|NOERASE and DOS shareoptions and the
reserved for OS shareoptions from SHAREOPTIONS are
putin the DSATTR CTGFL.

DATA Part of
CLUSTER MODI L -
(not used i - CLUSTER SATARVTD |
MODEL specified 1.
under DATA)
DATA
/ CTGRY
DATA Part of .
DATA MODIL = DATA

IDCDEO02, IDCDEO3

Procedures: DSETPROC, NAMEPROC, KEYPROC,
ALLCPROC, MODELPROC, IXOPPROC, PROTPROC

3 AnINDEX CTGFYV is built if any of the following are
true:

INDEXED is specified
NONINDEXED or NUMBERED is not specified
The MODEL under CLUSTER is an indexed data set

In the listings an indexed data set is called a KSDS for Key
Sequence Data Set. A non-indexed data set is called an
ESDS for Entry Sequence Data Set.

DSETPROC sets the identification of INDEXFVT in the
8 bytes preceding the INDEX CTGFV. The DEFINE
FSR builds the INDEX CTGFYV with the information
specified in the CLUSTER parameters, which is overlaid
by the information specified in the INDEX parameters.
Two passes are performed.

On the first pass, called the implicit pass, the following
occurs:

| 1If MODEL is not specified at the data level, the INDEX

CTGFV is built with information specified in
CLUSTER parameters.

If MODEL is specified under CLUSTER or a default
model exists for the CLUSTER type (KSDS, RRDS,
VSAM ESDS, SAM ESDS) and MODEL is not
specified under INDEX, MODELPRC uses the saved
Control Interval number for the index entry of the

l applicable modeled data set to get information from the
index entry. The information from the index entry of the
modeled data set is putin MDLTABL. If the
DEFAULTVOLUMES parameter is given at either the
CLUSTER or INDEX level, nullify the volume list
pointer in the MDLTABL. The INDEX CTGFYV is built
with information from MDLTABL and is then overlaid
by the information specified in the CLUSTER
parameters.

NAMEPROC issues a UTIME macro to get the creation
date which is put in a DSETCRDT CTGFL.
NAMEPROC also puts the address of objectname from
NAME in the INDEX CTGFYV. Using a pointer to the
name of the EXCEPTIONEXIT routine, NAMEPROC
builds and initializes the EXCPEXIT FPL and references
it in the FVT field CTGFVEXT. KEYPROC builds a
AMDSBCAT CTGFL, and ALLCPROC builds a
DSATTR CTGFL, but no information is put in them yet.
IMBED|NOIMBED in the AMDSBCAT CTGFL.
ALLCPROC puts the address of dname from FILE and
the address of volser from VOLUMES in the INDEX
CTGFYV. Volumes are not taken from the default model.

WE] Jo £)1adoig — [BIIBIA Pasudd|]

uoneiadQ Jo poyeN T 191deUD

L9-7

ALLCPROC also builds a SPACPARM CTGFL with
primary and secondary space information from TRACKS,
CYLINDERS, BLOCKS, or RECORDS,along with
USECLASS. The following is put in the AMDSBCAT
CTGFL:

ORDERED|UNORDERED
WRITECHECK|NOWRITECHECK
size from CONTROLINTERVALSIZE

I UNIQUE|SUBALLOCATION|NOALLOCATION is put

——

in the DSATTR CTGFL. Record size is not indicated
because it is always fixed length for the index of a VSAM
data set.

Protection information is obtained only from the explict
MODEL via MDLTABL in order to provide different
protection at the CLUSTER and INDEX. PROTPROC
builds a PASSWALL CTGFL with protection
information from the MODEL as well as a OWNERID
CTGFL with owner information from the MODEL.
PROTPROC sets the appropriate bit of the ATTRI field
of the DSATTR field to indicate REUSE|NOREUSE.

On the second pass, called the explicit pass, the following
occurs:

If MODEL is not specified under INDEX the
information specified in the INDEX parameters overlays
the information placed in the INDEX CTGFV on the
implicit pass.

If MODEL is specified under INDEX or a default model
exists, MODELPRC issues a UCATLG to get
information from the index catalog entry of the modeled
data set. The information from the index entry of the
modeled data set is put in MDLTABL. If the
DEFAULTVOLUMES parameter is given at either the
CLUSTER or the INDEX level, nullify the volumes list
pointer in the MDLTABL. The information in
MDLTABL overlays the information placed in the
INDEX CTGFYV on the implicit pass. Finally, the
information in the INDEX CTGFYV is overlaid with the
information specified in the INDEX parameters.

NAMEPROC puts the address of objectname from NAME
in the INDEX CTGFYV. If a reserved name was used at the
CLUSTER level (“DEFAULT.MODEL.” prefix), the
INDEX qualifier is added for the INDEX component and
this name is forced. Using a pointer to the name of the
EXCEPTIONEXIT routine, NAMEPROC builds and
initializes the EXCPEXIT FPL if specified under INDEX.
IXOPPROC puts REPLICATE|NOREPLICATE and
IMBED|NOIMBED in the AMDSBCAT CTGFL.
ALLCPROC puts the address of dname from FILE and
the address of volser from VOLUMES in the INDEX
CTGFV. ALLCPROC also builds or modifies the
SPACPARM CTGFL with primary and secondary space

information from TRACKS, CYLINDERS, BLOCKS, or
RECORDS, along with USECLASS. PROTPROC builds

or modifies the PASSWALL CTGFL with information
from MASTERPW, CONTROLPW, UPDATEPW,
READPW, CODE, ATTEMPTS, and
AUTHORIZATION. PROTPROC also builds or
modifies the OWNERID CTGFL with ownerid from
OWNER. The following is put in the AMDSBCAT
CTGFL:

ORDERED|UNORDERED
WRITECHECK|NOWRITECHECK
size from CONTROLINTERVALSIZE

The following is put in the DSATTR CTGFL:

| UNIQUE|SUBALLOCATION|NOALLOCATION

ERASE|NOERASE
DOS shareoptions and the reserved for OS shareoptions
from SHAREOPTIONS

INDEX Part of
CLUSTER MODEL
tnot used if —o]
MODEL specitied
under INDEX)

CLUSTER

INDEX

/ CTGFV

INDEX Part of .
INDEX MODEL INDEX

IDCDEO3
Procedures: DSETPROC, IDCDEOI
4 If UNIQUE is specified, a null VOLUME CTGFYV is

built. DSETPROC puts the identification VOLUMFVT in

the 8 bytes preceding the VOLUME CTGFV. The

VOLUME CTGFYV is not initialized because VSAM uses

the VOLUME CTGFYV for a work area.

- = w=

voLUMFVT!
- T - = = |
| l
No Input Volume
I l——_’ CTGFV
| |
IDCDEO1
Procedure: INTGCHK

8§ Fora VSAM data set two or three CTGFVs have been

built—one each for cluster, data, and index information. If

\ INDEXEVT § ‘

a VOLUME CTGFYV has been built, it does not have any
information in it because VSAM uses it for a work space.
The following table shows the possible places where a
SPACPARM CTGFL may have been built and the action
INTGCHK takes.

For an INDEXED data set:
SPACPARM CTGFL
Cluster Data Index

X X X

Action

If the data/index space
parameter did not come from
a model, this is an error;
IDCDEQO! terminates the
DEFINE.

This is an error; IDCDEO!
terminates the DEFINE.

This is an error; IDCDEO1
terminates the DEFINE.

OK; If index level space
specification is taken from a
model, nullify it.

X OK; no action.
X OK; no action.

X This is an error; IDCDEOI
terminates the DEFINE.

This is an error; IDCDEO!
terminates the DEFINE.

For an NONINDEXED data set:

none none none

SPACEPARM CTGFL
Cluster Data Action
X X If the data level space parameters are

from a model, this is an error;
IDCDEOI terminates the DEFINE.

X OK; no action.
X OK; no action.
none none This is an error; IDCDEO] terminates

the DEFINE.

INTGCHK insures that space parameters exist wherever
USECLASS has been specified, propagated, or modeled. If
space parameters do not exist, USECLASS is dropped from
the SPACPARM CTGFL.

INTGCHK checks the data CTGFYV to be sure that Logical
Record Length is specified with a LRECL CTGFL. If not,

one is built with a default average recordsize. Control goes to

Diagram 3.2, step 4.

] Jo Ayiadoid — [BLIIBIAl pasudd|]

89-7

218077 $901AI0§ POYIOI 55900V INVSA/ASA

Diagram 3.2.6. DEFINE FSR — DEFINE ALTERNATE INDEX

INPUT

From Diagram 3.2

PROCESSING

CTGPL

1.

2.

3.

4.

Builds alternate index CTGFV.

Builds data CTGFV.

Builds index CTGFV.

Builds volume CTGFV if
UNIQUE 15 specified.

Checks volume information.

MDTBL

OUTPUT

CTGPL

MDTBL

MDTBL

[

Alternate Index

CTGFV
/'| Data I
CTGFLs
N

Data
CTGFV

/'I Data l
k CTGFLs

Index
CTGFV

Data
CTGFLs

Volume
CTGEV

NGI Jo Aiadoly — [BLaJBIA PaSUSdF]

uonersdQ Jo poyN :Z JaideyD

69-T

Extended Description for Diagram 3.2.6

IDCDE02, IDCDE03

Procedures: AIXPROC, NAMEPROC, MODELPRC,
PROTPROC, ALLCPROC

1 Inthe DEFINE AIX command, you specify information

under three main keywords: Al1X, DATA, and INDEX.
The DEFINE FSR builds a CTGFYV to describe the
alternate index, data, and index components of the
alternate index as well as building a VOLUME CTGFYV if
UNIQUE is specified. Information specified under
ALTERNATEINDEX goes in the ALTERNATEINDEX
CTGFYV, information under DATA goes in the DATA
CTGFYV; and information under INDEX goes in the
INDEX CTGFV. Nothing is put in the VOLUME
CTGFV. If not enough information is specified under
DATA or INDEX to build the DATA or INDEX
CTGFYV, information from ALTERNATEINDEX
completes the DATA or INDEX CTGFV. If information
is duplicated under DATA or INDEX and under
ALTERNATEINDEX—like
WRITECHECK—information from DATA or INDEX
overrides the information from ALTERNATEINDEX in
the DATA or INDEX CTGFYV. The exception is space
information from TRACKS, CYLINDERS, BLOCKS, or
RECORDS. This space information is never copied from
ALTERNATEINDEX.

Both explicit (MODEL parameter) and implicit (default)
modeling are supported, but for any one component
(CTGFVT), explicit and implicit modeling cannot be
mixed, i.e., explicit models preclude implicit models.

If MODEL: are applied, the information in the command
overrides the information in a MODEL. A MODEL has
one catalog entry to describe its alternate index, one entry
for its data, and one entry for its index. The information in
a MODEL’s alternate index catalog entry is used to build
the ALTERNATEINDEX CTGFV; information in a
MODELS’s data entry is used to build the DATA
CTGFV, and information in the MODEL’s index entry is
used to build the INDEX CTGFV. The order of
precedence for any particular parameter when modeling is
shown below where | takes the highest precedence:

ALTERNATEINDEX CTGFV

I. ALTERNATEINDEX parameters

2. Cluster object of ALTERNATEINDEX explicit or
default model

3. System default

DATA CTGFV

1. DATA parameters

2. DATA explicit model

3. ALTERNATEINDEX parameters
4

information from TRACKS, CYLINDERS, BLOCKS, or
RECORDS, along with USECLASS.

F R

. Data object of ALTERNATEINDEX explicit or
default model
5. System default

INDEX CTGFV

1. INDEX parameters

2. INDEX explicit model

3. ALTERNATEINDEX parameters

4. Index object of ALTERNATEINDEX explicit or
default model.

5. System default

AIXPROC sets the identification of AIXFVT in the 8
bytes before the ALTERNATEINDEX CTGFV. If MODEL
is applied, MODELPRC issues a UCATLG to retrieve
information from the modeled alternate index. The
information from the alternate index catalog entry of the
modeled data set is put in a table, MDLTABL, and the
control interval number for the data and index entries of the
modeled data set are saved. MDLTABL contains an address
and the length of each field of information returned from the
UCATLG. In building the ALTERNATEINDEX CTGFYV,
information is obtained from MDLTABL and is then overlaid
with information specified in the ALTERNATEINDEX
parameters. NAMEPROC issues a UTIME macro to get the
creation date which is put in an DSETCRDT CTGFL. Ifa
reserved name (default model name) prefix
(“DEFAULT.MODEL.”) is used, a check is made for
additional valid qualifiers. NAMEPROC puts the address of
objectname from NAME in the CLUSTER CTGFV. The call
to NAMEPROC for initialization of the alternate index level
sets up a pointer to the related name and its password, if any,
in the CTGFV. ALLCPROC will set the address of the
recovery volume serial work area in the CTGFVWKA field of
the alternate index (G) FVT. NAMEPROC builds a
DSETEXDT CTGFL with the information from TO|FOR.
PROTPROC builds a PASSWALL CTGFL with information
from MASTERPW, CONTROLPW, UPDATEPW,
READPW, CODE, ATTEMPTS, and AUTHORIZATION.
PROTPROC also builds an OWNERID CTGFL with
information from OWNER. The call to PROTPROC in the
initialization of the AIX FVT includes an indication as io
whether UPGRADE or NOUPGRADE has been specified.
PROTPROC builds a RGATTR FPL and initializes it
depending upon the information passed by AIXPROC. If
neither of these parameters was specified, a default of
UPGRADE is set in RGATTR. ALLCPROC builds a
SPACPARM CTGFL with the primary and secondary space

ALTERNATEINDEX
Part of
ALTERNATEINDEX| ™|
Model

ALTERNATEINDEX
ALTERNATEINDEX[™ CTGFV

IDCDEO02, IDCDEO3

Procedures: AIXPROC, NAMEPROC, KEYPROC,
MODELPRC, ALLCPROC, PROTPROC

2 AIXPROC sets the identification of DATAFVT in the 8

bytes preceding the DATA CTGFV. The DEFINE FSR
builds the DATA CTGFV with the information specified
in ALTERNATEINDEX parameters. This information is
then overlaid by the information specified in the DATA
parameters. Two passes are performed.

On the first pass, called the implicit pass, the following
occurs:

If MODEL is not applied at the data level, the DATA
CTGFYV is built with the information specified in the
ALTERNATEINDEX parameters.

If MODEL is specified under ALTERNATEINDEX or
a default model exists and MODEL is not specified
under DATA, MODELPRC uses the saved control
interval number for the data entry of the modeled data
set to get information from the data entry. The
information from the data entry of the modeled data set
is put in MDLTABL. If the DEFAULTVOLUMES
parameter is specified at either the
ALTERNATEINDEX or the DATA level, nullify the
volumes list pointer in the MDLTABL.

The DATA CTGFYV is built with information from
MDLTABL and is then overlaid by the information
specified in ALTERNATEINDEX parameters.

NAMEPROC issues a UTIME macro to get the creation
date which is put in an DSETCRDT CTGFL. The calls to
NAMEPROC in the initialization of the DATA FVT for
an alternate index includes a pointer to the name of the
EXCEPTIONEXIT routine; NAMEPROC builds and
initializes the EXCPEXIT FPL and references it in the
FVT field CTGFVEXT. KEYPROC builds an
AMDSBCAT CTGFL, and ALLCPROC builds a
DSATTR CTGFL, but no information is put in them yet.

KEYPROC puts the length and offset from KEYS in the
AMDSBCAT CTGFL. If no key values have been

NE1 Jo A)1adorg — [eaaely pasuady]

0L-T

518077 §901AI9S POYII 55900V WVSA/HSA

specified, KEYPROC sets up defaults. KEYPROC also
puts the address of (lowkey highkey)... from
KEYRANGES in the DATA CTGFYV. The calls to
KEYPROC in the construction of the DATA FVT of an
AIX includes an indication of
UNIQUEKEY/NONUNIQUEKEY. KEYPROC
initializes the AMDUNQ flag in the AMDSB to indicate
the appropriate condition. KEYPROC sets the AMDRKP
field to a fixed value of X‘05’ and the AMDAXRKP field
to the value specified for relative key position. KEYPROC
sets the AMDSPAN flag in the AMDSB since all alternate
indexes have the spanned attribute. The AMDSB FPL is
built by KEYPROC. ALLCPROC puts the address of
dname from FILE and the address of volser from
VOLUMES in the DATA CTGFV. Volumes are not
taken from the default model. ALLCPROC builds a
SPACPARM CTGFL with the primary and secondary
space information from TRACKS, CYLINDERS,
BLOCKS, or RECORDS, along with USECLASS.
ALLCPROC also builds a BUFSIZE CTGFL with
information from BUFFERSPACE. The following are
inserted by ALLCPROC and PROTPROC:

ORDERED|UNORDERED

cipercent and capercent from FREESPACE

size from CONTROLINTERVALSIZE

WRITECHECK|NOWRITECHECK

maximum from RECORDSIZE and put in the
AMDSBCAT CTGFL

UNIQUE[SUBALLOCATION|NOALLOCATION and
SPEED|RECOVERY are put in the DSATTR CTGFL.
ERASE|NOERASE, REUSE|NOREUSE, and DOS
shareoptions and the reserved for OS shareoptions from
SHAREOPTIONS are put in the DSATTR CTGFL.

Protection information is obtained only from the explicit
MODEL via MDLTABL in order to provide different
protection at the ALTERNATEINDEX and DATA.
PROTPROC builds a PASSWALL CTGFL with
protection information from the MODEL as well as a
OWNERID CTGFL with owner information from the
MODEL.

On the second pass, called the explicit pass, the following
occurs:

‘ If MODEL is not applied under DATA, the information
specified in the DATA parameters overlays the
information placed in the DATA CTGFYV on the
implicit pass.

If MODEL is specified under DATA or a default model
exists, MODELPRC issues a UCATLG to get

information from the data catalog entry of the modeled
alternate index. The information from the data entry of

|

the modeled alternate index is put in MDLTABL. If the
DEFAULTVOLUMES parameter is given at either the
ALTERNATEINDEX or DATA level, nullify the
volume list pointer in the MDLTABL. The information
in MDLTABL overlays the information placed in the
DATA CTGFYV on the implicit pass. Finally, the
information in the DATA CTGFYV is overlaid with the
information specified in the DATA parameters.

NAMEPROC puts the address of objectzname from NAME
in the DATA CTGFYV. If a reserved name was used at the
alternate level (‘“DEFAULT.MODEL.” prefix), the
DATA qualifier is added from the data component and
this constructed name is forced. KEYPROC puts length
and offset from the keys in the AMDSBCAT CTGFL.
KEYPROC puts the address of (lowkey highkey)... from
KEYRANGES in the DATA CTGFV. ALLCRPOC puts
the address of dname from FILE and the address of volser
from VOLUMES in the DATA CTGFV. Note: the
volume serial list is not merged with any other volume
serial list. ALLCPROC also builds or modifies the
SPACPARM CTGFL with primary and secondary space
information from TRACKS, CYLINDERS, BLOCKS, or
RECORDS, along with USECLASS; the LRECL CTGFL
with average from RECORDSIZE; and the BUFSIZE
CTGFL with size from BUFFERSPACE. PROTPROC
builds or modifies the PASSWALL CTGFL with
information from MASTERPW, CONTROLPW,
UPDATEPW, READPW, CODE, ATTEMPTS, and
AUTHORIZATION.

PROTPROC also builds or modifies the OWNERID
CTGFL with ownerid from OWNER. The following are
inserted:

ORDERED|UNORDERED

cipercent and capercent from FREESPACE

size from CONTROLINTERVALSIZE

WRITECHECK|NOWRITECHECK

maximum from RECORDSIZE are put in the
AMDSBCAT CTGFL

UNIQUE|SUBALLOCATION|NOALLOCATION and
SPEED|RECOVERY are put in the DSATTR CTGFL.
ERASE(NOERASE, REUSE|NOREUSE, and DOS
shareoptions and the reserved for OS shareoptions from
SHAREOPTIONS are put in the DSATTR CTGFL.

DATA Past of
ALTERNATEINDEX
MODEL (not used

if MODEL

specified under
DATA)

A LTERNATEINDEX \ DATAFVTbH

DATA
CTGFV

DATA Part of
DATA MODEL

- DATA

IDCDEO2, IDCDE03

Procedures: AIXPROC, NAMEPROC, KEYPROC,
ALLCPROC, MODELPROC, IXOPPROC, PROTPROC

3 An INDEX CTGFYV is always built for an alternate index.

AIXPROC sets the identification of INDEXFVT in the 8
bytes preceding the INDEX CTGFV. The DEFINE FSR
builds the INDEX CTGFYV with the information specified
in ALTERNATEINDEX parameters, which is overlaid by
the information specified in the INDEX parameters. Two
passes are performed.

On the first pass, called the implicit pass, the following
occurs:

If MODEL is not specified at the index level, the
INDEX CTGFYV is built with the information specified
in ALTERNATEINDEX parameters.

If MODEL is applied under CLUSTER and MODEL is
not specified under INDEX, MODELPRC uses the
saved control interval number for the index entry of the
applicable modeled alternate index to get information
from the index entry. The information from the index
entry of the modeled alternate index is put in
MDLTABL. If the DEFAULTVOLUMES parameter is
specified at either the ALTERNATEINDEX or INDEX
level, nullify the volume list pointer in the MDLTABL.
The INDEX CTGFYV is built with information from
MDLTABL and then overlaid by the information
specified in the ALTERNATEINDEX parameters.

NAMEPROC issues a UTIME macro to get the creation
date which is put in a DSETCRDT CTGFL. The calls to
NAMEPROC in the initialization of the DATA and
INDEX FVTs for an alternate index includes a pointer to
the name of the EXCEPTIONEXIT routine;
NAMEPROC builds and initializes the EXCPEXIT FPL
and references it in the FVT field CTGFVEXT.
KEYPROC builds an AMDSBCAT CTGFL, and

WH1 Jo Kyiddol] — [BEIBIN posusd)]

uone1adQ JO POPIOW T 191deYD

ALLCPROC builds a DSATTR CTGFL, but no
information is put in them yet. IXOPPROC puts
REPLICATE|NOREPLICATE and IMBED|NOIMBED
in the AMDSBCAT CTGFL. ALLCPROC puts the
address of the dname from FILE and the address of volser
from VOLUMES in the INDEX CTGFV. Volumes are
not taken from default model. ALLCPROC also builds a
SPACPARM CTGFL with primary and secondary space
information from TRACKS, CYLINDERS, BLOCKS, or
RECORDS, along with USECLASS. The following is put
in the AMDSBCAT CTGFL:

ORDERED|UNORDERED
WRITECHECK|NOWRITECHECK
size from CONTROLINTERVALSIZE

UNIQUE|SUBALLOCATION|NOALLOCATION is put
in the DSATTR CTGFL. Record size is not indicated
because it is always fixed length for the index of an
alternate index.

Protection information is obtained only from the explicit
MODEL via MDLTABL in order to provide different
protection at the ALTERNATEINDEX and INDEX.
PROTPROC builds a PASSWALL CTGFL with
protection information from the MODEL as well as a
OWNERID CTGFL with owner information from the
MODEL.

On the second pass, called the explicit pass, the following
occurs:

If MODEL is not specified under INDEX, the
information specified in the INDEX parameters overlays
the information placed in the INDEX CTGFYV on the
implicit pass.

If MODEL is applied under INDEX or a default model
exists, MODELPRC issues a UCATLG to get
information from the index catalog entry of the modeled
alternate index. The information from the index entry of
the modeled alternate index is put in MDLTABL. If the
DEFAULTVOLUMES parameter is specified at either
the ALTERNATEINDEX or the INDEX level, nullify
the volumes list pointer in the MDLTABL. The
information in MDLTABL overlays the information
placed in the INDEX CTGFYV on the implicit pass.
Finally, the information in the INDEX CTGFV is
overlaid with the information specified in the INDEX
parameters.

NAMEPROC puts the address of objectname from NAME
in the INDEX CTGFYV. If a reserved name was used at the
ALTERNATEINDEX level (“DEFAULT.MODEL.”
prefix), the index qualifier is added for the INDEX
component and the constructed name is forced.
IXOPPROC puts REPLICATE|NOREPLICATE and

IMBED|NOIMBED in the AMDSBCAT CTGFL.
ALLCPROC puts the address of dname fromFILE and the
address of volserfrom VOLUMES in the INDEX CTGFV.
ALLCPROC also builds or modifies theSPACPARM
CTGFL with primary and secondary space information
from TRACKS,CYLINDERS, BLOCKS, or RECORDS,
along with USECLASS. PROTPROC builds ormodifies
the PASSWALL CTGFL with information from
MASTERPW, CONTROLPW, UPDATEPW,
READPW, CODE, ATTEMPTS, and
AUTHORIZATION. PROTPROC also builds or
modifies the OWNERID CTGFL with ownerid from
OWNER. The following is put in the AMDSBCAT
CTGFL:

ORDERED|UNORDERED
WRITECHECK|NOWRITECHECK
size from CONTROLINTERVALSIZE

The following is put in the DSATTR CTGFL.:

UNIQUE|SUBALLOCATION|NOALLOCATION
ERASE|NOERASE
REUSE|NOREUSE
DOS shareoptions and the reserved for OS shareoptions
from SHAREOPTIONS
INDEX Part ot
ALTERNATEINDEX
MODEL (not

wned if MODEL || ALTERNATEINDEX | | (INDEXFVT]
specified under A
INDEX)
INDEX
N CTGFV
INDEX Part of . /
INDEX MODEL INDEX
IDCDEO3

Procedures: AIXPROC

4 If UNIQUE is specified, a null VOLUME CTGFYV is

built. AIXPROC puts the identification VOLUMFVT in
the 8 bytes preceding the VOLUME CTGFV. The
VOLUME CTGFYV is not initialized because VSAM uses
the VOLUME CTGFYV for a work area.

- = e -

voLUMFVT!

Volume
CTGFV

Z
o
=Y
ke
<
=4

IDCDEO1
Procedure: INTGCHK

§ For an alternate index two or three CTGFVs have been

built—one each for alternate index, data, and index
information. If a VOLUME CTGFV has been built, it
does not have any information in it because VSAM uses it
for a work space. The following table shows the possible
places where a SPACPARM CTGFL may have been built
and the action INTGCHK takes.

SPACPARM CTGFL

Alternate
Index Data Index

X X X

Action

If the data/index
space parameters
did not come from a
model, this is an
error, IDCDEO!
terminates the
DEFINE,

This is an error;
IDCDEO1
terminates the
DEFINE.,

This is an error;
IDCDEO1
terminates the
DEFINE,

OK; If index level
space specification
is taken from a
model, nullify it.

X OK; no action.
X OK; no action.

X This is an error;
IDCDEO1
terminates the
DEFINE.

This is an error;
IDCDEO1
terminates the
DEFINE.

INTGCHK checks the data CTGFYV to be sure that logical
record length is specified with a LRECL CTGFL. If not,
an LRECL CTGFL is built with the default average
recordsize. Control goes to Diagram 3.2, step 4.

none none none

WHI Jo £113doiq — [BHIIBIN PIsUdN]

w-T

18077 $301A10§ POYIPIN $8900Y INVSA/TSA

Diagram 3.2.7. DEFINE FSR — DEFINE PATH

INPUT

CTGPL

From Diagram 3.2

PROCESSING

OUTPUT

1.

Builds Path-CTGFV.

MDTBL

CTGPL

e

Path
CTGI'V

'l Data '

CTGFLs

I Jo f113dorg — [epIa)e A pasuddr]

uonesadQ Jo poye :z 3a1dey)

€L-T

Extended Description for Diagram 3.2.7

IDCDEO2, IDCDE03

Procedures: PATHPROC, NAMEPROC, MODELPRC
PROTPROC, ALLCPROC

1 Inthe DEFINE PATH command, you specify information
under one main keyword: PATH. The DEFINE FSR
builds a CTGFYV to describe the path. Information
specified under PATH goes in the PATH CTGFV.

If MODEL is specified, the information in the command
overrides the information in a model. A model has one
catalog entry to describe its path. The information in a
model’s path catalog entry is used to build the PATH
CTGFV.

PATHPROC checks for a MODEL keyword under
PATH. If MODEL is specified, MODELPRC issues a
UCATLG to retrieve information from the modeled
VSAM data set. The information from the path catalog
entry of the modeled data set is put in a table,
MDLTABL. MDLTABL contains an address and the
length of each field of information returned from the
UCATLG. In building the PATH FVT, information is
obtained from MDLTABL and is then overlaid by
information specified in the PATH parameters.

PATHPROC sets the identification of PATHFVT in the 8
bytes before the PATH CTGFV. NAMEPROC issues a
UTIME macro to get the creation date which is putin a
DSETCRDT CTGFL. NAMEPROC puts the address of
objectname from NAME in the PATH CTGFV.
NAMEPROC is supplied with the address necessary to
reference the PATHENTRY name and places its address
in CTGFVNAM. The password of the PATHENTRY is
referenced from CTGFVPWD. NAMEPROC builds a
DSETEXDT CTGFL with the information from
TO|FOR, PROTPROC builds a PASSWALL CTGFL
with information from MASTERPW, CONTROLPW,
UPDATEPW, READPW, CODE, ATTEMPTS, and
AUTHORIZATION. PROTPROC also builds an
OWNERID CTGFL with information from OWNER.
The call to PROTPROC in the construction of the PATH
FVT includes the UPDATE{NOUPDATE indication for a
path. PROTPROC builds the RGATTR FPL and
references it in the PATH FVT field CTGFVUPG. If
neither of these parameters was specified, a default of
UPDATE is set in the RGATTR. ALLCPROC sets the
address of the recovery volume serial work area in the
CTGFVWKA field of the PATH FVT. The CTGFVTYP
field of the PATH FVT is set toR.

WH1 Jo Aylodorg — [spI)8JAl pasuady]

LT

91807 $301AISS POYIOW §5990Y IWVSA/ASA

Diagram 3.3. DELETE FSR

INPUT

From Executive
Controlled Termination

PROCESSING

Register |

4 GDT
4 FDT

-
C

VSAM

Catalog

NonVSAM Data Sets,
VSAM Data Space,
VSAM Unique Data Set

1. Initializes.

2. Forcach item to be deleted:

a. Gets entry type.

b. Builds CTGPL.

c. Deletes entry.

3. Writes message.

OUTPUT

|

CTGPL

CTGFL

|]

U

CTGPL

\V4

VSAM

Catalog

Message

Register |

Y GD

Y EDT

(L;\S'I'CC

L

il

Wl Jo &i1adolg — BB Posuddr]

IDCDLO1
Procedures: CLEANUP, IDCDLO1

3 If acatalog was opened by CATOPEN, CLEANUP closes
the catalog with a UCLOSE macro. IDCDLOI prints a
message with LASTCC. Control goes to Executive
Controlled Termination, Diagram 4.1.

Extended Description For Diagram 3.3
IDCDLO1
Procedure: CATOPEN

1 Ifa CATALOG is specified, CATOPEN builds an
OPNAGL and issues a UOPEN to open the catalog. If the
catalog does not open, CATOPEN prints an error message
and the DELETE command is terminated. If the return
code from UOPEN is zero, CATOPEN compares the data
set name returned by UOPEN (in IOCDSN) to the name
specified in the CATALOG parameter. If the compare is
unequal, a message is wﬁmgm and the DELETE colr,nmand c. CATCALL deletes the entryname by issuing a

address if CATALOG is specified. BUILDCPL also
puts the address of a work area needed by VSAM in
the CTGPL. The work area passed to catalog
management is set initially to a size large enough to
contain twelve names. BUILDCPL puts the address of
the entry name and the address of the entry password
in the CTGPL. If the entry type is nonVSAM and
neither SCRATCH or NOSCRATCH is specified,
BUILDCPL sets SCRATCH in the CTGPL. If the
entry was located from the catalog, BUILDCPL puts
the entry type in the CTGPL.

is terminated. UCATLG macro with the CTGPL built by
8 ne BUILDCPL. If the return code is zero, VSAM has
IDCDLO1 returned a list of deleted objects. CATCALL writes the

name of each deleted object in the entry with a
UPRINT macro. Control is given to step 2. If the
return code is 160, the entry type is SPACE and the
space was deleted, but the volume entry in the catalog
could not be removed because there are still some
VSAM data sets on the volume. This is not a DELETE
error so the condition code to the user is zero, but
CATCALL writes an explanatory message.

Procedures: FINDTYPE, BUILDCPL, CATCALL,
MORESP, IDCDLO1

2 The following steps are performed for each entryname to
be deleted. Control goes to step 3 to terminate the
command when all entrynames have been deleted or a
serious error is encountered.

a. If the entry type is not specified in the command,

W] Jo Aodoig — [spajej posusdy]

uonesadQ jo poqey (7 Ideyd

sL-T

FINDTYPE builds a CTGPL and CTGFL in which
VSAM returns the entry type. FINDTYPE initializes
the CTGPL and CTGFL once for the entire DELETE
command, and they are used over and over for each
entryname. FINDTYPE issues a UCATLG macro to
locate the entry type. If the return code is nonzero,
FINDTYPE builds an error conversion table and
invokes the UERROR macro to print a message, but
the rest of the DELETE command is processed.

PARAMCHK checks for invalid or insufficient
parameters which were not checked by the
Reader/Interpreter. The Reader/Interpreter cannot do
all the necessary parameter checking if the user has not
specified the entry type or if the entry type is
NONVSAM. If there is an invalid parameter,
PARAMCHK writes an error message, but the rest of
the DELETE command is processed.

. BUILDCPL builds a CTGPL to delete the entry.

BUILDCPL initializes the CTGPL once for the entire
DELETE command, and it is used over and over for
each entryname. BUILDCPL puts the following
information in the CTGPL: the address of the
entryname, the address of the dname, type of entry if
specified on the command, PURGE{NOPURGE,
ERASE|NOERASE, FORCE|NOFORCE,
SCRATCH|NOSCRATCH, address of a password if
specified, and the address of the catalog name or ACB

A return code of 40 indicates that insufficient space
remains in the work area to contain the names
associated with the next structure segment to be deleted
(e.g. an alternate index with its associated data, index
and path names). Catalog management services has
placed in the work area the names of those objects
successfully deleted thus far, plus a factor indicating
the amount of space necessary for the next structure.
Should catalog give a return code of 40, CATCALL
calls MORESP. MORESP sets the CTGOVRID bit to
1 and the CTGERASE bit to 0 to prevent CMS from
re-erasing the object being deleted. MORESP prints
the names of those entries deleted thus far and
calculates whether the current work area size can
contain the next segment to be deleted. If enough space
is available, the work area is reset to zero; otherwise the
current work area is freed with a UGPOOL call
(provided that it is not PL/S automatic storage) and a
large enough work area obtained with a UGPOOL
call. If the return from UGPOOL is nonzero, a
message is written and control returns to Step 2 for the
next entry. Otherwise, MORESP reissues the
UCATLG macro with the same entry name. This
process continues until the entire structure has been
deleted or a terminating error occurs. If the return code
from UCATLG is not 40 or 160 an error message is
printed by building an error conversion table and
invoking the UERROR macro.

9L-T

918077 SI0IAISS POYISN 55900V WVSA/ASA

Diagram 3.4. EXPORT FSR

INPUT

From Executive
Controlled Termination

PROCESSING

{GDT
{ FDT

Register 1 l——>

1. Tests for type of export.

a. Exports a VSAM user catalog.

b. Exports a cluster.

CTGPL

OUTPUT

See Diagram

2. Writes message.

34.1

VSAM
Catalog

Portable Data Set

Message
Register 1
4 GDT
FDT

WS Jo Auddorg — [eHaIEIy PasuadY]

uonesadQ Jo poyn 7 11deg)

LL-T

Extended Description for Diagram 3.4
IDCXPO1

Procedures: IDCXP0!, DELTPROC, LOCPROC,
CTLGPROC, OPENPROC, PUTPROC, CLUSPROC

1 IDCXPOI tests the FDT for DISCONNECT in the
EXPORT command. Step 1.a is done if DISCONNECT is
specified, or step 1.b is done if DISCONNECT is not
specified.

a. DELTPROC builds a CTGPL to delete the user
catalog entry in the VSAM catalog. DELTPROC
issues a UGPOOL for a work area in which VSAM
puts deleted names. If a password is supplied,
LOCPROC puts it in the CTGPL. CTLGPROC
deletes the user catalog entry by issuing a UCATLG
macro with the CTGPL. If the return code is 40, the
work area addressed from the CTGPL is too small.
The former work area is released with a UFPOOL, and
the returned size of the work area needed is used with a
UGPOOL to get another work area. If the new work
area is obtained, another UCATLG macro is issued. If
the return code from the first UCATLG is nonzero and
not 40, or if the return code from the second UCATLG
is nonzero, an error message is written by building an
error conversion table and issuing the UERROR
macro.

b. LOCPROC gets catalog information about the cluster
or alternate index, data, index, and path entries for the
VSAM data set. OPENPROC opens the portable data
set for output. PUTPROC writes catalog information
and data records on the portable data set. CLUSPROC
closes the portable data set and processes the
disposition options, TEMPORARY|PERMANENT.
Refer to Appendix A for a description of the portable
data set. Diagram 3.4.1 shows exporting a cluster or
alternate index in detail.

IDCXPO1
Procedure: IDCXPO1

2 IDCXPOI writes a message with LASTCC. Messages
listing the exported catalog or VSAM data set are written.
IDCXPO1 closes any open data sets with the UCLOSE
macro. Control goes to Executive Controlled Termination,
Diagram 4.1.

A1 Jo Ayiadord — [BINEN pasuady]

8L-T

918077 $901A10§ POIIIN 59300V WVSA/HSA

Diagram 3.4.1. EXPORT FSR — CLUSTER or ALTERNATEINDEX

INPUT

VSAM
Catalog

VSAM
Data Set

Portable Data Set

From Diagram 3.4

PROCESSING

e

—

CTGPL

1. Obtains information for cluster
(base cluster or alternate index

-

cluster), data, and index.

CTGFLs

2. Opens portable data set.

3. Obtains information for associated

OUTPUT

paths to the cluster. Writes it to the
portable data set. Writes catalog l

information.

4. Writes data records.

5. Closes portable data set.

6. Processes disposition options. i I ;

CTGPL

CTGFV

CTGFLs

\VAAV

Portable Data Set

VSAM
Catalog

VSAM
Data Set

W Jo Apsedord — [SHATI posuadp]

uonBieuQ JO POYRN T 1NdeyD

6L-T

Extended Description for Diagram 3.4.1

IDCXPO1

Procedures: LOCPROC, CTLGPROC, IDCXPO1,
CLUSPROC

1 For the cluster or alternate index entry of the VSAM data
set, LOCPROC builds a CTGPL and CTGFLs to retrieve
information from the VSAM catalog. One CTGFL is built
for each of the following pieces of information:

Entry type

Entry name

Data set attributes
Data set owner

Data set creation date
Data set expiration date
Password

Password prompting
Password attempts
User module name
User module area
Space infomation
Buffer size

Logical record length
Low key on volume
High key on volume
AMDSB control block
Exception exit
Alternate index and path attributes
Type and name of associated objects
Catalog ACB

CTLGPROC issues a UCATLG with the CTGPL and
CTGFLs to retrieve the information from the catalog. If
the work area is too small, CTLGPROC will enlarge it and
reissue the UCATLG. If the LOCATE fails for a reason
other than the work area is too small, an error message is
written by building an error conversion table and issuing
the UERROR macro. This processing occurs for all
UCATLG requests issued by CTLGPROC. CLUSPROC
tests to be sure that the type of catalog entry is a cluster or
an alternate index. If it is not, an error message is written
and the VSAM data set is not exported. Information is
requested on all the fields even if the information is not
available in the cluster or alternate index entry because
VSAM ignores requests for fields that do not apply for this
entry.

LOCPROC builds a CTGPL and CTGFLs for the data
entry of the VSAM data set. CTGFLs are built for each
piece of information in the above list except the last two,
type and name of data and index entry, and Catalog ACB.
The Control Interval of the data entry is used to find the
data entry. CTLGPROC issues a UCATLG with the

CTGPL and CTGFLs to retrieve the information from the
catalog, If the work area is too small, CTLGPROC
enlarges it and reissues the UCATLG. The returned
information is saved. After retrieval of the data entry
information, CLUSPROC examines the data set attributes
to determine if the object has been flagged as not usable. If
0, an error message is written and the VSAM data set is
not exported. The data component maximum recordsize
(RECORDMODE) or control interval size (CIMODE) is
extracted from the AMDSB for use as the maximum
recordsize value for the portable data set. CLUSPROC
examines the data component AMDSB for
NOCIFORMAT SAM ESDS. If NOCIFORMAT SAM
ESDS, an error message is written and the command is
terminated. CLUSPROC tests for SAM ESDS and for the
SAM ESDS feature. If SAM ESDS with the SAM ESDS
feature is not installed, an error message is written and the
command is terminated.

The processing in the above paragraph (except for the data
component AMDSB processing) is repeated for the index
entry.

CLUSPROC determines if the object being exported is an
alternate index. If so, LOCPROC builds a CTGPL and
CTGFLs for the base cluster associated with the alternate
index. CTFGLs are built for entry type and entry name.
CTLGPROC issues a UCATLG to retrieve this
information. The entry name will be written to the
portable data set as the related name.

IDCXPO1
Procedure: OPENPROC

2

OPENPROC builds an OPNAGL and issues a UOPEN to
open the portable data set for output. User specified tape
label and rewind options are placed in the OPNAGL for
UOPEN processing. If the return code is nonzero, an error
message is written and the VSAM data set is not exported.
Refer to Appendix A for a description of the portable data
set.

IDCXPO1
Procedures: CLUSPROC, PUTPROC, CONTRBL

3

CONTRBL constructs a dictionary for each CTGPL. The
CTGFLs contain information returned by VSAM. If a
fixed length field has no information, VSAM puts all
binary ones in the CTGFL where the information would
have been. If a variable length field has no information,
VSAM puts zeros in the two byte length field that preceeds
the field in the CTGFL where the information would have
been. CONTRBL always turns off the temporary export

flag and the inhibit update flag in the exported DSATTR
CTGFL. If INHIBITTARGET is specified, a flag is set in
the portable data set timestamp record so IMPORT can
process INHIBITTARGET. If export CIMODE is
specified, a flag is set in the portable data set timestamp
record so IMPORT can process CIMODE-format data.
Flags are also set in the timestamp record when SAM
ESDS and NOALLOCATION files are exported.
PUTPROC writes the dictionary followed by the
information from the CTGFLs. If the length of the
dictionary or catalog information is greater than the
logical record length for the portable data set, PUTPROC
writes the dictionary or catalog information in segments,
PUTPROC writes the records with a UPUT macro. Refer
to Appendix A for the format of the portable data set. After
the catalog information pertaining to the cluster or
alternate index and associated data and index objects has
been written to the portable data set, CLUSPROC obtains
information regarding all paths which have been defined
over the object being exported. For the first path
association LOCPROC builds a CTGPL and CTGFLs to
retrieve the information from the VSAM catalog,
CTGFLs are built for the same pieces of information as
for the data and index objects. CTLGPROC issues a
UCATLG to retrieve the information which is then
written to the portable data set. In addition, the name of
the cluster or alternate index being exported and its
password are written to the portable data set as the
PATHENTRY name and PATHENTRY password.
CONTRBL is called to construct the portability record.
CLUSPROC retrieves information for all the remaining
path associations and then writes it to the portable data set
using the same CTGPL and CTGFLs which were set up
for the first path association. Prior to calling CTLGPROC
for each, the work area is cleared and the control interval
number of the next associated path is placed in the
CTGPL.

IDCXPO1
Procedures: RECPROC, LOCPROC, OPENPROC
4 RECPROC calls OPENPROC to open the VSAM data set

with a UOPEN macro and issues a UCOPY to copy all the
records to the portable data set. RECPROC issues a
UCLOSE to close the VSAM data set. Following a
successful open, RECPROC compares the data set name
returned by UOPEN to that specified by the caller as the
entry name in the EXPORT command. If the compare is
unequal, LOCPROC builds a CTGPL and CTGFLs to
perform a LOCATE on the name returned by UOPEN.,
CTGFLs are built for ENTYPE and NAMEDS.
CTLGPROC issues a UCATLG macro. If the ENTYPE
returned is not that of a path, an error message is written

] Jo &xiadoag — [N PISUINT

Licensed Material — Property of IBM

2-80 VSE/VSAM Access Method Services Logic

uopesadQ jo poel ‘7 301deYd

18-T

and the command is terminated. If the ENTYPE is that of
a path, a second LOCATE is performed using the control
interval number of the pathentry object. A CTGFL is built
for ENTNAME by LOCPROC and a UCATLG macro
issued by CTLGPROC. If the name returned is not equal
to the entry name specified in the EXPORT command, a
message is written and the command terminated.

When exporting a relative record data set in export
RECORDMODE, the relative record number of each
record written to the portable data set is placed by
UCOPY in a 4-byte area immediately preceding the
record itself. OPENPROC triggers this processing by
setting the Export/Import flag in the OPNAGL of the
input data set.

OPENPROC triggers CIMODE processing of data (by
UCOPY) by setting the “export CIMODE” flag and the
“CNV processing” flag in the OPNAGL of the input data
set.

IDCXPO1
Procedure: CLUSPROC

8§ CLUSPROC issues a UCLOSE to close the portable data
set.

IDCXPO1

Procedures: DELTPROC, CLUSPROC, CTLGPROC,
ALTRPROC, MORESP

6 If PERMANENT is specified, DELTPROC builds a
CTGPL. If ERASE or PURGE is specified DELTPROC
sets up the proper flags in the CTGFL. DELTPROC
issues a UCATLG macro to delete the VSAM data set
from the VSAM catalog. If the DELETE fails, an error
message is written by building an error conversion table
and issuing the UERROR macro. The names of all deleted
entries are printed. If the VSAM catalog return code is 40,
MORESP is called to get a larger work area and to finish
deleting the object.

If TEMPORARY is specified, the temporary export field
must be turned on in the catalog entry. ALTRPROC
modifies the existing CTGPLs, builds a CTGFV, and
modifies the existing CTGFLs for the fields that need to
be changed in the VSAM catalog. The temporary export
flag and, if INHIBITSOURCE is specified, the inhibit
update flag is set in the DSATTR CTGFL. An
ENTNAME CTGFL for the entryname is also built.
ALTRPROC places the address of the dname specified in
the INFILE parameter in the CTGFYV for catalog recovery

purposes.

CTLGPROC issues one UCATLG for the data entry and
one UCATLG for the index entry if it exists. The data set
attributes field does not appear at the cluster or alternate
index entry. Control returns to Diagram 3.4, step 2.

WEI Jo Auiadord — [eHAepN pasuadyy

8-T

018077 59014195 POYRIN 55900y WVSA/TSA

Diagram 3.5. IMPORT FSR

From Executive
Controlled Termination

INPUT PROCESSING

Register 1
= 1. Tests for IMPORT of user
catalog or VSAM cluster.

topT

a. Imports user catalog.
tFDT

Lo 1

Portable Data Set

b. Imports cluster or

alternate index.
See Diagram b

N—

-

VSAM
Catalog

2. Writes message.

VSAM
User Catalog

OUTPUT

=

CTGPL

CTGFV

CTGFL

TR

VSAM
Catalog

Catalog

VSAM
Cluster
or AIX

Message

]

Register 1

({______—J

{GDT
{ FDT

LASTCC

- 1

WHI Jo A11adolg — [BLISIBIAl PISUIIF]

uoneiadQ jo poqep (T Indeyd

€8-1

Extended Description for Diagram 3.5

IDCMPO1

Procedures: OPENPROC, IDCMPO1, CLUSPROC,
FVTPROC, CPLPROC, CNCTPROC, LVLRPROC,
CTLGPROC, RECPROC, ALTRPROC

1 IDCMPOI tests the FDT for the CONNECT keyword in

the IMPORT command to determine if a VSAM data set
or a VSAM catalog is being imported. If CATALOG is
specified, it is not opened because the catalog is assumed
to be the job catalog or master catalog and the operating
system has opened it. If CONNECT is specified, a VSAM
user catalog is being imported, and step 1.a is done. If
CONNECT is not specified, a VSAM data set is being
imported, and step 1.b is done.

a. The following is repeated for every objectname in
OBJECTS. (More than one user catalog can be

imported with one IMPORT command.) CNCTPROC

builds a CPL and an FVT for the connect operation.
LVLRPROC builds a DEVTYPE CTGFL from the

DEVICETYPES in the command. LVLRPROC builds
a volume list from VOLUMES and puts the address of

the volume list in the CTGFV. CNCTPROC puts the
address of the objectname from OBJECTS in the
CTGFYV. If the objectname contains the reserved
default model prefix, an error message is written and
control goes to step 2. If no objectname is specified, an
error message is written, and the catalog is not

imported. The operation type field in the CTGFV is set

to ‘A’ to indicate a catalog connect. CNCTPROC
issues a UCATLG to connect the catalog. If the return
code is nonzero, an error message is written by
building an error conversion table and issuing the
UERROR macro. When all the catalogs have been
connected, control goes to step 2.

b. OPENPROC opens the portable data set. CLUSPROC

writes the time of export with a UPRINT macro.
CLUSPROC uses the catalog information in the
portable data set to “define” the VSAM data set.
OPENPROC opens the VSAM data set and
RECPROC copies the data records from the portable
data set to the VSAM data set. If INHIBITTARGET
was specified when the VSAM data set was exported,
ALTRPROC alters the catalog entry for the VSAM
data set. Refer to Appendix A for the format of the
portable data set.

IDCMPO1
Procedure: IDCMPO1
2 Based on the return code from CLUSPROC or

CNCTPROC, IDCMPOL1 sets the value for LASTCC. If
LASTCC is less than 12, a completion message (with
LASTCC) is written; otherwise a termination message
(with LASTCC) is written. Control goes to Executive
Controlled Termination.

W41 Jo 310d0ag — [SLINEI PIsuddy]

8-7

91807 8991AI98 POYIGN §5900V WVSA/ASA

Diagram 3.5.1. IMPORT FSR — CLUSTER or ALTERNATEINDEX

INPUT

From Diagram 3.5

PROCESSING

Portable Data Set I

N—

-

VSAM
Catalog

1. Opens portable data set.
2. Writes time of export.

3. Builds catalog parameter lists.

4. Defines cluster or alternate

index and any associated paths.

5. Copies data.
6. Closes portable data set.

7. Processes INHIBITTARGET.

OUTPUT

CTGPL

CTGFVs

CTGFLs

CTGPL

CTGFV

CTGFL

Message

VSAM
Catalog

VSAM
Data Set

WEI Jo Ayiadord — eI PIsuad]

uone1adQ jo poye (7 3ndeyd

$8-7

Extended Description for Diagram 3.5.1

IDCMPO1
Procedures: OPENPROC, IDCMPO1

1 OPENPROC builds an OPNAGL and issues a UOPEN to
open the portable data set. User specified tape label and
rewind options are placed in the OPNAGL for UOPEN
processing. The portable data set was created by an
EXPORT command and contains catalog information and
data records for the VSAM data set that was exported.
Refer to Appendix A for the format of a portable data set.
If the return code is nonzero, IDCMPO! writes a message.
If the portable data set is open, IDCMPOI issues a
UCLOSE to close the data set, and the IMPORT
command is terminated.

IDCMPO1
Procedures: CLUSPROC, MSGPROC

2 CLUSPROC gets the first record of the portable data set
which contains the date and time the portable data set was
created by the EXPORT FSR. (The record contains flags
indicating whether EXPORT specified
INHIBITTARGET and CIMODE or RECORDMODE.)
MSGPROC writes the date and time with a UPRINT
macro.

IDCMPO1

Procedures: CLUSPROC, CPLPROC, FVTPROC,
BFPLPROC, BPASPROC, IUNIQPRC, LVLRPROC,
RANGPROC, DVOLPROC, DVOLCHK

3 The information for catalog parameter lists comes from
three places, the portable data set’s copy of the previous
catalog entry, the IMPORT command, and both the
portable data set and the IMPORT command.

a. CLUSPROC via CPLPROC builds a CTGPL for a
define operation. CLUSPROC issues a UGET macro
to read the first catalog record in the portable data set.
The catalog record contains the size of the data record
that follows. FVTPROC builds from 2 to 3 CTGFVs,
one each for the cluster or alternate index entry and its
associated data and index entries. FVTPROC obtains
the data set maximum logical record size
(RECORDMODE) or control interval size (CIMODE)
from the data component AMDSBCAT CTGFL and
passes it to the 1/0 adapter via a function of the
UCLOSE macro that allows a larger work-area data
buffer. The value obtained becomes the portable data
set maximum logical record size. FVTPROC tests the
AMDSB for SAM ESDS and for the SAM ESDS

feature. If SAM ESDS with the SAM ESDS feature is
not installed, an error message is written and the
command is terminated. BFPLPROC builds CTGFLs
with information from the portable data set. The
exception is the PASSWALL CTGFL which is built by
BPASPROC. If the exported VSAM data set was
UNIQUE, IUNIQPRC builds a CTGFV for volume
information. No data is put in the volume CTGFV. If
the object being imported is an alternate index, the
related name (given in the RELATE parameter) is
passed via the alternate index (G) FVT. A work area
for the return of the catalog recovery volume serial
number, if any, is passed via the cluster or alternate
index FVT.

CLUSPROC puts the address of the optional dname
from OUTFILE on the IMPORT command in the
cluster CTGFV. LVLRPROC puts the address of the
volser ... list from VOLUMES in the CTGFV for the
objectname in the OBJECTS parameter. Information
about VOLUMES is available in the portable data set
and is used unless superceded by the VOLUMES or
DEFAULTVOLUMES subparameter.

If USECLASS (OBJECTS parameter) is specified for
an objectname, CLUSPROC changes the SPACPARM
CTGFLSs) for the objectname. If objectname is cluster
or alternate index, data and index (if present)
SPACPARM CTGFLs are changed. If objectname is a
data or index component, only the component
SPACPARM CTGFL is changed.

1f ORDERED|UNORDERED is specified for a
particular objectname, CLUSPROC changes the
AMDSBCAT CTGFL for the objectname. If
KEYRANGES is specified for the index object,
RANGPROC builds a list of key ranges and puts the
address of the key range list in the CTGFV. If
NEWNAME is specified for a particular object,
CLUSPROC puts the address of the new name in the
particular CTGFV. If the NEWNAME is a reserved
default model name, an error message is issued and the
command terminates.

If DEFAULTVOLUMES is specified for a particular
objectname, DVOLPROC builds an empty volume list
CTGFL attached to the object CTGFYV, unless
VOLUMES has already been specified for the object
or at the cluster level. If VOLUMES or
DEFAULTVOLUMES occurs at the cluster level, data
and index volume list CTGFL pointers are nullified.
After OBJECTS parameter processing completes,
CLUSPROC propagates the cluster level volume list
CTGFL to the data and index CTGFLs if they contain
null volume list CTGFL pointers. DVOLCHK is

called to ensure that no file with the unique attribute or
object with the ordered attribute contains an empty
(DEFAULTVOLUMES) volume list CTGFL and to
determine if a DEFAULTVOLUMES specification
was totally superceded by a VOLUMES specifications
(warning condition).

Data from the IMPORT command overrides data from
the portable data set.

IDCMPO1

Procedures: CTLGPROC, CPLPROC, CLUSPROC,
DELTPROC, DUPNPROC

4 a. CTLGPROC issues a UCATLG macro to define the
VSAM data set. If the return code is 40, the work area
for VSAM catalog management is increased and the
UCATLG is reissued. If the return code is 8, control
goes to step 4b. Otherwise, control goes to step 4c.

b. A duplicate cluster name exists on the VSAM catalog.
CPLPROC builds a CTGPL to locate the catalog entry
to determine if the duplicate cluster had a temporary
EXPORT done against it or if it is an empty data set.
DUPNPROC builds DSATTR, HURBADS and
AMDSBCAT CTGFLs to obtain the data set attribute
information, the high-used RBA and the AMDSB
control block of the data component. If the temporary
export flag is not on in either the data or index or the
data set is not empty, the IMPORT is terminated. If the
data set is empty, checks are made to insure that the
data set organization, data length, and relative key
position in the catalog entry are the same as those
which were exported; that the maximum VSAM
LRECL of the catalog catalog entry is greater than or
equal to that of the export data set; that the
RECORDFORMAT characteristics (AMDRCFRM)
and SAM LRECL value (AMDBLREC) in the catalog
entry are the same as those which were exported if the
data sets are ESDS. If any of these conditions are not
met, a message is written and the IMPORT is
terminated. If the OBJECTS parameter was specified
for the empty data set, a warning message is issued.
Control then goes to step 4.c. If the temporary export
flag is on, CPLPROC builds a CTGPL to delete the
duplicate VSAM data set. If ERASE|NOERASE or
PURGE|NOPURGE is specified, CPLPROC puts the
information in the CTGPL so that VSAM will take the
appropriate action. DELTPROC issues a UCATLG
macro to delete the object. Then CTLGPROC reissues
the UCATLG macro to define the VSAM data set. If
the UCATLG return code is nonzero, CTLGPROC
issues an error message by building an error conversion

I J0 K11adord — [spajepy pasuady]

Licensed Material — Property of IBM

2-86 VSE/VSAM Access Method Services Logic

table and invoking the UERROR macro, and the
IMPORT is terminated.

c. Ifarecovery volume serial is returned for the define, a
UPRINT macro is issued to print it. If the successful
DEFINE was for a unique data set on a fixed block
device, a message is printed for each volume indicating
the actual blocks allocated for that volume.

If the cluster or alternate index exported had any
associated paths defined over it, the catalog entries for
these paths were also exported. CLUSPROC processes
the catalog information for each path in a manner
similar to that described in step 3.a. The
PATHENTRY name and password, if any, are passed
for the path (R) FVT. The only subparameter of the
OBJECTS parameter used for path objects is
NEWNAME. If the NEWNAME is a reserved default
model name, error messages are issued and the path is
bypassed for import. If NEWNAME is omitted and
any other subparameter is specified, an invalid
OBJECTS parameter message is written, LASTCC is
set to 8, and that path is not defined. CTLGPROC
issues a UCATLG macro to define each path. If the
return code from UCATLG is nonzero, a message is
written by building an error conversion table and
invoking UERROR, and LASTCC is set to 8.
However, the IMPORT is not terminated.
CLUSPROC ensures that all OBJECTS parameter
objectnames have corresponding component|path
names. Warning messages are printed for any
mismatches, and LASTCC is set to the current value of
LASTCC or 4, whichever is greater.

|

processing uses this relative record number in writing the
records to the output data set. OPENPROC sets the
Export/Import flag in the OPNAGL of the output data set
to indicate to UCOPY that this is to be done.

Following a successful open if the OUTFILE parameter
was specified RECPROC compares the name specified via
the OUTFILE parameter to the name of the object
exported. If the compare is unequal, RECPROC builds a
CTGPL and CTGFLs and issues a UCATLG macro to
locate the entry type and associations of the name
specified via OUTFILE. If the entry type returned is that
of a path, RECPROC builds a CTGPL and CTGFL and
issues a UCATLG macro to locate the entry name of the
pathentry association (alternate index or cluster) and
compares the name returned from the Locate to the name
of the object exported. If the verification fails, a message is
written and the IMPORT is terminated.

IDCMPO1
Procedure: CLUSPROC

6 CLUSPROC issues a UCLOSE to close the portable data
set.

IDCMPO1
Procedures: ALTRPROC, CPLPROC

7 IfINHIBITTARGET was specified when the VSAM data
set was exported, the catalog entry must be altered.
ALTRPROC builds a CTGFV and a DSATTR CTGFL
for the data set attributes field with INHIBITTARGET
specified. CPLPROC builds a CTGPL to alter the VSAM

I Jo Auradorg — MU PasudT

IDCMPO1 data set. CTLGPROC issues a UCATLG macro to alter
the VSAM data set to inhibit updating the VSAM data set.

Procedures: OPENPROC, RECPROC If the VSAM data set has an index component, the same

5 OPENPROC builds an OPNAGL and issues a UOPEN to steps are repeated to alter the index component to

uoneIadQ JOo POYIRN :Z I01dey)

L8-T

open the newly defined VSAM data set. A flag is set in the
OPNAGL to indicate RECORDMODE or CIMODE. If a
password is specified via the OUTFILE or OUTPW
parameter, this password is passed to UOPEN for use in
building the ACB. Otherwise, the exported master
password, if any, is used. If the OUTFILE parameter is
omitted, the input file file-id and catalog name (if present)
are passed to UOPEN for use in building the ACB.
RECPROC issues a UCOPY to copy the data from the
portable data set to the newly defined (or empty
pre-defined) VSAM data set.

When importing a relative record data set in

RECORDMODE, the relative record number of each
record on the portable data set is contained in a 4-byte
area immediately preceding the record itself. UCOPY

INHIBITTARGET. Control goes to Diagram 3.5, step 2.

88-7

51807 $301AI0S POYII §8900V WVSA/HSA

Diagram 3.6. LISTCAT FSR

INPUT

Register 1

((:I

toDT
{ DT
)

VSAM
Catalog

—

From Executive
Controlled Termination

PROCESSING

OUTPUT

4

1. Sets up common data area.

. Opens data sets.

2
3. Initializes. :r:‘>
4

. For each entry in the command or
in the catalog:

a. Gets catalog information.

See Diagram

CTGPL

CTGFLs

b. Writes catalog information.

|

5. Writes message.

Vv

Catalog Information

—

Message

—

Register |

tGoT

FDT

CLASTCC

1

WEI jo &1aadold — [SHAISIA PIsTRON]

uonwiadQ Jo poyK : 3deyd

68-C

Extended Description for Diagram 3.6
IDCLCO1, IDCLC02
Procedures: IDCLCO1, IDCLC02

1 Before processing the catalog entries, IDCLCOI1 links to
IDCLCO02. IDCLCO2 establishes addressibility and
initializes an array of 4-byte pointers to point to several
different work areas. These work areas are common work
areas used by both IDCLCO1 and IDCLCO2. They are
used to store pointers and variables and reside in
IDCLCO02’s automatic storage. The address of the array of
pointers is passed back to IDCLCOI in register 15.

IDCLCO1
Procedure: INITPROC

2 If OUTFILE is specified, INITPROC builds an OPNAGL
and issues a UOPEN to open the alternate output data set.
By opening the alternate file first, any LISTCAT error
messages appear on the alternate file. If CATALOG is
specified with dname as well as a catname, INITPROC
builds an OPNAGL and issues a UOPEN for the catname
and requests that the ACB be returned. INITPROC
compares the catalog name returned by the UOPEN
macro to the catname from the CATALOG parameter in
the LISTCAT command. If the catalog names do not
match, the LISTCAT command terminates and control
goes to step 5. If a dname is not specified, but a catname is,
INITPROC puts the address of the carname in the CTGPL
to make VSAM open the catalog. If CATALOG is not
specified in the LISTCAT command, INITPROC puts the
address of 44 blanks in the CTGPL to make VSAM find
the catalog and open it.

IDCLCO01
Procedure: INITPROC

3 INITPROC issues a ULOAD macro to load IKQDNT,
the device name table. This table translates the
hexadecimal UCB device type code to the external device
name. (For example, the catalog UCB code X‘3050200D’
translates to the 3330-11.) INITPROC issues a UGPOOL
macro to obtain storage for the CTGPL, CTGFLs, work
areas, and DARGLIST. INITPROC puts the address of a
work area for VSAM in the CTGPL. The returned catalog
ACB from the UOPEN is put in the CTGPL. Also if
password is specified in CATALOG, the address of the
password is put in the CTGPL. INITPROC determines the
number of catalog fields to be obtained for each catalog
entry by the specification of NAME, VOLUMES,
ALLOCATION, or ALL. Catalog fields are obtained by
control blocks named CTGFLs. The table following this

description shows the CTGFLs that are used for each type
of catalog entry.

If NAME is specified, INITPROC initializes CTGFLs 2
through 4. For VOLUMES, INITPROC initializes 2
through 10. For ALLOCATION, INITPROC initializes 2
through 14. For ALL, INITPROC initializes 2 through 28.
INITPROC adds the DSATTR to the end of the NAME,
VOLUME, and ALLOCATION list if NOTUSABLE is
specified. If more than one entry type is being listed or if
NOTUSABLE is specified, INITPROC adds the
MULTITYP CTGFL to the beginning of the list of
CTGFLs.

IDCLCO1, IDCLC02

Procedures: ENTPROC, LOCPROC, RTEPROC,
CDIPROC, AUPROC, VPROC, FPLPROC, ANSVPROC,
DEVTCONV

4 If ENTRIES is specified, catalog information is found on
each entryname in the command. If ENTRIES is not
specifed, catalog information is found for each entry in the
catalog.

a. LOCPROC issues a UCATLG to locate the catalog
information for an entry. If a required password is not
supplied, VSAM returns the entry type and entry name
fields in a work area instead of through the CTGFLs.
The catalog ACB is returned the first time information
is successfully located in the catalog. LOCPROC saves
the catalog ACB and removes the CATACB CTGFL
from the list of CTGFLSs to be used to locate
information on other catalog entries. Diagram 3.6.1
shows getting catalog information in detail.

b. RTEPROC test the entry type of the catalog entry. If
the type is PATH, ALTERNATEINDEX, CLUSTER,
DATA, or INDEX, CDIPROC formats the
information and writes it with a UPRINT macro. If the
type is NONVSAM or USERCATALOG, AUPROC
formats the information and writes it with a UPRINT
macro. If the type is SPACE, VPROC formats the
information and writes it with a UPRINT macro.
DEVTCONY is involved to translate the hexadecimal
UCB device type code to the external device name.

Note: Information written for a SPACE entry does not
come directly from the catalog because LISTCAT has
a special interface with VSAM for all LISTCAT
requests. VSAM manipulates information in the
catalog to provide the special interface to LISTCAT. If
the entry type is a cluster or alternate index,
RTEPROC determines whether an association of the
object—that is a data, index, or path entry—is to be
listed. If it is, FPLPROC reinitializes the CTGFLs.

ANSVPROC retrieves the information about the data,
index, or path via the control interval rather than by
name. Control returns to 4a to locate information
about the data, index, or path. FPLPROC reinitializes
the CTGFLs for the next catalog entry. If the type is
not valid, RTEPROC writes a message. Control goes to
step 4a for the next entry. Refer to Using VSE/VSAM
Commands and Macros for a sample listing of
LISTCAT output.

IDCLCO1, IDCLCO02
Procedure: IDCLCO1, FREESTG
§ IDCLCO! writes a summary of the entries listed and

suppressed due to incorrect passwords. If INITPROC
opened a VSAM catalog, IDCLCO1 issues a UCLOSE to
close the VSAM catalog. If an alternate output file was
opened by INITPROC, IDCLCO1 issues a UCLOSE to
close the file. Any storage obtained during the processing
of the LISTCATALOG command is released with a
UFPOOL macro. IDCLCOI then calls FREESTG (in
IDCLCO2) to free the automatic storage acquired by
IDCLCO02. IDCLCOI then writes a message containing
LASTCC. Control goes to Executive Controiled

-Termination, Diagram 4.1.

WS Jo L)iadosd — [eHIB] PISUIdNT

06-¢

918077 $901A108 POYION 55900V NVSA/ASA

CTGFLs Used for Each Type of Catalog Entry

CTGFL Name Entry Type |DATA INDEX NONVSAM USER SPACE |ALTER PATH Data in CTGFLs
CLUSTER CATALOG NATE
INDEX
S —
1. MULTITYPE Identifies multiple catalog
types to be listed.
1
2. ENTYPE X X Entry type.
3. ENTNAME X X X X Entry name.
4. NAMEDS X X X CI number and entry type
of each association.
5. DSETEXDT X X X X X X Data set expiration date.
6. DSETCRDT X X X X X Data set creation date.
7. OWNERID X X X X X X Data set owner.
8. RELCRA X X X X tr X X VSAM release and catalog
recovery information.
9. CATVOL X X X X Volume information for
data set.
10. VOLDVCHR X Volume device character.
11. FPACPARM X X Primary and secondary
allocation.
12. HURBADS X X High used RBA.
13. HARBADS High allocated RBA.
14. FNTVOL Physical description of
data set.
15. VOLTSTMP X Volume time stamp.
16. SYSEXTDS X System allowed extents.

W1 Jo £119d01g — [BEIA PISUII|T

wonesdQ Jo poyN :z smdeyd

16-¢

CTGFLs Used for Each Type of Catalog Entry—contisned

CTGFL Name Eatry Type |DATA ‘ INDEX NONVSAM USER SPACE |ALTER PATH Data in CTGFLs
CLUSTER CATALOG NATE
INDEX

17. NODSPACE X Number of data space on
volume.

18. NODSET X Number of data sets on
volume.

19. FPACEHDR X Characteristics and
statistics of data space.

20. DSDIRECT X Data Set directory for a
data space.

21. FSPDSCRP X Physical description of
data space.

22. PASSWALL X X X X X Password (security)
information.

23. AMDSBCAT X X AMDSB control block.

24. DSATTR X X Data set attributes.

25. BUFSIZE X X Minimum buffer size.

26. LRECL X X Logical record size.

27. RGATTR X X AIX and PATH attributes.

28. EXCPEXIT X X Exception exit module
name.

29. CATACB Catalog ACB address.

WA Jo Kyadord — VA posuady]

6-T

518077 $901AJ0§ POPIJN 55900V WVSA/ASA

Diagram 3.6.1. LISTCAT FSR - Gets Information
From Diagram 3.6

INPUT PROCESSING

CTGPL CTGFLs]

___> 1. Initializes:

o ENTRIES.

e No ENTRIES.

<> :___:> 2. Locates information.
VSAM
Catalog
3. Checks:
o ENTRIES.

e No ENTRIES.

OUTPUT

CTGPL

CTGFLs

A1 10 £313do1g — [BLAIBIA] PISUDN]

Extended Description for Diagram 3.6.1
IDCLCO1
Procedures: ENTPROC, GNXTPROC

ENTPROC writes a message, but does not list the
entry. If NOTUSABLE was requested and the
retrieved entry is a data or index entry, a check is made
to determine if the entry has been marked as unusable.
If the entry has been marked as unusable, control goes

is not specified, control goes to 1b.

a. ENTPROC puts the address of the entryname in the
CTGPL. If only SPACE information is to be listed,
ENTPROC treats the entryname as a six character
volume serial number and extends it to 44 characters
by padding on the right with binary zeros. ENTPROC
puts the address of the volume serial number in the
CTGPL. If password is supplied with CATALOG,
ENTPROC puts the address of the password in the
CTGPL. If there is no password supplied with
CATALOG, and there is a password specified with the
entryname, ENTPROC puts the address of the
password in the CTGPL. If there is no entryname to be
listed, control goes to Diagram 3.6, step 5.

b. GNXTPROC sets the CTGPL to indicate that each
catalog entry is to be located by the catalog index
rather than by a specific name. For the first entry,
GNXTPROC puts the address of 44 blanks in the
CTGPL as a starting key in the catalog search for the
first catalog entry. After the first entry, GNXTPROC
adds one to the key—which is the previously retrieved
entry name—to make the new key higher in the
collating sequence than the old key.

1 If ENTRIES is specified, control goes to 1a. If ENTRIES to Diagram 3.6, step 4b; otherwise, control goes to

Diagram 3.6, step 4a for the next entryname in the
LISTCAT command. If the UCATLG return code is
nonzero, ENTPROC also writes a message. Control
goes to Diagram 3.6, step 4a for the next entryname in
the LISTCAT command.

. GNXTPROC saves the name of the retrieved entry to

use as a key in locating information for the next entry
in the catalog. If the return from the UCATLG macro
is zero, control goes to Diagram 3.6, step 4b. If the
return code from UCATLG indicates password
verification failure or lack of workspace, GNXTPROC
writes a message and control goes to Diagram 3.6, step
4a for the next entry in the catalog. GNXTPROC
checks for end-of-file and unrecoverable errors. When
end-of-file or an unrecoverable error is encountered,
control goes to Diagram 3.6, step 5 to terminate the
LISTCAT command.

NI Jo A11adoid — [BpoIBA PAsUadY]

uonesadQ Jo pogRN :Z 191deyd

€6-T

IDCLC02
Procedure: LOCPROC

2 LOCPROC issues 8 UCATLG macro with the CTGPL
and CTGFLs to locate catalog information about the
entry.

IDLCLO1
Procedures: ENTPROC, GNXTPROC

3 If ENTRIES is specified, control goes to 3a. If ENTRIES
is not specified, control goes to 3b.

a. ENTPROC compares the type of entry information
returned to the type of information requested in the
LISTCAT command. If the entry type matches the
type requested in the command, or the entry is a cluster
or an alternate index, control goes to Diagram 3.6, step
4b. If the entry type does not match the type requested
in the command and the entry is not a cluster or an
alternate index, or the entry is a cluster or an alternate
index and the type specified is not data, index, or path,

$6-7

918077 83014105 POYIN §5900V IWVSA/ASA

Diagram 3.7. PARM FSR

INPUT

From Executive
Controlled Termination

PROCESSING

Register 1

(f |
{ oDT
t DT

1. Processes TEST options:

e OFF.

e TRACE, AREAS, and FULL.

2. Processes MARGINS option.

3. Processes GRAPHICS option.

4. Prints message.

OUTPUT

\V

TEST Options
Data Area

HDAREA

LEFTMGN

RIGHTMGN

Message

——

Register |

tGpT

teDT

(LASTCC

1

WEI Jo A113dold — [SHIISIA PISUadN]

wonesadQ Jo POYRI : 391deYD

$6-T

Extended Description for Diagram 3.7
IDCPMO1

Procedures: TESTPARM, TESTSAVE

1 If the address of the dump routine isin GDTDBG, a

TEST option is currently in effect. TESTPARM frees the
Debugging Aids Historical Data Area whose address is in
GDTDBH, and it sets GDTDBH to zero.

a. If the TEST keyword is followed by OFF,
TESTPARM deletes the dump routine, IDCDBOI,
whose address is in GDTDBG, and it sets GDTDBG
to zero. Control goes to step 2.

b. If the TEST keyword is followed by TRACE, AREAS,
or FULL, TESTPARM issues a UGSPACE macro to
obtain a new Test Option Data Area. TESTSAVE puts
the information from the FDT in the new Test Option
Data Area. If GDTDBG is zero, TESTPARM issues
the ULOAD macro to load dump routine.
TESTPARM puts the address of the dump routine in
GDTDBG. Although the trace tables record execution
since Access Method Services invocation, the earliest
time a trace table or dump can be printed is in the
Executive prior to the second call to the
Reader/Interpreter. This is because the TEST option is
not on until the PARM command has been completed.

IDCPMO1
Procedure: MARGPARM

2

MARGPARM checks the margins for validity. The left
margin must be less than the right margin. If the margins
are invalid, MARGPARM sets the left margin to 2 and the
right margin to 72, the Access Method Services default
margins. MARGPARM puts the margin values in the first
two halfwords of the Reader/Interpreter Historical Data
Area.

IDCPMO1
Procedure: GRPHPARM

3

GRPHPARM puts the GRAPHICS parameter (CHAIN
or TABLE) in a Text Processor Print Control Argument
list. GRPHPARM issues a UREST macro for the Text
Processor to use the new chain or table with Access
Method Services output. The CHAIN parameter specifies
one of several graphic character sets available. However,
the CHAIN parameter does not specify a particular
physical type chain. The TABLE parameter specifies a
module in the core image library.

IDCPMO1
Procedure: IDCPMO1

4 IDCPMOI prints a message containing LASTCC. Control
goes to Executive Controlled Termination.

W Jo futadorg — [spa)vpy pasuady]

4

18077 5301A19§ POMIOP 55990V WVSA/HSA

Diagram 3.8. PRINT FSR

INPUT

From Executive
Controlled Termination

PROCESSING

OUTPUT

Register 1

$ GDT
} FDT

{
1

Input
Data Set

Set (Optional)

1. Opens data sets.

2. Finds starting point.

3. sets up subtitle.

4. Gets and prints records until ending

point is reached.

5. Writes message.

Records

Message

Register |

1

]

{GDT

{ FDT

LASTCC

|

Wl Jo Auadoig — [SHIBIAl PosuLdF

uonessdQ Jo POION ‘7 Indeyd

L6-1T

Extended Description for Diagram 3.8

IDCPRO1 -
Procedure: IDCPROI

1 IDCPRO! builds an OPNAGL for the input data set. If the
PRINT command specifies a FROMKEY or TOKEY
parameter, IDCPRO1 opens the data set for key sequence
record retrieval. If FROMADDRESS or TOADDRESS is
specified, IDCPRO1 opens the data set for sequential
record retrieval. If the PRINT command specifies
FROMNUMBER or TONUMBER, IDCPROI opens the
data set for keyed sequential record retrieval. IDCPROI
puts any ENVIRONMENT parameters in the OPNAGL.
The input data set can be a VSAM catalog. IDCPROI
issues a UOPEN macro to open the input data set. If an
output data set is specified with the OUTDDVAL
keyword, IDCPRO1 builds an OPNAGL and issues a
UOPEN for the output data set. If the return code from a
UOPEN macro is nonzero, IDCPRO! writes a message
and terminates the PRINT command.

IDCPRO1
Procedure: DELIMSET

2 DELIMSET performs additional validity checking to
verify that From/To parameters are consistent with data
set organization. If the parameter is invalid, an error
message is written. Checks are made for invalid use of

FROMADDRESS|{TOADDRESS with RRDS and
FROMNUM|TONUM with KSDS

If FROMNUMBER is specified, DELIMSET issues a
UPOSIT macro to position to the starting relative record
number. If SKIP is specified for a VSAM relative record
data set, DELIMSET issues a UPOSIT to position to the
next relative record number beyond the skip count. A
VSAM relative record data set is printed in relative record
number order.

If FROMKEY is specified, DELIMSET issues a UPOSIT
macro to position to the starting key. f FROMADDRESS
is specified, DELIMSET issues a UPOSIT macro to
position to the starting address. If SKIP is specified,
DELIMSET issues as many UGET macros as there are
records to skip. The way the data set is opened determines
how the records are skipped. Any data set opened as an
ESDS causes records to be printed in chronological order.
A keyed data set opened as a KSDS causes records to be
printed in key-sequence order. If no starting point is
specified, the starting point is the first record in the input
data set.

IDCPRO1
Procedure: TEXTPSET

3

TEXTPSET formats a subtitle line with static text and the
input data set name from the IOCSTR. TEXTPSET issues
a UPRINT macro to get the static text and insert it into the
buffer in which the subtitle line is being built. No printing
is done with this UPRINT macro. TEXTPSET issues a
UESTA macro to give the subtitle to the Text Processor.

IDCPRO1
Procedure: IDCPRO1

4

The following steps are repeated until the ending point in
the input data set is found. If TOKEY is specified,
IDCPROI calculates the key location in the record from
information in the IOCSTR. Retreiving records stops
when the key in the input record is higher than the value
in TOKEY. If TOADDRESS is specified, printing stops
when the Relative Byte Address returned by the UGET
macro equals the value supplied by TOADDRESS. If
COUNTVAL is specified, printing stops when the number
of records printed equals the number supplied by
COUNTVAL. If TONUMBER is specified, retrieving and
printing stops when the relative record number of the
input record is higher than the TONUMBER value. If
COUNT is specified for a VSAM relative record data set,
printing stops when the number of valid relative record
slots printed plus the number of invalid slots bypassed
exceeds the value supplied by COUNT. If no ending point
is specified, printing stops when the last record of the input
data set is printed.

a. IDCPROL1 issues a UGET to obtain a logical record. If
the return code from the UGET macro is nonzero,
IDCPROI checks the return code for a recoverable
error. The recoverable errors are duplicate keys,
records out of sequence, invalid length records, and
1/0 errors in the data of a VSAM data set. After a
non-recoverable error or 4 recoverable errors, printing
stops.

b. IDCPROI issues a UPRINT to print the logical record
just obtained. A minimum of 3 lines is printed for each
logical record from the input data set. The first line
printed contains the record identification: key, address,
sequence number (nonVSAM except ISAM) or relative
record number. The relative record number is printed
for a relative record data set and indicates the slot
number. Unused slots will be indicated by missing
numbers. The second line is blank. The third and
following lines contain the logical record from the
input data set. The format of the logical records
depends on whether HEX, CHARACTER, or DUMP

was specified in the command. If an output data set is
specified with the OUTDDVAL keyword, IDCPRO1
prints the records on that output data set. If the return
code from the UPRINT macro is 12 or greater,
IDCPROL! will terminate processing: there is no
checking for recoverable errors.

IDCPRO1
Procedure: IDCPROI
§ IDCPROI writes a message with LASTCC to SYSLST.

IDCPROI issues a UCLOSE macro to close the input data
set and any output data set other than SYSLST. SYSLST
is not closed. Control returns to Executive Controlled
Termination

W1 J0 Hadorg — [epaIEly PosURINT

86-7

918077 $991A10§ POIOI $9300V IWVSA/ASA

Diagram 3.9. REPRO FSR

INPUT

From Executive
Controlled Termination

PROCESSING

OUTPUT

Register 1

tGoT

{ FDT

- Output
Data Set

Input

Data Set

Opens data sets.

Processes catalogs.

a. Reloads a catalog.
See Diagram —]

Finds starting point.
Copies data set:
e With ending point.

e Without ending point.

Writes message.

3.9.1

CTGPL CTGFL

OQutput
Data Set

Input
Data Set

Message

]

Register |

o

tGpT

tFDT

LASTCC

1]

W1 Jo Auiadolg — [eH)eN PISUN]

uone1edQ Jo POYRI Z 19deyd

66-7

Extended Description for Diagram 3.9

IDCRPO1
Procudures: IDCRPO1

1 IDCRPOI builds an OPNAGL for the input data set. If
FROMKEY or TOKEY is specified, IDCRPO1 opens the
input data set for key sequence processing. If
FROMADDRESS or TOADDRESS is specified,
IDCRPOI opens the input data set for sequential record
retrieval. If FROMNUMBER or TONUMBER is
specified, IDCRPOI opens the input data set for key
sequence processing. IDCRPO01 also builds an OPNAGL
for the output data set, and it puts any ENVIRONMENT
parameters in the OPNAGL. If REUSE or REPLACE is
specified, IDCRPOI sets the OPNAGL for the output data
set to reflect these parameters. UOPEN will open the
output data set with the reset option. IDCRPO1 issues one
UOPEN macro that opens both the input and output data
sets. If the return code from the UOPEN macro is nonzero,
IDCRPO1 writes a message on SYSLST and terminates
the REPRO command. Following the open of both data
sets, IDCRPOI! checks for a nonrelative-record input data
set together with a nonempty relative record output data
set. If this error condition is detected, a message is written
on SYSLST and the REPRO command is terminated.

IDCRPO1

Procedures: VERIFYC, CATRELOD, TRUENAME,
CATRANS, CNVRTCI], CATCOMP

2 If neither the input nor the output are VSAM data sets,
processing continues with step 3. Each VSAM data set is
checked and verified to see if it is a catalog. If the output
data set is not a catalog, processing continues with step 3.
If the output data set is a catalog, the catalog reload
switch, CATRELSW, is set on. The REPRO command is
checked to see if beginning or ending delimiters were
specified. If any were specified, a message is issued,
processing is set for termination, and control goes to step 5.
If no delimiters were specified, a catalog reload function is
assumed, a message is issued, and the reload function is
initiated. See Diagram 3.9.1.

IDCRPO1
Procedure: DELIMSET

3 DELIMSET performs additional validity checking to
verify that From/To parameters are consistent with input
data set organization. If the parameter is invalid, an error
message is written. Checks are made for invalid use of
FROMADDRESS|TOADDRESS with relative-record
data set and FROMNUM|TONUM with key-sequenced

data set. If FROMKEY is specified, DELIMSET issues a
UPOSIT macro to position to the starting key. If
FROMADDRESS is specified, DELIMSET issues a
UPOSIT macro to position to the starting address. If
FROMNUMBER is specified, DELIMSET issues a
UPOSIT macro to position to the starting relative record
number. If SKIP is specified for a VSAM relative-record
data set, DELIMSET issues a UPOSIT macro to position
to the next relative-record number beyond the skip count.
If SKIP is specified for a key-sequenced or
entry-sequenced data set, DELIMSET issues as many
UGET macros as there are records to skip. The way the
data set is opened determines how the records are skipped.
Any input data set opened as an ESDS causes records to
be read in chronological order. A keyed data set opened as
a KSDS causes records to be read in key-sequence order.
If no starting point is specified, the starting point is the
first record in the input data set.

When copying from a non-relative-record data set into an
empty relative-record data set, records are copied into
consecutive relative-record locations. When copying from
one relative-record data set to another, records are placed
in the same slot in the output data set as they were in the
input data set.

IDCRPO1
Procedure: IDCRPO1
4 a. Ifan ending point other than the end of the input data

set is specified by the TOKEY, TOADDRESS, or
COUNT keywords, the following steps are repeated
until the ending point is found. If TOKEY is specified,
IDCRPOI calculates the key location in the record
from information in the IOCSTR. Retrieving records
stops when the key in the input record is higher than
the value in TOKEY. If TOADDRESS is specified,
copying stops when the Relative Byte Address returned
by the UGET macro equals the value supplied by
TOADDRESS. If COUNTVAL is specified, copying
stops when the number of records copied equals the
number supplied by COUNTVAL. If TONUMBER is
specified, copying stops when the relative-record
number of the input record is higher than the
TONUMBER value. If COUNT is specified for a
VSAM relative-record data set, copying stops when the
number of valid relative-record slots copied plus the
number of invalid slots bypassed exceeds the value
supplied by COUNT.

¢ IDCRPOI issues a UGET macro to obtain a logical
record from the input data set. If the return code
from the UGET is nonzero, It also checks the
return code for a recoverable error. The recoverable

errors are duplicate keys, records out of sequence,
invalid length records, and 1/0 errors in the data of
a VSAM data set. After a non-recoverable error or
4 recoverable errors, copying stops.

¢ IDCRPO! issues a UPUT to write the logical
record to the output data set. If the return code
from the UPUT macro is nonzero, IDCRPOI
checks the return code for a recoverable error. After
a non-recoverable error or 4 recoverable errors,
copying stops.

b. If no ending point is specified in the REPRO
command, IDCRPOI issues a UCOPY macro to copy
the input data set to the last record.

IDCRPO1
Procedure: IDCRPO!
S IDCRPO! writes a message with LASTCC to SYSLST. It

also closes the input and output data sets with one
UCLOSE macro. Control returns to Executive Controlled
Termination.

WA jo f11adoig — [BHaIB| Posuady]

001-T

918077 $901A105 PO §8900Y WVSA/ASA

Diagram 3.9.1 REPRO FSR — Catalog Reload

INPUT

Input

Data
Set
(Source)

VSAM

Catalog
(Target)

From Diagram 3.9

PROCESSING

Issues starting message.

Compares the target catalog and
source data set.

Reads and copies the source
records into the target catalog.

Updates the target catalog’s
control record (CCR).

Returns to Diagram 3.9,
step 5.

OUTPUT

VSAM
Catalog
(Target)

Wl Jo Ayadoig — [N PISTIIFY

uonesadQ jJo pogR 7 I9deq)

101-¢

Extended Description for Diagram 3.9.1
IDCRPO1

Procedure: IDCRPOI

1 The message says that catalog reload had begun.

IDCRPO1
Procedure: CATRELOD

2 Additional checks are made at this time by using data
from the first 10 records of the input and output data sets.
If the data set names do not match, a message is issued,
processing is set for termination, and further checks are
made. Termination also occurs if the input data set record
format does not match a VSAM catalog record format, if
there is insufficient space in the output data set, and if the
volume serial numbers or the device types do not match.
Messages are issued for the corresponding errors.

IDCRPO1

Procedures: CATRELOD, SORSREAD, TARGREAD,
GETPAIR, DUMPIT, TRUENAME, CATRANS,
CONVRTCI, CATCOMP

3 When all the checks are satisfied, the unloaded catalog is
copied into the output data set. Each record is read from
the input data set and translated. It is then compared to
the target catalog.

¢ Ifa record existed on both backup and target catalogs,
the translated backup updates the target.

¢ If a record existed only on the backup, then this record
is inserted into the target catalog.

e If a record existed only on the target catalog, then it is
processed in one of two ways.

a. Ifthe target record is a true name record, then it is
deleted.

b. If the target record is a low key range record, then it
is made a catalog free record and placed on the free
chain.

¢ In both cases where the keys are not equal, differences
in true name entries between the backup and target
catalogs are checked.

a. If a target name record exists without a
corresponding backup or vice versa, then a message
is printed indicating this, provided that not more
than 100 messages have been issued. A warning
return code of 4 is attached to the message

b. At the 101th discrepancy, a message is issued saying
that comparison is terminated. The only
discrepancies to be printed afterwards will be for
volume entries.

IDCRPO1
Procedure: CATRELOD

4 After both backup and target records have been processed
sequentially by key to the end-of-file, one more record
needs to be updated.

e The catalog free chain pointers are counted and
updated. The RBA fields are cleared so they will be
correct for the next open of the catalog and the
updated record is written back.

The number of records copied is the number of backup
records read if catalog reload has taken place; otherwise, it
is the number of output records written.

S Control passes to Step 5, Diagram 3.9, step 5, to print final
messages.

I Jo Ayradorg — (SR Posuddy]

01-T

918077 $991AI9S PO $8900Y NVSA/ASA

Diagram 3.10. VERIFY FSR

INPUT

From Executive
Controlled Termination

PROCESSING

OUTPUT

Register 1

§ GDT

{ FDT

VSAM

Catalog

VSAM
Data Set

1. Opens data set.

2. Verifies data set.

3. Closes data set.

4. Writes message.

VSAM
Catalog

VSAM
Data Set

Message

Register 1

{GDT

{FDT

LASTCC

{]

] Jo 333dolyg — [BLICIA PISTIINY

uonesadO jo PO iz Indey)

£01-¢

Extended Description for Diagram 3.10
IDCVYO1
Procedures: OPENPROC, IDCVY01

1 OPENPROC builds an OPNAGL to open the VSAM data
set specified by the data set or FILE parameter for
control interval update processing. A UOPEN mucro is
issued to open the data set. If the open was not
successful, LASTCC is set to 12 and control goes to step
4.

IDCVY01
Procedure: IDCVYO01
2 IDCVYO0I issues a UVERIFY macro to verify the data set.

IDCVYO1
Procedure: TERMPROC

3 TERMPROC issues a UCLOSE macro to close the data
set. If the close was not successful, LASTCC is 4.

IDCVY01

Procedure: IDCVYO01

4 IDCVYO!I prints a message containing LASTCC. Control
goes to Executive Controlled Termination, Diagram 4.1.

W1 Jo Aiadosd — SIS Pasuady]

018077 $30IAIOS POYIOIN 5900V WVSA/ASA #01-2

)

Diagram 3.11. BLDINDEX FSR

INPUT

From Executive
Controlled Termination

PROCESSING

t eoT
{ BLDINDEX EDT

t Return area
for LASTCC

J

VSAM
Catalog

Base
Cluster

VSAM Data
Space for
External
Sort
(optional)

L

Job Control
Statements

Sort Work Files (optional)

9.

Opens base cluster; determines if
external sort job control is present.

Opens alternate index.

Performs verification and obtains

necessary information.

See Diagram ———— 3.11.1 »

Initializes for sort phase.
a. Obtains virtual storage.

b. Defines and opens sort work

files (optional).

See Diagram

Reads base cluster and performs sort.

See Diagram Em—

Builds alternate index.

Closes alternate index and sort work
files; determines if additional alternate

indexes are to be built.

Closes base cluster.
a. Deletes sort work files.
b. Frees virtual storage.

Writes message.

3.11.2

3.11.3

OUTPUT

ll

1]

CTGPL

CTGFLs

VSAM
CTGPL Catalog

CTGFVs

Alternate

CTGFLs

CTGPL
“VSAM
Sort Work
Files
{optional)
Register 1
t.GpT
t FpT
} LasTCC

WA Jo &113doig — [BLINBA] PISUIN]

uonessdQ Jo poyRi ' Indeyd

s01-T

Extended Description for Diagram 3.11

IDCBIO1
Procedures: OPENPROC, JCPROC

1 IDCBIOI calls OPENPROC to build an OPNAGL and
issue a UOPEN to open the base cluster for input.
OPENPROC sets the INFILE dname or INDATASET
entry name in the OPNAGL. OPENPROC also sets input
processing in the OPNAGL. UOPEN processing
determines if the base cluster is a KSDS or an ESDS and
sets a flag in the IOCSTR returned to OPENPROC
following the open. This flag will be used by BLDINDEX
to determine if alternate index records are to contain
prime key pointers or RBA pointers. UOPEN also sets the
RPL to keyed sequential processing for a KSDS or
addressed sequential processing for an ESDS. If the return
code from UOPEN is nonzero, OPENPROC returns to
IDCBI0! with LASTCC set to 12 and the BLDINDEX
command is terminated.

OPENPROC checks the high-used RBA of the base
cluster returned in the IOCSTR. If the high-used RBA is
zero, OPENPROC issues a message returns to IDCBIO1
with LASTCC set to 12 and the BLDINDEX command is
terminated.

IDCBIO]1 calls JCPROC to determine if job control for an
external sort has been provided. BLDINDEX will always
perform an internal sort if enough virtual core has been
provided by the caller. Otherwise, if the caller has
provided appropriate data set identification , BLDINDEX
will perform an external sort using two VSAM entry
sequenced data sets. If you provide DLBL/EXTENT
statements, you must also provide the following

parameters:

Filename - As provided via the WORKFILES
parameter, or defaulted to IDCUT1 and
IDCUT2

File-ID - Required

Volume - Required; must specify volume(s)

Serial containing VSAM data space

Numbers accessable via a currently
available catalog.

Access - ‘VSAM’ required

Method

If the caller has specified the WORKFILES parameter,
JCPROC issues a UIOINFO specifying the first dname of
that parameter. Otherwise, the UIOINFO specifies a
default dname of IDCUT1. The UIOINFO requests a
return of the data set name and volume serial number(s).
If the return code from UIOINFO is zero, JCPROC issues

another UIOINFO requesting the same information for
the second dname specified via WORKFILES or the
default dname of IDCUT?2 if WORKFILES has not been
specified. If both UIOINFOs are successful, JCPROC
saves the pointers to the information obtained.

If WORKVOLUMES is specified, two data set names are
generated and catalog management is called by
DEFPROC to define the two work data sets. If neither
WORKFILES, WORKVOLUMES, nor default JCL is
provided, DEFAULTVOLUMES is utilized through
catalog management. Parameter lists for DEFPROC
which do the DEFINE are built now.

IDCBIO1
Procedures: MAINPROC, OPENPROC

2 Steps 2 through 7 are performed for each alternate index
specified in the OUTFILE parameter.

IDCBIOI calls MAINPROC to control the building of the
alternate index. MAINPROC calls OPENPROC to build
an OPNAGL and issue a UOPEN for the alternate index.
OPENPROC sets a flag in the OPNAGL to indicate that
only the alternate index is to be opened. OPENPROC
indicates the QUTFILE dname or OUTDATASET entry
name in the OPNAGL. The OPNAGL specifies keyed

sequential output processing and specifies open with reset.

If the alternate index is nonempty and was defined with
the reusable attribute, VSAM OPEN will reset it to an
empty condition. If the return code is nonzero
OPENPROC sets LASTCC to 8 and returns to
MAINPROC where control is passed to Step 7.

IDCBIO1
Procedures: MAINPROC, LOCPROC

3 In order to accomplish validity checking and obtain
required information, MAINPROC calls LOCPROC to
issue VSAM catalog locates. See Diagram 3.11.1.

On return from LOCPROC, the following information has
been obtained to be used in subsequent processing:

Type of base cluster - returned from UOPEN of

(KSDS or ESDS) base cluster; also in
data AMDSB.

Position and length - in base cluster data

of prime key (if base AMDSB control block.

cluster is a KSDS)

Length of alternate - in alternate index

index record data AMDSB.

Length of - in alternate index

alternate key data AMDSB control
block.

Position of - in alternate index

alternate key in AMDSB control block.

base cluster record

Unique or - in alternate index

nonunique key AMDSB control block.

indicator

Number of records - in base cluster

in the base cluster AMDSB control block.

IDCBIO1

Procedures: MAINPROC, INITPROC

4 MAINPROC calls INITPROC to obtain resources for
building the alternate index. Resources consist of virtual
storage for buffers and work areas, virtual storage for the
sort and defined and opened sort work files if it is
determined that such are required. See Diagram 3.11.2.

IDCBIO1
Procedures: MAINPROC, CNTLPROC

5 MAINPROC calls CNTLPROC to read the base cluster
and control the sort-merge process. See Diagram 3.11.3.

IDCBIO1
Procedures: CNTLPROC, BLDPROC, MERGPROC

6 If an internal sort was performed, CNTLPROC passes
each sort record to BLDPROC to build and write the
alternate index records. Otherwise, CNTLPROC calls
MERGPROC to perform the merge passes and build the
alternate index. See Diagram 3.11.3 for BLDPROC and
MERGPROC processing.

WHI Jo &y1adorg — [epIajepy pasuddj|

Licensed Material — Property of IBM

2-106 VSE/VSAM Access Method Services Logic

uone2d0 Jo POYRI T 191dwYD

L01-T

IDCBIO1
Procedure: FINPROC
7 IDCBIOI calls FINPROC to perform cleanup from the

alternate index just built. FINPROC tests for an alternate
index and sort work files and issues a UCLOSE for any of
those data sets which are open. If BLDINDEX processing

encounters any errors, FINPROC issues an appropriate

message. Catalog error messages are issued by building an
error conversion table and invoking the UERROR macro.

FINPROC also issues a UFPOOL to free the sort core,
buffers and work areas used in building this alternate
index. A message indicating the success or failure of the
alternate index build is written. The setting of LASTCC
determines the message to be written. If LASTCC from
the current build is higher than the maximum value from
previous builds, it is saved. LASTCC is cleared for
subsequent builds. If the caller of the BLDINDEX has
specified multiple alternate indexes, control returns to
Step 2.

IDCBIO1
Procedures: TERMPROC, DELTPROC

8 IDCBIOI calls TERMPROC to perform final cleanup.
TERMPROC issues a UCLOSE to close the base cluster.
If sort work files exist, DELTPROC is called to build a
CTGPL to delete them.

A UCATLG macro is issued by DELTPROC to delete
each sort work file. TERMPROC issues a UFPOOL to
free all remaining core obtained via UGPOOL.

IDCBIO1
Procedure: TERMPROC

9 TERMPROC writes a termination message with the
maximum LASTCC encountered. Control returns to
Executive controlled termination via IDCBIO1.

WA Jo K)10doig — [wHIIeIA pasuady]

801-T

918077 $901AI0G PO 85900 IVSA/TSA

Diagram 3.11.1. BLDINDEX FSR — Get Information and Verify

INPUT

From Diagram 3.11

PROCESSING

OUTPUT

VSAM
Catalog

—

Obtains information regarding the
base cluster.

Obtains information regarding the
alternate index.

Verifies the alternate index-base cluster
relationship.

CTGPL

CTGFLs

WHI Jo Aaadolg — [BLIAIBIAl PISUIN

Extended Description for Diagram 3.11.1 Locate 1 IDCBIO1

IDCBIO1 Locate 1 retrieves the associations of the name specified Procedure: LOCPROC, CATPROC
via INFILE. CATPROC builds a CTGPL for a locate

Procedures: LOCPROC, CATPROC operation. CTGFLs are built for: 2 Locate 3

Locate 3 is essentially the same as Locate 1 (minus the

uonessdQ Jo poqie 7 3degd

601-T

The number in each box indicates which of the locates
described below retrieves information for that object. The
purpose of this series of locates is:

a. to retrieve the data AMDSB control block of the
alternate index and base cluster, and

b. to verify that the alternate index specified by the caller
does indeed relate to the base cluster specified.

If the caller specified a path over the alternate index, an
additional locate to reach the G object will be required
(Locate 4) is done.

The building of the CTGPL and CTGPLs and the
issuance of the UCATLG is actually done by CATPROC.
LOCPROC makes successive calls to CATPROC to

perform these functions. On each entry to CATPROC, the

CTGPL and CTGFLs are rebuilt for the specific locate

being processed. LOCPROC calls CATPROC for locates 1

and 2 only on the first alternate index being built since
these locates are against the base cluster. Appropriate
information is saved.

base cluster data AMDSB.

CTGPL: Entry “name” is the control interval number
of the base cluster’s data object (D) returned

in Locate 1.
CTGFL: ENTYPE - Entry Type
NAMEDS - Type and control interval

number of the first three
objects associated with the
data object

AMDSBCAT - AMDSB control block

The catalog ACB returned from Locate 1 is used in this
and all subsequent locates.

LOCPROC saves the first control interval number
returned for NAMEDS which is the control interval
number of the base cluster object. LOCPROC also moves
the AMDSB control block to its own work area.

1 The caller of BLDINDEX may specify the alternate index ENTYPE - Entry Type 5
and base cluster names or a path to either. The diagram . catalog ACB address) except that the name specified on
below shows the relationship of the various objects NAMEDS - Type and control interval number of the OUTDATASET parameter or via OUTFILE is used.
involved: the first three associations If the entry type returned by catalog management is an R
CATACB . Catalog ACB (path), LQCPROC tests that the t'u:st associatiqn isaG
(alternate index). If the entry type is not an R, it must be a
R R The entry name used in this locate is the file ID specified G. Otherwise, LOCPROC issues a message, sets LASTCC
1 3 by the caller on the INDATASET parameter or in the job to 8 and returns control to MAINPROC.
control pointed to by the INFILE parameter. If the return
code from catalog is nonzero, LOCPROC sets a locate Locate 4
error condition, sets LASTCC to 12 and returns control to If the Entry Type from Locate 3 was an R. CATPROC
G MAINPROC. MAINPROC returns to IDCBIOI where builds a CTGPL and CTGFL to retrieve the alternate
C . Jor4 control is passed to Step 7 (Diagram 3.11). Note: This index associations.
same type of error processing follows all subsequent . « " . .
locates except that LASTCC is set to 8 for locates 3, 4, and CTGPL: Entry“name” used is thq control interval
5 number of the alternate index (G) associated
Ifth T ib . R with the path (R) returned in Locate 3.
the Entry Type returned by catalog management is an .
D 1 D i (path), LOCPROC tests that the first association is a C ENTYPE: Entry type
2 (if KSDS) 5 (base clustg,r). If the Entry.Type isnot an R, it must be a CTGFL: NAMEDS—Type and control interval
C. Otherwise LOCPROC issues a message, sets LASTCC number of the first three objects associated
R = Path to 12 and returns control to MAINPROC. with the alternate index. The entry type
C = Cluster
: Locate 2 retume§ by catalog management must beaG.
f,, 3";’-"‘" Index cae Otherwise, LOCPROC issues a message, sets
1= l:dex CATPROC builds a CTGPL and CTGFLs to retrieve the LASTCC to 8, and returns control to

MAINPROC.

IDCBIO1
Procedures: LOCPROC, CATPROC
3 LOCPROC must now verify that the alternate index

specified by the caller is in fact related to the base cluster
specified. LOCPROC compares the control interval
number of the base cluster saved from Locate 2 of the
control interval number of the third association returned
from Locate 3 or 4. This should be, for an alternate index,
the control interval number of the related base cluster. If
the CI numbers are not equal LOCPROC issues a
message, sets LASTCC to 8 and returns control to
MAINPROC.

Locate 5

Locate 5 is the same as Locate 2 for the alternate index
data AMDSB control block.

Control returns to Diagram 3.11 where control will be
passed to Step 4 or Step 7 depending on the setting of
LASTCC.

g1 Jo fi1adorg — [sparery posuadyy

o1-v

918077 $901A308 PO $5900V INVSA/HSA

Diagram 3.11.2. BLDINDEX FSR — Obtain Resources and Sort Initialization

INPUT

Job control
statements

Sort Work Files (optional)

From Diagram 3.11

PROCESSING

L

W N

Determines requirements for sort.

Obtains virtual storage.

Defines and opens sort work files
(optional).

OUTPUT

CTGPL

CTGFVs

CTGFLs

VSAM data
sets for sort
work files

WA Jo K330d01g — [SHUISIA] PISUIN]

Extended Description for Diagram 3.11.2
IDCBIO1

Procedures: INITPROC

1 INITPROC issues a UGPOOL macro to obtain virtual

b. If the EXTERNALSORT parameter has been
specified by the caller of BLDINDEX, the RSA size is

UIOINFO from the sort work job control statements, (b)
built from the WORKVOLUMES parameter, or (c) built
set at 32K—the minimum amount of storage which from the null volume list for the default-volume-define
will be used for an external sort during the merge function of Catalog Management. Space allocation is in
phase. records: primary, the number of 2K blocks calculated by

uonesadQ Jo poyel 7 11deyD

-z

core for buffers and work areas, consisting of 1 2K buffer
(to be used for output if an external sort is performed), the
area required for the CPL/FVT/FPL complex to define
the sort work files and the alternate index record output
buffer. The first two areas are obtained at this time, even
though they may not be used, so that if it is necessary to
perform an external sort it will not fail due to lack of
virtual storage. If the UGPOOL fails, INITPROC sets
LASTCC to 8, issues a message and returns control to
IDCBIO]1, Step 7 (via MAINPROC).

INITPROC calculates the requirements for both an
internal sort and an external sort. If an external sort is
performed, the records being sorted are blocked into a
block 2048 bytes in length, using a logical record length of
2041 bytes. Blocking and deblocking of sort records within
the 2041-byte logical record is accomplished by
BLDINDEX. The formulas used to determine sort work
size are:

Sort Record Size = Alternate Index Key
Length + Prime Key Length
(KSDS) or 4 (ESDS)
Number of Records ., 2041
per Block Sort Record Size

Total number {3 of Records in Base Cluster} +10
of 2K Blocks # of Records per Block

During the first phase of either an internal or external sort,
the records being sorted are packed contiguously into a
record sort area (RSA). The RSA size is always in
increments of 2K so that it can be later used as an input
buffer arca during the merge phase of an external sort. The
initial size of the RSA is calculated as

Number of Records in Base Cluster * Sort Record Size

and rounded up to the nearest multiple of 2K. This size is
then adjusted as follows:

a. Ifthe RSA size is less than 4K, it is set at 4K. The
number of records in the base cluster is obtained from
a statistic maintained in the base cluster AMDSB
control block. If this statistic is in error (which can
happen if a system failure occurs during a close), it
may be necessary to go into an external sort, In this
case, space for two input buffers is required.

IDCBIO1
Procedures: INITPROC

2 In addition to virtual storage for the RSA, virtual storage
for the table (called the “heap’) which drives the first
phase of the sort is required. This is a table of 4-byte
pointers. The amount required is calculated as follows:

RSA Capacity = RSA Size
Sort Record Size
= RSA Capacity * 4

INITPROC issues a UGPOOL for the RSA size plus the
heap size. If the UGPOOL fails, the initially calculated
RSA size could not be obtained and it will be necessary to
perform an external sort. The maximum amount of core
used for an external sort is 100K, the minimum 32K. If the
maximum amount cannot be obtained, an attempt is made
to obtain an intermediate RSA of 60K. INITPROC sets
the RSA size to the next lower plateau—100K, 60K,
32K—and loops back to the start of Step 2. If the
UGPOOL fails at the lowest plateau (32K), INITPROC
sets LASTCC to 8, issues a message and returns control to
IDCBIO!, Step 7 (via MAINPROC).

Heap Size

IDCBIO1

Procedures: INITPROC, DEFPROC, DELTPROC,
OPENPROC

3 If virtual storage was successfully obtained but the amount
obtained for the RSA was less than the originally
calculated required amount, INITPROC calls DEFPROC
to define and open two sort work files to be used during
the merge phase of an external sort.

DEFPROC determines if large enough sort work files exist
from a previous sort and, if so, bypasses the define process.

If external sort work files exist but are not large enough,
DEFPROC calls DELTPROC to build a CTGPL to delete
each sort work file (specifying the PURGE option).

If sort work files are to be defined, DEFPROC builds a
CTGPL, a cluster CTGFV, a data CTGFV and the
required CTGFLs to define the first external sort work
file. DEFPROC issues a UTIME macro in order to
provide the creation date in the define operation. The
cluster FVT references the file-ID and the data FVT
references the volume serial numbers obtained via (a)

INITPROC; secondary, 10% of primary, plus 10. The data
set attributes specified are: ESDS, nowritecheck,
unordered, speed, suballocation, noerase, reuse, default
shareoptions, control interval size of 2048, logical record
length of 2041.

DEFPROC issues a UCATLG macro to define the first
work file, makes the necessary changes to the FVTs and
issues a UCATLG for the second work file. DEFPROC
next calls OPENPROC to build OPNAGL and open the
two data sets just defined. The OPNAGLs specify
sequential output using control interval processing with
user buffers. If the define or open for either of the sort
work files fails, DEFPROC sets a define error condition,
sets LASTCC to 8 and returns control to INITPROC. If
both sort work files are successfully defined and opened,
DEFPROC returns to INITPROC with a flag indicating
that an external sort is to be performed. INITPROC
returns control to Diagram 3.11 where control will be
passed to Step S or Step 7 depending on the setting of
LASTCC.)

Wl Jo Syadord — [ppayepy pasuady]

-t

21807 S901AI9S POYION 85900V INVSA/HSA

Diagram 3.11.3. BLDINDEX FSR — Sort-Merge and Build Alternate Index

INPUT
3

Base
Cluster

VSAM Data

Sets for Sort
Work Files

(optional)

—

From Diagram 3.11

PROCESSING

Initializes for sort phase.

Reads base cluster, places records
in record sort area, internally sorts,
writes initial strings if record sort
area cannot contain all records
(optional).

Performs merge passes (optional).
a. Initializes for each pass.

b. Merges strings.

Builds alternate index.

\/7

OUTPUT

VSAM Data
Sets for Sort,
Work Files

(optional).

Alternate
index

W41 Jo Auadoig — [euIa)eIy pIsuadr]

uone1adQ Jo poqIoN (T wndeyq)

e1-T

Extended Description Diagram 3.11.3

IDCBIO1
Procedure: CNTLPROC

CNTLPROC initializes factors which will be used during
the sort-merge including pointers to the record sort area
(RSA), and the table of pointers which is used during the
sort. CNTLPROC also initializes the output buffer with an
RDF and CIDF in the event an external sort is performed
(the sort work files are processed in control interval mode
with user buffers).

IDCBIO1

Procedures: CNTLPROC, SORTPROC, BLDPROC,
SPILPROC, DEFPROC

2 Inaloop CNTLPROC reads each base cluster record and

passes it to SORTPROC. SORTPROC performs the
function of building the sort records from the base cluster
record, placing each record in the RSA and updating the
table of pointers (called the‘heap’) to the records in the
RSA. The heap is sorted when the RSA has reached
capacity and/or when the last base cluster record has been
processed.

Each sort record is formed by concatenating the prime key
of the base cluster (KSDS) or its RBA (ESDS) to the
alternate key.

Prime Key (KSDS)
Alternate Key

or
RBA (ESDS)

If the base cluster record is not long enough to contain the
alternate key, SORTPROC issues a warning message and
sets the current condition code to 4.

The heap sort consists of two phases. The first phase builds
the heap into a tree of nodes having a parent-child
relationship. Each parent node has two child nodes and
the parent represents a key higher than either of the two
children. At the end of the first phase the node at the top
of the tree represents the highest key. The second phase
removes the top node, places it at the bottom, reduces the
heap by 1 and adjusts the parent-child relationships of the
remaining nodes. This loop continues until the top of the
heap represents the lowest key.

If enough virtual core was available to contain all the sort
records, the sorting takes place after the last base cluster
record has been read, after which CNTLPROC passes
each record to BLDPROC to build and write the alternate
index records (see Step 4). Otherwise, sorting takes place
each time the RSA is filled. After the heap is sorted, if the
sort was caused by the RSA reaching capacity before
end-of-file on the base cluster, SORTPROC calls
SPILPROC to write out the records in the RSA in a string
of 2K blocks to the external sort work file.

SPILPROC determines if sort work files have already
been defined and opened by INITPROC and, if not calls
DEFPROC to perform that function. Normally,
SPILPROC will find sort work files already defined and
opened. However, if the statistic contained in the base
cluster AMDSB control block as to the number of records
in the base cluster was erroneously low and the calculated
virtual storage for the sort was obtained, INITPROC will
not have initialized sort work files. SPILPROC blocks the
sort records into the 2K output buffer and issues a UPUT
macro to write it. This is performed in a loop until all sort
records in the RSA have been written out.

CNTLPROC calls SORTPROC under the following
conditions:

e After each base cluster record has been read. The
address of the record is contained in the IOCSTR of
the base cluster.

® At end-of-file on the base cluster.

IDCBIO01
Procedures: CNTLPROC, MERGPROC, BLDPROC
3 After all base cluster records have been read, if the RSA

was not large enough to contain all sort records, merge
passes must be performed using the two external sort work
files. SPILPROC has written out the first strings during
the sort phase. During this phase the external sort work
file is in create mode. The data set was opened with
MACRF=CNYV, UBF, OUT, SEQ. PUTs are issued with
OPTCD=CNYV, SEQ, NUP. Control intervals are written
in physical sequence. At the end of the sort phase,
CNTLPROC issues a UCLOSE macro to close the output
sort work file followed by UOPEN to reopen it. This is
necessary to get out of create mode. The second open
specifies MACRF=CNYV, UBF, DIR, UPD. Subsequently
all PUTs will be issued with OPTCD=CNYV, DIR, UPD.

CNTLPROC then calls MERGPROC to control the
merge passes. MERGPROC performs the function of
merging strings of sort records originally built by
SPILPROC using the two external sort work files. The
order of merge is normally 16 or less using an area of 32K
(the original RSA) for input buffers. In one case, the order
of merge will be 2. That is, when the statistic of the
number of records in the base cluster AMDSB was so
erroneously low that an RSA of 4K was obtained.

In general, the merge is accomplished in the following
manner (assuming a 16-way merge) -

* Reading the first 2K block of the first n strings to be
merged, where n is 16 if there are 16 or more input
strings or where n is the total number of input strings if
less than 16.

¢ Using the first record of each string, build an array in
the form of a tree. The tree is made of nodes with a
single node at the top. Each parent node has two child
nodes and the tree is built so that the record
represented by the parent node is lower in value than
either child. As the tree-add loop starts, the size of the
tree is increased by 1 thus leaving an empty slot at the
bottom. The parent of the empty slot is established and
if the new record is higher than the parent, it goes into
the empty slot at the bottom. However, if the new
record is lower, the parent is moved down leaving an

W1 Jo fuadosg — repasepy pasuadyy

Licensed Material — Property of IBM

2-114 VSE/VSAM Access Method Services Logic

uoneidQ Jo POyl (7 3ndeyd

SII-¢

empty slot. The parent of the new empty slot is
established and the process continues until the new
record is found to be higher than the parent at which
time it goes into the empty child slot. If the parent is
moved from the top of the tree, the new record goes
there and the process stops.

¢ Output the lowest record on the tree. This output will
be to BLDPROC (see Step 4) if this is the last or only
merge pass or to the output string if this is not the last
merge pass.

¢ Update the tree filling the slot left empty from the step
above.

e Get the next record from the same string as the
previous lowest record. Output it if it is lower than the
current lowest, otherwise add it to the tree.

e Continue this process until all records in all input
strings currently being processed have been output.

¢ Loop until all input strings for this merge pass have
‘been output.

¢ If more merge passes are required, make the previous
output file the next input file and vice versa and repeat
the merge passes until the number of input strings is
equal to or less than the order of merge.

IDCBIO01
Procedures: BLDPROC

4 BLDPROC is called either from CNTLPROC (if an
internal sort was performed) or MERGPROC (on the last
merge pass of an external sort). In either case, BLDPROC
is passed sorted records one at a time.

On the first entry to BLDPROC, the IOCSTR for the
alternate index is initialized as well as the static portion of
the alternate index record. On all subsequent entries, the
alternate key of the sort record passed to BLDPROC is
compared to the key of the alternate index record being
built. If these keys are unequal, the alternate index record
is to be written out. BLDPROC determines if the record
was too short to contain all the prime key or RBA pointers
and, if so, issues a warning message containing the number
of excess pointers and sets the current condition code to 4.
The record is written with a UPUT macro and the buffer
reset for the next record. Before moving the prime key or
RBA from the sort record to the alternate index record,
BLDPROC checks if the alternate index was defined with
the UNIQUEKEY attribute. If so and if the new prime
key or RBA is not the first for this alternate index record,
BLDPROC issues a warning message and sets the current
condition code to 4. Only the first prime key or RBA is

placed in the alternate index record. BLDPROC also
checks that the record is long enough to contain the new
prime key or RBA and, if not, increments an excess
pointer counter. If all checks prove successful, the new

prime key or RBA is moved to the alternate index record.

After CNTLPROC passes the last sort record to
BLDPROC (internal sort) or receives control back from
MERGPROC (external sort), CNTLPROC calls
BLDPROC one more time to write out the last alternate
index record. Control is then returned to IDCBIOI via
MAINPROC—Diagram 3.11, Step 7.

W1 Jo Auadosd — [ea)B)N pasuadyy

9I1-7

18077 $301AJS POYII 88300V IWVSA/HSA

Diagram 3.12. LISTCRA FSR

INPUT

Register 1

tGDT

tFDT

=

J

VSAM
Catalog

)

Volume’s
CRA

(

FDT

\ Encoded

Users
LISTCRA
Command
Parameters

From Executive
Controlled Termination

PROCESSING

3] llﬁJ

1.

2.

3.

General initialization and open the
catalog if compare option specified.

For each volume in the command:
a. Opens the CRA.

b. Compares, groups, sorts and prints
the objects in the CRA.

See Diagram p

c. Compares and prints any objects
not yet printed.

d. Closes the CRA and prints summary
count table.

Closes the catalog and writes
completion message.

CTT

OUTPUT

i

Catalog/CRA
Compare List

P

Register 1

(C::]

1GDT
tFDT

l LASTCC I

Message

-

WEI Jo Ayradoig — [epid)ey pasuddy]

uoneiadQ Jo POy 'z ndeyd

L11-t

Extended Description for Diagram 3.12

IDCLRO1
Procedures: AATOPLR, INITLZE, CATOPEN, ERROR

1 Routine addresses and the UOPEN argument are
initialized in the work area. If the COMPARE option was
specified, a UOPEN is issued for the catalog identified by
the CATALOG dname parameter or by the CATALOG
catname parameter (dname parameter omitted). If the
OPEN is successful, a UVERIFY is issued and the catalog
name is obtained using Access Method Services field
management (IDCRC04).

The volume serial is obtained via IDCRC04 and the
catalog is locked to prevent it and its associated CRAs
from being reset. If the COMPARE option was not
specified on the OPEN of the catalog failed, the no
compare indicator is set.

IDCLRO1, IDCLRO2, IDCRC04

Procedures: AATOPLR, CRAOPEN, PRTVOL, INTSORT,
MEMSORT, DOVSAM, PRTVSAM, DOOTHR,
PRTOTHR, PRTFIFO, GETPRT, PRTCMP, CLENCRA,
SUMIT

2 For each of the CRAs identified by the INVOLUMES
voiser parameter or INFILE dname parameter, the
following is repeated:

a. If the INFILE parameter was specified, a UIOINFO is
issued to obtain the CRA volume serial. The UOPEN
parameter list is set up with the volser and the catalog
master password and the UOPEN and UVERIFY are
issued for the CRA. If the COMPARE option was
specified, the catalog and its CRAs are locked (UENQ)
to prevent any concurrent updates. If they are
successful and there is a match on the owning catalog
name, a UREST is issued to print a subtitle for this
CRA. The entire CRA is read to build the CI translate
table (CTT) in space gotten by UGPOOL.

b. The CRA volume record and its extensions are
optionally compared to the corresponding catalog
entry and printed by PRTVOL. The VSAM objects are
then sorted into alphabetical order, optionally
compared to corresponding catalog entries and printed
by INTSORT, MEMSORT, DOVSAM, and
PRTVSAM. Next, the nonVSAM objects are sorted,
compared, and printed by INTSORT, MEMSORT,
DOOTHR, and PRTOTHR. See Diagram 3.12.1.

c. If either sort fails for lack of memory (from b. above),
the objects are compared and/or printed in the order
they appear in the CRA by PRTFIFO. Records

already processed by the above procedures are skipped.

If the object isa VSAM object, PRTVSAM is called
and if it is a not, PRTOTHR is called.

d. GETPRT is used to get the CRA copy of any other
records, and the catalog record, if compare. These are
printed and compared by PRTCMP. When all objects
have been processed, the UDEQ macro is issued to
release the update lockout for the catalog, the CRA is
closed by CLENCRA, and a summary is printed by
SUMIT.

IDCLRO1
Procedures: AATOPLR, CLEANUP

3 The UCLOSE macro is issued to close the catalog data set
and the UDEQ macro is issued to release the reset lockout
from the catalog. The completion code message is printed
and the UFPOOL macro is issued to free storage. Control
is returned to the caller.

W1 Jo fuadorg — [sparepy pasuadyy

811-T

91307 8901AI0E POYIS 55900V INVSA/HSA

Diagram 3.12.1. LISTCRA FSR — Process CRA

INPUT

)

VSAM
Catalog

¢

CRA

{

From Diagram 3.12
PROCESSING

CIT ﬁ>

OUTPUT

Prints optionally compares volume records.___ >

a. Reads CRA and catalog volume
records and extensions.

b. Prints volume record and time stamps.

Processes VSAM entries:
a. Alphabetizes VSAM entries.

b. Prints and optionally compares
each entry and associated records
and extensions.

Processes nonVSAM entries:

a. Alphabetizes nonVSAMs.

b. Prints and optionally compares
each entry and associated records
and extensions.

Catalog/CRA
Compare List

I Jo Au1odoig — [BHIEIAl PASUIINY

uone1sdQ Jo pogN ‘T Indend

611-2

Extended Description for Diagram 3.12.1

IDCLRO1, IDCLRO2, IDCRC04

Procedures: PRTVOL, SUMIT, GETPRT, VERTEXT,
INTVEXT, TCICTCR, BLDVEXT, PRTMCWD, UPRINT,
UIOINFO, PRTTIME

1 a. PRTVOL uses GETPRT to read the CRA volume
record and IDCRCO04 to extract the identifying fields
and, if compatre, the equivalent information is gotten
from the catalog in the same manner. If compare is
specified, information is compared and, if not equal,
the record is printed and the severest miscompared
field is identified by PRTMCWD. If compare is not
specified, all records are printed. Horizontal extension
records are processed and vertical extension records are
checked by VERTEXT and handled in the same way.

b. The timestamps from the CRA volume record and on
the CRA volume and, if compare, in the catalog
records are printed by PRTTIME,

IDCLRO1, IDCLR02, IDCRC04

Procedures: INTSORT, MEMSORT, DOVSAM,
PRTVSAM, GETPRT, VERTEXT, INTVEXT, TCICTCR,
BLDVEXT, ADDASOC, INTASOC, PRTMCWD,
UPRINT, PRTAAXYV, PRTOJVL, CKEYRNG, SUMIT

2 a. The sort of the VSAM entries is initialized by
INTSORT which scans the CTT counting the number
of VSAM entries, gets storage via UGPOOL for a sort
table, initializes dummy first and last entries and then
loops through the CTT entries calling IDCRC04 to
extract the entry names to be sorted. The MEMSORT
procedure orders the entries by adding forward and
backward chain pointers to alphabetize.

b. If compare was specified, the following procedure is
passed through twice, the first time comparing only.
When a miscompare is detected the procedure is
restarted printing everything. From the entries in the
sort table an association table is built containing the
control intervals of all associated entries. Passing
through this table all associated records are printed.
For base cluster’s AIX associations, only the entries’
volumes are printed (to assist in recovery). The
horizontal extension records are printed as are the
vertical extension records. Throughout, the names of
significant items are noted if they miscompared and
these are printed.

IDCLRO1, IDCLRO2, IDCRC04

Procedures: INTSORT, MEMSORT, DOOTHR,
PRTOTHR, GETPRT, VERTEXT, INTVEXT, TCICTCR,
BLDVEXT, SUMIT, PRTMCWD, UPRINT, PRTOJAL,
INTASOC

3 a. The logic and procedures used here are the same as are
used in 2a with the exception that nonVSAM entries in
the CTT are sorted.

b. The logic and procedures used here are the same as
used in Step 2b except that nonVSAM entries are
handled.

For all of the steps above, GETPRT uses UGET to read
the CRA record and the catalog record, if compare.
IDCRCO04 is used to extract all necessary fields from the
records. These are printed and optionally compared by
PRTCMP and PRTDMP (if the dump format was
specified) and PRTDMPC (if compare was also specified).
PRTOJVL is used to print, the object’s volume.

WEI Jo Ayrodorg — [epIa)epy pasuady|

0T1-¢

o1807] 5301AJS POYIIIN 55900V INVSA/HSA

Diagram 3.13 EXPORTRA FSR

INPUT

Register 1

From Executive
Controlled Termination

PROCESSING

) =

$GDT

t FDT

| 0

VSAM
Catalog

Sets and
CRA

1. [Initializes and builds the CRV.
a. Initialization.
b. Build the CRV

2. For each CRA specified:
a. Opens the CRA.

b. Checks the name chain.

See Diagram-—] 3.13.1 >

¢. Exports the name chain.

See Diagram—3.13.2)

OUTPUT

Q

Portable
Data Set

Message
Register 1

<C21

t opT
{ FDT

W1 Jo 113dold — [SHANBI PISUDNT

uonessdQ jo poqi 7 Ideyd

| £4 Sk 4

Extended Description for Diagram 3.13

IDCRCO1

Procedure: INIT, SUBSP, BUILDCRYV, BUILDNAM,
MESSAGE

1 a. SUBSP is called which issues a UGPOOL to obtain
storage for the blocks associated with the name chain.
This storage is allocated into small blocks to be used
later. Storage is then obtained for the buffer pool VGO
space, the CRYV, the ACC and the VTT.

b. ifthe CRA dname parameter form is specified, for
each CRA volume, UIOINFO is used to obtain the
volume serial number (for CRA dnamel option only),
which is placed in the VIT. BUILDNAME is called to
build the name chain. This procedure calls SUBSP to
get a block of storage to be anchored to the CRV. The
name pointer is placed in the block as it is read from
the CRA.

IDCRCO1, IDCRCO02, IDCRCO03, IDCRC04

Procedures: OPENCRA, OPEN, TIMESTMP, SCANCRA,
NAMETABL, DIRECT, EXTRACT, ERRCK, MESSAGE,
COMPNAME, CKCATNM, CKNAMES, DUPNAMCK,
SYNCH, OBJVOLCK, CRAOPEN, EXPORTDR,
OPENCRA, MESSAGE

2 a. OPENCRA initializes the buffer pool pointer required
by field managment (IDCRCO04). It then calls OPEN,
which opens the CRA for direct processing and checks
it for the correct owning catalog. OPENCRA then calls
TIMESTAMP, which issues the UIOINFO macro to
get the CRA volume timestamp and place it into the
VTT and to get the device characteristics and place
them in the CRV. It then calls SCANCRA to build the
catalog CI numbers and places them in the CTT and
calls NAMETABL which places the record type and
name pointer in the name block. If entries were
specified, the name block is marked if 2 match is found
with the input. OPENCRA then calls DIRECT which
calls EXTRACT which interfaces with IDCRCO04 to
obtain the directory information from the CRA record.
ERRCK calls MESSAGE if an error occurred in this
procedure. For IDCRCO04 see Diagram 3.13.1.

b. CKNAMES is called to perform the following
functions for each potentially exportable entry using
EXTRACT:

o Get the master password for VSAM entries.

¢ Locate and flag to bypass export any OS/VS2
paging data sets.

¢ Collect the data and index associated CI numbers
for VSAM entries.

® Locate and flag to bypass data copy any VSAM
entries that have no data (high-used RBA is zero).

® Locate and flag to bypass for export any
NOCIFORMAT SAM ESDS entries.

e Locate and flag to bypass for export any SAM
ESDS entries if the SAM ESDS feature is not
installed.

e Collect the largest VSAM LRECL
(RECORDMODE) or the largest data control
internal size (CIMODE) for the nonempty files to
be exported.

¢ Locate and flag to bypass export any OS/VS2
GDG bases.

For those entries bypassed for export but named in the
ENTRIES parameter, an error message is printed and
LASTCC is set to 8. For SAM ESDS entries not
named in the ENTRIES parameter, a warning message
is printed and LASTCC is set to 4.

DUPNAMCK s called to loop through all the names
in the chain checking for duplicates. If one is found, it
is marked so that it will be exported. A message is
written indicating the duplicate name. SYNCH is
called which checks each entry on the name chain for a
CI number, checks the VSAM data sets for a data entry
and if there is a data volume index, OBJVOLCK is
called which matches the volume serials in the VGOs
and VTT, matching the CI and timestamp.

. EXPORTDR is called which closes the CRA as a data

set and opens it as a catalog, then calls MESSAGE to
write the “exporting CRA” message (however, if the
name list is empty, the “nothing to export” message is
issued instead). It checks the name chain for the CRA
for null entries and nonmatches and marks them not
exportable. It initializes the export table for each valid
entry and calls IDCRCO2 to export the entry. If the
FDT parameter CIMODE was specified, a CIMODE
flag is set in the export table. ENVIRONMENT
parameters are obtained from the FDT and placed in
the export table. See Diagram 3.13.2 for a description
of IDCRC02. When the Export Driver (IDCRC02)
returns, then the completion or error message is printed
and processing continues with the next entry in the
name chain for the CRA.

W1 Jo Ky1adorg — (s8I pesuady|

(44 Sak 4

or80r] 5901AIE POFISN 55900V WVSA/ASA

Diagram 3.13.1. EXPORTRA FSR - Field Management

Register |

From Diagram 3.13

PROCESSING

L

I'MPL

ﬂ
Ju

I'MI'Ls

FMWA

M
Output
Arca

Initializes module,

Converts alphabetic field names to
internal codes.
For each RELREPNO:

a. Handles any test fields to see
if information is as expected.

b. Places the field in the output area.

OUTPUT

Register 1

r

I'MPL

i

'MI-Ls

FMWA

I'M
Output
Arcu

Register 15

[E:turn cC

4] Jo &1sadold — [BHAIBIA PISUIIN]

woneIdQ JO pOYIRI T 39148YD

€1-T

Extended Description for Diagram 3.13.1

IDCRO0M4
Procedure: IDCRC04

1 IDCRCO04 is a service routine used by EXPORTRA and
LISTCRA to compare and extract data from catalog and
CRA records. Upon entry from either IDCRCO1 or
IDCLROI it sets up addressability to the work area and
initializes the current CI number in the work area for the
callers get routine (cither IDCRCO3 or IDCLR02).

IDCRCO4
Procedures: PSCNC, PTRNS

2 PSCNC is called which loops through each field
management field list and calls PTRNS which compresses
the name into a 4-character ID and places it into the
FMFT along with its corresponding dictionary
information and supplied group code. The tables are
chained according to like group code.

IDCRCO4, IDCLRO02, IDCRC03

Procedures: PSCNF, PTSTS, PGVAL, PGREC, PCKLC,
PEXPT, PLNRV, PTCMP, PLOC2, PGREP, PSHIN

3 PSCNF is called to process these field tables. It first
processes the test field and then the one it is looking for so
it may place the data in the output area.

a. The field lists are tested by looping through all the CI
numbers (PGVAL), interfacing with the callers get
record routine, either IDCRCO03 or IDCLRO2 to obtain
addressability to the block containing a CI number
(PGREQC). It then locates the catalog fields within a
given record by insuring the requested field actually
exists in the group occurrence data (PCKLC) then sets
up the address and length of extension pointers as
requested via the RELREPNO specified on entry
(PEXPT) and extracts the data from the found field
and indicates its length (PLNRYV). After the data is
found, it is compared by PTCMP with the input data
and a match or mismatch is indicated.

b. PLOC2 is the highest-level procedure for placing the
data in the output area. This procedure is called by
PSCNF if the FMFT is not a test FMFT. It calls
PGRERP to find the highest non-deleted RELREPNO
with the desired group code and saves the address and
length of the field which is checked by PGREC.
PSHIN checks for enough space in the output area
and, if there, moves the field to the output area or
moves Fs if non-existent. PGVAL and its
subprocedures described above are used to find the

fields requested and, after found, PSHIN moves the
data to the output area.

W] Jo Ausadoid — [epasy posuddyry

pTi-T

918077 $301AJ0§ POYIOIN 85900V IWVSA/ASA

Diagram 3.13.2. EXPORTRA FSR — Driver

From Diagram 3.13

INPUT PROCESSING OUTPUT
Register 1 Messages
(L] g Tests for export of a VSAM or nonVSAM
object.
T GDT a. Exportsa VSAM objecp
t IpT \

N

See Diagram eeecem—e—g 3 |3,

L/
5] b. Exports a nonVSAM object.
_\

See Diagram =———————m13 13 2.2

! >

[¢d

2. Termination processing. Portable Data Set

Data > Register 1

Sets and

CRA

t 6Dt

t IpT

Cft LASTCC

NEI Jo A11adoig — [BLIaIBIA] PISBAIF]

vonesedQ Jo poyep 7 3ndeud

114 St 4

Extended Description for Diagram 3.13.2
IDCRC02

Procedures: OPENPROC, CLUSPROC, SAVEPROC,
RECPROC, PUTPROC, NVSMPROC, ADSPROC,
ALSPROC

1 IDCRCO2 tests the input parameter list for export of a
VSAM or nonVSAM object. OPENPROC opens the
portable data set for output. ENVIRONMENT
parameters from the export table are placed in the
OPNAGL for UOPEN processing. If the object to be
exported is a VSAM object then step 1.a is done; if itisa
nonVSAM object, then step 1.b is done.

a. CLUSPROC gets catalog information for the cluster,
data, index and paths from the CRA. SAVEPROC
holds the control records containing the catalog
information until catalog processing is completed, then
writes them to the portable data set. OPENPROC
opens the cluster data for input. RECPROC copies the
data to the portable data set. PUTPROC writes a
software end-of-file to the portable data set.

b. NVSMPROC gets catalog information for the
nonVSAM object from the CRA. ALSPROC gets
catalog information for any aliases connected with the
nonVSAM object. SAVEPROC holds the control
records containing catalog information until catalog
processing is completed, then writes them to the
portable data set.

IDCRC02

2 IDCRCO2 tests return codes from CLUSPROC,
NVSMPROC, and GDGPROC. If any alias or path is not
exportable, a warning message is issued. The portable data
set is then closed if it is the last request or if a severe error
occurred.

WA Jo Ayradosg — [epsjeA pasuadyy

9807 $90IAIO PO 19300V WVYSA/HSA 9T1-T

Diagram 3.13.2.1. EXPORTRA FSR — Export VSAM Data Set

From Diagram 3.13.2

INPUT PROCESSING OUTPUT

—I : B CTGPL

1. Obtains information for cluster, —:> s
VSAM data, index, and paths from CRA. <::: CTGFLs
Catalog

—
-

VSAM

Data
_ Set)

Portable
Data Set

« Opens the input data set. Portable
Data Set

Writes catalog information.

Writes data records, closes input
data set.

h R W N
ﬂ

Writes software end-of-file.

I Jo Addoig — [SHIIRIA pasuadr]

uoneradQ Jo poyep iz 3deq)

-z

Extended Description for Diagram 3.13.2.1

IDCRC02
Procedures: CTLGPROC, CLUSPROC, LOCPROC

1

For the cluster entry of the VSAM data set, LOCPROC
builds a CTGPL and CTGFLs to retrieve information
from the CRA. A CTGFL is built for the following catalog
fields:

ENTYPE, ENTNAME, DSATTR, OWNERID,
DSETCRDT, DSETEXDT, BUFSIZE, LRECL,
SPACPARM, PASSWORD, PASSATMP, USVRMDUL,
USERAREC, LOKEYV, HIKEYV, VOLSER,
AMDSBCAT, EXCPEXIT, RCATTR, NAMEDS and
CATACB.

CTLGPROC issues a UCATLG with the CTGPL and
CTGFLs to retrieve the information from the CRA.
CLUSPROC validity checks the catalog entry type and
named fields. LOCPROC builds a CTGPL and CTGFLs
for the data and index components of the VSAM cluster.
CTLGPROC issues a UCATLG to obtain the same catalog
information as obtained for the cluster except for the
NAMEDS and CATACSB fields. Path associations, if
present, are processed with the same type of CTGPL and
CTGFLs as used for data and index.

A timestamp record is constructed as the first control record.
Information is placed into it indicating the number of
objects; whether the data set is KSDS, SAM ESDS,
NOALLOCATE, or empty; and whether export CIMODE
was specified.

IDCRCO02
Procedure: OPENPROC

2

OPENPROC issues the UOPEN macro to open the
VSAM data set for input and verifies the open.
OPENPROC triggers CIMODE processing by setting the
“export CIMODE" flag and the “CNV processing” flag in
the OPNAGL of the input data set.

IDCRC02
Procedure: PUTPROC
3 Control records containing catalog information for the

cluster, data, index, and paths are written to the portable
data set after catalog processing for the object to be
exported has been completed.

IDCRCO02
Procedure: RECPROC

4 RECPROC copies the data to the portable data set and
closes the input data set.

IDCC02
Procedure: CLUSPROC

§ CLUSPROC writes a software end-of-file on the portable
data set.

WE1 Jo &y13do1g — [8pa)BIA] POSUadF]

8T1-T

913077 $901AJ3G POYIOIN #5500V WVSA/ASA

Diagram 3.13.2.2. EXPORTRA FSR — Export NonVSAM

INPUT

Portable
Data Set

From Diagram 3.13.2
PROCESSING

OUTPUT

J—___——‘—(>

Obtains catalog information for a
nonVSAM or user catalog object.

Obtains catalog information for any
alias associations.

Writes catalog information to the
portable data set.

CTGPL

CTGFLs

Portable
Data Set

Wel Jo £)iadold — [BUNEA PASUIIF]

uopwed0 Jo POR ‘T 101dwD

6T1-T

Extended Description for Diagram 3.13.2.2
IDCRCO02
Procedures: LOCPROC, CTLGPROC

1 LOCPROC builds a CTGPL and multiple CTGFLs for a
nonVSAM or user catalog object to retrieve catalog
information. A CTGFL is built for each of the following
fields:

ENTYPE, ENTNAME, VOLSER, DEVTYP, NAMEDS,
CATACB

CTLGPROC issues a UCATLG with the CTGPL and
CTGFLs to retrieve the information from the catalog, and
to validity check the ENTYPE and NAMEDS fields.

IDCRC02
Procedures: LOCPROC, CTLGPROC

2 LOCPROC builds a CTGPL and multiple CTGFLs for
any alias associations. A CTGFL is built for ENTYPE
and ENTNAME catalog fields. CTLGPROC issues a
UCATLG to obtain the catalog information.

IDCRC02
Procedures: NVSMPROC, ALSPROC

3 NVSMPROC and ALSPROC write control records
containing the catalog information to the portable data set
after catalog processing is completed. The first record
written is the timestamp control record. It is flagged if
export CIMODE processing has been specified.

WHI Jo Aysadoig — [epra)sy pasuadyy

(119 8at 4

918077 $301A39§ POYIOIA 5900V NVSA/HSA

Diagram 3.14. IMPORTRA FSR

From Executive
Controlled Termination

INPUT PROCESSING
Register |
= 1. Obtains OUTFILE data set
name and opens portable
data set.
fcoT
} FDT

C
]

Portable Data Set

——

VSAM
Catalog

2. Imports object.

a. VSAM cluster or’
alternate index.

See Diagram 3.14.1

b. User catalog.
See Diagram ————{3.14.2

c. NonVSAM.
See Diagram

3.14.3

d. GDG Base.
See Diagram

3.14.4

3. writes message.

OUTPUT

CTGPL

o

CTGFL

AR,

VSAM
Catalog

VSAM
User Catalog

VSAM
Catalog

VSAM
Cluster,
Alternate
Index, User
Catalog,
NonVSAM,
or GDG
Base

Register 1

CI::J

1+ GDT
1+ FDT

CLASTCC

L |

Message

LA

A1 Jo Ayiadorg — [eLIIBIA] PASUIN]

z 10dvgd

uonwedQ Jo pOmeN

1€1-2

Extended Description for Diagram 3.14

IDCRMO1
Procedure: IDCRMO1, OPENPROC

If the OUTFILE parameter is present, IDCRMOI issues a
UIOINFO to obtain the data set name coded on the
DLBL job control statement associated with the
OUTFILE parameter (to be used later by ALTPROC).
PENPROC builds an OPNAGL and issues a UOPEN to
open the portable data set. User specified tape label and
rewind options are placed in the OPNAGL for UOPEN
processing. OPENPROC then issues a UGET to get the
first record of the portable data set, which contains the
record size of the data set. If the record size is larger than
the record size used to open the portable data set, a special
UCLOSE is issued which reallocates sufficient space for
the record size. An actual close of the portable data set is
not done.

IDCRMO1

Procedures: IDCRMO!, CLUSPROC, UCATPROC,
NVSMPROC, CLUSPROC, GDGPROC

2 For each item on the portable data set, IDCRMOI1 reads a

timestamp record and prints a message indicating the time
and date of the EXPORTRA operation. The timestamp
record also indicates whether the portable data set is in
CIMODE or RECORDMODE format and whether the
file being imported is empty.

On the basis of the timestamp record, one of CLUSPROC,
UCATPROC, NVSMPROC, or GDGPROC is called to
actually import the object. If the read for a timestamp
record should fail, IDCRMO1 assumes that an end-of-file
has been found on the portable data set and passes control
to step 3.

IDCRMO1
Procedure: IDCRMO!
3 IDCRMOI writes a completion or termination message

with LASTCC. Control goes to Executive Controlled
Termination. If LASTCC is less than 12, a completion
message (with LASTCC) is written; otherwise a
termination message (with LASTCC) is written.

WdI Jo Auadosg — [epoupy pasuddpy

TE1-T

01807 8901A308 POYIN 5900V IWVSA/HSA

Diagram 3.14.1. IMPORTRA FSR — CLUSTER or ALTERNATE INDEX

" INPUT

From Diagram 3.14

PROCESSING

Portable Data Set I

VSAM
Catalog

l. Writes time of export.
Builds catalog parameter lists.

OUTPUT

2. Defines cluster or alternate index

Defines paths.

3. Fora non-empty data set:

® Alters name of data set (OUTFILE
parameter only).

® Copies data.

® Alters the name back (OUTFILE
parameter only).

—_ CTGPL CTGFVs
CTGFLs
CTGPL
CTGFV
CTGFL

For an empty data set:
Reads the portable data set until EOF
is reached.

Message

-

VSAM
Catalog

N—

—

VSAM
Data Set

W1 Jo &y1adoig — [ejeN PISUIIN]

uone1sdQ Jo poqiap iz JaideyD

eel-t

Extended Description for Diagram 3.14.1

IDCRMO1

Procedures: CLUSPROC, CPLPROC, GETPROC,
FVTPROC, BFPLPROC, BPASPROC, IUNIQPRC

1 CLUSPROC via CPLPROC builds a CTGPL for a define
operation. CLUSPROC issues a UGET macro to read the
catalog control records and calls GETPROC to read the
catalog data records. Control records are read for the
cluster or alternate index and their data and index, if any,
components. CLUSPROC then calls FVTPROC to build
two or three FVTs, FVTPROC in turn calls BFPLPROC
to build FPLs for the catalog information on the portable
data set. FVTPROC tests the AMDSB for SAM ESDS
and if the SAM ESDS feature is not installed an error
message is written, A return code of 8 causes control to
return to IDCRMOI, which bypasses this entry and
continues importing the next entry. BPASPROC builds an
FPL for security information. If the data or index
component was originally defined as unique, IUNIQPRC
builds a null volume FVT for each unique component.
The OBJECTS list is scanned for USECLASS,
VOLUMES, and DEFAULTVOLUMES information
about the object to be defined,; if found, such information
overrides that found on the portable data set. The
OBJECTS list is also scanned for FILE information. If
found, a pointer to the dname is passed in the component’s
FVT.

IDCRMO1

Procedures: CTLGPROC, DELTPROC, CLUSPROC,
CPLPROC, FVTPROC

2 CTLGPROC issues a UCATLG macro to invoke VSAM
catalog management. 1If VSAM issues a return code of 8,
DELTPROC issues a UCATLG to delete the object from
the catalog, and then CTLGPROC issues a UCATLG to
define the object. Should any of these UCATLG:s fail, or
should the original define fail with a return code other
than 8, an error conversion table is built for the UERROR
function. UERROR is called to print the error message
based on the catalog return code.

If any nonzero allocation condition codes are returned by
catalog management, volume allocation status error
message(s) are printed. Control is passed to IDCRMOI for
the next object. If the define is successful, control returns
to CLUSPROC.

If a recovery volume serial number is returned for the
define, a UPRINT macro is issued to print it. If the define
was for a unique data set on a fixed block device,

UPRINT macro(s) are issued to print the actual blocks
allocated on each volume.

If the cluster or alternate index has any associated paths,
CLUSPROC builds catalog parameter lists for each path
from control records on the portable data set. CPLPROC
builds the CTGPL, and FVTPROC builds the FVTs and
the FPLs. CLUSPROC calls CTLGPROC to issue the
UCATLG macro to define the path. Then RECPROC is
called to perform step 3.

IDCRMO1
Procedures: RECPROC, ALTRPROC, OPENPROC
3 If the data set is empty, GETs (UGET macro) are issued

to the portable data set until an EOF is reached. If the
OUTFILE parameter is present, RECPROC calls
ALTRPROC to rename the VSAM object to be loaded to
the dummy name returned by the UIOINFO. RECPROC
calls OPENPROC to build an OPNAGL with a flag set to
indicate RECORDMODE or CIMODE and to issue a
UPOEN macro to open the newly-defined VSAM file. If
the OUTFILE parameter is omitted, the newly defined
file’s file-id and catalog name (if present) from the
CATALOG parameter are placed in the OPNAGL for
UOPEN. RECPROC issues a UCOPY macro to copy data
records from the portable data set to the VSAM object.
UCLOSE closes the VSAM object. If the OUTFILE
parameter is present, ALTRPROC is called to alter the
name of the object just loaded back to that under which it
was defined.

Processing returns to Diagram 3.14, step 2, for the next
item on the portable data set.

NH] Jo K310do1g — (BB PasTad)]

"®i-T

91807 82014308 POYIOI $5900V WVSA/HSA

INPUT

Portable Data Set I

VSAM

Catalog

VSAM
User Catalog

Diagram 3.14.2. IMPORTRA FSR — USERCATALOG

From Diagram 3.14
t PROCESSING

], Imports user catalog.

2. Writes message.

CTGPL

CTGFV

CTGFL

OUTPUT

>

VSAM
Catalog

VSAM
User Catalog

Message

Register 1

(l:l

} GDT
FDT

LASTCC

W Jo Auadoig — [SHASIA PIFIINY

uonwsedQ jo poqey iz 10degd

se1-7

Extended Description for Diagram 3.14.2
IDCRMOt

Procedures: CPLPROC, UCATPROC, GETPROC,
LVLRPROC, NFVTPROC, CTLGPROC, CPLPROC,
DELTPROC

1 CPLPROC builds a CPL to be used to connect the user
catalog pointer. UCATPROC then issues a UGET to get
the catalog control record and calls GETPROC to obtain
the catalog data record. LVLRPROC builds a DEVTYPE
FPL and a volume serial list on the basis of information
supplied on the portable data set or furnished through the
OBJECTS parameter. NFVTPROC builds an FVT for the
define. CTLGPROC issues a UCATLG macro to connect
the user catalog. 1f the VSAM catalog return code is 8,
then CPLPROC builds a CPL to do a disconnect
operation, and DELTPROC actually invokes catalog to
perform this operation. Should this succeed, a second
attempt is made to connect the user catalog.

IDCRMO1
Procedure: ALISPROC

2 For each alias item on the portable data set, ALISPROC
prints a message indicating that aliases are not processed
in VSE. Control then returns to Diagram 3.14, step 2, for
the next item on the portable data set.

WHI Jo Auiadorg — [BLOISIy Posuedy]

9€1-T

o107 $391AI985 POIGJN 88300V INVSA/HSA

Diagram 3.14.3. IMPORTRA FSR — NONVSAM

INPUT

Portable Data Set

VSAM
Catalog

NonVSAM
Data Set

]

—

From Diagram 3.14

PROCESSING

1 « Imports nonVSAM data set.

2. Writes message.

OUTPUT

CTGPL

CTGFV

CTGFL

g

Message

L

Register 1

[

¢ GDT
t FDT

(LASTCC

|

W41 Jo Hadoid — [eH)EIA PISUIN]

uopessdQ jo pomOl ‘2 Indeyd

LE1-T

Extended Description for Diagram 3.14.3
IDCRMO1

Procedures: CPLPROC, NVSMPROC, GETPROC,
LVLRPROC, NFVTPROC,CTLGPROC, CPLPROC,
DELTPROC

1 CPLPROC builds a CPL to be used to connect the user
catalog pointer. NVSMPROC then issues a UGET to get
the catalog control record and calls GETPROC to obtain
the catalog data record. LVLRPROC builds a DEVTYPE
FPL and a volume serial list on the basis of information
supplied on the portable data set or furnished through the
OBJECTS parameter. NFVTPROC builds an FVT for the
define. CTLGPROC issues 8 UCATLG macro to define
the nonVSAM data set. If the VSAM catalog return code
is 8, then CPLPROC builds a CPL to do a delete
operation, and DELTPROC actually invokes catalog to
perform this operation. Should this succeed, a second
attempt is made to define the nonVSAM data set.

IDCRMO1
Procedure: ALISPROC

2 For each alias item on the portable data set, ALISPROC
prints a message indicating that aliases are not processed
in VSE. Control then returns to Diagram 3.14, step 2, for
the next item on the portable data set.

W4l Jo A1edosd — sy pasuady

8€1-¢

91807 §901AI9 POYI 55900V NVSA/HSA

Diagram 3.14.4. IMPORTRA —~ GDG BASE
From Diagram 3.14

INPUT PROCESSING

Portable Data Set

VSAM
Catalog

VSAM
User
Catalog

OUTPUT

] : 1. Writes a warning message.

Message

Register 1

.

4GDT

tFDT

CLASTCC

1

A JO K113do1g — [BLIdIRIAl PISUAINT

uopIedQ Jo PO 7 3idwyD

6€1-T

Extended Description for Diagram 3.14.4
IDCRMO1
Procedures: GDGPROC

1 GDGPROC issues a warning message indicating that
GDG bases cannot be defined in VSE. It then issues

successive UGETS until an end-of-file indication is found.

NG Jo Auiadod — [epaIsA pesuady]

ovi-T

91307 $201AJ05 POYISIN 85900V WVSA/HSA

Diagram 3.15 RESETCAT FSR

From Executive
Controlled Termination

INPUT PROCESSING OUTPUT
Register 1
2 1 :l_:"> 1. Does initialization for RESETCAT processing.
See Diagram —————— 3.15.1 Reset
1 GDT - Catalog
1 FDT Steps 2, 3 and 4 are executed repeatedly until

enough control intervals exist in the catalog for
the catalog to be reset:

_/‘\\\
(=]

2. Copies catalog to work file.

- See Diagram—————— 3.15.2)
VSAM 3. Merges the CRAs to the work file.
Catalog

Volumes
to be reset

See Diagram———— 3,15.3

Y

4. Ensures there are enough control intervals for
reassignment. Extends catalog if enough control
intervals are not available. Returns control to
Step 2 if catalog is extended.

P

- Register 1
CRA 5. Reassigns control interval numbers as necessary. ({
Volumes .
See Diagram————] 3.154) 1 GDT
1 FDT
6. Checks associations, control intervals and space.
— | C
~—— See Diagram—————————— 3,15.5 1 :
'Y Work | LASTCC
File 7
Updates catalog — 5 >
3.15.6
8. Updates CRA(s) if necessary.
<
~—— See Diagram ——— X 3.15.7
W] Vsam
fat:l‘)g . 9. Releases Resources.
O b€ rese
—

] Jo Auiadoid — [BLI3)SIA] PISUDN]

uonesedQ Jo poye iz I0idey)d

-7

Extended Description for Diagram 3.15

IDCRSO01, IDCRS06
Procedure: INIT, DSOPEN, CATINIT, WFDEF

1 INIT is the first procedure called by RESETCAT. It uses
the UGPOOL macro to obtain work areas common to all
of RESETCAT, and initializes them. The catalog to be
reset is opened, verified and validity checked. Next,
exclusive control over the catalog is obtained via the
UENQ macro. The catalog in which the work file will be
defined is also opened and then the work file is defined
and opened. An entry in the RESVOL table is created for
each CRA volume identified by the CRAFILES
parameter. Finally, INIT builds the CIXLT table. The
CIXLT table is used to translate a catalog control interval
number into a work file relative record number.

The following three steps, Steps 2,3, and 4 form an
iterative loop. These three steps are executed repeatedly
until the catalog to be reset has enough control intervals.

IDCRSO01, IDCRS05, IDCRS06
Procedure: COPYCAT, BLDVLST, SCNRLST, DSCLOSE

2 COPYCAT performs the initial load of the work file from
the catalog to be reset. The CIXLT table built by INIT
maps every catalog DATA control interval number (CIN)
to a relative record number (RRN) slot in the work file. It
also indicates whether the control interval is for the low
key range (LKR) or high key range (HKR) portions of the
catalog. LKR records from the catalog are written to the
work file as normal RRDS records. HKR records are also
written to the work file, however, for each HKR record
written, a flag is set indicating that that control interval
will later be reassigned. Dummy records (formatted
control intervals with no data in them) are written to the
work file to represent that portion of the catalog which
extends from the first unformatted free control interval to
the LKR high allocated control interval. A table
(VOLSERTRB) is built from all volume records read from
the catalog. Free records and records which belong to a
CRA specified for reset are maintained on an “available”
chain and an “available” count is kept for these records.
When processing is completed, the work file is closed.

IDCRSO01, IDCRS0S, IDCRS06

Procedures: MERGECRA, DSOPEN, SCNRLST, CKERR,
PROCCRA, VOLCHK, DSCLOSE

3 MERGECRA merges each reset CRA into the work file.
Each CRA is opened. The cluster record is read and the
catalog name is verified. The PROCCRA procedure is

called to merge the CRA records into the work file and the
VOLCHK procedure is called to perform the volume
consistency check.

IDCRSO01, IDCRS05, IDCRS06, IDCRS07

Procedures: ENSURECI, DSCLOSE, CATEOV, CKERR,
DSOPEN, CATINIT

4 ENSURECI ensures that there are enough free control
intervals for reassignment. If the number of control
intervals to be reassigned are less than or equal to the
number of control intervals available, a flag, RSENUFCI
is set, indicating that enough control intervals are available
for reassignment. However, if the control intervals to be
reassigned are greater than the number available,
ENSURECI forces the extension of the catalog by
performing the following:

The catalog is closed by calling DSCLOSE. Next, all
storage obtained during COPYCAT processing is freed by
issuing UFPOOL. The highest formatted work file relative
record number is saved in RSWFHURR and CATEOV is
called to extend the catalog by writing free records into the
catalog until the catalog has been extended and sufficient
control intervals are available for the reset operation. If
CATEOYV returns with an error condition, CKERR is
called to terminate RESETCAT processing.

After the catalog is successfully extended, DSOPEN is
called to re-open and verify the catalog. CATINIT is
called to re-establish the catalog’s geometry by building
the CI to RRN translate table (CIXLT).

IDCRSO01, IDCRS05
Procedures: REASSIGN, ADDUPCR

5§ The REASSIGN procedure performs control interval
(CIN) reassignment. The invalid and duplicate records on
the reassign chain are assigned to valid CINs from the
available chain. Each record on the reassign chain is read
and an “available” record from the available chain is
found. The reassign record is copied to the “available”
record buffer; the CIN is changed to reflect the CIN of the
“available” record. If there is a pointer to a duplicate
record (DUPPTR), it is copied from the reassign record’s
processing field. The “available” record is then updated to
reflect the reassigned record. The record whose DUPPTR
points to the reassigned record’s relative record number is
found by following the duplicate record chain. The
DUPPTR of this record is changed to reflect the
“available” record’s CIN. This record is then updated.

IDCRSO02, IDCRS03
Procedures: ASSOC, PROCTYPE, VERDSDIR, PROCVOL

6 The ASSOC procedure controls the checking of all control
interval numbers (CIN) in all records being reset. This
includes CINs in associations and data set directories.
ASSOC also controls the checking for any space conflicts
of VSAM data sets.

IDCRSO01, IDCRS05, IDCRS07

Procedures: UPDCAT, CKERR, ADDUPCR, ENTNMCK,
SCNRLST, RENAMEP, UPDCCR, CRAUPCHN,
DELTN, ADDTN

7 UPDCAT updates the catalog from the work file. At this
point, any records in the work file which do not match the
catalog, must be written to the catalog. Each valid work
file record is read and if the “update catalog” flag is on,
the record is written to the catalog low key range (LKR).
True names are deleted from and added to the catalog
high key range (HKR) as necessary. If the “update CRA”
flag is on, the control interval of the work file record is
placed on the CRA update chain. The free record chain is
rebuilt.

IDCRSO01, IDCRSO0S, IDCRS06

Procedures: UPDCRA, SCNRLST, DSOPEN, DSCLOSE,
CKERR

8 UPDCRA updates CRAs from the work file. Each entry in
RESVOL (a table containing an entry for each volume
whose CRA is required in the reset operation) is obtained.
If there are any updates to be made in the CRA, it is
opened, updated, and closed. If any free records are placed
in the CRA, the CCR record is updated.

IDCRSO01, IDCRS0S
Procedures: WRAPUP, CLEANUP, CKERR

9 IfRESETCAT processing is successfully completed,
WRAPUP is the last procedure called. WRAPUP ensures
that all resources obtained by RESETCAT are freed, it
prints the message that processing is complete and then
returns control to the system.

HI Jo &1adord — (BB pasuady]

WHi-T

180’] $901AI0S POYISIN #5900V IWVSA/ASA

Diagram 3.15.1 RESETCAT FSR — Initialization

From Diagram 3.15

PROCESSING

OUTPUT

T

INPUT
Register 1
1 GDT
(1 FDT
L 0]|

VSAM
Catalog

\ CRA

Volumes

|

\ Work

File

1 (

VSAM
Catalog
to be reset

Gets space for and initializes work areas.

Opens the catalog to be reset. Opens the
work file catalog.

Defines and opens the work file.

Builds volume entries from CRAFILES/
CRAVOLUMES volumes.

RESETCAT
Work
Areas

Catalogs
Opened
~~———

—_—_—

Work file
Defined,

Opened

RESVOL
Table

I Jo Ayiadorg — [epsayey pasuadpy

uonesedQ jo POy 7 10vdey)

ei-T

Extended Description for Diagram 3.15.1
IDCRS01
Procedures: INIT

1 INIT issues the UGPOOL macro to obtain storage for the
following work areas:

¢ CRA user buffer

¢ Record Management control blocks (GRAB,
BUFFER)

¢ 1JJHCPL CVH parameter list

¢ Control blocks for Catalog Management LOCATE
macro (CPLs and FPLs)

The FDT is checked to see if IGNORE is specified, if so, a

flag, (RSIGNORE) is set in RSWORK. After obtaining
the above storage, INIT formats the RESETCAT record
management control blocks. Control blocks (CPL and
FPL) of Catalog management are also formatted along
with certain portions of the main work area.

IDCRS01, IDCRS0S, IDCRS06
Procedures: INIT, DSOPEN, CKERR

2 DSOPEN is called to open the catalog to be reset. Validity
checks are made on the catalog to ensure that it is
recoverable. CKERR is called if these checks fail.

Exclusive use of the catalog is ensured by issuing the
UENQ macro to obtain exclusive use of the ENQ name of
the catalog (Rvolser RSCO00). If it is determined that the
catalog is in use by someone else, CKERR is called.

DSOPEN is called to perform a VERIFY operation on the
catalog, the high used RBA of the catalog is adjusted if
necessary.

UGPOOL is issued to obtain storage for the CIXLT table.

IDCRS01, IDCRS0S, IDCRS06

Procedures: INIT, RECMGMT, WFDEF, DSOPEN,
CKERR

3 RECMGMT is called (with the GETRCD option) to get
control interval zero (Cl=0) from the catalog. The high
allocation data Cl is computed (HARBADS/512) and
saved in RSCAHACL

The primary and secondary extents of the work file are
computed as follows:

Primary = no. of records currently allocated in the
catalog.

Secondary = (MAXCI*2 - primary) + 125
126

where MAXCI = Largest CI number possible for a
catalog.

DSOPEN is called to open the catalog into which the
work file is to be defined.

The WFDEF procedure is called to define the work file. If
it is found that the work file is defined in the catalog being
reset, CKERR is called.

DSOPEN is now called to open the work file.

IDCRSO01, IDCRS05, IDCRS06
Procedures: INIT, CKERR, CATINIT
4 The RESVOL table is constructed consisting of an entry

for each CRA volume supplied by the invoker of
RESETCAT with the CRAFILES or CRAVOLUMES
parameter. Each entry consists of fields for volume serial
number, device type, system logical unit (CRAVOLUMES
only), and the file name of the DLBL statement
(CRAFILES only). A pointer, RSVOLALL points to the
first entry in the table and each entry is chained to the
next. A flag indicates the last ‘ALL’ entry which is
followed by the ‘NONE’ entries.

If CRAFILES is specified, the volume serial number of
the CRA is obtained via the UIOINFO macro. If
CRAVOLUMES is specified, the volume serial number of
the CRA is contained in the subparameters.The volume
serial number of the CRA is inserted in RESVOL entry. If
the catalog volume serial number is specified, its RESVOL
entry is positioned as the first entry in the list.

If no CRA is specified with the ALL subparameter,
CKERR is called to flag an error condition.

CATINIT is called to build the CIXLT table. The CIXLT
maps the catalog control intervals to the work file relative
record numbers. There is an entry in CIXLT for each
catalog extent.

I Jo Auiadold — [SHNBIAL PIsUddT

-t

91807 §991AI3S POYIOI $5300V IWVSA/HSA

INPUT

Register 1

Diagram 3.15.2. RESETCAT FSR — Copy Catalog to Work File

From Diagram 3.15

PROCESSING

CI tGDT

VSAM
Catalog

CRA
Volumes

\ Work

File

§

VSAM
Catalog
to be reset

)7l

RESETCAT
Work
Areas

Checks catalog extents.
Processes high key range extents.

Processes low key range extents - - formatted
records.

. Processes unformatted records.

Closes the work file.

OUTPUT

Initial loading of work file.

WHI Jo Ayaadoig — [SHIEIA PIsuaIry

7 10vdey)

uoneiedQ Jo poyIop

SP1-2

Extended Description for Diagram 3.15.2

IDCRSO01
Procedures: COPYCAT

1 The COPYCAT procedure obtains each entry from
CIXLT and examines it to see if the first control interval
number in the entry is greater than the catalog low key
range (LKR) high allocated control interval. If so, it
indicates COPYCAT processing is complete and control
returns to the main procedure, IDCRSOI.

Another test is made to see if all 127 entries have been
processed, if so, control returns to main line IDCRS01

processing.

2 Ifthe CIXLT entry represents a high key range (HKR)
extent, a flag is set indicating that this is an “invalid”
record in the work file. A dummy record is formatted and
written to the work file as follows:

¢ If the relative record number (RRN) is greater than the
high formatted relative record number in the work file,
RECMGMT (ADDRCD) is called to add the record to
the work file.

o Ifthe RRN is not greater, RECMGMT (UPDRCD) is
called to update the record in the work file.

3 If the CIXLT entry represents a LKR extent, the record is
processed as a formatted record. If the CI of the record is
less than the next free unformatted catalog Cl, then
GETRCD of the RECMGMT procedure is called to read
the record from the catalog. The catalog record is moved
to the work file buffer. If the record happens to be a free
record (not currently used in the catalog), it is placed on
the available chain. The count of available records is
incremented. If it is not a free record and if it is a volume
record, then a VOLSERTB entry consisting of volume
serial number and CI number is formatted. BLDVLST is
called to add this entry to the VOLSERTB table. In order
to check to see if the record is also on a CRA specified for
reset, SCNRLST is called. If it is a CRA record, a flag is
set indicating that the record is to be deleted. The record is
placed on the available chain and the available count is
incremented. LKR records are written to the work file as
follows:

¢ Ifthe RRN is greater than the high formatted RRN,
ADDRCD is called to add the record to the work file.

o ifthe RRN is not greater, then UPDRCD is called to
update the record in the work file.

4 If the ClI of the record is equal to or greater than the next
free unformatted Cl in the catalog, then the “update
catalog” flag is set in the work file processing field and a

dummy free record is formatted. The dummy record is
placed on the available chain and the available count is
incremented. If the CI of the record is equal to or greater
than the End of Volume unformatted free CI, then the
“invalid” flag is set in the work file processing field. A
dummy record is formatted. The unformatted dummy
record is written to the work file as follows:

e Ifthe RRN is greater than the high formatted RRN,
then ADDRCD is called to add the record to the work
file.

e Ifthe RRNis not greater, UPDRCD is called to
update the record in the work file.

IDCRS01, IDCRS06
Procedures: COPYCAT, DSCLOSE
8 The “work file created” flag is tested; if it is off,

DSCLOSE is called to close the work file.

W1 Jo Auradoag — [Bp2)8] pasuadf]

Wwi-T

918077 $991AIOS POYIOI 85900V IWVSA/ASA

Diagram 3.15.3. RESETCAT FSR — Merge CRA(s) to the Work File

INPUT

From Diagram 3.15

PROCESSING

OUTPUT

D

CRA
Volumes

RESETCAT
Work Areas

1. Opens the work file.

Steps 2 through 5 are executed repeatedly for
each entry in the RESVOL Table.

2 Opens the CRA.

K] Merges CRA records into work file.
4. Closes the CRA.
5

Performs volume consistency check.

Work file with merged CRA records.

NI Jo A13ado1g — [BLIBIBIAl PISUIINT

7 wdeyD

uopwisdQ Jo popopy

-z

Extended Description of Diagram 3.15.3

IDCRSO01, IDCRS06
Procedures: MERGECRA, DSOPEN

1 The “work file open” flag is tested to see if the work file is
already open, if off, DSOPEN is called to open the work
file.

Steps 2 through 5 form an inerative loop. These four steps
are executed repeatedly for each entry in the RESVOL
table.

2 The SCNRLST procedure is called to obtain an entry
from the RESVOL table indicating the volume serial
number of a CRA specified for the reset operation. If
SCNRLST finds that all entries are processed and if the
“termination” flag is on, CKERR is called to print an
error message and terminate processing. If SCNRLST
successfully returns a CRA volume serial number,
DSOPEN is called to open this CRA. If open fails, flags
are set to terminate processing and to bypass the volume
consistency check. If the open is successful, RECMGMT
(with GETRCD option) is called to read the CRA cluster
record (CI=2). If the CRA entry name is not for the
catalog being reset, then CKERR is called to print an error
message. Flags are set to terminate processing and to
bypass the volume consistency check.

IDCRS01
Procedures: MERGECRA, PROCCRA

3 PROCCRA is called to merge CRA records into the work
file.

Beginning with the volume record, each CRA record is
read and merged. The CIN of the volume record is
updated/added to VOLSERTSB, so that Volume records
may be located later. The work file record corresponding
to the catalog control interval (CATCI) of each CRA
record (except CRA free records) is read. If the work file
record is free or available, the CRA record replaces it. If
the work file record has already been replaced or if the
work file record does not belong to a reset CRA, the CRA
record is written to the overflow area and maintained on
the duplicate chain for that CATCL. Records written to the
overflow or “invalid” areas of the work file are placed on
the “reassign chain” and a “reassign count” is kept for
these records. Each time a free or available work file
record is replaced, the “available” count is decremented.

IDCRSO01, IDCRS06
Procedures: MERGECRA, DSCLOSE

4 Ifthe “CRA open ” flag is set, DSCLOSE is called to close
the CRA. If close fails, flags are set to terminate processing
and to bypass the volume consistency check.

IDCRSO0!L, IDCRS03
Procedures: MERGECRA, VOLCHK, HVTOC

S If the flag to bypass the volume consistency check is not
on, VOLCHK is called to perform the volume consistency
check.

VOLCHK ensures that there is a one to one
correspondence between each VSAM data space on a
volume (format 1 label in the VTOC) and each space
header in the volume record for that volume. This is done
by calling the HVTOC procedure to read each label in the
VTOC (through an interface with the common VTOC
handler) and then comparing the VSAM-owned label with
the corresponding volume record space header. If a format
1 label does not have a corresponding space header, the
label is scratched by calling HVTOC. If a space header
refers to a non-existent format 1 label, the space header is
deleted. If the extents in a space header are not identical to
the extents in the corresponding format 1 label, the extents
in the space header are corrected.

4] Jo Auadoid — [eHaE pasuady

1 4 Al 4

918077 $901AI08 POYN 85930V WVSA/TSA

INPUT

Register 1

Diagram 3.15.3.1 RESETCAT FSR - Common VTOC Handler Functions

From Diagram 3.156.3

PROCESSING

>l

New name for
VTOC label
(RENAME
only)

VTOC label to
be renamed or
scratched

Volume LUB
(OPEN only)

Volume serial
number (OPEN
only)

Name of
function to
be performed

L

1. Calls IJJHCVHO to perform the required
common VTOC handler function.

2. Returns.

1

OUTPUT

Appropriate
CVH

function
performed

JAH] Jo A130do1g — [EHIEIN PISUSdNY

uonyeied(Jo ol Z sndeyD

6v1-1

Extended Description for Diagram 3.15.3.1
IDCRSO7
Procedure: HYTOC

1 RESETCAT calls the HVTOC procedure to perform all
common VTOC handler (CVH) functions. After
examining the name of the function to be performed,
HVTOC issues the appropriate CVH macro (OVTOC,
CVTOC or various forms of PVTOC). This macro builds
the CVH parameter list (IJJHCPL) and calls the topmost
CVH module (1}JJHCVHO).

Valid names of HVTOC functions to be performed are as
follows:

CLOSE - close the VTOC

OPEND - open the VTOC

RADDR - read label from specified address
RENME - rename the label

RFMT4 - read the format-4 VTOC label
RNEXT - read the next VTOC label
SCRTH - scratch a label

WADDR - write label to specified address

For more information on the CVH parameter list and the
VSE CVH routines that perform the above functions, see
DOS/VSE Fixed Block Architecture Logical IOCS.

W4l Jo Apadorg — [yl posuady

0s1-¢

21807 8901A198 POYIOPN 55900V INVSA/FSA

Diagram 3.15.4. RESETCAT FSR — Reassign CI Numbers

INPUT

Work
File

VSAM

Catalog
to be reset

RESETCAT
Work
Areas

From Diagram 3.15

PROCESSING

-

Reads a work file record to be reassigned.

Finds an available record.

Updates available record and writes to work
file.

Processes duplicate chain.

OUTPUT

Work
File

CINs in work file reassigned

€1 Jo f1adorg — [BHIEI PISUOIN]

T Indvyd

.
.

uonwed0 JO POYISIN

161-1

Extended Description of Diagram 3.15.4

IDCRSO01, IDCRS06
Procedures: REASSIGN, RECMGMT

1

Before it reassigns any records, the REASSIGN procedure
determines whether any records need to be reassigned. If
the reassign count is zero, it means no records need to be
reassigned. Control is returned to mainline IDCRS0!
processing. Control is also returned if all records on the
reassign chain have been read.

RECMGMT (with GETRCD option) is called to read the
next record on the reassigning chain. The reassign chain
pointer is saved.

IDCRSO01, IDCRS06
Procedures: REASSIGN, RECMGMT

2

The next record on the available chain is read via
GETRCD. The available chain pointer is saved. If the
“replaced from CRA" flag is set, then this record cannot
be used, so the next record on the available chain is read
until an available record is found.

IDCRSO1, IDCRS06
Procedures: REASSIGN, ADDUPCR, RECMGMT

3

The reassign record is moved to the available record
buffer. The reassign DUPPTR is copied to the available
DUPPTR. Two flags, “replaced from CRA” and “update
catalog”, are set. ADDUPCR procedure is called to
perform CRA update processing. A flag indicating that the
record is reassigned is set.

RECMGMT (with the UPDRCD option) is called to write
the update available record to the work file.

IDCRSO01, IDCRS06
Procedures: REASSIGN, RECMGMT

4

The relative record number (RRN) of the reassigned
record is saved. RECMGMT (GETRCD) is called to read
the record pointed to by the catalog control interval of the
reassigned record or the DUPPTR. If the DUPPTR does
not point to the RRN of the reassigned record, then the
next record on the duplicate record chain is read. When
the record is found, the DUPPTR is updated to point to
the CI of the available record. RECMGMT (UPDRCD) is
called to write the record back to the work file.

WHI Jo Ayiadoid — [spIa)Bpy pasuadyy

(47 Bl 4

9180°7 $30[AJ0S POYIOI #5900V WVSA/HSA

Diagram 3.15.5 RESETCAT FSR — Check Associations

INPUT

From Diagram 3.15

PROCESSING

OUTPUT

Work
File

RESETCAT
Work
Areas

:l:(>

1. Processes all LKR records in the work file:
a. Reads a work file record.

b. Calls PROCTYPE for CRA records and
entry types C, B, A, U or X.

c. Verifies data set directories for D and 1
entry types.

2. Processes all reset volumes. For each reset
volume:

a. Reads the volume record from the work
file.

b. Calls PROCVOL to process the volume
record.

Work
File

W4 Jo Ayaadord — I pesuady]

uoneedo Jo POYRIN (Z sadvyd

€61-7

Extended Description for Diagram 3.15.5
IDCRSO02, IDCRS06

Procedures: ASSOC, RECMGMT, PROCTYPE,
VERDSDIR

1 a. Each work file record is read sequentially up to the
high allocated catalog control interval. Each record is
checked to see if the “associations checked” flag is on.
If it is, control goes to step 2.

b. If the flag is not on and if the record is from a CRA
being reset, then for each C,B,A,U or X record, the
PROCTYPE procedure is called to process control
interval numbers.

For a given catalog entry type, PROCTYPE controls
the process of scanning a catalog record for control
interval numbers. It determines which other records
which along with the given record are a part of a set of
records. It verifies all control interval numbers in the
entire set of records. Control interval numbers are also
corrected if necessary.

¢. VERDSDIR is called to check data set directories if
the entry type is D or I. The VERDSDIR procedure
verifies the data set directory entries for VSAM data
sets which are not on reset volumes. It specifically
looks for multivolume VSAM data sets where the
primary volume is not a reset volume but a secondary
volume is a reset volume. VERDSDIR changes work
file records to correct error conditions, namely it marks
a volume group occurrence (VGO) unusable when no
data set directory exists for that data set.

IDCRS02, IDCRS06
Procedures: ASSOC, RECMGMT

2 a. For each reset volume, the volume record is read from
the work file via RECMGMT (GETRCD).

Procedures: ASSOC, RECMGMT, PROCTYPE,
VERDSDIR

b. The PROCVOL procedure is called to process the
volume record.

PROCYVOL controls the checking of space conflicts for
each volume record. PROCVOL calls PROCTYPE to
find and verify each control number in a volume
record and its extensions. PROCVOL verifies and, if
necessary, corrects the volume space bit map.

E] Jo A11adoig — [epaaIspy pasuadf]

ps1-T

91807 5901A305 POYIOI §5900Y WVSA/HSA

Diagram 3.15.6 RESETCAT FSR — Update the Catalog

INPUT

From Diagram 3.15
PROCESSING

OuUTPUT

VSAM

Catalog
to be reset

RESETCAT
Work
Areas

—

had

N o v o

. Reads a work file record.

Reads a catalog record.

Writes a record to the catalog low key range
(LKR) and rebuilds the free chain.

Processes true names.
Writes a record to the work file.
Renames duplicate true names.

Updates catalog control record (CCR)

VSAM

Catalog
to be reset

Records added and/or deleted from
the catalog.

W41 Jo f1adoig — [BHIBI PISTI]

T dey)

uonwIedQ JO pogIeI

ss1-T

Extended Description for Diagram 3.15.6 catalog), then the true name is deleted from the catalog
HKR by calling DELTN, provided the CIN is correct.
l IDCRS0S, IDCRS06, IDCRS07

If the work file record has a true name and the catalog

Procedures: UPDCAT, CKERR, RECMGMT record does not (or has a true name different from the

1 UPDCAT ensures that all CRAs required for updating are work file), ADDTN is called to write a true name record.
available by checking the “update CRA unavailable” flag If ADDTN_ indicates a duplicate record exists, the work
(RSBADVOL). If the check shows that a CRA is not file record is placed on the true name chain for a future
available, the CKERR routine is called to print a message rename operation (see Step 6). The “write work file
and terminate RESETCAT processing. (RSUCTWWF) flag is set.

Each catalog extent in the work file is processed by
checking each entry in CIXLT. If the extent represents a IDCRS05, IDCRS06, IDCRSO7

HKR, it is ignored. Only LKR extents are considered. For Procedures: UPDAT, SCNLST, RECMGMT, CRAUPCHN
each LKR extent, RECMGMT (GETRCD) is called to 5 UPDCAT checks to see if the “update CRA” flag

read a work file LKR record. (RSUPCRA) is on. If it is, the SCNRLST routine is called

to scan the RESVOL table for the CRA volume serial
‘ IDCRS06, IDCRS07 number. Next, the work file record is placed on the CRA
roced , RECMGMT, ENTNM update chain for this CRA volume by the CRAUPCHN
: E wes:‘UPl‘)‘(;:\T R : Gdh:h E:d:l Ctla(l flag procedure. The “write work file” flag is set.
or each work file record read the “update catalog™ . . .
(RSWUPCAT) is tested and if the flag indicates the If the “write work file” flag (RSUCTWWF)ison,
catalog should be updated, the corresponding catalog UPDRCD is called to update the work file record with the
record is read via the GETRCD routine. true name chain pointer and/ or the CRA update pointer.
| iDcrsos, iDcrSer IDCRS06, IDCRS07
Procedures: UPDCAT, ADDUPCR, RECMGMT Procedures: UPDCAT, RECMGMT, RENAMEP, ADDTN
3 Afer each catalog record is read, the “association 6 Afterall the ca:ta!og LKR extents hav? been processed, the
checked” flag (RSWASSCK) is tested. If it is not on, the true name chau} is checked. If the cgmm is not empty, the
ADDUPCR routine is called to prepare for update CRA GETRCD routine of RECMGMT is called to read a work
processing. The ENTNMCK procedure is called to file record on the true name chain. The ADDTN routine is
determine if the catalog record has a true name; if there is called to add the true name to the catalog HKR. Ifa
a true name, a flag is set and the true name is saved. Next, duplicate name is detected, then the RENAMEP
ENTNMCK is called again to see if the work file record procedure is called to assign a new name to the true name.
has a true name. If it does, a flag is set.
If the record is free or the “association checked” flag is off, IDCRS06, IDCRS07
a deleted free work file record is formatted in the catalog Procedures: UPDCAT, RECMGMT, UPDCCR
buffer and placed on the free chain, otherwise the work . .
file record is moved to the catalog LKR buffer. If the 7 The GETRCD routine of RECMGMT is called to read

the CCR (control interval number 3). The following items

control interval number of the record is greater than or in the CCR are updated by UPDCCR:

equal to the first unformatted free control interval,

RECMGMT (ADDRCD) is called to add the record to the o First unformatted free record

LKR. If the CIN is less than the first unformatted free

CIN, the UPDRCD option of RECMGMT is called to ® Countof deleted free records

update the catalog record. * Control interval number of first deleted free record

* High RBA maintained in the CCR

ID , 1 S06,
I CRS05, IDCR IDCRS07 After the above items are changed, RECMGMT (with
Procedures: UPDCAT, RECMGMT, DELTN, ADDTN UPDRCD option) is called to write the updated CCR

4 If the catalog record has a true name and the work file back to the catalog.
record does not (or has a true name different from the

Wl jo Huadoig — pepayepy pesusdyy

9s1-T

018077 5901A19§ POYIO 55900V WVSA/HSA

Diagram 3.15.7 RESETCAT FSR — Updates the CRA

INPUT

RESETCAT
Work Areas

and Control
Blocks

From Diagram 3.15

PROCESSING

—

Updates the CRA if necessary.
a. Opens the CRA.

b. Reads a work file record.

c. Writes a CRA record.

d. Closes the CRA.

OUTPUT

CRA Volumes updated if necessary.

JNA] JO £329d01] — [BLIBIA PISUINT

Extended Description for Diagram 3.15.7
IDCRSO01, IDCRS05, IDCRS06

Procedures: UPDCRA, SCNRLST, RECMGMT, CKERR
1 a. The SCNRLST routine is called to obtain a CRA

7 dey)

uonesadQ jo popep !

Ls1-T

volume serial number entry from the RESVOL table.
A check is made to see if this CRA needs to be updated
by checking if the CRA update chain is empty. If the
open is successful, the “CRA open” flag is set, if not,
the “termination” flag is set.

. Each record in the CRA update chain is read from the

work file RECMGMT (GETRCD). The control
interval number of the next record in the chain is
saved. If the record just read happens to be a free
record, the CRA CCR record needs to be updated. If
the CCR has not been read already, RECMGMT
(GETRCD) is called to read it. The deleted free record
count in the CCR is incremented, and the record is
placed on the CRA free chain.

. The record read from the work file is moved to the

CRA buffer. Control interval information is inserted
and RECMGMT (UPDRCD) is called to write an
updated record in the CRA.

After all records in the CRA update chain have been
processed for a specific CRA, RECMGMT
(UPDRCD) is called to write the updated CCR record
back to the CRA.

. DSCLOSE is called to close the CRA. If the close fails,

the “termination” flag is checked. If it is set, CKERR
is called to print an error message and terminate
RESETCAT processing. If the termination flag is not
set, control returns to the caller.

Wl Jo fiadosd — [BHAIBI Pasuad]

8s1-2

91807 $01A10§ POMISI 55900V IWVSA/ISA

Diagram 3.16. CANCEL FSR

INPUT

Register 1

4 GDT
4 FDT
4 LAsTCC

LY

FDT
-t ‘JOB’ keyword
‘STEP’ keyword

EXECUTIVE
PROCESSING OUTPUT

1. Set Access Method Services last-condi- N

tion code to 16 (termination). —_— A LASTCC

| 16

2. Issue normal command termination

message but with condition code set

to 16.
3. In the CANCEL JOB situation, issue

the UABORT macro with NODUMP

indicator.
4. Inthe CANCEL STEP situation, return Register 15

to the EXECUTIVE with the termina-
tion code in LASTCC.

}

EXECUTIVE

(Cancel ABORT code)

WA Jo f1adorg — [SHIB PIsuad|]

uoneiedQ Jo poqp 7 Jndeyd

651-¢

Extended Description for Diagram 3.16
IDCCLO1
1 Set the last-condition-code to 16.

IDCCLO1
Procedure: IDCCLO!

2 The message IDCCO0I1 is issued. The condition code is set
to 16.

IDCCLO1
Procedure: IDCCLO1

3 The UABORT code is 76. The value is negative to signal
UABORT that no PDUMP is needed.

If Access Method Services was called as a subroutine,
UABORT returns control to the caller of Access Method
Services witha value of 16 in register 15.

If Access Method Services was not called as a subroutine,
SVCO06 is issued and the job stream is flushed to the next
“/&” or “//JOB” card.

IDCCLO1 Procedure: IDCCLOI

4 If Access Method Services was called as a subroutine,
UABORT returns control to the caller of Access Method
Services with a value of 16 in register 15.

If Access Method Services was not called as a subroutine,
the job stream is flushed to EOF by the Access Method
Services Executive.

W Jo Ayiddorg — [eEdeN pasuady]

Licensed Material — Property of IBM

2-160 VSE/VSAM Access Method Services Logic

uonwIed(JO PO T 30dVYD

191-7

Termination Visual Table of Contents

4.1

Executive
Controlled
Termination

4.2

Processor
Termination

4.2.1

1/0 Adapter
Termination
UIOTERM
Macro

NG Jo AJiodoid — [SHIBIA PISUINT

(41844

o1f0] $301AI95 POYIOI #5900V INVSA/ASA

Diagram 4.1. Executive Controlled Termination

INPUT

MAXCC

From Reader/Interpreter (R/1) or an FSR

PROCESSING

L

Register 1

\ GDT

V FDT

{ FDTID

} maxcc

} LASTCC

| FSR Name

Register 1

} DT

b DT

} FSR Code

SYSIPT

—

Updates MAXCC.

If entrance is from R/I, processing
continues with Step 2; if entrance
is from an FSR, processing
continues with Step 3.

MAXCC

OUTPUT

ZIZZZZ7ZZI

Determines if FSR is to be

calied.

Releases FDT.

Register |

]

£

{ GoT

{ FDT

Sets defaults in Print Control

Tables.

Determines if processor is to be <

terminated.
See Diagram ———| 4.2

GDT

GDTTPH

PCT |

NG J0 Anadosg — [epaIBly pesuddy]

uope1ed0 Jo PORIO T dvyD

£91-7

Extended Description for Diagram 4.1

IDCEXO1
Procedure: MAIN

1 IDCEXO01 compares the LASTCC code returned by the
FSR or the R/I with MAXCC and puts the greater
number in MAXCC. If control is from the R/I, MAXCC
has already been properly set by IDCRIOL. If entrance is
from the R/, processing continues with step 2; if entrance
is from an FSR, processing continues with step 3.

IDCEXo01
Procedure: MAIN

2 If MAXCC is less than 16 or an end-of-file has not been
reached on SYSIPT, IDCEXO1 gives control to an FSR.
The R/1 passes the FSR name to IDCEXO01. If MAXCC is
greater than or equal to 16 or an end-of-file has been
reached on SYSIPT, processing continues with step 5.

IDCEX01
Procedure: CALLFSR

3 IDCEXOI releases storage for the FDT using a UFPOOL
macro. The pool identification is EX00, and the FDT is
the only data in the pool.

IDCEX01
Procedure: CALLFSR

4 IDCEXOI sets the Print Control Table to Access Method
Services default values by issuing a URESET macro
instruction.

IDCEX01
Procedure: MAIN

§ The processor has terminated if one of the following
conditions is met:

¢ The R/I has detected end-of-file on SYSIPT. In this
case, the R/I puts a nonzero value in Register 15.

¢ An error has occurred so that processing cannot
continue, and MAXCC contains a value greater than
orequal to 16.

If one of these conditions is met, control is given to
Processor Termination, Diagram 4.2. If neither of the two
conditions is met, control is given to the R/I, Diagram 2.0,
to obtain the next command.

Wil Jo Auedorg — [epaIvy pesuady]

»wI-7

9180 S301AI0S POYIO S5900V INVSA/ASA

Diagram 4.2. Processor Termination

From Diagram 4.1

INPUT PROCESSING OUTPUT

Maximum Processor
MAXCC Completion Code

— . .
l 1 _:> 1. Writes maximum processor
GDT completion code. ——

GDTTPH
(GDTDBH GDT
Debugging Aids :_—_—> 2. Terminates TEST options. _:>
Historical Data Area GDTPRM
Invoker’s
Parameter List

PCT 1 PCT 2 ::> 3. Terminates Text Processor.

: Page Number

SYSIPT SYSLST e . e
Control Blocks Control Blocks _:> 4. Terminates 1/0 Adapter. __:> >

See Diagram — 1421

5. Terminates System Adapter. >t Re%te”s———l

WG] Jo f11adoig — [EHIIEIA PISUIDNT

uoneiedQ jo poqiey :z Jadey)

$91-T

Extended Description for Diagram 4.2

IDCEXO03
Procedure: IDCEX03

1 1DCEXO03 prints a message of the maximum processor
condition code, MAXCC by using a UPRINT macro.

IDCEX03
Procedure: IDCEX03

2 If TEST options were specified on a PARM command or
on the EXEC statement that invoked Access Method
Services, IDCPMOI has loaded the Debug Module,
IDCDBO1. IDCEX03 sets GDTDBG, the address of the
Debug Module, to zero after deleting the Debug Module
by issuing the UDELETE macro. The address of the
Debugging Aids Historical Data Area is in GDTDBH.
IDCEXO3 frees the debugging aids historical data area
used by the UDUMP macro. It also sets GDTDBH to zero
after the area is freed.

IDCEX03
Procedures: IDCEX03, SCANPARM

3 IDCEXO3 terminates the Text Processor by issuing a
URESET macro. If the invoker of Access Method Services
wants the last page number returned, IDCEX03 passes the
address of the invoker’s page number field to the
URESET macro.

IDCEX03
Procedure: IDCEX03

4 1DCEXO03 terminates the 1/0 Adapter by issuing a
UIOTERM macro. Diagram 4.2.1 shows I/0 Adapter
termination in detail.

IDCSAO(1
Procedure: IDCSAO!

§ IDCSAOI terminates the System Adapter by freeing the
storage for IDCSA02, IDCSAO03, IDCTPOI, and
IDCIOO!. The Storage Table, AUTOTBL, contains the
storage addresses for IDCSAOQ2, IDCTPO1, and IDCIOOI.
The GDT contains the storage address for IDCSA03.
IDCSAO!1 also frees the Inter-Module-Trace Table, the
Intra-Module-Trace Table, the System Adapter Historical
Data Area, and the GDT. When the System Adapter
receives control, Register 15 contains MAXCC. IDCEX01
copied MAXCC into Register 15 for the Access Method
Services invoker. Control returns to the invoker.

W1 Jo Kuradoig — [SLIIBIAl PIsUd]

9917

913077 $30[AJ0§ POV 99300V WVSA/ASA

Diagram 4.2.1. 1/O Adapter Termination — UIOTERM Macro

INPUT

From Diagram 4.2

PROCESSING

Register 1

]

LT

1

Open Data Sets

ODATA

OCSTR

—

Searches IOCSTR chain for
open data sets.

Tests for externally controlled
data set.

Closes data sets.

e Processes error codes.
o Frees data set storage.
¢ Removes IOCSTR.

Frees 1/0 Adapter storage.

OUTPUT

OCARRAY

|

Closed Data Sets

Register 15

r

WEI Jo A110doigd — [V PesEadfT

uone1sdQ Jo POYRW 7 191dvED

L91-¢

Extended Description for Diagram 4.2.1
IDCIO001
Procedure: IDCIOO!

1 IDCIOO01 sets up a loop to close all open data sets, and sets
the close all option in OCARRAY that permits SYSIPT
and SYSLST to be closed.

IDCIO02
Procedure: CLOSERTN

2 CLOSERTN examines the IOCSTR chain for the address
of IOCSTRs to close. For a nonVSAM data set,
CLOSERTN sets the address of a SYNAD routine in the
DCB to zero and puts the address of a CLOSE exit routine
in the DCB. If the data set is not open, IOCFLGOP = |,
CLOSERTN determines if it is externally controlled. If so,
CLOSERTN passes arguments to the external routine.
This check is made for up to the first four IOCSTRs in the
10CSTR chain. Normally, only the SYSIPT and SYSLST
IOCSTRs are in the chain at termination.

IDCIO02
Procedure: CLOSERTN

3 CLOSERTN issues a CLOSE macro with the address of
up to four DCBs or ACBs. If an ABEND occurs during
the closing of a nonVSAM data set, the operating system
close routine gives control to a CLOSE exit routine which
sets a flag in IOCSTRN that will cause the I/0 Adapter to
print an error message. The message is written after
control returns from the CLOSE SVC. Closing continues
with the next data set. The following steps are performed
for each data set:

¢ For VSAM data sets, CLOSERTN issues a SHOWCB
macro to return the ACB error code. If the ACB error
code is not zero, BLDOCMSG writes a message.
However, since SYSLST is the first data set closed,
BLDOCMSG issues a UABORT macro. No test is
made for nonVSAM data sets.

® For VSAM data sets, CLOSERTN checks the
I0CSEX to see if there are any VSAM control blocks
to free. When any length of the ACB, RPL, or EXLST
is nonzero, ENVFREE issues a FREEMAIN macro to
release the contro! block. For open nonVSAM data
sets, ENVFREE issues a FREEVIS to free any buffers
obtained by the operating system open routines.

¢ CLOSERTN saves the address of the closed data set’s
I0CSTR and the address of the next IOCSTR in the
chain. CLOSERTN issues a UFPOOL macro to free

storage obtained for the closed data set. CLOSERTN
searches the IOCSTR chain until the IOCSTR that
points to the IOCSTR of the closed data set is found.
CLOSERTN replaces the address of the closed data
set’s IOCSTR with the address of the next IOCSTR in
the chain.

IDCIO01
Procedure: IDCIOCL
4 Processing returns to step 1 until all data sets have been

closed. When all data sets are closed, the IOCSTR chain
no longer exists. CLOSERTN issues a UFPOOL macro to
free storage obtained by the 1/O Adapter. The only
storage remaining to be freed is IODATA and the message
area for VSAM data sets. IDCIOCL puts a return code in
Register 15. Control then returns to the module that issued
the UIOTERM macro.

W4l Jo Auadoad — [epIa)epy pasuady]

Licensed Material — Property of IBM

2-168 VSE/VSAM Access Method Services Logic

uonesedQ Jo poqi (7 3ndvy)

691-T

System Adapter Visual Table of Contents

5.0

System Adapter

Overview

5.1 5.2 5.3 54 5.5 5.6 5.7
Catalog Error Processor Storage Time of Parameter Resource
Management Handling Control Management Day Interrogation Control
(No Diagram) (No Diagram) (No Diagram) (No Diagram) (No Diagram) (No Diagram) (No Diagram)

5.1.1 5.5.1 5.71 5.7.2
UCATLG UTIME UENQ UDEQ
5.2.1 5.2.2 56.1 56.2
UABORT USNAP ULISTLN USAVERC
5.3.1 5.3.2 5.3.3
UCALL ULOAD UDELETE
5.4.1 5.4.2 54.3 544 5.4.5 5.4.6
UGSPACE UFSPACE UGPOOL UFPOOL PROLOG UEPIL

W1 Jo Ayradoid — [N pasuady]

oL1-¢

Diagram 5.0. System Adapter Overview

From Module
Issuing Umacro

INPUT PROCESSING OUTPUT

"1 SIOTAIRS POYISP 55900V WVSA/HSA

o130

Register 1] Register 1
£ I ;J——_—> 1. Issues macro to perform request: >

System Macro

Umacro
Argument List

Argument List

a. Catalog management.
See Diagram————5.1.1

b. Error handling.

See Diagrams: 321

5.2.2

c. Processor control.
See Diagrams

d. Storage management.
See Diagrams

e I ng
=] i {
e v (I Ry

e. Time of day.
See Diagram———5.5.1

f. Parameter interrogation.

See Diagrams——— 5.6.2

g. Resource Control
See Diagrams

oo >
S &
D = _—

Register 15

2. Sets return code. “> [

A1 Jo Ayiadoid — [BIIIEA PasUddN]

uopeedQ Jo poqiely 1z 30dey)

L=t

Extended Description for Diagram 5.0

IDCSAO1, IDCSA02, IDCSA03, IDCSAO0S, IDCSA08

Procedures: IDCSAO1, IDCSAQ2, IDCSA03, IDCSA0S,
IDCSA08

1 The System Adapter and the I/O Adapter insulate the rest
of the processor from the operating system. Whenever the
processor wants a service that requires an operating system
dependent macro, like GETVIS, the processor calls the
System Adapter with a Umacro. Different versions of the
System Adapter and 1/0 Adapter supply code for
different operating systems. Except for the System
Adapter and the 1/0 Adapter, the Access Method Services
modules are oblivious to the operating system. System
macros in the listings indicate the operating system the
listing represents.

Types of services provided by the System Adapter:

a. Whenever information is to be added, deleted, or
retrieved from the VSAM catalog, a UCATLG macro
is issued. Although the VSAM CATLG macro has the
same parameters in OS/VS and VSE, the general code
is different. The VSAM CATLG macro must be in a
program that is assembled under the right operating
system, Diagram 5.1.1 shows the UCATLG macro in
detail.

b. Error handling is accomplished with UABORT and
USNAP. For errors, when processing cannot continue,
a UABORT is issued to print an error message and a
dump and return control to the operating system. If the
error condition is due to no space available, only an
error message is printed; no dump is printed. For
debugging information, a USNAP is issued to print the
partition and return control to the Access Method
Services module that issued the USNAP. Diagrams
5.2.1 and 5.2.2 show the UABORT and USNAP
macros in detail.

c. Inter-processor module control is accomplished with
UCALL and ULOAD. UCALL loads a module and
gives control to it. It is used to transfer control from
one module to another within Access Method Services.
ULOAD just loads a module. It is mainly used for
non-executable modules like static text structures.
UDELETE does not take any action in DOS.
Diagrams 5.3.1 through 5.3.3 show the UCALL,
ULOAD, and UDELETE macros in detail.

d. Storage management is performed with three types of
macros:

1. UGSPACE and UFSPACE, shown in Diagrams
54.1 and 54.2.

2. UGPOOL and UFPOOL, shown in Diagrams 5.4.3
and 5.44.

3. PROLOG and UEPIL, shown in Diagrams 5.4.5
and 5.4.6.

The first type is used to obtain large amounts of
storage. The caller must remember the address of the
storage, and must issue a UFSPACE to release the
storage.

The second type is used for small amounts of storage.
The caller does not need to remember the address of
each piece because all the pieces can be released with
one UFPOOL at the end of the program.

The third type is used to bypass PL/S-generated
GETMAIN and FREEMAIN macros. In a re-entrant
enviroment, PL/S generates a GETMAIN macro for
all data areas defined in the program, but a
GETMAIN doesn’t work on DOS. Each Access
Method Services routine includes code at the beginning
of the routine to replace the GETMAIN. This is the
PROLOG code. Control is transferred to the System
Adapter that issues the appropriate operating system
macro to obtain storage. Instead of issuing a PL/S
return statement, that uses FREEMAIN, all routines
issue 8 UEPIL macro. The UEPIL macro gives control
to the System Adapter. The System Adapter frees
storage and gives control to the routine that called the
routine that issued the UEPIL. The PL/S-generated
code to free storage and to return control is never
executed.

¢. The time of day is obtained with a UTIME macro,
shown in Diagram 5.5.1. Several data formats for the
time and date are allowed.

f. Parameter interrogation is performed by the ULISTLN
and the USAVERC macros, shown in Diagrams 5.6.1
and 5.6.2.

g. Control of a resource is achieved with a UENQ macro.
The resource may be released with a UDEQ macro.
See Diagrams 5.7.1 and 5.7.2.

At the end of most Umacros, a return code is put in
register 15, and control returns to the module that issued
the Umacro. The exceptions are UABORT, UCALL, and
UEPIL.

WHI Jo Ayiadoid — [epIayely posuddy]

wi-T

218077 $301A108 POYWI $8900Y IWVSA/HSA

Diagram 5.1.1. UCATLG Macro

INPUT

From Diagram 5.0

PROCESSING

Register 1

{ GpT

Catalog
Parameter List

VSAM
Catalog

SR

OUTPUT

1. Issues CATLG macro instruction.

2. Returns.

VSAM
Catalog

Register 15

W1 Jo Auiadord — [sposy pasuady]

uone1sdQ JO PO ‘T INdvD

€L1-T

Extended Description for Diagram 5.1.1
IDCSA02
Procedure: IDCSA02

1 IDCSAO2 passes the catalog parameter list to VSAM with
a CATLG macro.

IDCSAO02
Procedure: IDCSA02

2 IDCSAO2 puts the return code from VSAM in register 15
and returns control to the module that issued the
UCATLG macro.

NI Jo Kuradoag — pepiaregy pasuady]

-t

518077 $301AI§ POYIOI $3900Y NVSA/TSA

Diagram 5.2.1. UABORT Macro

INPUT

From Diagram 5.0

PROCESSING

OUTPUT

Register 15 j

I J

Register 14

UABORT
Entry Point

Register 13

GDT

|

GDTABH
GDTIOH

\a [ODATA

I0CSTR

1. Establishes addressability.

2. Prints message.

3- Prints full partition dump.

4. Closes all open data sets.

S. Returns to invoker of Access Method
Services.

Message

Full Partition
Dump

Register 15

| 16

W41 Jo A1adorg ~— [WEISIA posuddy]

uoneied(Jo POYION :Z I0deyd

SL1-7

Extended Description for Diagram 5.2.1

IDCSA01
Procedure: IDCSAO1

1 The UABORT routine uses the registers saved in the save
area pointed to by GDTABH to establish addressability.
This is done so the UABORT routine can access storage
areas obtained by the System Adapter and remain
reentrant.

IDCSAO01
Procedure: IDCSAO1

2 UABORT issues an EXCP to write & message to the
programmer.

IDCSAO1
Procedure: IDCSAO1

3 The UABORT routine issues the PDUMP macro and
takes a full partition dump unless the UABORT code
indicates a no-space-available condition, in which case no
dump is issued. The partition beginning and ending
addresses for the PDUMP are obtained by issuing the
EXTRACT macro. The UABORT code is in register 15 in
the dump.

If register 15 is negative, it is complemented and no
PDUMP is done. The CANCEL Access Method Services
Command requires this interface.

IDCSAO01
Procedure: IDCSAO1

4 GDTIOH provides the address of the IODATA. The
address of the IOCSTR chain is IODIOC. The UABORT
routine goes through the chain of IOCSTRs and tests each
one to’determine if it is open. The DTF, for nonVSAM
data sets, or the ACB, for VSAM data sets, is checked to
determine if the data set is open or closed. If the data set is
open, IDCSAOI issues a CLOSE macro to close the data
set. The processing continues until the end of the chain is
reached.

IDCSAO1
Procedure: IDCSAO1

§ If Access Method Services was invoked through job
control, IDCSAOI issues a CANCEL macro to cancel the
job. If Access Method Services was invoked through a
subroutine call, IDCSAO1 returns control to the invoker

with a code of 16 in register 15 to indicate that a
catastrophic error has occurred.

W1 Jo Auiadold — (el pasuady|

wi-T

91807 $991AI0§ POYIOI #8900V WYSA/ASA

Diagram 5.2.2 USNAP Macro

INPUT

From Diagram 5.0

PROCESSING

OUTPUT

Register 1

) 7>

§ GDT

Q

| 1dentification

1. Issues PDUMP macro instruction.

2. Retwurns.

Full Partition Dump

Identification

WA Jo Apadorg — [N pesuady]

uone10d0 Jo PO ' J0NdwTD

L=t

Extended Description for Diagram 5.2.2
IDCSA02
Procedure: IDCSA02

1 IDCSAO02 issues an EXTRACT macro to determine the
partition beginning and ending addresses for PDUMP.
IDCSAO1 then issues a PDUMP macro for a full partition
dump.

IDCSA02

Procedure: IDCSA02

2 IDCSAQ2 returns control to the module that issued the
USNAP macro.

Wdl Jo Aysadoid — LIS Pasuady]

8L1-T

91807 $901AJ98 POYIOIN 85900V WVSA/HSA

Diagram 5.3.1. UCALL Macro

INPUT

Register |

GDT

_JAddresses of data to be |

T[;assed to called moduI’eT'

[Name of Module to Call]
AUTOTBL

From Diagram 5.0

PROCESSING

1 « Issues CDLOAD macro.

2. Frees storage.

3. Rearranges arguments in calling

module.

4. Gives control to loaded module.

OUTPUT

Loaded Module

Register |

|

{ GDT

_JAddresses of data from]

’T'calling module

r

Register 15

W81 Jo Auadolg — [spoIejy POsURI]

uonwiedQ Jo popep 7 11dvyD

6L1-T

Extended Description for Diagram 5.3.1
IDCSA02

I Procedure: AMSSACL

1 IDCSAO02 loads the program named by the UCALL macro
with a CDLOAD macro.

IDCSA02

| Procedure: AMSSACL

2 IDCSAO02 checks the AUTOTBL for the number of
outstanding storage requests for IDCSA02. The number is
in the STATUS section for IDCSAQ2. If the number is
greater than one, storage other than the storage addressed
in the AUTOBL has been obtained for IDCSA02. The
amount of storage is in the PL/S generated variable
@SIZDATD and the address is in register 11. IDCSA02
issues a FREEVIS and the number in STATUS is
decreased by one. If the number in STATUS is one, a
FREEVIS is not issued because the storage is saved for the

next time IDCSAOQ?2 is given control. The status is reduced
by one.

IDCSAQ2
Procedure: AMSSACL

3 IDCSAO02 copies the address of the GDT from the first
parameter in the calling program to the second parameter
in the calling program. IDCSAO2 puts the address of the
second parameter in the calling program, now the address
of the GDT, in register 1. Register one now pointsto a
contiguous list of parameters for the called program.

IDCSA02

I Procedure: AMSSACL

4 IDCSAO2 puts the address of the called program into
register 15. IDCSAO2 restores all registers, except 1 and 15,
from the calling program’s save area and gives control to
the called program.

€I Jo Ky1ado1g — [SHII PISUIDN]

08i-2

918077 $30jAJ0§ POIOIN #8300V WVYSA/ASA

Diagram 5.3.2. ULOAD Macro

INPUT

Register 1

From Diagram 5.0

PROCESSING

(l]

{ GDT

Address of

Fullword
Fullword

1 J

Name of
Module to Load

1. Issues CDLOAD macro.

2. Puis loaded program address in
parameter list.

3. Returns.

OUTPUT

Loaded Module

Register |

]

C

tGDT

Address of
Loaded Module

Name of
Module 10 Load

WHI Jo Asadolrd — [WHIISI PasuadN]

uoneedQ Jo PORIOW T 301dvgD

181-T

Extended Description for Diagram 5.3.2
IDCSA02

| Procedure: AMSSALD

1 IDCSAO2 issues a CDLOAD macro using the name of the
program given to the ULOAD macro.

If the phase is not found, a UABORT is issued unless the
caller has requested return of control.

If the anchor table (created by CDLOAD for all models
loaded into this partition) is full:

The phase table in IDCSA04 is searched for this phase
name.

If the phase name is not found, UABORT(52) is
issued.

If the phase is found and if the phase is already loaded,
the normal exit is taken to the caller of ULOAD.

If the phase is not already loaded, a GETVIS is issued
for the amount of storage indicated in the phase table
for this phase. A GETVIS failure is an ABORT
condition.

The phase is loaded into the GETVIS area and an exit
is taken to the caller.

IDCSA02
Procedure: AMSSALD

2 IDCSAOQ2 puts the address of the loaded program in the
calling program at the address specified with the third
parameter.

IDCSA02

| Procedure: AMSSALD

3 IDCSAO02 returns control to the module that issued the
ULOAD macro.

€] Jo A)1odoig — repIepy posuadyy

T81-T

91807 590105 POYIO $5900Y IWVSA/ASA

Diagram 5.3.3. UDELETE Macro

INPUT

I'rom Diagram 5.0

PROCESSING

OUTPUT

Register 1

¢ GDT

Name of
Module to Delete

1. Deletes module.

2. Returns.

W1 Jo Aiodorg — [P PISUad]

wonwadQ Jo poqie T sndvyD

€81-7

Extended Description for Diagram 5.3.3
IDCSA02
Procedure: IDCSA02

1 IDCSAO02 does not delete the module but lets the system
paging mechanism delete the module when necessary.

IDCSA02
Procedure: IDCSAQ2

2 IDCSAO2 returns control to the module that issued the
UDELETE macro.

W41 Jo Kyiodord — [8aIBIN pasuady

81-T

918077 $301A105 POYIS $5300V IWVSA/ASA

Diagram 5.4.1. UGSPACE Macro

INPUT

From Diagram 5.0

PROCESSING

Register 1

I

Address of Fullword

Storage Initialization
Indicator

B

Fullword

L

l Bytes Needed

1. Obtains storage.

2. Sets up UGSPACE area.

3. Puts address in calling program.

4. Initializes area, if necessary.

5. Returns.

OUTPUT

>

L L

UGSPACE Area
Number of Bytes + 8
b

Storage T

Register 1

I

{ GDT

Storage Initialization
Indicator

J

l Storage Address 1

I Bytes Needed j

Register 15

I 1

NI Jo Ayiadord — eI POSRIT

uonesdQ Jo poq (7 1dwyd

$81-T

Extended Description for Diagram 5.4.1

IDCSA02
Procedure: IDCSA02

1 IDCSAO2 issues a GETVIS for the number of bytes
requested plus 8 for the UGSPACE area that proceeds
each storage area. If the return code from the GETVIS is
nonzero, the address of the storage area is set to zero and
control is given to step 5. If the return code is zero, control
is given to step 2.

IDCSA02
Procedure: IDCSA02

2 IDCSAOQ2 puts the number of bytes in the storage area
plus 8 in the first word of the UGSPACE area. IDCSA02
sets the second word blank to distinguish a UGSPACE
area from a UGPOOL area.

IDCSA02
Procedure: IDCSA02

3 IDCSAO2 puts the address of the storage area, not the
UGSPACE area, in the calling program at the address
specified by the third parameter.

IDCSA02
Procedure: IDCSA02

4 IfSETZERO or SETBLANK was specified as the fourth
parameter, IDCSAOQ2 sets the storage area to zeros or
blanks, respectively. If SETZERO or SETBLANK was
not specified, the storage area is not changed.

IDCSA02
Procedure: IDCSA02

§ IDCSAQ2 puts a return code in register 15 and returns
control to the module that issued the UGSPACE macro.

W4l Jo &yiodorg — [epiarepy pasuady]

981-T

91807 $991AI08 POYIOIN $5900V NVSA/HSA

Diagram 5.4.2. UFSPACE Macro

FFrom Diagram 5.0

OUTPUT

INPUT PROCESSING
Register | —]———‘ > 1. Checks for UGSPACE or UGPOOL
] area. If UGSPACE, continues to Step
2;if UGPOOL, goes to Step 3.
{GDT
2. Calculates address.
i (| 3. Calculates address and removes area
[Address of Storage to F:ree from chain.

4. Frees storage.

UGSPACE or UGPOOL Area
~ —-L 5. Returns.

T Storage to Free T

WH] Jo £y1adolj — [epI0)vy PIsUad|

uopwied Jo PO :Z JndvgD

L81-T

Extended Description for Diagram 5.4.2
IDCSA02
Procedure: IDCSA02

The address of the area to free is used by IDCSA02 to
determine if the area was obtained with a UGSPACE or a
UGPOOL. If the fullword at the address minus 4 contains
blanks, the area was obtained with a UGSPACE.

IDCSAO2
Procedure: IDCSA02

2

If the storage area was obtained with UGSPACE, a
UGSPACE area preceeds the area. The length of the area
to free is at the first word in the UGSPACE area. The
address of the area to free is calculated by subtracting 8
from the area address.

IDCSA02
Procedure: IDCSA02

3

If the storage area was obtained with a UGPOOL, a
UGPOOL area preceeds the storage. The length of the
area to free is at the third word of the UGPOOL area. The
address of the area to free is calculated by subtracting 16
from the area address. The forward and backward chains
are updated to remove this area from the chain. If this is
the last area in the chain, the address of the last area in the
chain in GPLAST in the System Adapter Historical Data
area is updated by IDCSA02.

IDCSA02
Procedure: IDCSA02

4

A FREEVIS macro is issued to release the storage plus its
UGSPACE or UGPOOL area.

IDCSA02
Procedure: IDCSA02

IDCSAO02 returns control to the module that issued the
UFSPACE macro.

NE1 Jo £35adoad — [SHIBIA PISTadyT

981-2

o180 $99]A20§ POYISIN #9900V WVYSA/EASA

INPUT

Diagram 5.4.3. UGPOOL Macro

From Diagram 5.0

PROCESSING

Register 1

) =

¢

t GpT

Address of
Fullword

Initialization
Indicator

Storage
Identification

Fullword

Bytes Needed

1. oObtains storage.

2. Sets up UGPOOL area.

3. Puts address of storage in calling

program,

4. Initializes area, if necessary.

S. Returns.

OUTPUT

C

UGPOOL Area

UGPOOL Area
(2K Page boundary)

f Next Area $Next Area

f Last Area §Last Area
Number of Bytes + 16 24
Identification Identitication

J~ Storage
Area

~J

T

Addr. of storage

Length of storage

Register 1

tepT

Storage area
on 2K page
boundary

Y
Ly

-
<

5y
<

Initialization
Indicator

L

Storage
‘ldentiﬁcation

Address of
Storage

LByles Needed

Register 15

L

W1 jo Apadord — [WHISA PSRN

7 39dey)

»
.

uonesadQ jJo poyop

681-7

Extended Description for Diagram 5.4.3 IDCSA02
IDCSA02 Procedure: IDCSA02

4 If SETZERO or SETBLANK was specified as the fifth

Procedure: IDCSA02
o . parameter, IDCSAOQ2 sets the storage area to zeros or
1 Ifthe UGPOOL storage identification specifies ‘PG’ as the blanks, respectively. If neither SETZERO or SETBLANK
third and fourth characters, IDCSAOQ2 issues a GETVIS is specified, the storage is not changed.
for the number of bytes requested starting on a 2K page
boundary. The address and length is saved. A second IDCSAQ2
GETVIS is issued by IDCSAO2 for a 24-byte area. The
address and length of the first area obtained are placed in Procedure: IDCSA02

the fifth and sixth words of the 24-byte area. Otherwise, a s
GETVIS is issued for the number of bytes requested plus
16 for the UGPOOL area. If the return code from the
GETVIS is nonzero, the storage address in the calling
program is set to zero and control is given to step 5, unless
the GETVIS was for a 24-byte ‘xxPG’ storage area, in
which case the space obtained on a 2K page boundary
must be freed. A FREEVIS macro is issued to free the
space and then the storage address in the calling program
is set to zero and control is given to step 5. If the return
code from the GETVIS is zero, control is given to step 2.

IDCSAOQ2 puts a return code in register 15 and returns
control to the module that issued the UGPOOL macro.

IDCSA02
Procedure: IDCSA02

2 The new storage area is chained to the other storage areas
obtained with UGPOOL. The head of the chain is in
GPFIRST and the tail is in GPLAST in the System
Adapter Historical Data Area. The new storage area is
chained by IDCSAOQ2 to the tail of the list. IDCSAO02 sets
the forward chain pointer to zero. The backward chain
pointer contains the address of the next to last area. The
number of bytes in the storage area is the number of bytes
requested plus 16 for the UGPOOL area. The
identification from the calling module is put in the fourth
word of the UGPOOL area. GPLAST is set to the address
of the new storage area. The 24-byte area obtained for a
‘xxPG’ storage area is treated in the same manner as all
other UGPOOL areas and chained into the UGPOOL
storage area chain. The number of bytes is 24.

IDCSAO02
Procedure: IDCSA02

3 IDCSAO2 puts the address of the storage area, not the
UGPOOL area, in the calling program at the address
specified by the third parameter.

W4l Jo fxiadord — [BLINBIA Pasudy]

061-2

918077 $30IAIOS POTIOI 890V WVSA/RSA

Diagram 5.4.4. UFPOOL Macro

INPUT

From Diagram 5.0

PROCESSING

Register 1

GDT

(optional)

| AL

Storage
Identification

[

Finds areas to free.

Removes matching areas from chain
and frees storage.

Returns to Step 2 until end of list.

Returns.

OUTPUT

W1 Jo A1ad0ig — [SHANSI PISUINT

161-T

uone1edQ Jo poqie N Z 101deyD

Extended Description for Diagram 5.4.4
IDCSAQ2
Procedure: IDCSA02

1

IDCSAO02 examines the list of UGPOOL areas addressed
from GPFIRST to find a match between the storage
identifier supplied by the calling program and the
identifier in the UGPOOL area. If the calling program
specifies ALL as the third parameter, just the first two
bytes of the identifiers are compared so that every storage
area that matches is freed. If ALL is not specified,
IDCSAO02 compares four bytes of the identifiers to find the
storage areas to be released.

IDCSA02
Procedure: IDCSA02

2

If a match is found, IDCSAO02 removes the UGPOOL area
from the chain and releases the UGPOOL area with its
storage area with a FREEVIS macro. If the storage
identification is ‘xxPG’, the address and length of the area
to be freed is in the fifth and sixth words of the area in the
UGPOOL storage chain. IDCSAO02 issues a FREEVIS for
this area. The 24-byte area in the UGPOOL chain is then
freed in the normal manner.

IDCSA02
Procedure: IDCSA02

3

If the end of the chain has not been reached, IDCSA02
compares the next UGPOOL area. The entire list is
searched for matching identifiers regardless of whether
ALL is specified or not. IDCSAO02 returns control to step 2
until the end of the chain is reached.

IDCSA02
Procedure: IDCSA02

4

IDCSAOQ2 returns control to the module that issued the
UFPOOL macro.

W41 Jo Ayiadosg — [BHRIBIAl pasuadyy

T61-T

9180°T 8991019 POIIN 55990V INVSA/ISA

Diagram 5.4.5 PROLOG Macro

INPUT

Register |

_1

@SIZDATD

Bytes Needed
for Data Arcas

MODID

-

Register 13

in Previous Module

Module A's Save Area

AUTOTBL

I'rom Diagram 5.0

PROCESSING

Gets address of GDT.

Gets address of storage for
PROLOG.

Saves registers in work area.

Checks module 1dentification in
AUTOTBL.

a. If a match is not found, goes
to Step 5.

b. If a match is found, tests
count in AUTOTBL.: if count is
1, goes to Step 5: if count is
0, goes to Step 6.

Obtains storage.

Updates Inter-Module Trace
Table.

Returns.

System Adapter

ouUTPUT

\/7

Number of
Bvtes

Module
Identification
—T‘: Storage Area :]:

inter-Module
Trace Table

————>

{Module Identificationt

J

Register 1

Previous Module's
Work Arca

Module A's
Identification

WA Jo Auiodoig — [SHISIA ST

uonessdQ Jo poYRN ‘7 31deyd

€61-7

Extended Description for Diagram 5.4.5

IDCSA03
Procedure: IDCSA03

1 The address of the GDT is the first parameter in the call to
every Access Method Services module except the call to
PROLOG. As an example, let’s assume module A gives
control to module B. The first thing module B does is store
registers in the save area in module A. The second thing
module B does is obtain storage for the data in module B.
PL/S generates a GETMAIN macro instruction to obtain
the storage. But GETMAIN doesn’t work on DOS. A call
to the PROLOG routine is substituted for the GETMAIN
when module B is compiled on VS. So, instead of doing a
GETMAIN, module B calls PROLOG to get storage for
module B's data areas. At the time module B gets control,
register 1 contains the address of a parameter list. By
convention within Access Method Services, the first
parameter in the parameter list is always the address of the
GDT. When PROLOG gets control, register 13 contains
the address of the save area in module A. IDCSAO03 uses
this address to get the address of the GDT.

IDCSA03
Procedure: IDCSA03

2 The address of the storage area PROLOG uses for its data
areas is in GDTSPR. IDCSAO03 uses this address to
establish addressability to the data areas in PROLOG.

IDCSA03
Procedure: IDCSA03

3 Module B’s registers are saved in PROLOG because
module B doesn’t have a save area yet. IDCSA03 chains
together the save area in module A and the save area used
for module B’s registers in PROLOG.

IDCSA03
Procedure: IDCSA03

4 IDCSAO03 compares the module identifications in
AUTOTBL with the 4 character module identification
module B passes as the first parameter to PROLOG. If
IDCSAO03 does not find a match, control goes to step 5. If
a match is found, and module B is IDCSA02, IDC1001, or
IDCTPO1, IDCSAO1 may have already obtained storage
for it. AUTOTBL contains the address of storage already
obtained for IDCSA02, IDCTPO1, and IDCIOOL.
IDCSAO03 examines the number of times module B has
been called. If the number is zero, module B is not using

the storage whose address is in AUTOTBL. IDCSA03
does not do a GETVIS and IDCSAO03 gives to module B
the storage from AUTOTBL for module B’s data areas.
IDCSAO03 adds one to the number of times the module is
called. If the count is greater than zero, the storage in
AUTOTBL is already in use so IDCSA03 mustdo a
GETVIS. One is added to the number of times the module
is called.

IDCSA03
Procedure: IDCSA03

5 If module B did not get storage from AUTOTBL,
IDCSAO3 issues a GETVIS. for the number of bytes
needed. PL/S-2 always puts the number of bytesin a
constant called @SIZDATD which is the second
parameter to PROLOG. IDCSAO03 issues a GETVIS for
the number of bytes in @SIZDATD plus 8 for header
information. If the return code from GETVIS is nonzero,
IDCSAOQ3 issues a UABORT macro. IDCSAO3 puts the
total length of the storage area in the first word of the
header. IDCSAO03 puts Module B’s identification from
MODID in the second word of the header.

IDCSA03
Procedure: IDCSAQ03

6 IDCSAO03 adds module B’s identification from MODID to
the end of the Inter-Module-Trace table. The first, oldest
entry in the table is removed.

IDCSA03
Procedure: IDCSA03

7 1DCSAO03 puts module B’s module identification in the
first word of module A’s save area. IDCSAO3 restores the
registers, with the exception of register one, from the work
area in PROLOG to be as they were when module B gave
control to PROLOG. Register one contains the address of
the storage module B uses for its data area. IDCSA03
returns control to module B.

A Jo Ayiodoad — [WHOIEI posuady]

p61-T

918077 §301AI9S POIIWN 55900V IWVSA/ASA

Diagram 5.4.6. UEPIL Macro

INPUT

From Diagram 5.0

PROCESSING

{ GDT

((optional)

I Return Code —l

rModulc Identification]

Register 13

Length

Module Identification

-~

Storage Area
T J

Register 1 ‘ﬂ____>

AUTOTBL

. Obtains storage.

Checks AUTOTBL for module
identification.

Frees storage area.

Updates Inter-Module Trace Table.

Returns.

OUTPUT

Inter-Module
Trace Table

Module Identification

Register 15

L 1

NS Jo Auadorq — [sHI8IAl POSUdd)]

uoneiadQ jo poyel :z 391dey)

§61-1

Extended Description for Diagram 5.4.6

IDCSA03
Procedure: IDCSA03

1 Let’s assume module A gives control to module B. Module
B completes its processing and is ready to return control to
module A. When module B is compiled on VS, PL/S
generates a FREEMAIN for exit code. Rather than having
one version of all modules for VS and another for DOS,
each module - with a very few exceptions - issues a UEPIL
macro to return control. See the chapter “Diagnostic Aids”
for an illustration of save areas. The UEPIL bypasses the
PL/S generated FREEMAIN and allows the same module
to operate on more than one operating system. When
module B is ready to return control to module A, module
B issues a UEPIL. UEPIL gets the address of the storage it
is to use for data areas from GDTSPR. IDCSAO03 saves the
address of module B’s storage area which is in register 13.
IDCSAQO3 saves the address of module A’s save area,
which is obtained from module B’s save area, and
IDCSAQ3 sets the forward chain in module A’s save area
to zero.

IDCSA03

2 IDCSAO03 compares module B’s module identification
against the module identifications in AUTOTBL. Ifa
match is not found, control is given to step 3. If IDCSA03
finds a match, the number of times the module has been
called is compared to one. If the number is one, IDCSA03
will not issue a FREEVIS but reduces, by one, the number
of times the module has been called. If the number is
greater than one, IDCSAO3 has acquired storage other
than storage from the AUTOTBL and this storage must be
released. IDCSAO03 subtracts one from the number of
times the module has been called.

IDCSA03
Procedure: IDCSAQ3

3 IDCSADO3 subtracts eight from the address of module B’s
storage area to get the address of the header information.
IDCSADO3 issues a FREEVIS with the length of the storage
area as specified in the first word of the header.

IDCSA03
Procedure: IDCSA03

4 IDCSAO3 puts the address of module A’s save area in
register 13, IDCSAO03 removes the oldest module
identification entry in the Inter-Module-Trace table.
IDCSA03 adds module A’s module identification to the

end of the Inter-Module-Trace table. IDCSA03 obtains
module A’s module identification from the first word of
the save area where module A saved registers when it was
given control.

IDCSA03
Procedure: IDCSAO03

S5 IDCSADOD3 restores all registers, except register 15, from
module A’s save area. Register 15 contains the return code
from module B, if module B provides it, or zero. IDCSA03
returns control to module A.

W41 Jo furadorg — [yl pasuady]

961-T

918077 8901AI§ POYISIN 55900V WVSA/FSA

Diagram 5.5.1. UTIME Macro

INPUT

From Diagram 5.0

PROCESSING

OUTPUT

Register 1

(l i

{GDT

(optional)

((optional)

l Data Format Indicator]

Date
Variable

L |

Time
Variable

I]

Dot

AR S o

Does initialization.
Checks data format indicator.
Issues TIME macro.

Adjusts days per month.

Formats time and date, if specified.

Returns.

Register |

(r]

teoT

ﬁata Format ndicutoﬂ
Date

L 1

Time

L J

WA Jo H113do1d — [SHIB Posuady]

uonesadQ Jo poqe :z 1dey)

L61-T

Extended Description for Diagram 5.5.1

IDCSA02

Procedure: IDCSA02

1 IDCSAO2 calculates the number of arguments passed to
UTIME. IDCSAOQ2 passes the input parameter list and a

variable containing the number of arguments to
IDCSAO0S.

IDCSAO0S
Procedure: IDSCAOQ5

2 Ifthe caller incorrectly specifies the data format indicator,
IDCSAOS issues a UABORT macro.

IDCSAO0S
Procedure: IDSCAO0S

3 Ifthe caller specifies FORMAT, IDCSAOS specifies a
GETTIME macro. If CLOCK is specified, IDCSA05
issues a STCK instruction. If the caller does not indicate
the data format, IDCSALS issuss o COMPBC maceo,

IDCSA0S
Procedure: IDCSA05

4 IDCSAOS adjusts the number-of-days-per-month table for
leap years. If the year returned by the GETTIME macro is
divisible by four, IDCSAOS sets the number of days in
February to 29.

IDCSA0S
Procedure: IDCSAOS

§ If the caller specifies FORMAT, IDCSAOS formats the
time as HH:MM:SS, where HH is hours, MM is minutes,
and SS is seconds. The data is in decimal digits. If the date
was requested and format specified, IDCSAOS formats the
date as MM/DD/YY, where MM is the month, DD is the
day, and YY is the year. The data is in decimal digits.

If CLOCK is specified, IDCSAOQS returns the time from
the time-of-day clock in microseconds. If the date is
requested and no data format is indicated, or CLOCK is
specified, IDCSAOS returns the date in packed-decimal
format, 00YYDDDF, where YY is the year, DDD is the
day, and F is the sign digit.

IDCSAO5, IDCSA02
Procedure: IDCSA0S5, IDCSA02

6 IDCSAOS5 moves the time and date to the calling program
at the addresses specified by parameters two and three.
IDCSAQOS returns control to IDCSAO02, which returns
control to the module that issued the UTIME macro.

W4l Jo A1aadorg — [epraBpy pasuadyy

861-¢

018077 8901A19§ POYIOI $5900Y INVSA/HSA

Diagram 5.6.1. ULISTLN Macro

INPUT

Register 1

From Diagram 5.0

PROCESSING

7 9:>

Argument List

T

—~

T

1. Determines number of arguments.

OUTPUT

LISTPTR

dArgument List

T T

LISTLN

I Number of Arguments

W1 Jo Auadoig — sparely pasuadyy

uonesadQ jo poqo :z sdeyd

661-T

Extended Description for Diagram 5.6.1

1 Unlike most Umacros ULISTLN generates in-line code
that performs the function rather than a Branch to another
module. The code stores the address of the parameter list
in register 1 in a fullword named LISTPTR. The code
seaches the argument list looking for the end of the list.
The last argument in the list has a high order bit of one.
The number of arguments in the list is put in a byte named
LISTLN. If the end of the argument list is not found after
255 arguments, the search stops and LISTLN contains
255. Control continues with the next instruction in the
program.

00t-7

91307 §901AI08 POYIOI 55900V INVSA/HSA

Diagram 5.6.2. USAVERC Macro

INPUT

From Diagram 5.0

PROCESSING

OUTPUT

Register 15

r

] —

1. Copies contents of Register 15.

TESTRC

W] Jo fiadoid — [SHAIEI PIsUad}]

uone1ddQ Jo poyep :z Indeyd

10Z-2

Extended Description for Diagram 5.6.2

1 Unlike most Umacros USAVERC generates in-line code
that performs the function rather than generating a Branch
to another module. The code copies the contents of register

15 which must be named RTNREG to a halfword named
TESTRC. Control continues with the next instruction in
the program.

W1 Jo fiadorg — psparepy pesuadyy

w0T-T

1807 SIIAIIS POYISIN 55900V WVSA/HSA

Diagram 5.7.1. UENQ Macro

INPUT

Register 1

4 GDT

NN

SCOPE

INT or
EXT or
VOL

From Diagram 5.0

PROCESSING

VOLID

Resource-Name

T

\ WAIT or NWAI

T

\~lSHR or EXCL

B WN

OUTPUT

DTL

Generate a DTL for the input
parameters.

Lock the resource.
Analyze the return code.

Return the address of the DTL for
subsequent UDEQ request.

/ /]

\

N

N

-

T LOCK

FILE

—

Register 15

I Return Code

Register 1

4 pTL

WH] Jo £)19dosq — [BHIIISIAI PISURDNT

uonv3ed(Jo poqR ‘7 3dvyd

€0Z-7

Extended Description for Diagram 5.7.1
IDCSA0S
Procedure: IDCSA08

1 A parameter list is built for the IKQDTL macro using the
input parameters.

CONTROL is set to “E” (executive) or to “S” (shared).

SCOPE is set to “INT”, “SHR", or X‘00". The value
X‘00’ is used if VOLID is present.

VOLIDPTR is set to the address of a 6-byte volid or to 6
bytes of X‘00". The 6-bytes of X‘00’ are used
if the SCOPE parameter is present. If this
parameter is used, the supervisor determines
if the scope is internal or external by the
device address on which the volume is
mounted.

GETVIS is specified as yes so that storage will be
obtained for the DTL. (Must be freed by
IKQUNLK).

If an error occurs, an out-of-storage message is issued

(UV0-4) and control is returned to the calling routine with
a value of 16 in register 15.

IDCSA08
Procedure: IDCSAO08

2 The IKQLOCK macro is issued using the DTL from step
1. RETOPT is set to “WAITC” or “RETURN".

IDCSA08
Procedure: IDCSA08
3 The return codes are transiated as follows:

Reg 15 =0 Resource has been locked.

=4 (For CONDITION =NOWAIT) resource
may become available at a future time (rc=4,
8, 28 from lock manager, that is, SUPVR).

=8 This task already owns this lock (rc=24 from
lock manager).

= |2 Definition error (rc=12, 16, 20, 32, 36 from
lock manager).

For a lock manager return code of 4 or 24, no error
message is issued. For a return code of 24, IKQUNLK is
not called because the lock would be released in addition
to freeing the DTL. For any other non-zero return code, a

message is issued (UV0-8) and IKQUNLK is called to free
the DTL.

W1 Jo Ayiadord — [SUNSI PIsud}Y

$0T-T

91307 $901AIOS POYIOI $8900V IWVSA/TSA

Diagram 5.7.2. UDEQ Macro

From Diagram 5.0

PROCESSING

OUTPUT

-

INPUT
Register 1
(r j
|t oot
“ DTL 1

1. issues IKQUNLK macro.

2. Returns

LOCK
FILE

LOCK TABLE

E] Jo fy1adord — [epEIN PISUIdN

uonesdQ jo pogely :7 30vdend

$0T-T

Extended Description for Diagram 5.7.2
IDCSA08
Procedure: IDCSA08

1 IDCSAO8 issues an IKQUNLK macro to release control
of the resource. If the address of the DTL to be unlocked is
zero, no unlock is necessary.

IDCSA08

Procedure: IDCSA08

2 IDCSAQS returns contol to the module that issued the
UDEQ macro. The return code is always O.

A Jo Axiadolg — [epeIsly posuady]

Licensed Material — Property of IBM

2-206 VSE/VSAM Access Method Services Logic

uopuaadQ Jo PPN 7 sndeyD

LoT-T

I/O Adapter Visual Table of Contents

6.0
I/O Adapter
Overview
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8
UOPEN
Overview UCLOSE UPOSIT UGET UPUT UCOPY UVERIFY UIOINFO
6.1.1 6.1.2 6.1.3
Build g‘;gfml Check
IOCSTR Blocks Open

Wl Jo Ayadoig — [BLIIBIAl PISEIDNT

802T-¢

91807 $301AI9S POYIIIN 58900V WVSA/HSA

Diagram 6.0. 1/O Adapter Overview

From Module
Issuing Macro

INPUT PROCESSING l OUTPUT
Register 1 :> 1. Performs function indicated by > OCSTR
[l macro:
UOPEN.
GDT °
i See Diagram ———— 6.1
= Argument Lists == e UCLOSE. Data Sets
See Diagram ————
Data Sets e UPOSIT.
See Diagram ——
e UGET.
See Diagram
e UPUT.

See Diagram

¢ UCOPY.
See Diagram

o UVERIFY.
See Diagram

. UIOINFO
See Diagram ———

-]

TSI

Register 15

2. Returns. —> [

WA J0 Auiadorg — [SHeISIA PasuedN]

uone1adQ Jo pomol :z 1ndey)

60T-T

Extended Description for Diagram 6.0
IDCIOO01
Procedure: IDC1001

1 The type of 1/0 processing depends upon the Umacro
issued:

The UOPEN macro opens from one to four data sets.

The UCLOSE macro closes from one to four data sets
that were opened by the 1/0 Adapter. SYSIPT and
SYSLST are not closed with this macro, but at
processor termination with the UIOTERM macro.
This is done to consolidate termination work.

The UPOSIT macro is used to position to a record in a
data set on a direct access device. The type of
positioning depends upon the data set organization:

For VSAM data sets, the positioning may be by key,
relative byte address (RBA), or relative record number.

For ISAM data sets, the positioning is by key only.

The UGET macro is used to obtain a record from a
data set opened with-a UOPEN macro. If the data set is
being processed with keys - ISAM or indexed VSAM -
the key is returned with the record. If the data set is
being processed with control intervals - VSAM with
block processing - a control interval is returned. If a
relative-record data set (RRDS) is being processed, a
relative record number is returned. Only if the VSAM
data set is opened for update processing may the record
be modified in the buffer. Data sets opened for update
processing must be processed with a UGET followed
by a UPUT on the same record just obtained. This is
true regardless of whether or not the record has been
changed. A UPUT must be issued after each UGET,
for UPDATE, even if it is the last UGET before the
data set is closed. Update processing is used when the
REPLACE option has been specified for the REPRO
function.

The UPUT macro is used to write records to a data set
that was opened with the UOPEN macro. Multiple
records can be written with one UPUT. If the data set
is VSAM opened for block processing, the record must
be a control interval. A UPUT must be issued for each
UGET on a VSAM data set opened for update.

The UCOPY macro copies one data set to another data
set if both data sets have been opened with the
UOPEN macro. The input data set may be positioned
to a starting point with the UPOSIT macro before the
copy takes place. The UCOPY copies all records from
the input data set starting at the beginning record and

continuing until end-of-file or a terminating error. If
the output data set has records before the UCOPY, the
following applies:

a. Ifthe data set is VSAM with records in keyed
sequential or relative record format, the input
records are merged with the existing records.

b. If the data set is VSAM with entry sequential
record format, the input records are added after the
existing records.

c. Ifthe data set is nonVSAM, the input records are
written over the existing records. The existing
records are lost. ISAM data sets cannot be used for
output for UCOPY.

The UVERIFY macro insures that the address for the
end-of-file for the VSAM data set in the VSAM catalog
is the same as the end-of-file address on the 1/0 device.
If the two addresses are not identical, the VSAM
catalog changes to match the 1/0 device. The data set
must be VSAM opened for control interval output
processing. A return code from the UOPEN macro
indicates that the data set may need verification. The
FSR should ignore the return code form UOPEN and
issue the UVERIFY in all cases except where a zero
IOCSTR address is returned from UOPEN. At
UOPEN, VSAM just checks the VSAM catalog for
information about the data set; it does not check the
physical data set. If the UOPEN returns a code saying
that there is no data in the data set, the physical data
set may or may not have data.

The UIOINFO macro is used to obtain information
concerning a data set. The macro analyzes an option
byte passed by the caller to determine what kind of
information is required. The types of information
which may be requested are:

Data-set name
Volume serial list
Device type
Timestamp

The caller may provide UIOINFO with a work area
into which the requested information should be placed
or he may provide an UGPOOL ID. In the latter case
UIOINFO obtains the required amount of storage.
(The caller is responsible for freeing this storage.)

The data requested is formatted into the return area
and control is returned to the caller.

IDCIO01
Procedure: IDCIOO0!

2 A return code is put in register 15. If the return code is

nonzero, error messages are written. Control returns to the

module that issued the Umacro.

] Jo Ay1adoid — [epIIBA PAsUd|]

01Z-¢T

218077 5301A10§ POYII 55900V INVSA/ASA

Diagram 6.1. UOPEN Macro

From Diagram 6.0

PROCESSING

OUTPUT

INPUT
Register 1 |
{GDT
L Addresses of ~

))
L8

- 1 to 4 OPNAGLs ")

OPNAGL

Data Sets >

1. Builds IOCSTR for each £:>

OPNAGL. Issues LOCATE

if OPEN is for a catalog. |
See Diagram D

OCARRAY

<5

“10CS"

IOCSTR

10CSEX

File Identification

ACB

2. Builds control block required
to open the data set.

See Diagram ——6.1.2

3. Opens the data sets.

4. Checks for successful open.

See Diagram

5. Returns.

OR

DTF

Access Method
Module

OPNAGL

Data Sets

Register 15

F

W4 Jo fradorg — [y POsUady]

uoneiadQ Jo poqioN (7 Indeqd

1z-t

Extended Description for Diagram 6.1

IDCI001, IDC1002
Procedures: IDCIOOP, OPENRTN, DSDATA

1 IDCIOOP builds an internal array (OCARRAY) to
describe the open to be performed. The rest of step 1 and
all of step 2 are repeated for each open argument list
(OPNAGL) that the calling module give to the UOPEN
macro via register |. OPENRTN increments the identifier
in 10DSID by 1 to form a unique identifier for the data
set. OPENRTN uses the identifier in a UGPOOL macro
to obtain storage for an IOCSTR and IOCSEX for the
data set and file identification save area. OPENRTN puts
the IOCSTR into the chain of IOCSTRs addressed from
1I0DIOC in the 1/0 Adapter Historical Data Area,
IODATA.

DSDATA loads the VSAM IKQVLAB routine with a
CDLOAD macro. The FILENAME and the address of a
work area are passed as arguments.]IKQVLAB reads the
LABEL CYLINDER and returns information about the
file in the work area. DSDATA saves the FILE ID and file
organization.

If the OPNAGL indicates that the open is for a catalog
recovery area (CRA), the DSDATA routine generates a
data set name for the CRA, namely,
CATALOG.RECOVERY.AREA.VOL.xxxxxx where
xxxxxx is the volume serial number of the CRA’s first
extent.

If the OPNAGL indicates that the open is for a catalog,
OPENRTN issues a catalog Locate requesting the return
of the catalog ACB address. Control is then passed to step
5.

If the open is not for a catalog, control is passed to Step 2.

IDCIO02
Procedures: BUILDACB, BUILDDBK

2 if the data set organization is VSAM, BUILDACB builds
an EXLIST and an ACB control block. BUILDACB puts
the addresses and length of the control blocks in the
IOCSEX. If the data set organization is nonVSAM,
BUILDDBK loads a module containing a DTF control
block and the Access Method Module required to process
the data set, BUILDDBK uses a table of module names
and data set characteristics to find the right module to
load. BUILDDBK updates the DTF with information
from the OPNAGL. BUILDDBK uses a UGPOOL macro
to obtain storage for subsequent GET/PUT operations. If
the record format is spanned, one storage area is obtained,

otherwise, two storage areas are obtained. The address of
the ACB or DTF is put in IOCCBA in the IOCSEX.

IDCIO02
Procedure: OPENRTN

3 OPENRTN issues one OPEN macro for each ACB or
DTF built in step 2. There are no exit routines. If OPEN
detects an abend condition, OPEN abends.

IDC1002
Procedures: OPENRTN, CKNONOP, BUILDRPL

4 OPENRTN and CKNONOP test each data set for a
successful open. If the data set is VSAM, OPENRTN tests

the results of the OPEN. If the data set is sequential

nonVSAM, CKNONOP checks the open flags in the DTF.
No checking is done on ISAM or device independent data

sets. If the data set opened successfully, OPENRTN and
CKNONOP set IOCMSGOP in the IOCSTR and

IOCFLGOP in the IOCSEX. If address or control interval

processing is not specified in the OPNAGL for a VSAM
data set, OPENRTN determines if the data set has an
index. A second test is performed to determine if the data
set is a Relative Record data set (RRDS). For all VSAM
data set, OPENRTN obtains data set information and
BUILDRPL builds a RPL to process the VSAM data set.
For an ISAM data set, CKNONOP issues a SETL macro

to position to the first record. CKNONOP obtains data set

information from the ISAM DTF and saves it in the
10CSTR.

IDCIO02, IDCIO01

Procedures: OPENRTN, DSDATA, BUILDACB,
BUILDRPL, CKNONOP, IDCIOOP

§ If any errors occurred, any of the procedures that check for

error conditions sets a nonzero return code in register 15.
IDCIOOP returns control to the module that issued the
UOPEN macro.

WEI J0 A)1adoid — S|8N PISUIN]

TIe-t

918077 8901AJ0§ POYIOI 55900V WVSA/ASA

Diagram 6.1.1. UOPEN Macro — Build IOCSTR

INPUT

From Diagram 6.1

PROCESSING

OUTPUT

I0DATA

L

IODXTN

External Data Set List

Label Cylinder

Checks if request is to open SYSIPT
or SYSLST.

Obtains storage for IOCSTR.

Calls external routine if data set
is externally controlled.

Obtains data set identification and
data set type.

Issues LOCATE if OPEN is fora
catalog.

Data ldentifier

“10CS”

IOCSTR

IOCSEX

File Identification

A1 Jo Anadorg — [epa)e Iy pasuady]

uoneradQ Jo poyN 7 deyd

€1T-7

Extended Description for Diagram 6.1.1

1DCI002
Procedure: OPENRTN

1 OPENRTN tests the OPNAGL for an open request for
SYSIPT or SYSLST. SYSIPT is tested in two ways:

o SYSIPT is the Dname in the OPNAGL.
* OPNTYPSI flag in OPNAGL is on.
SYSLST is tested in two ways:

¢ SYSLST is the Dname in the OPNAGL.
¢ OPTYSO flag in OPNAGL is on.

If the file is SYSIPT, OPENRTN checks IODICS for an
address of an IOCSTR already built for SYSIPT. If an
IOCSTR is built, SYSIPT is already open (or an open was
attempted), and OPENRTN returns the address of the
IOCSTR for SYSIPT in the area addressed by OPNIOC
in the OPNAGL. No further processing is done on
SYSIPT. If the data set is SYSLST, OPENRTN checks
IODOCS for an address of an IOCSTR already built for
SYSLST. If an IOCSTR is built, SYSLST is already open
and OPENRTN returns the address of the IOCSTR for
SYSLST in the adrea addressed by OPNIOC in the
OPNAGL. No further processing is done on SYSLST.

If the data set is not open, continue to Step 2.

IDCI002
Procedures: OPENRTN, PRINTMSG

2 OPENRTN increments by 1 the file identifier in IODSID
to form a unique identifier for the data set. OPENRTN
issues a UGPOOL macro with the file identifier to obtain
storage for the IOCSTR plus 4 bytes for the characters
‘10CS’, the IOCSEX, and the file id. file id is the name of
the data set. Note: the file identifier that the I/O Adapter
creates is different from the file id. If storage is not
available, PRINTMSG writes a message. OPENRTN
chains the new IOCSTR to the last IOCSTR in the chain.
If the data set is SYSIPT or SYSLST, OPENRTN saves
the address of the IOCSTR in the IODATA. OPENRTN
checks the requested processing of the data set specified in
OPNOPT in OPNAGL for input, update, or output, and
copies it into the IOCSTR. Input is the default. The
OPNAGL is used to pass information to the 1/O Adapter
in requesting a data set be opened. Information from the
OPNAGL is placed in the IOCSTR and IOCSEX which
are then used by the 1/0 Adapter to control processing of
the data set once it is opened. The cross reference at the

end of this Extended Description shows how OPNAGL
information is transposed into the IOCSTR and IOCSEX.

IDC1002
Procedure: OPENRTN

3

If the invoker of Access Method Services supplied a list of
TLBL/DLBL names that he wants to control, the address
of the list is in IODXTN. If a list exists, OPENRTN
compares each entry in the list with the Dname in
OPNDDN in OPNAGL. If a match is found, OPENRTN
puts the address of the external routine in IOCXAD.
OPENRTN also builds a parameter list for the external
routine and puts the address of the first parameter in the
list in IOCXPM. OPENRTN then gives control to the
external routine to do the open. For lack of any
information about the external data set, OPENRTN sets
the IOCSTR to indicate the data set is nonVSAM with
variable length records and logical record length of 32,760.
This does not restrict the type of data sets that can be
externally controlled. It is just to make the data set appear
as something to the FSR that requests the data set be used.
If a data set is not externally controlled, control continues
with step 4.

IDCI002
Procedures: DSDATA, PRINTMSG

4 Information must be obtained from job control if: (a) the

data set is not SYIPT or SYSLST, or (b) a DLBL name
OPNDDN was passed as input to UOPEN. DSDATA
issues a CDLOAD macro to load IKQVLAB, the VSAM
Read Label Cylinder module. If the return code from
CDLOAD is nonzero, DSDATA issues a UABORT
macro. If the return code is 12 (indicating insufficient
storage), DSDATA sets the UABORT code to 28,
otherwise DSDATA sets th: UABORT code to 64.
DSDATA gives control to IKQVLAB. If the return code is
nonzero, PRINTMSG writes a message and the UOPEN
for the data set terminates. If the return code is zero,
IKQVLAB placed information about the data set in a
work area. Data set organization and file id are set in the
IOCSTR and IOCSEX. For SYSIPT and SYSLST the file
id is assumed to be the FILENAME and the data set
organization is assumed to be physical sequential with
record size of 80 for SYSIPT and 121 for SYSLST. If the
OPNAGL specifies device type of 2400, the data set is
assumed to be a tape and the information returned by
IKQVLAB is from a TLBL statement. If the device type is
not 2400, DSDATA checks the DLBL for ISAM or
VSAM. If neither ISAM or VSAM is specified, the data
set is assumed to be physical sequential nonVSAM.

For all data sets, DSDATA puts the file id in the file
identification area addressed from the IOCSTR.

If the OPNAGL indicates that a catalog recovery area is
being opened, DSDATA sets VSAM data set organization
in the IOCSTR. If the OPNAGL indicates that a catalog
recovery area is being opened, DSDATA generates a
data-set name for the CRA. The name generated is:
‘CATALOG.RECOVERY.AREA VOL.xxxxxx °,
where xxxxxx is the volume serial number for the first
CRA extent.

IDCIO02
Procedures: OPENRTN, PRINTMSG
5 Ifthe data set to be opened isa VSAM catalog, as

indicated by lIOCINFCT, a VSAM Locate is issued via the
System Adapater UCATLG macro. OPENRTN builds a
CTGPL and one CTGFL. The name used in the Locate
(pointed to by CTGCAT and CTGENT) is the name as
returned from IKQVLAB and contained in LABDSN.
CTGPSWD is set equal to OPNPWA if a password has
been specified via the OPNPW A field. The address of the
catalog dname passed in OPNDDN is placed in
CTGDDUC. The CTGFL requests the return of the
catalog ACB address, CATACB. If the return code is
nonzero, PRINTMSG writes a message. For all VSAM
catalogs, control passes to the final phase of UOPEN for
VSAM data sets.

W] Jo &uadord ~— [epsorely pasuadyy

Licensed Material — Property of IBM

2-214 VSE/VSAM Access Method Services Logic

uoneiadQ Jo POy 7 sadey)

s1T-T

OPNAGL IOCSTR/IOCSEX Cross Reference Table

OPNAGL

OPNOPTIN
OPNOPTOT
OPNOPTUP
OPNOPTBK
OPNOPTKS
OPNOPTCR
OPNOPTDR
OPNOPTSK
OPNOPTCI
OPNMODRS

OPNMODAX

OPNMODUB
OPNMODRP
OPNTYPXM
OPNTYPCI
OPNTYPRA
OPNTYPRV

IOCSTR/IOCSEX

IOCMACIN = ‘P’
IOCMACOT = ‘I’
IOCMACUP =1’
IOCMACBK = ‘I’
IOCMACCR = ‘¢
IOCMACCR =1
IOCMACDR = ‘I’
IOCMACSK = ‘I’
IOCMACCI = ‘I’
Not required

Not required

I0OCMODUB = ‘I’
IOCMODRP = ‘I’
IOCMODXM = ‘I’
IOCINFCT = ‘1’
IOCRCVRA = ‘1’
IOCRCVXM = ‘1

Description

Input processing

Output processing

Update processing
Control interval processing
Keyed processing
Addressed processing
Direct processing

Skip sequential processing
Export CIMODE

Open reusable data set
with reset

Open alternate index of
path only

User buffers

Replace processing
Export/import

Open catalog

Open catalog recovery area
Recovery bit for VSAM

If OPNOPTBK or OPNOPTKS is not specified, IOCMACCR is set to ‘1.

JAE] Jo A11adoid — [epIa)BIA] posuady]

91Z-T

218077 89014195 POYIOI 55900V WVSA/TSA

Diagram 6.1.2. UOPEN Macro — Build Control Blocks

INPUT

From Diagram 6.1

PROCESSING

OPNAGL

I0CSTR

OPNAGL

I0CSTR

For VSAM data sets, continue to
Step 2; for nonVSAM data sets,
go to Step 4.

OUTPUT

EXLST

Obtains storage for control blocks.

Builds EXLST.

Builds ACB.

ACB

Builds compare word and finds __:_H

device type data.

Checks for valid blocksize and
unsupported device.

Compare Word

l

Device Type Data

L

Loads DTF and Access Method <

T

module.

DTF

Obtains storage for 1/O areas.

Updates the DTF.

Access Method
Module

1/0O Areas

W1 Jo Aytadoid — [BHAIBN PIsusdf

uonessdQ Jo PO ‘7 Indeqd

L1T-T

Extended Description for Diagram 6.1.2

IDCI002
Procedure: BUILDACB

1 For VSAM data sets continue to step 2; for nonVSAM
data sets go to step 4.

IDCIO002
Procedure: BUILDACB

2 BUILDACB issues a UGPOOL to obtain storage for the
three VSAM control blocks: EXLST, ACB, and RPL. If
OPNSTRNO is 0, BUILDACB obtains storage for one
RPL,; otherwise the value of OPNSTRNO determines the
number of RPLs required. If the return code from

UGPOOL is nonzero, BUILDACSB sets an error condition

and terminates UOPEN processing.
BUILDACSB first builds an EXLST control block issuing

the EXLST macro. Only the EODAD exit will be taken if

GETVSAM encounters an end-of-file. LERAD and
SYNAD exits are specified, however, but they are set

inactive. BUILDACB puts the pointer to the EODAD exit
routine into the exit list. BUILDACB puts the address and

length of the EXLST control block in IOCEXA and
10CEXL respectively.

IDCIO02
Procedure: BUILDACB

3 BUILDACSB builds an ACB control block by issuing the
ACB macro. The ACB macro generates IN, SEQ, ADDR
for the MACREF field. These attributes are overriden with
information contained in the IOCSTR/1OCSEX or
OPNAGL.,

Bit Referenced ACB MACRF =
JIOCMACOT = ‘I’ ouT
IOCMACUP = |’ ouT
IOCMACBK =1’ CNV
IOCMACCR = ‘0’ KEY
IOCMACDR = ‘I’ DIR
IOCMACSK = ‘I’ SKP
I0OCMODUB =1’ UBF
OPNMODAX = ‘I’ AlX
OPNMODRS = ‘I’ RST

In DOS, the CATALOG OPEN option is never specified
since catalogs are opened as described in step 5, Diagram
6.1.1.

BUILDACB requests address processing if the data set

organization (indexed or non-indexed) is not known. If the

type of processing is set in the OPNAGL, BUILDACB
uses it. The VSAM open routine will fill in the correct
organization, if the specified organization is wrong. If the
organization is not specified, address is set as the default
because VSAM defaults to indexed and gives an error if
the data set is not indexed. BUILDACB puts each
password in an array of passwords to save the passwords
until OPEN time and puts a pointer to the password in the
ACB.

If IOCRCVRA=‘1", BUILDACSB specifies the
CRA=UCRA option for opening a catalog recovery area.
If a VOLID or SYSNO is passed as input, (i.e., not
DNAME) SYSNO is set in the ACB. VOLID is translated
to SYSNO by IKQASNMT.

Also, if IOCRCVRA=*1’, the third parameter passed to
UOPEN is not an address of an OPNAGL,; rather it is an
address passed by EXPORTRA. The contents of this
address must be inserted into the ACBUAPTR field of the
ACB.

If the value of OPNSTRNO is greater than 1, BUILDACB
moves the value of OPNSTRNO to the ACB. The address
and length of the ACB are put in IOCCBA and 10CCBL,
respectively. If OPNMODRC in the OPNAGL is 1,
BUILDACSB puts the address of the ACB in IOCCBP.

If OPNTYPXM is on, the request is from
EXPORT(RA)/IMPORT(RA), and the number of data
buffers in the ACB (ACBBUFND) is changed from 2 to 5.

are saved. If a device type is not specified in the
OPNAGL, "2314bbbb’ is used as a default. The data set is
not opened and an error message is written if the following
conditions are found:

Blocksize in OPNAGL is less than 1.

¢ Record format is fixed and blocksize is not a multiple of
recordsize.

¢ A non-supported device is specified.

IDCI002
Procedure: BUILDDBK

6 BUILDDBK compares COMPWORD against a table of
allowable data set characteristics and corresponding load
module names, DOSACC. When a match is found, the
length of the load module is used to obtain storage for the
load module with a UGSPACE macro. BUILDDBK loads
the module with a LOAD macro that puts it in the storage
just obtained. The load modules are named IDCDIlxx
where xx is 0! through 15 and contain one or two DTFs
along with the Access Method Modules needed to processs
the data set.

IDC1002
Procedures: BUILDDBK, PRINTMSG

7 BUILDDBK issues a UGPOOL macro to obtain storage
for the 1/0 areas. The Access Method Module uses the
1/0 areas as buffers. BUILDDBK puts the address of the

IDCIO02
Procedure: BUILDDBK

4 A nonVSAM data set cannot be opened as a catalog or
opened for update. If either of these two conditions exist,

BUILDDBK does not build control blocks for the data set.
BUILDDBK builds a compare word, COMPWORD with

data set organization, open options and record format. It
saves the blocksize, record size, and the length of the
required 1/0 areas. The information is in the OPNAGL,

I0CSTR, and IOCSEX. The Access Method Module uses

the 1/0 areas. The length of the 1/0 area is the blocksize
plus 8.

IDCIO02
Procedure: BUILDDBK

§ BUILDDBK compares the device type specified in the
OPNAGL against the table of allowable devices,
DEVTABLE. When a match is found, the track length,
constants used to determine the number of fixed length
blocks per track, and the device code defined inthe DTF

storage in IOCWKA. If BUILDDBK finds no match in
DOSACC or cannot obtain storage, the data set is not
opened and PRINTMSG writes a message. If
BUILDDBK cannot obtain storage for the load module, it
issues a UABORT macro.

IDC1002
Procedure: BUILDDBK
8 BUILDDBK updates the DTF with data set characteristics

from the OPNAGL. Data set characteristics are record
format, record size, blocksize, and device type.
BUILDDBK updates the CCWs with the length of the
data to get or put and the address of an 1/0 area.

WH] Jo Ay1adorg — [eR)BN pasuady]

81T~

91807 $901AL0§ POYIOP $5900Y WVSA/TSA

Diagram 6.1.3. UOPEN Macro — Check Open

INPUT

10CSTR

From Diagram 6.1

PROCESSING

ACB

IOCSTR

Access Method
Module

DTF >

1. For VSAM data sets, continue to
Step 2; for nonVSAM data sets,
g0 to Step 6.

2. Checks for successful open.

3. Determines type of processing.

4. Obtains data set information.

§. Builds an RPL.

6. Obtains ISAM data set characteristics
and positions to first record.

7. Checks for successful open.

OUTPUT

10CSTR

RPL

Data Identifier

lWork Area

DTF

IOCSTR

N1 Jo An3dosg — (BTN PoSURIN]

uonesdQ Jo POURN :7 1deqd

612-7

Extended Description for Diagram 6.1.3

IDC1002
Procedure: OPENRTN

1 For VSAM data sets continue to step 2; for nonVSAM
data sets go to step 6.

IDC1002
Procedure: OPENRTN

2 OPENRTN checks the ACBOPEN flag if the open was
successful. If the open was successful, OPENRTN sets
flags in the IOCSTR and I0CSEX to indicate that the
data set can be used and that it must be closed when
finished.

IDC1002
Procedures: OPENRTN

3 OPENRTN makes another check to determine if the
opened object is a path. If a path has been opened, keyed
processing is assumed. If REPLACE processing has been
specified for a path, PRINTMSG writes an error message.
If the open object is not a path, the IOCSTR does not
specify control interval or address processing, the type of
processing is determined by checking the index portion of
the file. If there is an index portion, keyed processing will
be used. If there is no index portion, the type of processing
is set to address processing. OPENRTN next checks the
ACB to see if the data set is RRDS, if so, OPENRTN sets
IOCMACCR=0’ (keyed) and IOCMACRR="I". Thus,
fora

KSDS IOCMACCR =0, IOCMACRR =0

ESDS IOCMACCR = |, IOCMACRR =0

RRDS IOCMACCR =0, IOCMACRR = |
IDCI1002

Procedures: OPENRTN, PRINTMSG

4 OPENRTN obtains the ACB error code, logical record
length or control interval, high-used RBA, key length, and
relative key position. If the data set did not open, only the
error code, not the data, is obtained, and PRINTMSG
writes a message. If the data set opened successfully,
OPENRTN moves the ACB information to the IOCSTR.

IDCI002
Procedures: BUILDRPL, PRINTMSG, OPENRTN

$ For any VSAM data set that is open, BUILDRPL builds a
request parameter list (RPL) by issuing the RPL macro.

Input work areas are required if the data set is opened for
input or update processing. BUILDRPL issues a
UGPOOL macro with the file identification to obtain
storage for the maximum length record or one control
interval for control interval processing. If
1I0CMODUB=‘1", the BUILDRPL procedure of
IDCIO002 will not issue a UGPOOL to obtain storage for
an [/0 area for input or update processing. In subsequent
UGET requests the FSR will indicate his own buffers in
I0CWORK.

If IOCMODXM=‘I' and IOCMACRR="1", indicating
EXPORT/IMPORT and RRDS, BUILDRPL will get an
extra four bytes for the work area (IOCWKA) if the data
set is input (IOCMACIN="1"). This extra four bytes will
be utilized in later UCOPY processing for exporting a
relative record data set. The work area address specified
for the RPL is the input work area plus 4 (IOCWKA+4).
If no space is available for the work area, BUILDRPL sets
an error return code, PRINTMSG writes a message, and
OPENRTN turns off the open flag in the IOCSTR.

BUILDRPL generates an RPL via the RPL macro and
initializes the RPL with the address of the ACB, options,
work area address, and maximum length of a data record.
If IOCMACRR=‘I’, the OPTCD will indicate ‘KEY". If
the RRDS is to be processed for output, IOCMACOT=1
or IOCMACUP=‘I’, OPTCD will indicate ‘SKP’. This
will cause output RRDS to be processed in skip sequential
mode.

The RPL macro generates KEY, SEQ, NUP for the
OPTCD field. These attributes are overridden with
information indicated in IOCSTR/IOCSEX as follows:

IOCSTR/IOCSEX RPL OPTCD =
IOCMACUP=‘I’ UPD
IOCMACDR=I" DIR
I0OCMACSK="1" SKP
IOCMACCR=‘I’ ADR
IOCMACBK="1’ CNV

The length of the RPL times ACBSTRNO is stored in
IOCRPL. If ACBSTRNO is greater than 1, the first RPL
is copied to each additional RPL area.

IDCIO02
Procedures: CKNONOP, PRINTMSG

6 For ISAM data sets, CKNONOP obtains the true file
block length, key length and relative key position from the
DTF after the file is open. If the true block length is
greater than the block length in the OPNAGL,
PRINTMSG writes an error message, and CKNONOP
turns off the open flag in IOCSTR. This is an error

condition because ISAM open routines build their own
CCW with the real data set characteristics obtained from
the DSCB. If the 1/0 area for the data set is not large
enough for a physical block, the block will overlay storage
not belonging to the 1/0 Adapter. If the true block length
is equal or less than the value in the DTF, CKNONOP
puts the values from the DTF in the IOCSTR.
CKNONOP issues a SETL macro to position to the first
record in the data set.

IDCI002
Procedure: CKNONOP

7 CKNONOP checks the DTF open flags for sequential
data sets. There are no open flags for ISAM or device
independent data sets like SYSIPT and SYSLST. If the
open flags are set for a sequential data set or tape data set,
CKNONOP sets flags in the IOCSTR and IOCSEX.
CKNONOP always sets open flags for ISAM and device
independent data sets. If the DTF open flag is not set for a
sequential data set, PRINTMSG writes an error message,
and CKNONOP sets an error return code.

] Jo Auadold — [BIAIBIA Pasuadf]

0tT-T

918077 5901AI9§ POYIOIN 85900V WVSA/FSA

Diagram 6.2. UCLOSE Macro

INPUT

Register 1

CL i B—

{GpT

~L_ Addresses of]

lto4[OCSTRs'T:

IOCSTR

Open Data Sets —:_4_‘>

From Diagram 6.0

PROCESSING

1. Obtains IOCSTRs to close.

OUTPUT

OCARRAY

2. Builds list to close. (If the IOCRCVCL
flag is on in IOCSEX, skip to step 7.)

IOCSTR Pointers

L

1

DTF/ACB Pointers

|

J

3. Closes data sets.

4. Checks for successful close (VSAM
data sets only.)

5. Frees module storage for non- <,L
VSAM data sets.

6. Frees control blocks and work area
storage for each data set. Removes
IOCSTR from chain for each data
set.

7. Returns.

DTF

Register 15

I 1

Wd1 Jo K113doag — [BL3ISI Pasuady]

uoneidQ jo poyep :z 1deyd

17T-T

Extended Description for Diagram 6.2

IDC1001
Procedure: IDCIOCL

1 IDCIOCL puts the addresses of IOCSTRs in OCARRAY.
Even if the address is zero it is put in OCARRAY. The
address will be zero if a UOPEN was issued against a data
set, but the IOCSTR could not be built. IDCIOCL sets the
type of operation to “Close” in OCATYP in OCARRAY.

IDCI002
Procedure: CLOSERTN

2 Only a maximum of four data sets are closed with any one
UCLOSE macro. CLOSERTN examines OCARRAY for
the addresses of IOCSTRs to close. If the address of an
IOCSTR is not zero and CLOSE ALL is not requested,
CLOSERTN checks the data set for SYSIPT and
SYSLST. If the data set is SYSIPT or SYSLST,
CLOSERTN does not close the data sets because they are
needed until processor termination.

If a UCLOSE macro is issued and the IOCRCVCL bit is
on in IOCSEX, the work area pointed to by IOCWKA is
freed via UFSPACE. Next, a work area whose size is
specified in IOCTRN is obtained via UGPOOL and the
address is returned in IOCWKA. Control then passes to
step 7 (a data set close is not done when the IOCRCVCL
bit is on). This allows reallocation of the record work area
after the file is opened. If IOCINFCT="‘1", indicating a
close of a VSAM catalog, CLOSERTN merely frees up the
control blocks associated with this catalog that were
obtained by 1/0 Adapter. The issuer of the UCLOSE
macro is given an RCOK return code. For any other
nonzero IOCSTR, CLOSERTN saves the address. And, if
the DTF or ACB is opened, CLOSERTN saves the
address of the control block in preparation for closing, If
the data set is not open, IOCFLGOP=0, CLOSERTN
makes a check to determine if it is externally controlled. If
it is externally controlled, CLOSERTN passes arguments
to the external routine. CLOSERTN continues the above
checking until:

* IDCIOO01 specifies CLOSE ALL in OCARRAY and
CLOSERTN has checked all IOCSTR addresses in
OCARRAY. This happens during 1/0 termination.

¢ IDCIOO0! does not specify CLOSE ALL in
OCARRAY and CLOSERTN has checked all
IOCSTR addresses in OCARRAY.

IDC1002
Procedure: CLOSERTN

3 For up to four open DTFs or ACBs, CLOSERTN issues a
CLOSE macro for each open DTF or ACB. The return
code from the CLOSE macro is saved. If an abend occurs,
no exits are taken; CLOSE abends.

For CRAs, CLOSERTN unassigns the logical unit
number if IOCSYSNO is equal to the value obtained from
the ASSGN macro by UOPEN.

IDCIO02
Procedures: CLOSERTN, PRINTMSG

4 For VSAM data sets, CLOSERTN checks the ACB error
code. If the ACB error code is nonzero, PRINTMSG
writes 2 message. No tests are made for nonVSAM data
sets or user catalogs.

IDCIO02
Procedure: ENVFREE

5 FornonVSAM data sets, ENVFREE issues a FREEVIS
macro to release the storage used for the IDCDIxx module
where xx is from 01 to 15. For VSAM data sets the storage
for the ACB, RPL, and exit list is freed in step 6 along with
the IOCSTR and all other storage having the same
10CSID.

IDCIO02
Procedure: CLOSERTN

6 CLOSERTN saves the address of the IOCSTR that was
closed and the address of the next IOCSTR in the chain
after the IOSTR for the closed data set. CLOSERTN
issues a UFPOOL to free all storage obtained for the data
set that is closed. CLOSERTN passes the IOCSID field to
UFPOOL which identifies all storage obtained for the data
set. CLOSERTN seaches the IOCSTR chain until the
IOCSTR is found that points to the closed IOCSTR.
CLOSERTN replaces the address of the closed IOCSTR
with the address of the next IOCSTR in the chain.

IDCION

Procedure: IDCIOCL

7 1DCIOCL puts a return code in register 15 and returns
control to the module that issued the UCLOSE.

I Jo A1sadoid — BB PIsuady]

-t

918077 $301A19§ POYIOJ 55900V WVSA/FSA

Diagram 6.3. UPOSIT Macro

From Diagram 6.0

PROCESSING

OUTPUT

INPUT
Register 1 J'___j:>
{ GDT
IOCSTR
Data Set

1. Checks data set.

2. Positions in VSAM data set.

3. Positions in ISAM data set.

4. Writes error message for nonVSAM
and nonISAM data sets.

5. Retwrns.

RPL

DTF

Error Message

Register 15

r

W1 Jo Auadold — [SHAIBIA pasuady]

uonesadQ Jo POYRI (7 Indeqd

€TT-T

Extended Description for Diagram 6.3
IDC1003
Procedure: IDCIO03

1

If the IOCSTR address is zero or the data set is not open
(IOCMSGOP=0), IDCI003 issues a UABORT macro. If
the data set is open for processing (IOCMSGOP=1), and
the data set is externally controlled (IOCFLFEX=1),
IDCIO003 returns control, with a return code of zero, to the
module that issued the UPOSIT. No provision is made for
positioning in externally controlied data sets.

IDCI003
Procedures: PTAMDS, PRINTMSG
2 For VSAM data sets, PTAMDS inserts the POINT

argument in the RPL. VSAM uses the POINT argument
in the RPL to position to the requested record. If the data
set is open for adddress processing, PTAMDS puts the
address of the Relative Byte Address (RBA) in the
RPLARG field of the RPL. If the data set is RRDS
(IOCMACRR=1"), the RPLARG field is set to contain
the address of the relative record number which is
contained in IOCREL. If control interval processing is
specified IOCMACBK="1"), the RPLARG field is set to
contain the address of the RBA which is contained in
IOCRBA. Otherwise, PTAMDS puts the address of the
key in IOCKYA into the RPLARG field. If the length of
the key of the requested record is greater than the key
length for the data set, PRINTMSG writes an error
message and PTAMDS does not position to the requested
record. PTAMDS expands every key to 256 bytes by
adding binary zeros on the right. PTAMDS inactivates the
end-of-data routine in the EXLIST control block. This is
done to prevent the end-of-data routine from getting
control if the record positioned to is beyond the end of the
data set. If the end-of-data routine receives control, an
abend would occur. PTAMDS issues the POINT macro to
position to the record with the key or the next higher key.
PTAMDS re-activates the end-of-data exit routine. If the
return code from the POINT macro is 12, an 1/0 error has
occurred and a message is written. PRINTMSG prints the
error message. If the return code from the POINT macro is
8, a logic error has occurred and PTAMDS checks the
logical error. If the results indicate that no record was
found or repositioning beyond end-of-file, PTAMDS sets
a return code of “no record found.” For all other logic
errors, PRINTMSG writes a message containing the
return code unless the suppress message flag,
I0OCMSGSM has been set by the caller.

IDCIO03
Procedure: PTISDS

3 For an ISAM data set, PTISDS does not position the
record if the length of the key supplied is greater than the
key length for the data set. For valid key lengths, PTISDS
does the positioning. PTISDS expands the key to 256 bytes
by padding on the right with binary zeros. PTISDS issues
an ESETL macro because a SETL was issued when the
data set was opened. PTISDS issues a SETL macro to
position to the record with the key or next higher key. If
the postioning is beyond the end of the data set, the SETL
routine sets a flag in the DTF. If this flag is on, PTISDS
returns a code of “no record found.” If the flag is not on,
positioning was successful and PTISDS returns a code of
zero.

IDCIO03
Procedures: PRINTMSG, IDCIO03

4 If the data set isnonVSAM and not ISAM, PRINTMSG
writes an error message. If an error is detected, IDC1003
turns off the open for processing idiciator, IOCMSGOP,
so that no more 1/0 operations except close are permitted
against the file.

IDCIOO!

Procedure: IDCIOPO

5 IDCIOPO puts a return code in register 15 and returns
control to the module that issued the UPOSIT.

4] Jo K11adoid — [BHIBIA PISUAD|T

yeT-T

918077 $901A19§ POII 85990V WVSA/ASA

Diagram 6.4. UGET Macro

From Diagram 6.0

PROCESSING

OUTPUT

INPUT
Register 1 -———————>
4 GDT
IOCSTR

Data Set

ﬂe

5.

If entrance is from any module
except UCOPY, control goes to Step 2;
if entrance is from UCOPY, control
goes to Step 3.

Checks data set.

Transfers control for externally
controlled data set.

Gets record and puts its address in
10CSTR.
e VSAM records.

e NonVSAM records.

Returns.

IOCSTR

10CDAD

Length of Record

I0CALN

I0CKYA

I0OCRSA

Record

L

J

Register 15

_

WEI Jo Ayadord — [SHNN pesuady]

uoneIddQ Jo PO :Z Indey)

sTT-T

Extended Description for Diagram 6.4

If entrance is from any module except UCOPY, control
goes to step 2. If entrance is from UCOPY, control goes to
step 3.

IDCION1
Procedure: IDCIOGT

2

If the address of the IOCSTR is zero or the file is not open
for processing, (IOCMSGOP=0), IDCIOGT issues a
UABORT macro to terminate processing. If end-of-file
has previously been encountered, (IOCFLGEF=1), on an
input data set, IDCIOGT returns control to the module
that issued the UGET. This check allows more than one
module to issues UGETS on the same data set and both
modules will get end-of-file indications by a return code.

IDCI001
Procedure: GETEXT

3

If the data set is externally controlled, GETEXT passes an
argument list to the external routine so the external routine
can perform the 1/0 operation. GETEXT tests the return
code from the external routine. If the return code is zero,
GETEXT moves the address and length of the data record
just read to the IOCSTR and GETEXT increments the
count of successful UGETs. If the return code is
end-of-file, GETEXT sets the end-of-file flag in the
IOCSTR and GETEXT sets the return code to end-of-file.
If the return code is 12, indicating that no more I/0
operations can be performed against the data set,
GETEXT turns off the open for processing flag
(IOCMSGOP). For any other return code, GETEXT sets
a return code of 4. IDCIOGT returns control to the
module that issued the UGET.

IDCIO01

Procedures: GETVSAM, CHANGE, VSAMERR,
PRINTMSG, GETNONYVS, IROSEOD, IRSISYN,
IRAMEOD

4

For VSAM data sets continue with 4.a, for nonVSAM data
sets go to 4.b.

a. Ifany of the IOCSTR change processing flags are set,
indicating a change in processing modes, the
CHANGE procedure makes the appropriate change in
the RPL. The following IOCSTR settings specified by
the issuer of UGET are reflected in the RPL:

I0CSTR RPL OPTCD =
1I0CCHPSQ SEQ
I0CCHPDR DIR
I0CCHPSK SKP
I0OCCHPKS KEY
IOCCHPCR ADR
I0CCHPBK CNV
I0CCHPKG KGE
I0CCHPKE KEQ
I0CCHPUP UPD
IOCCHPNU NUP

The CHANGE procedure will set all change
processing flags to ‘0°, and the IOCSTR will be
changed to reflect the new processing option.

If the data set is RRDS, lOCMACRR=‘1"), RPLARG
is set to the address of IOCREL so that VSAM will
return the relative record number to UGET.

If user buffer is specified (I0CMODUB=‘1"), the caller
has placed the address of the input work area in
IOCWORK. This address will be placed in the RPL
work area field.

For OPTCD=CNYV or ADR with DIR or SKP, the
caller has placed an RBA in IOCRBA. The address of
IOCRBA will be placed in the RPLARG field. In this
situation, the RBA will not be moved to IOCRBA
following the GET.

For OPTCD=KEY with DIR or SKP, the caller has
placed the address of the key in IOCKYA and its
length in IOCKYL. RPLARG is set equal to IOCKYA
and RPLKEYLN is set equal to IOCKYL. If
IOCMACCT is set on (indicating export CIMODE
processing), and the input data set isa KSDS/AIX,
register 0 is set to X‘30° before the GET is issued.

GETVSAM issues a GET macro in the move mode,
specifing the address of the RPL built when the data
set was opened. If end-of-file is encountered, the
VSAM EODAD exit routine, IRAMEOD, sets the
end-of-file flag in the IOCSTR and sets the return code
to indicate end-of-file. GETVSAM tests the return
code from GET. If the return code is nonzero, an error
code has been placed in the RPL. If the return code is
zero, the VSAM GET routine has read the record or
control interval. GETVSAM moves the record address,
record length, and RBA from the RPL to the IOCSTR.
If the data set is being processed by key, GETVSAM
places the address of the key in the record just read in
the IOCSTRC If the return code from the GET is
nonzero, VSAMERR obtains the error code from the
RPL and PRINTMSG writes the message. The call to
VSAMERR by UGET to print logical error messages

is bypassed if the suppress messages flag,
IOCMSGSM, has been set by the UGET caller.

b. For nonVSAM data sets, GETNONVS issues a GET
specifying the DTF address. For spanned records the
address of the work area for the data set which was
obtained when the data set was opened, is given the the
GET macro. The GET routine puts the complete
record in the work area. GETNONVS gets the length
of variable length records from the Record Descriptor
Word (RDW). If the input IOCSEX indicates a catalog
recovery area for import IMPORTRA), the
GETNONVS routine strips off the 4-byte header
record prepended to it when the record was exported
via EXPORTRA (see UPUT Diagram 6.5). For
nonspanned records register 8 has been specified as the
IOREG in the DTF. For undefined records the length
is found in the RECLEN register defined in the DTF.
The GET routine puts the address of the record in
register 8.

For ISAM data sets with fixed unblocked records, the
key is returned preceeding the data; however, register 8
has the address of the data. GETNONVS subtracts the
key length from the data address to get the address of
the key. If an error or end-of-file occurs attempting an
ISAM GET, the GET routine sets flags in the DTF.
GETNONVS tests the flags. If end-of-file has
occurred, GETNONVS sets a return code. If an error
has occurred, PRINTMSG writes a message and
GETNONYVS sets a return code. If no errors or no
end-of-file has occurred, GETNONVS assumes the
GET is successful and the record address and record
length are set in IOCDAD and IOCDLN, respectively.
GETNONYVS puts the address of the key in IOCKYA.

For non-ISAM data sets, if an error or end-of-file
occurs, the EODAD exit routine, IROSEOD, or
SYNAD exit routine, IRSISYN, gets control. If
end-of-file occurs, IRSOEOD sets a return code. If an
error has occurred, PRINTMSG writes a message and
IRSISYN sets a return code. If no errors or no
end-of-file has occurred, GETNONVS assumes the
GET is successful and the record address and record
length are set in IOCDAD and IOCDLN, respectively.

IDCIO001
Procedure: IDCIOGT
5 IDCIOGT puts a return code in register 15 and returns

control to the module that issued the UGET.

Wl Jo Ayradoig — epoyspy pasuaopy

9TT-T

91307] 5901AI9§ POYIIIN 55900V WVSA/ASA

Diagram 6.5. UPUT Macro

INPUT

From Diagram 6.0

PROCESSING

Register 1

{GDT

<Type Identification

L _1
]

OCSTR
IOCDAD
Length of Record

Number of Records

Record

Data Set

If entrance is from any module
except UCOPY, continue to Step 2; if
entrance is from UCOPY, go to

Step 3.

Checks for multiple requests.

Transfers control for externally
controlled data set.

Writes the record.
e VSAM records.
e NonVSAM records.

Returns.

OUTPUT

Dy

Record

IOCSTR

OR

Record

IOCRRN

Register 15

r

G Jo &31adoid — [BU2IBIA] PISUIINY

uoneiadQ jo poye :z 11dey)

LTT-T

Extended Description for Diagram 6.5

1 If entrance is from any module except UCOPY, control
goes to step 2. If entrance is from UCOPY, control goes to
step 3.

IDCIO01
Procedure: IDCIOPT

2 IDCIOPT uses the type identification to determine
whether or not the record is a message. An omitted
identification or an identification of zero indicates a data
record. A nonzero value indicates a message is to be
written. If the address for the IOCSTR is zero or the open
for processing flag, IOCMSGOP, is off, IDCIOPT issues a
UABORT macro. If IOCPNM is zero, only one record is
written with UPUT and the length of the record is
assumed to be in IOCDLN. If IOCPNM is nonzero, one or
more records are written with this UPUT. IOCDLN
contains the total length of all the records, and each record
is preceeded by a two byte length field for that record.
IDCIOPT sets IOCPNM to one if it was initially zero. For
multiple records, IDCIOPT puts the length of the first
record in IOCDLN and IDCIOPT puts the address of the
data for the first record in IOCDAD.

IDCIO01
Procedure: PUTEXT

3 Ifthe data set is externally controlled, PUTEXT constructs
an arguments list. PUTEXT gives control to the external
routine addressed in IOCXDAD. If the return code from
the external routine is zero, PUTEXT increments the
number of successful UPUTSs. If the return code is 12,
PUTEXT turns off the open for processing flag
(IOCMSGOP) so that no processing can be done against
this data set. PUTEXT returns control to step 2 for the
next record.

IDCIO01

Procedures: PUTVSAM, CHANGE, VSAMERR,
PRINTMSG, PUTNONVS, IRSOSYN, PUTREP

4 For VSAM data sets continue with 4.a, for nonVSAM data
sets go to 4.b.

a. PUTVSAM checks to see if IOCMACER is set by the
caller of UPUT, if so, PUTVSAM issues the ERASE
macro with a pointer to the RPL. In this case, a UGET
for update must previously have been issued by the
caller. If IOCMACEN is set by the UPUT caller,
PUTVSAM issues the ENDREQ macro with a pointer
to the RPL.

If any IOCSTR flag indicating a change in processing
modes, has been set by the caller, CHANGE makes the
appropriate change in the RPL. The following
IOCSTR settings specified by the issuer of UPUT are
reflected in the RPL:

IOCSTR RPL OPTCD=
IOCCHPSQ SEQ
IOCCHPDR DIR
I0OCCHPSK SKP
IOCCHPCR ADR
IOCCHPBK CNV
I0CCHPKG KGE
IOCCHPKE KEQ
I0CCHPUP UPD
IOCCHPNU NUP

CHANGE will set all change processing flags to ‘0",
and the IOCSTR will be changed to reflect the new
processing option.

PUTVSAM puts the record length and address in the
RPL.

If IOCMACRR=‘1", indicating a PUT to an RRDS,
the RPLARG field in the RPL is set to the address of
IOCREL. If OPTCD=CNV,DIR, RPLARG field is
set to the address of IOCRBA.

If user buffers are specified, IOCMODUB=1), the
output area address in the RPL is obtained from
IOCWORK rather than IOCDAD.

PUTVSAM issues a PUT macro to write the record.
The record may be a logical record or a control
interval. If the return code from the PUT is zero,
PUTVSAM increments the number of successful
UPUTs in IOCRRN. If the return code is nonzero,
VSAMERR obtains the error code from the RPL. If
the error code indicates a logic error, VSAMERR
determines if it is a duplicate record or a
record-out-of-sequence, PRINTMSG writes the
appropriate message. Otherwise, the error is assumed
to be an 1/0 error, and PRINTMSG writes a message.
The call to VSAMERR by UPUT to print logical error
messages is bypassed if the suppress messages flag,
IOCMSGSM, has been set by the UPUT caller.

PUTVSAM will provide replace processing under the
following conditions:

e A return code from PUT indicating a logical error (08)
e RPL feedback code indicating duplicate record.

¢ Replace processing specified by caller
(I0CMODRP=1)

In the PUTREP routine, IOCWKA is checked to
determine if an input work area exists. If not, a
UGPOOL is issued to obtain an input work area. The
RPL is modified to permit update processing. A GET
for update is issued followed by a PUT. The IOCSTR
for the PUT will reference the address of the original
PUT record in IOCDAD. After the PUT, the RPL is
reset for no update processing.

If the return code for an 1/0 error is greater than 4,
VSAMERR turns off the open for processing flag
(I0OCMSGOP). PUTVSAM returns control to step 2
for the next record.

. PUTNONYVS checks the length of the record against

the IOCTRN to be sure that the record can be written.
If the length is too long, PRINTMSG writes an error
message and control returns to step 2 for the next
record. For the SYSLST data set, PUTNONVS
compares the record length to the maximum and
truncates the record if it is longer than the maximum.
The record is processed according to the record format.

* For spanned records, PUTNONVS constructs a
Record Descriptor Word (RDW) in the first four
bytes of the work area. PUTNONVS moves the
record to the work area making one spanned logical
record. The address of the work area will be
specified in the PUT macro.

If the output IOCSEX indicates export of a catalog
recovery area (IOCRCVM=‘1"), a 4-byte header
must be prepended to each record of the portable
data set. The header consists of 4 bytes of binary
zeros. However, if the data-length (IOCDLN) and
the data pointer (IOCDAD) in the IOCSTR are
both zero, then the 4-byte “header” is written as a
software end-of-file and consist of X‘00008000°.

e For variable blocked records, PUTNONYVS checks
to be sure the block will fit in the 10 AREA being
used as the buffer. If the block is too long,
PUTNONYVS issues the TRUNC macro to write
the current buffer and to start processing in the
other 1/0 area.

* For variable records, PUTNONYVS constructs a
RDW in the first four bytes of the area in the buffer
and PUTNONYVS moves the record following the
RDW.

PUTNONVS issues a PUT macro. The address of
the next area is returned by the PUT
macro—except for spanned records—and is saved.
If the records are variable blocked, PUTNONVS
saves the number of bytes remaining in the current
area. If an 1/0 error is detected during the PUT

W4l Jo Ayiadoid — pejiaiey pasusdyy

Licensed Material — Property of IBM

2-228 VSE/VSAM Access Method Services Logic

uonwisdQ Jo pogwl :7 sndey)

6TT-T

macro, IRSOSYN sets error data. PRINTMSG
writes the message. IRSOSYN turns off the open
for processing flag, IOCMSGOP. If there are no
errors, PUTNONYVS increments the count of
successful UPUTs in IOCRRN. PUTNONVS can
use device independent, magnetic tape, or
sequential disk DTF processing. PUTNONVS
returns control to step 2 for the next record.

IDCIO01
Procedure: IDCIOPT

S When all the records have been written, IDCIOPT puts a
return code in register 15 and returns control to the
module that issued the UPUT macro.

W4l Jo Ausadorg — [BIBIN pasuady]

0€T-T

91807 $301AI0S POYIJ 85900V VSA/HSA

Diagram 6.6. UCOPY Macro

INPUT

Register |

{GDT

CE)CSTR for Output Data Set

J

JOCSTR for Input Data Set

Input Data Set

Output Data Set

E=7=

u!Ql—l

From Diagram 6.0

PROCESSING

OUTPUT

Obtains input record.
Tests return code.

Puts record on output IOCSTR
and writes record.

Tests return code.

Returns to step 1 until an error
is encountered or end-of-file is
reached.

Returns.

Return Code

|

IOCSTR for Output Data Set

Return Code

IOCRRN
I0OCDAD
I0OCACN
IOCKYA
IOCREA
IOCDLN

Output Data Set

Input Data Set

Register 15

L |

W1 Jo Auadorg — epeysly pasuady]

uonesadQ Jo poyP ‘Z I9deyD

1€2-¢

Extended Description for Diagram 6.6
IDCIO01
Procedure: IDCIOCO

1 IDCIOCO obtains a record from the input data set by
calling procedures used for a UGET macro. The UGET
procedure returns control to this point in the UCOPY
routine. Arguments to the UGET procedures are set up
just as though a UGET had been issued. If export
CIMODE processing has been requested, the control
interval is retrieved. For each input control interval that
contains a segment of a spanned record, the segment is
checked for a consistent level number; only a valid
segment is written. If the segment is invalid, message
IDC13291 is written and the remaining segments are
ignored.

IDCIO01
Procedures: IDCIOCO, PRINTMSG

2 IDCIOCO tests the return code from the UGET
procedures. If the return code is zero, the UGET
procedure read the record successfully. If the output
IOCSTR indicates RRDS (IOCMACRR=1) and the input
IOCSTR indicates nonRRDS (IOCMACRR=0), an
incremental counter is maintained. This counter is
incremented by one each time a record is successfully
retrieved from the nonRRDS. This count is placed in the
output IOCREL prior to UPUTing the record.

If the return code indicates end-of-file, control goes to step
6. If the return code indicates an error, IDCIOCO
increments the number of errors for UCOPY. If the
UGET routine has set a message, PRINTMSG writes it.
Processing continues with the next input record if the
number of errors is less than four, and the open for
processing flag (IOCMSGOP) is on. If the number of
errors is 4 or IOCMSGOP is off, IDCIOCO turns off
IOCMSGOP and UCOPY quits.

IDCIO01
Procedure: IDCIOCO

3 ¢ Ifthe output IOCSTR does not indicate export
CIMODE processing:

IDCIOCO moves the length and address of the
record just read from the input IOCSTR to the
output IOCSTR. If the input and output IOCSTR
both indicate RRDS, IOCREL is moved from the
input IOCSTR to the output IOCSTR before issuing
the UPUT. This will result in exact recreation of the

correlation between the relative record number in the
input and output RRDS.

If the input IOCSTR indicates IOCMACRR="‘1" and
the input IOCSEX indicates IOCMODXM="1", this
is an EXPORT of an RRDS. It is required that the
relative record number be carried in the portable data
set. The relative record returned in IOCREL when
the record is retrieved is placed in the 4-byte field
immediately preceding the record. The RRDS record
plus the 4-byte field is then written to the portable
data set.

If the output IOCSTR indicates IOCMACRR=*!"
and the output IOCSEX indicates IOCMODXM="1",
this is an IMPORT of an RRDS. Records retrieved
from the portable data set have the relative record
number prepended to the RRDS record. This relative
record number is moved to the output IOCREL. The
address of the beginning of the RRDS record is set to
its logical beginning (the address of the retrieved
record +4) and the length of the record to be written
is reduced by 4 bytes.

e Ifthe output IOCSTR does indicate export CIMODE
processing:

For a spanned record, a GET is issued for each
segment, and the spanned record is built in a work
area. When all segments are retrieved, a PUT is
issued for the record.

For a non-spanned record, the control interval is
deblocked, and a PUT is issued for each record
contained in it.

IDCIOCO writes the record by calling the same
procedures used for the UPUT macro. IDCIOCO sets up
the arguments to the procedures just as though a UPUT
macro has been issued. The UPUT procedure returns
control to this point in the UCOPY routine.

IDCIO01
Procedure: IDCIOCO

4

IDCIOCO tests the return code from the UPUT
procedures. If the return code is zero, the UPUT
procedure wrote the record successfully. If the return code
indicates an error, IDCIOCO increments the number of
errors for the UCOPY.

IDCIO0
Procedures: PRINTMSG, IDCIOCO

5

Control goes to step | for the next record. Processing

continues if the number of errors is less than four, and
IOCMSGOP is on. PRINTMSG writes a message if the
message has been formatted. If the number of errors is 4,
IDCIOCO truns off IOCMSGOP and UCOPY quits.

IDC1001

Procedure: IDCIOCO

6 IDCIOCO puts a return code in register 15, and returns
control to the module issuing the UCOPY.

4] Jo Ayadord — [epaiepy] pasuady]

TET-T

9130 SAIAISS POYIIIN 55900Y INVSA/HSA

Diagram 6.7. UVERIFY Macro

From Diagram 6.0

PROCESSING

OUTPUT

INPUT
Register | -J-———————>
+GDT
I0CSTR
VSAM VSAM
Catalog Data Set

1. Checks data set.

2. Updates end-of-file indicator in
VSAM catalog.

3. Returns.

VSAM
Catalog

Register 15

L

NI Jo Auadolg — [BpaIB A pasuady]

uonesadQ Jo poye :z sndeyd

€€T-T

Extended Description for Diagram 6.7

IDC1001
Procedure; IDCIOVY

1 The second argument is assumed to be a valid IOCSTR
address. The UVERIFY does not continue if:

e The file is not VSAM.
¢ No RPL has been built for a VSAM file.
¢ The VSAM file is not open.

No error message is written for the last two conditions
because message have been written at open.

1DCIO01
Procedure: IDCIOVY
2 IDCIOVY issues a VERIFY macro.

IDC1001
Procedures: VYSAMERR, PRINTMSG, IDCIOVY

3 If the return code is not zero, VSAMERR obtains the error
code from the RPL. if the error is a logic error,
PRINTMSG writes a message. If the error is an 1/0 error,
PRINTMSG writes an error message. If the error code
returned in the RPL is not 4, which indicates that the error
occurred in the data, VSAMERR turns off the open for
processing flag (IOCMSGOP). IDCIOVY puts a return
code in register 15 and returns control to the module that
issued the UVERIFY.

41 Jo Kuadoig — peuayepy pasuadyy

1474

1807 $1AI0S POYRIA 55900V WVSA/TSA

Diagram 6.8. UIOINFO Macro

INPUT

From Diagram 6.0

PROCESSING

OUTPUT

Register 1

GDT
j Option byte

§ Return area pointer

4 Caller-supplied data
t UGPOOL storage ID

Direct
address

4 g

Obtains information requested.

Obtains storage for return area if not
supplied by caller.

Formats requested information into
return area.

Register 1

4

N ?GDT

t Option byte

1 Return area pointer

4 Caller-supplied data

t UGPOOL storage ID

W1 Jo Aiadoig — [8p0I8JA POsuRd}T

uonesadQ Jo poqiol :z 3dey)

SET-T

Extended Description for Diagram 6.8

IDC1003
Procedure: DSINFO

1 UIOINFO analyzes the option byte passed by the caller
and determines what kind of information is required. Data
set name, volume serial list and Logical Unit Blocks
(LUB) require that UIOINFO obtain job control
information. UIOINFO issues CDLOAD to load
IKQVLAB, the VSAM read label cylinder module,and
then gives control to IKQVLAB. The work area passed to
IKQVLAB is that of the existing work area in IDC1002's
automatic storage. If the return code from IKQVLAB is
nonzero, UIOINFO sets a return code and returns control
to the calling procedure. If the return code from
CDLOAD was nonzero, DSINFO issues a UABORT
macro. If the return code is 12 (insufficient storage was
available), DSINFO sets the UABORT code to 28;
otherwise, DSINFO sets the UABORT code to 64.

If device type information is requested, UIOINFO issues a
CDLOAD macro for IKQVDTPE and passes control to it
providing a pointer to the label information that will be
returned from IKQVLAB. Label information is not
needed if the VOLID is already known. In that case,
IKQVDTPE does a GETVCE using the VOLID. The
reading of label information is needed only to find a
VOLID. It is assumed that the volume is already assigned;
if not, a job control error is returned.

If timestamp information is requested, UIOINFO issues
an OVTOC macro to open the VTOC on the volume. It
next issues a PYTOC macro with the read option to read
the format-4 label of the VTOC. When processing is
complete, a CVTOC macro is issued to close the VTOC.

IDCI003
Procedure: DSINFO

2 Al of the information that UIOINFO obtains in Step 1 is
placed in IDCIO02’s automatic storage work area. During
this process UIOINFO calculates the actual length of the
data to be passed back to the caller. The caller can either
pass a return area to UIOINFO or pass a UGPOOL ID. If
the caller passes a return area, UIOINFO determines if it
is large enough (the length is contained in bytes 0 and 1 of
the return area). If not, UIOINFO places the total size
needed in bytes 2 and 3 of the return area, sets a return
code, and passes control back to the caller.

If the caller has passed a UGPOOL 1D, UIOINFO issues
a UGPOOL macro for the required amount of storage

with the storage identification passed by the caller. In this
case the caller is responsible for freeing this storage.

IDCIO03
Procedure: DSINFO

3 UIOINFO formats the requested information into the
return area and passes control back to the caller.

Ng] Jo Ayiadorg — [spIa)epy pasuady]

Licensed Material — Property of IBM

2-236 VSE/VSAM Access Method Services Logic

uonesadQ Jo poye :z indeyd

LET-T

Text Processor Visual Table of Contents

7.0
Text Processor
Overview
7.1 7.2 7.3 7.4 7.5 7.6
UESTS UESTA UREST URESET UPRINT UERROR
7.5.1 7.5.2
CONVERT PRINT

W41 Jo Ayiadoid — [BHIBI PIsUdD}]

8¢€T-C

51307 $901A19§ POYIO 55900 IWVSA/HSA

Diagram 7.0. Text Processor Overview

INPUT

From Module
Issuing Macro

PROCESSING

Register |

il

Argument List

Register |

Argument List

PCT
Dynamic Static Text
Text Module
Register 1

Argument List

ERCNVTAB

Q

For page control continue to Step 2:

for line control, go to Step 3.

Manipulates PCT based upon macro

specified:
e« UESTS

See Diagram
e UESTA

See Diagram

o UREST
See Diagram

e URESET
See Diagram

Formats, converts, and prints lines:

e UPRINT
See Diagram

Formats error messdages:

e UERROR
See Diagram

OUTPUT

PCT

Register 15

L

eIolelo

9

Printed Lines

Register 15

=

)

Printed Lines

Register 15

.

WG] Jo K1iadorg — [speIep pasuad|]

uone1adQ Jo poqioN 7 Iadey)

6€T-T

Extended Description for Diagram 7.0

IDCTPO1

Procedure: IDCTPO!

1 For page control continue with step 2; for line control go

to step 3.

The page control macros use the argument list to change
the Print Control Table, PCT. The page control macros
are:

UESTS, which establishes the PCT with data from a
static text module.

UESTA, which establishes the PCT with data from
storage.

UREST, which changes the PCT after a UESTS or
UESTA macro has been issued.

URESET, which sets Access Method Services defaults
in the PCT.

Each page printed by Access Method Services has three
sections:

1 0to 3 subtitles

2 Header line
Data line

3 0to 3 footing lines

The title section contains the main title line and from zero
to three subtitle lines. All lines in the title section are
printed at the top of each page. The main title line is the
first line on each page followed by subtitle lines. The
header and data section contains any header and data
lines. The header lines are kept in static text modules and
are printed on page overflow conditions The footing
sections contains from zero to three lines printed at the
bottom of each page. At least one vertical space precedes
them. More vertical spaces can appear depending upon the
control characters in the first footing line. A new page
results from any of the page control macros, a page eject
on a line, or a request to print a line that would cause more
lines on a page than specified. If there is not enough space
on a page for all the header lines and one data line, none
are printed. A page is ejected, and title and header lines
are printed on the next page. Footing lines are always
printed on each page. Vertical spacing is done before the
line is printed.

The page control macros give the facility to change the
following items in the PCT:

Item Default Limits

Main title line 1 1

Page number 107 1 to line width minus
location field length
Time-of-day 75 1 to line width minus
location 8 for field length

Date location 91 1 to line width minus 8

for field length
Subtitle line no subtitles 0to 3 lines

Footing line no footing 0 to 3 lines

Line width 120 133 maximum
Page depth 54 999 maximum
Default vertical 1 vertical 1, 2, 3, or vertical
space character space spaces

Translate table standard

for print chain tables

The UPRINT macro formats data within a line, converts
data to a printable form, and prints the line or lines.
IDCTPOI uses the PCT to format the line and the page.
The line to be printed is described by two kinds of input:
static text and dynamic text. Static text is unchanging data
and format structures that reside in a module referred to as
a static text module. Dynamic text is any changing data
and format structures that reside in storage. Format
structures, FMTLIST, describe how the line is to be
formatted. The types of formatting are:

Vertical spacing

Inserting data into a line

Extracting fields from a block of data in storage
Extracting data from a static text module
Defining default data

Repeating any of the above actions

The types of conversion are:

Binary to hexadecimal

Binary to hexadecimal with apostrophe
Binary to dump

Binary to decimal

Packed decimal to unpacked decimal
EBCDIC, no translation

The types of vertical spacing are:
Absolute spacing

The line is printed at a given line number on the
page. If data has been printed at that line number,
the page is ejected, and the line is printed at the first
data line number on the next page. If the line
number is within the title section or header lines,
the line is printed at the line number immediately
following the header lines. If the line number is
within the footing section, the page is ejected, and
the line is printed immediately following the header
lines on the next page.

Relative spacing

The line is printed at a number of vertical spaces
counted from the last printed line. If there is not
enough room on the page to print the line, the page
is ejected, and the line is printed after the title
section and header lines on the following page.

Eject

The line is printed after the title section and header
lines on the following page.

The UERROR macro formulates prose messages for the
return and reason codes caused by catalog errors. It
instigates multilevel message requests to the UPRINT
macro. Formatting and printing of the multilevel message
is handled by the UPRINT macro.

AE] Jo &113dosd — [eLIIBIA Pasuady]

T-T

913017 59014108 POYIO §5300V IWVSA/HSA

Diagram 7.1. UESTS Macro

INPUT

Register | J

From Diagram 7.0

PROCESSING

{GDT
$10CSTR

Static Text
Identifier

Static Text
Module

GDT

GDTTPH

If entrance is from first UESTS
macro, continue to Step 2: if
entrance is after first UESTS
macro, go to Step 3.

Performs initial processing.

Prints existing lines.

Remakes secondary PCT.

Gets input from static text

module.

Initializes values in work table.

Puts data in PCTs.

Returns.

OUTPUT

ﬁ@

PO4WT

=

)

Stack Buffer

Printed Lines

QPCT 1 e PCT 2

Register 15

|]

M1 Jo K1adosd — (BRI Pasuddy]

uoneIadQ jo poqiep :z 1dey)

1WT-T

Extended Description for Diagram 7.1

IDCTPO4, IDCTPO1
Procedures: ESTSCONT, INITPCT, STACKPUT

If entrance is from the first UESTS macro, processing
continues with step 2. If entrance is after the first UESTS
macro has been issued, processing continues with step 3.

ESTSCONT passes control to INITPCT which tests the
GDTTPM to determine if this is the first UESTS macro
issued. If GDTTPH in the GDT is not zero, a PCT already
exists, and control is given to step 3. The first time a
UESTS macro is issued the GDTTPH is zero, which
means that no PCT exists. When no PCT exists, INITPCT
obtains and initializes a PCT. INITPCT issues a
UGSPACE macro for the primary PCT. UGSPACE puts
the address of the primary PCT in GDTTPH. (The GDT
refers to the PCT as the Text Processor Historical Data
Area.) The Text Processor (TP) uses two Print Control
Tables—a primary PCT and a secondary PCT. Each PCT
has the same fields. The primary PCT contains default
values. INITPCT creates it during processor initialization,
and deletes it at processor termination. It exists throughout
Access Method Services processing. The secondary PCT
contains current values which are different from the
default values in the primary PCT. INITPCT creates it
and deletes it many times during Access Method Services
processing. The address of the secondary PCT is in the
primary PCT. When the Text Processor uses a PCT, if the
secondary PCT exists, it is used instead of the primary
PCT.

Rather than writing each line as it is completed, the Text
Processor saves time by putting completed lines in an area
of storage called the stack buffer. When the stack buffer is
full, STACKPUT writes it. ESTSCONT issues a
UGSPACE macro for storage for the stack buffer and puts
the address of the stack buffer in the fields PCTBUF and
PCTBNL in the primary PCT. ESTSCONT opens the
System output data set with a UOPEN macro. Control is
given to step 4.

IDCTPO4
Procedure: STACKFL
3 Because controls governing the writing like page depth

and line width are changing, the lines formatted under the
current control values must be written before the controls
change. STACKFL writes the stack buffer with a UPUT
macro.

IDCTP04
Procedure: INITPCT
4 Prior to making any changes INITPCT gives control to

STACKEFL to flush the stack buffer. If a secondary PCT
exists—that is PCTSPP in the primary PCT is not
2ero—INITPCT releases the secondary PCT with a
UFPOOL macro. INITPCT copies some data from the
secondary PCT to the primary PCT before the secondary
PCT is freed. INITPCT issues a UGPOOL macro for a
secondary PCT. INITPCT sets the identification,
PCTIDN, in the secondary PCT to ‘PCT2’, and sets the
PCTSPP field to zero.

IDCTPOS
Procedure: IDCTPO5

5 If a static text module is used once, it is likely that it will

be used again on the next call to the Text Processor.
Rather than loading and deleting a static text module each
time it is used, the static text module is kept in storage
until a different static text module is needed. The address
of the static text module in storage is kept in PCTSTM in
the PCT. The static text identification passed by the
calling program to the Text Processor as input is used to
reference the appropiate module. IDCTPOS concatenates
the first three bytes of the static text identification with
‘IDCTS’ to form the module name. IDCTPOS5 compares
the module name to the name of the static text module in
storage in PCTSTM. If the names don’t match, IDCTP0S
deletes the static text module in storage witha UDELETE
macro, and IDCTPOS loads the requested static text
module with a ULOAD macro. IDCTPOS puts the name
of the loaded module in PCTSTM and the address of the
module in the field PCTSME in the PCT. If a secondary
PCT exists, it is used; otherwise the primary PCT is used.

IDCTPOS uses the low-order byte of the static text
identification as an index to obtain the correct static text
entry. IDCTPOS copies the entry from the static text
module into storage that IDCTPOS obtains with a
UGSPACE macro. This is done so the static text entry is
available if the static text module is deleted.

IDCTP04
Procedure: PO4SETUP
6 PO4SETUP puts data from the static text entry into a work

table. PO4SETUP uses the work table to make the input
from UESTS, UESTA, and UREST into the same format.

IDCTPO4
Procedure: PCTSETUP

7 PCTSETUP forces a page overflow so the next line will
start on a new page. If no secondary PCT exists,
PCTSETUP initializes the primary PCT with the
minimum values needed to control a page, which are:

* A translate table for a print chain

* A page number increment

¢ A line number where the first line is printed
* A line number where the last line is printed.

For initializing either the primary PCT or the secondary
PCT, PCTSETUP verifies the input data and puts it into
the appropiate PCT.

IDCTPO4
Procedure: ESTSCONT
8 ESTSCONT deletes the storage for the static text entry

with a UFSPACE macro. ESTSCONT puts a return code

in register 15, and control returns to the module that
issued the UESTS macro.

W41 Jo Arxadorg — [BLRIBIN PISUDT

wi-T

918077 5901AI0S POYIIIA 55900V WVSA/TSA

INPUT

Diagram 7.2. UESTA Macro

Register !

rom Diagram 7.0

PROCESSING

e

{GoT

t10csTR

Print Control
Argument List

GDT

GDTTPH

PCT |

PCTSPP PCT 2

Prints existing lines.

Remakes secondary PCT.

Initializes values in work area.

Puts data in PCTs.

Returns.

ouTPUT

POIWT

Printed Lines

PC1 |

PCPSPP

PCT 2

Register 15

|

|

W1 Jo Auddosg — i3I8 PIsuadlT

uonesadQ Jo poyd :z 1deyd

€pT-T

Extended Description for Diagram 7.2

IDCTP04
Procedures: ESTACONT, INITPCT

1 ESTACONT determines if a primary PCT exists.
ESTACONT invokes INITPCT to get storage for the
PCT. ESTACONT then invokes PO4SETUP to build the
work table; ESTACONT then invokes PCTSETUP which
initializes the PCT. Because controls governing the writing
(like page depth and line width) are changing, the lines
formatted under the current control values must be written
before the control values change. INITPCT writes the
stack buffer with a UPUT macro.

IDCTPO4
Procedure: INITPCT

2 If a secondary PCT exists—that is PCTSPP in the primary

PCT is not zero—INITPCT releases the secondary PCT
with a UFPOOL macro. INITPCT issues a UGPOOL
macro for a new secondary PCT. INITPCT sets the
identification, PCTIDN, in the secondary PCT to ‘PCT2’,
and INITPCT sets the PCTSPP field to zero. UGPOOL
puts the address of the new secondary PCT in the field
PCTSPP in the primary PCT. INITPCT copies all the data
in the primary PCT into the secondary PCT. INITPCT
copies some data from the secondary PCT to the primary
PCT before the secondary PCT is deleted.

IDCTP04
Procedure: PO4SETUP

3 PO4SETUP puts data from the input into a work table.
PCTSETUP uses the work table to make the input from
UESTS, UESTA, and UREST into the same format.

IDCTPO4
Procedure: PCTSETUP

4 PCTSETUP forces a page overflow so the next line will
start on a new page. If no secondary PCT exists,
PCTSETUP first initializes the primary PCT with the
minimum values needed to control a page which are:

A translate table for a print chain

A page number increment

A first page number

A line number where the first line is printed
A line number where the last line is printed

For initializing either the primary PCT or the secondary
PCT, PCTSETUP verifies the data in the work table and
puts it into the appropiate PCT.

IDCTPO4
Procedure: ESTACONT

5 ESTACONT puts a return code into register 15, and
control returns to the module that issued the UESTA
macro.

W41 Jo Kyradosd — BB pasuady]

wi-T

913077 5901A10§ POYI §5900Y WVSA/FSA

Diagram 7.3. UREST Macro

INPUT

Register |

j—*'\>

J

$ GDT

4 IOCSTR

L Argument List

"[Pointers

—

i

Print Control
Argument List

GDT

GDTTPH

PCT | PCT 2

PCTSPP

From Diagram 7.0

PROCESSING

Prints existing lines.

Initializes values in the work
area.

Puts data in PCT.

Returns.

OUTPUT

—

PO4WT

>

Printed Lines

PCT |

PCT 2

PCPSPP

Register 15

L

EI Jo Auedorg — [epa)ey pasuady]

uoneradQ jo poyp 7 1deqDd

S¥T-T

Extended Description for Diagram 7.3
IDCTPO4
Procedures: RESTCONT, STACKFL

1 A primary PCT must exist. If it does not, RESTCONT
issues a UABORT macro. Because controls governing the
writing (like page depth and line width) are changing, the
lines formatted under the current control values must be
written before the control values change. STACKFL
writes the stack buffer with a UPUT macro.

IDCTPO4
Procedure: PO4SETUP

2 PO4SETUP puts data from the input into a work table,
PO4WT. PCTSETUP uses the work table to make the
input from UESTS, UESTA, and UREST into the same
format.

IDCTP04
Procedures: RESTCONT, PCTSETUP

3 The UREST macro allows the user to change any
combination of the following:

Subtitle lines

Footing lines

Line width

Page depth

Default space character
Translate table
Starting page number

A value of zero in any of the parameter lists causes the
item to be reset to the Access Method Services default.
RESTCONT evaluates the input parameter list. If the
secondary PCT exists, PCTSETUP modifies it. Otherwise,
PCTSETUP modifies the primary PCT.

IDCTPO4
Procedure: RESTCONT

4 RESTCONT puts a return code into register 15, and
control returns to the module that issued the UREST
Macro.

A1 J0 Auiadoig — [BjI9)ey Pasuadly

Wwi-T

o107 $301A19§ POYIO $5300V INVSA/ASA

Diagram 7.4. URESET Macro

INPUT

F'rom Diagram 7.0

PROCESSING

Register |

‘GoT
Y 10CSTR

l Page Number 1
GDT

(GDTTPH

PCT |

PCTSPP [N PCT 2

1.

2.

4.

Prints existing lines.

Returns last page number.

Frees secondary PCT and subpool.

Returns.

OUTPUT

Printed Lines

—)

Register |

2 C

t GoT

t 10CSTR

LPagc Number

Register 15

> L

W] Jo Aysadosg — [BlIBy PISUD|T

uone1xdQ Jo poyi :z dey)

LT-t

Extended Description for Diagram 7.4

IDCTPO4
Procedures: RESETCON, STACKFL

1 A primary PCT must exist. if it does not, RESETCON
issues a UABORT macro. If a secondary PCT exists,
RESETCON forces a page overflow so the next line will
begin on a new page. Because controls governing the
writing (like page depth and line width) are changing, the
lines formatted under the current control values must be
written before the control values change. STACKFL
writes the stack buffer with a UPUT macro.

IECTPO4
Procedure: RESETCON

2 If the invoker of Access Method Services requested that
the last page number be passed, RESETCON converts the
current page number to binary and places it in the
invoker's parameter list.

IDCTPO4
Procedure: RESETCON

3 Before the secondary PCT is deleted, RESETCON copies
some data into the primary PCT. One UFPOOL macro
releases the secondary PCT, subtitle lines, footing lines,
and any static text entries addressed from the secondary
PCT in PCTSQP because everything was obtained with
subpool identification ‘TPOL’. RESETCON sets the
address of the secondary PCT to zero in the primary PCT
in PCTSPP. This resets all page control values to the
values contained in the primary PCT.

IDCTPO4
Procedure: RESETCON

4 RESETCON puts a return code into register 15, and
control returns to the module that issued the URESET
macro.

gl Jo fuadorg — (BB Pasuady]

8vT-T

1807 8901AIOS POYISI $5900V NVSA/HSA

Diagram 7.5. UPRINT Macro

INPUT

From Diagram 7.0

PROCESSING

Register |

Dy 1. if entrance is from module Issuing

{ GDT

{ IOCSTR

L

]

Format List

]

Dynamic
Argument List

Static Text

Module

Block List

UPRINT, continue to Step 2: if
entrance is from PRINT or
CONVERT, go 1o Step 3.

« Locates format hst.

. Processes format list.

CONVERT
See Diagram

PRINT
See Diagram

e Space

e Static text

e Insert text

e Default

e Block

e Replication

e End of format list

4. Returns.

OUTPUT

Format List

Register 15

L

NE] Jo Ayradoig — [eLI2)E A Pasuadf]

uoneiadQ Jo POy :z 3deqd

6vT-T

Extended Description for Diagram 7.5

1 Ifentrance is from a module issuing a UPRINT macro,
continue with step 2; if entrance is from PRINT, Diagram
7.5.2, or CONVERT, Diagram 7.5.1, go to step 3.

IDCTPO1, IDCTPOS
Procedures: IDCTPPR, IDCTPO05

2 The format list, FMTLIST, and Print Control Table,
(PCT), must be found. If a secondary PCT exists,
IDCTPPR uses it; otherwise, IDCTPPR uses the primary
PCT. The format list, FMTLIST, can be in one of three
locations:

e Inthe FSR
* In a list of static text entries chained from the PCT
¢ In a static text module

If the format list is in the FSR, DARGSTID in the
Dynamic Argument List, DARGLIST, is zero. The calling
program gives the address of the FMTLIST to UPRINT
as the fourth argument.

IDCTPPR compares the static text identification in
DARGSTID against the static text identification of each
entry addressed from the Print Control Table in field
PCTSQP. If a match is found, IDCTPRR uses that
FMTLIST in the static text entry as input to UPRINT. If a
match is not found, IDCTPRR must obtain the FMTLIST
from a static text module.

IDCTPOS concatenates the name of the static text module
in DARGSMOD with the characters ‘IDCTS’ and
compares it with the name of the static text module in
storage. The name of the static text module currently in
storage is kept in PCTSTM in the PCT. If the names do
not match, IDCTPOS deletes the module named in
PCTSTM with a UDELETE macro, and IDCTPOS loads
the module named in DARGSMOD with a ULOAD
macro. IDCTPOS puts the name and address of the newly
loaded module in the PCT. IDCTPOS finds the particular
static text entry by using DARGSENT as an index to the
static text module. IDCTPOS copies everything in the static
text entry after the length field and puts the static text
identification and the address of the next entry in the list at
the beginning of each entry on the list. IDCTP0S then
chains the copy into the list of static text entries addressed
from PCTSQP so it will be readily available when it is
used again. See “Text Structure” in the chapter
“Diagnostic Aids” for a discussion of static text entries.

IDCTPO1

Procedures: IDCTPPR, SPACE, STATIC, INSERT,
BLOCK, REDO

3 IDCTPPR takes action on the format list substructures in

FMTLIST depending upon the structure type. The line
buffer is a work area where each line is formatted.
IDCTPPR processes substructures in order of their
appearance in the FMTLIST. If the high order bit in
FMTFLGS is on, this substructure is the last in the
FMTLIST. If there is formatted data in the line buffer,
IDCTPPR calls LINEPRT to write the line. (See diagram
7.5.2.) IDCTPPR sets a return code in register 15, and
control returns to the module that issued the UPRINT

macro.

Types of substructures:

Space

If this is the first substructure in the FMTLIST,
SPACE saves the spacing type character from the
FMTLIST for LINEPRT, and control returns to Step 2
for the next substructure. If the space substructure is
not the first substructure in the FMTLIST, SPACE
transfers control to PRINT. After control returns from
PRINT, the new spacing type character is saved for the
next line. (For more information on PRINT, see
diagram 7.5.2.) Control returns to Step 2 for the next
substructure.

Static text

STATIC passes the address of the input data, length of
input data, type of conversion, position in the output
line, and length of output field to IDCTPPR. (See
diagram 7.5.1.)

Insert data

INSERT compares the insert reference number in
FMTRFNO against every DARGINS field in the
Dynamic Data List. If the same number is found in
DARGINS, INSERT gives the following information
to CVPSTRM: the length in DARGINL, the address
in DARGDTM, the type of conversion from
FMTCNVEF, the output field length from FMTOLEN,
and the position for the field in the output line from
FMTOCOL. (See diagram 7.5.1.) If the same number
is not found in any DARGINS, INSERT ignores the
insert-data substructure, and control returns to Step 2
for the next substructure. If the next substructure is a
default-text substructure, INSERT processes the
default structure.

Default text

If a default-text substructure does not immediately
follow an insert substructure that does not have a
matching reference number in DARGINS, INSERT
ignores the default-text substructure, and control
returns to Step 2 for the next substructure. INSERT
uses the default-text substructure instead of a matching
DARGINS to describe input for an insert-data
substructure. INSERT takes the values for input and
output from the default-text substructure only.
Nothing is taken from the insert substructure. Control
is given to IDCTPPR. (See diagram 7.5.1.)

Block format

BLOCK obtains input information from DARGDBP
and DARGILP. If the DARGBPL flag is set on (more
than one block is to be used for input data), then
BLOCK adds the offset count in BLKLRIO to the
address in BLKLPTR to get the address of the input
data. BLOCK uses the input length specified in
BLKLILP. The block number in the format list,
FMTBLKNO, is used as an index into the BLKLIST.

If the DARGBPL flag is not set, then BLOCK adds the
offset count in FMTIOFF to the address in
DARGDBP to get the address of the input data. If the
input length in FMTILEN is zero or 32,767, BLOCK
uses the input length in DARGILP. If the length in
FMTOLEN is zero or 32,767, the output length is the
length of the converted input data.

All this data is given to IDCTPPR. (See diagram 7.5.1.)
Replication

REDO compares the reference number in FMTRFNO
against every DARGREDP field. If the same number is
not found, REDO ignores the replication substructure
and control returns to Step 2 for the next substructure.
If the same number is found in DARGREP, REDO
uses the count in DARGPCT for loop control to set up
the number of times the following substructures are
repeated. REDO obtains the number of substructures
to repeat from FMTRBC. At the end of each time
through the substructures REDO prints a line because
the output positions for each field are unchanging. (See
diagram 7.5.2.) REDO saves the value in FMTRIO
and adds to each address of block data in the
substructures being repeated.

If the DARGBPL flag is set on (more than one block is
to be used for input data), then REDO calculates the
redo input offset from the BLKLRIO field of the block
list. The block number in the format list,
FMTBLKNO, is used as an index into the BLKLIST.

WA] jo K11adosd — [BlI2)BIA PISULDYY

Licensed Material — Property of IBM

2-250 VSE/VSAM Access Method Services Logic

uone1adQ Jo poyIe :Z Indeq)

1s2-¢

If the DARGBPL flag is not set, the redo input offset is
obtained from the format list redo input offset field,
FMTRIO.

IDCTPO1

Procedure: IDCTPPR

4 IDCTPPR puts a return code in register 15 and returns
control to module that issued the UPRINT macro.

WEI Jo A1sadosd — [SHNBIA Pasudd|]

7sT-T

918077 $901A19§ POYIOIN 55200V INVSA/HSA

Diagram 7.5.1. UPRINT Macro — CONVERT

INPUT

Format List

—

Dynamic
Argument List

Line Butfer

/SIS /IS SIS,

From Diagram 7.5

PROCESSING

ouTPUT

1. cConverts data according to type of
conversion.

e Binary to hexadecimal.

e Binary to hexadecimal with
apostrophe.

e Binary to dump.
e Binary to decimal.

e Packed decimal to unpacked
decimal.

e EBCDIC (no translation).

2. Puss field in line buffer in correct
output column.

3. Prints line buffer, if full.
See Diagram — 1752

4. Returns.

L2777 7720

Line Buffer

W41 Jo Auiadord — [epId)eRy pasuddf]

uoneiadQ Jo poyie :z 1ndeqDd

£6T-T

Extended Description for Diagram 7.5.1
IDCTPO1

Procedures: CONVERT, BHCONV, BHDCONY,
BDCONYV, PUPCONY, EBCDIC

I CONVERT checks the conversion type from FMTCNVT
and converts the field accordingly. Output fields can
overlap. When a line of conversion is finished, LINEPRT
prints the line. (See diagram 7.5.2.)

Control returns to the caller in diagram 7.5. (See diagram
7.5.) Types of conversion:

Binary to hexadecimal

BHCONYV converts bytes of binary data to their
equivalent printable hexadecimal. BHCONYV prints
two characters for each byte. The maximum input
length is 32,767. If the length of the converted data
is greater than the length of the output field,
BHCONY truncates the data on the right. If the
length of the converted data is less than the length
of the output field, BHCONY does not change the
remaining fields to the right. if the converted data
extends beyond one line, BHCONY continues the
data on the next line.

Binary to hexadecimal with apostrophe

BHCONY converts bytes of binary data to their
equivalent printable hexadecimal. BHCONY prints
two characters for each byte. The output is
preceded by a ‘X’ and followed by ‘a’. The
maximum input length is ((line width - starting
position)/2) - 3. If the length of the converted data
is greater than the length of the output field,
BHCONY truncates the data on the right. If the
length of the converted data is less than the length
of the output field, BHCONYV does not change
remaining fields to the right of the trailing
apostrophe. If the converted data extends beyond
one line, BHCONY truncates the data on the right.

Binary to dump

BHDCONY converts bytes of binary data to their
equivalent printable hexadecimal. BHDCONV
prints two characters for each byte. This type of
conversion forces the output to begin on a new line.
IDCTPPR s called to put the current line in the
stack buffer prior to calling CONVERT (See
diagram 7.5.2.) BHDCONYV formats the output line
like a standard ABEND dump with relative
addresses on the left of the page, eight segments in
the center, and a 32 byte EBCDIC translation with
non-printable characters replaced by periods on the

right of the page. The output starts in column one
and BHDCONYV uses 32 bytes of input per line.
The maximum input length is 32,767.

Binary to decimal

BDCONYV converts bytes of binary data to their
equivalent packed decimal, then calls PUPCONYV
for further conversion to unpacked decimal. Sign
suppression, leading zero suppression and left
alignment can be used. The input length is one to
four bytes, and the maximum output length is 16
bytes including the sign. If the length of the
converted number is greater than the length of the
output field, BDCONY truncates the number on
the left. If the converted number extends beyond
one line, PUPCONYV truncates the number on the
right.

Packed decimal to unpacked decimal

PUPCONY converts bytes of packed decimal data
to their equivalent printable unpacked decimal.
Sign suppression, leading zero suppression and left
alignment can be used. Eight bytes is the maximum
input length, and 16 bytes including sign is the
maximum output length. If the length of the
converted number is greater than the length of the
output field, PUPCONY truncates the number on
the left. 1f the converted number extends beyond
one line, PUPCONY truncates the number on the
right.

EBCDIC, no translation

EBCDIC assumes the input is in printable

EBCDIC and no conversion is done. If align right is
specified, the EBCDIC character string is aligned to
the right in the print field. The print column
specified is added to the print field length to
determine the last printable position. Unwanted
blanks following a nonblank character can be
eliminated by specifying blank suppression on the
following field. If blank suppression is specified on
an EBCDIC field, EBCDIC moves that field left
into the prior EBCDIC field so there is only one
blank between the two fields. Blank suppression
can be specified only on fields that immediately
follow EBCDIC fields. The maximum input length
is 32,767. If the output extends beyond one line,
EBCDIC prints additional lines.

IDCTPO1

Procedure: CONVERT, BHCONYV, BHICONV, BDCONYV,
PUPCONYV, EBCDIC

2 The conversion routines put the converted data in the
correct column. FMTOCOL in the FMTLIST specifies the
output column. If blank suppression is on
(FMTCNVF=X'0010"), the output column is in PCTAPC
in the PCT, and FMTOCOL is an offset from the output
column in PCTAPC. In this case, the conversion routines
find the output column by adding the value in PCTAPC to
the value in FMTOCOL. The output column for each field
is calculated separately from other fields. Output fields
may overlap due to specification of output columns in

FMTOCOL.
IDCTPO1

Procedures: CONVERT, BHCONV, BHDCONYV,
PUPCONYV, EBCDIC

3 When the line buffer is full or a new line is to start, the
conversion routines call LINEPRT to print the line. See
Diagram 7.5.2.

IDCTPO1

Procedures: CONVERT, BHCONV, BHDCONYV,
PUPCONYV, EBCDIC

4 When all the data specified by the FMTLIST substructure
is converted, control returns to the caller in Diagram 7.5.

€] Jo Ayadoad — [e[Ia3e pasuady]

psT-¢

91807 §901AI98 POYII 5900V WVSA/ASA

Diagram 7.5.2. UPRINT Macro - PRINT

INPUT

From Diagram 7.5 and 7.5.1

PROCESSING

PCT1

PCT2

L——i>

PCTSPP

Line Buffer

Stack Buffer

l + Returns data to caller, if requested,
otherwise, continues with step 2.

2. Determines if line will fit on current page.

3. Processes header and message.

4. Translates line.

5. Prints stack buffer if full.

6. Clears line buffer and returns.

OUTPUT
PCT1 PCT2
PCTSPP
PCTAHP
Header

e

Printed Lines

WH] Jo f1iadorg — [BH3IBIA PISU3dNT

uoneiadQ Jo poyidN 7 Iadeyd

§6T-C

Extended Description for Diagram 7.5.2

IDCTPO1
Procedures: LINEPRT, LINERET

LINEPRT tests the return area pointer in the argument list
for zero. If it is not zero, procedure LINERET places the
formatted line in the return area without checking for or
setting page-related data such as carriage control,
headings, etc. Only as many characters are returned as
allowed by the return area length.

IDCTPO1
Procedures: LINEPRT, STACKPUT
2 LINEPRT tests the print data set supplied with the

UPRINT macro to determine if it is a change from the
current print file. If the print data sets are changing,
STACKPUT writes the stack buffer with a UPUT macro.
Then LINEPRT puts the page number and next line
number for the new print data setin PCTCPN and
PCTNLI respectively. LINEPRT puts the page number
and next line number for the old print data set in PCTSPN
and PCTSNL for the standard print data set or in
PCTAPN and PCTANL for an alternate print data set.
LINEPRT compares the current line number from
PCTNLI with the pagesize in PCTPPD to determine if the
current line with its spacing will fit on the current page. If
the line will not fit, LINEPRT ejects a page, and
LINEPRT prints all title lines on the new page. If the
vertical spacing is more than three lines, LINEPRT writes
blank lines until the line number is within three lines of
the line number where the line is to be written and the
spacing character can handle spacing.

IDCTPO1
Procedure: LINEPRT
3 LINEPRT tests the flags in the static text entry to

determine if this static text entry describes a header line or
a message.

a. Ifitis a header line, LINEPRT puts the address of the
translated header line in PCTAHP so it can be written
again when a page overflows as well as when they are
first given to the Text Processor. Unless all header
lines, spaces, and one data line will fit on a page, a
page overflow occurs, and LINEPRT ejects a page.
The number is in HSDP in the static text entry. A
UGPOOL is done for storage for the kept header line.
Once a header is given to UPRINT, it can only by
removed by another header, UESTS, UESTA, or
URESET macro.

b. Ifit is a message line, LINEPRT writes the stack buffer
with a UPUT macro.

IDCTPO1
Procedure: LINEPRT

4

LINEPRT translates the formatted line using the translate
table supplied for the print chain and addressed from
PCTTRP. The CHAIN or TABLE parameter of the
PARM command determines the translate table. In Access
Method Services translate tables, all non-printable bit
combinations are changed to periods.

IDCTPO1
Procedures: LINEPRT, STACKPUT

5

LINEPRT puts the translated line preceded by a two byte
length field in the stack buffer. When the stack buffer is
full, STACKPUT issues a UPUT against the entire buffer.
Lines in the stack buffer are in variable format with as
many trailing blanks removed as possible. The minimum
line size is 10 bytes. If the line is a message, STACKPUT
issues a UPUT against the message alone. This is done
because all messages go to the standard SYSLST data set.
STACKPUT passes an identification number with the
UPUT macro. The identification number for all data lines
is zero and for messages is the message number. Therefore,
STACKPUT must issue a separate UPUT for each
message. 1f an alternate data set is being processed, there is
no way to keep messages for the standard data set until
ready to print, because there is only one stack buffer.

IDCTPO1
Procedure: LINEPRT

6 LINEPRT fills the line buffer with blanks and control

returns to the caller, FORMAT or CONVERT.

W41 Jo Ayiadorg — [8pIa)BA] pasuad|

96T-T

913077 $901AI9§ POYIIN §5900Y WVSA/ASA

Diagram 7.6 UERROR MACRO

INPUT

From Module Issuing
UERROR Macro

PROCESSING

Register 1

(&Igument List

1 GDT

1t ERCNVTAB

Static Text
Module

1.

Determine type of error to be converted.

e Catalog Error

Retrieve verbal text description of catalog
return code.

Initialize DARGLIST to print primary and
secondary message pair.

UPRINT.

Return to invoker.

OUTPUT

Printed Lines

Register 15

L B

WdI Jo &uadoid — [BIBI Pasuddy]

7 indvgd

uoneiedQ Jo POION

LsT-T

Extended Description for Diagram 7.6
IDCTP06
Procedure: IDCTP06

1 The Error Conversion Table (ERCNVTAB) indicates the
type of error to be converted. The only allowable error is a
catalog error.

IDCTP06
Procedure: CATERCNV

2 Retrieve the verbal text description from the UERROR
static text module (IDCTSTP6). CATERCNY uses the
numeric catalog error code to index the appropriate verbal
text entry in the static text module. The UPRINT macro is
used to return the verbal text.

IDCTP06
Procedure: CATERCNV

3 The DARGLIST is initialized to print the primary and
secondary message pair. In a batch environment, both
messages are issued to the SYSLST data set.

IDCTPO06

Procedure: IDCTP06

4 Print the message pair via the Text Processor UPRINT
macro.

IDCTP06

Procedure: IDCTP06

§ Coantrol is returned to the issuer of the UERROR macro.

NG JO Ay1adoig — [BIaIBIAl POSUID}TY

Licensed Material — Property of IBM

2-258 VSE/VSAM Access Method Services Logic

uone1ado Jo pOYW 7 Jndeyd

$T-¢

Debugging Aids Visual Table of Contents

8.0

Debugging Aids
Overview

8.1

UTRACE Macro

8.2

UDUMP Macro

8.2

Dump Fields

WA Jo Auiedoad — (SN Pasuedly

09T-2

18077 5301A10§ POYION 58900V IWVSA/HSA

Diagram 8.0. Debugging Aids Overview

INPUT

From Procedure
Issuing Macro

PROCESSING

OUTPUT

Intra-Module
Trace Table

(LLLLLLLLL L

Register 1

Argument List

1. Updates Intra-Module Trace

Table.
See Diagram

2. Dumps information based on options

specified:

See Diagram ————

e TRACE
e AREAS
¢ FULL

Intra-Module
Trace Table

Trace Tables

"

Trace Tables and
Selected Areas

—

Trace Tables and
Full Region Dump

WEI Jo Auadorg — [BHRI pasuddy]

uone1adQ Jo poyiol 'z 10idey)

192-7

Extended Description for Diagram 8.0

IDCDBO1
Procedure: IDCDBO1

1 When a module issues a UTRACE macro instruction, the
PL/S compiler generates inline code that updates the
Intra-Module Trace Table. Diagram 8.1 shows the
UTRACE macro instruction in detail. Processing
continues with the statement following the UTRACE
macro.

2 The output of the UDUMP macro instruction depends
upon the TEST keyword options specified either in the
PARM command or from the EXEC statement.

¢ If TRACE is specified, UDUMP prints the Inter- and
Intra-Module Trace Tables each time a UDUMP
macro is executed.

s If AREAS is specified, UDUMP prints the Inter- and
Intra-Module Trace Tables and items given to the
UDUMP macro only for the areas specified.

o If FULL is specified, UDUMP prints Inter- and
Intra-Module Trace Tables and a full region dump
only for the dump identifiers specified.

Diagram 8.2 shows the UDUMP macro instruction in
detail. Control returns to the module issuing the UDUMP
macro.

N1 Jo Aadoag — [eaa)8 A PISUID|T]

9T-T

918077 8901AJ98 POYID $5900V WVYSA/FSA

Diagram 8.1. UTRACE Macro

From Diagram 8.0

PROCESSING

OUTPUT

INPUT
GDT Tl Ll Ll P 4
GDTTR2 —— >
Intra-Module
Trace Table

New Identification

|

1. Removes oldest identifier.

2. Adds new identifier.

GDT

GDTTR2

Intra-Module
Trace Table

W1 Jo Kiadord — [WHNVN POsuadN]

uonead(Jo poyRi 7 301deyd

€9T-T

Extended Description for Diagram 8.1
IDCDBO1
Procedure: IDCDBO1

1 The inline code generated by the UTRACE macro gets the
address of the Intra-Module-Trace Table from the
GDTTR?2 field in the GDT. The inline code shifts the
Intra-Module-Trace Table left so that the oldest identifier
at the beginning of the table is lost.

2 The module provides the UTRACE macro with the new
identifier to add to the Trace Table. The generated inline
code puts the new identifier at the end of the Trace Table.
The new identifier is 4 bytes long; the first two characters
are characters 4 and 5 of the module name; the last two
characters are assigned by the module. The identifier may
cither be four characters in quotes or the address of four
characters. Control continues with the next instruction.

W Jo Auedorgd — (s POsud

-t

91807 $901A10§ POYIIN $3900Y WVSA/HSA

Diagram 8.2. UDUMP Macro

INPUT

From Diagram 8.0

PROCESSING

Register 1

] ==

¥+ GDT

Dump List

Full Dump Identifier

GDT

GDTDBG

GDTDBH

Inter-Module
Trace Table

Intra-Module
Trace Table

Initalizes.

Dumps trace tables.

Dumps hist of fields.
See Diagram —

Dumps region.

Terminates.

Checks for PARM command
with TEST options.

GDT

GDTDBG

GDTTRI

GDTTR2

OUTPUT

8.2.1

\/

Trace Tables

—

Fields from
Selected Areas

Full Region

GDT

GDTDBG

GDTTRI1

GDTTR2

G Jo Ausadoig — pepiosepy pasuady]

uonesdQ jo poqioly :z 19vdey)

§9T-T

Extended Description for Diagram 8.2

1IDCPMO1
Procedure: IDCPMO!

1 The PARM command with the TEST keyword must be
specified in order for any dumping to take place, or the
TEST keyword must be specified in the PARM field of the
EXEC statement. The PARM FSR, IDCPMO01, has loaded
the dump routine, IDCDBO1, and has put the address of
the dump routine in the GDTDBG field in the GDT, if
dumping is to take place. If GDTDBG is nonzero, control
goes to Step 2. If GDTDBG is zero, the dump routine is
not loaded and no dumping takes place; control returns to
the module issuing the UDUMP macro.

IDCDBO1
Procedure;: IDCDBO!

2 IDCDBOI obtains the calling module identifier from the
last entry in the Inter-Module Trace Table. It issues a
UTRACE macro to put the caller’s module identification
in the Intra-Module Trace Table. Both the Inter-Module
and the Intra-Module Trace Tables are saved so that the
trace tables will not be updated during the dumping
operation and the information in the trace tables at the
time the UDUMP was issued is preserved. IDCDBO1 turns
off the TEST options by saving the address of the dump
routine and setting GDTDBG to zero. This prevents any
dumps during the processing of the current dump
operation. IDCDBOI also issues a ULISTLN macro to get
the number of arguments passed via the UDUMP macro.
If there are three arguments, IDCDBO! has received a list
of items to dump.

IDCDBO1
Procedure: IDCDBOI

3 IDCDBOI uses the Test Option Data Area, whose address
is in GDTDBH, to determine whether or not to print the
trace tables. The trace tables are printed if any one of the
following conditions is present:

¢ TESTRACE contains a nonzero value, indicating that
the trace tables are to be printed each time UDUMP is
executed.

¢ IDCDBOI compares the calling module identifier from
the Inter-Module Trace Table with the module
identifiers in the AREANAME. If a match is found, it
prints the trace tables.

* IDCDBOI compares the full dump identifier provided
by the module issuing the UDUMP macro with the full

dump identifiers in FDUMPID. If a match is found, it
prints the trace tables.

IDCDBO1
IDCDB02

Procedures: IDCDBOI1, IDCDB02

4 If three arguments are given to the UDUMP macro, the
third is a list of areas to be dumped. IDCDBO02 converts
and prints each item in the list. If the calling module
identifier from the Inter-Module Trace Table matches a
name in AREANAME, IDCDBO0I invokes IDCDBO02 to
process the list. Otherwise, the list is ignored. Diagram
8.2.1 shows dumping fields in detail.

IDCDB01
Procedure: IDCDBO1

5 1DCDBOI compares the full dump identifier provided by
the module issuing the UDUMP macro with full dump
identifiers in FDUMPID. If no match is found, processing
continues with step 6. IDCDBO! adds 1 to REALBEG and
checks the number with FDUMPBEG to determine if the
current pass is within the dumping range. If it is,
IDCDBO! compares REALCNT with FDUMPCNT to
determine if all the dumps requested have been given. If
they have not, IDCDBO1 adds | to SNAPID and issues a
USNAP macro to dump the region. UPRINT writes a
message stating the full dump identifier (SNAPID).

IDCDBO01
Procedure: IDCDBO1

6 IDCDBOI puts the address of the trace tables in GDTTR1
and GDTTR2 and resets the TEST options by placing the
address of the dump routine in GDTDBG. Control returns
to the module that issued the UDUMP macro.

NI Jo A)iadosg — [BlIIBIAl PIsUId|]

9921

913077 $301AISS POYISI §5900Y INVSA/TSA

Diagram 8.2.1. UDUMP Macro — Dump Fields

INPUT

From Diagram 8.2

PROCESSING

OUTPUT

Dump List _ :

1. Ges type of dump list entry:
a. Array Header

b. Individual Field

e Hexadecimal
e Bit String
e Character
o Fixed Binary

¢. Dump List Terminator

2. Prints data lines.

Printed
Data Lines

W1 Jo fyiadod — [epIa)e A pasUdd}]

7 indey)

.
Y

uoneisdQ Jo pOYIOW

L9T-t

Extended Description for Diagram 8.2.1
IDCDB02

Procedures: ARRAYHDR, IDCDB02, NAMEFLD,
ITEMDUMP, HCONVERT, BCONVERT, CCONVERT,
FCONVERT

1 IDCDBO2 processes each entry in the Dump List until the
end of the list is reached.

a. Ifthe type in the Dump List is ‘A’. the entry is an
Array Header. If there is any formatted dump data in
the line, ARRAYHDR issues a UPRINT to print the
line. Each array begins on a new line, and an Array
Header cannot occur within the elements of another
array. If an Array Header does occur within the
elements of another array, UPRINT prints an error
message, the Array Header is ignored, and the
following field entries are processed as though the
Array Header had not been in the Dump List. A
UPRINT macro prints the name of the array from the
Dump List. ARRAYHDR obtains the looping array
control from the Dump List. The number of bytes in
each input element of the array is used to address the
elements of the array.

b. If the type in the Dump Listis H, B, C, or F,
NAMEFLD formats the name of each field in the line.
If the field is part of an array, NAMEFLD adds a
subscript of the element numbser to the field name.
NAMEFLD also checks the input data type and
converts and formats the data as follows:

* TypeH
HCONVERT converts hexadecimal data to
printable form and prints 2 characters per byte of
input; each four bytes of input is converted and
followed by a blank.

* TypeB
BCONVERT converts bit string data to printable
form and prints eight characters followed by a
blank per byte of input. The printed output is
enclosed in quotes.

* TypeC
CCONVERT converts character input to printable
form and prints one character per byte of input.
The printed output is an unbroken string of
characters enclosed in quotes.

* TypeF
FCONVERT converts fixed binary data to

printable decimal. Leading zeros are suppressed. If
the input is 2 or 4 bytes long, FCONVERT prints a

sign; no sign is printed if the input is 1 or 3 bytes
long.

c. If the first byte of the dump list entry is X‘FF".
IDCDBO02 terminates processing of the list. Control
returns to the main dump routine, IDCDBOL.

IDCDBO02
Procedure: ITEMDUMP

2 IDCDBO02 logically divides the page into four columns. A
maximum of four different fields may be printed on a line.
Each printed field is preceded by its name from the Dump
List entry and an equal sign. As soon as one line of data is
formatted, a UPRINT macro prints the line.

W Jo A1ado1d — [epeIsjy pesusdy

Licensed Material — Property of IBM

2-268 VSE/VSAM Access Method Services Logic

Overall Organization

Chapter 3: Program Organization

This chapter describes the organization of the Access Method Services
processor: the physical packaging of routines into load modules.

The final authorities for any program are the compiler and assembly listings
for that program. This chapter complements those listings, and assumes that
they are at hand. You should have them available for any in-depth analysis.
This chapter directs you to a specific module of the processor; the listings for
that module provide further detail. The next chapter, “Microfiche
Directory,” can help you relate the listings to this book.

The processor consists of executable modules, organized into seven general
areas, and non-executable modules (Command Descriptors and Text Struc-
tures). As described in the “Introduction,” six of these areas form a substruc-
ture that provides services and control for the remaining area. This substruc-
ture is made up of the Executive, the System Adapter, the I/O Adapter, the
Text Processor, the Reader/Interpreter, and Debugging Aids. The seventh
area consists of the Function Support Routines (FSKs), of which there are
currently fifteen, one for each verb supported by the processor.

Several modules are link-edited together into one phase (named IDCAMS),
which is loaded when the processor is invoked.

This phase is the root phase and consists of:

IDCEXO01 Executive main routine

IDCIOO01 1/0 Adapter main routine

IDCSAOQ1 System Adapter initialization/termination routine

IDCSA02 System Adapter services routine

IDCSA03 System Adapter prologue/epilogue routine

IDCTPO1 Text Processor main routine

IDCSA08 System Adapter services routine
The following phases are loaded when required using CDLOAD and remain
loaded until termination:

IDCEXO02 Executive initialization, called by IDCEX01

IDCEX03 Executive termination, called by IDCEXO01

IDCIO02 1/0 Adapter Open/Close, called by IDCIO01

IDCIO03 1/0 Adapter positioning and UIQINFO processing, called by IDCIOO01

IDCSAO05 System Adapter time routine, called by IDCSA02

IDCTP04 Text Processor page control, called by IDCTPO1

IDCTPOS Text Processor Text Structure loading, called by IDCTPO1 or IDCTP04

IDCTP06 Text Processor error message processor called by IDCTPO1

IDCDBO1 Dump routine, called by any routine

IDCDBO02 Symbolic dump, called by IDCDBO1

Chapter 3: Program Organization 3-1

3-2

Licensed Material — Property of IBM

The following phases are loaded by the system when their services are re-

quired:
IDCDIOI
IDCDIO02
IDCDI03
IDCDIO4
IDCDIOS

IDCDIO6

IDCDIO7
IDCDIO08
IDCDIO09
IDCDI10
IDCDIII

IDCDI12
IDCDI13

IDCDI14
IDCDIIS

SYSLST DTF and put phase

SYSIPT DTF and get phase

Fixed and fixed blocked sequential access method SDDTF and get phase
Fixed and fixed blocked sequential access method SDDTF and put phase

Variable and variable blocked sequential access method SDDTF and get
phase

Variable and variable blocked sequential access method SDDTF and put
phase

Undefined sequential access method SDDTF and get phase
Undefined sequential access method SDDTF and put phase
Spanned and spanned block sequential access method SDDTF and get phase
Spanned and spanned block sequential access method SDDTF and put phase

Fixed and fixed blocked sequential access method MTDTF and get/put
phase

Variable and variable blocked sequential access method MTDTF and get/put
phase

Spanned and spanned blocked sequential access method MTDTF and
get/put phase

Undefined sequential access method MTDTF and get/put phase

Fixed and fixed blocked indexed sequential access method ISDTF and get
phase

The FSRs and the Reader/Interpreter are alternately called by the Executive
(IDCEXO01) to perform their duties. The Reader/Interpreter is entered at
IDCRIOI1 and loads IDCRILT and IDCRIKT when needed. The FSRs are
named as follows:

IDCALO1
IDCBIO1L
IDCCLO!
IDCDEO1
IDCDLO1
IDCXPO!
IDCMPO1
IDCLCO1
IDCLRO1
IDCPMOI
IDCPRO1
IDCRCO1
IDCRMO1
IDCRPOI
IDCRS01
IDCVYO01

VSE/VSAM Access Method Services Logic

ALTER
BLDINDEX
CANCEL
DEFINE
DELETE
EXPORT
IMPORT
LISTCAT
LISTRCRA
PARM
PRINT
EXPORTRA
IMPORTRA
REPRO
RESETCAT
VERIFY

Licensed Material — Property of IBM

System Macros and Services Used by Access Method Services
All requests for services from the operating system are issued by either the
System Adapter or the I/O Adapter. The following lists all system and I/0
macros issued by the processor, along with the issuing module’s name and the
label at the point of issue. These labels all begin with “L” contain a mnemon-
ic for the macro, and end with a single digit. Thus they are easy to locate with
the cross-reference table of the listing.

The adapters provide the services in the following list to the rest of the
processor. Non-system services are also provided by the adapters and by the
Text Processor. Services are represented in the listings by a call to the appro-
priate service-module entry point.

System and 1/O Macros Used by Access Method Services

Macro Module Label
CANCEL IDCSAO01 LCANCEL1, LCANCEL2
CATLG IDCSA02 LCATLGI
CCB IDCSAO1 LCCBI, LCCB2
IDCIO03 LCCBI
CDLOAD IDCIO02, IDCIO03 LCDLOADI
IDCSAO01 LCDLDI
IDCSAQ2 LCDLD2, LCDLD3
l IDCRS01 LCDLOADI
CLOSE IDCIO02, IDCSAO1 LCLOSELl
COMRG IDCSAO05 LCOMRGI], LCOMRG?2
IDCEX02 LCOMRGS
CVTOC IDCIO03 LCVTOCI
IDCRS07 LCVTOCI
DIMOD IDCDIO], IDCDI02
DTFDI IDCDIO1, IDCDI02 LDTFDII
DTFIS IDCDIIS LDTFIS1
DTFMT IDCDI11 LDTFMTI, LDTFMT2
IDCDI12 LDTFMTI1, LDTFMT2
IDCDII3 LDTFMTI, LDTFMT2
IDCDI14 LDTFMT], LDTFMT2
DTFSD IDCDI03, IDCDI0O4 LDTFSD1
IDCDIO05, IDCDI06 LDTFSDI
IDCDI07, IDCDIO8 LDTFSDI1
IDCDI09, IDCDI10 LDTFSDI
ENDREQ IDCRPO1
EQJ IDCSAO1L LEOJ1
ERASE IDCRPOI
EXCP IDCIO03 LEXCPI1, LEXCP2
IDCSAOI LEXCP, LEXCP2, LEXCP3
EXTRACT IDCSA02 LEXTRCT1
IDCSAO01 LEXTRCT2
IDCRIO1 LEXTRCTI1
FREEVIS IDCIO02 LFREEV], LFREEV2,
LFREEV3, LFREEV4
IDCSA03 LFREEVI], LFREEV2
IDCSAQ! LFREEVS, LFREEVS,
LFREEV7, LFREEVS,
LFREEV9
IDCSAQ2 LFREEV1], LFREEV13,
LFREEV14, LFREEV15
GET IDCIOO01 LGETI, LGET2,
LGET3, LGET4, LGETS
GETIME IDCSA05 LGETIMEI, LGETIME2
GETVIS IDCSA03 LGETVI
IDCSAO1 LGETV3, LGETVI10
IDCSAQ2 LGETVS, LGETV6

Chapter 3: Program Organization 3-3

Licensed Material — Property of IBM

System and I/O Macros Used by Access Method Services

Macro Module Label
LGETV7, LGETVS
IDCIO02 LGETV1
ISMOD IDCDIIS
LOAD IDCSAQ2 LLDD2, LLDD3
IDCIO002 LLOADI
MTMOD IDCDI11, IDCDI12
IDCDI13, IDCDI14
OPEN IDCIO02 LOPEN1
OVTOC IDCIO03 LOVTOCI1
IDCRS07 LOVTOCI
PDUMP IDCSA02 LPDUMPI
IDCSAOL LPDUMP2
POINT IDCIO03 LPOINTI
PUT IDCIOO1 LPUTI, LPUT2
LPUT3, LPUT4
PVTOC IDCIOO03 LPVTOCI, LPVTOC2,
IDCRO7 LPVTOC3, LPVTOC4,

LPVTOCS, LPVTOC6
SDMODFI IDCDI03
SDMODFO IDCDI04
SDMODUI IDCDI07
SDMODUO IDCDIO8
SDMODVI IDCDI05, IDCDI09
SDMODVO IDCDI06, IDCDI10

SETL IDC1002, IDCIO03 LSETLI
| TRUNC IDCIO01 LTRUNCI
VERIFY IDCIOO01 LVRFYI1
WAIT IDCIO03 LWAITI, LWAIT2
IDCSAOQ!L LWAITI1, LWAIT2, LWAIT3

The Global Data Table (GDT) contains a branch vector to the various entry
points in the adapters which provide these services. A routine obtains a
service by loading the appropriate entry points address into a register and
performing a BALR. Standard linkage is used: register 1 points to a list of
argument addresses, register 13 points to a save area, register 14 contains the
return address, and register 15 contains the entry point address. The excep-
tion is the call to SAABT: register 1 is not used, register 13 contains the
address of a save area in the System Adapter, register 14 contains the address
of SAABT and register 15 contains an abort code.

3-4 VSE/VSAM Access Method Services Logic

Licensed Material — Property of IBM

Services Provided for Processor Modules

The following is a list of the services provided by the adapters and the Text
Processor, the appropriate module name in each case, and the entry point
name. Calls to the services are generated by macros defined by Access
Method Services. The macros are collectively called Umacros. The listings
contain only the calling sequence and not the Umacro. This publication
discusses the Umacros in order to combine the calling sequence with the
service performed as a function. The rightmost column lists the arguments
that may be included with each of these Umacros. These arguments represent
the addresses of the named items. When the argument is preceded by the
symbol ¢, then it is the address of a fullword pointer to the named item.
Brackets ([]) indicate an optional argument.

Internal Services Provided for Processor Modules

Service
PROLOG

UABORT
UCALL

UCATLG
UCLOSE

UCOPY

UDELETE
UDEQ

UDUMP

UENQ

UEPIL

UERROR

UESTA

UESTS

UFPOOL

UFSPACE

UGET

Module
IDCSA03

IDCSAO01

IDCSA02

IDCSA02

IDCIO01
IDCIO02

IDCIO0!1

IDCSA02

IDCSAO08

IDCDBO1

IDCSA08

IDCSA03

IDCTPO6

IDCTPO1

IDCTPO1

IDCSA02

IDCSA02

IDCIO001

Entry Point

IDCSAPR

SAABT

IDCSACL

IDCSACA
IDCIOCL

IDCIOO0!1

IDCSADE
IDCSADQ

IDCDBO!

IDCSANQ

IDCSAEP

IDCTPER

IDCTPEA

IDCTPES

IDCSAFP

IDCSAFS

IDCIOGT

Description
Initialize a routine on entry; get storage.

Handle unrecoverable error condition while
processing,

Load (if necessary) an executable module and
and pass control to it.

Catalog request.
Close one or more data sets.

Copy a data set.

No operation in DOS/VSE.
Release control of a resource

Print diagnostic output and storage dump.

Gain control of a resource

Free storage on exit from a routine.

Verbalize catalog error messages.

Establish a PCT (print control table) from
information in storage.

Establish a PCT (print control table) from
information in Text Structures.

Release a named pool of storage.

Release unnamed storage.

Read a record.

Arguments

module identification
size of storage for module

UABORT code (in register 15)

GDT
entry point name
[list of arguments for called module]

GDT
tcatalog parameter list

GDT
+IOCSTR(..]

GDT
tinput IOCSTR
toutput IOCSTR

GDT
module name

GDT
tDTL (from UENQ)

GDT

Dump Identifier

[*symbolic dump list]

GDT

‘SHR’ | ‘EXCL’

‘NOWAIT | ‘WAIT’

resource name

reserved (not used)

Scope (see “Scope Structure
for UENQ - ENQSCOPE”)

tDTL (output)

GDT

module identifier

[return code]

GDT

ERCNVTAB

GDT

alternate IOCSTR or zero for SYSPRINT
PCARG

GDT
alternate IOCSTR or zero for SYSPRINT
Text Structure identification

GDT
pool identification
[l‘ ALL"]

GDT
address of storage to free

GDT
tIOCSTR

Chapter 3: Program Organization

Internal Services Provided for Processor Modules
Entry Point Description

Service
UGPOOL

UGSPACE

UIOINFO

UIOINIT

UIOTERM

ULISTLN

ULOAD

UOPEN

UPOSIT

UPRINT

UPUT

URESET

UREST

USAVERC

USNAP

UTIME

UTRACE

UVERIFY

3-6

Module
IDCSA02

IDCSA02

IDCIOO01
IDCIO03

IDCIOO01

IDCIOO01

Inline

IDCSA02

IDCIOO01
IDCIO02

IDCIO01
IDCIO03

IDCTPO1

IDCIOO!

IDCTPOIL

IDCTPO1

Inline
code

IDCSA02

IDCSA02

Inline

IDCIOO!

IDCSAGP

IDCSAGS

IDCIOSI

IDCIOIT

IDCIOTM

None

IDCSALD

IDCIOOP

IDCIOPO

IDCTPPR

IDCIOPT

IDCTPRE

IDCTPRS

None

IDCSASN

IDCSATI

None
code

IDCIOVR

Allocate a named pool of storage and
optionally initialize it.

Allocate unnamed storage, and optionally
initialize it.

Return file-ID, volume serial numbers,
and/or device type information about a given
filename.

Initialize the I/O Adapter.

Close all data sets that were opened with
UOPEN and free all storage still used by
the I/0 Adapter.

Copies the contents of register 1 into a
fullword named LISTPTR and puts the
number of arguments addressed by register
1 in a byte named LISTLN. Maximum
value is 255.

Load (if necessary) a module; do not pass
control to it.

Open one or more data sets.
Position to a logical record.

Format (and usually write) one or more
lines.

Write a record.

Re-initialize PCT (print control table)
for the next function,

Modify an existing PCT (print control
table).

Copies the low order half of
register 15 into a halfword named
TESTRC.

Call for a dump of the partition.

Get date and time of day.

Adds the current identification to
the Inter-Module Trace Table.

Issue VSAM VERIFY macro.

VSE/VSAM Access Method Services Logic

Licensed Material — Property of IBM

Arguments

GDT

size of storage to obtain
return storage address
pool identification
[“SETZERO” | “SETBLANK”]
GDT

size of storage to obtain
return storage address
[“SETZERO” | “SETBLANK"]
GDT

option flags

twork area
filename|volid
logicalunitno,timestamp
[pool identification)
GDT

[¢zero]

[t external routine list]
GDT

GDT

module name

returned loaded module address

{RETPNF=1] returns control on
phase not found

GDT
({OPNAGLY..][OPNAGL,CRAAPLIST}]

GDT
tIOCSTR

GDT

alternate IOCSTR or zero for SYSPRINT
tDARGLIST

[+ FMTLIST)]

GDT
+IOCSTR
(ID code]

GDT

alternate IOCSTR or zero for SYSPRINT
invoker’s page

number field

GDT

alternate IOCSTR or zero for SYSPRINT
arg!

arg?

argn

GDT

SNAP dump-ID number
GDT

field for returned time
[field for returned date]
[llFORM”l“KLOK”]

GDT
tIOCSTR

Licensed Material — Property of IBM

Processor Invocation

Invocation of the Access Method Services processor is via standard
DOS/VSE job control (// EXEC IDCAMS, SIZE=AUTO), or via a sub-
routine call. If tape or nonsequential nonVSAM files are to be processed by
Access Method Services, use the LBLTYP statement to reserve storage for
label information. Entry and exit to the Access Method Services processor
occurs through IDCSAO1, a module of the System Adapter. For a subroutine
call, you must load phase IDCAMS which occupies 27,000 bytes and branch
to the load address plus six. Standard linkage is used, that is, register 1 points
to the argument list, register 13 points to a save area, register 14 contains the
return address, and register 15 contains the entry point address. On return
from the Access Method Services processor to a subroutine caller, all registers
except register 15 are restored. Register 15 contains the value of MAXCC
(see the section: “Processor Condition Codes” below.)

The argument list, as shown in Figure 3-1, can be a maximum of four full-
word addresses pointing to strings of data. The last address in the list con-
tains a “1” in the sign field. The first three possible strings of data begin with
a two-byte length field. A null element in the list can be indicated by either
an address of zeros or a length of zero.

Chapter 3: Program Organization 3-7

Licensed Material — Property of IBM

REG 1

Argument List

*OPTIONS

DNAMES

PAGE NUMBER

*
|
?

IOLIST

n

* DNAME

* IOROUTINE,

USER DATA,
°
~_ -
°
4 DNAME

* IOROUTINE,,

* USER DATA,

n: Fullword which specifies the number
of groups of three fields that follow.
Each group consists of a DNAME, an 1/O
routine, and user data.

DNAME: Address of a 10-byte character
string, the first two characters of which are
‘DD’, the next 8 characters are the DNAME
field value which may appear in the FILE,
INFILE, or OUTFILE parameters of any
Access Method Services command. The
SYSIPT (DDSYSIPT) and SYSLST
(DDSYSLST) DLBL names may also appear
if the invoker wishes to manage these files.
The appearance of this name causes
invocation of the associated IOROUTINE
for all 1/O operations on the data set
associated (normally via the DLBL or TLBL
statements) with DNAME.

IOROUTINE: Address of the program
which is to be invoked to process I/0O
operations upon the data set associated
with DNAME. This routine is invoked
instead of a system access method for all
operations against the data set.

USER DATA: Address of a data area

that the user can use for any purpose.

Figure 3-1. Argument List for Processor Invocation

))
v

OPTIONS

) L

L3
LENGTH: Halfword which specifies the
number of bytes in the OPTIONS field.

LENGTH

OPTIONS: Character string which contains
system options from PARM field of EXEC
statement or options set up by the invoker.

LENGTH

LENGTH: Halfword, in DOS/VSE, this value
must be 0.

LENGTH PAGE NUMBER

LENGTH: Halfword which specifies the number
of bytes in the PAGE NUMBER field.

PAGE NUMBER: 1-4 byte character string
which may specify the starting page number
of system output listing. This value is reset
to the current page number upon
completion of the present invocation of the
Access Method Services processor. The
number will be truncated to fit the space.

3-8

VSE/VSAM Access Method Services Logic

Licensed Material — Property of IBM

Processor Condition Codes

User I/ O Routines

Overall Control Flow

The processor’s condition code is LASTCC, which can be interrogated in the
command stream with modal commands. The possible values, their mean-
ings, and examples of causes are in the following table. The table illustrates
the value of LASTCC.

Code Meaning

0 The function was executed as directed and expected. Informational messages may have
been issued.

4 Some annoyance in executing the complete function was met, but it was possible to
continue. The results might not be exactly what the user wants, but no permanent harm
appears to have been done by continuing. A warning message was issued.

8 A function could not perform all that was asked of it. The function was completed, but
specific details were bypassed.

12 The entire function could not be performed.

16 Severe error or problem encountered. Remainder of command stream is flushed and
processor returns condition code 16 to the operating system.

The LASTCC condition code is reflected in its related message numbers. The
first numeric character of the message number equals the condition code
divided by 4.

MAXCC, which can also be interrogated in the command stream, is the
highest value of LASTCC thus far encountered.

If the user has supplied his own I/O routine, the I/O Adapter invokes the
user routine. Again, standard linkage is used. Figure 3-2 shows the argu-
ments passed to the user routine. Each field begins on a fullword boundary.

When writing a user I/0 routine, the user must be aware of three things.
First, the processor handles the user data set as if it were a nonVSAM data set
that contains undefined records (maximum length—32,760 bytes) with a
physical sequential organization. The processor does not test for a
DLBL/TLBL statement for the data set. Therefore, the name can be any-
thing. Second, the processor formats data in various ways. The user must
know what the format is so that the user’s routine can be coded to handle the
correct type of input and format the correct type of output. (See “Diagnostic
Aids” for more information). Third, each user supplied I/0 routine must
handle any error messages and provide to the processor a return code in
register 15. The processor uses the return code to determine what it is to do
next.

The permissible code are:
0 Operation successful.
4 End of data for a GET operation.

8 Error occurred during a GET/PUT operation but continue processing.
12 Do not allow any further calls (except for CLOSE) to this routine.

Figure 3-3 illustrates the overall control flow through the processor. Entry
and exit are through IDCSAO1. IDCEXO01 is the main controller; it alternates
control between the Reader/Interpreter and the FSRs to process each com-
mand. When all commands are processed or a severe error has occurred,
IDCEXO01 gives control to IDCEX03. After IDCEXO03 completes, IDCEXO01
returns to IDCSAOL.

Chapter 3: Program Organization 3-9

Licensed Material — Property of IBM

ﬁegister 1

} USER DATA

User data obtained from the
processor invocation parameter list.

} IOFLAGS
} I0INFO

Open or
Close

| D NAME IR

(Eight bytes)

Get or Put

{ Record
Record Length

For a GET this information is returned to the
processor by the user’s I/0 routine in the 8-byte
area passed to the routine.

For a PUT the processor gives this information to the
user’s I/O routine.

Figure 3-2. Arguments Passed to and from User I/0 Routine

]

Fullword of flags:

Value

Byte | 0
(Operation) 4
¥
12

Byte 2 32

64

Bytes 3.4 0
(Record type
for PUT only)

Meaning
OPEN
CLOSE
GET
PUT

Indicates IOINFO
contains the
address of a

DD name on
OPEN or CLOSE

OPEN for output
OPEN for input

Normal data
record is to
be written

Message serial
number converted
to binary if IDC
message is to be
written

All modules in Figure 7 call the modules in Figure 8 for services (like writing
a record). The addresses of the entry points to the service modules are kept in

the GDT. All modules in Figure 8 also call each other for services.

3-10 VSE/VSAM Access Method Services Logic

From and to Access Method

IDCAMS

Licensed Material — Property of IBM

o
AV
(/

s fe/s
S5/
Q Iy

S/$/S

§'§'@ &
E/8/8/8
&/S/E/S
S/$/$/$/$

R,
S
O
<N

‘g
QQQQ
7 7
VQC
QQ\
£
-
VW m dm
3322 | |52.3
o = m.l.PIVl
R mmmm
O O A
OAL=E
- .
~ - e 3/r&.m
Ssg BEs ST 3
e 2T S237 Z 9 &8
- a8 ESa g CS5E
= = ars £E2a 8 Ax e s
< =1
< Em — a %&FM == S
T |55ER%R 4 H X
> CZze=28 v I
= [}
= k= .
7] I) - v O
g SE5 == 5 § 3 SE3
> = O B = = .2
= 53] o] —_— 0 9 CR A =
) Q= Rdrk - S e
n Qo= ® o s QO ©
Dcvmm Qo5 rwm. Dmmp.w
Lx» a g & - CE
o
_ 2 4 4
=3 v v v v
< 3 g
BEE PS8
RE 5 % 3
mlme St
[S £
=P

Figure 3-3. Flow of Control Through Main Functions

Chapter 3: Program Organization 3-11

Licensed Material — Property of IBM

Text Formatting
Services

‘ [/O Services ’

IDCIO01 1 IDCTPO1 |
1/0O Main IDCIO02 Text IDCTPO4
Processor
<1 Open/Close Main 1> Setup
IDCIO03 IDCTPOS
.. Get Text
~¢—1» Position -
Structure
IDCTP06
Verbalize
<-'"->Return Codes

. Debugging
Entry/Exit Services Operating System Services Services
L

} } |

1\
/ \

Y

IDCSA03 IDCSA02 IDCSAO01 IDCSA08 IDCDBO1
Prologue System Abort Enqueue Dump
Epilogue Adapter Dequeue Main
Main
IDCSA05 IDCDBO02
Symbolic
~—1—> Time ~&—1-% Dump

Figure 3-4. Flow of Control Through Services

3-12 VSE/VSAM Access Method Services Logic

Licensed Material — Property of IBM

Chapter 4: Microfiche Directory

This chapter contains a directory to the microfiche listings for all modules of
the processor. This directory describes the contents of each module by
function and label, allowing you to quickly find any desired code.

The processor is written in PL/S, a high-level, IBM proprietary system
language. Listings that are produced for microfiche consist of the PL/S
source code, a cross-reference and attribute table, and the assembly code. See
the IBM publication Guide to PL/S 11, for a more detailed explanation of
PL/S and its listings.

Each module is designed with no explicit GOTOs or branches. All condition-
al phrases are contained within IF-THEN-ELSE clauses and DO-WHILE
clauses of PL/S. All loops are controlled by DO statements. Extensive use of
closed subroutines (procedures) is made.

The microfiche for each module begins with the PL/S portion, which con-
tains all commentary and is the most readable form of the program. All
major data areas are defined at the beginning of the listing. [F-THEN-ELSE
clauses and DO-loops are indented to denote levels of logic. The cross-
reference and attribute table shows each use of each data areca. The assembly
listing is keyed back to the PL/S source statement numbers.

The listings are extensively commented. Each module begins with a prologue
commentary that lists all standard information for that module. Throughout
the listing, additional comments are boxed and structurally indented to make
them easy to find. Each internal procedure has a small prologue to further
describe its function.

Note: The listings use CPL, FVT, and FPL instead of CTGPL, CTGFV, and
CTGFL, respectively. See VSE/VSAM VSAM Logic, Volume 1 for a de-
scription of these data areas.

In the following tables, the module name appears in the first (leftmost)
column. The second column contains an entry-point label, the label of an
internal procedure (subroutine), or the label of data used externally—that is,
by another module. The third column differentiates between entry points
(EP), procedures (PR), and data used externally (DE).

Chapter 4: Microfiche Directory 4-1

4-2

CSECT/Load
Module Name

IDCALOL

IDCAMS

IDCBIOL

VSE/VSAM Access Method Services Logic

Label

IDCALOL
LOCATPRC

ALTERPRC

CHECKPRC

INDEXPROC

PARAMCHK

IDCBIOI
OPENPROC

JCPROC

MAINPROC

FINPROC

TERMPROC

LOCPROC

CATPROC

DEFPROC

DELTPROC

INITPROC

CNTLPROC

SORTPROC

Use

EP
PR

PR

PR

PR

PR

EP

EP
PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

Licensed Material — Property of IBM

Description

ALTER FSR; modity an existing catalog entry.
Translate the encoded command parameters into
the necessary catalog parameter lists and call
IDCSACA for a catalog request (UCATLG
macro).

Only entry point to this module.

Locates catalog fields that must be altered in
context. Procedure only locates those fields that
contain multiple attributes. Thus, since the user
may wish to change only one of several attributes,
the original field must serve as the basis for
alteration.

Builds the VSAM catalog management interface for
the alter request.

Does validity checking on certain attributes to
ensure compatibility between old values and new
values.

If KEYS has been specified on the ALTER
command, INDEXPRC builds the parameter list to
alter the associated index object,

Verifies that parameters specified on the command
are valid for the type of object to be altered.

Root phase for Access Method Services; consists of
IDCSAO0L, IDCSA02, IDCSAO03, IDCEXO,
IDCIO01, and IDCTPOL. See the directory for
these modules for further description.

BLDINDEX FSR; build one or more alternate
indexes over a defined, nonempty base cluster.

Only entry point to this module.

Opens the data sets required by the BLDINDEX
FSR-——base cluster, alternate index and, optionally,
sort work files—by issuing UOPEN.

Issues the UIOINFO macro to determine if caller
supplied sort work job control; obtains data set
name and volume serial.

Controls the build process for one alternate index
by calling OPENPROC, LOCPROC, INITPROC,
CNTLPROC.

Closes alternate index, sort work files, and issues
alternate index final status message.

Closes base cluster, frees resources, and prints
termination message.

Controls sequence of catalog locates to obtain
information regarding base cluster and alternate
index: verifies relationship.

Constructs CPL and FPLs for catalog locate and
calls VSAM catalog management via UCATLG.

Constructs CPL, FVTs and FPLs and calls VSAM
catalog management to define sort work files: opens
defined files.

Constructs CPL and calls VSAM catalog
management to delete sort work files.

Determines resources required for building
alternate index and obtains core for work areas and
sorting.

Controls actual build by reading base cluster and
calling SORTPROC and MERGPROC or
BLDPROC to perform sort-merge and write
alternate index records.

Constructs sort records; performs the entire internal
sort or the initial sort phase of an external sort.

Licensed Material — Property of IBM

CSECT/Load
Module Name Label Use Description
SPILPROC PR Writes out initial strings to first sort work file in an
external sort.
BLDPROC PR Builds and writes the alternate index records from
the sequenced sort records.
MERGPROC PR Performs the merge passes of an external sort.
IDCCDAL Command Descriptor for ALTER verb.
IDCCDBI Command Descriptor for BLDINDEX verb.
1IDCCDCL Command Description for CANCEL verb.
IDCCDDE Command Descriptor for DEFINE verb.
IDCCDDL Command Descriptor for DELETE verb.
IDCCDLC Command Descriptor for LISTCAT verb.
IDCCDLR Command Descriptor for LISTCRA verb.
IDCCDMP Command Descriptor for IMPORT verb.
IDCCDPM Command Descriptor for PARM verb.
IDCCDPR Command Descriptor for PRINT verb.
IDCCDRC Command Descriptor for EXPORTRA verb.
IDCCDRM Command Descriptor for the IMPORTRA verb.
IDCCDRP Command Descriptor for the REPRO verb.
IDCCDRS Command Descriptor for the RESETCAT verb.
IDCCDVY Command Descriptor for VERIFY verb.
1IDCCDXP Command Descriptor for EXPORT verb.
IDCCLOY IDCCLOI EP CANCEL FSR; stops Access Method Services
processing and optionally cancels the current job.
IDCDBOI Debug module (UDUMP macro).
1DCDBOI EP Only entry point to this module.
IDCDBO2 Debug module (symbolic dump).
1DCDBO2 EP Only entry point to this module.
ARRAYHDR PR Processes any array header elements (TYPE="A")
occurring in the dump list.
ITEMDUMP PR Processes any individual dump list elements.
NAMEFLD PR Inserts the symbolic name of the dump element into
the proper position of the output line.
HCONVERT PR Converts the value of the current dump item to
hexadecimal representation.
BCONVERT PR Converts the value of the current dump item to
binary representation.
CCONVERT PR Converts the value of the current dump item to
character representation.
FCONVERT PR Converts the value of the current dump item to
fixed-integer representation.
IDCDEO1 DEFINE FSR; define a new VSAM data set as a
cataloged object.
IDCDEO! EP Only entry point to this module.
INTGCHK PR Performs validity checking on completed catalog
parameter list.
IDCDEO02 Common processing routines for all define types.

IDCDEO02 EP Initializes registers and obtains storage.

NAMEPROC EP Initializes the data set creation and expiration dates
in the CTGFL and the object name in the CTGFV.

ALLCPROC EP Initializes several allocation and option related
parameters in the CTGFL and CTGFV.

KEYPROC EP Initializes the record management control block
and the key range “pseudo-field” in the CTGFL.

IXOPPROC EP Initializes index options.

Chapter 4: Microfiche Directory 4-3

4-4

CSE(CT/Load
Module Name

IDCDEO03

IDCDIOI
1DCDI02
IDCDI03

IDCDI04
IDCDIOS
1DCDI06
IDCDI07
1DCDIOY
1DCDI09
IDCDIN0
IDCDIII
IDCDI12
IDCDII3
IDCDI14
IDCDII5

IDCDLOI

VSE/VSAM Access Method Services Logic

Label
PROTPROC

MODELPRC

FREESTG

IDCDEO3

CTLGPROC

DSETPROC

AIXPROC

PATHPROC

DSPACPRC

NVSAMPRC

IDCDLOI
CATOPEN

Use
EP

PR

EP

EP

PR

PR

PR

PR

PR

PR

EP
PR

Licensed Material — Property of IBM

Description

Initializes the security combination and owner
identification fields and the SHAREOPTIONS and
ERASE|NOERASE flags in the CTGFL.

Handles the retrieval of model objects to be used in
defining components of VSAM user catalogs and
data sets.

Frees automatic storage for IDCDEQ2 CSECT.
Routes control to proper routine.

Calls proper procedure to construct parameter list
for the different object types.

Oversees the construction of the VSAM CTGPL,
CTGFV, and CTGFL for defining 4 VSAM master
or user catalog.

Oversees the construction of VSAM key sequenced
and entry sequenced data sets.

Oversees the construction of the VSAM catalog
interface for defining alternate index data sets.

Oversees the construction of the VSAM catalog
interface for defining paths.

Oversees the construction of the VSAM catalog
interface for defining VSAM data spaces.

Oversees the construction of the VSAM catalog
interface for defining a nonVSAM data set into a
VSAM catalog.

SYSLST DTF and put phase.
SYSIPT DTF and get phase.

Fixed and fixed blocked sequential access method
SD DTF and get phase.

Fixed and fixed blocked sequential access method
SDDTF and put phase.

Variable and variable blocked sequential access
method SDDTF and get phase.

Variable and variable blocked sequential access
method SDDTF and put phase.

Undefined seqeuntial access method SDDTF and
get phase.

Undefined sequential access method SDDTF and
put phase.

Spanned and spanned block sequential access
method SDDTF and get phase.

Spanned and spanned block sequential access
method SDDTF and put phase.

Fixed and fixed blocked sequential access method
MTDTF and get/put phase.

Variable and variable blocked sequential access
method MTDTF and get/put phase.

Spanned and spanned blocked sequential access
method MTDTF and get/put phase.

Undefined sequential access method MTDTF and
get/put phase.

Fixed and fixed blocked indexed sequential access
method DTF and get phase.

DELETE FSR; delete a catalog entry from the
VSAM catalog.

Only entry point to this module.

Opens the user catalog if required.

Licensed Material — Property of IBM

CSECT/Load
Module Name

IDCEXO1L

1DCEX02

IDCEX03

IDCI00I

Label
FINDTYPE

PARAMCHK

BUILDCPL

CATCALL

MORESP

CLEANUP

IDCEXO01

MAIN

CALLRI

CALLFSR

IDCEX02
SCANPARM

IDCEX03
SCANPARM

1IDCIOIT

1DCIOOP

IDCIOTM
IDCIOCL

1DCIOPO

IDCIOSI
IDCIOGT
IDCIOPT
IDCIOVY
IDCIOCO
CHANGE
GETEXT
GETVSAM

IRAMEOD
GETNONYVS
IROSEOD

Use
PR

PR

PR

PR

PR

PR

EP

PR

PR

PR

EP
PR

EP
PR

EP

EP

EP
EP

EP

EP
EP
EP
EP
EP
PR
PR
PR

PR
PR
PR

Description

Locates the entry to be deleted in order to
determine its type when type is not specified in
command.

Checks for invalid type specification and other
command parameter errors.

Constructs the CTGPL from parameters specified
in the DELETE command and indicated in the
FDT.

Calls VSAM catalog management to delete a single
catalog entry.

Obtains a larger catalog work area and reinvokes
catalog management.

Performs termination functions and closes the user
catalog, if required.

Main-line for Executive; routes control through
processor.

Only entry point to this module; entered from
IDCSAOL.

Flip-flop control between Reader/Interpreter and
FSR required for each command.

Invoke Reader/Interpreter to parse the next
command.

Invoke FSR named by the result of parse by
Reader/Interpreter.

Executive, initialize the processor.

Only entry point to this module.

Scan processor invocation parameter list.
Executive, terminate processing.

Only entry point to this module.

Scan invoker’s parameter list to return next
available page number.

Supply all 1/0 services to the remainder of the
processor. At each of the following entry points,
IDCIOO01 converts the service request to the
appropriate system macros and issues those macros.

First call to 1/0 Adapter: initialize the adapter for
subsequent calls.

Open | to 4 data sets (UOPEN macro), by calling
1DC1O02.

Close any data sets still open (UIOTERM macro).

Close | to 4 data sets (UCLOSE macro), by calling
1DCIO02.

Position to a specific record in a data set (UPOSIT
macro), by calling 1DCLO03.

Obtain various pieces of information about data set.
Read a record (UGET macro).

Write a record (UPUT macro).

Verify data set (UVERIFY macro).

Copy a data set (UCOPY macro).

Handles change of processing modes for RPL.

Call an external routine to get a data record.

Get a logical record or control interval from a
VSAM data set.

End-of-data-set exit routine for VSAM data sets.
Get a logical record from a nonVSAM data set.

End-of-data-set exit routine for nonVSAM data
sets.

Chapter 4: Microfiche Directory 4-5

4.

6

CSECT/Load
Module Name

IDCI002

IDCI003

IDCLCOI

VSE/VSAM Access Method Services Logic

Label
PUTEXT
PUTVSAM
PUTNONYVS
PUTREP
VSAMERR
BLDAMSG
PRINTMSG
1DCI0SI

IRSISYN

IRSOSYN

IDC1002
OPENRTN
CKNONOP

CLOSERTN

ENVFREE

DSDATA

BUILDRPL
BUILDACB
BUILDDBK

BLDOCMSG
PRINTMSG

IDCI003
PTAMDS
PTISDS
BLDAMSG
PRNTMSG
DSINFO

IDCLCOI
INITPROC
GNXTPROC
ENTPROC

RTEPROC

Use

PR
PR
PR
PR
PR
PR
PR
DE

PR

PR

EP
PR
PR
PR

PR

PR

PR

PR

PR

PR
PR

EP
PR
PR
PR
PR
PR

EP

PR

PR

PR

PR

Licensed Material — Property of IBM

Description

Call a user-supplied routine for output.

Put a logical record to a VSAM data set.
Put a logical record to a nonVSAM data set.
Handle PUT (Replace) processing.

Build VSAM error message argument list.
Prepare an error message.

Print a message.

Amount of storage IDCIOO01 needs. Used by
IDCSAOL.

Exit routine for 1/0 errors when attempting a GET
on a nonVSAM. nonISAM data set.

Exit routine for 1/0 errors when attempting a PUT
on a nonVSAM, nonlSAM data set.

Open/Close routine This routine can open or close
1 to 4 data sets with one call.

Only entry point to this module.

Open a data set.

Check that a nonVSAM data set was opened
successfully.

Close data sets that were opened by the 1/0 Open
routine.

Free storage used for a data set; system areas,
buffers, control blocks, DTF, and access load
module.

Issue CDLOAD and CALL for IKQVLAB, which
returns the label information.

Build RPL for VSAM data set and get input
workareas for buffers.

Build ACB and EXLST for VSAM data set to be
opened.

Load DTF and access module and modify DTF for
a nonVSAM data set to be opened.

Set up an error message.

Call Text Processor to print error message.
Perform POINT, SETL and UIOINFO operations.
Only entry point to this module.

Point to VSAM logical record.

SETL to ISAM logical record.

Prepare error message.

Print message.

Find volume/data set information.

LISTCAT FSR; produces a listing of all or part of a
VSAM catalog. This module initializes and
manages the routing of VSAM catalog entries.

Only entry point to this module.

Interrogates the FDT and initializes the catalog and
DADSM parameter lists and workareas. Issues
ULOAD for IKQIDNT, the device name table.

Manages the request for all or a specified subset of
the catalog entry types in alphameric sequence.
Manages the request for specific entries from the
catalog.
Routes control to the appropriate formatting
procedure. Then routes control for formatting the
associated data sets in a cluster or alternate index

, grouping.

Licensed Material — Property of IBM

CSECT/Load
Modul¢ Name

IDCLCo02

IDCLROI

Label

IDCLCO2

FREESTG

FPLPROC

LISTPROC

AUPROC

LOCPROC

CDIPROC

VPROC

ERRPROC

ANSVPROC

DEVTCONV

AATOPLR

ADDASOC
BUFSHUF

BLDVEXT
CATOPEN
CKEYRNG

CLEANUP

CLENCRA
CRAOPEN

Use

EP

EP

EP

EP

EP

EP

EP

EP

EP

EP

PR

EP

PR
PR

PR
PR
PR

PR

PR
PR

Description

This module locates, formats, and lists the VSAM
catalog entries.

This entry point is used to establish addressability,
acquire automatic storage and initialize the
common data area pointers.

Issues a UEPIL umacro to free the automatic
storage acquired by IDCLCO02.

Re-initializes the string of CTGFLs prior to each
catalog locate request, by using SAVEAREA copy
stored at the original CTGFL-build time.

Issues the Text Processor macro UPRINT and
zeros out the Dynamic Data Area Argument List
upon exiting.

Repetitively builds the Text Processor Dynamic
Data Argument List for formatting and listing the
VSAM catalog fields for nonVSAM or user catalog
entry. Repeatedly invokes LISTPROC to print the
data.

Issues VSAM catalog locate request and obtains
additional catalog work space if required. After the
first successful locate, sets the catalog ACB
information in the CTGPL and establishes the
LISTC subtitle with the catalog name.

Formats the VSAM catalog data for cluster,
alternate index, data, index, and path associations.
Issues the locate request to obtain associated data
set names for listing the cluster-data set-index-path
and alternate index-data set-index-path
associations. Builds the Text Processor argument
list and invokes LISTPROC to print the data.

Repetitively builds the Text Processor Dynamic
Data Argument List for formatting and listing the
VSAM catalog fields for a volume record entry.
Repeatedly invokes LISTPROC to print the data.

Completes the Dynamic Data Argument List with
either an Access Method Services or catalog return
code, when required. Issues the UPRINT macro to
list the informational or error messages. Issues
UERROR macro to list VSAM catalog (SVC26)
error messages. Zeros out the Dynamic Data
Argument List upon return to the caller.

Retrieves the list of associated C.1. numbers and
types from the work area and creates a save area
copy.

Translates the hexadecimal UCB device type code
to the external device name.

Only entry point to this module—Top control
segment.

Add an association to association table.

Moves record from last (general) buffer to “home™
buffer for this record type.

Builds the vertical extension table.
Opens the catalog data set and ENQs on it.

Checks the data object for key range. If yes, prints
high key.

Closes the catalog and DEQs from it and prints
condition codes.

Closes the CRA and frees storage associated.

Opens the CRA and calls the procedure to build the
CTT.

Chapter 4: Microfiche Directory 4-7

4-8

CSECT/Load
Module Name

IDCLRO2

IDCMPOI

VSE/VSAM Access Method Services Logic

Label
CTTBLD

DOOTHR

DOVSAM

ERROR

GETPRT

INITLZE

INTASOC

INTSORT

INTVEXT

MEMSORT

PRTAAXV
PRTCMP

PRTDMP

PRTDMPC

PRTFIFO

PRTMCWD

PRTOJAL
PRTOJVL

PRTOTHR

PRTTIME

PRTVOL

PRTVSAM

SUMIT
TCICTCR
VERTEXT

Use

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR
PR

PR

PR

PR

PR

PR
PR

PR

PR

PR

PR

PR
PR
PR

EP

Licensed Material — Property of IBM

Description

Reads CRA control record, gets storage for CTT,
scans CRA, and builds CTT. Controls sequential
dump.

Goes through SORTTBL forward chain containing
nonVSAM names and calls PRTOTHR to print the
objects.

Goes through SORTTBL forward chain containing
VSAM names and calls PRTVSAM to print them.
Using entry subscript for error table, prints the
error message, continues or aborts according to last
condition code.

Gets copy of CRA record, calls IDCRCO04 to obtain
fields requested and, if COMPARE, gets the
catalog record.

Initializes switches, adapter parameter list,
IDCRC04 parameter list, opens the alternate
output file, and gets table space.

Initializes an association table for a base object.
Gets storage for sort table, builds the entries in it
from the CTT for the object type specified.
Initializes VEXTTBL by calling IDCRC04
requesting extension pointers and places them in
the table.

Adds forward and backward pointers in sort table.
Prints associated AlXs volumes.

Prints and/or compares information in CRA for
one entry.

Prints unformatted CRA record. If compare, calls
PRTDMPC to print corresponding catalog
information and underscore miscompares.

Prints unformatted catalog record corresponding to
CRA record being printed. The miscompares are
underscored.

Print CRA without sorting using the same
procedures as if sorting,

Prints miscompare message indicating most severe
fields in error.

Print alias(s) associated with an object.

Print volumes and high keys associated with an
object.

Print and/or compare all nonVSAM objects and
their extensions.

Print timestamps of volumes after converting them
to MM/DD/YY HH/MM/SS.

Print and/or compare volume record and its
extensions.

Print and/or compare VSAM structures and
associated records.

Sum or print number of objects processed.
Translate control interval from catalog to CRA.

Loops through the VERTEXT and extensions and
prints them.

Formats the buffer pool and reads CRA and
catalog records.

IMPORT FSR; reconstruct a VSAM cluster or
alternate index from a portable copy that was
created by IDCXPO1. Any associated. paths are
also recreated IDCSACA is called (UCATLG
macro) to add the necessary entries to the VSAM

Licensed Material — Property of IBM

CSECT/Load
Module Name

Lahel

IDCMPOI
CLUSPROC

CNCTPROC
DUPNPROC

CPLPROC

IUNIQPRC

ALTRPROC

LVLRPROC

CTLGPROC

DELTPROC

OPENPROC

RANGPROC

BFPLPROC

RECPROC

MVDAPROC
MSGPROC
FYTPROC
BPASPROC

GETPROC

DVOLPROC

DVOLCHK

Use

PR

PR
PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

Description

catalog, and a UCOPY macro is issued to copy the
data set by logical records. When the input data set
is a catalog, no copy is performed: instead the
catalog is connected by a call to IDCSACA.

Only entry point to this module.

Reads catalog and data records from the portable
volume. Uses catalog information plus information
from the command to perform a catalog define for
the cluster or alternate index. Copies data into the
object after successful definition in the catalog.

Connects one or more user catalogs.

This procedure is called when a duplicate entry
name is found in the catalog when trying to define
the data set to be imported. A locate will be
performed. If the entry has the temporary export
flag set in the attributes field, a delete is then
performed so that the imported data set may be
defined. If the entry is empty, checks are made for
matching attributes so that import can be
performed into a predefined empty data set.

Constructs a CTGPL to be used for a catalog
define, alter, delete, or locate operation.

Checks the DSATTR field in the CTGFV to see if
the cluster being defined is a unique data set. If so,
a null space (volume) CTGFV must be supplied for
catalog define.

Constructs a CTGPL and CTGFYV to be employed
by the catalog alter interface.

Constructs CTGFL for DEVTYPE lists and
constructs list of volume serial numbers.

Invokes the VSAM catalog management to perform
the operation indicated in the CTGPL.

Deletes any temporarily exported data sets found
by DUPNPROC.

Performs all opens required for opening a VSAM
object or user catalog for input or opening the
portable volume for output.

Processes all information dealing with key ranges.

Constructs a CTGFL from dictionary and
workarea information.

Copies the data from the portable data set to the
VSAM object being imported. The VSAM object is
opened by OPENPROC. The UCOPY macro is
employed to perform the copy. The UCLOSE
macro is employed to close the object.

Moves data from one location in virtual storage to
another as specified by input arguments.

Uses the Text Processor interface to list messages.

Constructs CTGFVs and CTGFLs from
information in the dictionary. Obtains portable file
LRECL and passes it to the 1/0 Adapter.

Constructs PASSWALL CTGFL and moves
information into PASSWALL.

Gets a data record and moves it into a buffer.
Reconstructs the original record if it has been
segmented.

Constructs the special volumes CTGFLfrom the
DEFAULTVOLUMES parameteg.

Performs diagnostics to assure that
DEFAULTVOLUMES volumes CTGFLs were
constructed only for components whose attributes

Chapter 4: Microfiche Directory 4-9

4-10

CSECT/Load
Module Name

IDCPMOI

IDCPROI

IDCRCOI

VSE/VSAM Access Method Services Logic

Label

IDCPMOI
TESTPARM

TESTSAVE

MARGPARM

GRPHPARM

IDCPROI
TEXTPSET

DELIMSET

BUILDCRYV

BUILDNAM
CHKCATNM

CKNAMES

COMPNAME

DIRECT
DUPNAMCK

Use

EP
PR

PR

PR

PR

EP
PR

PR

EP

PR

PR
PR

PR

PR

PR
PR

Licensed Material — Property of IBM

Description

are compatible with DEFAULTVOLUMES. Also
checks to warn if DEFAULTVOLUMES was
specified but ignored.

PARM FSR: establish or change the processor
parameters. Processor parameters (TEST,
MARGINS, and GRAPHICS) can be established
through the PARM field of the EXEC card. This
'SR provides an alternate way to set these options.

The results of changing TEST appear in the area
whose address is in GDTDBH. The results of
changing MARGINS appear as the first two
halfwords in the area whose address appears in
GDTRIH, and GRAPHICS is recorded in the
PCT.

Only entry point to this module.

Resets the previous test option if necessary.
Processes new test option. Obtains and initializes
the Test Option Data Area.

Extracts the specified test parameters from the FDT
and places them in the Test Option Data Area to be
used by the Access Method Services dump routine.

Processes the input command source margins
specified. The left and right margin values are
placed into the Reader/Interpreter Historical Data
Area to be used by the Reader/Interpreter when
processing subsequent command input.

Determine graphics option chosen and issue
UREST macro to establish the specified translate
table.

PRINT FSR: print the contents of a data set in
EBCDIC, hexadecimal, or dump format. Page
layout is established with a call to IDCTPEA
(UESTA macro) and lines of data are printed by
calling IDCTPPR (UPRINT macro).

Only entry point to this module.

Communicates the page layout and record layout
for the listing to the Text Processor.

Establishes the boundaries for printing a subset of
the input data set.

This is the highest level of control and the only
entrypoint to this module. The function loops
through the CRAs opening them, writes them and
their associated objects to the portability data set
and closes them.

Obtains space for CRV, ACC, and VTT, obtains
volume and device type information on CRAs., and
constructs the name chain for all entries in the
CRAs

Builds the name chain extension block of storage.

Reads a CRA record and checks the owning
catalog, then issues an ENQ on the owning catalog.

Gathers passwords for VSAM data sets, flags empty
data sets, bypasses OS/VS-only data sets, collects
the association CI numbers, and determines the
largest logical record length.

Compresses the blanks from the right of the object
name and places it in the space obtained in the
procedure SUBSP.

Gets space and reads in the directory.

Scans the name chain for duplicate names and
prints message if one is found.

Licensed Material — Property of IBM

CSECT/Load
Module Name

IDCRCO2

Label
ERRCK

EXPORTDR

EXTRACT

INIT

MESSAGE

NAMETABL

OBJVOLCK

OPEN

OPENCRA

SCANCRA

SUBSP

SYNCH

TERM

TIMESTMP

IDCRC02
ALSPROC

CLUSPROC

CONTROL

CTLGPROC

GDGPROC

LOCPROC

MVDAPROC

NVSMPROC
OPENPROC

PRNTPROC
PUTPROC

Use
PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

EP
PR

PR

PR

PR

PR

PR

PR

PR
PR

PR
PR

Description

If an error is considered severe, the catalog is closed
and the error message is printed.

Prints start of export of CRA message, calls
IDCRCO2 to export and prints completion message.

Sets up the FMPL and calls IDCRC04 to extract
data fields from CRA records.

Calls SUBSP to obtain storage and then initializes
the buffer pool.

Handles the printing of all messages.

Checks the name on the CRA record and if it is a
cluster, AIX, nonVSAM or catalog connector, it
builds the name into the name chain.

Checks the timestamp and CI on the volumes with
that of the CRA for each object.

Builds the OPNAGL and issues the open for the
CRA. It then checks the owning catalog name for
the major owning catalog.

Calls procedures to open the CRA, get its
timestamp, build the name table and the directory
entry.

Reads the catalog record, gets storage for CTT and
loops all CRA records putting Cl numbers in the
CTT and calls NAMETABL to build the name
table.

Handles the obtaining and allocation of small
pieces of storage associated with the name table
from one large block.

Checks the entire name chain for entries specified
in the input. It also checks for valid associations,
Cls, and volumes.

Dequeues from owning catalog, closes the
portability data set, and releases storage.

Reads the volume timestamp using UIOINFO and
places it in the volume timestamp table.

Creates a portable data set of VSAM clusters,
catalog information for nonVSAM, and associated
aliases.

Only entry point to this module.

Bypasses portable file information for OS/VS2
alias associations of nonVSAM data sets.

Obtains catalog information and data for VSAM
clusters.

Builds control records containing catalog
information.

Invokes catalog management with a CTGPL for
Locate.

Bypasses portable file information for OS/VS2
GDG bases.

Builds a CTGPL and multiple CTGFLs for catalog
locates.

Moves data in storage from one location to another
and clears work area storage.

Gets catalog information for nonVSAM data sets.

Opens the VSAM cluster for input and the portable
data set for output.

Prints messages for association errors.

Writes a control record containing catalog
information to the portable data set.

Chapter 4: Microfiche Directory 4-11

4-12

CSECT/Load
Module Name

IDCRCO3

IDCRC04

IDCRI0I

VSE/VSAM Access Method Services Logic

Label
RECPROC

SAVEPROC

PCKLC

PEXPT

PGREC
PGREP
PGVAL
PLNRV

PLOCZ
PLVAL

PSCNC

PSCNF
PSHIN
PTCMP

PTRNS

PTSTS

IDCRIOI
RIINIT

Use
PR

PR

EP

EP
PR

PR

PR
PR

PR
PR
PR
PR

PR

PR
PR
PR

PR

PR

EP
PR

Licensed Material — Property of IBM

Description

Copies the data for a VSAM cluster to the portable
data set.

Saves control records containing catalog
information until processing for that object’s
catalog information is complete and then writes all
records to the portable data set.

Handles format of buffer pool and reading of
catalog or CRA records.

This is the only entry point to this module.

Insures the requested catalog field exists in a group
occurrence being processed.

Sets up address and length of extension pointers as
per argument passed.
Obtains addressability to the desired CI block.

Finds highest non-deleted RELREPNO with
desired group code.

Find the field and extract the requested data.
Locate non-replicated values
Locate field and dictionary information.

Locate fixed or variable length field in physical
record and group occurrence.

Loops through all FMFLs to convert names to
internal notation.

Moves requested data to area specified by caller.
Inserts the data found into requested field.

Compares sub-fields between input data and
“found” data.

Format and build compressed name table, insure
group codes if special name obtained from caller.

Tests for existence of field and if there, places
dictionary information into work area.

Consists of CSECTs IDCRI10L, IDCRI102, and
IDCRI03. IDCRIO! is the Reader/Interpreter
main-line routine. Its functions are:

1. On first entry only, load a table of Command
Descriptor phase names and a table of modal
command verbs, initialize the
Reader/Interpreter Historical Data Area, and
obtain PARM options input if it exists in the
PARM field of the EXEC statement.

2. Scan the input stream for a command verb.

3. Handle modal commands (IF, ELSE, DO, END,
and SET) to determine which command to
process next.

4. Having found a function command verb, invoke
IDCRI02 to find and load the appropriate
Command Descriptor module and initialize the
FDT.

5. Scan parameter set, using the Command

Descriptor, to check syntax and semantics and to
build FDT.

6. Invoke IDCRI03 for clean-up activity following
each function command, and return to
IDCEXOL if the function command is to be
executed—that is, if it contains no syntax or
semantic errors detectable by the
Reader/Interpreter.

Only entry point to this module.

Initialize Reader/Interpreter processing.

Licensed Material — Property of IBM

CSECT/Load
Module Name

IDCRI102

IDCRI103

Label
SCANCMD
GETNEXT

MODALSET
MODALIF
MODLELSE
BYPASTRM
KWDPARM

POSPARM
GETDATA
GETSIMPL
GETQUOTD
BUILDEDT
CONVERT

DSIDCHK

GETSPACE
MORSPACE

INREPEAT

DEFAULTS

ERRSETUP

NEEDNOTS

SKIPCMD
SETFLAG

PACKCVB

NXTFIELD
SCANSEP

NEXTCHAR
GETRECRD
SCANENDS

DSPLCALC
ERRORI
ERROR2

IDCRI102

IDCR103

Use
PR
PR

PR
PR
PR
PR
PR

PR
PR
PR
PR
PR
PR

PR

PR
PR

PR

PR

PR

PR

PR
PR

PR

PR
PR

PR
PR
PR

PR
PR
PR

EP

EP

Description

Control command scanning and FDT building.

Get next function command verb name and pointer
to its parameter set. Intepreter modal commands.

Process SET modal command.
Process |F modal command.
Process ELSE modal command.
Prepare to obtain next verb name.

Process a keyword after searching the Command
Descriptor for its match.

Process a positional parameter.

Set up to extract constant or list of constants.
Extract an unquoted constant.

Extract a constant from within apostrophes.
Place constants into FDT (converting if needed).

Convert EBCDIC to binary, decimal, or
hexadecimal.

Check data set name item for adherence to naming
conventions.

Allocate space for an FDT element.

Allocate additional space for a list of constants in
an FDT element.

End of repetition of a subparameter list has
occurred; prepare for another of the subparameter
list repetitions.

Add defaults to parameters explicitly specified.

Make special preparations to print semantic error
message.

Check parameters to ensure that certain semantic
requirements have not been violated. Check for
mutually exclusive parameters, and required
parameters.

Bypass remainder of current command.

Flag that a particular parameter was found in the
input or was implied by defaults.

Convert EBCDIC string to fullword binary
number.

Extract next field from the input stream.

Scan past the next syntactic separator (comma,
blanks, and/or comments).

Extract the next character of the input stream.
Read the next input record and print it.

Find left and right scanning limits of command text
in the input record just read.

Calculate oftset into an array of pointers or counts.
Process an error whose message is static.

Process an error that requires variable data to be
inserted into the message.

Search the table of Command-Descriptor phases
for the name of the phase that corresponds to the
current command, and then load that phase.
Initialize the FDT.

Only entry point to this module.

Reader/Interpreter function command termination.
Free working space and delete unneeded phases.

Only entry point to this module.

Chapter 4: Microfiche Directory 4-13

4-14

CSECT/Load
Module Name

IDCRIFF

IDCRIKT

IDCRILT

IDCRMOL

VSE/VSAM Access Method Services Logic

Label

ALISPROC

ALTRPROC

BFPLPROC

BPASPROC

CLUSPROC

CPLPROC

CTLGPROC

DELTPROC

FVTPROC

GETPROC

GDGPROC

ITUNIQPRC

LVLRPROC

MSGPROC

MVDAPROC

NFVTPROC

NVSMPROC

OPENPROC

RANGPROC

RECPROC

UCATPROC

DVOLPROC

DVOLCHK

Use

EP
PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

Licensed Material — Property of IBM

Description

Last entry indicator for Module Name Table for
command descriptors used by the
Reader/Interpreter.

Modal command verb and keyword table, used by
the Reader/Interpreter.

Load Module Name Table for command
descriptors used by the Reader/Interpreter.

Only entry point to this module.

Reads data records and checks for allowable type in
the DOS system.

Constructs the CPL and FVT to be used to alter the
names of the objects.

Constructs the skeleton FPL or constructs the FPL
from the dictionary and work area information
passed by EXPORTRA on the portable volume.

Constructs passwall FPL.

Reads catalog and data records from the portability
volume and defines the object copy.

Constructs the catalog parameter list to be used for
UCATLG operations.

Invokes VSAM catalog management to perform
operation indicated in CPL.

Performs all delete operations using catalog
management.

Constructs FVT and FPLs from information in
dictionary passed as an argument.

Gets a data record via UGET, reconstructs it and
places it in the buffer.

If this procedure is called in DOS, it writes an error
message.

Checks the DSATTR field in the CTGFYV to see if
the cluster being defined is a unique data set. If so,
a null space (volume) CGTFV must be supplied for
catalog define.

Constructs the FPL from the DEVICETYPES
parameter or LISTVOLS from the RANGES
parameter.

Uses the Text Processor to list messages.

Moves data from one location in storage to another
as specified by input arguments.

Constructs the FVT and FPLs for nonVSAM
objects.

Reads catalog and data records from the portability
data set and performs the define of nonVSAM
entries.

Performs all opens of VSAM objects for output or
the portability data set for input.

Processes key range information building the
RANGES list.

Copy data from portability data set to VSAM
cluster.

Reads catalog and data records from portable
volume and performs a define of user catalog
pointers and aliases.

Contructs the special volumes CTGFL from the
DEFAULTVOLUMES parameter.

Performs diagnostics to assure that

DEFAULTVOLUMES volumes CTGFLs were
constructed only for components whose attributes

Licensed Material — Property of IBM

CSECT/Load
Module Name

IDCRPOI

IDCRSO1

Label

IDCRPOI
DELIMSET

CATRELOD

SORSREAD

TARGREAD

GETPAIR

DUMPIT

TRUENAME

CATRANS

CNVRTCI

CATCOMP

VERIFYC

IDCRS01
AERROR

CATINIT
CLEANUP
COPYCAT
INIT
MERGECRA
PROCCRA
REASSIGN
UPDCRA

Use

EP
PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

PR

EP
PR

PR
PR
PR
PR
PR
PR
PR
PR

Description

are compatible with DEFAULTVOLUMES. Also
checks to warn if DEFAULTVOLUMES was
specified but ignored.

REPRO FSR; copy a SAM, ISAM, or VSAMdata
set to a SAM or VSAM data set; unload or reload
catalogs. Data set types are determined at open
time, when IDCIOOP is called (UOPEN macro).
When records are skipped at the beginning, a series
of UGETs is issued until the required record is
reached.

When records are skipped at the end, a series of
UGETSs and UPUTs is issued.

When the copy is to the end of the data set, then a
single call is made to IDCIOCP (UCOPY macro),
which copies the data set from the first record to be
copied through the end of the data set. The
UPOSIT macro is employed to position to a
FROMKEY or FROMADDRESS starting point.
Only entry point to this module.

Establishes the boundaries for copying a subset of
the input data set.

Checks for sufficient space, matching names for
target and backup catalogs, and for agreement with
volume serial number and device types.

Reads a record from the backup catalog during a
catalog reload.

Reads a record from the target catalog during a
catalog reload.

Reads a record from both the backup and target
catalogs for the initial checking performed before a
catalog reload begins.

Activated by the PARM test function in order to
trace all 1/0 for catalog record.

Maps the RBA boundaries of the backup truename
ranges.

Locate and translate control interval numbers from
source catalog to target catalog.

Converts control interval numbers from source
catalog values to target catalog values.

Indicates differences in truename entries between
backup and target catalogs.

Opens a data set for control interval processing in
order to compare the end-of-data-set and
end-of-key-range information stored in the VSAM
catalog with the true data in the data set. Reopens
the data set for normal keyed processing.

RESETCAT FSR; synchronize a catalog with the
CRA (s) of its owned volume.

Only entry point to this module.

Exit if not enough storage is available to establish
automatic storage for RESETCAT modules.

Initialize RESETCAT’s description of the catalog.
Ensure all resources are freed.

Copy the catalog to the workfile.

Perform the main initializations of RESETCAT.
Merge and reset CRA into the workfile.

Process the records of the current CRA.

Perform control interval reassignment.

Update the CRAs from the workfile.

Chapter 4: Microfiche Directory 4-15

4-16

CSECT/Load
Module Name

IDCRS02

IDCRS03

IDCRS04

IDCRS05

VSE/VSAM Access Method Services Logic

Label
WRAPUP

ASSOC
CINALTER
LOCDIT

PROCCI

PROCTYPE
SCANCI
SETCI

VERA

VERC
VERDSDIR
VERCI
VERG
VERR
VERU
VERX

CATRCDSU

CHKBITS
CHKDSDIR

CHKUNQ
GETFIT
GETNEXTE

GETTAB
MARKUNUS
PROCVOL
SETBMAP

VERB
VLNRESET

VLRESET

VOLCHK

DELGO
FIND

MODGO

ADDTN
ADDUPCR
BLDRLST
BLDVLST

Use
PR

PR
PR
PR

PR

PR
PR
PR

PR

PR
PR
PR
PR
PR
PR
PR

PR

PR
PR

PR
PR
PR

PR
PR
PR
PR

PR
PR

PR

PR

PR
PR

PR

PR
PR
PR
PR

Licensed Material — Property of [BM

Description

Handle clean-up operations after successful
RESETCAT processing.

Performs various checking functions.

Does association checking.

Alter control interval numbers in catalog records.

Locates a specific control interval number in a
catalog record.

Ensure that a control interval number is in the list
of control interval numbers for records being
processed.

Scan a catalog record for control interval numbers.
Scan record for control intervals.

Update the workfile to reflect new control interval
numbers for reassigned CINs.

Verify aliases for nonVSAM and GDG
associations,

Verify associations for clusters.

Verify initial space claims.

Verify associations on a set of records.
Verify associations for alternate indexes.
Verify associations for PATHs.

Verify associations for users catalogs.
Verify the alias chain.

Contains procedures for controlling space.

Establish base record offsets for catalog low key
range records.

Compare bits in the bit map.

Check a data set directory entry against a data or
index component.

Check extents for unique data spaces.
Get a free entry in tables for ASSOC procedure.

Translate an index into a table into a virtual
address.

Get and initialize a table for ASSOC procedure.
Mark a volume group occurrence (VGO) unusable.
Resolve space conflicts.

Check space conflicts for data or index type catalog
entries.

Verify associations for GDG base records.

Verify space requested from objects being reset
against non-reset volumes.

Verify space requested from objects being reset
against reset volumes.

Volume consistency routine.
Performs field management processing.
Delete a group occurrence.

Locate requested information from a set of catalog
records.

Modify a group occurrence.
Association processing,

Add a true name to the catalog.
Prepare for update CRA processing.
Add an entry to the reset volume table.
Add an entry to the volume serial table.

Licensed Material — Property of IBM

CSECT/Load
Module Name

IDCRS06

IDCRS07

IDCSAO!L

IDCSA02

Label
CKERR
CRAUPCHN

DELTN
ENTNMCK

GENNAME
GETVIA

SCNRLST
SCNVLST

DSCLOSE
DSOPEN
RECMGMT
WFDEF
WFDEL

CATEOV
CNVTCCHH
ENSURECI

EOVPANCI

EOVPCCCR
EOVPCHAC

EOVPRBAP

EOVPRCCR

EOVPWFLR
EOVPXIO
HVTOC
RENAMEP
UPDCAT
UPDCCR

IDCSAO!1
IDCSASI

PRNTERR
GETCORE

Use
PR
PR

PR
PR

PR
PR

PR
PR

PR
PR
PR
PR
PR

PR
PR
PR

PR

PR
PR

PR

PR

PR
PR
PR
PR
PR
PR

EP
EP

PR
PR

Description

Print an error message.

Add a workfile record to a specific “update CRA™
chain.

Delete a true name from the catalog,.

Determine if a catalog record has a valid entry
name.

Generate a true name.

Get a record by control interval number via a
specific CRA.

Obtain the next CRA volser entry.
Scan the list of volumes.

Handles 1/0 functions; defines and deletes the
workfile.

Close a VSAM data set.

Open a VSAM data set.

Perform 1/0 requests.

Define the workfile for RESETCAT processing.
Delete the workfile.

This module contains system dependent code
designed specifically for RESETCAT functions.

Extend the catalog.
Convert CCHH or BBBB to TTnn.

Ensure that there are enough control intervals for
reassignment.

Format catalog free records until the catalog is
extended.

Update and write the CCR.

Get the high allocated control interval numbers for
the Low Key Range (LKR) and High Key Range
(HKR) of the catalog.

Build a table of high RBA field pointers for record
management control blocks.

Read the catalog control record (CCR) and update
the high allocated control intervals in the record
management control blocks.

Write a deleted free record to the catalog.
Perform 1/0 for the catalog.

Process all common VTOC handler functions.
Rename duplicate true name entries.

Update the catalog from the workfile.

Update the catalog control record (CCR).

Entry and exit module for the Access Method
Services processor. Interface between the operating
system and the processor. Create the GDT and call
IDCEXOI.

Entry point for DOS Job Control invocation.

Entry point for subroutine call invocation. It is six
bytes beyond IDCSAOI.

Print an error message using EXCP.
Issue GETVIS to allocate storage.

Supply all system services to the remainder of the
processor, except prologue and epilogue At each of
the following entry points, IDCSA02 converts the
service request to the appropriate system macros,
and issues those macros.

Chapter 4: Microfiche Directory 4-17

4- I8

CSECT/Load
Module Name

IDCSA03

IDCSA04

IDCSA0S

IDCSA08

IDCTPOL

VSE/VSAM Access Method Services Logic

Label
IDCSACL

IDCSALD

IDCSADE
IDCSAGS

IDCSAFS

IDCSAGP

IDCSAFP

IDCSATI

IDCSACA

IDCSASN
COREINIT

IDCSAS2

IDCSAPR
IDCSAEP

GETCORE
IDCSAS3

1IDCSAOS

IDCTPES
IDCTPEA
IDCTPER

IDCTPRS
IDCTPRE

IDCTPPR
SPACE
REDO
STATIC
BLOCK
INSERT

Use

EP

EP

EP
EP

EP

EP

EP

EP

EP

EP
PR

DE

EP
EP

PR
DE

EP

EP
EP
EP

EP
EP

EP
PR
PR
PR
PR
PR

Licensed Material — Property of IBM

Description
Load an executable module and branch to it
(UCALL macro).

Load a module but do not branch to it (ULOAD
macro).

Not functional in DOS/VSE.

Get space, a request for non-pooled storage
(UGSPACE macro).

Free space, release pooled or non-pooled storage
(UFSPACE macro).

Get pool, a request for pooled storage (UGPOOL
macro).

Free pool, release pooled storage (UFPOOL
macro).

Get date and time of day by calling IDCSA05
(UTIME macro).

Issue the VSAM CATLG macro (UCATLG
macro).

Provide core dump (USNAP macro).

Initialize an area of storage to binary zeros or
blanks.

Amount of storage IDCSAO02 needs. Used by
IDCSAOL.

Prologue and epilogue for all routines This module
is called at entry to and exit from all other modules.

Prologue entry point, acquire storage.

Epilogue entry point (UEPIL macro), release
storage.

Get requested amount of storage.

Amount of storage IDCSAO03 needs Used by
IDCSAOL.

Phase table containing load status information of
other phases. Used by the System Adapter.

Get date and time of day (invoked by IDCSA02).
Only entry point to this module.

Acquire control of a resource. Release control of a
resource.

Text Processor: provide formatting for printed
output. Each of the following entry points
represents a service provided by the Text Processor.
This module includes all conversion routines and
controls the printing of each line of output text.

Establish a PCT from static text (UESTS macro).
Establish a PCT from storage (UESTA macro).

Establish linkage to error message processor
(UERROR).

Modify an existing PCT (UREST macro).

Re-initialize Text Processor for the next function
(URESET macro).

Print one or more lines (UPRINT macro).
Set up line spacing.

Initiate replication.

Set up static text.

Set up block data.

Routine to insert data into predefined format, or
use static text when an insert is missing and default
data is called for.

Licensed Material — Property of IBM

CSECT/Load
Module Name

IDCTPO4

IDCTPOS

IDCTPO6

IDCTSALO
IDCTSBIO
IDCTSDEO
IDCTSDLO
IDCTSEX0
IDCTSIO0
IDCTSLCO
IDCTSLCI
IDCTSLRO
IDCTSLRI
IDCTSMPO

IDCTSPRO

IDCTSRCO

Label
CONVERT
BHCONV

BHDCONV
EBCDIC

PUPCONYV

BDCONV

IDCTPSI
ERROR
STACKPUT

LINERET
LINEPRT

IDCTPO4
ESTSCONT
ESTACONT

PO4SETUP
RESTCONT

PCTSETUP
RESETCON

INITPCT
STACKFL

IDCTPOS

IDCTPO6

Use

PR
PR

PR
PR

PR

PR

DE
PR
PR

PR
PR

EP
PR
PR

PR
PR

PR
PR

PR
PR

EP

EP

Description
Converts data and sets it into the print line.

Convert binary data to hexadecimal characters or
hex-apostrophe representation.

Convert binary data to hex-dump format.

Sets up transfer of EBCDIC characters to a print
line.

Convert packed-decimal data to unpacked-decimal
characters.

Convert binary data to packed-decimal data, and
call PUPCONY for conversion to
unpacked-decimal characters.

Amount of storage IDCTPOI needs. Used by
IDCSAOL.

Process error condition.

Buffers data lines. Does a UPUT on the line when
the stack is full, a message is to be printed, or the
print file is changed.

Returns formatted lines to the caller.

Controls title lines, headings, spacing; translates
data lines; and calls STACKPUT.

Initialize and modify PCT: set up all page controls,
define headings and footings, and define format of
page.

Only entry point to this module.

Get space for PCT and initialize it (UESTS macro).

Get space for PCT and initialize it from storage
parameters (UESTA macro).

Set up working table for PCT initialization.

Initialize working table for modifying existing PCT
(UREST macro).

Verify and initialize elements of PCT.

Re-initialize Text Processor for next function,
return page number, and clear PCT.

Get and initialize PCT.
Print lines in stack buffer,

Read Text Structures into storage for use by either
IDCTPO! or IDCTPO4.

Only entry point to this module.

Formats error messages for any FSR.

Only entry point to this module.

Text Structure for ALTER messages.

Text Structure for BLDINDEX message.

Text Structure for DEFINE messages.

Text Structure for DELETE messages.

Text Structure for Executive routines messages.
Text Structure for /O Adapter routines messages.
Text Structure for LISTCAT listing.

Text Structure for LISTCAT messages.

Text Structure for LISTCRA listing.

Text Structure for LISTCRA messages.

Text Structure for IMPORT and IMPORTRA
messages.

Text Structure for PRINT listings and
PRINT/REPRO messages.

Text Structure for EXPORTRA messages.

Chapter 4: Microfiche Directory 4-19

4-2

CSECT/Load
Module Name

IDCTSRIO

IDCTSRSO
IDCTSTPO

IDCTSTPI

IDCTSTPo

IDCTSUVO
IDCTSXPO
IDCVYOI

1DCXPOL

VSE/VSAM Access Method Services Logic

Label

IDCVYOL
OPENPROC
TERMPROC

IDCXPOI
CLUSPROC

DSCTPROC
LOCPROC

CTLGPROC

OPENPROC

ALTRPROC

DELTPROC

PUTPROC
RECPROC

MVDAPROC

CONTRBL
MORESP

Use

EP
PR
PR

EP
PR

PR
PR

PR

PR

PR

PR

PR
PR

PR

PR
PR

Licensed Material — Property of IBM

Description

Text Structure for Reader/Interpreter routines
messages.

Text structure for RESETCAT messages.

Text Structure for Text Processor routines; contains
print chain definitions.

Text Structure for Text Processor routines
messages.

Text Structure for VERROR messages.

Text Structure for any routine (universal messages).
Text Structure for EXPORT messages.

VERIFY FSR; check a VSAM data set against its
catalog entries and correct any discrepancies that
may be found, by calling IDCIOVR (UVERIFY
macro).

Only entry point to this module.
Opens the VSAM data set to be verified.
Closes the VSAM data set that was verified.

EXPORT FSR; create a portable copy of a VSAM
cluster or alternate index. Copy is done by issuing a
UCOPY macro. When the input data set is a
catalog, no copy is performed. Instead, the catalog
is disconnected by a call to IDCSACA.

Only entry point to this module.

Gets catalog information and data for a cluster
object and calls CONTRBL to write all the
information to a portable volume. Processes the
disposition options. If it is a permanent option, the
cluster will be deleted. Ifit is a temporary option,
the temporary export flag is turned on by issuing a
catalog alter.

Disconnects a user catalog.
Builds a CTGPL and multiple CTGFLs for use by

catalog locate. CTGFLs used to locate catalog
information to be exported.

Invokes the VSAM catalog management to perform
the operation indicated in the CTGPL.

Performs all opens required for opening a VSAM
cluster for input or opening the portable volume for
output.

Constructs the CTGPL and CTGFYV for a catalog
alter operation so that the data set attributes catalog
field (DSATTR) can be modified.

Constructs a CTGPL for a catalog delete operation
s0 that a cluster or alternate index can be deleted or
a user catalog disconnected. Invokes VSAM
catalog management to delete clusters or alternate
indexes.

Writes a catalog record to the portable volume.

Copies the data from the VSAM cluster to be
exported to the portable data set, record by record.

Copies data from one part of virtual storage to
another or, optionally, zeros out part of virtual
storage.

Writes catalog information to a portable volume.

Obtains a larger work area for VSAM catalog
management and reinvokes catalog.

Licensed Material — Property of IBM

Chapter 5: Data Areas

The data areas in this chapter are described in four columns, which are
interpreted as follows:

Offset: The numeric address of the field relative to the beginning of the area.
The first number is the offset in decimal, followed (in parentheses) by the
hexadecimal equivalent.

Bytes and Bit Pattern: The size (number of bytes) of the field and its align-
ment relative to the fullword boundary. A v indicates variable length.

Examples:
4 A four-byte field beginning on a word boundary.

.3 A three-byte field beginning on a halfword boundary and
running into the next word.

This column also shows the bit patterns of a byte when they are significant
(as in a flag byte). When the column is used to show the state of the bits (0
or 1) in a flag byte, it is shown as follows:

........ The eight bit positions (0-7) in a byte. For ease of scanning,
the high-order (leftmost) four bits are separated from the
low-order four bits.

b S A reference to bit 0.

L. Bit 0 is on.

0....... Bit 0 is off.

...... XX A reference to bits 6 and 7.

Bit settings that are significant are shown and described. Bit settings that
are not shown are considered to be reserved and set to zero.

Field Name: A name that identifies the field and appears in the assembly
listings. A sub-field or value name is indented from the field’s name. An *
indicates the field is not named.

Description: Content, Meaning, Use: A description of the use of the field.

Chapter 5: Data Areas 5-1

Block List (BLKLIST)

Licensed Material — Property of IBM

The Block List contains addresses and offsets for each data block to be used
by the text processor block data routine when one more than one data block
is required.

Created by Modified by Used by Size
Calling routine IDCTPO1 IDCTPOI Variable
Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use
0(0) 8xn BLKLARY The following fields are repeated n times,

where n equals the number of data blocks
being used. The FMTBLKNO field of a
block data format list is used as the index
into this array.

2 BLKLRIO Offset to add to all offsets contained in
block-format sub-structures.
2(2) .2 BLKLILP Length of block whose address is in
BLKLPTR.
4(4) 4 BLKLPTR Address of a block of data.

Buffer Pool Control Block (BUFS)

The Buffer Pool Control Block is used by EXPORTRA to control I/0
buffers. It is passed from IDCRCO01 through field management (IDCRC04)
to IDCRCO3.

Created by Modified by Used by Size

IDCRCO1 IDCRCO03 IDCRCO03 28

Buffer Pool Control Block Description

Command Descriptor

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use
0(0) 4 BUFPOOL Address of first buffer.
44 4 BUFPL Address of chain of buffers.
8(8) 4 BUFIOCS Address of the IOCSTR.
12(C) 4 BUFGDT Address of the GDT.
16 (10) 4 BUFCTT Address of the CTT
20(19) 4 BUFWKARA Address of the work area.
24 (18) 2 BUFSIZE Size of buffer pool.
26 (1A) 2 BUFSWS Indicator Flags.
... BUFORMAT 1=Buffer pool formatted
0=Buffer pool not formatted
XXX XXXX * Reserved.
XXXX XXXX * Reserved.

There is a Command Descriptor for each verb supported by this processor.
The Command Descriptor is a load module that contains directions for
parsing the command, performing semantic checking, and building an FDT
from the commands. The name of the load module for each verb is found in
a directory, which is itself a load module named IDCRILT. IDCRILT is
loaded upon the first entry to IDCRIO1.

The name of each load module and the corresponding verb, as supplied by
IBM, is as follows:

IDCCDAL ALTER IDCCDRC EXPORTRA IDCCDPM PARM
IDCCDBI BLDINDEX IDCCDMP IMPORT IDCCDPR PRINT
IIDCCDCL CANCEL IDCCDRM IMPORTRA IDCCDRP REPRO
IDCCDDE DEFINE IDCCDLC LISTCAT IDCCDRS RESETCAT
IDCCDDL DELETE IDCCDLR LISTCRA IDCCDVY VERIFY

IDCCDXP EXPORT

5-2 VSE/VSAM Access Method Services Logic

Licensed Material — Property of IBM

Verb Data Area

Positional Parameter Appendage

Each Command Descriptor consists of a series of variable-length entries, The
first entry is always the verb-data entry, which names the FSR load module
to use. Subsequent entries define default values, syntactic and semantic
requirements, the structure of all possible parameters, and the structure of the
FDT to be built from this command.

Used by
IDCRIO!

Created by
IBM-Supplied

Modified by Size

None Variable

A Command Descriptor always begins with the Verb Data Area. This data
area names the FSR for this command, gives the total number of parameters,
and provides offsets to other data areas in the Command Descriptor.

Bytes and
Bit Pattern

4

Offset
0(0)

Field Name
DESCID

Description: Content, Meaning, Use

Descriptor identification, contains the
last four letters of the Command De-
scriptor module name. For example,
‘CDAL’ for the Alter Command Descrip-
tor, IDCCDAL.

Not used in VSE.

Number of halfwords in Verb Data Area
(used to compute the address of the first
Parameter Data Area).

4(4)
6(6)

PCLDSPL1
VDATALEN

6(6) PARMCNT Number of Parameter Data Areas in this

Command Descriptor.

10(A) MAXID Largest parameter 1D number that is

used in this Command Descriptor.

12(C) LOAD NAME Load module name of FSR that

processes this command.

20(14) POSDSPL Number of halfwords from the beginning
of the Verb Data Area to Positional Par-
ameter appendage of the Verb Data

Area.

21(15) DGRPDSPL Number of halfwords from the beginning
of the Verb Data Area to Default Param-

eter appendage of the Verb Data Area.

22(16) VNGRPDSP Number of halfwords from the beginning
of the Verb Data Area to Needed Param-

eters appendage of the Verb Data Area.

23(17) NTGRPDSP Number of halfwords from the beginning
of the Verb Data Area to Incompatible
Parameters appendage of the Verb Data

Area.

This appendage contains the parameter ID number of each positional param-
eter that is not a subparameter of other parameters. This appendage may
follow the Verb Data Area or any Verb Data Area appendage.

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use
0) 2 VYPOSCNT Number, n, of ID numbers thai follow:
2(2) 2xn VPOSIDn List of ID numbers for positional

parameters.

Chapter 5: Data Areas 5-3

Default Parameter Appendage

Needed Parameters Appendage

Licensed Material — Property of IBM

This appendage contains the parameter ID number of each default parame-
ter. The parameter IDs are grouped into arrays. The first parameter in each
array is the default if none of the parameters in that array is supplied in the

command. This appendage may follow the Verb Data area or any Verb Data
Area appendage.

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use
0(0) 2 DGRPTOT Number of arrays that follow.
Each array contains:
2 DGRPCNT Number, n, of ID numbers that follow:
2xn DGRPIDn List of ID numbers.

This appendage contains the parameter ID number of any necessary parame-
ter that is not a subparameter of another parameter. The parameter IDs are
grouped into arrays. At least one of the parameters in each array must be
supplied through the command. This appendage may follow the Verb Data
Area or any Verb Data Area appendage.

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use
0(0) 2 VNGRPTOT Number of arrays that follow:
Each array contains:
2 VNGRPCNT Number, n, of ID numbers that follow;
2xn VNGRPIDn List of ID numbers.

Incompatible Parameters Appendage

This appendage contains the parameter ID numbers for each parameter in
groups of incompatible parameters. The parameter IDs are grouped into
arrays. Only one parameter in each array may be supplied through the
command.

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use
0(0) 2 NTGRPTOT Number of arrays that follow:
Each array contains:
2 NTGRPCNT Number, n, of ID numbers that follow:
2xn NTGRPIDn List of ID numbers.

VSE/VSAM Access Method Services Logic

Licensed Material — Property of IBM

Parameter Data Area

No Constant Appendage

The Parameter Data Area follows the Verb Data Area, and describes the
syntax and subparameters of a parameter. Usually there is one Parameter
Data Area for each parameter. However, one Parameter Data Area can
describe several parameters if the parameters have the same syntax and data.

Offset
0(0)

1(1)

44

5(5)

6(6)

M

8(8)

99)
10(A)
11(B)

Bytes and
Bit Pattern

1

Field Name
PDEFLEN

OCCURNUM

IDDSPL

KWDDSPL

NOTDSPL

NGRPDSPL

PDEDSPL

KWDGRPID

L]

FLAGS
SCLRDATA

LEVELI
REPEATED
SCALAR
LIST
DEFAULT

SUBLIST

L

Description: Content, Meaning, Use

Number of halfwords in this Parameter
Data Area including appendages.

Number of times this parameter can be
repeated in the command,

Number of halfwords from the beginning
of this Parameter Data Area to the ID
Appendage.

Number of halfwords from the beginning
of this Parameter Data area to the Key-
word Appendage.

Number of halfwords from the beginning
of this Parameter Data area to the Con-
flicting Parameters Appendage.

Number of halfwords from the beginning
of this Parameter Data area to the Neces-
sary Parameters Appendage.

Number of halfwords from the beginning
of this Parameter Data area to the
Prompt Appendage.

Not used in VSE.
Reserved.

Flags:

Indicates the user supplies data with this
parameter.

Indicates this parameter is not a
subparameter.

Indicates the user may repeat the
subparameters of this parameter.
Indicates the user supplies a single
constant with this parameter.

Indicates the user may supply several
“like” constants with this parameter.
Indicates this parameter has a default
value.

Indicates this parameter has subparame-
ters.

Reserved.

This appendage follows the above section if the parameter has subparame-
ters. In other words, if SUBLIST=1, this appendage immediately follows the
FLAGS field described above.

Offset
12(C)
14(E)

15(F)

Bytes and

Bit Pattern

2
1

Field Name
PCLDSPL2
SUBDSPL

REPMAX

Description: Content, Meaning, Use
Not used in VSE.

Number of halfwords from the beginning
of this Parameter Data Area to the Sub-
parameter Appendage.

Maximum times this parameter’s
subparameters may be repeated in the
command.

Chapter 5: Data Areas 5-5

Constant Appendage

Licensed Material — Property of IBM

This appendage follows the basic Parameter Data area if the parameter has
constants. In other words, if SCLRDATA=1 this appendage immediately

follows the FLAGS field described above.

Offset
12(C)

16(10)

20(14)

21(15)

22(16)
23(17)

Default Data Appendage

Bytes and
Bit Pattern

4

Field Name
HIVALUE

LOWVALUE

MAXLNGTH

LISTMAX

»*

CFLAG
NUMBER
ANYSTRNG

DSNAM
GENERIC
VOLID

USERID
PWORDOPT

Description: Content, Meaning, Use

The greatest value a number constant
may have.

The least value a number constant may
have.

The maximum length of the constant
after any conversion.

Maximum number of times this constant
may be repeated in a list of subparame-
ters.

Reserved.

Flags:

Indicates the constant is a number.
Indicates the constant is a character
string.

Indicates the constant is a data set name.
Not used in VSE.

Indicates a volume serial number may
replace a data set name.

Not used in VSE.

Indicates the character string or data set
name may be followed by a password.
Reserved.

This appendage follows the Constant Appendage if the parameter data has a
default constant. In other words, if DEFAULT=1, this appendage immedi-
ately follows the CFLAGS field described above.

Offset
24(18)
25(19)

ID Appendage

5-6

Bytes and
Bit Pattern

1

v

Field Name
DEFLTLEN
DEFLTVAL

Description: Content, Meaning, Use
Length of following field.

Default constant as it would appear in
the command.

This appendage contains the offset from the beginning of the primary Param-
eter Data List, PDL, to the Parameter Data Entry, PDE, for each parameter
this Parameter Data Area describes. This appendage may follow any other
Parameter Data appendage.

Offset
0(0)

Each set contains:

VSE/VSAM Access Method Services Logic

Bytes and
Bit Pattern

2

Field Name
IDCOUNT

IDNUM
PDEOFST!

Description: Content, Meaning, Use

Number of sets of two fields that follow.
There is a set of fields for each parame-
ter.

Parameter ID number.

Not used in VSE.

Licensed Material — Property of IBM

Keyword Appendage

This appendage contains every keyword for each parameter this Parameter
Data Area describes. This appendage may follow any other Parameter Data
appendage.

Bytes and

Offset Bit Pattern Field Name Description: Content, Meaning, Use

o0) 1 KWDCOUNT Number of sets of fields that follow.
There is a set of two fields for each key-
word.

Each set contains:

00) 1 KWDLEN Length of the following keyword.

(1) v KWDITEM Keyword.

Conflicting Parameters Appendage

This appendage contains the parameter ID of each parameter tha may not
appear with the parameters this Parameter Data Area describes. This ap-
pendage may follow any Parameter Data appendage.

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use
00) 2 NOTCOUNT Number n of parameter IDs that follow.
2(2) 2xn NOTIDn List of IDs of conflicting parameters.

Necessary Parameters Appendage

Prompt Appendage

This appendage contains the parameter IDs of parameters that must appear
with the parameters this Parameter Data Area describes. The parameters are
grouped into arrays. One parameter in each array must appear. This append-
age may follow any other Parameter Data appendage.

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use
0(0) 2 NGRPTOT Number of arrays that follow:
Each array contains:
00) 2 NGRPCNT Number, n, of ID numbers that follow.
2xn NGRPIDn List of parameter ID numbers for

necessary parameters.

This appendage, although it can be present in VSE, is not used. It contains
an offset from the beginning of the prompt PDL to the PDE for prompting
information needed by parameters this Parameter Data Area describes. This
appendage may follow any other Parameter Data appendage.

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use
0(0) 2 PDECNT Number of sets of fields that follow.
Each set contains:

2 PDEPRMID Not used.

2 PDEPCLID Not used.

2 PDEOFST2 Not used.

Chapter 5: Data Areas 5-17

Subparameter Appendage

Licensed Material — Property of IBM

This appendage contains all the subparameter IDs. This appendage may
follow any other Parameter Data appendage.

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use
0(0) 2 SUBCOUNT Number of sets of fields that follow.
There is a set of two fields for each sub-
parameter.
Each set contains:
2 PARMTYPE Identifies this subparameter as position-
al, ‘P’, or keyword, ‘K.
2 SUBID Subparameter ID.

Command Descriptor Phase Table—IDCRILT

IDCRILT contains a table of all verbs accepted by the processor and the
Command Descriptor phase names that are required to parse them.

Created by Modified by Used by Size
IBM-Supplied None IDCRI02 258
Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use
0(0) 2 LNAMECNT Number of table entries.
2(2) 16xn n table entries.
8 TBIVERB Verb character string.
8 TBILNAME Corresponding Command Descriptor
phase name.
16%n 8 FFFF End-of-table indicator (set to C‘FF).

CRA Access Parameter List

The CRA Access Parameter List provides VSAM catalog management with
information necessary to access the CRA as a catalog. It is pointed to by the
ACB when the UCRA bit in the ACB is on for the OPEN of a CRA by
EXPORTRA. The CRA Access Parameter List consists of three control
blocks. The ACB points directly to the ACC (Access Method
Services/Catalog Communication Table) which in turn points to the CTT
(CRA Access Translate Table) and the VTT (CRA Volume Timestamp
Table).

Created by Modified by Used by Size
IDCRCO1 None VSAM Catalog Variable
Management

Access Method Services/Catalog Communication Table (ACC) Description

Bytes and

Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) 4 ACCTRANT Address of the CRA Access Translate
Table (CTT).

4(4) 1 * Reserved.

5(0) 3 ACCDSNCI Control Interval number used when
LOCATE: are performed via true names.

8(8) 4 ACCVOLTT Address of the Volume Timestamp
Table.

5-8 VSE/VSAM Access Method Services Logic

Licensed Material — Property of IBM

CRA Access Translate Table (CTT) Description

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use
0(0) 4 CTTENTNO Number of entries in the table.
4 (4) 4xn CTTENTRY Variable number (n) of 4-byte entries.
1 CTTENTYP Type of CRA record.
3 CTTCATCI Catalog control interval number of the

CRA control interval for this entry.

CRA Volume Timestamp Table (VIT) Description

Dump List

Individual Field Entry

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use
0(0) 4 VTITENTNO Number of entries in the table.
44) 14xn VTTENTRY Variable number (n) of 14-byte entries.
6 VTTVOLSR Volume serial number for the timestamp
of this entry.
...... 8 VTTTMSTP The timestamp that is in the format 4

label on this volume.

The Dump List tells the UDUMP macro which areas to dump. The Dump
List consists of entries that describe the individual fields. If one or more
fields are to be repeated, they can be described as an array where each group
of fields is an element in the array. In such cases, the array is preceded by a
Dump List entry called an array header. The array header causes the fields to
be repeated. The end of the Dump List is indicated by an entry called the
dump list terminator.

Individual entries are printed as name=data. Each field in an array is printed
as name(n)=data. The array name is printed before the array elements. All
arrays start on a new line.

Created by Modified by Used by Size
All routines IDCDBO01 IDCDBO02 Variable
Bytes and

Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) 8 DMPIMNM Name to be printed with the field. The
name is aligned left and padded with
blanks.

8(8) 4 DMPITMPT Address of field to be dumped.

12 (©) 2 DMPITMLN Number of bytes to dump. For hexadeci-

mal, bit, or character strings the number
is from 1 to 256. For fixed binary, the
number is from 1 to 4.

14 (E) Sl DMPITMTP Type of data in field:
H Hexadecimal printed as two
characters per byte.

B Bit string printed as eight
characters per byte.

C Character printed as one
character per byte.

F Fixed binary printed as a signed
number for halfwords or full-
words or as an unsigned number
for one or three bytes. Leading
zeros are suppressed.

15 (F) R | * Reserved.

Chapter 5: Data Areas 5-9

Array Header Entry

Dump List Terminator Entry

Bytes and
Offset Bit Pattern
0(0) 8
8 (8) 2
10 (A))
12 (C) 2
14 (E) 1
15 (F) A |

Bytes and
Offset Bit Pattern
0(0) 1

Dynamic Data List—DARGLIST

The dynamic data argument list describes variable data to be printed. It is
always an argument for a print request (UPRINT macro).

Field Name
DMPARYNM

DMPARYSZ

DMPARYIC

DMPARYEX

DMPARYTP

Field Name
DMPTRM

Created by Modifled by
Calling routine None

Bytes and
Offset Bit Pattern Field Name
0(0) 4 DARGDBP
4(4) 4 DARGRETP
8(8) 4 DARGSTID
Each DARGSTID contains:

3 DARGSMOD

| DARGSENT
12(C) 2 DARGILP
14 (E)) DARGCNT
16 (10) 2 DARGRETL
18 (12) L DARGIND

VSE/VSAM Access Method Services Logic

Licensed Material — Property of IBM

Description: Content, Meaning, Use

Name to be printed at the start of the
array. The name is aligned left and pad-
ded with blanks.

Number of bytes in each input element
of the array. The number can be from |
to 32,767.

Number of following individual items
that are in the array. The number can be
from 1 to 32,767.

Number of times to repeat the individual
fields. The number can be from 1 to 99.

Array header type—contains A.

Reserved.

Description: Content, Meaning, Use

End of dump list indicator—contains
X‘FF'.

Used by Size
IDCTPO1 Variable

Description: Content, Meaning, Use

Contains the address of the block of data,
the address of the BLKLIST, or zero.

Zero if printing is to occur; nonzero if no
printing is to occur. If nonzero, contains
the address of the area in which the for-
matted print lines are to be returned from
the Text Processor (and not printed).
Data will be returned to the specified lo-
cation. The data is truncated to the
length (DARGRETL) of the provided
area if necessary. Spacing control char-
acters are not returned.

Zero if a format list is also passed as a

parameter. If nonzero, contains the Text
Structure identification (STID) for static
text element to be used as the format list.

Last three characters of the text-structure
module name.

Static text entry.

Length of block whose address is in
DARGDBP.

Number of insert and replication
elements contained in DARGARY.

Length of the return-data area (that is,
DARGRETP).

Offset to add to the print column in the
format list (FMTOCOL).

Licensed Material — Property of IBM

Bytes and
Offset Bit Pattern
19 (13) |

B

0. ...

S B

X X XXXX
20(14) 8Xn

2

02

4

Error Conversion Table—ERCNVTAB

The Error Conversion Table is passed whenever a UERROR macro is issued.
It contains the information necessary to convert numeric error codes into

prose messages.

Field Name
DARGFLGS
DARGBPL

DARGFUL

DARGARY

DARGINS
DARGREP
DARGINL

DARGPCT

DARGDTM

Created by Modified by
All routines None
Bytes and
Offset Bit Pattern Field Name
0(0) 1 ERTYPE
| G ERCATLG
i EROSCAT
(1) A EROPER
| ST ERCATLC
) ERCATDE
WL ERCATDL
ol ERCATAL
2(2) 1 EROSOPER
31(3) 1
4(4)
8(8)
12 (C) 4 ERDSNM
16 (10) 4 ERCATRC

Description: Content, Meaning, Use
DARGLIST flags:

DARGDBP contains the address of the
BLKLIST, which contains addresses of
multiple data blocks.

DARGDBP contains the address of a
single data block referred to by the for-
mat list.

Output recordsize is greater than 32K.
Reserved.

Group array. The following fields are
repeated n times, wheren n =
DARGCNT.

Insert reference number.

Replication reference number.

Input data length of the field pointed to
by DARGDTM.

Replication count, number of times to
replicate a series of format substructures
(FMTLIST).

Dynamic data pointer, address of field to
use for this insert. This field is not used
for replication structures.

Used by Size
IDCTP06 32

Description: Content, Meaning, Use
Type of error code to be converted.
VSAM Catalog management error.
OS/VS Catalog error. Not used in VSE.

VSAM Catalog operation being
performed when error occurred. Only
one operation type allowed per UER-
ROR invocation.

CMS Locate.
CMS Define.
CMS Delete.
CMS Alter.

OS/VS Catalog operation being
performed. Not used in VSE.

Reserved.
Reserved.
Reserved.

Address of data set name or volume
serial number associated with the Cata-
log Management request. The data set
name is contained in a 44 byte field pad-
ded with blanks; the volume serial num-
ber is contained in a 44 byte field padded
with binary zeros.

VSAM Catalog Management return
code.

Chapter 5: Data Areas 5-11

Offset
20 (14)

24(18)
28(1C)

Bytes and
Bit Pattern

4

4
4

Field Name
ERCPLPT

Field Management Parameter List—FMPL

Licensed Material — Property of IBM

Description: Content, Meaning, Use

Address of Catalog Parameter List
(CTGPL) issued that resulted in error
condition.

Reserved.
Reserved.

The Field Management Parameter List is passed whenever module IDCRC04
is called within EXPORTRA and LISTCRA. It contains information and
pointers which enable IDCRCO04 to extract data from records within the

Offset
0(0)

1(1)
2(1)
3(l)

44
8(8)
12(C)
16 (10)

VSE/VSAM Access Method Services Logic

Field Management Field List (FMFL) Description

Bytes and
Bit Pattern

A

ol

ol

XXXX XXX,

8xn

catalog or CRA.
Created by Modified by
IDCRCOI IDCRCO04
IDCLRO1

Field Management Parameter List Description

Bytes and

Offset Bit Pattern Field Name
0(0) 1 FMPLFLNO
() 3 FMPLBCIN
4(4) 4 FMPLGRTN
8(8) 4 FMPLWKAR
12(C) 4 FMPLUPTR
16 (10) 1 FMPLRTCD
17 (1) 1 .
18 (12) 2 FMPLENTH
20 (14) 4 FMPLOAR
24 (18) 4xn FMPLFMFL

Field Name
FMFLDLNO

FMFLTSTC
FMFLGRPC
FMFLINDS

-

FMFLSUCC

FMFLWKAR
FMFLDNAM
FMFLTCHN
FMFLDATA

FMFLENTH
FMFLADDR

Used by Size
IDCRCO04 Variable

Description: Content, Meaning, Use
Number of FMFL pointers.

Control interval number of the base
record.

Address of the GET routine.

Address of the field management work
area.

Value passed to user GET routine at
Input/Output processing time.

Return code from a call to IDCRC04.
Reserved.

Length of the output area provided by
caller.

Address or the output area.

Array of variable number (n) of 4-byte
FMFL pointers.

Description: Content, Meaning, Use

Number of length/data pairs passed by
caller.

Compare test condition code.

Field group code supplied by caller.
FMFL indicator flags.

Reserved.

Bit indicating success of test. O=test is
successful. 1=test is unsuccessful.

Work area for field management.
Pointer to 8-byte field name.
Address of next test FMFL.

Variable number (n) of Length/Data
pointer pairs.

4-byte length of supplied data.
4-byte address of supplied data.

Licensed Material — Property of IBM

Format List—FMTLIST

Spacing

Insert Data

The format list defines the format of printed output. This list consists of
several substructures, each identified by its flag byte. Format lists exist in the
Text Structures, where they are referenced by STID numbers (Static Text
Identifiers). Optionally, they may be passed as an argument of the UPRINT
macro, in which case the DARGLIST argument does not furnish a STID.

Created by Modified by Used by Size
Calling routine None IDCTP91 Variable

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use
0(0) 1 FMTFLGS Flags:

Lo e FMTEOLF End of structure.

Ao FMTSCF Space control.

1 P FMTIDF Insert data.

0 FMTBDF Block data.

R P FMTREPF Replication.

TN FMTSTF Static text.

T FMTDFF Default data.

.l FMTHDF Header line.

Interpretation of each substructure of the format list depends on the value of
FMTFLGS. Each of the possible substructures is shown below.

The spacing substructure of the format list specifies the line spacing or
carriage control to use while printing. The default spacing is used only when
a line is not immediately preceded by a spacing substructure. A spacing
substructure imbedded in an entry causes printing of the previously format-
ted data and signals the start of a new line.

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use
0(0) 1 FMTFLGS Flag byte: X40°.
(D) .1 * Reserved.
2(2)) FMTSPF Space factor: if FMTSPT is equal to “A”,

this is the absolute line number to use for
printing this line. If FMTSPT is equal to
“R”, this is the number of spaces to take
before printing. Page overflow results in
printing on the first line of the next page.

4(4) 1 FMTSPT Spacing type: “A” signifies absolute line
number in FMTSPF, and “R” signifies
relative line number. “E” signifies page
eject.

50) ! * Reserved,

The insert-data substructure refers to data defined in the dynamic data
argument structure, and identified by reference number. This represents
variable data to be inserted into the printed line.

Bytes and

Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) 1 FMTFLGS Flag byte: X20’ or X‘A0’. (X‘A0’ also
denotes end-of-structure.)

(D .1 FMTBLKNO Block number (starting with 0). This
value is used as the index into the
BLKLIST array for more than one data
block.

2(2) 2 FMTRFNO Insert reference number: identification

number for dynamic data insert that de-
fines the input data to be used for for-
matting.

Chapter 5: Data Areas 5-13

Licensed Material — Property of IBM

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use
4(4) 2 * Reserved.
6 (6) 2 FMTOCOL Print line column for beginning of this

field, or (if FMTBS is equal to one) the
offset from the column indicated by field
PCTAPC. (PCTAPC is the last non-
blank in the previous field.)

8(8) 2 FMTOLEN Output field length. If FMTOLEN is
equal to zero or 32,767, then the full,
converted input length is used.

10 (A) 1 FMTCNVF Flags to define conversion and format-
ting to be done:

Lo FMTBH Byte to printable, hexadecimal represen-
tation,

do FMTBHA Byte to hexadecimal, preceded by X‘ and
followed by a single quote.

Y P FMTBHD Standard dump format. FMTOCOL and
FMTOLEN are ignored.

wl FMTBD Binary to unpacked decimal characters.

A FMTPU Packed to unpacked decimal characters.
It (B) 1 FMTCNVF Conversion flags (continued).

Lo FMTZS Suppress leading zeros by replacing with
blanks.

B FMTAL Aligned left; the high-order nonzero digit
is put in first print column as specified by
FMTCOL.

Wl FMTSS Suppress signs.

Wl FMTBS Suppress all trailing blanks but one of

the preceding field; add the offset in
FMTOCOL to the value in PCTAPC for
the print column.

T P FMTAR Align EDCDIC character strings to the
right. The print column is added to the
print field length to determine the last
printable position.

Default Text

The default-text substructure is only used when it immediately follows an
insert-data substructure. When examining the insert structure, the value in
DARGINS is compared to the value in FMTRFNO. If the values are not
equivalent, the next format structure is examined to determine whether it is a
default structure. If the flag FMTDFF is on in this next structure, the struc-
ture is used. In all other cases, it is skipped over.

Bytes and

Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) 1 FMTFLGS Flag byte: X‘02’ or X‘82’. (X‘82’ also
denotes end-of-structure.)

1(D) .1 Reserved.

2(2) 2 FMTILEN Length of the default text.

4(4) 2 FMTIOFF Offset from the beginning of the format
structures to the default text (which fol-
lows the format structures).

6 (6) .2 FMTOCOL Print line column, same as for insert
substructure.

8(8) 2 FMTOLEN Output field length, same as for insert
substructure.

10 (A)) FMTCNVF Conversion flags, same as for insert
substructure.

5-14 VSE/VSAM Access Method Services Logic

Licensed Material — Property of IBM

Block Format
The block format substructure of the format list defines a block of variable
data from which fields are extracted for printing.
Bytes and

Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) 1 FMTFLGS Flag byte: X‘10° or X‘90’. (X‘90’ also
denotes end-of-structure.)

() .1 FMTBLKNO Block number (starting with 0). This
value is used as the index into the
BLKLIST array for more than one data
block.

2(2) .2 FMTILEN Length of the input field. If FMTILEN
is zero or if FMTILEN is greater than
DARGILP minus FMTIOFF, then the
input length in DARGILP is used.

44) 2 FMTIOFF Offset from the beginning of the input
data block at which this field begins. The
beginning of the data block is in
DARGDBP.

6 (6)) FMTOCOL Print line column, same as for insert
substructure.

8(8) 2 FMTOLEN Output field length, same as for insert
substructure.

10 (A) .2 FMTCNVF Conversion flags, same as for insert
substructure.

Replication

The replication substructure defines substructures of the format list that are

to be repeated. The replication substructure always precedes the first sub-

structure to be repeated.
Bytes and

Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) 1 FMTFLGS Flag byte: X‘08’. (May not have
end-of-list flag on.)

1(D) .1 * Reserved.

2(2) .2 FMTRFNO Reference number to identify the
dynamic argument that contains the rep-
lication count.

4(4) 2 FMTRBC Number of substructures that follow that
are to be replicated.

6(6) .2 FMTRIO Offset to add to all offsets contained in
block-format substructures being repli-
cated, to access the input fields.

Static Text

The static text substructure defines data from the Text Structures to be placed
in the printed line.

Bytes and

Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) 1 FMTFLGS Flag byte: X‘04’ or X‘84’, (X‘84’ also
indicates end-of-structure.)

1 (1) .1 * Reserved.

202 .2 FMTSTL Length of static text field.

44 2 FMTSTO Offset to static text which follows format
structures.

6 (6) 2 FMTOCOL Print line column or column offset, same
as for insert substructure,

8 (8) 2 FMTOLEN Output field length, same as for insert
substructure.

10 (A) .2 FMTCNVF Conversion flags, same as for insert
substructure.

Chapter 5: Data Areas 5-15

Licensed Material — Property of IBM

Function Data Table—FDT

5-16

The Function Data Table is an encoded representation of a command. The
Reader/Interpreter parses a command and constructs the FDT from inform-
ation found in that command. All defaults are resolved; no conflicts are
allowed among the values of an FDT.

The FDT is not one structure, but rather several small structures that are
pointed to by a primary vector of addresses, called the FDTTBL. For a
parameter that appears in a repeated subparameter list, a secondary vector
results. Figure 5-1 shows this vector and illustrates the various small struc-
tures to which it points.

The FDT primary vector, FDTTBL, is variable in length. It consists of the
command’s verb as an 8-byte EBCDIC string, followed by a variable number
of fullword pointers. The number of pointers depends on the specific com-
mand. There is one pointer per parameter defined in the Command Descrip-
tor. If a pointer is reserved or is not used because the respective parameter
has not been specified, the pointer contains zero.

There are seven possible data formats for FDT entries. Each type is de-
scribed below; the data format number corresponds to the number in the
“Data Format Number” column in the descriptions of the various FDTs.

)

VSE/VSAM Access Method Services Logic

Licensed Material — Property of IBM

Data Sub-
Format field Subfield Length
Number Type Level Description Mode (bytes) Notes
1 pointer pointer 4 May point to data,

to itself (indicating
that the parameter is
specified), or may
be binary zeros
(parameter is not

specified).
2 character
1 length binary 1
1 value character variable
string
3 numeric binary 4
value
4 character
list
1 number of binary 2
items in list
1 foreach item:
2 length binary 1
2 value character variable
5 binary
word list
1 number of binary 2
items in list
1 foreachitem:
2 length binary 1
2 value binary 4
6 name
1 password length binary 1
1 password characters 8
1 asterisk binary 1 Not used.
1 name flag bit string 1 Bit 0 on = unquali-
fied name; bit 0 off
= qualified name.
1 member name binary 1 Unused.
length
1 member name characters 8 Unused.
1 name length binary 1
1 name value characters 44
7 dname/
password
1 password length binary 1
1 password characters 8
1 dname length binary 1
I dname characters 8

Chapter 5: Data Areas 5-17

5-18

Licensed Material — Property of IBM

Figure 5-1 shows the FDT mapping for IMPORT when the following param-
eters are specified:

IMPORT INFILE(SOURCE -
ENV (PDEV(2400) BLKSIZE(6000) REWIND)) -
OUTPW (RECPW) =
PURGE -
OBJECTS(-
(EXAMPLE.KSDS?1 -
USECLASS(7 P) -
KEYRANGES(-
(ABBOTT GESTNER) -
(GESTRICH MERCY) =
(MESHING ZUBRINSKI) -
) -
) -
(EXAMPLE.KSDS1.DATA -
NEWNAME (EXAMNEW.KSDS1.DATA) -
VOLUMES (VSERO3 ,VSERO4) -
ORDERED -
KEYRANGES (-
(ABBOTT MERCY) =
(MESHING ZUBRINSKI) -
) -
FILE(D1) -
) -
(EXAMPLE.KSDS1.INDEX -
VOLUMES (VSER03,VSERO4,VSER05) -
FILE(D2) -
) -
)

The first five columns in the FDT descriptions are self-explanatory. The last
three columns have the following meanings:
Points to data—information supplied by the specified parameter.
itself—address of the pointer itself if the parameter has been specified.
list—additional information is given in the “Notes” column.
Data Format Number corresponds to Data Format 1-7, described above.

Notes additional information and references to subparameters of the specified
parameter.

VSE/VSAM Access Method Services Logic

W 1dd LYOdII ‘1-§ anBrg

Fuidde

¢ 1dey)

sealy ele(q

61-¢

*~— 13

e[x[ATM{PTLIE] . TK]STD[S]1] 5]} 44 Char. Total {Jb[b bbb [6]0]
[1s{e [x[a[M[P[L]E]. [K[S]D]S D[AJT]A[b[} 44 Char. Totat {[b[b
] 190e [x[a[m[P]L]E]. [K[s|D]s 1[N[DlETX[6]} 44 Char. Total B
i -+— 10 bytes OS/VS only=» -9 bytes OS/VS only =»
Parm. PARAMETER FDT FIELD OFFSET FDT BASE 0
No. NAME NAME POINTERS
0 ’—’1 2|D{1]|b|b|b|blb|b
IMPORT FDTVERB 0 I[M[P]O —
- {cont). a4 [R[T]b[b ————»[2[D[2][5[bl5]6]b]0]
1 INFILE IN 8
2 OUTFILE ouTDD 12 [} 0 jZTGIﬂSE—[&E’TﬂETVIS[EIR1014|
3 OBJECTS OBJTSCNT 16 . [
4 object name OBJNMPTR 20 ° o—1—»{ 3 [6[v][s]|e[R]o]3][6]v][s[E[R[0]a]6]Vv[s[EIR]OT5
5 NEWNAME NEWNMPTR 24 [
6 FILE OBJFLPTR 28 . 3
7 VOLUMES LISTVPTR 32 [2
8 KEYRANGES RANGEPTR 36 [— 0
9 DEVICETYPE DEVPTR 40 [pa—
10 ORDERED ORDPTR a4 *—— 0
11 UNORDERED UNORDPTR 48 0-—~——————| 0
12 lowkey LOWKYPTR 52 0
13 highkey HIKEYPTR 56 —
14 CONNECT CON 60 0 0
16 dname of INFILE INDD 64 . e
16 ENVIRONMENT ENV 68 e 0
17 PURGE PRG 72
18 NOPURGE NPRG 76] 0 o
19 ERASE ERAS 80 o | 0 r—d — 6[a[s]B[o]T[T]bIb]R 64 Char. Totat { [b]b]b[b]b[b]
20 NOERASE NERAS 84 o 0 = 8IG|EISITIR[1 C|H[b[b]3 64 Char. Totall b B[b (b [b
21 BLOCKSIZE BLKSZ 88 . . »7|MIE[STH]IIN]GIH |6]3 64 Char. Total blblblb]|
22 PRIMEDATADEVICE PDEV 92 [— \—q —]
23 RECORDSIZE RECSZE 96 0 *— 0] 64 Char. Total {[B[b[B[b[b][D]
24 Unused 100 0 Y H ib 64 Char. Total mmﬂﬂ
25 OUTPW ouTPW 104 C
26 STDLABEL ISLBL 108 4] — . > o 7[GIE[STTINJE[R]b [b [} 64 Char. Total {[b[b[b]b[b
27 NOLABEL INLBL 12 0 >~ . 5|M/E|R|C|Y|b|b|b s 64 Char. Total {{b|b|b|b|b|b
28 NOREWIND INREW 116 0 o _! ~— 9]z {U[B[R[I IN|S[K[1T6]} 64 Char. Total §b|b|b b
29 REWIND IREW 120
30 UNLOAD IUNLD 124 0 [b]¢ 64 Char. Total {Jb[b]b[bb[b]
31 Unused 128 0 [sTki1T6]b]s 64 Char. Total§ib[b b)
32 Unused 132 0
33 CATALOG CAT 136 0 {6]S[OJU[R[CIED D]
34 Unused 140 0
36 Unused 144 0
gs USECLASS BQET:TR :gg L 2 IIEEEBB 5 Note: Pointer to itself indicates that the parameter
38 primary PUSCPTR 156 ry - has been specified, but either the parameter
— has no value {(keyword only) or the values
% secondary SUSCPTR 160 hd 5 ﬂﬂﬂu are provided through other subparameters of
| —] the current parameter. A null pointer indicates
o that the parameter was not specified.
| ——
L__, o1 7
0
0
— (17P]
Q
0

NE] Jo A1adoid — [BLI3IBIA PISUIDN

Licensed Material — Property of IBM

ALTER FDT
Parm Offset Parm Name Sub-Parm of FDT Points Data Format Notes
No. Fieldname to Number
0(0) FDTVERB ALTERbbY

1 8(8) entryname/ ENTRY data 6

password
2 12(C) CATALOG CAT itself I See parms 3 and 4,
k} 16 (10) catname/ CATALOG CATLG data 6

password
4 20 (14) dname CATALOG CATDN data 2
H 24(18) NEWNAME NEWNM data 6
6 28(1C) FILE INDD data 2
7 32 (20) unused - contains zeros
8 36 (24) MASTERPW MASTR data 2
9 40 (28) CONTROLPW CNTVL data 2
10 44 (2C) UPDATEPW UPDAT data 2
11 48 (30) READPW READ data 2
12 52 (34) CODE CODNM data 2
13 56 (38) ATTEMPTS ATTP data 3
14 60 (3C) AUTHORIZATION AUTH itself 1 See parms 15 and 16.
15 64 (40) entrypoint AUTHORIZATION USVR data 2
16 68 (44) string AUTHORIZATION USAR data 2
17 72 (48) unused - contains zeros
18 76 (4C) TO TO data 3
19 80 (50) FOR FOR data 3
20 84 (54) OWNER OWNER data 2
21 88 (58) ERASE ERASE itself 1
22 92 (5C) NOERASE NERAS itself 1
23 96 (60) SHAREOPTIONS SHARE itself 1 See parms 48 and 49.
24 100 (64) unused - contains zeros
25 104 (68) NULLIFY NULLF itself 1 See parms 26-29, 42-45, 55, and 68.
26 108 (6C) MASTERPW NULLIFY NMSTR itself 1
27 112(70) CONTROLPW NULLIFY NCNTV itself 1
28 116 (74) UPDATEPW NULLIFY NUPDT itself 1
29 120(78) READPW NULLIFY NREAD itself I
30 124 (7C) unused - contains zeros
3 128 (80) FREESPACE FSPAC itself 1 Sec parms 32 and 33.
32 132 (84) cipercent FREESPACE FSPCI data 3
33 136 (88) capercent FREESPACE FSPCA data 3
k3 140(8C) WRITECHECK WRTCK itself 1
k] 144(90) NOWRITECHECK NWTCK itself 1
36 148 94) BUFFERSPACE BUFSZ data 3
37 152 (98) ADDVOLUMES ADDVL list 4 For each item in the list, there is a list of

volume serial numbers.
38 156 (9C) REMOVEVOLUMES REMVL list 4 For each item in the list, there is a list of
volume serial numbers,
39 160 (A0) unused - contains zeros
40 164 (A4) INHIBIT INHIB itself 1
41 168 (A8) UNINHIBIT UNHIB itself 1
42 172(AC) OWNER NULLIFY NOWNR itself 1
43 176 (B0) CODE NULLIFY NCDNM itself 1
4 180(B4) RETENTION NULLIFY NRETN itself 1
45 184 (B8) AUTHORIZATION NULLIFY NAUTH itself 1 See parms 46 and 47.
46 188(BC) MODULE NULLIFY, NMDNM itself 1
AUTHORIZATION
47 192(C0) STRING NULLIFY, NSTRG itself 1
AUTHORIZATION

48 196 (C4) crr;npartltlon/ SHAREOPTIONS SHARI data 3

value
49 200 (C8) reserved for OS SHAREOPTIONS SHAR2 data 3
50 204 (CC) unused - contains zeros

$-20 VSE/VSAM Access Method Services Logic

Licensed Material — Property of IBM

Parm Offset Parm Name

No.

51 208 (DO) unused - contains zeros
52 212(D4) unused - contains zeros
53 216(D8) unused - contains zeros
34 220 (DC) unused - contains zeros
58 224(E0) EXCEPTIONEXIT

56 228 (E4) KEYS
57 232 (E8) length
58 236 (EC) offset

59 240 (FO) RECORDSIZE

60 244 (F4) average

61 248 (F8) maximum

62 252(FC) UNIQUEKEY

63 256 (1000 NONUNIQUEKEY
64 260 (104) UPGRADE

65 264 (108) NOUPGRADE

66 268 (10C) UPDATE

67 272(110) NOUPDATE

68 276 (114) EXCEPTIONEXIT

BLDINDEX FDT

Parm Offset Parm Name
No.

0(0)
1 8(8) INFILE

12(C) unused - contains zeros
3 16 (10) OUTFILE
4 20(14) unused - contains zeros
S 24 (18) catname/

password

6 28(1C) WORKFILES
7 32(20) dnamel
8 36 (29) dname2
9 40 (28) EXTERNALSORT
10 44 (2C) INTERNALSORT
11 48 (30) INDATASET
12 52 (34) OUTDATASET
13 56 (38) WORKVOLUMES
CANCEL FDT
Parm Offset Parm Name
No.

0(0)
1 8(8) JOB
2 12(C) STEP

Sub-Parm of

KEYS
KEYS

RECORDSIZE
RECORDSIZE

NULLIFY

Sub-Parm of

CATALOG

WORKFILES
WORKFILES

Sub-Parm of

FDT
Fieldname

EEXT
KEY
KEYLN
KEYPS
RECSZ
AREC
MREC
UNQK
NUNQK
UPG
NUPG
UPD
NUPD
NEEXT

FDT
Fieldname

FDTVERB
IFILE

OFILE

CAT

WFILE
WFLEI
WFLE2
ESORT
ISORT

IDS

oDs

WyoL

FDT
Fieldname

FDTVERB
JOB
STEP

Points Data Format
to Number

data
itself
data
data
itself
data
data
itself
itself
itself
itself
itself
itself
itself

—— e e e e e W W e W W = R

Points Data Format

to Number
data 7
data 4/7
data 6
itself 1
data 2
data 2
itself 1
itself 1
data 6
data 4/6
data 4

Poiuts Dats Format

to Number
itself 1
itself 1

Notes

See parms 57 and 58.

See parms 60 and 61,

Notes

BLDINDEX

Count of number of dnames followed by
the list of dname/passwords in data format
7.

See parms 7 and 8.

base cluster data set name with optional
password.

AIX data set names with
optionalpasswords.

list of VOLID:s for sort word volumes
(CHAR(6)).

Notes

CANCEL

Chapter 5: Data Areas 5-21

DEFINE FDT
Parm Offset Parm Name
No.
0(0)
1 8(8) CATALOG
2 12(C) catname/
password
3 16 (10) dname
4 20 (14) MASTERCATALOG
5 24 (18) USERCATALOG
6 28 (10) CLUSTER
7 32(20) unused - contains zeros
8 36 (24) DATA
9 40 (28) INDEX
10 44(2C) SPACE
11 48 (30) NONVSAM
12 52(34) unused - contains zeros
13 56 (38) unused - contains zeros
14 60 (3C) ALTERNATEINDEX
15 64 (40) PATH
16 68 (44) NAME
17 72 (48) NAME
18 76 (4C) unused
19 80 (50) NAME
20 84 (54) unused
21 88 (58) unused
22 92 (5C) NAME
23 96 (60) NAME
24 100 (64) INDEXED
25 104 (68) NONINDEXED
26 108 (6C) MODEL
27 112 (70) MODEL
28 116 (74) entryname/
password
29 120(78) catname/
password
30 124 (7C) dname
3 128 (80) MODEL
32 132(84) entryname/
password
33 136 (88) catname/
password
34 140 (8C) dname
kH] 144 (50) MODEL
36 148 (94) entryname/
password
5-22

Sub-Parm of

CATALOG

CATALOG

MASTERCATALOG
CLUSTER

NONVSAM

DATA

INDEX
CLUSTER
CLUSTER
USERCATALOG
CLUSTER

CLUSTER,
MODEL

CLUSTER,
MODEL

CLUSTER,
MODEL

DATA
DATA, MODEL

DATA, MODEL

DATA, MODEL
INDEX
INDEX, MODEL

VSE/VSAM Access Method Services Logic

FDT
Fieldname

FDTVERB
CAT
CATLG

CATDN
MCAT

UCAT

CLST

DATA

INDEX

SPACE

ALIEN

AIX

PATH
METRY
CETRY

AETRY

DETRY
IETRY
CINDX
CNIDX
UMODL
CMODL
CENAM

CMDCT

CMDNM

DMODL
DENAM

DMDCT

DMDNM
IMODL
IENAM

Points
to

itself
data

data
itself

itself

itself

itself

itself

itself

itself

itself

itself
data
data

data

data
data
itself
itself
itself
itself
data

data

data

itself
data

data

data
itself
data

Data Format
Number

O = = o = A O

Licensed Material — Property of IBM

Notes

DEFINEbbb
See parms 2 and 3.

See parms 16, 39, 43, 47, 51, 55, 59, 63, 73,
75,77, 108, 113, 139, 142, 145, 148, 168,
170, 186, 276, 279, 283, 284, 408, 433, and
469.

See parms 26, 149, 198-215, 218-220, 277,
280, 285, 286, 409, 434, and 470.

Sece parms 17, 24, 25, 27, 40, 44, 48, 52, 56,
60, 64,74, 76, 78, 81, 90, 91, 94, 100, 101,
104, 105, 109, 114, 119, 127, 128, 133, 136,
140, 143, 146, 161, 169, 171, 176, 177, 180,
187, 189, 192, 221, 258, 262, 265, 266, 269,
272,274, 431, and 473.

See parms 22, 31, 41, 45, 49, 53, 57, 61, 67,
79, 84, 92,93,97, 111, 117, 122, 129, 130,

134, 137, 150-152, 165, 172, 173, 178, 179,
183, 188, 190, 193, 222, 259, 263, 267, 270,
273,275, 278, 281, 403, 404, 437, and 475.

See parms 23, 35, 42, 46, 50, 54, 58, 62, 70,
80, 87, 102, 103, 106, 107, 112, 118, 131,
132, 135, 138, 155-157, 174, 175, 191, 194,
260, 264, 268, 271, 438, and 476.

See parms 110, 115, 141, 144, 147, 160, 162,
196, 407, 435, and 471.

Sce parms 19, 116, 125, 126 and 282.

See parms 195, 261, 338-402, 405, 406, 432,
and 477.

Sce parms 410-430,

See parms 253-255.
See parms 28-30.

See parms 32-34.

See parms 36-38.

Licensed Material — Property of IBM

Parm
No.

N

38
39

4]
42
43

45

47
48
49
50
51
52
53
54
55
56
57
58
59

61
62
63

65

67
68

69

70
n

n

n
74
75
76

78
9

81
82

83

8s

86

Offset

152 (98)

156 (9C)
160 (A0)
164 (Ad)
168 (A8)
172 (AC)
176 (BO)
180 (B4)
184 (BS)
188 (BC)
192 (C0)
196 (C4)
200 (C8)
204 (CC)
208 (DO)
212 (D4)
216 (D8)
220 (DC)
224 (E0)
228 (E4)
232 (E8)
236 (EC)
240 (F0)
244 (F4)
248 (F8)
252 (FC)
256 (100)
260 (104)
264 (108)

268 (10C)

272 (110)
276 (114)

280 (118)

284 (11C)
288 (120)

292 (129)

296 (128)
300 (12C)
304 (130)
308 (134)
312 (138)
316 (13C)
320 (140)
324 (144)
328 (148)
332 (14C)

336 (150)

340 (154)
344 (158)

348 (15C)

Parm Name

catname/
password

dname
MASTERPW
MASTERPW
MASTERPW
MASTERPW
CONTROLPW
CONTROLPW
CONTROLPW
CONTROLPW
UPDATEPW
UPDATEPW
UPDATEPW
UPDATEPW
READPW
READPW
READPW
READPW
CODE

CODE

CODE

CODE
ATTEMPTS
ATTEMPTS
ATTEMPTS
ATTEMPTS
AUTHORIZATION
AUTHORIZATION
entrypoint

string

AUTHORIZATION
entrypoint

string

AUTHORIZATION
entrypoint

string

TO

TO

FOR

FOR

OWNER
OWNER
OWNER
OWNER
SHAREOPTIONS

crosspartition/
value

reserved for OS

SHAREOPTIONS

crosspartition/
value

reserved for OS

Sub-Parm of

INDEX, MODEL

INDEX, MODEL
MASTERCATALOG
CLUSTER

DATA

INDEX
MASTERCATALOG
CLUSTER

DATA

INDEX
MASTERCATALOG
CLUSTER

DATA

INDEX
MASTERCATALOG
CLUSTER

DATA

INDEX
MASTERCATALOG
CLUSTER

DATA

INDEX
MASTERCATALOG
CLUSTER

DATA

INDEX
MASTERCATALOG
CLUSTER

MASTERCATALOG,
AUTHORIZATION

MASTERCATALOG,
AUTHORIZATION

DATA

DATA,
AUTHORIZATION

DATA,
AUTHORIZATION

INDEX

INDEX,
AUTHORIZATION

INDEX,
AUTHORIZATION

MASTERCATALOG
CLUSTER
MASTERCATALOG
CLUSTER
MASTERCATALOG
CLUSTER

DATA

INDEX

CLUSTER

CLUSTER,
SHAREOPTIONS

CLUSTER,
SHAREOPTIONS

DATA

DATA,
SHAREOPTIONS

DATA,
SHAREOPTIONS

FDT
Fieldname

IMDCT

IMDNM
MMSTR
CMSTR
DMSTR
IMSTR
MCINT
CCINT
DCINT
ICINT
MUPDT
CUPDT
DUPDT
IUPDT
MREAD
CREAD
DREAD
IREAD
MCODE
CCODE
DCODE
ICODE
MATTP
CATTP
DATTP
IATTP
MAUTH
CAUTH
MEPNM

MSTRG

DAUTH
DEPNM

DSTRG

IAUTH
IEPNM

ISTRG

MTO
CTO
MFOR
CFOR
MOWNR
COWNR
DOWNR
IOWNR
CSHAR
CSHRI1

CSHR2

DSHAR
DSHRI1

DSHR2

Points
to

data

data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
itself
itself
data

data

itself
data

data

itself
data

data

data
data
data
data
data
data
data
data

data

data

data

data

Data Format
Number

6

N o o W W W W NN N DR NR R NN DN DODDODE DO NN

~

[

W o NN N W W W W ~

w

Notes

See parms 65 and 66.
See parms 256 and 257.

See parms 68 and 69.

See parms 71 and 72.

See parms 82 and 83.

See parms 85 and 86.

Chapter 5: Data Areas

5-23

Parm
No.

87
88

89

101

115

116

117

118

119

120

121

122

123

124

125
126

127
128
129
130
131
132
133
134

5-24

Offset

352 (160)
356 (164)

360 (168)

364 (16C)
368 (170)
372 (174)
376 (178)
380 (17C)
384 (180)
388 (184)
392 (188)
396 (18C)
400 (190)
404 (194)
408 (198)
412(15C)
416 (1A0)
420 (1A4)
424 (1A8)
428 (1AC)
432 (1B0)
436 (1B4)
440 (1B8)
444 (1BC)
448 (1C0)
452 (1C4)
456 (1C8)
560 (1CC)

464 (1D0)
468 (1D4)
472 (1D8)
476 (1DC)
480 (1E0)
484 (1E4)
488 (1E8)
492 (IEC)
496 (1F0)
500 (1F4)

504 (1F8)
508 (1FC)

512 (200)
516 (204)
520 (208)
524 (20C)
528 (210)
532 214)
536 (218)
540 21C)

Parm Name

SHAREOPTIONS

crosspartition/
value

reserved for OS

ERASE
NOERASE
ERASE
NOERASE
KEYS

length

offset

KEYS

length

offset
REPLICATE
NOREPLICATE
REPLICATE
NOREPLICATE
IMBED
NOIMBED
IMBED
NOIMBED
FILE

FILE

FILE

FILE

FILE
VOLUMES
VOLUMES

VOLUMES
VOLUMES
VOLUMES
VOLUMES
KEYRANGES
lowkey

highkey
KEYRANGES
lowkey

highkey

DEVICETYPES
FILESEQUENCENO

ORDERED
UNORDERED
ORDERED
UNORDERED
ORDERED
UNORDERED
SUBALLOCATION
SUBALLOCATION

Sub-Parm of

INDEX

INDEX,
SHAREOPTIONS

INDEX,
SHAREOPTIONS

CLUSTER
CLUSTER
DATA

DATA

CLUSTER
CLUSTER, KEYS
CLUSTER, KEYS
DATA

DATA, KEYS
DATA, KEYS
CLUSTER
CLUSTER
INDEX

INDEX
CLUSTER
CLUSTER
INDEX

INDEX
MASTERCATALOG
CLUSTER
SPACE

DATA

INDEX
MASTERCATALOG
CLUSTER

SPACE
NONVSAM
DATA
INDEX
CLUSTER

CLUSTER,
KEYRANGES

CLUSTER,
KEYRANGES

DATA

DATA,
KEYRANGES

DATA,
KEYRANGES

NONVSAM
NONVSAM

CLUSTER
CLUSTER
DATA
DATA
INDEX
INDEX
CLUSTER
DATA

VSE/VSAM Access Method Services Logic

FDT
Fieldname
ISHAR
ISHR1

ISHR2

CERAS
CNERS
DERAS
DNERS
CKEY
CKYLN
CKYPS
DKEY
DKYLN
DKYPS
CREPL
CNREP
IREPL
INREP
CIMBD
CNIBD
IIMBD
INIBD
MINDD
CINDD
SINDD
DINDD
IINDD
MVSER
CVSER

SVSER

AVSER

DVSER

IVSER

CRANG

CRGLOPTR

CRGHIPTR

DRANG

DRGLOPTR

DRGHIPTR

ADEVT
AFSNO

CORDR
CUORD
DORDR
DUORD
IORDR
IUORD
CSUBA
DSUBA

Points
to
itself
data

data

itself
itself
itself
itself
itself
data
data
itself
data
data
itself
itself
itself
itself
itself
itself
itself
itself
data
data
data
data
data
data
data

data
data
data
data
data

list of
pointers

list of
pointers

data

list of
pointers

list of
pointers

data

data

itself
itself
itself
itself
itself
itself
itself
itself

Data Format
Number

1
3

B AN N R RN R = e e e e e o e W W e W W e e e e e

IS

[V I N

[ey

Licensed Material — Property of IBM

Notes

See parms 88 and 89.

See parms 95 and 96.
key length

key offset

See parms 98 and 99.
key length

key offset

dname
dname
dname
dname
dname
A single serial number (character 6).

A list of volume serial numbers (character
6).

A list of volume serial numbers (character
6).

A list of volume serial numbers (character
6).

A list of volume serial numbers (character
6).

A list of volume serial numbers (character
6).

Count of sub-parms. See parms 120 and
121,

Each pointer points to
a low keyrange value.

Each pointer points to
a high keyrange value.

Count of sub-parms. See parms 123 and
124.

Each pointer points to
a low keyrange value.

Each pointer points to
a high keyrange value.

A list of device types (character 8).
A list of file sequence numbers.

Licensed Material — Property of IBM

Parm
No.

154

156
157
158
159
160
161
162
163

164

165

167

168
169
170
171
172
173
174
175
176
177
178
179
180
181

182

183

185

186

Offset

544 (220)
548 (224)
552 (228)
556 (22C)
560 (230)
564 (234)
568 (238)
572 (23C)
576 (240)
580 (244)
584 (248)
588 (24C)
592 (250)
596 (254)
600 (258)
604 (25C)
608 (260)
612 (264)
616 (268)
620 (26C)
624 (270)
628 (274)
632 278)
636 27C)
640 (280)
644 (284)
648 (288)
652 (28C)
656 (290)

660 (294)

664 (298)
668 (29C)

672 (2A0)

676 2A4)
680 (2A8)
684 (2AC)
688 (2B0)
692 (2B4)
696 (2B8)
700 (2BC)
704 (2C0)
708 (2C4)
712 2C8)
716 2CC)
720 (2D0)
724 2D4)
728 (2D8)

732 (2DC)

736 QED)
740 (2E4)

744 (2E8)

748 (2EC)

Parm Name

SUBALLOCATION
UNIQUE
UNIQUE
UNIQUE
TRACKS
TRACKS
TRACKS
CYLINDERS
CYLINDERS
CYLINDERS
RECORDS
RECORDS
RECORDS
ORIGIN
ORIGIN
TRACKS
CYLINDERS
RECORDS
primary
secondary
TRACKS
CYLINDERS
RECORDS
primary
secondary
CANDIDATE
RECORDSIZE
RECORDSIZE
average

maximum

RECORDSIZE
average

maximum

WRITECHECK
WRITECHECK
NOWRITECHECK
NOWRITECHECK
WRITECHECK
NOWRITECHECK
WRITECHECK
NOWRITECHECK
SPEED
RECOVERY
SPEED
RECOVERY
FREESPACE
cipercent

capercent

FREESPACE
cipercent

capercent

BUFFERSPACE

Sub-Parm of

INDEX

CLUSTER

DATA

INDEX
MASTERCATALOG
CLUSTER

SPACE
MASTERCATALOG
CLUSTER

SPACE
MASTERCATALOG
CLUSTER

SPACE
MASTERCATALOG
USERCATALOG
DATA

DATA

DATA

DATA, TRACKS
DATA, TRACKS
INDEX

INDEX

INDEX

INDEX, TRACKS
INDEX, TRACKS
SPACE

CLUSTER

SPACE

CLUSTER,
RECORDSIZE

CLUSTER,
RECORDSIZE

DATA

DATA,
RECORDSIZE

DATA,
RECORDSIZE

MASTERCATALOG
CLUSTER
MASTERCATALOG
CLUSTER

DATA

DATA

INDEX

INDEX

CLUSTER
CLUSTER

DATA

DATA

CLUSTER

CLUSTER,
FREESPACE

CLUSTER,
FREESPACE

DATA

DATA,
FREESPACE

DATA,
FREESPACE

MASTERCATALOG

FDT
Fieldname
ISUBA
CUNIQ
DUNIQ
IUNIQ
MTRKS
CTRKS
STRKS
MCYLD
CCYLD
SCYLD
MRCDS
CRCDS
SRCDS
MORIG
UORIG
DTRKS
DCYLD
DRCDS
DTKPR
DTKSC
ITRKS
ICYLD
IRCDS
ITKPR
ITKSC
SCAND
CRSIZ
SRSIZ
CARSZ

CMRSZ

DRSIZ
DARSZ

DMRSZ

MWCK
CWCK
MNWCK
CNWCK
DWCK
DNWCK
IWCK
INWCK
CSPED
CRECV
DSPED
DRECV
CFSPC
CCIFS

CCAFS

DFSPC
DCIFS

DCAFS

MBFSZ

Points
to
itself
itself
itself
itself
itself
itself
itself
itself
itself
itself
itself
itself
itself
data
data
itself
itself
itself
data
data
itself
itself
itself
data
data
itself
itself
itself
data

data

itself
data

data

itself
itself
itself
itself
itself
itself
itself
itself
itself
itself
itself
itself
itself
data

data

itself
daia

data

data

Data Format
Number

L3 O o 7 T T T 7 I T S T I X e e e e

w

Notes

See parms 300 and 301.
See parms 302 and 303.
See parms 304 and 305.
See parms 310 and 311.
See parms 312 and 313.
See parms 318 and 319.
See parms 320 and 321.
See parms 322 and 323,
See parms 324 and 325.

See parms 153 and 154.
See parms 330 and 331.
See parms 332 and 333.

See parms 158 and 159.
See parms 334 and 335.
See parms 336 and 337.

See parms 163 and 164,
Sec parms 251 and 252.

See parms 166 and 167.

See parms 181 and 182.

See parms 184 and 185.

Chapter 5: Data Areas

5-25

Licensed Material — Property of IBM

Parm Offset Parm Name Sub-Parm of FDT Points Data Format Notes
No. Fieldname to Number
187 752 (2F0) BUFFERSPACE CLUSTER CBFSZ data 3
188 756 (2F4) BUFFERSPACE DATA DBFSZ data 3
189 760 2F8) CONTROL- CLUSTER CCINV data 3
INTERVALSIZE
190 764 2FC) CONTROL- DATA DCINV data 3
INTERVALSIZE
191 768 (300) CONTROL- INDEX ICINV data 3
INTERVALSIZE
192 772(304) DEFAULTVOLUMES CLUSTER CDVCL itself 1
193 776 (308) DEFAULTVOLUMES DATA DDVOL itself 1
194 780 (30C) DEFAULTVOLUMES INDEX IDVOL itself 1
198 784 (310) DEFAULTVOLUMES ALTERNATEINDEX GDVOL itself 1
196 788 (314) ORIGIN SPACE SORIG data 3
197 792(318) unused - contains zeros
198 796 31C) NAME USERCATALOG UETRY data 6
199 800 (320) MASTERPW USERCATALOG UMSTR data 2
200 804 (324) CONTROLPW USERCATALOG UCINT data 2
201 808 (328) UPDATEPW USERCATALOG UUPDT data 2
202 812(32C) READPW USERCATALOG UREAD data 2
203 816 (330) CODE USERCATALOG UCODE data 2
204 820(334) ATTEMPTS USERCATALOG UATTP data 3
208 824 (338) AUTHORIZATION USERCATALOG UAUTH itself 1 See parms 206 and 207.
206 828 (33C) entrypoint USERCATALOG, UEPNM data 2
AUTHORIZATION
207 832(340) string USERCATALOG, USTRG data 2
AUTHORIZATION
208 836 (344) TO USERCATALOG uTo data 3
209 840 (348) FOR USERCATALOG UFOR data 3
210 844 (34C) OWNER USERCATALOG UOWNR data 2
21 848 (350) FILE USERCATALOG UINDD data 2 dname
212 852(354) VOLUMES USERCATALOG UVSER data 4 A single serial number (character 6).
1 856 (358) TRACKS USERCATALOG UTRKS itself 1 See parms 306 and 307.
214 860 (35C) CYLINDERS USERCATALOG UCYLD itself 1 See parms 314 and 315.
215 864 (360) RECORDS USERCATALOG URCDS itself 1 See parms 326 and 327.
216 868 (364) unused - contains zeros
17 872(368) unused - contains zeros
218 876 (36C) WRITECHECK USERCATALOG UWCK itself 1
219 880(370) NOWRITECHECK USERCATALOG UNWCK itself 1
220 884 (374) BUFFERSPACE USERCATALOG UBFSZ data 3
221 888 (378) RECORDFORMAT CLUSTER CRFMT itself 1 See Parms 223-228
222 892 (37C) RECORDFORMAT DATA DRFMT itself 1 See Parms 229-234
223 896 (380) UNDEF RECORDFORMAT CUNDF itself 1
24 900 (384) FIXUNB RECORDFORMAT CFUNB itself 1
228 904 (388) FIXBLK RECORDFORMAT CFBLK data 3
226 908 (38C) VARUNB RECORDFORMAT CVUNB itself 1
a7 912(390) VARBLK RECORDFORMAT CVBLK itself 1
228 916 (394) NOCIFORMAT RECORDFORMAT CNCIF itself 1
29 920(398) UNDEF RECORFORMAT DUNDF itself 1
230 924 (39C) FIXUNB RECORDFORMAT DFUNB itself 1
21 928 (3A0) FIXBLK RECORDFORMAT DFBLK data 3
232 932 (3A4) VARUNB RECORDFORMAT DVUNB itself 1
233 936 (3A8) VARBLK RECORDFORMAT DVBLK itself 1
234 940 (3AC) NOCIFORMAT RECORDFORMAT DNCIF itself 1
238 944 (3B0) through
250 1007 (3EF) unused - contains zeros
251 1008 (3F0) average SPACE, SARSZ data 3
RECORDSIZE
252 1012 (3F4) maximum SPACE, SMRSZ data 3
RECORDSIZE
2% 1016 (3F8) entryname/ USERCATALOG, UENAM data 6
5-26 VSE/VSAM Access Method Services Logic

Licensed Material — Property of IBM

Parm
No.

254
255
256
257

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

299
300
301
302
303

304
305
306

307

308
309
310

i

312

Offset

1020 (3FC)
1024 (400)
1028 (404)
1032 (408)

1036 (40C)
1040 (410)
1044 (414)
1048 (418)
1052 (41C)
1086 (420)
1060 (424)
1064 (428)
1068 (42C)
1072 (430)
1076 (434)
1080 (438)
1084 (43C)
1088 (440)
1092 (444)
1096 (448)
1100 (44C)
1104 (450)
1108 (454)
1112 (458)
1116 (45C)
1120 (460)
1124 (464)
1128 (468)
1132 (46C)
1136 (470)
1140 (474)
1144 (478)
1148 47C)
1152 (480)

1203 (4B3)
1204 (4B4)
1208 (4B8)
1212 (4BC)
1216 (4C0)

1220 (4C4)
1224 (4C8)

Parm Name

password

catname/
password

dname
entrypoint
string

NOALLOCATION
NOALLOCATION
NOALLOCATION
NOALLOCATION
EXCEPTIONEXIT
EXCEPTIONEXIT
EXCEPTIONEXIT
NUMBERED

REUSE

REUSE

REUSE

NOREUSE
NOREUSE
NOREUSE
SPANNED
SPANNED
NONSPANNED
NONSPANNED
RECOVERABLE
RECOVERABLE
RECOVERABLE
NOTRECOVERABLE
NOTRECOVERABLE
NOTRECOVERABLE
FILE

IMBED

NOIMBED

IMBED

NOIMBED

through

unused - contains zeros
primary

secondary

primary

secondary

primary
secondary

1228 (4CC) primary

1232 (4D0)

1236 (4D4)
1240 (4D8)

secondary

unused - contains zeros
unused - contains zeros

1244 (4DC) primary

1248 (4E0)

1252 (4E4)

secondary

primary

Sub-Parm of

MODEL

USERCATALOG,
MODEL

USERCATALOG,
MODEL

CLUSTER,
AUTHORIZATION

CLUSTER,
AUTHORIZATION

CLUSTER

DATA

INDEX
ALTERNATEINDEX
CLUSTER

DATA

INDEX

CLUSTER
CLUSTER

DATA

INDEX

CLUSTER

DATA

INDEX

CLUSTER

DATA

CLUSTER

DATA
MASTERCATALOG
USERCATALOG
DATA
MASTERCATALOG
USERCATALOG
DATA

NONVSAM
MASTERCATALOG
MASTERCATALOG
USERCATALOG
USERCATALOG

MASTERCATALOG,
TRACKS

MASTERCATALOG,
TRACKS

CLUSTER,
TRACKS

CLUSTER,
TRACKS

SPACE, TRACKS
SPACE, TRACKS

USERCATALOG,
TRACKS

USERCATALOG,
TRACKS

MASTERCATALOG,
CYLINDERS

MASTERCATALOG,
CYLINDERS

CLUSTER,
CYLINDERS

FDT
Fieldname

UMDCT

UMDNM

CEPNM

CSTRG

CNOAL
DNOAL
INOAL
GNOAL
CEEXT
DEEXT
IEEXT
CNUMD
CRUS
DRUS
IRUS
CNRUS
DNRUS
INRUS
CSPND
DSPND
CNSPD
DNSPD
MRVBL
URVBL
DRVBL
MNRVL
UNRYL
DNRVL
AINDD
MIMBD
MNIBD
UIMBD
UNIBD

MTKPR

MTKSC

CTKPR

CTKSC

STKPR
STKSC
UTKPR

UTKSC

MCLPR

MCLSC

CCLPR

Points
to

data

data

data

data

itself
itself
itself
itself
data

data

data

itself
itself
itself
itself
itself
itself
itself
itself
itself
itself
itself
itself
itself
itself
itself
itseif
itself
data

itself
itself
itself
itself

data

data

data

data

data
data
data

data

data

data

data

Data Format
Number

T e T I T N

Notes

dname

Chapter 5: Data Areas

5-27

Licensed Material — Property of IBM

Parm Offset Parm Name Sub-Parm of FDT Points Data Format Notes

No. Fieldname to Number

Kk} 1256 (4E8) secondary CLUSTER, CCLSC data 3
CYLINDERS

34 1260 (4EC) primary USERCATALOG, UCLPR data 3
CYLINDERS

318 1264 (4F0) secondary USERCATALOG, UCLSC data 3
CYLINDERS

316 1268 (4F4) unused - contains zeros

i 1272 (4F8) unused - contains zeros

318 1276 (4FC) primary SPACE, SCLPR data 3
CYLINDERS

39 1280 (500) secondary SPACE, SCLSC data 3
CYLINDERS

320 1284 (504) primary MASTERCATALOG, MRCPR data 3
RECORDS

321 1288 (508) secondary MASTERCATALOG, MRCSC data 3
RECORDS

322 1292 (50C) primary CLUSTER, CRCPR data 3
RECORDS

k¥x] 1296 (510) secondary CLUSTER, CRCSC data 3
RECORDS

324 1300 (514) primary SPACE, RECORDS SRCPR data 3

325 1304 (518) secondary SPACE, RECORDS SRCSC data 3

326 1308 (S1C) primary USERCATALOG, URCPR data 3
RECORDS

327 1312 (520) secondary USERCATALOG, URCSC data 3
RECORDS

328 1316 (524) unused - contains zeros

329 1320 (528) unused - contains zeros

330 1324 (52C) primary DATA, DCLPR data 3
CYLINDERS

331 1328 (530) secondary DATA, DCLSC data 3
CYLINDERS

32 1332 (534) primary DATA, RECORDS DRCPR data 3

333 1336 (538) secondary DATA, RECORDS DRCSC data 3

334 1340 (53C) primary INDEX, ICLPR data 3
CYLINDERS

335 1344 (540) secondary INDEX, ICLSC data 3
CYLINDERS

336 1348 (544) primary INDEX, RECORDS IRCPR data 3

kX1 1352 (548) secondary INDEX, RECORDS IRCSC data 3

338 1356 (S4C) NAME ALTERNATEINDEX GETRY data 6

339 1360 (550) MODEL ALTERNATEINDEX GMODL itself 1 See parms 340-342.

340 1364 (554) entryname/ ALTERNATEINDEX, GENAM data 6

password MODEL
41 1368 (558) catname/ ALTERNATEINDEX, GMDCT data 6
password MODEL

kL] 1372 (55C) dname ALTERNATEINDEX, GMDNM data 2
MODEL

KTk} 1376 (560) MASTERPW ALTERNATEINDEX GMSTR data 2

k2) 1380 (564) CONTROLPW ALTERNATEINDEX GCINT data 2

345 1384 (568) UPDATEPW ALTERNATEINDEX GUPDT data 2

46 1388 (56C) READPW ALTERNATEINDEX GREAD data 2

47 1392 (570) CODE ALTERNATEINDEX GCODE data 2

348 1396 (574) ATTEMPTS ALTERNATEINDEX GATTP data 3

49 1400 (578) AUTHORIZATION ALTERNATEINDEX GAUTH itself 1 See parms 350 and 351.

350 1404 (57C) entrypoint ALTERNATEINDEX, GEPNM data 2
AUTHORIZATION

kM| 1408 (580) string ALTERNATEINDEX, GSTRG data 2
AUTHORIZATION

352 1412 (584) TO ALTERNATEINDEX GTO data 3

353 1416 (588) FOR ALTERNATEINDEX GFOR data 3

354 1420 (58C) OWNER ALTERNATEINDEX GOWNR data 2

3ss 1424 (590) SHAREOPTIONS ALTERNATEINDEX GSHAR itself 1

356 1428 (594) crosspartition ALTERNATEINDEX GSHRI data 3

5-28 VSE/VSAM Access Method Services Logic

Licensed Material — Property of IBM

Parm
No,
357
358
359
360
361

362

363
364
365
366
367
368

369

370

n

mn
373
374
375
376
m

378

9
380

381

382
383

384

385
386

kg

388
389
3%0
391
392
393

394

395
396

397
398
399

401
402

Offset

1432 (598)
1436 (59C)
1440 (SA0)
1444 (5A4)
1448 (5A8)

1452 (5AC)

1456 (5B0)
1460 (5B4)
1464 (SB8)
1468 (SBC)
1472 (5C0)
1476 (5C4)

1480 (5C8)
1484 (5CC)
1488 (5D0)

1492 (5D4)
1496 (SD8)
1500 (SDC)
1504 (SEO)
1508 (SE4)
1512 (SE8)

1516 (SEC)

1520 (5F0)
1524 (SF4)

1528 (5F8)

1532 (SFC)
1536 (600)

1540 (604)

1544 (608)
1548 (60C)

1552 (610)

1556 (614)
1560 (618)
1564 (61C)
1568 (620)
1572 (624)
1576 (628)

1580 (62C)

1584 (630)
1588 (634)

1592 (638)
1596 (63C)
1600 (640)
1604 (644)
1608 (648)
1612 (64C)

Parm Name

crosssystem
ERASE
NOERASE
KEYS
length

offset

REPLICATE
NOREPLICATE
IMBED
NOIMBED
FILE
VOLUMES

KEYRANGES
lowkey
highkey

ORDERED
UNORDERED
SUBALLOCATION
UNIQUE

TRACKS

primary

secondary

CYLINDERS
primary

secondary

RECORDS
primary

secondary

RECORDSIZE
average

maximum

WRITECHECK
NOWRITECHECK
SPEED
RECOVERY
FREESPACE
cipercent

capercent

BUFFERSPACE

CONTROL-
INTERVALSIZE

RELATE
EXCEPTIONEXIT
REUSE

NOREUSE
UNIQUEKEY
NONUNIQUEKEY

Sub-Parm of

ALTERNATEINDEX
ALTERNATEINDEX
ALTERNATEINDEX
ALTERNATEINDEX

ALTERNATEINDEX,
KEYS

ALTERNATEINDEX,
KEYS

ALTERNATEINDEX
ALTERNATEINDEX
ALTERNATEINDEX
ALTERNATEINDEX
ALTERNATEINDEX
ALTERNATEINDEX

ALTERNATEINDEX

ALTERNATEINDEX,
KEYRANGES

ALTERNATEINDEX,
KEYRANGES

ALTERNATEINDEX
ALTERNATEINDEX
ALTERNATEINDEX
ALTERNATEINDEX
ALTERNATEINDEX

ALTERNATEINDEX,
TRACKS

ALTERNATEINDEX,
TRACKS

ALTERNATEINDEX

ALTERNATEINDEX,
CYLINDERS

ALTERNATEINDEX,
CYLINDERS

ALTERNATEINDEX

ALTERNATEINDEX,
RECORDS

ALTERNATEINDEX,
RECORDS

ALTERNATEINDEX

ALTERNATEINDEX,
RECORDSIZE

ALTERNATEINDEX,
RECORDSIZE

ALTERNATEINDEX
ALTERNATEINDEX
ALTERNATEINDEX
ALTERNATEINDEX
ALTERNATEINDEX

ALTERNATEINDEX,
FREESPACE

ALTERNATEINDEX,
FREESPACE

ALTERNATEINDEX
ALTERNATEINDEX

ALTERNATEINDEX
ALTERNATEINDEX
ALTERNATEINDEX
ALTERNATEINDEX
ALTERNATEINDEX
ALTERNATEINDEX

FDT
Fieldname
GSHR2
GERAS
GNERS
GKEY
GKYLN

GKYPS

GREPL
GNREP
GIMBD
GNIBD
GINDD
GVSER

GRANG
GRGLOPTR
GRGHIPTR

GORDR
GUORD
GSUBA
GUNIQ
GTRKS
GTKPR

GTKSC

GCYLD
GCLPR

GCLSC

GRCDS
GRCPR

GRCSC

GRSIZ
GARSZ

GMRSZ

GWCK
GNWCK
GSPED
GRECYV
GFSPC
GCIFS

GCAFS

GBFSZ
GCINV

GREL
GEEXT
GRUS
GNRUS
GUNQK
GNUQK

Points
to
data
itself
itself
itself
data

data

itself
itself
itself
itself
data
data

data

list of
pointers

list of
pointers

itself
itself
itself
itself
itself
data

data

itself
data

data

itself
data

data

itself
data

data

itself
itself
itself
itself
itself
data

data

data
data

data
data

itself
itself
itself

Data Format
Number

3

W e e -

BN = e e

W e e e s

w

—— e = R O\

Notes

See parms 361 and 362.
key length

key offset

dname

A list of volume serial numbers (character

6).

Count of sub-parms, See parms 370 and
371

Each item points to
a low keyrange value.

Each item points to
a high keyrange value.

See parms 377 and 378.

See parms 380 and 381.

See parms 383 and 384.

See parms 386 and 387.

See parms 393 and 394.

Chapter