
• ••

------------------ -. ---------------~-y-

Virtual Machine/System Product

System Product Editor User's Guide

Release 6

SC24-5220-04

Acknowledgement

We gratefully acknowledge the permission to reprint excerpts from the following:

The People's Almanac, by David Wallechinsky and Irving Wallace. Copyright © 1975 by David Wallace and
Irving Wallace. Reprinted by permission of Doubleday & Company, Inc.

I Wouldn't Have Missed It, by Ogden Nash, reprinted by permission of Curtis Brown, Ltd.

Copyright 1930, 1931, 1932, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1942, 1943, 1947, 1948, 1949,
1950, 1951, 1952, 1953, 1954, © 1955, 1956, 1957, 1959, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968,
1969, 1970, 1971 by Ogden Nash. Copyright 1933, 1934, 1935, 1936, 1939, 1940, 1941, 1942, 1943, 1944,
1945, 1947, 1948 by the Curtis Publishing Company. Copyright 1952 by Cowles Magazines, Inc. Copyright
© 1969, 1970, 1971, 1972, 1975 by Isabel Eberstadt and Linell Smith.

Copyrights Renewed © 1957, 1958, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1968, 1970 by Ogden Nash.
Renewed © 1963, 1964 by the Curtis Publishing Company. Renewed by the Saturday Evening Post
Company.

Fifth Edition (July 1988)

This edition, SC24-5220-04, is a revision of SC24-5220-03, and applies to Release 6 Virtual Machine/System
Product (VM/SP), program number 5664-167, until otherwise indicated in new editions or Technical
Newsletters. Changes are made periodically to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370, 30xx, 4300, and 9370
Processors Bibliography, GC20-0001, for the editions that are applicable and current.

Summary of Changes

F or a detailed list of changes, see page 151.

Changes or additions to the text and illustrations are indicated by a vertical line to the left of the change.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed program in
this publication is not intended to state or imply that only IBM's licensed program may be used. Any
functionally equivalent program may be used instead.

Ordering Publications

Requests for IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality. Publications are not stocked at the address given below.

A form for reader's comments is supplied at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Information Development, Dept. G60, P.O. Box 6,
Endicott, NY, U.S.A. 13760. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1980, 1983, 1984, 1986, 1988. All rights reserved.

Preface

This book was primarily written for the individual who has limited data processing
experience. It is designed to give you a working knowledge of the System Product
Editor (also referred to as XEDIT).

The System Product Editor provides a wide range of functions for text processing
and program development. Both a full-screen and a line-mode editor, it can be used
on display and typewriter terminals.

Some highlights of the editor discussed in this book are:

• Extended string search facilities for improved text processing
• Automatic "wrapping" of lines that are longer than a screen line
• The ability to directly enter selected subcommands on a displayed line
• The ability to tailor the full-screen layout
• The ability to divide the screen to display multiple views of the same or of

different files
• A variety of macros for improved text processing, such as macros to join and

split lines
• A HELP facility that provides an online full-screen display of any XED IT

subcommand or macro (or any commandin the CMS HELP facility) during an
editing session.

The System Product Editor can manipulate Double Byte Character Set (DBCS)
strings (KANJI, for example). Special considerations for editing files that contain
double-byte characters are described in the VM/SP System Product Editor Command
and Macro Reference.

How To Use This Book
This book relies on "before-and-after" examples that illustrate the text. You can
also try out these examples for practice.

The first three chapters are intended for data processing novices:

• Chapter 1: An XEDIT Subset: Full-Screen Text Processing is written for the
inexperienced user who uses a display terminal in full-screen mode. It defines a
subset of XED IT subcommands that perform commonly-used editing functions.

• Chapter 2: Practice Exercises gives you practice in using the subcommands
presented in Chapter 1. It is an interactive text, that is, it walks you through an
editing session, step by step.

• Chapter 3: Using the Editor on a Typewriter Terminal is similar to Chapter 1,
but is written for a new user who has a typewriter terminal.

The last four chapters are intended both for new users who have mastered the
fundamentals and for data processing professionals. These chapters introduce more
sophisticated editing functions:

• Chapter 4: Using Targets explains how to use the editor's extended string search
facilities. Targets move the line pointer and define the range of many XEDIT
subcommands.

Preface iii

• Chapter 5: Editing Multiple Files explains how to edit multiple files and how to
divide the screen into multiple logical screens for multiple views of the same or
of different files.

• Chapter 6: Tailoring the Screen explains how you can alter the screen layout to
suit yourself.

• Chapter 7: The Macro Language explains how to write XEDIT macros and also
explains how to write a profile macro.

The Appendix is a summary of all XEDIT subcommands and their functions.

iv VM/SP System Product Editor User's Guide

Contents

Chapter 1. An XEDIT Subset: Full-Screen Text Processing 1
Editing a File ... 1

XEDIT Command 1
Screen Layout 2

XEDIT and Full-Screen CMS 4
Entering Data 4

INPUT Subcommand 4
POWERINP Subcommand 7

U sing Program Function (PF) Keys 9
Splitting and Joining Lines 10
Scrolling Backward and Forward 12
Redisplaying a Subcommand 12
Re-executing a Subcommand 12
Inserting Words in a Line 12

U sing Prefix Subcommands 13
Adding and Deleting Lines 13
Duplicating Lines 19
Moving and Copying Lines 20
Setting the Current Line (f) 22
Canceling Prefix Subcommands 22

Moving through a File 22
BACKWARD and FORWARD Subcommands 22
TOP and BOTTOM Subcommands 23
DOWN and UP Subcommands 23

Making Changes in a File 25
CLOCATE Subcommand 25
CHANGE Subcommand 26
Making a Selective Change 26
Making a Global Change 29
CINSERT Subcommand 29
CFIRST Subcommand 31

Setting Tabs 32
Ending an Editing Session 33

FILE Subcommand 33
QUIT Subcommand 33
SET AUTOSA VE Subcommand 34

Inserting Data from Another File 35
Inserting a Whole File 35
Inserting Part of Another File 37

Getting Help 41
Learning More about the Editor 41
Summary of XED IT Subset 42

Chapter 2. Practice Exercises
Exercise 1. Creating a File
Exercise 2. Using Power Typing
Exercise 3. Using Prefix Subcommands
Exercise 4. Making Changes
Exercise 5. Getting It All Together

Chapter 3. Using the Editor on a Typewriter Terminal
Editing a File

. 45
46
47
49
50
51

53
....... 53

Contents V

XEDIT Command 53
Entering Data 54

INPUT Subcommand 54
Column Pointer 55

Moving through a File 55
Line Pointer 56
TYPE Subcommand ~ 56
UP and DOWN Subcommands 57
TOP and BOTTOM Subcommands 58

Making Changes in a File 58
CLOCATE Subcommand 58
CFIRST Subcommand 59
CINSERT Subcommand 59
CDELETE Subcommand 61
CAPPEND Subcommand 61
CHANGE Subcommand 62

Inserting and Deleting Lines 63
Movingand Copying Lines 66

MOVE Subcommand 66
COpy Subcommand 68
LPREFIX Subcommand 68

Ending an Editing Session 68
FILE Subcommand 68
QUIT Subcommand 68
SET AUTOSAVE Subcommand 69

Inserting Data from Another File 69
Inserting a Whole File 70
Inserting Part of Another File 70

Using Special Characters 73
Summary of XEDIT Subset 76

Chapter 4. Using Targets 77
What Is a Target? 77
Using a Target to Change Which Line Is Current 78

A Target Entered by Itself 78
A Target as the Operand of a LOCATE Subcommand 80
A Target Preceding a Subcommand 80

Using a Target as a Subcommand Operand 80
Types of Targets 82

A Target as an Absolute Line Number 82
A Target as a Relative Displacement from the Current Line 84
A Target as a Line Name ... ~ .. 86
A Target as a Simple String Expression . " 89
A Target as a Complex String Expression 92

Using Column-Targets 97

Chapter S. Editing Multiple Files ~ .. 101
The XEDIT Subcommand 101
Creating a Ring of Files in Storage 101
Editing the Files in the Ring 102'
Ending an Editing Session 102
Multiple Logical Screens 102

SET SCREEN Subcommand 103
Multiple Views of the Same File 104
Multiple Views of Different Files 104
Order of Processing 106

vi VM/SP System Product Editor User's Guide

Cursor Considerations

Chapter 6. Tailoring the Screen
..)

Chapter 7. The Macro Language
What Is an XEDIT Macro?
Creating a Macro File
Using XEDIT Subcommands in a Macro

Communicating between the Editor and the Interpreter
Displaying Data on the Editor's Screen
Saving and Restoring Editing Variables
Entering CMS and CP Commands
Avoiding Name Conflicts

Walking through an XEDIT Macro
A Profile Macro for Editing

Executing a Profile Macro
Writing a Profile Macro
An Example of a Profile Macro

Writing Prefix Macros
Creating a Sample Prefix Macro
.What Information Is Passed to the Macro?

Current Line Positioning
Creating a Second Prefix Macro
Examining the Source String
Using the Information That Is Passed
Handling Blocks

Assigning a Synonym for a Prefix Macro
Using the "Pending List"

Examining the Argument String
Positioning the Cursor
Decoding the Prefix Area
\Ising the XEDIT Subcommand
Additional Examples
The L Prefix Macro

Appendix A. Summary of XEDIT Subcommands and Macros

Summary of Changes

Glossary of Terms and Abbreviations

Bibliography
Related Publications

Index

106

109

119
119
119
120
120
122
124
124
124
125
130
130
131
131
133
133
133
134
134
134
135
135
136
137
138
139
140
140
140
141

143

151

153

159
159

163

Contents vii

viii VM/SP System Product Editor User's Guide

Full-Screen Text Processing

Chapter 1. An XEDIT Subset: Full-Screen Text Processing

Editing a File

XEDIT Command

This chapter is primarily written for the person who has limited data processing
experience; however, some Virtual Machine/System Product (VM/SP) CMS
experience is assumed. For example, you must know how to log on to VM/SP and
enter the CMS environment. You should also be familiar with the concept of a
CMS file.

When you finish this chapter, you should have a working knowledge of the editor.
The subcommands presented in this chapter comprise a subset of XED IT
subcommands, with which you can create a file, enter data, manipulate the screen,
make changes to the file, and transfer data between files.

The editor has many additional capabilities, which are described later in this book
and in the VMjSP System Product Editor Command and Macro Reference.

This subset has been selected for text processing on a display terminal. (If you have
a typewriter terminal, see Chapter 3.)

Editing involves changing, adding, or deleting data within a CMS file. The editor
lets you make these changes interactively; you instruct the editor to make a change,
the editor makes it, and then you request another change.

You can edit a file that does not exist; when you do so, you are creating a file.

After you log on to VMjSP and enter the CMS environment, you are ready to enter
the edit environment and begin creating a file. The editor is invoked with the CMS
command XEDIT, whose format is as follows:

XEDIT filename filetype

In Figure 1 on page 2, the editor was invoked with the following command:

xedit inventor script

Before we see how to enter data in the file, let's look at the screen layout illustrated
in Figure 1 on page 2.1

1 If your screen layout differs from Figure I on page 2, or some of the commands or PF keys work differently than
this guide says they will, you may have a PROFILE XEDIT macro tailoring your editing session. To keep the
PROFILE XEDIT macro from executing, add the NOPROFILE option:

XEDIT filename filetype (NOPROFILE

See "A Profile Macro for Editing" on page 130 for more information on the PROFILE XEDIT macro.

If these problems continue while using NOPROFILE, be sure this guide was written for your system's release level
of VMjSP. See the front cover of this guide for its release level and use QUERY CMSLEVEL (see "QUERY" in
the VMjSP CMS Command Reference) to find the release level of your system's VMjSP. If they are different, use
the guide that matches the VMjSP release level of your system.

Chapter I. An XEDIT Subset: Full-Screen Text Processing 1

Full-Screen Text Processing

Screen Layout

Figure 1. Screen Layout

II File Identification Line

The first line on the screen identifies the file being edited. The following
information is displayed:

1. file name, file type, file mode
If you do not specify a file mode, the editor assigns a file mode of
"AI." The file mode identifies an accessed minidisk or SFS (Shared File
System) directory where the file resides.

2. record format and record length
The record format and record length (V 132) mean that in this file, the
length of a line can vary and the file can hold lines up to 132 characters
long. Therefore, a file line can be longer than a screen line.

3. truncation column (Trunc =)
Notice that the truncation column is the same as the record length
(132). Because a file line can be only 132 characters long, any data that
is entered beyond 132 characters (in total) can be truncated.

4. current number of lines in the file (Size =)
(Because we have not yet entered data in the file, the number of lines is
zero.)

5. file line number of the current line (Line =)
(See number 7, following.)

6. position of the column pointer (Col =)
(See number 8, following.)

2 VM/SP System Product Editor User's Guide

Full-Screen Text Processing

7. alteration count (Alt =) The alteration count is the number of alterations
that have been made to the file since the last AUTOSAVE (which is
explained later in this chapter).

II Message Line

The editor communicates with you by displaying messages on the second
and third lines of the screen. These messages tell you if you have made an
error, or they provide information. In Figure 1 on page 2, the message line
shows that you are creating a new file.

II Command Line

The large arrow (= = = = » at the bottom of the screen points to the
command input area. One of the ways you communicate with the editor is
by entering XEDIT subcommands on this line. Subcommands can be typed
in either uppercase or lowercase, or a combination of both, and many can
be abbreviated. For example, "INPUT," "Input," and "i" are all valid
ways to type the INPUT subcommand.

After typing a subcommand on the command line, you must press the
ENTER key to execute the subcommand. Figure 1 on page 2 shows the
subcommand "INPUT" typed in the command line (To move the cursor
from any place on the screen to the command line, just press the ENTER
key or PF12.)

II Status Area

The lower right corner displays the current status of your editing session,
for example, edit mode or input mode, and the number of files you are
editing. The status area in Figure 1 on page 2 shows that one file is being
edited.

II Prefix Area

The prefix area is the five left-most columns on the screen and displays five
equal signs (= = = = =). Each line in the file has a prefix area associated
with it.

You can perform various editing tasks, like deleting a line, by entering short
commands, called "prefix subcommands," in the prefix area of any line.

II File Area

The rest of the screen is available to display the file.

You can make changes to the file by moving the cursor under any line and
typing over the characters, or by using special keys to insert or delete
characters. You can make as many changes as you want on the displayed
lines before pressing the ENTER key. When you press the ENTER key,
the corresponding changes are made to the copy of the file that is kept in
virtual storage. At the end of the editing session, a FILE subcommand
permanently records those changes on the copy of the file that resides on
disk or directory.

Because a file can be too long to fit on one screen, various subcommands
scroll the screen so you can move forward and backward in a file.

a The Current Line

The current line is the file line in the middle of the screen (above the scale).
It appears brighter than the other file lines; we say it is "highlighted."

Chapter 1. An XEDIT Subset: Full-Screen Text Processing 3

Full-Screen Text Processing

In Figure 1 on page 2, the current line is the "Top of File" line; at this
point, the file contains no data.

The current line is an important concept, because most subcommands
perform their functions starting with the current line. Naturally, the line
that is current changes during an editing session as you scroll the screen,
move up and down, and so forth. When the current line changes, we say
that the line pointer (not visible on the screen) has moved. Many XEDIT
subcommands perform their functions starting with the current line, and
move the line pointer when they are finished.

II Scale

The scale appears under the current line to assist you in editing. It is like
the margin scale on a typewriter.

The vertical bar (I) that appears in column one on the scale is the column
pointer. Various subcommands perform their functions within a line
starting at the column pointer, which you can move to different positions
on the scale by using XEDIT subcommands that are discussed later. The
column under which the column pointer is positioned is called the current
column.

XEDIT and Full-Screen eMS

Entering Data

If you invoke XEDIT from full-screen CMS, the way you see messages sent to you
by other users is not the same as when full-screen CMS is off. When you receive a
message while full-screen CMS is off, the message appears on a cleared screen with a
HOLDING status at the bottom. You can press the CLEAR key to get the XEDIT
screen back.

If full-screen CMS is on, then any message you receive will appear in the message
window which automatically pops up on top of your XEDIT screen. To scroll
forward in the message window, type an "f' (forward) in one of the border corners
(indicated by '+' signs) and press the ENTER key. Continue to use the "f' border
command until you have seen all the information in the message window. When
there is no more information to be displayed, the window is automatically removed
from your screen.

After you enter the XEDIT command, you are in edit mode. You must be in edit
mode to enter XEDIT subcommands.

You can enter data into the file using input mode or power typing mode, which are
discussed in the following sections.

INPUT Subcommand
To enter input mode, enter the following subcommand on the command line:

====> input

You can then type in your data in the input zone, which is the bottom half of the
screen (between the scale and the command line).

Figure 2 on page 5 through Figure 4 on page 6 is the same file, INVENTOR
SCRIPT, that is shown in Figure 1 on page 2. However, the INPUT subcommand

4 VM/SP System Product Editor User's Guide

Full-Screen Text Processing

has been entered and the lines of data have been typed on the screen. Notice how
the screen changes in input mode: the prefix areas (= = = = =) disappear; the
message line and status area tell you that you are in input mode; the command line
contains the phrase "Input Zone," which marks the end of the input zone and
reminds you that you cannot enter subcommands in input mode.

In Figure 2, the entire input zone has been filled. To stay in input mode and type
more data, press the ENTER key __ once. The lines that you typed move to the top
half of the screen, with the last line you typed becoming the new current line. The
input zone is available to type more data, as shown in Figure 3 on page 6.

Figure 2. Input Mode - Typing the Data

If you have no more data to type, pressing the ENTER key again takes you out of
input mode and back into edit mode.

Figure 4 on page 6 shows how the data looks in the file, after the ENTER key has
been pressed twice. The display is restored to the edit mode screen layout described
in Figure 1 on page 2, and the file contains the data.

During an editing session, you can enter input mode at any time to insert new lines
of data in the file. As you have seen, after the INPUT subcommand is entered, the
editor makes room for you to type new lines of data after the current line. In this
example, because the file was new and the INPUT subcommand was the first
subcommand entered, the Top of File line was the current line. Later, you will see
how to make any line current, so that you can use input mode to insert lines between
any two existing lines in the file.

Chapter 1. An XEDIT Subset: Full-Screen Text Processing 5

Full-Screen Text Processing

Figure 3. Input Mode - Continue Typing

Figure 4. Input Mode - Data Entered in the File

6 VMjSP System Product Editor User's Guide

Full-Screen Text Processing

POWERINP Subcommand
The easiest way to enter a large amount of text, like one long paragraph, is by using
"power typing." To use power typing, enter the following subcommand:

====> power

The advantage of using power typing is that you can enter data as if the screen were
one long line. You do not have to be concerned with line length or word length -
you can start typing a word on one line of the screen and finish it on the next. In
fact, if you are a skilled typist, you do not even have to look at the screen. When
you reach the end of a line, the editor automatically "wraps around" to the
beginning of the next line. You can type continuously until the screen is filled.

If you fill up a screen and want to continue typing in power typing mode, press the
ENTER key once. The last line you typed is displayed at the top of the screen; the
rest of the screen is blank and you can continue typing.

When you are finished typing, press the ENTER key twice to exit from power typing
and re-enter edit mode. The editor automatically divides the data into appropriate
screen lines and reconstructs any split words.

During an editing session, you can use power typing at any time by entering the
POWERINP subcommand. The data entered using power typing is inserted after
the current line, as it is when you use the INPUT subcommand.

Causing A Break in the Data
To cause a break in the data you have entered in power typing mode, type a line end
character just before the place in the text where you want the break to occur. The
default line end character is a pound sign (#). Use the pound sign to signify the
start of a new paragraph or to set off a SCRIPT /VS control word.

For example, suppose the following data is typed in power typing mode:

.sp#A pound sign causes the data to start on a new line.#.sp

The data will be entered in the file as:

===== .sp
===== A pound sign causes the data to start on a new line.
----- .sp

Inserting Characters
If you want to insert characters or spaces in a line while you are in power typing
mode, you can use the insert mode key. When characters are inserted, the entire
stream of data shifts to the right; it's like inserting a box car in a train. Remember
to press the RESET key when you are finished inserting characters.

Example of Power Typing
Figure 5 on page 8 illustrates the same file, INVENTOR SCRIPT, but the data was
typed in power typing mode, after the POWERINP subcommand was entered. The
screen changes in several ways in power typing mode: the prefix and status areas
disappear; the line that was current when the POWERINP subcommand was entered
moves to the top of the screen, and the rest of the screen is available for typing data.
Notice how a word can start at the end of a line and finish on the next. The entire
screen can be filled with data, but it does not have to be.

Chapter 1. An XED IT Subset: Full-Screen Text Processing 7

Full-Screen Text Processing

Notice the pound signs (#) in the eighth line (from the top of the screen). A pound
sign causes the data that follows it to begin on a new line when it is entered into the
file. The pound sign itself is not entered in the file.

To leave power typing mode and return to the XEDIT environment, press the
ENTER key twice. The screen layout is restored, and the words and lines are
reconstructed. The lines you typed are entered and the pound sign line separator is
interpreted. Any data that was preceded by a pound sign begins on a new line. The
last line entered becomes the current line. To display the entire file on your screen,
change the current line to a point above the End of File line by placing a slash (j) in
the prefix area and pressing the ENTER key. Figure 6 on page 9 illustrates the
same file, INVENTOR SCRIPT, after returning to the XEDIT environment. The
current line was changed by placing a slash in the prefix area of the line beginning,
"DOING EXPERIMENTS WITH ... " and pressing the ENTER key.

Figure 5. Power Typing

8 VM/SP System Product Editor User's Guide

Full-Screen Text Processing

Figure 6. Power Typing - Data Entered in the File

Using Program Function (PF) Keys
Each PF key is set to an XEDIT subcommand, which is executed when the key is
pressed. Using the PF key saves you the time it takes to type that subcommand on
the command line and press the ENTER key.

You can use the following subcommand to display the PF key settings:

====> query pf

The following subcommands are initially assigned to the PF keys:

PFI BEFORE HELP MENU
PF2 BEFORE SOS LINEADD
PF3 BEFORE QUIT
PF4 BEFORE TABKEY
PF5 BEFORE SCHANGE 6
PF6 ONLY?
PF7 BEFORE BACKWARD
PF8 BEFORE FORWARD
PF9 ONLY =
PFIO BEFORE RGTLEFT
PFll BEFORE SPLTJOIN
PFl2 BEFORE CURSOR HOME
PFl3 BEFORE HELP MENU
PFl4 BEFORE SOS LINEADD
PFl5 BEFORE QUIT
PFl6 BEFORE TABKEY

Chapter 1. An XEDIT Subset: Full-Screen Text Processing 9

Full-Screen Text Processing

PF17 BEFORE SCHANGE 6
PF18 ONLY?
PF19 BEFORE BACKWARD
PF20 BEFORE FORWARD
PF21 ONLY =
PF22 BEFORE RGTLEFT
PF23 BEFORE SPLTJOIN
PF24 BEFORE CURSOR HOME

These are the subcommands that the editor assigns to the PF keys. Note that the
editor assigns keys 13 through 24 to correspond to keys 1 through 12 (For example,
both PFI and PF13 are set to BEFORE HELP MENU.) For information on the
"BEFORE" and "ONLY" operands shown previously, see the SET PF subcommand
in the VM/SP System Product Editor Command and Macro Reference.

If full-screen CMS is on, the PF key definitions appear in the CMSOUT window
which automatically pops up on top of your XEDIT screen. The top line of the
CMSOUT window reminds you that full-screen CMS is on. To scroll forward in the
CMSOUT window, type an "f' (forward) in one of the border comers (indicated by
'+' signs) and press the ENTER key. Continue to use the "f' border command
until you have seen all the information in the message window. When there is no
more information to be displayed, the window will be automatically removed from
your screen.

If full-screen CMS is off, the PF key definitions appear on a cleared screen with a
"MORE" status at the bottom. You can press CLEAR to return to the XEDIT
screen.

If you would rather have a different subcommand assigned to one (or more) of the
PF keys, you can use the SET PF subcommand, whose format is:

====> SET PFn subcommand

where "n" is a PF key number, and "subcommand" is any XED IT subcommand.

F or example,

====> set pfl input

assigns the INPUT subcommand to the PFI key. Pressing the PFI key would
immediately place you in input mode.

When you assign a subcommand to a PF key, the setting remains in effect only for
the current editing session. In the next editing session, the initial settings shown
a bove are in effect.

The following sections show how to use some of the PF keys (initial settings).
Others will be discussed where appropriate.

SpliHing and Joining Lines
The PFll key lets you split a line or join two lines, at the cursor position. If the
cursor is positioned before (or at) the last character in a line, the line is split. If the
cursor is positioned after the data, the next line is joined to it.

10 VM/SP System Product Editor User's Guide

Full-Screen Text Processing

Splitting a Line (PF11)
To split a line in two, simply move the cursor under the character where you want
the line to be split, and press the PFll key.

In the following line, note the position of the cursor, under the "F" in "FOOD".

===== GILA MONSTERS HOLD RESERVE fOOD SUPPLIES IN THEIR TAILS.

Pressing the PFll key produces the following lines:

===== GILA MONSTERS HOLD RESERVE _
===== FOOD SUPPLIES IN THEIR TAILS.

The PFll key is particularly useful if you want to add information to a line. In the
following line, the cursor is placed under the "I" in "IN":

===== BIRD SPECIES HAVE DWINDLED !N THE LAST 70 MILLION YEARS.

When the PFll key is pressed, the line is split in two:

===== BIRD SPECIES HAVE DWINDLED _
===== IN THE LAST 70 MILLION YEARS.

Now there is room to add information on the line:

===== BIRD SPECIES HAVE DWINDLED FROM 1.5 MILLION TO 10,000_
===== IN THE LAST 70 MILLION YEARS.

Joining Two Lines (PF11)
Pressing the PFll key joins two lines at the cursor position, when the cursor is
positioned after the end of the data in a line.

F or example:

===== These lines are
===== too short.

Note the cursor position above, after the end of the data. Pressing the PFll key
produces the following line:

===== These lines are 100 short.

The PFll key also takes care of leading blanks when a line is split or joined.

F or example:

----- Things get worse ynder pressure.

When the line is split, the second line lines up under the first:

----- Things get worse _
----- under pressure.

The same is true when lines are joined:

Join these _
lines without leading blanks.

The leading blanks are removed:

----- Join these lines without leading blanks.

Chapter 1. An XEDIT Subset: Full-Screen Text Processing 11

Full-Screen Text Processing

Scrolling Backward and Forward
When a file is too long to fit on one screen, you can use the PF7 and PF8 keys to
scroll back and forth through the file.

Pressing the PF7 key, which is set to the BACKWARD subcommand, scrolls the
screen backward, toward the top of the file, for one screen display.

Conversely, pressing the PF8 key, which is set to the FORWARD subcommand,
scrolls the screen forward, toward the end of the file, for one screen display.

You can repeatedly press either key to scroll back or forth for as many screens as
you wish.

Redisplaying a Subcommand
After a subcommand that has been typed in the command line is executed, the
command line is cleared. Sometimes, you would like to be able to see the last
subcommand that was executed. Perhaps you did not enter a subcommand the way
you intended to.

Pressing the PF6 key (which is set to the? subcommand) displays, in the command
line, the last subcommand that was executed (from the command line).

You can then re-execute the subcommand simply by pressing the ENTER key. If
the subcommand was incorrectly entered, you can correct the error by typing over
the subcommand displayed in the command line and then pressing the ENTER key.

Re-executing a Subcommand
The PF9 key, which is set to the = subcommand, re-executes the last subcommand
entered. The subcommand does not appear in the command line, as it does when
the PF6 key (which is set to the? subcommand) is used.

Each time the PF9 key is pressed, the subcommand is executed, thereby saving you
the time it takes to retype the subcommand.

Inserting Words in a Line

Using the Insert Mode Key and a NULL Key (PA2)
One way to insert letters, spaces, or words in a line is by pressing the P A2 key (or its
equivalent) and then by using the insert mode key. The PA2 key is initially set to
NULLKEY. For information about how to change the initial PA key settings (SET
PAn), see the VMjSP System Product Editor Command and Macro Reference.

The P A2 key replaces blank spaces at the end of a line with null characters; it
"makes room" for the characters in the line to be shifted over so that new ones can
be inserted.

The PA2 key operates on only one file line at a time; if you move the cursor to
another file line and want to use insert mode, you must press the P A2 key again.

Remember to press the RESET key when you are finished using insert mode.

This method can be used in both input mode and edit mode, but not in power typing
mode.

12 VMjSP System Product Editor User's Guide

Full-Screen Text Processing

Using the SET NULLS Subcommand
If you have insertions to make on many lines, you can enter the following
subcommand:

====> set nulls on

Then, you can use the insert mode key without pressing the P A2 key for each line.
When you are finished inserting words, enter the following subcommand:

====> set nulls off

(In power typing mode, you can use the insert mode key without entering a SET
NULLS ON subcommand and without pressing the PA2 key.)

Using Prefix Subcommands
Prefix subcommands are one- or two-character commands that perform basic editing
tasks on a particular line.

The following prefix subcommands are described in this section:

A (add)
D (delete)
SI (structured input)
II (duplicate)
M (move)
C (copy)
F (following)
P (preceding)
/ (set current line).

Prefix subcommands are entered by typing over any position of the five-character
prefix area on one or more lines. When the ENTER key is pressed, all of the prefix
subcommands that have been typed on the screen are executed.

Adding and Deleting Lines

A Prefix Subcommand
To add a line, type the single character "A" in the prefix area. When the ENTER
key is pressed, a blank line is immediately inserted following the line containing the
"A". A number may precede or follow the "A" to indicate that more than one line
is to be added. For example, "AS" causes five blank lines to be added.

The following are valid ways to type the A prefix subcommand:

===:A Adds one blank line after this line.
a==== Adds one blank line after this line.
l0a== Adds ten blank lines after this line.
==:A5 Adds five blank lines after this line.

Information can then be typed in the added lines. If no information is typed, the
blank lines remain in the file throughout the editing session and after the file is
written to disk or directory.

Chapter 1. An XEDIT Subset: Full-Screen Text Processing 13

Full-Screen Text Processing

D Prefix Subcommand
To delete a line, enter the single character "D" in the prefix area of a line.

A number may precede or follow the "D" to indicate that more than one line is to
be deleted.

To delete a group of consecutive lines, that is, a block of lines, you can enter the
double character "DD" in the prefix area of both the first and last lines to be
deleted. This method makes it unnecessary for you to count the number of lines' to
be deleted.

For example:

==dd= This is the first line I want to remove.
===== This is the second.
===== This is the third.
===== This is the fourth.
===dd This is the fifth.

When the ENTER key is pressed, the block of lines is deleted.

The first and last lines of the block need not be on the same screen; you can scroll
the screen before entering the second "DD". When one "DD" has been typed and
the ENTER key pressed, the status area of the screen displays I DO I pendi n9 •••.
You can use the PF7 or PF8 keys to scroll the screen until you find the last line of
the block, and then type "DD" in its prefix area. When the ENTER key is pressed,
the entire block of lines is deleted.

Figure 7 on page 15 is a before-and-after example 'of the A and D prefix
subcommands.

14 VM/SP System Product Editor User's Guide

Full-Screen Text Processing

Figure 7. Prefix Subcommands A and D - "Before" and "After"

Lost and Found Department
If you delete one or more lines, you can recover them anytime during an editing
session by using the RECOVER subcommand.

The following subcommand returns lines deleted in an editing session:

====> RECOVER n

Chapter 1. An XEDIT Subset: Full-Screen Text Processing 15

Full-Screen Text Processing

where "n" represents the number of lines you wish to recover.

Recovered lines are inserted starting at the current line. The last lines deleted are
the first lines recovered. If the lines were deleted from different places in the file,
you will have to put them back where they belong (by using the M prefix
subcommand, discussed later.)

If you want to recover all lines that were deleted during an editing session, use the
form:

====> recover *

In the previous example of the A and D prefix subcommands, four lines were
deleted. Entering,

recover 2

results in:

Figure 8. RECOVER Subcommand - Replacing Two Lines

SI Prefix Subcommand
To continuously add lines of indented text, type the characters "SI" in the prefix
area. When the ENTER key is pressed, a line is immediately added following the
line that contains "SI." The cursor is positioned at the same column where the text
on the previous line begins, making it easier for you to enter indented text.

Figure 9 on page 17 shows how the first new line is added.

16 VM/SP System Product Editor User's Guide

FuJI-Screen Text Processing

The prefix subconunand "SI" is typed in the prefix area,

When ENTER is pressed a new line is added,

Figure 9, Prefix SUbcommand SI - Adding the First New Line

Chapter J. An XEDIT SUbset: FUU-Screen Text PrOCessing 17

Full-Screen Text Processing

Text is entered on the new line.

When ENTER is pressed, a new line is automatically added following the one you
just typed on. Each time that you type on the new line and press the ENTER key,
another new line will be added.

Figure 10. Prefix Subcommand SI - Continuing to Add New Lines

18 VM/SP System Product Editor User's Guide

Duplicating Lines

Full-Screen Text Processing

If you do not want to add more lines, then press the ENTER key one more time
without typing anything on the new line.

Figure 11. Prefix Subcommand SI - "After"

To add a blankliIie in a file while using SI, make at least one change on the line
that contains II ••••• II. (Pressing the spacebar once will change the line.) Merely
moving the cursor using the cursor position keys over a line does not change the
line.

You can leave the line you are adding and make corrections elsewhere in the file if
you type something on the new line first When you press the ENTER key while the
cursor is away from the new line, another new line is added following the last line
that was added. SI will only be canceled if you press ENTER and no text has been
typed on the new line.

To duplicate a line, enter the character II (double quote) in the prefix area of a line.

A number can precede or follow the II to duplicate the line more than one time.

F or example:

=311=~ I want three more copies of this line.
===== Oh, yeah?

When the ENTER key is pressed, the file looks like this:

----- I want three more copies of this line.
===== I want three more copies of this line.
===== I want three more copies of this line.
===== I want three more copies of this line.
===== Oh, yeah?

Chapter 1. An XEDIT Subset: Full-Screen Text Processing 19

Full-Screen Text Processing

To duplicate a block of lines either one time or a specified number of times, you can
type 1111 (two double quotes) in the first and last lines of the block. A number can
precede or follow the first 1111 (for example, 51111

) to duplicate the block more than
one time.

When one 1111 has been typed and the ENTER key pressed, the status area of the
screen displays I 1111 I pend i ng. • •. This lets you scroll the screen before completing
the block and pressing the ENTER key.

Moving and Copying Lines
To move one line, enter the single character "M" in the prefix area of the line to be
moved. You must indicate its destination by entering either the character "F"
(following) or "P" (preceding) in the prefix area of another line.

When the ENTER key is pressed, the line containing the "M" is removed from its
original location and is inserted in one of the following:

• Immediately following the line containing the "F"

• Immediately preceding the line containing the "P".

A number can precede or follow the "M" to indicate that more than one line is to be
moved, for example, "SM" or "MS" in the prefix area.

The line to be moved and the destination line can be on different screens. When
either an "M" or "F" (or "P") has been entered, the status area of the screen
displays a pending notice. This pending status lets you scroll the screen before
entering the other prefix subcommand.

To move a block of lines, enter the double character "MM" in the prefix area of
both the first and last lines to be moved. The first and last lines to be moved, and
the destination line can all be on different screens. You can use PF keys to scroll
the screen before pressing the ENTER key.

The procedure for copying lines is the same as for moving lines, except that a "C" or
"CC" prefix subcommand is used instead of "M" or "MM". The copy operation
leaves the originalline(s) in place, and makes a copy at the destination line, which
must be indicated by "F" or "P".

Figure 12 on page 21 is a before-and-after example of the M prefix subcommand.

20 VM/SP System Product Editor User's Guide

Full-Screen Text Processing

Figure 12. Prefix Subcommands M and F - "Before" and "After"

Chapter 1. An XED IT Subset: Full-Screen Text Processing 21

Full-Screen Text Processing

SeHing the Current Line (/)
Many subcommands begin their operations starting with the current line. For
example, the INPUT subcommand makes room for you to enter data after the
current line. You have already seen the INPUT subcommand that inserts lines after
the Top of File line.

The / (diagonal) prefix subcommand can be typed in the prefix area of any line on
the screen. When the ENTER key is pressed, that line becomes the current line.
Then, if you enter an INPUT subcommand, the new lines entered in input mode are
inserted between the current line and the line that followed it.

Canceling Prefix Subcommands
If you have entered one or more prefix subcommands that create a pending status,
you can cancel all these prefix subcommands by entering the following subcommand
in the command line:

====> reset

When the ENTER key is pressed, all prefix subcommands disappear from the
display and the prefix areas are restored with equal signs (= = = = =).

If you have typed any prefix subcommands (even those that do not cause a pending
status) but have not yet pressed the ENTER key, you can press the CLEAR key to
remove them.

Moving through a File
The following subcommands are discussed in this section:

BACKWARD
FORWARD
TOP
BOTTOM
UP
DOWN.

BACKWARD and FORWARD Subcommands
Scrolling the screen is like turning the pages of a book. You have already seen that
the PF7 and PF8 keys are set to the.BACKWARD and FORWARD subcom1pands,
which scroll one full screen backward or forward. The BACKW ARD and
FORWARD subcommands can also be entered in the command line.

The format of these subcommands is:

====> BACKWARD n
====> FORWARD n

where "n" is the number of screen displays you want to scroll backward or forward.
(This is like pressing the PF7 or PF8 key "n" times.) If you omit "n," the editor
scrolls one screen backward or forward.

If you enter a BACKWARD subcommand when the current line is the "Top of File"
line, the editor "wraps around" the file, making the last line of the file the new
current line. Similarly, if you enter a FORWARD subcommand when the current
line is the "End of File" line, the editor makes the first line of the file the new
current line.

22 VM/SP System Product Editor User's Guide

Full-Screen Text Processing

TOP and BOTTOM Subcommands
Suppose the file is many screens long, and the current screen display is somewhere in
the middle of the file. To go back to the beginning of the file, you could enter
multiple BACKWARD subcommands - or - you could enter the TOP
subcommand. The TOP subcommand makes the "Top of File" line the new current
line. Enter the TOP subcommand this way:

====> top

The BOTTOM subcommand makes the last line of the file the new current line.
Enter the BOTTOM subcommand this way:

====> bottom

These subcommands are useful when you want to insert new lines either at the
beginning or end of a file. The TOP subcommand followed by an INPUT or
POWERINP subcommand makes room for you to add lines at the beginning of a
file; use the BOTTOM subcommand followed by INPUT or POWER to add lines to
the end of a file.

DOWN and UP Subcommands
Suppose that you want to move the file up or down a few lines instead of a whole
screen. The DOWN subcommand advances the line pointer one or more lines
toward the end of a file. The line pointed to becomes the new current line. For
example,

====> down 5

makes the fifth line down from the current line the new current line. If the number
is omitted, "1" is assumed.

The UP subcommand moves the line pointer toward the beginning of the file. The
line pointed to becomes the new current line. For example,

====> up 5

makes the fifth line up from the current line the new current line. If a number is
omitted, "1" is assumed.

Figure 13 on page 24 is a before-and-after example of the DOWN subcommand.

Chapter 1. An XEDIT Subset: Full-Screen Text Processing 23

Full-Screen Text Processing

Figure 13. The DOWN Subcommand - "Before" and "After"

24 VM/SP System Product Editor User's Guide

Full-Screen Text Processing

Making Changes in a File
When you are looking at a screen of data that you have just entered and decide to
make some changes, it is easy to type over the information to be changed.

However, it is not always that simple. Typically, you have numerous files stored on
direct access devices and need to make changes even though you do not know
exactly where the data is located in a file.

The challenge is twofold: find the data; then change it.

The following subcommands are discussed in this section:

CLOCATE
CHANGE
CINSERT
CFIRST

CLOCATE Subcommand
The CLOCA TE subcommand searches a file, beginning with the column after the
current column in the current line, for a character string that you specify.

If the string is located, two things happen:

1. The line containing the string becomes the new current line; however, if the
string is in the current line, the line pointer does not move.

2. The column pointer, represented in the scale as a vertical bar (I), moves under
the first character of the string.

These changes are reflected in the file identification area at the top of the screen
(Line = nnn and Col = nn).

One format of the CLOCATE subcommand is as follows:

====> CLOCATE/string/

The string should be enclosed in delimiters. In the examples used in this book, the
delimiter is a diagonal (f); however, you can use any character except for a plus (+),
minus (-), not (-,), or period (.) that does not appear in the string itself (for
example, CLOCATE?VMjCMS?).

In the following example, the string to be located is in the current line. Therefore,
the line pointer does not move, but look what happens to the column pointer:

===== To be or not to be - that is the question.
I ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 ••••

====> clocate/be/

===== To be or not to be - that is the question.
< •• 1+ •••• 1 •••• + •••• 2 •.•. + •••• 3 .•.. + •••• 4 •••• + •••• 5 .••.

Notice that the column pointer in the scale has moved under the first character (b)
in the string (be).

If you wanted to find all occurrences of "be" throughout the file, you could
repeatedly enter the CLOCATEjbej subcommand (or use the PF9 key, which is set
to the = subcommand, for repeated execution). If a string appears more than once

Chapter 1. An XED IT Subset: Full-Screen Text Processing 25

Full-Screen Text Processing

in a line, as in the preceding example, the line pointer remains the same, but the
column pointer moves under the,next occurrence of the string.

For example, if the CLOCATE/be/ subcommand is entered again, the line looks like
this:

===== To be or not to be - that is the question.
< ••• + •••• 1 ...• +.1 •• 2 .•.. + •••• 3 + •••• 4 + •••• 5

Note the position of the column pointer, under the second "be".

Each time the CLOCA TE/be/ subcommand is entered, the column pointer moves
under the next occurrence of "be"; in addition, the line pointer advances, until all
occurrences of "be" have been found.

If the string that you are searching for is in a backward direction from the current
line, toward the top of the file, you can tell the editor to search backward by typing
a minus sign (-) in front of the string. For example,

====> clocate -/glance/

is a backward search for "glance".

CHANGE Subcommand
Replacing one word with another is the simplest type of change. If the string you
want to change is not in the current line, you can use the CLOCATE subcommand
to move the line pointer to the line that contains the string. Then, you can use the
following form of the CHANGE subcommand, which changes the first occurrence of
a word in the current line:

====> CHANGE/oldword/newword/

F or example:

===== A rose is a rose is a rose.
/ ••• + •••• 1 ...• + •••• 2 + •••• 3 •... + •••

====> change/rose/daisy/

(with apologies to Gertrude Stein)

===== A daisy is a rose is a rose.
I ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••

Note that the editor automatically made room in the line for "daisy" even though it
is longer than "rose". Conversely, a word can be replaced by a shorter word; the
editor removes extra blanks.

You can use the CLOCATE and CHANGE subcommands to locate and change any
string in a file. If the line containing the string is the current line, you do not have
to use a CLOCATE subcommand; the CHANGE subcommand both locates and
changes it.

Making a Selective Change
Suppose you want to change one word to another only some of the time, that is, you
want to make a selective, or "safe" change. You can do this by repeatedly locating
the string you want to change, and by entering a CHANGE subcommand only when
you want to change the string. However, there is an easier way.

26 VM/SP System Product Editor User's Guide

Full-Screen Text Processing

All you have to do is type a CHANGE subcommand (in the form
CHANGEjoldwordjnewwordj) in the command line. Then, use the PF5 key to
locate each occurrence of the old word, examine it, and then either change it (by
pressing thePF6 key), or go on to the next occurrence (by pressing the PF5 key).

Here is how to make a selective change:

1. Move the line pointer to the line where you want the search to begin. (You can
use TOP, j, DOWN, or UP.)

2. Type a CHANGE subcommand (CHANGEjoldwordjnewwordj) in the
command line, but do not press the ENTER key.

3. Press the PF5 key. The cursor moves under the first occurrence of the old word,
and the line that contains it is highlighted.

4. If you want to change the word, press the PF6 key. If not, press the PF5 key
again, and step number 3 will be repeated.

Using this sequence, you can locate all the occurrences of the old word, and press
the PF6 key to change it only when desired. When all occurrences of the old word
on one screen have been located, the editor automatically scrolls the screen forward.

Figure 14 on page 28 is an example of using the PF5 and PF6 keys to locate and
selectively change a character string throughout a file. The following subcommand
was typed in the command line but the ENTER key was not pressed:

====> change/rose/daisy/

This subcommand is executed when the PF6 key is pressed.

In the top screen, pressing the PF5 key has placed the cursor (and the column
pointer) under the first occurrence of "rose".

In the bottom screen, the PF5 key was successively pressed until the last occurrence
of "rose". Then the PF6 key was pressed to execute the change specified in the
command line.

If you want to locate all occurrences of a string, but you do not want to make any
changes, you can type a CLOCATEjstringj subcommand instead of a CHANGE
subcommand. Then, each time you press the PF5 key, the cursor moves under the
next occurrence of the string and the line is highlighted. Pressing the PF6 key has
no effect.

For more information on making a selective change, see "SCHANGE" in the
VMjSP System Product Editor Command and Macro Reference.

Chapter 1. An XEDIT Subset: Full-Screen Text Processing 27

Full-Screen Text Processing

Figure 14. Using PF5 and PF6 to Make a Selective Change

28 VMjSP System Product Editor User's Guide

Full-Screen Text Processing

Making a Global Change
If you want to make a global change, that is, change every occurrence of a word
throughout the file, first make sure that the first line of the file is the current line and
use the following form of the CHANGE subcommand:

====> CHANGE/oldword/newword/ * *

F or example:

===== * * * Top of File * * *
===== A rose is a rose is a rose.
===== A rose is a rose is a rose.
===== A rose is a rose is a rose.
===== A rose is a rose is a rose.
===== * * * End of File * * *

====> change/rose/daisy/ * *

===== * * * Top of File * * *
===== A daisy is a daisy is a daisy.
===== A daisy is a daisy is a daisy.
===== A daisy is a daisy is a daisy.
===== A daisy is a daisy is a daisy.
===== * * * End of File * * *

This form of the CHANGE subcommand can also make a global change starting in
the middle of a file. The change starts with the current line, so you could use the /
prefix subcommand to set the current line at the place where you want the change to
begin.

Another variation of the CHANGE subcommand can be used if you want to change
a word throughout the file, but you want to change only the first occurrence in each
line:

====> CHANGE/oldword/newword/ *

CINSERT Subcommand
Often, you need to insert words in a line. You have already seen how to use the
PA2 and insert mode keys and the SET NULLS subcommand. Another way to
insert words is by using the CINSERT subcommand, which lets you insert characters
in the current line immediately before the column pointer.

You can use a CLOCATE/string/ subcommand to move the column pointer to the
desired position. You can also use another form of the CLOCATE subcommand to
move the column pointer,

====> CLOCATE:n

where ":n" represents an absolute column number, easily determined by looking at
the scale.

F or example:

===== To be or not to be - that is the question.
1 ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• +

====> clocate:4

===== To be or not to be - that ;s the question.
< •• 1+ •••• 1 ..•• + •••• 2 •..• + •••• 3 + •••• 4 + •••• 5 +

Chapter 1. An XED IT Subset: Full-Screen Text Processing 29

FuU-Screen Text Processing

The column pointer has moved to column four.

In the following example, the CLOCATE subcommand moves the column pointer;
then the CINSERT subcommand immediately inserts characters before the column
pointer position.

----- If anything can go, it will.
1 ••• + •••• 1 + •••• 2 + •••• 3 .•.. + •••• 4 •... + •••• 5 ..•• +

====> clocate/,/ or ====> clocate :19

(move the column pOinter)

===== If anything can go, it will.
< ••• + •••• 1 ••.. + ••• 12 •••• + •••• 3 •••• + •.•. 4 ••.• + •••• 5 •••. +

====> cinsert wrong

(insert "wrong" before the column pointer)

===== If anything can go wrong, it will.
< ••• + •••• 1 •••• + ••• 12 •••• + •••• 3 •••• + •••• 4 •••• + •••. 5 •••• +

(In the CINSERT subcommand above, note that there are two spaces between
"CINSERT" and "wrong": one is the required space between the subcommand name
and the operand; one is the blank space needed between "go" and "wrong".)

If only one blank space were used, the result would be the following:

===== If anything can gowrong, it will.

The editor lets you to insert blanks with the CINSERT subcommand - simply type
the required number of blanks (by pressing the spacebar) in the operand. For
example:

If anything can go wrong, it will.

====>
====>

clocate/can/
cinsert

(Press the spacebar six times.)

===== If anything can go wrong, it will.

If the inserted characters make the line longer than the screen line, the editor
automatically "wraps around" to the next line. Characters can be inserted up to the
truncation column, as shown in the following example.

30 VM/SP System Product Editor User's Guide

Full-Screen Text Processing

===== It takes less time to do a thing than to explain why you did it.
1 ••• + •••• 1 .••• + •••• 2 •••. + •••• 3 .••• + •••• 4 ••.. + •••• 5 •... + •••• 6 .•.• + •••• 7 ...

====> clocate/than/

(move the column pointer)

===== It takes less time to do a thing than to explain why you did it.
< ••• + •••• 1 ...• + •••• 2 ••.. + •••• 3 ..• 1+ 4 + •••• 5 ..•• + •••• 6 .•.. + •••• 7 ...

====> cinsert right

(insert the first word. You must type one blank after "right"
to avoid "rightthan".)

===== It takes less time to do a thing right than to explain why you did it.
< ••• + •••• 1 .••. + •••• 2 ..•• + •••• 3 •.• 1+ 4 ...• + 5 .•.. + •.•• 6 + •••• 7 ...

====> clocate/./

(move the column pointer again)

===== It takes less time to do a thing right than to explain why you did it.
< ••• + •••• 1 •••• + •••• 2 •.•. + •••• 3 ••.. + •••• 4 •••. + •••• 5 .•.. + •.•• 6 + •••• 1 •••

====> cinsert wrong

(insert the second word)

===== It takes less time to do a thing right than to explain why you did it wron
g.

Even though the resulting line is longer than a screen line, it is considered to be one
logical line.

Notice that the line has one prefix area associated with it. Any prefix subcommands
entered in the prefix area affect the entire logical line. F or example, if a D prefix
subcommand is entered, the whole sentence is deleted.

CFIRST Subcommand
After using subcommands that move the column pointer, it is a good idea to reset
the column pointer to column one by entering the CFIRST subcommand.

For example:

===== If anything can go wrong, it will.
< ••• + •••• 1 +.1 .. 2 ..•. + 3 •... + •••• 4 + •••• 5 ...• +

====> cfirst

===== If anything can go wrong, it will.
1 ••• + •••• 1 + •••• 2 .••. + •••• 3 •.•. + •••• 4 + •••• 5 .•.• +

Chapter 1. An XEDIT Subset: Full,.Screen Text Processing 31

Full-Screen Text Processing

SeHing Tabs
Sometimes you may want to place information in specific columns. The PF4 key
functions like a tab key on a typewriter. Each time the PF4 key is pressed, the
cursor is positioned under the next tab column, where you can enter data.

Initial tab settings are defined by the editor according to file type; they may be
displayed by using the following subcommand:

====> query tabs

You can change these settings one or more times during an editing session with the
SET TABS subcommand. For example:

====> set tabs 10 20 30

The first time the PF4 key is pressed, the cursor moves to column 10 on the screen.
The second time, it moves to column 20, and so forth.

The PF4 key can be used for tabbing in input mode, but not in power typing mode.

You can change the tab settings by entering another SET TABS subcommand, or, if
you would like to see the current tab settings before changing them, you can use the
following subcommand:

====> modify tabs

The current SET TABS subcommand is then displayed in the command line; you
can type over the numbers and press the ENTER key to define new tabs.

Figure 15 on page 33 is an example of data that was entered-using the PF4 key as a
tab key. The following subcommand defines the tab columns:

====> set tabs 5 35 45

32 VM/SP System Product Editor User's Guide

Full-Screen "Text Processing

Figure 15. Using the PF4 Key for Tabbing

Ending an Editing Session
The following subcommands are discussed in this section:

FILE Subcommand

FILE
QUIT
SET AUTOSAVE.

When you use the XEDIT command to create a new file, the file is created in virtual
storage. When you make changes to an existing file, those changes are made to a
copy of the file that is brought into virtual storage (when the XEDIT command is
entered). However, virtual storage is temporary. To write a new or modified file to
disk or SFS directory, for permanent storage, you must enter the following
subcommand:

====> file

When the FILE subcommand is executed, the file is written to disk or directory and
control is returned to eMS.

QUIT Subcommand
The QUIT subcommand ends an editing session and leaves the permanent copy of
the file intact on the disk or directory. If the file is new, it is not written to disk or
directory.

Chapter 1. An XEDIT Subset: Full-Screen Text Processing 33

Full-Screen Text Processing

You can execute the QUIT subcommand either by pressing the PF3 key or by
entering it on the command line, like this:

====> quit

You would use the QUIT subcommand instead of the FILE subcommand when you
edit a file merely to examine, but not to change, its contents, or if you discover you
have made errors in changing a file and do not want them to be recorded.

If a file is new or has been changed, the editor gives you a warning message to
prevent the inadvertent use of a QUIT instead of a FILE. The message is as
follows:

If you really do not want to save the file, enter "QQUIT" (abbreviated as "QQ"). If
you wish to save the changes, enter "FILE".

SET AUTOSAVE Subcommand
Files on disks or directories are not affected if the system malfunctions. However, a
new file that you are creating or the changes you are making to an existing file might
be lost if the system fails. You can minimize the risk of losing your data by using
the SET AUTOSAVE subcommand, whose format is as follows:

SET AUTOSAVE n
The SET AUTOSA VE subcommand causes your file to be automatically written to
disk or directory after you have typed in or changed a certain number of lines. You
specify what that number will be with the "n" operand of the SET AUTOSAVE
subcommand. If you want the file written to disk or directory, or "saved," every
time you have changed 10 lines, enter the following subcommand:

set autosave 10

The number of alterations you have made to your file since the last AUTOSAVE are
displayed in the alteration count (Alt = n) in the file identification line. When the
alteration count is equal to the AUTOSAVE setting, the file is saved on disk or
directory and the alteration count is reset to zero.

The SET AUTOSAVE subcommand can be entered at any time during an editing
session. It is a good idea, however, to enter the subcommand right after you enter
an XEDIT command to create a new file or to call an existing file from disk or
directory.

When a file is saved on disk or directory by the automatic save function, it is written
into a new file. The file name of this file is a number and its file type is
A UTOSA VE. If the system malfunctions during an editing session, you can recover
all changes made up to the time of the last automatic save. To do this, replace the
original file with the AUTOSAVE file using the CMS COPYFILE command with
the REPLACE option. Then, erase the AUTOSAVE file and resume editing.

If you enter a SET AUTOSA VE subcommand while you are creating a new file, and
then enter a QUIT subcommand, the file is not saved. However, the AUTOSAVE
file is available from disk or directory. If you enter a SET AUTOSAVE
subcommand while you are revising an existing file and then you enter a QUIT
subcommand, no revisions are saved. However, the AUTOSAVE file is still
available from disk or directory.

34 VMjSP System Product Editor User's Guide

Full-Screen Text Processing

Inserting Data from Another File
To insert all or part of one file into another file, you can use the GET subcommand.
The chapters in this book were created as separate files and then combined into one
file by using the GET subcommand.

The GET subcommand inserts another file after the current line in the file you are
editing. Therefore, you must move the line pointer to the desired line of the file.
For example, if you want to insert another file at the end of a file, you can use the
BOTTOM subcommand. If you want to insert another file in the middle of a file,
you can use the / prefix subcommand to make the desired line current.

Inserting a Whole File
Suppose you were writing a cookbook, and you created a separate file for each
recipe. To combine two of the recipes into one file, you would use the following
form of the GET subcommand:

====> GET filename filetype

Figure 16 on page 36 shows how the GET subcommand inserts one whole file at the
end of another file.

The top screen shows a file (DESSERT COOKBOOK) that contains a recipe for
cream puffs. A recipe for almond cookies is contained in another file, COOKIES
COOKBOOK.

The following subcommand was entered:

====> get cookies cookbook

In the bottom screen, the message "EOF reached" indicates that the entire file has
been inserted. Notice that the last line inserted becomes the new current line. The
file DESSERT COOKBOOK now contains two recipes. The file COOKIES
COOKBOOK is left intact.

Chapter l. An XEDIT Subset: Full-Screen Text Processing 35

Full-Screen Text Processing

Figure 16. Inserting a Whole File

36 VMjSP System Product Editor User's Guide

Full-Screen Text Processing

Inserting Part of Another File
To insert part of another file, you can specify in the GET subcommand the line
number of the first line and the number of lines you want to insert. The following
GET subcommand inserts the first 10 lines of a second file:

====> get file2 data 1 10

If you do not know the line numbers, you can: call out a second file without ending
your current editing session; put the lines you want to insert into a temporary file;
and insert them into your current file.

This might sound complicated, but all you need to learn is one more subcommand -
PUT.

First, let us identify and explain the steps you would take to insert part of another
file and then illustrate them with an example.

1. While editing the first file, enter an XEDIT subcommand to call out the second
file. (You do not have to end your current editing session because the editor lets
you edit multiple files simultaneously.) The second file will appear on the
screen.

2. Use the PUT subcommand to indicate which lines are to be inserted in the first
file. The PUT subcommand stores lines in a temporary holding area, starting
with the current line, up to an ending, or target, line. Its format is as follows:

====> PUT target

where "target" identifies the end of the group of lines to be inserted. It is a
signal to the editor to stop "putting" lines.

A target operand can be specified in various ways, which are described in detail
in "Chapter 4. Using Targets." A brief description of three w~ys to specify a
target follows. They are all equivalent; you can choose whichever type you
prefer.

One way to specify the target is to count the number of lines you want to insert,
starting with the current line. For example, if a file contains

===== a loaf of bread
===== a jug of wine
===== thou
===== a portable television

and the line containing "a loaf of bread" is current, the following subcommand
stores all four lines:

====> put 4

Another way to specify the target is with a character string; the editor will "put"
all the lines, beginning with the current line, up to, but not including, the line
containing the string.

For example, the following subcommand will "put" the first three lines, but it
will not "put" the line containing "a portable television".

====> put/television/

A third way to specify a target is the file line number. To display the line
numbers in the prefix area, you must enter the following subcommand:

====> set number on

Chapter 1. An XEDIT Subset: Full-Screen Text Processing 37

Full-Screen Text Processing

The resulting lines might look like this:

00010 a loaf of bread
00011 a jug of wine
00012 thou
00013 a portable television

To specify a target as a line number, type a colon (:) followed by the line
number.

The following subcommand puts lines up to, but not including, line 13.

====> put :13

3. Enter a QUIT subcommand. The first file reappears on the screen.

4. Make sure that the current line is the line after which you want the lines from
the second file to be inserted. Then enter the following subcommand:

====> get

No operands are required. The lines that were stored by the PUT subcommand
are inserted; the last line inserted becomes the new current line.

Figure 17 on page 39 through Figure 20 on page 40 shows how the PUT and GET
subcommands are used to insert part of a file into another file:

The file DESSERT COOKBOOK promises a recipe for cream puffs with chocolate
sauce. The cream puffs recipe is there, but the chocolate sauce is missing. All the
sauces are contained in another file called SAUCES COOKBOOK. To insert the
recipe for chocolate sauce after the recipe for cream puffs, first make the desired line
current (use the / prefix subcommand) in the file DESSERT COOKBOOK. Because
the sauce recipe must follow the cream puffs recipe, the current line is the last line of
the cream puffs recipe (Figure 17 on page 39). Then enter the following
subcommand:

====> xedit sauces cookbook
This file appears on the screen. The status area (lower right corner)
indicates that two files are being edited. Use the UP subcommand or the /
prefix subcommand to move the line pointer to the beginning of the lines to
be inserted. The beginning line contains "CHOCOLATE SAUCE"
(Figure 18 on page 39). Now enter the subcommand to store the chocolate
sauce recipe:

====> put/VINAIGRETTE
The stored lines begin with "CHOCOLATE SAUCE" and end with the line
preceding "VINAIGRETTE". The PUT subcommand could also have been
entered as PUT :15 or PUT 7. In this screen, line numbers are displayed in
the prefix area, which means that a SET NUMBER ON subcommand was
entered. After the PUT subcommand is entered, you can quit this file by
entering:

====> quit
The original file comes back on the screen (Figure 19 on page 40). Now
enter the following subcommand to insert the lines that were "put":

====> get
The sauce recipe is inserted, as shown in Figure 20 on page 40. The last
line inserted is the new current line.

38 VMjSP System Product Editor User's Guide

Full-Screen Text Processing

Figure 17. Inserting Part of a File - Call Out the Second File

Figure 18. Inserting Part of a File - Put Lines to Be Inserted, Then QUIT

Chapter 1. An XEDIT Subset: Full-Screen Text Processing 39

Full-Screen Text Processing

Figure 19. Inserting Part of a File - GET

Figure 20. Inserting Part of a File - The Lines Are Inserted

40 VM/SP System Product Editor User's Guide

Getting Help

Full-Screen Text Processing

If you forget how to use a subcommand or would like to see information about
subcommands not covered in this subset, you can press the PFI key, which is set to
the HELP MENU subcommand.

When the PFI key is pressed, a list of all subcommands and macros available with
the editor appears on the screen. You then move the cursor to the desired
subcommand and press ENTER. The subcommand description appears on the
screen, replacing the HELP Menu. Pressing the PF3 key returns you to the previous
screen and pressing PF4 takes you out of the HELP display and restores your file on
the screen.

Learning More about the Editor
The following is a partial list of XEDIT subcommands and macros that are useful in
text processing. You can learn how to use these and other XEDIT subcommands
and macros by using the Help facility or by referring to the VM/SP System Product
Editor Command and Macro Reference ..

ALL
Lets you collect lines for editing, while excluding others from display.

ALTER
Lets you change a character to one that is not available on your keyboard,
like a backspace character.

COMPRESS, EXPAND
Lets you reposition data in new tab columns without retyping it.

LEFT, RIGHT
Lets you view columns of data that extend to the left or right of the screen
display.

LOWERCAS, UPPERCAS
Lets you translate alphabetic characters to all lowercase or all uppercase.

MERGE
Lets you combine two sets of lines.

SET ARBCHAR
Lets you specify only the beginning and end of a long string that is to be
located or changed.

SET CASE
Lets you choose whether data that is typed on the terminal is to be entered
in the file the same way you type it or translated into uppercase.

SET POINT
Lets you assign name(s) to any line; you can reference the name(s) in
XEDIT subcommands.

SET SCREEN
Lets you view multiple files or multiple views of the same file on one screen.

SET VERIFY
Lets you view only specified columns of data, in character or hexadecimal or
both.

Chapter 1. An XEDIT Subset: Full-Screen Text Processing 41

Full-Screen Text Processing

SORT
Lets you arrange the file lines in alphabetical order.

< (SHIFT LEFT) MACRO
A prefix macro that lets you shift left one line or a block of lines one or
more columns to the left.

> (SHIFT RIGHT) MACRO
A prefix macro that lets you shift right one line or a block of lines one or
more columns to the right.

Summary of XEDIT Subset
The following table summarizes the subcommands that have been presented in this
chapter. When a subcommand can be abbreviated, its minimum abbreviation is
shown in uppercase letters.

Function Subcommand/PF Key

To create or edit a file Xedit

To enter data Input POWerinp

To scroll the screen BAckward FOrward TOP Bottom

To set PF keys SET PFn

To display current PF key settings Query PFn

To move the line pointer Down Up

To move the column pointer CLocate CFirst

To make changes to the file Change Clnsert

To locate data CLocate

To recover deleted data RECover

To set tabs SET TABS MODify TABS

To display current tab settings Query TABS

To display line numbers in the prefix SET NUMber ON
area

To specify whether trailing blanks are SET NULls ON
replaced with nulls to allow character
insertion

To end an editing session without QUIT
saving the changes

To automatically save a file after SET AUtosave
changing a specified number of lines

To save the changed file when you FILE
have finished working on it

To store lines to be inserted in another PUT
file by a subsequent GET

To imbed a complete or a partial copy GET
of one file in another

42 VMjSP System Product Editor User's Guide

Full-Screen Text Processing

Function Subcommand/PF Key

To cancel pending prefix RESet
subcommands

Function Subcommand/PF Key

Prefix Subcommands:

To add lines A

To delete lines D

To add lines and position cursor for SI
indented text

To duplicate lines II

To move lines M and F or P

To copy lines C and For P

To set the current line I

PF Keys, Initial Settings:

To get a HELP display PFl, PF13

To add a line PF2, PF14

To end a session without saving PF3, PF15

To use a tab key PF4, PF16

To locate and selectively change PF5, PF17; PF6, PF18

To redisplay a subcommand PF6, PF18

To scroll one screen backward PF7, PF19

To scroll one screen forward PF8, PF20

To repeat previous subcommand PF9, PF21

To move the display to the right, and PFI0, PF22
move it back when key is pressed
again

To split or join lines at the cursor PFll, PF23

To move the cursor from the screen to PF12, PF24
the command line, or vice versa

Chapter 1. An XEDIT Subset: Full-Screen Text Processing 43

Full-Screen Text Processing

44 VM/SP System Product Editor User's Guide

Practice Exercises

Chapter 2. Practice Exercises

The goal of this chapter is to give you practice in using some of the XEDIT
subcommands discussed in Chapter 1.

There are five exercises in the chapter. You do not have to do all of them at one
time, but you should do them in sequence.

Some of the data you will be asked to type contains errors, so that you can use
subcommands to correct them.

Remember to press the ENTER key each time you type a subcommand in the
command line. However, when you press a PF key, do not press the ENTER key.

Chapter 2. Practice Exercises 45

Practice· Exercises

Exercise 1. Creating a File
This part of the exercise covers the following subcommands: SET AUTOSAVE,
INPUT, QUERY TABS, SET TABS, FILE, and the PF4 key.

Your first file will contain a list of famous inventions. The file name is
INVENTOR; the file type is SCRIPT.

Type the following command in the CMS command line:

xedit inventor script

Now press the ENTER key. The file identification line appears on the first line of
the screen. The message, Creating new file:, appears on the second line (the message
line). Take a moment to review the screen layout described in Figure 1 on page 2.
Notice that the cursor is positioned on the command line, after the large arrow
(= = = = ».

To cause your file to be written to disk or directory at periodic intervals, enter the
following subcommand:

====> set autosave 20

You will enter data in the file using the PF4 key for tabbing. To display the editor's
initial tab settings for this file type, enter:

====> query tabs

The tab settings for a SCRIPT file type are displayed in the message line. You are
going to use different tab settings, so enter:

====> set tabs 10 30

Now you are ready to begin entering data. Enter:

====> input

The cursor is positioned on the first line of the input zone. Press the PF4 key, and
the cursor moves to the column (10) you specified in the SET TABS subcommand.
Type:

. Telescope

Press the PF4 key again. The cursor moves to column 30. Type:

1608

Press the PF4 key. The cursor moves to column 10 on the next line of the input
zone. Type:

Hot ai r balloon

Press the PF4 key and then type:

1783

Using the PF4 key to move the cursor, type the following:

Margarine 1869
Tranquilizer 1952

Now press the ENTER key. The status area (lower right comer) shows that you are
still in input mode. The data you entered has moved up on the screen, with the last
line you typed becoming the new current line. If you had more data to type, you
could start typing at the cursor position. For now, press the ENTER key to return
to edit mode.

46 VM/SP System Product Editor User's Guide

Practice Exercises

Checkpoint: If you have done everything correctly, your screen
should look like this:

Telescope 1608
Hot air balloon 1783
Margarine 1869
Tranquilizer 1952

Enter:

====> file

Exercise 2. Using Power Typing
This part of the exercise covers the following subcommands: POWERINP, TOP,
BOTTOM, UP, DOWN, /, the PFll key, and the PA2 and insert mode keys.

Your second file will contain a description of the invention of the telescope. Enter:

xedit telescop script

In this file, you will enter the data in power typing mode. Enter:

====> power

In power typing mode, you type continuously, without regard to the length of the
screen line. If you come to the end of a line and you are in the middle of a word,
just keep on typing. The cursor will move to the beginning of the next line. Two of
the words that you type will start on one line and end on the next - "accidentally"
and "mounted".

Now type the following data (with errors):

One day in 1608 held a lens in each hand and peered through both at once, accide
ntally discovering that two lenses placed in line would magnify an image. #He rna
unted lens at each end of a tube and invented the telescope.

Press the ENTER key twice. You are now in edit mode.

Checkpoint: Your file should look like this:

One day in 1608 held a lens in each hand and peered through both at
once, accidentally discovering that two lenses placed in line would
magnify an image.
He mounted lens at each end of a tube and invented the telescope.

The two words that began on one line and finished on the next ("accidentally" and
"mounted") are put back together. The second sentence starts on a new line,
because you typed a pound sign (#) before it. (Remember that a pound sign, the
line end character, causes the data that follows it to start on a new line.)

Obviously, the first sentence is missing some words. One way to insert a long phrase
in a line is to split the line in two. Move the cursor under the "h" in "held". Press
the PFll key, and the line is split. Now type:

Chapter 2. Practice Exercises 47

Practice Exercises

a Dutch spectacle maker named Lippershey

In the second sentence, the word "a" is missing before the word "lens". Move the
cursor under the "1" in "lens". Press the PA2 key, and press the insert mode key.
Type the word "a" and press the spacebar once. The sentence has moved over to
accommodate the added word. Now press the RESET key, to take you out of insert
mode.

Checkpoint: Your file should look like this:

One day in 1608 a Dutch spectacle maker named Lippershey
held a lens in each hand and peered through both at
once, accidentally discovering that two lenses placed in line would
magnify an image.
He mounted a lens at each end of a tube and invented the telescope.

The rest of this exercise will give you practice in moving the line pointer. If your
cursor is not on the command line press PF 12 to bring it down to the command line
and now enter:

====> top

The new current line is the Top of File line. If you wanted to add data at the
beginning of the file in either input mode or power typing mode, you would enter
TOP, followed by either INPUT or POWER.

Enter:

====> bottom

The new current line is the last line of the file. Enter:

====> up 2

The new current line is two lines up, toward the top of file.

Enter:

====> down 2

The new current line is two lines down, toward the end of file.

Now type a / (diagonal) in the prefix area of any line, like this:

==== / or thi s: == /== or tM s: /====

When you press the ENTER key, that line becomes the new current line.

When your file is too big to fit on one screen, you can use the PF7 and PF8 keys
(the BACKWARD and FORWARD subcommands) to scroll the screen.

Enter the following subcommand to write this file to disk or directory:

====> file

48 VMjSP System Product Editor User's Guide

Practice Exercises

Exercise 3. Using Prefix Subcommands
This part covers the RECOVER subcommand and the following prefix
subcommands: a, d, m, and p.

To create this file, enter:

xedit balloon script

Enter:

====> input

Type:

The heat inflated the petticoat and caused it to rise.
The Montgolfier brothers were paper manufacturers.
Hot air from a fire lifted the first balloon.

Press the ENTER key twice to re-enter edit mode.

Let us rearrange these sentences. Type an "M" in the prefix area of the second
sentence, and a "P" in the prefix area of the first sentence, like this:

====p The heat inflated the petticoat and caused it to rise.
===m= The Montgolfier brothers were paper manufacturers.

Now press the ENTER key. The sentences have been reversed.

Type an "a" in the prefix area of the first sentence in the file and press the ENTER
key. Type the following in the blank line you just added:

They realized hot air's ability to float a balloon by accident.

The cursor is at the end of the line you just typed. Without moving the cursor, press
the PF2 key, which adds a new blank line and moves the cursor to the beginning of
it.

Now type:

Jacques' wife washed a petticoat and hung it over a fire to dry.

Type "Sa" in the prefix area of the last line, and press the ENTER key. Type in
anything you want. Now, type "DD" in both the first and last lines you added, like
this:

=dd== This is your first line.

=dd== This is your fifth line.

Press the ENTER key.

Do you really want to keep those lines? If you do, enter:

====> recover '*

Chapter 2. Practice Exercises 49

Practice Exercises

Checkpoint: Your file should look like this:

The Montgolfier brothers were paper manufacturers.
They realized hot air's ability to float a balloon by accident.
Jacques' wife washed a petticoat and hung it over a fire to dry.
The heat inflated the petticoat and caused it to rise.
Hot air from a fire lifted the first balloon.

Enter:

====> file

Exercise 4. Making Changes
This part of the exercise covers the following subcommands: CHANGE, PF5, and
PF6 keys for a selective change.

Enter:

xedit margarin script

Enter:

====> input

Type these lines:

Bitter was expensive and in short supply.
Napoleon sought a substitute for butter that wasn't bitter.
He needed something like bitter that would store well on ships.
He held a contest and offered a prize for the best bitter substitute.

Press the ENTER key twice to reenter edit mode.

Move the line pointer to the first line of the file by entering:

====> up 3

To change the first occurrence of "Bitter," enter:

====> change/Bitter/Butter/

Now you are going to practice using the PF5 and PF6 keys to make a selective
change. You want to change "bitter" to "butter," but not all of the time.

Type the following subcommand in the command line, but do not press the ENTER
key.

====> c/bitter/butter/

Now press the PF5 key. The cursor moves under "bitter" in the second sentence,
and the line is highlighted. The message line tells you that if you want to make the
change, press the PF6 key. This "bitter" is fine, so press the PF5 key again.

In the third sentence, you want to make the change, so press the PF6 key. The
message line tells you that the change has been made.

Press the PF5 key.

50 VMjSP System Product Editor User's Guide

Practice Exercises

Press the PF6 key.

Checkpoint: Your file should look like this:

Butter was expensive and in short supply.
Napoleon sought a substitute for butter that wasn't bitter.
He needed something like butter that would store well on ships.
He held a contest and offered a prize for the best butter substitute.

Enter:

====> file

Exercise 5. GeHing It All Together
This part covers the following subcommands: GET and PUT.

You now have the following files:

inventor script
telescop script
balloon script
margarin script

The following exercise will give you practice in transferring data between files.
Enter:

xedit inventor script

You are going to insert the entire file named TELESCOP SCRIPT at the end of this
file.

To make the last line of this file current, enter:

====> bottom

Now enter:

====> get telescop

You do not have to specify a file type when you GET a file if the file type of the file
you are "getting" is the same as the file you're currently editing.

The message, "EOF reached" tells you that the entire file has been inserted. The
new current line is the last line that was inserted. The file TELESCOP is still on
disk or directory; only a copy of it has been inserted.

Now you are going to insert part of a file into this one.

Enter:

====> xedit balloon

This file now appears on the screen. Notice that the status area indicates that you
are editing two files, that is, two files are in virtual storage.

Chapter 2. Practice Exercises 51

Practice Exercises

You are going to insert lines two and three into the INVENTOR file. Enter:

====> down 2

Enter:

====> put 2

Enter:

====> quit

The INVENTOR file now appears on the screen. Enter:

====> get

Lines two and three from the BALLOON file are inserted; the new current line is the
last line that was inserted.

Now you are going to insert the entire MARGARIN file. Enter:

====> get margarin

The entire file is inserted.

Checkpoint: Your file should look like this:

Telescope 1608
Hot air balloon 1783
Margarine 1869
Tranquilizer 1952

One day in 1608 a Dutch spectacle maker named Lippershey
held a lens in each hand and peered through both at
once, accidentally discovering that two lenses placed in line would
magnify an image.
He mounted a lens at each end of a tube and invented the telescope.
They realized hot air's ability to float a balloon by accident.
Jacques' wife washed a petticoat and hung it over a fire to dry.
Butter was expensive and in short supply.
Napoleon sought a substitute for butter that wasn't bitter.
He needed something like butter that would store well on ships.
He held a contest and offered a prize for the best butter substitute.

You have inserted two whole files and one partial file into another file. This is a
good place to practice prefix subcommands. Using the "A" prefix subcommand,
add lines between the different inventions, and then type headings in those lines.
You can also rearrange the inventions by using the "M" and "p" (or "F") prefix
subcommands. When you are finished, enter:

====> quit

A warning message tells you the file has been changed and to enter QQUIT if you
want to quit anyway. Enter:

====> qquit

52 VMjSP System Product Editor User's Guide

Editing on a Typewriter Terminal

Chapter 3. Using the Editor on a Typewriter Terminal

Editing a File

XEDIT Command

This chapter is primarily written for the person who has limited data processing
experience; however, some VM/SP CMS experience is assumed. For example, you
must know how to log on to VM/SP and enter the CMS environment. You should
also be familiar with the concept of a CMS file.

When you finish this chapter, you should have a working knowledge of the editor.
The subcommands presented here comprise a subset of XEDIT subcommands, with
which you can create a file, enter data, make changes to the file, and transfer data
between files. The editor has many additional capabilities, which are described in
the rest of this book and in the VM/SP System Product Editor Command and Macro
Reference.

This subset has been selected for text processing on a typewriter terminal.

Editing involves changing, adding, or deleting data within a CMS file. The editor
lets you make these changes interactively; you instruct the editor to make a change,
the editor makes it, and then you request another change.

You can edit a file that does not exist; when you do so, you are creating a file.

After you log on to VM/SP and enter the CMS environment, you are ready to enter
the edit environment.

The editor is invoked with the CMS command XEDIT, whose format is as follows:

XEDIT filename filetype

If the file already exists and has a file mode of A, a copy of that file is brought into
virtual storage; then you can use XEDIT subcommands to make changes or
corrections to lines in that file. You enter an XEDIT subcommand by typing the
subcommand and then pressing the RETURN key. (XED IT subcommands, like
CMS commands, can be entered in either uppercase or lowercase, or a combination
of both.)

If the file does not already exist, the editor creates it in virtual storage.

When a subcommand changes a line, the editor displays, or "verifies," the changed
line. The editor also communicates with you by displaying error or information
messages. For purposes of illustration in this chapter, anything displayed by the
editor is enclosed in a box. Subcommands or data that you would enter are not.

Now let us create a simple file. Its file name and file type will be POEM! SCRIPT.
The following command is entered to begin creating the file:

xedit poeml script

Chapter 3. Using the Editor on a Typewriter Terminal 53

Editing on a Typewriter Terminal

Because the file is new, the editor responds with the following messages:

Entering Data
The following subcommands are discussed in this section:

INPUT
QUERY LRECL.

INPUT Subcommand
After you enter the XEDIT command, you are in edit mode. You must be in edit
mode to enter XEDIT subcommands.

However, to enter data in the file, you must be in input mode. Type the following
subcommand and press the RETURN key to enter input mode:

input

The editor displays the following message:

You can then type in the data. Each line that you enter while in input mode is
considered to be a data line and will be written in the file. To end a line, press the
RETURN key; the line will then be inserted into the copy of the file in virtual
storage.

No line can be longer than the logical record length of the file, which varies
according to file type. To find out the logical record length of any file, you can
enter the following subcommand (in edit mode):

query 1 recl

In the examples used here, the file type is SCRIPT, which has a logical record length
of 132. If you type more than 132 characters in a line before pressing the RETURN
key, the editor truncates the extra characters.

N ow let us start typing lines to be entered in the file:

liTHE OCTOPUS,II by Ogden Nash
Tell me, 0 Octopus, I begs,
Is those things arms, or is they legs?

~

I marvel at thee, Octopus;
If I were thou, I'd call me Us.

When you are finished typing data and want to return to edit mode (either to make
changes to the file or to end the editing session), press the RETURN key on a null
line.

S4 VM/SP System Product Editor User's Guide

Column Pointer

Editing on a Typewriter Terminal

The editor comes back with:

XEDIT:

During an editing session, you can enter input mode at any time to insert new lines
of data in the file. After the INPUT subcommand is entered, the editor inserts the
lines you type after the current line. In this example, because the file is new, the
lines are inserted at the beginning of the file. Later, you will see how to make any
line the current line, so that you can insert lines between any two existing lines in a
file.

This is how the data looks in the file. The following two subcommands, which will
be discussed later, display the data entered in input mode:

top

TOF:

type *

TOF: "•....••••...•....• : .:"
~THE oeT~pv~.i' •. bY:·.p~~~n .. ·.·Nas;fv •. :'
Iell ... me ,:. O:9<:~op~~ ·t.;· .~'pe:g$·" ..,
Is those things a:htJsi0r': ~1 ~:: 't~e:y: l;eg$?
Im~rVel.attt:lf~e,O(:to·pus; ...
If I were, thQlh,,·l;'(;l·;¢alt:.llle,:Us; .
EOF:' ,.

Notice that the first letter in each line is underscored. Underscores will only show
on terminals that allow underscoring (like a 2741). This underscore character U is
not contained in the file, and it will not appear on a printed copy of the file. It
represents the column pointer.

Various subcommands perform their editing functions within a line starting at the
column pointer, which you can move to different column positions by using XEDIT
subcommands that will be discussed later. The column under which the column
pointer is positioned is called the current column. In the preceding example, the
current column is column one.

Moving through a File
The following subcommands are discussed in this section:

TYPE
UP
DOWN
TOP
BOTTOM.

When you use the XEDIT command to create a new file, the file is created in virtual
storage. When the XEDIT command calls out an existing file, a copy is brought
into virtual storage. In either case, you can picture the file as a series of records, or

Chapter 3. Using the Editor on a Typewriter Terminal 55

Editing on a Typewriter Terminal

Line Pointer

lines; these lines are available for you to change or delete. You can also insert new
lines following any line that is already in the file.

The line that you are currently editing is called the current line.

Naturally, the line that is current changes as you move up and down in the file to
edit various lines. When the line that is current changes, we say that the line pointer
has moved. Many XEDIT subcommands perform their functions starting with the
current line and move the line pointer when they are finished.

You can change which line is current, that is, you can move the line pointer, by
using the subcommands discussed in this section.

What you do during an editing session is:

1. Position the line pointer at the line you want to edit.

2. Edit the line (change characters in it, delete it, or insert new lines following it).

3. Position the line pointer at the next line you want to edit.

TYPE Subcommand
Many XEDIT subcommands operate either on, or starting with, the current line.
For example, the INPUT subcommand inserts new lines of data after the current
line. Therefore, you often need to determine which line is current so that you can
move the line pointer, if necessary.

To display the current line, enter the TYPE subcommand, whose format is:

TYPE target

To display more than one line, enter the TYPE subcommand with the number of
lines you want to see. For example, the following subcommand displays five lines,
beginning with the current line:

type 5

To display the entire file, you must first position the line pointer at the top of the
file. The following subcommands move the line pointer to the top of the file and
then display the entire file:

top

(moves the line pointer to the top of the file and displays "TOF:")

type *

(displays all the lines in the file)

After the TYPE subcommand is executed, the line pointer is positioned at the last
line that was displayed. For example, if you type the entire file, the null "EOF" line
will become the new current line. Of course, if you type only one (the current) line,
the line pointer will not move.

56 VM/SP System Product Editor User's Guide

Editing on a Typewriter Terminal

UP and DOWN Subcommands
You can move the line pointer up or down one or more lines.

The UP subcommand moves the line pointer toward the beginning of the file and
displays the new current line. Its format is:

UP n

where "n" is the number of lines you want to move the line pointer. If the
number is omitted, "1" is assumed.

The DOWN subcommand moves the line pointer toward the end of the file and
displays the new current line. Its format is:

DOWN n

where "n" is the number of lines you want to move the line pointer. If the
number is omitted, "1" is assumed.

Let us look at the poem file again:

top

(move the line pointer to the top of the file)

type *

(display the whole file)

The TYPE * subcommand displayed the entire file; because the last line displayed by
a TYPE subcommand is the new current line, the "EOF" line is now the current line.

The following subcommands show how the UP and DOWN subcommands move the
line pointer up and down in the file. Each time the line pointer is moved, the editor
displays the new current line.

up 2

(move the line pointer up two lines from the EOF line)

down

(move the line pointer down one line)

Chapter 3. Using the Editor on a Typewriter Terminal 57

Editing on a Typewriter Terminal

To insert new lines of data after any existing file line, you can do the following:

• Enter the UP or DOWN subcommand to move the line pointer to the line after
which you want the data to be inserted.

• Then, enter the INPUT subcommand.

TOP and BOTTOM Subcommands
You can also move the line pointer to the beginning or end of the file.

To move the line pointer to the null "TOF" line that precedes the first line of the
file, enter the following subcommand:

top

To move the line pointer to the last file line, enter the following subcommand:

bottom

To begin entering new lines either at the beginning or the end of a file, you can use
the following sequence of subcommands:

top (or bottom)

input

Then you enter new data lines.

Making Changes in a File
The following subcommands are discussed in this section:

CLOCATE
CFIRST
CINSERT
CDELETE
CAPPEND
CHANGE.

Often, you need to insert or delete characters in a line or change one word to
another. The subcommands discussed in this section let you insert, delete, or change
characters based on the position of the column pointer, which is represented as an
underscore character U when a line is displayed.

CLOCATE Subcommand
The CLOCATE subcommand moves the column pointer to the column where you
want to insert, delete, or change characters.

The CLOCATE subcommand searches a file, beginning with the current fine, for a
character string that you specify. Its format is as follows:

CLOCATE/string/

The character string should be enclosed in delimiters. The diagonal (/) is the
delimiter used in these examples, but it can be any character (except for a plus (+),
minus (-), not (-,), or period (.)) that does not also appear in the character string
(for example, CLOCATE?VM/CMS?).

58 VM/SP System Product Editor User's Guide

Editing on a Typewriter Terminal

If the string is found, two things happen: the line that contains the string becomes
the new current line (and is displayed) and the column pointer moves under the first
character of the string.

For example, in the file shown in the previous example, the subcommands,

top

(move the line pointer to the top of the file)

clocate/legs/

(Ioca te the string)

cause the following line to be displayed:

Notice that the line pointer moved to the line containing the string "legs", and the
column pointer moved under the first character of the string.

CFIRST Subcommand
After using subcommands that move the column pointer, it is a good idea to reset
the column pointer to the beginning of the line. The following subcommand moves
the column pointer to the beginning of the line:

cfirst

For example, in the line shown above, where the column pointer is under the "1" in
"legs," entering a CFIRST subcommmand results in:

CINSERT Subcommand
The CINSERT subcommand inserts characters immediately before the column
pointer.

For example, a file contains the following line:

Note the position of the column pointer, in column one. To insert the phrase
"exactly 29,000 feet" before the word "high," first move the column pointer to the
first character in "high," by using the following subcommand:

clocate/high/

The editor moves the column pointer and displays the line:

N ow you ·can insert the phrase:

cinsert exactly 29,000 feet

Chapter 3. Using the Editor on a Typewriter Terminal 59

Editing on a Typewriter Terminal

The editor inserts whatever you type in the operand of the CINSERT subcommand.
Note that the spacebar was pressed once after the word "feet" so that a blank would
separate "feet" and "high".

The resulting line is displayed:

Let us look at another example. The CLOCATE subcommand moves the column
pointer; then the CINSERT subcommand inserts characters immediately before the
column pointer position.

A file contains the following line:

clocate/,/

(move the column pointer)

cinsert wrong

(insert "wrong" before the column pointer)

(In the CINSERT subcommand, note that there are two spaces between "CINSERT"
and "wrong": one is the required space between the subcommand name and the
operand; one is the blank space needed between "go" and "wrong".)

If only one blank space were used, the result would be the following:

The editor lets you insert blanks with the CINSERT subcommand - simply type the
required number of blanks (by pressing the spacebar) in the operand. For example:

cinsert

(press the spacebar twice: once to separate the subcommand name and operand;
once for the operand.)

60 VM/SP System Product Editor User's Guide

Editing on a Typewriter Terminal

CDELETE Subcommand
The CDELETE subcommand deletes one or more characters from the current line,
starting at the column pointer.

A file contains the following line:

lobe or not., to. be or not to be - that is the question.

The line contains one too many "or not to be". Because deletion starts at the
column pointer, first move the column pointer with the following subcommand:

clocate/or/

Tobe,Qr not to be or not to be - that is thequesti9n.

Then, you can use the CDELETE subcommand to specify the number of characters
to be deleted. Count the number of characters to be deleted, starting with the
current column:

cdelete 13

The resulting line looks like this:

'To,be.Qr not. ttl be ";" .that·.is ··the.qu.~sti'onl,

The CDELETE subcommand entered above specified a "13" as the operand; it
means, "delete 13 characters, starting at the column pointer".

If you did not want to count the number of characters, you could have specified the
operand of the CDELETE subcommand as a character string. For example:

cdelete/or/

When this form of the CDELETE subcommand is used, it means, "delete characters
from the column pointer to the first character of the string specified in the operand."
The result would be the same as the line shown above; the extra "or not to be"
would be removed.

In summary, the CDELETE subcommand removes characters from a line, from the
column pointer to the column position specified in the operand. The operand can be
specified as the number of characters to be removed, or it can be specified as a
character string. After the CDELETE subcommand is executed, the editor displays
the changed line.

CAPPEND Subcommand
The CAPPEND subcommand appends words to the end of the current line.

The format of the CAPPEND subcommand is:

CAPPEND text

where "text" represents the data you want to add to the end of the line.

Chapter 3. Using the Editor on a Typewriter Terminal 61

Editing on a Typewriter Terminal

For example, a file contains the following line:

However, the line should read:

It is an ancient mariner, and he stoppeth one of three.

The following subcommand adds the desired text:
cappend and he stoppeth one of three.

(Two blanks separate the subcommand name and the operand.)

The resulting line looks like this:

Notice that the column pointer has moved to the first character of the appended
text, which was a blank.

CHANGE Subcommand

Changing One Word to Another
Replacing one word with another is the simplest type of change. Use the following
form of the CHANGE subcommand to change the first occurrence of a word in the
current line:

CHANGE/oldword/newword/

For example, the current line in a file contains the following:

change/rose/daisy/

The resulting line looks like this:

Note that the editor automatically makes room in the line for "daisy," even though
it is longer than "rose". Conversely, a word can be replaced by a shorter word; the
editor removes extra blanks.

You can use the CLOCATE and CHANGE subcommands to locate and change any
string in a file. If the line containing the string is the current line, you do not have
to use a CLOCATE subcommand; the CHANGE subcommand both locates the
string and changes it.

62 VM/SP System Product Editor User's Guide

Editing on a Typewriter Terminal

Making a Global Change
If you want to make a global change, that is, change every occurrence of a word, first
move the line pointer to the line where you want the change to begin, and use the
following form:

CHANGE/oldword/newword/ * *

In the following example, the word "rose" is changed to "daisy" every time it
appears. (The line pointer is already positioned at the first line shown.)

change/rose/daisy/ * *

produces the following changes in the file (the editor displays only those lines that
have been changed):

Adai~S', ",.'da~:,s~i;r~:;'~i;;~.~:
,'PJ::d~,tS::k',rS'a ••.. q~l$Y ,,~
1:,9a ts,y'~j. $,;~;chi;i:
.~', dai~S' :t,5 ',~:d~':,

Another variation of the CHANGE subcommand can be used when you want to
change a word throughout the file, but you want to change only the first occurrence
in each line:

CHANGE/oldword/newword/ *

Making a Selective Change
Suppose that you want to change one word to another only some of the time. You
can use repeated executions of the CLOCATE subcommand to scan the file, entering
a CHANGE subcommand only when you want to make the change.

Instead of typing the same CLOCATE subcommand over and over, you can use the
= subcommand, which repeats the last subcommand you entered. Using the =

subcommand saves you the time it takes to retype the subcommand. To enter the =
subcommand, simply type an equal sign (=) and press the RETURN key.

Inserting and Deleting Lines
The following subcommands are discussed in this section:

INPUT line
DELETE
RECOVER
REPLACE.

Chapter 3. Using the Editor on a Typewriter Terminal 63

Editing on a Typewriter Terminal

Inserting a Line
You can insert a single line of data between existing lines by using the INPUT
subcommand followed by the line of data you want inserted. One blank must
separate the subcommand name and the data line.

F or example,

input this is the line I want to insert

inserts a single line following the current line, without leaving edit mode. (If you
want to insert more than one line, you would enter the INPUT subcommand with
no operand to enter input mode.)

To insert a blank line in the file, enter the INPUT subcommand and press the
spacebar at least twice before pressing the RETURN key. A blank line is inserted
after the current line.

For example, if a file contains the following lines:

The current line is the last line displayed above. To insert a title line, enter the
following subcommand:

input liThe Termite,1I by Ogden Nash

Now the file looks like this (TOP and TYPE 6 display the whole file):

To insert a blank line between the poem and the title line, you could enter the
following subcommands:

up

(move the line pointer up one line)

input

(press the spacebar twice before pressing the RETURN key)

Now the file looks like this:

64 VMjSP System Product Editor User's Guide

Deleting Lines

Editing on a Typewriter Terminal

The DELETE subcommand deletes one or more lines from a file, beginning with the
current line.

To delete only the current line, use the form:

delete

To delete more than one line, specify the number of lines in the operand:

delete 5

deletes five lines, including the current line.

To delete the rest of the file, use the form:

delete *

If you want to delete a number of lines, and you do not want to bother counting
how many, you can use the form:

DELETE/string/

Lines will be deleted, starting with the current line, up to (but not including) the line
containing the specified string.

For example, if a file contains the following lines, and the first line shown is the
current line:

The following subcommand:

delete/bread/

deletes all lines from the current line up to, but not including, the line containing
"bread". Therefore, all that is left is:

Lost and Found Department
If you delete one or more lines and change your mind, all is not lost. You can
recover the lines at any time during an editing session with the RECOVER
subcommand.

The following subcommand returns lines deleted in an editing session:

RECOVER n

where n represents the number of lines you wish to recover.

Chapter 3. Using the Editor on a Typewriter Terminal 65

Editing on a Typewriter Terminal

Replacing a Line

The last lines that were deleted are the first lines to be recovered. For instance, in
our previous example of deleting lines, if you entered:

recover 2

you would get the radio and frisbee back:

The recovered lines are inserted starting at the current line. If the lines were deleted
from different places in the file, you have to put them back where they belong by
using the MOVE subcommand, discussed later.

If you want to recover all lines that have been deleted during an editing session, use
the form:

recover *

You have seen how to insert a new line and delete a line, using INPUT line and
DELETE. The REPLACE subcommand does both; it deletes the current line and
replaces it with the text you specify.

The format of the REPLACE subcommand is:

REPLACE text

However, if you enter the REPLACE subcommand with no text, the editor deletes
the current line and automatically places you in input mode.

Moving and Copying Lines
The following subcommands are discussed in this section:

MOVE
COPY.

MOVE Subcommand
Suppose you want to remove some lines from their current location and insert them
in another part of the file. You can use the MOVE subcommand to move one or
more lines, beginning with the current line, to a different location in the file. The
format of the MOVE subcommand is as follows:

MOVE from to

The first operand represents the number of lines to be moved, starting with the
current line. The second operand represents the destination; the line(s) is inserted
after the destination line and is deleted from its original location.

For example, to move the current line three lines down in the file, you can enter the
following subcommand:

move 1 3

66 VMjSP System Product Editor User's Guide

Editing on a Typewriter Terminal

To move the current line and the two lines following it three lines down in the file,
you can enter the following subcommand:
move 3 3

To move a line backward in the file, you can specify a minus (-) sign in front of the
"to" operand. For example,
move 1 -3

moves the current line up two lines in the file. Remember, the "to" operand
represents the line after which a line is to be moved; therefore, if the destination is
~ 3, the line is inserted after that line, or two lines up.

To eliminate the need for counting lines, you can specify the "to" operand as a
character string. The editor searches the file for a line that contains the string and
moves the "from" line(s) after that line.

For example,
move 1 /string/

moves the current line after the line containing the string.

Similarly, you can move a line backward in the file by specifying a minus (-) sign
before the string. For example,
move 1 -/string/

moves the current line backward in the file after the line that contains the string.

Let us look at an example. Suppose a file contains the following lines, and the first
line shown is the current line:

Qecan~

!,!alnLits

The following subcommands would each move the line containing "filberts" (the
current line) after the line containing "chestnuts".
move 1 3 or move 1 /chestnuts/

The resulting file looks like this:

Chapter 3. Using the Editor on a Typewriter Terminal 67

Editing on a Typewriter Terminal

COpy Subcommand
The procedure for copying lines is the same as for moving lines. The COPY
subcommand leaves the originalline(s) in place and makes a duplicate at the
indicated destination.

The format of the COpy subcommand is:

COpy from to

One or more lines, beginning with the current line, are copied after the destination
line.

LPREFIX Subcommand
The LPREFIX subcommand simulates writing in the prefix area of the current line,
even though the prefix area is not available on a typewriter terminal. LPREFIX
performs some of the functions (for example, moving or copying lines) provided by
prefix subcommands and macros on display terminals.

For a description of the LPREFIX subcommand, see the VMjSP System Product
Editor Command and Macro Reference.

Ending an Editing Session
The following subcommands are discussed in this section:

FilE Subcommand

FILE
QUIT
SET AUTOSAVE.

When you use the XEDIT command to create a new file, the file is created in virtual
storage. When you make changes to an existing file, those changes are made to a
copy of the file that is brought into virtual storage (when the XEDIT command is
entered). However, virtual storage is temporary. To write a new or modified file to
disk or SFS directory, for permanent storage, you must enter the following
subcommand:

file

When the FILE subcommand is executed, the file is written to disk or directory and
control is returned to CMS.

QUIT Subcommand
The QUIT subcommand ends an editing session and leaves the permanent copy of
the file intact on the disk or directory. If the file is new, it is not written to disk or
directory.

The format of the QUIT subcommand is as follows:

QUIT

You would use the QUIT subcommand instead of the FILE subcommand when you
edit a file merely to examine, but not to change, its contents, or if you discover you
have made errors in changing a file and do not want them to be recorded.

68 VMjSP System Product Editor User's Guide

Editing on a Typewriter Terminal

When a file is new or has been changed, the editor gives you a warning message to
prevent the inadvertent use of a QUIT instead of a FILE. The message is as
follows:

If you really do not want to save the file, enter "QQUIT" (abbreviated as "QQ"). If
you wish to save the changes, enter "FILE".

SET AUTOSAVE Subcommand
Files on disks or directories are not affected if the system malfunctions. However, a
new file that you are creating or the changes you are making to an existing file might
be lost if the system fails. You can minimize the risk of losing your data by using
the SET AUTOSAVE subcommand, whose format is as follows:

SET AUTOSAVE n

The SET AUTOSA VE subcommand causes your file to be automatically written to
disk or directory after you have typed in or changed a certain number of lines. You
specify what that number will be with the "n" operand of the SET AUTOSAVE
subcommand. If you want the file written to disk or directory, or "saved", every
time you have changed 10 lines, enter the following subcommand:

set autosave 10

The SET A UTOSA VE subcommand can be entered at any time during an editing
session. It is a good idea, however, to enter the subcommand right after you enter
an XEDIT command to create a new file or to call an existing file from disk or
directory.

When a file is saved on disk or directory by the automatic save function, it is written
into a new file. The file name of this file is a number and its file type is
AUTOSAVE. If the system malfunctions during an editing session, you can recover
all changes made up to the time of the last automatic save. To do this, replace the
original file with the AUTOSAVE file using the CMS COPYFILE command with
the REPLACE option. Then, erase the AUTOSAVE file and resume editing.

If you enter a SET AUTOSAVE subcommand while you are creating a new file, and
then enter a QUIT subcommand, the file is not saved. However, the AUTOSAVE
file is still available from disk or directory. If you enter a SET AUTOSAVE
subcommand while you are revising an existing file and then you enter a QUIT
subcommand, no revisions are saved. However, the AUTOSAVE file is still
available from disk or directory.

Inserting Data from Another File
To insert all or part of one file into another, you can use the GET subcommand.
The chapters in this book were created as separate files and then combined into one
file by using the GET subcommand. (A file that you "get" is not destroyed; a copy
of that file is inserted.)

The GET subcommand inserts a file after the current line. Therefore, you must
move the line pointer to the line after which you want to insert a file. If you want to
insert another file at the end of your file, you can use the BOTTOM subcommand to
make the last line current. If you want to insert another file somewhere in the

Chapter 3. Using the Editor on a Typewriter Terminal 69

Editing on a Typewriter Terminal

middle of your file, you can use the UP or DOWN subcommands to make the
desired line current.

Inserting a Whole File
S1.,lppose you were writing a book of poetry, and you created a separate file for each
poem. To combine two of the poems into one file, you would use the following
form of the GET subcommand:

GET filename filetype

When the entire second file has been inserted, the editor displays the following
message:

For example, if you were editing a file called POEM I SCRIPT and wanted to insert
another file called POEM2 SCRIPT, you would enter the following subcommands:

bottom

(move the line pointer to the end of the file)

get poem2 script

(insert the whole file)

Inserting Part of Another File
To insert part of another file, you can specify in the GET subcommand the line
number of the first line and the number of lines you want to insert. The following
GET subcommand inserts the first 10 lines of a second file:

get file2 data 1 10

If you do not know the line numbers, you can: call out a second file without ending
your current editing session; put the lines you want to insert into a temporary file;
and insert them into your current file.

This might sound complicated, but all you need to learn is one more subcommand -
PUT.

First, let us identify the steps you would take to insert part of another file and then
illustrate them with an example.

1. While editing the first file, enter an XEDIT subcommand to call out the second
file. You do not have to end your current editing session, because the editor lets
you edit multiple files simultaneously.

2. Use the PUT subcommand to indicate which lines are to be inserted in the first
file. The PUT subcommand stores lines in a temporary holding area, starting
with the current line, up to an ending, or target, line. Its format is:

PUT target

where "target" identifies the end of a group of lines to be inserted. It is a signal
to the editor to stop "putting" lines.

A target operand can be specified in various ways, which are described in detail
in "Chapter 4: Using Targets." A brief description of two ways to specify a
target follows. They are equivalent; you can choose whichever type you prefer.

70 VM/SP System Product Editor User's Guide

Editing on a Typewriter Terminal

One way to specify the target is to count the number of lines you want to insert,
starting with the current line. For example, if a file contains:

a loaf of bread
a jug of wine
thou
a portable television

and the line containing "a loaf of bread" is current, the following subcommand
stores all four lines:

put 4

Another way to specify the target is with a character string; the editor will "put"
all the lines, beginning with the current line, up to, but not including, the line
containing the string.

For example, the following subcommand will "put" the first three lines, but it
will not "put" the line containing "a portable television".

put/television/

3. Enter a QUIT subcommand to return to your original file.

4. Make sure that the current line is the line after which you want to insert lines
from the second file. Then enter the following subcommand:

get

No operands are required. The lines that were stored by the PUT subcommand
are inserted; the last line inserted becomes the new current line.

The following example illustrates how the PUT and GET subcommands insert part
of a file into another file:

A file, DESSERT COOKBOOK, is being compiled. It contains many recipes,
among which is a recipe for cream puffs with chocolate sauce. The author of the
cookbook keeps a separate file, which contains recipes for sauces, called SAUCES
COOKBOOK. Whenever a recipe requires an accompanying sauce, the author can
select a sauce recipe from the second file and insert it in the first. In this example,
the recipe for chocolate sauce is inserted after the recipe for cream puffs.

xedit dessert cookbook

(Call out the first file.)

clocate/CREAM PUFFS/

(Locate the recipe.)

type 10

(Display the recipe. You could have displayed the whole file by using TYPE *,
but it is not necessary.)

Chapter 3. Using the Editor on a Typewriter Terminal 71

Editing on a Typewriter Terminal

up 1

(Move the line pointer to the line after which you want to insert the sauce
recipe. The editor displays the new current line, which is the blank line between
"HEAVY CREAM" and "ALMOND COOKIES".)

xedit sauces cookbook

(Edit the second file.)

clocate/CHOCOLATE SAUCE/

(Locate the sauce recipe.)

type 10

(Display 10 lines.)

up 10

(Move the line pointer to the beginning of the recipe)

put/VINAIGRETTE/

Lines are stored, beginning with the line containing "CHOCOLATE SAUCE" and
ending with the line preceding the one containing "VINAIGRETTE". The PUT
subcommand could also be entered as PUT 7.

quit

The original file is now being edited.

get

The sauce recipe is inserted.

72 VMjSP System Product Editor User's Guide

Editing on a Typewriter Terminal

The resulting file looks like this:

Using Special Characters

Tab Characters

The following subcommands are discussed in this section:

SET IMAGE.
SET TABS
QUERY TABS.

The SET IMAGE subcommand controls how special characters, once entered on an
input line, are going to be represented in a file. The special characters affected by
the SET IMAGE subcommand are:

• Tab characters (X I 05 ')

• Backspace characters (X I 16 I).

The format of the SET IMAGE subcommand is:

SET IMAGE ON
OFF
CANON

The important thing to remember about tab settings is that there are two kinds:
physical and logical.

Physical tab settings are set manually on the typewriter; each time you press the
TAB key, the type ball moves to the column you set up as the physical tab stop.

Logical tab settings indicate the column positions where fields within a record begin.
They are defined by the SET TABS subcommand, whose format is:

SET TABS nl n2 n3 •••

where nl. .. represents the column numbers for the logical tab settings.

These logical tab settings do not necessarily correspond to the physical tab settings.

How the data is entered in the file when you press the TAB key depends on whether
the SET IMAGE subcommand has been entered with ON or OFF as the operand.

Chapter 3. Using the Editor on a Typewriter Terminal 73

Editing on a Typewriter Terminal

Setting Tabs

(SET IMAGE ON is the initial setting for all file types except SCRIPT, MACLIB,
MODULE, and TEXT.)

If SET IMAGE ON is in effect when you press the TAB key, the logical tab settings
determine how the data is entered in the file. The editor replaces the tab characters
with an appropriate number of blanks, starting at the column where you pressed the
TAB key, and ending at the last column before the next logical tab setting. The next
character entered after the tab becomes the first character of the next field.

For example, if you enter:

set tabs 1 15

and then enter a line that begins with a tab character, the first data character
following the tab is written into the file "'in column 15, regardless of the physical tab
stop on the terminal.

If SET IMAGE OFF is in effect, a tab character is inserted in the record, just as any
other data character is inserted. No blanks are inserted.

If you want to insert a tab character (X I 05 I) into a record and SET IMAGE ON is
in effect, you can enter a SET IMAGE OFF subcommand before entering the line,
and then use the TAB key as a character key. Pressing the TAB key causes a tab
character to be inserted in a line.

When you create a file, default logical tab settings are in effect; therefore, you do not
need to set them. To determine the default tab settings for a particular file type, you
can enter the following subcommand:

query tabs

If you want to change the default tab settings, you can use the SET TABS
subcommand. Then, regardless of what physical tab stops have been set up on your
terminal, when you press the TAB key with SET IMAGE ON in effect, the data you
enter is spaced to the columns you defined.

Note: When the INPUT subcommand is used to enter one line, and SET IMAGE
ON is in effect, the specified line is placed in the file starting in the first tab column
defined by the SET TABS subcommand. For example, if you en.ter:

set tabs 5 10 15 20

and then enter an input line:

input This is the input line

columns 1, 2, 3, and 4 contain blanks; the text begins in column 5.

Therefore, make sure that the first number specified in the SET TABS subcommand
is the column in which you want the data to begin.

Backspace Characters
If you use backspaces and underscores in your file, you should enter SET IMAGE
OFF or SET IMAGE CANON. SET IMAGE CANON is the initial setting for
SCRIPT files.

SET IMAGE OFF means that backspace characters (as well as tab characters) are
left as they are entered.

74 VMjSP System Product Editor User's Guide

Editing on a Typewriter Terminal

SET IMAGE CANON means that regardless of how the characters are typed in
(characters, backspaces, underscores), the editor orders the characters in the file as:
character - backspace - underscore, character - backspace - underscore, and so
forth. If, for example, you want an input line to look like this:

ABC

You could enter it as:

ABC, 3 backspaces, 3 underscores

- or -

3 underscores, 3 backspaces, ABC

A typewriter types out the line in the following order:

A, backspace, underscore
B, backspace, underscore
C, backspace, underscore

which results in:

If you need to modify a line that has backspaces, and you do not want to rekey all
of the characters, you can use the ALTER subcommand to alter all of the
backspaces to some other character. The following sequence shows how you can
delete all of the backspace characters in a line:

AAAAA

alter 16 + 1 *

(alter all X '16"s to + 's in this line)

+A+A_+A_+A_+A

change/_+// 1 *

(change all occurrences of "_ +" to null in this line)

AAAAA

Chapter 3. Using the Editor on a 'typewriter Terminal 75

Editing on a Typewriter Terminal

Summary of XEDIT Subset
This table summarizes the subcommands presented in this chapter. When a
subcommand can be abbreviated, its minimum abbreviation is shown in uppercase
letters.

Function Subcommand

To create or edit a file Xedit

To enter data Input

To display file lines Type

To move the line pointer Down Up TOP Bottom

To move the column pointer CLoca te CFirst

To locate data CLocate

To make changes to the file Change CInsert CDelete CAppend

To recover deleted data RECover

To delete lines DELete

To replace a line Replace

To move lines MOve

To copy lines COpy

To repeat a subcommand =

To control special characters SET IMage

To define logical tabs SET TABS

To display tab settings Query TABS

To display the logical record length Query LRec1

To alter special character ALter

To end an editing session without QUIT
saving the changes

To save automatically after changing a SET AUtosave
specified number of lines

To save the changed file when you FILE
have finished working on it

To store lines in temporary file for PUT,
subsequent imbed in another

To imbed a complete or a partial copy GET
of one file in another

To simulate writing in the prefix area LPrefix
of the current line

76 VMjSP System Product Editor User's Guide

Using Targets

Chapter 4. Using Targets

What Is a Target?
The ability to locate a line from a target is one of the editor's most versatile
functions.

Very simply, a target is a way that you identify a line to the editor. Targets are used
to identify lines for two basic reasons:

• To change which line is the current line

• To define the operating range of a subcommand's execution.

A target can be entered in the following ways:

1. By itself

2. As the operand of the LOCATE subcommand

3. Before any XEDIT subcommand

4. As the operand(s) in many other XED IT subcommands.

When a target is entered either by itself or as the operand of a LOCATE
subcommand, the editor makes the target line the new current line. Entered before a
subcommand, a target causes the editor to make the target line the new current line
before it executes the subcommand.

When a target is entered as the operand of various other XED IT subcommands, it
defines the range of that subcommand's execution. Most XEDIT subcommands
begin their operation with the current line; the target operand specifies where the
operation is to end.

The following XEDIT subcommands have target operands:

ALL
ALTER
CHANGE
COMPRESS
COpy
COUNT
DELETE
DUPLICAT

EXPAND
EXTRACT
HEXTYPE
LOWERCAS
MERGE
MOVE
PUT
PUTD

REPEAT
SET RANGE
SET SELECT
SHIFT
SORT
STACK
TYPE
UPPERCAS

See the VM/SP System Product Editor Command and Macro Reference for a
complete description of the subcommand formats.

There are various ways to specify any given target; all achieve the same result. How
fancy you want to be depends on you. If you are a new user, you can specify targets
in a simple way. As you become more experienced, you can take advantage of the
flexibility that targets offer.

A target can be expressed in the following ways:

• An absolute line number

Chapter 4. Using Targets 77

Using Targets

• A relative displacement from the current line

• A line name

• A simple string expression

• A complex string expression.

You can use one or all of the above kinds of targets during an editing session; you
can even use different kinds of target operands in the same subcommand.

Using a Target to Change Which Line Is Current

A Target Entered by Itself
Look at Figure 21 on page 79. When entered on the command line, any of the
following targets would change the current line to the one shown in the bottom
screen. (The current line is the line above the scale.) All of the following targets are
equivalent; which kind you use depends only on personal preference. How to use
each kind of target is discussed throughout this chapter; the purpose of Figure 21 on
page 79 is to show you that there are various ways to identify any given line to the
editor.

====> :11
(absolute line number)

====> +6
(relative displacement from the current line)

====> .CLAUDE
(line name previously assigned by SET POINT)

====> /egg/
(stnng)

The editor begins searching for the target with the line following the current line; if
the target line is located, it becomes the new current line.

Notice that in the file identification line at the top of the screen, the "Line = "
indicator shows that the current line has changed from line 5 (top screen) to line 11
(bottom screen).

78 VM/SP System Product Editor User's Guide

Using Targets

Figure 21. Using a Target to Move the Line Pointer

Chapter 4. Using Targets 79

Using Targets

A Target as the Operand of a LOCATE Subcommand
The preceding targets could have been specified as operands of the LOCATE
subcommand, like this:

locate : 11
locate +6
locate .CLAUDE
locate /egg/

You do not need to type "LOCATE" unless you want to. A target specified by itself
implies the LOCATE subcommand; the name "LOCATE" is optional.

A Target Preceding a Subcommand
A target can be entered in the command line before any XEDIT subcommand. The
editor first makes the target line the new current line, and then executes the
subcommand. For example:

====> :10 add 5

The editor makes line 10 the new current line and then adds five lines to the file.

This method is equivalent to entering a target, pressing the ENTER key, entering the
subcommand, and pressing the ENTER key. Typing both the target and the
subcommand in the command line and pressing the ENTER key only once saves you
time.

Using a Target as a Subcommand Operand
When a subcommand format shows that an operand can be specified as a target, the
target is usually used to tell the editor how many lines the subcommand is to execute
upon; in other-words, it defines the range of that subcommand's operation. For
example, a format of the UPPERCAS subcommand is:

====> uppercas target

This format means, "starting with the current line, translate all lowercase characters
to uppercase, up to, but not including, the target line." The translation is not
executed on the target line itself. After execution, the last line translated becomes
the new current line.

Figure 22 on page 81 is a before-and-after example of an UPPERCAS
subcommand. When entered on the command line, any of the following
subcommands would effect the translation shown in the bottom screen:

====> uppercas :14
(absolute line number)

====> uppercas +4
(relative displacement from current line)

====> uppercas .STOP
(line name previously assigned)

====> uppercas /sonj
(string)

80 VM/SP System Product Editor User's Guide

Using Targets

Figure 22. Using a Target as a Subcommand Operand

Chapter 4. Using Targets 81

Using Targets

Types of Targets
Let us take a closer look at each of the ways to specify targets.

A Target as an Absolute Line Number
You can display line numbers in the prefix area by entering the following
subcommand:

====> set number on

An absolute line number is represented as a colon (:) followed by the line number,
for example, :10.

The following examples illustrate targets specified as absolute line numbers:

====> :50
Make file line number 50 the new current line.

====> change /A/B/ :20
Beginning with the current line, change "A" to "B" in every line up to, but
not including, line 20.

Figure 23 on page 83 is a before-and-after example of a COUNT subcommand
whose target operand is specified as an absolute line number. The COUNT
subcommand (top screen) means, "beginning with the current line, count how many
times the string 'cone' appears in all lines up to but not including line 14." The
string is counted only if it appears in the file exactly the way it is specified in the
subcommand (in lowercase).

When the ENTER key is pressed (bottom screen), notice that the last line searched
(line 13) becomes the new current line, and the editor displays the message, "2
occurrences," in the message line.

82 VM/SP System Product Editor User's Guide

Using Targets

Figure 23. A Target as an Absolute Line Number

Chapter 4. Using Targets 83

Using Targets

A Target as a Relative Displacement from the Current Line
A relative displacement from the current line is an integer that means the target is a
number of lines, either forward or backward, from the current line. The number
may be preceded by a plus or minus sign, which indicates a forward (+) or
backward (-) displacement from the current line. If the sign is omitted, a plus (+)
is assumed.

A relative displacement may also be specified as an asterisk (*), which means the
Top of File (- *) or End of File (+ * or *) line. When an asterisk is specified as the
target operand of a subcommand, the subcommand executes to the end (or top) of
the file.

Examples:

====> +3
The target is three logical lines down (toward the end of the file) from the
current line.

====> -5
The target is five logical lines up (toward the top of the file) from the
current line.

====> +*
The target is the null End of File (or End of Range) line.

====> -*
The target is the null Top of File (or Top of Range) line.

====> copy +3 :25
Copy three lines, starting with the current line, after line number 25.

In this example, two targets are specified. The first (+ 3) is a relative
displacement from the current line; the second is an absolute line number.

====> delete *
Delete all lines from the current line to the end of the file.

Figure 24 on page 85 is a before-and-after example of a target specified as a relative
displacement. The target typed in the command line, +9, means, "move the current
line nine logical lines forward, toward the end of the file." Notice that line numbers
do not have to be displayed in the prefix area to use this kind of target. However,
the "Line=" indicator in the file identification area shows the old (Line = 10) and
new (Line = 19) numbers of the current line.

84 VM/SP System Product Editor User's Guide

Using Targets

Figure 24. A Target as a Relative Displacement

Chapter 4. Using Targets 85

Using Targets

A Target as a Line Name
Any line in a file can be assigned a name of one to eight characters preceded by a
period (.), for example, .PART2.

You can. use either the SET POINT subcommand or the .xxxx prefix subcommand
to define a name(s) for a line. The SET POINT subcommand defines a name of one
to eight characters, preceded by a period, to the current line. Using the .xxxx prefix
subcommand lets you to define a name for any line in whose prefix area the name is
entered; the name is one to four characters, preceded by a period.

Assigning a name to a line makes it unnecessary for you to look up its line number
or determine its relative displacement. Although the absolute line number of any
given line can change during an editing session as lines are added or deleted from the
file, a name stays with a line for the entire editing session.

A line name is particularly useful if you plan to refer to a line many times during an
editing session. You need to assign the name only once; the line can then be
referenced by its name at any time. It remains in effect only for the current editing
session. Remember to type the line name exactly as it was when originally assigned
to the line; the editor always pays attention to uppercase and lowercase characters
when looking for a line name.

Examples:

1. Using the SET POINT subcommand to name a line:

====> set point .PART2
Assign the name ".PART2" to the current line.

====> top
Move the line pointer to the Top of File line.

====> change /A/B/ .PART2
Change "A" to "B" in every line, starting with the current line (in this
case, the Top of File line) up to but not including, the line named
".PART2."

2. Using the .xxxx prefix subcommand to name a line:

To use the .xxxx prefix subcommand, type a name preceded by a period in the
prefix area of any line on the screen, as illustrated below:

data
data
data

.STOP This is the line I want to name.
data

You can name any line on the screen with the .xxxx prefix subcommand; the line
does not have to be the current line, as it does with the SET POINT
subcommand. After the ENTER key is pressed the assigned name disappears
from the prefix area and is replaced by equals signs or line numbers (depending
on whether SET NUMBER OFF or SET NUMBER ON is in effect). Then,
you can refer to the line by using its assigned name.

Examples of using lines that have been already named:

====> .STOP
Make the line named ".STOP" the new current line.

86 VM/SP System Product Editor User's Guide

Using Targets

====> move 1 .STOP
Move the current line after the line named" .STOP".

Note: After a name is assigned to a line, you must keep track of it. You can enter
the subcommand QUERY POINT to display the name(s) of the current line, or you
can use QUERY POINT * to display all names that have been defined during the
editing session.

Figure 25 on page 88 is a before-and-after example of a DELETE subcommand
that has its target operand specified as a line name. The line that contains "THE
PARSNIP" was previously named ".STOP". The subcommand typed in the
command line means, "beginning with the current line, delete lines up to but not
including the line that has been assigned the name '.STOP'."

Chapter 4. Using Targets 87

Using Targets

Figure 25. A Target as a Line Name

88 VM/SP System Product Editor User's Guide

Using Targets

A Target as a Simple String Expression
A target can be specified as one or more characters, that is, a string, contained in a
file line. The editor looks for the string, making the first line that contains it the
target line.

If the string target is specified alone or as the operand of a LOCATE subcommand,
the line containing the string becomes the new current line. If the string target is an
operand of one of the other XED IT subcommands, the line that contains the string
determines the range of the subcommand's execution.

The string must be enclosed in delimiters, which can ·be any character that does not
appear in the string itself. However, if you use one of the following special
characters as a delimiter, you must also specify a search direction (+ or -): plus
(+), minus (-), not (-,), or period (.). The search direction is explained below.

For example, the following is a string target, entered alone on the command line:

====> /whatever/

This means, "beginning with the line following the current line, search for the string
'whatever' and make the line that contains it the new current line."

The following is an example of a string target used as the operand of a
subcommand:

====> delete /whatever/

This means, "delete all lines from the current line up to, but not including, the line
that contains 'whatever'."

The simplest way to specify a string target, as shown above, is one or more
characters surrounded by delimiters. You can also:

1. Determine the direction of the search
2. Search for a line that does not contain a given string
3. Search for any of several strings.

Specifying a Search Direction
By typing a plus (+) or minus (-) sign before a string target, you can tell the editor
to search for a string in either a forward or backward direction from the current line.

A plus sign in front of a string target means that the search for the string starts at
the line following the current line in a forward direction, toward the end of the file.
If the string is found, the line that contains it becomes the new current line. If a sign
is omitted, a plus is assumed. The following targets are equivalent:

====> /whatever/ and ====> +/whatever/

You can also specify that the search occur backward in the file by typing a minus
sign before the string target.

For example:

====> -/whatever/

means, "search backward in the file, starting with the line preceding the current line,
and make the line containing the string the new current line."

Chapter 4. Using Targets 89

Using Targets

Let us look at some more examples:

====> delete /rosebud/
Delete lines beginning with the current line, up to but not including the line
containing "rosebud".

====> copy /daisy/ -/petunia/
Copy lines starting with the current line, up to but not including, the line
containing "daisy", and insert them after the line containing "petunia",
which is located in a backward direction from the current line.

====> put /Chapter2/
Put lines from the current line, up to but not including, the line that
contains "Chapter2".

Using a "NOT" Symbol (...,)
You can precede any string target with a NOT symbol (-,), which means that the
target is a line that does not contain the specified string. For example:

====> -,/Part Number/
Beginning with the line following the current line, locate a line that does not
contain "Part Number" and make it the new current line.

====> move 1 -,/Part Number/

Using an "OR" Symbol (I)

Move the current line after the first line that does not contain "Part
Number".

A string target can be comprised of multiple strings, separated by an "OR" symbol,
each enclosed in delimiters. The editor searches the file one line at a time. The first
line that contains one of the specified strings becomes the current line. For example:

If a file contains the following lines:

===== apples
===== peaches
===== plums
===== pears
===== oranges

The following subcommand:

====> locate /oranges/I/pears/I/peaches/

will make the following line current:

===== peaches

Using an "AND" Symbol (&)
You can use an "AND" symbol in the same way that you use the "OR" symbol.
The editor searches the file one line at a time and the first line that contains all of
the strings specified becomes the current line. F or example:

If a file contains the following lines:

===== Truffles, Leg of Lamb, Chocolate Mousse
===== Turkey eggs, Leg of Lamb, Savarin
===== Escargot, Leg of Lamb, Bombe

90 VM/SP System Product Editor User's Guide

Using Targets

the following subcommand:

====> locate /Leg of Lamb/&/Bombe/

will make the following line current:

===== Escargot, Leg of Lamb, Bombe

A Summary of Simple String Targets
You have seen how to specify a target as a single string, enclosed in delimiters. You
have also seen how a plus or minus sign, a NOT symbol, an OR symbol, and an
AND symbol can be used to further define a string.

In addition, all of these features can be combined to define a single target, that is, a
single string, enclosed in delimiters, can be preceded by a plus or minus sign and a
NOT symbol. Two or more strings can be separated by OR and/or AND symbols.

Furthermore, if the subcommand SET HEX ON is in effect, a string may be
specified in hexadecimal notation, for example, /X' C3D4E2' /.

The following chart summarizes the format of a simple string expression:

2

[+I-][-,]/stringl[/&[-,]/string2/[I[~]/string3/]] •••
1 2 3 4 5

The search direction is toward the end of the file (+) or toward the top of the
file (-). If the sign is omitted, a plus (+) is assumed.

"NOT" symbol (locate something that is not the specified string)

3 Character (or hexadecimal) string.

4 "AND" symbol (ampersand)(Locate the line containing stringl and string2.)

5 "OR" symbol (vertical bar)(Locate the line containing stringl and string2 or
string3.)

Examples:

====> /horse/
searches downward in the file, beginning after the current line, for the first
line that contains "horse" and makes it the current line.

====> -, /house/
searches downward in the file for the first line that does not contain "house"
and makes it the current line.

====> /horse/ & /house/ 1 /hay/
searches downward in the file for the first line that contains both "horse"
and "house" or that contains "hay," whichever occurs first.

====> /horse/ 1-, /house/
searches downward in the file for the first line that contains "horse" or does
not contain "house".

====> -/X'Cl'/I/X'C2'/
searches upward for the first line containing either or both of the strings
specified here in hexadecimal (if SET HEX ON has been entered).

Chapter 4. Using Targets 91

Using Targets

If SET HEX ON is in effect, the editor locates a line containing "A" or "B."
If SET HEX OFF is in effect, the editor locates a line containing "X I CI'"
or "X I C2 I ."

Figure 26 on page 93 is a before-and-after example of a target specified as a simple
string expression. The target typed in the command line means, "beginning with the
line following the current line, search for a line that either does not contain
'Experience' or for a line that does contain 'experience', and make it the new current
line. "

A Target as a Complex String Expression
A complex string expression has the same format as a simple string expression. A
string can be expressed as a "complex string" by associating it with one or more of
the following SET subcommand options:

SET ARBCHAR
lets you specify only the beginning and end of a string, using an arbitrary
character to represent all characters in the middle.

SET CASE
lets you specify whether or not the difference between uppercase and
lowercase is to be significant in locating a string target.

SET SPAN
lets you specify if a string target must be included in one file line or if it may
span a specified number of lines.

SET V ARBLANK
lets you control whether or not the number of blank characters between two
words is significant in a target search.

You can use one or more of these options to suit your individual text processing
needs. Each of the options is assigned an initial setting by the editor. You can alter
the setting one or more times during an editing session by issuing the appropriate
SET subcommand. (See the publication VMjSP System Product Editor Command
and Macro Reference for a complete description of these SET subcommand options.)

Using a Target with SET ARBCHAR
When SET ARBCHAR ON is in effect, you can use a dollar sign ($), which is the
default arbitrary character, to represent all characters between the beginning and end
of a string target.

Examples:

====> /air$plane/

The beginning of the string is "air"; the end of the string is "plane". The dollar sign
is the arbitrary character and represents any characters between "air" and "plane".
This string target causes the editor to locate either of the following file lines, and
makes current whichever line comes first:

===== The airplane landed.

===== Cold air surrounded the plane.

92 VM/SP System Product Editor User's Guide

Using Targets

Figure 26. A Target as a Simple String Expression

Chapter 4. Using Targets 93

Using Targets

Using a Target with SET CASE
You can specify whether the editor is to respect or ignore the difference between
uppercase and lowercase representations of alphabetic letters by using the SET
CASE subcommand.

The following subcommand tells the editor that uppercase and lowercase
representations of the same letter do not match:

====> set case mixed respect

For example, if a file contains the following line:

===== The Text Editor

The following string target will not locate that line:

====> /the text editor/

On the other hand, the following subcommand tells the editor to ignore the
difference between uppercase and lowercase:

====> set case mixed ignore

With this setup, in the preceding example, the line would be located.

Using a Target with SET SPAN
Usually, a string must be included in a single file line in order to be located. You
can use the SET SPAN subcommand to specify that a string target can span a
specified number of lines and still be located. The line that contains the beginning
of the string becomes the new current line.

In a text file, like a SCRIPT file, a blank separates each file line. The following
subcommand tells the editor that a string target can span two lines, separated from
each other by a blank:

====> set span on blank 2

The string target:

====> /twigs to probe/

would locate in the file:

===== Woodpecker finches of the Galapagos Islands use twigs
===== to probe holes in tree trunks for edible insects.

The string "twigs to probe" begins on one line and ends on the next.

Using a Target with SET VARBLANK
The SET V ARBLANK subcommand controls whether or not the number of blank
characters between two words is significant in a target search.

SET V ARBLANK ON means that the number of blanks between two words can
vary; the number of intervening blanks specified in a string target does not have to
be equal to the number in the file.

F or example:

====> /the house/

would locate either of the following lines in the file:

===== the house

===== the house

94 VM/SP System Product Editor User's Guide

Using Targets

If SET VARBLANK OFF is in effect (the initial setting), the number of blanks
between two words is significant in a target search. In the above example, only the
second line would be located.

Combining the SET Options
You can tailor the SET options, ARBCHAR, CASE, SPAN, and V ARBLANK to
meet your particular text processing needs. For example, with SET ARBCHAR
ON, SET CASE MIXED IGNORE, SET SPAN ON BLANK 2, and SET
VARBLANK ON, you can:

• Specify only the beginning and end of a string target

• Locate a string whether it is in uppercase or lowercase

• Allow the string target to locate a string that starts on one line and ends on
another

• Disregard the number of intervening blanks between two words.

Figure 27 on page 96 is a before-and-after example of using a target specified as a
complex string expression.

The following subcommands were entered:

====> set arbchar on $
====> set case mixed ignore
====> set span on blank 2

The string target typed in the command line locates the line shown in the bottom
screen. The ARBCHAR option lets the beginning and end be specified; the CASE
option lets the string be specified in lowercase even though it appears in the file in
both uppercase and lowercase; the SPAN option lets the beginning and end of the
string be located on two consecutive lines.

Chapter 4. U sing Targets 95

Using Targets

Figure 27. A Target as a Complex String Expression

96 VM/SP System Product Editor User's Guide

Using Targets

Using Column-Targets
The targets discussed so far affect line pointer movement, that is, if the editor locates
the target, the line pointer is moved. However, the column pointer is not moved.
Furthermore, if a target is expressed as a string, only the first occurrence of the
string is located in a line.

The CLOCATE subcommand operates on a specialized operand called a
column-target. This subcommand can be used to locate all occurrences of a string
throughout a file and to move the column pointer. The format of the CLOCATE
subcommand is as follows:

CLOCATE column-target

where the column-target can be expressed as an absolute column number, a relative
displacement from the current column, or a string expression.

The following examples show the various ways to express a column-target. Notice
how the column pointer moves after each subcommand is executed.

Current Line:

===== John Keats studied medicine and practiced as an apothecary.
I ..• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••

====> clocate :6

(absolute column number)

===== John Keats studied medicine and practiced as an apothecary.
< ••• +1 ••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••

Current Line:

===== James Joyce was a school teacher in Dublin.
I ... + •••• 1 .••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••.• 5 •••• + •••• 6 •••• + •••• 7 •••

====> clocate +6

(relative column number)

===== James Joyce was a school teacher in Dublin.
< ••• +.1 •• 1 .•.. + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••

Current Line:

===== Herman Melville worked as a customs inspector in N.Y.C.
I ••• + •••• 1 + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• ·6 •••• + •••• 7 •••

====> clocate /customs/

===== Herman Melville worked as a customs inspector in N.Y.C.
< ••• + •••• 1 .•.. + •••• 2 •••• + ••• 13 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••

Chapter 4. Using Targets 97

Using Targets

Current Line:

===== Charles Dickens served as a law clerk and was a reporter.
I .•• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••

====> clocate /reporter/I/clerk/

(searches for "reporter," even if "clerk" occurs first. If
"reporter" is not found, then searches for "clerk").

===== Charles Dickens served as a law clerk and was a reporter.
< ••• + •••• 1 •••• + •••• 2 •••• + •••• 3 •••• + •••• 4 ••.• + ••• 15 •••• + •••• 6 •••• + •••• 7 •••

The CLOCATE subcommand scans the file, starting with the column following (or
preceding, depending on the search direction) the column pointer in the current line,
for the specified column target, and moves the column pointer to the target, if it is
located. In addition, the line pointer is moved (if necessary), so that CLOCATE can
be used successively to locate all occurrences of a string in a file.

CLOCATE is also necessary because various subcommands perform their operations
based on the position of the column pointer. The CLOCATE subcommand is first
used to position the column pointer; then another subcommand that operates based
on the position of the column pointer can be used.

The following is a list of all subcommands that operate based on the position of the
column pointer.

CAPPEND
Appends text to the end of the current line, and moves the column pointer
under the first character of the appended text.

CDELETE
Deletes one or more characters from the current line, starting at the column
pointer, up to a column-target.

CFIRST
Moves the column pointer to the beginning of the line.

CINSERT
Inserts character(s) in a line, starting at the column pointer.

CLAST
Moves the column pointer to the end of the line.

CLOCATE
Moves the column pointer to a specified column-target.

COVERLAY
Selectively replaces characters in corresponding positions in the current line,
starting at the column pointer; blanks in the operand do not overlay
characters in the file line.

CREPLACE
Replaces characters in the current line, starting at the column pointer;
characters can be replaced with blanks.

These subcommands are discussed in detail in the publication VMjSP System
Product Editor Command and Macro Reference. Column-targets are discussed in that
book in the "Usage Notes" section of the CLOCATE subcommand.

98 VM/SP System Product Editor User's Guide

Using Targets

The following examples illustrate how to use the CLOCATE and CDELETE
subcommands to delete a word:

===== If anything can go wrong, it will.
I ... + •••• 1 •••• + •••• 2 •••• + •••• 3 •.••• + •••• 4 •••• + •••• 5 •••• + ••.• 6 •••• + •••• 7 •••

====> clocate / wrong/

(Move column pointer under first character of string to be deleted.)

===== If anything can go wrong, it will.
< ••• + •••• 1 •••• + ••• 12 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••• + •••• 6 •••• + •••• 7 •••

====> cdelete /,/

(Delete from column pointer up to, but not including, the comma.)

===== If anything can go, it will.
< ••• + •••• 1 •••• + ••• 12 •••• + •••• 3 •••• + •••• 4 .••• + •••• 5 •••• + •••• 6 ••.• + •••• 7 ••.

Chapter 4. Using Targets 99

Using Targets

100 VM/SP System Product Editor User's Guide

Editing Multiple Files

Chapter 5. Editing Multiple Files

The XEDIT Subcommand
When you enter the eMS command XEDIT, a copy of the specified file is brought
into virtual storage, where it remains until you enter a FILE or QUIT subcommand.
In other words, the XEDIT command brings one file at a time into storage. By
entering the XEDIT subcommand during an editing session, you can bring more than
one file into virtual storage at a time.

The format of the XEDIT subcommand is identical to that of the XEDIT command
and is as follows:

====> Xedit [fn [ft [fm]]] [(options ••• [.)]]

For a complete description of the XEDIT subcommand operands, see the VMjSP
System Product Editor Command and Macro Reference.

Creating a Ring of Files in Storage
Multiple files are kept in virtual storage in a "ring." Each time you enter an XEDIT
subcommand with a new file ID, a file is added to the ring and becomes the current
file, which is the file that is displayed.

A file remains in the ring until a FILE or QUIT subcommand is entered for that file;
then the preceding file in the ring is displayed. The number of files you can edit
simultaneously is limited only by your virtual storage size.

Figure 28 illustrates a ring of files in storage.

FILE A

FILE C

Figure 28. A Ring of Files in Storage

By entering the following subcommand, you can display the number of files in the
ring and the file identification line of each file:

====> query ring

Chapter 5. Editing Multiple Files 101

Editing Multiple Files

Editing the Files in the Ring
The order in which you can edit the files in the ring depends on how you specify the
XEDIT subcommand:

• If you enter the XEDIT subcommand without operands, the next file in the ring
appears on the screen. (See Part 1 of Figure 29 on page 103.) Therefore, a
series of XEDIT subcommands entered without operands lets you switch from
the first file to the second, the second to the third, and so forth, all the way
around the ring and back to the first file.

• You can alter this sequence by entering the XEDIT subcommand with the file
ID of a file in the ring. The specified file becomes the current file and appears
on the screen, regardless of its relative position in the ring. (See Part 2 of
Figure 29 on page 103.)

• If you enter the XEDIT subcommand and specify the file ID of a new or
existing file that is not already in the ring, that file is added to the ring just after
the current file and is displayed. (See Part 3 of Figure 29 on page 103.)

Ending an Editing Session
When you are finished editing a particular file, you can enter a FILE or QUIT
subcommand for that file. The file is removed from the ring, and the previous file in
the ring is displayed.

To end the editing session for all of the files and return control to CMS, use the
CANCEL macro, whose format is as follows:

====> cancel

Entering the CANCEL macro is equivalent to entering a QUIT subcommand for
each file in the ring. If any of the files were modified, the usual warning message is
displayed for each of those files:

You can then enter either QQUIT or FILE.

If none of the files being canceled were modified, control is immediately returned to
CMS.

Multiple Logical Screens
Up until now, we have been discussing editing multiple files with one file, the current
file in the ring, displayed at a time. By using the SET SCREEN subcommand, you
can divide the screen into multiple logical screens. The screen can be split vertically,
horizontally, or in a combination of vertical and horizontal segments. You can
display a different file from the ring in each logical screen, or you can display
multiple views of the same file.

Each logical screen looks and functions like an independent terminal with its own
file identification line, command line, and message line. For more information
about multiple logical screens, see the VMjSP System Product Editor Command and
Macro Reference.

102 VMjSP System Product Editor User's Guide

Editing Multiple Files

Current File (*) XEDIT Subcommand New Current File (*)

---> XEDIT

---> XEDIT FILE8

---> XEDIT FILED

Figure 29. Editing Files in the Ring

SET SCREEN Subcommand
Entering the command, SET SCR 2, will split the screen horizontally into two
screens, one on top of the other.

The command SET SCR 2 V, will split the screen vertically into two screens, one
beside the other.

Using the SIZE option with the'SET SCREEN subcommand allows you to create
horizontal screens with the number of lines that you specify. For example, SET
SCR SIZE 14 10, will create two screens, one with 14 lines, and another with 10
lines.

Chapter 5. Editing Multiple Files 103

Editing Multiple Files

Likewise, the WIDTH option is used to specify the number of columns each vertical
screen will contain. If SET SCR WID 25 25 30 is entered, 3 vertical screens are
created, the first with 25 columns, the second with 25 columns, and the third with 30
columns.

The initial setting of the SCREEN option is SCREEN SIZE n, where n is the screen
size.

To return to the initial setting, enter the following subcommand:

====> set screen 1

For more information about this command, see the VMjSP System Product Editor
Command and Macro Reference.

Multiple Views of the Same File
If only one file is in virtual storage and you enter a SET SCREEN subcommand,
identical views of the file appear on the screen.

Figure 30 on page 105 is a before-and-after example of a SET SCREEN
subcommand that creates two views of the same file.

Making Changes from Multiple Views of the Same File
You can edit a file by typing over the data in any of the views, and by entering
subcommands in any of the command lines and prefix areas. You can type related
prefix subcommands in different views of a file, even when different parts of the file
are displayed. For example, you can type a "C" (copy) prefix subcommand in one
view, and a "P" (preceding) prefix subcommand in another view. Changes made to
the file from one logical screen are reflected immediately in all screens.

However, subcommands that control the screen display, for example, FORWARD,
affect only that screen from which they were entered. Therefore, you can see
different parts of a file at the same time.

Similarly, PF keys assigned to screen movement subcommands are executed only on
the view that contains the cursor when the PF key is pressed.

Multiple Views of Different Files
When multiple files are being edited and you enter a SET SCREEN subcommand
that increases the number of logical screens, the additional screens are immediately
filled with files selected from the ring.

Figure 31 on page 107 illustrates how additional logical screens are filled with files
from the ring. The ring of files contains files named FILE 1 and FILE2; the current
file is FILEI. The SET SCREEN subcommand shown in the top screen causes
another file to be displayed.

If a SET SCREEN subcommand decreases the number of logical screens, files are
displayed as long as logical screens are available. Those files for which logical
screens are not available are removed from the display.

Entering an XEDIT subcommand from one of multiple screens is just like entering it
when there is only one screen. It does not affect the other logical screens. In all
cases, the file is displayed only on the screen from which the XEDIT subcommand
was entered.

104 VM/SP System Product Editor User's Guide

Editing Multiple Files

The status area of all the screens displays the number of files in virtual storage, not
the number of screens.

Figure 30. Multiple Horizontal Views of the Same File

Chapter 5. Editing Multiple Files 105

Editing Multiple Files

Order of Processing
You can type over the data, type subcommands on the command line, and type
prefix subcommands and macros in the prefix area of all views of a file(s) before
pressing a key (like the ENTER key) that effects the changes.

The editor processes requests typed on different views in the following order:

1. Changes typed over the data in all the views are made first. Changes are
processed in the order that the data lines appear on the physical screen, from the
top, moving left to right, to the bottom.

2. Prefix subcommands and macros are executed next, as follows:

Prefix subcommands and macros are also scanned in the order that they appear
.. on the virtual screen. As they are scanned, they are placed in a "pending list."

Once the scanning is complete, the pending list is executed. Only one pending
list is maintained for each file, regardless of the number of views of that file. All
views of the file will be updated to reflect the changes.

The pending list is executed from the first view of each file or from the view that
contains the cursor, if any view does. This means that all messages from prefix
subcommands and macros will be displayed in the screen from which the
pending list was executed. Cursor positioning for prefix subcommands and
macros is determined by what lines are displayed in the screen with the cursor.
Note that when multiple files are displayed, one pending list is executed for each
file, and all views reflect the changes. See other CURSOR considerations below.

For more information on the pending list, see Chapter 7 in this book.

3. Subcommands typed on the command lines are executed last and in the
following order:

With multiple horizontal screens, the command lines are processed from the top
view to the bottom view. With multiple vertical screens, the command lines are
processed left to right. With a combination of horizontal and vertical screens,
the command lines are processed in the same order that the screens were defined
in the SET SCREEN DEFINE subcommand.

Cursor Considerations
The cursor remains in the view that contained it when the ENTER key (or P AjPF
key) was pressed. This is true even if a CURSOR subcommand is entered in another
view. If no view of a file contained the cursor (for example, if part of the screen was
left undefined and your cursor was positioned there), then the cursor is placed in the
first logical screen on the screen (the top-most screen for horizontal views, the
left-most screen for vertical views, or the first view defined with SET SCREEN
DEFINE).

You can move the cursor from one logical screen to another by entering SOS
TABCMDF or SOS TABCMDB.

For more information on the SET SCREEN subcommand, see the VMjSP System
Product Editor Command and Macro Reference.

106 VM/SP System Product Editor User's Guide

Editing Multiple Files

Figure 31. Multiple Vertical Views of Different Files

Chapter 5. Editing Multiple Files 107

Editing Multiple Files

108 VMjSP System Product Editor User's Guide

Tailoring the Screen

Chapter 6. Tailoring the Screen

Prefix Area

Command Line

Message Line

Current Line

By using the following SET subcommand options, you can tailor the full-screen
layout to suit your preferences:

SET PREFIX
SET CMDLINE
SET MSGLINE
SET CURLINE
SET SCALE
SET TABLINE
SET COLOR
SET NUMBER.

For a complete description of these options, see the SET subcommand description in
the publication VMjSP System Product Editor Command and Macro Reference.

The areas of the screen that can be changed are discussed below.

Use the SET PREFIX subcommand to control the display of the prefix area. You
can display the prefix area on the left or the right side of the screen, or you can
remove the prefix area from the display or you can set NULLS in the prefix area.
Initially, the prefix area is displayed on the left.

Use the SET CMDLINE subcommand to move the command line to the top (the
second line of the screen), to the bottom (the last line of the screen), or to remove
the command line from the screen. Initially, the command line is the last two lines
of the screen. If you move the command line to the top, bottom, or off, the status
area is not displayed.

With SET CMDLINE TOP (command line on line 2) and the default SET
MSGLINE setting (line 2), a message overlays the command line, including the
arrow. You must press the ENTER or CLEAR key to recover the command line.
To avoid this situation, assign the message line to line I or line 3 when using
CMDLINE TOP.

Use the SET MSGLINE subcommand to define the location of the message line on
the screen, and the number of lines the message may expand to, to avoid clearing the
screen to display the message. It may also be used to override the blank line that is
normally displayed on the screen for messages.

Use the SET CURLINE subcommand to establish the position of the current line on
the screen. Initially, the current line is in the middle of the screen.

Remember that the editor uses the first line of the screen for the file identification
line. Therefore, if you want the current line to be the first available screen line, use
the subcommand SET CURLINE ON 2.

One reason you might want to change the position of the current line is to vary the
size of the input zone. When you issue an INPUT subcommand, the editor provides
an input zone between the current line and the command line. To get a larger input

Chapter 6. Tailoring the Screen 109

Tailoring the Screen

Scale

Tab Line

Color

Number

zone, move the current line higher on the screen; to get a smaller input zone, move it
lower on the screen.

Use the SET SCALE subcommand to move the scale to a specified line, or to
remove the scale from the display. Initially, the scale is positioned under the current
line. If you move the current line, you probably also will want to move the scale.

Use the SET TABLINE subcommand to display, on a specified line, a "T" in every
tab column, according to the current tab settings (as defined by the SET TABS
subcommand). Initially, a tab line is not displayed. If you change the tab settings
during an editing session, the tab line will reflect that change, that is, the "T"s will
be placed in the new tab columns.

Depending on the features supported by your terminal, you can use the SET
COLOR subcommand to associate specific colors, highlighting, extended
highlightings, and programmed symbol set features with various physical locations
on the screen. The physical locations include the arrow, current line, file area, prefix
area, command line, scale line, tab line, file identification line, pending message
display area, shadow line, status area, top of file and end of file lines, and the
message line. Colors associated with those areas can be: blue, red, pink, green,
turquoise, yellow, white, or your default terminal display color. You can accentuate
this capability by using programmed symbol sets' or extended highlighting features
such as blinking, reverse video, and underlining.

For a complete explanation of this function refer to the publication, VMjSP System
Product Editor Command and Macro Reference.

Use the SET NUMBER subcommand to specify whether the prefix area should
contain line numbers. Initially, equal signs are used.

Figure 32 on page 111 through Figure 37 on page 116 illustrate how some of the
subcommands discussed above are used to tailor the screen. Notice how the screen
changes when the subcommand shown in the command line of each screen is
executed.

110 VM/SP System Product Editor User's Guide

Tailoring the Screen

Figure 32. SET PREFIX Subcommand - "Before" and "After"

Chapter 6. Tailoring the Screen 111

Tailoring the· Screen

Figure 33. SET CMDLINE Subcommand - "Before" and "After"

112 VM/SP System Product Editor User's Guide

/

.;·.if~i~~R .. ;.~ ::~eRIP1:. ':<·.Al,:· V,132
>~=~r~·;;·.SEICiJ:~·LINEON,3 '. .
;·;~:.1t·:·*.16P;Rt~tle·*· *.*
fIr' HE~';;

:;':~·l";l. ~~'~i~\;,·.;r;l:·.: ..• ·:::+:
~J:I1E·,~tiN'ARY:::': ...•..

~~~:~~:·::&f:':·t~~,~~l:fr;S~ 

Tailoring the Screen 

Figure 34. SET CURLINE Subcommand - "Before" and "After" 

Chapter 6. Tailoring the Screen 113 



Tailoring the Screen 

Figure 35. SET SCALE Subcommand- "Before" and "After" 

114 VM/SP System Product Editor User's Guide 



Tailoring the Screen 

Figure 36. SET TABLINE Subcommand - "Before" and "After" 

Chapter 6. Tailoring the Screen 115 



Tailoring the Screen 

Figure 37 (Part 1 of 2). SET MSGLINE on Multiple Lines with Overlay 

116 VM/SP System Product Editor User's Guide 



Tailoring the Screen 

Figure 37 (Part 2 of 2). SET MSGLINE on Multiple Lines with Overlay 

Chapter 6. Tailoring the Screen 117 



Tailoring the Screen 

118 VM/SP System Product Editor User's Guide 



The Macro Language 

Chapter 7. The Macro Language 

The macro language is one of the most powerful facilities that the editor provides. 
By writing macros, you can: 

• Expand the basic subcommand language 

• Expand the prefix subcommand language 

• Tailor the language to your own application 

• Eliminate repetitive tasks. 

This chapter explains how to write an XEDIT macro, discusses those XEDIT 
subcommands designed for use in macros, describes an XEDIT macro written for a 
text processing application, explains a profile macro, and explains how to write 
prefix macros. You should be familiar with the Restructured Extended Executor 
(REXX) language, which is described in the VM/SP System Product Interpreter 
User's Guide and the VM/SP System Product Interpreter Reference before you read 
this chapter. 

What Is an XEDIT Macro? 
An XEDIT macro is a REXX file that is invoked from the XEDIT environment. 

(A macro may also be written using the EXEC 2 language; see the VM/SP EXEC 2 
Reference, SC24-5219, for more information. All examples in this chapter are based 
on the REXX language.) 

You execute a macro the same way you execute XEDIT subcommands; type the 
macro name on the command line (or the prefix area) and press the ENTER key. A 
macro may be executed by entering only its name (or synonym), or its execution may 
also depend on arguments you enter when the macro is invoked. 

A macro file can contain: 

• XEDIT subcommands 
• REXX instructions 
• CMS and CP commands. 

Creating a Macro File 
Because an XED IT macro is a normal CMS file, it may be created in any of the 
ways that CMS provides for file creation. It can even be created dynamically, by 
using the XED IT multiple file editing capability (see "Chapter 5. Editing Multiple 
Files"). As soon as a FILE subcommand is executed for the macro file, the macro 
can be used. 

Like any CMS file, a macro file is identified by file name, file type, and file mode. 
The file identifier for a macro file must follow certain rules: 

• For macros entered from the command line, the file name is a string of one to 
eight alphameric characters. This name is used to invoke the macro. For 
example, if the file name is SEND, entering "SEND" during an editing session 
causes the macro to be executed. (For information on the search order and 

Chapter 7. The Macro Language 119 



The Macro Language 

handling file names that contain numbers, see "Avoiding Name Conflicts" later 
in this chapter.) 

Prefix macro file names may be one to eight characters, but they may not 
contain numbers. (Because the prefix area is only five positions long, you can 
define a synonym for a prefix macro file name that is longer than five 
characters. For more information on defining synonyms for prefix macros, see 
"Writing Prefix Macros," later in this chapter, and the SET PREFIX 
subcommand description in the VMjSP System Product Editor Command and 
Macro Reference.) 

• The file type must be XEDIT. 

• The file mode can specify any of your accessed disks or directories, for example, 
AI. 

Using XEDIT Subcommands in a Macro 
A macro can contain any XEDIT subcommand, with the following exceptions: 
prefix macros cannot contain READ, QUIT, FILE, SET RANGE, SORT, and 
LPREFIX. However, some subcommands perform functions that are meaningful 
only in the context of a macro, for example, one that passes information to the 
System Product Interpreter. 

The following list summarizes these subcommands; some are then discussed 
according to function. For detailed information on all of these subcommands, see 
the VMjSP System Product Editor Command and Macro Reference. 

CMS 
CMSG 
COMMAND 
CP 
CURSOR 
EMSG 
EXTRACT 
MACRO 
MSG 
PRESERVE 
READ 

RESTORE 
SET CTLCHAR 
SET COLOR 
SET DISPLAY 
SET MSGLINE 
SET MSGMQDE 
SET PENDING 
SET RESERVED 
SET SCOPE 
SET SELECT 
STACK 

Communicating between the Editor and the Interpreter 
The following subcommands are discussed in this section: 

READ 
EXTRACT. 

Both READ and EXTRACT can supply a macro with information. 

The READ subcommand is used to find out what the user has entered on the screen. 
It places fields that have been changed on the screen in the console stack. Once 
something is in the console stack, it cannot be used by the macro until it has been 
taken out of the console stack. The REXX PULL instruction is used to take 
information out of the console stack and assign it to program variables, which can 
then be examined by the macro. 

120 VM/SP System Product Editor User's Guide 



The Macro Language 

The EXTRACT subcommand can supply a macro with information about internal 
XEDIT variables or about file data. The information is returned in one or more 
variables, which can then be examined or used by the macro. 

The following sections provide examples of using READ and EXTRACT. 

READ Subcommand 
When a READ subcommand is issued from a macro, the editor displays 
"Macro-read" in the status area of the user's screen and waits for the user to enter 
data and/or press a key. (The file image remains on the screen.) After a key is 
pressed, the data is placed in the console stack. 

Operands of the READ subcommand can be used to specify how much information 
is placed in the console stack. The READ subcommand can be used to place either 
the command line or all changed lines in the console stack. In addition, you can 
request that a tag identifying the origin of the line(s) be inserted at the beginning of 
each line stacked. 

Note: If the console stack already contains a line when a READ subcommand is 
issued, the READ is a no-op (no operation takes place). 

A subsequent REXX PULL instruction assigns the data to program variable(s), and 
the macro continues executing. 

The READ subcommand has the following format: 

READ Cmdline Tag I Notag 

Where: 

Cmdline 

All Number Tag I Notag 
Nochange Number Tag I Notag 

only the command line is stacked. 

All 
anything changed on the screen is stacked. 

Nocbange 
same as ALL, but the copy of the file in storage is not updated. 

Number 
changed file lines are prefixed by their line numbers. 

Tag 
tags that identify the origin of chang~d lines precede lines placed in the stack. 

Notag 
no tags are stacked. 

Normally, a macro displays a message requesting that you enter data on the 
command line before it issues a READ. 

F or example: 

MSG ENTER FILENAME FILETYPE FILEMODE 
("ENTER FILENAME FILETYPE FILEMODE" is displayed.) 

Chapter 7. The Macro Language 121 



The Macro Language 

READ CMDLINE 
(User enters MYFILE SCRIPT A in the command line and READ puts it in 
the console stack.) 

PULLFNFTFM 
(Takes the file ID out of the stack and assigns MYFILE, SCRIPT, and A to 
FN, FT, and FM, respectively.) 

The EXTRACT Subcommand 
The EXTRACT subcommand returns information about editing options (options 
defined by the SET subcommand) as well as other file data that is not explicitly 
"set." The information is returned as one or more variables in the form "name.n", 
where "name" is the same as the variable requested and "n" is a subscript that 
distinguishes the different values returned for each option requested. 

For example, if a macro wants information about the case setting it can issue: 

extract ICASEI 

This returns information about the contents of the case setting in the following 
variables: 

CASE. a 
CASE. 1 
CASE. 2 

number of variables returned 
MIXED!UPPER 
RESPECT! IGNORE 

The macro could use this information as follows: 

msg "The current case setting is" case.1 case.2 

Displaying Data on the Editor's Screen 
The following subcommands are discussed in this section: 

MSG 
EMSG 
CMSG 
SET MSGMODE 
SET RESERVED 
SETCTLCHAR 
CURSOR. 

MSG, EMSG, and CMSG Subcommands 
A macro can communicate with the user by displaying messages in the message line 
of the screen. Messages are used for various reasons, for example, requesting the 
user to enter data,.telling a user that an error has occurred during processing, and so 
forth. 

The following two subcommands display a message in the message line of the screen: 

MSG 
displays a message in the message line. 

EMSG 
displays a message in the message line and sounds the alarm. 

F or example: 

msg ENTER FILE NAME 
Displays "ENTER FILE NAME" in the message line. 

122 VM/SP System Product Editor User's Guide 



The Macro Language 

emsg MISSING OPERANDS 
Displays "MISSING OPERANDS" in the message line and sounds the alarm. 

Note: REXX also provides an instruction, SAY, that displays one line of data at 
the terminal. However, the SAY instruction causes the screen to be cleared before 
the data is displayed. 

The XEDIT subcommands MSG and EMSG keep the file image on the screen and 
display the data in the message line. Therefore, you should use them instead of SAY 
in a macro. 

The following subcommand displays a message in the command line of the screen: 

CMSG 

When issued from a macro, the CMSG subcommand can be used to redisplay input 
that the user has entered incorrectly, so that it can be corrected and reentered. 

SET MSGMODE Subcommand 
The SET MSGMODE subcommand is used to control whether or not messages are 
displayed: 

set msgmode on All messages are displayed. 
set msgmode off No messages are displayed. 

By turning the message mode on and off during a macro, you can select when you 
want messages to be displayed. 

SET RESERVED Subcommand 
When issued from a macro, the SET RESERVED subcommand reserves a specified 
line on the screen for use by the macro, thereby preventing the editor from using 
that line. The line can be used for displaying blank or specified information, which 
can optionally be displayed in various ways for emphasis. For example, depending 
on the features supported by your terminal, the line can be displayed highlighted, 
using a programmed symbol set, in various colors, or with extended highlighting 
features (blinking, reverse video, or underlining). 

For example, the following subcommand: 

set reserved 10 HIGH YOU CANIT USE THIS LINE. 

displays, on the tenth line of the. screen, "You can't use this line." The line is 
highlighted. 

Another example of SET RESERVED is shown with SET CTLCHAR, discussed 
below. 

SET CTLCHAR Subcommand 
The SET CTLCHAR subcommand is used to specify attributes for fields within a 
reserved line. Depending on the features supported by your terminal, these fields 
may be displayed highlighted, protected, invisible, in various colors, using different 
programmed symbol sets, or with extended highlighting features (blinking, reverse 
video, or underlining). 

In the following example, note how SET RESERVED and SET CTLCHAR are used 
to control exactly how the reserved lines are displayed. 

Chapter 7. The Macro Language 123 



The Macro Language 

/* This XEDIT macro will show examples of using SET CTLCHAR */ 
'SET CTLCHAR % ESCAPE I 

'SET CTLCHAR + PROTECT BLUE REVVIDEO NOHIGH ' 
'SET CTLCHAR J NOPROTECT GREEN UNDERLINE NOHIGH ' 
'SET RESERVED 3 YEL HIGH This is Yellow%+And this is Blue and Reversed. I 

'SET RESERVED 5 RED BLINK NOH Red and Blinking%JGreen and Underlined. I 

CURSOR Subcommand 
The CURSOR subcommand can be used to move the cursor to a specified position 
on the screen, and optionally, to assign a priority to that position. For example, the 
editor has a macro called SCHANGE, which looks for a string and moves the cursor 
under the string if it is found. For an example of using the CURSOR subcommand, 
see "Positioning the Cursor," later in this chapter. 

Saving and Restoring Editing Variables 
The PRESERVE subcommand is used to save the settings of various editing 
variables until a subsequent RESTORE subcommand is issued. For example, you 
might want to preserve a setting so that you can change it for the duration of the 
macro, and restore it before the macro finishes executing. For a complete list of the 
variables affected, refer to the PRESERVE subcommand description in the 
publication VM/SP System Product Editor Command and Macro Reference. 

Entering CMS and CP Commands 
As you have seen, an XEDIT macro can contain XEDIT subcommands, REXX 
instructions, and CMS and CP commands. CMS and CP commands can be issued 
as operands of the XEDIT subcommands CMS and CP, respectively. 

F or example: 

CMS ERASE FILEA SCRIPT 

(CMS and CP commands can also be issued by using the REXX instructions, 
ADDRESS CMS or ADDRESS COMMAND.) 

Note: If, from the XEDIT environment, you invoke a CMS exec that then uses the 
ADDRESS XEDIT instruction to call other CMS execs from the XEDIT 
environment, your routine may terminate abnormally due to a lack of storage. To 
avoid this problem when these circumstances arise, use the ADDRESS XEDIT 
instruction only to invoke XEDIT macros (that is, files with file types of XEDIT), 
not to invoke CMS execs. 

Avoiding Name Conflicts 
The following subcommands are discussed in this section: 

COMMAND 
MACRO 
SET MACRO 
SET SYNONYM 

Use the COMMAND subcommand to cause the editor to execute a specified 
subcommand without first checking to see if a synonym or macro with the same 
name exists. This subcommand overrides SET SYNONYM ON or SET MACRO 
ON (discussed below). 

124 VM/SP System Product Editor User's Guide 



The Macro Language 

For example: 

COMMAND PRESERVE 

executes the PRESERVE subcommand, even if a synonym or macro with the same 
name exists. 

Similarly, use the MACRO subcommand to cause the editor to execute a specified 
macro without first checking to see if a subcommand of the same name or a 
synonym exists. (Of course, this cannot be used for prefix macros.) 

The MACRO subcommand can also be used to avoid name conflicts, in the 
following manner. When a subcommand has a number as its operand, a blank is 
not required between the subcommand name and the operand.· For example, both 
"NEXT8" and "N8" are interpreted by the editor as being the subcommand "NEXT 
8". Therefore, if a macro name were also "N8," the macro would not be executed; 
the subcommand "NEXT 8" would be executed instead. To execute the macro, you 
could enter the following: 

MACRO N8 

The macro whose name is "N8" would then be executed. 

The SET MACRO subcommand can be used to control the order in which the editor 
searches for subcommands and macros. SET MACRO ON tells the editor to look 
for macros before it looks for subcommands; SET MACRO OFF reverses the order. 

In addition, SET SYNONYM can be used to specify whether or not the editor looks 
for synonyms. 

Walking through an XEDIT Macro 
The following XEDIT macro, (Figure 38 on page 127) is an example of the type of 
macro you might write to make life a little easier. The application is typical of a 
text processing file arrangement, where many SCRIPT files are imbedded in a master 
file, via the SCRIPT control word ".im". 

The problem with this type of setup is that if you have to make a global change 
throughout all the files, you have to edit each file, make the change, and then file 
each file. 

When issued from the master file, this macro edits each file, performs a global 
change, and files it. 

The macro is invoked by entering the macro name, GLOBCHG. The arguments 
passed to the macro are the old data and the new data, enclosed in delimiters: 

GLOBCHG /stringl/string2/ 

For example, if a file called MASTER SCRIPT contains: 

.im FILEl 
• im FILE2 

• im FILElee 

Chapter 7. The Macro Language 125 



The Macro Language 

and the following commands are issued: 

XEDIT MASTER SCRIPT 

GLOBCHG/WAR AND PEACE/SENSE AND NONSENSE/ 

"WAR AND PEACE" is changed to "SENSE AND NONSENSE" each time it 
occurs in every file. (In this macro, no attempt is made to execute the change on 
files that may be imbedded at the next level.) 

The GLOBCHG macro can also be used to delete data throughout the files, by 
changing a string to a null string, for example: 

GLOBCHG /bad data// 

The following is a listing of the macro, whose file ID is GLOBCHG XEDIT AI. 
After the listing, each line in the macro is explained. For more information on the 
System Product Interpreter statements used in the macro, see the publication VMjSP 
System Product Interpreter Reference. 

126 VM/SP System Product Editor User's Guide 



eeeel /* Do a global change on imbedded Script files */ 
eeee2 /* Input to this macro is the CHANGE command to be executed on */ 
eeee3 /* the file currently being xedited and on any files it imbeds. */ 
eeee4 parse arg operand /* Get passed CHANGE cmd */ 
eeee5 if operand = " then do /* If omitted, then error */ 
eeee6 emsg 'EXE545E Missing operand(s}, /* Give error message */ 
eeee7 parse source .. me • /* Get this macros name */ 
eeee8 cmsg me /* Put it on command line */ 
eeee9 exit /* Leave this macro */ 
eeele end /* End of DO group */ 
eeell preserve /* Save current status */ 
eee12 set wrap off /* Set wrap off * / 
eee13 set msgmode on /* Set message mode on */ 
eee14 set case mixed ignore /* Set proper case */ 
eee15 top /* Go to TOP of file */ 
eee16 find .im /* Find first imbed file */ 
eee17 if rc ~= e then do /* If none found, give msg */ 
aee18 restore /* Restore previous status */ 
aee19 emsg 'No IMBED found.' /* Give message */ 
aee2e exit /* Leave this macro */ 
aee21 end /* End of DO group */ 
aee22 do while rc=e /* Imbed found, process it */ 
aee23 extract '/curline/' /* Get current line */ 
eee24 parse upper var curline.3 . fname. /* Separate out file name */ 
eea25 address command state fname 'SCRIPT *'/* Does this file exist? */ 
eee26 if rc ~= e then do /* If not, issue message */ 
eee27 msg 'IMBEDed file' fname 'SCRIPT does not exist, bypassed.' 
eee28 find .im /* Search for next imbed */ 
eee29 iterate /* Cause next loop iterat'n*/ 
eee3e end /* End of DO group */ 
eee31 xedit fname 'SCRIPT (NOPROFILE' /* File exists, XEDIT it */ 
eee32 extract '/fname/ftype/fmode/' /* Get name, type, mode */ 
eee33 msg 'Processing file' fname.l ftype.l fmode.l /* Issue message */ 
eee34 change operand '* *' /* Issue CHANGE command */ 
eee35 file /* Save the file & quit */ 
eee36 find .im /* Find the next imbed */ 
eee37 end /* End of DO loop */ 
eee38 restore /* Loop ends, restore */ 
eee39 msg 'No more .imbeds found, global change completed.' /* Give msg */ 
eee4e exit /* All done, leave macro */ 

Figure 38. Sample Macro 

Now, let's walk through the macro, a line at a time. 

The Macro Language 

00001-00003 /* Do a global change on imbedded Script files * / 
System Product Interpreter comment lines. The first line of any REXX macro 
must be a comment line to tell the Interpreter this is a REXX file. 

Chapter 7. The Macro Language 127 



The Macro Language 

00004 parse arg operand 
Place the passed arguments into the variable called OPERAND. 

00005 if operand = I I then do 
If no arguments were entered when the macro was invoked, execute the 
following statements until an END is reached (DO group). (OPERAND was 
set to a null in line 4.) 

00006 emsg 'EXE545E Missing operand(s)' 
Display this message. 

00007 parse source •• me . 
Look at the source string and place the name of this macro into the variable 
ME. 

00008 cmsg me 
The macro name (in the variable ME) is displayed on the command line. 

00009 exit 
Return control to the editor. 

00010 end 
This statement signals the end of the DO group that began in line 5. 

00011 preserve 
This subcommand saves the editor settings until a subsequent RESTORE 
subcommand is issued (line 38). 

00012 set wrap off 
Wrapping during the target search is turned off. When the end of the master 
file is reached the macro will end, rather than wrapping around, searching for 
".im," and getting caught in a loop. 

00013 set msgmode on 
Messages will be displayed. By turning the message mode on and off, you can 
select which messages you want displayed. 

00014 set case mixed ignore 
In target searches, uppercase and lowercase representations of the same letter 
will match. 

00015 top 
Move the line pointer to the top of the master file, which is the file from which 
the macro was invoked. 

00016 find .im 
Search forward in the master file for the first line that contains ".im" in 
column 1, that is, locate the first line that imbeds a file. 

00017 if rc ...., = 0 then do 
If there is a non-zero return code from the FIND subcommand, no "im." was 
found, (previous statement), then do the following statements up to the END 
(another DO group). 

00018 restore 
Restore the settings of XEDIT variables to the values they had when the 
PRESERVE subcommand was issued (line 11). 

00019 emsg 'No IMBED found.' 
Display this message. 

00020 exit 
Return control to the editor. 

128 VMjSP System Product Editor User's Guide 



The Macro Language 

00021 end 
This statement signals the end of the DO group that was started in line 17. 

00022 do while rc = 0 
Repeat the following statements (up to the END in line 37), as long as the 
return code (RC) is O. The initial value for RC is set by the FIND 
subcommand in line 15; we reach this point only if RC was set to 0, which 
means an imbedded file was found. The last statement in this loop is also a 
FIND subcommand, and RC will be reset to the return code for that FIND 
subcommand just before we return to this point to execute the statements 
again. When the return code is not 0, this macro will continue with the 
statement following the END (line 37). 

00023 extract' /curline/, 
Return information about the current line in macro variables, in the form 
"curline.n," where the subscript distinguishes among the variables. 

00024 parse upper var curline.3 . fname . 
CURLINE.3 contains the contents of the current line (as returned by the 
EXTRACT subcommand above). In this case the current line is the .im 
statement that was found via a "find .im". This statement takes the second 
blank delimited word from the variable CURLINE.3 and puts it into the 
variable FNAME. 

00025 address command state fname I SCRIPT * I 
The STATE command is a CMS command that verifies the existence of a file. 
This statement checks to see if the file named in the .im statement exists. The 
quotes are needed around the asterisk to avoid confusion with the REXX 
multiplication operator. Enclosing the word SCRIPT and the asterisk in 
quotation marks makes it a literal string. 

00026 if rc ..., = 0 then do 
If the return code from the STATE command is not zero, then do the 
following statements up to the END statement in line 30 (DO group). 

00027 msg 'IMBEDed file' fname 'SCRIPT does not exist, bypassed.' 
Display this message. REXX will substitute the value of "fname" in the 
message before it is displayed. 

00028 find .im 
This locates the next imbed control word in the file. 

00029 iterate 
This statement tells REXX to go to the END statement and complete the 
processing for this iteration of the DO loop. 

00030 end 
This statement signals the end of the DO group that was started in line 26 
above. 

00031 xedit fname 'SCRIPT (NOPROFILE' 
This statement will invoke the editor (XED IT) for the file specified. REXX 
will substitute the value of "fname" in this line before passing it to XEDIT. 

00032 extract' /fname/ftype/fmodel' 
Returns the file name, file type, and file mode in macro variables. 

00033 msg 'Processing file' fname.l ftype.1 fmode.l 
Displays the message, with the file identification as returned by EXTRACT. 

Chapter 7. The Macro Language 129 



The Macro Language 

00034 change operand '* *' 
The global change is executed. OPERAND contains the arguments entered 
when the macro was invoked (see line 4). 

00035 file 
The changed file is written to disk or directory. 

00036 find .im 
The. editor resumes editing the master file, searching for the next 4' .im" 
statement. 

00037 end 
This statement signals the end of the DO loop that was started in line 22. 

00038 restore 
Restore the settings of XEDIT variables to the values they had when the 
PRESERVE subcommand was issued (line 11). 

00039 msg 'No more jmbeds found, global change completed.' 
Display this message. 

00040 exit 
Return control to the editor. You can then issue a QUIT subcommand for the 
master file. 

A Profile Macro for Editing 
As a CMS user, you are familiar with a PROFILE EXEC macro, which contains the 
CMS and CP commands you normally issue at the start of a terminal session and is 
executed automatically after you issue the IPL CMS command. 

The editor offers a similar profile capability with a PROFILE XEDIT macro, which 
contains XED IT subcommands that tailor each editing session to suit your needs 
and is executed automatically after you issue an XEDIT command (or 
subcommand). 

Executing a Profile Macro 
The file type of an XEDIT profile macro must be "XEDIT". If the file ID is 
PROFILE XEDIT, the macro is executed automatically when an XEDIT command 
(or subcommand) is issued. You can write a PROFILE XEDIT macro, file it, and 
forget about it. It will be executed before each file is brought into storage. 

If you do not want a PROFILE XEDIT macro to be executed for a particular 
editing session, you can issue the following XEDIT command: 

XEDIT fn ft (NOPROFILE 

The PROFILE XEDIT macro is bypassed, and the file is brought into storage. 

Although the file type of a profile macro must be "XEDIT," the file name does not 
have to be "PROFILE". If your profile macro has a name other than "PROFILE," 
you must indicate its file name in the PROFILE option of the XED IT command. 

For example, if the file ID is MYPROF XED IT, you must issue the following 
XEDIT command: 

XEDIT fn ft (PROFILE MYPROF 

The macro labelled MYPROF XEDIT is executed, even if a macro labelled 
PROFILE XEDIT exists. 

130 VMjSP System Product Editor User's Guide 



The Macro Language 

Writing a Profile Macro 
A profile macro can be as simple or complex as you wish. Like any macro, it can 
contain System Product Interpreter statements, CMS and CP commands, and any 
XEDIT subcommands or macros. It usually contains one or more SET 
subcommands that create an editing environment to your liking. 

It can also contain a LOAD subcommand, which can be issued only from a profile 
macro. When the profile macro begins execution, a copy of the file has not yet been 
brought into virtual storage. Therefore, a LOAD subcommand, which has the same 
format and options as the XEDIT command, can be used to supply editing options 
that are not specified in the XEDIT command itself. 

Within the profile macro, the LOAD subcommand must be the first XEDIT 
subcommand. If it is not, a LOAD subcommand is automatically issued by the 
editor; its operands are the same as those issued in the XED IT command. (System 
Product Interpreter statements and CMS commands can be issued before the 
LOAD.) 

The profile macro can be used to prompt the user for XED IT command options or 
to assign values to editing variables before issuing the LOAD subcommand. For 
example, a SCRIPT user might program his profile to use a LOAD subcommand 
that does defaulting of file type. 

The options specified in the LOAD subcommand have a lower priority than those 
specified in an XEDIT command. For example, an UPDATE option specified in 
the LOAD subcommand would be overridden by a NOUPDATE option specified in 
the XEDIT command. 

When the LOAD subcommand is executed, the file is brought into virtual storage. 

If the LOAD fails, a non-zero return code is generated. All subsequent 
subcommands in the profile macro are rejected with a unique "6" return code. 

For detailed information on the LOAD subcommand, refer to the publication 
VM/SP System Product Editor Command and Macro Reference. 

An Example of a Profile Macro 
An example of a profile macro is shown in Figure 39 on page 132. 

Chapter 7. The Macro Language 131 



The Macro Language 

00001 /* Sample XEDIT profile 
00002 parse arg fn ft I (' options 
00003 if ft = I I then ft = I SCRIPT I 
00004 load fn ft I (I options 
00005 set tabline on 22 
00006 set scale on 22 
00007 set fullread on 

*/ 
1* put arguments into variables * / 

/* if no file type, use SCRIPT * / 
/* issue LOAD statement * / 

/* put tab line on line 22 * / 
/* put scale on line 22 * / 
/* full-screen read on * / 

00008 set nulls on /* end of line nulls on * / 
00009 set number on /* line numbers to be used * / 
00010 set pflO save /* PFI0 to SAVE */ 

/* when my fingers don't work * / 00011 set synonym fiel 4 file 
00012 exit /* exit this macro * / 

Figure 39. A PROFILE XEDIT Macro 

00001 /* Sample XEDIT profile * / 
Identifies the macro as a System Product Interpreter file. 

00002 parse arg fn ft '(' options 
Puts argument into variables. 

00003 if ft = "then ft = 'SCRIPT' 
If there is no file type assigned, this will assign a file type of SCRIPT. 

00004 load fn ft '(' options 
Loads the file. 

OOOOS set tabline on 22 
Sets the tabline on line 22 of the screen. 

00006 set scale on 22 
Superimposes the scale on line 22 of the screen. 

00007 set fullread on 
Sets the full-screen read on to allow recognition by XEDIT of 3270 null 
characters in the middle of the screen lines. 

00008 set nulls on 
Sets NULLS ON to replace all trailing blanks with nulls. 

00009 set number on 
Sets NUMBER ON to assign a line number to each line in the file. 

00010 set pflO save 
Sets PFI0 to save the file. 

132 VM/SP System Product Editor User's Guide 



The Macro Language 

00011 set synonym fiel4 file 
Sets a synonym "fiel" for the subcommand "file". 

00012 exit 
Exit the macro. 

Writing Prefix Macros 
You can write prefix macros for a variety of purposes, from performing a function 
from the prefix area that is normally accomplished by entering a subcommand on 
the command line, to creating an entirely new function. 

You must be familiar with the REXX language before reading this section. More 
information on REXX can be found in the publications cited at the beginning of this 
chapter. 

Creating a Sample . Prefix Macro 
The U prefix macro gives the user the ability to translate one or more lines in a file 
to uppercase, which normally is accomplished by issuing the UPPERCAS 
subcommand in the command line. When U is entered in the prefix area of a line, 
that line is translated to uppercase. A number may be specified before or after the 
U to translate more than one line; for example, 3U = = = or = U5 = =. 

The file is created with the XEDIT command: 

XEDIT U XEDIT 

The U prefix macro looks like this: 

eeeel /* This macro translates a line(s) to uppercase. */ 
eeee2 arg • ~ pline op • 
eeee3 If op = "then op = 1 
eeee4 'COMMAND :'pline 'UPPERCAS' op 
eeees Exit e 

What Information Is Passed to the Macro? 
An argument string is automatically passed to a prefix macro when it is invoked. It 
can supply a macro with information critical to its execution, like the line number of 
the prefix area in which the macro was entered. 

Line 2 (above) is a REXX statement that parses (splits up) the string, according to 
the template shown. (The argument string is described in greater detail later in this 
chapter.) Pline represents the line number of the prefix area, and op represents the 
optional operand. These variable names provide the macro with answers to the 
following questions: 

On which line was the macro entered?· 
How many lines are to be translated to uppercase? 

Chapter 7. The Macro Language 133 



The Macro Language 

Line 3 determines if an operand was entered. If the operand is null, a default of 1 is 
assumed. 

Line 4 makes the line in which the prefix macro was entered (pline) the, new current 
line and then issues the UPPERCAS subcommand, with the operand. 

Current Line Positioning 
Note that in line 4, :pline is an absolute line number target. It is used to make the 
prefix line (pline) current for the UPPERCAS subcommand, which operates on the 
current line. 

After the pending list is finished executing, the current line is returned automatically 
to the line that was current when it began execution. Therefore, even though p/ine is 
made current for the UPPERCAS subcommand, the macro need not restore the 
current line. 

For information on overriding this automatic current line return, see the SET 
PENDING subcommand in the VMjSP System Product Editor Command and Macro 
Reference. 

Creating a Second Prefix Macro 
Let's create another prefix macro called L, which gives the user the ability to 
translate one or more lines in a file to lowercase, which normally is accomplished by 
issuing the LOWERCAS subcommand in the command line. This macro is similar 
in function to the U macro described above; however, we will give the user the 
additional ability of specifying a block of lines to be translated, by entering LL on 
both the first and last lines of the block. 

This macro is presented in segments, to illustrate various concepts. The entire macro 
is shown at the end of this chapter. 

Examining the Source String 
You have already seen that an argument string is passed to a prefix macro when it is 
invoked. A source string is also passed. 

eaaa7 parse source • • • • • name • 
eaaaa arg pref func pline op extra 

Line 7 parses the source string according to the template shown. In this example, 
we're using the source string to get the name of the prefix macro as the user entered 
it (without operands). Later, you will see how the macro uses name to determine if 
it was invoked in its simple form (L) or block form (LL). 

The source string is described in detail in the VMjSP System Product Interpreter 
Reference, under "Parse Source." 

In line 8, the argument string is parsed. For now, note that pline is the line number 
of the prefix area, and op is the optional operand. 

134 VM/SP System Product Editor User's Guide 



The Macro Language 

The rest of the argument string is described later in this chapter, under "Examining 
the Argument String." 

In this example, if L8 were entered in the prefix area of line 3 of a file, name would 
be L, pline would be 3, and op would be 8. 

Using the Information That Is Passed 
The following part of the macro shows how some of the information derived from 
the strings is used. 

eeee7 parse source • • • • • name • 
eeeea arg pref func pline op extra 

eee19 when length(name)=l then do 
eee2e If op = II then op = 1 
eee21 If datatype(op,IW I) then, 
eee22 ICOMMAND :Ipline IlOWERCAS I op 
eee23 else call error "Invalid operand :" op 
eee24 end 

In lines 19 through 24, you can see that the source and argument strings supply the 
answers to these questions: 

What name was used to invoke the macro? 
On which line was it entered? 
How many lines are to be changed to lowercase? 

Using the variable names assigned in the templates, lines 19 through 24 perform the 
following functions: ~ 

1. See if the macro was entered in its simple form (L). When the length of name is 
one, the macro was entered in its simple form. 

2. If no operand was entered, assign a default of 1 or determine if the operand (if 
any) is a valid whole number (lines 20 and 21). Otherwise, go to an error 
routine (line 23). 

3. Make the line in which the prefix macro was entered (pline) current and issue 
the LOWERCAS subcommand, with the operand (line 22). 

Handling Blocks 
A block is a group of consecutive Jines. Several XEOIT prefix subcommands and 
macros (for example, 0 and » allow you to specify blocks by doubling the name 
and entering it on both the first and last lines of the block (for example, DO entered 
on the first and last lines of a block deletes the entire block of lines). Let's expand 
the L prefi:x macro to accept blocks (specified by entering LL on the first and last 
lines of the block). 

This section explains the following: 

• How to assign a synonym for a prefix macro 

Chapter 7. The Macro Language 135 



The Macro Language 

e9(:>18 se 1 ect 

• How to examine the pending list of prefix subcommands and macros for a 
matching block entry 

• How to display a pending notice in the status area of the screen. 

eee19 when length(name)=l then do 
eee2e If op = II then op = 1 
eee21 If datatype(op, IWI) then, 
eee22 ICOMMAND :'pline I LOWERCASI op 
eee23 else call error "Invalid operand :" op 
eee24 end 
eee25 
eee26 when length(name)=2 then do 
eee27 If op ~= II then call error, 
eee28 IInvalid operand :1 op 
eee29 ICOMMAND EXTRACT IPENDING BLOCK I name I:e :Ipline III 
eee3e if pending.e~=e then do 
eee31 ICOMMAND :Ipending.l ISET PENDING OFF I 
eee32 ICOMMAND :Ipending.l ILOWERCAS :Ipline+l 
eee33 end 
eee34 else ICOMMAND :Ipline ICOMMAND SET PENDING BLOCK I name 
eee35 End 

ASSigning a Synonym for a Prefix Macro 
The user must issue the following subcommand in order to be able to specify the 
block form of the L macro. You can enter this subcommand in the PROFILE 
XEDIT file: 

SET PREFIX SYNONYM LL L 

Now, the user can invoke the L prefix macro by entering either L (with an optional 
numeric operand) or LL. In line 19, the macro checks for its simple form (when the 
length of name is 1). In line 26, the macro checks for its block form (when the 
length of name is 2). 

Synonyms can also be assigned for other reasons. For example: 

• A prefix macro file name can be up to eight alphabetic characters long, but the 
prefix area is only five positions long. You can use SET PREFIX SYNONYM 
to assign a synonym that is up to five characters long. 

• The synonym can be a special character that is not permitted as part of a eMS 
file name. For example, the file name for the XEDIT prefix macro:> is 
PRFSHIFT. 

• A macro can· perform different functions, depending on how it is entered. 
Different synonyms can signify different functions to the macro. For example, 
the XED IT prefix macro PRFSHIFT shifts the screen right if > is entered and 
left if < is entered. The synonyms assigned to this macro are: 

SET PREFIX SYNONYM > PRFSHIFT 
SET PREFIX SYNONYM < PRFSHIFT 
SET PREFIX SYNONYM > > PRFSHIFT 
SET PREFIX SYNONYM < < PRFSHIFT 

136 VM/SP System Product Editor User's Guide 



The Macro Language 

• Prefix macros can also use the names of prefix subcommands such as F 
(following) or P (preceding). To use a prefix subcommand in a prefix macro, 
you should either define a synonym (see SET PREFIX in the VMjSP System 
Product Editor Command and Macro Reference) or override the prefix 
subcommand by using SET MACRO ON. 

To determine what prefix macro synonyms are in effect, use the QUERY PREFIX 
SYNONYM subcommand, which is described in detail in the VM/SP System 
Product Editor Command and Macro Reference. 

Using the "Pending List" 
You have seen that the source and argument strings are two sources of information 
upon which a prefix macro can base decisions. Another is the "pending list." 

The "pending list" is a list of prefix subcommands and macros that have not yet 
been executed. Every time the editor reads the screen, the pending list is updated 
(automatically) with any new prefix subcommands and macros that have been 
entered, each of which causes an entry to be added to the list. Each entry is 
associated with a specific line in the file. 

The pending list is executed when it is changed. If a prefix macro returns a non-zero 
return code, execution of the pending list stops and all entries not executed remain 
pending, until the user presses the ENTER (or PF / or P A) key. 

An entry is deleted from the pending list when it is executed or overtyped on the 
user's screen with a new prefix subcommand, prefix macro, or blanks. For example, 
when the L prefix macro is invoked, it is removed from the pending list. 

A prefix macro can control its execution and display or remove the pending notice 
from the status area of the screen by examining information in the pending list 
(EXTRACT/QUERY PENDING) and by adding or deleting entries in it (SET 
PENDING). Refer to the VM/SP System Product Editor Command and Macro 
Reference for detailed information on these subcommands. 

The pending notice is displayed in the status area as follows: 

where "value" is the name of the prefix subcommand or macro that was entered in 
the prefix area, as derived from the source string (see line 34). (If multiple prefix 
subcommands or macros are pending, the first one, starting from the top of file, is 
displayed in the pending notice.) 

In our example, suppose that the user entered the block form (LL), which is 
determined by line 26. First, the macro needs to know if another LL has been 
entered, that is, if the pending list contains a matching block entry. 

To determine this, the macro examines the pending list by issuing the EXTRACT 
subco~and shown in line 29. This subcommand searches the pending list for a 
matching block entry, which must be located in the file within the range specified by 
the targets, that is, between the top of file (:0) and the prefix line (:pline), inclusive. 
If no matching entry is found, the screen is placed in a pending status (line 34). 

Chapter 7. The Macro Language 137 



The Macro Language 

If a second LL was entered, the pending status of the screen will not be seen because 
the macro is automatically invoked again as the pending list is executed. This time, 
the EXTRACT subcommand (line 29) finds the matching block entry, the pending 
notice is removed (line 31) and the LOWERCAS subcommand is executed for the 
block of lines (line 32). 

Examining the Argument String 
The argument string is as follows: 

PREFIX SET I SHADOW I CLEAR pline [opl[op2[op3]]] 

Where: 

PREFIX 
indicates that this is a prefix call. 

SET 
indicates that the prefix macro was entered on some line in the file displayed. 

SHADOW 
indicates that a prefix macro was entered on a shadow line (see SET 
SHADOW in the VMjSP System Product Editor Command and Macro 
Reference). 

CLEAR 

pline 

indicates that a new prefix subcommand or macro or new blank area replaces a 
previously pending prefix subcommand or macro on the same line, or the 
RESET subcommand was entered. In this case, this macro is invoked with 
"PREFIX CLEAR pline". 

is the line number on which the prefix macro was entered. 

opl op2 op3 
are the optional operands of the macro, entered either to its left or right (for 
example, SM or MS). (Operands are recognized according to the rules 
explained in "Section 4: Prefix Subcommands and Macros" in the VMjSP 
System Product Editor Command and Macro Reference.) 

Let's see how this macro uses the argument string for validity checking. 

138 VM/SP System Product Editor User's Guide 



The Macro Language 

aaaas arg pref func pline op extra 
aaaa9 If pref ~= 'PREFIX' then call errorl, 
aaala 'This macro must be invoked from the PREFIX area.' 
aaall If func = 'CLEAR' then exit 
aaal2 If func = 'SHADOW' then call errorl, 
aaal3 'Invalid on shadow line.' 
aaal4 If func ~= 'SET' then call errorl, 
aaalS 'This macro must be invoked from the PREFIX area.' 
aaal6 If extra ~= " then call error, 
aaal7 'Extraneous parameter:' extra 

aaa42 /* error routines */ 
aaa43 error: 'COMMAND :'pline 'SET PENDING ERROR' name I lop 
aaa44 errorl: parse arg t 
aaa4S 'COMMAND EMSG' t 
aaa46 Exit 

Lines 9 through 17 verify that the macro is a prefix call and was entered on a valid 
prefix line, that is, not on a shadow line. Lines 42 through 45 are the associated 
error routines. 

Line 43 is a form of the SET PENDING subcommand used to notify the user the 
macro was entered incorrectly. In this case, if an extra operand was entered 
(determined in line 16), the incorrect macro is displayed highlighted in the prefix 
area, prefixed by a question mark. F or example, if the user entered L3 4, the prefix 
area displays ?L3 and the user gets the message 'Extraneous parameter: 4'. 

SET PENDING ERROR does not cause a pending notice to be displayed. When 
the user presses the ENTER key again, the prefix area is reset. This prevents 
subsequent attempts to execute an incorrectly-entered macro. 

Positioning the Cursor 
The cursor is positioned in the line in which the prefix macro was entered by using 
the following subcommand: 

a8839 'COMMAND CURSOR FILE' pline 'PRIORITY 38' 

By using the CURSOR subcommand, user-written prefix macros can specify a 
priority that is associated with cursor positioning. The cursor is positioned at the 
location specified that has the highest priority when all pending prefix subcommands 
and any macros are executed. 

For more information on the CURSOR subcommand and various priorities 
associated with prefix subcommands and macros, see the VM/SP System Product 
Editor Command and Macro Reference, the CURSOR subcommand and "Section 4: 
Prefix Subcommands and Macros." 

Chapter 7. The Macro Language 139 



The Macro Language 

The rest of this chapter presents additional information which may be useful in 
writing prefix macros or tells you where the information can be found. 

Decoding the Prefix Area 
See the VM/SP System Product Editor Command and Macro Reference, ~'Section 4: 
Prefix Subcommands and Macros" for a description· of how the editor interprets 
what is entered in the prefix area. 

Using the XEDIT Subcommand 
A prefix macro can issue the XEDIT subcommand to edit a different file in the ring. 
However, when the macro finishes executing, control automatically returns to the file 
from which it was invoked. 

Additional Examples 
F or additional examples of prefix macros, you can examine the IBM -supplied prefix 
macros, which are as follows: 

Macro synonym(s) 

X,XX 
S 
<, >, > >, < < 

140 VM/SP System Product Editor User's Guide 

File Identifier 

PREFIXX XEDIT 
PRFSHOW XEDIT 
PRFSHIFT XEDIT 
SI XEDIT 



The L Prefix Macro 

eeeel /* Use this macro to translate a line or lines in a file */ 
eeee2 /* to lowercase. */ 
eeee3 /* You may specify nL, Ln, L-n or L to lowercase a line. */ 
eeee4 /* If you add the following prefix synonym to your 
eeee5 /* profile, you may also use LL for specifying blocks: 
eeee6 /* SET PREFIX SYNONYM LL L 
eeee7 parse source • • • • • name • 
eeee8 arg pref func pline op extra 
eeee9 If pref ~= 'PREFIX ' then call errorl, 
eeele 'This macro must be invoked from the PREFIX area. I 
eeell If func = 'CLEAR ' then exit 
eeel2 If func = I SHADOW I then call errorl, 
eeel3 'Invalid on shadow line. ' 
eeel4 If func ~= 'SET ' then call errorl, 
eeel5 'This macro must be invoked from the PREFIX area. I 
eeel6 If extra ~= I I then call error, 
eeel7 'Extraneous parameter: I extra 
eeel8 select 
eeel9 when length(name)=l then do 
eee2e If op = II then op = I 
eee21 If datatype(op,'W ' ) then, 
eee22 'COMMAND :'pline I LOWERCAS' op 
eee23 else call error "Invalid operand :" op 
eee24 end 

when length(name)=2 then do 
If op ~= I I then call error, 

'Invalid operand :1 op 

*/ 
*/ 
*/ 

eee25 
eee26 
eee27 
eee28 
eee29 
eee3e 
eee31 
eee32 
eee33 
eee34 
eee35 
eee36 

'COMMAND EXTRACT /PENDING BLOCK ' name I:e :'pline 1/1 
if pending.e~=e then do 

'COMMAND :'pending.l 'SET PENDING OFF ' 
'COMMAND :1 pending.l 'LOWERCAS :'pline+l 
end 

else ICOMMAND :Ipline ICOMMAND SET PENDING BLOCK I name 
End 

eee37 Otherwise call error "Invalid macro synonym. 1I 

eee38 End 
eee39 'COMMAND CURSOR FILE' pline 'PRIORITY 3e ' 
eee4e Exit 
eee41 
eee42 /* error routines */ 
eee43 error: 'COMMAND :'pline 'SET PENDING ERROR I name I lop 
eee44 errorl: parse arg t 
eee45 'COMMAND EMSG' t 
eee46 Exit 

Figure 40. Sample Prefix Macro 

The Macro Language 

Chapter 7. The Macro Language 141 



The Macro Language 

142 VM/SP System Product Editor User's Guide 



Appendix A. Summary of XEDIT Subcommands and Macros 

These subcommands are described in detail in the publication VM/SP System 
Product Editor Command and Macro Reference. 

Subcommand Purpose 

Add Adds n line(s) after current line. 

ALL Selects a collection of lines for display/editing. 

ALter Changes a single character to another (character or hex). 

BAckward Scrolls backward n screen displays. 

Bottom Goes to last line of file. 

CANCEL Terminates the editing session for all files. 

CAppend Adds text to end of current line. 

CDelete Deletes characters, starting at column pointer. 

CFirst Moves column pointer to beginning of line (zone). 

Change Changes one string to another. 

CInsert Inserts text starting at the column pointer of the current 
line. 

CLAst Moves the column pointer to the end of the line (zone). 

CLocate Locates a string; moves the column pointer and the line 
pointer. 

CMS Passes a command to eMS, or enters CMS subset mode. 

CMSG Displays message in command line of user's screen. 

COMMAND Executes a subcommand without checking for synonym or 
macro. 

COMPress Prepares line(s) for realignment by replacing blanks with 
tab characters. 

COpy Copies line(s) at specified location. 

COUnt Displays the number of times a string appears. 

COVerlay Replaces characters, starting at column pointer. 

CP Passes command to VM/SP control program. 

CReplace Replaces characters, starting at the column pointer. 

CURsor Moves the cursor to specified position on the screen, and 
optionally assigns a priority for this position. 

DELete Deletes line(s) beginning with the current line. 

Down Moves line pointer n lines toward end of file (same as 
NEXT). 

DUPlicat Duplicates line(s). 

EMSG Displays a message and sounds the alarm. 

Appendix A. Summary of XED IT Subcommands and Macros 143 



Subcommand Purpose 

EXPand Repositions data according to new tab settings. 

EXTract Returns information about internal XEDIT variables and 
file data. 

FILE Writes file to disk or directory. 

Find Searches for line that starts with specified text. 

FINDUp Searches for a line that starts with specified text; searches in 
a backward direction. 

FOrward Scrolls forward n screen displays. 

GET Inserts lines from another file. 

Help Requests online display of XEDIT subcommands and 
macros; invokes the CMS HELP facility. 

HEXType Displays line(s) in hexadecimal and EBCDIC. 

Input Inserts a single line, or enters input mode. 

Join Combines two or more lines into one line. 

LEft Views data to the left of column one. 

LOAD Reads file into storage; use in profile macro only. 

Locate Moves line pointer to specified target. 

LOWercas Changes uppercase letters to lowercase. 

LPrefix Simulates writing in the prefix area of the current line. 
Used on typewriter terminals. 

MACRO Executes macro without checking for subcommand or 
synonym. 

MErge Combines two sets of lines. 

MODify Displays a subcommand and its current values in the 
command line, so it can be overtyped and reentered. 

MOve Moves line(s) to another place in the file. 

MSG Displays message in message line. 

Next Moves line pointer n lines toward end of file (same as 
DOWN). 

NFind Searches forward for first line that does not start with the 
specified te~t. 

NFINDUp Searches backward for first line that does not start with the 
specified text. 

Overlay Replaces characters in current line. 

PARSE Scans a line of a macro to check the format of its operands. 

POWerinp Enters input mode for continuous typing. 

PREServe Saves settings of XEDIT variables until RESTORE is 
entered. 

PURge Removes macro from virtual storage. 

144 VM/SP System Product Editor User's Guide 



Subcommand Purpose 

PUT Inserts lines into another file (new or existing), or into a 
buffer (to be retrieved by GET from another file). 

PUTD Same as PUT, but deletes original lines. 

Query Displays the current value of editing options. 

QUIT Ends an editing session without saving changes. 

READ Places information from the terminal in the console stack. 

RECover Replaces removed lines. 

REFRESH Issued from a macro, it updates the display on the screen. 

RENum Renumbers VSBASIC or FREEFORT files. 

REPEat Advances line pointer and reexecutes last subcommand. 

Replace Replaces current line, or deletes current line and enters 
input mode. 

RESet Removes prefix subcommands or macros when screen is in 
"pending" status. 

RESTore Restores settings of XEDIT variables to values they had 
when PRESERVE was issued. 

RGTLEFT Shifts display to the right or left; reissue to shift back to 
original display. 

RIght Views data to the right of the last (right-most) column. 

SAVE Writes file to disk or directory and remains in edit mode. 

SCHANGE Locates string and makes a selective change, using PF keys. 

SET ALT Changes the number of alterations that have been made to 
the file since the last A UTOSA VE and/or since the last 
SAVE. 

SET APL Informs the editor and eMS if APL keys are used. 

SET ARBchar Defines an arbitrary character to be used in a target 
definition. 

SET AUtosave Automatically issues a SAVE subcommand at specified 
intervals. 

SET BRKkey Specifies whether or not CP should break in when the 
"BRKKEY" (defined by CP TERMINAL BRKKEY) is 
pressed. 

SET CASE Uppercase or lowercase control; specifies if case is 
significant in target searches. 

SET CMDline Moves the position of the command line. 

SET COLOR Associates specific colors and attributes with various fields 
on the XEDIT screen. 

SET COLPtr Specifies if column pointer is displayed (typewriter 
terminals only). 

Appendix A. Summary of XED IT Subcommands and Macros 145 



Subcommand Purpose 

SET CTLchar Defines a control character(s), which associate parts of a 
reserved line with highlighting, protection, visibility, various 
colors, extended highlighting, and Programmed Symbol 
Sets. 

SET CURLine Defines the position of the current line on the screen. 

SET DISPlay Indicates which selection levels of lines will be displayed on 
the screen. 

SET ENTer Defines a meaning for the ENTER key. 

SET ESCape Defines a character that allows you to enter a subcommand 
while in input mode (typewriter terminals only). 

SET ETARBCH Defines an arbitrary character within a file containing 
Double-Byte Character Set (DBCS) characters to be used in 
target definitions. 

SETETMODE Informs the editor that there are Double-Byte Character Set 
strings in the file. 

SET FILler Defines a character that is used when a line is expanded. 

SET FMode Changes the file mode of the current file. 

SET FName Changes the file name of the current file. 

SET FType Changes the file type of the current file. 

SET FULLread Determines whether or not the editor and CMS recognize 
null characters in the middle of screen lines. 

SET HEX Allows string operands and targets to be specified in 
hexadecimal. 

SET IMage Controls how tabs and backspaces are handled when a line 
is entered. 

SET IMPcmscp Controls whether subcommands not recognized by the 
editor are transmitted to CMS and CPo 

SET LASTLorc Defines the contents of the last locate or change buffer. 

SET LINENd Defines a line end character. 

SET LRecl Defines a new logical record length. 

SET MACRO Controls the order in which the editor searches for 
subcommands and macros. 

SET MASK Defines a new mask, which is the contents of added lines 
and the input zone. 

SET MSGLine Defines position of message line and the number of lines a 
message may expand to. 

SET MSGMode Controls the message display. 

SET NONDisp Defines a character to XEDIT and CMS that is used in 
place of non-displayable characters. 

SET NULls Specifies whether trailing blanks are replaced with nulls to 
allow character insertion. 

146 VM/SP System Product Editor User's Guide 



Subcommand Purpose 

SET NUMber Specifies whether file line numbers are displayed in the 
prefix area. 

SET PAn Defines a meaning for a PA key. 

SET PACK Specifies if the file is to be written to disk or directory in 
packed format. 

SET PENDing Controls the execution of a prefix macro and the status of 
the screen while the macro is being executed. 

SET PFn Defines a meaning for a PF key. 

SET Point Defines a symbolic name for the current line. 

SET PREfix Controls the display of the prefix area or defines a synonym 
for a prefix subcommand. 

SET RANge Defines a new "top" and "bottom" for the file. 

SETRECFm Defines the record format. 

SET REMote Controls the way data transmission is handled in XEDIT 
and CMS. 

SET RESERved Reserves a line, which cannot be used by the editor. 

SET SCALe Controls the display of the scale line. 

SET SCOPE Specifies whether the editor operates on the entire file or on 
only those lines displayed. 

SET SCReen Divides the screen into logical screens, for mUltiple views of 
the same or of different files. 

SET SELect Assigns a selection level to a line or group of lines in a file. 

SET SERial Controls file serialization. 

SET SHADow Specifies whether the file is to be displayed with or without 
shadow lines indicating where lines have been excluded 
from the display. 

SET SIDcode Specifies a character string that is to be inserted into every 
line of an update file. 

SET SPAN Allows a string target to span a number of lines. 

SET SPILL Controls whether or not truncation will occur for certain 
subcommands. 

SET STAY Specifies for certain subcommands whether the line pointer 
moves when searching for a string. 

SET STReam Specifies whether the editor searches only the current line or 
the whole file for a column-target. 

SET SYNonym Specifies whether the editor looks for synonyms; assigns a 
synonym. 

SET TABLine Controls the display of the tab line. 

SET TABS Defines the logical tab stops. 

SET TERMinal Specifies whether a terminal is used in line mode or 
full-screen mode. 

Appendix A. Summary of XED IT Subcommands and Macros 147 



Subcommand Purpose 

SET TEXT Informs the editor and CMS if TEXT keys are used. 

SET TOFEOF Controls the display of TOF IEOF lines. 

SET TRANSLat Controls user-defined uppercase translation. 

SET TRunc Defines the truncation column. 

SET V ARblank Specifies whether the number of blanks between two words 
is significant in a target search. 

SET Verify Controls whether lines changed by subcommands are 
displayed; defines the columns displayed and whether 
displayed in EBCDIC, hexadecimal or both. 

SET WRap Controls whether the editor wraps around the file if EOF 
(or TOF for backwards searches) is reached during a 
search. 

SET Zone Defines new limits within each line for target searches. 

SET = Inserts string into the equal buffer. 

SHift Moves data right or left (data loss possible). 

SI Continuously adds lines and positions cursor for indented 
text. 

SORT Sorts all or part of a file, in ascending or descending order. 

SOS Specifies functions for screen operation simulation. 

SPlit Splits a line into two or more lines. 

SPLTJOIN Splits a line or joins two lines at the cursor. 

STAck Places line(s) from the file into the console stack. 

STATus Displays SET subcommand current settings; creates a 
macro that contains these settings. 

TOP Moves line pointer to null TOP OF FILE line. 

TRAnsfer Places editing variable(s) in the console stack, for use by a 
macro. 

Type Displays lines. 

Up Moves line pointer n lines toward top of file. 

UPPercas Translates all lowercase characters to uppercase. 

Xedit Edits multiple files. 

& Use before a subcommand to redisplay the command. 

= Reexecutes the last subcommand, macro, or CP ICMS 
command. 

? Displays the last subcommand, macro, or CP ICMS 
command executed. 

148 VM/SP System Product Editor User's Guide 



Prefix Subcommands 

A Adds line(s). 

C Copies line(s). 

D Deletes line(s). 

E Extends a line. 

F Moves or copies following this line. 

I Inserts line(s). 

M Moves line(s). 

P Moves or copies preceding this line. 

SI Continuously adds lines and positions cursor for indented text. 

II Duplicates line(s). 

I Makes this line the current line. 

SCALE Displays the scale on this line. 

TABL Displays the tab line on this line. 

• xxxx Assigns symbolic name to this line . 

X Excludes line(s) from display. 

S Shows excluded line(s). 

< Shifts line( s) to the left. 

> Shifts line(s) to the right. 

Appendix A. Summary of XED IT Subcommands and Macros 149 



150 VM/SP System Product Editor User's Guide 



Summary of Changes 

Previous editions of this book may be ordered using the pseudo-number found in the 
VMjSP Release 6.0 Library Guide and Master Index. 

Summary of Changes 
for SC24-5220-04 
VM/SP Release 6 

This edition reflects minor technical and editorial changes. 

Summary of Changes 
for SC24-5220-03 
VM/SP Release 5 

This edition reflects minor technical changes and editorial corrections. 

Summary of Changes 
for SC24-5220-02 
VM/SP Release 4 

The XEDIT enhancements described in this document provide new or improved support in 
the following areas: 

• Structured Input 

SI Prefix Macro (to continuously add new lines of indented text) 

• Usability 

(all messages issued by the editor are in mixed case). 

Summary of Changes 151 



152 VM/SP System Product Editor User's Guide 



Glossary of Terms and Abbreviations 

A 

alphameric. Synonym for alphanumeric. 

alphanumeric. Pertaining to a character set that 
contains letters, digits, and usually other characters, 
such as punctuation marks. Synonymous with 
alphameric. 

B 

border. A boundary around a window. The user can 
enter one-letter BORDER commands from the corners 
of the border. For example, the letter P entered from a 
border corner pops the window. The border corners are 
indicated by a + (plus) sign. 

buffer. An area of storage, temporarily reserved for 
performing input or output, into which data is read, or 
from which data is written. 

c 
CMS. Conversational Monitor System. 

CMS EXEC. An EXEC procedure or EDIT macro 
written in the CMS EXEC language and processed by 
the CMS EXEC processor. Synonymous with CMS 
program. 

CMS EXEC language. A general-purpose, high-level 
programming language, particularly suitable for EXEC 
procedures and EDIT macros. The CMS EXEC 
processor executes procedures and macros (programs) 
written in this language. Contrast with EXEC 2 
language and Restructured Extended Executor (REXX) 
language. 

CMS program. Synonym for CMS EXEC. 

command. A request from a user at a terminal for the 
execution of a particular CP, CMS, IPCS, GCS, TSAF, 
or A VS function. A CMS command can also be the 
name of a CMS file with a file type of EXEC or 
MODULE. See subcommand and user-written CMS 
command. 

command abbreviation. A short form of the command 
name, operand, or option that is not a truncation of the 
word. For example, MSG instead of MESSAGE, RDR 
instead of READER. Contrast with truncation. 

command line. The line at the bottom of display panels 
that lets a user enter commands or panel selections. It 
is prefixed by an arrow (= = = ». 

control program. A computer program that schedules 
and supervises the program execution in a computer 
system. See Control Program (CP). 

Control Program {CPl. A component of VM/SP that 
manages the resources of a single computer so multiple 
computing systems appear to exist. Each virtual 
machine is the functional equivalent of an IBM 
System/370. 

Conversational Monitor System (CMS). A virtual 
machine operating system and component of VM/SP 
that provides general interactive time sharing, problem 
solving, program development capabilities, and operates 
only under the control of the VM Control Program 
(CP). 

CPo Control Program. 

D 

DBCS. Double-byte character set. 

delimiter. A character that groups or separates words 
or values in a line of input. Usually one or more blank 
characters separate the command name and each 
operand or option in the command line. In certain 
cases, a tab, left parenthesis, or backspace character can 
also act as a delimiter. 

disk. A magnetic disk unit in the user's CMS virtual 
machine configuration. Also called a virtual disk. 

display mode. A type of editing at a display terminal in 
which an entire screen of data is displayed at once and 
in which the user can access data through commands or 
by using a cursor. Contrast with line mode. 

display terminal. A terminal with a component that can 
display information on a viewing surface such as a CRT 
or gas panel. 

double-byte character set (DBCS). A character set that 
requires 2 bytes to uniquely define each character. This 
contrasts with EBCDIC, in which each printed character 
is represented by 1 byte. 

E 

edit. A function that makes changes, additions, or 
deletions to a file on a disk. These changes are 
interactively made. The edit function also generates 
information in a file that did not previously exist. 

edit mode. The environment in which CMS EDIT 

Glossary of Terms and Abbreviations 153 



subcommands and System Product Editor (XEDIT) 
subcommands can be entered by the user to insert, 
change, delete, or rearrange the contents of a CMS file. 
Contrast with input mode. 

EOF. End of file. 

EXEC 2 language. A general-purpose, high-level 
programming language, particularly suitable for EXEC 
procedures and XEDIT macros. The EXEC 2 processor 
runs procedures and XEDIT macros (programs) written 
in this language. Contrast with CMS EXEC language 
and Restructured Extended Executor (REXX) language. 

F 

file access mode. A file mode number that designates 
whether the file can be used as a read-only or read/write 
file by a user. See file mode. 

file ID. A CMS file identifier that consists of a file 
name, file type, and file mode. The file ID is associated 
with a particular file when the file is created, defined, or 
renamed under CMS. See file name, file type, andfile 
mode. 

file mode. A two-character eMS file identifier field 
comprised of the file mode letter (A through Z) 
followed by the file mode number (0 through 6). The 
file mode letter indicates the minidisk or SFS directory 
on which the file resides. The file mode number 
indicates the access mode of the file. See file access 
mode. 

file name. A one-to-eight character alphanumeric field, 
comprised of A through Z, 0 through 9, and special 
characters $ # @ + - (hyphen) : (colon) _ (underscore), 
that is part of the CMS file identifier and serves to 
identify the file for the user. 

file type. A one-to-eight character alphanumeric field, 
comprised of A through Z, 0 through 9, and special 
characters $ # @ + - (hyphen) : (colon) _ (underscore), 
that is used as a descriptor or as a qualifier of the file 
name field in the CMS file identifier. See reserved file 
types. 

full-screen CMS. When a user enters the command 
SET FULLSCREEN ON, CMS is in a window and can 
take advantage of 3270-type architecture and windowing 
support, and various classes of output are routed to a 
set of default windows. Also, users can type commands 
anywhere on the physical screen and scroll through 
commands and responses previously displayed. See 
windowing. 

154 VM/SP System Product Editor User's Guide 

I 

input line. For typewriter terminals, information keyed 
in by a user between the time the typing element of the 
terminal comes to rest following a carriage return until 
another carriage return is typed. For display terminals, 
the data keyed into the user input area of the screen. 
See user input area. 

input mode. In the CMS Editor or System Product 
Editor (XED IT), the environment that lets the user key 
in new lines of data. Contrast with edit mode. 

invoke. To start a command, procedure, or program. 

L 
line mode. The mode of operation of a display terminal 
that is equivalent to using a typewriter-like terminal. 
Contrast with display mode. 

line number. A number located at either the beginning 
or the end of a record (line) that can be used during 
editing to refer to that line. See prompting. 

load. In reference to installation and service, to move 
files from tape to disk, auxiliary storage to main 
storage, or minidisks to virtual storage within a virtual 
machine. 

logical line. A command or data line that can be 
separated from one or more additional command or 
data lines on the same input line by a logical line end 
symbol. 

logical record. A formatted record that consists of a 
2-byte logical record length and a data field of variable 
length. 

M 
module. A unit of a software product that is discretely 
and separately identifiable with respect to modifying, 
compiling, and merging with other units, or with respect 
to loading and execution. For example, the input to, or 
output from, a compiler, the assembler, the linkage 
editor, or an exec routine. 

N 
null line. A logical line with a length of zero that 
usually signals the CMS Editor to end input mode and 
enter edit mode. In VM/SP, a null line for typewriter 
terminals is a terminal input line consisting of a return 
character as the first and only information, or a logical 
line end symbol as the last character in the data line. 
For display devices, a null line is indicated by the cursor 
positioned at the beginning of the user input area or the 



data in the user input area ending with a logical line end 
symbol. 

o 
operand. Information entered with a command name to 
define the data on which a command processor operates 
and to control the execution of the command processor. 

p 

parameter. A variable that is given a constant value for 
a specified application and that may denote the 
application. 

PF key. Program function key. 

physical screen. Synonym for screen. 

prefix area. The five left-most positions on the System 
Product Editor's full-screen display, in which prefix 
subcommands or prefix macros can be entered. See 
prefix macros and prefix subcommands. 

prefix macros. System Product Editor macros entered 
in the prefix area of any line on a full-screen display. 
See prefix area. 

prefix subcommands. System Product Editor 
subcommands entered in the prefix area of any line on a 
full-screen display. See prefix area. 

PROFILE EXEC. A special EXEC procedure with a 
file name of PROFILE that a user can create. The 
procedure is usually executed immediately after eMS is 
loaded into a virtual machine (also known as IPL 
CMS). 

program function (PF) key. On a terminal, a key that 
can do various functions selected by the user or 
determined by an application program. 

prompt. A displayed message that describes required 
input or gives operational information. 

prompting. An interactive technique that lets the 
program guide the user in supplying information to a 
program. The program types or displays a request, 
question, message, or number, and the user enters the 
desired response. The process is repeated until all the 
necessary information is supplied. 

R 
receive. Bringing into the specified buffer data sent to 
the user's virtual machine from another virtual machine 
or from the user's own virtual machine. 

reserved file types. File types recognized by the CMS 
editors (EDIT and XED IT) as having specific default 
attributes that include: record size, tab settings, 
truncation column, and uppercase or lowercase 
characters associated with that particular file type. The 
CMS Editor creates a file according to these attributes. 

Restructured Extended Executor (REXX) language. A 
general-purpose programming language, particularly 
suitable for EXEC procedures, XEDIT macros, or 
programs for personal computing. Procedures, XEDIT 
macros, and programs written in this language can be 
interpreted by the System Product Interpreter. Contrast 
with CMS EXEC language and EXEC 2 language. 

REXX language. Restructured Extended Executor 
language. 

ring of files. The arrangement of files in virtual storage 
when multiple files are being edited by the System 
Product Editor. 

s 
scale. A line on the System Product Editor's (XEDIT) 
full-screen display, used for column reference. 

screen. An illuminated display surface; for example, the 
display surface of a CRT. Synonymous with physical 
screen. 

scrolling. (1) Moving a display image vertically or 
horizontally in order to view data not otherwise visible 
within the boundaries of the display screen. 
(2) Performing a scroll up, scroll down, scroll right, or 
scroll left operation. 

SFS. Shared file system. 

shared file system (SFS). A part of CMS that lets users 
organize their files into groups known as directories and 
to selectively share those files and directories with other 
users. 

source update file. A file containing a single change to 
a statement in a source file. The file can also include 
requisite information for applying the change. 
Synonymous with update file. 

subcommand. The commands of processors such as 
EDIT or System Product Editor (XEDIT) that run 
under CMS. 

Glossary of Terms and Abbreviations 155 



System Product Editor. The CMS facility, comprising 
the XED IT command and XEDIT subcommands and 
macros, that lets a user create, change, and manipulate 
CMS files. 

System Product Interpreter. The language processor of 
the VM/SP operating system that processes procedures, 
XEDIT macros, and programs written in the REXX 
language. 

T 

target. One of many ways to identify a line to be 
searched for by the System Product Editor. A target 
can be specified as an absolute line number, a relative 
displacement from the current line, a line name, or a 
string expression. 

terminal. A device, usually equipped with a keyboard 
and a display, capable of sending and receiving 
information. 

terminal session. The period of time from logon to 
logoff when a user and the virtual machine can use the 
facilities of VM/SP or the operating system or both. 
This also includes any period of time that the virtual 
machine is running in disconnect mode. 

truncation. A valid shortened form of CP, CMS, GCS, 
IPCS, RSCS, TSAF (Query only) command names, 
operands, and options that can be keyed in. When the 
shortened form is used, the number of key strokes is 
reduced. For example, the ACCESS command has a 
minimum allowable truncation of two, so AC, ACC, 
ACCE, ACCES, and ACCESS are all recognized by 
CMS as the ACCESS command. Contrast with 
command abbreviation. 

typewriter terminal. Printer-keyboard devices that 
produce hardcopy output only, such as: the IBM 2741 
Communication Terminal; the IBM 3215 Console 
Printer-Keyboard; the IBM 3767 Communication 
Terminal, Modell or 2, operating as a 2741. This term 
also refers to the IBM 3101 Display Terminal operating 
as a 2741. 

u 
update file. Synonym for source update file. 

user. Anyone who requests the services of a computing 
system. 

user input area. On a display device, the lines of the 
screen where the user is required to key in command or 
data lines. See display mode, input line, and line mode. 

user-written eMS command. Any CMS file created by 
a user that has a file type of MODULE or EXEC. Such 
a file can be executed as if it were a CMS command by 

156 VM/SP System Product Editor User's Guide 

issuing its file name, followed by any operands or 
options expected by the program or EXEC procedure. 

v 
virtual machine (VM). A functional equivalent of a real 
machine. 

Virtual Machine/System Product (VM/SP). An IBM 
licensed program that manages the resources of a single 
computer so that multiple computing systems appear to 
exist. Each virtual machine is the functional equivalent 
of a real machine. 

virtual screen. A functional simulation of a physical 
screen. A virtual screen is a presentation space where 
data is maintained. The user can view pieces of the 
virtual screen through a window on the physical screen. 

virtual storage. Storage space that can be regarded as 
addressable main storage by the user of a computer 
system in which virtual addresses are mapped into real 
addresses. The size of virtual storage is limited by the 
addressing scheme of the computing system and by the 
amount of auxiliary storage available, and not by the 
actual number of main storage locations. 

VM. Virtual machine. 

VM/SP. Virtual Machine/System Product. 

w 
window. An area on the physical screen where virtual 
screen data can be displayed. Windowing lets the user 
do such functions as defining, positioning, and 
overlaying windows; scrolling backward and forward 
through data; and writing data into virtual screens. 

windowing. A set of functions that lets the user view 
and manipulate data in user-defined areas of the 
physical screen called windows. Windowing support lets 
the user define, position, and overlay windows; scroll 
backward and forward through data; and write data into 
virtual screens. 

x 
XEDIT. See System Product Editor. 

XEDIT macro. (1) A procedure defined by a 
frequently used command sequence to do a commonly 
required editing function. A user creates the macro to 
save repetitious rekeying of the sequence, and invokes 
the entire procedure by entering a command (that is, the 
macro file's file name). The procedure can consist of a 
long sequence of XEDIT commands and subcommands 
or both, and CMS and CP commands or both, along 
with REXX or EXEC 2 control statements to control 



processing within the procedure. (2) A eMS file with a 
file type of XEDIT. 

XEDIT profile macro. A special XEDIT macro with a 
file name of PROFILE and a file type of XEDIT that a 
user can create. It is automatically executed when an 
XEDIT command (or subcommand) is entered. 

Glossary of Terms and Abbreviations 157 



158 VM/SP System Product Editor User's Guide 



Bibliography 

Related Publications 
Virtual Machine/System Product 

System Product Editor Command and Macro Reference, SC24-5221 

System Product Interpreter User's Guide, SC24-5238 

System Product Interpreter Reference, SC24-5239 

CMS Primer, SC24-5236 

CMS Primer for Line-Oriented Terminals, SC24-5242. 

Bibliography 159 



VM/SP RELEASE 6 LIBRARY 
Evaluation 
17 

General 
Information 

GC20-1838 

17 

VM 
Running 
Guest 
Operating 
Systems 

GC19-6212 

Administration 
------~ 

Application Development 

End Use 

Quick 
: Reference 

SX20-4400 

Introduction 
to Security , 

SC24-5316 

~~ 

CMS Primer 
for Line
Oriented 
Terminals 

~ SC24-5242 

•• one copy of each shaded manual received with product tape 

160 VM/SP System Product Editor User's Guide 

Installation and Service 



VM/SP RELEASE 6 LIBRARY 

Diagnosis 

CP 
Data Areas 
and Control 
Blocks 

LY24-5220 

CMS 
Diagnosis 
Reference 

LY20-0893 

Reference Summaries 

Service 
Routines 
Program 
Logic 

LY20-0890 

CMS 
Data Areas 
and Control 
Blocks 

LY24-5221 

Auxiliary Communication Support 
!7 !7 

VTAM VTAM VTAM 
Installation Customization Operation 
and Resource 
Definition 

SC23-0111 SC23-0112 SC23-0113 

VTAM VTAM 
Programming Data Areas 
for LU 6.2 (VM) 

SC30-3400 LY30-5593 

!7 !7 

RSCS RSCS RSCS 

General Planning and Messages 

Information Installation and Codes 

GH24-5055 SH24-5057 SH24-5196 

!7 

VM CP 
Trace Table 
(Poster) 

SX24-5225 

VTAM 
Messages 
and Codes 

SC23-0114 

VM/Pass-
Through 
Facility 
Overview 

GC24-5373 

RSCS 
Operation 
and Use 

SH24-5058 

Diagnosis 
Guide 

LY24-5241 

VM Summary 
of End Use 
Tasks and 
Commands 
(Poster) 

SX24-5173 

VTAM 
Programming 

SC23-0115 

VM/Pass-
Through 
Facility: 
Managing 
and Using 

SC24-5374 

RSCS 
Diagnosis 
Reference 

LY24-5228 

CP 
Diagnosis 
Reference 

LY20-0892 

VTAM 
Diagnosis 
Guide 

LY30-5601 

RSCS 
Exit 
Customization 

SH24-5197 

Bibliography 161 



162 VM/SP System Product Editor User's Guide 



Index 

A 
A prefix subcommand 13 

practice exercise using 49 
absolute column number 29 
absolute line number as target 82 

example of 83 
adding lines 

continuously 16 
of indented text 16 
using A (prefix subcommand) 13 
using SI 16 

adding subcommands 119 
adding text to end of line 98 

in typewriter mode 61 
alarm, sounding 122 
ALL 41 
ALTER 41 

in typewriter mode 75 
alteration count 2, 34 
altering a character 41 

in typewriter mode 75 
Alt= 2 
AND symbol used in string target 90 
appending text to line 98 

in typewriter mode 61 
arbitrary character 92 
assigning a name to a line 86 
automatic line wrapping 29 
automatic save 2, 34 

in typewriter mode 69 

B 
backspace characters in typewriter mode 73, 74 
BACKWARD 22 
backward search 26, 89 
blank characters in targets, significance of 94 
block of lines 

copying 20 
deleting 14 
duplicating 20 
moving 20 

BO'ITOM 23 
in typewriter mode 58 
practice exercise using 47 

bypassing profile macro 130 

c 
C prefix subcommand 20 
CANCEL 102 
CAPPEND 98 

in typewriter mode 61 

case 
changing 41 
specifying 92 

CDELETE 98 
in typewriter mode 61 

CFIRST 31, 98 
in typewriter mode 59 

CHANGE 26 
in typewriter mode 62 
practice exercise using 50 
with absolute line number as target 82 

changing data 
globally 29 

in typewriter mode 63 
selectively 26 

in typewriter mode 63 
using CHANGE 26 

in typewriter mode 62 
using COVERLA Y 98 
using CREPLACE 98 

changing data position 41 
changing definition of a character 41 

in typewriter mode 75 
changing tab settings 32 

in typewriter mode 74 
changing the screen layout 109 
character delete using CDELETE 98 
character insert using CINSERT 29, 98 
character overlay using COVERLA Y 98 
character replace using CREPLACE 98 
CINSERT 29, 98 

in typewriter mode 59 
CLAST 98 
CLEAR key to remove prefix subcommands 22 
CLOCATE 25, 97 

in typewriter mode 58 
CMS commands issued from a macro 124 
CMS subcommand 124 
CMSG 123 
color, defining 

with SET COLOR 110 
with SET CTLCHAR 123 
with SET RESERVED 123 

column pointer 
defined 4 
displayed in the scale 4 
displayed on typewriter terminal 55 
indicator in file identification line 2 
moving 25, 97 

in typewriter mode 58 
to beginning of line 98 
to end of line 98 

resetting 31, 98 
in typewriter mode 59 

Index 163 



column pointer (continued) 
subcommands based on position of 58, 98 

column-target 97 
columns specified for viewing 41 
Col= 2 
combining files 35 

in typewriter mode 69 
combining SET options 95 
command input area 3 
command line 

changing location 109 
example of 112 

defining display features 110 
displaying message in 123 
location on screen 3 

commands issued from a macro 124 
complex string expression as target 92 

example of 96 
COMPRESS 41 
concatenating files 35 

in typewriter mode 69 
console stack 120 
COPY in typewrite~ mode 68 
copying lines 

in typewriter mode 68 
using C prefix subcommand 20 

COUNT 82 
example of 83 

COVERLAY 98 
CP commands issued from a macro 124 
CP subcommand 124 
creating a file 1 

in typewriter mode 53 
creating a macro file 119 
CREPLACE 98 
current column 4 

in typewriter mode 55 
current line 

appending words to 98 
in typewriter mode 61 

as starting place for subcommands 4 
changing 

using a target 78 
using CLOCA TE 25 . 
using DOWN 23 
using UP 23 
using / 22 

changing location on screen 109 
example of. 113 

defining display features 110 
displaying in typewriter mode 56 
indicator in file identification line 2 
location on screen 3 
replacing, in typewriter mode 66 
using target as displacement from 84 

CURSOR 124 
cursor placement in mUltiple screens 106 

164 VM/SP System Product Editor User's Guide 

cursor, moving 
to command line 3 
to specified location 124 

D 
D prefix subcommand 14 

practice exercise using 49 
data, changing 

globally 29 
in typewriter mode 63 

selectively 26 
in typewriter mode 63 

using CHANGE 26 
in typewriter mode 62 

using COVERLA Y 98 
using CREPLACE 98 

data, entering 
on display terminal 4 
on typewriter terminal 54 

data, locating 
using a target 89 
using CLOCA TE 25 

in typewriter mode 58 
defining screen size 103 
DELETE in typewriter mode 65 
deleting characters 98 

in typewriter mode 61 
deleting lines 

block of lines 14 
recovering 15 

in typewriter mode 65 
using D prefix subcommand 14 
using DELETE in typewriter mode 65 

delimiters, using 25 
in typewriter mode 58 

destination line 
F prefix subcommand 20 
for copied lines 20 
for moved lines 20 
P prefix subcommand 20 

display features 110 
display screen layout 2 
displaying data from a macro 122 
displaying help menus 41 
displaying line numbers on screen 37 
displaying lines on typewriter terminal 55 
displaying messages on editor screen 122 
displaying more than one file 104 
displaying tab settings 32 

in typewriter mode 74 
dividing screen 102 
DOWN 23 

example of 24 
in typewriter mode 57 
practice exercise using 47 

duplicating lines 19 



E 
edit environment 

in typewriter mode 53 
edit mode 4 

in typewriter mode 54 
editing mUltiple files 101 

illustration of 103 
editing one file 1 

in typewriter mode 53 
editing options 

See editing variables 
editing variables 

preserving 124 
restoring 124 
transferring 122 

editing, defined 1 
in typewriter mode 53 

editor, invoking 1 
in typewriter mode 53 

EMSG 122 
ending editing session 33, 102 

in typewriter mode 68 
entering data 4 

using INPUT 4 
in typewriter mode 54 

using POWERINP 7 
entering prefix subcommands 3, 13 
entering subcommands 3 
entering XEDIT subcommands 4 

on typewriter terminal 53 
error message display 3 

in typewriter mode 53 
EXEC 2 file used as XEDIT macro 119 
executing a subcommand 3 
exercises, practice 45 
exiting the editor 33, 102 

in typewriter mode 68 
EXPAND 41 
extended highlighting, defining 

with SET COLOR 110 
with SET CTLCHAR 123 
with SET RESERVED 123 

EXTRACT 120 

F 
F prefix subcommand 20 
FILE 33 

in typewriter mode 68 
practice exercise using 46 

file area on screen 3 
file identification line 2 
file mode 2 
file mode of XEDIT macro 120 
file name of XEDIT macro 119 
file name of XEDIT prefix macro 119 

file type of XEDIT macro 120 
file, inserting 35 

in typewriter mode 69 
finding data 

using a target 89 
using CLOCA TE 25 

in typewriter mode 58 
FORWARD 22 
forward search 89 
full-screen mode 1 

G 
GET 35,38 

in typewriter mode 69 
practice exercise using 51 

global changes 29 
in typewriter mode 63 

H 
HELP 41 
help display 41 
highlighting, defining 

with SET COLOR 110 
with SET CTLCHAR 123 
with SET RESERVED 123 

horizontal screens, mUltiple 102 

I 
information message display 3 

in typewriter mode 53 
initial setting of PF keys 9 
INPUT 

practice exercise using 46 
to enter input mode 4 

on typewriter terminal 54 
to enter line in typewriter mode 64 

INPUT line 64 
input mode 4 

on typewriter terminal 54 
input zone 4 

changing size 109 
insert mode key in XEDIT 7, 12 

practice exercise using 47 
inserting a blank line 64 
inserting a file 

in typewriter mode 70 
part of 37 

example of 39 
whole file 35 

example of 36 
inserting characters 

in input mode 12 
in power typing mode 7, 13 
using CINSERT 29, 98 

in typewriter mode 59 

Index 165 



inserting characters (continued) 
using PA2 key 12 
using SET NULLS 13 
using the insert mode key 12 

inserting data 
from another file 35 

in typewriter mode 69 
using CINSER T 29, 98 

in typewriter mode 59 
inserting lines using INPUT 5 

in typewriter mode 55, 58, 64 
inserting words 

using CINSER T 29, 98 
in typewriter mode 59 

invoking the editor 1 
in typewriter mode 53 

J 
joining files 35 

in typewriter mode 69 
joining lines 10 

L 
labeling a line 86 
LEFT 41 
line end character 7 
line name, target as 86 

example of 88 
line number, displaying 37 
line pointer 4 

in typewriter mode 56 
moved by target 78 

line wrapping, automatic 29 
Line= 2 
LOAD 131 
LOCATE 80 
locating data 

using a target 89 
using CLOCATE 25 

in typewriter mode 58 
logical record length 54 
logical screens, multiple 102 
LOWERCAS 41 
LPREFIX in typewriter mode 68 

M 
M prefix subcommand 20 

practice exercise using 49 
macro language 119 
MACRO subcommand 124 
macros in XEDIT 

argument string 138 
avoiding name conflicts 124 
creating 119, 133 
cursor position 139 

166 VMjSP System Product Editor User's Guide 

macros in XEDIT (continued) 
definition of 119 
examples of 123, 126, 131, 133, 141 
executing 119 
file identifier 119 
handling blocks 135 
information passed 121, 133, 135 
prefix 133 
profile 130 
search order specified 125 
source string 134 
subcommands used in 120 
XEDIT prefix macro 140 

MERGE 41 
message line 

changing location 109 
defining display features 110 
location on screen 3 

messages 
controlling display of 123 
displaying in command line 123 
displaying on editor screen 122 
error 3 
in typewriter mode 53 
information 3 
issued from a macro 122 
warning, example 34 

MODIFY TABS 32 
modifying tab settings 32 
MOVE in typewriter mode 66 
moving cursor to command line 3 
moving cursor to specified location 124 
moving display right or left 41, 42 
moving lines 66 

in typewriter mode 66 
using M prefix subcommand 20 

moving through a file 
using BACKWARD 22 
using BOTTOM 23 

in typewriter mode 58 
using DOWN 23 

in typewriter mode 57 
using FORWARD 22 
using PF keys 12 
using TOP 23 

in typewriter mode 58 
using UP 23 

in typewriter mode 57 
MSG 122 
multiple files 

displaying 101 
editing 102 

illustration of 103 
ending editing sessions for 102 
on one screen 104 

example of 107 
multiple logical screens 

defining 102 



multiple logical screens (continued) 
example of 105 

mUltiple views 

N 

of different files 104 
example of 107 

of same file 104 
example of 105 
making changes in 104 

order of processing in 106 

names, avoiding conflicts of macro 124 
naming a line 41, 86 
NOT symbol used in string target 90 
NULLKEY 12 
number of files being edited 3 

o 
operand, target as 80 
OR symbol used in string target 90 
order of processing with mUltiple screens 106 

p 
P prefix subcommand 20 

practice exercise using 49 
PA2 key 12 

practice exercise using 47 
pending list 106, 137 
pending notice 

'DD' pending 14 
' ..... ' pending 17 
""" pending 20 
cancelling 22 
defining display features 110 
location on screen 3 
'C' or 'CC' pending 20 
'F' pending 20 
'M' or 'MM' pending 20 
'P' pending 20 

PF keys 
changing settings of 10 
displaying settings of 9 
initial settings of 9, 43 
using 9 

power typing mode 
example of 7 
inserting characters in 7 
typing data in 4, 7 
using line end character in 7 

POWERINP 7 
practice exercise using 47 

practice exercise 45 
prefix area 

changing location or display 109 
example of III 

prefix area (continued) 
defining display features 110 
location on screen 3 
simulate in typewriter mode 68 

prefix macros 
assigning a synonym 136 
examples of 133 
writing 133 

prefix subcommands 
A 13 

example of 15 
C 20 
canceling 22 
D 14 

example of 15 
defined 13 
F 20 

example of 21 
list of 13, 43 
M 20 

example of 21 
P 20 
practice exercise using 49 
SI 16 

example of 16 
where to enter 3 
.xxxx 86 
/ 22 

PRESERVE 124 
preserving editing variables 124 
processing with multiple screens, order of 106 
profile macro in XEDIT 

definition of 130 
example of 131 

programmed symbol sets, defining 
with SET COLOR 110 
with SET CTLCHAR 123 
with SET RESERVED 123 

PUT 37 

Q 

in typewriter mode 70 
practice exercise using 51 

QQUIT 34 
in typewriter mode 69 

QUERY LRECL 54 
QUERY PF 9 
QUERY POINT 87 
QUERY RING 101 
QUERY TABS 32 

in typewriter mode 74 
practice exercise using 46 

QUIT 34 
in typewriter mode 68 

Index 167 



R 
range of operation of subcommands, defining 80 
re-executing a subcommand 12 
READ 120 
record format 2 
record length 2 

in typewriter mode 54 
RECOVER 15 

example of 16 
in typewriter mode 65 
practice exercise using 49 

recovering deleted lines 15 
in typewriter mode 65 

redefining a character 41 
in typewriter mode 75 

redisplaying a subcomm~nd 12 
referring to a line 86 
relative displacement, target as 84 

example of 85 
repeating the display of a subcommand 12 
repeating the execution of a subcommand 12 
REPLACE in typewriter mode 66 
replacing a line in typewriter mode 66 
replacing data 

globally 29 
in typewriter mode 63 

selectively 26 
in typewriter mode 63 

using CHANGE 26 
in typewriter mode 62 

using COVERLAY 98 
using CREPLACE 98 

reposition data 41 
RESET 22 
RESET key 12 

to end insert mode 7 
RESTORE 124 
restoring editing variables 124 
REXX file used as XEDtT macro 119 
RIGHT 41 
ring of files 101 

editing 102 
illustration of 101 

S 
save, automatic 34 

in typewriter mode 69 
saving editing variables 124 
scale 

changing location or display 110 
defining display features 110 
example of 114 
location on screen 4 

screen layout 2 
changing 109 

168 VM/SP System Product Editor User's Guide 

screen size, defining 103 
scrolling the screen 

using BACKWARD 22 
using FORWARD 22 
using PF keys 12 

search direction specified 89 
search order of macros and subcommands 

specified 125 
searching for data 

using a target 89 
using CLOCATE 25 

in typewriter mode 58 
selective change 26 

example of 28 
in typewriter mode 63 

SET ARBCHAR 41, 92 
SET AUTOSA VE 34 

in typewriter mode 69 
practice exercise using 46 

SET CASE 41,94 
SET CMDLINE 109 

example of 112 
SET COLOR 110 
SET CTLCHAR 123 
SET CURLINE 109 

example of 113 
SET HEX 91 
SET IMAGE in typewriter mode 73, 74 
SET MACRO 124 
SET MSGLINE 109 

example of 116 
SET MSGMODE 123 
SET NULLS 13 
SET NUMBER 37, 82, 110 
SET options, combining 95 
SET PFn 9 
SET POINT 41,86 
SET PREFIX 109 

example of III 
SET RESERVED 123 
SET SCALE 110 

example of 114 
SET SCREEN 41,103 

example of 105, 107 
SET SPAN 92, 94 
SET SYNONYM 124 
SET T ABLINE 110 
SET TABS 32 

example of 115 
in typewriter mode 74 
practice exercise using 46 

SET V ARBLANK 92, 94 
SET VERIFY 41 
setting tabs 32 

in typewriter mode 74 
shifting display right or left 42 
SI prefix subcommand 16 



simple string expression as target 
example of 93 
format of 91 

size of file 2 
size of logical screen 102 
Size= 2 
SORT 42 
sorting 42 
spanning lines 94 
special characters in typewriter mode 

altering 75 
using 73 

splitting lines 10 
splitting the screen 102 
status 

'DO' pending 14 
' ..... ' pending 17 
'NN' pending 20 
'C' or 'CC' pending 20 
'F' pending 20 
'M' or 'MM' pending 20 
'P' pending 20 

status area 
defining display features 110 
during macro processing 121 
location on screen 3 

status of editing session 3 
string expression 

complex 
target as 92 

simple 
target as 89 

string target 89 
string, locating 

using a target 89 
using CLOCATE 25 

in typewriter mode 58 
structured input 16 
subcommands in XEDIT 

defining range of operation 80 
entering on display terminal 3 
entering on typewriter terminal 53 
used in macros, list of 120 
with target operands 77 
writing your own 119 

summary 
of initial PF key settings 43 
of prefix subcommands 149 
of subset for full-screen 42 
of subset for typewriter terminals 76 
of XEDIT subcommands and macros 143 

symbolic name assigned 41 
synonym 

assigning 136 
not checking for 124 

System Product Interpreter 119 

T 
tab characters in typewriter mode 73 
tab key 

in typewriter mode 73 
using PF key as 32 

example of 33 
tab line 

defining display features 110 
displaying 110 
example of 115 

tab settings 32 
in typewriter mode 73 

tabbing 
using PF key 32 

tabs 
displaying 32 
example of 33 
in typewriter mode 74 
setting 32 

in typewriter mode 74 
tailoring the screen 109 
target 

as absolute line number 82 
example of 83 

as complex string expression 92 
example of 96 

as line name 86 
example of 88 

as operand of LOCATE 80 
as relative displacement 84 

example of 85 
as simple string expression 89 

example of 93 
format of 91 

as subcommand operand 80 
example of 81 

definition of 77 
entered alone 78 
entered before subcommand 80 
how to express 77 
types of 82 
used in PUT 70 
used in subcommands 77 
used to change current line 78 
used to move line pointer 78 

example of 79 
TOP 23 

in typewriter mode 58 
practice exercise using 47 

translating characters 41 
truncation column 2 
Trunc= 2 
TYPE 56 
typewriter mode 53 
typing lines to terminal 56 

Index 169 



U 
UP 23 

in typewriter mode 57 
practice exercise using 47 

UPPERCAS 41 
example of 81 

V 
variables in XEDIT 

See editing variables 
vertical screens, multiple 102 

example of 107 

W 
writing file on disk 33 

in typewriter mode 68 
writing macros 119 
writing your own subcommands 119 

X 
XEDIT command 

in typewriter mode 53 
practice exercise using 46 
used to bypass profile macro 130 
used to specify profile macroname 131 

XEDIT macro 
See macros in XEDIT 

XEDIT subcommand 4, 101, 104 
issued from a logical screen 104 

XED IT variables 
See editing variables 

Special Characters 
.xxxx prefix subcommand 86 
< SHIFT LEFT MACRO 42 
$ (as arbitrary character) 92 
/ prefix subcommand 22 

practice exercise using 47 
> SHIFT RIGHT MACRO 42 
? subcommand 12 
# (as default line end character) 7, 8 
= subcommand 12 
II prefix subcommand 19 
'C' or 'CC' pending 20 
'DD' pending 14 
'F' pending 20 
'M' or 'MM' pending 20 
'P' pending 20 
'. . . . .' pending 17 
'II II' pending 20 

170 VM/SP System Product Editor User's Guide 





--------- -------- -. ---- - - ------------_.-
® 

Printed in U.S.A. 

Program Number 
5664-167 

File Number 
8370/4300-39 



VM/SP 
System Product Editor User's Guide 
Order No. SC24-S220-04 

READER'S 
COMMENT 
FORM 

Is there anything you especially like or dislike about this book? Feel free to comment on 
specific errors or omissions, accuracy, organization, or completeness of this book. 

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any 
obligation to you, and all such information will be considered nonconfidential. 

Note: Do not use this form to report system problems or to request copies of publications. Instead, contact your 
IBM representative or the IBM branch office serving you. 

Would you like a reply? _YES _NO 

Please print your name, company name, and address: 

mM Branch Office serving you: 

Thank you for your cooperation. You can either mail this form directly to us or give this 
form to an IBM representative who will forward it to us. 



SC24-5220-04 

Reader's Comment Form 

Fold and tape Please Do Not Staple 

III III 
BUSINESS REPLY MAIL 
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NY 

POSTAGE WILL BE PAID BY ADDRESSEE: 

--------- -------- - ---- -- ----------_.-
INTERNATIONAL BUSINESS MACHINES CORPORATION 
DEPARTMENT G60 
PO BOX 6 
ENDICOTT NY 13760-9987 

1 ••• 111111.111.1.11111111.1.1111.1111111.111.111,"1 

Fold and tape Please Do Not Staple 

--------- -------- - ---- - - --------_--.._, -
- ® 

CUT 
OR 

FOLD 
ALONG 

LINE 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape 



VMjSP 
System Product Editor User's Guide 
Order No. SC24-5220-04 

READER'S 
COMMENT 
FORM 

Is there anything you especially like or dislike about this book? Feel free to comment on 
specific errors or omissions, accuracy, organization, or completeness of this book. 

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any 
obligation to you, and all such information will be considered nonconfidential. 

Note: Do not use this form to report system problems or to request copies of pUblications. Instead, contact your 
IBM representative or the IBM branch office serving you. 

Would you like a reply? _YES _NO 

Please print your name, company name, and address: 

IBM Branch Office serving you: 

Thank you for your cooperation. You can either mail this form directly to us or give this 
form to an IBM representative who will forward it to us. 



SC24-5220-04 

Reader's Comment Form 

Fold and tape Please Do Not Staple 

BUSINESS REPLY MAIL 
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK. NY 

POSTAGE WILL BE PAID BY ADDRESSEE: 

--------- -------- - ---- -- ----------_.-
INTERNATIONAL BUSINESS MACHINES CORPORATION 
DEPARTMENT G60 
PO BOX 6 
EN OlCOTT NY 13760-9987 

111,11"11,1",1,11"11,,,1,1,,1,1,,1,,1,1,,,111'111 

Fold and tape Please Do Not Staple 

--------- -------- - ---- - - -----------,-
® 

CUT 
OR 

FOLD 
ALONG 

LINE 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape 



. .. . . 
• • I • 

SC24-5220-04 

-. 


