

--------- -------- - ------ ----------_ .. -

(

(

(

Virtual Machine/System Product

Diagnosis Guide

Release 6

"Restricted Materials of IBM"
Licensed Materials - Property of IBM
LY24-5241-01 © Copyright IBM Corp. 198~ 1988

LY24-5241-01

Second Edition (July 1988)

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

This edition, LY24-5241-01, is a major revision of LY24-5241-00 and applies to the Virtual Machine/System
Product Release 6, program number 5664-167, and to all subsequent releases of this product until otherwise
indicated in new editions or Technical Newsletters. It contains material formerly included in the VM/SP
Problem Reporting Guide (discontinued after Release 5), and the VM/SP GCS Diagnosis Reference
(discontinued after Release 5). Changes are made periodically to the information herein; before using this
publication in connection with the operation of IBM systems, consult the IBM System/370, 30xx, 4300, and
9370 Processors Bibliography, GC20-0001, for the editions that are applicable and current.

Summary of Changes

For a list of changes, see "Summary of Changes" on page 265.

Changes or additions to the text and illustrations are indicated by a vertical line to the left of the change.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed program in
this publication is not intended to state or imply that only IBM's licensed program may be used. Any
functionally equivalent program may be used instead.

Ordering Publications

Requests for IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality. Publications are not stocked at the address given below.

A form for readers' comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Information Development, Dept. G60, P.O. Box 6,

o

'\
)

Endicott, NY, U.S.A. 13760. IBM may use or distribute whatever information you supply in any way it ~-,

believes appropriate without incurring any obligation to you. ~_./

The form for readers' comments provided at the back of this publication may also be used to comment on
the VM/SP online HELP facility.

© Copyright International Business Machines Corporation 1986, 1988. All rights reserved.

------- ----

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Preface

This is a guide to identify, report, solve, and collect information about problems in
the Virtual MachinejSystem Product (VMjSP), program number 5664-167. It is
intended for system programmers, system analysts, and others who know assembler
language and have experience with programming concepts and techniques.

This manual is one of many reference manuals for VMjSP or VMjSP HPO system
programmers. Other books include:

• VMjSP CP Diagnosis Reference

• VMjSP CMS Diagnosis Reference

• VMjSP Interactive Problem Control System Guide and Reference

• VMjSP CMS Shared File System Administration

• VMjSP Connectivity Programming Guide and Reference

• VMjSP Connectivity Planning, Administration, and Operation.

This VMjSP Diagnosis Guide consists of:

• Chapter 1. Introduction to Debugging, which contains an overview of the
debugging environment.

• Chapter 2. Debugging the Virtual Machine, which contains a description of
commands used to display or dump data, set and query system features, trace
events, and alter storage.

• Chapter 3. Debugging CP, which contains a description of commands and
macros used to de bug CP problems.

• Chapter 4. Debugging CMS, which contains a description of commands used to
debug CMS.

• Chapter 5. Debugging the SFS Server Machine, containing a description of
methods used to collect information to debug the SFS server machine.

• Chapter 6. Debugging GCS, which contains a description of tracing and
dumping facilities used to debug GCS problems.

• Chapter 7. Debugging TSAF, which contains a description of methods used to
collect information to debug TSAF.

• Chapter 8. Debugging A VS, which contains a description of methods used to
collect information to debug A VS.

• Appendix A. Problem-Specific Checklists, which contains a checklists of
information you should gather before calling IBM for help with abends, loops,
wait states, and other problems.

• Appendix B. Control Registers, which contains a description of the control
register allocation and assignments.

• Appendix C. Stand-Alone Dump Formats, which contains a description of the
stand-alone dump tape format, DASD format, and printer format.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Preface iii

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• Appendix D. GCS Control Blocks, which contains the layouts of some GCS
control blocks and key fields that are used for identifying problems in a
VM/SNA environment.

• Summary of Changes, which contains a summary of the enhancements made to
this manual since the last edition was issued.

• Glossary of Terms and Abbreviations, which explains or defines the terms,
acronyms, and abbreviations that appear in this manual.

• Bibliography, which lists prerequisite and corequisite publications.

• Index, which lists the topics in this manual alphabetically and points to the
pages where they are discussed.

iv VM/SP Diagnosis Guide LY24-S241-01 © Copyright IBM Corp. 1986, 1988

(' ."
I , " /'

/

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

(~' Contents

(

Chapter 1. Introduction to Debugging
How To Start Debugging ,......
How To Use VM/SP Facilities To Debug
Summary of VM/SP Debugging Commands

Chapter 2. Debugging the Virtual Machine
Commands that Display or Dump Virtual Machine Data
Commands that Set and Query System Features, Conditions, and Events
Commands that Trace Events in Virtual Machines
Commands that Alter the Contents of Storage

Chapter 3. Debugging CP
Commands to Collect and Analyze System Information
De bugging CP in a Virtual Machine
CP Internal Trace Table
Abend Dumps
Reading CP Abend Dumps ...,.
Trapping Improper Use of CP Free Storage
Debugging with the CPTRAP Facility
370X Dump Processing ..
Stand-Alone Dump Facility

Chapter 4. Debugging CMS
Debugging Commands
Tracing Capabilities in EXECs
Nucleus Load Map
Module Load Map
How to Print a CMS Dump File
Reading CMS Abend Dumps
Generating CMS Abend Dumps Automatically
Commands that Alter the Contents of Storage

Chapter 5. Debugging the SFS Server Machine
Summary of Steps to Follow When a File Pool Server Abend Occurs
Using the Console Log
Using File Pool Server Dumps to Diagnose Problems
Using System Trace Data to Diagnose Problems

Chapter 6. Debugging GCS
Internal Tracing Facilities
External Tracing Facilities
Dumping Facilities
Interactive Debugging Support
ABEND processing
IPCS for GCS
The State of the Virtual Machine
NUCON and SIB
Task Management ..
IUCV
Storage Management

General I/O

LY24-5241-0l © Copyright IBM Corp. 1986, 1988

. 1

. 2
20
39

47
48
53
54
67

71
73
73
74
77
78
93
95

120
123

131
132
133
135
135
136
136
138
143

145
146
146
150
152

155
157
173
179
181
183
184
186
187
193
200
203
209

Contents V

Appendixes

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

I/O Debugging
Command and Console Support
VSAM

Chapter 7. Debugging TSAF
Summary of Steps to Follow When a TSAF Abend Occurs
Using the Console Log
Using TSAF Dumps to Diagnose Problems .. .
Using System Trace Data to Diagnose Problems
Interactive Service Queries

Chapter 8. Debugging A VS
Using AVS Dumps to Diagnose Problems
Using System Trace Data to Diagnose Problems .
Interactive Service Queries
Summary of Steps to Follow When an AVS Abend Occurs

Appendix A. Problem-Specific Checklists
CP ABEND Checklist .
CMS ABEND Checklist
GCS ABEND Checklist
RSCS ABEND Checklist
CP Wait State Checklist
Virtual Machine Wait State Checklist
RSCS Wait State Checklist

216
218
222

227
228
229
229
232
234

235
236
238
241
241

243

245
245
245
245
246
246
246
247

Checklist for Incorrect or Unexpected Output from an Application Program 247
Checklists for Performance Problems 247

Appendix B. Control Registers 249

Appendix C. Stand-Alone Dump Formats
Tape Format
DASD Format
Printer Format
Error Handling

Appendix D. GCS Control Blocks

Summary of Changes

Glossary of Terms and Abbreviations

Bibliography
Prerequisite Publications
Corequisite Publications

Index

253
253
255
256
256

257

265

269

287
287
287

289

vi VMjSP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

./

(

(

(~_\

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Introduction to Debugging

Chapter 1. Introduction to Debugging

How To Start Debugging ... _
Does a Problem Exist? _ .. .

2
3
3 Identifying the Problem

Where to Find Evidence .. _ . _ .. 5
Analyzing the Problem _ _ . _ . . _ . . .
Data Needed Before Calling IBM for Assistance

Problem Inquiry Data Sheet
How To Use VMjSP Facilities To Debug _

Creating a Dump . _ . . _ . _ _ _ _ _ .
Obtaining a Copy of a CP Restart Dump ..
Obtaining a Copy of a Stand-Alone Dump . _ . . _ _ _ _ _
Obtaining a Copy of a Virtual Machine Dump _. _ . . _
Obtaining a Copy of a Communication Controller Dump

Locating the CP Internal Trace Table in a Dump __ .
Abend _.... _ _ _ . _ . . . _ _

CP Abend ... _
CMS Abend _
SFS Abend
GCS Abend . _ . . .
TSAF Abend _ _ . . _
AVS Abend
Virtual Machine Abend (Other than CMS) .

Unexpected Results
Unexpected Results in CP
Unexpected Results in a Virtual Machine .

Loop
CP Disabled Loop
Virtual Machine Disabled Loop
Virtual Machine Enabled Loop

Wait
CP Disabled Wait
CP Enabled Wait
Virtual Machine Disabled Wait
Virtual Machine Enabled Wait

Summary of VMjSP Debugging Commands

12
16
17
20
20
20
21
21
22
22
23
26
28
32
32
32
32
33
34
34
34
34
35
35
36
36
36
38
38
39
39

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 1. Introduction to Debugging 1

Introduction to Debugging "Restricted Materials of Il~M"
Licensed Materials - Property of IBM

VM/SP manages the resources of a single computer such that multiple computing
systems appear to exist. Each "virtual computing system," or virtual machine, is the
functional equivalent of an IBM System/370. Therefore, the person trying to
determine the cause of a VM/SP software problem must consider these separate
areas:

• The Control Program (CP), which controls the resources of the real machine

• The virtual machine operating system running under the control of CP, such as
CMS, GCS, TSAF, or AVS

• The problem program, which executes under the control of a virtual machine
operating system.

Refer to:

• Chapter 2, "Debugging the Virtual Machine" on page 47 for information on
how to debug problems within a virtual machine, and "Commands that Trace
Events in Virtual Machines" on page 54 for information on how to debug
application programs.

• Chapter 3, "Debugging CP" on page 71 for information on CPo
• Chapter 4, "Debugging CMS" on page 131 for information on CMS.
• Chapter 5, "Debugging the SFS Server Machine" on page 145 for information

on the SFS (Shared File System) Server Machine.
• Chapter 6, "Debugging GCS" on page 155 for information on GCS (the Group

Control System.
• Chapter 7, "Debugging TSAF" on page 227 for information on TSAF (the

Transparent Services Access Facility).
• Chapter 8, "Debugging A VS" on page 235 for information on A VS

(APPC/VM VT AM Support).

For information explaining how to use Interactive Problem Control System (IPCS)
for debugging, refer to the VM/SP Interactive Problem Control System Guide and
Reference.

If a problem is caused by a guest operating system, refer to the publications
pertaining to that operating system for specific information.

If it becomes necessary to apply a Program Temporary Fix (PTF) to a component of
VM/370 or VM/SP, refer to the VM/SP Installation Guide for information on
applying PTFs.

How To Start Debugging
A good approach to debugging is:

1. Recognize that a problem exists.

2. Identify the problem type and the area affected.

3. Analyze the data you have available, collect more data if you need it, then
isolate the data that pertains to your problem.

4. Determine the cause of the problem and correct it.

When running VM/SP, you must also decide whether the problem is in CP, the
virtual machine, or the problem program.

2 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Does a Problem Exist?

Introduction to Debugging

The most common problems occurring on your VMjSP system or virtual machine
are:

• Abend (abnormal end)
• Unexpected or incorrect results

• Loop
• Wait state.

Abend: The most obvious indication of a problem is the abnormal termination
(abend) of a program. An abend occurs when an error condition that cannot be
resolved by the system causes a program to terminate prematurely. Whenever a
program abnormally terminates, a message is issued. This message provides
information that can help you isolate the problem.

Unexpected or Incorrect Results: Another obvious indication of a problem is
unexpected or incorrect output or results. If your output is missing, incorrect, or in
a different format than expected, some problem exists.

Infinite Loops: A loop is a set of instructions that is executed repeatedly as long as
a certain condition is present. Infinite loops are caused when the condition that is
supposed to be satisfied in the loop is never reached. If your program takes longer
to execute than anticipated, it might be in a loop. If your output is repeated more
than expected, your program may be in a loop.

Wait States: A VMjSP system or virtual machine is in a wait state between the time
the system asks for data and begins to receive it. No other processing can occur in a
system or virtual machine that is in a wait state. When the system or virtual
machine is in a disabled wait state, it accepts no incoming data. When the system or
virtual machine is in an enabled wait state, it continues to accept incoming data.
Enables wait states occur frequently, and are quite easily resolved or resolve
themselves. Disabled wait states are not easily resolved and almost always a sign of
a serious problem, but often a message is issued alerting you to a disabled wait. If
your program is taking longer than expected to execute, the virtual machine may be
in a wait state.

Other problems: ¥our system is not limited to the problems listed above. Other
problems, that are not easily determined, may appear to slow the system's
performance or cause unproductive processing time. These can be caused by poor
system tuning or problems with your hardware.

Identifying the Problem
Identifying problems is not always easy. Abnormal termination is sometimes
indicated by an error message, and unexpected results become apparent once the
output is examined. Looping and wait state conditions may not as easy to identify.

Table I on page l3 helps you to identify problem types and the areas where they
may occur.

Immediate signs of problems within a user's virtual machine are:

• Return Codes
• Error Messages.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 1. Introduction to Debugging 3

Introduction to Debugging "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Return Codes: A return code is a number generated by the software associated with
a computer instruction. This return code describes to your program the condition
that arose when your machine tried to carry out the instruction. Based on this
condition, the return code influences your program in determining how subsequent
processing of your overall task should proceed.

You must design your program to respond to specific return codes in specific ways.
Your VMjSP system-its system programming-is no different. Depending upon the
return code received from an instruction in its system software (or, for that matter,
in an application program that you are running on VMjSP) your system is
programmed to react in a certain way.

The severity of return codes differs. Some conditions are handled more smoothly
than others.

For an explanation of the meaning of individual return codes, consult VMjSP
System Messages and Codes. Many return codes are also recorded in the VMjSP
CMS User's Guide.

Messages: A message is a sentence or phrase transmitted by VMjSP that describes
a situation or problem that the system encountered while processing an instruction
or command. Like a return code, it describes a situation and influences a reaction to
it. Unlike a return code, which is generated for the benefit of a running computer
program, a message is issued for the benefit of the person who wrote the program or
issued the command.

VMjSP has thousands of messages and is programmed to generate a particular
message when a given situation or problem occurs.

VMjSP messages consist of these parts:

• The message identifier
• The message text.

A message identifier is a combination of letters and numbers that uniquely identifies
a message. The message text is the set of words that indicates your problem. The
message text may contain message variables, which are spaces filled with important
data, making the message more informative.

The message identifier consists of four fields: a prefix, a module code, a message
number, and a severity code. The prefix corresponds to the component that issued
the message. Here are the message identifier prefixes with their corresponding
VMjSP components:

• DMK -- CP
• DMS -- CMS
• CSI -- GCS
• DMM -- IPCS
• ATS -- TSAF
• AGW -- AVS.

The module code indicates which module generated the message. The message
number is associated with the condition that caused the message to be generated.
The severity code is a letter that indicates what kind of condition caused the
message. Not every severity code applies to every component, but the following list
contains all the possibilities:

4 VMjSP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

,)

('

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• A -- Immediate action required
• I -- Information message
• R -- Response
• W -- Warning or system wait
• E -- Error
• S -- Severe error
• T -- Terminating error.

Introduction to Debugging

You may receive the following message if you fail to issue the CPT RAP command
correctly. Use this example to identify the parts of a message.

DMKTRP828E Userid missing or invalid

Messages can help identify problems, both large and small. Be aware of the
messages you receive when your system is experiencing problems For an
explanation of individual messages, consult V M j SP System Messages and Codes.

Where to Find Evidence
Depending on the severity of the problem, or abend, you must take action to
identify and correct the problem. You may have to use one of the following sources
to find exactly where a major problem occurred:

• A Dump
• A Nucleus Load Map (NUCMAP)

• Registers
• The Program Status Word (psw)
• The Channel Status Word (csw)
• The Channel Address W ord (CAW)

• The Console Log
• A Trace
• The Program Event Recording Facility (PER).

Dumps: A dump is a record of the contents of your machine's storage at a given
moment. A dump can appear either on-line or printed on paper. You are interested
in finding the moment when malfunctions, errors, or problems begin.

Depending upon the type of dump you request and where the dump comes from, it
can include the data contained in the following:

• Virtual storage, which is a byte-by-byte record of the contents of a virtual
machine's storage in hexadecimal notation. The dump provides an EBCDIC
translation of this data.

• Real storage, which is a byte-by-byte record of the contents of your VMjSP
system's real storage.

• Control blocks.

• General-purpose and floating-point registers.

• Control registers.

• The time-of-day clock.

• The processor timer.

• The program status word (PSW).

LY24-524 1-0 1 © Copyright IBM Corp. 1986, 1988 Chapter 1. Introduction to Debugging 5

Introduction to Debugging "Restricted Materials of IBM"
Licensed Materials - Property of IBM

There are several types of dumps that you can request, depending on the information
that you want.

• A CP dump. This can be a dump of your entire VMjSP system or just the
storage directly "owned" by CPo

• A stand-alone dump. Sometimes, a problem can be so severe that your system
can't even produce a CP dump on its own. So, every VMjSP system is equipped
with a special program that will produce a dump of real storage, regardless of
how severe the problem is. We call it a "stand-alone" dump because the
program that produces it stands alone or independent of the rest of the system
programming. Since it is independent of the system programming, any problems
there will not prevent the dump from being created.

• A dump limited to any single virtual machine running in your VMjSP system.
For example, you can request a dump of the virtual machine containing CMS,
RSCS, or any guest operating system that resides in VMjSP.

• A dump of a communication controller's storage. A communication controller is
a device that manages and controls the operation of a computer network,
including the routing of data therein. Such a device contains what is called a
communication controller program, a dump of which can be useful when dealing
with computer network problems.

A dump is useful when dealing with a problem in your VMjSP system. A dump is a
picture of the system's (or virtual machine's) memory at the moment of malfunction
or error. The problem is likely to be somewhere in the picture.

(\

I,. /

"'\

DMumps are ehsp~c~allY h~lpful in ~ealdin~ withNUincfiMniAteploops, WI ait statehs, ~n~ aben.ds·
c

.. J
oreover, t e mlormation contame m a comp ements t e mlormation

in a dump. When you create a dump, it is wise to obtain a NUCMAP. Refer to the
material in the section titled "NUCMAP or Nucleus Load Map." See
also "Creating a Dump" on page 20 .

NUCMAP or Nucleus Load Map: A nucleus load map (NUCMAP) is a record that
contains the following information.

• A list of the storage addresses of all control sections (CSECTs). A control
section or CSECT is that part of a program that the programmer defines as a
relocatable unit. It is a block of code that can function properly in any part of
storage. All elements of a CSECT are loaded into adjoining locations in
storage.

• The storage addresses of all modules loaded into the CP nucleus, CMS nucleus,
or GCS nucleus. The CP nucleus contains that portion of CP present in main
storage. Similarly, the CMS or GCS nucleus is that portion of CMS or GCS
present in virtual storage.

• A list of all modifications performed on the modules in the nuclei. This includes
all the maintenance that IBM has performed on the modules and all the
modifications your organization has made to them.

I These activities are performed by the system programmer or system operator using the MAINT virtual machine.
This is the virtual machine that is used to install, service, and maintain your VMjSP system. The VMjSP
Installation Guide explains these activities.

6 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

/ '.
!

(

(

(

(-

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Introduction to Debugging

One NUCMAP exists for CP, another for CMS, and another for GCS. NUCMAPs
are often called load maps, particularly by the Interactive Problem Control System
(IPCS).

VM/SP creates a NUCMAP each time CP or CMS is built-that is, when your
system is first installed or after it is repaired or modified. l So, the NUCMAPs are
kept up-to-date.

NUCMAPs are useful particularly when you are dealing with an infinite loop.
NUCMAPs also complement the information found in a dump. When you use one,
you should have the other handy.

NUCMAPs can be found in the following locations:

• The CPNUC MAP file, on the MAINT virtual machine's disk at virtual address
194, contains the CP NUCMAP.

• The CMSNUC MAP file, on MAINT's disk at virtual address 193, contains the
CMSNUCMAP.

• The GCSNUC MAP is stored on the GCS virtual disk at address 595.

Registers: A register is an area of storage specially set aside in your processor.
Your machine is equipped with 16 general purpose registers, four floating-point
registers, and 16 control registers.

General purpose registers contain numeric or alphabetic values being manipulated by
the user program currently running. Floating-point registers are used to hold
numeric values associated with some exponent. These are usually very small or very
large numbers-for example, 45.6 x 1012• While general and floating-point registers
contain data directly related to the execution of a user application program, control
registers are used to calculate and keep track of certain values pertaining to the
operation and management of the VM/SP system.

Your machine uses a register to store a piece of data that it is using right now. A
register can contain a numeric or alphabetic value, an address, or an instruction that
the computer is currently using to do some small step in your overall task.

A register holds a piece of data only as long as it is needed. The traffic in and out
of any given register can be quite heavy. Depending on the problem, a great deal
can be learned by examining the contents of your system's registers if a malfunction,
error, or problem occurs.

The contents of your system's registers are included in any dump that you might
request. It is also possible to examine the contents of your registers by issuing
various commands and during a trace.

Program Status Word: The program status word (PSW) is an area in storage that
indicates your system's general status. The PSW is a doubleword (or 64 bits) in
storage that is divided into several fields. Concentrate on these fields:

Bit 6 Indicates whether your system will accept (or is enabled for) input
interrupts. If this bit is set to 0, your machine is not enabled for input.
If this bit is set to 1, your machine will accept input interrupts.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 1. Introduction to Debugging 7

Introduction to Debugging

Bit 14

"Restricted Materials of IBM"
Licensed· Materials - Property of IBM

Indicates whether your VM/SP system is in a wait state. If this bit is
set to 0, your system is not in the wait state, and execution can
proceed normally. If this bit is set to 1, your system is in a wait state.

If bit 14 is set to 1, the setting of bit 6 indicates whether the wait state
is enabled (1) or disabled (0).

Normally, your system indicates that it is in a wait state by either
displaying the word "WAIT" on the system display terminal or by
activating the system console's WAIT light.

Bits 40-63 Contains the address of the next instruction your machine is set to
execute.

Examining the current PSW periodically may help you identify a loop. If the PSW
instruction address always has the same value, or if the instruction address has a
series of repeating values, the program probably is looping.

You can determine the contents of the PSW by using the CP DrSPLA Y command
with the PSW option. You can also determine the PSW by looking at a dump.

Channel Status Word: A channel is a device that manages and directs the flow of
data between your VM/SP system's main storage and a storage device (printer,
DASD, terminal, or tape). A channel status word (CSW) is a doubleword of storage
describing the condition of a storage device and the channel to which it is attached.

The CSW contains fields that indicate, among other things:

• The general status of the channel. For example, is the channel idle or busy?

• The general status of the input/output device. For example, is the device
operating normally or has some problem occurred? If there is a problem, what
kind is it? What is the input/output interrupt status of the device?

• The condition under which the last input or output operation was completed.

• The type of input or output operation underway.

• Whether conditions have developed that prevent the normal flow of data
through the channel.

The information in a CSW is usually complete once the I/O interrupt associated with
the operation in question has occurred. This information can be helpful in tracking
down problems involving unexpected output results and input/output errors.

You can determine the contents of the CSW by using the CP DISPLAY command
with the CSW option. You can also determine the CSW by looking at a dump.

Channel Address Word: The channel address word (CAW) is a fullword in your
VM/SP system's storage that contains the address of the channel program as well as
control information for that program.

A channel program is a special program that manages the operation of a channel.

The information in a CAW can be helpful in tracking down problems involving
unexpected output results and input/output errors. The channel program itself can
be located and examined for possible errors.

8 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

o

I

\ I

..;I

(--"

(

(-

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Introduction to Debugging

You can determine the contents of the CAW by using the CP DISPLAY command
with the CAW option. You can also determine the CAW by looking at a dump.

Console Log: A console log is a record of everything that has appeared on the
screen at a certain virtual machine's console. This includes all commands, messages,
return codes, and results.

When problems arise in the system, we are generally interested in the console log for
the system operator's console. The log includes:

• All messages and return codes that have been sent to the operator.

• All commands and instructions that the operator has entered at his console.

• All responses that the operator has made to requests for action by the system.

The console log can describe the sequence of events that lead to a malfunction,
error, or problem from the system's point of view.

But it is not always just the system operator's console log that might help you. For
example, if you are having a problem with RSCS, then the console log for the RSCS
virtual machine might help.

At the system operator's console, the recording of the console log is automatic and
takes place at all times. To get a console log at other consoles you must issue the
following command to begin the recording. The best place for this command is in
the profile for the virtual machine in question. That way, you know a console log is
always being recorded. Or, you can always issue the command from the command
line and have it in effect temporarily, such as,

cp spool console start

Issue

cp close console

to create a console log of the information recorded up to this point and puts the file
in your virtual printer. Recording continues until you log off the system or explicitly
stop it with the CP SPOOL CONSOLE STOP command.

Traces: A trace is a chronological record, usually printed, of every "major event"
that has taken place within your VMjSP system or within a virtual machine running
there. Each "major event" corresponds to a program or a set of instructions that
your system or virtual machine has executed, each representing a major
accomplishment in an overall task. The trace shows how each event affected virtual
storage, registers, the PSW, and other aspects of your system.

A trace is invaluable when trying to track down a problem, particularly in the case
of wait states, infinite loops, and unexpected output. Often, traces themselves
suggest solutions to the problem. In a trace, you see the overall effect of every event
that occurred before and after the problem arose.

VMjSP automatically maintains what is called the CP internal trace table. This
table is a record of all events that have taken place in CP, and is described in the
section titled "CP Internal Trace Table" on page 74.

An internal trace table is also maintained for GCS. Consult the "Internal Tracing
Facilities'~ on page 157 for more information.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 1. Introduction to Debugging 9

Introduction to Debugging "Restricted Materials of IBM"
Licensed Materials - Property of IBM

VM/SP and GCS provide several commands you can issue to generate a trace of
your own. Each has certain characteristics that appeal to certain needs, as explained
below.

TRACE A CP command that traces general virtual machine activity. This
command records trace data at a terminal, a virtual printer, or both.
For more information, check the VM/SP CP General User Command
Reference.

PER A CP command that monitors events in a virtual machine. The PER
command monitors such events as instruction fetching, successful
branching, or a change in a register or storage address. For more
information, check the VM/SP CP General User Command Reference
and VM/SP CP System Command Reference. Also, review the sections
of this book titled "The Program Event Recording Facility (PER)" on
page 11 and "Using the CP PER Command" on page 59.

CPTRAP A CP command and facility that stores certain diagnostic information in
a virtual reader file. This information includes the entries in the CP
internal trace table plus other data gathered from CP and various virtual
machines. For more information, check "Debugging with the CPT RAP
Facility" on page 95 and the VM/SP CP System Command Reference.

ITRACE A GCS command that enables or disables the recording of events in the
GCS internal trace table. Rather than record events taking place in the
system as a whole, the GCS internal trace table records events within a
virtual machine or virtual machine group. For more information, check
"Using the ITRACE Command and GTRACE Macro" on page 158 and
the VM/SP Group Control System Command and Macro Reference.

ETRACE A GCS command that actually records a given event in the GCS internal
trace table. The ETRACE command works closely with the CPTRAP
command. For more information, check Chapter 6, "Debugging GCS"
on page 155 and the VM/SP Group Control System Command and Macro
Reference.

There are even more tracing tools for those interested in the Systems Network
ArchitectUre (SNA). VT AM and NCP provide SNA users with several types of
traces. These traces can record events that take place at several points in a network
as data travels from a virtual machine, through VTAM and NCP, to a SNA device.
Among those items you can trace in a SNA environment are:

• Buffer contents
• Input/output events
• Line activity
• SMS buffer use
• Transmission group activity
• Internal VSCS and VT AM events.

Detailed information on all of this is available in the VT AM Diagnosis Guide and
the VT AM Diagnosis Reference.

Symptom Records: Your VM/SP system contains a component called the
Interactive Problem Control System (IPCS). Fundamentally, IPCS helps you report, f-'

diagnose, and manage any problems you have with VM/SP. (,,_j

10 VMjSP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986,1988

(

(

(.

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Introduction to Debugging

Anyone who is involved in VMjSP problem-solving should be familiar with IPCS.
For details, refer to the VMjSP Interactive Problem Control System Guide and
Reference.

For now, it is useful to review one IPCS concept-the symptom record. A symptom
record is a collection of data conveying basic information about some VMjSP
software failure. It includes the following:

• The component, release, and service level of your VMjSP system. These items
identify your VMjSP system software to the IBM Support Center.

• The model number and serial number of your particular processor. These items
identify your system hardware to the IBM Support Center.

• The date and time of day that the symptom record was created.

• The type of dump of which the symptom record has become a part.

The symptom record is located within the first two kilobytes of any dump that is
produced.

• The error code associated with the problem or error at hand.

• The ID of the failing component-for example, 5749DMKOO. (This particular
ID refers to CP.)

• The name of the program module within the failing component wherein the
error or problem occurred.

• The contents of all the registers.

• The register PSW difference. This designates which register might recently have
been used as a base register. This information helps locate where the error is
likely to be in storage.

The importance of this information goes beyond merely conveying information
about a single problem. The IBM Support Center also uses this information to
determine whether a certain problem is related to one that has already been
reported. If it is, then you and IBM know more about the problem than you did
before. Moreover time, money, and effort are conserved. Obviously, if PROBLEM
X and PROBLEM Yare related, it would be wasteful to treat them as though they
were separate and unrelated. Since these relationships are not always immediately
obvious, we look to the symptom record.

The Program Event Recording Facility (PER): PER helps you monitor three
important events that take place in a virtual machine.

• Instruction fetch. Whenever you ask your system to execute an instruction, it
has to locate the program needed to execute it. We call this action an instruction
fetch. In a problem situation, it may be helpful to know what instruction was
fetched at a certain moment. If it's the wrong one, you may have found the
error.

• Successful branch. A program branches when it executes an instruction other
than the next sequential instruction. PER helps you trace when and to where a
branch occurs. If you suspect that a problem is being caused by a branch to the
wrong place or at the wrong time, PER can help.

• Storage alteration. As we've said, the contents of areas of storage change
frequently in a computer. PER helps you monitor the contents of any register
or address at any time. In a problem situation, you can monitor the value of

LY24-5241-01 © Copyright IBM Corp. 1986,1988 Chapter I. Introduction to Debugging 11

--.---,---------.-~~--"~-----~--

Introduction to Debugging "Restricted Materials of IBM"
Licensed Materials - Property of IBM

any key register or area of memory to make sure that it is correct. If it isn't,
then you might have found the problem.

Use the PER command to invoke the PER facility. The PER command has many
options that allow you to specify exactly what event you want to monitor. Other
options let you specify what you want to happen once the event has occurred-that
is, do you want the event traced, do you want a dump, or do you want the virtual
machine to wait. Still other PER options allow you to define the event very
narrowly to avoid having to handle an unnecessarily large amount of data.

For detailed information on the PER command, check the VMjSP CP General User
Command Reference and VMjSP CP System Command Reference. Also refer to
"Using the CP PER Command" on page 59.

Analyzing the Problem
Once the type of problem is identified, its cause must be determined. There are
recommended procedures to follow. These procedures are helpful, but do not
identify the cause of the problem in every case. Be resourceful. Use whatever data
you have available. If the cause of the problem is not found after the recommended
debugging procedures are followed, it may be necessary to undertake the tedious job
of desk-checking.

The section "How To Use VMjSP Facilities To Debug" on page 20 describes
procedures to follow in determining the cause of various problems that can occur in
CP or in the virtual machine. See "Commands that Trace Events in Virtual
Machines" on page 54 for information on using VM/SP facilities to debug a
problem program.

Figure 1 on page 14, Figure 2 on page 15, and Figure 3 on page 16 summarize the
debugging process from identifying the problem to finding the cause.

12 VMjSP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Table 1. VMjSP Problem Types

Problem Where
Type Abend Occurs

Abend CP abend
CMS abend
GCS abend
TSAF abend
AVS abend

Virtual machine
abend (other
than CMS)

Unexpected CP
Results

Virtual machine

Wait CP

Loop CP disabled loop

Virtual machine
disabled loop

Virtual machine
enabled loop

Introduction to Debugging

Distinguishing Characteristics

For a complete discussion of reasons for abends and system
programmer's actions, see the CP, CMS, GCS, TSAF, and AVS
abend codes charts in VM/SP System Messages and Codes.

When as or DOS abnormally terminates on a virtual machine,
the messages issued and the dumps taken are the same as they
would be if as or DOS abnormally terminated on a real
machine.

CP may terminate or reset a virtual machine if a unrecoverable
channel check or machine check occurs in that virtual machine.
The system operator will receive a message at the processor
console. Also, the virtual user will be notified by a message that
his virtual machine was terminated or reset.

If an operating system, other than CMS, executes properly on a
real machine, but not properly with CP, a problem exists.
Inaccurate data on files, such as spool files, is an error.

If a program executes properly under the control of a particular
operating system on a real machine, but does not execute
correctly under the same operating system with CP, a problem
exists.

For a complete discussion of CP, and loader wait state codes,
see VM/SP System Messages and Codes.

The processor console wait light is off. The problem state bit of
the real PSW is off. No I/O interrupts are accepted.

The program is taking longer to execute than anticipated.
Signaling attention from the disabled loop terminal does not
cause an interrupt in the virtual machine. The virtual machine
operator cannot communicate with the virtual machine's
operating system by signaling attention.

Excessive processing time is often an indication of a loop. Use
the CP QUERY TIME command to check the elapsed
processing time. In CMS, the continued typing of the blip
characters indicates that processing time is elapsing. If time has
elapsed, periodically display the virtual PSW and check the
instruction address. If the same instruction, or series of
instructions, continues to appear in the PSW, a loop probably
exists.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 1. Introduction to Debugging 13

Introduction to Debugging

Is there an ABEND condition?

• If the message:
DMKDMP9081SYSTEM
FAILURE; CODE -~
PROCESSOR .no

appears on the console and the
alarm rings, this is a CP ABEND.
The system dumps to disk or to
the printer if the SET DUM~
command has been issued. - \1

.. If the messages:

.. DMKDMP9081 SYSTEM
FAILURE; CODE - code
PROCESSOR .no
DMKCKP9601 System warm
start data saved
DMKCKP961W System shutdown
complete

appear on the console, this is a

printer or tape and stops. • 5 C
CP ABEND. The system dumps to ~

• If the message:
DMSABN148T System abend.xxx
called from llSUlr

CMS ABEND. ~ D
appears on the terminal. this is a ~

II If an ABEND message from the
virtual machine appears on the ter
minal, this is an ABEND in the oper-

machine. 5 E
ating system controlling this virtual~

Otherwise, an ABEN D condition
does not exist. GO TO

Figure 1. Does a Problem Exist?

14 VM/SP Diagnosis Guide

Does a problem exist?

No problem exists

r---- Unexpected Results?----,

• If an operating system which executes
on a real machine fails to execute
property under VM/SP, there are I5:l
unexpected results in CPo .",

.. If a program which executes under the

.. control of an operating system on a real
machine fails to execute correctly with
the same operating system under VM/SP,

•
virtual machine. • 5 B
there are unexpected results in the ~

I! the program's output is inaccurate or
missing, there are unexpected results in
the problem program.

I! the output is redundant check ~ r::'\
for a loop. ----------~

II Otherwise. check for a wait or loop.

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Excessive time has elapsed.

• If pressing the REQUEST key on the
operator's console leaves the REQUEST
PENDING light on, a CP disabled wait

will be on. • 4A
state exists. The CPU console light ~

.. I! the CPU console wait light is on, t~

.. system is in a CP enabled wait state. _ ~

• I! the real PSW problem bit is OFF,
there is a CP loop.

II I! any of the following messages:
DMKDSP450W CP entered;
disabled wait PSW.JllilI
DMKDSP451W CP entered;
invalid PSW.JllilI
DMKDSP452W CP entered;
external interrupt loop
DMKPRG453W CP ENTEREED;
PROGRAM INTERRUPT LOOP

appears on the terminal. there is a
disabled wait or an interrupt loop (4:::l
in the virtual machine. ------.~V

.. If pressing the ATTN key once does not
III cause an interrupt, there is a disabled r4:1

loop in the virtual machine. .0
... I! processing has ceased in the virtual
.. machine without reaching end-of-job,

the virtual machine is in an enabled
wait state and no 1/0 interrupt J"4::l
has occurred. .0

• If processing time exceeds normal
expectations the virtual machine ~4 G
may have an enabled 100P'---""~'V'

II Otherwise,

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

/

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Introduction to Debugging

II

CP Disabled Wait --------------------,

Use ALTER/DISPLAY console mode (if available), to display real
PSW and CSW, Also, display general and extended control
registers and storage locations X'OO' - X'10'.

Force a SYSTEM RESTART (If not successful. do Stand-Alone Dump)
to cause a CP ABEND dump to be taken.
This automatically re-IPL's CP, if dumping to disk.

CP Enabled Wait

Force a SYSTEM RESTART (if not successful, do Stand-Alone
Dump) to cause a CP ABEND dump to be taken.

Use the dump to check the status of each VM BLOCK. Also, check
RCHBLOK, RCUBLOK, and RDEVBLOK for each device.

Virtual Machine Disabled Wait' ---------------1
Use CP commands to display the PSW, CSW, general registers,
and control registers.

Use the CP DUMP or CP VMDUMP command (or CMS DUMP subcommand)
to take a dump.

Virtual Machine Enabled Wait'----------------I
Take a dump using the CP DUMP or CP VMDUMP command, using the
correct FORMAT option.

CP Loop

Use ALTER/DISPLAY console mode (if available), to display real PSW.
Also, display general and extended control registers and storage
locations X'OO' - X'1 0'.

Trace the instruction loop on the processor and force a
SYSTEM RESTART (if not successful, do Stand-Alone Dump) to
cause a CP ABEND dump to be taken.

Examine the CP internal trace table to see where the loop is.

Virtual Machine Disabled Loop'

Use the CP TRACE or CP PER command to trace the loop.

Display the general registers and control registers via the CP DISPLAY
command.

Take a dump using the CP DUMP or VMDUMP command, using the
correct FORMAT option.

II Examine the source code.

II
II

Virtual Machine Enabled Loop' ----------------1
Trace the loop, using CP TRACE or CP PER.

Display the PSW, general registers, and extended control registers.

Take a dump using the CP DUMP or CP VMDUMP command, using the
correct FORMAT option.

II Examine the source code .

• Applies to GCS and/or TSAF.

Figure 2. Debug Procedures for Waits and Loops

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 1. Introduction to Debugging 15

Introduction to Debugging "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debug Procedures for Unexpected Results

II

•
Unexpected Results in CP ---..... -----------.,

Check that the program is not violating any CP restrictions.

Check that the program and operating system running on the virtual
machine are exactly the same as those that ran on the real machine .

Use the CP TRACE command to trace CCWs. SIOs. and interrupts. Look
for an error in CCW translation or interrupt reflection.

II If disk I/O error. use the CP DDR (DASD Dump Restore) program to
print the contents of any disk.

II •
Unexpected Results in a Virtual Machine -----------1
Check that the program executing on the virtual machine is exactly the
same as the one that ran on the real machine.

Make sure that operating system restrictions are not violated .

Use CP TRACE to trace all I/O operations.

Debug Procedures for an ABEND

CPABEND

Find out why CP abended. Examine the PROPSW. INTPR.
SVCOPSW. and CPABEND fields in the PSA from the dump.

Identify the module that caused the ABEND.
Examine the SAVEAREA, BALRSAVE. and FREESAVE areas of
the dump.

If I/O operation. examine the real and virtual I/O control blocks.

Determine reason for ABEND from code in ABEND message DMSABNI48T.

Enter debug environment or use CP console function mode to use the
commands. to display the PSW. and to examine low storage areas:

LASTLMOD and LASTTMOD
LASTCMND and PREVCMND
LASTEXEC and PREVEXEC and DEVICE

look at the last instruction executed.
Take dump if needed.

Virtual Machine ABEND (other than CMS)' ---------1
Examine dump. if there is one.

Use CP commands to examine registers and control words.

Use CP TRACE or CP PER to trace the processing up to the point where
the error occurred .

• Applies to GCS and/or TSAF.

Figure 3. Debug Procedures for Unexpected Results and an Abend

Data Needed Before Calling IBM for Assistance
Note: Tbis section contains general information for all VM/SP-based operating
systems.

If you should need to call your IBM Support Center for assistance, it is very
important for you to have the following information:

• Problem Inquiry Data Sheet
• List of all applied maintenance for the module(s) involved
• Operator's console log
• Verification that all known errors against the PUT have been applied
• NUCMAP for the failing system.

16 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Problem Inquiry Data Sheet

Introduction to Debugging

The Problem Inquiry Data Sheet must be· accurately filled-in to ensure that you get
the correct solution from IBM. It might be a good idea to make copies of the
Problem Inquiry Data Sheet (see Figure 4 on page 19), to have blank sheets
available in case you have to call IBM.

System Information: When completing the Problem Inquiry Data Sheet, the
QUERY CPLEVEL command should be used to help you to determine:

• Operating system
• Release level
• Service level

of your system.

For example, if you were on a VM/SP system and you entered:

query cp 1 eve 1

you could get something that looked like this:

Make sure that you record system information (first output line from the query cplevel
command) on the Problem Inquiry Data Sheet.

CPU Information: The QUERY CPUID command should be used to help you to
determine what to enter for the CPU Serial on the Problem Inquiry Data Sheet.

If you entered:

query cpuid

you could get something that looked like this:

This is the 16-digit processor identification associated with the virtual machine.
Ignore the FF. The ten digits that follow the FF are the CPU Serial (first six digits
representing the processor identification number and the next four digits representing
the processor model number). Ignore the last four digits of this 16-digit field.

Note: The system release level, service level, and CPU serial number could also be
obtained via IPCS from the Problem Record or through the SYMPTOM
subcommand of IPCSSCAN if a dump was created for the problem. See the VM/SP
Interactive Problem Control System Guide and Reference for more information about
IPCSSCAN and SYMPTOM.

Data Sheet Fields: The Problem Inquiry Data Sheet consists of the following fields:

Customer
Enter your business' name.

LY24-5241-01 © Copyright IBM Corp. 1986,1988 Chapter 1. Introduction to Debugging 17

Introduction to Debugging "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Date
Enter today's date.

Problem #
Enter the problem number that IBM will assign to you when you call.

Access Code
Enter the customer number that the IBM marketing representative gave to you.

CPU Serial
Enter the lO-digit number from using the QUERY CPUID command, as
described above.

Severity
Enter 1,2, 3, or 4. The severity codes mean:

1

2

3

4

You are unable to use the program, resulting in a critical impact on your
operations.

You are able to use the program, but you are severely restricted.

You are able to use the program with limited functions which are not
critical to overall operations.

You have found a way to circumvent the problem.

Operating System, Service Level, and Release Level
Enter the system information exactly as displayed in the first line of output from
the QUERY CPLEVEL command.

Failing Component
Enter suspected component where problem exists. (For example, CP, CMS,
TSAF, etc.)

Problem/Inquiry Description
Enter reason for calling the IBM Support Center.

Keywords
Indicate words which may best describe the problem, using the provided
checklist.

Documentation Available
Indicate available documentation, using the provided checklist.

Problem Tracking
Enter a log of your activity on the problem, including dates, names, and activity.

Resolution APAR #
Enter APAR number assigned to problem (if defect related).

PUT Tape PTF #
Enter PUT tape number on which the PTF for the resolution APAR resides.

Other
Enter other pertinent information to this problem.

18 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

l

, "-.. ./

./

(

(

('"\

. ,

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Introduction to Debugging

Sheet 1 of

Customer: Date: Problem #:

Access Code: CPU Serial: Severity:

Operating System, Service Level, and Release Level:
(Output of QUERY CPLEVEL Command)

Failing Component:

Problem/Inquiry Description:

Keywords:

Abend: Module: Wait State Code:

Label: Label: Label:
Loc: Loc: Loc:

Loop Addresses:
Incorrect Output (INCORROUT) :
Message:
Performance:

Documentation Available:

Storage Dump - User's Routine - Console Log -Program Listing _ System Log - PUT Level -Storage Map - Diagnostic Output _ Service Level -Test Data - TP CONFIG List(s) _ VMLOAD List -
Problem Tracking:
Date Name Activity

Resolution PUT Tape
APAR # PTF # Other

Figure 4. Problem Inquiry Data Sheet. Use this sheet to collect pertinent data before
calling laM .

LY24-S241-01 © Copyright IBM Corp. 1986, 1988 Chapter I. Introduction to Debugging 19

Introduction to Debugging "Restricted Materials of IBM"
Licensed Materials - Property of IBM

How To Use VM/SP Facilities To Debug

Creating a Dump

Once the problem and the area where it occurs are identified, you can gather the
information needed to determine the cause of the problem. The type of information
you want to look at varies with the type of problem. The tools used to gather the
information vary depending upon the area in which the problem occurs. For
example, if the problem is a loop condition, you will want to examine the PSW. For
a CP loop, you have to use the operator's console to display the PSW, but for a
virtual machine loop you can display the PSW via the CP DISPLAY command.

The following sections describe specific debugging procedures for the various error
conditions. The procedures tell you what to do and what debug tool to use. For
example, the procedure may say dump storage using the CP DUMP command. The
procedure does not tell you how to use the debug tool. Refer to "Summary of
VMjSP Debugging Commands" on page 39 and "Debugging Commands" on
page 132 for a description of the debugging tools and commands available to you.

Before examining some of the concrete problems you might encounter in your
VMjSP system, review the following procedures that may help you when your
system is malfunctioning:

• Creating a Dump

• Locating the CP Internal Trace Table in a Dump.

The places a dump can originate in a VM/SP system are:

• In CP

• In a virtual machine in which CMS, or another VM/SP component, or a guest
operating system is running

• In a communication controller.

Obtaining a Copy of a CP Restart Dump
Whenever CP abends, it automatically creates a dump. Unless told to do otherwise,
your system sends the dump to the virtual reader in the operator's virtual machine.2
You can then place the dump on a read/write file mode of the operator and send it
to a printer.

As an alternative, you can specify in advance other destinations for the CP restart
dump. Use the SET DUMP command to indicate where you prefer these dumps be
sent whenever one is generated. You can specify a printer, a tape, or a DASD
device. The VM/SP CP System Command Reference describes the SET DUMP
command in detail.

If the SET DUMP command specifies that the dump be sent to a printer, then all
you must do is locate the printer and remove the print-out.

2 The person to receive the dump can also be specified in the DMKSYS module when your system is first installed.
Use the SYSDUMP operand of the SYSOPER macro instruction to do this.

20 VMjSP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

/" "",
"j

(-

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Introduction to Debugging

If the SET DUMP command specifies that the dump be sent to a tape device, be
certain that the appropriate reel of tape is mounted. Then, check to be sure that the
tape device on which the reel is mounted is attached to your system. Remember the
VM/SP restriction that requires the entire dump to fit on a single reel of tape. Next,
issue the following command to identify the printer file to your system. The name
you must give to the file is INMOVE.

FILEDEF INMOVE PRINTER (RECFM FM LRECL 131)

Next, issue the following command to identify to your system the tape file
containing the dump. The name you must give to this file is OUTMOVE.

FILEDEF OUTMOVE TAPI (DEN 16GO RECFM U LRECL 132)

Finally, print the dump using the following command

MOVEFILE OUT~OVE INMOVE

The printer should begin producing the dump shortly.

However, if the SET DUMP AUTO command is in effect, thereby specifying that
the dump be placed in CP spool space, then you must use the Interactive Problem
Control System (IPCS) to process the dump, place it on a read/write file mode, and
print it.

Use the IPCSDUMP command to process the dump. Then, use the IPCSPRT
command to print the dump. Consult the VM/SP Interactive Problem Control
System Guide and Reference for detailed information on using these instructions.

Obtaining a Copy of a Stand-Alone Dump
We intr.oduced the concept of a stand-alone dump in the section titled "Dumps" on
page 5. Obtaining a stand-alone dump, while not difficult, is a bit too involved to
detail here. Refer to "Stand-Alone Dump Facility" on page 123 for details of this
procedure.

Obtaining a Copy of a Virtual Machine Dump
Before you produce a dump of the contents of a virtual machine, consider what that
machine contains. If it contains a guest operating system (such as MVS, VSI, or
VSE), then consider using the dump facility provided by that particular system. The
quality and quantity of the data in the dump will probably be higher than that
obtained using VM/SP dump commands. Review the manuals pertaining to the
operating system in question.

If a virtual machine contains a VM/SP product or component (such as RSCS or
GCS), there are several commands you can use to create a dump.

As you know, when an abend occurs in CP, a dump is produced automatically. But
there may be times when you want a dump of the system when one is not produced
automatically. You might choose the CP VMDUMP command, which produces a
virtual storage dump of any virtual machine running in VMjSP (including a GCS
virtual machine like RSCS). The VMjSP CP General User Command Reference
describes the VMDUMP command in detail. Note that the VMDUMP command is
an authorized command. This means that only authorized users can issue it.

Just like CP, GCS produces a dump automatically whenever an abend occurs. And,
as with CP, you may want a dump of GCS when one is not produced automatically.
You might decide on the GDUMP command, a general use GCS command. Check

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 1. Introduction to Debugging 21

Introduction to Debugging "Restricted Materials of IBM"
Licensed Materials - Property of IBM

the VM/SP Group Control System Command and Macro Reference for a details of ("'\
this command. ,-j
The dump created by either the VMDUMP or the GDUMP command may be
viewed using IPCS.

The CMS Debugging Facility can help you obtain a dump of a virtual machine
running in CMS. Review the material on the CMS DEBUG command in the
VM/SP CMS Command Reference and the VM/SP CMS User's Guide.

Obtaining a Copy of a Communication Controller Dump
If a model 3704 or 3705 communication controller fails or operates erratically, the
contents of its storage should be dumped and examined. If you previously issued the
NETWORK AUTO command, your system produces this dump automatically when
it discovers trouble.

If this automatic feature is not enabled and you decide that you need a dump of a
communication controller, perform the activities that follow, using the virtual
machine authorized to use the NCPDUMP command.3

First, create the dump file with the following command. Substitute the real
hexadecimal address of the communication controller for raddr. When you issue the
NETWORK command, the control program in the communication controller is
destroyed. You must reload this program later.

NETWORK DUMP raddr

Next, print the dump by issuing the following command:

NCPDUMP

Finally, reload the control program of the communication controller with the
following command. Substitute the real hexadecimal address of the communication
controller for raddr; substitute the name of the control program image you want
reloaded into the device for ncpname.

NETWORK LOAD raddr ncpname

For more information on obtaining a storage dump from a communication
controller, refer to the VM/SP Operator's Guide.

Locating the CP Internal Trace Table in a Dump
The CP internal trace table is the place where CP keeps a detailed record of every
major event that takes place in your real machine. This table is useful, particularly
when trying to discover the events that led to an error in CPo

The CP internal trace table contains information on such things as interrupts,
input/output activity, storage allocation, and many of other things. The section "CP
Internal trace Table" on page 74 offers detailed information on the contents of the
CP internal trace table.

3 This virtual machine was identified in the DMKSYS module when your system was first installed. The
identification is made with the SYSDUMP operand of the SYSOPER macro instruction.

22 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Introduction to Debugging

Abend

The address of the CP internal trace table is stored at address X' OC'. Each event
and its effect are recorded in a 16-byte event record. When the entire table is filled,
CP "wraps around" to the top of the table and begins recording there, overlaying
what was recorded previously.

Address X' 10' contains the address of the byte following the end of the trace table.
Address X'14' contains the address of the 16-byte area where the next event record
will be recorded. To find the address of the last recorded event record, merely
subtract X'10' from the contents of address X'14'. When you view a dump using
IPCS, there is no need to go to the trouble of finding all these addresses. IPCS gives
you a TRACE subcommand that formats each trace table entry for you. Refer to
the VMjSP Interactive Problem Control System Guide and Reference.

A copy of the CP internal trace table always accompanies a CP restart dump. This
is the dump that CP automatically produces whenever it terminates and then restarts
itself. For that matter, CP produces this dump when you manually restart the
system.

The following types of abnormal terminations (abend) can occur in VMjSP:

• CP
• CMS
• GCS
• TSAF
• AVS
• Virtual machine.

Whenever a program abnormally terminates, a message is issued. This message
provides information that can help you correct the problem. Table 2 on page 24
lists the possible abend messages and identifies the type of abend for these messages.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 1. Introduction to Debugging 23

Introduction to Debugging

Table 2 (Page 1 of 3). Abend Messages

Message

(Alarm rings)
DMKDMP90SI SYSTEM FAILURE;

CODE - code PROCESSOR nn

DMKCKP900W SYSTEM RECOVERY FAILURE;
PROGRAM CHECK

DMKCKP901W SYSTEM RECOVERY FAILURE;
MACHINE CHECK

DMKCKP902W SYSTEM RECOVERY FAILURE;
FATAL I/O ERROR NUCLEUS AREA

DMKCKP902W SYSTEM RECOVERY FAILURE;
FATAL I/O ERROR WARM AREA

DMKCKH910W SYSTEM RECOVERY FAILURE;
INVALID WARM START AREA

DMKCKH911W SYSTEM RECOVERY FAILURE;
WARM START AREA FULL

DMKCKF922W System recovery failure;
invalid spooling data

DMKCKT903W System recovery failure;
volid valid allocation area
cylinder cylinder

DMKCKT903W System recovery failure;
volid volid allocation area
page page

DMKCKT912W System recovery failure;
volid valid not mounted

DMKCKV912W System recovery failure;
volid volid not mounted

DMKCKS915E Permanent I/O error on
checkpoint area

DMKCKT916E Error allocating spool
file buffers

DMKCKV916E Error allocating spool
file buffers

DMKCKV917E Checkpoint area invalid;
clear storage and cold start

DMKWRM903W System recovery failure;
volid valid allocation error
cylinder cylinder

DMKWRM903W System recovery failure;
volid volid allocation error
page page

DMKWRM904W System recovery failure;
invalid warm start data

DMKWRM912W System recovery failure;
volid valid not mounted

. DMKWRM920W No warm start data;
checkpoint start for retry

DMKWRM921W System recovery failure;
unrecoverable I/O error

24 VMjSP Diagnosis Guide

Type

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

of Description
Abend

CP CP abend, system dumps to DASD, printer,
or tape. Restart is automatic.

CP

CP

CP

If the checkpoint program encounters a
program check, a machine check, a fatal
I/O error, or an error relating to a certain
warm start area or warm start data
conditions, a message is issued indicating
the error and CP enters the wait state with
code 007 in the PSW.

If the checkpoint start program encounters
a severe error, a message is issued
indicating the error and CP enters the wait
state with code OOE in the PSW.

If the warm start program encounters a
severe error, a message is issued indicating
the error and CP enters the wait state with
code 009 in the PSW.

LY24-S24 1-0 1 © Copyright IBM Corp. 1986, 1988

f"'\
I " ,,-)

,f' '\
i .

(....

(-

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Table 2 (Page 2 of 3). Abend Messages

Message

DMKDMP908I SYSTEM FAILURE;
CODE - code PROCESSOR nn

DMKCKP960I System warm start
data saved

DMKCKP961W System shutdown complete

Optional Messages:

DMKDMP905W SYSTEM DUMP FAILURE;
PROGRAM CHECK

DMKDMP906W SYSTEM DUMP FAILURE;
MACHINE CHECK

DMKDMP907W SYSTEM DUMP FAILURE;
FATAL I/O ERROR

DMKMCH610W MACHINE CHECK;
SUPERVISOR DAMAGE cpuid

DMKMCT610W MACHINE CHECK;
SUPERVISOR DAMAGE cpuid

DMKMCH611W MACHINE CHECK; SYSTEM
INTEGRITY LOST cpuid

DMKMCT611W MACHINE CHECK; SYSTEM
INTEGRITY LOST cpuid

DMKMCH612W MACHINE CHECK TIMING
FACILITIES DAMAGE

DMKMCT620I MACHINE CHECK; ATTACHED
PROCESSOR NOT BEING USED

DMKMCH622W MACHINE CHECK; MULTIPLE
CHANNEL ERRORS

DMKACR622W MACHINE CHECK; MULTIPLE
CHANNEL ERRORS

DMKCCH603W CHANNEL ERROR
DMKACR603W CHANNEL ERROR

DMKMCH622W MACHINE CHECK; MULTIPLE
CHANNEL ERRORS

LY24-S241-01 © Copyright IBM Corp. 1986, 1988

Type
of

Abend

CP

CP

CP

CP

CP

CP

CP

CP

CP

Introduction to Debugging

Description

CP abend, system dumps to DASD, printer,
or tape. The system stops; the operator
must IPL the system to start again.

If the dump program encounters a program
check, a machine check, or a fatal I/O
error, a message is issued indicating the
error. CP enters the wait state with code
003 in the PSW.

If the dump cannot find a defined dump
device and if no printer is defined for the
dump, CP enters a disabled wait state with
code 004 in the PSW.

The machine check handler encountered an
unrecoverable error with CPo

The machine check handler encountered an
error that cannot be diagnosed; system
integrity, at this point, is not reliable.

An error has occurred in the timing
facilities. Probable hardware error.

A malfunction alert, clock error or
instruction processing error occurred on the
attached processor. The system continues
to run in uniprocessor mode.

On a 303x processor, an error affecting one
or more channels in a channel group has
occurred. CP enters a disabled wait state
with code 001 in the PSW.

There was a channel check condition from
which the channel check handler could not
recover. CP enters the wait state with code
002 in the PSW.

There was a group error machine check
from which the machine check handler
could not recover. CP enters a wait state
with code 001 in the PSW.

Chapter 1. Introduction to Debugging 25

Introduction to Debugging

Table 2 (Page 3 of 3). Abend Messages

Type
Message of

Abend

DMSABN148T System abend xxx CMS
called from vstor

DMS5FE3034E File pool server system error SFS
occurred - modulename nn Server

CSIABD232E Abend xxx-yyy occurred GCS
during abend ESTAE processing

CSIABD233E Abend xxx-yyy occurred GCS
during abend TASKEXIT processing

CSIABD234E Abend xxx-yyy occurred GCS
during abend Resource Manager
processing

CSIABD235E Abend xxx-yyy occurred GCS
during abend internal processing

Others Other
Refer to OS and DOS publications
for the abnormal termination messages.

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Description

CMS abend, system will accept commands
from the terminal. Enter:

#CP VMDUMP 0-END FORMAT CMS DSS

to create a dump spool file in your reader.
Re-IPL CMS and then enter:

IPCSDUMP

to format the dump.

An internal error occurred within the file
pool server. A dump is taken according to
the dump option chosen in the start-up
parameters. This is a system error. (If the
file pool server ends abnormally, a
mini-dump is displayed.)

During the EST AE abend processing an
abend occurred.

During the T ASKEXIT abend processing
an abend occurred.

Specified ABEND occurred while
processing a GCS resource. Termination
processing completed but all resources may
not be cleaned up. Check dump for more
details.

Specified ABEND occurred during the
processing of another ABEND.
Termination processing did not complete.
Check dump for more details.

When OS or DOS abnormally terminates
on a virtual machine, the message issued
and the dumps taken are the same as they
would be if OS or DOS abnormally
terminated on a real machine.

Note: For TSAF or AVS abends, see the VM/SP System Messages and Code~.
The following descriptions provide guidelines for debugging each type of abend.

CP Abend
When CP abnormally terminates, a dump is taken. This dump can be directed to
tape or printer, or dynamically allocated to a direct access storage device. The
output device for a CP abend dump is specified by the CP SET DUMP command.
See VM/SP CP System Command Reference for a description of the SET DUMP
command.

Use the dump to determine why CP terminated and then determine how to correct
the condition. See "Reading CP Abend Dumps" on page 78 for detailed

26 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

r-'
'----j/

(

(

('

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Introduction to Debugging

information on reading a CP abend dump. You can view the dump interactively,
using IPCS.

Reason for the CP Abend: CP will terminate and take an abnormal termination
dump under three conditions:

l. Program Check in CP

Examine the program old PSW (PROPSW) and the program interrupt code
(INTPR) fields in the Prefix Storage Area (PSA) to determine the failing
module.

2. Module Issuing an SVC 0

Examine the SVC old PSW (SVCOPSW) and abend code (CPABEND) fields in
the PSA to determine the module that issued the SVC 0 and the reason it was
issued.

CPABEND contains an abnormal termination code. The first three characters
identify the failing module (for example, abend code TRCOOI indicates
DMKTRC is the failing module).

3. Operator forcing a CP system restart on Processor Console

Examine the restart old PSW (RSRTOPSW) field in the PSA to find the location
of the instruction that was executing when the operator forced a CP system
restart. The operator forces a CP system restart when CP is in a disabled wait
state or loop. (Refer to your processor manual for the appropriate method to
force a CP system restart.)

Note: The same conditions that cause an abnormal termination on a uniprocessor
configuration cause an abnormal termination on an attached processor.

Examine Low Storage Areas: The information in low storage specifies the status of
the system at the time CP terminated. Status information is stored in the PSA. You
should be able to tell the module that was executing by looking at the PSA. Refer
to the appropriate save area (SA VEAREA, BALRSA VE, or FREESA VE) to see
how that module started to execute. The PSA is described in VM/SP CP Data
Areas and Control Blocks.

Examine the real and virtual control blocks to find the status of I/O operations.
Figure 6 on page 84 shows the relationship of CP control blocks.

Examine the CP internal trace table. This table can be extremely helpful in
determining the events that preceded the abend. See "CP Internal Trace Table" on
page 74 for a description of how to use the trace table.

If you are using IPCS to view the dump, you can use the TRACE subcommand.
For details, see the VM/SP Interactive Problem Control System Guide and Reference.

The values in the general purpose registers can help you to locate the current
IOBLOK and VMBLOK and the save area. Refer to "Reading CP Abend Dumps"
on page 78 for detailed information on the contents of the general purpose registers.

If the program old PSW (PROPSW) or the SVC old PSW (SVCOPSW) points to an
address beyond the end of the resident nucleus, the module that caused the abend is
a pageable module. Refer to "Reading CP Abend Dumps" on page 78 to find out
how to identify that pageable module. Use the CP load map that was created when

LY24-S241-01 © Copyright IBM Corp. 1986, 1988 Chapter 1. Introduction to Debugging 27

Introduction to Debugging "Restricted Materials of IBM"
Licensed Materials - Property of IBM

eMS Abend

the VM/SP system was generated to find the address of the end of the resident
nucleus.

When CMS abnormally terminates, any abend exit routines established via the
ABNEXIT macro receive control. These exit routines allow you to bypass CMS
abend recovery and continue processing elsewhere. If no routine exists or the exit
routine returns to CMS, the following error message appears on the terminal:

DMSABN148T System abend xxx called from vstor

where xxx is the abend code and vstor is the address of the instruction causing the
abend. The DMSABN module issues this message. Then, CMS waits for a
command to be entered from the terminal.

Because CMS is an interactive system, you will probably want to use its debug
facilities to examine status. You may be able to determine the cause of the abend
without taking a dump.

The debug program is located in the resident nucleus of CMS and has its own save
and work areas. The debug program itself does not alter the status of the system
knowing that routines and data cannot be overlaid unless you specifically request it.
Likewise, you can use the CP commands in debugging knowing that you cannot
inadvertently overlay storage because the CP and CMS storage areas are completely
separate.

Reason for the eMS Abend: First determine the reason CMS abnormally
terminated. There are four types of CMS abnormal terminations:

1. Program Exception

Control is given to the DMSITP (CMS Interrupt Handler) routine whenever a
hardware program exception occurs. If no SPIE or STAE exits have been
specified, DMSITP issues the message:

DMSITP141T exception exception occurred at vstor in
routine routine

and invokes DMSABN (the abend routine). The possible programming
exceptions and related abend codes are listed in the VM/SP System Messages
and Codes, under 141T.

2. ABEND Macro

Control is given to the DMSSAB routine whenever a user routine executes the
ABEND macro. The abend code specified in the ABEND macro appears in the
abnormal termination message DMSABN155T.

3. Halt Execution command (HX)

Whenever the virtual machine operator signals attention and types "HX," CMS
terminates and types "CMS."

28 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

- --..... -.-.-~~--------------.-----------~---~--

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Introduction to Debugging

4. System Abend

A CMS system routine can abnormally terminate by issuing the DMSABN
macro. The first three hexadecimal digits of the system abend code appear in
the CMS abend message, DMSABNI48T. The format of the DMSABN macro
is:

[label] DMSABN

[~X~R]] { code } [,TYPCALL =
(reg)

label
is any valid Assembler language label.

code
is the abnormal termination code (X I 0 I through X I FFF ') that should appear in
the DMSABNl48T system termination message.

(reg)
is the register containing the abnormal termination code.

TYPCALL=
specifies how control is passed to the abnormal termination routine, DMSABN.
Routines that do not reside in the nucleus should use TYPCALL = SVC to
generate CMS SVC 203 linkage. Nucleus-resident routines should specify
TYPCALL = BALR so that a direct branch to DMSABN is generated.

If a CMS SVC handler abnormally terminates, that routine can set an abend flag
and store an abend code in NUCON (the CMS nucleus constant area). After the
SVC handler has finished processing, the abend condition is recognized. The
DMSABN abend routine types the abend message, DMSABNI48T, with the abend
code stored in NUCON.

What to do when eMS Abnormally Terminates: After an abend, two courses of
action are available in CMS. As an alternative to the CMS methods, by signalling
attention, you can enter the CP command mode and use CP's debugging facilities.

Two courses of action available in CMS are:

I. Issue the DEBUG command and enter the debug environment.

The most common problem you might encounter is an abnormal termination
resulting from a program interruption. When a program running on a CMS
virtual machine abnormally terminates (abends), you receive, at your terminal,
the message:

DMSITP141T exception exception occurred at vstor in routine routine

and your virtual machine is returned to the CMS environment. From the
message you can determine the types of program checks (operation, privileged
operation, execution, protection, addressing, etc.) and, often, the instruction
address in your program at which the error occurred.

Sometimes this is enough information for you to correct the error in your source
program, recompile it and attempt to execute it again.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 1. IntrQduction to Debugging 29

Introduction to Debugging "Restricted Materials of IBM"
Licensed Materials - Property of IBM

When this information does not immediately identify the problem in your
program, you can begin debugging procedures using VMjSP. To access your
program's storage areas and registers you can enter the command:

debug

immediately after receiving the ahend message.

2. Issue a CMS command other than DEBUG, and the abend routine, DMSABN,
performs its abend recovery and then passes control to the DMSINT routine to
process the command just entered.

The abend recovery function:

1. Clears the console input buffer and program stack.

2. Terminates all VMCF activity.

3. Reinitializes the work area stack for reentrant CMS nucleus modules.

4. Reinitializes the SVC handler, DMSITS, and frees all stacked save areas.

5. Clears the auxiliary directories, if any. Invokes "FINIS * * *," to close all files,
and to update the master file directory.

6. Frees storage, if the DMSEXT module is in virtual storage.

7. Zeroes out the MACLIB directory pointers.

8. Frees the CMS work area, if the CMS subset was active.

9. Frets the RLDDATA buffer, used by the CMS loader to retain relocation
information for the GENMOD process, if it is still allocated.

10. Issues the ST AE, SPIE, TTIMER, and ST AX macros to cancel any outstanding
OS exit routines. Frees any TXTLIB, MACLIB, or LINK tables.

11. Calls with a purge PLIST, all nucleus extensions that have the "SERVICE"
attribute defined.

12. Drops all. nucleus extensions that do not have the "SYSTEM" attribute. Also
drops any nucleus extensions that are in type user storage.

13. Drops all SUBCOM SCBLOCKS that do not have the "SYSTEM" attribute.

14. Frees console path and device entry control blocks.

15. Drops all storage resident execs that do not have the "SYSTEM" attribute.

16. Clears all immediate commands that are not nucleus extensions with the
"SYSTEM" attribute; returns all associated free storage.

17. Calls DMSCLN to zero out the userword of the SRPI command.

18. Calls DMSWITAB to delete all windows and vscreens that do not have the
"SYSTEM" attribute.

19. Resets the storage keys for the whole virtual machine, except the nonshared
pages, according to FREETAB. Saves the setting for KEYPROTECT.

20. Zeroes out all FCB, DOSCB, and LAB SECT pointers.

21. Frees all storage of type user.

22. Restores the setting for KEYPROTECT.

23. Zeroes out all interrupt handler pointers in IOSECT.

30 VM/SP Diagnosis Guide LY24-S241-01 © Copyright IBM Corp. 1986, 1988

/

(.....
',', /

(

(

(

(-

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

24. Turns the SVCTRACE command off.

Introduction to Debugging

25. Closes the virtual punch and printer; closes the virtual reader with the HOLD
option.

26. Reinitializes the VSE lock table used by CMS/DOS and CMS/VSAM.

27. Zeroes out all OS loader blocks, and frees the FETCH work area.

28. Cleans up the CMS IUCV environment based on the existence of the CMS id
block.

29. Clears all ABNEXIT set and returns storage.

30. Computes the amount of system free storage that should be allocated and
compares this amount with the amount of free storage actually allocated. Types
a message to the user if the two amounts are unequal.

31. Issues a STRINIT and releases any pages remaining in the flush list via a call to
DMSPAGFL, if all storage is accounted for.

After abend recovery has completed, control passes to DMSINT at entry point
DMSINTAB to process the next command.

When the amount of storage actually allocated is less than the amount that should
be allocated, the message

DMSABN149T nnn (HEX xxx) doublewords of system storage
have been destroyed; re-IPL eMS

appears on the terminal. If the amount of storage actually allocated is greater than
the amount that should be allocated, the message

DMSABNlS0W nnn (HEX xxx) doublewords of system storage
were not recovered

A Debugging Procedure: When a CMS abend occurs, use the CP commands to
examine the PSW and specific areas of low storage. You can also use the CMS
DEBUG command to examine the PSW and the register contents. For instructions
on how to use the CP commands, see "Summary of VM/SP Debugging Commands"
011 page 39 and "Commands that Trace Events in Virtual Machines" on page 54.

The following procedure may be useful in determining the cause of a CMS abend:

1. Display the PSW. (Use the CP DISPLAY command or CMS DEBUG
command.) Compare the PSW instruction address with the current CMS load
map to determine the module that caused the abend. The CMS storage-resident
nucleus routines reside in fixed storage locations.

Also check the interruption code in the PSW.

2. Examine areas of low storage in your virtual machine. The information in low
storage can tell you more about the cause of the abend:

Field Contents

LASTLMOD Contains the name of the last module loaded into storage via
the LOAD MOD command.

LASTTMOD Contains the name of the last module loaded into the transient
area.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 1. Introduction to Debugging 31

Introduction to Debugging "Restricted Materials of IBM"
Licensed Materials - Property of IBM

SFS Abend

GCS Abend

TSAF Abend

AVS Abend

LASTCMND Contains the name of the last command issued from the CMS
or XEDIT command line. If a command issued in a CMS
EXEC abnormally terminates, this field contains the name of
the command. When a CMS EXEC completes, this field
contains the name "EXEC." EXEC 2 and System Product
Interpreter do not update this field.

PREVCMND Contains the name of the next-to-Iast command issued from
the CMS or XEDIT command line. If a command issued in a
CMS EXEC abnormally terminates, this field contains the
name "EXEC." When a CMS EXEC completes, this field
contains the last command issued from the CMS EXEC.
EXEC 2 and System Product Interpreter do not update this
field.

LASTEXEC

PREVEXEC

DEVICE

Contains the name of the last CMS EXEC procedure issued
from the CMS or XEDIT command line. EXEC 2 and System
Product Interpreter do not update this field.

Contains the name of the next-to-Iast CMS EXEC procedure
issued from the CMS or XEDIT command line. EXEC 2 and
System Product Interpreter do not update this field.

Identifies the device that caused the last I/O interrupt. The low
storage areas examined depend on the type of abend.

These fields are contained in NUCON. See VM/SP CMS Data Areas and
Control Blocks for more details of NUCON.

3. Once you have identified the module that caused the abend, examine the specific
instruction. Refer to the source code listing if available.

4. If you have not identified the problem at this time, take a dump by issuing the
VMDUMP command. Refer to "Reading CMS Abend Dumps" on page 136
for information on reading a CMS dump. If you can reproduce the problem, try
the CP or CMS tracing facilities.

For information on SFS abends, see Chapter 5, "Debugging the SFS Server
Machine" on page 145.

For information on GCS abends, see Chapter 6, "Debugging GCS" on page 155.

For information on TSAF abends, see VM/SP Connectivity Planning, Administration,
and Operation andChapter 7, "Debugging TSAF" on page 227 .

For information on AVS abends, see VMjSP Connectivity Planning, Administration,
and Operation and Chapter 8, "Debugging A VS" on page 235.

32 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

\
\,

--------- -----

(-

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Virtual Machine Abend (Other than eMS)

Introduction to Debugging

The abnormal termination of an operating system (such as OS or DOS) running
under CP appears the same as termination of the operating system on a real
machine. Refer to publications for that operating system for debugging information.
However, all of the CP debugging facilities may be used to help you gather the
information you need. Because certain operating systems (such as, OS/VSI, OS/VS2,
and DOS/VS) manage their virtual storage themselves, CP commands that examine
or alter virtual storage locations should be used only in virtual = real storage space
with systems such as, OS/VSI, OS/VS2, and DOS/VS.

The VMDUMP command dumps virtual storage to a specified virtual machine's
reader spool file. The IPCS component of VM/SP may be used to process the file
created by the VMDUMP command. For details, see the VM/SP Interactive
Problem Control System Guide and Reference.

If you choose to run a stand-alone dump program to dump the storage in your
virtual machine, be sure to specify the NOCLEAR option (which is the default)
when you issue the CP IPL command. At any rate, a portion of your virtual storage
is overlaid by CP's virtual IPL simulation.

If the problem can be reproduced, it may be helpful to trace the processing using the
CP TRACE or CP PER commands. Also, you can set address stops, and display
and alter registers, control words (such as the PSW), and data areas. The CP
commands can be very helpful in debugging because you can gather information at
various stages in processing. A dump is static and represents the system at only one
particular time. Debugging on a virtual machine can often be more flexible than
debugging on a real machine.

VM/SP may terminate or reset a virtual machine if a non-recoverable machine check
occurs in that virtual machine. Hardware errors usually cause this type of virtual
machine termination. The following message:

DMKMCH616I MACHINE CHECK; USER userid TERMINATED cpuid

appears· on the processor console.

If the message:

DMKMCT621I MACHINE CHECK; AFFINITY SET OFF

appears, then a machine check has occurred on the attached processor, and the
attached processor is no longer being used. The virtual machine is placed into
console function mode and can be made to continue processing on the main
processor by the entry of a BEGIN command.

Channel checks no longer cause the virtual machine to be reset as they did in early
releases of VM/370. If the problem appears to be associated with attempts to
recover from a channel check, see the channel model-dependent functions described
in the VM/SP Planning Guide and Reference.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 1. Introduction to DebuggIng 33

Introduction to Debugging "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Unexpected Results
The type of errors classified as unexpected results vary from operating systems
improperly functioning under CP to printed output in the wrong format.

Unexpected Results in CP
If an operating system executes properly on a real machine but does not execute
properly with CP, a problem exists. Also, if a program executes properly under
control of a particular operating system on a real machine but does not execute
correctly under the same operating system with CP, a problem exists.

First, there are conditions (such as time-dependent programs) that CP does not
support. Be sure that one of these conditions is not causing the unexpected results in
CPo Refer to the VM/SP Planning Guide and Reference for a list of the restrictions.

Next, be sure that the program and operating system running on the virtual machine
are the same as those that ran on the real machine. Check for the same:

• Job stream
• Copy of the operating system (and program)
• Libraries.

If the problem still is not found, look for an I/O problem. Try to reproduce the
problem, while tracing all Channel Command Words (CCWs), SIOs, and interrupts
with the CP TRACE or CP PER commands. Compare the real and virtual CCWs
from the trace. A discrepancy in the CCWs may indicate that one of the CP
restrictions was violated, or that an error occurred in CPo

Unexpected Results in a Virtual Machine

Loop

When a program executes correctly under control of a particular operating system
on a real machine but has unexpected results executing under control of the same
operating system with VM/SP, a problem exists. Usually you will find that
something was changed. Check that the job stream, the operating system, and the
system libraries are the same.

If unexpected results occur (such as TEXT records interspersed in printed output),
you may wish to examine the contents of the system or user files. Non-CMS users
may execute any of the utilities included in the operating system they are using to
examine and rearrange files. Refer to the utilities publication for the operating
system running in the virtual machine for information on how to use the utilities.

CMS users should use the DASD Dump/Restore (DDR) service program to print or
move the data stored on direct access devices. The DDR program can be invoked
by the CMS DDR command in a virtual machine controlled by CMS.

CMS users should refer to the VM System Facilities for Programming for
instructions on using the DDR command.

The real cause of a loop is usually an instruction that sets or branches on the
condition code incorrectly. The existence of a loop can usually be recognized by the
ceasing of productive processing and a continual returning of the PSW instruction
address to the same address. If I/O operations are involved, and the loop is a very
large one, it may be extremely difficult to define, and may even include nested loops.
It is probably most difficult to determine looping when caused by a wild branch.

34 VM/SP Diagnosis Guide LY24-S241-0l © Copyright IBM Corp. 1986, 1988

(\.

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Introduction to Debugging

CP Disabled Loop

The problem in loop analysis is finding either the instruction that should open the
loop or the instruction that passed control to the set of looping instructions. To
help you find the problem in a loop, you may want to spool your console to record
the instructions.

The processor operator should perform the following sequence when gathering
information to find the cause of a disabled loop:

1. Trace the CP instruction currently executing in the processor. In an attached
processor (AP) or multiprocessor (MP) system, trace both processors.

2. Force a CP system restart to cause an ahend dump to be taken.

3. Save the information collected for the system programmer or system support
personnel.

After the processor operator has collected the information, the system programmer
or system support personnel should examine it:

1. Use the instructions traced by the operator and the load map to determine the
modules that may be involved in the loop.

2. If the cause of the loop is not apparent, examine the CP internal trace table in
the dump to determine the modules that may be involved in the loop.

3. Other information in the dump, such as:

• PSW
• General purpose registers
• Control registers
• Storage locations X I 00 I through X I 100 I

can be used to determine the condition that caused the loop.

Virtual Machine Disabled Loop
When a disabled loop in a virtual machine exists, the virtual machine operator
cannot communicate with the virtual machine's operating system. That means that
signalling attention does not cause an interrupt.

Enter the CP console function mode.

1. Use the CP TRACE or CP PER commands to trace the entire loop. Display
general purpose and extended control registers using the CP DISPLAY
command.

2. Take a dump using the CP DUMP or CP VMDUMP command. The IPCS
component of VMjSP may be used to process the file created by the VMDUMP
command. For details, see the VMjSP Interactive Problem Control System
Guide and Reference.

3. Examine the source code, if available.

Use the information just gathered, along with listings, to try to find the entry into
the loop.

If the operating system in the virtual machine itself manages virtual storage, it is
usually better to use that operating system's dump program. CP does not retrieve
pages that exist only on the virtual machine's paging device.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 1. Introduction to Debugging 35

Introduction to Debugging "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Virtual Machine Enabled Loop

Wait

CP Disabled Wait

The virtual machine operator should perform the following sequence when trying to
find the cause of an enabled loop:

1. Use the CP TRACE or CP PER commands to trace the entire loop. Display the
PSW and the general purpose registers.

2. If your virtual machine has the Extended Control (EC) mode and the EC
option, also display the control registers.

3. Use the CP DUMP or CP VMDUMP command to dump your virtual storage.
The IPCS component of VM/SP may be used to process the file created by the
VMDUMP command. For details, see the VM/SP Interactive Problem Control
System Guide and Reference.

4. Consult the source code to search for the faulty instructions, examining
previously executed modules if necessary. Begin by scanning for instructions
that set the condition code or branch on it.

5. If the manner of loop entry is still undetermined, assume that a wild branch has
occurred and begin a search for its origin.

No processing occurs in the virtual machine when it is in a wait state. When the
wait state is an enabled one, an I/O interrupt causes processing to resume. Likewise,
when CP is in a wait state, its processing ceases.

To help identify a wait, you could also periodically issue the command:

#cp indicate user

to display the execution characteristics of the program in terms of resources used.
Compare the following resources:

• SIO, which is the total number of nonspooled I/O requests issued
• READS, which is the total number of page reads that have occurred
• WRITE, which is the total number of pages written.

When these resources don't change, the wait state probably exists.

A disabled wait state usually results from a hardware malfunction. During the
Initial Program Load (IPL) process, normally correctable hardware errors may cause
a wait state because the operating system error recovery procedures are not
accessible at this point. These conditions are recorded in the current PSW.

CP may be in an enabled wait state with channel 0 disabled when it is trying to
acquire more free storage. Examine EC register 2 to see whether or not the
multiplexer channel is disabled. A severe machine check could also cause a CP
disabled wait state.

The following three types of severe machine checks can cause CP to terminate or
cause a CP disabled wait state:

• Unrecoverable machine check in CP
• Machine check that cannot be diagnosed
• Timing facilities damage.

36 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

-----------~----~-- ~---- ~~

(

c

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Introduction to Debugging

A machine check error cannot be diagnosed if either the machine check old PSW or
the machine check interrupt code is invalid. These severe machine checks cause CP
to terminate.

If a severe machine check or channel check caused a CP disabled wait state, one of
the following messages appears:

DMKCCH603W CHANNEL ERROR
DMKMCH612W MACHINE CHECK; TIMING FACILITIES DAMAGE
DMKMCT612W MACHINE CHECK; TIMING FACILITIES DAMAGE

If an unrecoverable machine check occurs in CP, a message:

DMKMCH610W MACHINE CHECK; SUPERVISOR DAMAGE cpuid

-- or --

DMKMCT610W MACHINE CHECK; SUPERVISOR DAMAGE cpuid

appears on the processor console. CP is terminated and enters wait state 001 or wait
state 013.

If the machine check handler cannot diagnose a certain machine check, the integrity
of the system is questionable. A message:

DMKMCH611W MACHINE CHECK; SYSTEM INTEGRITY LOST cpuid

-- or --

DMKMCT611W MACHINE CHECK; SYSTEM INTEGRITY LOST cpuid

appears on the processor console. CP is terminated and enters wait state 001 or wait
state 013.

Hardware errors are probably the cause of these severe machine checks. The system
operator should run the CPEREP program and save the output for the installation
hardware maintenance personnel.

If the generated system cannot run on the real machine because of insufficient
storage, CP enters the disabled wait state with code X'OOD' in the PSW. The
insufficient storage condition occurs if:

• The generated system is larger than the real machine size

-- or --

• A hardware malfunction occurs which reduces the available amount of real
storage to less than that required by the generated system.

The message:

DMKCPJ952I nnnnnnK system storage

appears on the processor console. CP continues, but you should check to make sure
the system is operating normally.

LY24-5241-Ql © Copyright IBM Corp. 1986, 1988 Chapter 1. Introduction to Debugging 37

Introduction to Debugging "Restricted Materials of IBM"
Licensed Materials - Property of IBM

CP Enabled Wait

If CP cannot continue because consecutive hardware errors are occurring on one or
more VM/SP paging devices, a message:

DMKPAG415E CONTINUOUS PAGING ERRORS FROM DASD rdev

appears on the processor console and CP enters the disabled wait state with code
X'OOF' in the PSW.

If more than one paging device is available, disable the device on which the
hardware errors are occurring and IPL the system again. If CP is encountering
hardware errors on its only paging device, move the paging volume to another
physical device and IPL again.

Note: This error condition may occur if the CP paging volume was not properly
formatted.

The following procedure should be followed by the processor operator to record the
needed information:

1. Using the alter/display mode of the processor console, display the real PSW and
CSW. Also, display the general purpose registers and the control registers.

2. Force a CP system restart to get a system abend dump.

3. IPL the system.

Examine this information and try to find what caused the wait. If you cannot find
the cause, try to reconstruct the situation that existed just before the wait state was
entered.

If you determine that CP is in an enabled wait state, but that no I/O interrupts are
occurring, there may be an error in the CP routine or CP may be failing to get an
interrupt from a hardware device. Force a CP system restart at the operator's
console to cause an abend dump to be taken. Use the abend dump to determine the
cause of the enabled (and noninterrupted) wait state. After the dump is taken, IPL
the system.

Using the dump, examine the VMBLOK for each user and the real device, channel,
and control unit blocks. If each user is waiting because of a request for storage and
no more storage is available, there is an error in CPo There may be looping in a
routine that requests storage. Refer to "Reading CP Abend Dumps" on page 78 for
specific information on how to analyze a CP dump.

Virtual Machine Disabled Wait
CP does not allow the virtual machine to enter a disabled wait state or certain
interrupt loops. Instead, CP notifies the virtual machine operator of the condition
with one of the following messages:

DMKDSP458W
DMKDSP452W
DMKPRG453W

CP entered; disabled wait PSW ~
CP entered; external interrupt loop
CP ENTERED; PROGRAM INTERRUPT LOOP

and enters the console function mode. Use the CP DISPLAY command to display

\ /

and obtain the following information on the terminal: (f~- '\

·~W ~.~

• CSW

38 VMjSP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Introduction to Debugging

• General purpose registers
• Control registers.

Then use the CP DUMP or VMDUMP command to take a dump. The IPCS
component of VM/SP may be used to process the file created by the VMDUMP
command. For details, see the VM/SP Interactive Problem Control System Guide
and Reference.

If you cannot find the cause of the wait or loop from the information just gathered,
try to reproduce the problem, this time tracing the processing via the CP TRACE or
CP PER command.

If CMS is running in the virtual machine, the CMS debugging facilities may also be
used to display information or trace the processing.

Virtual Machine Enabled Wait
If the virtual machine is in an enabled wait state, try to find out why no I/O or
external interrupts have occurred to allow processing to resume.

CP treats one case of an enabled wait in a virtual machine the same as a disabled
wait. If the virtual machine does not have the "real timer" option, CP issues the
message:

DMKDSP450W CP entered; disabled wait PSW ~

Since the virtual timer is not decreased while the virtual machine is in a wait state, it
cannot cause the external interrupt. A "real timer" runs in both the problem state
and wait state and can cause an external interrupt which allows processing to
resume. The clock comparator can also cause an external interrupt.

Summary of VM/SP Debugging Commands

Table 3 (Page 1

Function

Stop
execution

Resume
execution

Dump data

Table 3 summarizes the VM/SP commands that are useful for interactively
debugging a problem that currently exists. The commands are classified by the
function they perform. For the proper syntax of the command and a complete list
of operands, refer to the appropriate command reference listed in the chart below.
For the component (CP, CMS, IPCS) of each command in this list, refer to the
corresponding book title.

of 7). Summary of VMjSP Debugging Commands

Command Task Refer to

ADSTOP Stop execution at a specified location VM/SP CP General

PER
User Command
Reference

BEGIN Use the BEGIN command to: VM/SP CP General

Resume execution where program was
User Command

• Reference
interrupted

• Continue execution at a specific location

DUMP Dump the contents of specific storage VM/SP CP General
locations - USer Command

VMDUMP
Reference

LY24-5241-01 © Copyright IBM Corp. 1986,1988 Chapter 1. Introduction to Debugging 39

Introduction to Debugging "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Table 3 (Page 2 of 7). Summary of VM/SP Debugging Commands

Function Command Task Refer to

Show virtual DISPLAY Use the DISPLAY command to display: VM/SP CP General
data

Contents of storage locations in
User Command

• Reference
hexadecimal.

• Contents of storage locations (in
hexadecimal and EBCDIC)

• Storage key of specific storage locations
in hexadecimal

• General purpose registers

• Floating point registers
• Control registers
• Contents of current virtual PSW in

hexadecimal format
• Contents of CAW
• Contents of CSW

Display real DCP Use the DCP command to display: VM/SP CP System
CP data

Contents of processor storage locations
Command Reference •

(in hexadecimal)
• Contents of processor storage locations

(in hexadecimal and EBCDIC)
• Contents of storage locations in IPL

processor (in hexadecimal)
• Contents of storage locations in non-IPL

processor (in hexadecimal)
• Contents of storage locations in IPL

processor (in hexadecimal and EBCDIC)
• Contents of storage locations in non-IPL

processor (in hexadecimal and EBCDIC)

Display LOCATE Use the LOCATE command to display a: VM/SP CP General
addresses of

Specified user
User Command

CP control • Reference
blocks • Virtual device

• Real device

Store virtual STORE Use the STORE command to store: VM/SP CP General
data

Specified information into consecutive
User Command

• Reference
storage locations without alignment

• Specified words of information into
consecutive fullword storage locations

• Specified words of information into
consecutive general purpose registers

• Specified words of information into
consecutive floating- point registers

• Specified words of data into consecutive
control registers

• Information into PSW
• Information in CSW
• Information in CAW

40 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

--- ------ ------

;,,-,
, \
I ! ,-j

I

\
j

\.j

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Table 3 (Page 3 of 7). Summary of VM/SP Debugging Commands

Function Command Task

Store real CP STCP Use the STCP command to store:
data

Specified words of information into •
consecutive processor storage locations

• Specified words of information into
consecutive IPL processor storage
locations

• Specified words of information into
consecutive non-IPL processor storage
locations

• Specified information into consecutive
storage locations without alignment

• Specified information into consecutive
storage locations without alignment (in
IPL processor)

• Specified information into consecutive
storage locations without alignment (in
non-IPL processor).

Trace TRACE Use TRACE to trace:
execution

Trace all instructions, interrupts, and •
branches

• SVC instructions and interrupts

• I/O interrupts
• Program interrupts

• External interrupts
• Privileged instructions
• All user I/O operations
• Virtual and real CCW s
• All user interrupts and successful

branches
• Instructions
• End tracing activity.

PER Use the PER command to trace:

• Trace SVC instructions and interrupts
• All user I/O operations
• Successful branches

• Instructions
• Specific privileged instructions
• Instructions that alter storage

• Instructions that alter general purpose
registers

• Instructions that alter specific bits at
specific storage locations

• End tracing activity.

Introduction to Debugging

Refer to

VM/SP CP System
Command Reference

VM/SP CP General
User Command
Reference

VM / SP CP General
User Command
Reference and VM/SP
CP System Command
Reference

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 1. Introduction to Debugging 41

Introduction to Debugging "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Table 3 (Page 4 of 7). Summary of VM/SP Debugging Commands

Function Command Task Refer to

SVCTRACE Use the SVCTRACE command to: VM/SP CMS

• Trace SVC interrupts
Command Reference

• End tracing activity.

Trace real MONITOR Use the MONITOR command to: VM/SP CP System
machine

Trace events in real machine
Command Reference

• events
• Stop tracing events in the real machine.

CPTRAP Use the CPTRAP command to: VMjSP CP System

• Enable a virtual machine to enter data in
Command Reference

CPT RAP file
• Specify selectivity in collecting CPTRAP

data
• Define a CPTRAP debugging

environment
• Specify the user ID to receive CPTRAP

output
• Start and stop tracing
• Display tracing status
• Query tracing status.

Generate APAR Use the APAR command to automatically VMjSP Interactive
APAR generate a hard-copy APAR form to submit Problem Control

to IBM. System Guide and
Reference

Process dump IPCSDUMP Use the IPCSDUMP command to move a VMjSP Interactive
and create a dump file from the reader to a CMS file. Problem Control
problem Depending on the type of dump, IPCS may System Guide and
report try -to associate a map with the file. Reference

IPCSDUMP also systematically collects
information from the user to include in the
dump's problem report.

42 VM/SP Diagnosis Guide LY24-S241-01 © Copyright IBM Corp. 1986, 1988

t1 ... ~.

'''L/

(

(

(

(..

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Table 3 (Page 5 of 7). Summary of VM/SP Debugging Commands

Function Command Task

Format IPCSPRT Use the IPCSPRT command to format
and/or print and/or print dump files or CPTRAP files.
dump files or IPCSPRT has a subcommand environment
CPTRAP for processing CPTRAP files. The IPCSPRT
files subcommands are used to specify:

• Types of trace entries to be printed

• Time range of trace entries to be printed • • Format of trace entries to be printed.

IPCSPRT has the following subcommands:

• END

• FORMAT
• HELP

• HEX

• HX

• PROCESS
• QUIT

• SELECT
• TIMESPAN.

Introduction to Debugging

Refer to

VM/SP Interactive
Problem Control
System Guide and
Reference

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 1. Introduction to Debugging 43

Introduction to Debugging "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Table 3 (Page 6 of 7). Summary of VMjSP Debugging Commands

Function Command Task Refer to

Examine IPCSSCAN Use the IPCSSCAN command to VMjSP Interactive
dump and interactively view dumps and CPT RAP files. Problem Control
CPT RAP IPCSSCAN has a subcommand environment System Guide and
files that has the following subcommands: Reference
interactively

REUSE IUCV
? LOCATE
+ or- LUNAME
&name MAPA
AREGS MAPN
ARIOBLOK MREGS
BOTTOM MRIOBLOK
C OSPOINT
CHAIN PRINT
CMS QUIT
CMSPOINT REGS
CORTABLE RIOBLOK
DISPLAY SCROLL
DOSPOINT SELECT
DOWN SYMPTOM
DUMPID TACTIVE
END TIME
FDISPLAY TLOADL
FORMAT TOP

I G TRACE
GDISPLAY TSAB
HELP UP

I HEX USERMAP
HX VIOBLOK
IDENTIFY VMBLOK
IPCSMAP VMLOADL.

Process MAP Use the MAP command to process nucleus VMjSP Interactive
nucleus load load maps for use by IPCSDUMP. Problem Control
maps System Guide and

Reference

Update PRB Use the PRB command to update the VMjSP Interactive
problem STATUS, FUNCTN, SEV, or Problem Control
status DUPjAPARjPTF fields in a symptom System Guide and

summary record associated with a given Reference
problem number.

Create or add PROB Use the PROB command to enter a problem VMjSP Interactive
to problem report without using IPCSDUMP (no dump Problem Control
report files exist) or to append information to an System Guide and

existing problem report. PROB, through a Reference
prompting technique, systematically collects
information about the problem.

44 VMjSP Diagnosis Guide LY24-524l-0l © Copyright IBM Corp. 1986, 1988

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Table 3 (Page 7 of 7). Summary of VMjSP Debugging Commands

Function Command Task

List status of STAT Use the STAT command to list the current
problems status, as found in the symptom summary

file, for a given problem, a subset of
problems, or all problems. Requests for the
status of all problems produces a file named
STAT ALL LOCAL that you can print. All
other requests are displayed on the terminal
for immediate viewing.

List, dump, TRAPFILE Use the TRAPFILE command to list, dump,
or print set or print set of CPT RAP files for a specific
of CPT RAP problem number. TRAPFILE can either be
files for a invoked by the AP AR command or by the
specific user.
problem .
number

Introduction to Debugging

Refer to

VMjSP Interactive
Problem Control
System Guide and
Reference

VMjSP Interactive
Problem Control
System Guide and
Reference

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 1. Introduction to Debugging 45

Introduction to Debugging

46 VM/SP Diagnosis Guide

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

--- ~~--~--

(

(

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging tbe Virtual Macbine

Chapter 2. Debugging the Virtual Machine

Commands that Display or Dump Virtual Machine Data 48
DUMP
VMDUMP
DISPLAY
DCP and DMCP

Terminal Output .
Byte Alignment on Terminal Output
Printer Output

Commands that Set and Query System Features, Conditions, and Events
Commands that Trace Events in Virtual Machines

Stopping Virtual Machine Execution at a Specific Address
Using the CP TRACE Command

Controlling a CP Trace
Suspending Tracing
What To Do When Your Program Loops
Debugging with CP After a Program Check

Using the CP PER Command
Selectivity
Terminating PER
Suspending PER
Additional Program Debugging Using PER
The Branch Traceback Table
The PER COUNT Subcommand
The PER Command Option
Storage Alteration
GUESTR and GUESTV

48
49
49
50
50
51
52
53
54
54
55
56
57
57
58
59
61
61
62
62
63
63
65
66
67

Commands that Alter the Contents of Storage 67
Altering the Contents of Virtual Machine Storage (STORE command) 67
Altering Virtual Storage " 68
Altering the Contents of Real Storage (STCP command) 70

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 2. Debugging the Virtual Machine 47

Debugging the Virtual Machine "Restricted Materials of IBM"
Licensed Materials - Property of IBM

The Control Program (CP) provides interactive commands that control the system
and enable the user to control his virtual machine and associated control program
facilities. The virtual machine operator using these commands can gather much the
same information about his virtual machine as the operator of a real machine
gathers using facilities on the processor console.

Several of these commands (for example, STORE or DISPLAy) examine or alter
virtual storage locations. When CP is in complete control of virtual storage (for
example, as in the case of CMS and GCS) these commands execute as expected.
However, when the operating system in the virtual machine itself manipulates virtual
storage (for example, as in the case of OS/VSI, OS/VS2, or DOS/VS) these CP
commands should not be used.

This chapter presents an overview of the VM/SP commands used for debugging. It
supplements the preceding section which discussed debugging procedures and
techniques. Instructions for using the commands discussed in this section are in the
following:

• VM/SP CP General User Command Reference

• VM/SP CP System Command Reference

• VM/SP Interactive Problem Control System Guide and Reference.

The following categories of commands are discussed:

• Commands that display or dump virtual machine data
• Commands that set and query system features, conditions, and events
• Commands that trace events in virtual machines
• Commands that alter the contents of storage.

Commands that Display or Dump Virtual Machine Data

DUMP

Commands that display or dump virtual machine data are: DUMP, VMDUMP,
DEBUG, DISPLAY, DCP, and DMCP. See the VM/SP CP General User
Command Reference and the VM/SP CP System Command Reference for more
information on these commands.

The DUMP command spools the following information to your virtual printer:

• Virtual Program Status Word (PSW)
• General purpose registers
• Floating-point registers
• Control registers (if extended control mode processing is in effect)
• Storage keys
• Virtual storage locations.

For more information on control registers see Appendix B, "Control Registers" on
page 249.

When a program you execute under eMS abnormally terminates, you do not
automatically receive a program dump. If, after attempting to use CMS and CP to
debug interactively, you still have not discovered the problem, you may want to
obtain a dump. You might also want to obtain a dump if you find that you are
displaying large amounts of information, which is not practical on a terminal.

48 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

('\

/

('f

'" /

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging the Virtual Machine

VMDUMP

DISPLAY

Issue the command:

ep vmdump O-end format ems dss

Then use IPCS to format and view the dump (see the VMjSP Interactive Problem
Control System Guide and Reference).

You can selectively dump portions of your virtual storage, your entire virtual storage
area, or portions of real storage. For example, when you're debugging, to dump the
virtual storage space for a specified address range that may contain your program,
you would enter:

ep dump t20000-20810

The second value depends upon the size of your program. Prefacing the location
you want dumped with a "T," gives you an EBCDIC translation of the dump.

The DUMP command allows you to request EBCDIC translation with the
hexadecimal dump.

The VMDUMP command dumps virtual storage to a specified reader spool file.
VMDUMP provides the same dump information that the DUMP command
provides but in a different format. For example, if a byte of storage contains X I 00 I ,

DUMP records it in printable format, X I FOFO '; VMDUMP records it as it appears
in storage, X I 00 I. The IPCS component of VM/SP may be used to process the file
created by the VMDUMP command (but cannot process the output from the
DUMP command). For details, see the VMjSP Interactive Problem Control System
Guide and Reference. For a description of the format and contents of the
VMDUMP records, see "VMDUMP Records: Format and Content" on page 89.

The DISPLAY command displays at your terminal the following kinds of control
information:

• Virtual storage locations
• Storage keys
• General purpose registers
• Floating-point registers
• Control registers

• PSW
• Channel Address Word (CAW)
• Channel Status Word (CSW).

When you use the display command, you can request an EBCDIC translation of the
display by prefacing the location you want displayed with a "T."

ep display t20000.10

This command requests a display of X I 10 I (16) bytes beginning at location
X I 20000 I. The display is formatted with an address (20000) followed by four
fullwords to a line, a storage key if you are on a page boundary, and the EBCDIC
translation at the right. This is similar to what you would see in a dump.

You can also use the DISPLAY command to examine the general purpose registers,
floating-point registers, and control registers. For example, the commands:

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 2. Debugging the Virtual Machine 49

Debugging the Virtual Machine "Restricted Materials of IBM"
Licensed Materials - Property of IBM

DCP and DMCP

Terminal Output

cp display 9
cp display 91
cp display 92-5
cp display y
cp display x7

result in displays of all the GPRs, of GPR1, of a range of GPRs 2 through 5, of all
the floating point registers, and of control register 7.

The DISPLAY command also displays the PSW, CAW, and CSW:

cp display psw
cp display caw
cp display csw

The DCP and DMCP commands of CP are privilege class C and E commands and
are used to display real storage locations. The DCP command displays at your
terminal the contents of real storage locations. The DMCP command spools the
contents of real storage to your virtual printer. For more information on either of
these commands, please refer to the VMjSP CP System Command Reference.

With the DISPLAY command, you can display virtual storage at your terminal in
either of the following formats:

• Four-byte groups, aligned on fullword boundaries, hexadecimal format, with
four fullwords per line

• 16-byte groups, aligned on 16 byte boundaries, hexadecimal format, with four
fullwords plus EBCDIC translation per line.

For the first format, enter the DISPLAY command as:

display 1026-102c

you receive the response:

For the second format, enter the command as:

display t1026-102c

and the response is:

You can also specify the area of storage to be displayed by entering a hexadecimal
byte count such as:

display 1024.12

The response displays 20 bytes as follows:

50 VMjSP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

.- ---------_._-------_._ .. _----

(\

\ .;

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Byte Alignment on Terminal Output

Debugging the Virtual Machine

The previous responses illustrate the byte alignment that takes place in each of the
two display formats.

If the first location to be displayed is not on the appropriate 4 or 16 byte boundary,
it is rounded down to the next lower boundary that applies.

If the last location to be displayed does not fall at the end of the appropriate 4 or 16
byte group, it is rounded up to the end of that group.

If you enter:

display k1024-3200

the storage keys that are assigned to each 2K segment of the specified storage area
are displayed. Contiguous 2K segment with identical storage keys are combined; for
example, the response could have been:

To display all storage keys, enter:

display k

If your virtual machine is in extended control mode (ECMODE ON), you can
interrogate any of the control registers:

display xl 4 a

and receive the response:

However, the same command entered while your virtual machine has ECMODE
OFF results in the response:

As each operand in the command line is processed, VMjSP determines that
ECMODE is OFF and replaces any reference to a control register with ECR 0, the
only control register available in Basic Control (BC) mode.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 2. Debugging the Virtual Machine 51

Debugging the Virtual Machine "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Printer Output
With the DUMP command you can dump the contents of all available registers, the
PSW and the storage keys, along with any specified area of virtual storage, to the
virtual machine's spooled printer. The printer format for storage locations is 8
fullwords per line plus the EBCDIC translation on the right.

To print only the registers, the PSW, and the storage keys, you need only enter:

dump €I

To also print an area of virtual storage, you can specify the beginning and ending
hexadecimal locations:

dump 1064-10ff

You can also specify the beginning location and the number of bytes to be dumped;
both values are entered in hexadecimal: (

dump 1064.9b " J

If you are printing a series of dumps, you can identify each one by including its
identification on the DUMP command line, following an asterisk:

dump 1eee-2eee * dump no. 1

To print the dump data on the real printer you must first close the virtual printer.
Issue the command:

close printer

and the dump data spool file is placed on an appropriate system printer queue.

You can use the VMDUMP command that dumps storage for virtual machines.
VMDUMP provides IPCS with header information to identify the owner of the
dump; it also maintains dump information, writes the dump to a class V reader
spool file, and IPCSDUMP formats the dump.

When you enter at the terminal:

vmdump 150-2ee

or

vmdump 4ee:5e0

CP dumps the contents of virtual machine storage at the hexadecimal addresses
between X' 150' and X' 200' or between X '400' and X' 500 ' , respectively.

If you enter:

vmdump 150.5e

CP dumps the contents of virtual storage starting at X' 150' for a total of X' 50'
bytes.

52 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging the Virtual Machine

(. Commands that Set and Query System Features, Conditions, and
Events

(

(

(

The SYSTEM and SET commands set system-controlled functions and events; the
QUERY command allows you to determine the status of those settings.

The SYSTEM command is a privilege class G command that simulates the RESET
and RESTART functions on a real computer console. It can also be used to clear
storage.

All functions of the SET command are described in detail in the VM/SP CP General
User Command Reference. Some operands of the SET command useful for
debugging are MSG, SMSG, WNG, EMSG, and IMSG. The messages resulting
from these settings may be useful to you while you are debugging. You may also
want to use the RUN operand.

The SET MSG function determines whether you receive messages sent by other users
via the MSG command.

The SET SMSG command turns on or off a virtual machine's special message flag.
If the virtual machine has issued DIAGNOSE code X I 68 I (AUTHORIZE), this flag
determines whether the virtual machine accepts or rejects messages sent via the
SMSG command -- when the flag is on, messages are accepted.

The SET WNG function determines whether you receive warning messages from any
class A or Buser.

The SET EMSG function controls error message handling. The EMSG operand
gives you the ability to specify that you want message code, message text, or both to
be displayed at your terminal. You can also specify that no messages be displayed
(except in the case where you have spooled your console output). With EMSG on,
you receive the error message numbers and the modules issuing the messages, which
may be helpful to you if you are experiencing problems.

The SET IMSG command controls whether certain informational responses issued
by some CP commands are displayed at the terminal or not. Also, the SET IMSG
command determines whether you receive messages from CP when other users spool
reader, printer, or punch files to your virtual machine.

When you are debugging, it is useful to have all messages displayed at your terminal.

The SET RUN command controls whether the virtual machine stops when the
attention key is pressed.

The QUERY command displays the status of features and conditions set by the SET
command for your virtual machine. When you logon, the MSG, IMSG, and WNG
operands of the SET command are set ON; the SMSG operand is set OFF; the
EMSG operand is set to TEXT. The RUN operand is set OFF. To verify these
settings, use the QUERY SET command.

LY24-S241-01 © Copyright IBM Corp. 1986, 1988 Chapter 2. Debugging the Virtual Machine 53

Debugging the Virtual Machine "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Commands that Trace Events in Virtual Machines
This section discusses the ADSTOP, TRACE, and PER commands. The TRACE
command traces virtual machine events. The PER command selectively traces the
execution of the instructions that cause specific events. The SVCTRACE command
provides additional information about SVCs that the TRACE command does not
provide. See "Using the SVCTRACE command" on page 132 for more
information.

Stopping Virtual Machine Execution at a Specific Address
The ADSTOP command stops the execution of a virtual machine at a specific
address; BEGIN causes the virtual machine to resume execution. See the VMjSP
CP General User Command Reference for more information concerning the
ADSTOP and BEGIN commands.

To stop execution of your virtual machine at a given address in virtual storage, use
the ADSTOP command and specify the hexadecimal address of a virtual instruction.
The command:

#cp ads top 3000

stops the virtual machine when the instruction at hexadecimal location 3000 is the
next instruction to be executed. When the machine stops running, you receive the
message:

and your terminal is placed in CP console function mode. At this point, you can
enter other CP debugging commands to display and alter storage or to trace certain
instructions. When you want to resume running your virtual machine, enter:

begin

Unlike the hardware address stop, ADSTOP is turned off when:

• Requested address is reached
• Next ADSTOP command is issued
• IPL or a system reset is performed
• ADSTOP OFF command is issued.

While ADSTOP is on, the SVC portion of virtual machine assist is not executed.
When ADSTOP is turned off, SVCs are again handled by virtual machine assist.

The address stop should be set after the program is loaded but before it executes.
When the specified location is reached during program execution, execution halts
and the CP command environment is entered. You may then enter other CP
commands to examine and alter the status of the program.

Set an address stop at a location where you suspect the error in the program. You
can then display the registers, control words, and data areas to check the program at
that point in its execution. This procedure helps you locate program errors. You
may be able to alter the contents of storage in such a way that the program will
execute correctly. You can then correct the error you have detected and, if
necessary, compile and execute the program again.

54 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

/ \
'\~ ;/

~ ~

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging the Virtual Machine

To successfully set an address stop, the instruction must be in first-level storage of
the virtual machine at the time the ADSTOP command is issued.

Using the CP TRACE Command
You can trace the following kinds of activity in a program using the CP TRACE
command:

• Instructions (privileged and PSW)
• Branches
• Interrupts

Program
External
I/O
SVC

• I/O and channel activity.

See the VM/SP CP General User Command Reference for more information
concerning the TRACE command.

When the TRACE command executes, it traces all your virtual machine's activity;
when your program issues a supervisor call, or calls any CMS routine, the TRACE
continues. Trace output for the CP TRACE command is always produced before
the instruction executes.

Tracing resumes when these two conditions are met:

• CP gains control, such as for a real I/O interruption, and

• Virtual machine encounters one of the specified activities to be traced, except for
successful branching.

Whenever you are recording trace output at your terminal, the virtual machine stops
execution and enters the CP console read environment after each output line. This is
the default mode of operation when, for example, you enter:

trace all

or

trace svc program branch

If you only want to record the trace and not stop after each output line, add the
RUN operand as the last entry on the command line.

Continuing with the previous example, if, after specifying multiple activities to be
traced, you decide to stop tracing one or more of them, enter:

trace program branch off

and tracing is now confined to SVCs only.

To trace all activity with the output directed to the virtual printer, enter:

trace all printer

When you stop tracing, you must also issue the CLOSE command to release the
spooled trace output file for processing:

trace end
close printer

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 2. Debugging the Virtual Machine 55

Debugging the Virtual Machine "Restricted Materials of IBM"
Licensed Materials - Property of IBM

If your virtual machine configuration contains only one printer, trace output is
intermixed with application output. You should define another virtual printer with
an address lower than the previously defined printer. Application output is still
directed to the original printer; however, trace output is always directed to the
printer with the lowest address.

While trace is running, portions of virtual machine assist are disabled. When the
trace is complete, they are enabled.

You can make most efficient use of the TRACE command by starting the trace at a
specific instruction location. You should set an address stop for the location. For
example, if you are going to execute a program and you want to trace all of the
branches made, you would enter the following sequence of commands to begin
executing the program and start the trace: (Remember, commands are represented
in lower case, responses are in uppercase.)

load progress
cp ads top 2G004
start
DMSLI074GI Execution begins ••.
ADS TOP AT 2GGG4
cp trace branch
cp begin

Now, whenever your program executes a branch instruction, you receive information
at the terminal that might look like this:

This line indicates that the instruction at address X '2001E' resulted in a branch to
the address X' 020092 '. When this information is displayed, your virtual machine is
placed in the CP environment, and you must use the BEGIN command to continue
execution:

cp begin

When you locate the branch that caused the problem in your program, you should
terminate tracing activity by entering:

cp trace end

and then you can use CP commands to continue debugging.

Controlling a CP Trace
There are several things you can do to control the amount of information you
receive when you are using the TRACE command, and how it is received. For
example, if you do not want program execution to halt every time a trace output
message is issued, you can use the RUN option:

cp trace svc run

Then, you can halt execution by pressing the Attention key when the interruption
you are waiting for occurs. You should use this option if you do not want to halt
execution at all, but merely want to watch what is happening in your program. tf··· "

\ '-j

56 VMjSP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(-

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging the Virtual Machine

Similarly, if you do not require your trace output immediately, you can specify that
it be directed to the printer, so that your terminal does not receive any information
at all:

cp trace inst printer

When you direct trace output to a printer, the trace output is mixed in with any
printed program output. If you want trace output separated from other printed
output, use the CP DEFINE command to define a second printer at a virtual
address lower than that of your printer, usually at OOE. For example:

cp define printer 006

Then, trace output will be in a separate spool file. CMS printed output always goes
to the printer at address OOE.

When you finish tracing, USe the CP CLOSE command to close the virtual printer
file:

cp close e

or

cp close 006

If you want trace output at the printer and at the terminal, you can use the BOTH
option:

cp trace all both

Suspending Tracing
If you are debugging a program that does a lot of I/O, or that issues many SVCs,
and you are tracing instructions or branches, you might not wish to have tracing in
effect when the supervisor or I/O routine has control. When you notice that
addresses being traced are not in your program, you can enter:

cp trace end

and then set an address stop at the location in your program that receives control
when the supervisor or I/O routine has completed:

cp ads top 20688
begin

Then, when this address is encountered, you can re-enter the CP TRACE command.

What To Do When Your Program Loops
If your program seems to be in a loop, you should first verify that it is looping, and
then interrupt its execution and either:

• Halt it entirely and return to the CMS environment, or
• Resume its execution at an address outside of the loop.

An indication of a program loop may be what Seems to be an unreasonably long
processing time.

You can verify a loop by checking the PSW frequently. If the last word repeatedly
contains the same address, it is a fairly good indication that your program is in a
loop. You can check the PSW by using the Attention key (except with 3270 type
terminals) to enter the CP environment. You are notified by the message:

CP

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 2. Debugging the Virtual Machine 57

Debugging the Virtual Machine "Restricted Materials of IBM"
Licensed Materials - Property of IBM

that your virtual machine is in the CP environment. You can then use the CP
command DISPLAY to examine the PSW:

cp display psw

and then enter the command BEGIN to resume program execution:

cp begin

If you are checking for a loop, you might enter both commands on the same line
using the logical line end:

cp display psw#begin

When you have determined that your program is in a loop, you can halt execution
using the eMS Immediate command HX. To enter this command, you must press
the Attention key once (except with 3270 type terminals) to interrupt program
execution, then enter:

hx

If you want your program to continue executing at an address past the loop, you can
use the CP command BEGIN to specify the address at which you want to continue
execution. For example,

cp begin 20cd0

Or, you could use the CP command STORE to change the instruction address in the
PSW before entering the BEGIN command. For example,

cp store psw 0 20cd0#begin

Debugging with CP After a Program Check
When a program that is executing under CMS abends because of a program check,
the DEBUG routine is in control and saves your program's registers, so that if you
want to begin debugging, you may use the DEBUG command. See the VMjSP
CMS Command Reference for the information you can receive from the DEBUG
command.

You can "prevent DEBUG from gaining control when a program interruption occurs
by setting the wait bit in the program new PSW:

cp trace prog norun

You should do this before you begin executing your program. Then, if a program
check occurs during execution, when CP tries to load the program new PSW, the
wait bit forces CP into a disabled wait state and you receive the message:

All of your program's registers and storage areas remain exactly as they were when
program interruption occurred. The PSW that was in effect when your program was
interrupted is in the program old PSW, at loca"tion X '28 I. Use the DISPLAY
command to examine its contents:

cp display 28.8

The program new PSW, or the PSW you see if you enter the command DISPLAY
PSW, contains the address of the DEBUG routine.

58 VM/SP Diagnosis Guide LY24-S241-01 © Copyright IBM Corp. 1986, 1988

Debugging the Virtual Machine "Restricted Materials of IBM"
Licensed Materials - Property of IBM

If in addition to instructions, you wish to trace instructions that alter registers, enter:

per grange 28080.500

To see which events you are monitoring, enter:

query per

You will see the following:

To change just the instruction trace element to PRINTER, you can enter:

per instruct range 820800-0204ff printer run

To see which events you are currently monitoring, enter:

query per

You will see the following:

If you continue program execution by entering BEGIN you will receive information
at your terminal that might look like this:

This line indicates a BALR instruction at address X' 020004' changed register 12 to (_-_-___ -/
X' 40020006 ' .

As with CP TRACE, you can specify the printer and/or run for any event.
However, CP PER has additional options that can be used with all events:

• The RANGE or FROM option can be used to set up multiple instruction
address ranges. This can increase the selectivity with which instruction execution
is monitored.

• The PASS option allows you to suppress a specific number of events between
displays.

• The CMD option can be used if you want to execute CP command(s) whenever
a given event occurs.

• The STEP option can be used to permit a specified number of events to be
displayed before the CP command environment is entered.

60 VM/SP Diagnosis Guide L Y24-5241-01 © Copyright IBM Corp. 1986, 1988

/

"

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging the Virtual Machine

If, after using CP to examine your registers and storage areas, you can recover from
the problem, you must use the STORE command to restore the PSW, specifying the
address of the instruction just before the one indicated at location X '28'. For
example, if the instruction address in your program is X' 566' enter:

cp store psw 0 20566
cp begin

In this example, setting the first word of the PSW to 0 turns the wait bit off and
clears all other information in the first word, so that execution can resume.

Using the CP PER Command
The CP PER command can be used to trace all:

• Instructions
• Successful branches
• Register alterations
• Instructions executed in your virtual machine that alter storage.

See the VMjSP CP General User Command Reference and the VM/SP CP System
Command Reference for more information concerning the PER command.

The CP PER command has many options that allow you selectivity in choosing
which events are to be monitored. Trace output for the CP PER command is always
produced after the instruction executes. The RANGE keyword of the CP PER
command can be used to set multiple address stops. Note also that address stops set
using the PER command remain in effect until you tum off the trace element set up
by the PER command. There is no need for the program to already be in storage
before setting address stops with the CP PER command.

Setting up multiple address stops with PER is accomplished by using RANGE as an
option to the INSTRUCT keyword. The instruction-addr-range, in this case, is a
single value corresponding to the address of the instruction where program execution
is to be halted.

F or example,

per instruct range 20000

causes program execution to halt after the instruction at location X' 20000' executes.

per instruct range 20000 range 20400

causes a program to halt after an instruction at either location X' 20000' or
X' 20400' executes.

Note: Although output is produced only after the instruction at X' 20000' or
X '20400' executes, the hardware causes a PER interrupt for every instruction
executed in the range X' 20000' to X' 20400'. This may degrade the performance of
the virtual machine.

The CP QUERY command with the PER option can be used to determine what
events are currently being traced. For example:

query per

may result in:

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 2. Debugging the Virtual Machine 59

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging the Virtual Machine

Selectivity

Terminating PER

PER options can be used to increase selectivity. Using PER, it is possible to limit
tracing to a specific instruction or set of instructions. For example, to monitor only
LR instructions (operation code X '18 '), enter:

per instruct data 18

When the NORUN option is in effect, program execution halts after each monitored
event. When using the RUN option, program execution continues after each event.
PER also has an execution rate between NORUN and RUN. This option is called
STEP. STEP specifies the number of events that should be displayed before
program execution halts and the CP command environment is entered. For
example, to halt program execution after 5 instructions in the range X I 20000 I to
X I 204FF I have been executed, enter:

per instruct range 20000.500 step 5

When your program has been loaded and started, you will receive information at
your terminal that might look like this:

and then program execution would halt, and the CP command environment would
be entered.

Although the STEP option allows you to step through your program more quickly
without giving up all control, every monitored instruction is displayed. If many
instructions are executed before the problem occurs, the need arises to frequently
clear your ~creen. The frequency with which events are displayed can be changed by
using the PASS option. Ordinarily, every successful event is displayed. However,
using the PASS option makes it possible to specify how many monitored events
should be skipped before displaying one. For example, to skip the display of 100
instructions and display the lOlst, enter:

per instruct pass 100

To end PER tracing with the current set of events, enter:

per end current

To end just the branch trace elements in the current set of events, enter:

per end branch

It is not always desirable to end all the trace elements of a particular event type.
When the current set of events being traced is displayed using the QUERY PER
command, each trace element is preceded by a number. This number can be used to
selectively end PER tracing.

To see which events you are currently monitoring, enter:

query per

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 2. Debugging the Virtual Machine 61

Debugging the Virtual Machine "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Suspending PER

You may see the following:

If you no longer want to monitor instructions that alter register 7 but want to
continue monitoring register 5, enter:

per end 3

To terminate all PER tracing, enter:

per end all

This ends the current and all saved sets of events being traced.

The PER SAVE subcommand can be used to save the current set of events being
traced. This saved set is saved only while the user is logged on.

To save the current set under the name TRACE!, enter:

per save trace!

The current set is still active. To suspend the PER tracing, enter:

per end current

PER tracing is no longer active. The set of events is saved under the name
TRACEl. You can now execute normally, or create another current set using PER
commands. This new set (or sets) of events can also be saved.

To resume PER tracing with the original set, enter:

per get tracel

A copy of set TRACE! is still saved under the name of TRACE!. Changes made to
TRACE! while it is the current set have no effect on this saved copy.

To end the saved set TRACE!, enter:

per end trace!

If you save a set under the same name as an existing set, the current set replaces the
old set unless you specify the append option.

Additional Program Debugging Using PER
TRACE can be used to trace program interrupts. However, the trace information is
displayed after the interrupt has occurred and cannot always be used to determine
the cause of the problem. PER, used in conjunction with TRACE, can greatly
reduce the difficulty of finding the cause of the problem. If the problem is an
operation exception, it may have been caused by a bad branch instruction.

62 VMjSP Diagnosis Guide LY24-5241-0l © Copyright IBM Corp. 1986, 1988

(

(

(

(..

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The Branch Traceback Table

Debugging the Virtual Machine

The first step is to trace program interrupts using TRACE:

trace prog

Run the failing program until the program interrupt occurs. When the program
interrupt occurs, the address of the instruction causing the interrupt is the address
that precedes the address of the instruction that is being displayed. For example:

Next end TRACE and allow the program to finish. Reload the failing program and
trace successful branches to the address of the bad instruction. For example:

per branch 24600

Note: The branch might be to an address before X I 24600 I. The branch might have
encountered a valid operation code. Therefore, it is sometimes necessary to use a
larger branch into address. For example:

per branch 245f0-24600

When the branch to the bad instruction occurs, the branch instruction as well as the
previous 5 successful branches are displayed. For example:

Note: If control is transferred to the bad address by a LPSW or an interrupt (for
example an SVC) PER BRANCH does not trace this event. Therefore, it is a good
idea to issue a TRACE PROG before starting the program. Then, if the program
interrupt occurs before any PER output is produced, the PER TABLE command
can be used to display the branch traceback table containing the last 6 successful
branches. The last entry in the table is the last successful branch instruction
executed before the program interrupt. While this is not necessarily the instruction
causing the problem, hopefully it is near the failing instruction. It is now possible to
restart the program using PER to trace the execution of instructions in the range
beginning with this branch instruction, and ending at the program interrupt addnlss.

The PER COUNT Subcommand
Another method of finding the failing instruction is to use the PER COUNT
sub-command with·TRACE. This method, as well as the use of the PER TABLE
command, is well suited for problems other than just operation exceptions. If the
program is abending with any sort of program exception, then load the failing
program, and issue the CP command:

trace prog

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 2. Debugging the Virtual Machine 63

Debugging the Virtual Machine

followed by:

per instruct range 2eeee.See

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

(assuming the program is X' 500' bytes in length) and then:

per count

Next start the failing program. No trace output from PER is produced while the
COUNT option is in effect. When the program interrupt occurs, issue the QUERY
PER command to display the current count:

query per

You may see the following:

This means that 2159 instructions were executed before the instruction that caused
the program interrupt. It is now possible to trace as many instructions leading up to
the program interrupt as desired. To trace the last 15 instructions before the
program interrupt, reload the failing program, and issue the following PER
command:

per pass 2144

the response is:

This command has two effects. First, it turns off the PER COUNT option, and
second it applies the PASS option to the current set of events. The current set now
contains:

1 INSTRUCT RANGE e2eeee-e2e4FF TERMINAL NORUN PASS 2144

Next start the failing program. The first 2144 instructions executed in the range
X'20000' through X'204FF' are not displayed. The 2145th instruction is displayed.
When the instruction is displayed, issue:

per pass

This command resets the PASS option to the default (display every instruction). The
current set now contains:

1 INSTRUCT RANGE e2eeee-e204FF TERMINAL NORUN

It is now possible to trace the last 15 instructions, and to use the DISPLAY
command to display storage and register contents.

PER COUNT can also be used in conjunction with more specific trace elements to

/

\j

produce the desired results. For example, if a problem occurs as a result of the (-~

execution of an SVC 202 arid the failing program issues many SVC 2028 before ~ .. j

failing, it may not be productive to use TRACE.

64 VMjSP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging the Virtual Machine

An alternative is to use PER to set up a set of events that traces only SVC 202s
(operation code X'OACA') and to use PER COUNT to count the occurrences.
First, load the failing program and then issue:

per instruct Oaca range 20000.500
per count

and start the program. When the failure occurs, issue a QUERY PER to check the
count.

query per

You may see the following:

The program can then be traced after using the PER PASS option as above to get
close to the problem.

The PER Command Option
The PER CMD option can be used to execute any CP command (except SLEEP)
whenever a particular event occurs. For example:

per instruct range 20000.500 run
per store 204fO-204ff range 20000.500 run cmd display 204fO-204ff

traces the execution of every instruction in the range X' 20000' through X' 204FF'
and displays the contents of storage at X' 204FO' through X' 204FF' every time any
storage within the range X '204FO' through X '204FF' is altered by an instruction in
the range X' 20000' through X' 204 FF ' .

Also, the CMD option can be used to cause execution of a program to continue at a
specific address whenever a particular event occurs. For example:

per instruct range 20000.500 printer
per branch 0 run cmd begin 24f28

causes program execution to continue at location X' 24F28 , whenever a branch to
location 0 occurs. The execution continues after the instruction is displayed. If,
when program execution is resumed at location X '24F28 ' , a subsequent branch to
zero occurs, execution again begins at location X' 24F28 '. This can result in a loop.
The CMD option can also be used to prevent this. For example, if LINED IT is on,
and the escape character is set to " and the line end character is #, then:
per instruct 20000.500 printer
per branch 0 run cmd per end branch"#begin 24f28

turns off the branch trace element and causes program execution to continue at
location X' 24F28 , after the instruction is displayed. The current set would then be:

1 INSTRUCT RANGE 020000-0204FF PRINTER RUN

The commands associated with each trace element are executed whenever the event
described by the trace element occurs. The commands are executed in the order in
which they appear in the set of events. Therefore, if the current set is:

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 2. Debugging the Virtual Machine 65

Debugging the Virtual Machine "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Storage Alteration

1 INSTRUCT TERMINAL RUN CMD cmdl#cmd2
2 BRANCH TERMINAL RUN CMD cmd3
3 ,G TERMINAL RUN CMD cmd4#cmd5

and an instruction is executed that alters a register, 'but does not cause a successful
branch, then the CP commands cmdl, cmd2, cmd4, and cmd5 are executed (in that
order).

Note: If a CP command is entered while commands are being executed by PER, the
output from the commands may be interleaved.

Once the command option has been specified for a particular trace element, the
command option remains in effect until the trace element is turned off. However,
the command can be changed. For example, if the current set contains:

1 BRANCH TERMINAL RUN CMD DISPLAY G15
2 G TERMINAL RUN CMD DISPLAY PSW

the command associated with the branch trace element can be changed to DISPLAY
G14-15 by issuing:

per branch terminal run cmd display 914-15

or both commands can be changed to DISPLAY G14-15 by issuing:

per cmd display 914-15

PER can be used to trace the alteration of storage in the user's virtual machine. If
PER STORE is specified, then whenever an instruction places a value into storage,
that event is traced. It is not necessary that this value be different from the previous
value.

It is also possible to monitor the alteration of storage to a specific value. For
example:

per store into 20100 data 112757

monitors instructions that cause the storage at location X '20100' to become
X '112757'. Note that these instructions are traced even if the value at location
X '20100' was already X' 112757' before the execution of the instructions.

It is also possible to monitor only alterations of storage when the storage value
actually changes. For example:

per mask into 20100 data ffffffffffffffff

monitors instructions that actually change one or more bytes in the doubleword field
starting at location X '20100'. PER MASK can also be used to monitor changes to
specific bits in storage. For example:

per mask into 20100 data 8040

monitors instructions that change the status of the first bit in the byte at location
X '20100' or the second bit in the byte at location X '20101' .

66 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

\

\ /

(-

(

(

(

(-

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

GUESTR and GUESTV

Debugging tbe Virtual Macbine

PER traces virtual machine activity in both second- and third-level storage. Using
the GUESTR and GUESTV options, it is possible to choose which level activity will
be traced. For example, when debugging VMjSP within a virtual machine it is
sometimes helpful to limit trace output to either just second- or just third-level
activity. CP itself runs with Dynamic Address Translation (DAT) off. When CP
dispatches a virtual machine, the DAT bit in the PSW is on. Therefore, if CP is
IPLed into a virtual machine, then that CP is executing in second-level storage.
When CMS is IPLed on top of the second-level CP, then that CMS is executing in
third-level storage. If the command:

per i range 20000-21000

is issued, then both second- and third-level activity is traced (that is, both CP and
CMS). To only trace the CP activity (second level) in the range X' 20000' through
X'21000', enter:

per i range 20000-21000 guestr

To only trace the CMS activity (third level) in the range X' 20000' through
X '21000', enter:

per i range 20000-21000 guestv

It is also possible to selectively trace specific activity in both second- and third-level
storage. For example, to trace successful branches and storage alterations of
location X' 1024' in second-level storage and to trace branches to location
X' 20000' , and alterations to register 7 in third-level storage, enter:

per branch store into 1024 guestr
per branch into 20000 g7 guestv

Commands that Alter the Contents of Storage
You can use the STORE and STCP commands to alter the contents of virtual
machine storage and real storage.

ZAP and ZAPTEXT commands are used to alter TEXT libraries or TEXT decks
before the code is loaded and executed.

STORE and STCP are described in the following paragraphs. See VMjSP
Installation Guide for information on ZAP and ZAPTEXT.

Altering the Contents of Virtual Machine Storage (STORE command)
Use the STORE command to alter the contents of specified registers and locations in
virtual machine storage. The contents of the following can be altered:

• Virtual machine storage locations
• General purpose registers
• Floating-point registers
• Control registers (if available)
• Program Status Word.

The STORE STATUS command can save certain information contained in low
storage.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 2. Debugging the Virtual Machine 67

Debugging the Virtual Machine "Restricted Materials of IBM"
Licensed Materials - Property of IBM

When debugging, you may find it advantageous to alter storage, registers, or the
PSW and then continue execution. This is a good procedure for testing a proposed
change. Also, you can make a temporary correction and then continue to ensure
that the rest of execution is trouble-free. A procedure for using the STORE
STATUS command when debugging is as follows:

• Issue the STORE STATUS command before entering a routine you wish to
debug.

• When execution stops (because an address stop was reached or because of
failure), display the extended logout area. This area contains the status that was
stored before entering the routine.

• Issue STORE STATUS again and display the extended logout area again. You
now have the status information before and after the failure. This information
should help you solve the problem.

Altering Virtual Storage
You can alter the contents of your virtual storage,GPRs, floating-point registers,
control registers (if available), and the PSW with the STORE command.

Virtual storage can be altered in either fullword or byte units.

When using fullword units, the address of the first positions to be stored must have
either an L or no prefix:

store 1024 46a2

or

store 11024 46a2

results in X' 000046A2' being stored in locations X' 1024' through X' 1027' .
store 1024 46 a2

on the other hand, implies storing 2 fullwords and results in the storing of
X' 00000046000000A2' in locations X' 1024' through X' 102B' .

If the starting location is not a multiple of a fullword, it is automatically rounded
down to the next lower fullword boundary. Each fullword operand can be from one
to eight hexadecimal digits in length. If less than 8 digits are specified, they are right
justified in the fullword unit and padded to the left with zeros.

You can store in byte units by prefixing the start address with an S.
store s1026 d1d6c5

stores X' DID6C5' in locations X '1026'; X' 1027', and X '1028'. Note that the
data storage is byte-aligned. If an odd number of hexadecimal digits is specified, CP
does not store the last digit, you receive an error message, and CP terminates the
function. For example, if you specify:

store s1026.dld6c

CP stores dl at X' 1026' , and d6 at X' 1027'; when CP attempts to store c, it
recognizes an incomplete hexadecimal digit, and does not store the last digit.

You can store data into one or multiple consecutive registers.

68 VMjSP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

/

(

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging the Virtual Machine

General and control registers are loaded in fullword units that are right-justified and
padded to the left with zeros. For example,

store 94 123456

loads GPR 4 with X'00123456'.

store 94 12 34 56

loads GPRs 4, 5, and 6 with X' 00000012' , X' 00000034' , and X' 00000056' ,
respectively.

Floating-point registers are loaded in doubleword units. Each doubleword operand
can be from 1 to 16 hexadecimal digits in length. If less than 16 digits are specified,
they are left justified in the doubleword unit and padded to the right with zeros. For
example:

store y2 00123456789

loads floating-point register 2 with the value X '0012345678900000'.

You can use the STATUS operand of the STORE command to simulate the
hardware store status facility. Selected virtual machine data is stored in permanently
assigned areas in low storage. Your virtual machine must be in extended control
mode for the command:

store status

to be accepted. To place your virtual machine in extended control mode, issue the
command:

set ecmode on

Be aware that this command resets your virtual machine and you must reload (IPL)
your operating system.

The data stored by the STORE STATUS command is summarized in the following
table:

Virtual Address No. of
Dec. Hex Bytes Data

216 D8 8 Processor Timer
224 EO 8 Clock Comparator
256 100 8 Current PSW
352 160 32 Floating-Point Registers (0,2,4, and 6)
384 180 64 General Purpose Registers (0-15)
448 1CO 64 Control Registers (0-15)

Note: If the operating system that is running in 'Your virtual machine operates in the
basic control mode, these areas of low storage may be used for other purposes. You
should not use this facility under these conditions.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 2. Debugging the Virtual Machine 69

Debugging the Virtual Machine "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Altering the Contents of Real Storage (STCP command)
Use the STCP command to alter the contents of real storage. The STCP command
can alter the old and new PSWs, but the user has to know where in storage these are
located.

70 VM/SP Diagnosis Guide LY24-S241-01 © Copyright IBM Corp. 1986, 1988

/'

(

(-

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Chapter 3. Debugging CP

Commands to Collect and Analyze System Information
Locating CP Control Blocks in Storage

Debugging CP in a Virtual Machine
CP Internal Trace Table
Abend Dumps

How to Print a CP Abend Dump from Tape
Reading CP Abend Dumps

Reason for the Abend
Collect Information
Register Use
Save Area Conventions
Virtual and Real Control Block Status

VMBLOK
VCHBLOK
VCUBLOK
VDEVBLOK
RCHBLOK
RCUBLOK
RDEVBLOK

Identifying and Locating a Pageable Module
Debugging an AP /MP System

PSA
Trace Table

Debugging CP

73
73
73
74
77
78
78
79
80
80
81
83
85
&5
85
86
86
86
87
88
88
88
88

Lockwords 89
VMDUMP Records: Format and Content 89

Locating Logical Dump Records 91
Trapping Improper Use of CP Free Storage .. 93

CP FRET Trap Examples 94
Debugging with the CPTRAP Facility 95

Overview 95
Defining a Trap 96
Directing Your CPT RAP Output 96
DASD Space Considerations for CPTRAP 96
Getting Tracing Started 97
Turning Off Tracing 97
Altering Tracing 97
Analyzing Data 97
Ending Tracing 97

CPT RAP Command 97
Recording I/O Activity in the CPTRAP File 98
Collecting I/O Activity Entries in the CPTRAP File 98

Type 10 Entries in the CPTRAP File 99
Recording CP Trace Table Entries in the CPT RAP File 100

Collecting Trace Table Entries in the CPT RAP file 101
Recording Virtual Machine Data in the CPT RAP File 104

Collecting Entries in the CPTRAP File for Type GT Traps 104
Recording CP Data in the CPTRAP File 110

Using a DATA Type Trap to Record CP Data 110
Obtaining CPT RAP Status 118
Additional CPTRAP Considerations 118

Data Lost Situations 118

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 71

Debugging CP "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Checkpointing
Running with Microcode Assist Active
LOGOFF Considerations
Spool Space Considerations
CP jVirtual Machine Interface Errors
Release Level Conflicts and Migration Considerations

Displaying the CPTRAP Output
370X Dump Processing

Network Dump Operations
NCPDUMP Service Program and How To Use It

Stand-Alone Dump Facility
Overview
Devices that You Can Use to IPL Stand-Alone Dump
Devices to which You Can Send Dump Output ..
Stand-Alone Dump Program Generation
Using the Stand-Alone Dump Facility

Configuring the Stand-Alone Dump
Example for Configuring the Stand-Alone Dump
Taking a Stand-Alone Dump
Processing the Stand-Alone Dump Data on Tape

119
119
119
119
119
119
120
120
120
121
123
123
123
124
125
126
126
128
129
130

72 VM/SP Diagnosis Guide LY24-S241-01 © Copyright IBM Corp. 1986, 1988

I/"--~

'\

/
/

"-. .. j

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging CP

(Commands to Collect and Analyze System Information

(

(

(

(..

The following commands are used to collect and analyze system information when
debugging:

• MONITOR
• INDICATE
• QUERY SRM
• LOCATE.

The MONITOR command provides a data collection tool that samples and records
a wide range of data. The INDICATE command provides a method to observe the
load conditions on the system while it is running. The QUERY SRM command
provides observation facilities for analyzing internal activity counters and
parameters.

See VM/SP Administration, VM/SP CP General User Command Reference, and
VM/SP CP System Command Reference for more information on the MONITOR,
INDICATE, and QUERY SRM commands.

Locating CP Control Blocks in Storage
Use the class C or E LOCATE command to find the address of CP control blocks
associated with a particular user, a user's virtual device, or a real system device. The
control blocks and their functions are described in the VM/SP CP Data Areas and
Control Blocks.

Once you know the location of the control blocks, you can examine the block you
want to look at. When you want to examine specific control blocks, use the DCP
command to display or the DMCP command to print the control blocks. A
discussion of the most important fields of the VMBLOK, VCHBLOK VCUBLOK,
VDEVBLOK, RCHBLOK, RCUBLOK, and RDEVBLOK are included in "Virtual
and Real Control Block Status" on page 83.

Debugging CP in a Virtual Machine
Many CP problems can be isolated without stand-alone machine testing. It is
possible to debug CP by running it in a virtual machine. In most instances, the
virtual machine system is an exact replica of the system running on the real machine.
To set up a CP system in a virtual machine, use the same procedure that is used to
generate a CP system on a real machine. However, remember that the entire
procedure of running service programs is now done on a virtual machine. Also, the
virtual machine must be described in the real directory. See VM Running Guest
Operating Systems for directions on how to set up the virtual machine.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 73

Debugging CP "Restricted Materials of IBM"
Licensed Materials - Property of IBM

CP Internal Trace Table
CP has an internal trace table that records events that occur in the real machine.
The events that are traced are:

• External interrupts
• SVC interrupts
• Program interrupts
• Machine check interrupts
• I/O interrupts
• Free storage requests
• Release of free storage
• Entry into scheduler
• Queue drop
• Run user requests
• Start I/O
• Unstack I/O interrupts
• Storing a virtual CSW
• Test I/O
• Halt Device
• Unstack IOBLOK or TRQBLOK
• Network Control Program (NCP) Basic Transmission Unit (BTU)
• Spinning on a lock (AP or MP environment)
• SIGP issued
• Clear Channel instruction
• IUCV communications
• SNA Console Communication Services (CCS)
• MSSF DIAGNOSE code X'80'
• Start I/O fast release
• Simulated I/O interruptions
• Clear I/O
• Time stamp
• Test channel.

An installation may optionally specify the size of the CP internal trace table. To do
so, use the SYSCOR macro in module DMKSYS. Information on using this macro
instruction is in the VM/SP Planning Guide and Reference.

If an installation does not specify the CP internal trace table size or the size specified
is smaller than the default size, VM/SP CP assigns the default size.

74 VM/SP Diagnosis Guide LY24·5241·01 © Copyright IBM Corp. 1986, 1988

.~--.~---.. - .. -.-

./

.". /

/

(

(

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging CP

10 Farm •• o' Tr. l,bl, Entry
Ty".'be"t Modul, fho.~)1

0 1 2 3 4 5 6 1 • • "
11 12 13 14 15

External OMKEXT 01 X'Dl' SX'OO' Int.rrup' Cod. Extlrntl Old PSW In .. rrupt

SVC OMKSVC OZ X'OZ' GPR 14 a. GPR IsZ Instruction f:~nuPt Cod,S SVC Old PSW Int,,,,ap1 length Cod.S

P,olr.m OMKPMAl 03 X'D3' Fint 3 bytes of VMPSW Instruction Intenupt Code p,.,r.m Old PSW Interrupt OMKPRG length Cod,5

Machine OMKMCH 04 X'04' YMBLOK Add, .. Fin •• bytes of yte Interrupt Code Madline Check Old PSW Checle Interrupt

110 OMKIOT 05 X'05' MlISH,., DewtceAddreu I/O Old PSW + 4 CSW Interru,t ment Byte

Dbtlin OMKFRE 0, X'D6' VMBLOK Address GPA Oat entry GPA 1.t.xit GPR 14 St (FREEl

Retum OMKFRE D7 X'DI' VMBLO K Add GPA Olllnt,y GPR llt.atry GPR 14 Sta (FRETI OMKFRT

enll. OMKSCH OB X'DI' VMBLOK Add ... VMR· VMO· VMO· VMQ· VMQ· VMT· VMIOINT VMPENO I GPR 14 Schld.1er STAT STAT STAT STAT LEVEL LEVEL

Oueltt Drop OMKSCH OB X'09' VM8l0K Addre. VMEPRIOR OMK· VMU· VMQPRIOR VMUHS SCHAL PRIOR

RUlli U .. OMKOSP DA X'DA' 3X'OO' RUN USER ValUI 'rom PSA RUNPSW nlat f,om PSA

OMKACS
OMKCNS

Sttrt I/O g=~~~ DB X'DB' CC Device Addms IOBLOK Add CAW, For CC .,, CSW +.0
OMKIOS Oth,rwite,tflilfitidis.X'OO'.
OMKIOT7
OMKMNT

Uastlc. OMKOSP DC X'DC' X'DD' VirtuII VMBLOK Add VirtUlICSW IJO Inte"upt O"'ceAddre.

Virtual OMKVSJ DO X'DO' Instruction Virtu.1 VMBLOK Add Virtull CSW CSWStore 0' Cad. DlVictAd'flss

OMKACS
OMKCPM

TostllO OMKCPU1
OE X'DE' CC Devic.Addftss IDBLOK Address CAW

ForCCo:l.CSW+4.
OMKIOS Oth.rwise. this field is 4X'OO·.
OMKIOT7
OMKMNT

OMKCNS
H.ltD..,ice OM KIDS OF X'DF' CC Device Address 10BLOK A •• ". CAW FDfCC·'.CSW+4.

OMKMNT Ddt this fieN is 4X'OO·.
DMKVSJ

Unstack VMR· VMO· VMO· VMQ. IOBlOK Of DMKOSP lD X'10' VMBLOK Ad STAT STAT STAT STAT 10BLOK a. TRQBLOK Ad In rupt Retllfn A.d ...
TRQBLOK

NCU BTU3 OMKRNH 11 X'll' X'DO' CO_SAID CDNOEST CONRTAG CON· CON· CONTCMO CON· I CON· I CONOCNT SVSA EXTR FUNC OFLG

S,innin, on Lock OMKLOK 12 X'12' YMBLO K AddrllS Luckword Address R.turn Address Lockword ContelltS

R .. I Function SIGPla ... d DMKEXT 13 X'13' R.turn Addr.ss X'DO' CC PrOUlSOf Add"" Cod.4 Order Cod. Slat fCC-1

CIetr Ch.nnel OMKVSJ 14 X'14' CC Device Addrlll VMBLOK A'drllS Virtu.1 CSW Issued

IUCV DMKIUA 15 X'15' Function Path I. Of Unused IUCV8LOK Addflss
U .. "dIS by Function Cod. (See VM Syst.m Fil&flitin I

IUCV Instruction Adtlress Cllmmunication Cod, .. 10' Programming (SC24·5288) t.r "t.ih on 'UCV tfiC'
tabl,'ormlt.)

TriM' OMKVCV SNA CCS OMKVCX 1& X'16' action Se, VM SVltem F«il;ties lor Prog,,,,,ming (SC24·5288J lor d.llill on SNA ecs .ntltn.
Type

MSSF OMKMHC n x'n' CC ZX'DO' HCBLOK Address DIAGNOSE X'BO'

SII"I/O DMKIOS 11 X'IB' CC OevictAddress IOBLOK Address FISt Retuse

Simulet.d I/O OMKIOT 19 X'IS' X'DD' Device AddfllS DMKOIO " OMKACS
Interrupt Address in GPR 12 .t entry

RIIn User Throuth
F B OMKOSP lA X'IA' 3nO' RUNUSER v.lue kom PSA

Cle.,110 OMKIOS lB X'U' CC O..,ictAddms IOBLOK AddflH

~:=i OMKPTS lC X'IC' YMBlOK Address VMR· VMO· VMO·
STAT STAT STAT

Logicll IM<SWAPI 10 X'10' YMILOK Address VMR· VMD· VMO·
$wep-In. STAT STAT STAT

~r~=!Stor ... 8 OMKFRE IE X'IE' YMBLOK Address GPR O ry

~:.mStor.6 OMKFRE IF X'IF' VMBLOK Add ... GPR Oateatry OMKFRT

CPTRAP OMKTAT ZO X'ZO' R d
TimeStemp

Tnt Chlllnel OMKIOS ZI X'ZI' CC I Device Add,_ I 10BLOK Add

Nota: 1. I' the instliletion is Rlnning in AP or MP mode, the identificetion code will be ORed with I X'40'
if thelCti,ity occurred on the non·IPL praClUOt'. If the inltlilition is runnin, (CPS. the identiliation
code is ORed with .n X'80' if the .ctiviIY occurrtd in microcode.

2. If the interrupt code (bytes 6 end 7) is X'OBOe', the contents of GPR 14.re displlytd. For .11 other
interrupt cades, the coatents of GPR 15 Ire lIIis,lIyed.

3. Bytes 2 through 15 of. code 11 trKe rICO,d re,resent I Bnic Trensmiaion Unit. sent Of received
by.llXX. If CONSYSR/CONEXTR .relera, dtt BTU was tflnsmitted to the lUX. If they .r.
nOIl'ZlfO, the BTU WII reeemd. If CDNTCMQ eqUlls X7100',thil is an unsolicited 8TU response.

Figure 5, VM CP Trace Table

LY24-5241-01 © Copyright IBM Corp, 1986, 1988

MSSF Connnl.' Wo,d MSFILOK Addr.

CAW Fo, CC .,. esw +4.
OthlfWilt. this field il4X'OD·.

CSW

RUNPSW .,elue from PSA

CAW F.r CC" 1. CSW+ 4.
Otherwitt, thil field is4X1tO'.

VMQ· VMS· VMS· VMS· X'DD' GPR 14 STAT WSTAT WPFLI WPFLZ

VMQ. VMQ· VMT· VMS· VMS· VMRSWPGS J scans STAT LEVEL LEVEL WPLI WSTAT

GPR 1.t exit GPR I.

GPR ,.t.xit GPRI.

TimHf·d.., St.m,

CAW I Mot

l' 11 12 13 14 15

4. Fer tIN SIGP instruction. trace teblt tntry 13 byt.1 conllins.e 'unction cod. for emerllncy
lilR.lllld ex'"nll cell or", codes.

S. For VMISP "PO without ECPS, byte 4 conllins die Interrupt C.de and lIyln 5, I •• nd 1 canttin
GPR 13. For SVC had SVC ZD, GPR n it. For SVC lZ .. d SVC Ii, GPR 13 on,.

6. These IrKe U", entrin If' 'or VM/SP HPO onty,
1. Thesl moduln an'Of WISP HPO only,

Chapter 3. Debugging CP 75

Debugging CP "Restricted Materials of IBM"
Licensed Materials - Property of IBM

For each 256K bytes (or part thereof) of real storage available at IPL time, one page
(4096 bytes) is allocated to the CP internal trace table. Each entry in the CP
internal trace table is 16 bytes long. There are CP internal trace table entries for
each type of event recorded. The first byte of each CP internal trace table entry, the
identification code, identifies the type of event being recorded. Figure 5 on page 75
describes the format of each type of CP internal trace table entry. See the VM CP
Trace Table (Poster) for a 20 inch by 26 inch poster of the CP internal trace table.
Also see the VMjSP Problem Determination Summary for a reference card that may
be easily carried that shows the CP internal trace table. The entry shown in
Figure 5 on page 75 for IUCV communications illustrates the general format of an
IUCV entry. See VM System Facilities for Programming for the formats of the CP
internal trace table entries for each IUCV function, and for a description of each
field in the CP internal trace table entry.

In addition, some CP internal trace table entries are generated by Extended Control
Program Support:VMj370 (ECPS:VMj370). The first bit of these entries is set to 1
to indicate the entry was generated by the hardware assist. For example, a CP
internal trace table entry of type X' 86' (FREE) is the same as an entry of type
X'06'. The only difference is that the first entry was generated by the hardware
assist.

The CP internal trace table is allocated by DMKST A which is called by the main
initialization routine, DMKCPI. The first event traced, TRACSTRT, is placed in
the lowest CP internal trace table address. Each subsequent event is recorded in the
next available CP internal trace table entry. Once the CP internal trace table is full,
events are recorded at the lowest address (overlaying the data previously recorded "-
there). Tracing continues with each new entry replacing an entry from a previous \,
cycle.

Use the CP internal trace table to determine the events that preceded a CP system
failure. An abend dump contains the CP internal trace table and the pointers to it.
The address of the start of the CP internal trace table, TRACSTRT, is at location
X' OC'. The address of the byte following the end of the CP internal trace table,
TRACEND, is at location X' 10'. The address of the next available CP internal
trace table entry, TRACCURR, is at location X'14'. Subtract 16 bytes (X'IO')
from the address stored at X' 14' (TRACCURR) to obtain the CP internal trace
table entry for the last event completed.

The CP internal trace table is initialized during IPL. If you do not wish to record
events in the CP internal trace table, issue the MONITOR STOP CPTRACE
command to suppress recording. The pages allocated to the CP internal trace table
are not released and recording can be restarted at any time by issuing the
MONITOR START CPTRACE command. If the VMjSP system should
abnormally terminate and automatically restart, the tracing of events on the real
machine will be active. After a VMjSP IPL (manual or automatic), CP internal
tracing is always active.

76 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

/

- --------------------

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging CP

(Abend Dumps

(

(

(i

There are three kinds of abnormal termination dumps possible when using CPo The
first kind occurs if the problem program cannot continue, it terminates and, in some
cases, tries to issue a dump.

The second kind occurs if the operating system for your virtual machine cannot
continue, it terminates and, in some cases, tries to issue a dump. In the virtual
machine environment, the problem program dump always goes to the virtual printer.
Depending on installation operating procedures, the virtual machine operating
system dump may also go to the virtual printer. A CLOSE must be issued to the
virtual printer to have either dump print on the real printer.

The third type of dump occurs when the CP system cannot continue. CP abend
dumps can be directed to a:

• Printer
• Tape
• DASD.

If the dump is directed to a printer, then the data is printed online and system
operations as well as virtual machine operations are suspended until the dump
operation finishes. This dump is unformatted.

If the dump is directed to a tape, the dumped data must fit on one reel of tape.
VMjSP does not support multiple tape volumes for dumps. The data on the tape is
in print-line format and can be processed by user-created programs or CMS
commands. See "How to Print a CP Abend Dump from Tape" on page 78 for an
example of how CMS can do this.

If the dump is directed to DASD, it is done by spooling the data to the virtual card
reader of a specific user ID. The user ID is either assigned during system generation
to a specific virtual machine user, or defaults to the printer. The dump spool file
can be manipulated by the user just like any other spool file, except that it can be
interpreted correctly only by the IPCSDUMP command (for more details see the
VMjSP Interactive Problem Control System Guide and Reference). By issuing the
class B QUERY DUMP command you can determine where the dump is being
directed.

The extent of the CP abend dump can be specified to dump:

• CP storage only
• CP and all real storage

to the selected device.

Use the CP SET DUMP command to specify the output device and extent of CP
abend dumps. Refer to the VMjSP CP System Command Reference for the format
of the class B SET DUMP command.

LY24-S241-01 © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 77

Debugging CP "Restricted Materials of IBM"
Licensed Materials - Property of IBM

How to Print a CP Abend Dump from Tape
If the CP dump unit has been specified as a tape drive, and one or more dumps have
been placed on the tape, use the following procedure to print the dumps:

1. Log on to the system with any user ID that has the capability of running CMS.
No other special privilege classes or options are required.

2. Attach a tape drive to the virtual machine as address 181 from an authorized
user.

3. Mount the tape that has the CP abend dumps.

4. IPL· the CMS system.

5. Issue the following CMS commands, filling in the variable names:

FILEDEF ddnamel PRINTER (RECFM FM LRECL 132)
FILEDEF ddname2 T API (DEN den RECFM U LRECL 132)
MOVE ddname2 ddnamel
CP CLOSE PRT

Note: Refer to the FILEDEF command description in VMjSP CMS Command
Reference if you need help filling in the variable used in the example above.

Step 5 can be repeated for as many dumps as are on the tape. Note that the CP
dump routines write two tape marks at the end of each file. Therefore, to process
the next dump, the TAPE FSF command must be issued to position the tape for
reading the next dump file.

Reading CP Abend Dumps

78

Two types of printed dumps occur when CP abnormally ends, depending upon the
options specified in the CP SET DUMP command.

First, when the dump is directed to a direct access device, Interactive Problem
Control System (IPCS) must be used to format and print the dump. For IPCS use,
see the VMjSP Interactive Problem Control System Guide and Reference. IPCS
commands format and print:

• Control blocks
• General purpose registers
• Floating-point registers
• Control registers
• TOD (Time-of-Day) Clock
• Processor Timer
• Storage
• If in AP or MP mode, formats and prints both PSAs' storage.

Storage is printed in hexadecimal notation, eight words to the line, with EBCDIC
translation at the right. The hexadecimal address of the first byte printed on each
line is indicated at the left.

If the CP SET DUMP command directed the dump to a tape or a printer, the
printed format of the printed dump will not contain formatted control blocks. If the
system was an attached processor or multiprocessor, all of the registers, etc., are

VM/SP Diagnosis Guide LY24-S241-01 © Copyright IBM Corp. 1986, 1988

.J

/

/

(

(

(

('

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging CP

printed for the abending processor. Also, each PSA is printed before printing main
storage.

Second, when CP can no longer continue and abnormally terminates, you must first
determine the condition that caused the abend, and then find the cause of that
condition. You should know the structure and function of CPo See VMjSP
Administration for information that will help you understand the major functions of
CPo The following discussion on reading CP dumps includes many references to CP
control blocks and control block fields. Refer to VMjSP CP Data Areas and
Control Blocks or for a description of the CP control blocks. Figure 6 on page 84
shows the CP control block relationships. Also, you will need the current load map
for CP to be able to identify the modules from their locations. The load map is
created at initial CP generation time. See the VMjSP Installation Guide to get
information on saving and printing the CP load map.

Reason for the Abend
Determine the immediate reason for the abend. You need to examine several fields
in the Prefix Storage Area (PSA), to find the reason for the abend. In a
uniprocessor system, the PSA is in page O. In an Attached Processor (AP) or
Multiprocessor (MP) system, each processor has its own PSA in addition to the
absolute PSA in page O.

1. Examine the program old PSW and program interrupt code to find whether or
not a program check occurred in CPo The program old PSW (PROPSW) is
located at X' 28' and the program interrupt code (INTPR) is at X' 8E'. If a
program check has occurred in supervisor mode, use the CP system load map to
identify the module. If you cannot find the module using the load map, refer to
"Identifying and Locating a Pageable Module" on page 88. Figure 18 on
page 251 describes the format of an Extended Control PSW.

2. Examine the SVC old PSW, the SVC interrupt code, and the abend code to find
whether or not a CP routine issued an SVC O. The SVC old PSW (SVCOPSW)
is located at X' 20', the SVC interrupt code (INTSVC) is at X' 8A ' , and the
abend code (CPABEND) is at X'374'.

The abend code (CPABEND) is a fullword. The first three bytes identify the
module that issued the SVC 0 and the fourth byte is a binary field whose value
indicates the reason for issuing an SVC O.

Use the CP system load map to identify the module issuing the SVC O. If you
cannot find the module using the CP system load map, refer to "Identifying and
Locating a Pageable Module" on page 88. Figure 18 on page 251 describes the
format of an Extended Control PSW.

3. Examine the restart old PSW (RSRTOPSW) at X' 08'. If an abnormal
termination occurs because the operator caused a system restart, the old PSW at
location X' 08' points to the instruction that was executing when CP recognized
the abnormal termination. Figure 18 on page 251 describes the format of an
Extended Control PSW.

4. For a machine check, examine the machine check old psW and the logout area.
The machine check old PSW (MCOPSW) is found at X' 30' and the fixed logout
area (FXDLOG) is at X' 100'. Also examine the machine check interrupt code
(INTMC) at X'E8'.

LY24-S241-01 © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 79

Debugging CP "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Collect Information
Examine several other fields in the PSA to analyze the status of the system. As you
progress in reading the dump, you may return to the PSA to pick up pointers to
specific areas (such as pointers to the real control blocks) or to examine other status
fields. For specific fields within the PSA control block, refer to VM/SP CP Data
Areas and Control Blocks.

The following areas of the PSA may contain useful debugging information:

1. The CP running status is stored in CPSTAT at location X' 348 '. The value of
this field indicates the running status of CP since the last entry to the dispatcher.

2. Current User

The PSW that was most recently loaded by the dispatcher is saved in RUNPSW
at location X' 330' , and tile address of the dispatched VMBLOK is saved in

("-''\

~c)

RUNUSER at location X '338'. Also, examine the contents of control registers /
o and 1 as they were when the last PSW was dispatched. See RUNCRO /

Register Use

(X' 340') and RUNCRI (X' 344') for the control registers.

Also, examine the CP internal trace table to determine the events that preceded the
abnormal termination. Start with the last event recorded in the trace table and read
backward through the trace table entries. The last event recorded is the last event
that was completed.

The TRACSTRT field (location X' OC') contains the address of the start of the trace
table. The TRACEND field (location X' 10') contains the address of the byte
following the end of the trace table. The address of the next available trace table
entry is found in the TRACCURR field (location X'14'). To find the last recorded
trace table entry, subtract X'IO' from the value at location X'14'. The result is the
address of the last recorded entry. Figure 5 on page 75 describes the format of each
type of trace table entry.

Note: If the system was in AP or MP mode, the trace table pointers are in absolute
page zero.

To trace control blocks and modules, it is necessary to know the CP register-use
conventions.

The 16 General Purpose Registers (GPRs) have many uses that vary depending upon
the operation. The following table shows the use of some of the general purpose
registers:

Register

GPR I
GPR2
GPR 6~7,8

GPR 10
GPR 14,15

Contents

The virtual address to be translated.
The real address or parameters.
The virtual or real channel, control unit, and
device control blocks.
The address of the active IOBLOK.
The external branch linkage.

The following general purpose registers usually contain the same information:

80 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

"\

,X~
f

\i\.J

(

(....

....

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Register

GPR II
GPR 12
GPR 13

Debugging CP

Contents

The address of the active VMBLOK.
The base register for the module executing.
The address of the current save area if the module
was called via an SVC.

Use these registers along with the CP control blocks and the data in the prefix
storage area to determine the error that caused the CP abend.

Save Area Conventions
The save areas that may be helpful in debugging CP are: BALRSA VE,
FREESAVE, FREEWORK, and DUMPSAVE, all in PSA; and SAVEAREA, which
is not in PSA. If a module was called by an SVC, examine the SA VEAREA storage
area. SAVEAREA is its own control block (documented in VM/SP CP Data Areas
and Control Blocks) and the address of the SA VEAREA is found in general purpose
register 13. If a module was called by a branch and link, the general purpose
registers are saved in the PSA in an area called BALRSAVE (X'240'). The work
area and save area for DMKFRE and DMKFRT are also in the PSA; these areas
are used only by the DMKFRE and DMKFRT routines. The save area
(FREESA VE) for DMKFRE and DMKFRT can be found at location X' 280' and
the work area (FREEWORK) follows at location X '2CO' .

Save areas used by attached processor and multiprocessor support are SIGSAVE,
LOKSAVE, MFASAVE, SWTHSAVE, LOCKSAV, and SVCREGS. These save
areas are all in the PSA. LOCKSA V and SVCREGS are four fullwords in size; the
others are 16 fullwords in size.

Use the save areas to trace backwards and find the previous module executed.

1. SAVEAREA

An active save area contains the caller's return address in SA VERETN
(displacement X'OO'). The caller's base register is saved in SAVERI2
(displacement X' 04'), and the address of the save area for the caller is saved.

2. BALRSAVE

All the general purpose registers are saved in BALRSA VE after branching and
linking (via BALR) to another routine. Look at BALRI4 for the return address
saved, BALR13 for the caller's save area, and BALR12 for the caller's base
register, and you can trace module control backwards.

3. FREESAVE

Ail the general purpose registers are saved in FREESA VE before entries in
DMKFRE or DMKFRT execute. Use this address to trace module control
backwards.

Field

FREER15
FREER14
FREER13
FREER12
FREER 1
FREERO

Contents

The entry point (in DMKFRE or DMKFRT).
The saved return address.
The caller's save area (unless the caller was called via BALR).
The caller's base register.
Points to the block returned (for FRET entries).
Contains the number of doublewords requested or returned.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 81

Debugging CP

4. DUMPSAVE

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

All the general purpose registers at the time of the error are saved in
DUMPSA VE (displacement X' 500') before DMKDMP is called. They are
saved by DMKPSA after a restart, by DMKSVC after an SVC 0, and by
DMKPRG. The registers are stored in DUMPSAVE in the order GPRO
through GPRI5. GPRI2 usually contains the base register for the module
executing at the time of the error.

5. SIGSAVE

SIGSAVE (displacement X'540') is used as a save/work area by DMKEXT, a
MP/AP-only module that handles all signaling requests. When a signal request
is issued, DMKEXTSP is called. On entry, DMKEXTSP stores GPRO through
GPR6 and GPRI2 through GPR15. GPR7 through GPRll are not saved. The
remainder of SIGSAVE is used as a work area. GPR14 contains the caller's
return address.

82 VM/SP Diagnosis Guide LY24-S241-01 © Copyright IBM Corp. 1986,1988

(

\

",-. ./

(-

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

6. LOKSAVE

Debugging CP

All the general purpose registers are stored in LOKSA VE (displacement X' 580')
before DMKLOK executes. DMKLOK is an MP/AP-only module that
manipulates certain locks. The registers are stored in the order GPRO through
GPR15. GPRl4 contains the caller's return address.

7. MFASAVE

All the general purpose registers are stored in MF ASA VE (displacement
X' 5CO') before DMKMCTMA executes. DMKMCTMA is the entry into
DMKMCT, an MP/AP-only module, that handles malfunction alert interrupts.
The registers are stored in the order GPRO through GPR15. GPRl4 and
GPRl5 contain the caller's return address.

8. SWTHSAVE

All the general purpose registers are stored in SWTHSA VE (displacement
X'600') by DMKSTK and DMKVMASW. DMKVMASW is an entry that is
used only in MP/AP systems to switch a user's page table pointers. The registers
are stored in the order GPRO through GPRI5. GPR14 contains the caller's
return address. All entries to DMKSTK store registers GPRO through GPRl5
in SWTHSA VE.

9. LOCKSAV

LOCKSA V (displacement X' 640') is a four-word save area used by the LOCK
macro to save GPR14, GPRI5, GPRO, and GPRI if the SAVE option of the
LOCK macro is specified.

10. SVCREGS

SVCREGS (displacement X' 650 ') is a four-word save area used to save GPR12
through GPRl5 at the time of an SVC interrupt.

Virtual and Real Control Block Status
Examine the virtual and real control blocks for more information on the status of
the CP system. Figure 6 on page 84 describes the relationship of the CP control
blocks; several are described in detail in the following paragraphs. For even more
detail on the following control blocks, refer to VM/SP CP Data Areas and Control
Blocks.

LY24-5241-0l © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 83

~

~
~
t:1 t·
fa.

'" o
~

~ v.
~
~ -6

©

~ JJ.
go
.....
1:1:1
~

Q
~ -\0
00
.0\ -\0
00
00

'"

,I-
<
\ " j

/

~
@

?"

~
n a ... e..
1:1:1

~
~ p;-
::to
g
~ >6.
'"

.--------11 AROCBLOK
ARIOCH

~

PERCHAIN

ASYSVM

/
(
\ /

COATABLE

CORF'PNT -
CORFPNT -

CQASWPNT
CORPGNT

(

/

'-,

VMBLOK

VM~ VM08PNT -
VMECEXT

VMCHSTRT I VMCUSTAT

§B

----,
I

'------'

~
(1)

~
(1)

Po.

I
IJ,S.
~
n
~

~~
I» (1) - '" (1) -... ... p;o 0° -'" (1) Po.

"'~ ... ~ o (1)

"C ::1.
(1) I» ... --'" '< 0 o,
....,
...... 1:1:1
1:1:1~
~ ~

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging CP

VMBLOK

VCHBLOK

VCUBLOK

The address of the VMBLOK is in general purpose register 11.

Examine the following VMBLOK fields:

1. VMRST AT (displacement X' 58 ') contains the virtual machine running status.

2. VMDST AT (displacement X' 59') contains the virtual machine dispatching
status.

3. VMINST (displacement X'98') saves the virtual machine privileged or tracing
instruction.

4. VMPSW (displacement X'A8') saves the virtual machine PSW.

5. VMCOMND (displacement X'148') contains the name of the last CP command
that executed.

6. For checking the status of I/O activity, the following fields contain pertinent
information.

a. VMIOACTV (displacement X' 36') is the active channel mask. Each bit
represents a channel (0 through 15). An active channel is indicated by a 1 in
the corresponding bit position.

b. VMPEND (displacement X' 63 ') contains the interrupt pending summary
flag. The value of VMPEND identifies the type of interrupt.

c. VMFSTAT (displacement X'68') contains the virtual machine feature
status.

d. VMIOINT (displacement X' 6A ') contains the I/O interrupt pending flags.
Each bit represents a channel (0 through 15). An interrupt pending is
indicated by a 1 in the corresponding bit position.

The address of the VCHBLOK table is found in the VMCHSTRT field
(displacement X' 18') of the VMBLOK. General purpose register 6 contains the
address of the active VCHBLOK. Examine the following fields:

1. VCHADD (displacement X'OO') contains the virtual channel address.

2. VCHSTAT (displacement X'06') contains the status of the virtual channel.

3. VCHTYPE (displacement X'07') contains the virtual channel type.

The address of the VCUBLOK table is found in the VMCUSTRT field
(displacement X' 1 C') of the VMBLOK. General purpose register 7 contains the
address of the active VCUBLOK. Useful information is contained in the following
fields:

1. VCUADD (displacement X'OO') contains the virtual control unit address.

2. VCUST AT (displacement X' 06') contains the status of the virtual control unit.

3. VCUTYPE (displacement X' 07') contains the type of the virtual control unit.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 8S

Debugging CP

VDEVBLOK

RCHBLOK

RCUBLOK

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The address of the VDEVBLOK table is found in the VMDVSTRT field
(displacement X'20') of the VMBLOK. General purpose register S contains the
address of the active VDEVBLOK. Useful information is contained in the following
fields:

1. VDEV ADD (displacement X' 00 ') contains the virtual device address.

2. VDEVST AT (displacement X' 06') contains the status of the virtual device.

3. VDEVFLAG (displacement X' 07') contains the device-dependent information.

4. VDEVCSW (displacement X' OS ') contains the virtual channel status word for
the last interrupt.

5. VDEVEXTN (displacement X'lO') is the pointer to the virtual spool extension
block, VSPXBLOK, for output spooling devices.

6. VDEVREAL (displacement X'24') is the pointer to the real device block,
RDEVBLOK.

7. VDEVSFLG (displacement X'27') describes the virtual spooling flags for
spooling devices.

S. VDEVIOB (displacement X' 34') is the pointer to the active IOBLOK.

9. VDEVFLG2 (displacement X'3S') describes the Reserve/Release flags and other
miscellaneous conditions.

10. VDEVRRB (displacement X'3C') contains the address of the VRRBLOK for
Reserve/Release mini disks.

11. VDEVCFLG (displacement X'49') describes the virtual console flags for
console devices.

The address of the first RCHBLOK is found in the ARIOCH field (displacement
X' 3B4') of the PSA. General purpose register 6 contains the address of the active
RCHBLOK. Examine the following fields:

1. RCHADD (displacement X'OO') contains the real channel address.

2. RCHST AT (displacement X' 04') describes the status of the real channel.

3. RCHTYPE (displacement X'05') describes the real channel type.

4. RCHFIOB (displacement X'OS') is the pointer to the first IOBLOK in the
queue and RCHLIOB (displacement X' OC') is the pointer to the last IOBLOK
in the queue.

The address of the first RCUBLOK is found in the ARIOCU field (displacement
X' 3BS ') of the PSA. General purpose register 7 points to the current RCUBLOK.
Examine the following fields:

1. RCUADD (displacement X'OO') contains the real control unit address.

2. RCUSTAT (displacement X'04') describes the status of the control unit.

3. RCUTYPE (displacement X'05') describes the type of the real control unit.

4. RCUFIOB (displacement X' 08 ') points to the first IOBLOK in the queue.

86 VM/SP Diagnosis Guide LY24-S241-01 © Copyright IBM Corp. 1986, 1988

/
\.

./

(

(

(

(-

/

"Restricted Materials of IBM"
Licensed Material~ - Property of IBM

Debugging CP

RDEVBLOK

5. RCVLIOB field (displacement X' OC ') points to the last IOBLOK in the queue.

6. RCVCHA (displacement X'lO') is the pointer to the Primary RCHBLOK.

7. RCVCHB (displacement X'14') is the pointer to the first alternate RCHBLOK.

8. RCVCHC (displacement X' 18') is the pointer to the second alternate
RCHBLOK.

9. RCVCHD (displacement X' 1 C ') is the pointer to the third alternate
RCHBLOK.

The address of the first RDEVBLOK is found in the ARIODV field (displacement
X' 3BC') of the PSA. General purpose register 8 points to the current
RDEVBLOK. Also, the VDEVREAL field (displacement X' 24') of each
VDEVBLOK contains the address of the associated RDEVBLOK. Examine the
following fields of the RDEVBLOK:

1. RDEVADD (displacement X'OO') contains the real device address.

2. RDEVSTAT (displacement X'04'), RDEVSTA2 (displacement X'45'), and

3.

4.

5.

6.

RDEVSTA4 (displacement X'60') describe the status of the real device.

RDEVFLAG (displacement X'05') indicates device flags. These flags are
device-dependent.

RDEVTYPC (displacement X'06') describes the device type class and the value
of the RDEVTYPE field (displacement X'07') describes the device type. Refer
to "Appendix A" in VM/SP CP Data Areas and Control Blocks for the list of
possible device type class and device type values.

For spooling unit record devices, RDEVSPL (displacement X'18') is the pointer
to the active RSPLCTL block.

For real 37xx Communications Controllers, several pointers are defined.
RDEVEPDV (displacement X' 1 C') is the pointer to the start of the free
RDEVBLOK list for EP lines. RDEVNICL (displacement X'38') is the pointer
to the network contro11ist and RDEVCKPT (displacement X' 3C') is the
pointer to the CKPBLOK for re-enable. Also, RDEVMAX (displacement
X' 2E') is the highest valid NCP resource name and RDEVNCP (displacement
X' 30') is the reference name of the active 37xx NCP.

7. RDEVAIOB (displacement X'24') contains the address of the active IOBLOK.

8. RDEVVSER (displacement X'28') is the pointer to the VMBLOK for a
dedicated user.

9. RDEVATT (displacement X'2C') contains the attached virtual address.

10. For terminals, an additional flag is defined. RDEVTMCD (displacement
X' 34') describes the line code translation to be used.

11. For terminal devices, additional flags are defined. RDEVTFLG (displacement
X' 3A ') describes the additional flags.

12. RDEVIOER (displacement X'48') contains the address of the IOERBLOK for
the last CP error.

LY24-S241-01 © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 87

Debugging CP "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Identifying and Locating a Pageable Module
If a program check PSW or SVC PSW points to an address beyond the end of the
CP resident nucleus, the failing module is a pageable module. The CP system load
map identifies the end of the resident nucleus, labeled as DMKCPEND.

Go to the address indicated in the PSW. Backtrack to the beginning of that page
frame. The first eight bytes of that page frame (the page frame containing the
address pointed to by the PSW) contains the name of the first pageable module
loaded into the page. If multiple modules exist within the same page frame, identify
the module using the load map and failing address displacement within the page
frame. In most cases, register 12 points directly to the name.

To locate a page able module whose address is shown in the load map, use the system
VMBLOK segment and page tables. For example, if the address in the load map is
55000, use the segment and page tables to locate the module at segment 5, page 5.

Debugging an AP/MP System

PSA

Trace Table

When you debug an AP/MP problem, the following areas provide pertinent
information:

• PSA
• Trace table
• Lockwords.

A dump for a program operating in AP or MP mode contains three PSAs:

• Absolute PSA
• One PSA (address is in PREFIXA at X' 660 ') for the IPL processor
• One PSA (address is in PREFIXB at X '664') for the other processor.

In a formatted dump, the PSA for the IPL processor is displayed first and the PSA
for the other processor is displayed second. The PSA contains important
information about the status of each processor, such as:

• Normal low-core IPL
• Logout
• PSW information
• Processor model, type, and features
• BALR areas
• FREE areas
• Monitor and trace data
• Linkages to virtual machines, real devices, and spool files . .

See VM/SP CP Data Areas and Control Blocks for layout and explanation of the
fields in the PSA.

In an AP/MP system, the trace table entries for both processors are intermixed.
However, you can identify which processor made a particular entry by looking at the

)

/ "

trace code in the first byte of the trace table entry. If bit 1 of the trace code ""
contains a zero, the entry was made by the IPLed processor; but if bit I of the trace (, /
code contains a 1, the entry was made by the other processor. Processor
identification information is implemented for an AP/MP system at system
initialization when the system assigns each processor a trace identifier. The system

88 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM C:0rp. 1986, 1988

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging CP

Lockwords

assigns the IPLed processor a trace identifier of X' 00' and the non-IPLed processor
a trace identifier of X '40'. The identifier is ORed with the trace code when an entry
is made in the trace table thus providing an easy way of determining which processor
made a particular entry.

The following trace table entries appear in an APjMP environment:

X '12' indicates that the processor is spinning on a lock
X' 13' indicates that a processor issued a signal processor (SIGP) instruction
X' 0 I' may reflect multiprocessing-related external interruption codes (also appears

in a uniprocessor environment)

When you are debugging an APjMP system, you must relate the entries made by one
processor to the entries made by the other processor in the same time period. For
example, a signal processor (code X' 13') entry by one processor should be followed
closely by an external interruption (code X'OI') for the other processor. See
Figure 5 on page 75 for the layout of the CP internal trace table. The CP internal
trace table pointers:

• Trace table start address
• Trace table end address
• Next available trace entry address

are in absolute page zero.

You can look in the DMKLOK module to find the status of the various VMjSP
locks except the VMBLOK lock and the RDEVBLOK lock. Each of the locks in
DMKLOK contains the following four fullwords of information:

• First fullword contains the logical processor address of the owning processor.
This will be zero if the lock is not held.

• Second fullword contains the value in the lock owner's register 12.

• Third fullword contain the total amount of time spent spinning on this lock.

• Fourth fullword contains the total number of spins.

The VMBLOK lock is located in the VMBLOKat VMLOCK (X' lA8 '). When the
VMBLOK lock is held, VMLOCK contains the logical processor address of the
owning processor.

The RDEVBLOK lock is located in the RDEVBLOK at RDEVIOBL (X' 54').
When the lock is held, RDEVIOBL contains the logical processor address of the
owning processor.

VMDUMP Records: Format and Content
When a user issues the VMDUMP command, CP dumps virtual storage of the user's
virtual machine. The dump goes to the reader of the user who issued the command
unless otherwise specified. But CP can store this dump on the reader spool file of a
virtual machine that the user specified as an operand on the VMDUMP command.

CP writes the storage dump to the spool file as a series of logical records. Each
spool file record and each logical dump record is 4096-bytes long. However, because
each spool file record contains a header, one logical dump record does not fit into

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 89

Debugging CP "Restricted Materials of IBM"
Licensed Materials - Property of IBM

one spool file record. For this reason, CP splits a logical dump record into two
parts. CP writes one part to one spool file record and the other part to an adjacent
spool file record. The size of each part varies depending upon the amount of space
remaining in the spool file record that CP is currently using. Thus, each logical
dump record spans two spool file records. Figure 7 on page 92 shows the format of
spool file records, the format of logical dump records, and how logical dump records
span spool file records.

The first spool file record contains a spool page buffer linkage block (SPUNK)
header followed by a TAG area followed by dump information. All other spool file
records contain only a SPUNK header followed by dump information.

A SPUNK header, which contains data needed to locate information in the
associated spool file record, has the following format:

Hexadecimal
Offset Length Content

0 4 bytes DASD location (DCHR) of the next page buffer
4 4 bytes D~SD location (DCHR) of the previous page

bUffer
8 4 bytes Binary zeroes
C 4 bytes Number of data records in the buffer

Following the SPUNK header, the TAG area contains either binary zeroes or user
supplied data. If a virtual machine program or the user has issued the TAG
command, the TAG area contains the information provided via this command.
Otherwise it contains binary zeroes.

The first logical dump record contains a dump file information record
(DMPINREC). The second and third logical dump records each contain a dump
file key storage record, DMPKYRECI and DMPKYREC2, respectively. The dump
file key storage records contain the value of the storage keys assigned to each page
of virtual storage. The remaining logical dump records contain the virtual machine
storage dump.

CP records the storage dump sequentially starting with the lowest address dumped
and ending with the highest address dumped. CP records each byte as an
untranslated 8-bit binary value.

For a description of the format and contents of DMPINREC, see VM/SP CP Data
Areas and Control Blocks. For a description of DMPKYRECI and DMPKYREC2,
see DMPKYREC also in VM/SP CP Data Areas and Control Blocks.

The VMDUMP command dumps virtual storage that VM/SP created for the virtual
machine user. VMDUMP creates a file that provides IPCS with header information
to identify the owner of the dump. Once VMDUMP creates the file, IPCS may
process it to debug errors, as well as to store and maintain error information about
the virtual machine. For additional information, see the VM/SP Interactive Problem
Control System Guide and Reference.

90 VMjSP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

/
\ /

/ "

,/ "

(-

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Locating Logical Dump Records

Debugging CP

To locate a specific logical dump record, use the algorithm:

loc = 249+16n+4096n+[«16n+224)/4989)x16]
4996

n
is a number that identifies the dump record. For example, to locate the first
dump record, assign n a value of 1; to locate the second record, assign n a
value of 2, and so forth.

/
represents integer division.

loc
is the quotient and remainder of the algorithm.

Together these values specify a spool file record and an offset into that record where
logical dump record n begins. The quotient specifies the spool file record, and the
remainder specifies the offset into the spool file record.

The following example shows how to locate the third logical dump record:

loc = 249+(16x3)+(4996x3)+[«(16x3)+224)/4989)x16]
4996

loc = 12576+9
4996

quotient = 3

remainder = 288

Thus, the third dump record starts 288 bytes into the third spool file record.

LY24-S241-01 © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 91

Debugging CP

first spool
file record

second spool
file record

third spool
file record

fourth spool
file record

fifth logical
dump record

header

lesPlINK

16 bytes

header

0
SPUNK

16 bytes

header

8
SPUNK

16 bytes

header

0
SPUNK

16 bytes

header

0
SPUNK

16 bytes

1
'6 TAG

240 bytes

first logical
dump record
(continued)

16
DMPINREC
(continued)

256 bytes

second logical
dump record
(continued)

16
DMPKYREC1
(continued)

272 bytes

third logical
dump record
(continued)

16
DMPKYREC2
(continued)

288 bytes

fourth logical
dump record
(continued)

16
virtual machine
storage dump

304 bytes

Figure 7. VMDUMP Record Format

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

1
256

272

288

304

320

first logical
dump record

4095
DMPINREC

3840 bytes

second logical
dump record

4895
DMPKYREC1

3824 bytes

third logical
dump record

4895
DMPKYREC2

3808 bytes

fourth logical
dump record

4895
virtual machine
storage dump

3792 bytes

fifth logical
dump record

4095
virtual machine
storage dump

3776 bytes

92 VM/SP Diagnosis Guide LY24-S241-01 © Copyright IBM Corp. 1986, 1988

,(~.-.'''\

"'---)

/'
I

,
./

"' .. _./

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging CP

(_ Trapping Improper Use of CP Free Storage

(

(

(

Installations can install the CP FRET Trap as an aid in solving problems caused by
improper use of CP free storage and to solve many storage overlay problems. The
design of the CP FRET Trap allows it to produce "tracks" in storage associated with
each free storage request. The trap detects the release of areas of free storage that
were not assigned, previously released, or outside the boundaries of the storage
given.

The trap code is conditionally assembled in the DMKFRE, DMKFRT, and
DMKCPI modules based on the value of the option &FRETRAP. Found in
OPTIONS COPY, &FRETRAP has a default value of 0 for normal operations
without the trap.

The CP FRET Trap does the following:

• Disables CP Assist FREE, FRET, DSPl, DSP2, and UNTFR instructions.

• Expands each request for free storage by a three doubleword extension
containing:

The status of the request. The status consists of the tag ALLO when the
storage is allocated by DMKFRE or the tag FRET when the storage is
released by DMKFRT.

The saved size (in doublewords) of the requested free storage area.

The address of the assigned free storage block.

The return address of the module requesting the storage.

The last three characters of the calling module's name (if it is pageable).

The user's VMBLOK address.

The rest of the extension is cleared with zeroes and remains unused until the
storage is released. The content at that time is as follows:

- The return address of the module releasing the storage.
- The last three characters of the calling module's name (if it is pageable).

Note: For the exact format of the extension, refer to the FREEXT control
block in the VMjSP CP Data Areas and Control Blocks.

• Checks each request to release free storage for the expected tag. Checks the size
of the free storage area to be released against the saved size in the extension
area, and abends in illegal situations. The ALLO tag is replaced with the FRET
tag if the trap detects no problems with the FRET request.

When the CP FRET Trap is installed, performance for systems using CP Assists is
degraded due to the disabling of the DSPl, DSP2, UNTFR, FREE, and FRET
instructions. Also, performance for storage constrained systems having many users
is degraded due to the expansion of each free storage request to include the trap
extension area. The performance degradation is not likely to be a problem while
suspected free storage problems are being trapped. The overall performance of the
system remains the same when the trap is not installed.

The trap has to be installed at system generation time. Refer to the VMjSP
Installation Guide for installation instructions and the VMjSP CP Diagnosis
Reference or for specifics on the logic.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 93

Debugging CP "Restricted Materials of IBM"
Licensed Materials - Property of IBM

CP FRET Trap Examples
The following two examples demonstrate how the trap may be used to solve
problems caused by improper use of CP free storage.

Example 1: Destruction of the free storage pointer.

Symptom:

Module X obtains a 36 doubleword block of storage from DMKFREE. The
data in the storage block is being overlaid by data that has no resemblance to
the data expected to be there.

The CP FRET Trap is installed and it abends with code FRTOI5.

Analyzing the Available Data:

The trap found the ALLO tag at FREERI + the value of FREERO in bytes. It
abended with code FRT015 because the saved size of the original request (in the /
trap extension area) did not match the size of the block to be released in
FREERO. Examination of FREERI2, FREERI4, FREERO, and FREERI
reveals that module Y called DMKFRET to release 40 doublewords of storage
at the address contained in FREERl. Further examination of the trap extension
area shows that module X made the original request for the free storage and that
the requested size was 36 doublewords.

Conclusion:

If the free storage pointer in FREERI and the size in FREERO were correct, the
size would have matched the saved size in the extension area. If the free storage
pointer in FREERI were correct and the size in FREERO incorrect, then the
trap would not have found the ALLO tag at FREER I + FREERO. The trap
would have abended with code FRT013 instead of FRTOl5. Therefore, the free
storage pointer in FREERl was incorrect when module Y tried to release the
storage block.

The free storage block of module X could have been overlaid by module Y when
its free storage pointer was destroyed. Or, when the trap was not installed, the
storage block could have been released by module Y, recycled by DMKFREE
and reissued to module Z, causing an overlay of the storage obtained by module
X.

Example 2: Release of more storage than was given.

Symptom:

Module Y obtains a 9 doubleword block of storage from DMKFREE. The data
in the storage block is being overlaid by data that has no resemblance to the
data expected to be there.

The CP FRET Trap is installed and it abends with code FRT013.

Analyzing the Available Data:

94 VM/SP Diagnosis Guide

The trap abended with code FRT013 because it could not find the ALLO tag at
FREERI + the value of FREERO in bytes. Examination of FREERI2,
FREERI4, FREERO, and FREER! shows that module X called DMKFRET to
release 15 doublewords of storage at the address contained in FREERl.
Examining the storage at FREERI reveals that an ALLO tag can be found at

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(.

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging CP

FREERI + 9 doublewords, and that the saved size in the extension is 9
doublewords. The VMBLOK address in the extension matches that in
FREERII. Further examination of the storage for the next ALLO tag shows
that the storage block obtained by module Y overlaps the storage being released
by module X by 3 doublewords.

Conclusion:

Module X tried to release more storage than was actually given. The free
storage block of module Y could have been overlaid when the size for the
storage block being released by module X was incorrect. Or, when the trap was
not installed, the storage block could have been released by module X, recycled
by DMKFREE and reissued to module Z, causing an overlay of the storage
obtained by module Y.

(Debugging with the CPTRAP Facility

(

Overview
The CPT RAP facility can be used to create a reader spool file of selected trace table
entries, CP data, I/O data, or virtual machine data in the order they happen. This
data is collected in 4K blocks and placed in the CPTRAP spool file (CPT RAP
FILE). A X I 20 I time stamp record is inserted into the CPTRAP spool file and CP
internal trace table each time data is copied from the CP internal trace table to the
CPT RAP spool file. (The format of the X I 20 I time stamp record is shown in
Figure 5 on page 75.) Each record may have multiple entries.

Note: CPTRAP FILE is the file name and file type assigned to the CPTRAP spool
file by the CPT RAP facility.

The CPT RAP facility uses the concept of traps. A trap is used to tell CPTRAP
which events in CP or a virtual machine should generate data recording in the
CPT RAP file. What is recorded depends on the type of trap. This recording of data
about events occurring while a program is running is referred to as tracing.

The facility provides the following types of traps:

• The 10 type trap allows you to examine all of the I/O activity to any devices or
range of devices. For any transaction, the following data is recorded with the
CSW: the channel program, and, optionally, the data transferred. This trap can
be used to collect data associated with the interfaces between CP and I/O
devices.

• The TT ABLE type trap allows you to control which CP trace entries are
collected in the CP internal trace table and the CPTRAP spool file. You can
also alter the trace flags in the PSA with this type trap. This trap should be
used to filter trace table data to obtain just the internal trace table entries
needed.

• The GT type trap allows you to record virtual machine events, including guest
virtual machine activity, in the CPT RAP spool file.

• The DATA type trap allows you to examine data conditions during execution of
nearly any path in CPo This trap can be used to collect data associated with
communications between CP and guest operating systems and components in
CPo

L Y24-5241-0 1 © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 95

Debugging CP

Defining a Trap

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

You may issue the CPTRAP command with the DISPLAY operand to show you the (-- "".
current status of the trap IDs you are working with. Also you can use the QUERY \",-.. ./
CPTRAP ALL command to obtain the same information. For more information on
the QUERY CPT RAP command, see VM/SP CP System Command Reference.

You can use the VM/SP Interactive Problem Control System (VM/SP IPCS) to
access the CPTRAP reader file and the data collected in the file. VM/SP IPCS
provides an interactive, online facility for reporting and diagnosis of software failures
and for managing problem information and status. It assists in reporting problems,
diagnosing problems, and managing problems and related data. Refer to the
VM/SP Interactive Problem Control System Guide and Reference for additional
information on how IPCS can be used to process CPTRAP files.

You define traps by using the definition operands (ID operand) of the CPT RAP
command. You can use operands associated with ID to give the trap a name (trap
ID) and optionally with the SET operand to group the trap with other traps that can
be enabled, disabled, or dropped together. In addition, you define a trap as being of
one of the four types: DATA, 10, GT, and TTABLE. For the format and
additional information on the ID operand, refer to the VM/SP CP System Command
Reference.

,/

,
~, .

Directing Your CPTRAP Output
CPTRAP output is collected in the CPTRAP spool file (CPTRAP FILE) spooled to
a user on the system. If the CPTRAP TO operand is not issued, the file is spooled
to the invoker of the CPT RAP command. Use the TO operand if you want the file
to be sent to a virtual machine other than the invoker of the CPTRAP command.

DASD Space Considerations for CPTRAP
The DASD space consumed by CPTRAP will continuously grow unless you specify
WRAP with the TO operand. You should decide how many pages of DASD should
be dedicated to tracing and supply that number with WRAP. At least 16 pages must
be specified.

A wrap spool file reuses spool space. After the number of 4K records that you
indicated have been collected, new CPTRAP records overlay the older records
already in the file. This allows you to limit the total amount of spool space used by
CPTRAP.

A non-wrap spool file does not reuse spool space. The spool space used by the file is
limited to the spool space available on the system. When the CPT RAP file has filled
15Mb of spool space, the file is closed automatically and a new file is opened. Since
CPT RAP records are not overlaid in a non-wrap file, the available spool space can
be used very quickly if you do not choose the entries selectively.

The data collection rates for CPT RAP could be over 1Mb per second on a heavily
loaded system. At this rate, an entire 3380 DASD can be filled in between eight and
nine minutes. Failure to use the WRAP operand under these conditions will result
in system spool space being filled rather quickly. You should decide how much
DASD space should be devoted to the CPT RAP information before the CPTRAP
command is invoked and specify WRAP to limit spool space consumption. (f

."_J
You can also limit the amount of CPT RAP data recorded if you are recording trace
table information. You do this by filtering the trace table entries recorded using the

96 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(,

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging CP

INT ABLE and INFILE operands of the TT ABLE type traps. With these operands,
you can limit the amount of CP trace table data being recorded.

Getting Tracing Started

Turning Off Tracing

Altering Tracing

Analyzing Data

Ending Tracing

Use the ENABLE operand of CPT RAP to start tracing after you have fully defined
the traps. You can enable traps individually or by sets if you group related traps
into sets. You can also enable all defined traps using the ENABLE ALL operands.
After you issue ENABLE, CPTRAP collects data associated with a trap in the
CPTRAP file.

To tum tracing off while preserving all trap ID definitions, use the DISABLE
operand of CPTRAP. After you disable a trap, no more records that correspond to
that trap are collected. Disabling the last enabled trap results in an automatic close
of the CPT RAP file.

To alter tracing:

• Enable existing traps by trap ID or trap set

• Disable existing traps by trap ID or trap set

• Define new traps

• Redefine existing traps.

If you want to alter the parameters associated with a particular trap ID, the trap ID
must be disabled before you can alter it unless it is a type TT ABLE trap. You do
not have to disable type TTABLE traps to alter them.

CPTRAP places the data collected in the CPT RAP spool file CPT RAP FILE which
is spooled to the user specified as the receiver. You can access this file through an
IPCS session. For more details, see the VMjSP Interactive Problem Control System
Guide and Reference.

If trap IDs are no longer needed, you can issue CPT RAP with the DROP operand
to remove them. Note that issuing DROP ALL erases all defined trap IDs. To end
a CPTRAP data collection session, issue the CPT RAP STOP command. This
command disables and drops all existing trap IDs and closes the CPT RAP spool file
if it exists.

CPTRAP Command
You can use the privilege class C CPT RAP command to define a trap or set of
traps, to start and stop tracing, and to provide other services associated with the
CPTRAP facility. For details on the format and operands of this command, refer to
the VMjSP CP System Command Reference.

CPTRAP operands can be viewed as belonging to one of the following groups:

• Definition
• Destination
• Activation
• Display.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 97

Debugging CP "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Use the CPTRAP definition operands (ID operand) to identify a tracing condition
with a name (trap ID) and optionally with a set of other traces (trap set). You also
use definition operands to assign one of the four type traps (10, TTABLE, DATA,
and GT) to a trap ID.

Use the destination operands to direct CPTRAP output to the CPTRAP spool file
(CPTRAP FILE). With these operands, you can direct the spool file to another user
ID or to yourself. You can also specify WRAP to conserve spool space. Use
CLOSE to end recording to a CPTRAP spool file and start another file.

Use the activation operands to start or end the tracing of individual trap IDs and of
trap IDs in trap sets. These operands also allow you to erase all CP knowledge of
individual trap IDs and trap IDs in trap sets.

Use the DISPLAY operand to look at the CPTRAP status of each trap ID or trap
set.

Recording 1/0 Activity in the CPTRAP File
To trace all I/O activity on a specified real device or range of devices, use the
TYPE = 10 operand. The times, channel programs, CSWs, and data transferred for
each I/O operation to the specified device or devices is made available for data
analysis. You can enable up to 255 10 type trap IDs at a time.

Collecting 1/0 Activity Entries in the CPTRAP File
To collect I/O activity entries, do the following (some steps are optional):

1. Define one or more trap IDs as type 10.

2. Optionally, direct the CPTRAP output to a user ID on the system. If you do
not specify a user ID, the CPTRAP output is spooled to the user ID that
invokes the CPTRAP commands. To conserve DASD space, use the WRAP
operand.

3. Start tracing by using the CPT RAP ENABLE operand.

4. Optionally, alter tracing by either defining and enabling new trap IDs or
disabling and enabling existing trap IDs.

5. Turn off tracing (after a period of time) by using the CPT RAP command with
the DISABLE operand.

Example: The following sequence of commands illustrates how to define, enable,
and disable two trap IDs of type 10. These trap IDs, 101 and 102, are put into trap
set roSETo The destination is specified as a spool file for user ID "USER2" with a
wrap size of 100.

98 VM/SP Diagnosis Guide LY24-S241-01 © Copyright IBM Corp. 1986, 1988

", .. "',
~)

(

(

(-

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

cpt rap id i01 set ioset type io dev c41-c47 iodata 200

Debugging CP

cptrap id i02 set ioset type io dev a81-a87 iodata 400 user user1

cpt rap to user2 wrap 100

cpt rap enable set ioset

cptrap disable id io1
(*This shows that 101 can be disabled while 102 is running)

cptrap disable id i02

In the next example, assume that users on your system complain of CMS abends
that occur for no apparent reason. You discover that the users complaining have
the same copy of CMS in common. This copy of CMS is on a 3380 at address 280.
You also discover that CMS is abending because of program check code 1 errors.
You suspect that some of the text decks comprising CMS are corrupted, so you
regenerate that copy of CMS and the problem persists. The only explanations you
have now are that the page causing the abends is corrupted during the transfer into
main storage or that the users' segment or page tables are being corrupted. To
define traps that would give more accurate data to determine which of these theories
is correct, issue the following CPT RAP commands:

cptrap id i1 type ;0 dev 280

cptrap id d1 type data loc (hexloc) xxxx dl g11+10%.40

cptrap id d1 dl g11+10%%.20 g11+10%+4.40 (••• for x page tables)

The first CPT RAP command defines an 10 trap, II, for device 280.

The second CPT RAP command defines a data trap, DI, at the entry to the
dispatcher. The data to be traced is the VMSEG in the segment table. (For
additional information on DATA type traps, see "Recording CP Data in the
CPTRAP File" on page 110.)

The third CPTRAP command specifies the real page address (gl1 + 10% %.20) and
the next segment table entry (gIl + 10% + 4.40).

Type 10 Entries in the CPT RAP File
CPT RAP uses a X I 3C I trace entry to construct the type 10 entry that it places in
the CPTRAP file. This entry contains the following information:

• Trap ID of the trap that created this entry.

• Trap set that this trap ID is a member of.

• Trap type of the trap ID that created this entry. (This is an 8-byte character
field.)

• Name of routine to format this entry (used by IPCS).

The X I 3C I 10 trace entry contains one or more subsections, each composed of a
CCW, an IDAW (Indirect Data Addressing Word) list (if there are IDAWs for this
CCW), and CCW data.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 99

Debugging CP

The fields in this section are:

• User 10 that I/O is being traced for

• Device being traced

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• Number of bytes being traced for each CCW

• Flag byte. The following bits are defined:

Bit
X'80'
X'40'

Meaning
Data truncated in this entry.
Unsolicited interrupt

• Address portion of I/O old PSW.

The following fields are repeated for each CCW in the program. For reads and
writes, the data is also traced.

• Channel status word at interrupt time

• First word of CCW being traced

• Second word of CCW being traced

• Real address of this CCW.

The following fields are used if the IDA bit is off in the CCW:

• Length of data for the CCW

r-"',
~.-)

/

• Variable length field that contains the data that was traced for the CCW (always' /
ends on a word boundary).

The following fields are used if the IDA bit is on in the CCW:

• Count ofIDAWs for this CCW

• List ofIDAWs

• Data fields (up to 2K), one for each IDA W in the list, that contains the data
traced for the IDA W.

For the format of the X' 3C' trace entry, refer to VM/SP CP Data Areas and
Control Blocks.

Recording CP Trace Table Entries in the CPTRAP File
To control which CP internal trace entries are collected in the CPT RAP file and the
internal trace table itself, use the TTABLE operand. The trace codes that you
specify for the INFILE and INTABLE operands correspond to the typenums
specified for VM/SP releases prior to Release 6. Refer to Figure 5 on page 75 for
the format of the CP trace table entries. Because of the nature of trace table
recording, you can enable only one trap 10 of type TT ABLE at anyone time, even
though more than one may be defined. However, you can dynamically alter the
definition of the enabled trap 10.

Note: The MONITOR command can override the INT ABLE operands. Also,
OPTIONS. COPY in your local MACLIB can override INT ABLE settings.

CP maintains the internal CP trace table in real storage. It is a "wrap" table that
continuously overlays previously stored information with new trace table entries. As

100 VM/SP Diagnosis Guide LY24-S241-01 © Copyright IBM Corp. 1986, 1988

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging CP

a result, all the information needed to determine the cause of a problem may not be
present in the trace table. CPT RAP allows you to record selected CP trace table
entries in a spool file. Thus, you can save CP trace table entries that would be lost
when the internal trace table wraps.

Collecting Trace Table Entries in the CPTRAP file
To collect CP trace table entries, do the following (some steps are optional):

1. Define one or more trap IDs as type TTABLE.

2. Select the appropriate selectivity (that is, select which trace entries are to be
recorded in the internal trace table and the CPT RAP spool file).

3. Optionally, direct the CPTRAP output to a user ID on the system. If you do
not specify a user ID, the CPT RAP output is spooled to the user ID that issues
the CPT RAP command. To conserve DASD space, use the WRAP operand.

4. Start tracing by using the CPT RAP ENABLE command. Once you do this, the
selected CP trace table entries are moved from the internal trace table to the
CPTRAP spool file without changing their format or length.

5. Optionally, alter tracing by either defining new trap IDs, disabling and enabling
existing trap IDs, or redefine selectivity on the enabled TTABLE type trap ID to
change selectivity while CPT RAP is running.

6. Turn off tracing (after a period of time) by using the CPTRAP DISABLE
command.

The following sections discuss steps 2 through 4 in more detail.

Specifying Selectivity: You can select the CP trace table entries collected in the
spool file by trace type (typenum) using the INTABLE and INFILE operands. For
a list of the defined trace types see Figure 5 on page 75. CPTRAP allows you to
further select input trace table entries on the INFILE operand. The three allowed
fields are VMBLOK address (VMBLOK), real or virtual device address
(DEVADDR), and various code fields (CODE). Note that this selectivity is only
available on INFILE typenums. See the VMjSP CP System Command Reference for
more details on the CPTRAP command and its selectivity options.

INT ABLE lets you define which CP trace entries are recorded in the CP internal
trace table. INT ABLE values that you define on CPTRAP commands correspond
to bits defined by the field TRACEFLG at location X '400' in the PSA. Some of
these bits control the trace table recording of more than one CP trace table entry.
Thus, turning on and off some INT ABLE typenums affects the recording status of
other CP trace entries. The following table shows groups of typenums whose
recording is controlled with the same bit:

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 101

Debugging CP

Group Typenums

1 05
19

2 06
07

3 OB
OE
OF
14
18
1B
21

Description

I/O interrupt

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Simulated I/O interrupt

Obtain free storage
Return free storage

Start I/O
Test I/O
Halt Device
Clear Channel
Start I/O Fast Release
Clear I/O
Test Channel

The following examples show the use of these typenum groups using a previously
defined and enabled TT ABLE trap ID called t1:

Command

CPTRAP 10 tl INTABLE 07 OFF

CPTRAP 10 tl INTABLE 06 ON 07 OFF

CPTRAP 10 t1 INTABLE 19 OFF 0S ON

CPTRAP 10 t1 INTABLE 0B OFF 0E ON

CPTRAP 10 t1 INTABLE 0B ON 0E OFF

Result

Both 06 and 07 are not recorded
in the internal trace table or the
CPTRAP file

Both 06 and 07 are not recorded
in the internal trace table or the
CPT RAP file

Both 05 and 19 are recorded in
the internal trace table and the
CPTRAP file

OB, OE, OF, 14, 18, IB, and 21
are recorded in the internal trace
table and the CPTRAP file

OB, OE, OF, 14, 18, 1B, and 21
are not recorded

No TTABLE operands are required before you enable a TTABLE trap ID.
However, the default values of a TTABLE type trap ID are INTABLE ALL ON
and INFILE ALL OFF. This means that nothing will be collected in the CPTRAP
file.

You must enable a TTABLE trap ID (with at least some INFILE typenum
selectivity turned on) before any CP trace table entries are recorded in the CPT RAP
file.

Filtering: You should filter trace entries to reduce the probability of data loss.
Trace types eliminated with the INT ABLE operand during the enable function for a
trap are not entered in the internal trace table and are not available in dumps of CPo

Use the INFILE operand to define the trace entry types to be recorded in the
CPTRAP spool file. Only use INFILE if the trace entry types you want in the
CPTRAP spool file are a subset of those being entered in the internal trace table.

102 VMjSP Diagnosis Guide LY24-S241-01 © Copyright IBM Corp. 1986, 1988

""""-------" ------

!c-~

<~)

('\

/

,/

("' ',,,/

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging CP

Use the INTABLE operand to define which types of CP trace entries are to be
recorded in the internal trace table. The default is that all defined trace entry types
are included. Any trace entry type that you excluded with the !NT ABLE parameter
is automatically excluded from the CPT RAP spool file.

For best performance, use INFILE ALL ON. Limit the use of specific INFILE
operands to situations where a trace entry type is highly needed in the system dump
but is not wanted in the CPT RAP spool files because this will increase the amount
internal processing required and possibly result in lost data.

You cannot filter trace entries with the INT ABLE operand according to device,
code, or VMBLOK. However, you can do this with the INFILE operand.

For Release 6, filtering of trace codes X' 3D', X '3E' , and X' 3F' has been changed
from previous releases.

X' 3D' and X' 3E' entries apply only to GT type traps and cannot be controlled
using TTABLE traps. No message is issued if X' 3D' and X' 3E' are specified for
TT ABLE traps.

X' 3F' entries are supported under the type trap of TT ABLE although they are
never entered in the trace table. Using the INTABLE operand has no effect on the
recording of these entries. These entries must be controlled by using the INFILE
operand.

Examples: The example below shows how two trap IDs of type TTABLE could be
defined. The ttl trap ID allows only 05, 06,07, and 19 entries to be written to the
trace table and allows only 06 and 07 entries to be written to the CPTRAP file. The
tt2 trap ID allows all entries to be written to the trace table and the CPTRAP file.

Note: Only one trap ID of type TTABLE can be enabled at one time, but this trap
ID can be altered while it is enabled.

The destination is specified as a spool file for the issuer with a wrap size of 4000.

cpt rap id ttl intable all off

cptrap id ttl type tt intable 05 06 07 infile 06 07

cptrap id tt2 type tt intable all on infile all on

cpt rap to * wrap 4000

To alter the trap with trap ID ttl after it has been enabled, you could issue the
following sequence of commands. Note, however, that ttl must be disabled before
tt2 can be enabled. T.his is because two tt type traps cannot be enabled at the same
time.

cpt rap enable id ttl

cptrap id ttl intable Ob infile 05

cptrap disable id ttl

cptrap enable id tt2

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 103

Debugging CP "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Recording Virtual Machine Data in the CPTRAP File
You can record guest virtual machine events in the CPTRAP spool file by using type
trap GT. Only one virtual machine or group can be enabled for each trap, and each
virtual machine can only be enabled for one trap at a time. The entries recorded
using this interface result in X' 3E' trap records and X' 3D' records. X' 3E' records
can be created for virtual machines whether or not they are a member of a group.
X' 3D' records can only be created for virtual machines that are members of a
group. These records include the trap ID and trap set of the TRPBLOK associated
with the request and data supplied by the virtual machine.

The virtual machine interface lets a virtual machine send data to CPTRAP to be
added to the CPT RAP spool file. Any program running in VM/SP (for example, an
application program, CMS, GCS, TSAF, SFS, PVM, and CICS/VM) can use the
interface to have data written to the CPT RAP spool file. The data gathered in the
CPT RAP file by this interface could help determine the problem in your program.

Collecting Entries in the CPT RAP File for Type GT Traps
To collect virtual machine entries in the CPT RAP file, do the following (some steps
are optional):

1. Define one or more trap IDs as type GT, and optionally specify selectivity for
the kind of virtual machine entry to be collected (X'3D', X'3E', or ALL) Use
either the ALLOWID or GROUPID operand to enable the virtual machine(s)
for tracing.

2. Optionally, direct the CPTRAP output to a user ID on the system. If you do
not specify a user ID, the CPTRAP output is spooled to the user ID that
invokes the CPTRAP command. To conserve DASD space, use the WRAP
operand.

3. Make sure the program running in the virtual machine contains the virtual
machine interface to CPTRAP.

4. Start tracing by using the CPTRAP ENABLE command on the trap IDs set up
for the enabled virtual machines. Once this is done, CPTRAP can construct the
virtual machine entries and put them into the spool file.

5. Optionally, alter tracing by either defining and enabling new trap IDs or
disabling and enabling existing trap IDs.

6. Turn off tracing (after a period of time) by using the CPTRAP DISABLE
command.

The following sections describe steps 1-4 in more detail.

Defining Traps and Specifying Selectivity: Use the CPTRAP definition operands to
define a GT type trap:

• Use trapid to give the trap a name.

• Optionally, use the SET operand to identify this trap as a member of a trap set.
A trap set can be used to group traps into functionally or logically related sets.

• Use the TYPE operand to specify the type as GT.

• Use the ALLOWID or GROUPID operand to enable the virtual machine to
send data to the CPT RAP file. ALLOWID enables an individual virtual
machine, and GROUPID enables all the virtual machines in a group that you
specify.

104 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

----------~-- -------------- - ----------------------

,/

(

(-

(

(

('

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging CP

If the virtual machine is not logged on or disconnected, an ALLOWID trap ID
for that virtual machine cannot be enabled. If no virtual machines are enabled
for a specific group, a GROUPID trap ID for that group cannot be enabled.

Any enabled ALLOWID trap ID for a virtual machine is disabled if a
GROUPID trap ID is enabled and the virtual machine is a member of that
group. That is, GROUPID tracing overrides ALLOWID tracing for individual
virtual machines. Later, any new virtual machines entering the group are
automatically enabled for tracing. A virtual machine remains enabled for
tracing until it severs the connection to the group, logs off, or the CPTRAP trap
ID is disabled.

• Use the 3D, 3E, or ALL operands to specify selectivity. The selectivity options
are:

X I 3D I for group virtual machine data
X I 3E I for individual virtual machine data
ALL means that both X I 3D I and X I 3E I records can be recorded by virtual
machine(s) covered by this trap ID.

If X I 3D I entries are specified for an individual that is virtual machine not in a
group, the trap can be enabled but no data is provided.

Setting Up the Virtual Machine Interface: The virtual machine interface to
CPTRAP is a parameter list and a class 10 monitor call instruction. There is no
restriction on the number of interfaces that may be active at one time, or on the
number of virtual machines that can use them.

You can insert the interface into a program in two ways:

• Modify your program to include the interface, and then reassemble the program.

• Use the CP STORE command to store the interface into a program problem
area.

Set up register 1 with the address of an eight-byte parameter list that identifies the
data to be included in the CPTRAP file. The format of the parameter list for
monitor codes 0 and 1 is as follows:

1 2 3 4 5 6 7

DLENGTH CODE ADDRESS

Field Contents

DLENGTH Length of virtual machine data
CODE Individualizing code that you assign
ADDRESS Virtual address of data in virtual machine storage

The data cannot be longer than 2048 bytes, and must be in the virtual machine. If
the length is greater than 2048 bytes, only the first 2048 are taken with no indication
that the data has been truncated.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 105

Debugging CP "Restricted Materials of IBM"
Licensed Materials - Property of IBM

The format of the parameter list for monitor code 2 is as follows:

o 1 2 3 4 5 6 7

o DLENGTH CODE ADDRESS

8 PLENGTH MTYPE 1/////// CODE2

10 CODE2 (cont'd)

Field Contents

DLENGTH Length of virtual machine data. The data length is variable up to 2048
bytes.

CODE Individualizing code that you assign

ADDRESS Virtual address of the data to be included in the CPTRAP file. The
data must be in the virtual machine that issues the monitor call
instruction.

PLENGTH Length of parameter list (in bytes). This must be at least X' C'. If the
CODE2 field is specified, the field must be at least X' 14' .

MTYPE

CODE2

Code that identifies the type of virtual machine making the entry. The
values are:

• X' 01' - TSAF virtual machine entries
• X' 02' - SFS server machine
• X'03' - PVM
• X'04' - CICSVM
• X' 05' through X' FD' - reserved for IBM use
• X' FE' - Field engineering entries
• X'FF' - User installation entries (USERl)

Additional individualizing code information assigned by the user. The
information is in EBCDIC format. If the parameter list is not long
enough for this field, the corresponding field in the CPT RAP X' 3E'
record contains blanks. For X' 3E' records not created using the MC
10,2 interface, this field contains blanks.

The individualizing code is used to look selectively at the virtual machine entry in
the CPTRAP file when you use IPCS. This individualizing code will be present in
each entry. If the individualizing code is unique for each interface that you set up, it
will be easy to review data selectively in the CPT RAP file that came from a
particular virtual machine interface.

A monitor call instruction can be executed in virtual supervisor or virtual problem
state, BC mode or EC mode, and in multilevel environments. Multilevel is defined
as VM/SP running a guest virtual machine of a VM/SP system.

\" /

The supported monitor codes are 0, I and 2. All other monitor codes are ignored /{ ~.
and control returns to the invoker with no indication that the virtual machine data \t.. J

was ignored.

106 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging CP

The format of the monitor call instruction is as follows:

MC x,lO

x = 0

x = 1

x = 2

indicates that the data to be added to the CPT RAP file is
general virtual machine data. Any virtual machine can use a
monitor code O.

indicates that the data to be added to the CPT RAP file is
virtual machine group data. Only a virtual machine that
belongs to a group can use a monitor code 1.

identifies an extended format for the parameter list that the
virtual machine passes (general virtual machine data). Any
virtual machine can use a monitor code 2.

The following chart shows the type of entry (if any) made in the CPTRAP file for
the six possible situations that can arise:

Virtual Machine is Virtual Machine is
in a Group not in a Group

Monitor Code 0 is 3E 3E
issued

Monitor Code 1 is 3D no entry is made
issued

Monitor Code 2 is 3E 3E
issued

Any other monitor no entry is made no entry is made
code is issued

Example of Virtual Machine Interface for Type GT Trap: Two types of virtual
machine data can be recorded in the CPTRAP file.

• General virtual machine data is sent by any virtual machine that is enabled and
uses a monitor code 0 or 2 when passing the data to CPTRAP.

• Group virtual machine data is sent by a virtual machine that is enabled, uses a
monitor code 1 when passing the data to CPT RAP, and belongs to a group.

One way that you might use the virtual machine interface to CPTRAP is to capture
some data being changed incorrectly by the program. For example, you could
include the following code at the appropriate location in the program:

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 107

Debugging CP

DOTHIS CNOP 0,4
STH R2,DATALEN
ST R6,DATADDR
BAL R1,AROUND

*
DATALEN DS AL2

DC AL2(5)
DATADDR DS AL4
AROUND DS 0H

MC 0,10

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

HERE TO RECORD ENTRY IN CPTRAP FILE
PUT LENGTH OF DATA YOU WANT IN PLIST
PUT ADDRESS OF DATA YOU WANT IN PLIST
SET UP POINTER TO PLIST
PARAMETER LIST:

2 BYTES FOR LENGTH
2 BYTES FOR CODE •• (THIS IS 5)
4 BYTES FOR ADDRESS

SEND GENERAL VM (3E) DATA TO CPTRAP

.... existing code in program to continue doing something~

To use this trap in the program, the program must be reassembled. You must do
whatever is required to run this new version of the program. Then, each time
something causes the code in the trap to execute, the parameter list would be set up
and control would go to CPTRAP.

You can set up any number of these traps in the code at the same time. By making
the individualizing code unique in each case, you can review the virtual machine
entries selectively in the CPTRAP file. In the example here, the virtual machine
entry created is for general virtual machines (type X I 3E ') and has an individualizing
code of 5.

Starting Tracing: Use the CPTRAP ENABLE operand to start tracing. You can
only start tracing on those virtual machines that have been enabled using either the
ALLOWID or GROUPID operand.

Collecting the Virtual Machine Data in the CPTRAP File: When CPT RAP is
activated, the monitor code interface gives control to CPTRAP. If X I 3E I entries
are being collected, the data identified by the parameter list is recorded in the
CPTRAP file.

To activate CPTRAP and collect only general virtual machine data, issue the
following set of commands:

cptrap id trap1 type gt allowid user1 3e

cptrap enable id trap1

Now, whenever the code in your trap executes, an entry should be made in the
CPTRAP file. You can cause the reader file to be created by issuing:

cptrap close

which will cause a reader file to be created and the following response:

108 VM/SP Diagnosis Guide LY24-S241-01 © Copyright IBM Corp. 1986, 1988

/" "
\

,/

(-

(

I
I
I
I

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging CP

Virtual Machine Entries in the CPTRAP File: CPTRAP constructs the virtual
machine entry that is placed in the CPTRAP spool file. A X I 3D I trace entry is used
to collect CPT RAP data for guest traces that issue Monitor class 10 code 1
instructions to collect CPTRAP data. The X I 3D I entry, which identifies the group
virtual machine entry in the file, contains the following information:

• Individualizing code

• Trap ID information

• User data

The individualizing code is the same code that you specified in the parameter list.
The individualizing code is necessary to look selectively at the virtual machine entry
in the CPTRAP file when you use IPCS. The length of the virtual machine entry in
the CPTRAP file is variable. It includes the length of the virtual machine data plus
the length of the header.

The X I 3E I trace entry is used to collect trace data for guest traces that issue
Monitor class 10 code 0 and code 2 instructions to collect CPT RAP data. This trace
entry contains information from the virtual machine parameter list and trap ID
information.

For the format of this trace entry, refer to VM/SP CP Data Areas and Control
Blocks.

Examples: The example shown below depicts defining, enabling, and dropping two
trap IDs of type GT. These trap IDs, GTl and GT2, are put into trap set GTSET.
The destination is specified as a spool file for user ID "USER3" with no wrap size.

cptrap id gt1 set gtset type gt allowid user2

cpt rap id gt2 set gtset type gt groupid gcsgroup

cpt rap to user3

cptrap· enable id gt2
(*gcsgroup must be defined to start this trap*)

cptrap enable id gtl

cptrap drop all gtset

For the next example, assume the GCS virtual machine is experiencing intermittent
abends concerning free storage. To determine what CP events are occurring during
these abends, issue the following commands:

ETRACE FRE GET

CPTRAP ID gl TYPE GT GROUP gcs

CPTRAP ENABLE g1

CPTRAP CLOSE

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

This command is required to trace GCS
events; FRE and GET trace
FREEMAIN and GETMAIN requests,
respectively

This defines a GT type trap

This starts tracing

Chapter 3. Debugging CP 109

Debugging CP "Restricted Materials of IBM"
Licensed Materials - Property of IBM

After tracing is complete, you can check the CPTRAP spool file to determine what
storage is being acquired or returned just before the abend and determine which
module(s) issued the requests.

Recording CP Data in the CPTRAP File
There are two methods in which you can record CP data in the CPT RAP spool file.
The first, and preferred method, is to define a trap ID of type DATA. A second
method, which was also available prior to Release 6, is to place CPTRAP interface
code in the execution path of the CP code where the data is to be recorded. The two
methods are discussed individually in the following sections. First defining a DATA
type trap is discussed, and then the CP interface to CPT RAP is described.

Using a DATA Type Trap to Record CP Data
You can use the DATA type trap to dynamically define trace entries to record
execution of most code paths in CPo The LOC operand specifies which instruction,
when executed, will trigger recording of status information. The DL (datalink)
operand defines the information to be collected for execution of that instruction.

CP trap IDs of type DATA allow you send information to be recorded in the
CPTRAP spool file with a X I 3C I trace entry. You can use the data collected to
solve a problem in CP code.

Collecting CP DATA Entries in the CPTRAP file: To collect CP DATA entries in the
CPT RAP file, do the following (some steps are optional):

1. Define one or more trap IDs as type DATA.

2. Using a CP LOAD MAP, find the virtual address of the instruction to be
trapped.

3. Use the LOC operand for DATA to define the location and contents for the
instruction to be traced.

4. Use the DL operand for DATA to define what debugging information should be
collected when the instruction is executed.

5. Optionally, direct the CPTRAP output to a user ID on the system. If you do
not specify a user ID, the CPTRAP output is spooled to the user ID that issues
the CPTRAP command. To conserve DASD space, use the WRAP operand.

6. Start tracing by using the CPTRAP ENABLE command. Once this is done,
CPTRAP can construct the CP entries and put them into the spool file.

7. Optionally, alter tracing by either defining and enabling new trap IDs or
disabling and enabling existing trap IDs.

8. Tum off tracing when you think enough information is collected by using the
CPTRAP DISABLE command.

Using the LOC Operand: Use the LOC operand to specify the hexadecimal virtual
address of the instruction in the CP nucleus that defines the trap point at which the
specified data is to be collected. If this address is in a pageable module, the module
is automatically locked into storage.

There are certain modules in which you cannot define DATA type traps. These
modules are restricted because enabling DATA type traps in them would cause
recursive tracing or locking problems in the processing of CPTRAP data. If you try

110 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(
I

\. /

\,,-_/

tf"
I
''-'j

~--~~ ---.----.----

('

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging CP

to define a trap that violates one of these restrictions, the command is rejected and
the message

DMKDTR369E Invalid location for trapping - command rejected

is issued. The restricted modules are:

DMKDTR
DMKDTS
DMKGTR
DMKSVC
DMKTCW
DMKTCX

DMKTRO
DMKTRP
DMKTRT
DMKTRV
DMKTRX
DMKTTR

Note: These modules are only restricted before entry point DMKxxxET.

Also, you cannot define locations that are not on half word boundaries.

The instruction operand must be specified to allow CPTRAP to verify that the
address you specified with hex/oc contains the instruction you are defining the trap
for. It is required for DATA traps before they can be enabled. It must be the
hexadecimal representation of the contents of storage at the specified address.
Instruction must be at least as long as the instruction being overlaid. If you specify
instruction as hexadecimal data that is longer than the actual instruction, any extra
data is ignored. If the instruction does not coincide with the storage contents, you
will receive the following message:

DMKDTR349E String supplied does not match storage contents

and the command is ignored. The existing trap ID definition is not modified.

Using the DL Operand: You can use a datalink string, specified with the DL
operand, to define the data to be traced. For the format, syntax, and examples of
datalink strings refer to VM/SP CP System Command Reference.

You use these datalink strings to define how to combine constants and indirect
specifications to reach the data to be traced. You can define data either by using the
current register contents as pointers or by knowing the real storage address of the
data to be traced.

CP DATA Entries In the CPTRAP File: CPTRAP uses the X'3C' trace entry for
trap IDs of type DATA to construct the CP entry that it places in the CPTRAP
spool file. The X I 3C' entry for DATA type traps contains the following
information:

• Individualizing code

• Trap ID that created this entry

• Trap set that this trap ID is a member of

• Trap type of the trap ID that created this entry

• Name of routine to format this entry

• Number of datalink strings in this entry

• Virtual address of trap point for this trap ID

• Bytes of trap generated data for this datalink string

• Datalink strings.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 111

Debugging CP "Restricted Materials of IBM"
Licensed Materials - Property of IBM

For the format of the X '3C' trace entry, refer to VMjSP CP Data Areas and
Control Blocks.

Example: The example shown below illustrates how a trap ID of type DATA can
be defined and enabled. The trap ID is called DSPLOOP, and it is defined at
address 4B248. This address contains the instruction L R2,846(,R12) which
assembles to object code 5820C846. The data link string specified is G4 + 8%.2.
(G4 + 8 %.2 means that the contents of GPR4 plus 8 point to a location that contains
an address. That address contains the two bytes to be used.) The destination is
specified as a spool file for the issuer with a wrap size of 2000.

cpt rap id dsploop type data loc 4b248 5820c846

cpt rap id dsploop dl 94+8%.2

cpt rap to * wrap 2000

cptrap enable id dsploop

Determining the Size of a Trace Record: A trace record collected for any DATA
trap cannot exceed 4064 bytes including the header. Therefore, the amount of data
collected cannot exceed 4000 decimal bytes. Also, the maximum number of
datalinks allowed for anyone trap ID is 255.

Use the following formula to determine the number of bytes collected:

38 + (3 * number of datalinks)
+ (sum of the length of the datalinks strings)
+ (sum of the requested data)

The value obtained by this formula must be less than or equal to 4064.

Here are some examples. Suppose you issue the following:

cpt rap i d t1 type data loc xxxx Wi

Since no data links have been defined, the number of datalinks = O. Therefore, the
formula gives the default, which is 38.

length = 38 number of datalinks = 0

Now if the following command is issued:

cptrap id tl dl 912.20

The number of datalinks becomes one, the length of the string is six, and the length
of the data collected is 20. Substituting in the formula gives:

length = 38 + (3 * 1) + (6) + (20) = X'6l'

Now if the following command is issued:

cpt rap id tl dl 440

The number of data links becomes two, the sum of the previous command's data
link string plus the length of the data is 26, the length of the string for this command

112 VMjSP Diagnosis Guide LY24-S241-01 © Copyright IBM Corp. 1986, 1988

.",- ,;/

\ " . ./

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging CP

is three, and the length of the data is four (four because no length was specified, four
is the default). This gives the following result:

length = 38 + (3 * 2) + 26 + 3 + 4 = X' 6B '

Thus, the total record size for the DATA trap produced by the previous set of
commands is X' 6B ' .

Other Considerations: You should also consider the following when setting DATA
type traps:

• Data is collected for trap IDs of type DATA before the overlaid instruction
executes. If no datalinks are specified for the trap ID, a X '3C' entry is created
in the CPT RAP file, but no data is collected.

• Since there is no way to guard against an overlay of a valid operation code
somewhere other than at an instruction boundary, take care to match the
instruction with the boundary. DATA traps should always be placed at
instruction boundaries. Placing these traps at other locations causes
unpredictable results and probable system abends.

• Datalink strings are evaluated in a left to right scan.

• Do not try to trap an instruction that is the target of an execute statement. This
will cause unpredictable results. No error message is issued in this case.
However, you can avoid this condition by tracing the execute instruction itself.

• If you make a typing error while entering the datalink string, use the DROP
operand before redefining the trap ID. We recommend that you save the
definitions of traps that contain long datalink strings in EXECs.

• In addition to the modules that would definitely cause recursive situations, some
modules are invoked by CPT RAP after collecting a page of data. No restriction
prevent you from placing traps in these modules, but if the records produced by
these traps are one page long, recursion occurs and CPT RAP processing will
loop. Therefore, we recommend that trap ID records for the following modules
be well under a page long:

DMKIOS
DMKIOT
DMKPAG
DMKPAH
DMKRPA
DMKSTK

• Avoid placing traps in code paths that hold spin locks. Placing traps in these
code paths will increase the path length under the spin lock and seriously
degrade system performance.

• If interpretation of a datalink string during execution results in a negative or
invalid address, a X' 3C' error record is added to the CPT RAP file to indicate
that the error occurred. However, you will receive no external indication that
this error occurred.

• Specifying extra datalink strings for a defined but disabled trap results in
addition to the definition.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 113

Debugging CP "Restricted Materials of IBM"
Licensed Materials - Property of IBM

• To trace data in the absolute PSA, reverse prefixing must be used. If
interpretation of a datalink string results in an address in the prefix page of the
executing processor, the data is obtained from absolute page O.

• You can trace instructions in the PSA. If you enable a DATA trap in the PSA
of an MP system, the instruction tracing occurs in both prefixed pages. Thus,
the instruction is traced regardless of which processor the instruction is executed
on.

• To set DATA traps in ECPS code paths, first issue SET CPASSIST OFF. If
you do not issue SET CPASSIST OFF, any DATA traps in ECPS code paths
are ignored, and no X' 3C' entries are created for these trap IDs. For extended
virtual machine assist code paths, use SET SASSIST OFF.

• Placing traps in frequently executed paths will have two detrimental effects on
the system:

It will make a frequently executed path longer causing a system performance
degradation.

Because the path is executed frequently, the data collection rate will be
great, and the probability of data loss is increased.

Collecting CP Data By Including a CP Interface to CPTRAP: You can use a CP
interface to CPT RAP to record CP information in the CPT RAP spool file. If you
use this method, you will have to include the interface in the CP module you are
tracing, either by using the CP STORE command or by reassembling that module
and regenerating your system.

To collect CP entries in the CPT RAP spool file using this method, do the following
(some steps are optional):

1. Place the CPTRAP interface in the CP code to be traced.

2. Define one or more trap IDs as type TT ABLE.

3. Optionally direct the CPTRAP output to a user ID on the system. If you do
not specify a user ID, the CPTRAP output is spooled to the user ID that
invoked the CPTRAP command. To conserve DASD space, use the WRAP
operand.

4. Specify selectivity for CP interface entries (X '3F' entries). (CPTRAP 10 trapid
TYPE TT INFILE 3F)

5. Start tracing by using the CPTRAP ENABLE operand. Once this is done,
CPTRAP constructs the CP entries and puts them in the spool file.

6. Optionally, alter tracing by either defining and enabling new trap IDs or
disabling and enabling existing trap IDs.

7. Turn off tracing (after a period of time) by using the CPT RAP command with
the DISABLE operand.

Steps 1-5 are discussed in more detail in the following sections.

Setting Up the CP Interface: The CP interface to CPTRAP is a parameter list and a
BALR 14,15 instruction. You can insert the CP interface into the CP code in two
ways:

• Use the CP STCP command to store the interface into the problem area in the
CP code.

114 VM/SP Diagnosis Guide LY24-S241-01 © Copyright IBM Corp. 1986, 1988

/

(-

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging CP

• Modify the CP module to include the interface, reassemble the particular source
module, and regenerate the system.

Be careful where you insert the interface in the CP code. There may be a condition
code setting that has not yet been interrogated by the CP code. Any code inserted
as part of the interface must not change that condition code setting. If the inserted
code changes the condition code, it also must save and restore this setting.
CPT RAP preserves the condition code setting in effect at the time the BALR 14,15
instruction executes.

You must set up register 15 with the address of TRAPOK in the PSA before the
BALR instruction is issued. This is the address of the logic in module DMKPSA
that determines whether CPT RAP is active. When the BALR 14,15 instruction is
issued, register 14 gets the return address to the caller. The status of the CPT RAP
facility determines what happens next. If CPTRAP is active, control goes to
CPTRAP. If CPTRAP is not active, control returns to the caller immediately.

Set up register 1 with the address of an eight-byte parameter list that identifies the
data to be included in the CPT RAP file. The format of the parameter list is as
follows:

o 1 2 3 4 5 6 7

o DLENGTH CODE ADDRESS

Field Contents

DLENGTH Length of CP data
CODE Individualizing code
ADDRESS Address of CP data to be added to the CPT RAP spool file

The data must be 2048 bytes or less, and must be in real storage. If it is larger than
2048 bytes, only the first 2048 are taken with no indication that the data has been
truncated.

The individualizing code is used to look selectively at the CP entry in the CPT RAP
file when you use IPCS. This individualizing code will be present in each entry. If
the individualizing code is unique for each interface that you set up, it will be easy to
review data selectively in the CPTRAP file that came from a particular CP interface.

You could use the CP interface to CPT RAP trace CP control blocks at various
points in the CP code. For example, code in the module DMKQCN releases the
storage used for CONT ASKs. If you needed to record the information in a
CONT ASK for problem determination before it is released, you could include the
following code at the appropriate location in DMKQCN:

LY24-S241-01 © Copyright IBM Corp. 1986,1988 Chapter 3. Debugging CP 115

Debugging CP

ALLDONE DS 0H
USING CONTASK,R6
LH R2,CONTSKSI
SLL R2,3
STH R2,DATALEN
ST R6,DATADDR
USING PSA,R0
BAL Rl,AROUND

*
DATALEN DS AL2

DC AL2(3)
DATADDR DS AL4
AROUND DS 0H

LA Rl5,TRAPOK
BALR Rl4,Rl5

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

HERE TO RELEASE THE CONTASK
GET ADDRESSABILITY TO CONTASK
GET CONTASK LENGTH IN DWORDS
CONVERT THE LENGTH INTO BYTES
PUT LENGTH OF CONTASK IN PLIST
PUT ADDRESS OF CONTASK IN PLIST
NEED ADDRESSABILITY TO PSA
SET UP POINTER TO PLIST
PARAMETER LIST:

2 BYTES FOR LENGTH
2 BYTES FOR CODE •. (THIS IS 3)
4 BYTES FOR ADDRESS

GET ADDRESS OF TRAPOK
SEND DATA TO CPTRAP FILE

~xisting code in DMKQCN to release the CONTASK~

Now, to use this trap in DMKQCN, you must reassemble the module and rebuild
the system using the modified version of DMKQCN. Then, each time a CONTASK
is released, a parameter list is set up and control goes to CPTRAP.

You can set-up any number of traps in CP code at the same time. By making the
individualizing code unique in each case, you can review the CP entries selectively in
the CPT RAP file. In the example, the CP entries created have an individualizing
code of 3.

Specifying Selectivity: Use the CPTRAP INFILE operand to specify that CP
entries are to be collected in the CPTRAP spool file. CP entries have a typenum of
X'3F'.

Collecting the CPData In the CPTRAP File: When CPTRAP is not active, control
immediately returns to the caller, in the example we used earlier, DMKQCN. When
CPTRAP is active, control is given to CPTRAP. If X' 3F' entries are being
collected, the data identified by the parameter list is recorded in the CPT RAP spool
file.

To activate CPTRAP and collect only records that CP sends, issue the following set
of commands:

cptrap id trapl type tt infile 3f

cpt rap enable id trapl

Now, whenever any CONTASK in the system is released, this is recorded in the
CPTRAP file.

Suppose a user issued the following messages:

116 VMjSP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(-,,\

~.j

(

,
"

/

(

("-

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

m op are you logged on today

m op did i catch this contask in the cptrap file?

Debugging CP

This would have created two CONT ASKS. When these are released, you would
expect to find both of them in the CPT RAP file.

Stop the CPT RAP facility and create the reader file by issuing:

cpt rap stop

When the CPTRAP file has been sent to your reader, you will receive the following
response:

CP Entries in the CPTRAP Spool File: CPT RAP uses the X' 3F' trace entry to
collect CPT RAP CP interface data. This trace entry contains the following
information:

• Individualizing code

• Trap ID that created this entry

• Trap set that this trap ID is a member of

• User data

The individualizing code that CP puts in bytes 2 and 3 of the trace entry is the same
code that you specified in the parameter list. The individualizing code is necessary
to look selectively at the CP entry in the CPT RAP file when you use IPCS.

For the format of the X'3F' trace entry, refer to VM/SP CP Data Areas and
Control Blocks.

CP Entries in the CPTRAP File: CPTRAP constructs the CP entry that is placed in
the CPT RAP file. An 8-byte header is appended to the front of the data that is
passed by CPo The header identifies the CP entry in the file with the following
format:

Code Length IIIIIIIIIIIII

Disp Field Length Description
e Typenum 1 3F for CP data
1 1 Reserved byte
2 Code 2 Individualizing code
4 Length 2 Length of CP entry
6 2 Reserved

The individualizing code that CP puts in the third and fourth bytes of the header is
the same code the user specified in the parameter list. The individualizing code is
necessary to look selectively at the CP entry in the CPTRAP file when you use

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 117

Debugging CP "Restricted Materials of IBM"
Licensed Materials - Property of IBM

IPCS. The length of the CP entry in the CPTRAP file is variable. It includes the /~'\

length of the CP data plus eight for the length of the header. \,_~

Obtaining CPTRAP Status
To display status and selectivity information about the various traps that have been
defined, use the class C QUERY CPTRAP command. For details on the syntax and
operands of this command and the responses received, refer to the VM/SP CP
System Command Reference.

To see the effects of issuing a specific CPTRAP command, use the DISPLAY
operand on the CPT RAP command when you issue it.

Additional CPTRAP Considerations

Data Lost Situations
When you use the CPT RAP facility, data can be lost under the following
circumstances:

• The CP trace table can wrap before the entries that have been made since the
last recording can be written to a destination. This only happens if you have
enabled a TT ABLE trap ID with at least some INFILE selectivity on. If this
occurs, you will receive the message:

DMKTRT3081 CPTRAP data lost

and a X'3C' DATA LOST trace entry is created and sent to the destination.
This entry marks where in the CPTRAP file the data was lost.

• When CPTRAP data is being recorded, it is kept in buffers temporarily while
the I/O operation to DASD is being scheduled. If all the buffers are full and
more data from the trace table needs to be written to them, the following
message is sent to the invoker:

DMKTRT3081 CPTRAP data lost

In addition, a DATA LOST trace entry is created and sent to the DASD
destination as soon as a buffer becomes available.

A data lost message is issued when the system creates output faster than it can be -", . j
transferred to the spool file. When this happens, the output file also indicates that
data has been lost. The amount of data lost in any data lost situation is
unpredictable. The possibility of a data lost situation is:

• Directly proportional to the rate of transfer of trace table data to spool.

• Directly proportional to the frequency and size of all interface data.

• Inversely proportional to speed of the spool DASD. This is a potential problem
with the faster processors and/or with heavy use of the CPTRAP facility.

A reduced selection of trace types and CP or virtual machine data helps reduce lost
data problems.

118 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging CP

Checkpointing
Closed CPT RAP reader files are checkpointed in the same manner as any other
spool files. In addition, if the system abends and the CPTRAP file is still open, the
file is closed and checkpointed.

Running with Microcode Assist Active
The CPTRAP facility deactivates the dispatcher assists in ECPS:VM/370 to support
the monitor call interface for virtual machines. Deactivation occurs only when the
virtual machine being dispatched is enabled for tracing by a GT trap ID or when a
TTABLE trap ID is enabled.

LOGOFF Considerations
The CPTRAP facility is stopped if the user who invoked CPTRAP logs off.

Spool Space Considerations
The CPTRAP facility is stopped if no spool space is available on the system. When
the system is using 90% of its spool space, and again when it is using 100%, CP
sends a message to the user. When no space is available CPTRAP closes the file,
creates a READER file, and stops processing. It then issues the following message if
any other CPT RAP commands are issued:

System spool space full; command rejected

CP/Virtual Machine Interface Errors
Two specific problems can occur in the following situations:

• Any byte of the parameter list or any byte of the data field lies outside of the
virtual machine or CP storage due to an invalid address.

• An I/O error occurs while trying to read a page.

When these errors occur:

1. The system sends an informational message to the virtual machine user who
started CPT RAP .

2. CP puts a special indicator, ADDR BAD, into the file.

3. The system ignores the data sent by VM or CPo

Release Level Conflicts and Migration Considerations
For Release 6:

• The structure of the CPT RAP command has been completely changed, you will
need to learn the new syntax for doing the same functions that were available in
previous releases. All EXECs and user programs that relied on the previous
CPT RAP syntax may need to be changed.

• A X I 20 I time stamp entry appears in both the CP internal trace table and the
CPTRAP spool file. Any programs that previously depended on trace table
entry formats must be updated to recognize these time stamp entries.

• The QUERY CPT RAP command responses are enhanced and expanded.

• You can use RACF to control who can use the CPTRAP command.

• Because of the addition of the INT ABLE option, the syntax and the use of
CPT RAP typenums is changed.

LY24-5241-01 © Copyright IBM Corp. 1986,1988 Chapter 3. Debugging CP 119

Debugging CP "Restricted Materials of IBM"
Licensed Materials - Property of IBM

• The CPT RAP reduction routine, TRAPRED, has been replaced by IPCS ()
commands. The name of the DUMPSCAN command has been changed to ~-
IPCSSCAN and the PRTDUMP command has been changed to IPCSPRT.
Any program or EXEC that invokes the command names from previous releases
must be updated to invoke the Release 6 command names.

Note: For migration, you can make copies of the IPCSSCAN and IPCSPRT
modules and name the copies DUMPSCAN and PRTDUMP.

For additional migration consideration regarding the elimination of TRAPRED
and changes to IPCS, refer to the VM/SP Interactive Problem Control System
Guide and Reference.

• Trace entries of the type X' 3C' were added. Any programs written before
Release 6 that depend on trace entry formats at reduction time must be updated
to handle these new trace entries. Also, any program that created X' 3C' entries
must be updated so that it doesn't conflict with CP's entries.

• Trace entries X I 3D ' , X' 3E ' , and X' 3F' were changed. Any programs that
format these trace entries must be updated to process the new fields. Refer to
VM/SP CP Data Areas and Control Blocks.

• Some functional characteristics of CPTRAP typenums are changed in relation to
the INT ABLE and INFILE operands of the TT ABLE type trap. Previously,
specifications of typenum selectivity following an ALL ON command implicitly
turned off all other typenums not specified. With Release 6, this does not occur.

Displaying the CPTRAP Output
Refer to the VM/SP Interactive Problem Control System Guide and Reference for
information on displaying CPTRAP output.

370X Dump Processing
The following sections discuss the Network Dump and the NCPDUMP. Use the
NETWORK DUMP command to dump the 370x communications controller's
storage. Use the NCPDUMP command to process CP spool reader files created by
NETWORK DUMP command.

Network Dump Operations
This section only applies to 3704 or 3705 communication controllers that have been
loaded by VM/SP. If you want to dump the contents of a 3725 or a 3705 that has
been loaded by ACF/SSP, refer to ACF/NCP V4, ACF/SSP V3 Diagnosis Guide.

If 3704/3705 operations are erratic, fatal hardware errors occur, or some other
internal error appears, the Communications Controller's storage should be dumped.
The NETWORK DUMP command dumps the contents of 3704/3705 storage for
NCP, PEP, or EP 3704/3705 control programs, if unit check or IPL required
conditions are detected.

120 VMjSP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(\

(" 'j

(

(""" -"

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging CP

The format of the NETWORK command with the DUMP operand is:

NETWORK

raddr

DUMP raddr [IMMED 1
AUTO
OFF

is the real hexadecimal address of the 3704/3705.

IMMED
is the default operand; it forces an immediate dump. The IMMED operand, if
specified, does not reload the control program. Before 3704/3705 resources can
be used again, the control program must be reloaded. To reload the control
program after the NETWORK DUMP raddr IMMED command has executed,
use the NETWORK LOAD raddr ncpname command.

If the IMMED operand is specified, a check is made to determine whether the
"IPL required" sense status is present. If it is not, the following message occurs:

CTLR raddr IPL NOT REQUIRED; ENTER 'YES' TO CONTINUE

This pause in operations allows the operator an opportunity to check the
NETWORK DUMP command line before engaging or terminating the
operation.

AUTO
causes a dump if VM/SP subsequently detects a unit check condition or "IPL
required" condition. If AUTO is specified, each time a dump is taken, the
Communications Controller is reloaded with the 3704/3705 control program that
was previously active.

OFF
resets a previously set AUTO (automatic dump) status.

Note: The dumps produced by the NETWORK command cannot be processed by
the IPCSDUMP service program. NETWORK-initiated dumps are processed by the
NCPDUMP (Network Control Program DUMP) service program created for this
task.

NCPDUMP Service Program and How To Use It
NCPDUMP applies only to dump files that were dumped with the NETWORK
DUMP command after the 3704/3705 was loaded by VM/SP.

NCPDUMP is a CMS command. It processes CP spool reader files created by 3705
dumping operations, that is, dump files that are produced as a result of the CP
NETWORK command specified with the DUMP operand and either automatic or
immediate mode.

The NCPDUMP file processing operation can include:

• Erasing a specific CMS NCPDUMP file after printing it
• Formatting the dump
• Printing the dump
• Assigning an identifier to the CMS NCPDUMP file
• Creating the CMS NCPDUMP file from the spool file.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 121

Debugging CP "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Although NCPDUMP is a CMS command, its use is restricted to the user identified
by the SYSDUMP operand of the SYSOPER macro in DMKSYS during VM/SP
system generation. The operation of NCPDUMP is similar to IPCSDUMP
operations. A general description of the NCPDUMP operation follows the
command description.

The NCPDUMP command has the following format:

NCPDUMP [DUMP xx] [<[ERASE] [NOFORM] [NCPBUFF] [)]]

DUMPxx
is the file name of a CMS file containing a 3704/3705 Communications
Controller program dump. This dump was created by a previously invoked
NCPDUMP command with the ERASE operand not specified.

ERASE
erases the current CP DUMP file or a specified DUMPxx (file name), saved
CMS file.

NOFORM
specifies that a formatted control block is not desired.

NCPBUFF
specifies that a formatted listing of the NCP buffer pool is desired.

The NETWORK command invoked with the DUMPxx operand, as stated
previously, produces CP files that contain the contents of a designated 3704/3705
Communications Controller unit buffer. These CP files reside as a spooled reader
input assigned to a system designated user. The CMS NCPDUMP command
invoked by this user formats (if requested) and prints the contents of these files.

The NCPDUMP program creates a CMS file with a file name DUMPxx and a file
type of NCPDUMP, and erases the original spooled NETWORK initiated dump
reader file. The created CMS file is erased if you specify ERASE; otherwise it is
kept.

A maximum of ten dumped spooled files can be processed and saved, and later
recalled, if necessary, by the system assignment of an xx identifier suffix to the CMS
DUMPxx file name. The "xx" is a decimal number from 00 to 09, depending on
any existing files of a similar name. For example, if the files DUMPOO NCPDUMP
and DUMPOI NCPDUMP already exist, the new file would be called DUMP02
NCPDUMP. The file thus created is retained for later use unless the ERASE
operand is specified, in which case the file is erased immediately after the dump is
printed.

122 VMjSP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

/

'- /

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging CP

Stand-Alone Dump Facility

Overview
With the stand-alone dump facility, you can dump up to 16 Mb of real storage when
VMjSP cannot create a CP Abend dump. This facility dumps all resident pages, CP
and non-CP. The stand-alone dump facility cannot dump virtual machine storage
and non-resident pages from the paging device.

To use the stand-alone dump program to dump the real storage, you must have
access to IPL the real machine. You can IPL the stand-alone dump program from
tape or DASD and direct the output to tape or printer. When using tape as the
output device, reserve the complete tape for the stand-alone dump facility. Basic
error recovery is available for DASD, tape, and printer devices used as IPL or
output devices.

Typically, an installation can have several stand-alone dump programs generated and
ready to run. It would be useful to have the following configurations available for
the stand-alone dump facility:

• IPL from tape with output directed to printers
• IPL from tape with output directed to tapes
• IPL from DASD with output directed to printers
• IPL from DASD with output directed to tapes.

These configurations let you take a stand-alone dump with any of the supported
possible environments.

The stand-alone dump program communicates with the user with PSW wait codes.
Refer to VM/SP System Messages and Codes in "Stand-Alone Dump Facility Wait
State Codes." Once the CPU has gone into a wait state, the user can display the
PSW, using conventional means, to find if the dump was successful.

The starting and ending addresses of the CP internal trace table are stored in the
PSA at locations X'7BO' and X'7B4', respectively, in addition to the PSA locations
X'OC' and X'lO'.

Refer to Appendix C, "Stand-Alone Dump Formats" on page 253 for information
on dump formats.

Devices that You Can Use to IPL Stand-Alone Dump
The following are the devices you can use to IPL the stand-alone dump program:

DASD Tape

3330 2401
3333 2415
3340 2420
3344 3410
3350 3420
3375 3422
3380 3430

9347

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 123

Debugging CP

Notes:

1. If a DASD is selected as the IPL device:

a. It cannot be the resident system device
b. It must be CP formatted

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

c. Cylinder 0 must be allocated as permanent space
d. Cylinder 0 will be used.

2. The stand-alone dump IPL tape can be the same as the tape you direct the
dump output to.

3. Do not try to IPL from a device that is not in the above list.

Devices to which You Can Send Dump Output
The following are the devices to which the dump output can be directed:

Tape

2401
2415
2420
3410
3420
3422
3430
9347

Notes:

Printer

1403
1443
3211
3203 (Models 4 & 5)
3289E (Model 4)
3262 (Models 1, 5, & 11)
4245
4248

1. You can specify a maximum of eight real addresses for the dump output device.

2. Do not mix printers and tapes in the same list. If you use a printer as the
output device, the FCB should match the forms loaded in the printer. If the
FCB does not match the form, data may be lost when the printer runs out of
paper.

3. When you configure the stand-alone dump facility, you can use any printer type
or tape type from the list of supported devices.

For example, the SADUMP exec prompts you for the output device type with
the following:

PLEASE ENTER ONE OF THE FOLLOWING OUTPUT DEVICE TYPES:
PRINTER: (1403, 1443, 3203, 3211, 3262, 3289, 4245, 4248)
TAPE: (2401, 2415, 2420, 9347, 3410, 3420, OR 3430)

If you specify 3420, the system expects the output to be directed to a tape
device.

The system will then request the output device address with the following:

PLEASE ENTER REAL OUTPUT DEVICE ADDRESS OR LIST ADDRESSES
(MAXIMUM OF 8) FOR TAPE:
ENTRIES IN A LIST MUST BE SEPARATED BY A MINIMUM OF ONE BLANK.

/

You must then respond with the address or list of addresses of the tape device(s) (- "
which can receive the output. Be sure the output addresses match the device '",-j

type (tape in this example); otherwise, results are unpredictable. Keep in mind

124 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

-------_. ~ ... _-

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging CP

that the generated stand-alone dump program does not check the address of the
device for validity.

For VMjSP, you can enter up to three digits for the real output device address.

4. The stand-alone dump must have channel 1 defined in the FCB or carriage
control tape, if the output device is a printer.

5. Do not send the stand-alone dump output to a device that is not included in the
above list.

When you specify tape as the output device, the stand-alone dump program selects,
as the dump output device, the first available device in the list, excluding the IPL
device (if it is in the list). If you want the stand-alone dump output to go to the IPL
tape, make all other devices that are in the list not ready. If no other device within
the output address list is available and the IPL tape address is in the list, the IPL
device will receive the dump.

If you select a tape for the dump output device, other than the IPL tape, the
stand-alone dump facility:

1. Rewinds the tape to ensure that the dump is at the beginning of the tape

2. Sets the density to the highest value for the tape device.

If the tape device selected is the one on which the stand-alone dump facility resides,
the facility will write the dump at the same density as the stand-alone dump program
was written.

When using tape, reserve the complete tape for the stand-alone dump program; do
not put the stand-alone dump program on a tape with the other stand-alone utilities.
If you do not want to use the IPL tape as the dump output tape, you may want to
put the stand-alone dump program on a mini-reel to make better use of tape
resources.

If you select tape to be the output device type, use a single-volume, non-labeled tape
for the stand-alone dump program. Be sure that the tape is non-labeled, because the
facility does not check to ensure that it is a non-labeled tape.

You can issue the SPT APE command with the SADump option to move the data
from the output tape to a class V reader spool file which is IPCS compatible. To
use SPT APE command when dumping to the IPL tape (that is, if the IPL device
address is the same as the dump device address), remember that the tape must be
moved to the first tape mark. This tape mark identifies the beginning of the dump.
From that point on, you can invoke IPCS to handle the stand-alone dump.

Stand-Alone Dump Program Generation
Your installation can generate the stand-alone dump program to customize the
facility to your system configuration. This gives you control over the device used to
IPL the stand-alone dump program and the output device for the dump. Invoke the
SADUMP EXEC in a CMS virtual machine to do the generation.

Do not call the SADUMP EXEC from within another EXEC. Also, do not queue
up the answers ahead of time when running the SADUMP EXEC. To generate a
stand-alone dump program, enter "sadump."

LY24-S241-01 © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 125

Debugging CP

To use the SADUMP EXEC:

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• You must have read/write access to file mode A.
• The following files must exist on an accessed file mode:

- DMKSP CNTRL (this is the default if no control is entered)
- DMKLDOOE LOADER
- LDT DMKSADWT
- DMKSAD TEXT.

You are asked to answer a series of questions that describe the environment where
the stand-alone dump program will run. The SADUMP EXEC checks all input for
validity, and returns messages if you enter invalid data. An example of the prompts
and replies that appear on the virtual machine console during SADUMP EXEC
execution is shown in "Example for Configuring the Stand-Alone Dump" on
page 128.

Following the data that you provide, the SADUMP EXEC does one or more of the
following:

• Creates a file with a name of SADGEN4 ASSEMBLE, and places the file on the
user's file mode A. The file has the SAD MACRO with the selected parameters.

• Assembles the SADGEN file to create the SADGEN TEXT file.

• Places the stand-alone dump program in the user's virtual card reader to be
IPLed as desired. When the virtual reader is IPLed, the stand-alone dump
program will be written on the IPL device.

Notes:

1. The real device address from which the stand-alone dump program is IPLed is
not necessarily the same device address used when it was created.

2. It is impossible to verify the dump output address(es) and type at stand-alone
dump generation time.

Using the Stand-Alone Dump Facility
To use the stand-alone dump facility:

1. Configure the stand-alone dump program.
2. Take the stand-alone dump.
3. Process the stand-alone dump from tape to a spool file.

Configuring the Stand-Alone Dump
. Before you can use the stand-alone dump program, you must configure the facility.

This lets you configure the IPL device and the dump output device(s) for the
stand-alone dump facility to match the real I/O.

Use the SADUMP EXEC during configuration to create and assemble the
SADGEN ASSEMBLE file. The SADUMP EXEC places an IPLable deck in the
virtual card reader. If the system detects an incorrect response, the exec gives an

4 SADGEN is the default. The file name will be the same as specified in the SADUMP command if you do not use
the default.

126 VM/SP Diagnosis Guide LY24-S241-01 © Copyright IBM Corp. 1986, 1988

}

\._ I

(...

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging CP

error message to you and requests a new response. For assembly errors, the exec
will exit. If the stand-alone dump IPL device is a DASD, it must be CP formatted
and the facility will use cylinder O. Allocate cylinder 0 as permanent space.

The format of the SADUMP command line is:

SADUMP
[

filename]

SP

SADGEN

specifies that the stand-alone dump is going to be used on a VM/SP system,
which will allow up to a 3-digit dump output real address.

filename
is the file name of the ASSEMBLE file that has the SAD MACRO. SADGEN
ASSEMBLE is the default if you do not supply an operand. (Comply with the
CMS guidelines for file names if a file name is specified).

The following items apply to configuring the stand-alone dump:

1. If the system generated more than one stand-alone configuration, use unique
names for each configuration. The default is SAD GEN. If you answer "Y" to
replace one that already exists (refer to "Example for Configuring the
Stand-Alone Dump" on page 128), the original is erased.

2. If you respond with .oN" to any of the questions (refer to "Example for
Configuring the Stand-Alone Dump" on page 128), the exec will go directly to
the next question without doing the indicated work.

3. When the exec asks you to enter the real output device address, you are limited
to three digits for VM/SP.

4. When the exec asks you to enter the control file, if you hit ENTER the exec uses
the default of DMKSP.

5. The stand-alone dump configuration deck that the system puts in the virtual
card reader is a class D file. You must place the deck in front of all the class D
reader files before IPLing.

6. You must IPL the stand-alone dump reader file within a virtual machine. After
the IPLabie deck is in your reader, perform the following instructions:

a. SET ECMODE ON
b. SPOOI~ OOC CLASS D
c. System CI,EAR
d. IPL OOC

Note: Before you IPL the virtual reader, make sure that the IPL device is
mounted and ready. If the IPL device is a tape, make sure the write ring is
in.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 3. Debugging CP 127

Debugging CP "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Example for Configuring the Stand-Alone Dump
The following is an example of a stand-alone dump facility generation. In this
example:

• You are placing the stand-alone dump program onto a 3330 device with an
address of 150.

• The control file in this example is DMKSP. You may enter any control file you
would like to use or take the default of DMKSP.

• The system will send the dump output to the first available 3420 tape drive
whose address is 570, 571, 572, 573, 574, 575, 576, or 577.

• The file name of the file that has the SAD MACRO defaults to SADGEN.

Note: In the following example, "= = = = > " indicates data that you enter.

= = = = > SADUMP

The SADUMP EXEC:

- OPTIONALLY CREATES A NEW SADGEN ASSEMBLE FILE CONTAINING
A SAD MACRO WITH SELECTED PARAMETERS ON YOUR FILMODE A.

- OPTIONALLY ASSEMBLES THE SADGEN ASSEMBLE FILE.

- OPTIONALLY PLACES A SADUMP CONFIGURATOR DECK INTO THE
VIRTUAL CARD READER.

NOTE: YOU MAY EXIT FROM THIS EXEC BY ENTERING 'QUIT' FOR ANY
RESPONSE.

DO YOU WANT TO CREATE A NEW SADGEN MODULE? (YIN)

====>Y

PLEASE ENTER THE VIRTUAL DEVICE ADDRESS TO WHICH THE SAD
PROGRAM WILL BE WRITTEN (IPL DEVICE):

= = = = > 150

PLEASE ENTER ONE OF THE FOLLOWING IPL DEVICE TYPES:
DASD: (3330, 3333, 3340, 3344, 3350, 3375, 3380)
TAPE: (2401, 2415, 2420, 9347, 3410, 3420, 3422, or 3430)

= = = = > 3330

PLEASE ENTER ONE OF THE FOLLOWING OUTPUT DEVICE TYPES:
PRINTER: (1403, 1443, 3203, 3211, 3262, 3289, 4245, 4248)
TAPE: (2401, 2415, 2420, 9347, 3410, 3420, 3422, or 3430)

= = = = > 3420

PLEASE ENTER REAL OUTPUT DEVICE ADDRESS OR LIST ADDRESSES
(MAXIMUM OF 8) FOR TAPE:
ENTRIES IN A LIST MUST BE SEPARATED BY A MINIMUM OF ONE BLANK.

= = = = > 570 571 572 573 574 575 576 577

128 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

,/

\~ j

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

DO YOU WANT TO ASSEMBLE SADGEN NOW? (YIN)

====>Y

ENTER THE CONTROL FILE YOU WANT TO USE.
THE DEFAULT IS DMKSP.

= = = = > DMKSP

THE SADGEN MODULE IS NOW BEING ASSEMBLED.
DO YOU WANT TO PLACE AN IPL'ABLE DECK IN YOUR VIRTUAL
CARD READER? (YIN)

====>Y

AN IPL'ABLE DECK EXISTS IN YOUR VIRTUAL CARD READER
IN CLASS D. IPL THE READER TO PLACE THE STAND-ALONE
DUMP PROGRAM ON THE IPL DEVICE.
Ready;

Debugging CP

Note: After you IPL your reader, if no errors occurred, you will receive a wait state
code of 912.

Taking a Stand-Alone Dump
If you plan to dump 16 Mb of storage, use a tape density of 1600 or 6250 BPI. A
16 Mb dump may not fit on a tape at 800 BPI.

To invoke the stand-alone dump:

1. For multiple processor systems, stop all tightly-coupled processors. Do NOT
clear storage.

2. For multiple processor systems, select the processor with the I/O configuration
that has access to the resident volume address and the output device address(es).

3. Display. locations X' 0' to X' B' at the console. The stand-alone dump IPL
sequence overlays these bytes, so they cannot be recovered.

4. Do a STORE STATUS operation on the CPU where you will IPL the
stand-alone dump program. If you do not do the STORE STATUS, the
following will not be saved in low storage:

• CPU Timer
• Clock comparator
• Current PSW
• Prefix
• Model dependent features
• Control registers
• Floating point registers
• General purpose registers.

If the prefix value is not saved in low storage, -the information from the prefix
page is not available for the formatted section of the dump.

5. Mount and ready the volume that has the stand-alone dump program. If this is
a tape, be sure to have the write ring in place.

6. Ready the output device, either tape or printer. If you want the system to place
the stand-alone dump on the IPL tape, make all other tapes listed as output

LY24-5241-01 © Copyright IBM Corp. 1986,1988 Chapter 3. Debugging CP 129

Debugging CP "Restricted Materials of IBM"
Licensed Materials - Property of IBM

devices (at generation time) NOT ready. If you do not want the stand-alone ""--",,
dbumP don a dthevic~ that is Ihp' sLtedhas a POdssilble 0dutput device, the device must not 0

e rea y at e time you t e stan -a one ump program.

7. IPL the stand-alone dump program. The stand-alone dump program will
initially write the first nine pages of storage to the IPL device. This will provide
an area to load the stand-alone dump program and work space. (See "Tape
Format" on page 253 and "DASD Format" on page 255 for information about
the DASD or tape format.) This step causes the system to place the dump on the
output tape or the printer. (See "Tape Format" on page 253 and "Printer
Format" on page 256 for information about the format of the output.)

8. When the system enters the wait state, display the PSW. A wait state of 912
indicates successful completion of the stand-alone dump. If the stand-alone
dump program is unsuccessful because of some error that you can fix (for
example, an unrecoverable I/O error on the output tape):

a. Correct the error.

b. Invoke a hardware RESTART to restart the stand-alone dump. (For
example, type in RESTART on the appropriate panel on a 4300 processor.)

If you re-IPL the stand-alone dump facility again, part or all the first nine pages
of storage will be invalid. After the initial IPL, you cannot change the IPL
address or IPL volume.

\

Processing the Stand-Alone Dump Data on Tape
If you directed the output to tape, re-IPL VM/SP. Then issue the SPT APE
command with the LOAD raddr and SADUMP operands to create an IPCS '\
compatible spool file. This is the only way to transfer the data. After the system, /
has created the spool file, enter the IPCS command, IPCSDUMP, to process the
stand-alone dump. For more information on CP Abend Dumps see "Reading CP
Abend Dumps" on page 78.

130 VM/SP Diagnosis Guide LY24-S241-01 © Copyright IBM Corp. 1986, 1988

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging eMS

<: . Chapter 4. Debugging CMS

(.

(

Debugging Commands
Using the SVCTRACE command

Tracing Capabilities in EXECs
Nucleus Load Map
Module Load Map
How to Print a CMS Dump File
Reading CMS Abend Dumps
Generating CMS Abend Dumps Automatically . . .

The SET AUTODUMP Command
Format
Operands

The QUERY AUTODUMP Command
Format
Options
Response

Reason for the Abend ..
Collect Information
Register Use

Commands that Alter the Contents of Storage

132
132
133
135
135
136
136
138
138
138
139
139
139
139
140
]40
140
142
143

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 4. Debugging CMS 131

Debugging eMS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

This section describes the debug tools that Conversational Monitor System (CMS)
provides. These tools can be used to help you debug CMS or a problem program.
In addition, a CMS user can use the Control Program (CP) commands to debug.
Information that is often useful in debugging is also included.

Debugging Commands
Here is a list of some of the commands useful for debugging. The CP and CMS
commands described in previous chapters are:

• PER and ADSTOP, which set breakpoints (address stops) that stop program
execution at specific locations.

• TRACE, which traces specific virtual machine activity and records the results on
the terminal or printer.

• DISPLAY, which displays the contents of:

- Channel Address Word (CAW)
- Channel Status Word (CSW)

Old Program Status Word (PSW)
- General purpose registers (GPR)

Virtual storage

at the terminal.

• STORE, which:

Changes the contents of the control words (CAW, CSW, and PSW) and
general purpose registers

Stores data in virtual storage locations.

• VMDUMP, which dumps virtual storage in a different format than the DUMP
command; the output produced by VMDUMP can be processed by IPCS.

• DUMP, which dumps all or part of virtual storage at the printer.

The CMS commands described in this chapter are:

• SVCTRACE, which records information for all SVC calls. When the trace is
terminated, the information recorded up to that point is printed at the system
printer.

• SET AUTODUMP, which controls the creation of an automatic dump
containing the DMSNUC area of CMS, storage management workarea, page
allocation table, and the loader tables in the event of an abend. QUERY
AUTODUMP returns the current setting of the SET AUTODUMP command.

In addition, several CMS commands produce or print load maps. These load maps
are often used to locate storage areas while debugging programs.

Using the SVCTRACE command
If your program issues many SVCs, you may not get all of the information you need
using the CP TRACE command. The SVCTRACE command is a CMS command,
which provides more detailed information about all SVCs executed by your program,
including:

• Register contents before and after the SVC

132 VMjSP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

-------.. ---,---~-.---

{

(--

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging eMS

• Name of the called routine and the location from which it was called

• Contents of the parameter list passed to the SVC.

See VMjSP CMS Command Reference for the format of the SVCTRACE command.

The SVCTRACE command has only two operands, ON and OFF, to begin and end
tracing. SVCTRACE information can be directed only to the printer, so you do not
receive trace information at the terminal.

Since the SVCTRACE command can only be entered from the CMS environment,
you must use the Immediate commands SO (suspend tracing) or HO (halt tracing) if
you want tracing to stop while a program is executing. Use the Immediate
command RO to resume tracing.

Since the CMS system is "SVC-driven," this debugging technique can be useful,
especially, when you are debugging CMS programs. For more information on
writing programs to execute in CMS, see VMjSP Application Development Guide for
CMS.

Tracing Capabilities in EXECs
It may be very helpful to trace EXECs that are used to diagnose problems. By
tracing the EXEC, you are able to follow the execution of the EXEC and see
intermediate values that otherwise might not be obvious to the user. There are three
EXEC processors:

• System Product Interpreter

• EXEC 2
• CMS EXEC.

The amount of information displayed during execution of an EXEC is controlled by
a single instruction. The instruction depends upon which processor is being used as
shown below:

Processor

System Product Interpreter

EXEC 2

CMS EXEC

Instruction

TRACE

&TRACE

&CONTROL

Tracing can also be turned on for the System Product Interpreter or EXEC 2 by
entering the following CMS command:

set exectrac on

This causes the tracing bit in the EXEC FLAG in NUCON to be turned on and
allows tracing without program modification.

The TRACE instruction used by the System Product Interpreter has several options
to control how much information is displayed to the user. The TRACE instruction
even allows you to enter interactive debug. During interactive debug, the interpreter
pauses after almost every instruction allowing the user to single-step through the
program.

LY24-S241-01 © Copyright IBM Corp. 1986, 1988 Chapter 4. Debugging CMS 133

Debugging eMS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Assume that we have a Restructured Extended Executor (REXX) program called
STATUS EXEC, which gives us some status information. The contents of STATUS
EXEC follows:

/* This EXEC gives user some
trace 1i

10: ' useridO
, timeO

status information. */

say 'User
say 'Time
say 'Date
exit

, date('w')',' date()

Notice the command trace?i, which is the second line of the program. This
command causes the program to go into interactive debug and to trace:

• All clauses before execution
• Intermediate results during evaluation of expressions
• Substituted names.

When the STATUS EXEC is executed without the trace command, you get a result
that could look like this:

User ID: GEORGES
Time 09:50:54
Date Thursday, 7 Apr 1988

When the STATUS EXEC is executed with the trace command, you get a result that ''\
could look like this: , /

3 *-* say 'User ID: ' userid()
>L> "User ID: "
>F> "GEORGES"
>0> "User ID: GEORGES"

User ID: GEORGES
+++ Interactive trace. TRACE OFF to end debug. ENTER to continue. +++

At this point, you either type:

trace off

to end debug or hit the ENTER key to continue executing and you get a result that
could look like this:

4 *-* say 'Time : ' time()
>L> "Time :"
>F> "09:50:54"
>0> "Time : 09:50:54"

Time : 09:50:54

At this point, you either type:

trace off

134 VM/SP Diagnosis Guide LY24-S241-01 ©Copyright IBM Corp. 1986, 1988

(-

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging eMS

to end debug or hit the ENTER key to continue executing and you get a result that
could look like this:

5 *-* say 'Date 'date('w')',' date()
>L> "Date :"
>L> "w"
>F> "Thursday"
>0> "Date Thursday"
>L> ",
>0> "Date Thursday,"
>F> "7 Apr 1988"
>0> "Date : Thursday, 7 Apr 1988"

Date Thursday, 7 Apr 1988

At this point, you either type:

trace off

to end debug or hit the ENTER key to continue executing and you get a result that
could look like this:

6 *-* exit

As you can see in the previous example, the intermediate results of steps three
through six of STATUS EXEC were traced and execution stopped at each step.

The System Product Interpreter also has a TRACE function. See VM/SP System
Product Interpreter Reference for more information on using the TRACE instruction
and TRACE function.

(Nucleus Load Map
Each time the CMS resident nucleus is loaded on a DASD and an IPL can be
performed on that DASD, a nucleus load map is produced as a printer spool file.
Save this load map. It lists the virtual storage locations of nucleus-resident routines
and work areas. Transient modules are not included in this load map. When
debugging CMS, you can locate routines using this map. For information on
obtaining a load map, see the VM/SP Installation Guide.

Module Load Map
The module load map of a disk-resident command module contains the location of
control sections and entry points loaded into storage. It may also contain certain
messages and card images of any invalid cards or replace cards that exist in the
loaded files. The load map is contained in the third record of the MODULE file.
This load map is useful in debugging.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 4. Debugging CMS 135

Debugging eMS

There are two ways to get a load map:

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• When loading relocatable object code into storage, make sure that the MAP
option is in effect when the LOAD command is issued. Since MAP is the
default option, just be sure that NOMAP is not specified. A load map is then
created on the primary disk each time a LOAD command is issued.

• When generating the absolute image form of files already loaded into storage,
make sure that the MAP option is in effect when the GENMOD command is
issued. Since MAP is the default option, just be sure that NOMAP is not
specified. Issue the MODMAP command to type the load map associated with
the specified MODULE file on the terminal. The format of the MODMAP
command is:

MOD map filename

filename
is the module whose map is to be displayed. The file type must be MODULE.

How to Print a CMS Dump File
Use the IPCSPRT command to print a previously created dump file, created using
IPCSDUMP, under CMS. See the VMjSP Interactive Problem Control System Guide
and Reference for more information. "

Reading CMS Abend Dumps
If an abend dump is desired when CMS abnormally terminates, the terminal
operator may enter:

#ep vmdump a-end format ems dss

By issuing these commands a dump spool file is created and sent to your reader.
Now the system must be re-IPLed and then issue the IPCSDUMP command which
will format the dump into a usable form. The dump formats and prints:

• General Purpose Registers (GPRs)
• Extended control registers
• Floating-point registers
• Storage boundaries with their corresponding storage protect key
• Current PSW
• Selected storage.

Storage is printed in hexadecimal representation, eight words to the line, with
EBCDIC translation at the right. The hexadecimal storage address corresponding to
the first byte of each line is printed at the left.

When CMS can no longer continue, it abnormally terminates. To debug CMS, first
determine the condition that caused the abend and then find why the condition
occurred. To find the cause of a CMS problem, you must be familiar with the
structure and functions of CMS. Refer to VMjSP Application Development Guide
for CMS for functional information on CMS. The following discussion on reading
CMS dumps refers to several CMS control blocks and fields in the control blocks.

136 VMjSP Diagnosis Guide LY24-524l-0l © Copyright IBM Corp. 1986, 1988

'~ /

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging eMS

Refer to the VM/SP CMS Data Areas and Control Blocks for details on eMS
control blocks. Figure 8 on page 137 shows the eMS control block relationships.
You also need a current eMS nucleus load map to analyze the dump.

600 I----.......,I-------t

608 I--'----'--.......,I----'----ti

610 1--'----.......,1----'---1',\

618 t~~~~~~~~~jlll 620

628 ~~~~~~--
630 I----........JI-----

638 ~~;;;:;:;~t;;;;~;;::;:;-
640
~----r_----

648
~-------r--------

650

658 ~:jQ;ECTi-tVc;;;;;;S'OB'C;;-
660 1-___ ---1 ____;"

668
~----r_----

670
~-------r--------

678 ~~~~~~~~:2

680 t--vcD"MSm:Sc:Ri1VcDMSs'CNO;)
688 I
~----r_----

690
~------4--------

698

6AO t-;;.;;.;:;;;;;~t~;;;:;:;~-

6A8 ~~~~d8~===
6BO

~------1-'------
6B8
SCO ~~;:;::;;;:;-t~:;;:;:;;;;;--

6C8
~------4--------

600

608 t-;;.~;;;;;~t~~~-
6EO

6E8 t-;;.~ill;m-t;;m;;;;;;;:;;;\-

6FO
~------4--------

6F8 L-';"' __;..,jI".,.;._I".,.;._-"

Figure 8. CMS Control Blocks

DMSNUC

MAINLIST

PRECMNO

SYSNAME

INSTALIO

SYSEMID

LY24-524 1-0 1 © Copyright IBM Corp. 1986, 1988

NUCON (See Legend)

Legend:

The projection of SYSREF is a
sampling of areas within NUCON.

Chapter 4. Debugging CMS 137

Debugging eMS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

,~-~"',
! '

Generating eMS Abend Dumps Automatically V
By using the SET AUTODUMP command, you can automatically generate a dump
containing the DMSNUC area of CMS, storage management workarea, page
allocation table, and loader tables if the system abends. SET AUTODUMP CMS
dumps storage for the following system errors:

• Program checks within nucleus resident modules

• Unrecoverable errors in the file system

• Unrecoverable storage management errors

• All other errors that result in a disabled wait PSW.

SET AUTODUMP ALL dumps storage for all abends in the virtual machine. In
addition to the abend conditions stated above, SET AUTODUMP ALL dumps
storage for:

• All program checks

• Use of the ABEND macro

• Use of the DMSABN macro.

If you do not wish to create dumps automatically, you can turn AUTODUMP off
using SET AUTODUMP OFF.

If you are unsure of the setting of AUTODUMP, issue the QUERY AUTODUMP ~, ./
command for the current setting of your virtual machine.

If you have set AUTODUMP to ALL or CMS, the dump containing the DMSNUC
area of CMS, storage management workarea, page allocation table, and loader
tables is produced using the CP VMDUMP facility. The reader of the virtual
machine where the abend occurred, receives the dump. This user also receives a
messages saying that the dump has been taken.

IPCSDUMP can process the dump using the IPCSSCAN CMSPOINT subcommand.
For more information on IPCSDUMP and IPCSSCAN CMSPOINT subcommand, ,"
refer to the VMjSP Interactive Problem Control System Guide and Reference.

The SET AUTODUMP Command

Format

Use the SET AUTODUMP command to generate a dump of the DMSNUC area of
CMS, storage management workarea, page allocation table, and loader tables
automatically if the system abends.

SET AUTO DUMP [eMS]
ALL
OFF

138 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

;£
(

'" ,/

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging eMS

Operands
CMS

dumps storage of the DMSNUC area, storage management workarea, page
allocation table, and loader tables whenever an unrecoverable CMS system
abend occurs and CMS enters a disabled wait state. CMS is the default setting.

ALL
dumps storage of the DMSNUC area, storage management workarea, page
allocation table, and loader tables for all abends within the virtual machine,
both recoverable and non-recoverable.

OFF
does not dump storage for any abends.

Note: A dump is not produced by the HX command. Also, if a program check is
trapped using STAE, SPIE, or ABNEXIT, then the dump of DMSNUC is not
produced.

The QUERY AUTODUMP Command

Format

Options

Use the QUERY AUTODUMP command to determine the current setting of the
SET AUTODUMP command.

QUERY

STACK

AUTODUMP [(options ... [J]]
options:

[
STACK [FIFO I LIFO]]
FIFO
LIFO

causes the result of the QUERY command to be placed in the program stack
instead of being displayed at the terminal. The information is stacked either
FIFO (first-in, first-out) or LIFO (last-in, first-out). The default is FIFO.

If CMS passes the command to CP, then the response from CP is also put in the
program stack. If CP precedes the QUERY command, CMS does not stack the
results .. The STACK option is valid only when issued from CMS.

FIFO
(first-in, first-out) is the default option for STACK. FIFO causes the results of
the QUERY command to be placed in the program stack instead of being
displayed at the terminal. The information is stacked FIFO. The options
STACK, STACK FIFO, and FIFO are all equivalent.

LIFO
(last-in, first-out) causes the results of the QUERY command to be placed in the
program stack instead of being displayed at the terminal. The information is
stacked LIFO. This option is equivalent to STACK LIFO.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 4. Debugging CMS 139

Debugging eMS

Response
• AUTODUMP = ALL

• AUTODUMP = CMS

• AUTODUMP = OFF

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Reason for the Abend
Determine the immediate reason for the abend and identify the failing module. The
abend message DMSABNI48T contains an abend code and failing address. VM/SP
System Messages and Codes lists all the CMS abend codes, identifies the module that
caused the abend, and describes the action that should be taken whenever CMS
abnormally terminates.

You may have to examine several fields in the nucleus constant area (NUCON) of
low storage.

I. Examine the program old PSW (PGMOPSW) at location X' 28'. Using the
PSW and current CMS nucleus load map, determine the failing address.

2. Examine the SVC old PSW (SVCOPSW) at location X' 20' .

3. Examine the external old PSW (EXTOPSW) at location X '18'. If the virtual
machine operator terminated CMS, this PSW points to the instruction executing
when the termination request was recognized.

4. For a machine check, examine the machine check old PSW (MCKOPSW) at
location X' 30'. Refer to Figure 18 on page 251 for a description of the PSW.

Collect Information
Examine several other fields in NUCON to analyze the status of the CMS system.
As you proceed with the dump, you may return to NUCON to pick up pointers to
specific areas (such as pointers to file tables) or to examine other status fields. The
complete contents of NUCON and the other CMS control blocks are described in
VM/SP CMS Data Areas and Control Blocks. The following areas of NUCON may
contain useful debugging information.

• Save Area for Low Storage

Before executing, DEBUG saves the first 160 bytes of low storage in a NUCON
field called LOWSA VE. LOWSA VE begins at X' CO' .

• Register Save Area

DMSABN, the abend routine, saves the user's floating-point and general
purpose registers.

Field

FPRLOG
GPRLOG
ECRLOG

140 VMjSP Diagnosis Guide

Location

X'160'
X'180'
X'ICO'

Contents

User floating-point registers
User general purpose registers
User extended control registers

LY24-5241-01 © Copyright IBM Corp. 1986,1988

\ /

".-.. /

"-... /

(

(~

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging eMS

• Device

The name of the device causing the last I/O interrupt is in the DEVICE field at
X'26C'.

• Last Two Commands or Procedures Executed

•

Field Location Contents

LASTCMND X'2AO' Last command issued from the CMS or
XEDIT command line. If a command
issued in a CMS EXEC abnormally
terminates, this field contains the name
of the command. When a CMS EXEC
completes, this field contains the name
"EXEC." EXEC 2 and System Product
Interpreter do not update this field.

PREVCMND X'2A8' Next-to-Iast command issued from the
CMS or XEDIT command line. If a
command issued in a CMS EXEC
abnormally terminates, this field
contains the name "EXEC." When a
CMS EXEC completes, this field
contains the last command issued from
the CMS EXEC. EXEC 2 and System
Product Interpreter do not update this
field.

LASTEXEC X'2BO' Last EXEC procedure invoked. EXEC
2 and System Product Interpreter do not
update this field.

PREVEXEC X'2B8' Next to last EXEC procedure invoked.
EXEC 2 and System Product Interpreter
do not update this field.

Last Module Loaded into Free Storage and the Transient Area

The name of the last module loaded into free storage via a LOADMOD is in the
field LASTLMOD (location X' 2CO'). The name of the last module loaded into
the transient area via a LOADMOD is in the field LASTTMOD (location
X'2C8').

• Pointer to CMSCB

The pointer to the CMSCB is in the FCBT AB field located at X' SCO'. CMSCB
contains the simulated OS control blocks. These simulated OS control blocks
are in free storage. The CMSCB contains a PLIST for CMS I/O functions, a
simulated Job File Control Block (JFCB), a simulated Data Event Block (DEB),
and the first in a chain of I/O Blocks (lOBs).

The last command entered from the terminal is stored in an area called
CMNDLINE (X'7AO'), and its corresponding PLIST is stored at CMNDLIST
(X '848').

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 4. Debugging CMS 141

Debugging eMS

Register Use

• External Interrupt Work Area

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

EXTSECT is a work area for the external interrupt handler. It contains:

The PSW, EXTPSW.
- Register save areas, EXSAVEI.
- Separate area for timer interrupts, EXSA VE.

• I/O Interrupt Work Area

IOSECT is a work area for the I/O interrupt handler. The oldest and newest
PSW and CSW are saved. Also, there is a register save area.

• Program Check Interrupt Work Area

PGMSECT is a work area for the program check interrupt handler. The old
PSW and the address of register 13 save area are stored in PGMSECT.

• SVC Work Area

SVCSECT is a work area for the SVC interrupt handler. It also contains the
first four register save areas assigned. The SFLAG indicates the mode of the
called routine. Also, the SVC abend code, SVCAB, is located in this CSECT.

• Simulated Communications Vector Table (CVT)

The CVT, as supported by CMS, is CVTSECT. Only the fields supported by
CMS are filled in.

• Active Disk Table and Active File Table

For file system problems, examine the Active Disk Table (ADT), or Active File
Table (AFT) in NUCON.

See a CMS nucleus map for the location of these CSECTs.

To trace control blocks and modules, it is important to know the CMS GPR usage
conventions.

Register

GPRI
GPRl2
GPR13
GPRl4
GPRl5

Contents

Address of the PLIST
Program's entry point
Address of a 12-doubleword work area for an SVC call
Return address
Program entry point or the return code

<

The preceding information should help you to read a CMS dump. If it becomes
necessary to trace file system control blocks, refer to Figure 8 on page 137 for more
information. With a dump, the control block diagrams, and a CMS load map, you
should be able to find the cause of the abend.

Tips for debugging after receiving a program check abend (e.g. DMSITPI41) are as
follows:

• DMSITP, the eMS program interrupt handler, issues error messages when a
program check occurs. If a SPIE or a ST AE has been issued, control is passed
to the specified routine; otherwise control passes to DMSABN to try to recover
from the error. If the message DMSITPl44T is issued, the UFDBUSY byte is

142 VMjSP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

-- ~~~- -~~~~---~-~

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging eMS

not zero and control is halted after the message is typed. If the wait state bit is
turned off in the PSW, control continues as above. Also, if the error occurred
during the execution of a system routine, control is halted until the wait state bit
is turned off or CMS is re-IPLed.

• To determine the registers and PSW at the time of the abend, get the address of
PGMSECT in the nucleus constant area (NUCON X '654'). The old PSW is
stored 12 (X'C') bytes into the DSECT, immediately followed by registers 14,
15,0, 1, and 2. The Program Interrupt Element (PIE), needed by SPIE,
primarily uses these areas. Registers 0 through 15 are stored at location X '3C'
into the DSECT. The SPIE/ST AE routine or the DMSSAB routine uses the
other areas within the DSECT.

• Another aid to debugging is the SVC save area (SVCSAVE) for the virtual
machine. Location X' 528' in NUCON points to these areas. The save areas
are easily recognizable by the check words "ABCD" and "EFGH" contained
within them. The address of the SVC caller is stored at location 4 and the name
of the routine being called is saved at location 8. At location X' 10' , the old
PSW is stored, followed by the addresses for the normal return and the error
return. The registers 0 through 15 are stored at location X' 20' , followed by the
floating point register at X '60'. After the first check word ("ABCD"), the
address of the next SVCSA VE area is stored, followed by the address of the
previous SVCSA VE area and the address of the user's area. If the address of
the next or previous SVCSAVE area is zero, the chain is terminated.

Commands that Alter the Contents of Storage
You can use the STORE and STCP commands to alter the contents of virtual
machine storage and real storage.

ZAP and ZAPTEXT commands are used to alter modules, as LOADLIBS, TEXT
libraries, or TEXT decks before the code is loaded and executed.

ZAP and ZAPTEXT are described in the VM/SP Installation Guide. See "Altering
the Contents of Virtual Machine Storage (STORE command)" on page 67 and
"Altering the Contents of Real Storage (STCP command)" on page 70 for
information on STORE and STCP.

LY24-S241-01 © Copyright IBM Corp. 1986, 1988 Chapter 4. Debugging CMS 143

Debugging eMS

144 VMjSP Diagnosis Guide

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LY24-524l-01 © Copyright IBM Corp. 1986, 1988

---.--~--------~--~-~~.~~~-

.4 " I'· "-j

(

(

(

(•.....

..

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging the SFS Server

Chapter 5. Debugging the SFS Server Machine

Summary of Steps to Follow When a File Pool Server Abend Occurs 146
Using the Console Log 146
Using File Pool Server Dumps to Diagnose Problems 150

Creating an SFS File Pool Server Dump 151
Processing an SFS File Pool Server Dump 151
Diagnosing an SFS File Pool Server Dump 151

Formatting and Displaying Trace Records 152
Printing a File Pool Server Dump 152

Using System Trace Data to Diagnose Problems 152
External Tracing 152
Internal Tracing . 153
Using CPT RAP to Trap Trace Table Entries 153

Viewing CPT RAP Data with IPCSSCAN 154

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 5. Debugging the SFS Server Machine 145

Debugging the SFS Server "Restricted Materials of IBM"
Licensed Materials - Property of IBM

The three ways that you can collect error information for problem diagnosis are
described in this chapter. They are:

• Using console logs, described in "Using the Console Log."

• Using dumps, described in "Using File Pool Server Dumps to Diagnose
Problems" on page 150.

• Using system trace data, described in "Using System Trace Data to Diagnose
Problems" on page 152.

• Using PER, described in "Using the CP PER Command" on page 59

• Using SVCTRACE, described in "Using the SVCTRACE command" on
page 132.

Note: The SFS server operator does not necessarily diagnose problems, especially
from the virtual machine. Dumps and system trace data are usually used by the
system programmer or whoever is responsible for diagnosing system problems.

i Summary of Steps to Follow When a File Pool Server Abend Occurs
When an SFS server abend occurs, you must do the following steps:

1. Collect information about the error.

• Save the console sheet or spooled console output from the SFS server virtual
machine.

• Save and process any dumps that the SFS server produces.

When an abend occurs in the SFS server, either because the SFS server
issued an abend or because an SFS server or CMS operation caused a
program exception, the SFS server produces a dump via the CP VMDUMP
command (described in the VMjSP CP General User Command Reference).
CP sends the dump to the SFS server's virtual reader.

• Save any CPT RAP file that contains SFS server data.

2. Collect other types of information about system status, such as:

• Status of real and virtual devices that the SFS server is using

• System load at the time of the failure on any systems using the SFS server
and the status of each system (for example, did another system abend?)

• Types of applications that are using the SFS server at the time and any
information about them

• Physical connection configuration of the systems in use.

Using the Console Log
The SFS server provides informational messages, as well as error messages, that may
help you with problem determination. To keep track of the console messages, enter:

spool console start to userid

userid can be the user ID of the SFS server virtual machine or another virtual
machine user ID to whom you want the SFS server to send the console log. You

146 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

/

""~ . ./

/f "

\ ,-_/

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging the SFS Server

may want to add this to the SFS server's PROFILE EXEC so a console log is
always created.

To close the console log, enter:

spool console close

The log of messages received is sent to the specified user ID. See the VMjSP CP
General User Command Reference for details on the SPOOL command.

The SFS server provides additional information at the time of an abend to help you
diagnose the problem. The console log contains information about the abend, such
as:

• abend code
• program old PSW
• contents of the general purpose registers.

The SFS server also attempts to determine the displacement of the module in which
the abend occurred and the displacement of the calling module.

Figures 9, 10, and 11 show some of the messages that the SFS server may issue in
response to an abend condition:

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 5. Debugging the SFS Server Machine 147

Debugging the SFS Server "Restricted Materials of IBM"
Licensed Materials - Property of IBM

DMSITP141T Operation exception occurred at 48C9FA in routine DMS5IF

SDS ABEND SAVEAREA :

ADDR OFFSET DUMP DATA

53ceC4 eeeeee FFEeeeCl 4e48C9FA ee3E1eC4 ee3E1eAe * ... A .I D *
53ceD4 eeeele ee52eC6e ee3E1ece ee3E11D7 eeeeelee * ... -....... P *
53ceE4 e0e020 00537691 000000e0 00000000 013E11FF * *
53C0F400e030 00536DC0 003E1058 00S09AB8 003E10S8 * .. _ & *
S3C104000040 40S0A0020048C9F8 * & 18 *

ABTERM CODE 0C1 AT 48C9F8

PROGRAM OLD PSW IS : FFE00eC1 4048C9FA

GPR e = 003E10C4 e03E10A0 00S20C60 003E10C0
GPR 4 = 003E11D7 00000100 00S37691 00000000
GPR 8 = 0000000e 013E11FF 00S36DC0 003E10S8
GPR 12 = 00S09AB8 003E10S8 40S0A002 0048C9F8

FAILURE AT OFFSET +0479F8 IN DMSDAC PROGRAM (44S0e0)
FAILURE AT OFFSET -07D0ce IN DMS5BC 87.167

CALLED FROM OFFSET +06AA22 IN DMSSAC PROGRAM (49F000)
CALLED FROM OFFSET +000122 IN DMSSBB 87.13S

STORAGE NEAR FAILURE :

ADDR OFFSET DUMP DATA

48C9D80000e0 e0CC0004 000000D0 000400e0 00D40003 * M .. *
48C9E8000010 00000000 000000C0 0049D640 e049DS70 * 0 .. N. *
48C9F8000020 0000000e 007210C4 D4E2F3E2 D4404040 * DMS3SM *
48CA08 e00e30 4eF8F74B F2F1F600 47F0F006 08BE90EC * 87.216 .. 0e *
48CA1800e040 D00ceSB0 4lC0BFFF S80eC69D S800B02C * F *

POTENTIAL WILD BRANCH AT : S0A00e

BAL(R)
BAL(R)

AT OFFSET +06B000 IN DMSSAC PROGRAM (49F000)
AT OFFSET +000S48 IN DMSSBC 87.167

AD DR OFFSET DUMP DATA

509FE00000e0 S8EeAe10 58E0E014 50E0B06C 58A0A0lC * & .. % *
S09FF000e0l0 4l00B06C S000B048 S8F0E0D8 4110B048 * ... %& 0.Q *
S0A000000020 eSEFS8A0 A01C47F0 CSD2DS07 2000C837 * 0EKN ... H. *
50A010000030 477eCS76 5020B048 41E0B068 S0E0B04C * .. E.& & .. < *
S0A020000040 S8F0C7BC 4110B048 0SEF47F0 CSD2S020 * .0G 0EK&. *

AB/00C1 PIDS/S749DMS00 RIDS/DMSSBC ADRS/07D0C0

Figure 9. First Sample SFS Server Console Log

148 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(

(

(

(... "
..

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging the SFS Server

DMSITP141T Protection exception occurred at 4DF54E in routine DMS5IF

SDS ABEND SAVEAREA :

ADDR OFFSET DUMP DATA

5148C4888888 FFE888C4 984DF54E 8888815E 883D6284 * ... D.(5+ ••• ; •••• *
5148D4888818 88888000 003D6360 00000805 00000005 * - *
5140E4000020 00000000 00000000 00000800 00000000 * *
5140F4000038 00273310 003D6300 004DF478 003D6300 * (4 *
514104 000040 00000000004DF478 * (4. *

ABTERM CODE 0C4 AT 4DF54A

PROGRAM OLD PSW IS : FFE000C4 904DF54E

GPR o = 0000015E 003D6284 80000000 003D6360
GPR 4 = 00000005 00000085 00000000 00000000
GPR 8 = 00000000 00000000 00273310 003D6300
GPR 12 = 004DF478 003D6300 00000000 004DF478

FAILURE AT OFFSET +05054A IN DMSSAC PROGRAM (48F000)
FAILURE AT OFFSET +0000D2 IN DMS4ND 87.134

CALLED FROM OFFSET +01B10E IN DMSSAC PROGRAM (48F000)
CALLED FROM OFFSET +00042E IN DMS4DK 87.195

STORAGE NEAR FAILURE :

ADDR OFFSET DUMP DATA

4DF528000000 B0604740 C08A58E0 300054E0 C1A412EE * .-......... A ••• *
4DF538000010 4770C10C 47F0C102 58403804 D207B060 * .. A •. 0A .•.. K •. - *
4DF548000020 40009203 40081F55 BF534809 5050B054 * && .. *
4DF558000030 41E0B054 50E0B04C 58F0CIAC 4110B04C * & .. <.0A •••• < *
4DF568000040 05EF12FF 4780C182 58F8CIB0 4110C1A0 * A •• 0A ••• A. *

SAC termination during forward processing
LUWID = C3A USERID = LUDWIG3
OPERATION = INSERT
CATALOG-ID = 6505 INDEX-ID = 6512
PAGE-ADDRESS = 2C8000 PAGE-TYPE = INDEX
PAGE-NUMBER = DE2

AB/00C4 PIDS/5749DMS00 RIDS/DMS4ND ADRS/0000D2

Figure 10. Second Sample SFS Server Console Log

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 5. Debugging the SFS Server Machine 149

-------- - .. --------.--.----.---------~

- --------------

Debugging the SFS Server "Restricted Materials of IBM"
Licensed Materials - Property of IBM

File pool server system error occurred - DMS4NA 13

SDS ABEND SAVEAREA :

ADOR OFFSET DUMP DATA

5709C4999999 99999999 4954AF9C 99999999 9954AF09 * *
570904 999919 99999994 99999999 9941C879 993AD9C9 * H •.••• *
5709E4999929 99999995 999999C4 9941C249 993AD969 * O •• B .•• - *
5709F4999939 993FF31B 993FDF9B 4954A3DA 993FDF9B * .. 3..... *
570194 999949 4954AF9E 9956D59B * N. *

GPR 9 = 99999999 9954AFD9 99999994 99999999
GPR 4 = 9941C879 993AD9C9 99999995 999999C4
GPR B = 9941C249 993AD969 993FF31B 993FDF9B
GPR 12 = 4954A3DA 993FDF9B 4954AF9E 9956D59B

FAILURE AT OFFSET +94CF9A IN OMS SAC PROGRAM (4FEG99)

CALLED FROM OFFSET +94DF3C IN DMSSAC PROGRAM (4FEG99)
CALLED FROM OFFSET +99929C IN DMS4NH B7.244

SAC termination during forward processing
LUWIO = 15E9 USERID = LUDWIG3
OPERATION = BULK INSERT
CATALOG-IO = 6593
PAGE-ADDRESS = 42B999 PAGE-TYPE = INDEX
PAGE-NUMBER = E29

MSjOMS3949E PIDSj57490MS99 RIDSjDMS4NA PRCSj13

Figure 11. Third Sample SFS Server Console Log

Using File Pool Server Dumps to Diagnose Problems
You can use IPCS to collect and diagnose problem data for the SFS server virtual
machine. The console listing, as described in "Using the Console Log" on page 146,
may help you diagnose problems without using dumps.

The steps involved in using dumps to diagnose problems are:

1. Create the SFS file pool server dump
2. Process the SFS server dump
3. Diagnose the SFS server dump
4. Print the SFS server dump.

150 VM/SP Diagnosis Guide LY24-S241-01 © Copyright IBM Corp. 1986, 1988

"'--/

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging the SFS Server

(C Creating an SFS File Pool Server Dump

(

(

(-

The SFS server virtual machine creates its own dumps. The dump goes to the reader
of the SFS server virtual machine. Because the SFS server virtual machine is not set
up to process dumps, you need to transfer the dump file to the appropriate virtual
machine.

If the SFS server virtual machine cannot create the dump, you can use the
VMDUMP command. The VMDUMP command dumps virtual storage that
VMjSP creates for the virtual machine user; in this case, for the SFS server. The
dump goes to the virtual machine specified by the SYSDUMP parameter on the
SYSOPR macro in the DMKSYS ASSEMBLE file, if you enter the following CP
command:

vmdump 0-end system format sfs

Do not use the reserved names of AT SCAB I or ATSCAB2 for the dump ID of
VMDUMP. See the VMjSP CP General User Command Reference for more
information on the VMDUMP command.

Processing an SFS File Pool Server Dump
After the SFS server virtual machine creates a dump, load the dump onto disk. To
load the dump, enter the following IPCS command:

ipcsdump

The default map file is SFSIPCS MAP.

When you issue IPCSSCAN, it invokes an SFS server routine to extract information
from the dump and transmit it to IPCS for inclusion in the problem report and/or
symptom summary. IPCSDUMP creates the following:

• Problem report
• Symptom summary
• Disk resident dump to which IPCS appends the map information.

See the VMjSP Interactive Problem Control System Guide and Reference for more
information about the IPCSDUMP command.

Diagnosing an SFS File Pool Server Dump
The IPCSDUMP command generates a symptom record, which is based on problem
report information. The symptom record helps you find out why the SFS server
created the dump. The symptom record includes:

• Information about the system environment at the time of the dump

• The symptom string that contains the following component-related symptoms:

Error code
ID of the failing component
ID of the failing module
Registers and PSW contents.

You can also use the IPCSSCAN command to examine the dump interactively. The
IPCSSCAN command is described in VMjSP Interactive Problem Control System
Guide and Reference. The following sections introduce those subcommands
specifically for the SFS server.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 5. Debugging the SFS Server Machine 151

Debugging the SFS Server "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Note: TRACE can also be used for CP dumps.

Formatting and Displaying Trace Records
You can scroll through the formatted output with either of the following IPCS
IPCSSCAN subcommands:

• TRACE SCROLL or SCROLLU
• SCROLL or SCROLLU.

See VM/SP Interactive Problem Control System Guide and Reference for more
information about the IPCSSCAN TRACE and SCROLL subcommands.

Printing a File Pool Server Dump
The IPCSPRT command prints the dump and symptom record that IPCSDUMP
processed. The output you get consists of the following:

• Symptom record
• Dump in hexadecimal (no special formatting)
• Contents of the registers and the PSW.

See VM/SP Interactive Problem Control System Guide and Reference for more
information on the IPCSPRT command.

Using System Trace Data to Diagnose Problems

External Tracing

The SFS server maintains an internal trace table within the SFS server virtual
machine. You can use the IPCS IPCSSCAN TRACE subcommand to display the
internal trace table entries. The SFS server also writes trace entries to the system
CPT RAP file. You can then use IPCSSCAN to view SFS server entries.

The SFS server ETRACE command lets you enable or disable external tracing for
the SFS server virtual machine. If you want to collect SFS server trace records,

/

issue the following from the SFS server virtual machine after CPT RAP is started: ,/ "

etrace on

After you issue ETRACE ON a series of prompts will allow you to specify the type
and level of data to be traced. The prompts you will receive are:

• for which user ID processing will be traced. A single user ID or all user IDs (*)
can be specified.

• for what type of SFS server processing will be traced. DAC and/or SAC can be
specified as types of SFS server processing.

• for SFS server tracing of the subcomponents and the trace level desired.

A 0 entered for a prompt will cancel the ETRACE command.

If you want to stop tracing for the SFS server machine enter:

etrace off

You may also start tracing, using ETRACE, by specifying the proper start-up
parameters when the SFS server machine is started.

152 VM/SP Diagnosis Guide LY24-S241-01 © Copyright IBM Corp. 1986, 1988

----------------------- ------ -------------------- ----- --

(-

(

(

(

(--

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging the SFS Server

Internal TraCing

To process the trace output use IPCS to view the results.

When you set external tracing on, certain internal SFS server trace records are
written externally to a CPT RAP spool file. A complete description of the ETRACE
command is in the VM/SP CMS Shared File System Administration.

The SFS server ITRACE command lets you enable or disable internal tracing for the
SFS server virtual machine. If you want to collect SFS server trace records, issue
the following from the SFS server virtual machine after CPTRAP is started:

itrace on

If you want to stop tracing for the SFS server machine enter:

itrace off

ITRACE is used to trace APPCjVM communications between the SFS server
machine and CMS users.

You may also start tracing, using ITRACE, by specifying the proper start-up
parameters when the SFS server machine is started.

To process the trace output use IPCS to view the results.

A complete description of the IT RACE command is in the VMjSP CMS Shared File
System Administration.

Using CPTRAP to Trap Trace Table Entries
The CPTRAP command collects SFS server information in a reader file. This
information helps with problem determination.

Note: Because the SFS server virtual machine is not set up to diagnose problems,
the virtual machine that has the authority to issue the CPT RAP command must do
so.

The following commands activate CPT RAP for SFS server records only:

cpt rap id trapid ype gt allowid userid 3e

use rid is the SFS server virtual machine user ID.
This activates CPTRAP for 3E entries that the SFS server virtual machine produces.

cptrap enable id trapid

Enter:

cpt rap stop close

to end CPTRAP processing. When you issue -this command, the CPTRAP SPOOL
file goes to your reader.

For more specific information about the CPTRAP command, see "Debugging with
the CPT RAP Facility" on page 95 and the VMjSP CP System Command Reference.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 5. Debugging the SFS Server Machine 153

Debugging the SFS Server

Viewing CPTRAP Data with IPCSSCAN

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

To access the CPT RAP reader file and review the entries contained in that file, enter
the following:

ipcsscan trpnnnnn

where TRPnnnnn is the number of the CPTRAP reader file. The file name and file
type are "TRPnnnnn CPT RAP ."

Then when IPCSSCAN prompts for selectivity, enter:

3e machtype sds

This specifies you want to collect specific machine type entries for SFS server of
record type 3E.

For more specific information about the IPCSSCAN command, see the VMjSP
Interactive Problem Control System Guide and Reference.

154 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging GCS

Chapter 6. Debugging GCS

Internal Tracing Facilities
Using the ITRACE Command and GTRACE Macro
Formats of Internal Trace Entries
How to Look at Internal Trace Table Entries

External Tracing Facilities
Formatting and Displaying External Trace Records
Examples of Formatted External Trace Table Entries

Dumping Facilities
The Common Dump Receiver
Rules of Authorization
How To Initiate Dumps

Interactive Debugging Support
Authorized CP Commands
Analyzing Dumps
Subcommands for the IPCSSCAN command
Dumping VSAM Information

ABEND processing
Abend Work Area
Program Checks

IPCS for GCS
Information Used by IPCS

The State of the Virtual Machine
NUCON and SIE

Virtual Machine Control Block
How to Determine the User ID that Created a Trace Entry
How to Locate the GCS Common Lock
NUCON
GCS Console Constants
SI Extension

Task Management
Task Block
State Block .
WAIT COUNT Field in a State Block
LINK Block
SVC Block
AEB Block
The Dispatch Queue
How to find the Task ID Table
How to find which task is running
Tracing Task and Program Management

IUCV
Applications Debugging
Tracing IUCV
The IUCV Anchor Block (IUCAB)
The User Id Blocks (UIDB)
The Path ID Table (PIDT)
How to find information about a path

Storage Management
Storage Anchor Blocks
Description of the SACBs
Important fields in Major SACBs

157
158
158
173
173
174
177
179
179
179
180
181
181
181
182
182
183
183
184
184
185
186
187
188
188
188
190
191
192
193
193
194
195
196
196
196
197
198
199
199
200
200
200
201
201
202
202
203
203
204
204

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS . 155

.. _._._----_ ... _-_ .. _-_. -----_. __ ._-----_._-

Debugging GCS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Important fields in Minor SACBs
Checking for Storage Fragmentation
Scanning the Major/Minor SACBs
Checking free storage on any given page
Finding the key for a given page
How to find the storage belonging to a given task
How to check what subpools belong to a given task
Common Storage Management Problems
Tracing Storage Management .

General I/O
IOSAVE
The General I/O Table (GIOTB)
I/O Interrupt Handling
Interrupt Control Blocks
Virtual Channel Queue
How to Find the I/O Queued for a Channel
How to find what pages are locked by PGLOCK
How to find the characteristics of a device

I/O Debugging
Trace Table Entries .
Recreating the Problem

Command and Console Support
LOADCMD Command
NUCON Information
SIB Information
CMDBUF
WQEandORE ..

VSAM
NUCON Changes
V AD Information
Boundary Box Usage

VSAM Anchor Block
VT AMjVSAM Workareas
Helpful Hints for VSAM debugging

205
206
206
206
207
207
208
208
209
209
211
212
213
214
215
215
216
216
216
217
217
218
219
219
220
221
222
222
223
223
224
224
224
225

156 VM/SP Diagnosis Guide LY24-S241-01 © Copyright IBM Corp. 1986, 1988

(

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging GCS

While running programs on the Group Control System (GCS), you can encounter
the following types of problems:

• Loops
• Abends
• Incorrect results
• Endless wait states.5

To help you deal with these problems, GCS provides:

• Internal tracing facilities (See page 157.)
• External tracing facilities (See page 173.)
• Dumping facilities (See page 179.)
• Interactive Debugging Support (See page 181.).

Internal Tracing Facilities
In common storage, the GCS supervisor maintains a wraparound6 trace table that
serves all virtual machines in a group. When building your GCS configuration file,
you specify how big you want this table to be. The minimum you can choose is 4K;
the maximum depends upon how much common storage you have available to use.
If you don't set a size limit, GCS gives you a default size of 16K. See the VM/SP
Installation Guide for more information about defining a GCS group configuration
file.

This table contains information about the following supervisor events:

• Task dispatches
• External interrupts
• I/O interrupts
• Program interrupts
• SVC interrupts
• I/O requests (SIO, DIAGNOSE, HDV, nO) (invoked by supervisor)
• APPCjVM Synchronous event
• IUCV Signal System Service detail entries
• SVC GETMAIN storage requests
• SVC FREEMAIN storage requests
• Branch Entry FREEMAIN storage requests
• Branch Entry GETMAIN storage requests.

Besides tracing supervisor events, this table can record data from any of your GCS
programs. The internal tracing of supervisor events is activated as soon as your
virtual machine joins a group. Activating internal tracing of program data
(GTRACE events) in your virtual machine involves the following: issuing the
ITRACE command and then issuing the GTRACE macro.

5 Outlined in Chapter 1, "Introduction to Debugging" on page 1.

6 "Wraparound" means that, when the table fills, it goes back to the top and starts writing over itself.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 157

-----------~ --------

Debugging GCS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Using the ITRACE Command and GTRACE Macro "
To begin tracing data in a virtual machine, you must issue, from the console, the
ITRACE command with the GTRACE option. Then the GCS application program
you want to trace must call the GTRACE macro (The GTRACE macro cannot
begin tracing unless you first issue the ITRACE command.).

You can issue the ITRACE command for:

• Individual virtual machines, or
• Entire virtual machine group.

But any virtual machine operator who issues it on behalf of the whole group
(IT RACE GROUP) must have an authorized user ID.

For more information about the IT RACE command and the GTRACE macro, see
the VM/SP Group Control System Command and Macro Reference.

Formats of Internal Trace Entries
Entries in the internal trace table come in two different formats:

Supervisor entries:

Header! Data

GTRACE entries:

Header! Header2 Data

The Header! that both entries share looks like this:

I Header1 I Data

I Header1 I Header2 Data
, c. - --.- -'-- -. -.- -. -. - -.

T T
Y E Len Mach Res TOO Clock
P V 10
e C
1 1 2 2 2 8

158 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging GCS

Type
Shows the type of trace entry:

X'Ol' = Dispatcher
X' 02' = External Interrupt
X' 03' = I/O Interrupt
X' 04' = Program Interrupt
X'05' = SVC Interrupt
X' 06' = I/O Request
X' 07' = IUCV Signal System Service details
X' 08' = SVC GETMAIN Request
X' 09' = SVC FREEMAIN Request
X' OA' = GETMAIN Request via branch entry
X' OB' = FREEMAIN Request via branch entry
X' OC' = APPCjVM Synchronous event entry
X' OE' = GTRACE macro data.

TEVC

Len

(Trace Entry Verification Code) keeps track of every time the table "wraps
around." The first set of entries will have a TEVC of zero (X' 00'). Each time
the table wraps, this number increases by one until it reaches X' FF '. After
that, it recycles to X' 00 ' .

By looking at this number, you'll be able to identify entries left over from the
last "wrap" of the table. This could be important, for example, in a case where
the GCS supervisor secures a trace table slot and then gets interrupted by CP
before storing a new entry there. That slot would remain reserved, but unused,
by the interrupted machine. Other machines in the group, when dispatched by
CP, would create trace table entries in slots following it.

Contains the length of the whole entry, including this header.

Mach ID

Res

Identifies the virtual machine associated with this entry. There is a single trace
table for the entire GCS group, it is important that you have the proper virtual
machine identification (Mach ID).

Represents a two-byte reserved field.

TOn Clock
Shows what time this entry was created in time-of-day format.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 159

------------ -------

Debugging GCS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

The Header2 used with GTRACE entries looks like this:

.... . --_.

Mach
10

2

Mach ID

Header1

-. -. _ .

Task
10

2

.>' -_.

A F
I I
0 0

1 1

Header2
<

EIO

2

.-
Data

-..-
........................

Reserved

8

.-

Identifies the virtual machine associated with this entry. There is a single trace
table for the entire GCS group, it is important that you have the proper virtual
machine identification (Mach ID).

Task ID
Identifies the task being traced.

AID
Indicates this is a "data" record. It always contains X I FF I •

FID
(Format ID) identifies what formatting module handles this entry.

EID
Contains information from the GTRACE macro's ID parameter.

Reserved
Represents an eight-byte reserved field.

..~ ./

160 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

.- - ._-. ---~------.-~-- ----~.-~~------. ~~~------

1(---

(-

-.. (--

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging GCS

The data portion of supervisor entries can have any of twelve different formats:

• Dispatcher (type X'OI'), see page 161
• External Interrupt (type X'02'), see page 162
• I/O Interrupt (type X'03'), see page 163
• Program Interrupt (type X'04'), see page 163
• SVC Interrupt (type X'05'), see page 164
• SIO (type X'06'), see page 165
• IUCV Signal System Service (type X' 07'), see page 166
• Getmain via SVC (type X'08'), see page 167
• Freemain via SVC (type X'09'), see page 168
• Branch Entry Getmain (type X'OA'), see page 169
• Branch Entry Freemain (type X' OB'), see page 170
• APPCjVM Synchronous Event (type X' OC'), see page 171.

• Dispatcher (type X' 01 ')

.. '
.- -'

Header1 I
-

.>
. --.-

Data
" -' '- -'-

Task
Res TB Addr Virtual PSW 10

2 2 4 8

Task ID
Identifies the task being traced.

Res
Represents a reserved field.

TB Addr
Holds the address of a task control block for the task being dispatched.

Virtual PSW
Contains the virtual PSW being dispatched.

-'-

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 161

Debugging GCS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

• External Interrnpt (type X' 02')

_. _. _.
Header1 I

_. _. -_.
Data

- --.- -

Field #1 Field #2 Exit Old PSW

4 4 8

Field #1
The value of this field depends on the type of external interrupt. The interrupt
code is stored in bytes 2 and 3 of the EXT old PSW.

• For a Timer interrupt (code X'1004') this is a reserved field.
• For an lUCY interrupt (code X'4000') it contains:

2-byte IPPATHID
- I-byte IPFLAGSI
- I-byte IPTYPE.

• For all other types of external interrupts this is a reserved field.

Field #2
The value of this field depends on the type of external interrupt. The interrupt
code is stored in bytes 2 and 3 of the EXT old PSW.

• For a Timer interrupt (code X'1004') it contains a pointer to the Timer
Queue Element.

• For an APPCJVM interrupt (code X'4000' with an IPTYPE ofX'8I',
X '82', X'83', X'87', X'88', or X'89'), it contains:

2-byte IPCODE.
I-byte IPWHATRC - for a connect pending (type X'8I') interrupt, this
byte will contain the IPFLAGS2 field.

- I-byte IPSENDOP.
• For all other types of external interrupts this is a reserved field.

Ext Old PSW
Contains the external old PSW. If an lUCY poll (rather than an external
interrupt) generates this entry, the external old PSW will contain zeros (except
for the interrupt code).

162 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• I/O Interrupt (type X I 03 I)

Header1 I

..... -

CSW

-.- . -- -

CSW

8

.> -

Contains the channel status word.

I/O Old PSW
Contains the old I/O PSW.

• Program Interrupt (type X I 04 ')

-' -.-'
Task
ID

2

Task ID

Header1 I
-' --.- .> -

Reserved

6

Identifies the task being traced.

Reserved
Represents a reserved field.

Prog Old PSW
Contains the program old PSW.

LY24-S241-01 © Copyright IBM Corp. 1986, 1988

Data

Data

Debugging GCS

--. -. - -. -'-
I/O Old PSW

"' ' '-

8

-. -'-

'-

-'-
Prog Old PSW

8

-

-

Chapter 6. Debugging GCS 163

Debugging GCS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

• SVC Interrupt (type X I 05')

--.-' -
Task
ID

2

Header1 I
-' -' -

Field
#1

2

- .> -

Field
#2

4

Data
"' -'- -'-

SVC Old PSW

8

-'-

Task ID
Identifies the task being traced.

Field #1
Represents a reserved field for all but three SVCs.

For SVC 202, it contains the first two bytes of the requested function's name.
(For example, "GE" for the GENIO function.)

For SVC 203, it contains a two-byte flag and code parameter.

For a DOS SVC, the leftmost bit of this field is set to one, and the rest of the
two bytes is zeros (reserved).

Field #2
Shows the contents of Register I for all SVCs except 202.

For SVC 202, it contains the middle four bytes of the requested function's name.

SVC Old PSW
Contains the entire eight bytes of the SVC old PSW for all SVCs but 202.

For SVC 202, it contains the last two bytes of the function name that's being
invoked, followed by the last six bytes of the SVC old PSW.

164 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986,1988

,/ --\

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

-SIO (type X' 06')

- .-' . -
Task
10

2

Task ID

Header1 I

Dev
Addr

2

- .> -

CAW

4

Identifies the task being traced.

Dev Addr

Debugging GCS

Data

-- -. -. -'- -. -
R Unit/

CC e Chan Inst Addr
s Statu~

1 1 2 4

Holds the virtual address of a device where the operation is being directed. (For
a Test Channel instruction, this is the virtual channel address.)

CAW

CC

Res

Contains the channel address word. However, for instructions like HDV and
TCH that don't use CAWs, this contains zeros.

Contains the condition code from the S10 event. The field is relevant only for
SIOF and DIAGNOSE code X'98' sm entries.

Represents a reserved field.

Unit/Chao Status
Contains the unit and channel status bytes from the stored CSW. This field is
relevant only for SIOF and DIAGNOSE code X '98' SIO events, and only when
the CC field = X'OI'.

lost Addr
contains the address of the I/O instruction (SIO, SIOF, TIO, HIO, HDV,
CLRIO, TCH, DIAGNOSE code X' 18', DIAGNOSE code X '20' , or
DIAGNOSE code X'98').

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 165

Debugging GCS

• IUCV Signal System Service (type X I 07 ')

_0 _0

-
Path
10

2

Path ID

Header1 I
....... > _0

_0 _0 _0

Res Target
Class

2 4

Identifies a two-byte IUCV path.

Res
Represents a reserved field.

Target Class

Data

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

-0- - -0 -0- -0-

Parm List Data

8

Identifies an IUCV target class containing the interrupt source's Signal ID and
type of signal sent.

Parm List Data
Contains IUCV parameter list data.

166 VM/SP Diagnosis Guide" LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging GCS

• Getmain via SVC (type X I 08 I)

Header1 Data I L-__________ ~~--~----------~_.

-.- .-.-
S K

.-' - - -- -. -'-
Task u e Stor Addr Len Invkr Addr
ID b Y

2 1 1 4 4 4

Task ID
Identifies the task being traced.

Sub
Identifies the subpool of storage being requested. It contains zeros when:

• An SVC 4 fails because of an incorrect parameter list address.
• The GETMAIN fails because of an invalid mode byte.

Key
Contains the key of storage being obtained. It contains zeros when:

• An SVC 4 fails because of an incorrect parameter list address.
• The GETMAIN fails because of an invalid mode byte.
• If either the length or the subpool is incorrect, or both.

Note: The key data in this byte is right-justified. The rightmost bit of this field
serves as a fetch-protection signal. If the subpool of storage you request is not
fetch-protected, this bit will be 0 (zero).

Stor Addr

Len

Contains the address of storage obtained. If the GETMAIN failed, it contains
zeros.

Contains the length of the storage requested. It contains zeros when:

• An SVC 4 fails because of an incorrect parameter list address.
• The GETMAIN fails because of an invalid mode byte.

Invkr Addr
Identifies the invoker's address (the address that follows the SVC).

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 167

Debugging GCS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

• Freemain via SVC (type X I 09 ')

-' -
Header1

-..-' - -.-
Data l -. -. -. -'- '- -- -.

Task
S R
u e Stor Addr Len Invkr Addr

ID b s

2 1 1 4 4 4

Task ID

Sub

Res

Identifies the task being traced.

Identifies the subpool of storage being released. If the FREEMAIN fails, it
contains the subpool associated with the FREEMAIN.

It contains zeros for the following failures:

• SVC 5 is issued with an invalid parameter list address.
• An unsupported MVS parameter is specified on the FREEMAIN macro.
• An invalid mode byte is encountered.

Represents a reserved field.

Stor Addr

Len

Contains the address of storage being released. If the FREEMAIN fails, it
contains the storage address passed to FREEMAIN.

It contains zeros for the following failures:

• SVC 5 is issued with an invalid parameter list address.
• An unsupported MVS parameter is specified on the FREEMAIN macro.
• An invalid mode byte is encountered.

Contains the length of the storage released. If the FREEMAIN fails, it contains
the length passed to FREEMAIN.

It contains zeros for the following failures:

• SVC 5 is issued with an invalid parameter list address.
• An unsupported MVS parameter is specified on the FREEMAIN macro.
• An invalid mode byte is encountered.

Invkr Addr
Identifies the invoker's address (the address that follows the SVC).

168 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

--- --~----- -----

c

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• Branch Entry Getmain (type X'OA')

-.--

Header1

-.- . -.-
S K

-
Data

Task
ID u e Star Addr

b y

2 1 1 4

Task ID
Identifies the task being traced.

Sub

l - -.

Len

4

Contains the subpool specified in the GETMAIN request.

Key
The key data for a branch entry will always be filled in.

Stor Addr

-

Debugging GCS

-' '- -'-
Invkr Addr

4

Contains the address of storage obtained. If the GETMAIN failed, it contains
zeros.

Len
Contains the length of the storage requested.

Invkr Addr
identifies the address following the GETMAIN call.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 169

Debugging GCS

• Branch Entry Freemain (type X'OB')

Header1 Data
-.-. -. .--_ .

....,. . .,.,... -
Task S R

ID u e Stor Addr
b s

2 1 1 4

Task ID
Identifies the task being tracee.

Sub

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

I -.-.- . -.- -.- -
Len Invkr Addr

4 4

Contains the subpool specified in the FREEMAIN request.

Res
Represents a reserved field.

Stor Addr

Len

Contains the address of storage being released. If the FREEMAIN fails, it
contains the storage address passed to FREEMAIN.

Contains the length of the storage released. If the FREEMAIN fails, it contains
the length passed to FREEMAIN.

Invkr Addr
identifies the address following the FREEMAIN call.

170 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

.~--- -- --~- ---- ----- -- --

,--- ,./

",'
/
i ,./

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• APPC/VM Synchronous Event (type X'OC')

.... - .-

Header1 I
- -..-'

...........
Data

Field #1 Field #2

4

Field #1
contains:

• 2-byte IPPA THID
• I-byte IPFLAGSI
• I-byte IPTYPE.

Field #2
contains:

• 2-byte IPCODE.

4

Debugging GCS

- - -'-

Reserved

8

- -

• I-byte IPWHATRC - for a connect pending (type X' 81') interrupt, this byte
will contain the IPFLAGS2 field.

• I-byte IPSENDOP.

Reserved
is a reserved field.

LY24-S241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 171

Debugging GCS "Restricted Materials of IBM"
Licensed Materials - Property oflBM

The data portion of the GTRACE entries looks like this:

• GTRACE (type X'OE')

Header1

Data

Header2 I
/

/

/
7

Data

Data

" "
" "

~ ____ ~Jr-J ____ ~
c.. c..

Variable Length

Represents from 1 up to 256 bytes of data passed from the application by the
GTRACE macro.

172 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

How to Look at Internal Trace Table Entries

Debugging GCS

FLSCTB contains the common trace block address. The common trace block
contains pointers in the following order:

1. Beginning of the table
2. End of the table
3. Next available entry slot in the table.

The next available entry immediately follows the last entry written. With that
information, you can display whatever portion of the internal trace table that you
need. For more information on FLSCTB refer to the VM/SP Group Control System
Command and Macro Reference.

External Tracing Facilities
You can collect trace data in the CPTRAP spool file for later formatting and
viewing. This requires a two-step process:

1. Issuing CPT RAP commands
2. Issuing the ETRACE command.

See the VM/SP CP System Command Reference and "Debugging with the CPTRAP
Facility" on page 95 for more information on the CPTRAP command. See the
VM/SP Group Control System Command and Macro Reference for more information
on the ETRACE command. You must issue the following CPTRAP commands:

1. CPTRAP ID gcsl TYPE GT GROUPID groupname 3D

The GROUPID operand tells CPTRAP which virtual machine group to get the
entries from. The X I 3D I operand tells CPTRAP that it will be collecting
"group" entries.

Instead of GROUPID, you could use the ALLOWID operand to identify which
particular virtual machine to get the entries from.

2. CPTRAP ENABLE ID gcsl

The ENABLE operand starts the CPTRAP facility to start recording trace
entries in the CPT RAP spool file. 7 But before GCS passes any records to
CPTRAP, you must enable external tracing with the ETRACE command.

The virtual machine that issues the CPTRAP command must have a privilege class C
user ID defined in the user ID's VM/SP directory entry. Once the CPTRAP
commands have been issued, an authorized virtual machine in the group can issue
the ETRACE command to start tracing for its own application or ETRACE
GROUP command for tracing an entire group. ETRACE allows you to specify
which of the following events should be traced and recorded in the CPTRAP spool
file:

• Task dispatches
• External interrupts
• I/O interrupts
• Program interrupts
• SVC interrupts

7 This spool file can be a wraparound file.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 173

Debugging GCS

• I/O requests (SIO and DIAGNOSE)
• IUCV Signal System Service details
• APPC/VM synchronous events
• GETMAIN requests
• FREEMAIN requests

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• User trace data generated via GTRACE macro.

Note: Since CPT RAP is a CP function, data in this external trace file may be mixed
with trace data from CP, from other GCS machines or machine groups, and from
machines not part of any GCS group. You must be selective when deciding what
machines and what events to trace with CPTRAP. If you trace too many events,
CPTRAP might create spool data faster than you can write it to a DASD, and you
might lose data.

Formatting and Displaying External Trace Records
The external trace file contains two different entries produced by GCS virtual
machines:

• An entry for GCS supervisor records:

CP Header Userid Data

8 16

CP header
Contains a variable-length header appended by CPTRAP when it gets the
record.

Userid
Identifies the virtual machine that the entry belongs to.

Data
Contains the data portion of the event's internal trace entry.s

8 Internal trace entry formats begin on page "Formats ofInternal Trace Entries" on page 158.

174 VM/SP Diagnosis Guide LY24-524l-01 © Copyright IBM Corp. 1986, 1988

/

(

(0

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging GCS

• An entry for GTRACE records:

L 0 It F E
Userid e 0 I TaD Clock I Data n 0 D D D 0 ~ r--

8 \.. 2 2 1 1 8 2) Variable
'V.------

GTF Header

CP header
Contains a variable-length header appended by CPTRAP when it gets the
record.

Userid
Identifies the virtual machine that the entry belongs to.

Len
Contains the length of the entry, including the GTF header.

0000
Reserved field of the GTF header.

AID
Always contains X' FF' , indicating that this is a data record.

FID
(Format ID) identifies the formatting module used for this record.

TOD Clock
Tells when the record was built, in time-of-day format.

EID
Contains information from the GTRACE macro's ID parameter.

Data
Contains the internal trace entry without the internal header (up to 256 bytes).

Primarily, you create an external spool file with CPTRAP to print out or
interactively display your trace information. IPCS provides the commands to let you
do this.

When IPCS selects a X' 3D' (GCS) entry for displaying, it gives control to the GCS
trace formatting routines. The format routines produce the output lines, but IPCS
actually sends the lines to either the terminal or the printer. The format routines
format the supervisor records and GTF header information. However, the
applications being traced via the GTRACE facility have to supply their own
GTRACE formatting modules. If they don't, their trace entries for the data
portions of the records simply get printed unformatted, in hexadecimal.

The formatting routines handle formatting of supervisor entries differently from
GTRACE entries. IPCS invokes a routine called CSIYTD. For supervisor records,
CSIYTD will call a GCS-supplied formatting routine named CSIYTS. For
supervisor records, CSIYTD will call a GCS-supplied formatting routine named
CSIYTS to format it. However, for GTRACE records, CSIYTD uses GCS-supplied
formatting routines to format the GTF header part of the record. CSIYTD also will
look for another formatting routine, one supplied by the traced application, to finish
the data portion of the record. (It uses the GTRACE record's one-byte FID field to

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 175

Debugging GCS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

locate this routine. The routine's name must be CSIYTXxx, with, "xx" being the
two-digit FID, and it must have a file type of TEXT.)

If the CSIYTD program cannot find a user-supplied formatting routine, it prints the
entry information in hexadecimaL If the program does find a CSIYTXxx TEXT, it
calls that routine. At that time, the registers will contain:

R15 The CSIYTXxx routine's entry point

R14 The return address

R13 A 72-byte save area

Rl A parameter list with the following format:

Bytes 0-3

Bytes 4-7

Address of the trace record. (A standard VSI GTF prefix
followed by the trace data.)

Address of an output buffer. (Cleared to blanks before the
call.) The buffer is 80 bytes if the output is to be displayed at
the terminal and 132 bytes if the output is to be printed.
CSIYTXxx puts the formatted trace entry here.

Bytes 8-11 All zeros. (Not used with GCS, but put here to maintain
compatibility with VSl. In VSl, this shows the address of GTF
options in effect.)

Bytes 12-15 Address of the GTF Event Identifier (EID).

Bytes 16-19 Address of the trace record's data portion.

Bytes 20-23 Address of the end of the trace record's data portion + 1.

Byte 24

Byte 25

Flag for the following options and information:

X'40' Format the record for display on a printer.

X' 80' Format the record for display 0n a terminal.

Flag byte for trace format processing.

X' 0 I' Do not reload the formatting module for the next entry.
If this bit is off then the formatting module will be
reloaded on each trace entry.

Bytes 26-30 Reserved for future use.

Byte 31 A byte containing the GCS type code.

Bytes 32-63 32 byte work area for use by the called formatting routine.

When formatting the GTRACE entries, user routine CSIYTXxx should fill the
output buffer at the address found in bytes 4 through 7 in the input parameter list
(the address of this input parameter list is in register 1). Then it should return to the
calling routine with one of the following return codes in register 15:

176 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

("
I

/'

(

(

(

(-

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Description

Debugging GCS

RC

o The user has printed the buffer and continues processing on the
same GTRACE record.

4

8

The user has printed the buffer and is finished processing the
GTRACE record.

Other

Do not print the buffer and the GTRACE record is done.

Print the record in hexadecimal.

Examples of Formatted External Trace Table Entries
Here are several sample supervisor event entries, as you would see them in your
external trace file.

• Entry type X I 02 I for an IUCV external interrupt:

SOURCE=IUCV (type X'4000')

3D 02 useridxx VM/GCS EXTERNAL INTERRUPT SOURCE=IUCV
IPPATHID, IPFLAGSl, IPTYPE = xxx x xx xx
OLD PSW = xx x x xxxx x x xxxxxx

SOURCE=APPC/VM (type X'4000')

3D 02 useridxx VM/GCS EXTERNAL INTERRUPT SOURCE=IUCV
IPPATHID, IPFLAGSl, IPTYPE = xxxx xx xx
IPCODE, I PWHATRC , IPSENDOP = xxxx xx xx
OLD PSW = xx x x xxx x x x xxxxxx

• Entry type X I 03 I for an I/O interrupt:

3D 03 useridxx GCS I/O INTERRUPT
CHANNEL STATUS WORD = x x xxxxxx xx xx xxxx
OLD PSW = xx x x xxxx x x xxxxxx

• Entry type X I 05 I for an SVC interrupt:

3D 05 useridxx GCS SUPERVISOR CALL INTERRUPT
SVC CODE = xx
TASK ID = xxxx
FUNCTION NAME = xxxxxxxx
OLD PSW = xx x x xxxx x x xxxxxx

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 177

Debugging GCS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

• Entry type X' 08' External Trace Table Entry by SVC GETMAIN:

3D 98 useridxx VM/GCS GETMAIN VIA SVC
TASK 10 = xxxx
KEY = xx
SUBPOOL = xx
STORAGE ADDRESS = xxxxxxxx
LENGTH = xxxxxxxx
ISSUER ADDRESS = xxxxxxxx

• Entry type X' 09' External Trace Table Entry by SVC FREEMAIN:

3D 99 useridxx VM/GCS FREEMAIN VIA SVC
TASK 10 = xxxx
KEY = xx
SUB POOL = xx
STORAGE ADDRESS = xxxxxxxx
LENGTH = xxxxxxxx
ISSUER ADDRESS = xxxxxxxx

• Entry type X'OA' External Trace Entry by Branch Entry GETMAIN:

3D BA useridxx VM/GCS GETMAIN VIA BRANCH ENTRY
TASK 10 = xxxx
KEY = xx
SUBPOOL = xx
STORAGE ADDRESS = xxxxxxxx
LENGTH = xxxxxxxx
ISSUER ADDRESS = xxxxxxxx

• Entry type X'OB' External Trace Entry by Branch Entry FREEMAIN:

3D aB useridxx VM/GCS FREEMAIN VIA BRANCH ENTRY
TASK 10 = xxxx
KEY = xx
SUBPOOL = xx
STORAGE ADORESS = xxxxxxxx
LENGTH = xxxxxxxx
ISSUER ADDRESS = xxxxxxxx

178 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

/

(

(

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging GCS

• Entry type X I OC I External Trace Entry by APPC(VM Synchronous Event:

3D 0C useridxx VM/GCS APPC/VM SYNCHRONOUS EVENT
IPPATHID, IPFLAGSl, IPTYPE = xxxx xx xx
IPCODE, I PWHATRC , IPSENDOP = xxxx xx xx

Here is a sample GTRACE entry as you would see it in your external trace file.

• Entry type X I OE I for a GTRACE entry:

3D 0E useridxx GCS USER REQUESTED GTRACE

Dumping Facilities

TIME OF DAY CLOCK = xxxxxxxxxxxxxxxx
LENGTH OF GTF HEADER AND TRACE DATA = xxxx
FORMAT ROUTINE ID = xx
EVENT IDENTIFICATION = xxxx

[formatted GTRACE data appears here ..•. J

The Common Dump Receiver
To let you dump out the contents of virtual storage and see where problems have
occurred, GCS must provide a way around its own safeguard mechanisms.
Otherwise, your GCS dumps would be largely incomplete.

Rules of Authorization
If a dump is directed to an authorized user all of the requested storage will be
dumped including the saved segments. If the dump is directed to an unauthorized
user only the storage with a key of 14 and non-fetch protected storage will be
dumped.

If you direct the dump to yourself or another unauthorized user ID, you cannot
dump any fetch-protected areas or storage with a key other than 14. Unauthorized
dump receivers can accept only key 14 and other non-fetch-protected storage.

You solve this problem by singling out one authorized virtual machine as your
common dump receiver. At build time, when creating your GCS configuration file,
you will be prompted to name this common dump receiver. Choose any authorized
user ID, perhaps the same user ID that you specify as your recovery machine. But
make sure you list it on the GROUP EXEC's screen of authorized GCS user IDs. If
you name a common dump receiver, GCS's dump functions (listed in "How To
Initiate Dumps" on page 180) automatically will send their output to it.9

9 Except for GDUMP, which optionally lets you choose another receiver.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 179

Debugging GCS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

How To Initiate Dumps
There are four different functions for requesting GCS dumpS:IO

Macros
applications

can issue

Commands
you issue

ABEND (with DUMP operand) This dumps the entire
virtual machine as well as any saved segments
(shared segments linked to your GCS system,
but not within the bounds of your virtual
machine). The dump automatically goes to
the common dump receiver, if you have one,
rather than the machine that issued ABEND.

SDUMP This can dump all or part of the virtual
machine. If you don't have a common dump
receiver, the data goes to the machine that
issued it, according to the rules of
authorization in "Rules of Authorization" on
page 179.

GDUMP This can dump all or part of a virtual
machine's storage. You can send the dump
to the common dump receiver, or the
machine you issue GDUMP from, or another
user ID you chose. Whatever receiver you
choose, the rules of authorization in "Rules
of Authorization" on page 179 apply.

SYSTEM RESTART (a #CP command) This dumps all
of a virtual machine's storage, plus any saved
segments, when you cannot use the GDUMP
command. (Example: you have a GCS
disabled loop and issue #CP SYSTEM
RESTART). If you have no common dump
receiver, the issuing machine gets the dump,
according to the rules of authorization in
"Rules of Authorization" on page 179.

To produce a dump requested by one of these functions, GCS calls CP and requests
a dump. While it performs the dump, CP continues dispatching other machines in
the virtual machine group. This poses a problem if those members go on to change
common storage as it is being dumped.

To preserve common storage contents until the dump finishes, the GCS supervisor
acquires the common storage lock. This prevents other machines from acquiring the
lock during the dump. If all authorized machines test the common lock before
trying to change common storage, they will be effectively suspended until the dump
finishes. The only common storage that might change is that obtained by other
machines before the dump began.

Note: The common storage lock gets set "on" only if your common dump receiver
is an authorized GCS user ID and you are using the SDUMP and GDUMP
functions.

10 If you set it up beforehand, CP's VMSA VE function will also create copies of selected virtual machines either when
CP itself terminates or when CP terminates them.

180 VMjSP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

- -- -- ------~

\"'.

(

(

(

(~

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging GCS

It is possible to receive two dumps. An example of this would be if a user ran out of
storage while producing a dump. One dump would be produced as the user dump
and the second dump would be the supervisor dump:

Interactive Debugging Support

Authorized CP Commands
Authorized user IDs can have access to six CP debugging commands:

• BEGIN
• PER
• DISPLAY
• STORE
• DUMP
• VMDUMP.

Initially, these are Class G commands, available to all user IDs. You may want to
reclassify these commands to prevent unauthorized users from altering storage that
may effect other members of the GCS group.

In addition, you should make two related CP commands, ADSTOP and TRACE,
totally unavailable to both authorized and unauthorized GCS user IDs. For more
information on controlling access to CP commands, see VMjSP Planning Guide and
Reference.

Analyzing Dumps
Once storage has been dumped, it can be:

• Read in and analyzed by the receiving virtual machine under CMS with the
Interactive Problem Control System (IPCS).

• Dumped to tape (using Spool-to-Tape) and sent to a Customer Engineering
service team for analysis.

IPCS has some specialized routines on the IPCSDUMP and MAP commands for
processing GCS dumps.11

To use the GCS IPCS support necessary to process a virtual machine dump the
appropriate IPCS minidisks (the minidisks containing GCS and IPCS support) must
be accessed before processing the dump.

A map compressing routine - compresses the GCS nucleus load map into a format
IPCS can use with the IPCS MAP command. IPCS MAP will look for a
nucleus load map with the default name GCSNUC MAP *. Once it is
compressed, the default name is GCSIPCS MAP.

11 For a discussion of what IPCS does and how to use it, see the VMjSP Interactive Problem Control System Guide and
Reference.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 181

Debugging GCS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

A data extraction routine - gathers information that IPCS can use when building its
problem report, like:

• Reason for the dump (GDUMP, SDUMP, SYSTEM RESTART,
ABEND, program check, or "other")

• Failure location (in case of task termination or machine termination)
• Appropriate keywords (APPLADDR, CKD, COMPID, DISP,

ENTRY, FAILURE, MAINTLVL, MODULE, SCPLVL, or
TASKID)

• Textual data.

If this extraction routine discovers a dump in RSCSV2 format, it invokes
an RSCS extraction routine to find additional problem report
information.

An expanded DMMTAB communication table - includes a dump type for GCS, like
the ones for CP and CMS.

A way to print formatted VTAM or VSCS control blocks - adds an option to IPCS's
IPCSPRT command that lets you specify whether you want formatted
VT AM or VSCS control blocks printed in a dump. You'll have this
option for any GCS- or VMDUMP-generated dump of type GCS or
RSCSV2. First you will receive a prompt asking you if you want your
dump printed using the VT AM option. If you do not pick the VT AM
option you will receive a prompt asking you if you want your dump
printed using the VSCS option. If you do not choose either of these
options your dumps will be printed unformatted.

Subcommands for the IPCSSCAN command
For more information on IPCSSCAN subcommands see the VM/SP Interactive
Problem Control System Guide and Reference.

Dumping VSAM Information
When VSAM detects certain internal logic errors, it produces a special dump, called
an IDUMP, that can help you identify those problems. To look at information in
the dump header, use the IPCS IPCSSCAN DUMPID subcommand. This dump
header will contain the following information:

VSAM IDUMP 24-character symptom string MM/DD/YY HH:MM:SS SAVEAREA ADDR

VSAMIDUMP
Is a dump identification message.

24-character symptom string
Identifies error codes, the location of the error, and the module that detected the
error. For information on how to interpret this character string, see the
VSE/VSAM Programmer's Reference.

MM/DD/YY
Shows the date when VSAM detected the error.

182 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

\" ./

;.f "

(,j

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

HH:MM:SS
Shows the time of day when VSAM detected the error.

SA VEAREA ADDR

Debugging GCS

Contains the address of the save area that shows what each register contained
when VSAM discovered the error. Ignore the first 16 bytes of this save area,
and look for the register contents beginning at the 17th byte. You'll find the
contents of all 16 registers in the following order: registers 9-15, registers 0-8.

ABEND processing
Problems occurring in the system may result in ABEND, abnormal end, processing.
When an abend occurs, an abend completion code is given, an abend work area is
filled in, and a dump is taken if DUMP is specified in the ABEND macro. Internal
abends always specify DUMP.

Abend completion codes give the user some idea of why the failure occurred and
what area of the system may be responsible for the problem. These codes are
explained in the VM/SP System Messages and Codes.

The abend dump contains information which enables the problem to be tracked
further. Using the IPCS REGS command, the contents of the registers at the time
the ABEND occurred can be displayed. The internal trace table and system control
blocks can also be displayed. They aid in problem determination and debugging.

The ABEND work area is used during ABEND processing to save information
about the system at the time of the ABEND. It contains information such as the
registers, the PSW, and the pointer to the next available trace table entry at the time
ABEND was invoked. The ABEND work area address is located at offset X r 298 r
in NUCON.

Abend Work Area
The Abend work area is used during abend processing to save information about the
system at the time of the abend.

The Abend Work area contains the following information:

• General purpose registers at time of failure
• PSW at time of failure
• Abend completion code and
• Reason code (if applicable).

It also contains the address of the next available trace table entry at the time the
abend was invoked.

The trace table entries before this address show the events that preceded the failure.

Note: It is possible that an abend can be issued while another abend is being
processed. In this case, an abend recursion message is issued.

The recursive abend appears in the trace table. The trace table has recorded the
events for both abends.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 183

Debugging GCS

Program Checks

IPCS for GCS

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The Abend Work Area contains information from the original abend, and only the
original abend State Block (type SVC) remains on the State Block chain (see "State
Block" on page 194 for information about State Blocks).

For abends that result from a program check, the Abend Work Area contains the
registers and PSW at the time of the program check.

The field NUCABW in the NUCON (at displacement X I 298 ') points to the Abend
Work Area.

The Abend Work area contains the following important fields:

Displacement

X'OO'
to
X'3C'
X'40'
X'DS'

Field description

Registers at time of failure

PSW at time of failure
Trace pointer at ABEND time

When a program check occurs, an ABEND results. The ABEND work area
contains the registers and PSW at the time of the program check.

IPCS is a dump facility used to view dumps in VMDUMP format. The user should
be familiar with IPCS and how it works before using IPCS for VM/GCS.

All dumps taken in VM/GCS will be in VMDUMP format and can be viewed using
the IPCS facility. The user must have the GCS nucleus load map to use the GCS
IPCS subcommands.

The IPCS component of VM/SP has some IPCSSCAN subcommands specifically
oriented to display certain areas of a GCS dump.

Those IPCSSCAN subcommands are:

• IUCV - displays the entire IUCV path table
• TACTIVE - displays information about active programs on a specified task
• TLOADL - displays the load list for a specified task
• TSAB - displays the task storage anchor block for a specified task
• VMLOADL - displays information about all programs loaded in virtual storage.

Other IPCS commands may also be used with a GCS dump to aid in debugging.
Any IPCS command or subcommand which is functionally categorized as "common"
can be used with a GCS dump. IPCS commands such as IPCSPRT and the
IPCSSCAN subcommands of CHAIN, DISPLAY, G, and LOCATE will be most
helpful when debugging with IPCS.

184 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

/rr'·· "\

~j

./

(-

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Information Used by IPCS

Debugging GCS

General purpose control blocks are used by IPCS and can be seen in the IPCS
problem report created by the IPCSDUMP command.

Those control blocks are:

• Component ID, release/service level (NUCON)
• Task ID of the currently active task (NUCON)
• Registers and PSW at the time of an abend (ABNW A) and
• Abend code (ABNW A).

For more information on Abend Work Areas see "Abend Work Area" on page 183.
Program management control blocks are displayed by IPCSSCAN subcommands.

Those fields are:

• From the Virtual Machine Load List (displayed by the VMLOADL
subcommand)

- Major NUCCBLK address
- Module name (Major NUCCBLK)

Entry point address (Major NUCCBLK)
Module size (Major NUCCBLK)

- Module load address (Major NUCCBLK)
Minor NUCCBLK address
Entry point name (Minor NUCCBLK) and

- Type of Minor NUCCBLK (ALIAS or IDENTIFY).

• From the Task Load List (displayed by the TLOADL subcommand)

Task ID
- Task Block address
- Load Block address

Module name and
- Load count.

Task management control blocks are displayed by the IPCSSCAN TACTIVE
subcommand.

Those fields are:

• Task ID (TIDTB)
• Task Block address (TIDTB)
• Task completion code (TBK)
• State Block address (TBK and STBK)
• State Block type (STBK)
• State Block module name (STBK)
• State Block module entry point address (STBK) and
• State Block general registers (STBK).

For more information on Task Management see-"Task Management" on page 193.
Storage management control blocks are displayed by the IPCSSCAN TSAB
subcommand.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 185

Debugging GCS

Those fields are:

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• Chain header to the storage owned by a task (TSAB) (that is, address to the list
of Minor SACBs related to the task) and

• 256 bit map of subpools owned by a task (TSAB).

In addition, the TSAB subcommand also displays for each task:

• Task ID (TBK)
• Task Block address (TBK) and
• Task Storage Anchor Block address (TBK).

For more information on Task Management see "Task Management" on page 193.

IUCV management control blocks are displayed by the IPCSSCAN IUCV
subcommand.

Those fields are:

• User ID block (UIDB) addfess (IUCPT)
• Exit address (IUCPT) -
• User word (IUCPT)
• Task Block address (IUCPT) and
• Flags of Path status (IUCPT).

For more information on IUCV see "The Path ID Table (PIDT)" on page 202.

The State of the Virtual Machine

186

The state of the virtual machine at the time a problem is detected can be very helpful
when trying to debug the system. If the virtual machine is hung, the virtual machine
state information can tell if it is running or in a' wait state. If it is running, the
system may be caught in a loop. If it is waiting, the VM/SP status tells for what
event it is waiting. This can give a clue as to what area of the system may be
causing the problem.

If the user has a CP dump, the following method may be used to obtain information
about the state of the virtual machine:

• Using IPCS, issue the IPCSDUMP subcommand VMBLOK with the user ID.
• This will display the VMBLOK contents for the user, registers, interrupts

pending, and last command issued. The VM/SP status is also given.

If the user is debugging interactively, the following method may be used to obtain
information about the state of the virtual machine:

• Issue the CP command LOCATE with the user ID to get the address of the
VMBLOK for the user.

• Using the address of the VMBLOK, issue the CP command DCP for address
VMBLOK + X '58 I for 4 bytes.

• The VM/SP running status is given in the first byte.

VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

/

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Byte

X'80'
X'40'
X'20'
X'lO'
X'08'
X'04'
X'02'
X'Ol'

Field description

waiting console function
waiting paging operations
waiting scheduled IOBLOK start
virtual PSW wait
waiting instruction simulation
user not logged on
user logging off
idle wait state

Figure 12. VM/SP Running Status

Debugging GCS

• If the waiting instruction simulation bit is on, issue the CP command DCP for
address VMBLOK + X '98 ' to see what instruction is being simulated.

• If the instruction operation code is X' B2FO 1 , it is an IUCV instruction.

For more information on VMBLOK see VMjSP CP Data Areas and Control Blocks,
(L Y24-S220).

NUCON and SIE
The GCS NUCON and SIB are control blocks located in the first virtual page of
GCS. Each GCS virtual machine, when logged on, has its own NUCON and SIB.

The data contained in these two blocks is not shared as the various fields in the
NUCON and SIE relate to the operation of a specific user rather than the group.

The NUCON contains many important fields describing the current status of GCS
in a GCS virtual machine.

Examples of such fields are:

• The various OLD and NEW Program Status Words (PSW)
• Channel Status Word (CSW) (X140' in the NUCON)
• Channel Address Word (CAW) (X148 ' in the NUCON)
• Virtual machine's user ID (X1204 ' in the NUCON)
• Task ID of the currently active task (X '212 1 in the NUCON).

In addition, other important GCS control blocks are pointed to by NUCON fields.

Examples of those control blocks are:

• Task Block of the currently active task (pointed to from X '214' in the
NUCON)

• Common Trace Block (pointed to from X 121C' in the NUCON)
• SIB (pointed to from X' SC4' in the NUCON) and
• Various work areas (as, for example, the Abend Work Area, pointed to from

X' 298' in the NUCON).

The SIB is an extension of the NUCON and contains further pointers to other
control blocks.

LY24-S241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 187

Debugging GCS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Some pointers, useful when performing diagnostics, that you can find in the SIB are:

• Address of Task ID Table (X'OIO' in SIB)
• Address of the Asynchronous Exit Queue (X' 018' in SIB) and
• Address of the Virtual Machine Control Block (VMCB) (X' 02C' in SIB).

Virtual Machine Control Block
When a virtual machine IPLs GCS, a Virtual Machine Control Block (VMCB) is
maintained for that machine. There are as many VMCBs as the maximum number
of virtual machines that can join the GCS group (the maximum number is specified
at GCS generation time).

A VMCB is 24 bytes long and, among other information, contains:

• Virtual machine user ID (first 8 bytes of the VMCB) and
• Machine ID (2 bytes at displacement X' OA' of the VMCB).

How to Determine the User ID that Created a Trace Entry
Each entry in the GCS internal trace table has a reference to the "machine ID" of
the virtual machine that created the entry. The machine ID is a binary number
assigned to the virtual machine when GCS is IPLed in the virtual machine.

To determine the user ID that created a trace entry you have to "translate" the
machine ID to its corresponding user ID. In other words, you have to access the
VMCBs of the GCS virtual machine, as the VMCB is the place where user ID and
machine ID are correlated.

To find the VMCBs of the virtual machines in a GCS group use the following
procedure:

1. Display the storage contents at X' 5C4' by issuing

CP 0 5C4.4

2. Add X' 28' to the hexadecimal value that is displayed.

The result is the storage location of the beginning of the list of VMCBs.

The same procedure can be used in IPCS with the IPCSDUMP DISPLAY
subcommand.

An alternate method to get the address of the list of VMCBs is to find the address of
the module CSIOME. You can find this address in the GCSNUC MAP, or by
issuing the IPCSSCAN MAPN subcommand (MAPN CSIOME). That address
points to the beginning of the list of VMCBs.

How to Locate the GCS Common Lock
The Common lock is pointed to by the SIELKCOM field in the SIB (at
displacement X' 20'). The common lock is just a word in length, located in common
storage, and contain the machine ID (2 bytes) and task ID (2 bytes) that is currently
holding the common lock. If the common lock is free, it contains binary zeros.

The GCS QUERY LOCK command can be used to display the status of the
common lock. A query on the lock is sufficient to determine if the lock has changed
since the last query.

188 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

~ -"
"-j

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging GCS

When you are recreating a problem and you want to know when the common lock is
being acquired, you can do so with the CP PER command. You can issue a PER on
store into the common lock word, and when PER stops the virtual machine, you can
display the machine and task ID values.

If at that time, you take a dump of the virtual machine that has acquired the lock,
you will be able to use IPCSSCAN subcommands to interrogate the task in question
and determine what module is issuing the request for the lock.

An alternative could be to use the PER command to display stores in the SVC OLD
PSW (at displacement X'20' in the NUCON). This would be an SVC 203 (X'CB')
for the LOCKWD macro.

The mapping of the NUCON in GCS is different from that in CMS. The SIB has
also been added as an extension of the NUCON. Both contain important
information for the debugging of GCS. NUCON starts at location X' 000'. The
following are the mapping of the important fields in the NUCON and SIE.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 189

Debugging GCS

NUCON
Displacement

X'OOO'
X'OO8'
X'OlO'
X'014'
X'018'
X'020'
X'028'
X'030'
X'038'
X'040'
X'048'
X'054'
X'058'
X'060'
X'068'
X'070'
X'078'
X'080'
X'204'
X'20C'
X'212'
X'214'
X'21C'
X'298'
X'2E8'
X'388'
X'588'
X'5C4'
X'5DC'
X'5E4'
X'650'
X'654'
X'674'
X'678'
X'67C'
X'680'
X'688'
X'690'
X'6AO'
X'6A4'
X'6A8'
X'6AC'

190 VMjSP Diagnosis Guide

Field description

NewPSW
Old PSW
CVT Address
BGCOM Address
External Old PSW
SVC Old PSW
Program Check Old PSW
Machine Check Old PSW
I/O Old PSW
Channel Status Word
Channel Address Word

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Address of Table Trace Header
External New PSW
SVC New PSW
Program Check New PSW
Machine Check New PSW
I/O New PSW
SYSCOM Address
Virtual Machine User ID
Release/Service Level
Task ID of Active Task
Address of Active Task
Common Trace Block Pointer
Abend W orkarea Address
Command Input Line
Tokenized Plist
Extended Plist
SIB Address
DEB Entry Chain Address
NUCCBLK Chain Address
FCB Chain Address
Number of FCBs in Chain
Address of DEVT AB
Address of ADTSECT
Address of DIODA
Address of AFT START
Total Virtual Machine Time (DIAGNOSE code X I 70 ')
Time of day when dispatched (DIAGNOSE code X I 70 ')
Globalloadlibs name list address
Globalloadlibs directory list address
Size of Global name list and directory list
Number of Globalloadlibs

LY24-5241-01 © CopyrightIBM Corp. 1986, 1988

,~.~

0/

'"

/

,/

,/ "
'.J

rf'
',-./

i (~',

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

GCS Console Constants
Displacement

X'6DC'
X'6EO'
X'6E4'
X'6ES'
X'6EC'

X'6FO'
X'6F4'
X'6FS'
X'6FC'
X'700'
X'704'

Field description

Attention Interrupt ECB
I/O complete ECB
Output pending ECB
Command task ECB
Console task flag
Displacement Field description
X 'SO' Read I/O in process
X'40' Write I/O in process
X '20' Attn pending
X'10' Output pending
Pointer to first command input buffer
Pointer to last command input buffer
Pointer to first WQE buffer on queue
Pointer to last WQU buffer on queue
Pointer to first ORE buffer on queue
Pointer to last ORE buffer on queue

Debugging GCS

LY24-S241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 191

Debugging GCS

SI Extension
Displacement

X'lO'
X'14'
X'lS'
X'20'
X'24'
X'27'

X'2S'
X'2C'
X'30'
X'40'
X'54'
X'5S'
X'5C'
X'60'
X'64'
X'6S'
X'6C'
X'70'
X'74'
X'7S'
X'7C'
X'80'
X'88'
X'90'
X'9D'
X'AO'
X'A4'
X'B8'
X'BC'
x'cO'
X'C4'
X'C8'
X'CC'
X'D4'

X'D5'
X'DD'
X'E8'
X'EC'

Field description

Address of Task ID Table

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Address of First Task Block in Dispatch Queue
Address of Asynchronous Exit Queue
Address of Common Storage Lock
Task Id waiting for Lock
Program Management Flags
Byte Field description
X'80' Global Loadlib Issued
X'40' OSRUN is Active
Address ofVMCB Array
Address of This Machine's VMCB
Address of VSAM Sysnames Table
Address of SMAB
Attn Interrupt ECB
I/O Complete ECB
Console Output Pending ECB
Command Task ECB
Console Task Flags
Address of First Command Input Buffer
Address of Last Command Input Buffer
Address of First WQE Buffer on Queue
Address of Last WQE Buffer on Queue
Address of First ORE Buffer on Queue
Address of Last ORE Buffer on Queue
Console CCW (Read/Write)
Second CCW (N o-op)
Bit String of ORE Ids
Last Id used for Assigning OREs
Address of Trace Anchor Block (TAB)
Address of Nucleus Extension Control Block Chain
Address of IUCV Anchor Block
Signal System Services Path ID
Address of Start of Available Common Free Storage
Address of Start of Available Private Free Storage
Size of this Virtual Machine
Address of TQE Pool
Flags
Byte Field description
X'02' Machine is Authorized
X'Ol' Machine has 4K pages
System Save Time
System Save Date
Highest Priority Task that is Ready for scheduling
Time Slice for Tasks (in Microseconds)

For more information on NUCON and SIE see Appendix D, "GCS Control
Blocks" on page 257.

192 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging GCS

(-." Task Management

(

(

(

Task Block
The Task Block (TBK) gives you a good idea of the state of a task. The task block
for a task is pointed to from the Task Id Table and contains information such as:

• A pointer to a list of State Blocks describing the programs that have been
running under the task.

• A pointer to a list of Load Blocks describing the programs that the task has
loaded in storage through a LOAD SVC (SVC 8).

• Value of the registers and PSW when the task is dispatched, if the task is
dispatchable.

• The address of the task block of the mother task.
• The task ID and task priority.

The Task Block contains the following information:

Displacement

X'OO'
X'04'
X'OS'
X'OC'
X'lO'
X'14'
X'lS'
X'2S'
to

X'64'
X'SS'
X'90'
X'A4'
X'A6'
X'AS'
X'AC'
X'C4'
X'CS'
X'CA'
X'CB'
X'CD'

X'DS'

Field description

Task on dispatch queue of higher priority
Task on dispatch queue of lower priority
Next task on dispatch queue of same priority
Previous task on dispatch queue of same priority
Active State Block address
Address of Load List
PSW

Registers

Mother Task Address
Subtask Address
Machine Id
Task Id
Address of Task Storage Anchor Block (TSAB)
Address of IUCV EIB chain
Task completion code (ABEND)
Abend reason code
Task Storage Key
Dispatching Priority
Flags
Byte
X'SO'
X'40'
X'20'

Field description
Task in problem state
Independent application
Task has terminated

X'02' Dump requested by abnormal termination
Time Task was dispatched

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 193

Debugging GCS

State Block

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

State Blocks (STBLK) are used by GCS to keep track of a particular task's
processing activity.

There is a State Block for each active program in the task. The primary purpose of
the State Block is to save and restore PSWs and other processing status in particular
steps in a task.

The chain of State Blocks for a task can be seen as an "active stack":

• When the task is created, a State Block for that task is also created. This State
Block is always called INIT.

• When certain events occur in the task, GCS adds new State Blocks to the top of
the stack. GCS sets a flag byte (at displacement X '24') in the State Blocks to
indicate what type of event has occurred:

If the task has issued a LINK, SYNCH, XCTL, or ATTACH macro, the
flags contain X' 80' , and the State Block is referred to as a LINK Block.

Note: If the task has issued a SYNCH macro with RESTORE = YES the
flags contain X' 90 ' .

The "RESTORE = YES" operand tells GCS that the General Registers 2 to
13 are to be restored when control is passed back to the calling program.

- If the task has issued an SVC instruction, the flags contain X '40' , and the

c

State Block is referred to as an SVC Block. ",

If an Asynchronous Exit has been scheduled for the task, the flags contain " j

X' 20' , and the State Block is referred to as an AEB Block.

In this case, other flags (at displacement X'25') in the AEB Block, indicate
whether the Asynchronous Exit was scheduled as a result of a SCHEDEX
macro, an I/O interrupt from a General I/O device, or a timer interrupt.

• When a program represented by a State Block completes execution, the
corresponding State Block is removed from the top of the stack.

The preceding discussion leads to the conclusion that the analysis of the existing
State Block chain (stack) for a task gives an important idea of the events (LINK,
SVC, or AEB) that are still being handled, and the order they have occurred.

The State Block chain is pointed to from the Task Block with the most recently
added State Block at the beginning of the chain.

The PSW and the general registers in a State Block refer to the program running
under the previous (execution-wise) State Block. The PSW for a running program is
in the Task Block.

194 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

i
(-

<:

-

l

(/

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The State Block contains the following important fields:

Displacement Field description

X'OO' Program name
X'08' PSW of the caller
X'IO' Address of the next state block on chain
X'l4' Address of the previous state block on chain

Debugging GCS

X'l8' Address of the task block for this state block chain
X'IC' Address of the NUCCBLK for this program
X'20' Entry point of program or SVC
X'24' FLAGS

Byte Field description
X'80' Link Block
X'40' SVC Block
X'20' Asynchronous Exit Block (AEB)

X'25' FLAGS
Byte Field description
X'20' AEB for Scheduled Exit
X'IO' AEB for General I/O
X'08' AEB for Timer

X'26' Wait Count (1 byte)
X'30'
to Callers register save area (all registers)

X'6C'

WAIT COUNT Field in a State Block
An important field in a State Block is called WAIT COUNT. This field (STBW AIT
at displacement X I 26 I in the State Block) allows you to determine if a task is
waiting.

If the field contains:

• 0 - The task is not in a wait state.
• 1 - The task is in a wait state.

Note that the STBWAIT field is maintained by GCS only if the task used the WAIT
SVC (SVC 1) to enter a wait state.

By looking into the instructions that precede the SVC instruction, you probably will
find a LOAD (L) or a LOAD ADDRESS (LA) instruction that loads in Register 1
the address of the ECB (or ECBLIST) associated with the wait. This allows you to
determine what the task is waiting for.

Note: If the task has entered a wait state by other means (for example, by a LOAD
PSW instruction, if the task was running in supervisor state) this is not reflected in
the STBW AIT field.

LY24-5241-01 © Copyright IBM Corp. 1986,1988 Chapter 6. Debugging GCS 195

Debugging GCS

LINK Block

SVC Block

AEB Block

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

A LINK Block is a type of State Block that represents a module to which control
was passed when the task issued a LINK, SYNCH, XCTL, or ATTACH macro.

When that module returns control to the program that issued the macro, the LINK
Block is removed from the State Block chain of the task.

The caller's registers are not moved into a LINK Block unless it is for a SYNCH
macro with RESTORE = YES.

The second word of the PSW in the LINK Block (field STBPSW), points to the
address following the SVC instruction. This address allows you to determine the
module that has issued the ATTACH, LINK, SYNCH, or XCTL macro.

An SVC Block is a type of State Block that represents a module to which control
was passed when the task issued an SVC instruction.

The second word of the PSW in the SVC Block (field STBPSW), points to the
address following the SVC instruction. This address allows you to determine the
module that has issued the SVC instruction.

The AEB is a type of State Block that represents an asynchronous exit that has been
scheduled to be run under a task.

Certain flags in an AEB block, indicate if the asynchronous exit has been scheduled
by General I/O, SCHEDEX, or TIMER functions.

When an asynchronous exit is to be scheduled to run under a task, GCS gets an
AEB from storage, fills in the appropriate fields, such as Register values, Task Block
address the AEB is to run under, entry point of the exit, and then queues that AEB
on the SIEAEQ. It is then dispatched from the SIEAEQ to the appropriate task
State Block chain.

Asynchronous exits resulting from SCHEDEX functions have their AEB Blocks in
two additional chains:

SIEAEQ Is a field in the GCS SIE control block and contains a pointer to
a queue of AEBs (located in private storage), to run in a virtual
machine. This queue is used as follows:

1. When a task "A" in a virtual machine wants to schedule an
exit to run in another task "B," the task "A" issues the GCS
SCHEDEX macro, specifying the task ID of task "B" and the
exit address.

2. GCS SCHEDEX processing, running for the "SCHEDEXing"
task, gets an AEB, fills in the appropriate fields, and queues
the AEB in the SIEAEQ.

;/

3. When the GCS dispatcher gets its turn to run, and before t(-'~
dispatching any tasks, it checks if there are any AEBs queued "'-j
in the SIEAEQ.

196 VMjSP Diagnosis Guide LY24-524 1-01 © Copyright IBM Corp. 1986,1988

(

- C-

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

VMCSCHDX

The Dispatch Queue

Debugging GCS

If so, it will then take the AEB off the SIEAEQ and queue it
at the beginning of task "B" State block chain.

4. When task "B" eventually gets dispatched, the exit will be run
as the currently active State Block.

Is a field in the Virtual Machine Control Block (VMCB) and
contains a pointer to a queue of AEBs Oocated in common
storage) used in cross-machine exit functions. The pointer to
VMCB is in the NUCON - SIE at displacement X '28'. For more
information on VMCB see Appendix D, "GCS Control Blocks"
on page 257. An example how this queue is used is:

1.

2.

3.

4.

5.

6.

When a task "A" in the virtual machine "A" wants to
schedule an exit to run in a task "B" in the virtual machine
"B," the task "A" issues the GCS SCHEDEX macro,
specifying the Machine ID of virtual machine "B," the task
ID of task "B," and the exit address.

GCS SCHEDEX processing, running for the "SCHEDEXing"
task, gets an AEB, fills in the appropriate fields, and, using
"Compare/Swap" logic, queues the AEB on the VMCSCHDX
queue associated with the target virtual machine ("B").

After that, GCS running in virtual machine "A" issues an
IUCV message to virtual machine "B" that informs about the
exit to be scheduled.

The virtual machine "B" is interrupted by the IUCV message
(External interrupt).

The IUCV interrupt handler in GCS calls the GCS scheduling
routines CSISDT and CSISDX.

These routines find the VMCB of the virtual machine "B,"
dequeue any AEBs queued on the VMCSCHDX queue for
this virtual machine, and queue them in the SIEAEQ queue.

Finally, when the dispatcher gets control in virtual machine
"B," and before dispatching any tasks, it checks if there are
any AEBs queued in the SIEAEQ.

If so, it will then take the AEB off the SIEAEQ and queue it
at the beginning of task "B" State block chain.

7. When task "B" eventually gets dispatched, the exit will be run
as the currently active State Block.

Because GCS is a multitasking environment, tasks are performed concurrently. The
dispatcher is called each time a new task can be run. System services, such as
interrupts and service calls (SVC's), pass control to the GCS dispatcher.

Within a virtual machine, there are multiple tasks to perform. Each task has a
priority associated with it. The task with the highest priority will be given control to
run first.

To keep track of tasks and their priorities, a dispatch queue is set up which chains
the tasks (via task blocks) by priority. The task with the highest priority is placed at
the beginning of the chain. Each priority level contains tasks of equal priority.

LY24-S241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 197

Debugging GCS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Each level is capable of containing more then one task, but each task on that level is (-"
of the same priority. ~

If a task has been running an extended amount of time the dispatcher will switch to
another task of equal priority that is waiting in the dispatch queue. This will only
happen if there is a task of equal, or higher, priority waiting to be processed.

When the dispatcher is ready to dispatch a task, it first looks at the tasks with the
highest priority level. These tasks are at the beginning of the dispatch queue. If the
first task on that level is ready to run, it is given control. If not, the next task (if
any) on the same priority level is checked.

This is continued until a task is found ready to run. If no tasks on that priority level
are ready to run, the next priority level is checked until a ready to run task is found.

To find and follow the dispatch queue:

1. Locate the SI extension (SIB) address in the NUCON at X' 5C4' '-- /

2. Find the Address of the first Task Block (TBK) on the Dispatch Queue at SIB
+ X'14'

3. TBK + X'OO' is the address of the task block on the dispatch queue of higher
priority than this task block

4. TBK + X' 04' is the address of the task block on the dispatch queue of lower
priority than this task block

5. TBK + X' 08' is the address of the next task block of the same priority

6. TBK + X' C' is the address of the previous task block of the same priority.

All of the task blocks on this chain are of the same priority and will be
dispatched in a round robin method.

Using the steps listed, the whole dispatch queue can be traversed and each task
waiting to be run can be found.

For more information on IPCS and Task management control blocks see "IPCS for
GCS" on page 184.

How to find the Task ID Table
The task ID table lists all the tasks in the virtual machine. All valid task blocks
(TBK) are anchored in the Task ID Table (TIDTB). This table can be used to find
all tasks or a specific task by its ID.

To find the Task ID Table (TIDTB):

• Locate the SI extension (SIB) address in the NUCON at X' 5C4' .
• Find the TIDTB address at SIB + X' 10' .
• The table entries start at the TIDTB address + X' 08' .
• The first 8 bytes in the table are table control data and do not point to a task

block. Instead it contains a table label and a pointer to the next task ID table.
• Each TIDTB has 255 entries. {-,

'~

198 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

--~-- - ---- ------------~-----------

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging GCS

Each TIDTB entry describes a task:

• Each entry is 8 bytes long.
• The first half word (first 2 bytes) in an entry is the task ID.
• The following halfword (second 2 bytes) is unused.
• The next fullword (last 4 bytes) is the address of the task block for that task.

Q 2 4 S

TIOT8 + X'Q' L label XXXX
I

next TIOT8

TIOT8 + X'S'
I

task id XXXX
I

task block addr

0 0 0

0 0

0 0 0

task id XXXX task block addr

Figure 13. Task Id Table (TIDTB)

How to find which task is running
In NUCON there is a field which contains the task ID of the task which is currently
running. Use this task ID and find its entry in the task ID table. In NUCON there
also is a field which points directly to the task block (TBK) of the task currently
running. This address and the address of the task block in the TIDTB for the
current task ID should be the same.

• Locate the active TBK address in the NUCON at X '214' .

I

I

• Locate the address of the state block of the last active module at TBK + X' 10' .

Refer to the "State Block" on page 194 and "Task Block" on page 193 for
important fields.

If using IPCS, the following procedure using IPCSSCAN subcommands will yield
similar information in formatted form:

• Issue DISPLAY X '212' to get the current task ID.
• Issue T ACTIVE using the task ID just found.
• The display which results includes the completion code, program name, and

register contents associated with the state block.

Tracing Task and Program Management
ITRACE and ETRACE facilities record supervisor events and the GTRACE macro
records user events, as these events occur in GCS. Included in these event recordings
are the dispatcher and program interrupt trace table entries. These entries can be of
use when debugging potential task and program management problems.

• The dispatcher trace entry (X'Ol' type) is made whenever a task is dispatched.
If an active task is being re-dispatched, no trace table entry is created. The
entry includes the task ID, task block address, and PSW.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 199

Debugging GCS

IUCV

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• The program interrupt entry (X I 04 I type) is made each time a program interrupt
occurs. It includes such information as the task ID and program old PSW.

• Each GTRACE entry in the trace table includes the task ID of the task which
issued the GTRACE.

GCS supports communication within a virtual machine or between any two virtual
machines by using lUCY. Routines running within a task communicate through
lUCY with:

• Other routines in same machine (same task or different task),
• Routines in other virtual machines, or

• CPo

When communication is set up through lUCY, the user is assigned a linkage for
communication called a path. A path is established when the source communicator
invokes the IUCV CONNECT function via the IUCVCOM macro, and the target
communicator invokes the IUCV ACCEPT function, again via the IUCVCOM
macro. Both the source and target communicators must be defined in the GCS
lUCY environment for a path to, be established between them. That is, each must
issue an IUCVINI SET macro function first.

A single communicator can have multiple paths defined at a time. When an
IUCVINI SET macro is issued to admit a user into the lUCY environment, an
authorized user may make himself privileged, via the PRIV = YES parameter, if
running in supervisor state. This allows the task to communicate on a path using
IUCV directly, rather than through the GCS IUCV support.

For more information on lUCY see the VM System Facilities for Programming.
GCS lUCY support is further discussed in the VM/SP Group Control System
Command and Macro Reference.

Note: In the lUCY section, when the word user appears, it refers to any supervisor
or problem program. ~ "

Applications Debugging

Tracing IUCV

When IUCV problems are first suspected, the debugger should ensure that the
application or program running is using IUCV correctly and the parameter lists are
set up correctly. PER stops should be set after IUCV macros are issued within a
program or application. After the IUCV function has completed, check the return
code in register 15 and any other information that is returned in the CP IUCV
parameter list. If the return code in register 15 is over 1000, the failure occurred
while the IUCV function was being processed by CPo The IPRCODE field in the
CP IUCV parameter list indicates the cause of the error.

IUCV can be traced through the trace facility. Both CP and GCS keep track of
IUCV with trace table entries. CP trace makes an entry into the CP trace table for
each IUCV function that it processes. IT RACE and ETRACE make IUCV trace {-- "
table entries each time an IUCV SVC or external interrupt occurs for GCS. ,-j

200 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

~~------------------------~

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The IUCV Anchor Block (IUCAB)

Debugging GCS

The IUCV anchor block (IUCAB) contains general information about the GCS
lUCY environment. It is pointed to from the SIE at SIE + X' B8 ' .

The lUCY Anchor Block contains the following information:

Displacement

X'OO'
X'04'
X'08'
X'OC'
X'lO'

Field description

BIB address
UID B address
lUCY parameter list address
PIDT address
Max number of paths

The first address in the IUCAB points to the external interrupt buffer (EIB) which
contains information about the last lUCY external interrupt which was processed by
GCS.

Pointers to the User ID Block (UIDB) chain and the Path ID Table (PIDT) are also
found in the IUCAB. These control blocks are explained further in the their own
sections.

The IUCV parameter list address points to the internal parameter list used by GCS
IUCV support. The internal parameter list is used to hold a copy of the last CP
IUCV parameter list that was issued by the GCS lUCY support on behalf of one of
its users. It is also used for lUCY functions that must be initiated by the GCS
lUCY support. For example, to SEVER an incoming path to a user that has not
issued an IUCVINI SET function.

The User Id Blocks (UIDB)
User ID blocks contain information about active users in the IUCV environment.
There is a UIDB for each user, containing the user name, user word, and associated
task block address. The UIDBs are chained together with the most recently added
user at the beginning of the chain. The first UIDB is pointed to from the lUCY
anchor block (IUCAB) at IUCAB + X' 04' .

The user ID block is built when the user is admitted into the IUCV environment via
the IUCVINI SET macro. The NAME specified in the macro is the name by which
the user is known in the lUCY environment. When paths are established using
IUCVCOM CONNECT and IUCVCOM ACCEPT functions, the user NAMES
specified on the two macro invocations identify the two parties wishing to do IUCV
communications. The IUCVINI CLR macro terminates the lUCY environment for
the specified user. When the user is terminated from lUCY, the associated user ID
block is deleted from the user ID chain and all paths for the user are severed.

The IUDB contains the following information:

Displacement

X'OO'
X'04'
X'08'
X'lO'
X'14'

Field description

Next user ID block address
General Exit address
User Name
User word
Task block address

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 201

Debugging GCS

X'18' Flags
Byte
1 xxx
xlxx

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Field description
Problem state indicator
Privilege state indicator

The Path ID Table (PIDT)
The path 10 table contains an entry for every possible lUCY path based on the
maximum number of paths allowed for this virtual machine. A path entry is filled in
when the path is established via a IUCYCOM CONNECT, and also on the resulting
pending connect interrupt. Therefore, a single communication's path is represented
by two path entries. A path can be in different states as indicated by the flags in the
path entry. Before any GCS lUCY function is processed, the state of the path is
checked to see if the function is allowed.

For more information on IPCS and lUCY management control blocks see "IPCS for
GCS" on page 184.

Each path 10 table entry is 20 (X' 14') bytes long.

The Path 10 Table contains the following information:

Displacement

X'OO'
X'04'
X'08'
X'OC'
X'lO'

Field description

Address of User Id Block
Exit Address
User word
Task block address
Flags
Byte
X'80'
X'40'
X'20'
X'lO'
X'08'

Field description
path active
connect issued
connect pending
path is quiesced
path is severed

The task block address represents the task which was running when the path was \. . ../
created. The user 10 block address points to the user 10 block for the owner of the
path. The exit address is for the owner's path specific exit.

How to find information about a path
Information about a path, such as who owns it and its present status, is found in a
path 10 table entry for the path. The path 10 is used to index into the path table to
get to the entry that describes the particular path.

• If the debugger has a YMOUMP formatted dump, the IPCS facility can be
used.

Issue the IPCS IPCSSCAN lUCY subcommand.
- The resulting display will show the important information found in each of

the path entries in the path 10 table.

• If the debugger is manually displaying addresses and following chains, the
following procedure will yield the path table entry for a specific path ID:

202 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

----------- ---

I (

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging GCS

Locate the SI extension (SIB) address in the NUCON at X' 5C4' .
Locate the IUCV anchor block (IUCAB) address at SIE + X' BS ' .
Locate the path 10 table (PlOT) address at IUCAB + X' OC' .
The specified path 10 is in hexadecimal.
Calculate the offset.

OFFSET = path ID x X'14'.
(Each path table entry is X'14' or 20 bytes long)
EXAMPLE: path ID = X'B'
path entry is at displacement X'B' x X'14' = X'DC'
into the table.

Path entry = PlOT + offset.
See path ID table entry map for layout of the path entry.

Storage Management
The storage management component of GCS controls the allocation of storage for a
GCS virtual machine. GCS manages storage with three different perspectives:

• Storage location (private or common storage)
• Storage protection (Storage key and fetch or store protection bits)
• Storage ownership (persistent or task related storage).

Storage Anchor Blocks
To find the Storage Anchor Blocks, locate the SI extension (SIE) address in
NUCON currently at X' 5C4'. At X '40' in the SI extension is a pointer to the
Storage Management Anchor Block (SMAB). In the SMAB there are pointers to
private and common Storage Anchor Blocks. The Private Storage Anchor Block
(PSAB) is pointed to by the SMAPSAB pointer at SMAB + X' 00'. The Common
Storage Anchor Block (CSAB) is pointed to by the SMACSAB pointer at SMAB +
X' 04'. The fields in both Storage Anchor Blocks are identical. Obtain the
appropriate pointer for the Storage Anchor Block requested.

The are three types of Storage Anchor Blocks:

• Private Storage Anchor Blocks (PSAB)
• Common Storage Anchor Blocks (CSAB)
• Task Storage Anchor Blocks (TSAB).

The PSAB and CSAB contain pointers to the start of arrays of Major and Minor
SACBs (Storage Anchor Control Blocks) that describe the free storage pages.

The TSAB contains a pointer to the start of an array of Minor SACBs that describe
the storage belonging to a task. The TSAB is pointed to by the field TBKSTOR (at
displacement X'AS') in the Task Block. To find the PSAB and CSAB:

1. Locate the SIE address at displacement X' 5C4' in the NUCON.

2. Locate the pointer to the Storage Management Anchor Block (SMAB). This
pointer is at displacement X '40' in the SIB.

3. The PSAB is pointed to by the SMAPSAB field (at SMAB + X' 00').

4. The CSAB is pointed to by the SMACSAB field (at SMAB + X'04').

LY24·5241·01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 203

Debugging GCS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

The Storage Anchor Blocks contain the following fields:

Displacement

X'04'

X'84'

X'88'

X'8C'

X'90'

X'94'

Field description

ANCHKEYP (in PSAB or CSAB) starts an array of 32 pointers
that are the anchors for chains of Major SACBs chained by key.
ANCHPGMN (in PSAB or CSAB) points to the first page of
Minor SACBs. Each page of Minor SACBs include forward and
backward pointers to other pages of Minor SACBs.
ANCHPGL (in PSAB or CSAB) points to the Major SACB that
describes the lowest completely free page of storage.
ANCHPGH (in PSAB or CSAB) points to the Major SACB that
describes the highest completely free page of storage.
ANCHMAJL (in PSAB or CSAB) points to the Major SACB that
describes the lowest free page of storage.
ANCHMAJH (in PSAB or CSAB) points to the Major SACB
that describes the highest free page of storage.

Description of the SACBs
There are two types of Storage Anchor Control Blocks (SACBs):

• Major SACBs and
• Minor SACBs.

Both are 16 bytes long. The combinations of the Major and Minor SACBs describe
a page of free storage. Each Major SACB is followed in contiguous storage by a
Minor SACB.

Major SACBs are control blocks used to describe a page of free storage. There is
one Major SACB per page of free storage. They are found in contiguous storage,
are built at initialization time, and are permanent.

Important fields in Major SACBs
The Major SACBs contain the following fields:

Displacement

X'OO'

X'04'

X'08'

X'OA'

X'OC'

X'OD'

204 VM/SP Diagnosis Guide

Field description

MAJNXTPT points to the Major SACB for the next page of the
same key.
MAJBKPTR points to the Major SACB for the previous page of
the same key.
MAJMAXLN a length field of 2 bytes that gives the largest free
area on the page, that does not begin on a page boundary.
MAJLNCON a length field of 2 bytes that gives the length of the
free area at top of the page.
MAJKEY an 8-bit field that contains the key and fetch bit for the
page.
Flags
Byte
X'lO'

Field description
MAJBLK is a flag in the Major SACB (fifth to
the low-order bit in the byte X I OD I into the
Major SACB) that is used to mark a page of a
large block of storage.

LY24-5241-01 © Copyright IBM Corp. 1986,1988

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

X'08'

X'04'

X'02'

X'Ol'

Debugging GCS

MAJBKFST is a flag in the Major SACB
(fourth to the low-order bit in the byte X' OD '
into the Major SACB) that is used to mark the
first page for a large block of storage.
MAJBKLST is a flag in the Major SACB (third
to the low-order bit in the byte X' OD' into the
Major SACB) that is used to mark the last page
for a large block of storage.
MAJENDL is a flag in the Major SACB
(second to the low-order bit in the byte X' OD'
into the Major SACB) that is used to mark the
Major SACB for the lowest page of storage.
MAJENDH is a flag in the Major SACB
(low-order bit in the byte X' OD' into the
Major SACB) that is used to mark the Major
SACB for the highest page of storage.

Important fields in Minor SACBs
Minor SACBs are control blocks used for two purposes:

• Combined with a major SACB, they describe free storage on a page boundary.
Each of these minor SACBs are headers for a chain of minor SACBs that
describe all free storage on a given page.

The Minor SACBs contain the following fields:

Displacement

X'OO'

X'04'
X'08'

Field description

MNORNXT points to the next minor SACB used to describe the
next non-contiguous free area on the same page.
MNORPTRF points to the free area on the page boundary.
MNORLN is the length of free area on the page boundary, this
field has a length of four bytes.

• Used to describe free storage not on a page boundary. These minor SACBs are
found on pages of storage that are chained together and are pointed to by
ANCHPGMN in the anchor block.

Displacement

X'OO'

X'04'
X'08'

Field description

MNORNXT points to the next minor SACB used to describe
the next non-contiguous free area on the same page.
MNORPTRF points to free storage not on a page boundary.
MNORLN is the length of the free storage, this field has a
length of four bytes

• Used to describe storage allocated by a task. These minor SACBs are found in
a chain pointed to by the TSAB which is pointed to by the task block.

Displacement

X'OO'

X'04'
X'08'

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

Field description

MNORNXT points to the next Minor SACB used to describe
storage allocated by the task.
MNORPTRF points to the allocated storage.
MNORLN is the length of the allocated storage, this field has
a length of 4 bytes.

Chapter 6. Debugging GCS 205

Debugging GCS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

For more information on IPCS and Storage management control blocks see "IPCS
for GCS" on page 184.

Checking for Storage Fragmentation
Check the fields ANCHPGL and ANCHPGH which point to the Major SACBs that
represent the lowest and highest completely free pages of storage. If these pointers
are both zero then storage is fragmented down to the page level. If they are not zero
but the request is for greater then a page, scan the Major SACB between these major
SACBs to see if there is sufficient storage.

Scanning the Major/Minor SACBs
1. Find the appropriate anchor block for private or common storage.

2. Starting with ANCHMAJL scan the Major/Minor "combinations."

a. Major SACBs exist for each page of private/common free storage.

b. Minor SACBs have address of page represented (MINPTRF at X I 04 ').

c. Match page represented with address of storage in question.

1) These minor SACBs are contiguous with Major SACBs they describe.

2) Scroll until corresponding page is found.

Checking free storage on any given page

'" /

1. Find the appropriate anchor block for private or common storage. / ,

2. Starting with ANCHMAJL scan the Major/Minor "combinations" for the"j
Major SACB for the appropriate page. For more information see "Scanning the
Major/Minor SACBs."

3. The Minor SACB is the header for a chain of Minor SACB that describe all free
storage for the page. This first Minor SACB describes the free storage on the
lower page boundary. IF MNORLN is 4K then the page is fully free and is
available for use in any key.

4. If MNORLN is not 4K then look at MAJMAXLN. This field will tell you the
largest free piece of storage available on the page not on a page boundary.

Note: Since this page is not completely free, it cannot be used for a request of
another key.

5. To calculate free storage for two or more contiguous pages, check MAJLNCON
for free storage at the top of the page and MNORLN for free storage at the
bottom of the page.

6. To find the description of all free storage on a given page follow the chain of
Minor SACBs.

The Minor SACBs use the following fields:

Displacement

X'OO'
X'04'
X'OS'

206 VMjSP Diagnosis Guide

Field description

MNORNXT is the pointer to the next Minor SACB
MNORPTRF is the pointer to the start of the free area
MNORLN is the length of the free area

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Finding the key for a given page

Debugging GCS

• To find the actual key for a given page of storage use the CP command
DISPLAY K.

• How to check to see what key GCS has for the same page.

1. Scan the Chain of Major SACBs for the one that describes the page you are
interested in. For more information see "Scanning the Major/Minor
SACBs" on page 206.

2. Find the key and fetch bit in MAJKEY.

a. GCS Storage Management key and fetch protect bit are right justified.

b. In GCS, lC corresponds to EO through E7 in CP, meaning key 14
non-fetch protected storage.

MAJKEY IOOOkkkkFI CP KEY IKKKKFXXxl

• Checking pages of free storage in any given key and Fetch protection.

1. Find the appropriate anchor block for private or common storage.

2. ANCHKEYP (at X'04' in PSAB or CSAB) is the start of an array of 32
pointers that are the anchors for chains of Major SACBs for each key and
protection status.

3. Find the appropriate pointer for the key and fetch protection you want to
follow down the chain.

a. The first pointer is for key zero non-fetch, the second for key zero fetch
protected etc.

b. This pointer will point to the first Major SACB that describes free
storage for the key and fetch protection.

c. Use MAJNXTPT the forward pointer and MAJBKPRT the backward
pointer to follow up and down the chain.

How to find the storage belonging to a given task
1. Find the task block.

2. Find TBKSTO R (X' A8' into the task block) which points to the Task Storage
Anchor Block (TSAB).

3. TSAOWNED (X'24' into the TSAB) points to a chain of Minor SACBs
belonging to the task.

4. Fields in the Minor SACB and their meaning:

Displacement

X'OO'
X'04'
X'08'

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

Field description

MNORNXT is the pointer to the next Minor SACB
MNORPTRF is the pointer to the allocated storage
MNORLN is the length of the allocated storage that describes
additional allocated storage owned by the task

Chapter 6. Debugging GCS 207

Debugging GCS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

How to check what sub pools belong to a given task
1. Find the task block.

2. Find TBKSTOR (X' A8' into the task block) it points to the TSAB.

3. TSASPOOL (X I 04' into the TSAB) is a 256 bit map of all possible subpool
values. Each subpool number that is owned by the task will have the
appropriate bit on. If the bit is off then there is some mother task with the
corresponding bit on. You can chase up the task chain to find the owner of any
given subpool by looking for the appropriate bit to be on for some mother task.
At least one task will have the bit on. The commands task has all 256 bits on.

Common Storage Management Problems
Freemaln or Getmaln go Into an Infinite loop:

1. Getmain or Freemain is searching for the task that owns the subpool requested.
The Task Chain or the TSABs may have been overlaid.

a. This problem will only show up on a task related request.

b. Find the active task and search the task chain for each ancestor task. See if
any have been overlaid (Getmain and Freemain search back up the task
chain to find the "mother" task that owns the subpool.).

c. Find TBKSTOR ex' A8 I into the task block). It points to the Task Storage
Anchor Block (TSAB).

/

d. TSASPOOL ex '04' into the TSAB) is a 256-bit map of all the subpools / ~,

owned by this task. Either the active task or one of the mother tasks must
have the appropriate bit on for a given subpool. Getmain or Freemain will
continue to search until the owner of the subpool is found.

2. The chain of Major SACBs describing the Free Storage have been broken or the
bit marking the highest or lowest major SACB has been turned off causing a
search off the end of the Major SACB. (See MAJENDL and MAJENDH.)
Scan the Major SACB and check to see if they have been overlaid. (Follow
instructions for "Scanning the Major/Minor SACB.")

Abend 80A, 804, or 878: Improper length or insufficient virtual storage

1. Check the trace table for the length of the request (Tracing is done for SVC
invocations of Getmains and Freemains. Branch entries to Getmain and
Freemain are not traced.).

a. If the length is valid then check for fragmentation (See "Checking for
Storage Fragmentation" on page 206.)

2. If there is fragmentation find out who has not freed the storage.

208 VM/SP Diagnosis Guide

a. Find out who is not freeing storage by first finding the key of the storage
with the CP command DISPLAY K.

b. If most of the storage allocated is in key 6 then VT AM is not freeing the
storage.

c. If most of the storage is in key 14 then storage is not being freed by an
application like RSCS.

d. If most of the storage is allocated in key 0 the problem could be internal to
GCS or GCS could be getting storage in behalf of some application.

LY24-S241-01 © Copyright IBM Corp. 1986, 1988

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging GCS

e. Check both the allocated storage off the task blocks and the free storage
described by the Major/Minor SACB for patterns. Are the same size pieces
of free storage being left? All Major SACBs are found in contiguous storage
and can be easily scanned. All the Minor SACBs that describe the allocated
storage and free storage can be found on pages of minor SACBs pointed to
by ANCHPGMN found in the anchor blocks. Thus the minor SACBs can
also be easily scanned.

f. Check the trace table for the last Getmains. See if Freemains are done for
that storage.

Abend 778:

1. Invalid mode byte in SVC parameter list

2. Program returning storage in wrong key

a. Returning someone else's storage
b. Privileged program could have changed the key

3. Storage management ran out of storage for internal control blocks.

Things to check:

1. Check the parameter list set up by the macro.

2. Check to see if actual storage key matches what GCS Storage Management
identifies as the key. For more information see "Finding the key for a given
page" on page 207.

3. Check for fragmentation.

Tracing Storage Management

General 1/0

Supervisor tracing using ITRACE and ETRACE include the tracing of GETMAINs
and FREEMAINs (invoked by SVC or by request via branch entry) as they occur in
GCS. GETMAIN trace entries (X' 08' type for SVC and X' OA' for request via
branch entry) and FREEMAIN trace entries (X'09' type for SVC and X'OB' for
request via branch entry) contain much of the same information:

• The task ID
• Storage address obtained or released
• Length of the storage
• Storage subpool and
• Invoker's address.

GETMAIN also includes the key of the storage being obtained.

GCS General 1/0 (GENIO) Functions: All I/O except for DASD and console is
performed using the GCS GENIO macro. However, as GCS does not provide any
device specific code, the use of the GENIO macro requires that the application that
requests the I/O has to perform all the related I/O control tasks, including error
recovery.

LY24-S241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 209

Debugging GCS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

The GCS GENIO macro is used to request the following functions:

OPEN Is needed for an application to use, and own a particular device. To
open a device, the program provides the virtual device address and the
address of an exit routine. GCS passes control to this exit routine
whenever the opened device presents an I/O interrupt.

When a GENIO OPEN is issued, GCS getmains a table entry for the
GENIO table (GIOTB) for the device and initializes the entry.

A task, or program, may not open a device that is already open.

CLOSE Is used to close a device, when the device is no longer needed.

GCS cleans up any I/O requests queued on the virtual channel queue,
halts any active I/O, and deletes the entry from the GIOTB table (see
"The General I/O Table (GIOTB)" on page 212 for a discussion of the
GIOTB table).

The exit routine specified in the GENIO OPEN macro will no longer be
scheduled if I/O interrupts are received from the device.

MODIFY Is used to modify a CCW of an active I/O program. DIAGNOSE code
X' 28' is issued to CP to effect the CCW modification.

CHAR Is used to request the characteristics (such,as, device class, type, m,odel
and so on) of a device.

GCS gets this information by using DIAGNOSE code X '24' .

The CHAR function does not require the device to be open to obtain the
requested information.

START Is used to initiate an I/O operation to an open device.

For this operation, the program specifies the virtual device address and
the address of a channel program to be executed on the device. The
channel program key is set to the PSW key of the program that issued
the START.

GCS checks that:

• The device is open.
• The device is not busy with a previously initiated operation.

GCS issues a virtual SIOF instruction to the device.

If the virtual channel or control unit is busy, the I/O operation is queued
on a virtual channel queue. When a "channel end" or a "control unit
end" interrupt is received, the START function is tried again.

Another START function to the device is not accepted until the current
operation completes. The end of the operation is identified by device end
interrupt.

STARTR Is used to allow an authorized program to use real channel programs
with a dedicated device. Only real attached devices may use real channel
programs.

If a device is not capable of Real I/O (not a real device), a return code is
set and no further processing takes place.

210 VMjSP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

/

f~'
I

""--/

i (~-

(

(

(-

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging GCS

IOSAVE

HALT

The process of a STARTR function is similar to the START function,
the only difference being the fact that GCS uses DIAGNOSE code
X' 98' instead of a SIOF instruction ..

Note: A virtual machine must be authorized to issue DIAGNOSE code
X '98'. This authorization is granted by specifying "DIAG98" in the
Directory entry of the virtual machine (OPTION statement).

If the machine is not authorized for DIAGNOSE code X' 98' a return
code is passed to the program issuing the GENIO STARTR function.

Is used to force GCS to issue a HALT DEVICE instruction to the
specified virtual device address.

General I/O in GCS allows a program to drive any I/O device that is defined on the
virtual machine except DASD. Using the GENIO macro a user can obtain, use, and
release any I/O device. For further information on the GENIO Macro, refer to
VM/SP Group Control System Command and Macro Reference.

Information pertaining to general I/O is found in the IOSA VE area. IOSA VE is
used as a save area when I/O interrupts are being handled. It resides in private
storage and is loaded during system initialization. The address of the IOSA VE is
found in the load map for the system. The user must have the load map (for the
IOSAVE address) to do General I/O debugging for GCS.

IOSA VE is used as a save area when I/O interrupts are being handled.

IOSA VE gives an overall picture of general I/O in the GCS virtual machine at a
point in time, such as the time of the dump:

• The I/O OLD PSW and the CSW are saved in this control block.

The PSW contains the address of the interrupting device in the PSW
interrupt code (the second half word of the PSW).

The CSW contains the condition code, unit status, channel status, and
channel command word address.

• Contains a 16-by-16 array of address words that allow you to find the GIOTB
entry associated with a specific open device.

• Contains a pointer to the Page Fix Table (PFXTB) that allows you to find the
pages that have been locked in real storage.

• Contains the anchor blocks for the Virtual Channel Queue (VCHQ) that allow
you to find the I/Os outstanding.

• Contains the control unit index and channel index that allow you to determine
the address of the device which last had GENIO processing done (either from an
I/O interrupt or from issuing a GENIO macro).

The IOSA VE block resides in private storage and is built during GCS initialization.
The initial value of all fields in IOSA VE is O.

To determine the start address of the IOSAVE control block, locate CSIIOSAV in
the GCS nucleus map.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 211

Debugging GCS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

The 10SAVE contains the following information:

Displacement

X'090'
X'098'
X'OAO'
X'4AO'
X'4A8'
X'4AA'
X'4AC'
X'52C'

Field description

I/O old PSW
CSW from I/O causing interrupt
General I/O table addresses
Address of Page Fix Table
Channel index into General I/O table
Control unit index into General I/O table
Addresses for start of virtual channel queues
Real I/O authorization flag

The control unit index and channel index stored in the 10SA VE gives the address of
the device which last had GENIO processing done, either from an interrupt or
issuing a GENIO macro. The saved PSW and CSW are stored in the 10SA VE from
the last I/O interrupt. Refer to the System 370 Reference Summary or System 370
Principle of Operations for the mapping of the PSW and CSW.

The General 1/0 Table (GIOTB)
The General I/O table (GIOTB) is found at 10SA VE + X' AO'. It is a 16-by-16
array of addresses that are indexed by channel and control unit. A device address
contains the channel and control unit addresses. The device address is two bytes
long. Half of a byte is called a nibble. The first nibble of the device address is not
used. The second nibble is the channel address. The third nibble is the control unit /"
address. The fourth nibble is the device address for that channel and control unit. \,_j

- byte - - byte -

CH CU DEV
Figure 14. Device Address

The General I/O table (GIOTB) contains a GIOTB entry for each open device.

A GIOTB entry provides information about the device, such as:

• Device Address.

• Task ID and task block address of the task that has opened the device.

Only one task can own a device at anyone time. A task owns a device when it
opens the device and loses ownership when it closes the device, or when the task
terminates.

• Several flags describing the status of the I/O activity on the device.

If the flag for "exit scheduled" is on, an Asynchronous Exit Block (AEB),
pointed to at GIOTB + X' 34' , contains information related to the exit and will
be enqueued on the AEB queue pointed to by the SIB at SIB + X '18' .

212 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging GCS

• Characteristics of the device (virtual and real).

The General I/O table (IOSGIOTB) in the IOSA VE control block contains 256
indexes to point to a GIOTB entry for every Channel/Control Unit combination.
The field IOSGIOTB is found at IOSAVE + X' AO'. To find the GIOTB entry for
a specific device:

• Convert channel (CH) and control unit (CU) addresses to decimal.
• Calculate the offset into the table. Offset = (CH x 64) + (CU x 4).

• Convert the offset into hexadecimal.
• Add the hexadecimal value and the address of the beginning of the GIOTB in

the IOSA VE to obtain the address for the first GIOTB entry for the devices for
that channel and control unit.

• The GIOTB entries for the devices on the channel and control unit are chained
together. The address for the next GIOTB entry in the chain is found at GIOTB
+ X'OO'.

The General I/O table contains the following information:

Displacement

X'OO'
X'04'
X'08'
X'OC'
X'OF'

X'14'
X'18'
X'lC'
X'24'
X'30'
X'34'
X'3C'
X'64'

1/0 Interrupt Handling

Field description

Address of next entry in table
Device address
Address of task requesting open
Task ID of task requesting open
Flags
Byte Field description
X'80' I/O active
X '40' I/O queued
X '20' Synchronous interrupt queued
X'lO' Exit scheduled for synchronous interrupt
X' 08' Asynchronous interrupt queued
X' 04' Asynchronous interrupt pending
X'02' Wait
Address of exit when I/O has been completed (GIOEXIT)
Characteristics of virtual device
Characteristics of real device
Address of CCW to be started
Virtual channel queue element
Address of Asynchronous event block (AEB)
Synchronous interrupt control block (ICB)
Asynchronous interrupt control block (ICB)

When an I/O interrupt indicates "channel end" or "control unit end," the
appropriate virtual channel queue is checked.

If there is an I/O request queued, that I/O is restarted. If the I/O is successfully
restarted, the I/O request is dequeued from the virtual channel queue.

If "channel busy" or "control unit busy" is received again, the I/O request remains
on the virtual channel queue.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 213

Debugging GCS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

If there is an error on the restart, the request is dequeued and the channel queue is
searched to see if there is another I/O operation which can be restarted.

Table 4 indicates the actions that occur depending on the type of interrupt received
for a GENIO device.

Table 4. I/O Interrupt Action Table

Type of Interrupt GCS Action

Terminating error conditions Schedule Exit Search Virtual Channel Queue for
(unless channel end given I/O to be Restarted.
without DE)

Channel and Device End Schedule Exit Search Virtual Channel Queue for
I/O to be Restarted

Device End Schedule Exit Search Virtual Channel Queue for
I/O to be Restarted

Channel End Search Virtual Channel Queue

Control Unit End Search Virtual Channel Queue

Asynchronous Interrupt Schedule exit

The exit specified in the GENIO OPEN macro is provided with the CSW from the
interrupt, and sense bytes if a unit check occurred. If a CSW is sent prior to the
"device end" CSW (for example "channel end" is received before "device end"), the
first CSW is saved. When subsequent CSWs are received, the status bytes from the
CSW are ORed with the CSW already stored in the interrupt control block.

The exit receives control in the key and state of the task that opened the device.

• If the task is an authorized program, the exit is entered with interrupts disabled.

• If the task is not an authorized program the exit is entered with interrupts
enabled.

Interrupt Control Blocks
Within each GIOTB entry are two Interrupt Control Blocks (ICB) which keep
information about the last synchronous (GIOSICB) and asynchronous (GIOAICB)
I/O interrupts for the device.

The asynchronous and synchronous ICBs are mapped alike except that the
synchronous ICB contains sense bytes in case of unit checks. The synchronous ICBs
contain a 0 in the first byte while the asynchronous ICBs contain a 1 in the first
byte.

The ICBs contain the device address, and CSW.

214 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

/

/

(

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The Interrupt Control Blocks contain the following information:

Displacement

X'04'
X'08'
X'lO'

Virtual Channel Queue

Field description

Device address
CSW from interrupt
Sense bytes (synchronous only)

(24 sense bytes)

Debugging GCS

One of General I/Os responsibilities is to queue I/O requests when a channel or
control unit is busy. Queuing is done on a channel level. Since there are 16
channels for I/O, there are 16 Virtual Channel Queues for requests for I/O.

The field IOSVCHQ in the IOSAVE control block contains 16 x 2 pointers to the 16
Virtual Channel queues. (each pair points to the beginning and to the end of each
Virtual Channel queue). The field IOSVCHQ is found at IOSA VE + X '4AC' .

Each Virtual Channel queue is a FIFO queue:

• When an I/O operation for a device is queued, the GIOTB entry associated with
that device is added to the end of the queue.

• When a channel is available for I/O, GCS selects the first GIOTB entry in the
queue, and issues the I/O operation to the corresponding device.

If the I/O is successful, that GIOTB entry is dequeued from the beginning of the
queue. Otherwise, the next GIOTB entry is selected and the process is repeated.

How to Find the 1/0 Queued for a Channel
One of General I/O's responsibilities is to queue up I/O requests when an I/O
channel or control unit is busy. Queuing is done on a channel level. Since there are
16 channels for I/O, there are 16 queues for requests for I/O. Pointers for these
queues are found in IOSA VE starting at IOSA VE + X '4AC'. Each entry in
IOSA VE for a channel contains a pointer to the beginning of the queue and the end
of the queue. When I/O is queued, a GIOTB entry is added to the end of the queue.
When the channel is available for I/O, the next I/O request begins processing and
the GIOTB entry is dequeued from the beginning of the queue.

To find the I/O requests queued for a specific channel (CH):

1. Find the address of the IOSVCHQ field of IOSA VE.

IOSVCHQ = IOSAVE + X'4AC'

2. Find the pointers to the first and last GIOTB entry associated with the channel
(CH).

Each entry in the IOSVCHQ field in IOSA VE is 2 words long:

• 1st word = address of first GIOTB entry in the queue
• 2nd word = address of last GIOTB entry in the queue.

FIRSTENTRY = IOSVCHQ + (CH x 8)
LAST ENTRY = FIRSTENTRY + 4

LY24-S241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 215

Debugging ·GCS

For example:

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• 10SAVE + X '4AC' = first GIOTB entry queued for CHO
• 10SA VE + X '4BO' = last GIOTB entry queued for CHO
• 10SA VE + X' 524' = first GIOTB entry queued for CHF
• 10SAVE + X' 528' = last GIOTB entry queued for CHF.

3. The GIOTB entries for the other devices with I/O requests on that channel are
chained from this GIOTB entry by the GIOVCHQE field in each GIOTB entry
(at displacement X'30').

How to find what pages are locked by PGLOCK
The Page Fix Table (PFT) is used to keep track of the virtual pages that are locked
into real storage by the PGLOCK macro. When a page is locked an entry for that
page is added to the PFT. The entry is deleted from the PFT when the page is
unlocked using the PGVLOCK macro. The PFT entries are chained together and
are pointed to from the 10SA VE (IOSA VE + X '4AO').

The 10SA VE contains the following information:

Displacement

X'OO'
X'04'
X'08'
X'OC'

Field description

Address of next PFT entry
Virtual address of page
Real address of page
Task ID that locked page

How to find the characteristics of a device

110 Debugging

The GENIO macro with option CHAR will give information about a specific device.
The data returned will contain both real and virtual characteristics. The device does
not have to be open for the user to issue the GENIO CHAR macro.

If the device has been opened an entry in the General I/O Table (GIOTB) for that
device has been made. The GIOTB contains both real and virtual characteristics for
the device. If there is no real device associated with the virtual device the real
characteristics will be zero.

I/O problems can occur in one of four areas: CP, GCS, VSCS, or VTAM and its
applications. Indicators that there may be an I/O problem in one of these areas
include SNA LV terminal or printers hanging, a VTAM link will not initialize, or a
questionable status is returned from I/O.

When the user suspects an I/O problem, the first thing that should be done is to
keep track of error messages and keep the console log, especially for VT AM. I/O
problems generally require recreating the problem using traces. Traces can be set for
each area suspected of an I/O problem. Trace files are helpful to track the sequence
of events following the handling of an I/O interrupt.

1. The following sets up traces for CP, GCS, VSCS, and VTAM:

a. CPTRAP ALLOWID VTAM (where VTAM is the vmid)
b. CPTRAP START TO userid

216 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

./

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging GCS

c. CPT RAP 3D (collect virtual machine group trace data)
d. VSCS TRACEON (EXT (start VSCS external trace)
e. ETRACE GTRACE SIO I/O {GROUP}
f. VTAM F TRACE, ID=/uname, TYPE=BUF or TYPE = I/O (start VTAM

trace).

2. Recreate the problem.

3. To turn off the traces:

Trace Table Entries

a. CPTRAP STOP (stop CP trace)
b. VTAM F NOTRACE, ID=/uname, TYPE=BUF or TYPE =1/0 (stop

VTAM trace)
c. ETRACE END (stop GCS trace)
d. VSCS TRACEOFF (stop VSCS trace).

After tracing has been completed, the trace events for all of the areas which were
traced are found in the GCS internal trace table, unless wrap has occurred. If GCS
is using an external trace, the trace entries will be in the CPTRAP spool file. VT AM
and VSCS entries in the trace table will be entered as GTRACE entries.

GCS tracings of SIO and I/O contain helpful information for debugging.

• The SIO trace entry includes the CAW which will contain the channel program
address. This address should be checked to ensure that a valid channel program
is being invoked.

• The I/O trace entry includes the CSW and I/O old PSW at the time of the I/O
interrupt. Channel and program status should be checked at the time of the
interrupt.

The CP TRACE for SIO and I/O will trace virtual and real I/O passed to CP for
processing. The CP trace entries will reflect the information given to CP for the I/O
operations.

• The TRACE SIO command traces TIO, CLRIO, HIO, HDV, and TCH
instructions for all virtual devices. The trace entry resulting from this command
includes such information as the condition code and CSW.

• The TRACE I/O command traces virtual machine I/O interrupts. It does not
trace channel-to-channe1 I/O operations. With the CSW trace option also
specified, the resulting trace entry will include the contents of the virtual and
real CSW at the I/O interrupt.

For more information on debugging VTAM see the VTAM Diagnosis Guide,
(SC23-0116).

Recreating the Problem
When unexpected results occur on terminals or other SNA devices, the problem
should be recreated with VTAM and VSCS traces on.- This will help to isolate the
component at fault. Most hung LU conditions will not be GCS problems. They
will probably be CP or VSCS problems.

Tracing I/O is important when trying to recreate an I/O problem. It is helpful to
know the state and configuration of the system before and after I/O is processed.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 217

.... -.- .. -·-------r--·-__ _

Debugging GCS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

The following gives checkpoints during problem recreation where helpful
information about I/O can be obtained and how to set the checkpoints:

1. When Real I/O is being issued, a PER stop should be set to see the state of the
system, what was sent, and the channel program used.

• IssueCP TRACE I/O command to trace real I/O in CPo

• Set a PER I DATA 83. (83 is the operation code for the DIAGNOSE
instruction.)

• When the PER stop is encountered, the fullword operation code is
displayed. If the fourth byte is a X' 98 ' , it is Real I/O. Otherwise, issue
BEGIN to continue.

• If the DIAGNOSE is for Real I/O, then Real I/O has just been done.

• Display the PSW to check the interrupt code and condition code.

• The CP TRACE facility will display the CSW used in the real I/O just
processed.

• Display the CCW at the 'address given in the CSW. It contains the data
address used in the Real I/O.

• Display the CAW at X '48'. It contains the channel program address.

• This information will help to determine what the GCS I/O request was.

2. If the I/O requested is a READ, the read buffer address should be noted before
the I/O is issued. After the I/O is done, display the read buffer to see what CP
has passed back to GCS as a result of the read.

3. When I/O is being tracked for a VT AM application, the user should look at the
parameter list which is being passed to GCS in the GENIO macro.

• Set a PER stop at the beginning of the GCS GENIO module (CSIGIM).
This address is found in the Load Map for GCS.

• When VTAM issues the GENIO macro for I/O processing, the PER will
occur.

• Register 1 will point to the parameter list. Ensure that it is a valid
parameter list.

Command and Console Support
The GCS VM operator uses the console to communicate with either the GCS
supervisor or applications via commands. The GCS supervisor and the applications
can communicate with. the operator via write-to-operator (WTO) and
write-to-operator-with-reply (WTOR) instructions.

Command and console support includes commands issued from a terminal by a user
and commands issued via the CMDSI macro. The CDMSI macro allows the user to
issue GCS, CP, or LOADCMD defined commands from within a program running
in GCS. For more information on the CMDSI macro refer to the VM/SP Group
Control System Command and Macro Reference.

218 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(-

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LOADCMD Command

Debugging GCS

The LOADCMD command is included in the command support. LOADCMD
allows a user to define their own command name for an entry point within a
module. The module must reside in a load library that the user has defined with the
GLOBAL command.

When the command defined by LOADCMD is issued the module containing the
entry point gets control. For more information on LOADCMD, refer to the
VMjSP Group Control System Command and Macro Reference.

The LOADCMD command uses the NUCEXT function to determine if a command
is already loaded as a nucleus extension. If the nucleus extension does not exist,
then NUCEXT is used to establish a nucleus for the command.

The chain of NUCX blocks are pointed to by SIENUCX located in the SI extension
atX'A4'.

The NUCX contains the following important fields:

Displacement

X'OO'
X'04'
X'OS'
X'10'
X'U'
X'14'
X'30'

X'34'

NUCON Information

Field description

NUCXPRT points to the next NUCX block
NUCXUWRD is the user fullword
NUCXNAME names the command
NUCXPSW points to the starting PSW for the nucleus extension
NUCXKEY is the user's key-bit(8)
NUCXENTR points to the entry point address
NUCXADDR is the address of the NUCCBLK that corresponds
to this entry point
NUCXTASK contains the Task ID of the establisher-Fixed(16)

NUCON has a command area which contains information about commands that
have been issued. This area contains information such as the command input line,
the tokenized parameter list, and the pointers to the extended argument list.

The NUCON contains the following command areas:

Displacement

X'2ES'
X'3SS'
X'3BS'
X'3BC'
X'3CO'
X'5C4'

Field description

Command input line
Tokenized parameter list
Address of command token
Address of beginning of argument string
Address of end of argument string
Address of SIE

The command input line contains the last command or commands the user entered
from the terminal along with the tokenized parameter list. The tokenized parameter
list is built in NUCON when the command and parameters are scanned and
validated. The extended parameter list is also built during the scanning and the
fields for the extended parameter list in NUCON are filled in. When issuing one or
more commands from the command line only the command token and parameter list
of one of the commands will be included in the extended parameter list.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 219

Debugging GCS

SIE Information

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The SIE also contains a commands and console area. This commands and console
area contains such information as ECBs, CCWs, and pointers to the queues for the
commands, the messages, and the replies which have not yet been processed.

The SIB contains the following command and console areas:

Displacement Field description

X'54' Attention Interrupt ECB
X'58' I/O Complete ECB
X'5C' Output pending ECB
X'60' Command ECB
X'64' FLAGS

Byte Field description
X'80' Read I/O in progress
X'40' Write I/O in progress
X'20' Attention pending
X'lO' Output pending

X'68' Address of first CMDBUF on queue
X'6C' Address of last CMDBUF on queue
X'70' Address of first WQE on queue
X'74' Address of last WQE on queue
X'78' Address of first ORE on queue
X'7C' Address of last ORE on queue
X'80' Read/Write CCW
X'88' No-Op CCW
X'90' ORE ID bits
X'9D' Last assigned ORE ID

Each ECB in the SIB is one word or 4 bytes long. The first byte in the ECB is the
most important. If the first bit is set on, the ECB is waiting. If the second bit is on,
the ECB has been posted.

Three queues are maintained by the communications task, they are:

• CMDBUF
• Write Queue Elements (wQE) and
• Operator Reply Elements (ORE).

Each of these queues are pointed to from within the SIB and contain elements which
have not yet been processed. As a command, write message, or reply is processed, it
is taken from the queue. The first element on each queue is the next element to be
processed. The last element on each queue is the most recently added element to the
queue.

The SIB contain two CCWs. The first CCW is used for READ/WRITE, the second
CCW is a no-op. The CCW contains a command code (CC), data address, and
length. The data address points to the data to be read or written. The length of the
data is given in the length field.

220 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

"" j

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging GCS

CMDBUF

A CCW is mapped as follows:

CC

o 2

cc
cc

Data
Address

4

X lOA' D--t>
X '09' D--t>

Figure 15. CCW mapping

READ
WRITE

6

Length

8

The ORE ID bits in the SIE are used to keep track of which reply numbers are
outstanding (00-99). If the bit is on (1), the reply ID has been assigned but the reply
is still outstanding. When the ORE is built as a result of a WTOR instruction, the
ORE ID is assigned from those that are available. When the reply is processed, the
ORE is freed and the ORE ID is made available again. (The bit associated with the
ID is turned off.)

The CMDBUF queue contains commands that have not yet been processed.
Immediate commands are processed as soon as they are issued and will not be
entered into the CMDBUF queue. A CMDBUF element contains the command
input data, the extended parameter list, and the tokeruzed parameter string. These
fields correspond to fields in NUCON. The last CMDBUF in the queue will contain
the same information as is in NUCON if it was the last command issued. If an
immediate command was the last command issued, that command's parameter list is
found in NUCON.

The CMDBUF element contains the following information:

Displacement

X'OO'
X'04'
X'08'
X'8C'
X'90'
X'94'
X'BO'

Field description

next CMDBUF on queue
length of command data
command input data
address of command token
address of start of argument string
address of end of argument string
tokenized parameter list

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 221

Debugging GCS

WOE and ORE

VSAM

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The WQE queue consists of messages to the VMjSP operator. A WQE is built when
a WTO or WTOR is issued. When the operator processes the WQE it is taken from
the queue. If a reply is expected (WTOR issued), a corresponding ORE is found in
the ORE queue. The operator's reply is placed in the reply buffer pointed to by the
ORE. If the message did not expect a reply (WTO issued), no corresponding ORE is
present.

A WQE contains the following information:

Displacement

X'OO'
X'06'
X'08'

Field description

Address of next WQE on chain
Length of message text
Message text

An ORE contains the following information:

Displacement

X'OO'
X'04'
X'08'
X'OC'
X'lO'
X'8C'
X'8D'
X'90'
X'94'

Field description

Address of next ORE on chain
Reply ID
Address of task block which issued message
Length of message issued text
Message issued text
Key of issuer
Length of reply
Address of reply buffer
Address of reply ECB

A user can see if a message has not been processed yet by following the WQE chain,
looking for a particular message. The end of the chain is reached when the next
address in the chain is zero. If a WQE containing the message is not found, the
message has been processed by the operator. If the message requested a reply, the
user can follow the ORE chain, looking for the message and a reply. The user may
also issue the QUERY REPLY command which will return all messages which have
outstanding replies.

GCS supports a VSAM interface very similar to that supported by CMS. As in
CMS, GCS supports an OSjMVS macro interface and maps these requests to
VSEjVSAM. The VSAM operations are performed by the VSEjVSAM program
product.

Major differences between GCS and CMS for VSAM support include:

• AMS is not supported by GCS. Disk initialization, catalog definition, and file
definition must be performed under CMS.

• All required VSE SVC simulation is part of the GCS nucleus. Therefore there is (-"
no need to utilize a DOS segment. '~j

• GCS includes basic support for VT AM.

222 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(-

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging GCS

NUCON Changes

VAD Information

• SET SYSNAME command can only be used before the VSAM environment is
initialized in GCS.

• GCS associates open ACBs with the task which performed the open. When a
task terminates, all open ACBs associated with that task are closed.

• Sharing of VSAM data in GCS is governed by VSAM and is the same as
sharing VSAM data in a VSE partition.

• GCS supports Local Shared Resources (LSR) and Deferred Write (DFR)
functions to enhance synchronous VMjVSAM processing.

This section will concentrate on those areas in VSAM support which are unique to
GCS or have been changed from CMS. The debugger should have some knowledge
of how VSAM works in CMS and GCS and the differences. More information on
GCS support of VSAM is found in the VMjSP Group Control System Command and
Macro Reference. General information on VSE/VSAM support within VM/SP is
found in the VM/SP Application Development Guide for CMS, VMjSP CMS Data
Areas and Control Blocks, and VMjSP CMS Diagnosis Reference.

The GCS NUCON differs from the CMS NUCON in regard to VSAM support.
The following gives a summary of the changes in the NUCON for GCS support of
VSAM and other information which is still found in the NUCON.

• The Communications Vector Table (CVT) address is still located at X'lO' in the
NUCON. No changes have been made in the CVT.

• The VSE Partition Communications Region (BGCOM) address which is located
at X'4EO' in the CMS NUCON is located at X'14' in the GCS NUCON.

The following fields in the BGCOM have been changed for GCS:

Displacement

X'20'
X'3B'
X'8C'

Field description

Address of VSAM anchor block - I
Dump option flag which is always set
Flag for GETVIS area initialized

• The System Communications Region (SYSCOM) address which is located at
X'4E4' in the CMS NUCON is located at X'80' in the GCS NUCON. No
changes have been made to the SYSCOM.

The VT AMjVSAM Data Block (V AD) is a new data area added for GCS support of
VSAM. This data block resides in the first 64K segment of private storage in the
GCS nucleus, the address of which can be found in the GCS nucleus load map. The
V AD contains key addresses and other data relevant to the execution of VT AM and
VSAM in GCS. This includes the addresses of the VSAM and BAM segments, the
addresses of the VTAM OPEN, CLOSE, and CBMM routines, and pointers to the
VSAM workareas chain, open ACBs list, and DOSCB chain.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 223

Debugging GCS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

The V AD contains the following information:

Displacement Field description

X'04' Address of 1st VSAM workarea
X'08' Address of start of VSAM segment
X'lO' Address of start of BAM segment
X'18' Address of 1st DOSCB
X'lC' Addresses of VT AM routines
X'28' Address of VSE transient area
X'30' Address of VSE lock table
X'34' Address of simulated VSE TCB
X'38' Address of VSE ppsave area
X'3C' Address of VSE L T A save area
X'40' Number of DOSCBs in effect
X'88' Address of list of open ACBs
X'8C' Length of open ACBs list
X'90' Address of VSAM VSRT table

Boundary Box Usage
The Boundary Box (BBOX), which normally shows the bounds of the partition in
VSE, shows the bounds of a 16 MB virtual machine instead. Thus all validity
checks made by VSE/VSAM will be successful. GCS has its own address validation
scheme which is invoked prior to giving control to GCS/VSAM.

VSAM Anchor Block
In GCS, the anchor block contains only the addresses of the VSAM AMCB table
and OAL table. It does not contain the address of modules that are CDLOADed
and it does not mark the boundary between GETVIS storage and partition storage
as CMS does. The VSAM anchor block is pointed to by the BGCOM.

VTAM/VSAM Workareas
A VTAM/VSAM workarea (VIPWORK) is established for each GCS task running

/ "
,,-- /

VT AM/VSAM. The workareas are chained together with the newest task ,/ ,
VIPWORK added to the beginning of the chain. VIPWORKs are removed from the
chain when the task terminates.

To find the VIPWORK:

• Locate the address of the V AD in the GCS nucleus load map.
• Locate the address of the first VIPWORK at V AD + X' 04' .
• The address of the next VIPWORK is located at VIPWORK + X' 50' .

224 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The VIPWORK contains the following information:

Displacement

X'50'
X'54'
X'58'
X'5C'
X'5E'
X'7E'

X'80'
X'BC'
X'FO'

Field description

Address of next VIPWORK
Address of previous VIPWORK
Address of Temporary OPEN/CLOSE ACB list
Size of Temporary OPEN/CLOSE ACB list
Task Id
Flags
Byte
X'80'
X'40'
X'20'

Field description
PSW condition code = 0
PSW condition code = 1
PSW condition code = 2

Savearea for Callers Registers
VIP Entry Caller Return Address
DOS Return Code to User

Helpful Hints for VSAM debugging

Debugging GCS

The following are GCS commands and macros which can be used to give
information about the state of the system at the current time.

• QUERY SYSNAMES - displays the names of the standard saved systems or
system names established via the SET SYSNAME command.

• DLBL - without any operands specified will display the current file definitions
as were defined by the DLBL command.

• SHOWCB - macro which will return the fields of a specified control block
within VSAM.

• TESTCB - macro which will test the values in the fields of a specified control
block within VSAM.

• IDUMP - VSAM IDUMP macro is supported by GCS. GCS will convert the
request to an SDUMP macro for processing.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 6. Debugging GCS 225

Debugging GCS

226 VM/SP Diagnosis Guide

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

/

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging TSAF

(Chapter 7. Debugging TSAF

(

(

Summary of Steps to Follow When a TSAF Abend Occurs
Using the Console Log
Using TSAF Dumps to Diagnose Problems

Creating the TSAF IPCS Map
Creating a TSAF Dump
Processing a TSAF Dump
Diagnosing a TSAF Dump

Displaying the TSAF Dump Information
Formatting and Displaying Trace Records

Printing a TSAF Dump
Using System Trace Data to Diagnose Problems

Setting External Tracing
Using CPTRAP to Trap Trace Table Entries

Viewing CPT RAP data with IPCS
Trace Table Entry Format for TSAF

Interactive Service Queries

228
229
229
230
230
230
231
231
231
232
232
232
232
233
233
234

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 7. Debugging TSAF 227

Debugging TSAF "Restricted Materials of IBM"
Licensed Materials - Property of IBM

The three ways that you can collect error information for problem diagnosis within ;r -,
Transparent Services Access Facility (TSAF) are described in this chapter. They are: ~/

• Using console logs, described in "Using the Console Log" on page 229

• Using dumps, described in "Using TSAF Dumps to Diagnose Problems" on
page 229

• Using system trace data, described in "Using System Trace Data to Diagnose
Problems" on page 232.

In addition, "Interactive Service Queries" on page 234 describes how the TSAF
QUERY command can also provide you with problem diagnosis information.

Note: The TSAF operator does not necessarily diagnose problems, especially from
the TSAF virtual machine. Dumps and system trace data are usually used by the
system programmer or whoever is responsible for diagnosing system problems.

Summary of Steps to Follow When a TSAF Abend Occurs
When a TSAF abend occurs, you must do the following steps:

1. Collect information about the error.

• Save the console sheet or spooled console output from the TSAF virtual
machine.

• Save and process any dumps that TSAF produces.

When an abend occurs in TSAF, either because TSAF issued an abend or
because a TSAF or CMS operation caused a program exception, TSAF
produces a dump via the CP VMDUMP command (described in the VM/SP
CP General User Command Reference). CP sends the dump to TSAF's
virtual reader.

• Save any CPT RAP file that contains TSAF data.

2. Collect other types of information about system status, such as:

• Status of real and virtual devices that TSAF is using

• System load at the time of the failure on any systems using TSAF and the
status of each system (for example, did another system abend?)

• Types of applications that are using TSAF at the time and any information
about them

• Physical connection configuration of the systems in use.

3. Recover from the abend to continue processing.

After TSAF creates a dump, TSAF then issues a CP SYSTEM RESET
command. If the CONCEAL option is on, as recommended, CP automatically
IPLs CMS. Otherwise, you, the operator, must re-IPL CMS. Similarly, if
TSAF is not invoked from the PROFILE EXEC, you must restart the TSAF
virtual machine.

VM/SP System Messages and Codes lists the TSAF abend codes and their causes.

228 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

I

"" /

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging TSAF

! (Using the Console Log

(-

(

TSAF provides informational messages, as well as error messages, that may help you
with problem determination. To keep track of the console messages, enter:

spool console start to userid

where userid can be the user ID of the TSAF virtual machine or another virtual
machine user ID to whom you want TSAF to send the console log. You may want
to add this to TSAF's PROFILE EXEC so a console log is always created.

To close the console log, enter:

spool console close

The log of messages received is sent to the specified user ID. See the VM/SP CP
General User Command Reference for more information on the SPOOL command.

TSAF provides additional information at the time of an abend to help you diagnose
the problem. The console log contains information about the abend, such as:

• Abend code
• Program old PSW
• Contents of the general purpose registers.

TSAF also attempts to determine the displacement of the module in which the abend
occurred and the displacement of the calling module.

Figure 16 shows some of the messages that TSAF may issue in response to an abend
condition:

ATSCAC999T TSAF system error
ATSCAB0171 Abend code ATS999 at 022730
ATSCABOIBI Program old PSW is FFE002FF 4G02273G
GPRO-7 00022FFC 000003E7 00022FDA 000S2BCO 00208080 00020CS8 0033E811 00000001
GPR8-F 7F3B78AF 603COOOO 00020B64 00022D6F 50021D70 00022B48 40022718 00023FBO
ATSCAB0191 Abend modifier is ATSCAC
ATSCAB0211 Failure at offset OA06 in module ATSCAC dated 86.020
ATSCAB0221 Called from offset 04B4 in module ATSSCN dated 86.078
ATSCAB0231 VMDUMP ATSCAB*ATSCABI OS/28/86 16:02:06 taken

Figure 16. Sample TSAF Console Log

Using TSAF Dumps to Diagnose Problems
You can use IPCS to collect and diagnose problem data for the TSAF virtual
machine. The console listing, as described in "Using the Console Log," may help
you diagnose problems without using dumps.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 7. Debugging TSAF 229

Debugging TSAF "Restricted Materials of IBM"
Licensed Materials - Property of IBM

The steps involved in using dumps to diagnose problems are:

1. Create a TSAF IPCS map, if it does not already exist.
2. Create the TSAF dump.
3. Process the TSAF dump.
4. Diagnose the TSAF dump.
5. Print the TSAF dump.

Creating the TSAF IPCS Map
Note: You only need to do this step when a new CMS or TSAF nucleus is built.

When a new CMS or TSAF nucleus is built, enter the following IPCS command to
compress the TSAF load map for IPCS:

map tsaf

The default name for the map source file is TSAF MAP; and the default name for
the input CMS nucleus load map is CMSNUC MAP. The default name for the
compressed map file is TSAFIPCS MAP, which you create using MAP TSAF.\. /

Note: If you do not have the compressed map file, IPCS facilities, which allow for
diagnosis with dumps, are greatly reduced. For instance, without the map you could
not invoke the formatted display subcommand (FDISPLA Y) and you would not
receive any TSAF control block information.

Creating a TSAF Dump
The TSAF virtual machine creates its own dumps. The dump goes to the reader of
the TSAF virtual machine. Because the TSAF virtual machine is not set up to
process dumps, you need to transfer the dump file to the appropriate virtual
machine.

If the TSAF virtual machine cannot create the dump, you can use the VMDUMP
command. The VMDUMP command dumps virtual storage that VM/SP creates for
the virtual machine user; in this case, for TSAF. The dump goes to the virtual
machine specified by the SYSDUMP parameter on the SYSOPR macro in the
DMKSYS ASSEMBLE file, if you enter the following CP command:

vmdump a-end system format tsaf

Do not use the reserved names of ATSCAB 1 or ATSCAB2 for the dump ID of
VMDUMP. The VM/SP CP General User Command Reference has more
information about the VMDUMP command.

Processing a TSAF Dump
After the TSAF virtual machine creates a dump, load the dump onto disk. To load
the dump, enter the following IPCS command:

ipcsdump

The default map file is TSAFIPCS MAP.

When you issue IPCSDUMP, it invokes a TSAF routine to extract information from.
the dump and transmit it to IPCS for inclusion in the problem report and/or
symptom summary. IPCSDUMP creates the following:

230 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• Problem report
• Symptom summary

Debugging TSAF

• Disk resident dump to which IPCS appends the map information.

See the VM/SP Interactive Problem Control System Guide and Reference for more
information about the IPCSDUMP command.

Diagnosing a TSAF Dump
The IPCSDUMP command generates a symptom record, which is based on problem
report information. The symptom record helps you find out why TSAF created the
dump. The symptom record includes:

• Information about the system environment at the time of the dump

• The symptom string that contains the following component-related symptoms:

Error code
ID of the failing component
ID of the failing module
Registers and PSW contents.

You can also use the IPCS IPCSSCAN command to examine the dump interactively.
The IPCSSCAN command is described in the VM/SP Interactive Problem Control
System Guide and Reference. The following sections introduce those subcommands
specifically for TSAF (FDISPLAY and TRACE).

Note: TRACE can also be used for CP dumps.

Displaying the TSAF Dump Information
The FDISPLA Y subcommand of the IPCSSCAN command displays data control
blocks, tables, and arrays important to the TSAF virtual machine. You can get
information about the following by invoking different FDISPLAY parameters.

• Path array (PATH)
• Service table (SERVICE)
• Collection control block (COLLECT)
• Resource table (RESOURCE)
• Neighbor table (NEIGHBOR)
• Routing array (ROUTING)
• Link definition array (LINKDEF)
• Link control blocks (LINKCTL BSC or LINKCTL CTCA).

See the VM/SP Interactive Problem Control System Guide and Reference for a
complete listing of the FDISPLA Y parameters and for some example outputs of the
FDISPLA Y subcommand.

Formatting and Displaying Trace Records
TSAF maintains an internal trace table within the TSAF virtual machine. You can
use the TRACE subcommand of IPCSSCAN to format and display trace records
from the TSAF internal trace table. By using the HEX or FORMAT parameters,
you can display the trace table entries in a hexadecimal display or a formatted
display. See the VM/SP Interactive Problem Control System Guide and Reference for
examples of using the TRACE subcommand and the sample outputs.

LY24-5241-0l © Copyright IBM Corp. 1986, 1988 Chapter 7. Debugging TSAF 231

Debugging TSAF

- -----_.-----_._--------_ .. _ .. --- - --_ .. __ - .. -.. -.---.~-.-.- _._. ----_ -- -_ _ .. __ ... _ .. __ . __ .- - _ .. _---

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

You can also scroll through the formatted or hexadecimal output with either of the
following IPCSSCAN subcommands:

• TRACE SCROLL or SCROLLU
• SCROLL or SCROLLU.

See the VM/SP Interactive Problem Control System Guide and Reference for more
information about the IPCSSCAN TRACE and SCROLL subcommands.

Printing a TSAF Dump
The IPCSPRT command prints the dump and symptom record that IPCSDUMP
processed. The output you get consists of the following:

• Symptom record
• Dump in hexadecimal (no special formatting)
• Appended load maps
• Contents of the registers and the PSW.

See the VM/SP Interactive Problem Control System Guide and Reference for more
information on the IPCS IPCSPRT command.

Using System Trace Data to Diagnose Problems
TSAF maintains an internal trace table within the TSAF virtual machine. You can
use the IPCSSCAN TRACE subcommand to display the internal trace table entries.
TSAF also writes trace entries to the system CPT RAP file. You can then use
IPCSSCAN to view TSAF entries.

Setting External Tracing
The TSAF SET ETRACE command lets you enable or disable external tracing for
the TSAF virtual machine. If you want to collect TSAF trace records, issue the
following from the TSAF virtual machine before CPTRAP is started:

set etrace on

When you set external tracing on, certain internal TSAF trace records are written
externally to a CPT RAP spool file. A complete description of the SET ETRACE
command is in the VM/SP Connectivity Planning, Administration, and Operation.

Using CPT RAP to Trap Trace Table Entries
The CPTRAP command collects TSAF information in a reader file. This
information helps with problem determination.

Note: CPTRAP is a privileged CP command. In most installations, the TSAF
virtual machine is not given the necessary privilege class to be able to issue the
CPT RAP command. For this reason, the command must be issued by some other
virtual machine that has the authority to do so.

232 VM/SP Diagnosis Guide LY24-S241-01 © Copyright IBM Corp. 1986,1988

;('~,

\'-...j

(

(

(~

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging TSAF

The following commands activate CPTRAP for TSAF records only:

cpt rap id tsafl type gt allowid userid 3e

userid is the TSAF virtual machine user ID. The 3E operand selects 3E entries that
the TSAF virtual machine produces to be spooled by the CPTRAP facility.

cpt rap enable id tsafl

Enter:

cptrap close

to end CPT RAP processing. When you issue this command, the CPTRAP SPOOL
file goes to your reader.

For more specific information about the CPT RAP command, see the VMjSP CP
System Command Reference and "Debugging with the CPTRAP Facility" on
page 95.

Viewing CPTRAP data with IPCS
Refer to the VM/SP Interactive Problem Control System Guide and Reference for
specific details on how to view CPTRAP data.

Trace Table Entry Format for TSAF
The trace table entries vary in length and follow the format described below. The
length fields are one-byte long and may be any number from 0 to 255. The length
and data fields are optional data fields.

A trace table entry looks like the following:

Table 5. TSAF Trace Table Entry

length(l) data(l) ... length(n) data(n) TRAILER
RECORD

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 7. Debugging TSAF 233

Debugging TSAF "Restricted Materials of IBM"
Licensed Materials - Property of IBM

The trailer record format looks like the following:

Table 6. TSAF Trace Table Trailer Record

Clock (STCK Characters Trace ID Data 'EOOE'x
format) 4 through code area

6 of length
module
name

The lengths associated with each field are:

• Clock (STCK format) - 8 bytes
• Characters 4 through 6 of module name - 3 bytes
• Trace ID code - 2 bytes
• Data area length - 2 bytes
• 'EOOE'x - 2 bytes.

Note: Module entries and module exits do not have length fields associated with
each data field. Module entries and exits do, however, have the data area length in
the trailer record.

Module entry trace records appear only in the internal trace table. TSAF identifies
these records by setting bit 15 of the trace identifier code to 1. The data for a
module entry is in the parameter list used during the module call.

Module exit trace records also appear only in the internal trace table. TSAF
identifies these records by setting bit 14 of the trace identifier code to 1. The data
for a module exit is in registers 14 and 15 at the time of the module exit.

\" .. /

Interactive Service Queries
The TSAF QUERY command, issued from the TSAF virtual machine, can give you
more information to help you diagnose problems. The TSAF QUERY command
gives you data about the TSAF configuration when the TSAF virtual machine is (."
running: /

• QUERY COLLECT displays the processor names that are currently in the
TSAF collection.

• QUERY ETRACE displays the current setting of the external tracing.

• QUERY LINK displays information about the links that TSAF currently has.

• QUERY RESOURCE displays the current list of global resources in the
collection.

• QUERY ROUTE displays the route information at the node where the
command was issued.

See the VMjSP Connectivity Planning, Administration, and Operation for more
specific information about the TSAF QUERY command.

234 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Chapter 8. Debugging A VS

Debugging A VS

Using AVS Dumps to Diagnose Problems 236
Obtaining the GCS IPCS Map 236
Creating an AVS Dump 236
Processing an A VS Dump 237
Diagnosing an A VS Dump 237

Displaying the A VS Dump Information 238
Formatting and Displaying Trace Records 238

Using System Trace Data to Diagnose Problems 238
Setting Internal Tracing 238
Setting External Tracing 239
Using CPT RAP to Trap Trace Table Entries 239

Getting Information about CPTRAP with QUERY 239
Viewing CPT RAP Data with IPCSSCAN 240

Trace Table Entry Format for AVS 240
Interactive Service Queries 241
Summary of Steps to Follow When an AVS Abend Occurs 241

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 8. Debugging A VS 235

Debugging A VS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Effective problem diagnosis for APPCjVM VTAM Support (AVS) is a multi-step
process consisting of: "-c_j

• Dump analysis

• System trace data analysis

• Use of the AVS QUERY command

• A VS abend response.

Each of the above steps will be addressed individually.

Note: The AVS operator does not always diagnose problems. In fact, dumps and
system trace data are often handled by the system programmer or other person
specifically responsible for diagnosing system problems.

Using AVS Dumps to Diagnose Problems
The Interactive Problem Control System (IPCS) analyzes dumps and tracks problems
in VMjSP. You can use IPCS to collect and diagnose problem data for the AVS
virtual machine. Because A VS runs in a GCS group, GCS and A VS subcommands
for the IPCSSCAN command can be issued when a dump is processed.

The steps used to diagnose problems using dumps are:

1. Obtain a GCS IPCS map, if one doesn't already exist
2. Obtain the A VS dump
3. Process the A VS dump
4. Use IPCSSCAN to diagnose the A VS dump.

Obtaining the GCS IPCS Map
Note: This step is not necessary every time you create a dump; however, it is
required when a new GCS nucleus is built.

When you build a new GCS nucleus, issue the following to compress the GCS load
map for IPCS: / "

map gcs \" /

Refer to the VMjSP Interactive Problem Control System Guide and Reference for
more information on how to compress the GCS load map.

If you do not have the GCS load map, the GCS subcommands for the IPCSSCAN
command will be affected. The A VS subcommands for the IPCSSCAN command
will be unaffected.

Creating an AVS Dump
When a problem occurs due to an abend, or when an abnormal condition is
detected, A VS produces a dump.

There are two types of dump produced by A VS:

• A dump is produced when A VS abends.

• A problem dump is produced when the system detects an error but does not
cause AVS to abend.

236 VMjSP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

_. ----- -----------------

,of- ~-',
/ '

\ , 'J

(-

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Debugging A VS

The problem dump takes a snapshot of the system at the time that the problem
occurred; this is a first-time data capture on the failure. An informational.message
appearing at the operator console corresponds to a message number generated with
the problem dump report.

The frequency of problem dumps is determined by the operator, with a default
amount of 20. The MAXPROBD field in the A VSTUN ASSEMBLE file is used to
optionally specify the number of dumps taken from the point at which A VS is
started.

Users wishing to create a dump for the AVS machine should enter:

gdump O-end format avs dss

The GDUMP command dumps virtual storage that VMjSP creates for the virtual
machine; in this case, for AVS. The VMjSP Group Control System Command and
Macro Reference contains more information about the GDUMP command.

Processing an AVS Dump
To load any A VS virtual machine dump directly onto a disk, issue the following:

ipcsdump

The default map file is GCSIPCS MAP.

When you issue IPCSDUMP, it invokes an AVS routine to extract information from
the dump and transmit it to IPCS for inclusion in the problem report and/or
symptom summary. IPCSDUMP creates the following:

• Problem report
• Symptom summary
• Disk resident dump to which IPCS appends the map information.

Refer to the VM/SP Interactive Problem Control System Guide and Reference for
more information about the IPCSDUMP command.

Diagnosing an AVS Dump
The IPCSDUMP command generates the symptom record, which is based on
problem report information. The symptom record helps you discover why A VS
created the dump. The symptom record includes:

• Information about the system environment at the time of the dump

• The symptom string that contains the following component-related symptoms:

Error code
ID of the failing component
ID of the failing module
Registers and PSW contents.

You can also use the IPCSSCAN command to_ examine the dump interactively. The
IPCSSCAN command is described in the VM/SP Interactive Problem Control System
Guide and Reference. The following sections introduce those suhcommands
specifically for A VS (GDISPLA Y and TRACE).

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 8. Debugging A VS 237

Debugging A VS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Displaying the AVS Dump Information
The GDISPLA Y subcommand of the IPCSSCAN command displays data control
blocks and addresses important to the A VS virtual machine. You can get
information about the following by invoking different GDISPLA Y parameters.

• Scheduling global block (SGB)
• Global control block (GCB)
• Conversation block (CVB)
• Remote LU block (RLU)
• Gateway block (GWB)
• Subtask control block (SCB)
• Module addresses (MAPN)
• Module names (MAPA)
• Gateway parameters (GWBPTRS)

Refer to the VMjSP Interactive Problem Control System Guide and Reference for
more information on the GDISPLA Y subcommand.

Formatting and Displaying Trace Records
A VS maintains an internal trace table within the A VS virtual machine. The TRACE
subcommand of IPCSSCAN formats and displays trace records from the A VS
internal trace table. Using the HEX or FORMAT parameters, you can display the
trace table entries in hexadecimal or formatted display. See the VMjSP Interactive
Problem Control System Guide and Reference for examples using the TRACE
subcommands with sample outputs.

You can also scroll through the formatted or hexadecimal output with either of the
following IPCSSCAN subcommands:

• TRACE SCROLL or SCROLLU

• SCROLL or SCROLLU

See the VMjSP Interactive Problem Control System Guide and Reference for more
information about the IPCSSCAN TRACE and SCROLL subcommands.

Using System Trace Data to Diagnose Problems
A VS maintains an internal trace table within the AVS virtual machine. The
IPCSSCAN TRACE subcommand displays internal trace table entries. AVS also
writes trace entries to the system CPTRAP file. You can then use IPCSSCAN to
view the CPT RAP file.

Setting Internal Tracing
To trace AVS events internally or externally, you must tum on internal tracing. To
tum on internal tracing, use the AGW SET ITRACE ON command. Selectivity on
internal tracing may be done on a gateway basis. Internal tracing information is
written to an internal wrap table in the AVS virtual machine. If you want to collect
AVS trace records internally, issue the following from the A VS virtual machine:

agw set itrace on

A complete description of the SET ITRACE command is in VMjSP Connectivity
Planning, Administration, and Operation.

238 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

-----~------

/

(-

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Setting External Tracing

Debugging A VS

The AGW SET ETRACE command allows you to enable or disable external tracing
for the A VS virtual machine. External tracing will not be in effect unless you also
have internal tracing set on. The type of external tracing you receive will be the
same as the type of internal tracing you requested. If you want to collect A VS trace
records, issue the following from the A VS virtual machine after CPTRAP is started:

etrace gtrace
agw set etrace on

When you have internal and external tracing set on, A VS trace records are written
externally to a CPTRAP spool file. A complete description of the A VS SET
ETRACE command is in VM/SP Connectivity Planning, Administration, and
Operation.

Using CPT RAP to Trap Trace Table Entries
The CPTRAP command collects AVS information in a virtual reader file. This
collected information assists in problem determination.

Note: Because the A VS virtual machine is not set up to diagnose problems, only
one authorized user (class C user 10) at a time may issue the CPTRAP command.

The following commands activate CPTRAP for A VS records:

cptrap id trapid type gt allowid userid 3f
(trapid is the name of this trap; userid is the AVS virtual machine user 10.)

cptrap enable id trapid

This activates CPTRAP. Enter:

cptrap stop

to end CPT RAP processing. When you issue this command, the CPTRAP SPOOL
file goes to your reader.

For more specific information about the class C CPTRAP command, see the VM/SP
CP System Command Reference and "Debugging with the CPTRAP Facility" on
page 95.

Getting Information about CPT RAP with QUERY
The QUERY CPTRAP command obtains the following information about
CPTRAP. For example,

• QUERY CPTRAP ALL displays the status of the traps.

• QUERY CPT TT ALL returns a table that shows the current selectivity (on, off,
or extra) for each type of CPT RAP record recorded in the trace table and
CPTRAP file.

• QUERY CPTRAP TYPE GT displays the status of a GT-type trap ID.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 8. Debugging A VS 239

Debugging A VS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Entering the following sequence of commands (requesting trace information for
VMBLOK FF3AE8):

eptrap id ex! type tt intable alloff
eptrap id ex! intable 5 on infile 5 on
eptrap id ex! intable e on infile e vmblok ff38ae8
eptrap id ex! intable 6 off infile 6 off
query eptrap type tt 05 06 0e

results in the following:

ID = EXI DISABLED
TVPE=TTABLE SET=NULL

INTABLE 05:0N
INFILE 05:0N
INTABLE 06:0FF
INTABLE 06:0FF
INTABLE 0C:ON
INTABLE 0C:VMBLOK FF3AE8

Note: INFILE indicates the selected CPTRAP file; INTABLE indicates the selected
trace tables.

Entering CPTRAP STOP ends CPTRAP processing. For more information about
the class C QUERY command, see the VMjSP CP System Command Reference.

Viewing CPTRAP Data with IPCSSCAN
The IPCSSCAN command is used to review the external trace entries written to
CPTRAP. After issuing IPCSSCAN to get into the CPTRAP file, select the AVS
records you wish to view by entering:

select 3d code 0e

This will select all A VS external trace records from the CPTRAP file. The entries
can then be formatted using the trace and scroll subcommands.

Note: Any other products running under GCS and writing to the CPT RAP file will
also have their trace records selected for formatting. For more information about
the IPCSSCAN command, refer to the VMjSP Interactive Problem Control System
Guide and Reference.

Trace Table Entry Format for AVS
AVS trace table entries vary in length and follow the format described below. The
length fields are one byte long and may be any number from 0 to 236. An AVS
TRACE entry cannot exceed 255 bytes. The length and data fields are optional.

Table 7. Trace Table Entry

length(1) data(1) ... length(n) data(n) TRAILER
RECORD

240 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

tr··,,·
I. "J

/
I

(

(

(

I
. I

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The trailer record format is described here:

Table 8. Trace Table Trailer Record

Clock (STCK Characters Trace ID
format) 4 through code

6 of
module
name

The lengths associated with each field are:

• Clock (STCK format) - 8 bytes

Data area
length

• Characters 4 through 6 of module name - 3 bytes
• Trace ID code - 2 bytes
• Data area length -.2 bytes
• 'EOOE'x - 2 bytes.

Interactive Service Queries

Debugging A VS

'EOOE'x

The A VS query command provides information about the operating A VS virtual
machine.

• AGW QUERY GATEWAY displays the gateway names that are currently in
the collection.

• AGW QUERY CNOS displays the contention winner/contention loser
information for the gateways.

• AGW QUERY CONY displays information about the current conversations.

• AGW QUERY ETRACE displays the current setting of the external tracing.

• AGW QUERY ITRACE displays the current setting of the internal tracing.

• AGW QUERY ALL displays all of the above information.

Refer to VM/SP Connectivity Planning, Administration, and Operation for more
information about this command.

Summary of Steps to Follow When an AVS Abend Occurs
When an A VS abend occurs, the following actions are required:

• Collect information about the error.

Print the console log for the time that the error occurred. Save the console
sheet or spooled console output from the A VS virtual machine .

Save and process any dumps that AVS produces.

Issue the MAP command to convert the GCS load map to a format that
allows IPCSDUMP to append the GCS load map to the dump.

- Issue the IPCSDUMP command to process the dump in question. Study the
problem report produced by IPCSDUMP processing.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Chapter 8. Debugging AVS 241

Debugging A VS "Restricted Materials of IBM"
Licensed Materials - Property of IBM

Issue the IPCSSCAN command with the necessary subcommands to look at
the contents of the dump.

Save any CPTRAP file that contains AVS data (described in "Using System
Trace Data to Diagnose Problems" on page 238).

• Collect system status information. The following information can help better
determine problems:

The system load at the time of failure on any systems using A VS and the
status of each system (for example, did another system abend?).

The types of applications that are using A VS at the time and any
information about them.

The physical connection configuration of the systems in use.

• Recover from the abend to continue processing.

When an abend occurs in A VS, either because A VS issued an ABEND or
because an A VS or GCS operation caused a program exception, A VS
produces a dump via the CP VMDUMP command (described in the VM/SP
CP General User Command Reference).

VM/SP System Messages and Codes lists the various AVS abend codes and their
causes.

242 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• Appendix A: Problem-Specific Checklists

• Appendix B: Control Registers

• Appendix C: Stand-Alone Dump Formats

• Appendix D: GCS Control Blocks

LY24-S241-01 © Copyright IBM Corp. 1986, 1988

Appendixes

Appendixes 243

244 VM/SP Diagnosis Guide

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

{~
,\~j

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Appendix A. Problem-Specific Checklists

After you determine the general nature of your problem, find the checklist associated
with that problem. Then, collect the information stated in the checklist before you
call IBM.

CP ABEND Checklist
Collect the following information before calling IBM:

1. The last action performed by CP before the ABEND occurred.

2. Any output generated that demonstrates the problem.

3. Any messages and return codes received.

4. A CP restart dump.

5. A CP nucleus loadmap.

6. If possible, the program label or the address at which the ABEND occurred.

CMS ABEND Checklist
Collect the following information before calling IBM:

1. The last action performed by CMS before the ABEND occurred.

2. Any output generated that demonstrates the problem.

3. Any messages and return codes received.

4. At a minimum, the contents of the PSW and the general and control registers.

5. A dump of the virtual machine containing CMS.

6. A CMS nucleus loadmap.

7. If possible, the program label or the address at which the ABEND occurred.

GCS ABEND Checklist
Collect the following information before calling IBM:

1. The identity of the virtual machine in the GCS virtual machine group that
experienced the ABEND.

2. A dump of the virtual machine that terminated abnormally.

3. Any output generated that demonstrates the problem.

4. Any messages and return codes received.

5. A GCS nucleus loadmap.

6. If possible, the program label or the address at which the ABEND occurred.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Appendix A. Problem-Specific Checklists 245

RSCS ABEND Checklist

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Collect the following information before calling IBM:

1. The last action performed before the ABEND in RSCS occurred.

2. Any messages and return codes received.

3. The RSCS console log.

4. An RSCS ABEND dump.

5. The RSCS nucleus loadmap (RSCS Version 1).

6. The RSCS link edit map (RSCS Version 2).

7. If possible, the program label or the address at which the ABEND occurred.

CP Wait State Checklist
Collect the following information before calling IBM:

1. The last action performed by CP before the wait state occurred.

2. Any output generated that demonstrates the problem.

3. The contents of the PSW. (Take particular note of PSW bits 40 through 63. A
CP wait state code might be stored there.)

4. The contents of the general registers.

5. A CP restart dump.

6. A copy of the CP internal trace table. (This accompanies the dump.)

7. If available, the wait state code.

Virtual Machine Wait State Checklist
Collect the following information before calling IBM:

1. The last action performed by the virtual machine in question.

2. Any output generated that demonstrates the problem.

3. Any messages and return codes received.

4. The contents of the PSW.

5. The contents of the general and control registers.

6. The contents of the CSW. (Take particular note of CSW bits 32 through 47
where input/output device conditions might be noted.)

7. A dump of the virtual machine in question.

8. If available, the wait state code.

246 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986,1988

- ~ ----.------- -~-.. -------- ---_ ... ----

~.
i

\,,~~/

",,- ./

/f ._"'\
i .
''-.,.J

(

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

RSCS Wait State Checklist
Collect the following information before calling IBM:

1. The last action performed by the virtual machine in question.

2. Any output generated that demonstrates the problem.

3. Any messages and return codes received.

4. The contents of the PSW.

5. The contents of the general and control registers.

6. The contents of the CSW. (Take particular note of CSW bits 32 through 47
where input/output device conditions might be noted.)

7. A dump of the RSCS virtual machine.

8. The RSCS console log.

9. The RSCS nucleus loadmap (RSCS Version 1).

10. The RSCS link edit map (RSCS Version 2).

11. If available, the wait state code.

Checklist for Incorrect or Unexpected Output from an Application
Program

Collect the following information before calling IBM:

1. Documentation associated with the application program.

2. Input to the program.

3. The job control statements (JCL) included with the program.

Checklists for Performance Problems

An Infinite Loop in CP
Collect the following information before calling IBM:

1. The contents of the PSW.

2. The contents of the general and control registers.

3. The contents of storage locations from hexadecimal address 00 to 100.

4. If possible, the instructions (and their addresses) that are involved in the loop.

5. Any console or printed output that demonstrate the problem.

6. A CP restart dump.

7. A CP nucleus loadmap-particularly the names of the modules involved in the
loop.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Appendix A. Problem-Specific Checklists 247

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

An Infinite Loop in a Virtual Machine
Collect the following information before calling IBM:

1. Any output generated that demonstrates the problem.

2. A dump of the virtual machine in question.

3. A CMS nucleus loadmap.

4. If possible, the instructions (and their addresses) that are involved in the loop.

An Infinite Loop in RSCS
Collect the following information before calling IBM:

1. Any output generated that demonstrates the problem.

2. The RSCS nucleus loadmap (RSCS Version 1).

3. The RSCS link edit map (RSCS Version 2).

4. The RSCS console log.

5. A trace of activity in the RSCS virtual machine.

6. If possible, the name of the RSCS module involved.

7. If possible and if applicable, the name of the RSCS link or line driver involved.

Hardware Failure
Collect the following information before calling IBM:

1. Any messages and return codes received.

2. The ~rdware error record.

Inadequate System Parameters
Collect the following information before calling IBM:

1. Normal system parameter readings.

2. Present system parameter readings.

3. The configuration of your system's input/output devices.

248 VM/SP Diagnosis Guide LY24-S241-01 © Copyright IBM Corp. 1986, 1988

-j

1."- -"
I
\'\..../

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

(Appendix B. Control Registers

(.

(

(

(.

The control registers are used to maintain and manipulate control information that
resides outside the Program Status Word (PSW). There are sixteen 32-bit registers
for control purposes. The control registers are not part of addressable storage.

At the time the registers are loaded, the information is not checked for exceptions,
such as invalid segment-size or page-size code or an address designating an
unavailable or a protected location. The validity of the information is checked and
the errors, if any, indicated at the time the information is used.

Figure 17 on page 250 is a summary of the control register allocation.

Figure 18 on page 251 is a description of the Extended Control (EC) PSW.

For more information, refer to the IBM System/370 Principles of Operation,
GA22-7000.

LY24-S24l-0l © Copyright IBM Corp. 1986, 1988 Appendix B. Control Registers 249

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

•• ---------- 32 bits -----------

e SYSTEM CONTROL TRANSL. FORMAT EXTERNAL-INTERRUPT MASKS

1 SEGM-TBL LENGTH SEGMENT-TABLE-ORIGIN-ADDRESSI

2 CHANNEL MASKS

3

4

5

6 HARDWARE ASSIST CONTROLS

7

8 MONITOR MASKS

9 PEM I PER GPR ALTERATION MASKS

PER STARTING ADDRESS

11 PER ENDING ADDRESS

12

13

14 ERROR-RECOVERY CONTROL & MASKS

15 MCEL ADDRESS

PEM = PER EVENT MASKS

Figure 17. Control Register Allocation

250 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

./

(.(~,
I"

"-./

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

I System Mask IKey I EMWP I 9 I cc I :;:~ram I o

o 7 8 11 12 15 16 17 18 19 20 23 24

o Instruction Address

32 39 40

The fields of the EC MODE PSW are:

Bits Contents

o
1
2-4
5
6
7
8-11

12
13

14
15

16-17
18-19

20-23

24-39
40-63

Must be zero.
PER (Program Event Recording) enabled.
Must be zero.
Address translation.
Summary I/O mask.
Summary extension.
The protection key determines if information can be stored
or fetched from a particular location.
Extended control mode.
The machine check flag is set to I if machine check
interruptions are enabled.
The wait state flag is set to 1 when the CPU is in the wait state.
The problem state flag is set to 1 when the CPU is
operating in the problem rather than the supervisor state.
Must be zero.
The condition code reflects the result of a previous
arithmetic, logical, or I/O operation.
The program mask indicates whether or not various program
exceptions are allowed to cause program interrupts.
Must be zero.
The instruction address gives the location of the next
instruction to be executed for program interrupts or of
the instruction last executed for external interrupts.

Figure 18. The Extended Control PSW (Program Status Word)

31

63

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Appendix B. Control Registers 251

252 VM/SP Diagnosis Guide

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LY24-S241-01 © Copyright IBM Corp. 1986, 1988

(--"
,<-j

.# .• "
/~' \

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

! ('" Appendix C. Stand-Alone Dump Formats

(~

(

(-

Tape Format
A tape used with the stand-alone dump facility has the format shown in Figure 19
on page 254.

• If the IPL tape and the dump device are not the same, the IPL tape includes
sections A, B, and C.

• If the dump device is a tape, but not the same tape as the IPL tape, the dump
output tape includes sections C and D.

• If the IPL device and the dump device are the same, the tape includes sections
A, B, C, and D.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Appendix C. Stand-Alone Dump Formats 253

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

IPL BOOTSTRAP SAD
Sequence Program

1 ... ---- A ----+~ 1

Predumped Predumped Predumped Predumped Predumped
Page Page Page Page Page

(;) 1 2 3 4

1 ... --------- B -------

Predumped Predumped Predumped Predumped Predumped Predumped
Page Page Page Page Page Page
5 6 7 8 9 A

--------- B ----------+~ 1

Tape
Mark

1..- c---I

SFBLOK DMPINREC DMPKYREC
1

II
DMPKYREC DUMPED II DUMPED

2 STORAGE II STORAGE
II

****** ******
TAPE *TAPE*
MARK *MARK*
****** ******

1 ... ------------ D -------------+~ 1

A = = > Written by the Stand-Alone Dump Utility on the IPL tape at generation
time.

B = = > Written by BOOTSTRAP on the IPL tape.

C = = > Written by BOOTSTRAP if the IPL tape is the same as the dump tape.
Written by stand-alone dump program if the IPL tape is not the same
as the dump tape.

D = = > Written by the stand-alone dump program on the dump tape.

Figure 19. Stand-Alone Dump Facility Tape Format

254 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

/"'.---""
\ /
'-..?

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

(. DASD Format

(

(

(

When you use a DASD device to IPL the stand-alone dump program, the system
uses cylinder 0 to hold the program. Cylinder 0 must be CP formatted and allocated
as permanent space. The stand-alone dump facility has the format shown in
Figure 20.

C0HlRl COHlR2 C0T0R3 C0T0R4

IPL BOOTSTRAP VOLUME ALLOC.
Sequence Part 1 LABEL MAP

1".-- A --"~I".-- B --"~I

C0T2Rl C0T2R2 C0T3Rl

BOOTSTRAP SAD Predumped
Part 2 Part 2 Fage
& SAD 0
Part 1

I".--A --"~I'- c-+I

C0T3R2 C0T4Rl C0T4R2 C0T5Rl C0T5R2

Predumped Predumped Predumped Predumped Predumped
Page Page Page Page Page
1 2 3 4 5

� ... ------- 0 --------

C0T6Rl C0T6R2 C0TlRl C0TlR2 caT8Rl

Predumped Predumped Predumped Predumped Predumped
Page Page Page Page Page
6 7 8 9 A

-----------------D~--------------.. ~I
A = = > Written by the Stand-Alone Dump Utility on the .

IPL DASD at generation time.

B = = > Written by FORMAT/ALLOCATE program.

C = = > Written by BOOTSTRAP Part 1 on the IPL DASD.

D = = > Written by BOOTSTRAP Part 2 on the IPL DASD.

CnTnRn identifies cylinder, track, and record numbers.

Figure 20. Stand-Alone Dump Facility DASD Format

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 AppendiX C. Stand-Alone Dump Formats 255

Printer Format

Error Handling

Dumps to printer devices are printed as follows:

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• CP formats the following data fields for each processor, beginning with the
processor where the stand-alone dump program was IPLed:

CPU address (only if in AP or MP mode)
General purpose registers
Control registers
Floating point registers
Clock comparator
CPU timer values
Stored-status PSW
Prefix value (only if in AP or MP mode)
External interrupt old/new PSWs
SVC old/new PSWs
Program check old/new PSWs
Machine check old/new PSWs
I/O interrupt old/new PSWs.

• The following fields are printed for the processor where the stand-alone dump
program was IPLed:

- TOD clock.

• Lines of duplicate data will have a suppression message after the first line of the
data is printed. " j

• A half page (2048 bytes) of all zeros has one line of zeros printed with the key,
followed by a line suppressed message.

• The dump page is interpreted on the right-hand side of the printout.

Basic error recovery is available for DASD, tape, and printer devices used as IPL or ./ "
output devices. In addition, the following information may be of value when the . /
system detects errors:

• The CSW is at location X'40'.

• The I/O address is at location X' BA ' .

• 32 bytes of sense data are at location X' 2EO' .

• The starting and ending addresses of the CP Trace Table are stored in the PSA
at X' 7BO' and X' 7B4' , respectively, in addition to the low storage locations.

Under certain error conditions, storage areas may be overlaid. This could cause
fields in SFBLOK and DMPINREC to be incorrect. (For example, fields containing
date and time information.)

256 VMjSP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Appendix D. GCS Control Blocks

This appendix describes the layouts of some GCS control blocks and key fields that
are used for identifying problems in a VMjSNA environment. The information that
is provided is enough to allow you to display the GCS areas that can be relevant
when determining the source of a problem.

This appendix describes the format and layout of:

NUCON
SIE
EXTWA
SVCWA
PGMWA

GCS Nucleus Constant Area
NUCON Extension
External Interrupt Handler Work Area
SVC Interrupt Handler Work Area
Program Interrupt Work Area.

In all the descriptions, the field lengths are shown in decimal units of bytes; the
displacements are shown in hexadecimal.

LY24-S241-01 © Copyright IBM Corp. 1986, 1988 Appendix D. GCS Control Blocks 257

NUCON - GCS Nucleus Constant Area

Hex
Displacement

000
008
010
000
008
010
014
018
020
028
030
038
040
048
04C
050
054
058
060
068
070
078
080
084
086
088
089
08A
08C
08D
08E
090
091
094
095
096
097
098
099
09C
09D
OAO
OA8
OA8
OAC
OAD
OBO
OB4
OB8
OB9

Name

NUCIPPSW
NUCICCW1
NUCICCW2
NUCRNPSW
NUCROPSW
NUCADCVT
NUCBGCOM
NUCEOPSW
NUCSOPSW
NUCPOPSW
NUCMOPSW
NUCIOPSW
NUCCSW
NUCCAW
NUCACVT2
NUCTIMER
NUCTRACE
NUCENPSW
NUCSNPSW
NUCPNPSW
NUCMNPSW
NUCINPSW
NUCSYSCM

NUCEICOD

NUCSVILC
NUCSVCN

NUCPIILC
NUCPICOD
NUCTEA
NUCTEAA

NUCMCNUM
NUCPERCD

NUCPER
NUCPERAD

NUCMTRCD

NUCMCKLA
NUCCHNID
NUCIOEL
NUCIOELA
NUCLCL

NUCIOAA

258 VM/SP Diagnosis Guide

Decimal
Length

8
8
8
8
8
4
4
8
8
8
8
8
8
4
4
4
4
8
8
8
8
8
4
2
2
1
1
2
1
1
2
I
3
I
I
I
I
I
3
I
3
8
o
4
I
3
4
4
1
3

Field
Description

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Initial Program Loading PSW
Initial Program Loading CCWI
Initial Program Loading CCW2
Restart New PSW
Restart Old PSW
Address of OS CVT
Address of BGCOM
External Old PSW
SVC Old PSW
Program-Check Old PSW
Machine-Check Old PSW
I/O Old PSW
Channel Status Word
Channel Address Word
CVT Address For Dump Routines
Interval Timer
Address of Table Trace Header
External New PSW
SVC New PSW
Program-Check New PSW
Machine-Check New PSW
I/O New PSW
Used by VSAM
Reserved - Set to Zero
External Interruption Code
Reserved - Set to Zero
SVC ILC
SVC Interruption Code
Reserved - Set to Zero
Program-Check ILC
Program Interruption Code
Reserved - Set to Zero
Translation Exception Address
Reserved - Set to Zero
Monitor Call Class Number
Program Event Recorder Code
Reserved - Set to Zero
Reserved - Set to Zero
Program Event Recorder Address
Reserved - Set to Zero
Monitor-Call Code
Reserved for Future Use
Machine-Check Logout Area
ChannellD
Reserved for Future Use
I/O Extended Logout Pointer
Limited Channel Logout (ECSW)
Reserved for Future Use
Reserved for Future Use
I/O Address

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

/

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

(Hex Decimal Field
Displacement Name Length Description

OBC 44 Reserved for Future Use
OE8 NUCMCIC 8 Machine Check Interruption Code
OFO 8 Reserved for Future Use
OFO 8 Reserved for Future Use
OF8 NUCFSA 1 Reserved - Set to Zero
OF9 NUCFSAA 3 Failing Storage Address
OFC NUCRGNCD 4 Region Code
100 NUCFLOGA 96 Fixed Logout Area
160 NUCFPRLG 32 Floating Point Register Save Area
180 NUCGPRLG 64 General Purpose Register Save Area
1CO NUCECRLG 64 Extended Control Register Save Area
200 NUCVTAM 4 Reserved for VTAM

(
204 NUCVMID 8 Virtual Machine User ID
20C NUCLVL 4 Release/Service Level
210 NUCIDS 0 SIGNALID/TASKID
210 NUCSIGID 2 This Virtual Machine Signal ID
212 NUCATID 2 Active Task ID
214 NUCATB 4 Address of Active Task
218 NUCPOST 4 Branch Entry Address for POST
21C NUCCTB 4 Common Trace Block Pointer
220 NUCNPM 4 Network Performance Monitor
224 4 Reserved

(228 NUCZIT 4 Start of Private Storage (IPCS Use Only
22C NUCAGW 4 AGW RAS Use
230 92 Reserved for Future Use
28C NUCFEIBM 12 Component ID-IPCS Referenced
298 NUCABW 4 Address of Abend Work Area (for IPCS)
29C NUCRSTSI 4 System Restart Save Area
2AO NUCRSTS2 4 System Restart Save Area
2A4 NUCRSTF I System Restart Flags
2A4 NUCRSTR X'OI' Recursion Bit (Restart)
2A4 NUCMSGR X'02' Recursion Bit (Message Facility)

(2A5 3 Reserved
2A8 NUCBLRSV 64 Register Save Area
2E8 NUCCMDLN 160 Command Input Line
388 NUCCMLST 536 Tokenized PLIST
SAO NUCUPPER 4 Upper Case Translate Table
5A4 NUCPLFID 4 Flag Word Used by CSISCN
5A4 NUCPLSWT I I-Byte Switch Used in CSISCN
5A8 NUCCWR 4 Console Write Routine
sAc NUCACPF 4 CP Command Passthru
5BO NUCSCANN 4 Scan Routine Entry Point
5B4 NUCSCNT 4 Scan Routine Entry Point
5B8 NUCPLIST 8 Extended PLIST (Untokenized)
5B8 NUCPLCMD 4 Adr of Command Token
5BC NUCPLBEG 4 Adr of Start of Argument String
5CO NUCPLEND 4 Adr of End of Argument String

(5C4 NUCSIE 4 Pointer to SI Extension
5C8 NUCIHCSA 8 Interrupt Handler common Save Area
5DO NUCSAVQI 4 Header Ptr for Interrupt Handler Save Areas
5D4 NUCSAVQ2 4 Trailer Ptr for Interrupt Handler Save Areas
5D8 NUCSRPTR 4 Ptr to System Restart Work Area (for IPCS)

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Appendix D. GCS Control Blocks 259

Hex
Displacement

5DC
5EO
5E4
5E8
608
650
650
654
656
658
65C
660
664
668
66C
670
674
678
67C
680
684
688
688
690
698
6AO
6A4
6A8
6AC
6AE

Name

NUCDEB

NUCCBLKS

NUCFCBTB
NUCFCBl
NUCFCBNM

NUCLAF
NUCERS
NUCSTTN
NUCFNS
NUCFVS
NUCAUD
NUCRDBUF
NUCDEVTB
NUCADTS
NUCDIODA
NUCAFTS

NUCTODCA
NUCTODTT
NUCTODDT

NUCLLNAM
NUCLLDIR
NUCLLSIZ
NUCLLNUM

SIE - NUCON Extension

Hex
Displacement

000
008
OOC
010
014
018
01C
020
024
026

027

Name

SIETRQ
SIEQCB
SIETTBL
SIETBQ
SIEAEQ
SIESCB
SIELKCOM
SIELKTID
SIELOCKB
SIELKCMB
SIEPM
SIEPMGLB

SIEPMOSR

260 VM/SP Diagnosis Guide

Decimal
Length

4
4
4
32
72
8
4
2
2
4
4
4
4
4
4
4
4
4
4
4
4
8
8
8
8
4
4
4
2
2

Decimal
Length

8
4
4
4
4
4
4
4
2
1
X'80'
1
X'80'

X'40'

Field
Description

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

DEB Entry Chain Address
Reserved for Future Use
Pointer to Modules Known to Program Management
Reserved for Future Use
Reserved for Future Use
FCB Anchor Chain
Address of First FCB
Number of FCBs in the Chain
Reserved
V(CSILAF) AACTLKP
V(CSIERS) AERASE
V(CSISTT) AESTATE
V(CSIFNS) AFINIS
V(FVS) AFVS
V(CSIAUD) AUPDISK
V(CSIRWBRD) CSIRWBRD
V(DEVTAB) Address of DEVTAB
V(ADTSECT) Address of ADTSECT
V(DIOSECT) Address of DIODA
V(AFTSTART) Address of AFTSTART
RESERVED

Total Virtual Machine Time
Time of Day When Dispatched
Reserved
Address of LOADLIB Name List
Address of LOADLIB Directory List
Size of LOAD LIB Name and Directory Storage
Number of Globaled LOADLIBs
Reserved for Future Use

Field
Description

Eye Catcher (CSISIE)
Timer Request Queue Start
ENQ Control Block Queue Start
Addr of T ASKID Table
Addr of 1st Task Block in Dispatch Queue
Addr of Asynchronous Exit Queue
Pointer to ST AE Control Block Pool
Address of the Common Storage Lock
Task ID Waiting for Lock
Byte Indicating Whether the Machine
Is Waiting for Lock
Program Management Flag Byte
Set On When Global LOAD LIB Command Issued
Set Off When BLDL Searches Directories
Set On When OSRUN is Active

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

',,-- /'

------- -------

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

(Hex Decimal Field
Displacement Name Length Description

Set Off By Link
028 SIEVMCBS 4 Address of VMCB Array
02C SIEVMCB 4 Address of This Machine's VMCB
030 SIESYSNM 4 Pointer to VSAM SYSNAMES Table
034 SIEPOST 4 Branch Entry to POST
038 SIEGETM 4 Branch Entry Point to GET MAIN
03C SIEFREM 4 Branch Entry Point to FREEMAIN
040 SIESMAB 4 Pointer to SMAB
044 SIECAADR 4 Addr of ATTN Interrupt ECB
048 SIECIADR 4 Addr of I/O Complete ECB
04C SIECOADR 4 Addr of Cons. Output Pend. ECB

SIECEOL X'80' Indicate End of ECB List

(
050 SIECTADR 4 Addr of Command Task ECB
054 SIECAECB 4 Attention Interrupt ECB
058 SIECIECB 4 I/O Complete ECB
05C SIECOECB 4 Output Pending ECB
060 SIECTECB 4 Command Task ECB
064 SIECONFL 1 Console Task Flags

SIECRDIO X'80' Read I/O In Progress
SIECWRIO X'40' Write I/O in Progress
SIECATTP X'20' Attention Pending Bit
SIECOUTP X'lO' Output Pending Bit

<-
065 SIECMDFL 3 Reserved Command Flags
068 SIEFCMDQ 4 Ptr First Command Input Buf
06C SIELCMDQ 4 Ptr Last Command Input Buf
070 SIEFSWQE 4 Ptr First WQE Buf on Queue
074 SIELSWQE 4 Ptr Last WQE Buf on Queue
078 SIEFSORE 4 Ptr First ORE BUF on Queue
07C SIELSORE 4 Ptr Last ORE BUF on Queue
080 SIECCWS 8 Console CCWS
080 SIECCWI 8 First CCW

{
080 SIECCWIC 1 CCW Command Code
081 SIECCW1A 3 Data Address
084 SIECCW1F 1 Flag Byte
085 SIECCWIN I Unused Flag Byte
086 SIECCWIB 2 Byte Count
088 SIECCW2 8 Second CCW
088 SIECCW2C 1 CCW Command Code
089 SIECCW2A 3 Data Address
08C SIECCW2F 1 Flag Byte
08D SIECCW2N 1 Unused Flag Byte
08E SIECCW2B 2 Byte Count
090 SIEIDORE 13 Bit String For ORE IDS
09D SIELSTID 1 Last ID Used for Assigning
09E 2 Reserved
OAO SIETAB 4 Trace Anchor Block Pointer
OA4 SIENUCX 4 Pointer to Nucleus Extension

(Control Block Chain
OA8 SIEBVSAM 4 Beginning of VSAM Shared Segment
OAC SIEEVSAM 4 End of VSAM Shared Segment
OBO SIEBBAM 4 Beginning of BAM Shared Segment
OB4 SIEEBAM 4 End of BAM Shared Segment

LY24-524l-01 © Copyright IBM Corp. 1986, 1988 Appendix D. GCS Control Blocks 261
--"--------"._--

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Hex Decimal Field
,/-~

\~/ Displacement Name Length Description

OB8 SIEIUCAB 4 IUCV Anchor Block
OBC SIESSPTH 2 Signal Services Path (Path ID)
OBE 2 Reserved
OCO SIEFREST 4 Start of Available Common Free STOR
OC4 SIEZNR 4 Start of Available Private Free STOR
OC8 SIEVMSIZ 4 Size of This Virtual Machine
OCC SIETQE 4 Address of TQE POOL
ODO 4 Reserved for Future Use
OD4 SIEIFLAG 1 Initialization Flags

SIEAUSER X'02' On Means Virtual Machine Authorized
SIE4K X'Ol' On Means This is a 4K Page Machine f

OD5 SIETIME 8 System Save Time \

ODD SIEDATE 8 System Save Date
" " OE5 SIECRIT 1 Critical Bits

;

SIESMGMT X'80' Storage Management
SIESTERM X'40' System Termination
SIEINIT X'20' Initialization
SIESVC X'lO' SVC Handler
SIEFSACC

t
File System X'08'

SIEFSERS X'04' File System
SIEFSFNS X'02' File System
SIEFSWRB X'Ol' File System

" OE6 2 Reserved
OE8 SIEREDRN 4 Highest Ready Task Level ~01

OEC SIEDSP 1
SIEDSTOP X'80' Priority Change Bit

OED 3 Reserved
OFO SIESLICE 8 Time Slice in Microseconds
OF8 SIESDXBR 4 Branch Entry to SCHEDEX
OFC SIESAV 4 Save Area for Branch Entry
100 SIEIUS 4 Branch Entry to IUCV
104 SIEGENIO 4 Branch Entry to GENIO START/R /' "
108 SIESATB 4 Saved Active Tsk Blk Adr ,,_/
lOC SIESATID 2 Saved Active Tsk Blk ID
lOE 2 Reserved

EXTWA - External Interrupt Handler Work Area

Hex Decimal Field
Displacement Name Length Description

000 EXTWA 0 External Interrupt Handler Work Area
000 EXTPSW 8 External Old PSW
008 EXT SAVE 80 Save Area
058 EXT AREA 72 Save Area
OAO EXT REGS 64 Registers at Time of Interrupt
OEO EXTFPR 32 Floating Point Registers

;r~

i'"j

262 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(,-

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

SVCWA - SVC Interrupt Handler Work Area

Hex Decimal Field
Displacement Name Length Description

000 SVCWA 0 SVC Interrupt Handler Work Area
000 SVCSAVE 64 Registers at the Time of the Interrupt
040 SVCFREGS 32 Floating Point Registers
040 SVCFREGO 8 Floating Point Register 0
048 SVCFREG2 8 Floating Point Register 2
050 SVCFREG4 8 Floating Point Register 4
058 SVCFREG6 8 Floating Point Register 6
060 SVCSTB 176 Default State Block
110 SVCUSA 96 Default User Save Area
170 SVCSTPTR 4 Ptr to State Block in Use
174 Reserved 4 Reserved
178 SVCNQRY 0 PLIST for NUCEXT QUERY
178 SVCNFUNC 8 = CL8'NUCEXT' Identifies NUCEXT Function
180 SVCNNAME 8 =CL8' , Nucleus Extension Name
188 SVCNPTR 4 Received Ptr to NUCXBLK
18C SVCNIND 4 =XL4'FFFFFFFF' Identifies NUCEXT QUERY

FUNCT

PGMWA - Program Interrupt Work Area

Hex Decimal Field
Displacement Name Length Description

000 PGMWA 0 Program Check Interrupt Work Area
000 PGMOPSW 8 Program Old PSW
008 PGMREGS 64 Registers at Time of Interrupt

VMCB - Virtual Machine Control Block

Hex Decimal Field
Displacement Name Length Description

000 VMCUSER 8 Virtual Machine U serid
008 VMCINSIG 4 Initialization Signal-id
008 2 Reserved
OOA VMCSIGID 2 Virtual Machine Signal-id
OOC VMCLCKH 4 Lock Holding Pointer
010 VMCLKWD 4 Lock Waiting Pointer
014 VMCSCHDX 4 Pointer to the Chain of AEB Blocks to be Scheduled

for this Virtual Machine

LY24-S241-01 © Copyright IBM Corp. 1986, 1988 Appendix D. GCS Control Blocks 263

o

8
VMCINSIG

10

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

VMCUSER

VMCSIGID VMCLCKH

VMCLCKW VMCSCHDX

Figure 21. VMCUSER

264 VM/SP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

(Summary of Changes

(

(-

Summary of Changes for VM/SP Diagnosis Guide
To obtain prior editions of VM/SP Diagnosis Guide or the VM/SP System Programmer's
Guide, you must order using a pseudo-number assigned to the respective edition. These
pseudo-numbers are found in the VM/SP Library Guide and Master Index, GCI9-6207.

Summary of Changes
for LY24-S241-1
for VM/SP Release 6

Enhanced CPTRAP Facility

The CPTRAP facility is enhanced with

• The addition of the DATATRAP function which collects various types of data at
various selected points in CPo

• The addition of the CCWTRACE function which traces I/O activity between CP
and selected real devices.

• The elimination of TRAPRED as the method used to display and analyze records
in the CPT RAP file. IPCS now provides support to analyze these records, as well
as, formatting and printing records in the CPTRAP file.

New SET AUTODUMP and QUERY AUTODUMP Commands

These new commands support debugging in a remote environment. The SET
AUTODUMP command controls the creation of an automatic dump of CMS in the
event of an abend. The QUERY AUTODUMP command returns the current setting of
the SET AUTODUMP command. Information on these commands starts on page 132.

Shared File System (SFS)

The Shared File System helps CMS manage and share files. Files stored in SFS can be
shared by mUltiple users and across multiple systems. SFS allocates DASD space
dynamically as a user creates and extends files; it similarly reclaims the space as users
erase or replace files. Users can organize their files in multiple hierarchical structured
directories; hence, the same files can be in multiple directories.

Chapter 5, "Debugging the SFS Server Machine" on page 145 has been added to this
manual. For more details on SFS, also refer to the VMjSP CMS User's Guide,
SC19-621O and VMjSP CMS Shared File System Administration, SC24-5367.

APPC/VM VTAM Support (AVS)

VMjSP Advanced Program-to-Program Communications connectivity is enhanced for
VMjSP Release 6. A major part of this enhancement is the APPCJVM VT AM Support
(A VS) to support the APPC/VM interface to the SNA network.

Chapter 8, "Debugging AVS" on page 235 has been added to this manual. For more
details on AVS, also refer to the VMjSP Connectivity Programming Guide and
Reference, SC24-5377 and VMjSP Connectivity Planning, Administration, and Operation,
SC24-5378.

Structural Changes

Sections of the VMjSP Problem Reporting Guide, SC24-5282 and the GCS Diagnosis
Reference, LY24-5239, have been added to this manual. These two manuals have been
discontinued as part of the VM Library.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 Summary of Changes 265

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Because of the enhancement to the IPCS component for Release 6, the VM/SP
Interactive Problem Control System Guide and Reference has been recreated and IPCS
information has been removed from this manual.

Integration of Between-Release Support Information to VM/SP Release 6

The information from the following pUblications has been added to this book for
Release 6:

• VM VM/VTAM and NetView™ Enhancements, GC24-531O.

• VM/SP 9370 Processors, 9332 and 9335 Direct Access Storage Devices, and 9347
Tape Drive, GC24-5315

• VMjSP GCSjVSAM Support for Local Shared Resources/Deferred Write,
GC24-5360

• VMjSP Transparent Access Facility 9370 Local Area Network Subsystems,
GC24-5363

Miscellaneous

Minor technical and editorial changes have been made throughout this manual.

Structural Changes for VM Release 5
This manual contains material formerly found in the VMjSP System Programmer's Guide
(SCI9-6203) or VMjSP HPO System Programmer's Guide (SC19-6224), VMjSP Group
Control System Guide (SC24-5249), and VMjSP Interactive Problem Control System Guide
(SC24-5260).

Technical Changes for VM Release 5
Summary of Changes
for LY24-5241-0
for VM Release 5

TrallsparentServices Access Facility (TSAF)

Is a facility that lets users connect to and communicate with local or remote virtual
machines within a group of systems. With TSAF, a user can connect to a program by
specifying a name that the program has made known, instead of specifying a user ID
and node ID.

High Perfor""ance Option (HPO)

This manual was updated so that it applies to both VM/SP and VMjSP HPO.

Manual Organization

Chapters 45, 46, and 47 from the VMjSP System Programmer's Guide were moved into
Chapters 1, 3, and 4 of this manual.

Information on PER and TRACE from the VMjSP CMS User's Guide and VMjSP CP
General User Command Reference were moved into Chapter 2 of this manual.

Information on abend dumps from the VMjSP Operator's Guide were moved into
Chapter 3 of this manual.

Information on network dump and NCPDUMP from the VMjSP Operator's Guide was
moved into Chapter 3 of this manual.

Information on the Stand-Alone Dump Facility from the VMjSP Operator's Guide was
moved into Chapter 3 of this manual.

NetView is a trademark of the International Business Machines Corporation.

266 VMjSP Diagnosis Guide LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Part of Chapter 2 from the VMjSP Group Control System Guide was moved into
Chapter 5 of this manual.

Chapters 1,2, and 3 from the VMjSP Interactive Problem Control System Guide was
moved into Chapter i-of this manual.

Chapter 4 from the VMjSP Interactive Problem Control System Guide and Appendix B
from the VMjSP Group Control System Guide were moved into Appendix A of this
manual.

Appendix B is new to this manual.

Appendix C from the VMjSP Interactive Problem Control System Guide was moved into
Appendix C of this manual.

Appendix A from the VMjSP System Programmer's Guide was moved into Appendix D
of this manual.

Information on Stand-Alone Dump Formats from the VMjSP Operator's Guide was
moved into Appendix E of this manual.

Information on converting symptom summary and dump files from the VMjSP
Interactive Problem Control System Guide was moved into Appendix F of this manual.

Appendix G is new to this manual.

Miscellaneous

Minor technical and editorial changes have been made throughout this manual.

Some error messages changed to mixed case.

LY24-524 1-01 © Copyright IBM Corp. 1986, 1988 Summary of Changes 267

268 VMjSP Diagnosis Guide

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

/
(

\.

:(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Glossary of Terms and Abbreviations

A

ahend. (I) Abnormal end of task. (2) Synonym for
abnormal termination.

abend dump. The contents of main storage, or part of
main storage, written to an external medium for
debugging an error condition that resulted in the
termination of a task before its regular completion.

abnormal end of task (abend). Termination of a task
before its completion because of an error condition that
cannot be resolved by recovery facilities while the task is
executing.

abnormal termination. The ending of processing before
planned termination. Synonymous with abend.

accept. Allowing a connection to the user's virtual
machine from another virtual machine or from the
user's own virtual machine.

ACF/SSP. Advanced Communications Function for
Systems Support Programs.

active disk table (ADT). A table residing in the user's
copy of the CMS nucleus that contains an entry for
each valid file mode letter; that is, for each disk or SFS
directory accessed.

active file table (AFT). A table residing in the user's
copy of the CMS nucleus that contains an entry for
each CMS file currently open.

address stop. See breakpoint and instruction address
stop.

ADT. Active disk table.

Advanced Communications Function for Systems Support
Programs (ACF/SSP). An IBM program product made
up of a collection of utilities and small programs. SSP
is required for operation of the NCP.

Advanced Program-to-Program Communications
(APPC). The inter-program communication service
within SNA LU 6.2 on which the APPC/VM interface is
based.

Advanced Program-to-Program Communications/VM
(APPC/VM). An API for communicating between two
virtual machines that is mappable to the SNA LU 6.2
APPC interface and based on IUCV functions. Along
with the TSAF virtual machine, APPC/VM provides
this communication within a single system and
throughout a collection of systems.

LY24-S241-01 © Copyright IBM Corp. 1986, 1988

AFT. Active file table.

alias. A pointer to a base file. An alias can be in the
same directory as the base file or in a different
directory. There must always be a base file for the alias
to point to. The alias references the same data as the
base file. Data is not moved or duplicated.

AP. Attached processor.

AP AR. Authorized program analysis report.

AP AR number. The number that IBM assigns to an
AP AR and to the change resulting from it.

APPC. Advanced Program-to-Program
Communications.

APPC/VM. Advanced Program-to-Program
Communications/VM.

APPC/VM VTAM Support (AVS). A component of
VM/SP that lets application programs using APPC/VM
communicate with programs anywhere in a network
defined by IBM's SNA. AVS transforms APPC/VM
into APPCjVT AM protocol.

application program. A program written for or by a
user that applies to the user's work, such as a program
that does inventory control or payroll.

apply. When servicing a product or component, to
generate an auxiliary control structure from a PTF.

area. A term acceptable for DASD space when there is
no need to differentiate between space on
count-key-data devices and FB-SI2 devices. See DASD
space.

assembler language. A source language that includes
symbolic machine language statements in which there is
a one-to-one correspondence with instruction formats
and data formats of the computer.

attached processor (AP). A processor that has no I/O
capability and is always linked to the processor
initialized for I/O handling.

attention interrupt. An I/O interrupt caused by a
terminal user pressing the attention key (or equivalent).
See attention key (ATTN key) and signaling attention.

attention key (ATTN key). A function key on terminals
that, when pressed, causes an I/O interruption in the
processing unit. See signaling attention.

Glossary of Terms and Abbreviations 269

ATTN key. Attention key.

authority. In SFS, the permission to access a file or
directory. You can have read authority or write
authority (which includes read authority). You can also
have file pool administration authority, which is the
highest level of authority in a file pool.

authorized program. Synonym for privileged program.

authorized program analysis report (APAR). An official
request to the responsible IBM Change Team to look
into a suspected problem with IBM code or
documentation. APARs describe problems giving
conditions of failure, error messages, abend codes, or
other identifiers. They also contain a problem summary
and resolution when applicable. See program temporary
fix (PTF).

authorized user ID. In GCS, a user ID that provides
access to the GCS supervisor, supervisor state, and (in
some cases) certain restricted CP commands. This
access is provided by including the user ID on a list of
authorized user IDs compiled with the GCS GROUP
EXEC. The virtual machine associated with an
authorized user ID is an authorized machine, and
programs running in that machine are authorized
applications.

authorized virtual machine. A GCS virtual machine
identified by user ID.

auxiliary directory. In CMS, an extension of the CMS
file directory for a minidisk, which contains the names
and locations of certain CMS modules not included in
the minidisk's CMS file directory.

A VS. APPCjVM VT AM Support.

A VS virtual machine. The virtual machine that
manages a gateway that allows communication between
VM systems and an SNA network.

B
basic control (BC) mode. A mode in which additional
System/370 features, such as new machine instructions,
are not operational. Contrast with extended control
(EC) mode.

BC mode. Basic control mode.

binary digit. Either of the digits 0 or 1 when used in
the pure binary numeration system. Synonymous with
bit.

binary synchronous communication (BSC).
Communication using binary synchronous line discipline
in which transmission of binary-coded data between

270 VM/SP Diagnosis Guide

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

stations is synchronized by timing signals generated at
the sending and receiving stations.

bit. (1) Either of the binary digits 0 or 1. See byte.
(2) Synonym for binary digit.

block. A unit of DASD space ori FB-512 devices. For
example, FB-512 devices can be the IBM 9335, 9332,
9313,3370, and 3310 DASD using fixed-block
architecture.

bpi. Bits per inch.

Bpi. Bytes per inch.

breakpoint. A place in a program, specified by a
command or a condition, where the system halts
execution and gives control to the workstation user or
to a specified user.

BSC. Binary synchronous communication.

buffer. An area of storage, temporarily reserved for
performing input or output, into which data is read, or
from which data is written. ,

build. In reference to installation and service of a
product, to do the necessary steps to produce executable
code or systems. This is often called the build process. ,-

byte. A unit of storage, consisting of eight adjacent
binary digits that are operated on as a unit and
constitute the smallest addressable unit in the system.

c
CAW. Channel address word.

CC. Condition code.

CCS. Console communication service.

CCW. Channel command word.

changes. In reference to installation and service, IBM
and original equipment manufacturer (OEM) supplied
service for their programs. In the IBM service process,
there are many ways users can receive information they
need to fix (change) a portiones) of a product they are
running on a VM system. These include PTFs, APARs,
user modifications, and information received over the
phone. All these types of information are called
changes.

channel. A path in a system that connects a processor
and main storage with an I/O device.

channel address word (CAW). An area in storage that
specifies the location in main storage at which a channel
program begins.

LY24-5241-01. © Copyright IBM Corp. 1986, 1988

~~~~~~~~-- -_ .. _-_. __ . -- -

( 

(f" 
'~ 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

channel-check handler (CCH). In System/370, a feature 
that records information about channel errors and issues 
appropriate messages to the operator. 

channel command word (CCW). A doubleword at the 
location in main storage specified by the channel 
address word. One or more CCW s make up the channel 
program that directs data channel operations. 

channel status word (CSW). An area in storage that 
provides information about the termination of I/O. 

channel-to-channel adapter (CTCA). A hardware device 
that connects two channels on the same computing 
system or on different systems. 

checkpoint. An internal file pool server operation 
during which the changes recorded on the log minidisks 
are permanently made to the file pool. 

checkpoint (CKPT) start. A VM/SP system restart that 
attempts to recover information about closed spool files 
previously stored on the checkpoint cylinders. The 
spool file chains are reconstructed, but the original 
sequence of spool files is lost. Unlike warm start, CP 
accounting and system message information is also lost. 
Contrast with cold start, force start, and warm start. 

CICS/VM. Customer Information Control System for 
VM. 

circumventive service. Information that IBM supplies 
over the phone or on a tape to circumvent a problem by 
disabling a failing function until a PTF is available to be 
shipped as a corrective service fix. See patch and zap. 

CKD. Count-key-data. 

class authority. Privilege assigned to a virtual machine 
user in the user's directory entry; each class specified 
allows access to a subset of all the CP commands. See 
privilege class and user class restructure (VCR). 

class C user. See system programmer privilege class. 

clock comparator. A hardware feature (required by 
VM/SP) that causes an interruption when the TOD 
clock has equaled or exceeded the value specified by a 
program or virtual machine. 

CMS. Conversational Monitor System. 

CMS/DOS. The functions of CMS that become 
available when the user enters the command: SET DOS 
ON. CMS/DOS is a part of the regular CMS system 
and is not a separate system. Users who do not use 
CMS/DOS are sometimes called OS users, because they 
use the OS simulation functions of CMS. Synonymous 
with DOS simulation under CMS. Contrast with OS 
simulation under CMS. 

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 

CMS EXEC. An EXEC procedure or EDIT macro 
written in the CMS EXEC language and processed by 
the CMS EXEC processor. Synonymous with CMS 
program. 

CMS EXEC language. A general-purpose, high-level 
programming language, particularly suitable for EXEC 
procedures and EDIT macros. The CMS EXEC 
processor executes procedures and macros (programs) 
written in this language. Contrast with EXEC 2 
language and Restructured Extended Executor (REXX) 
language. 

CMS file directory. A directory on each CMS disk that 
contains the name, format, size, and location of each of 
the CMS files on that disk. When a disk is accessed by 
the ACCESS command, its directory is read into virtual 
storage and identified with any letter from A through Z. 
Synonymous with master file directory block and 
minidisk directory. 

CMS nucleus. The portion of CMS that is resident in 
the user's virtual storage whenever CMS is executing. 
Each CMS user receives a copy of the CMS nucleus 
when the user IPLs CMS. See saved system and shared 
segment. 

CMS program. Synonym for CM S EXEC. 

cold start. A VM/SP system restart that ignores 
previous data areas and accounting information in main 
storage, and the contents of paging and spool files on 
CP-owned disks. Contrast with checkpoint (CKPT) 
start, force start, and warm start. 

collection. See TSAF collection. 

command. A request from a user at a terminal for the 
execution of a particular CP, CMS, IPCS, GCS, TSAF, 
or A VS function. A CMS command can also be the 
name of a CMS file with a file type of EXEC or 
MODULE. See subcommand and user-written CMS 
command. 

command line. The line at the bottom of display panels 
that lets a user enter commands or panel selections. It 
is prefixed by an arrow (= = = ». 

common dump receiver. One user ID in a virtual 
machine group appointed to receive other group 
members' storage dumps. Unless the user specifies 
otherwise, all dumped information automatically goes to 
this user ID (identified with the GCS GROUP EXEC). 
It should be an authorized user ID in order to receive 
fetch-protected data as well as storage with a key other 
than 14. 

common lock. A doubleword in storage, controlled by 
the GCS LOCKWD macro. When a program is using 
common storage, it can turn the common lock ON. 

Glossary of Terms and Abbreviations 271 



Other programs that examine the lock and find it ON 
cannot gain access to common storage. 

common storage. A shared segment of reentrant code 
that contains free storage space, the GCS supervisor, 
control blocks, and data that all members of a virtual 
machine group share. 

communication link. Synonym for data link. 

compile. To translate a program written in a high-level 
programming language into a machine language 
program. 

component. A collection of objects that together form a 
separate functional unit. A product may contain many 
components (for example, VM/SP has components of 
CP, CMS, GCS, TSAF, IPCS, and A VS). A component 
can be part of many products. (CP spans both VM/SP 
and VM/HPO products). 

component override. Synonym for component parameter 
override. 

component parameter override. A component 
parameter, defined in a component override area, that 
updates or replaces a component parameter defined in a 
component area of the product parameter file. 
Synonymous with component override and override. 

concurrently. Concerning a mode of operation that 
includes doing work on two or more activities within a 
given (short) interval of time. 

condition code (CC). A code that reflects the result of a 
previous I/O, arithmetic, or logical operation. 

connect. Establishing a path to communicate with 
another virtual machine or with the user's own virtual 
machine. 

console. A device used for communications between the 
operator or maintenance engineer and the computer. 

console communication service (CCS). A group of CP 
modules that interfaces with the VT AM service 
machine,· providing full VM/SP console capabilities for 
SNA terminal users. 

console function. The subset of CP commands that lets 
the user simulate almost all of the functions available to 
an operator at a real system console. 

console spooling. Synonym for virtual console spooling. 

console stack. Refers collectively to the program stack 
and the terminal input buffer. 

contention. The situation where two LUs try to allocate 
a conversation over the same session at the same time. 

272 VM/SP Diagnosis Guide 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

control block. A storage area that a computer program 
uses to hold control information. 

control data. In reference to a file pool, the data that 
controls the DASD space and objects within a file pool. 
Control data consists of the POOLDEF file, the control 
minidisk, and all minidisks allocated to storage group 1. 

control me. (1) In service, a file with file type CNTRL 
that contains records that identify the updates to be 
applied and the macro libraries, if any, needed to 
assemble that source program. (2) A CMS file that is 
interpreted and directs the flow of a certain process 
through specific steps. For example, the control file 
could contain installation steps, default addresses, and 
PTF prerequisite lists as well as many other necessary 
items. 

control program. A computer program that schedules 
and supervises the program execution in a computer 
system. See Control Program (CP). 

Control Program (CP). A component of VM/SP that 
manages the resources of a single computer so multiple 
computing systems appear to exist. Each virtual 
machine is the functional equivalent of an IBM 
System/370. 

control section (CSECT). The part of a program 
specified by the programmer to be a relocatable unit, all 
elements of which are loaded into adjoining main 
storage. 

control unit. A device that controls I/O operations at 
one or more devices. 

conversation. A connection between two transaction 
programs over an LU-LU session that lets them 
communicate with each other while processing some 
transaction. The programs establish a conversation, 
send and receive data in the conversation, and then 
terminate the conversation. 

Conversational Monitor System (CMS). A virtual 
machine operating system and component of VM/SP 
that provides general interactive time sharing, problem 
solving, program development capabilities, and operates 
only under the control of the VM Control Program 
(CP). 

corrective service. Service that IBM supplies on tape to 
correct a specific problem. 

count-key-data (CKD) device. A disk storage device 
that stores data in the format: count field, usually 
followed by a key field, followed by the actual data of a 
record. The count field contains the cylinder number, 
head number, record number, and the length of the 
data. The key field contains the record's key (search 
argument). 

LY24-524 1-01 © Copyright IBM Corp. 1986, 1988 

\. / 



( 

( 

(-

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

CPo Control Program. 

CP assist. A hardware function, available only on a 
processor with ECPS, that reduces CP overhead by 
doing the most frequently used tasks of CP routines. 

CP command. A command available to all VM users. 
Class G CP commands let the general user reconfigure 
their virtual machine, control devices attached to their 
virtual machine, do input and output spooling functions, 
and simulate many other functions of a real computer 
console. Other CP commands let system operators, 
system programmers, system analysts, and service 
representatives manage the resources of the system. 

CP directory. Synonym for VMjSP directory. 

CP trace table. A table VMjSP uses for debugging. Its 
size is a multiple of 4096 bytes and depends on the size 
of real storage or a user specified value. This table 
contains the chronological occurrences of events that 
take place in the real machine, recorded in a 
wraparound fashion within the trace table. Synonymous 
with trace table. 

CPTRAP. A CP debugging tool that creates a reader 
spool file of selected trace table entries, CP data, and 
virtual machine data in the order that they happen. The 
IPCS commands can help the user access and print this 
collected data. 

CPU timer. A hardware feature that measures elapsed 
processor time and causes an interruption when a 
previously specified amount of time has elapsed. The 
CPU timer is decremented when the processor is 
executing instructions, is in aWAIT state, and is 
executing program loading instructions, but not when 
the processor is in a stopped state. A virtual machine 
that uses the CPU timer must have the EC mode and 
REAL TIMER options active. 

CSECT. Control section. 

CSW. Channel status word. 

CTCA. Channel-to-channel adapter. 

Customer Information Control System for VM 
(CICS/VM). An IBM licensed program that provides a 
transaction processing capability for use in distributed 
departmental VM systems. It lets users in individual 
departments mix transaction processing requests with 
other office and commercial applications. 

CVT. Communications vector table. 

cylinder. In a disk pack, the set of all tracks with the 
same nominal distance from the axis about which the 
disk pack rotates. 

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 

D 
DASD. Direct access storage device. 

DASD Dump Restore (DDR) program. A service 
program that copies all or part of a minidisk onto tape, 
loads the contents of a tape onto a minidisk, or sends 
data from a DASD or from tape to the virtual printer. 

DASD space. (1) Area allocated to DASD units on 
CKD devices. (2) Area allocated to DASD units on 
FB-512 devices. Note that DASD space is synonymous 
with cylinder when there is no need to differentiate 
between CKD devices and FB-512 devices. This term 
applies to VM/370, VM/SP and VM/SP HPO program 
products. 

DAT. Dynamic address translation. 

data link. The equipment and rules (protocols) used for 
sending and receiving data. Synonymous with 
communication link. 

DDR program. DASD Dump Restore program. 

dedicated device. An I/O device or line not being 
shared among users. The facility can be permanently 
assigned to a particular virtual machine by a VM/SP 
directory entry, or temporarily attached by the resource 
operator to the user's virtual machine. 

default operand. An operand that has a preset value if 
a value is not specified on the CP or CMS command 
line. 

direct access storage device (DASD). A storage device 
in which the access time is effectively independent of the 
location of the data. 

directory. See auxiliary directory, eMS file directory, 
SFS directory, or VM/SP directory. 

discontiguous saved segment. One or more 64K 
segments of storage that were previously loaded, saved, 
and assigned a unique name. The segment(s) can be 
shared among virtual machines if the segment(s) 
contains reentrant code. Discontiguous segments used 
with CMS must be loaded into storage at locations 
above the address space of a user's CMS virtual 
machine. They can be detached when no longer needed. 

disk. A magnetic disk unit in the user's CMS virtual 
machine configuration. Also called a virtual disk. 

disk operating system (DOS). An operating system for 
computer systems that use disks and diskettes for 
auxiliary storage of programs and data. 

dispatcher. The program in CP that places virtual 
machines or CP tasks into execution. The dispatcher 

Glossary of Terms and Abbreviations 273 



selects the next virtual machine to run and prepares the 
virtual machine for problem state execution. 

dispatching. The starting of virtual machine execution. 

display mode. A type of editing at a display terminal in 
which an entire screen of data is displayed at once and 
in which the user can access data through commands or 
by using a cursor. Contrast with line mode. 

display terminal. A terminal with a component that can 
display information on a viewing surface such as a CRT 
or gas panel. 

DOS. Disk operating sysJem. 

DOS simulation under CMS. Synonym for CMS/DOS. 

dump. To write the contents of part or all of main 
storage, or part or all of a minidisk, to auxiliary storage 
or a printer. See abend dump. 

dynamic address translation (DAT). In System/370 
virtual storage systems, the change of a virtual storage 
address to a real storage address during execution of an 
instruction. 

E 
EBCDIC. Extended binary-coded decimal interchange 
code. 

ECB. Event control block. 

EC mode. Extended control mode. 

ECPS:VM/370. Extended Control Program 
Support:VM/370. 

ECSW. Extended channel status word. 

edit. A function that makes changes, additions, or 
deletions to a file on a disk. These changes are 
interactively made. The edit function also generates 
information in a file that did not previously exist. 

emulation program (EP). A control program that lets 
an IBM 3704 or 3705 Communications Controller 
emulate the functions of an IBM 2701 Data Adapter 
Unit, an IBM 2702 Transmission Control Unit, or an 
IBM 2703 Transmission Control Unit. 

entry point. An address or label of an instruction 
performed upon entering a computer program, a 
routine, or a subroutine. A program can have several 
different entry points, each corresponding to a different 
function or purpose. 

EP. Emulation program. 

274 VM/SP Diagnosis Guide 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

event control block (ECB). A control block that 
represents the status of an event. 

EXEC 2 language. A general-purpose, high-level 
programming language, particularly suitable for EXEC 
procedures and XEDIT macros. The EXEC 2 processor 
runs procedures and XEDIT macros (programs) written 
in this language. Contrast with CMS EXEC language 
and Restructured Extended Executor (REX X) language. 

EXEC procedure. (1) A procedure defined by a 
frequently used sequence of CMS and CP commands to 
do a commonly required function. A user creates the 
procedure to save repetitious rekeying of the sequence, 
and invokes the entire procedure by entering a 
command (that is, the exec file's file name). The 
procedure could consist of a long sequence of CMS and 
CP commands, along with REXX, EXEC 2, or CMS 
EXEC control statements to control processing within 
the procedure. (2) A CMS file with a file type of 
EXEC. 

expanded virtual machine assist. A hardware assist 
function, available only on a processor that has ECPS, 
that handles many privileged instructions not handled 
by VMA, and extends the level of support of certain 
privileged instructions beyond that provided by VMA. 

extended binary-coded decimal interchange code 
(EBCDIC). A set of 256 characters, with each 
character represented by 8 bits. 

extended control (EC) mode. A mode in which all 
features of a Systemj370 computing system, including 
dynamic address translation, are operational. Contrast 
with basic control (BC) mode. 

Extended Control Program Support (ECPS: VM/370). A 
hardware assist feature that improves the performance 
of CP by reducing CP overhead. ECPS:VM/370 
consists of CP assist, expanded virtual machine assist, 
and virtual interval timer assist. 

extended PLIST (untokenized parameter list). Four 
addresses that indicate the extended form of a command 
as it was entered at a terminal. 

F 
FeB. (1) Forms control buffer. (2) Function control 
block. 

fetch protection. A storage protection feature that 
determines right-of-access to main storage by matching 
the protection key associated with a main storage fetch 
reference with the storage keys associated with those 
frames of main storage. 

FIFO (first-in-flFSt-out). A queuing technique in which 
the next item to be retrieved is the item that has been 

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 



( 

(~ 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

on the queue for the longest time. Contrast with LIFO 
(last-in-Jirst-out) . 

file access mode. A file mode number that designates 
whether the file can be used as a read-only or read/write 
file by a user. See file mode. 

file definition. (1) Equating a CMS file identifier (file 
name, file type, file mode) with an OS data set name by 
the FILEDEF command; or equating a DOS file ID 
with a CMS file identifier by the DLBL command. 
(2) Identifying the input or output files used during 
execution of a program (by way of either the FILEDEF 
or DLBL commands). 

file ID. A CMS file identifier that consists of a file 
name, file type, and file mode. The file ID is associated 
with a particular file when the file is created, defined, or 
renamed under CMS. See file name,file type, andfile 
mode. 

file mode. A two-character CMS file identifier field 
comprised of the file mode letter (A through Z) 
followed by the file mode number (0 through 6). The 
file mode letter indicates the minidisk or SFS directory 
on which the file resides. The file mode number . 
indicates the access mode of the file. See file access 
mode. 

file name. A one-to-eight character alphanumeric field, 
comprised of A through Z, 0 through 9, and special 
characters $ # @ + - (hyphen) : (colon) _ (underscore), 
that is part of the CMS file identifier and serves to 
identify the file for the user. 

file pool. A collection of minidisks managed by SFS. It 
contains user files and directories and associated control 
information. Many users' files and directories can be 
contained in a single file pool. 

file type. A one-to-eight character alphanumeric field, 
comprised of A through Z, 0 through 9, and special 
characters $ # @ + - (hyphen) : (colon) _ (underscore), 
that is used as a descriptor or as a qualifier of the file 
name field in the CMS file identifier. See reserved file 
types. 

first-level storage. Refers to real main storage. 
Contrast with second-level storage and third-level 
storage. 

Rush list. A set of pages available to replenish the free 
list. 

force start. A VM/SP system restart that attempts to 
recover information about closed spool files previously 

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 

stored on the checkpoint cylinders. All unreadable or 
invalid spool file information is ignored. Contrast with 
checkpoint (CKPT) start, cold start, and warm start. 

forms control buffer (FCB). In the 3800 Printing 
Subsystem, a buffer for controlling the vertical format 
of printed output. The FCB is analogous to the 
punched-paper, carriage-control tape that IBM 1403 
Printers use. 

free storage. Storage not allocated. The blocks of 
memory available for temporary use by programs or by 
the system. 

function control block (FCB). In Subsystem Support 
Services (SSS), a control block that contains information 
such as a function's status, event control block, task I/O 
queue, and I/O queue. 

G 
gateway. The LU name of a TSAF collection that is a 
source for communications to an SNA-defined network 
or the target of communications from an SNA-defined 
network. 

GCS. Group Control System. 

general register. In CMS, a register that does 
operations such as binary addition, subtraction, 
multiplication, and division. General registers primarily 
compute and modify addresses in a program. 

GPR. General-purpose register. 

group. Synonym for virtual machine group. 

group configuration file. A file that the GROUP EXEC 
creates. It contains the blueprint for building the user's 
virtual machine group. The name of the file is 
systemname GROUP, where systemname is the name of 
the user's GCS saved system. 

Group Control System (GCS). A component of VM/SP, 
consisting of a shared segment that the user can IPL 
and run in a virtual machine. It provides simulated 
MVS services and unique supervisor services to help 
support a native SNA network. 

guest operating system (GOS). A second operating 
system that runs on the user's primary operating system. 
An example of a GOS is VSE running on VM/SP to 
support VM/VCNA. 

guest virtual machine (GVM). A virtual machine in 
which an operating machine is running. 

Glossary of Terms and Abbreviations 275 



I 

immediate command. A type of CMS command that, 
when entered after an attention interruption, causes 
program execution, tracing, or terminal display to stop. 
Another immediate command can be entered to resume 
tracing or terminal display. The immediate commands 
are HB (halt batch execution), HI (halt all System 
Product Interpreter or EXEC 2 programs or macros), 
HO (halt tracing), HT (halt typing), HX (halt 
execution), RO (resume tracing), RT (resume typing), 
SO (suspend tracing), TE (trace end), and TS (trace 
start). They are called immediate commands because 
they are executed as soon as they are entered; they are 
not stacked in the console stack. Within an exec, 
immediate commands can be established or cancelled by 
the CMS command IMMCMD. 

indicator. A I-byte area of storage that contains either 
the character" I" to denote a true condition or the 
character "0" to denote a false condition. 

initial program load (IPL). The initialization procedure 
that causes an operating system to begin operation. A 
VM user must IPL the specific operating system into the 
virtual machine that will control the user's work. Each 
virtual machine can be loaded with a different operating 
system. 

initialize. To set counters, switches, addresses, or 
contents of storage to starting values. 

input line. For typewriter terminals, information keyed 
in by a user between the time the typing element of the 
terminal comes to rest following a carriage return until 
another carriage return is typed. For display terminals, 
the data keyed into the user input area of the screen. 
See user input area. 

input/output (I/O). (1) Pertaining to a device whose 
parts can do an input process and an output process at 
the same time. (2) Pertaining to a functional unit or 
channel involved in an input process, output process, or 
both, concurrently or not, and to the data involved in 
such a process. 

instruction address stop. An instruction address 
specified by a CP or CMS command, which, when 
fetched, causes the virtual machine to stop. 

interactive. The classification given to a virtual machine 
depending on this virtual machine's processing 
characteristics. When a virtual machine uses less than 
its allocation time slice because of terminal I/O, the 
virtual machine is classified as being interactive. 
Contrast with noninteractive. 

Interactive Problem Control System (IPCS). A 
component of VM/SP that permits online problem 
management, interactive problem diagnosis, online 

276 VM/SP Diagnosis Guide 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

debugging for disk related CP or virtual machine abend 
dumps or CPTRAP files, problem tracking, and problem 
reporting. 

interface. A shared boundary between two or more 
entities. An interface might be a hardware or software 
component that links two devices or programs together. 

internal trace table. See CP trace table. 

interrupt. A suspension of a process, such as execution 
of a computer program, caused by an external event and 
done in such a way that the process can be resumed. 

Inter-User Communications Vehicle (IUCV). A VM/SP 
generalized CP interface that helps the transfer of 
messages either among virtual machines or between CP 
and a virtual machine. 

invoke. To start a command, procedure, or program. 

I/O. Input/output. 

IPCS. Interactive Problem Control System. 

IPL. Initial program load. 

IPL processor. In an AP or MP system, the processor 
on which the control program was first initialized during 
system generation. Note that both the IPL and the 
non-IPL processors in a real MP configuration have I/O 
capabilities. 

IUCV. Inter-User Communications Vehicle. 

K 

K. kilobyte. 

kilobyte (K). 1024 bytes. 

L 
LIFO (last-in-first-out). A queuing technique in which 
the next item to be retrieved is the item most recently 
placed in the queue. Contrast with FIFO 
(first-in-first-out) . 

line mode. The mode of operation of a display terminal 
that is equivalent to using a typewriter-like terminal. 
Contrast with display mode. 

link. (1) In RSCS, a connection, or ability to 
communicate, between two adjacent nodes in a network. 
(2) In TSAF, the physical connection between two 
systems. 

load. In reference to installation and service, to move 
files from tape to disk, auxiliary storage to main 

LY24-524l-0l © Copyright IBM Corp. 1986, 1988 

/' 
( , 



( 

{ 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

storage, or minidisks to virtual storage within a virtual 
machine. 

loader. A routine, commonly a computer program, that 
reads data into main storage. 

load map. A map containing the storage addresses of 
control sections and entry points of a program loaded 
into storage. 

local. Two entities (for example, a user and a server) 
are said to be local to each other if they belong to the 
same system within a collection or to the same node 
within an SNA system. Contrast with remote. 

local area network (LAN). A data network located on 
the user's premises in which serial transmission is used 
for direct data communication among data stations. 
Contrast with wide area network (WAN). 

local service. Changes manually applied to a product or 
component (that is, not using the program update 
service or corrective service procedures). See 
circumventive service and user modification. 

lock. A tool for controlling concurrent usage of SFS 
objects. Implicit locks are acquired and automatically 
released when you run CMS commands and program 
functions in SFS. Explicit locks let you control the type 
and duration of the lock. 

locked page. A page that is not to be paged out. 

logical line. A command or data line that can be 
separated from one or more additional command or 
data lines on the same input line by a logical line end 
symbol. 

logical unit (LU). An entity addressable within an 
SNA-defined network, similar to a node within a VM 
network. LUs are categorized by the types of 
communication they support. A TSAF collection in an 
SNA network is viewed as one or more LUs. 

logoff. The procedure by which a user ends a terminal 
session. 

logon. The procedure by which a user begins a terminal 
session. 

LU. Logical unit. 

M 
machine. A synonym for a virtual machine running 
under the control of VM/370 or VM/SP. 

machine ID. A 2-byte field that uniquely defines a 
virtual machine within a virtual machine group. 
Machine ID is sometimes combined with task ID to 

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 

uniquely identify a task within the virtual machine 
group. 

macro. Synonym for macrodefinition and 
macroinstruction. 

macrodefinition. A set of statements that defines the 
name of, format of, and conditions for generating a 
sequence of assembler language statements from a single 
source statement. Synonymous with macro. 

macroinstruction. In assembler language programming, 
an assembler language statement that causes the 
assembler to process a predefined set of statements 
called a macrodefinition. The statements usually 
produced from the macrodefinition replace the 
macroinstruction in the program. Synonymous with 
macro. 

map. In CMS, the file that contains a CMS output 
listing, such as (1) a list of macros in the MACLIB 
library, including macro size and location within the 
library, (2) a listing of the directory entries for the 
DOS/VS system or private source, relocatable, or core 
image libraries, (3) a linkage editor map for CMS/DOS 
programs, and (4) a module map containing entry point 
locations. 

master file directory. A directory on each CMS disk 
that contains the name, format, size, and location of all 
the CMS files on the disk. When a disk is accessed by 
the ACCESS command, the directory is read into main 
storage and identified with one of the 26 disk mode 
letters (A through Z). 

master file directory block. Synonym for CMS file 
directory. 

MB. Megabyte. 

megabyte (MB). 1,048,576 bytes. 

message. Data sent from a source application to a 
target application program in a conversation. 

minidisk directory. Synonym for eMS file directory. 

module. (1) A unit of a software product that is 
discretely and separately identifiable with respect to 
modifying, compiling, and merging with other units, or 
with respect to loading and execution. For example, the 
input to, or output from, a compiler, the assembler, the 
linkage editor, or an exec routine. (2) A nonrelocatable 
file whose external references have been resolved. 

MP. Multiprocessor. 

Multiple Virtual Storage (MVS). An alternative name 
for OS/VS2. 

Glossary of Terms and Abbreviations 277 



multiprocessor (MP). A computer using two or more 
processing units under integrated control. 

multitasking. Providing services for many tasks that are 
active at the same time. 

MVS. Multiple Virtual Storage. 

N 

native mode. Refers to running an operating system 
stand-alone on the real machine instead of under 
VMjSP. 

NCP. Network control program. 

NCPDUMP. Network control program DUMP. 

network. Any set of two or more computers, 
workstations, or printers linked in such a way as to let 
data be transmitted between them. 

network control program (NCP). An IBM licensed 
program that provides communication controller 
support for single-domain, multiple-domain, and 
interconnected network capability. 

node. (1) A single processor or a group of processors 
in a teleprocessing network. (2) A computer, 
workstation, or printer, when it is participating in a 
network. 

node ID. Node identifier. 

node identifier (node ID). The name by which a node is 
known to all other nodes In a network. 

noninteractive. The classification given to a virtual 
machine depending on this virtual machine's processing 
characteristics. When a virtual machine usually uses all 
its allocated time slice, it is classified as being 
noninteractive or compute bound. Contrast with 
interactive. 

non-IPL processor. In an AP or MP system, the 
attached or second processor initialized at system 
generation time. Note that both the IPL processor and 
the non-IPL processor in a real MP configuration have 
I/O capabilities. 

nonpaging mode. Synonym for OS/VSI nonpaging 
mode. 

nonprivileged program. In GCS, a program called by a 
GCS application that operates in problem state. 
Contrast with privileged program. 

nucleus. The part of CP, CMS, and GCS resident in 
main storage. 

278 VM/SP Diagnosis Guide 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

NUCON. The nucleus constant area of CMS. 

o 
object code. Compiler or assembler output that is 
executable machine code or is suitable for more 
processing to produce executable machine code. 
Contrast with source code. 

operand. Information entered with a command name to 
define the data on which a command processor operates 
and to control the execution of the command processor. 

OS simulation under CMS. The environment of CMS 
that permits the simulation of OS functions. Contrast 
with eMS/DOS. 

OS/VSl. A virtual storage operating system that is an 
extension of OS/MFT. Synonymous with nonpaging 
mode. 

OS/VS2. A virtual storage operating system that is an 
extension of OS/MVT. 

OS/VSl nonpaging mode. If OS/VSl executes under 
the control of a VM/SP system that supports the 
VM/VS handshaking feature and if the OS/VSl address 
space is equal to the size of its VM/SP virtual machine, 
OS/VSI executes in nonpaging mode. When OS/VSI 
executes in nonpaging mode, it uses fewer privileged 
instructions and avoids duplicate paging because paging 
is done only by CPo 

overlay. The technique of repeatedly using the same 
areas of internal storage during different stages of a 
program. 

override. Synonym for component parameter override. 

p 

page. A fixed-length block that has a virtual address 
and can be transferred between real storage and 
auxiliary storage. 

page frame. A block of 4096 bytes of real storage that 
holds a page of virtual storage. 

page number. The part of a virtual storage address 
needed to refer to a page. 

page table. A table (labeled PAGTABLE) that 
indicates whether or not a page is in real storage and 
that correlates virtual addresses with real storage 
addresses. 

page zero. Storage locations 0 to 4095. 

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 

,,- - ---- --,----



( 

( 

(" 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

paging. Transferring pages between real storage and 
external page storage. 

parameter. A variable that is given a constant value for 
a specified application and that may denote the 
application. 

parameter list (PLIST). In CMS, a string of 8-byte 
arguments that call a CMS command or function. The 
first argument must be the name of the command or 
function to be called. General register I points to the 
beginning of the parameter list. 

part. A CMS file provided on a product tape or service 
tape as input to the build process. See build. A part is 
the smallest serviceable unit of a component. 

patch. A circumventive service change applied directly 
to object code in a text deck in a nucleus. 

path. In APPCjVM or IUCV, a connection between 
two application programs that are on the same or 
different systems. Paths have names assigned to them. 

performance option. Qne or more functions that can be 
assigned to a virtual machine to improve its 
performance, response time (if terminal-oriented) or 
throughput under VM/SP. 

physical screen. Synonym for screen. 

PIE. Program interrupt element. 

PLIST. Parameter list. 

PMA. Preferred machine assist. 

preferred machine assist (PMA). The hardware feature 
of the IBM 308X processor complex or the IBM 3033 
processor that improves MVS/SP (Release I 
enhancement, or later) V = R virtual machine 
performance. The MVS/SP guest virtual machine 
operates in supervisor state with direct control of its 
own I/O operations under VM/SP HPO. PMA is an 
extension of VMA, which eliminates CP simulation of 
certain instructions and interruptions. 

prefix storage area (PSA). A page zero of real storage 
that contains machine-used data areas and CP global 
data. 

preventive service. The massive application of PTFs 
from the PUT. Contrast with selective preventive service. 

private storage. A combination of application code and 
GCS code available to only one particular virtual 
machine. No virtual machine can access or share 
another's private storage area. 

privilege class. One or more classes assigned to a 
virtual machine user in a VM/SP directory entry; each 

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 

privilege class specified lets a user access a logical subset 
of the CP commands. There are eight IBM-defined 
privilege classes that correspond to specific 
administrative functions. They are: 

Class A - primary system operator 
Class B - system resource operator 
Class C - system programmer 
Class D - spooling operator 
Class E - system analyst 
Class F - service representative 
Class G - general user 
Class H - reserved for IBM use 
Class Any - available to any user. 

The privilege classes can be changed to meet the needs 
of an installation. See class authority and user class 
restructure (UCR). 

privileged instruction simulation. The CP-incurred 
overhead to handle privileged instructions for virtual 
machine operating systems that execute as if they were 
in supervisor state but which are executing in problem 
state under VM/SP. See virtual machine assist (VMA). 

privileged program. In GCS, a program called by a 
GCS application that operates in supervisor state and 
uses privileged functions. A privileged program is one 
that meets either of the following requirements: 

• It runs in an authorized virtual machine. 
• It is called through the AUTHCALL facility. 

Synonymous with authorized program. Contrast with 
nonprivileged program. 

problem state. A state during which the central 
processing unit cannot execute I/O and other privileged 
instructions. VM/SP runs all virtual machines in 
problem state. See privileged instruction simulation. 
Contrast with supervisor state. 

process. A systematic sequence of operations to 
produce a specified result. A process is usually logical, 
not physical. 

product. Any separately installable software program, 
whether supplied by IBM or otherwise, distinct from 
others and recognizable by a unique identification code. 
The product identification code is unique to a given 
product, but does not identify the release level of that 
product. 

PROFILE EXEC. A special EXEC procedure with a 
file name of PROFILE that a user can create. The 
procedure is usually executed immediately after CMS is 
loaded into a virtual machine (also known as IPL 
CMS). 

program stack. Temporary storage for lines (or files) 
being exchanged by programs that execute under CMS. 
See console stack. 

Glossary of Terms and Abbreviations 279 



program status word (PSW). An area in storage that 
indicates the order in which instructions are executed, 
and to hold and indicate the status of the computer 
system. 

program temporary fix (PTF). Code changes needed to 
correct a problem reported in an AP AR. The corrected 
code is included in later releases. A PTF contains one 
or more APAR fixes. For object maintained parts that 
are changed, the PTF includes replacement parts. For 
source maintained parts that are changed, the PTF 
includes update files and replacement parts. Each PTF 
is unique to a given release of a product. If the same 
problem occurs in multiple releases of a product, a 
separate PTF is defined for each release. 

program update service. Receiving the contents of a 
PUT, applying all or some of the changes, and 
rebuilding the serviced parts. See preventive service and 
selective preventive service. 

program update tape (PUT). A tape containing a 
customized collection of service tapes (preventive 
service) to match the products listed in a customer's 
ISD (IBM Software Distribution) profile. Each PUT 
contains cumulative service for the customer's products 
back to earlier release levels of the product still 
supported. The tape is distributed to authorized 
customers of the products at scheduled intervals or on 
request. 

prompt. A displayed message that describes required 
input or gives operational information. 

prompting. An interactive technique that lets the 
program guide the user in supplying information to a 
program. The program types or displays a request, 
question, message, or number, and the user enters the 
desired response. The process is repeated until all the 
necessary information is supplied. 

PSA. Prefix storage area. 

PSW. Program status word. 

PTF. Program temporary fix. 

PUT. Program update tape. 

PVM. VM/Pass-Through Facility. 

Q 

queue-drop. The action by the system scheduler, 
DMKSCH, of removing a virtual machine from the list 
of virtual machines that can be given control of a 
processor. 

280 VM/SP Diagnosis Guide 

R 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

raddr. The real device address of an I/O device. 

read/write access. An access mode associated with a 
virtual disk or SFS directory that lets a user read and 
write any file on the disk or SFS directory. 

real address. The address of a location in real storage 
or the address of a real I/O device. 

real machine. The actual processor, channels, storage, 
and I/O devices required for VM/SP operation. 

receive. (1) Bringing into the specified buffer data sent 
to the user's virtual machine from another virtual 
machine or from the user's own virtual machine. (2) To 
load service files from a service tape. 

recovery machine. The first machine to join a virtual 
machine group. It has responsibility for executing 
routines that were set with the GCS MACHEXT macro 
and cleaning up system resources when machines leave 
the group. 

register. See general register. 

remote. Two entities (for example, a user and a server) 
are said to be remote to each other if they belong to 
different systems within a collection, or to different 
nodes within an SNA network. Contrast with local. 

Remote Spooling Communications Subsystem Networking 
(RSCS). An IBM licensed program and special-purpose 
subsystem that supports the reception and transmission 
of messages, files, commands, and jobs over a computer 
network. 

reply. (1) A response to an inquiry. (2) In SNA, a 
request unit sent only in reaction to a received request 
unit. 

requester. (1) The name given to a virtual machine 
containing a user program that requests a resource. 
(2) The program that relays a request to another 
computer through the SRPI. Contrast with server. 

reserved file types. (1) File types recognized by the 
CMS editors (EDIT and XEDIT) as having specific 
default attributes that include: record size, tab settings, 
truncation column, and uppercase or lowercase 
characters associated with that particular file type. The 
CMS Editor creates a file according to these attributes. 
(2) File types recognized by CMS commands; that is, 
commands that only search for and use particular file 
types or create one or more files with a particular file 
type. 

resource. A program, a data file, a specific set of files, 
a device, or any other entity or a set of entities that the 

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 

c 

( 

'" 



( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

user can uniquely identify for application program 
processing in a VM system. 

resource manager. An application running in a server 
virtual machine that directly controls one or more VM 
resources. There are three categories of VM resource 
managers: global, local, and private. 

Restructured Extended Executor (REXX) language. A 
general-purpose, high-level programming language, 
particularly suitable for EXEC procedures, XEDIT 
macros, or programs for personal computing. 
Procedures, XEDIT macros, and programs written in 
this language can be interpreted by the System Product 
Interpreter. Also, a component of VM/SP. Contrast 
with CMS EXEC language and EXEC 2 language. 

REXX EXEC. An EXEC procedure or XEDIT macro 
written in the REXX language and processed by the 
System Product Interpreter. Synonymous with REXX 
program. 

REXX program. Synonym for REXX EXEC. 

route. A connection to another system by a logical link 
and one or more intermediate systems. In TSAF, a 
number of links and possible intermediate systems that 
allow the connection of one system to another. 

RSCS. Remote Spooling Communications Subsystem 
Networking. 

s 
saved system. A special nonrelocatable copy of a 
virtual machine's virtual storage and associated registers 
kept on a CP-owned disk and loaded by name instead of 
by I/O device address. Loading a saved system by name 
substantially reduces the time it takes to IPL the system 
in a virtual machine. In addition, a saved system such 
as CMS can also share one or more 64K segments of 
reenterable code in real storage between virtual 
machines. This reduces the cumulative real main 
storage requirements and paging demands of such 
virtual machines. 

scale. A line on the System Product Editor's (XED IT) 
full-screen display, used for column reference. 

screen. An illuminated display surface; for example, the 
display surface of a CRT. Synonymous with physical 
screen. 

second-level storage. The storage that appears to be 
real to a virtual machine. Contrast with first-level 
storage and third-level storage. 

segment. A contiguous 64K or 1024K area of virtual 
storage (not necessarily contiguous in real storage) 

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 

allocated to a job or system task. VM/SP does not use 
1024K segments, but supports any VM operating system 
that uses 1024K segments. 

segment table. In System/370 virtual storage systems, a 
table used in DATto control user access to virtual 
storage segments. Each entry indicates the length, 
location, and availability of a corresponding page table. 

selective preventive service. The selective application of 
PTFs from the PUT. Contrast with preventive service. 

server. (1) The general name for a virtual machine that 
provides a service for a requesting virtual machine. 
(2) The program that responds to a request from 
another computer through SRPI. Contrast with 
requester. 

server-requester programming interface (SRPI). (l) A 
protocol between requesters and servers in an enhanced 
connectivity network. Includes the protocol to define a 
cooperative processing subsystem. (2) The interface 
that enables enhanced connectivity between requesters 
and servers in a network. 

server system. A data processing system containing one 
or more servers providing services in response to a 
request from another computer. 

service. Changing a product after installation. See 
corrective service, local service, and program update 
service. 

session. The SNA term for a connection between two 
LUs. The LUs involved allocate conversations across 
sessions. 

sever. Ending communication with another virtual 
machine or with the user's own virtual machine. 

SFS. Shared file system. 

SFS directory. A group of files. SFS directories can be 
arranged to form a hierarchy in which one directory can 
contain one or more subdirectories as well as files. 

shared file system (SFS). A part of CMS that lets users 
organize their files into groups known as directories and 
to selectively share those files and directories with other 
users. 

shared segment. A feature of a saved system or physical 
saved segment that lets one or more segments of 
reentrant code or data in real storage be shared among 
many virtual machines. For example, if a saved CMS 
system was generated, the CMS nucleus is shared in real 
storage among all CMS virtual machines loaded by 
name; that is, every CMS machine's segment of virtual 
storage maps to the same 64K of real storage. See 
discontiguous saved segment and saved system. 

Glossary of Terms and Abbreviations 281 



signaling attention. An indication that a user has 
pressed a key or keyed in a CP command to present an 
attention interrupt to CP or to the user's virtual 
machine. 

simultaneous peripheral operations online (SPOOL). 
(1) (Noun) An area of auxiliary storage defined to 
temporarily hold data during its transfer between 
peripheral equipment and the processor. (2) (Verb) To 
use auxiliary storage as a buffer storage to reduce 
processing delays when transferring data between 
peripheral equipment and the processing storage of a 
computer. 

single processor mode. In tightly coupled MP or AP 
systems, single processor mode lets an installation 
dedicate a processor to an MVS V = R virtual machine. 
In single processor mode, VM/SP runs in uniprocessor 
mode in the main processor, and the MVS V = R virtual 
machine runs under VM/SP in the main processor and 
has the exclusive use of the other processor for MP or 
AP operations. However, other virtual machines can 
operate under VM/SP concurrently with the MVS V = R 
virtual machine in single processor mode (not to be 
confused with uniprocessor mode). 

SIO. Start I/O. 

SNA. Systems Network Architecture. 

source code. The input to a compiler or assembler, 
written in a source language. Contrast with object code. 

source file. A file that contains source statements for 
such items as high-level language programs and data 
description specifications. 

SPOOL. Simultaneous peripheral operations online. 

spool file class. A one-character class associated with 
each virtual unit record device. For input spool files, 
the spool file class lets the user control which input 
spool files are read next; and, for output spool files, it 
lets the spooling operator better control or reorder the 
printing or punching of spool files having similar 
characteristics or priorities. The spool file class value 
can be A through Z or 0 through 9. 

spooling. The processing of files created by or intended 
for virtual readers, punches, and printers. The spool 
files can be sent from one virtual device to another, 
from one virtual machine to another, and to real 
devices. See virtual console spooling. 

spooling devices. I/O devices (card readers, punches, 
printers, DASD) that read input and write output. 

SRPI. Server-requester programming interface. 

SSP. System service program. 

282 VM/SP Diagnosis Guide 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

stack. See console stack and program stack. 

stand-alone. Pertaining to an operation independent of 
another device, program, or system. 

stand-alone dump. A dump acquired without regular 
system functions. For example, to obtain a CP dump 
when the regular system is unable to dump the machine, 
the stand-alone dump facility gets a CP stand-alone 
dump. 

storage key. An indicator associated with one or more 
storage blocks that requires that tasks have a matching 
protection key in order to use the blocks. 

subcommand. The commands of processors such as 
EDIT or System Product Editor (XED IT) that run 
under CMS. 

supervisor call instruction (SVC). An instruction that 
interrupts a program being executed and passes control 
to the supervisor so that it can do a specific service 
indicated by the instruction. 

supervisor state. A state during which the processor can 
execute I/O and other privileged instructions. Only CP 
can execute in the supervisor state; all virtual machine 
operating systems run in problem state. Contrast with 
problem state. 

SVC. Supervisor call instruction. 

syntax. The rules for the construction of a command or 
program. 

system integrity. The property of a system that is 
designed, implemented, and maintained to protect itself 
from unauthorized access. 

system load. The combination of active devices, 
programs, and users that use the system resources of the 
processor and storage. 

System Product Editor. The CMS facility, comprising 
the XEDIT command and XEDIT subcommands and 
macros, that lets a user create, change, and manipulate 
CMS files. 

System Product Interpreter. The component of the 
VM/SP operating system that processes procedures, 
XEDIT macros, and programs written in the REXX 
language. 

system programmer privilege class. The CP privilege 
class C user; usually, the VM/SP system programmer, 
who can change the contents of any real storage 
locations in the machine. 

system restart. The restart that allows reuse of 
previously initialized areas. System restart usually 
requires less time than IPL. See warm start. 

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 

',,- / 



( 

( 

( 

( 

( 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

system service program (SSP). In ACF /TCAM, an 
IBM-supplied or user-supplied program that does 
system-oriented auxiliary functions in support of the 
message control program. System service programs run 
under control of the initiator as attached subtasks. 

Systems Network Architecture (SNA). The description 
of the logical structure, formats, protocols, and 
operational sequences for transmitting information units 
through and controlling the configuration and operation 
of networks. 

T 

target. One of many ways to identify a line to be 
searched for by the System Product Editor. A target 
can be specified as an absolute line number, a relative 
displacement from the current line, a line name, or a 
string expression. 

task ID. A 2-byte field that uniquely defines a task 
within a GCS virtual machine. Task ID is sometimes 
combined with machine ID to uniquely identify a task 
within a virtual machine group. 

terminal. A device, usually equipped with a keyboard 
and a display, capable of sending and receiving 
information. 

third-level storage. The virtual storage created and 
controlled by an OS/VS or VM virtual machine. 
Contrast with first-level storage and second-level storage. 

time-or-day (TOD) clock. A hardware feature required 
by VM/SP. The TOD clock is incremented once every 
microsecond, and provides a consistent measure of 
elapsed time suitable for the indication of date and time; 
it runs regardless of the processor state (running, wait, 
or stopped). 

time stamp. A record containing the TOD clock value 
stored in its internal 32-bit binary format. 

TOD clock. Time-of-day clock. 

token. An eight-character symbol created by the CMS 
EXEC processor when it scans an EXEC procedure or 
EDIT macro statements. Symbols longer than eight 
characters are truncated to eight characters. 

tokenized PLIST (parameter list). A string of 
doubleword aligned parameters occupying successive 
doublewords. 

trace table. Synonym for CP trace table. 

Transparent Services Access Facility (TSAF). A 
component of VM/SP that handles communication 
between systems by letting APPC/VM paths span 
multiple VM systems. TSAF lets a source program 

LY24-5241-01 © Copyright IBM Corp. 1986, 1988 

connect to a target program by specifying a name that 
the target has made known, instead of specifying a user 
ID and node ID. 

TSAF. Transparent Services Access Facility. 

TSAF collection. A group of VM processors, each with 
a TSAF virtual machine, connected by CTC, binary 
synchronous lines, or LANs. 

TSAF virtual machine. The virtual machine that lets 
user programs connect to and communicate with virtual 
machines on different VM systems. 

u 
UCR. User class restructure. 

uniprocessor mode. This term indicates that there is 
only one processor in the physical configuration, or that 
VM/SP uses the facilities of one processor in an AP or 
MP system (not to be confused with single processor 
mode). 

universal class card reader. A virtual card reader that 
can read any class of reader, printer, or punch files 
spooled or transferred to it. 

user. Anyone who requests the services of a computing 
system. 

user class. A privilege category assigned to a virtual 
machine user in the user's directory entry; each class 
specified allows access to a logical subset of all the CP 
commands. See privilege class. 

user class restructure (UCR). The extension of the class 
structure of CP instructions from 8 to 32 classes for 
each user, command, and diagnose code within the 
system. This extension allows the installation greater 
flexibility in authorizing CP instructions. 

user data. In reference to a file pool, any data that 
resides in storage groups 2 through 32767. 

user ID. User identification. 

user input area. On a display device, the lines of the 
screen where the user is required to key in command or 
data lines. See display mode, input line, and line mode. 

user modification. Any change that a user originates for 
a product or component. 

user program. A transaction program that requests a 
service from a resource manager program. User 
programs reside in requester virtual machines. 

user-written CMS command. Any CMS file created by 
a user that has a file type of MODULE or EXEC. Such 

Glossary of Terms and Abbreviations 283 



a file can be executed as if it were a CMS command by 
issuing its file name, followed by any operands or 
options expected by the program or EXEC procedure. 

v 
virtual address. The address of a location in virtual 
storage. A virtual address must be translated into a real 
address in order to process the data in processor 
storage. 

virtual card reader. CP's simulation on disk of a real 
card reader. A virtual card reader can read card, 
punch, or print records of up to 151 characters in 
length. The virtual device type and I/O device address 
are usually defined in the VM/SP directory. See spool 
file class and universal class card reader. 

virtual console .• A console simulated by CP on a 
terminal such as a 3270. The virtual device type and 
I/O address are defined in the VM/SP directory entry 
for that virtual machine. 

virtual console spooling. The writing of console I/O on 
disk as a printer spool file instead of, or in addition to, 
having it typed or displayed at the virtual machine 
console. The console data includes messages, responses, 
commands, and data from or to CP and the virtual 
machine operating system. The user can invoke or 
terminate console spooling at anytime. When the 
console spool file is closed, it becomes a printer spool 
file. Synonymous with console spooling. 

virtual disk. A logical subdivision (or all) of a physical 
disk storage device that has its own address, consecutive 
storage space for data, and an index or description of 
the stored data so that the data can be accessed. A 
virtual disk is also called a minidisk. See disk. 

virtual interval timer assist. A hardware assist function, 
available only on a processor, that has ECPS. It 
provides, if desired, a hardware updating of each virtual 
machine's interval timer at location X' 50' . 

virtual machine (VM). A functional equivalent of a real 
machine. 

virtual machine assist (VMA). A hardware feature 
available on certain VM/SP-supported System/370 
models, that causes a significant reduction in the real 
supervisor state time that VM/SP uses to control the 
operation of virtual storage systems such as VSE, 
DOS/VS and OS/VS and, to a lesser extent, CMS, DOS, 
and OS when running under VM/SP. VM/SP supervisor 
state time is reduced because the VMA feature, instead 
of VM/SP, intercepts and handles interruptions caused 
by SVCs, other than SVC 76, and certain privileged 
instructions. See CP assist, expanded virtual machine 
assist, Extended Control Program Support 
(ECPS:VM/370), and virtual interval timer assist. 

284 VM/SP Diagnosis Guide 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

virtual machine communication facility (VMCF). A CP 
function that provides a method of communication and 
data transfer between virtual machines operating under 
the same VM/SP system. 

virtual machine control block (VMBLOK). The primary 
control block for many activities related to a single 
virtual machine. This block contains, for each virtual 
machine, the following types of information: the 
dispatch and priority level of the virtual machine, the 
virtual machine's processor registers, preferred virtual 
machine options currently in effect, and information 
concerning all other significant activities. 

virtual machine group. The concept in GCS of two or 
more virtual machines associated with each other 
through the same named system (for example, IPL 
GCSI). Virtual machines in a group share common 
read/write storage and can communicate with one 
another through facilities provided by GCS. 
Synonymous with group. 

Virtual Machine/System Product (VM/SP). An IBM 
licensed program that manages the resources of a single 
computer so that multiple computing systems appear to 
exist. Each virtual machine is the functional equivalent 
of a real machine. 

virtual printer (or punch). A printer (or card punch) 
simulated on disk by CP for a virtual machine. The 
virtual device type and I/O address are usually defined 
in the VM/SP directory entry for that virtual machine. 

virtual = real option. A VMjSP performance option that 
lets a virtual machine run in VM/SP's virtual = real area. 
This option eliminates CP paging and, optionally, CCW 
translation for this virtual machine. Synonymous with 
V=R. 

virtual storage. Storage space that can be regarded as 
addressable main storage by the user of a computer 
system in which virtual addresses are mapped into real 
addresses. The size of virtual storage is limited by the 
addressing scheme of the computing system and by the 
amount of auxiliary storage available, and not by the 
actual number of main storage locations. 

virtual storage access method (VSAM). An access 
method for direct or sequential processing of fixed and 
variable-length records on direct access devices. The 
records in a VSAM data set or file can be organized in 
logical sequence by a key field (key sequence), in the 
physical sequence in which they are written on the data 
set or file (entry-sequence), or by relative-record 
number. 

virtual storage extended (VSE). The generalized term 
that indicates the combination of the DOS/VSE system 
control program and the VSE/Advanced Functions 
program product. Note that in certain cases, the term 

LY24-524l-01 © Copyright IBM Corp. 1986, 1988 

~~~~-.~-~ - ------

/

_/

(;

(-

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

DOS is still used as a generic term; for example, disk
packs initialized for use with VSE or any predecessor
DOS or DOS/VS system are sometimes called DOS
disks. Also note that the DOS-like simulation
environment provided under the VM/SP CMS
component and CMS/DOS exists on VM/SP and
VM/SP HPO program products and continues to be
called CMS/DOS.

Virtual Telecommunications Access Method (VTAM).
An IBM licensed program that controls communication
and the flow of data in a computer network. It
provides single-domain, multiple-domain, and
multiple-network capability. VT AM runs under MVS,
OS/VSl, VM/SP, and VSE.

VM. Virtual machine.

VMA. Virtual machine assist.

VMBLOK. Virtual machine control block.

VMCF. Virtual machine communication facility.

VM/SP. Virtual Machine/System Product.

VM/SP directory. A CP disk file that defines each
virtual machine's typical configuration; the user ID,
password, regular and maximum allowable virtual
storage, CP command privilege class or classes allowed,
dispatching priority, logical editing symbols to be used,
account number, and CP options desired. Synonymous
with CP directory.

volid. Volume identifier.

volume identifier (volid). The volume identification label
for a disk.

V = R. Synonym for virtual = real option.

VSAM. Virtual storage access method.

VSCS. VTAM SNA Console Support.

VSE. Virtual storage extended.

VTAM. Virtual Telecommunications Access Method.

w
warm start. (1) The result of an IPL that does not
erase previous system data. (2) The automatic
reinitialization of the VM/SP control program that
occurs if the control program cannot continue
processing. Closed spool files and the VM/SP
accounting information are not lost. Contrast with
checkpoint (CKPT) start, cold start, andforce start.

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

wide area network (WAN). A network that provides
communication services to a geographic area larger than
that served by an LAN. Contrast with local area
network (LAN).

wrap spool file. A wrap spool file is established when
the CPT RAP invoker issues CPTRAP START with the
WRAP option. The size of the wrap spool file is
determined by the file size information provided with
the CPTRAP START WRAP nnnnn command. (nnnnn
is the number of 4K blocks of records.) Records will be
added to the spool file until the specified SPOOL size
limit is reached. Then, newer records replace older
records in the spool file thereby using the same spool
area over again.

x
XEDIT. See System Product Editor.

z
zap. To modify or dump an individual text file, using
the ZAP command or the ZAPTEXT EXEC.

Numerics

3
3262. Refers to the IBM 3262 Printer, Models 1 and
11.

3270. Refers to a series of IBM display devices; for
example, the IBM 3275, 3276 Controller Display
Station, 3277, 3278, and 3279 Display Stations, the 3290
Information Panel, and the 3287 and 3286 printers. A
specific device type is used only when a distinction is
required between device types. Information about
display terminal usage also refers to the IBM 3138,
3148, and 3158 Display Consoles when used in display
mode, unless otherwise noted.

3289. Refers to the IBM 3289 Model 4 Printer.

3330. Refers to the IBM 3330 Disk Storage Device.

3340. Refers to the IBM 3340 Direct Access Storage
Device.

3350. Refers to the IBM 3350 Direct Access Storage
Device when used in native mode.

3375. Refers to the IBM 3375 Direct Access Storage
Device.

3380. Refers to the IBM 3380 Direct Access Storage
Device.

Glossary of Terms and Abbreviations 285

3422. Refers to the IBM 3422 Magnetic Tape
Subsystem.

370x. Refers to the IBM 3704/3705 Communication
Controllers.

3725. Refers to the IBM 3725 Communication
Controllers.

3800. Refers to the IBM 3800 Printing Subsystems. A
specific device type is used only when a distinction is
required between device types.

3880. Refers to the IBM 3880 Storage Control Units.

286 VM/SP Diagnosis Guide

4

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

4245. Refers to the IBM 4245 Printer.

4248. Refers to the IBM 4248 Printer.

9
9332. Refers to the IBM 9332 Direct Access Storage
Device, Model 400.

9335. Refers to the IBM 9335 Direct Access Storage
Device, Models AOI and BOL

9347. Refers to the IBM 9347 Tape Drive.

9370. Refers to a series of processors, namely the IBM
9373 Models 20 and 30, the IBM 9375 Models 40, 50,
and 60, and the IBM 9377 Models 80 and 90.

LY24-5241-01 © Copyright IBM Corp. 1986,1988

;e.----.
r

.'--/

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Bibliography

Here is a list of IBM books that can help you use your system. If you don't see the book
you want in this list, you might want to check the IBM System/370, 30xx, 4300, and 9370
Processors Bibliography, GC20-0001.

Prerequisite Publications
IBM System/360 Principles of Operation, GA22-6821

IBM System/370 Principles of Operation, GA22-7000

Virtual Machine/System Product (VM/SP):

Application Development Reference for CMS, SC24-5284
Application Development Guide for CMS, SC24-5286
CMS Command Reference, SC19-6209
CMS User's Guide, SC19-621O
CP General User Command Reference, SCl9-6211
CP System Command Reference, SC24-5402
Release 6 Guide, SC24-5368
System Product Editor Command and Macro Reference, SC24-5221
System Pr.oduct Editor User's Guide, SC24-5220
System Product Interpreter Reference, SC24-5239
System Product Interpreter User's Guide, SC24-5238

Corequisite Publications
Virtual Machine/System Product (VM/SP):

Administration, SC24-5285
Application Development Guide for CMS, SC24-5286
CMS Data Areas and Control Blocks, LY24-5221
CMS Diagnosis Reference, LY20-0893
CP Data Areas and Control Blocks, L Y24-5220
CMS Shared File System Administration, SC24-5367
Connectivity Programming Guide and Reference, SC24-5377
Connectivity Planning, Administration, and Operation, SC24-5378
CP Diagnosis Reference, L Y20-0892
Group Control System Command and Macro Reference, SC24-5250
Installation Guide, SC24-5237
Interactive Problem Control System Guide and Reference, SC24-5260
Library Guide and Master Index, SC19-6207
Operator's Guide, SC19-6202
Planning Guide and Reference, SC19-6201
System Messages and Codes, SC19-6204
System Messages Cross-Reference, SC24-5264
Service Routines Program Logic, L Y20-0890
Problem Determination Summary, SX24-5224

Virtual Machine (VM):

CP Trace Table (Poster), SX24-5225
Running Guest Operating Systems, GC19-6212
System Facilities for Programming, SC24-5288

VM/SP Remote Spooling Communications Subsystem (RSCS) Networking Version 2:

Diagnosis Reference, L Y24-5228
General Information, SH24-5055

LY24-S241-01 © Copyright IBM Corp. 1986, 1988 Bibliography 287

Operation and Use, SH24-S0S8
Planning and Installation, SH24-S0S7

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Program Reference and Operations Manual, SH24-S00S

Virtual Machine/System Product (VM/SP) Pass-Through Facility:

Managing and Using, SC24-S374

Customer Information Control System for VM (CICS/VM): Problem Determination,
LY33-0S33

IBM Field Engineering Programming System: General Information, G229-2228

IBM System/370 and 4300 Processor Bibliography, GC20-0001

IBM Vocabulary for Data Processing, Telecommunications, and Office Systems,
GC20-1699

VSE/VSAM Programmer's Reference, SC24-S14S

Notes:

1. References in text to titles of publications are given in abbreviated form.

2. The VM/SP Library Guide and Master Index, GCI9-6207, describes all the VM/SP
books and contains a master index to all the books in the VM/SP library.

288 VM/SP Diagnosis Guide LY24-S241-01 © Copyright IBM Corp. 1986, 1988

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Index

A
abbreviations 269
abend dump, CP

See CP abend dump
ABEND macro 28
ABEND processing 183

program check 184
ABEND Save Area 183
ABEND Work Area 183
Abend 778 209
Abend 80A 208
Abend 804 208
Abend 878 208
abends 3, 13, 23

AVS 241
checklist for reporting CMS 245
checklist for reporting CP 245
checklist for reporting GCS 245
checklist for reporting RSCS 246
CMS

reason for 140
GCS 180
messages 23
SFS server 146
TSAF 228

ABEND, Abnormal end 183
Abnormal End, (ABEND) 183
abnormal termination (abend) 3, 13, 23

AVS 241
checklist for reporting CMS 245
checklist for reporting CP 245
checklist for reporting GCS 245
checklist for reporting RSCS 246
CMS

reason for 140
GCS 180
messages 23
SFS server 146
TSAF 228

active disk table (ADT) 142
active file table (AFT) 142
Active Task 199
address, stop 54
ADSTOP command 39,54,132, 181
ADSTOP command, how to set address stops 56
ADT (active disk table) 142
AEB Block 196

SIEAEQ
VMCSCHDX

AFT (active file table) 142
AGW SET ETRACE command 239

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

AGW SET ITRACE command 238
alter contents of storage 143
altering storage contents 67
Anchor Blocks, Storage 203
AP (attached processor mode) 33,35, 79, 80,81, 88
APAR command 42
APPCjVM synchronous event (type X'OC') entry 171
APPC/VM VT AM Support (A VS)

abends 241
AGW SET ETRACE command 239
AGW SET !TRACE command 238
creating dumps 236
debugging 235
diagnosing dumps 237
displaying dump infonnation 238
dumps 236

creating 236
diagnosing 237
displaying information 238
processing 237

formatting and displaying trace records 238
processing dumps 237
QUERY CPT RAP command 239
setting external tracing 239"
setting internal tracing 238 ",
using system trace data to diagnose problems 238

application debugging 200
attached processor mode (AP) 33, 35, 79, 80, 81, 88
automatic generation of CMS abend dumps 138
A VS abends 32
A VS dumps 236

creating 236
diagnosing 237
displaying information 238
processing 237

AVS (APPCjVM VTAM Support)
abends 241
AGW SET ETRACE command 239
AGW SET ITRACE command 238
creating dumps 236
debugging 235
diagnosing dumps 237
displaying dump information 238
dumps 236

creating 236
diagnosing 237
displaying information 238
processing 237

formatting and displaying trace records 238
processing dumps 237
QUERY CPT RAP command 239
setting external tracing 239
setting internal tracing 238

Index 289

AVS (APPCjVM VTAM Support) (continued)
using system trace data to diagnose problems 238

B
BALRSAVE 81
BEGIN command 33, 39, 54, 181
bibliography 287
Boundary Box Usage 224
branch entry Freemain (type X'OB') entry 170
branch entry Getmain (type X'OA') entry 169
branch traceback table 63
breakpoint setting 132
byte alignment on terminal output 50, 51

C
calling IBM for assistance, data needed 16
CAW (channel address word)

definition of 8
CCW mapping 221
changes, summary of 265
channel address word (CAW)

definition of 8
channel check 33
channel program

definition of 8
Channel, I/O Queued 215
Checking Free Storage 206
checklists for specific problems

for a virtual machine wait state 246
for a wait state in RSCS 247
for an abend in GCS 245
for CMS abend 245
for CP abend 245
for CP wait state 246
for incorrect or unexpected output 247
for RSCS abend 246

checkpointing CPTRAP 119
clock comparator 39
CMD option of the PER command 65
CMDBUF 221
CMNDLINE (command line) 142
CMS abend 28
CMS abend dump reading 136
CMS abend message 26
CMS abend recovery function 30
CMS control block relationship 137
CMS dump file printing 136
CMS dump generation, automatic 138
CMS (Conversational Monitor System)

checklist for reporting abends 245
CMSCB (OS control blocks) 141
collecting

CP DATA entries in the CPT RAP file 110
entries in the CPT RAP file
in the CPT RAP file 104

290 VM/SP Diagnosis Guide

~. . ..
-~ ------.

"Restricted Materials of niM"
Licensed Materials - Property of IBM

collecting (continued)
I/O activity 98
virtual machine data 1 04

collecting TSAF error information 228
Command and Console Support 218
Command Support 218
commands

ADSTOP 181
BEGIN 181
CPTRAP 97
DISPLAY 181
DUMP 181
ETRACE

AVS 239
SFS 152
TSAF 232

GDUMP 180
INDICATE 73
ITRACE

GCS 158
SFS 153

LOCATE 73
MONITOR 73
NETWORK 121
PER 181
QUERY CPTRAp 118,239
QUERY SRM 73
SET ETRACE

TSAF 232
SET ITRACE

AVS 238
STORE 181
summary for debugging 39
to collect and analyze system information 73
TRACE 181
VMDUMP 181

common dump receiver 179
Common Lock, GCS 188
Common Storage Anchor Blocks (CSAB) 203
Common Storage Management 208
Communication Task Queues 220

CMDBUF 220
Operator Reply Elements (ORE) 220
ORE 220
WQE 220
Write Queue Elements (WQE) 220

configuration file for GCS 157, 179
console constants, GCS 191
console log 146, 229

definition of 9
sample, SFS 147

console log sample, TSAF 229
Console Support 218
control block addresses 40
control block in CP

RCHBLOK 86
RCUBLOK 86

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

/

'"

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

control block in CP (continued)
RDEVBLOK 87
relationships 84
VCHBLOK 85
VCUBLOK 85
VDEVBLOK 86
VMBLOK 85

control block (CMS) relationship 137
Control Program (CP)

checklist for reporting abends 245
checklist for wait state 246
data
DATA entries
entries in CPT RAP spool file
interface to CPTRAP
internal trace table

obtaining a copy of 22
trace table entries

recording in the CPTRAP file 100
control register allocation 250
control registers 249
Conversational Monitor System (CMS)

checklist for reporting abends 245
COUNT subcommand of the PER command 63
CP abend 26
CP abend dump

description of type 77
dumping to DASD 77
dumping to printer 77
dumping to tape 77
printing from tape 78
reading 78

collect information 80
debugging an AP/MP system 88
examine control blocks 83
identifying and locating page able module 88
reason for abend 79
register use convention 80
save area convention 81
VMDUMP records 89

specifying output device 77
CP abend message 24
CP FRET trap 93

description 93
examples 94

CP internal trace table 74
allocated size 76
description 74
entry format 75
lUCY entry 76
poster 76
restart tracing 76
specifying size 74
suppress tracing 76
traced events 74
use 76

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

CP SET DUMP command 77
CP trace command 55
CP (Control Program)

checklist for reporting abends 245
checklist for wait state 246
data
DATA entries
entries in CPTRAP spool file
interface to CPT RAP
internal trace table

obtaining a copy of 22
trace table entries

recording in the CPT RAP file 100
CPABEND (abend code) 79
CPEREP program 37
CPSTAT (CP running status) 80
CPTRAP command 42, 153, 173, 175,232
CPTRAP facility 10

additional considerations 118
altering tracing 97
analyzing data 97
checkpointing 119
collecting CP DATA entries in the CPTRAP

file 110
collecting entries in the CPTRAP file
collecting I/O activity 98
collecting SFS information 153
collecting virtual machine data lO4
collecting virtual machine data in the CPTRAP

file 108
command 97

DL operand III
INFILE operand 116
LOC operand 110

CP DATA entries in the CPTRAP file 111
CP data in the CPT RAP file 11 0
CP/virtual machine interface error 119
data lost situations 118
debugging with 95
defining a trap 96
defining traps 104
DISPLAY operand 118
displaying the output 120
ending tracing 97
entries in the CPT RAP file 109
example of TT ABLE traps lO3
example of type DATA trap 112
example of type GT traps
example of virtual machine interface
examples
file
filtering trace entries lO2
getting tracing started 97
logoff considerations 119
migration considerations 119
non-wrap file 96
obtaining CPTRAP status 118

Index 291

CPTRAP facility (continued)
output

directing 96
overview 95
QUERY command 118
QUERY CPTRAP command 239
recording CP data in the CPTRAP file 110
recording CP trace table entries 100
recording 1/0 activity 98

example 98
recording virtual machine data 104
release level conflicts 119
running with microcode assist active 119
setting up the virtual machine interface 105
specifying selectivity 101, 104
spool file
spool space considerations 119
starting tracing 108
trap A VS trace table entries 239
turning off tracing 97
type 10 entries in the CPT RAP file 99
type traps 95
use with A VS 238
view A VS data with IPCSSCAN 240
viewing SFS data 154
virtual machine entries in the CPT RAP file 109
wrap file 96

CP/virtual machine interface errors 119
creating a dump 20
creating a TSAF dump 230
creating an A VS dump 236
creating the TSAF IPCS map 230
CSAB - Common Storage Anchor Blocks 203
CSIYTD routine 175
CSW (channel status word)

definition of 8
information contained in 8
problems helped by 8

CVTSECT (CMS Communications Vector Table) 142

D
DASD Dump/Restore (DDR) program 34
DASD format, stand-alone dump 255
data

analyzing
from CPTRAP 97

loss
lost

DATA entries in the CPTRAP file 111
data extraction routine 182
data needed before calling IBM for assistance 16
data sheet, problem inquiry 17
DATA type trap

considerations 113
CP data

using DATA type trap 110

292 VM/SP Diagnosis Guide

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

DATA type trap (continued)
DATA entries

collecting in the CPT RAP file 110
examples

collecting CP data 114
interface to CPTRAP

setting up 114
specifying

using CPT RAP INFILE operand 116
using to record CP data 110

datalink string 111
DCP command 40, 48, 50
DDR program 34
debugging

abends 23, 146
AVS 32,241
CMS 28
CP 26
GCS 32
SFS 32
TSAF 32
virtual machine 33

AVS 235
abends 241
creating dumps 236
diagnosing dumps 237
displaying dump information 238
dumps 236
formatting and displaying trace records 238
processing dumps 237
QUERY CPTRAP command 239
setting external tracing 239
setting internal tracing 238
using system trace data to diagnose

problems 238
CMS 131
commands summary 39
CP 71
data needed before calling IBM 16
GCS 155
how to start 2

analyzing problem 12
does a problem exist? 3, 14
identify the problem 3

introduction 1
loop 34

CP disabled loop 35
virtual machine disabled loop 35
virtual machine enabled loop 36

problem types 13
procedures for unexpected results and an abend 16
procedures for waits and loops 15
SFS 145

collecting error information 146
creating file pool server dump 151
diagnosing SFS server dump 151
formatting trace records 152
printing file pool server dump 152

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

f''''
\~

(

(

(

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

debugging (continued)
SFS (continued)

processing SFS server dump 151
sample console log 147
setting external tracing 152
setting internal tracing 153
trapping trace table entries 153
using file pool server dumps to diagnose 150
viewing CPTRAP data 154

TSAF 227
unexpected result 34
using console log 146
virtual machine 47
wait 36

CP disabled wait 36
CP enabled wait 38
virtual machine disabled wait 38
virtual machine enabled wait 39

with the CPTRAP facility 95
with VM/SP facilities 20

debugging A VS
debugging tools summary

command 39
ADSTOP 39
APAR 42
BEGIN 39
CPTRAP 42
DCP 40
DISPLAY 40
DUMP 39
IPCSDUMP 42
IPCSPRT 43
IPCSSCAN 44
LOCATE 40
MAP 44
MONITOR 42
PER 39
PRB 44
PROB 44
STAT 45
STCP 41
STORE 40
TRACE 41
TRAPFILE 45
VMDUMP 39

function 39
control block addresses 40
display real CP data 40
display virtual data 40
dump data 39
resume execution 39
stop execution 39
store real CP data 41
store virtual data 40
trace execution 41
trace real machine events 42

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

debugging TSAF
abends 228
collecting error information 228
creating TSAF dump 230
creating TSAF IPCS map 230
diagnosing TSAF dump 231
displaying trace records 231
displaying TSAF dump information 231
formatting trace records 231
printing TSAF dump 232
processing TSAF dump 230
sample console log 229
setting external tracing 232
trace table entry format 233
trace table trailer record format 234
trapping trace table entries 232
TSAF QUERY command 234
using the console log 229
using TSAF dumps to diagnose 229

DEFINE command 57
definition of terms 269
Device characteristics 216
devices for stand-alone dump 123
diagnosing a TSAF dump 231
diagnosing an A VS dump 237
Dispatch Queue 197
dispatcher (type X'OI') entry 161
DISPLAY command 40,48,49, 132, 181
display real CP data 40
DISPLAY subcommand 188
display virtual data 40
display virtual machine data 48
displaying A VS dump information 238
displaying AVS trace records 238
displaying CPTRAP output 120
displaying the TSAF dump information 231
DL operand of CPTRAP command 111
DMCP command 48, 50
DMKCPEND (end of CP resident nucleus) 88
DMKDMP 82
DMKFRE 81
DMKFRT 81
DMKSTA 76
DMMTAB communication table 182
DMPINREC 90
DMPKYRECI 90
DMPKYREC2 90
DMSABN macro 29
DMSABN (abend routine) 140
DMSITP 142
DMSITP routine 28
does a problem exist? 3
DUMP command 35, 39, 48, 52, 132, 181
DUMP command to print virtual storage 52
dump data 39
dump generation, automatic 138

Index 293

dump virtual machine data 48
dumping to DASD 77
dumping to printer 77
dumping to tape 77
dumps

AVS 236
creating 236
diagnosing 237
displaying information 238
processing 237

communication controller, obtaining copy of 22
CP restart, obtaining copy of 20
creating 20
definition 5
information included in 5
problems helped by 6
stand-alone 6, 21
TSAF

creating 230
diagnosing 231
displaying information 231
printing 232
processing 230

types of 6
virtual machine, obtaining copy of 21

DUMPSA VE (DMLDMP save area) 82
dump, used in problem determination 26

E
ECMODE option 36
ECRLOG (extended control registers) field 140
error handling for stand-alone dumps 256
ETRACE 10
ETRACE command 173

AVS 239
SFS 152
TSAF 232

ETRACE GROUP 173
extended control mode 36
extended control PSW description 250
External Interrupt Handler Work Area (EXTW A) 262
external interrupt (type X'02') entry 162
external trace records, formatting and displaying 174
external tracing facilities, GCS 173
external tracing, SFS 152
EXTOPSW (external old PSW) 140
EXTSECT (external interrupt work area) 142
EXTWA - External Interrupt Handler Work Area 262

F
FCBTAB (file control block table) 141
fetch-protected storage 179
file name operand of MODMAP command 136
file pool server dumps

creating 151

294 VM/SP Diagnosis Guide

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

file pool server dumps (continued)
diagnosing 151
printing 152
processing 151
use to diagnose 150

filtering
trace entries with CPTRAP 102

FLSCTB 173
formatting A VS trace records 238
FPRLOG (floating-point registers) field 140
Fragmentation, storage 206
Free Storage 206
Freemain 208
Freemain via SVC (type X'09') entry 168
FREESAVE 81
FXDLOG (fixed logout area) 79

G
GCS abend message 26
GCS abends 32
GCS Common Lock 188
GCS configuration file 157, 179
GCS Console Constants 191
GCS Control Blocks 257
GCS debugging

dumping facilities 179
common dump receiver 179
how to initiate dumps 180
rules of authorization 179

external tracing facilities 173
CPTRAP command 173
displaying external trace records 174
ETRACE command 173
ETRACE GROUP 173
external trace table formatted entries,

examples 177
formatting external trace records 174

interactive debug support 181
analyzing dumps 181
CP commands 181
dumping VSAM information 182

internal tracing facilities 157
GTRACE macro 158
internal trace table formats 158
!TRACE command 158

GCS dumps, analyzing 181
GCS dumps, initiating 180
GCS external trace table formatted entries, examples

entry type X'OA' 178
entry type X'OB' 178
entry type X'OC' 179
entry type X'OE' 179
entry type X'02' 177
entry type X'03' 177
entry type X'05' 177
entry type X'08' 178

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

/

.", /

(

c::

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

GCS external trace table formatted entries, examples
(continued)

entry type X'09' 178
GCS internal trace table 157
GCS internal trace table formats

GTRACE entries 158
GTRACE (type X'OE') 172
header! 158
header2 160

how to look at entries 173
supervisor entries 158

APPCjVM synchronous event (type X'OC') 171
branch entry Freemain (type X'OB') 170
branch entry Getmain (type X'OA') 169
dispatcher (type X'Ol') 161
external interrupt (type X'02') 162
Freemain via SVC (type X'09') 168
Getmain via SVC (type X'08') 167
header! 158
IUCV signal system service (type X'O?') 166
I/O interrupt (type X:'03') 163
program interrupt (type X'04') 163
SIO (type X'06') 165
SVC interrupt (type X'05') 164

GCS Nucleus Constant Area 258
GCS Trace Table 188
GCS (Group Control System)

checklist for reporting abends 245
obtaining a GCS IPCS map 236

GDUMP command 180
General I/O 209
General I/O options

CHAR 209
CLOSE 209
HALT 209
MODIFY 209
OPEN 209
START 209
STARTR 209

General I/O table 212
generating CMS abend dumps automatically 138
GENMOD command 136
Getmain 208
Getmain via SVC (type X'08') entry 167
getting information about CPTRAP with QUERY 239
GIOTB 212

'glossary 269
GPRLOG (general purpose registers) field 140
Group Control System (GCS)

checklist for reporting abends 245
obtaining a GCS IPCS map 236

GT type trap 104
data

collecting in the CPTRAP file 104
defining 104
interface to CPTRAP

setting up 105

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

GT type trap (continued)
specifying selectivity 104

GT type trap ID
data

collecting in the CPTRAP file 108
starting tracing 108

GT type traps example 109
data

recording in the CPTRAP file 11 0
GTF header 175
GTRACE macro 158
GTRACE (type X'OE') entry 172
GUESTR option of PER command 67
GUESTV option of PER command 67

H
halt execution (HX) in CMS 28
hardware failure 3

checklist for reporting 248
how to find the machine id 188
how to start debugging 2

identifying the problem 3
incorrect or unexpected output
incorrect results 3

checklist for reporting 247
hardware failure 248
inadequate system parameters 248
infinite loop in a virtual machine 248
infinite loop in CP 247
infinite loop in RSCS 248

INDICATE command 73
INFILE operand of CPTRAP command

data
collecting in CPTRAP file 116

file
collecting CP data in 116

spool file
CP entries in 117

trace entries
CPTRAP 117

infinite loop 3
checklist for reporting in a virtual machine 248
checklist for reporting in CP 247
checklist for reporting in RSCS 248

information sources that describe VM/SP's condition 5
initiating GCS dumps 180
Interactive Problem Control System (IPCS) 10, 184

for GCS. 184
IPCSSCAN to view A VS data 240
load maps 7
obtaining a GCS IPCS map 236
symptom records 10
to collect A VS data 236

Index 295

interface error
CP /virtual machine 119

internal trace table, CP 22, 74
obtaining a copy of 22

internal trace table, GCS 157
internal trace table, TSAF 233
internal tracing facilities, GCS 157
internal tracing, SFS 153
Interrupt Control Blocks 214
Interrupt Handling, I/O 213
INTMC (machine check interrupt code) 79
INTPR (program interrupt code) 79
introduction to debugging 1
INTSVC (SVC interrupt code) 79
IO type

entries in the CPT RAP file 99
IOSAVE 211
IOSECT (I/O interrupt work area) 142
IPCS dumps 184
IPCS (Interactive Problem Control System) 10, 184

for GCS. 184
IPCSSCAN to view A VS data 240
load maps 7
obtaining a GCS IPCS map 236
symptom records 10
to collect A VS data 236

IPCSDUMP command 42
IPCSPRT command 43, 136
IPCSSCAN command 44
IPCSSCAN to view A VS data 240
IPL of stand-alone dump facility 123
ITRACE 10
IT RACE command

AVS 238
GCS 158
SFS 153

IUCV 200
application debugging 200
lUCY Anchor Block 201
Path ID Block 202
tracing IUCV 200
User Id Block 201

IUCV Anchor Block 201
lUCY entry of CP internal trace table 76
IUCV signal system service (type X'07') entry 166
I/O activity

collecting 98
recording 98

example 98
I/O Debugging 216
I/O Interrupt Handling 213
I/O interrupt (type X'03') entry 163
I/O Queued Channel 215

296 VM/SP Diagnosis Guide

K

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Key, page 207

L
LASTCMND field 141
LASTEXEC field 141
LINK Block 196
LOAD command 136
load map generation 136
load maps 132
LOADCMD 219
LOADCMD Command 219
LOC operand or CPTRAP command 110
LOCATE command 40, 73
locating CP control blocks in storage 73
locking function 180
LOCKSA V (LOCK macro save area) 83
lockword 89
logoff considerations with CPTRAP 119
LOKSA VE (DMKLOK save area) 83
looping condition in virtual machine 3, 8
looping programs 57
loops 13,34
loop, infinite 3

checklist for reporting in a virtual machine 248
checklist for reporting in CP 247
checklist for reporting in RSCS 248

LOWSAVE (debug save area) 140

M
machine id 188
macros

GTRACE 158
Major SACBs fields 204
MAP command 44
map compressing routine 181
MAP option of GENMOD command 136
MAP option of LOAD command 136
MAPN subcommand 188
MCKOPSW (CMS machine check old PSW) 140
MCOPSW (machine check old PSW) 79
messages 4
MF ASA VE (DMKMCT save area) 83
microcode assist

running with active
using CPTRAP 119

migration considerations, CPT RAP 119
Minor SACBs fields 205
MODMAP command 136
module load map 135
monitor call instruction format 107

example of virtual machine interface
for type GT trap 107

GT trap
virtual machine interface example 107

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

~----~--- ~-- ---

(' " I

\

/

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

monitor call instruction format (continued)
GT trap ID

starting 108
interface for type GT trap

example 107
MONITOR command 42, 73
MONITOR START command 76
MP (multiprocessor mode) 35,79,80, 81, 88
multiple channel errors 25
multiprocessor mode (MP) 35, 79, 80, 81, 88

N
NCPDUMP command 122
NCPDUMP service program 121
NETWORK command 121
network dump operations 120
non-recoverable machine check 33
non-wrap file 96

I/O activity
example 98

nucleus load map 135
definition of 6
information contained in 6
obtaining a 7

NUCMAP
definition of 6
information contained in 6
obtaining a 7

NUCON 187, 190
NUCON mapping 187

NUCON - GCS Nucleus Constant Area 258
NUCON Changes 223
NUCON Extension 260
NUCON Information 219
NUCON (nucleus constant area) 140

o
obtaining a copy of a stand-alone dump 21
obtaining a copy of a virtual machine dump 21
obtaining a GCS IPCS map 236
ORE 222
output devices for stand-alone dump facility 123, 124

p
Page Key 207
pageable module, identify and locate 88
parameter list

for data to be included in CPT RAP file 115
Path ID Block 202
Path Information 202
PER command 33,35,39,59, 132, 181

CMD option 65
COUNT subcommand 63
GUESTR option 67

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

PER command (continued)
GUESTV option 67
selectivity 61
storage alteration tracing 66
suspending 62
terminating 61
tracing interrupts 62

PER (Program Event Recording Facility) 10, 11
PGLOCK 216
PGMOPSW (program old PSW) 140
PGMSECT (program check interrupt work area) 142
PGMWA - Program Interrupt Work Area 263
poster, CP internal trace table 76
PRB command 44
prefix storage area (PSA) 27, 79, 88
PREFIXA 88
PREFIXB 88
PREVCMND field 141
PREVEXEC field 141
printer format, stand-alone dump 256
printer output 52
printing a TSAF dump 232
printing CMS dump file 136
printing tape dump 78
Private Storage Anchor Blocks (PSAB) 203
PROB command 44
problem inquiry data sheet 17
problem types 13
processing a TSAF dump 230
processing an A VS dump 237
processing, ABEND 183
Program check 184
program check debugging 58
Program Event Recording Facility (PER) 10, 11
program exceptions 28
Program Interrupt Work Area (PGMWA) 263
program interrupt (type X'04') entry 163
program loops 57
program status word (PSW)

definition of 7
program temporary fix (PTF), applying 2
PSA control block 80
PSA (prefix storage area) 27, 79, 88
PSAB - Private Storage Anchor Blocks 203
PSW Key 14 179
PSW (program status word)

definition of 7
PTF (program temporary fix), applying 2

Q
QUERY AUTODUMP command 132,138,139

format 139
QUERY command 53
QUERY CPTRAP command 118,239

lost
situations with CPTRAP 118

Index 297

QUERY SRM command 73
query system feature, condition, or event 53

R
RCHBLOK 86
RCUBLOK 86
RDEVBLOK 87
reading CMS abend dump 136
reading CP abend dumps 78
recording

CP data
CP trace table entries 100
I/O activity 98
virtual machine data in the CPTRAP file 104

Recreating the Problem 217
reducing the probability of data loss 102

loss
reducing the probability of 102

register convention 80
register use 142
registers

definition 7
use of 7

release level conflicts with CPT RAP 119
Remote Spooling Communications Subsystem (RSCS)

Networking
checklist for reporting abend 246
checklist for wait state 247

repetitive output 3
resident pages dumped with stand-alone dump

program 123
resume execution 39, 54
return codes 4
RSCS (Remote Spooling Communications Subsystem)

Networking
checklist for reporting abend 246
checklist for wait state 247

RSRTOPSW (restart old PSW) 79
Running Task 199
RUNUSER (current user) 80

S
SACBs 204

Major SACBs 204
Minor SACBs 204
Scanning Major SACBs 206
Scanning Minor SACBs 206
Scanning SACBs 206

SAD MACRO 126
SADGEN ASSEMBLE file 126
SADGEN TEXT file 126
SADUMP example 128
SADUMP EXEC 125, 126
save area convention

BALRSAVE 81

298 VM/SP Diagnosis Guide

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

save area convention (continued)
DUMPSAVE 82
FREESAVE 81
LOCKSAV 83
LOKSAVE 83
MFASAVE 83
SAVEAREA 81
SIGSAVE 82
SVCREGS 83
SWTHSAVE 83

SAVEAREA 81
SAVERETN 81
SDUMP command 180
selectivity 116

specifying
specifying for type GT traces 104
specifying with CPTRAP 101

selectivity using PER 61
SET AUTODUMP command 132, 138

format 138
set breakpoint 132
SET command 53
SET ETRACE command

AVS 239
TSAF 232

SET IT RACE command
AVS 238

setting external tracing, A VS 239
setting external tracing, TSAF 232
setting internal tracing, A VS 238
setting system feature, condition, or event 53
SFS abend message 26
SFS abends 32
SFS (Shared File System) server

abends 146
debugging 145

collecting error information 146
creating file pool server dump 151
diagnosing SFS server dump 151
displaying trace records 152
printing file pool server dump 152
processing SFS server dump 151
sample console log 147
setting external tracing 152
setting internal tracing 153
trapping trace table entries 153
using file pool server dumps to diagnose 150
viewing CPTRAP data 154

ETRACE command 152
ITRACE command 153
using console log 146

Shared File System (SFS) server
abends 146
data

collecting in CPT RAP file 116
recording in the CPT RAP file 110

DATA entries
collecting in the CPTRAP file 110

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

/

(

(~

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Shared File System (SFS) server (continued)
debugging 145

collecting error information 146
creating file pool server dump 151
diagnosing SFS server dump 151
displaying trace records 152
printing file pool server dump 152
processing SFS server dump 151
sample console log 147
setting external tracing 152
setting internal tracing 153
trapping trace table entries 153
using file pool server dumps to diagnose 150
viewing CPTRAP data 154

ETRACE command 152
interface to CPTRAP

setting up 114
ITRACE command 153
using console log 146

SI Extension 192
SI Extension mapping 192

SIE - NUCON Extension 260
SIE Information 220
SIGSA VE (DMKEXT save area) 82
SIO (type X'06') entry 165
SPIE 28
SPLINK 90
spool command 147,229
spool space considerations with CPT RAP 119
STAE 28
stand-alone dump facility 21

configuring 126
DASD format 255
devices to IPL 123
devices to send dump output 124
error handling 256
example of configuring 128
output devices 124
overview 123
printer format 256
processing dump data on tape 130
program generation 125
SADUMP EXEC 126
taking a dump 129
tape format 253
using 126

STAT command 45
State Block (STBLK) 193

AEB Block
LINK Block
SVC Block
Wait Count

State Block, task waiting 195
State Block, wait count 195
STBLK - State Block 193
STCP command 41, 70, 143

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

stop execution 39
stopping execution 54
Storage Anchor Blocks 203

Common Storage Anchor Blocks 203
Private Storage Anchor Blocks 203

storage contents alteration
STCP command 143
STORE command 143
ZAP command 143
ZAPTEXT command 143

storage contents, altering 67
real storage 70
virtual machine storage 67

Storage Fragmentation 206
Storage Management 203

Storage, Task Block 207
STORE command 40, 67, 132, 143, 181
store real CP data 41
STORE STATUS command 67,69
store virtual data 40
Subpools, Task Block 208
summary of

steps to follow when a TSAF abend occurs 228
steps to follow when an AVS abend occurs 241
VMjSP debugging commands 39

summary of changes 265
suspending PER 62
SVC Block 196
SVC Interrupt Handler Work Area (SVCWA) 262
SVC interrupt (type X'05') entry 164
SVC save area (SVCSA VEl 143
SVCOPSW (SVC old PSW) 79, 140
SVCREGS (SVC interrupt save area) 83
SVCSAVE (SVC save area) 143
SVCSECT (SVC interrupt work area) 142
SVCTRACE command 54, 132
SVCWA - SVC Interrupt Handler Work Area 262
SWTHSA VE (DMKSTK save area) 83
symptom records 10, 11

contents of 11
definition of 11
for AVS 237

symptoms of problems
messages 4

compared with return codes 4
message identifier 4
message text 4
message variables 4
parts of 4

return codes 4
compared with messages 4

SYSCOR macro 74
SYSOPR macro 151,230
system abend 29
SYSTEM command 53
system information, collect and analyze

INDICATE command 73

Index 299

system information, collect and analyze (continued)
LOCATE command 73
MONITOR command 73

system parameters
checklist for reporting problem 248

system trace data to diagnose TSAF problems 232

T
TAG area 90
tape format, stand-alone dump 253
Task Block Storage 207
Task Block Subpools 208
Task Block (TBK) 193
Task ID Table 198
Task, active 199
Task, running 199
Task, waiting 195
TBK - Task Block 193
terminal output 50
terminating PER 61
terms 269
TEVC (trace entry verification code) 159
TRACCURR (current CP internal trace table

entry) 80
TRACE 10,217
TRACE command 33, 35, 41, 132, 181
trace entries

AVS 238
TSAF 231,233
X'3C' 99, 111
X'3D' 109
X'3F' 117

trace entry verification code (TEVC) 159
trace events in virtual machine

ADSTOP command 54
BEGIN command 54
CP PER command 59

branch traceback table 63
CMD option 65
GUESTR option 67
GUESTV option 67
mUltiple address stops 59
PER COUNT subcommand 63
selectivity 61
storage alteration tracing 66
suspending 62
terminating 61
tracing interrupts 62

CP trace command 55
controlling a CP trace 56
suspending tracing 57

resume execution 54
stopping execution 54
SVCTRACE command 54

trace execution 41

300 VMjSP Diagnosis Guide

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

trace real machine events 42
TRACE subcommand 27
trace table entries 217

AVS 238
collecting in the CPTRAP file 101
CP 74,75,76
GCS 157, 158, 173, 177
recording in the CPT RAP file 100
TSAF 231,233

Trace Table, GCS 188
TRACEND (end of CP internal trace table) 80
traces

CP 10
definition of 9
ETRACE 10
ITRACE 10
PER 10, 11
problems helped by 9
SNA tracing tools 10
TRACE 10

tracing
altering 97
ending 97
external, A VS 239
external, TSAF 232
getting started

using CPTRAP 97
GT trap ID
internal, A VS 238
turning off 97

tracing capabilities in EXECs 133
Tracing IUCV 200
Tracing Program Management 199
tracing storage alteration using PER 66
Tracing Storage Management 209
Tracing Task Management 199
TRACSTRT (start of CP internal trace table) 80
translating virtual storage to EBCDIC 49
Transparent Services Access Facility (TSAF)

abends 228
collecting error information 228
creating TSAF dump 230
creating TSAF IPCS map 230
debugging 227
diagnosing TSAF dump 231
displaying trace records 231
displaying TSAF dump information 231
formatting trace records 231
printing TSAF dump 232
processing TSAF dump 230
QUERY command 234
sample console log 229
SET ETRACE command 232
setting external tracing 232
trace table entry format 233
trace table trailer record format 234
trapping trace table entries 232

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

(
I

\

,
\" /

(

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Transparent Services Access Facility (TSAF)
(continued)

using dumps to diagnose 229
using the console log 229

TRAP FILE command 45
trapping improper use of CP free storage 93
trapping SFS trace table entries 153
traps

DATA type 112
defining GT type 104
defining with CPT RAP 96
GT type 104

TSAF abend messages 26
TSAF abends 32
TSAF dumps

creating 230
diagnosing 231
displaying information 231
printing 232
processing 230
use to diagnose 229

TSAF internal trace table
entry format 233
trailer record format 234

TSAF QUERY command 234
TSAF (Transparent Services Access Facility)

abends 228
collecting error information 228
creating TSAF dump 230
creating TSAF IPCS map 230
debugging 227
diagnosing TSAF dump 231
displaying trace records 231
displaying TSAF dump information 231
formatting trace records 231
printing TSAF dump 232
processing TSAF dump 230
QUERY command 234
sample console log 229
SET ETRACE command 232
setting external tracing 232
trace table entry format 233
trace table trailer record format 234
trapping trace table entries 232
using dumps to diagnose 229
using the console log 229

TSAFIPCS MAP 230
TT ABLE traps example 103

data
recording in the CPT RAP file 104

type GT trap 104
type

CPTRAP traps 95
DATA trap example 112
GT trap
10 entries in the CPTRAP file 99

LY24-5241-01 © Copyright IBM Corp. 1986, 1988

U
unexpected result in CP 34
unexpected result in virtual machine 34
unexpected results 3, 13

checklist for reporting 247
hardware failure 248
inadequate system parameters 248
infinite loop in a virtual machine 248
infinite loop in CP 247
infinite loop in RSCS 248

User Id Block 201
user ID , trace entry 188
using CPTRAP to trap trace table entries 239
using system trace data to diagnose A VS problems 238
using system trace data to diagnose TSAF

problems 232
using the console log 229
using TSAF dumps to diagnose problems 229

V
VAD 223
VCHBLOK 85
VCUBLOK 85
VDEVBLOK 86
viewing CPTRAP data with IPCSSCAN 240
Virtual Channel Queue 215
virtual machine

checklist for wait state 246
data
interface for type GT trap
interface to CPTRAP

virtual machine abend 33
".irtual Machine Control Block (VMCB) 188, 263
virtual machine data, displaying or dumping

byte alignment on terminal output 51
DCP command 50
DISPLAY command 49
DMCP command 50
DUMP command 48
printer output 52
terminal output 50
VMDUMP command 49

Virtual Machine State 186
virtual storage, altering 68
VMBLOK 85
VMCB - Virtual Machine Control Block 188, 263
VMCUSER 263
VMDUMP command 32, 35, 39, 48, 49, 52, 132, 181
VMDUMP records

DMPINREC 90
DMPKYREC1 90
DMPKYREC2 90
format 92
locating logical dump record 91
SPUNK 90

Index 301

VMDUMP records (continued)
TAG area 90

VMSAVE 180
VSAM 222
VSAM Anchor Block 224
VSAM debugging 225
VSAM dumping information 182
VSAM Workareas 224
VSCS printing formatted control blocks
VT AM printing formatted control blocks
VTAM Workareas 224
VTAM/VSAM Workareas 224

W
wait 13,36
wait bit, modifying 58
Wait Count 195
wait state 3, 195

checklist for CP 246
checklist for RSCS 247
checklist for virtual machine 246
in virtual machine 3

wait state in virtual machine 8
where to find evidence of a problem 5
WQE 222
wrap file 96

X
X'3C' entries, CPTRAP 111
X'3C' trace entries 99

collecting entries in the CPTRAP file
trace table 101

entries in the CPTRAP file
trace table 101

X'3D' entries, CPTRAP 109
X'3F

CPTRAP entries 117
trace entries 117

X'3F'

Z
ZAP command 67, 143
ZAPTEXT command 67, 143

Numerics
370X dump processing

NCPDUMP service program 121
network dump operations 120

302 VM/SP Diagnosis Guide

182
182

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LY24-5241-01 © Copyright IBM Corp. 1986,1988

(

(_ ..

(

(

VMjSP
Diagnosis Guide
Order No. LY24-5241-01

READER'S
COMMENT
FORM

Is there anything you especially like or dislike about this book? Feel free to comment on
specific errors or omissions, accuracy, organization, or completeness of tbis book.

H you use this form to comment on the online HELP facility, please copy the top line of the
HELP screen.

___ Help Information line of

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you, and all such information will be considered nonconfidential.

Note: Do not use this form to report system problems or to request copies of publications. Instead, contact your
IBM representative or the IBM branch office serving you.

Would you like a reply? _YES _NO

Please print your name, company name, and address:

mM Branch Office serving you:

Thank you for your cooperation. You can either mail this form directly to us or give this
form to an IBM representative who will forward it to us.

L Y24- 5241 -01

Reader's Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE:

--------- -------- - ---- -- ----------_.-
INTERNATIONAL BUSINESS MACHINES CORPORATION
DEPARTMENT G60
PO BOX 6
ENDICOTT NY 13760-9987

111.11 •• 11.1.111.11 •• 1111.1.1111.1 •• 1111.111.111 ••• 1

Fold and tape Please Do Not Staple

--....--------- ---.~ ---- -.. ---- -- ----------~-,-
®

CUT
OR

FOLD
ALONG

LINE

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

("

/ "
./

. - . -
It

LY24-S241-01

-.

