

--------- - ---= = === - -------------,-

f

(

c

Virtual Machine/
System Product

Group Control System
Command and Macro Reference

Release 5

SC24-5250-1

Second Edition (December 1986)

This edition applies to Release 5 of the IBM Virtual Machine/System Product,
program number 5664·167, and to all subsequent releases and modifications, until
otherwise indicated in new editions or Technical Newsletters. Changes are made
periodically to the information herein; before using this publication in connection
with the operation of IBM systems, consult the latest IBM System/370, 30xx, and
4300 Processors Bibliography, GC20·0001, for the editions that are applicable and
current.

Summary of Changes

Technical changes and additions to the text or illustrations are indicated by a
vertical bar to the left of the change.

A cumulative Summary of Changes begins on page 511.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM
licensed program in this publication is not intended to state or
imply that only IBM's licensed program may be used. Any
functionally equivalent program may be used instead.

Ordering Publications

Requests for IBM publications should be made to your IBM representative or to
the IBM branch office serving your locality. Publications are not stocked at the
address below.

A form for readers' comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to IBM Corporation,
Information Development, Department G60, PO Box 6, Endicott, New York, U.S.A.
13760. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1984, 1986

c

(

(

(

c

Preface

The Virtual Machine/System Product Group Control System Command and
Macro Reference provides its reader with detailed information on the
purpose and use of all Group Control System (GCS) macro instructions.

This publication presents the format, syntax rules, and parameter
descriptions, plus factual and feedback information on all GCS macro
instructions. In select cases, this book also gives an example of exactly
how a programmer might issue the instruction.

In general, IBM provides this book as reference material for people who
wish to write programs designed to run under GCS. More specifically, this
readership includes system programmers and application programmers in
both customer and IBM development environments.

This book is divided into several sections, these sections are:

Introduction
Gives an overview of GCS and how it relates to VM/SP.

GCS Commands
Lists the GCS commands, formats, and descriptions.

Task Management Service Macros
Help the programmer coordinate the activity of several tasks that
operate within a virtual machine.

Program Management Service Macros
Help the programmer coordinate the activity of several programs that
operate within a task.

Timer Service Macros
Help the programmer to regulate the activity of a task along certain
parameters of time.

Console I/O Service Macros
Promote communication between a program and the virtual machine
console.

Unauthorized GCS Service Macros
Perform functions useful to most programs running under GCS.

Authorized GCS Service Macros
Perform a wide-range of functions useful to supervisor state programs
running under GCS.

Preface 111

Storage Management Service Macros
Allow tasks running under GCS to dynamically obtain and free virtual
storage.

Serviceability Macros
Allow a programmer to accumulate and display information useful in
diagnostics and program problem solving.

QSAM and BSAM Data Management Service Macros
Allow a programmer to use the QSAM and BSAM access methods to
manage and manipulate file data.

VSAM Data Management Service Macros
Allow a programmer to use the VSAM access method to manage and
manipulate file data.

IUCV Service Macros
Manage communication among virtual machine groups, virtual
machines, tasks, and programs operating in the GCS environment.

Build Macros
Allow an installation to define and tailor its virtual machine group(s)
to fulfill its own particular needs.

Data Areas Macros
Allow a programmer to simulate or access certain low storage data
areas.

Summary of Changes
Gives a brief description of recent changes to the publication.

Glossary of Terms and Definitions
Gives a definition of terms used in this publication.

Bibliography
Lists the prerequisite and corequisite publications for this publication.

Index
Lists specific topics and the page numbers that these topics can be
found on.

IV VM/SP GCS Command and Macro Reference

Contents

Chapter 1. Introduction 1
A Quick Definition .. 2
The Whole Picture At A Glance 3
A Scenario for GCS ... 5
Linkage Registers .. 10
Establishing a Base Register 10
Providing a Save Area 11
Summary of Conventions for Passing and Receiving Control 13

(
GCS Macro Instruction Formats 14
GCS Macro Formatting Conventions 15
Parameter Notation Conventions 18

Chapter 2. Group Control System Commands 19

GCS Commands ... 20
ACCESS ... 21
DLBL ... 23
ETRACE ... 29
FILEDEF .. 33
GDUMP ... 37
GLOBAL ... 41
HX ... 42
ITRACE ... 43
LOADCMD ... 46
OSRUN .. 51
QUERy ... 52
RELEASE .. 58
REPLY .. 59
SET ... 61

/ Chapter 3. Task Management Service Macros 63

ABEND .. 64
ATTACH ... 67
CHAP ... 77
DEQ .. 80
DETACH ... 86
ENQ .. 88
ESTAE .. 96
IHASDW A .. 104
POST .. 106
SETRP ... 110
WAIT .. 114

Chapter 4. Program Management Service Macros 117
BLDL .. 118
CALL .. 122
DELETE .. 127

Contents V

IDENTIFY .. 130
LINK .. 133 (',
LOAD ' ,.................................. 140 \,,----"
RETURN ... 144
SAVE .. l46
SYNCH ' ... 149
XCTL , 154

Chapter 5. Timer Service Macros 161
STIMER .. 162
TIME .. 166
TTIMER .. 168

Chapter 6. Console 1/0 Service Macros•....... 171
WTO ... 172
WTOR .. 176

Chapter 7. Unauthorized GCS Service Macros 181
AUTHCALL ... 182
CMDSI ... 185
EXECCOMM .. 192
GENIO ... 194

Chapter 8. Authorized GCS Service Macros 207
AUTHNAME .. 208
LOCKWD ... 215
MACHEXIT ... 219
PGLOCK .. 226
PGULOCK .. 228
SCHEDEX .. 230
TASKEXIT .. 233
'VALIDATE .. 240

Chapter 9. Storage Management Service Macros 243
FREEMAIN .. ;.. 244
GETMAIN .. 251

Chapter 10. Serviceability Macros 261
GTRACE .. 262
SDUMP ... 267

Chapter 11. QSAM and BSAM Data Management Service Macros 273
CHECK (BSAM) .. 274
CLOSE (BSAM/QSAM) 276
DCB (BSAM/QSAM) 280
DCBD (BSAM/QSAM) '.................... 290
GET (QSAM) .. 292
NOTE (BSAM) ... 294
OPEN (BSAM/QSAM) 296
POINT (BSAM) '. .. 301
PUT (QSAM) .. 304
READ (BSAM) ... 306
SYNADAF (BSAM/QSAM) ;............................ 311 c

VI VM/SP GCS Command and Macro Reference

SYNADRLS (BSAM/QSAM) 314

(WRITE (BSAM) .. 316

Chapter 12. VSAM Data Management Service Macros 321
Using VSAM under GCS 322
ACB ... 338
CHECK ... 346
CLOSE ... 348
ENDREQ ... 351
ERASE ... 354
EXLST ... 356
GENCB ... 361
GENCB ... 370
GENCB ... 374
GET ... 383
MODCB .. 385
MODCB .. 394

(- MODCB .. 398
OPEN .. 406
POINT ... 409
PUT ... 412
RPL .. 414
SHOWCB ... 420
SHOWCB ... 427
SHOWCB ... 431
TESTCB .. 435
TESTCB .. 445
TESTCB .. 450'

Chapter 13. IUCV Service Macros 459
IUCVCOM .. 460
IUCVINI .. 477

Chapter 14. Build Macros 487
AUTHUSER ... 488
CONFIG .. 491
CONTENTS ... 496
SEGMENT .. 500

Chapter 15. Data Areas Macros 503
CVT ... 504
FLS .. 506
GCSLEVEL ... , 508

Summary of Changes 511

Glossary of Terms and Abbreviations 513

Bibliography .. 519
Prerequisite Publications 519
Corequisite Publications 519

Index ..•... 525

Contents Vll

VIll VM/SP GCS Command and Macro Reference

(Figures

1. Group Control System (GCS), an Interface between Program
Products and CP .. 2

2. GCS in VM/SP ... 4
3. Initializing CMS from a SNA Terminal 5
4. CP Intercepts Instructions from the Virtual Machine 6
5. Transferring Data to the Machine Running VSCS 7
6. Path of Data Moving through the VTAM Machine 8
7. Data Traveling from VTAM to the Virtual Console 9

(
8.
9.

10.

Determining Which VSAM Catalog to Use 26
Directory Entry List Basic Format 119
Exit List Table 283

11. Error Routine .. 287

c
Figures IX

x VMjSP GCS Command and Macro Reference

._------ -- ----- -------

(

A Quick Definition .. 2
The Whole Picture At A Glance 3
A Scenario for GCS ... 5
Linkage Registers .. 10
Establishing a Base Register 10
Providing a Save Area 11
Summary of Conventions for Passing and Receiving Control 13

(GCS Macro Instruction Formats _. .. 14
GCS Macro Formatting Conventions 15
Parameter Notation Conventions 18

Chapter 1. Introduction 1

A Quick Definition

The Group Control System (GCS) is:

• A component of VMjSP
• A virtual machine supervisor
• An interface between program products, like Virtual

Telecommunications Access Methods (VT AM) and Remote Spooling
Communi cations Subsystem (RSCS) and CP, the system's Control
Progrl1m (Figure 1).

Program Products
(VTAM, RSCS, NCCF, ...)

Control
Program

SNA
(Network)

Figure 1. Group Control System (GCS), an Interface between Program
Products and CP

GCS's specific function for VMjSP is to support a native VMjSNA network
- a network that functions as part of your VMjSP system without help
from a second operating system. This System Network Architecture (SNA)
network relies on ACFjVTAM, VSCS (Vtam Sna Console Support), and
other network applications to manage its collection of links between
terminals, controllers, and processors. In turn, ACFjVTAM, VSCS, and the
others rely on GCS to provide services for them. This arrangement
eliminates your need for VMjVCNA (VTAM Communications Network
Application) and a second operating system like VSl or VSE.

2 VM/SP GCS Command and Macro Reference

(~ The Whole Picture At A Glance

(

(

('

c

Figure 2 on page 4 shows a conceptual view of how the Group Control
System can fit into your VMjSP environment. Familiar elements in the
picture include:

• CP, at the bottom, a base for the rest of the system to build on

• Virtual machines, at the top, running various applications

• CMS, at the left, an interactive VMjSP component that runs on CP

• A route to the SNA network, lower right, a network that connects
virtual machines with remote consoles. (This is just one application of
GCS.)

GCS, with its common and private areas, forms a base for a particular
group of virtual machines. It runs parallel to CMS as a VMjSP component
onCP.

GCS may appear to offer some of the services offered by IBM's Multiple
Virtual System (MVS). Granted, there are similarities between the two, but
there are also some very significant differences in function and use. If an
application is to run successfully under GCS, it must conform to GCS as
discussed in this book.

Chapter 1. Introduction 3

CP

Figure 2. GCS in VM/SP

R
E
C
o
V
E
R
Y

This diagram illustrates only the conceptual relationships among the
applications and saved segments in storage. Actual storage layout is

4 VMjSP GCS Command and Macro Reference

~ . ! o

c

('

:(

- .------- -~-- .. --~

different for every installation. The application space might even include
two or more separate areas.

A Scenario for GCS

The following scenario shows how GCS helps support native SNA
communications.

First, you log on from a SNA terminaP and IPL CMS (Figure 3). Neither
you, as a user, nor CMS needs to know that it is a SNA terminal.

. (Virtual Machine)

(SNA Terminal)

CMS

CP

Figure 3. Initializing eMS from a SNA Terminal. On the right, you IPL
CMS from your virtual console, a SNA terminal. On the left, CMS
begins running in your virtual machine.

CMS responds to your commands. Being an interactive system, it
communicates back and forth with you via this terminal. The information
exchange seems to happen easily enough. But because you have a SNA

For instructions, see "Logging on With a SNA Terminal" in the VM/SP
Terminal Reference.

Chapter 1. Introduction 5

terminal, the path from your console to CMS is a complex one, involving
GCS, ACFjVTAM, and SNA somewhere in between.

The Path between System and Console

Let's say CMS begins communicating with your console by issuing:

Start I/O (SIO)

Or, a CMS application like XEDIT issues:

DIAGNOSE code x'58'

The instruction leaves your virtual machine, and CP intercepts it
(Figure 4).

Control Program

Figure 4. CP Intercepts Instructions from the Virtual Machine

After decoding and extracting the instruction's pertinent information, CP
prepares to send data out on the network. A component in CP called
Console Communications Service (CCS) does the actual sending.

6 VM/SP GCS Command and Macro Reference

(\
\ I

"-....../

(-

f-

(

(

c

From CCS, the data passes to a virtual machine running VSCS. (In the
Figure 5 example, the VT AM machine runs VSCS.2) The transfer from CCS
to VSCS takes place via another CP facility, Inter-User Communications
Vehicle (IUCV).

(Virtual Machine #2)

VTAM

(Virtual Machine #1)

Figure 5. Transferring Data to the Machine Running VSCS. Using IUCV, CCS sends information to
the virtual machine where VSCS is running. In this case, it is the VTAM machine.

2 VSCS also may run in its own virtual machine.

Chapter 1. Introduction 7

Figure 5 shows the VT AM virtual machine running on GCS. In a VMjSP
system with SNA terminals, this machine must be running ACFjVTAM
Version 3 because:

• ACFjVTAM allows a VSCS component to run in the VTAM virtual
machine (as in this example).

• ACFjVTAM provides a SHARED VTAM interface that lets all other
machines running in this GCS group communicate with ACFjVTAM
and the rest of the network.

Figure 6 shows what happens after CCS sends data to the VT AM machine.
VSCS receives it, processes it into a physical screen image, and issues a
SEND macro. The SEND macro finally gives control to VTAM.

VTAM

Shared VTAM

Figure 6. Path of Data Moving through the VT AM Machine. The VSCS
component receives data from CCS, processes it, and sends it into
VTAM's control.

From VT AM, the information travels toward your terminal (Figure 7 on
page 9). Output instructions are relayed from VTAM to GCS, from GCS to
CP, and from CP to the network or local control unit. The control unit has
charge of sending the data through the SNA network to your virtual
console.

8 VM/SP GCS Command and Macro Reference

c

(

(

('

c

(VT AM Virtual Machine)

VTAM

GCS
Common

CP

(SNA Terminal/Virtual Console)

Local
or Network

Control
Unit

Figure 7. Data Traveling from VTAM to the Virtual Console. VTAM, at the top, sends data to GCS.
GCS relays it out to the SNA network and finally to the console.

Chapter 1. Introduction 9

Linkage Registers

The general registers 0, 1, 13, 14, and 15 are also known as linkage
registers. By convention, each register has a specific purpose as follows:

Register Conventional Purpose

o and 1 Used to pass parameters to the supervisor or to a
called program. Some system macro instructions
expand to include instructions that load a value into
one or both of these registers. Others load the
address of a parameter list into register 1. At times,
the supervisor will load a parameter value into
register 1 and pass it to a program that you have
called.

13 Used to hold the address of the register save area
provided by the calling program.

14 Used to hold the return address within the calling
program. That is, the address of the executable
statement just after the instruction that passed
control to another program. Once the calling
program regains control, it is at this point that
execution resumes.

15 Used to hold the entry point address of the called
program. Some macro instructions expand to
include instructions that load a parameter list
address into register 15, which is then passed to the
supervisor. Programs also use register 15 to pass
return codes to the programs that called them.

Establishing a Base Register

In VM/SP, addresses are resolved by adding a displacement to a base
address. Therefore, you must establish a base register using one of the
registers 2 through 12 or register 15. If your program does not use GCS /
macro instructions and does not pass control to another program, then you
can establish a base register using the entry point address contained in
register 15. Otherwise, since both the supervisor and your program may use
register 15 for other purposes, you must establish a base using one of the
registers 2 through 12. This should be done immediately after saving the
calling program's registers.

Note: Choose your base register carefully. Remember that some
instructions (GCS macro instructions included) change the contents of some
registers.

10 VM/SP GCS Command and Macro Reference

c

(~~ Providing a Save Area

c

If one of your programs passes control to another, then the former must
provide a save area in which the contents of its registers are saved by the
program it calls. A register save area is eighteen fullwords long, beginning
on a full word boundary. The following table describes the save area's
structure and content.

Word Contents

0 Used by PL/I, if applicable. Otherwise, unused.

1 If applicable, the address of the calling program's
register save area.

2 The address of the current program's next register save
area.

3 The contents of register 14 (the return address within the
calling program).

4 The contents of register 15 (the address of the called
program).

5 The contents of register O.

6 The contents of register I.

7 The contents of register 2.

8 The contents of register 3.

9 The contents of register 4.

10 The contents of register 5.

11 The contents of register 6.

12 The contents of register 7.

13 The contents of register 8.

14 The contents of register 9.

15 The contents of register 10.

16 The contents of register II.

17 The contents of register 12.

A called program can save the registers belonging to the program that
called it by issuing either the STM (STORE MULTIPLE) assembler
instruction or the SAVE macro instruction. The

STM 14,12,12(13)

assembler instruction places the contents of all registers, except register 13,
in the proper words of the save area. The SA VE macro instruction is
described in detail in the entry titled "SAVE" on page 146.

Chapter 1. Introduction 11

..

An Example of Chaining Save Areas in a Nonreenterable Program

PROGRAM1 CSECT
STM
LR
USING
ST
LR
LA
ST

SAVEAREA DC

14,12,12 (13)
12,15
PROGRAM1,12
13 , SAVEAREA+4
2,13
13,SAVEAREA
13,8(2)

18F'O'

The program uses the STM instruction to store the contents of the registers
in the save area provided by the calling program. Then, the program
establishes register 12 as its base register. The program goes on to save the /--- ,
address of the calling program's save area in the second word of another
save area that it established via the DC instruction. Then, the program
loads the address of the calling program's save area into register 2. Finally,
it loads the address of the new save area into register 13, then stores the
same address in the third word of the calling program's save area.

An Example of Chaining Save Areas in a Reenterable Program

PROGRAM2 CSECT
SAVE
LR
USING
GETMAIN
ST
ST
LR

(14,12)
12,15
PROGRAM2,12
R,LV=72
13,4(1)
1,8(13)
13,1

This program uses the GCS SA VE macro instruction to save the contents of
its registers. (It could also have used an STM instruction.) The program
loads the entry point address into register 12, establishing it as the base
register. It then issues an unconditional GCS GETMAIN macro
instruction, requesting the supervisor to allocate 72 bytes of virtual storage
for the save area from outside the program. The supervisor returns the
address of this 72-byte area in register 1. The program stores the address of
the old and new save areas in the customary locations and loads the
address of the new save area into register 13.

12 VMjSP GCS Command and Macro Reference

,~--",

\
"--

c

-_._. ---------------

(- Summary of Conventions for Passing and Receiving Control

(

c

Before it passes control (return required), a calling program should:

• Place the address of its register save area in register 13.

• Place its return address in register 14.

• Place the entry point address of the program it wishes to call in register
15.

• If applicable, place the address of a parameter list in register 1.

Before it passes control (return not required), a calling program
should:

• Restore to registers 2 through 12 and register 14 the values that were
present when it received control.

• Place the address of the save area provided by the program that called
it in register 13.

• Place the entry point address of the program it wants to call in register
15.

• As applicable, place the addresses of parameter lists in registers 0 and 1.

Immediately after receiving control, a called program should:

• Save the contents of registers 0 through 12 and registers 14 and 15 in
the save area, whose address is in register 13.

• Establish a base register.

• Provide a save area of its own, unless of course it plans to call no other
program.

If it is a reentrant program, then it must obtain storage for its save area
outside of its own storage via the GETMAIN macro instruction. If it is
a nonreentrant program, then its save area can be located with the rest
of its storage.

• Store the save area addresses in the assigned location:;.

Just before returning control, a called program should:

• Restore to registers 0 through 12 and register 14 the values that were
present when it received control originally.

• Place in register 13 the address of the save area belonging to the
program to which it is returning control.

Chapter 1. Introduction 13

• If required, place the appropriate return code in register 15. Otherwise,
restore to register 15 its original value.

• If it is a reenterable program that obtained storage for its save area via
the GETMAIN macro instruction, then it must release that storage via
the FREEMAIN instruction.

GCS Macro Instruction Formats

Generally, there are four possible formats in which macro instructions are
available, the:3

• Standard Format
• List Format
• List Address Format
• Execute Format.

Note: Not every GCS macro instruction is available in each of these
formats. However, each is available in a standard format. Several are also
available in list and execute formats. A few are available in all four
formats.

The entry in this book devoted to each macro instruction tells you exactly
which of these formats applies and provides more detailed information. In
general, the significance of each format is as follows:

The Standard Format
Generates an in-line parameter list to the macro. It also generates
non-reentrant code that executes the function as part of the macro
expansion.

The List Format
Generates an in-line parameter list to the macro but generates no code
that executes the function.

The List Address Format
Generates no code that executes the function. However, it does
generate executable code that moves the parameter values that you
specify in the instruction to a parameter list at some designated
address.

The Execute Format

3

Generates code that executes the function. Optionally, it generates
executable code that moves parameter values into a parameter list.
The execute format requires that you specify the address of a
parameter list that you previously created.

The VSAM macro instructions listed in this book differ from this somewhat.
Before you use these instructions, be certain to review the entry titled "Using
VSAM under GCS" on page 322.

14 VM/SP GCS Command and Macro Reference

c

(- GCS Macro Formatting Conventions

(

(

c

You will notice that each macro instruction entry is accompanied by a box
that defines the proper format of the instruction.

As you examine these format boxes more closely, the first thing that you
notice is the lack of blank spaces in the instructions. Generally speaking,
there are only two places where a blank space can appear in a macro
instruction. These are between the label and the instruction, and between
the instruction and its first parameter. Moreover, you probably notice that
the parameters themselves are not delimited by blanks, but by commas. In
these respects, macro instructions resemble assembler language instructions
rather closely.

Let us illustrate this by looking at a fictitious macro instruction called
DUCK. The DUCK macro instruction takes three parameters: A, B, and C.
And, like most other instructions, an optional label can be applied.

Its format box looks like this:

I [labe 1] I DUCK I A,B,C:some number

Therefore, you might code something like this:

QUACK DUCK A,B,C=7

You coded the mnemonic label QUACK and left one blank space (though
more than one is permissible). Then, mindful that macro instructions
cannot be abbreviated, you followed with the full name of the macro itself,
DUCK. You left another blank space, though you could have left more
than one, and followed with the parameters. Notice that only commas
delimit the parameters.

Few macro instructions are this trivial. Many instructions have
parameters that are optional. Whether you choose them sometimes depends
on your own needs, and sometimes on circumstances. Another fictitious
macro instruction, GOOSE, has two parameters, one of which is optional.

Its format box looks like this:

[labelJ GOOSE [A=some number.JB=some other number

You could code GOOSE like this:

GOOSE B=77

This is perfectly valid since the brackets ([]) around the A parameter
indicate that you can omit it if you choose. Note that you did not supply a
comma before the B parameter, since there is no other parameter present

Chapter 1. Introduction 15

from which to separate it. Notice too that you did not supply a label this
time.

You could also code GOOSE like this:

HONK GOOSE A=34,B=77

This time you supplied the A parameter because, for some reason, it suited
your purpose.

The format boxes of some macro instructions stack optional parameters in a
list.

The fictitious HORSE macro format box looks like this:

Notice the large set of brackets around the C, D, and E parameters. These
brackets mean two things. First, all three of the parameters are optional.
You can ignore the bracketed list entirely, if it suits your purpose, or
choose from the list. Second, if you choose from the list, then you can
choose either C, or D, or E. You cannot choose two or three of them, but / .
only one.

So, if you code

HORSE A,B,C,D

it is an error because you chose two optional parameters from the same
bracketed list, namely C and D.

HORSE A,B,C

is correct because you chose only one optional parameter. Of course,

HORSE A,B

is also correct, since you chose to omit all of the optional parameters.

Some macro instructions force you to make a choice from among a stacked
list of options.

16 VMjSP GCS Command and Macro Reference

(

(-

(

c

The MOOSE macro format box looks like this:

I [label] I MOOSE I H.P.M. m
Notice the large braces ({ }) around the X, Y, and Z parameters. The
braces mean that you have one choice among the three parameters. But,
this is not an optional choice, it is a choice that you must make. So,

MOOSE H,P,M

is incorrect, since you did not select from among the list enclosed by braces.
Likewise,

MOOSE H,P,M,X,Z

is incorrect because you selected more than one parameter from the list.
But,

MOOSE H,P,M,Z

is correct because you made your choice and it was only one parameter.

Sometimes brackets and braces are used together. Usually, though not
always, they involve parameters that take effect by default if something is
not specified.

The MACKEREL macro format box looks like this:

[l abel] MACKEREL J.L.Q[.S={W} 1

Notice that a set of braces surrounds the parameters YES and NO. Then, a
set of brackets embraces these, as well as the S parameter. To further
complicate matters, the YES parameter is underlined.

It is not that difficult to figure this out if you just remember that brackets
mean you have ap option to c400se or not choose and that braces mean you
must choose. The brackets here simply mean that you can choose the S
parameter or ignore it. However, if you do choose the S parameter, then
the braces mean that you must choose either the YES parameter or the NO
parameter. And the line under the YES parameter means that if you ignore
the S parameter, then S = YES will be in effect by default. So,

MACKEREL J,L,Q,S

is incorrect, bec,ause you chose the S parameter but did not choose either
YES or NO.

Chapter]. Introduction 17

MACKEREL J,L,Q

is correct, since you omitted the S parameter altogether, allowing S = YES
to take effect by default. Likewise, both

MACKEREL J,L,Q,S=YES
MACKEREL J,L,Q,S=NO

are correct, since you specified the S parameter correctly in each.

Parameter Notation Conventions

You will notice that under each parameter description there is a statement
on how that parameter can be expressed in the macro instruction. Several
terms appear frequently in this context. They are defined as follows:

Symbol
Any symbol that is valid in the assembler language. That is, an
alphabetic character followed by 0 through 7 alphameric characters.
A symbol cannot contain any special characters or imbedded blanks.

Register (2) through (12)
One of the general registers 2 through 12. Presumably, the register
you specify contains a right-justified value or address that pertains in (~

some way to the parbameter in question. Any unused hihgh-ord.er bits in '''-,_,7/

the register should ere-set to zero. You can express t e regIster
number symbolically or via an absolute expression. Unless otherwise
specified, parentheses must surround the register expression.

RX-type address
Any address that is valid in an RX-type assembler language
instruction.

18 VM/SP GCS Command and Macro Reference

C· ' -'

(-

GCS Commands ... 20
ACCESS ... 21
DLBL ... 23
ETRACE ... 29
FILEDEF .. 33
GDUMP ... 37
GLOBAL ... 41

, (-' HX ... 42
ITRACE ... 43
LOADCMD ... 46
OSRUN .. 51
QUERy .. 52
RELEASE .. 58
REPLY .. 59
SET ... 61

('"

,. _/

c
Chapter 2. Group Control System Commands 19

GCS Commands

Command Formats

Braces { }
Indicate that you must choose one of the items inside.

Brackets []
Indicate that you may opt to choose anyone or none of the items
inside.

Capital letters
Represent letters that you must type.

Lowercase letters
Either finish spelling a keyword or else represent variable values
that are explained in the accompanying text.

Underlined values
Represent defaults. If you enter nothing in their places, they
automatically become the effective values.

Immediate Commands

An immediate command is one that gets executed as soon as you issue it. It
does not get stacked, nor does it have to wait for the current command to
finish. The immediate GCS commands are:

ETRACE (see page 29)
GDUMP (see page 37)
HX (see page 42)
ITRACE (see page 43)
QUERY (see page 52)
REPLY (see page 59).

Note: If you enter several commands on the command line and separate
them with "#" characters:

cmdl#cmd2#immed cmd#cmd3

your system will process any immediate commands first. In this case,· you
would receive results from "immed cmd" before the results from "cmdl." If
an exec or routine is named the same name as an immediate command, the
immediate command is executed. This differs from the way CMS processes
commands.

20 VM/SP GCS Command and Macro Reference

c

(

(

-c······

ACCESS

ACCESS

Identify the eMS or VSAM Disks that an Application Will Use

ACcess

Applications that use files on CMS or VSAM disks must first identify those
disks with the ACCESS command. The disk you identify must be either a:

• VSAM disk or (Make sure you issue ACCESS before you issue the
DLBL command.)

• CMS disk formatted with a block size of 512, 1K, 2K, or 4K bytes. (You
cannot have an 800-byte block size.)

Unlike the CMS ACCESS command, you cannot specify options.

The format of the ACCESS command is:

[cuu moder/ext [fn eft [fm]]])]
191 8.

cuu
Makes available the disk at the specified virtual address. The default
value is 191. Valid addresses are X'OOl' through X'FFF'.

mode

ext

Assigns a one-character filemode letter to all files on the disk being
accessed. You must specify this field if you specified the cuu
parameter. The default value is A.

Indicates the mode of the parent disk. Files on the disk being
accessed (cuu) are logically associated with files on the parent disk;
the disk at cuu is a read-only extension. A parent disk must be
accessed in the search order before its extension gets accessed. Do
not put a blank space before or after the slash (/).

fn ft fm
Defines a subset of files residing on the disk to be accessed. These are
the only files that will go into your user file directory, and these are
the only files you'll be able to read. Entering an asterisk (*) in any
one of these fields indicates that you want all filenames or filetypes or
filemode numbers (except 0) to be in your user file directory. You can
specify filename, filetype, and filemode fields only for CMS-formatted
disks that you've accessed as read-only extensions. For example, to
specify a filemode, use a letter and a number:

Chapter 2. Group Control System Commands 21

ACCESS

Messages

access 333 b/a. * gcs bl

Note: You should issue the RELEASE command when your application no
longer needs access to the disk.

CSIACC005S Virtual storage capacity exceeded RC=104
CSIACC006E Invalid parameter 'parameter' RC=24
CSIACCOl2E No options allowed RC=24
CSIACC02lE Invalid mode 'mode' RC=24
CSIACC4l4E Disk vdef not properly formatted for ACCESS, RC=l6
CSIACC4l5E Invalid device address 'vdev' RC=24
CSIACC422E vdev already accessed as Read/Write 'mode' disk

RC=36
CSIACC423I mode (vdev) {R/O I R/W}
CSIACC424I vdev mode released
CSIACC425I vdev replaces mode (vdev),
CSIACC426I vdev also = mode disk
CSIACC427S mode (vdev) device error RC=lOO
CSIACC428S mode (vdev) not attached RC=100
CSIACC429E File fn [ft [fm]] not found. Disk mode (vdev)

will not be accessed RC=28
CSIACC430W as disk - Fileid specified is ignored RC=4
CSIROS005S Virtual storage capacity exceeded
CSIROS423I mode (vdev) {R/O I R/W} {-aS I -DOS}
CSIROS426I vdev also = mode {-aS I -DOS} disk

For more information on messages see the VMjSP System Messages and ;'--"
Codes.

22 VM/SP GCS Command and Macro Reference

(

(

c

DLBL

DLBL

Define VSAM Files Used for Program Input/Output

DlBl

Application programs usually require some "setting up" before you try to
start and run them. The DLBL command is one of the preliminary
commands normally issued to prepare a program for execution. You issue
the DLBL command to define VSAM input/output files needed by the
program. Be sure you issue the ACCESS command for the disk containing
your VSAM files before you issue DLBL.

Note: For non-VSAM file definitions, you use the "FILEDEF" on page 33.
VSAM itself does not always require file definition statements. To learn
when file definitions are necessary, see the VSE/VSAM Programmer's
Reference.

The format of the DLBL command is:

ddname mode [os, N quall[[.]qua12 qUaln]]
OSN ~' ,

..

ddname CLEAR
*

[CHANoGE 1
NOCHANGE

ddname

CMUln

[CAT catddJ

[BUFSP nnnnnn]

A one- to seven-character program ddname. This ddname must be the
same as the ACB DDNAME parameter (or the ACB name if DDNAME
is omitted). An asterisk (*) entered, along with the CLEAR operand,
indicates that all DLBL definitions, except those that are entered with
the PERM option, are to be cleared.

If you have ddnames over seven characters long, be aware that only
the first seven characters get processed. Should you have two
different files with the same first seven letters and try to execute them
both, you'll receive an error message when GCS opens the second file.

Chapter 2. Group Control System Commands 23

DLBL

mode
A letter representing the filemode of a VSAM disk and, optionally, a
filemode number. You must specify a letter, and it must refer to a
disk that's already accessed. The filemode number, however, is
optional. If you don't provide one, the default is 1. VSAM disks do
not require this number anyway, but GCS will accept one without
error.

If a mode is specified, the associated disk must already be accessed.

CLEAR

DSN

Removes any existing conditions for the specified ddname. Clearing a
ddname before defining it ensures that a file definition does not exist
and that any options previously defined for that ddname no longer
have any effect.

If you release a disk that has a DLBL definition in effect, you should
clear that DLBL before executing a VSAM program. If a disk has a
DLBL in effect, but the disk is not accessed, GCS will issue the
message:

Disk ' ________ ' not accessed

Specifies that this is a VSAM file.

? (question mark)
Indicates that you will enter the ddname interactively. GCS will
prompt you with the message:

Enter data set name:

When prompted, you must enter the data set name in its exact form,
including embedded blanks, hyphens, or periods. If you enter it as a
command at the console or from a REXX command file, you may use
its exact form. DLBL will replace any blanks between qualifiers with
periods.

quall.quaI2 qualn
A unique name associated with the file on the volume. It can be from
one to 44 characters of alphameric data. If fewer than 44 characters
are used, the field is left-justified and padded with blanks.

For VSAM, DSN must be specified when an existing (input) file is
being processed. The name (qual) is identical to the name of the file,
specified in the DEFINE command and listed in the VSAM catalog.
For VSAM, the name (qual) must be coded according to the following
rules:

• One to 44 alphameric (A-Z, 0-9, @, $, or #) characters or hyphen (-)
or plus zero (+ 0).

24 VM/SP GCS Command and Macro Reference

c

Option B:

Option C:

c

-------~ - ---

DLBL

• After each group of eight or fewer characters, a period (.) must be
inserted.

• Embedded blanks are not allowed.

• The first character of the name (qual) and the first character
following a period must be alphabetic or national (A-Z, @, $, #).

If this operand is omitted, ddname is used.

PERM
Specifies that this DLBL definition can be cleared only by an explicit
CLEAR request. It cannot be cleared when dlbl * clear is entered.

CHANGE
Specifies that any existing definition for this ddname is not to be
canceled, but conflicting options are to be overridden and new options
merged into the existing definition. Both the ddname and the DSN
file identifier must be the same for the definitions to be merged.

NO CHANGE
Indicates that a new definition for the specified ddname is to be
created if none exists, but if a definition already exists, it is not to be
changed.

VSAM
Indicates that the file is a VSAM data set. If not specified, VSAM is
assumed.

MULT
Indicates that you want to enter volume specifications that refer to an
existing multivolume VSAM data set. Often, VSEjVSAM requires no
MULT information; see the VSEjVSAM Programmer's Reference to
find out when it's required.

When you specify MULT, the GCS supervisor sends a message asking
you for additional disk mode letters. You provide the mode letters
using the REPLY command ("REPLY" on page 59) and the following
rules apply:

• All the disks you refer to must be mounted and accessed when you
issue the DLBL command.

• Do not repeat the mode letter that you entered on the command
line.

• If you enter all the letters on the same line, separate them with
commas. (GCS ignores any trailing commas at the end of the line.)

Chapter 2. Group Control System Commands 25

DLBL

• You can specify a maximum of 25 disks, using any letter except
"S." However, you don't need to specify them in alphabetical
order.

CAT catdd
Identifies the VSAM catalog (defined by a previous DLBL command)
containing the entry for this data set. You must use the CAT option
when the VSAM data set you are creating or identifying is not
cataloged in the current job catalog.

catdd is the ddname in the DLBL definition for the catalog.

To identify a VSAM master catalog and job catalog, you have to use
two special ddnames:

IJSYSCT identifies the master catalog when you begin a terminal
session. You should use the PERM option when you define
it.

IJSYSUC identifies a job catalog to be used for subsequent VSAM
programs.

Note: VSAM programs search only one catalog when performing a
function. If you defined an IJSYSUC job catalog, but want VSAM to
use a different catalog, you have to indicate that other catalog with
the CAT option. (See "Examples" on page 27.) Figure 8 shows how
VSAM programs running on GCS go about selecting a VSAM catalog:

Use the
Master
Catalog

Yes

Yes

Use the Catalog
Defined by That

Ddname

Use the
Job Catalog

Figure 8. Determining Which VSAM Catalog to Use

26 VM/SP GCS Command and Macro Reference

c,

Messages

(

Examples

DLBL

BUFSP nnnnnn
Specifies the number of bytes (in decimal) to be used for I/O buffers by
VSAM data management during program execution, overriding the
BUFSP value in the ACB for the file. The maximum value for nnnnnn
is 999999; embedded commas are not permitted.

For more information, see the "Usage Notes" under the DLBL command in
the VM/SP CMS Command Reference.

CSIDLB001E Invalid option 'option' RC=24
CSIDLB002E Invalid parameter 'parameter'

in the option 'option' field RC=24
CSIDLB003E 'option' option specified twice RC=24
CSIDLB004E 'optionl' and 'option2' are conflicting

options RC=24
CSIDLB005S Virtual storage capacity exceeded
CSIDLB006E Invalid parameter 'parameter' RC=24
CSIDLB017E Disk {mode/vdev/volumeid} not accessed RC=37
CSIDLB021E Invalid mode 'mode' RC=24
CSIDLB302E Parameter missing after DDNAME RC=24
CSIDLB303I No user defined DLBL's in effect
CSIDLB305I DDNAME 'ddname' not found. CLEAR not executed
CSIDLB3l0R Enter data set name:
CSIDLB3llE Invalid data set name RC=24
CSIDLB3l2R Enter volume specifications:
CSIDLB3l3E Invalid DDNAME 'ddname' RC=24
CSIDLB3l4I Maximum number of disk entries recorded
CSIDLB3l5E Catalog DDNAME 'ddname' not found
CSIDLB3l6E mode disk is in CMS format; invalid for VSAM

data set
CSIDLB3l7I Job catalog DLBL cleared
CSIDLB3l8I Master catalog DLBL cleared
CSIDLB345I No option specified RC=24

For more information on messages see the VM/SP System Messages and
Codes.

1. ====> dlbl

Displays all file definitions in effect for your disks. GCS responds with:

'ddname' DISK 'fn' 'ft'

If you have no DLBL definitions in effect, GCS sends the following
message:

No user defined DLBL'S in effect

2. ====> dlbl infile c (mult

Chapter 2. Group Control System Commands 27

DLBL

Identifies.a file named "infile" on your C mode disk and, because you
specified the MULT option, prompts you to enter additional disk mode
letters. You receive the following message:

nn CSIDLB312R Enter volume specifications:

where nn is a reply ID number. You enter the requested disk mode
letters using the REPL Y command ("REPLY" on page 59) and this
reply ID. For example, you may want to refer to disks accessed at
modes D, E, F, and G. So, you enter:

reply nn D, E, F, G
reply nn

The second reply nn is a null line to terminate the command. If you
don't enter this null line, you may get an error message and have to
reenter the entire sequence of commands.

3. The following sequence of DLBL commands shows how you can use
catalogs.

====> dlbl ijsysct c dsn mastcat (perm

Identifies a VSAM master catalog, named MASTCAT, for the terminal
seSSlOn.

====> dlbl ijsysuc d dsn mycat (perm

Identifies a VSAM job catalog, named MYCAT, for the terminal session.

====> dlbl intestl e dsn test. case

Identifies a VSAM file "intestl" that is cataloged in the job catalog
MYCAT as "test.case."

====> dlbl cat3 dsn testcat (cat ijsysct

Identifies an additional catalog "testcat" which has an entry in the
master catalog. Since you specified a job catalog (MYCAT) earlier, you
must use the CAT option to make sure that the master catalog IJSYSCT
gets used instead.

====> dlbl infile e dsn test.input (cat cat3

Identifies an input file "infile" cataloged in your catalog TESTCAT,
which was identified with a ddname of CAT3 on the previous DLBL
command.

28 VM/SP GCS Command and Macro Reference

(

(

(•.....

(

ETRACE

ETRACE

Enable or Disable the Recording of Events in a Spool File for a Virtual Machine or
Virtual Machine Group

ETrace

GCS supports external tracing - the recording of events in a spool file.
You control when this external tracing is active by using the ETRACE
command.

You can enable (activate) or disable (deactivate) external tracing for a
particular virtual machine or an entire virtual machine group. Likewise,
you can specify a certain list of options for one virtual machine and a
totally different set of options for all other virtual machines in the group.

Before any external tracing actually takes place, though, a class C user
must issue the CPTRAP command for the virtual machine(s) to be traced.

The format of the ETRACE command is:

DSP
EXT
FRE
GET
I/O
PRG
510
SSS
SVC
SYN
GTrace .

[ALL]

[END]

DSP

EXT

FRE

OFF [GRoup]

Enables or disables external tracing of each task switch (dispatch of a
different task).

Enables or disables external tracing of each external interrupt.

Enables or disables external tracing of FREEMAIN events invoked
through SVC and Branch Entry calls.

Chapter 2. Group Control System Commands 29

ETRACE

GET

I/O

PRG

SIO

SVC

SYN

Enables or disables external tracing of GETMAIN events invoked
through SVC and Branch Entry calls.

Enables or disables external tracing of each I/O interrupt.

Enables or disables external tracing of each program interrupt.

Enables or disables external tracing of each request by the supervisor
for I/O. This includes execution of the following instructions: SIO,
DIAGNOSE I/O, TIO, CLRIO, HIO, HDV, SIOF, and TCH.

Note: The event is not recorded when the instruction is executed by (
an application program.

Enables or disables detailed external tracing of IUCV interrupts on
the Signal System Service path.

Enables or disables external tracing of each SVC interrupt.

Enables external tracing of APPC/VM synchronous events.

GTrace

ALL

OFF

END

Specifies that you want data, passed from the GTRACE macro, to be
recorded in a spool file.

Enables or disables external tracing of all events described above.

Disables external tracing of events for the specified type(s).

Omitting the OFF operand enables external tracing of events for the
specified type.

Disables external tracing of all events.

GRoup
Specifies that this command is to affect the virtual machine group, of
which the issuer of the command is a member. If this operand is
omitted, the command is applied only to the issuer's virtual machine.

If external tracing of certain types of events is enabled for the group,
then they are automatically enabled for any virtual machine that may
join the group later.

30 VMjSP GCS Command and Macro Reference

Messages

(-

(

(

Examples

c

ETRACE

The GROUP operand can be used only by an authorized member of a
virtual machine group. That .is, by a member of the group placed on
the list of authorized users in the GCS configuration file.

An unauthorized group member cannot deactivate tracing enabled by
the GROUP operand. However, an authorized virtual machine can
disable external tracing for itself even though ETRACE with the
GROUP operand was specified by another authorized virtual machine.

CSIYTE001E Invalid option 'option' RC=4
CSIYTE009E Operand missing or invalid RC=4
CSIYTES09I ETRACE set ON for event-type(s)
CSIYTES10I ETRACE set ON for event-type(s) for GROUP
CSIYTESllI ETRACE set OFF for event-type(s)
CSIYTES12I ETRACE set OFF for event-type(s) for GROUP
CSIYTES13E ETRACE GROUP option is in effect for event-type(s)

RC=8

For more information on messages see the VM/SP System Messages and
Codes.

The meanings of return codes for these messages are:

Return Meaning
Code

00 The specified ETRACE events have been
successfully enabled or disabled.

04 An invalid operand was specified, or an
unauthorized user specified the GROUP
operand. Your request 'was ignored.

08 An authorized virtual machine had enabled
external tracing using the GROUP operand.
An unauthorized virtual machine then
attempted to disable external tracing. The
request was ignored.

etrace all

etrace i/o prg off

Requests that all types of events for the issuer's virtual machine be
recorded in a spool file. Later, a second ETRACE command, was issued to
disable external tracing of I/O and program interrupts for the issuer's
virtual machine.

Chapter 2. Group Control System Commands 31

ETRACE

etrace dsp i/o sio group

Requests that the following types of events be recorded externally for the
virtual machine group: task dispat(!hes, I/O interrupts, and GCS supervisor
I/O requests. The individual who issues this command must be an
authorized user, since the request is for the group.

etrace end

Requests that external tracing of events in a spool file for the issuer's
virtual machine be disabled. This request will not be honored for an
unauthorized user if the ETRACE events were started by the GROUP
operand.

32 VM/SP GCS Command and Macro Reference

c

(

(

FILEDEF

FILEDEF

Define eMS Format Files and Spool Files

FIledef

Application programs usually require some "setting up" before you try to
start and run them. The FILEDE'~Fommand is one of the preliminary
commands normally issued to prepare a program for execution. You issue it
to define CMS format files and spool files used by the program.

The format of the FILEDEF command is:

PRi nter [(opti onA OPTeD j[)]J

PUnch [(opti onAD]]

Reader [(pptfonAD]]

.~'1~\ffr4i(~/I~er~ll.J}~p~!Q~i\OPti.~~.&rl]J
'[1U~~Yn()p~i'onA[)]:l ••. '. '. . ..; .. ',
cLEAR . .•... .

ddname
*

o~tlonA:

·.tJ:~E]
.' .. ':~{NQ~ijANGEl';;;'

'CRECFM a]"

. [LREel nnnnn]

. ··,~.·.fB. LO.CKnn ... nnn.']. tBLKHZE nnnnn
" '; »<:<-:- .. ".

The name of the file, as referred to in your program. The ddname can
contain from one to eight alphameric characters. However, the first
one must be alphabetic or national.

If you specify an asterisk (*) in place of a ddname and follow it with
the CLEAR operand, all file definitions that you did not enter with the
PERM option will be cleared.

Chapter 2. Group Control System Commands 33

FILEDEF

Option A

PRinter
Represents the spooled printer, which you must have defined at virtual
address OOE.

OPTCDj

PUnch

When the virtual printer is a 3800, j indicates to QSAM and
BSAM that the output data line's first byte will contain a table
reference character (TRC). This TRC selects a character
arrangement table to use in printing the data line. The TRC can
be alone or with other ANSI control characters.

Represents the spooled punch, which you must have defined at virtual
address OOD.

READER
Represents the spooled card reader, which you must have defined at
virtual address OOC. (I/O to the card reader must not be "blocked.")

DISK fn ft [fm]
Specifies that the virtual I/O device is a disk. fn and ft are CMS
fields. If fm is the filemode of an OS disk, fn and ft represent the
only two qualifiers of an OS data set name. If you specify fm as an
asterisk (*), all disks get searched. You cannot use this form unless
the OS data set name or VSE field conforms to the OS naming
convention (one- to eight-byte qualifiers, separated by periods, up to a
maximum of 44 characters, including periods). Moreover, the data set
name can have only two qualifiers. If you omit DISK fn ft, the
default is FILE ddname Al.

DUMMY
Indicates that no real 1/0 takes place for the data set.

CLEAR
Removes any existing definition for the specified ddname. You should
clear ddnames before defining them to make sure the ddname doesn't
already exist. Doing that nullifies any operations previously defined
with the ddname.

PERM
Retains the current file definition until it either is explicitly cleared
or is changed by a new FILEDEF command with the CHANGE option.
If you don't specify PERM, the definition is cleared when you issue
FILEDEF * CLEAR.

CHANGE
Combines definitions for an existing ddname with new ones when you
issue a new FILEDEF for that same ddname. All options from both
definitions are merged. A new definition for a particular option
replaces the original definition.

34 VM/SP GCS Command and Macro Reference

C'''' .
'. / I

c

FILEDEF

NOCHANGE
Retains the current file definition, if one exists, for a specified
ddname. With this option, the system stops further processing (error
checking, scanning, and similar functions) for new FILEDEF
commands with the same ddname.

RECFM a
Represents the record format of the file, where a can be one of the
following:

When "a" is: The file contains:

F Fixed length records

FA

FB

FBA

v

VA

VB

VBA

U

UA

LRECLnnnnn

Fixed length records with American National
Standards Institute (ANSI) characters

Fixed length, blocked records (not for use with
READER devices)

Fixed length, blocked records with ANSI characters

Variable length records

Variable length records with ANSI characters

Variable length, blocked records (not for use with
READER devices)

Variable length, blocked records with ANSI
characters

Records of an undefined length

Records of an undefined length with ANSI characters.

Specifies the length, in bytes, of each fixed length logical record or the
maximum length, in bytes, for variable length logical records. This
value should not exceed 32760 bytes for fixed length records or 32756
(including four bytes for a record descriptor word) for variable length
records.

BLOCK nnnnn
BLKSIZE nnnnn

Specifies the maximum block length in bytes. For fixed length records
(unblocked), this is the record length. For variable length records,
this gives the maximum logical record length (up to 32756 bytes, plus
four bytes for a block descriptor word). For undefined length records,
this value can be altered by the problem program. It can be inserted
directly into the data control block or specified in the length operand
of a READ/WRITE macro instruction.

Chapter 2. Group Control System Commands 35

I ,

FILEDEF

Option B

Messages

nISP MOD
Positions the read/write pointer after the last record in a disk file.
Use this option only when you're adding records to the end of a file.
That file must be on a disk accessed as read/write. The disk cannot be
an extension of another disk. If so, it would be read/only, and you
couldn't write to it. For standard label tapes, you can use this to add
records to the end of the tape.

DSORG PS
Specifies that the data set has a physical, sequential (PS)
organization.

See the VM/SP CMS Command Reference for more information on using
this command and its operands and options.

CSIFLDOOlE Invalid option 'option' RC=24
CSIFLD002E Invalid parameter 'parameter' in the option

'option' field RC=24
CSIFLD003E 'option' option specified twice RC=24
CSIFLD004E 'optionl' and 'option2' are conflicting

options RC=24
CSIFLDOOSS Virtual storage capacity exceeded
CSIFLD006E Invalid parameter 'parameter' RC=24
CSIFLDOllE Invalid character in fileid 'fn ft' RC=20
CSIFLD017I Disk mode not accessed
CSIFLD02lE Invalid mode 'mode' RC=24
CSIFLD023E No filetype specified RC=24
CSIFLD30lE Invalid device 'device name' RC=24
CSIFLD302E Parameter missing after DDNAME RC=24
CSIFLD303I No user defined FILEDEFS in effect
CSIFLD304I Invalid CLEAR request
CSIFLD320E Error during FILEDEF CLEAR processing, DCB(s)

not closed

For more information on messages see the VM/ SP System Messages and
Codes.

36 VMjSP GCS Command and Macro Reference

\
"--.

(

f

c

--- ~~~---

GDUMP

GDUMP

Produce a Copy of the Contents of Your Virtual Machine's Storage

GOUMP

Use the GDUMP command to produce a copy of your virtual machine's
storage.

The format of the GDUMP command is:

[TO *] (OSS] [FORMAT type]
TO userid GCS [heQloCI]. [{. 7.} [~~61oc2]]

.bytecount . .
.. ,:

hexlocl
The hexadecimal address in virtual storage where the dump is to start.
If no starting address is specified, 0 is assumed.

(colon)
- (dash)

The colon and dash are range indicators that specify a range of
storage to be dumped.

If the storage you want to dump begins at address X' 4F023' an<~ends
at X'5F05F', you could express the range this way:

4F023-SFOSF

or:

4F023SFOSF

Embedded blanks are not allowed.

hexloc2
The hexadecimal address in virtual storage where the dump is to end.
This must be preceded by (and adjoined to) a dash or colon. If you do
not specify it, and either the colon or dash is used, then the last
address in virtual storage is assumed.

Note: Dumps are always generated in 4-kilobyte pages. These pages
correspond to the 4-kilobyte pages into which storage is segmented. If
you request that a certain portion of storage be dumped, the entire
4-kilobyte page into which that portion falls is included in the dump.
So, your request is always rounded up and down to the nearest page
boundaries.

Chapter 2. Group Control System Commands 37

GDUMP

END
Specifies that the dump is to end at the last address of virtual storage.

If you omit the hexloc2 and END parameters, END is assumed .

. bytecount

TO·

Specifies the number of bytes to be included in the dump. No
embedded blanks are allowed.

If you wanted 65597 (X'1003D') bytes of storage, dumped starting at
address X'4F023', you would use:

4F023.1003D

Spe'cifies that you want the dump sent to the virtual reader of the
machine that is issuing this GDUMP command.

If the issuer of an GDUMP command (with TO * specified) is not on
the list of authorized userids (specified with the GROUP EXEC), any
fetch-protected data that does not have a storage key of 14 is omitted
from the dump. However, all requested non-fetch-protected data and
Key 14 storage is included.

TO userid

DSS

Specifies that you want the dump sent to the virtual reader of a
specific user (even if your group has a common dump receiver).

If the userid receiving the dump is not on the list of authorized userids
(specified with the GROUP EXEC), fetch-protected data is omitted
from the dump. However, all requested non-fetch-protected data and
Key 14 storage is included.

Unauthorized userids can request a dump containing fetch-protected
data and send it to an authorized receiver. That way, the
fetch-protected data will be included. However, those unauthorized
userids are prevented from using the CP TRANSFER command to
transfer the dump-containing spool file to their own machines.

If you don't specify TO, the dump goes to the common dump receiver
(if you specified one with the GROUP EXEC). Otherwise, it goes to
the virtual reader of the machine issuing the GDUMP command.

Specifies that any saved systems, or discontiguous shared segments, in
your machine (the one where you're issuing the command) be included
in the dump.

38 VMjSP GCS Command and Macro Reference

(

Messages

(--,

GDUMP

FORMAT [type]
Describes the type of virtual machine contents you are dumping (CMS,
GCS, RSCS, or another type). This format type will later become the
IPCS format type of the dump.

If you omit this operand, a format type of GCS is assumed.

CSIDUM009E Operand is missing or invalid RC=OC
CSIDUM010E Command Complete
CSIDUM525E Userid is missing or invalid RC=14
CSIDUM526E Userid 'userid' not in CP directory RC=lO
CSIDUM527E Invalid range RC=lB
CSIDUM529E Partial dump taken RC=4
CSIDUM531E Dump failed: spooling error RC=08
CSIDUM532E Dump failed: I/O error RC=lC
CSIDUR528I Dump complete
CSIDUR529E Partial dump taken
CSIDUR530E Dump failed

For more information on messages see the VM/SP System Messages and
Codes.

The meanings of return codes for these messages are:

Return Meaning
Code

00 The dump finished successfully. All requested
areas were recorded in the dump.

04 Not all the requested areas were recorded in
the dump.

08 A spooling error in CP prevents the dump from
being recorded.

OC An operand is missing or invalid.

10 The recipient's userid is not in the CP
directory.

14 The TO operand was specified but the userid
was missing or invalid.

18 An invalid address range was specified.

lC CP experienced an I/O error when paging in
the parameter list or dump list. No dump was
recorded.

20 The input parameter list address was invalid.

Chapter 2. Group Control System Commands 39

GDUMP

Examples

gdump O:CB8F7 TO * DSS

Requests a dump of the issuer's virtual storage contents, from address 0 to
CB8F7, and sends it to the issuer's own virtual reader. This dump includes
any discontiguous shared segments the virtual machine may be using and,
if the userid is authorized, any fetch-protected data (other than key 14) that
can be found within the specified address range. The virtual machine type
is GCS (the default).

gdump

Requests a dump of the issuer's virtual storage contents (excluding any
discontiguous shared segments) and sends it to the common dump receiver.
If the common dump receiver is an unauthorized userid, no fetch-protected
data other than key 14 will be included in the dump.

40 VM/SP GCS Command and Macro Reference

/

I

~

(

(

(

c

GLOBAL

GLOBAL

Define the eMS Load Libraries You Want Searched for Modules

Programs you run under GCS may be members of CMS load libraries.
Before GCS can invoke a program residing in a load library, you must
identify the load library where it can be found.

Use the GLOBAL command to specify what load libraries GCS should
search whenever you attempt to invoke a program.

The format of the GLOBAL command is:

I GLobal I L?ADLl B [1; b name I. .. lib name63]

Messages

LOADLIB
An operand indicating that you are referring to CMS load libraries.

libnamel ...
The filenames of the load libraries you want searched for modules. No
more than 63 load libraries may be specified in the GLOBAL
command. Whenever the load libraries are searched, they are
searched in the order they are specified in this command.

If no library names are specified, the command cancels the effects of
any previous GLOBAL command.

To find out what load libraries are currently identified to be searched, type:

query loadlib

CSIGLBOOSS Virtual storage capacity exceeded
CSIGLB013E No function specified RC=24
CSIGLB014E Invalid function 'function' RC=24
CSIGLB024E File 'fn ft fm' not found RC=28
CSIGLB220E Unable to open file 'filename' RC=28
CSIGLB221S More than nnn libraries specified RC=88
CSIGLB222E File 'fn ft fm' contains invalid record formats

RC=32
CSIGLB223S Error 'xx' reading file 'fn [ft fm]' from disk

RC=lOO

For more information on messages see the VMj SP System Messages and
Codes.

Chapter 2. Group Control System Commands 41

HX

HX

Halt Execution of All Programs and Commands Active in a Virtual Machine

Messages

Sometimes you may want to halt the processing of a command or program
after you've already issued it. Use the HX command to halt processing of
all commands and programs active in a virtual machine. Issuing HX will
also clear commands you have stacked and waiting to be processed,
including any of your own commands defined with a LOADCMD command.

The format of the HX command is:

" /.",

',~~< -' -',:, >
',,'

"'" .<. -:,'/, :.(',,',
;',>,".,'

CSIABD2251 Hx complete

For more information on messages see the VM/SP System Messages and
Codes.

42 VMjSP GCS Command and Macro Reference

c'

('

(

(

ITRACE

ITRACE

Enable or Disable Recording of Internal Trace Events for a Virtual Machine or an Entire
Group

ITrace

GCS maintains an internal trace table in common storage. This table
contains two types of information:

• records of supervisor events and
• records of GTRACE events.

GCS records all supervisor events that occur within your virtual machine.
It also can record data from programs or applications (GTRACE events)
within your virtual machine. This latter information is gathered via the
GTRACE macro, and you can use it for debugging purposes.

The ITRACE command lets you control what goes in the internal trace
table. Internal tracing for supervisor events starts out active, or "enabled,"
recording all events that occur from the time you join the group. However,
if you want GCS to begin recording GTRACE events, you have to enable
the tracing yourself. You can issue the ITRACE command to turn off
tracing of supervisor events and later to turn it back on. Likewise, you can
turn GTRACE event tracing on and later turn it off. If you have an
authorized virtual machine, you can control internal tracing for the entire
group.

The format of the ITRACE command is:

[~~pace] [, OFF]
[ALL] ' [GRoup]

(ENI)l

GTrace

SUP

Indicates that you want to affect only the internal tracing of data
passed via the GTRACE macro.

Indicates that you want to affect only the internal tracing of GCS
supervisor events. It includes nsp, EXT, FRE, GET, I/O, PRG, SIO,
SSS, and SVC events.

Chapter 2. Group Control System Commands 43

IT RACE

Messages

ALL

OFF

END

Indicates that you want to apply this command to the internal tracing
of both GTRACE and supervisor events.

Halts internal tracing of the events you indicated. ON is assumed,
unless you specify OFF.

Terminates, or disables, all internal tracing. You must specify this
option by itself or with the GROUP operand. These are the only two
ways you can use it.

GRoup
Indicates that you want this command to apply to the whole virtual
machine group rather than just to your issuing machine. It will also
apply to machines that join the group later.

To use this operand, you need to have an authorized userid.
Commands you issue with the GROUP option "on" normally will take
precedence over commands issued without. However, an authorized
virtual machine can disable tracing for itself even though another
authorized virtual machine started internal tracing for the whole
group.

CSIYTGOOIE Invalid option 'option' RC=4
CSIYTG009E Operand missing or invalid
CSIYTGS17I ITRACE set ON for event-type(s)
CSIYTGS18I ITRACE set ON for event-type(s) for GROUP
CSIYTGS19I ITRACE set OFF for event-type(s)
CSIYTGS20I ITRACE set OFF for event-type(s) for GROUP
CSIYTGS21E ITRACE GROUP option is in effect for event-type(s)

RC=8

For more information on messages see the VM/SP System Messages and
Codes.

44 VMjSP GCS Command and Macro Reference

c

(

(
Examples

(:."

,..--/

(

ITRACE

The meanings of return codes for these messages are:

Return Meaning
Code

00 The tracing of events has been successfully
enabled or disabled.

04 An invalid operand was specified, or an
unauthorized user specified the GROUP
operand. Your request was ignored.

08 An authorized virtual machine had enabled
tracing of user events using the GROUP
operand. An unauthorized virtual machine
then attempted to disable this tracing. The
request was ignored.

ITRACE GTRACE

Enables tracing of GTRACE events (program or application data) in the
virtual machine that issued this command.

ITRACE GTRACE GROUP

Enables tracing of GTRACE events for the virtual machine group. The
virtual machine issuing this command must be authorized.

ITRACE GTRACE OFF GROUP

Disables tracing of GTRACE events for the virtual machine group. The
virtual machine issuing this command must be authorized.

ITRACE SUP OFF

Disables internal tracing of supervisor events for the virtual machine
issuing this command.

ITRACE END

Disables internal tracing of all events for the virtual machine issuing this
command. If tracing had been enabled for the whole group, you would need
an authorized virtual machine to issue this for yourself. If the tracing was
enabled just for your virtual machine, you don't have to be authorized to
issue this for yourself.

Chapter 2. Group Control System Commands 45

LOADCMD

LOADCMD

Define a Program Module to be Executed as a Command

LOADCMD is a feature that lets you define your own commands. More
precisely, it lets you assign a command name to a program module. (The
module for this program must reside in a CMS load library that you've
defined with a GLOBAL command.) When you issue the command name,
this module gets control and executes. It remains in storage, waiting to be
run again when you issue its assigned name from either the console or the
CMDSI macro or a command file (EXEC).

For example, to run the GCS application ACF/VTAM, you first have to
define the "VTAM" command. "VTAM" is a command name that will be
processed by one of ACF/VTAM's program modules. Mter you've defined
and issued this "VTAM" command name, you can enter any of the following
ACF/VTAM commands:

• START
• HALT
• VARY
• MODIFY
• DISPLAY.

The format for the LOADCMD command is:

name
The name of the command you are defining.

member
The member of a CMS load library associated with the command
you've defined. This member is the module that executes the
command you've defined; it is loaded into private, free storage.

46 VM/SP GCS Command and Macro Reference

('
.~ ..)

c'

(.

(..

(

c

LOADCMD

When you enter the name, GCS calls the member to execute the command.
Here's what your registers will contain:

Register Contents

o Address of an extended parameter list (plist).

1 Address of a tokenized parameter list of consecutive
doublewords. The first item in the list is the name of your called
routine or program. Other items in the list may contain
arguments you want passed to it.

3

12

13

14

15

Address of a word (UWORD) in storage that's available for the
command's use.

Address of the entry point to your program. You can use this
address as a base address to establish immediate address ability in
your program.

Address of a 96-byte save area for your program's use.

Return address of the SVC handling routines. The program
returns control to this address after it finishes executing.

Same as Register 12, except that you should not use this one as a
base register. The SVCs use it to communicate with the
program, and GCS uses it to return a completion code. Any time
that completion code is nonzero, you'll see it in the ready
message (if you entered the command at the console):

Ready (nnnnn) ;

If the program you execute does not return a completion code in
Register 15, make sure it puts a zero there before transferring
control. Otherwise, your ready message may contain
meaningless data (whatever was in Register 15 at the time).

When you enter a command, a GCS scan routine sets up two distinct
parameter lists:

• The first list is a tokenized parameter list. (Register 1 contains its
address.) The parameters listed there line up on consecutive
doubleword boundaries. Blanks and parentheses serve as delimiters
separating each parameter. (Parentheses show up in the list, each on a
double word boundary.)

Chapter 2. Group Control System Commands 47

LOADCMD

• The second is an extended, or "not tokenized," parameter list. (Register
o contains its address.) It contains addresses that map out the extended
form of a command. This extended parameter list has the following
format:

EPLMAP DC A(CMDBEG) ADDR OF COMMAND TOKEN
DC A (ARGBEG) ADDR OF BEGINNING OF ARGUMENTS
DC A(ARGEND) ADDR OF END OF ARGUMENTS
DC A(O) ADDR OF EXEC FILEBLOCK
DC A(O) ADDR OF FUNCTION ARGUMENT LIST
DC A(O) AD DR FOR RETURN OF FUNCTION DATA
DS X INDICATOR (see the following note)
DS 3X RESERVED

Note: An INDICATOR byte of X'OO' is a sign that a program issued the
command. X'OB' is a sign that it was issued from the console. X'OI' is a
call from the System Product Interpreter when ADDRESS COMMAND
is specified. X'05' is used by the System Product Interpreter for (
function calls.

Here are two ways you might enter a command and two sets of
accompanying tokenized and extended parameter lists that result:

1. You enter:

====> loadcmd cmdname memname

The scan routine sets up the following tokenized parameter list:

FORMAT: DC
DC
DC
DC

CL8'LOADCMD'
CL8'CMDNAME'
CL8'MEMNAME'
8X'FF'

The scan routine sets up the extended parameter list with the following
references:

CMDBEG DC
ARGBEG DC
ARGEND EQU

C'loadcmd'
C'cmdname memname'
*

The first nonblank character following 'loadcmd' determines the start of
ARGBEG.

2. You enter 'loadcmd' without specifying any arguments:

====> loadcmd

The scan routine sets up the following tokenized parameter list:

FORMAT: DC
DC

CL8'LOADCMD'
8X'FF'

48 VM/SP GCS Command and Macro Reference

(

Messages

(

(

c

LOADCMD

The scan routine sets up the extended parameter list with the following
references:

CMDBEG
ARGBEG
ARGEND

DC
DC
EQU

C'loadcmd'
*
*

With no arguments specified, ARGBEG is set equal to ARGEND.

For more information on parameter lists, see the VM/SP CMS User's
Guide.

CSILDC212E Member cannot be loaded. Command is not defined
RC=xx

CSILDC2401 No entry points were loaded by the LOADCMD command

For more information on messages see the VM/SP System Messages and
Codes.

Chapter 2. Group Control System Commands 49

LOADCMD

Example

The meanings of return codes for this message are:

Return Meaning
Code

01 The command pas already been defined.

04 The module is marked not executable. The
module is not loaded and the command is not
defined. The module is not suitable for use as a
command module. Consult the information
provided by the linkage editor, at the time the
module was created, to determine why the
module is not executable.

10 The module is an overlay structure. The
module is not loaded and the command is not
defined. If this module is to be used as a
command module, it must be restructured so
that it does not require overlays.

12 The module is marked only loadable. The
module is not loaded and the command is not
defined. This module is not suitable for use as
a command module.

14 The command name specified is a GCS
immediate command or an abbreviation for one.

24 Too many operands were specified.

28 The specified member cannot be found.

32 No member name was specified.

36 A permanent I/O error was found when the
system attempted to search the CMS LOADLIB
directory.

40 Insufficient virtual storage was available to
read the directory entry for this module.

41 Insufficient free storage was available to build
the nucleus extension control blocks
representing this command.

LOADCMD MYCMD MYMOD

Defines the command named MYCMD to GCS. The module containing the
code for this command can be found in a CMS load library under the
member name of MYMOD. Then, by issuing:

MYCMD

The module named MYMOD is invoked.

50 VM/SP GCS Command and Macro Reference

;r'\
(, . .-)

-p'

r~;
Ie:. '
~j I

c

OSRUN

OSRUN

Start a GCS Application Program

IOSRUN

Messages

Use the OSRUN command to execute a GCS application. The application
program must either be a member of a CMS load library (defined with the
GLOBAL command) or else reside in a saved segment. The OSRUN
command maintains control until the program ends; therefore, you cannot
execute other commands while the program is running.

The format of the OSRUN command is:

I member [PARM=parameters]

member
The member of the CMS load library you want to execute.

PARM = parameters ,
The OS parameters that you want to pass to the module. If these
parameters contain blanks or special characters, you must enclose
them in quotes. To include a quote mark in a parameter, enter two
quotes marks side-by-side (, '). Parameters must be no longer than 100
characters. They get passed to the module in OS format: Register 1
points to a full word containing the address of the character string.
(The first halfword field contains the length of the character string.)

CSILOS220E Unable to open file 'filename'
CSILOS223S Error 'nn' reading file 'fn [ft fm]' from disk
CSILOS224E Member 'membername' not found in library
CSIOSR006E Invalid parameter 'parameter' RC=24
CSIOSR022E No filename specified RC=24
CSIOSR219E Parm field contains more than 100 characters RC=24
CSIOSR236E Ending apostrophe is missing RC=24
CSIABD237E Command ended without detaching subtasks

For more information on messages see the VMj SP System Messages and
Codes.

Chapter 2. Group Control System Commands 51

QUERY

QUERY

Request Information About Your GCS Virtual Machine

Use the QUERY command to gather information about your GCS virtual
machine.·

The format of the QUERY command is:

The DISK, LOADLIB, FILEDEF, and SEARCH operands work the same as
for the CMS QUERY command with the exception that no options are
allowed.

DISK
Displays the following disk information:

LABEL CUU M STAT CYL TYPE BLKSIZE FILES BLKS USED-(%) BLKS LEFT BLKTOTAL
label cuu m stat cyl type blksize nnnn nnnn-nn nnnn nnnnn

label

cuu

m

The label assigned to the disk when it was formatted. If it's an
OS or DOS disk, this is the volume label.

The virtual device address.

The access mode letter.

52 VM/SP GCS Command and Macro Reference

(-

(

stat

cyl

type

QUERY

Indicates whether the disk is read/only (R/O) or read/write
(R/W).

The number of cylinders available on the disk. For an FB-512
device, this field contains the abbreviation FBA rather than the
number of cylinders.

The device type of the disk.

blksize
The number of units that make up a block on the disk.

nnnn FILES
The number of files on the disk. If you have an OS or DOS disk,
this field will contain either os or DOS.

BLKS USED
The number of disk blocks in use.

nn%
The percentage of blocks in use.

nnnn BLKS LEFT
The number of disk blocks left. (The actual number of disk
blocks remaining is lower because this number also counts
control blocks.)

nnnnn BLK TOTAL
The total number of blocks

If you specify DISK mode, you see information about the single disk
associated with that mode. DISK * gives you one line of information
for each disk that's accessed. DISK R/W gives information for each
accessed disk in read/write mode, and DISK MAX gives information for
the R/W disk having the most available space.

FILEDEF
Displays all file definitions in effect.

Response:

ddname device [fn [ft]]

If you have no file definitions in effect, you'll receive the following
message:

No user defined FILEDEFS in effect

Chapter 2. Group Control System Commands 53

QUERY

LOADLIB
Displays the names of all files (of filetype LOADLIB) that will be
searched for load modules. This gives you a list of all LOADLIBs
specified on the last GLOBAL LOAD LIB command, if any.

Response:

LOADLIB=libnamel libname8

up to eight names are displayed per line, for as many lines as
necessary. If no libraries are to be searched, the response is:

LOADLIB = NONE

SEARCH
Displays the search order of your accessed disks.

Response:

label cuu mode R/O OS
R/W DOS

label /

cuu

m

RIO
R/W

OS
DOS

The label assigned to the disk when it was formatted. If it's an
OS or DOS disk, this is the volume label.

The virtual device address.

The filemode letter assigned to the disk when it was accessed.

Indicates whether the disk is read/only or read/write.

Indicates an OS or DOS disk.

SYSNAMES
Displays the names of the standard saved systems.

Response:

SYSNAMES:
ENTRIES:

GCSVSAM GCSBAM
entry ... entry ...

54 VM/SP GCS Command and Macro Reference

(

(

(

c

QUERY

where:

SYSNAMES
The names that identify the saved systems (discontiguous shared
segments).

ENTRIES

DLBL

The default system names or the system names established via
the SET command.

Querying DLBL yields the following information:

DDNAME MODE TYPE CATALOG VOL BUFSPC PERM DISK DATASET.NAME
xxx xxx nn xxxx xxxxxxx xxx xxx xxxxxxx

DDNAME
The program ddname.

MODE
The disk on which the data set resides.

TYPE
The type of data set defined. This field will always be VSAM.

CATALOG

VOL

The ddname of the VSAM catalog you want searched for the
specified data set.

The number of volumes (if greater than one) on which VSAM
resides. This field will be blank if the VSAM data set resides on
only one volume. The actual volumes may be displayed by
entering either DLBL (MULT) or the QUERY DLBL MULT
commands.

BUFSPC
The size of the VSAM buffer space, if entered at DLBL definition
time.

PERM
Indicates whether the DLBL definition was made with the PERM
option. This field will contain YES or NO.

DISK
Indicates whether the data set resided on a CMS or DOS/OS disk
at DLBL definition time. The values for this field are DOS and
CMS.

Chapter 2. Group Control System Commands 55

QUERY

DATASET.NAME
For a data set residing on a CMS disk, the CMS filename and
filetype are given; for a data set residing on a DOS/OS disk, the
data set name (maximum 44 characters) is given. This field will
be blank if you failed to enter a DOS/OS data set name at DLBL
definition time.

If no DLBL definitions are active, you'll get the following message:

No user defined DLBL'S in effect

ETRACE
Displays a list of the events that are enabled for external tracing
(recording in a spool file).

Response:

All external trace events are disabled
External trace is enabled for event-type(s)
External trace is enabled for event-type(s) for GROUP

ITRACE
Displays a list of the events that are enabled for internal tracing.

Response:

Internal trace is enabled for event-type
Internal trace is enabled for event-type for GROUP
All internal trace events are disabled

GROUP
Displays the userids of the virtual machines in the GCS group of the
lssuer.

Response:

GROUPID=groupname, USERS: CURRENT=ccccc, MAXIMUM=mmmmm
VMUSERID(s)

LOCK
Displays the status of the common lock. If the lock is held, the userid
holding the lock is displayed.

Response:

The common lock is free
The common lock is held by 'userid'

REPLY
Displays the text and the identification number of all messages
waiting for a reply.

56 VM/SP GCS Command and Macro Reference

/~
(' \
: I
\~

\

'-

c

(

(
Messages

(

Response:

No replies outstanding
The following replies are outstanding:

xx yyyyyyyy
xx yyyyyyyy

LOADCMD

QUERY

Locates the entry point addresses for all entry points that are loaded
by the LOADCMD command.

LOADALL
Displays the entry point names and addresses for the entry points that
have been loaded and currently reside in the virtual machine storage.

For more information on using the QUERY command, see the VM/SP CMS
Command Reference.

All QUERY messages except CSIQRL032S are issued without message
numbers.

CSIQRD239I "No entry points are currently loaded in this
virtual machine"

CSIQRD240I "No entry points were loaded by the LOADCMD command"
CSIQRL032S Supervisor error 5. Re-IPL sysname
CSIQRL217E The common lock is free
CSIQRL218I The common lock is held by userid
CSIQRQ514I All external trace events are disabled
CSIQRQ515I External trace is enabled for event-type(s)
CSIQRQ516I External trace is enabled for event-type(s)

for GROUP
CSIQRQ522I Internal trace is enabled for event-type(s)
CSIQRQ523I Internal trace is enabled for event-type(s)

for GROUP
CSIQRQ524I All internal trace events are disabled
CSIQRR005S Virtual storage capacity exceeded RC=8
CSIQRR214I No replies outstanding
CSIQRR215I The following replies are outstanding:
CSIQRR216I GROUPID=systemname, USERS: CURRENT=nnnnn,

MAXIMUM=mmmmm
CSIQRS015E 'parameter' is invalid for 'function' function

RC=24
CSIQRS017E Disk {modelvdevlvolumeid} not accessed
CSIQRS019E No Read/Write mode disk accessed RC=l
CSIQRS020E No Read/Write disk with space available accessed

RC=2
CSIQRU303I No user defined FILEDEFs in effect
CSIQRX005S Virtual storage capacity exceeded RC=8
CSIQRX006E Invalid parameter 'parameter' RC=24
CSIQRX303I No user defined DLBLs in effect
CSIQRY005S Virtual storage capacity exceeded RC=8
CSIQRY006E Invalid parameter 'parameter' RC=24
CSIQRY013E No function specified RC=24

For more information on messages see the VM/SP System Messages and
Codes.

Chapter 2. Group Control System Commands 57

RELEASE

RELEASE

Release a Disk

Messages

After an application no longer needs files on a particular disk, you should
issue the RELEASE command for that disk.

The format of the RELEASE command is:

cuu

~" >~; .,'

',: ;"

The virtual device address of the disk to be released.

mode
The mode letter at which the disk is currently accessed.

DET
Specifies that the disk is to be detached from your virtual machine.

When the disk is detached, you receive the message:

DASD 'cuu' DETACHED

For more information on using the RELEASE command, see the VMj SP
CMS Command Reference.

CSIARE006E Invalid parameter 'parameter'
CSIARE017E DISK {modelvdevlvolumeid} not accessed
CSIARE021E Invalid mode 'mode'
CSIARE415E Invalid device address 'vdev'
CSIARE416E No device specified

For more information on messages see the VM/SP System Messages and
Codes.

58 VM/SP GCS Command and Macro Reference

(

(

c'

REPLY

REPLY

Reply to Messages Sent to a GCS Virtual Machine Operator

I Reply lid [text]

GCS programs can use the WTOR macro to send a message to a GCS virtual
machine operator's console and request a reply. The message may request
the operator to set up certain devices for the program, provide data, or
perform some other service.

The issuer of a WTOR macro expects the operator to reply. Use the REPLY
command to respond to messages received via the WTOR macro.

The format of the REPLY command is:

id
The identification number (0-99), as specified in the message
requesting the response. Leading zeros may be omitted.

text

Note:

The text of the response to the message. The maximum text length is
119 characters (responses longer than 119 characters are truncated to
119).

The WTOR macro instruction allows its issuer to specify the maximum
length of the expected operator's response. If the operator attempts to
send a response that is longer than the issuer of the WTOR specified,
the response will not be transmitted, and a message is issued to that
effect.

A list of all messages awaiting reply, along with their identification
numbers, can be obtained by issuing:

query reply

Chapter 2. Group Control System Commands 59

REPLY

Example

Messages

Return Meaning
Code
0 Your reply is accepted.

4 No message requiring a reply is associated with
the identification number you specified.

8 Your reply was not accepted. Its format was
invalid.

10 The reply buffer address or EOB address was
not accessible.

reply 16 disk is mounted at address 250

The operator informs the issuer of a WTOR, whose identification number is
16, that a disk has been mounted at address 250.

CSIRPY206E Reply not accepted, ID not specified
CSIRPY207E Reply not accepted, ID number not 00 to 99 RC=8
CSIRPY2081 Reply xx not outstanding RC=4
CSIRPY209E Reply xx not accepted, reply too long for requestor

RC=8
CSIRPY210E Reply not accepted, invalid ECB address RC=10
CSIRPY211E Reply not accepted, invalid reply buffer address

RC=10

For more information on messages see the VM/SP System Messages and
Codes.

60 VM/SP GCS Command and Macro Reference

c

(.

c

SET

SET

Replace a Saved System Name Entry in the SYSNAMES Table for VSAM

. SET SYSNAME

When GCS is generated, the default names of saved systems for VSAM
(CMSVSAM and CMSBAM) become entries in your SYSNAMES table. The
table entry looks like this:

SYSNAMES:
ENTRIES:

GCSVSAM
CMSVSAM

GCSBAM
CMSBAM

"GCSVSAM" and "GCSBAM" are merely headings here. "CMSVSAM" and
"CMSBAM" are the actual saved system names. Before VSAM is
initialized (by the first VSAM operation after IPL), you can change these
saved system names with the SET command. Once you initialize VSAM,
these saved system names cannot be changed.

The format of the SET command is:

{ GCSVSAM} entry name
GCSBAM

SYSNAME
Specifies that a saved system name in the SYSNAMES table is to be
replaced.

GCSVSAM
Indicates that the entry name you're about to supply will go under the
heading "GCSVSAM" in your SYSNAMES table. "GCSVSAM" does
not automatically become the new entry name of the VSAM system.
For more information on VSAM systems, see the VM/SP Installation
Guide.

GCSBAM
Indicates that the entry name you're about to supply will go under the
heading "GCSBAM" in your SYSNAMES table. (You need a BAM
system to support VSAM.) "GCSBAM" does not automatically become
the new entry name of your BAM saved system. For more information
on BAM systems, see the VMj SP Installation Guide.

entry name
The name of the alternative saved system that will replace your
default VSAM or BAM system. The VSAM and BAM systems you use
for GCS can be the same as the CMSVSAM and CMSBAM systems
you use for CMS. Separate systems are not required.

Chapter 2. Group Control System Commands 61

SET

Messages

To display the saved system names currently available to your virtual
machine, enter:

query sysnames

CSISET006E Invalid parameter 'parameter' RC=24
CSISET013E No function specified RC=24
CSISET321E Saved system name 'nsmg' is invalid. Only GCSVSAM

or GCSBAM allowed RC=24
CSISET322E New system name missing after 'name; RC=24
CSISET323E Parameter missing after SYSNAME RC=24
CSISET351E System name not changed. VSAM already initialized.

RC=24

For more information on messages see the VM/SP VM/SP System Messages
and Codes.

c'
62 VM/SP GCS Command and Macro Reference

.-... --~ -.----~-----

(C_

ABEND .. 64
ATTACH ... 67
CHAP ... 77
DEQ .. 80
DETACH ... 86
ENQ .. 88
ESTAE .. 96
IHASDW A .. 104
POST .. 106
SETRP ... 110
WAIT .. 114

(

CI
Chapter 3. Task Management Service Macros 63

ABEND

ABEND

Abnormally Terminate the Active Task

C1 abel] ABEND

Parameters

For a variety of reasons, a task running under GCS may decide that it
should abnormally terminate itself.

Use the ABEND macro instruction to effect this.

The format of the ABEND macro instruction is:

coirfP,:et; oncode[.DUMPJ[,STEP] .. [USER 1
...•• :SYSltM·.

completion code
Specifies the completion code that describes the condition under
which the task terminated itself.

A completion code is a number from 0 to 4095.

If you specified the address of an event control block in the ATTACH
macro instruction that created the ABENDing task, then the
completion code is placed there. (If necessary, review the entry titled
"ATTACH" on page 67.) If it is a user completion code, then it is
stored in bits 20-31 of the ECB completion code field. If it is a system
completion code, then it is stored in bits 8-19.

If you specify the DUMP parameter, then this completion code will
also appear in the dump's control block.

The meaning of each user completion code is defined by the
application. The meaning of each system completion code is defined
by the GCS supervisor. The USER and SYSTEM parameters,
described below, govern which type of completion code you receive.

You can write this parameter as any symbol, as a decimal or
hexadecimal number, or as register (1) through (12).

64 VM/SP GCS Command and Macro Reference

c

Usage Notes

(

c

ABEND

DUMP
Specifies that a dump will be sent to your virtual reader.

GCS sends the dump to the virtual reader belonging to the member of
your virtual machine group designated to receive dumps. If this
member is not authorized, then only non-fetch-protected key 14 data
will be included in the dump.

STEP
Indicates that the entire command or application, of which the task in
question is a part, is to be abnormally terminated.

USER
Indicates that the completion code specified is defined by the user or
the application. Unless otherwise stated, this is the case, by default.

SYSTEM
Indicates that the completion code specified is defined by the GCS
supervisor.

• If any subtasks are defined for the task in question, then they are also
terminated abnormally. This applies to any of their descendants, as
well.

• When a task terminates, the GCS supervisor performs normal task
termination activities on the former's behalf. These activities include
the release of locks, storage, and other resources associated with the
task.

•

However, you may have defined an exit routine for the task via the
ESTAE macro instruction. (If necessary, review the entry titled
"ESTAE" on page 96.) The exit routine may attempt to retry the failed
function or request that the supervisor continue with normal task
termination.

It may be that no exit routine was defined for the task in question. It
may also be that an exit routine was defined for the task but the exit
routine directed that termination continue anyway. In either case, GCS
checks to see if the task in question is a subtask of another task. If so,
then the other task is the immediate ancestor task of the task in
question.

If the task in question has an immediate ancestor, then GCS checks to
see if the ancestor task included the ETXR parameter in the ATTACH
instruction it used to attach the task in question to itself. If so, then
GCS schedules the routine specified in the ETXR parameter for
execution. If the ancestor task specified the ECB parameter in the same
ATTACH instruction, then GCS posts the appropriate event control
block.

Chapter 3. Task Management Service Macros 65

ABEND

Example

If necessary, review the entry titled "ATTACH" on page 67.

• Some of the subtasks of the task being terminated may have EST AE
exit routines defined for themselves. If so, none of them ever receives
control.

ENDIT ABEND 899,DUMP

The active task wants to terminate itself abnormally. A user completion
code of 899 describes the reason for this. The task requests that a dump of
its virtual storage be produced to aid in diagnosing the problem. ENDIT is
the label on this instruction.

Return Codes and ABEND Codes

The ABEND macro generates no return codes.

ABEND Meaning
Code

20D A descendant subtask of this task issued the ABEND
instruction with the STEP parameter specified. This
task was abnormally terminated.

66 VM/SP GCS Command and Macro Reference

()

/

(

\ ./

(

(:.

ATTACH

ATTACH

Set Up a New Subtask

[labelJ ATTACH

Parameters

In order for the code representing a new subtask to be usable, a task block
must be created for it by its immediate ancestor task. Moreover, the
subtask's code must be brought into virtual storage if it is not already
there.

The ATTACH macro instruction should be used by a task to create a task
block for one of its own new subtasks. This will bring the subtask into
virtual storage if it is not already there. The task issuing the ATTACH
macro instruction thereby becomes the immediate ancestor of the subtask
in question.

The ATTACH macro instruction is available in standard, list, and execute
format.

The standard format of the ATTACH macro instruction is:

EP=symbol [.PARAM=(addresses)[.VL=lJJe.ECS=addressJ

EPLOC=address [,ETXR=addressJ [,OPMoo=numberJ[,SZERO= {~BS}]

OE=address [,SHSPv=number 1 [,SM: {PROS} 1 [.JSTCS: {YEs}]

EP

,SHSPL=address SUPV NO

Specifies the eight-byte name of the entry point within the program
that receives control when your new subtask runs.

The entry point name can be anyone of the following:

• The name of the entry point as previously defined via the
IDENTIFY macro instruction. If necessary, review the entry titled
"IDENTIFY" on page 130.

• The name of the entry point declared in a shared segment
directory via the CONTENTS macro instruction. If necessary,
review the entry titled "CONTENTS" on page 496.

Chapter 3. Task Management Service Macros 67

ATTACH

• A member name (or alias) in the directory of a load library.

When looking for the entry point name that you specify, GCS searches
the following items in the following order:

1. Your private storage, since the module associated with the entry
point name may already be loaded.

2. Any shared segment directories that may have been created via
the CONTENTS macro instruction.

3. The directories of any load libraries that may have been defined
for your virtual machine via the GLOBAL LOADLIB command.
For more information on the GLOBAL command see "GCS
Commands" on page 20.

If the subtask code is in a load library, then the ATTACH macro will
bring the subtask's code into your private storage for you.

You must write this parameter as a symbol.

EPLOC

DE

Specifies the address that contains the eight-byte name of the entry
point of the program that receives control when your new subtask
runs.

You can write this parameter as an assembler program label or as
register (2) through (12).

Specifies the address of the NAME field within the directory list entry
associated with the entry point.

This is the same list entry you placed in the directory using the BLDL
macro instruction. If necessary, review the entry titled "BLDL" on
page 118.

You can write this parameter as an assembler program label or as
register (2) through (12).

PARAM
Specifies one or more parameter addresses that are to be passed to
your subtask program once it receives control.

GCS builds a parameter list containing these addresses in the order in
which you specify them. Then, the address of this parameter list is
passed in register 1 to your subtask program.

Note that this parameter list must be surrounded by parentheses and
each member of the list must be separated from the others by a
comma.

68 VM/SP GCS Command and Macro Reference

(-

(

(

ATTACH

You can write these parameters as assembler program labels or as
registers (2) through (12).

VL=l

ECB

Indicates that the subtask expects a variable number of parameters to
be passed to it.

This parameter causes the high-order bit of the last parameter address
in the list to be set to 1. This enables the subtask to find the end of a
variable-length parameter list.

You must write this parameter exactly as shown. And, you can use it
only with the PARAM parameter. To omit the VL = 1 parameter is to
say that the subtask expects a set number of parameters.

Specifies the event control block (ECB) associated with your new
subtask.

The entries titled "WAIT" on page 114 and "POST" on page 106
describe how your new subtask can be treated as an event associated
with an ECB. GCS posts the ECB with the subtask's completion code
or return code as soon as the latter terminates.

Remember, if you specify the address of an ECB in the ATTACH
instruction, then you must explicitly issue the DETACH instruction
when you are finished with the subtask in question. The DETACH
instruction releases all the storage associated with your subtask,
including its control blocks. If necessary, review the entry titled
"DETACH" on page 86.

You can write this parameter as an assembler program label or as
register (2) through (12).

ETXR
Specifies the address of the end-or-task exit routine that is to receive
control when your new subtask terminates either normally or
abnormally.

It is your responsibility to provide this exit routine and to be certain
that it is in virtual storage when needed. Moreover, if your exit
routine is to be shared by several subtasks, then it must be reentrant.

Remember, if you specify the address of an exit routine in the
ATTACH instruction, then you must explicitly issue the DETACH
macro instruction when you are finished with the subtask in question.
Normally the DETACH instruction is issued somewhere in the exit
routine itself.

You can write this parameter as an assembler program label or as
registers (2) through (12).

Chapter 3. Task Management Service Macros 69

ATTACH

DPMOD
Specifies the number that is to be added to the dispatching priority of
the immediate ancestor task to produce the dispatching priority of
your new subtask.

The larger the dispatching priority number of a task, the more readily
the task is executed. So, if a positive number were assigned to the
DPMOD parameter, then the sum of this number and the priority of
the ancestor task would produce a higher priority for your new
subtask. Conversely, a negative number assigned to the DPMOD
parameter would result in a priority for your subtask that is lower
than its immediate ancestor.

The dispatching priority for a problem state application task must be a
number from 0 to 240. Should the sum of the DPMOD parameter and
the priority of the ancestor task be less than zero, then the
dispatching priority of your subtask will be o. Likewise, if this sum is
greater than 240, then the dispatching priority of your subtask will be
240.

The dispatching'priority for a supervisor state application task must
be a number from 0 to 250. Should the sum of the DPMOD parameter
and the priority of the ancestor task be less than zero, then the
dispatching priority of your subtask will be o. Likewise, if this sum is
greater than 250, then the dispatching priority of your subtask will be
250.

Note: If the task issuing the ATTACH instruction is running on the
system task, then the dispatching priority for its subtask will be the
sum of 240 plus the value assigned to the DPMOD parameter.

SZERO
Indicates whether your new subtask is to share subpool 0 storage with
its immediate ancestor task.

A subpool is a number from 0 to 255 that is assigned to a block of
storage to describe its characteristics. Subpool 0 specifies private,
fetch-protected storage.

If a main task issues the GETMAIN instruction for storage in sub pool
0, then GCS automatically frees the storage when the task terminates.
Likewise, for a subtask that is attached to a main task with the
SZERO = NO parameter specified.

However, if the subtask was attached with the SZERO = YES
parameter specified (or defaulted), then GCS associates the storage
with the oldest ancestor task with which this subtask is sharing the
subpool. Hence, the storage block is not automatically freed by GCS
when the subtask terminates. The storage is freed only when the
oldest ancestor task terminates.

70 VM/SP GCS Command and Macro Reference

---- -------- ---

(

-,-;/

c

(

(

NO

ATTACH

Specifies that subpool 0 storage will be shared by your new
subtask with its immediate ancestor task. This is the case, by
default.

Specifies that subpool 0 storage will not be shared by them.

SHSPV
Specifies a storage subpool that will be shared by your new subtask
with its immediate ancestor (and with the latter's ancestor, if it shares
with the task that attached it).

If a main task issues the GETMAIN instruction for storage from
subpools 1 through 127, then GCS automatically frees the storage
when the task terminates. Likewise, for a subtask that was attached
to that task without a subpool having been specified in the SHSPV or
SHSPL parameter.

However, if the subtask was attached with a subpool specified in the
SHSPVor SHSPL parameter in the ATTACH instruction, then GCS
associates the storage with the oldest ancestor task with which this
subtask is sharing the subpool. Hence, the storage is not
automatically freed by GCS when the subtask terminates. The storage
is freed only when the oldest ancestor task terminates.

Since subpools greater than 127 cannot be shared, you should write
this parameter as a number from 1 to 127.

SHSPL

SM

Specifies the address of a list of subpool numbers, each of which refers
to a subpool to be shared by your new subtask with its immediate
ancestor task.

The rules governing the SHSPV parameter also apply here. In
addition, the first byte in the list must contain the number of bytes
remaining in the list. Each subsequent byte must contain a subpool
number from 1 to 127.

You can write this parameter as an assembler program label or as
register (2) through (12).

Indicates the state in which your new subtask will run. This
parameter is valid only if the task issuing the ATTACH instruction is
running in supervisor state. Otherwise this parameter is ignored.

PROB
Indicates that your new subtask will run in problem state. If you
omit the SM parameter altogether, then the sub task will run in
problem state, by default.

Chapter 3. Task Management Service Macros 71

ATTACH

Usage Notes

SUPV
Indicates that your new subtask will run in supervisor state;

JSTCB
Indicates whether your new subtask is an independent application.
Unless your program is running on the system task, this parameter is
ignored.

YES
Indicates that your subtask is an independent application.

An independent application does not go away when the command
through which it was created terminates. This means that the
application must be explicitly detached via the DETACH
instruction when it is no longer needed.

Indicates that your subtask is not an independent application.
This is the case, by default.

• The ATTACH macro does not transfer control to your new subtask. It
merely sets up a task block for your subtask based upon the information
you provide in the ATTACH instruction.

When the new subtask is dispatched the first time, it receives control.
At this point, the programs it contains are enabled for interrupts.
Moreover, the subtask runs in the same key in which its ancestor task
ran when the latter issued the ATTACH instruction.

• The ATTACH macro assigns a unique task identifier to each new
subtask. This task id is returned to the task issuing the instruction in
the two low-order bytes of register 1. Further, the two high-order bytes
of this register will contain the appropriate virtual machine id.

This task id is used to refer to your new subtask if you decide to delete
it from the system or change its dispatching priority. If necessary,
review the entries titled "DETACH" on page 86 and "CHAP" on
page 77.

Note: Soon after the'ATTACH macro completes execution, be certain
to save the task id somewhere in virtual storage. You will need this
task id later as a parameter to the DETACH and CHAP instructions.

• Do not use the ATTACH macro instruction in an ESTAE exit routine.

• An end-of-task exit routine will always run in the same key and state as
the task that issued the ATTACH instruction originally.

• If neither the ECB nor ETXR parameter is specified, then the subtask is l~ ...
automatically removed from the system as soon as it terminates. ~

72 VM/SP GCS Command and Macro Reference

,(

(

(

c'

Example

ATTACH

• When an exit routine specified in an ATTACH instruction receives
control, the contents of the registers are:

Register 0 Unpredictable.

Register 1 The task id for the subtask that just
terminated.

Registers 2 - 12 Unpredictable.

Register 13 The address of an eighteen-word register
save area provided by the GCS supervisor.

Register 14 The return address within the GCS
supervisor.

Register 15 The address of the exit routine.

• When the new subtask receives control, the contents of the registers
are:

Register 0 Unpredictable.

Registers 1 - 12 Propagated to the new subtask.

Register 13 The address of a new user save area.

Register 14 The return address within the ancestor task.

Register 15 The address of the entry point.

• If the program that receives control once the new subtask becomes
active is reentrant, then it is loaded into key 0 storage. This ensures
that it is not accidentally modified or tampered with.

ATTACH EPLOC=(4),PARAM=((5),(6),(7)),VL=1,ECB=MYECB,SHSPL=SPLIST

A task requests that a new subtask be created.

The name of the entry point for the program associated with the new
subtask can be found at the address in register 4. Registers 5, 6, and 7
contain the addresses of three parameters to be passed as a list to the
subtask's program when it receives control. Since the new subtask's
program can accept a variable number of parameters, the VL = 1 parameter
is specified. The event control block associated with the new subtask can
be found at the address associated with the label MYECB. A list of storage
sub pools that are to be shared by the subtask with its immediate ancestor
task can be found at the address associated with the label SPLIST.

Chapter 3. Task Management Service Macros 73

!
ATTACH

Return Codes and ABEND Codes

When this macro completes processing, it passes to the caller a return code
in register 15.

Return Meaning
Code
00 Function successfully completed.

04 An ATTACH macro instruction was issued in an
ESTAE exit routine. The subtask was not attached.

ABEND Meaning
Code

22A You specified a sub pool number greater than 127 in the
SHSPL or SHSPV parameter.

42A The ECB parameter specified an invalid address.

704 An uncorrectable machine, system, or indeterminate
error occurred while processing the GETMAIN macro.

72A Invalid parameter list.

74 VM/SP GCS Command and Macro Reference

" {
I", ./

o

(The List Format

[label] ATTACH

(

Added Parameter

(

(

- ------ --~~-

ATTACH

EP=symbol [.PARAM=(addresses)[.VL=l]][.ECB=address]

EPLOC=address [, ETXR=address] t. DPMOD·number] [. SZERO· {:~S} 1

DE=address [.SHspv=number 1 [.SM= {PROB} 1 [.JSTCB= rES} 1
.SHSPL=address SUPV NO

.SF=L

This format of the macrO instruction generates an in-line parameter list
based on the parameter values that you specify. However, this format
generates no executable code. Remember that you cannot specify any of
the parameters using register notation.

SF=L
Specifies the list format of this macro instruction.

Chapter 3. Task Management Service Macros 75

ATTACH

The Execute Format

Added Parameter

This format of the macro instruction generates code that executes the
function, using a parameter list whose address you specify.

MF = (E,address)
ADDRESS specifies the address of the remote parameter list to be used
by the program that receives control when the new task becomes
active.

You can add or modify values in this parameter list by specifying them
in this instruction.

SF = (E,address)

(

ADDRESS specifies the address of the parameter list to be used by the
macro that you generated using the list format of the instruction. \", ,

You can add or modify values in this parameter list by specifying them
in this instruction.

c
76 VM/SP GCS Command and Macro Reference

(

(

CHAP

CHAP

Change the Dispatching Priority of a Given Task

[label] CHAp·

Parameters

GCS is a multitasking system. This means that considerably more than one
task can execute in the same virtual machine at the same time.

In any multitasking environment some sort of priority system must be
established to govern access to the processor by so many tasks. To that
end, each task is assigned a dispatching priority number. These numbers
determine the order in which many competing tasks gain access to the
processor.

The dispatching priority for any problem state application task must be a
number from 0 to 240. The dispatching priority for any supervisor state
application task must be a number from 0 to 250. The larger the number,
the higher the dispatching priority of the task and the more readily that
task gains access to the processor.

Use the CHAP macro instruction to change the dispatching priority of any
application task within your virtual machine.

The format of the CHAP macro instruction is:

priority change value
Specifies a number that is to be added to the current dispatching
priority of the task in question. The sum of these two numbers will be
the task's new dispatching priority.

To raise the task's dispatching priority, specify a positive number in
this parameter. To lower it, specify a negative number.

Should the sum of the two numbers result in a priority less than zero,
then the task's new priority will be zero. Should the sum be greater
than the highest priority allowed, then the task's new priority will be
the highest allowed.

Chapter 3. Task Management Service Macros 77

CHAP

Usage Notes

You can write this parameter as any symbol, as a decimal digit, as
register (0), or as register (2) through (12). If you write it as a register
and wish to specify a negative number, then you must store the
number in the register in two's complement form.

task id address
Specifies the address of a full word that contains the task identifier of
the task in question.

GCS assigned a task id to your task when you issued the ATTACH
macro instruction for it. (If necessary, review the entry titled
"ATTACH" on page 67.) Presumably, you saved the task id
somewhere when the ATTACH macro returned it to you. GCS
assumes that the task id is stored in the two low-order bytes at this
address. GCS ignores the two high-order bytes.

If the address specified in the task id address parameter equals zero,
then GCS assumes that the dispatching priority of the task issuing the
CHAP instruction is the one to be changed.

You can write this parameter as an RX-type address or as register (1)
through (12).

Indicates that the dispatching priority of the task issuing the CHAP
instruction is the one to be changed.

If you omit both the S and the TASK ID ADDRESS parameters, then
GCS treats the instruction as though the S parameter were specified.

Note that this parameter must be surrounded by single quotation
marks.

• No task can change the dispatching priority of any other task unless
the former issued the ATTACH macro instruction for the latter. Put
another way, no task can change the dispatching priority of another
task unless the latter is a subtask of the former.

• You cannot use the CHAP instruction to change the priority of the
system task.

78 VM/SP GCS Command and Macro Reference

."
j

0,

CHAP

(Return Codes and ABEND Codes

The CHAP macro generates no return codes.

ABEND Meaning
Code
12C The task id specified was invalid for one of the

following reasons:

• The task id specified is associated with the system
task, not the user task.

• The task associated with the task id does not exist.

• The task id does not refer to one of its immediate
descendant tasks.

(• The task specified has already terminated.

22C The address of the parameter list is invalid.

Chapter 3. Task Management Service Macros 79

DEQ

DEQ

Release Control of a Serially Reusable Resource

Parameters

A serially reusable resource (SRR) is a data resource that some tasks may
want to update and that others may only want to examine. The use of these
SRRs should be coordinated carefully. Two programs may seek to update
the resource simultaneously, leading to invalid results. Meanwhile,
another program may be looking at the same data, causing more confusion.

The solution to this is the ENQ macro instruction. Using this instruction,
a task can gain exclusive use of a serially reusable resource so it can be
updated. No other task can touch the resource until the task that has
exclusive control releases it. If an SRR is not being updated, but only
looked at, several tasks can also share the resource using the ENQ
instruction. But they cannot alter the contents of the resource in any way.
(If necessary, review the entry titled "ENQ" on page 88.)

Use the DEQ macro instruction to release your task's control of a serially
reusable resource.

The DEQ macro instruction is available in standard, list, and execute
format.

The standard format of the DEQ macro instruction is:

qname address
Specifies the address in virtual storage where the QNAME for the
resource in quet:.tion can be found.

The QNAME is the first of a pair of names that identifies the
resource. It can be up to eight bytes long and can contain any valid
hexadecimal characters. Your installation has defined the QNAMEs
of each serially reusable resource available to you. Each programmer
is required to use the proper QNAME to identify an SRR.

80 VM/SP GCS Command and Macro Reference

f·

(

DEQ

You can write this parameter as an assembler program label or as
register (2) through (12).

rname address
Specifies the address in virtual storage where the RNAME of the
resource can be found.

The RNAME is the second of a pair of names that identifies the
resource. Again, your installation has defined these and they must be
used consistently. The name can be qualified and must be from 1 to
255 characters long.

You can write this parameter as an assembler program label or as
register (2) through (12).

rname length

RET

Specifies the length of the RNAME, in bytes.

It must be the same value as the RNAME LENGTH specified in the
ENQ macro instruction that gave the task control of the resource in
the first place.

If you omit this parameter, then the RNAME is considered, by default,
to be as long as its assembled length. If you wish, you can override its
assembled length with another within the range 1 through 255. If you
specify 0 as the length, then the ENQ macro assumes that the first
byte at the address specified for the RNAME ADDRESS contains the
RNAME's correct length.

You must specify this parameter if there is no length associated with
the RNAME itself. For example, you may specify the RNAME by
using a register or by using a name appearing in an EQU assembler
instruction.

You can write this parameter as a number between 0 and 255.

Indicates the condition under which your request will be honored. If
you omit this parameter, then your request will be considered
uncondi ti onal.

HAVE
Indicates that the resource is to be released from your task's
control only if the task has control of it at the moment.

NONE
Indicates that the request to release the resource from your
task's control is unconditional.

Chapter 3. Task Management Service Macros 81

DEQ

Usage Notes

Examples

RELATED
Specifies documentation data that you are using to relate this macro
instruction to an ENQ macro instruction. The value you assign to
this pararp.eter has nothing to do with the execution of the macro
itself. It merely relates one macro instruction (DEQ) to a macro
instruction that provides an opposite, though related, service (ENQ).

The format and contents of this parameter are at your discretion and
can be any valid coding values.

• Control of a resource is surrendered under one of two circumstances:

The task with control issues the DEQ macro instruction.

The task with control ends. In this case the task terminates
abnormally, since it did not release the Sl1R itself.

• If you choose the NONE parameter and your task does not have control
of the resource, your task will terminate abnormally. It is important to
find out if your task really does have control of the resource before
using the NONE parameter, or simply use the HAVE parameter.

LETGO DEQ (MARK,(8),16),RET=NONE

A task is releasing a certain resource from its control. The QNAME of the
resource can be found at the address associated with the label MARK. Its
RNAME can be found at the address in register 8. Since the RNAME was
specified by a register, the RNAME LENGTH was also specified-in this
case, 16. The request is unconditional, so presumably the task tested to see
if it had control of the resource before it issued the request. LETGO is the
label on this instruction. .

DEQ ((3),RN),RET=HAVE

A task is releasing a certain resource from its control. The QNAME of the
resource can be found at the address in register 3; Its RNAME can be
found at the ad,dress associated with the label RN. Thelength ofthe
RNAME is not specified and will, therefore, be the assembled length of RN,
by default. This request will be honored only if the resource is under the
task's control at the moment.

82 VM/SP GCS Command and Macro Reference

/

c

DEQ

("~ Return Codes and ABEND Codes

(

(

(

If register 15 contains the value zero, then the resource in question has
been released. If register 15 does not contain 0, then it contains the address
of the input parameter list of the macro. The DEQ macro places all
non-zero return codes in byte 3 of the input parameter list.

The return codes and abend codes are described as follows, according to the
condition specified in the RET parameter.

When RET=HAVE:

Return Meaning
Code

00 The resource specified has been released.

04 Your task requested control of the resource but has
not yet received it. This return code results if a DEQ
instruction is issued within an exit routine that
received control because of some interrupt.

08 Either your task never had control of the specified
resource or it already released control.

ABEND Meaning
Code
130 The resource was not previously specified in an ENQ

instruction. Nor was the RET = HAVE parameter
specified in that instruction.

230 An invalid length was specified for the RNAME
LENGTH parameter.

430 Invalid parameter list.

530 A task issued the ENQ instruction. Before the request
could be honored, the same task issued the DEQ
instruction without the HAVE parameter specified.

E30 Either your task attempted to make multiple requests
with one DEQ instruction, or a parameter that is not
supported by GCS was specified with the instruction.

Chapter 3. Task Management Service Macros 83

DEQ

The List Format

Added Parameter

This format of the macro instruction generates an in-line parameter list
based on the parameter values that you specify. However, this format
generates no executable code. Remember that you cannot specify any of
the parameters using register notation.

MF=L
Specifies the list format of this macro instruction.

84 VM/SP GCS Command and Macro Reference

/

c

(The Execute Format

[1 abel] DEQ

Added Parameter

(

C:

DEQ

(qname address,rname address[,rname length]) [,RET=HAVE]
, RET=NONE

[,RELATED=value],MF=(E,address)

This format of the macro instruction generates code that executes the
function, using a parameter list whose address you specify.

MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the
macro.

You can add or modify values in this parameter list by specifying them
in this instruction.

Chapter 3. Task Management Service Macros 85

DETACH

DETACH

Remove a Subtask From Your Virtual Storage

Parameter

Usage Notes

When you no longer have any use for a subtask for which you issued the
ATTACH macro instruction, it should be removed from storage.

Use the DETACH macro instruction to remove a subtask and its task block
from storage and to break the logical link between it and its immediate
ancestor task.

The format of the DETACH macro instruction is:

('

!
task id address '", /

Specifies the address of a full word that contains the task identifier of
the subtask in question.

GCS assigned a task id to your subtask when you issued the ATTACH
macro instruction for it. (If necessary, review the entry titled
"ATTACH" on page 67.) Presumably, you saved the task id
somewhere when the ATTACH macro returned it to you. GCS
assumes that the task id is stored in the two low-order bytes at this
address. GCS ignores the two high-order bytes. /

You can write this parameter as an RX-type address or as register (1)
through (12).

• The task that issues the DETACH instruction for a particular subtask
must be the one that issued the ATTACH instruction for it in the first
place.

• If a DETACH macro instruction is issued for a subtask that is in
mid-execution, then the latter is terminated abnormally. Should the
subtask in question have any descendant subtasks of its own, they are
also terminated abnormally. If you specified an exit routine for the
subtask via the EST AE macro instruction, then the former is not
executed. (If necessary, review the entry titled "ESTAE" on page 96.)

"

c
86 VM/SP GCS Command and Macro Reference

(

DETACH

Nor is the routine specified by the ETXR parameter in the ATTACH
instruction executed. However, if you specified an event control block
(ECB) in the ATTACH instruction associated with the subtask, then
that ECB is posted. Finally, control is returned to the instruction
immediately following the DETACH instruction.

Return Codes and ABEND Codes

When this macro completes processing, it passes to the caller a return code
in register 15.

Return Meaning
Code

00 Function completed normally.

ABEND Meaning
Code

13E This subtask was detached in mid-execution.
Therefore, it has terminated abnormally.

23E The address of the task id was invalid.

43E The ECB address specified in the corresponding
ATTACH instruction was invalid.

705 An uncorrectable machine, system, or indeterminate
error occurred when GCS issued the FREEMAIN
macro instruction.

Chapter 3. Task Management Service Macros 87

ENQ

ENQ

Request Control of a Serially Reusable Resource

Parameters

A serially reusable resource (SRR) is a data resource, local to a virtual
machine, that some tasks may want to update and that others may want
merely to examine. Use of these SRRs should be coordinated carefully.
Two programs may seek to update the resource simultaneously, leading to
invalid results. Meanwhile, another program may be looking at the same
data, causing more confusion.

Use the ENQ macro instruction to request control of a serially reusable
resource and to define the nature of the control sought by your task.

The ENQ macro instruction is available in standard, list, and execute
format.

The standard format of the ENQ macro instruction is:

qname address
Specifies the address in virtual storage where the QNAME for the
resource in question can be found.

The QNAME is the first of a pair of names that identifies the
resource, and must be eight characters long. Your installation has
defined the QNAMEs of each serially reusable resource available to
you. Each programmer is required to use the proper QNAME to
identify an SRR.

You can write this parameter as an assembler program label or as
register (2) through (12).

88 VM/SP GCS Command and Macro Reference

c

(

(-

(

(/

:c

ENQ

rname address

s

Specifies the address in virtual storage where the RNAME of the
resource can be found.

The RNAME is the second of a pair of names that identifies the
resource. Again, your installation has defined these and they must be
used consistently. The name can be qualified and be from 1 to 255
characters long.

You can write this parameter as an assembler program label or as
register (2) through (12).

Indicates that you want your task to have exclusive control over the
serially reusable resource. That is, while your task has control over
the resource, no other task can use it.

You must request exclusive control if your task is to modify the
serially reusable resource in any Way.

Indicates that your task can share control of the resource with other
tasks that are also willing to share.

If two or more tasks are sharing a serially reusable resource, then
none is permitted to change the contents of that resource.

rname length

RET

Specifies the length of the RNAME, in bytes.

If you omit this parameter, then the RNAME is considered by default
to be as long as its assembled length. If you wish, you may override
its assembled length with another within the range 1 through 255. If
you specify 0 as the length, then the ENQ macro assumes that the first
byte at the address specified for the RNAME ADDRESS contains the
RNAME's correct length.

You must specify this parameter if there is no length associated with
the RNAME itself. For example, you may specify the RNAME by
using a register or by using a name appearing in an EQU assembler
instruction to specify the RNAME.

You can write this parameter as a number from 0 to 255.

Indicates the condition under which your request for control of the
resource will be honored. If you omit this parameter, then the request
is considered unconditional.

TEST
Tests the availability of the resource specified. It does not turn
control of the resource over to your task.

Chapter 3. Task Management Service Macros 89

ENQ

Usage Notes

CHNG
Indicates that the shared control your task now has over the
resource is to change to exclusive control.

This request will be honored if no other tasks are sharing the
same resource with your task.

HAVE
Indicates that your task wants control of the resource only if it
has not requested control of it before.

NONE

USE

Indicates that your task requests control of the resource
unconditionally.

Your task will not regain control until it obtains control of the
resource.

Indicates that your task wants immediate control over the
resource. If control of the resource is not immediately available,
then your task foregoes control and does not wait.

RELATED
Specifies documentation data that you are using to relate this macro
instruction to a DEQ macro instruction.

The value you assign to this parameter has nothing to do with the
execution of the macro itself. It merely relates one macro instruction
(ENQ) to a macro instruction that provides an opposite, though
related, service (DEQ).

The format and content of this parameter are at your discretion and
may be any valid coding values.

• Control of a resource is surrendered under one of two circumstances:

A program within the task with control issues the DEQ macro
instruction. Review the entry titled "DEQ" on page 80.

The task with control ends. In this case, the task terminates
abnormally, since it did not release the resource itself.

• After it issues the ENQ instruction, your task may be placed in the
WAIT state for one of the following reasons:

It has requested exclusive unconditional control of a resource that
is under exclusive or shared control of another task.

90 VM/SP GCS Command and Macro Reference

o

c!

Examples

ENQ

It has requested control of a resource that is under the exclusive
control of another task.

Your task requested shared control but there is a request for
exclusive control ahead of it.

• The ENQ instruction affects only the tasks within the virtual machine
in which it was issued. Tasks in other virtual machines are not
constrained from using the serially reusable resource to which the
instruction refers. The programmers involved should take steps to
assure that this does not create problems.

• If you choose the TEST parameter, then your task is not given control
of the task but merely receives a return code. The same may be true if
you choose the HAVE or USE parameter. Return codes are defined
below.

GETIT ENQ (MARK,(4),E,32)

The task is requesting exclusive, unconditional control over a certain
serially reusable resource. The resource's QNAME can be found at the
address associated with the assembler program label MARK. The RNAME
can be found at the address in register 4. Since a register was specified for
the RNAME, the length of the RNAME is also specified, in this case 32.
GETIT is the label on this instruction.

ENQ {{3),RN,S),RET=USE

The task is requesting immediate, shared control of a resource. If that
resource is not immediately available, the task does not wish to wait. The
QNAME can be found at the address in register 3. The RNAME can be
found at the address associated with the label RN. The length of the
RNAME will be the assembled length of RN, by default.

Return Codes and ABEND Codes

A return code is passed to your task only if you choose the TEST, USE,
CHNG, or HAVE conditions for the RET parameter.

If register 15 contains 0, then the return code for the resource in question is
O. If register 15 does not contain 0, then it contains the address of the input
parameter list of the macro. The ENQ macro places all non-zero return
codes in byte 3 of the input parameter list.

For all 08 return codes (except when RET = CHNG), you must examine the
fourth bit in byte 0 of the input parameter list. If this bit is reset to 0, then
the return code means that the task has obtained exclusive control of the
resource. If this bit is set to 1, then the return code means that the task
has obtained shared control.

Chapter 3. Task Management Service Macros 91

ENQ

The return codes and abend codes are described as follows, according to the
condition specified in the RET parameter.

When RET= CHNG:

Return Meaning
Code

00 The task now has exclusive control of the resource.

04 The task cannot get exclusive control of the'resource.

08 The resource has not been queued.

20 A previous request for control of the same resource
was made by this same task. The task does not have
control of the resource.

When RET=HAVE:

Return Meaning
Code

00 Control of the resource has been given to the task.

08 The task has control of this resource by virtue of a
previous request. If bit 3 of the first byte in the
parameter list is set to 1, then this task has shared
control of the resource. If bit 3 is reset to 0, then this
task has exclusive control.

20 The task has made a previous request for control of
this resource. The task is not given control of the
resource.

When RET= TEST:

Return Meaning
Code

00 The resource is available immediately.

04 The resource is not available immediately.

08 The task has control of this resource by virtue of a
",

previous request. If bit 3 of the first byte in the
parameter list is set to 1, then this task has shared
control of the resource. If bit 3 is reset to 0, then this
task has exclusive control.

20 The task has made a previous request for control of
this resource. The task is not given control.

92 VM/SP GCS Command and Macro Reference

(

)
/

"----------- ----

ENQ

When RET=U8E:

Return Meaning
Code

00 Control of the resource has been given to the task.

04 The resource is not available .immediately.

08 The task has control of this resource by virtue of a
previous request. If bit 3 of the first byte in the
parameter list is set to 1, then this task has shared
control of the resource. If bit 3 is reset to 0, then this
task has exclusive control.

20 The task has made a previous request for control of
this resource. The task is not given control.

ABEND Meaning
Code

138 Two ENQ instructions were issued for the same
resource by the same task without an intervening DEQ
instruction.

238 An invalid length was specified for the RNAME
LENGTH parameter.

438 Invalid parameter list.

(
638 Insufficient storage was available to fulfill your

request.

E38 Either your task attempted to make multiple requests
with one ENQ instruction, or a parameter that is not
supported by GCS was specified in the instruction.

(

c'
Chapter 3. Task Management Service Macros 93

ENQ

The List Format

Added Parameter

This format of the macro instruction generates an in-line parameter list
based on the parameter values that you specify. However, this format
generates no executable code. Remember that you cannot specify any of
the parameters using register notation.

MF=L
Specifies the list format of this macro instruction.

94 VM/SP GCS Command and Macro Reference

\..)

c

ENQ

(- The Execute Format

[1 abel] ENQ

(Added Parameter

(-

CI

(qname address,rname address [:!] [,rname length]) ,RET=TEST

,RET=CHNG
,RET=HAVE
,RET=NONE

,RET=USE
~

[.RELATED=value],MF=(E,address)

This format of the macro instruction generates code that executes the
function, using a parameter list whose address you specify.

MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the
macro.

You can add or modify values in this parameter list by specifying them
in this instruction.

Chapter 3. Task Management Service Macros 95

ESTAE

ESTAE

Specify an Exit Routine for a Task that will Gain Control if the Task ABENDs

When a task terminates abnormally, GCS usually performs task termination
activities on behalf of the task. These activities include the release of
locks, storage, and other resources associated with the task.

However, you may wish to provide your task with your own exit routine
that receives control if an ABEND occurs. This exit routine can be
designed to find a solution to the problem, try the task again, or allow task /'

(1 abel)

Parameters

termination to continue. Use the ESTAE macro instruction to specify and
describe this exit routine.

The ESTAE macro instruction is available in standard, list, and execute
format.

The standard format of the EST AE macro instruction is:

exit address
Specifies the address of the exit routine that is to gain control if your
task terminates abnormally.

If you specify an address of zero, then the exit routine you most
recently defined via the ESTAE instruction is cancelled.

You can write this parameter as an assembler program label or as
register (2) through (12).

Indicates that you are specifying a new exit routine for the active
task.

Since you may have several exit routines, this new exit routine will
supplement any that may currently be defined for the task.

96 VMjSP GCS Command and Macro Reference

J

\,,-

c'

(

(

c

OV

ESTAE

If neither the CT nor the OY parameter is specified, then CT is
assumed, by default.

Indicates that you wish to modify (overlay) certain parameters that
you specified in your last ESTAE instruction, yet maintain the status
of the current exit routine as the current exit routine.

Specify only those parameters that you want overlaid, along with any
necessary values. To omit a certain parameter here is to say, "leave
the parameter as it is."

PARAM
Specifies the address of a parameter list that is to be passed to your
exit routine, should it ever gain control.

It is your responsibility to provide this parameter list.

You can write this parameter as an assembler program label or as
register (2) through (12).

XCTL
Indicates whether your exit routine will maintain its status as current
exit routine if your task transfers control to a module via the XCTL
macro instruction. If necessary, review the entry titled "XCTL" on
page 154.

YES

ASYNCH

Indicates that if your task transfers control to a module via the
XCTL instruction, and the module ABENDs, then the exit
routine in question will not gain control. This is the default.

Indicates that if your task transfers control to a module via the
XCTL instruction, and the module ABENDs, then the exit
routine in question will gain control.

Indicates whether asynchronous exits will be allowed while your exit
routine is running.

Indicates that you will allow asynchronous exits while your exit
routine is running. This is the default.

You must specify ASYNCH = YES if your exit routine requests
supervisor services that require such interrupts. These
supervisor services include general I/O, ATTACH ETXR, lUCY,
STIMER, and SCHEDEX.

Chapter 3. Task Management Service Macros 97

ESTAE

Usage Notes

NO
Indicates that you will allow no asynchronous exits while your
exit routine is running.

• Your task may use the ESTAE macro instruction many times while
processing. However, only the most recent exit routine specified
remains current. Any others are pushed down in a stack. If the current
exit routine is cancelled, then the next one in the stack percolates to
the top, becoming the current exit routine. Conversely, if you specify a
new exit routine, then any others in the stack move down one position
and the new one becomes the current exit routine.

• The current exit routine loses its status as the current exit routine
under one of the following conditions:

The module that defined it, via the ESTAE instruction, terminates.

Your task issues the ESTAE instruction, specifying zero as the
EXIT ADDRESS.

Your exit routine terminates abnormally.

Your exit routine allows termination of the task that defined it to ("-
continue. '\.. /

Your task attempts to transfer control using the XCTL instruction
when XCTL = YES is not specified.

In each case, the exit routine defined by the previous EST AE
instruction percolates to the top of the stack and assumes the role of
current exit routine.

• ESTAE instructions that cancel the current exit routine or overlay
parameters thereof must be issued by the same program that defined the
current exit routine in the first place.

• Your exit routine can diagnose the cause of the ABEND, and then retry
the task at some entry point. Or, it can simply allow GCS to perform
normal termination activities and shut the task down.

• Whenever a task ABENDs, GCS attempts to build a system diagnostic
work area (SDW A), as described in the entry titled "IHASDW A" on
page 104.

c
98 VM/SP GCS Command and Macro Reference

(-

(

(..

(~:

ESTAE

• If storage was available for the SDW A, then when your exit routine
receives control, the registers contain the following:

Register 0 A return code of 16(10), signifying that no I/O
processing was performed.

Register 1 Address of the SDW A.

Register 2-12 Unpredictable.

Register 13 Address of a register save area.

Register 14 A return address.

Register 15 Address of the current exit routine.

In this case, the SETRP macro instruction should be issued to notify the
GCS supervisor of the action that is to be taken. If necessary, review
the entry titled "SETRP" on page 110.

• If storage was not available for the SDW A, then when your exit routine
receives control, the registers contain the following:

Register 0 A return code of 12(C), signifying that no
SDW A was obtained.

Register 1 The completion code passed by the ABEND
macro instruction. If necessary, review the
entry titled "ABEND" on page 64.

Register 2 The address of the parameter list intended for
the exit routine. Or, if none was intended, zero.

Register 3-13 Unpredictable.

Register 14 Address of an SVC 3 instruction.

Register 15 Address of the current exit routine.

• If no SDW A was obtained, then your exit routine must set the registers
in the following manner just before returning control to the GCS
supervisor.

Register 0 The address of a recovery routine, if one is to
be scheduled.

Register 15 A return code. Specifically:

0 Termination should be continued. Any
previously defined exit routines will
percolate toward the top of the stack.

4 A recovery routine is to be scheduled. The
address of this routine can be found in
register O.

• An exit routine always runs in the same key as the task that defined it
and is enabled for the same interrupts. The same holds true for any
retry routine.

Chapter 3. Task Management Service Macros 99

ESTAE

Example

• If storage was available for an SDW A, then when the recovery routine
gains control, the registers contain the following:

Register 0 Zero, indicating that storage for the SDW A was
available.

Register 1 Address of the SDW A.

Register 2-13 Unpredictable.

Register 14 Address of an SVC 3 instruction.

Register 15 Address of the recovery routine.

• If storage was not available for an SDW A, then when the recovery
routine gains control, the registers contain the following:

Register 0 12(C), indicating that storage for the SDW A
was not available.

Register 1 The value of the P ARAM parameter that was
specified in the EST AE instruction associated
with the current exit routine.

Register 2 Zero.

Register 3-13 Unpredictable.

Register 14 Address of an SVC 3 instruction.

Register 15 Address of the recovery routine.

DEFEXT ESTAE (4),CT,PARAM=PLIST3

The task wants to define an exit routine that will gain control in case of an
ABEND. Register 4 contains the address of the exit routine in question.
The CT parameter indicates that this exit routine is new. The parameter
list at the address associated with the label PLIST3 will be passed to the
exit routine if it ever gains control. DEFEXT is the label on this
instruction.

100 VM/SP GCS Command and Macro Rererence

/'

(
\..

ESTAE

('- Return Codes and ABEND Codes

c'

When this macro completes processing, it passes to the caller a return code
in register 15.

Return Meaning
Code
00 Function completed successfully.

04 The OV parameter was specified along with a valid
EXIT ADDRESS. However, either there is no current
exit routine defined, or the EST AE instruction was not
issued by the same active program module that defined
the current exit routine.

OC An attempt was made to cancel the current exit
routine. However, either no current exit routine is
defined, or the EST AE instruction was not issued by
the same active program module that defined the
current exit routine.

14 The EST AE macro was unable to acquire the storage
necessary for it to process.

ABEND Meaning
Code

13C An invalid ESTAE request was made.

Chapter 3. Task Management Service Macros 101

ESTAE

The List Format

Added Parameter

This format of the macro instruction generates an in-line parameter list
based on the parameter values that you specify. However, this format
generates no executable code. Remember that you cannot specify any of
the parameters using register notation.

MF=L
Specifies the list format of this macro instruction.

102 VMjSP GCS Command and Macro Reference

(The Execute Format

[1abel] ESTAE

(
Added Parameter

c

ESTAE

[ex; t address] [, CT 1
.OV

[,PARAM=address] [, XCTL= {~~S} 1

[,ASYNCH= { :~S } 1
.MF=(E.address)

This format of the macro instruction generates code that executes the
function, using a parameter list whose address you specify.

MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the
macro.

You can add or modify values in this parameter list by specifying them
in this instruction.

Chapter 3. Task Management Service Macros 103

IHASDWA

IHASDWA

Get a Symbolic Name for Each Field in the System Diagnostic Work Area

Parameters

Often an application identifies an exit routine for each task that will
receive control if the task terminates abnormally. Review the entry titled
"ESTAE" on page 96 for an explanation of this.

When the ABEND macro instruction is issued for a specific task, a system
diagnostic work area (SDW A) is created. If necessary, review the entry
titled "ABEND" on page 64.

The SDW A is an area of storage that contains important information about
the task that has just terminated abnormally. (Study the format of the
SDWA provided below.) The exit routine uses this information to analyze
the failure.

Use the IHASDW A macro instruction to produce a template of the system
diagnostic work area that will make programming your exit routine much
easier. The IHASDWA macro instruction assigns symbolic names to each
field of the template. Each symbolic name can be used as a displacement in
an assembler language instruction in your exit routine to gain access to the
corresponding field in the SDW A.

The format of the IHASDW A macro instruction is:

DSECT
Indicates that you are about to specify whether the template produced
will be a DSECT (dummy control section).

NO

Indicates that the template will be created as a DSECT. If you
omit the DSECT parameter altogether, then the template is
produced as a DSECT. This is the default.

Indicates that the template will not be a DSECT.

104 VM/SP GCS Command and Macro Reference

)
j

c

(. Usage Notes

0 SDWAPARM
4 SDWACMPF

SDWAREQ
SDWASTEP

5 SDWACMPC
8 SDWACTL1

(
16(10)
24(18) SDWAGRSV
88(58) SDWANAME
92(5C)
96(60) SDWAEPA
100(64)
200(C8) SDWASPID
201(C9) SDWALNTH
204(CC)
232(E8) SDWAFLGS
232(E8)

(
234(EA) SDWAERRC

SDWAPERC
235(EB) SDWANRBE

236(EC)
240(FO) SDWARTYA
244(F4)
252(FC) SDWARCDE

253(FD)
663(297)

IHASDWA

• To use the DSECT you have created to find your way around the

•

SDW A, simply assign the address of the latter to a base register. Then,
use the symbolic name of a field in the DSECT as the displacement to
the corresponding field in the SDW A.

The template is created as part of the expansion of the IHASDW A
macro instruction as follows:

ESTAE parameter list address
Flags:
80 ---> Dump requested
40 ---> STEP parameter specified in ABEND instruction
Completion code4

BC mode PSW at entry to ABEND macro
Reserved
General registers 0-15 at entry to ABEND macro
Name of module that terminated abnormally
Reserved
Entry point address of module that terminated abnormally
Reserved
Number of the subpool containing SDWA
Length of SDWA (in bytes)
Reserved
Flags
Reserved
Flags:
10 ---> Recovery routine percolated
Flags:
40 ---> State block associated with this ESTAE exit
at time of error
Reserved
Address of recovery routine
Reserved
Return code from recovery routine:
o ---> Continue with termination
4 ---> Retry using recovery at address in SDWARTYA
Reserved
END SDWA

Return Codes and ABEND Codes

The IHASDW A macro generates no return codes and no abend codes.

4 This field contains the completion code specified in the ABEND macro
instruction. The SETRP macro instruction may modify this field via its
COMPCOD parameter.

Chapter 3. Task Management Service Macros 105

POST

POST

Signal a Task that the Event It is Waiting for Has Taken Place

Parameters

A task that has issued the WAIT macro instruction cannot continue until a
certain event has taken place. (Review the entry titled "WAIT" on
page 114.) It is the responsibility of the program effecting this event to
inform the waiting task that the event has occurred.

Each such event is associated with an event control block (ECB). This
ECB defines the event that is to occur and indicates to the waiting task
whether it has occurred.

Use the POST macro instruction to inform a task that the event it is
waiting for has taken place.

The format of the POST macro instruction is:

.··~ddit~;$st~ comp) ~~;i.Qn .•. CO~~J(. R~LATE,n=va lueJ. i

" "',;'---,.". - .' .. ,," .. ,. "

ecb address
Specifies the address of the event control block associated with the
event that has occurred.

/'
You can write this parameter as an RX-type address or as register (1) ~
through (12).

completion code
Specifies the code describing the manner in which the event in
question took place.

These codes have significance only to the programmers at your
installation (and to the programs they write). Each installation must
define the meaning of some or all of these completion codes and
document them.

A completion code may be any number from 0 to 230_1. If you omit this
parameter, a completion code of 0 is assumed, by default.

106 VM/SP GCS Command and Macro Reference

c

(

Usage Notes

(-

(

POST

RELATED
Specifies documentation data that you, are using to relate this macro
instruction to aWAIT macro instruction. The value you assign to
this parameter has nothing to do with the execution of the macro
itself. It merely relates one macro instruction (POST) to another
instruction that provides an opposite, though related, service (WAIT).

The format and content of this parameter are at your discretion, and
can be any valid coding values.

• It is the dual responsibility of the task issuing the WAIT instruction
and the task issuing the POST instruction to provide storage for each
event control block. Each ECB is a fullword on a fullword boundary.

• Bit 0 of the ECB is called the WAIT bit. If this bit is set to 1, then it
means that some task is waiting for the event associated with that ECB
to occur.

• Bit 1 of the ECB is called the POST bit. The POST macro sets the
POST bit of the appropriate ECB to 1. It then resets the WAIT bit to O.
These actions signal the waiting task that the event in question has
taken place.

• The remaining thirty bits of the ECB hold the completion code, once the
ECB is posted.

• Tasks are not always placed in the WAIT state after having issued the
WAIT instruction. Let us say that event Z takes place. The ECB
associated with that event is posted, yet no task is presently waiting for
the event. Moments later, a task issues the WAIT instruction,
specifying the ECB associated with event Z. Since the task is
immediately satisfied, there is no reason for it to go into the WAIT
state.

• It is possible for a program to perform a branch entry into the POST
macro code. That is, to branch directly to the entry point in the macro
code labelled CSIW AIPB. This, however, is seldom done.

Those programmers who find it necessary to perform such a branch
entry must be disabled, and running in supervisor state and key O.
Moreover, they must do the following before taking this branch.

1. Provide a save area in virtual storage that is 224 bytes long. In the
first word of this save area you must store the number 152. In the
third word of this save area you must store the sum of the address
of the save area plus 72.

Chapter 3. Task Management Service Macros 107

POST

2. Further, you must be certain that the registers contain the
following information:

Register 0 The COMPLETioN CODE in the low-order 30
bits.

Register 1 The address of the ECB in question.

Register 13 The address of the 224-byte save area.

Register 14 The return address within your program.

Register 15 The address of the entry point in the POST macro
to which you are branching.

3. Since the point to which you will branch will be in low storage, use
the FLS macro instruction to generate the FLS DSECT. Review the
entry titled "FLS" on page 506. Include the

USING FLS,O

instruction in your program, and branch to the address stored at the
address associated with the label FLSPOST.

• Be certain that none of your tasks changes any of the bits in an ECB
for which aWAIT instruction has been issued. Only after the POST bit
has been setto 1 and its contents analyzed is it safe to alter an ECB.

('
Examples !\.. /

DONE POST (3),657

A certain event has taken place. The ECB associated with this event can
be found at the address in register 3. The POST bit at this address is to be
set to 1, and the WAIT bit reset to o. A completion code of 657 is also
placed in the ECB. DONE is the label on this instruction.

POST (8)

This means the same as in the last example, with two exceptions. The
address of the ECB is in register 8, and the completion code is 0, by default.

108 VM/SP GCS Command and Macro Reference

c

POST

(' Return Codes and ABEND Codes

(

(

Note that these return codes are possible only when a branch entry to the
POST macro is involved.

Return Meaning
Code

04 The address of an ECB was invalid.

08 The state block that is waiting for the ECB to be
posted is not in the virtual machine's task block/state
block structure.

Note that these ABEND codes are possible only during a normal SVC call
from the POST macro.

ABEND Meaning
Code

102 The ECB in question is not addressable by the program
issuing the POST instruction.

202 The state block associated with the ECB to be posted is
not in the task block/state block structure of the task
waiting for the event.

Chapter 3. Task Management Service Macros 109

SETRP

SETRP

Set Certain Parameters in the System Diagnostic Work Area (SDWA)

[1 abeh SETRP

Often an application identifies an exit routine for each task that will
receive control if the task terminates abnormally. Review the entry titled
"EST AE" on page 96 for an explanation of this.

When the ABEND macro instruction is issued for a specific task, a system
diagnostic work area (SDW A) is created. If necessary, review the entry
titled "ABEND" on page 64. ('

The SDW A is an area of storage that contains important information about
the task that has just terminated abnormally. The exit routine uses this
information to analyze the failure. To appreciate the SETRP macro
instruction fully, you should also have a sound understanding of the
IHASDW A macro instruction. Review the entry titled "IHASDW A" on
page 104.

Use the SETRP macro instruction in an exit routine that you defined via /
the ESTAE instruction. The SETRP macro instruction will set (or reset) (./
certain parameters in the SDW A. Prominent among these is the RC
parameter. This will let GCS know whether your recovery routine should
get control and try to revive your task.

The format of the SETRP macro instruction is:

CWKAftEA= (reg)] [~REGS.= (reg + [. reg·2])J .

[• COMPCOD= .{ .n.·.Un'lb .. er ' .. ' .. [. j' .. } .]. (number. ~s§~) , ." Y EM
, . '" ,',','" ,

. • DUMP= ' •. E .' '. ·'.Re= . 0 " . .[" "'''1'['·' '.. . 1

. .. { !~~QBI·{4.RETADDR=address l .

c· .. ··, . ,

110 VM/SP GCS Command and Macro Reference

~.- -------~-------

(Parameters

(

(/

(

Ci

SETRP

WKAREA
Specifies the address of the system diagnostic work area that will be
passed to your recovery routine.

If you omit this parameter, then the address of the SDW A must be in
register 1. Otherwise, you can write this parameter as register (1)
through (12).

REGS
Specifies the single register (reg1) or range of registers (reg1,reg2)
belonging to the failed task, whose values are to be restored from the
save area pointed to by register 13.

To specify a range of registers, consider the general order in which
registers are saved: 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.
Substitute the first register number in the range for the reg1
parameter. And, substitute the last register in the range for the reg2
parameter. Obviously, a subset of this order is permissible, but be
mindful of the order when specifying a range.

Never specify register 13 as a register whose value is to be restored.

If you specify this parameter, then, when it is finished, your exit
routine will branch to the address in register 14, which you designated
via the ESTAE instruction. This will return control to the GCS
supervisor. If you omit this parameter, then no such branch will be
taken, making it your responsibility to code the return from your exit
routine.

You can write the register or range of registers as decimal digits.

COMPCOD
Specifies the completion code that will overlay the current completion
code in the SDW A.

This completion code must be a number from 0 to 4095. The meaning
of each completion code is governed by your application.

You can write this parameter as a symbol, as decimal digits, or as
register (2) through (12).

USER
Indicates that the completion code specified is defined by the user or
the application. Unless otherwise stated, this is the case, by default.

SYSTEM
Indicates that the completion code specified is defined by the GCS
supervisor.

Chapter 3. Task Management Service Macros 111

SETRP

DUMP

RC

Indicates whether you want a dump produced containing the contents
of the virtual machine in which the ABENDed task was running.

GCS will send the dump to the virtual reader belonging to the member
of your virtual machine group designated to receive dumps. If this
member is not authorized, then only non-fetch-protected and key 14
data will be included in the dump.

IGNORE

YES

NO

Indicates that you want this SETRP instruction not to change
any dump specification made by a previous SETRP or ABEND
instruction. That is, whatever any previous SETRP or ABEND
instruction said about producing or not producing a dump will
remain in force.

This is the case, by default.

Indicates that a dump of the virtual machine in which the
ABENDed task was running will be produced.

Indicates that no such dump will be produced.

Both the YES and NO parameters override any dump specification
made by a previous SETRP or ABEND instruction.

Specifies the return code that the exit routine you specified via the
EST AE instruction will pass to your recovery routine. This return
code describes what your recovery routine should do.

o

4

Indicates that GCS should continue to terminate the ABENDed
task. This is the case, by default.

Indicates that GCS should give control to your retry routine,
which will attempt to execute the ABENDed task again.

RETADDR
Specifies the address in the ABENDed task that will receive
control when the attempt to retry it is made.

This parameter is valid only if RC = 4 is also specified.

You can write this parameter as an RX-type address or as
register (2) through (12).

112 VMjSP GCS Command and Macro Reference

(
I

"-

- --_._---- ---- -- ------_ .. - ---

-- --- - -------- -----

SETRP

(- Example

(

(

RETRY SETRP WKAREA=(3),REGS=(14,12) ,COMPCOD=635,RC=4,RETADDR=(12)

The task requests that certain fields in the SDW A be set and that the failed
routine be tried again. The address of the SDW A is in register 3. Registers
14, 15, and 0 through 12, belonging to the failed routine, are to be restored.
A user completion code of 635 is to overlay the completion code field in the
SDW A. The RC = 4 parameter indicates that the failed routine, at the
address in register 12, should be tried again. RETRY is the label on this
instruction.

Return Codes and ABEND Codes

The SETRP macro generates no return codes and no abend codes.

Chapter 3. Task Management Service Macros 113

WAIT

WAIT

Wait for an Event to Take Place Before Continuing Processing

Parameters

Often a task reaches a point where it cannot continue until something else
happens. For example, your task may be unable to continue until it
receives input from a certain file.

Each such event is associated with an event control block (ECB). This
ECB defines the event that is to occur and indicates to your task whether it
has occurred.

Use the WAIT macro instruction to cause your task to wait for a certain
event to take place before your task resumes processing.

The format of the WAIT macro instruction is:

~i"l'E~t~t~t~~~~;~~~·t:~~~~~~~2~~i.·
,._". 'ow;,

number of events

ECB

Specifies the number of events that must take place before your task
can resume.

You are limited to specifying either zero events or one event, written (
as the numerals 0 or 1. ~,

If you omit this parameter, one event is assumed, by default. If you
write 0, then the macro instruction is treated as a NOP (NO
OPERATION) assembler instruction.

Specifies the address of a single ECB associated with the event for
which your task must wait.

You can write this parameter as an RX-type address or as register (1)
through (12).

ECBLIST
Specifies the address of an area in your virtual storage that contains a
string of addresses. Each address in the string points to one ECB, and
there may be one or more addresses in this string. C' \,

,

114 VM/SP GCS Command and Macro Reference

Usage Notes

(

c

WAIT

This list of ECB addresses signifies a list of events. If one of these
events occurs, then your waiting task will be able to continue. This
string must begin on a fullword boundary, as must each address in the
string. The high-order bit of the last address in the list must be set to
1, indicating the end of the list.

You can write the address of this string as an RX-type address or as
register (1) through (12).

RELATED
Specifies documentation data that you are using to relate this macro
instruction to a POST macro instruction.

The value you assign to this parameter has nothing to do with the
execution of the macro itself. It merely relates one macro instruction
(WAIT) to a macro instruction that provides an opposite, though
related, service (POST).

The format and contents of this parameter are at your discretion and
can be any valid coding values.

• It is the responsibility of the task issuing the WArT instruction to
provide storage for each event control block. Each ECB is a fullword
on a fullword boundary.

•

Bit 0 of the ECB is called the WAIT bit. If this bit is set to 1, then it
means that some task is waiting for the event associated with that ECB
to occur.

Bit 1 of the ECB is called the POST bit. If this bit is set to 1, then it
means the event associated with the ECB has occurred. The WAIT bit
is also reset to O. (These actions are performed by the program effecting
the event your task is waiting for. This other program issues the POST
macro instruction to alert your program that the event has taken place.
This fact is communicated to your task through this POST bit. Review
the entry titled "POST" on page 106.)

If the program issuing the related POST instruction has chosen to pass
it, then the remaining thirty bits of the ECB will contain a completion
code. This code will describe the manner in which the event your
program is waiting for took place.

This completion code only has meaning to the applications involved

• You know that the event in question has occurred when your task
regains control.

• Implicit in using the ECBLIST parameter is that you do not care which
of several events occurs. The occurrence of anyone of the events
associated with the ECBs in the list will allow your task to continue.

Chapter 3. Task Management Service Macros 115

WAIT

Examples

• Tasks are not always placed in the WAIT state after having issued the
WAIT instruction. Let us say that event Z takes place. The ECB
associated with that event is posted, yet no task is presently waiting for
the event. Moments later, a task issues the WAIT instruction
specifying the ECB associated with event Z. The task is immediately
satisfied.

• Be certain to reset to zero each bit of the ECBs in question before you
issue the WAIT instruction. Likewise, once your program regains
control, be certain to reset these bits after the ECB is analyzed. If you
do not, and the event occurs again, your program will not know it.

• No task should change any of the bits in any ECB for which a WAIT
instruction has been issued. Only after the POST bit has been set to 1
and its contents analyzed is it safe to alter an ECB.

HOLDIT WAIT 1,ECB=(2)

The task will wait for one event to occur. That event is associated with an
ECB whose address is in register 2. The task will regain control when the
POST bit is set to 1. HOLDIT is the label on this instruction.

WAIT ECBLIST=(4)

The task will wait for one of several events to occur. The ECBs associated
with each of these events can be found in a list whose starting address is in
register 4.

Return Codes and ABEND Codes

The WAIT macro instruction generates no return codes.

ABEND Meaning
Code

101 The problem program specified a number of events
other than 0 or 1.

201 The macro expansion contained an invalid ECB
address or the end of the ECBLIST could not be found.

301 The ECB's WAIT bit is already set to 1.

116 VMjSP GCS Command and Macro Reference

c

(

BLDL .. 118
CALL .. 122
DELETE .. 127
IDENTIFY .. 130
LINK .. 133
LOAD .. 140
RETURN ... 144
SAVE .. 146
SYNCH ... 149
XCTL .. 154

(

c···· ..

, .
I

Chapter 4. Program Management Service Macros 117

BLDL

BLDL

Build a Directory Entry List to Aid in Invoking One or More Load Library Members

Parameters

Frequently the programs you write to run under GCS need to invoke other
programs. Some of these programs may be modules resident in load
libraries stored on disks. To bring a member of a load library into virtual
storage and execute it, GCS needs certain information about it. It needs to
know the module's name, the name of the load library of which the module
is a member, the module's address on the disk, relocation information,and
so forth.

Your program can issue the BLDL macro instruction to build a directory
entry list for each load library member expected to be invoked. The needed
information is extracted from the directory of the load library containing
the module and placed in the directory entry list.

If you do not issue the BLDL macro instruction, then GCS will do it for you
whenever you load a new module. This is satisfactory if you plan to load,
use, and delete the module only once. However, if you plan to use the same
module several times, it is more efficient for you to issue the BLDL
instruction once. That way, the module can be loaded once and executed
several times using the same directory entry list.

The format of the BLDL macro instruction is:

o

' '." , , \

The numeral zero, written exactly as shown.

It indicates that the BLDL macro is to search for the information it
needs only in the directories of the load libraries identified previously
in your GLOBAL LOADLIB command.

For more information on the GLOBAL command see "GCS
Commands" on page 20.

118 VM/SP GCS Command and Macro Reference

i

'" j

i
I

/

~-

(

(' -

BLDL

list address
Specifies the address of the directory entry list.

The skeleton for this list (and certain basic information for it) must be
provided by your program. These matters are discussed below.

You can write this address as an RX-type address, as register (0), or as
register (2) through (12).

The Directory Entry List

List Information

As mentioned before, your program must provide the storage necessary for
the directory entry list. It must also provide certain information about the
list, and the names of the modules the list is to describe. The BLDL macro
then fills in the blanks with information necessary for the invocation of the
modules.

The basic format of a directory entry list is:

LIST LIST LIST LIST LIST
INFORMATION ENTRY ENTRY ENTRY ENTRY

#1 #2 #3 #64K-1

Figure 9. Directory Entry List Basic Format

The list information for the directory entry list is contained in the first two
fields, as illustrated below. Note that the numbers in parentheses indicate
the number of bytes in each field.

I FF (2) I LL (2)

These fields are described as follows:

FF

LL

Indicates the number of separate list entries in the directory entry list.
It must be a binary number corresponding to the number of modules
your list will describe.

Indicates the length of each separate list entry in the directory entry
list, in bytes. It must be a binary number of at least 58, and it must be
even.

Chapter 4. Program Management Service Macros 119

BLDL

The List Entry

As illustrated in Figure 9 on page 119, the directory entry list comprises
one or more list entries. Each list entry corresponds to one module from a
load library that you intend to invoke. A single list entry is composed of
the following fields. The number of bytes are in parentheses.

I NAME (8) I TTR (3) I K (1) I Z (1) I C (1) I UD (at least 44)

You need only supply one field in the list entry yourself:

NAME
The name of the module (or its alias) that the particular list entry will
describe.

This name must start in the first byte of this field. If the name is
fewer than eight bytes long, it must be padded on the right with
blanks.

The list information and the name of each module is all the information
your program has to supply. The remaining fields within each list entry are
filled in by the BLDL macro. The significance of these fields is as follows:

TTR

K

z

c

UD

The relative position where the module may be found in the load
library.

Identifies the load library of which the program is a member. It is a
number specifying the relative position of the load library's name in
your GLOBAL LOADLIB command.

The number assigned to the first or only load library is zero.

A byte of binary zeroes.

Indicates whether the information your program put in the NAME
field is the member program's name or its alias. It also indicates the
length of the user data field in halfwords.

This field is one byte long. If bit 0 is reset to 0, it means you are using
the member program's name. If bit 0 is set to 1, it means you are
using its alias. Bits 1 and 2 are always reset to o. Bits 3 through 7
contain the number of halfwords in the UD (user data) field.

This field contains the user data found in th~ load library associated
with the member program. The user data information is used by the
loader to relocate the module in storage.

120 VM/SP GCS Command and Macro Reference

/.~' (,

\"'_J

/

\ j

c

(

(

Usage Notes

BLDL

This user data field is always at least 22 halfwords long. By
increasing the number in the LL field, you increase the size of the UD
field. This allows room for more user data, if necessary.

• The only load libraries that the BLDL macro will consider are those
you specify in the GLOBAL LOADLIB command.

• The BLDL macro will allow no more than 65,535 (64K-l) separate list
entries in any single directory entry list, and no fewer than one.

• If there is more than one list entry in the directory entry list, then it is
wise to arrange them alphamerically according to the NAME field.
However, this is not a requirement.

• Your program is responsible for providing the storage space for the
directory entry list. It must also supply the list information and insert
the name of each module in its respective list entry.

• Many programmers find it convenient to use the BLDL macro
instruction simply to find out whether a program is really a member of
a specific load library. Check the return code and reason code
generated by the macro to find this out.

Return Codes and ABEND Codes

When this macro completes processing, it passes to the caller a return code
in the low-order byte of register 15. The reason code is returned to the
caller in the low-order byte of register o.

Return Reason Meaning
Code Code

00 00 Function successfully completed.

04 00 One or more modules named in the directory
entry list could not be found. The R byte (byte
11) of its TTR field was reset to O.

08 00 A permanent I/O error was found when GCS
attempted to search a load library directory.

08 04 Insufficient virtual storage space was available
for file management.

Chapter 4. Program Management Service Macros 121

CALL

CALL

Pass Control to an Entry Point in this or Another Control Section

Parameters

Use the CALL macro instruction to pass control to an entry point in the
same control section or in some other control section. Implicit in the use of
this macro instruction is the fact that ultimately you expect control to
return to the point from which it was passed.

The CALL macro instruction is available in standard, list, and execute
formats.

The standard format of the CALL macro instruction is:

~t(Hn;'t n8mf!!I. (pa~amfi!teraddres ses}(~VLJJ[~jO=nlJmberJ
: ::~ ~ " ~

entry point name
Specifies the name of the entry point that is to receive control.

Since the macro uses this name as a V-type address constant, the
linkage editor and loader will have resolved this name into a virtual
address.

If you specify a symbol for the entry point name, then the linkage
editor will include the control section containing the entry point in
question within the load module containing the CALL instruction.

You can write this parameter as a symbol or as register (15).

parameter addresses
Specifies a list of one or more parameter addresses that you want to
pass to the program at the specified entry point.

The CALL macro gathers these addresses into a parameter list in the
order that you list them in the instruction. The parameter list
comprises one or more fullwords, each on a fullword boundary and
each containing the address of one parameter. The specified entry
point receives the address of this parameter list in register 1.

Note that each parameter address in the instruction must be separated
by a comma, with the whole list surrounded by parentheses.

122 VM/SP GCS Command and Macro Reference

()

c_ /

c

(

Usage Notes

(

(

VL

ID

CALL

You can write these addresses as assembler program labels or as
registers (2) through (12).

Indicates that the program receiving control expects a variable
number of parameters to be passed to it. To omit this parameter is to
say that the program receiving control expects a set number of
parameters.

This parameter sets the high-order bit of the last address parameter in
the list to 1, thereby indicating the end of the list.

A debugging aid for use when you issue several CALL macro
instructions.

You can assign this parameter a unique, mnemonic value that will be
inserted in any dump you might request. This allows you to associate
an area within the dump with a specific CALL instruction.

You can write this parameter as any number or symbol.

• If you specify the entry point name as register 15, then the load module
that contains the entry point must be in virtual storage. Moreover,
register 15 must contain the address of the entry point.

• Use of the CALL macro instruction implies that the issuing program
ultimately expects to regain control.

• It is the responsibility of the program issuing the CALL instruction to
provide storage where the values in its registers may be saved while the
other program has control. The address of this save area must be
placed in register 13. Also, the called program must save the values in
these registers and, later, restore them.

• The supervisor is not involved in passing control to the entry point.
Therefore, it is your task's responsibility to maintain the reusability of
the program at that entry point. That is, if you modify the program in
any way, then you must restore it to its original condition after you
have finished. Moreover, your task must en~ure that only one user has
control of the program at any given time.

Chapter 4. Program Management Service Macros 123

CALL

Example

CALL (15),(PARAM1,PARAM2),VL

The program requests that control be passed to the entry point whose
address is in register 15. Since register 15 is specified, GCS assumes that
the entry point is in virtual storage. The program being called is to receive
two parameter addresses arranged in a parameter list. The addresses of
these parameters are associated with the labels P ARAMI and P ARAM2.
Since the VL parameter is specified, the program being called expects a
variable number of parameters be passed to it. In this case, two.

Return Codes and ABEND Codes

The CALL macro generates no return codes and no ABEND codes.

124 VM/SP GCS Command and Macro Reference

C· ,
"

(" The List Format

[1 abe 1] CALL

Added Parameter

(

(

(

CALL

[(parameter addresses)[.VLJ.JMF=L

This format of the macro instruction generates an in-line parameter list,
based on the parameter values that you specify. However, this format
generates no executable code. Remember that you cannot specify any of
the parameters using register notation. Also, note that only the parameters
listed above are valid in the list format of this instruction.

MF=L
Specifies the list format of this macro instruction.

Chapter 4. Program Management Service Macros 125

CALL

The Execute Format

Added Parameter

This format of the macro instruction generates code that executes the
function, using a parameter list whose address you specify.

MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the ,/
macro.

You can add or modify values in this parameter list by specifying them
in this instruction.

(\
\, ~j

o
126 VMjSP GCS Command and Macro Reference

(

(

c!

DELETE

DELETE

Relinquish Control of a Load Module

[label] DELETE

Parameters

Once a task is finished with a load module, that module should be released
from the task's control. Generally this will free the storage space that the
load module occupies.

In effect, the DELETE macro instruction cancels the effect of the LOAD
macro instruction. (If necessary, review the entry titled "LOAD" on
page 140.) Use the DELETE macro instruction to release your task's
control over a load module and, if it is no longer needed, to remove it from
virtual storage.

The format of the DELETE macro instruction is:

EPLOC=address [.RELATED=valueJ { EP=symbol 1
DE:address .

EP
Specifies the name of the entry point contained in the load module.

This is the module you no longer wish to control.

You can write this parameter as any valid symbol.

EPLOC
Specifies the address in your program where you have stored the name
of the load module's entry point.

This name may be up to eight bytes long. If it is less than eight bytes
long, then it must be padded on the right with blanks.

You can write this parameter as an RX-type address, as register (0), or
as register (2) through (12).

Chapter 4. Program Management Service Macros 127

DELETE

Usage Notes

Example

DE
Specifies the address of the NAME FIELD within the directory list
entry associated with the entry point in question.

This is the same list entry you placed in the directory using the BLDL
macro instruction. If necessary, review the entry titled "BLDL" on
page 118.

You can write this parameter as an RX-type address, as register (0), or
as register (2) through (12).

RELATED
Specifies documentation data that you are using to relate this macro
instruction to a LOAD macro instruction.

The value you assign to this parameter has nothing to do with the
execution of the macro itself. It merely relates one macro instruction
(DELETE) to a macro instruction that provides an opposite, though
related, service (LOAD).

The format and contents of this parameter are at your discretion, and
can be any valid coding value.

• The DELETE macro frees the storage occupied by the load module only
if it resides in private storage and if the module is no longer needed.

• The task that issues the DELETE instruction to release a given load
module must be the same task that issued the LOAD instruction for it
in the first place.

LOADIT LOAD EP=XYZ,RELATED=DELETEIT

DELETETIT DELETE EP=XYZ,RELATED=LOADIT

The task relinquishes control over the load module containing the entry
point XYZ. This DELETE instruction is cross-referenced with a related
LOAD instruction by use of the RELATED parameters in each.

128 VM/SP GCS Command and Macro Reference

DELETE

(.. Return Codes and ABEND Codes

(

(/

When this macro completes processing, it passes to the caller a return code
in register 15.

Return Meaning
Code

00 Function successfully completed.

04 Either your task did not issue a corresponding LOAD
instruction, or the load module has already been
deleted.

ABEND Meaning
Code

206 Invalid parameter list.

Chapter 4. Program Management Service Macros 129

IDENTIFY

IDENTIFY

Define an Entry Point Within a Load Module

Parameters

At times you may find it necessary to add an entry point to a load module
where none had previously existed.

Use the IDENTIFY macro instruction to define an entry point in a load
module.

The format of the IDENTIFY macro instruction is:

EP
Specifies the name by which you want the entry point to be known. It
is this name that you will use in your program to refer to the entry
point.

This name need not correspond to any name or symbol within the load
module, though it can if you wish. It must not, however, correspond
to any name, alias, or entry point name known to the system.

This name can be up to eight bytes long.

EPLOC
Specifies the address where you have stored the name of the entry
point in your program.

This name can be up to eight bytes long. If it is less than eight bytes
long, it must be padded on the right with blanks.

You can write this parameter as an RX-type address, as register (0), or
as register (2) through (12).

130 VM/SP GCS Command and Macro Reference

- ---- -------

/

,/

(

Usage Notes

(

(
Example

CI

IDENTIFY

ENTRY
Specifies the address within the load module of the entry point you
wish to identify.

You can write this parameter as an RX-type address or as register (1)
through (12).

• The copy of the load module containing the entry point in question
must be one of the following:

•

A copy of the load module for which you previously issued a LOAD
macro instruction. If necessary, review the entry titled "LOAD" on
page 140.

The last load module given control via the OSRUN command, or the
ATTACH, LINK, or XCTL macro instruction. For more information
on OS RUN see "ATTACH" on page 67, "LINK" on page 133,
"XCTL" on page 154, or "GCS Commands" on page 20.

The IDENTIFY instruction cannot be issued by any asynchronous exit
routine.

• You cannot use the IDENTIFY instruction to define an entry point that
has been declared via the CONTENTS instruction. If necessary, review
the entry titled "CONTENTS" on page 496.

• All Program Management Macros consider the code at entry points that
are defined via the IDENTIFY instruction to be reentrant. You must be
certain that this code is indeed reentrant, otherwise unpredictable
results are possible.

NAMEIT IDENTIFY EP=ABC3,ENTRY=(6)

Define a new entry point within a certain load module. The name of this
entry point will be ABC3. The address of the entry point within the load
module can be found in register 6. NAMEIT is the label on this
instruction.

Chapter 4. Program Management Service Macros 131

IDENTIFY

Return Codes and ABEND Codes

When this macro completes processing, it passes to the caller a return code
in register 15.

Return Meaning
Code

00 Function successfully completed.

04 The non-main entry point name you specified is
already assigned to the address you specified.

08 The entry point name you specified duplicates the
name of a load module currently in virtual storage.
The entry point name was not assigned to the address
you specified.

OC The entry point address you specified is not within an
eligible load module. The entry point name was not
assigned to the address you specified.

10 The IDENTIFY instruction was issued by an
asynchronous exit routine. The entry name was not
assigned to the address you specified.

14 An IDENTIFY instruction was previously issued
defining the same non-main entry point name but at a
different address. The entry point name specified in
the present IDENTIFY instruction was not assigned to
the address specified.

18 The parameter list was invalid. The entry point name
was not assigned to the address you specified.

28 The address specified by the EPLOC parameter is
fetch-protected and the calling program is in a
different key. Therefore, the calling program cannot
access the storage. So, the entry point name was not
assigned to the address that you specified.

132 VM/SP GCS Command and Macro Reference

o

/

/

c

(

(

(/

LINK

LINK

Pass Control to a Program, Expecting to Regain Control Later

[l abel] LINK

.

Parameters

GCS provides several techniques for passing control from one program to
another. Use the LINK macro instruction to pass control to a certain entry
point in another load module with the intent that control will eventually
return to the program issuing the instruction.

The LINK macro instruction is available in standard, list, and execute
formats.

The standard format of the LINK macro instruction is:

{ EP=symbo I } EPLOC=addr· [,ID=numberJ[,PARAM=(addresses) [.VL=l]J
DE .. addr .

EP

.

Specifies the name of the entry point within the program that is to
receive control.

The entry point name can be anyone of the following:

• The name of the entry point as previously defined via the
IDENTIFY macro instruction. If necessary, review the entry titled
"IDENTIFY" on page 130.

• The name of the entry point declared in a shared segment
directory via the CONTENTS macro instruction. If necessary,
review the entry titled "CONTENTS" on page 496.

• A member name (or alias) in the directory of a load library.

When looking for the entry point name that you specify, GCS searches
the following items in the following order:

1. Your private storage, since the module associated with the entry
point name may already be loaded.

2. Any shared segment directories that may have been created via
the CONTENTS macro instruction.

Chapter 4. Program Management Service Macros 133

LINK

3. The directories of any load libraries that may have been defined
for your virtual machine via the GLOBAL LOADLIB command.
For more information on the GLOBAL command see "GCS
Commands" on page 20.

You must write this parameter as a symbol.

EPLOC

DE

ID

Specifies the address containing the name of the entry point of the
program that is to receive control.

The name, as stored, can be up to eight bytes long. If it is fewer than
eight bytes long, the name must be padded on the right with blanks.

You can write this parameter as an assembler program label or as
register (2) through (12).

Specifies the address of the name field within the list entry for the
entry point in question.

You must previously have created this list entry for the entry point
using the BLDL macro instruction. (If necessary, review the entry
titled "BLDL" on page 118.)

You can write this parameter as an assembler program label or as
register (2) through (12).

Specifies a number that GCS is to put in bytes 3 and 4 of the last
instruction in the LINK macro expansion.

The last instruction in the LINK macro is a NOP instruction. GCS
will place the number that you specify in this parameter into this NOP
instruction. You can then use it as a debugging tool. Choose a
number from 0 to 4095 or a symbol.

You can write this parameter as decimal digits or as an assembler
program label.

PARAM
Specifies one or more parameter addresses that GCS will pass to the
program being called.

GCS builds a parameter list containing these addresses in the order in
which you specify them. Then, the system passes the address of this
parameter list to the program being called in register 1. If you omit
this parameter, then register 1 remains unchanged.

You can write these parameters as assembler program labels or as
registers (2) through (12).

134 VMjSP GCS Command and Macro Reference

(
i
\. j

(

Usage Notes

(

(

LINK

VL=l

•

Indicates that the program being called expects a variable number of
parameters to be passed to it.

You must write this parameter exactly as shown, and you can use it
only with the PARAM parameter. To omit the VL=1 parameter is to
say that the program being called expects a set number of parameters.

If you issue the LINK instruction and the load module in question is
not resident in virtual storage, then GCS will load the module for you.
Then, after the module is run, GCS removes it from storage. This is
satisfactory if you intend to pass control to the module only once.

However, loading a module into virtual storage involves a good deal of
overhead processing. If you intend to pass control to the module more
than once, it is far more efficient to issue the LOAD instruction
yourself just one time. This avoids all the overhead processing involved
in having GCS repeatedly load the module for you!

• The relationship between the program issuing the LINK instruction and
the program receiving control is the same as that established by a BAL
assembler language instruction. Once the program being called has
completed execution, control is returned to the program that issued the
LINK instruction.

• It is the responsibility of the program issuing the LINK instruction to
provide the program receiving control with the address of an area
wherein the former's registers will be saved. This address must be
placed in register 13 by the program issuing the LINK instruction.

• Likewise, it is the responsibility of the program being called to place
the value of the other program's registers in this save area once it gets
control. And, just before the called program returns control, the values
must be restored to registers 0 through 14. A return code can be placed
in register 15; if not, then register 15 must be restored.

• You can use the LINK instruction to link to a serially reusable
program. If the program is being used by someone else, then you will
placed in the WAIT state until the other user is finished.

• If the program being called is reentrant, then it is loaded into key 0
storage. This ensures that it is not accidentally modified or tampered
with.

Chapter 4. Program Management Service Macros 135

LINK

Examples

LINK EP=PROGRAMB,PARAM=(ADDRA,ADDRB,ADDRC)

Pass control to an entry point named PROGRAMB. PROGRAMB expects
exactly three parameters be passed to it. These parameters may be found at
addresses ADDRA, ADDRB, and ADDRC, respectively.

LINKIT LINK EPLOC=PROGADDR,PARAM=«2),(3)),VL=1

Pass control to an entry point whose name can be found at the address
corresponding to the label PROGADDR. This program expects a variable
number of parameters be passed to it, in this case two. The address of the
first parameter can be found in register 2, and that of the the second in
register 3. LINKIT is the label on this instruction.

LINK DE=BLDLNAM,ID=6

Pass control to a certain entry point. The system is to look for the name of
the entry point in the BLDL list entry for that entry point. The name field
of the list entry corresponds to the address of the label BLDLNAM. As an
aid to debugging, the LINK macro is to place the value 6 in bytes three and
four of the final instruction that it generates.

Input to the Program Receiving Control

Register 0 Unpredictable. May be used by the GCS
supervisor.

Register Unchanged. Register 1 will contain the address
1-13 of the parameter list, if it was specified.

Register 14 The address to which control is to return once
the called program completes execution.

Register 15 The address of the entry point in the program
being called.

136 VMjSP GCS Command and Macro Reference

C)

/"
/

c

_ .. ---_ .. _- -~------ ------- ---

LINK

(- Return Codes and ABEND Codes

ABEND Reason Meaning
Code Code

106 OB An error was found when the supervisor
attempted to load the requested module into
virtual storage.

106 OC Insufficient virtual storage was available to
load the requested module.

206 Invalid parameter list.

406 The module is marked ONLY LOADABLE.

706 The linkage editor marked the module NOT
EXECUTABLE.

806 04 Either the program could not be found or no
load libraries were defined by the GLOBAL
command. ._-_._--,

806 08 An unrecoverable I/O error occurred when
the BLDL control program attempted to
search the directory. --

806 10 When GCS attempted to close the load
library used by the BLDL macro, it found
that the load library had never been opened .

. . '--'--'._"-
906 The maximum use-count or the maximum

load-count of the module has been reached .
.. _ ... _---_._"._-----

A06 Your task is already waiting for this serially
reusable module. ----------,_ _ .. -

(

C""
, .

Chapter 4. Program Management Service Macros 137

LINK

The List Format

Added Parameter

This format of the macro instruction generates an in-line parameter list,
based on the parameter values that you specify. However, this format
generates no executable code. Remember that you cannot specify any of
the parameters using register notation. Also, note that only the parameters
listed above are valid in the list format of this instruction.

SF=L
Specifies the list format of this macro instruction.

138 VM/SP GCS Command and Macro Reference

/
(

".

o

(~ . The Execute Format

[1 abe 1] LINK

(-
Added Parameter

(

(/

c

LINK

EPLOC=addr [.ID=numberJ [EP=SymbOl 1 {,SF=(E.addr)[,optionsl }
.MF=(E.address)

DE=addr .SF=(E.addr).MF=(E=address)

options:
PARAM~(addrs)[.VL=lJ

This format of the macro instruction generates code that executes the
function, using a parameter list whose address you specify.

Note that only the parameters listed above are valid in the execute format
of this instruction.

SF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the
macro. This is the parameter list that was generated via the list
format of this instruction.

You can add or modify values in this parameter list by specifying them
in this instruction.

MF = (E,address)
ADDRESS specifies the address of the remote parameter list to be used
by the called program.

You can add or modify values in this parameter list by specifying them
in this instruction.

Chapter 4. Program Management Service Macros 139

. LOAD

LOAD

Bring a Load Module that You Intend to Invoke More than Once into Virtual Storage

Parameters

Use the LOAD macro instruction to bring a load module, containing a
specified entry point, into virtual storage. This makes the code at that
entry point available for your use.

The format of the LOAD macro instruction is:

EP
Specifies the name of the entry point contained in the load module to
be brought into storage.

The entry point name can be anyone of the following:

• The name of the entry point as previously defined via the
IDENTIFY macro instruction. If necessary, review the entry titled
"IDENTIFY" on page 130.

• The name of the entry point declared in a shared segment
directory via the CONTENTS macro instruction. If necessary,
review the entry titled "CONTENTS" on page 496.

• A member name (or alias) in the directory of a load library.

When looking for the entry point name that you specify, GCS searches
the following items in the following order:

1. Your private storage, since the module associated with the entry
point name may already be loaded.

2. Any shared segment directories that may have been created via
the CONTENTS macro instruction.

3. The directories of any load libraries that may have been defined
for your virtual machine via the GLOBAL LOADLIB command.

140 VM/SP GCS Command and Macro Reference

C·~, . I

(

(

(

(':

i -'

LOAD

For more information on the GLOBAL command, see "GCS
Commands" on page 20.

You must write this parameter as a symbol.

EPLOC

DE

Specifies the address in your program where you have stored the name
of the entry point.

This name may be up to eight bytes long. If it is fewer than eight
bytes long, it must be padded on the right with blanks. Again, the
entry point name can refer to one of the same three things as listed
under the EP parameter.

You can write this parameter as an RX-type address, as register (0), or
as register (2) through (12).

Specifies the address of the NAME field within the directory list entry
associated with the entry point in question.

GCS assumes that you have created this list entry within the directory
using the BLDL macro instruction. Review the entry titled "BLDL"
on page 118. When using the BLDL macro instruction for this
particular purpose, be certain to specify at least 60 bytes as the length
of the list entry for your entry point.

You can write this parameter as an RX-type address, as register (0), or
as register (2) through (12).

RELATED
Specifies documentation data that you are using to relate this macro
instruction to a DELETE macro instruction.

The value you assign to this parameter has nothing to do with the
execution of the macro itself. It merely relates one macro instruction
(LOAD) to a macro instruction that provides an opposite, though
related, service (DELETE).

The format and contents of this parameter are at your discretion and
can be any valid coding value.

Chapter 4. Program Management Service Macros 141

LOAD

Usage Notes

•

•

•

If you specify the DE parameter, then GCS assumes that a list entry has
been created for the entry point in the directory entry list using the
BLDL macro.

The LOAD macro does not pass control to the entry point in question.
Rather, the address of the entry point is returned to your program in
register O.

The entire load module containing the specified entry point is brought
into virtual storage. This happens, however, only if there is no other
usable copy of the module available. It remains in your private storage
until no outstanding requests for the module remain.

• For each LOAD instruction that you issue, you must also issue a r'

Example

•

corresponding DELETE instruction. Review the entry titled "DELETE"
on page 127.

If the program being called is reentrant, then it is loaded into key 0
storage. This ensures that it is not accidentally modified or tampered
with.

LOADIT LOAD EP=XYZ,RELATED=DLEETIT

DLEETIT DELETE EP=XYZ,RELATED=LOADIT

Bring the load module containing the entry point XYZ into virtual storage.
This LOAD instruction is cross-referenced with a related DELETE macro
instruction by use of the RELATED parameters in each. "

Return Codes and ABEND Codes

The program issuing the LOAD macro instruction receives the following
information in its registers.

Register 0 The address of the entry point specified in the
LOAD instruction.

Register 1 If the load module is in private storage, then this
is the length of the load module in doublewords.
If the load module is in a shared segment, then
this length is set to zero.

Register 15 A return code of zero indicating a successful load.

142 VMjSP GCS Command and Macro Reference

, C ..

(

(

LOAD

The LOAD macro generates the following ABEND codes. If applicable, a
reason code is returned in register 15.

ABEND Reason Meaning
Code Code

106 OB An error was found when the supervisor
attempted to load the requested module.

106 OC Insufficient virtual storage was available to
load the requested module.

206 Invalid parameter list.

706 The linkage editor marked the requested load
module as NOT EXECUTABLE.

806 04 Either the program could not be found or no
load libraries were defined by the GLOBAL
LOADLIB command.

806 08 An unrecoverable I/O error occurred when
the GCS supervisor attempted to search the
directory.

806 10 When GCS attempted to close the load
library used by the BLDL macro, it found
that the load library had never been opened.

906 The LOAD COUNT and/or USE COUNT for
the load module have reached the maximum
of 32767.

Chapter 4. Program Management Service Macros 143

RETURN

RETURN

Return Control to a Program

Parameters

Use the RETURN macro instruction to return control from one program to
the program that called it.

The RETURN macro instruction can also restore the contents of certain
registers belonging to the program to which control is returning. It can
also supply the program with a return code and flag the save area where
the values of its registers were saved.

The format of the RETURN macro instruction is:

(regl) or
(regl,reg2)

T

Specifies the single register, (regl), or the range of registers,
(regl,reg2), whose values are to be restored from the save area.

The RETURN instruction uses the same conventions for restoring
registers that the SAVE macro instruction uses. They are restored in
the following general order: 14, 15,0, 1,2,3,4,5,6, 7, 8, 9, 10, 11, 12.

To specify a range of registers to be restored, substitute the first
register in the range for the regl parameter. Then, substitute the last
register in the range for the reg2 parameter. Obviously, a subset of
the above general order is permissible but be mindful of the general
order when specifying a range of registers.

Never specify register 13 as a register whose value is to be restored.

If you omit this parameter, no registers are restored.

Indicates that you want the save area, from which the register values
are restored, to be flagged.

The flag indicates that the program issuing the RETURN instruction
(which saved the values in the first place) has returned control to the
program that called it.

144 VM/SP GCS Command and Macro Reference

(

(

(

(

RETURN
.. '\

Usage Note

Example

RC

The flag itself is a byte of all ones placed in the high-order byte of
word 4 in the save area.

Specifies the return code to be passed to the program to which control
is being returned.

The value of this return code has meaning only to the applications
involved.

You can write this parameter as decimal digits, as an EQU symbol, or
as register (15). If you write it as one or more digits or as a symbol,
then the return code is right-justified in register 15 just before control
is returned. If you write it as register (15), then the macro assumes
that the program returning control has placed the return code in
register 15. In this case, register 15 will be left alone during the
restoration of the other registers.

If you omit this parameter, the contents of register 15 will be
determined by the regl or regl,reg2 parameter.

• If registers are to be restored or if the save area is to be flagged, then
register 13 must contain the address of the save area.

GOBACK RETURN (14,7),T,RC=40

The program requests that control be returned to the program that called it.
Registers 14, 15, and registers 0 through 7 are to be restored. A flag byte is
to be placed in the save area, and a return code of 40 is to be placed in
register J 5. Note that the return code replaces the value that was just
restored to register 15. GOBACK. is the label on this instruction.

Return Codes and ABEND Codes

The RETURN macro generates no return codes and no ABEND codp,s.

Chapter 4. Program Management Service Macros 145

SAVE

SAVE

Save the Contents of the Registers

Parameters

By convention, it is the responsibility of any program called by another to
save the values in the registers when it receives control. Likewise, it is the
responsibility of the calling program to provide storage wherein the values
in its registers can be saved. The calling program must also place the
address of this save area in register 13 before 'it calls the other program.

Use the SAVE macro instruction in a called program to save the values of
certain registers belonging to the program that called it.

Note that the SAVE macro uses the standard conventions for saving
registers. That is, they are saved in an area composed of eighteen
contiguous fullwords, starting at the fourth fullword. And, they are saved
in the following general order: 14, 15,0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.
Register 13 is never saved.

The format of the SAVE macro instruction is:

(regl) or
(regl,reg2)

Specifies the single register (reg1) or range of registers (reg1,reg2)
whose values are to be stored in the save area.

To specify a range of registers, consider the general order in which
registers are saved. Substitute the first register number in the range
for the reg1 parameter. And, substitute the last register in the range
for the reg2 parameter. Obviously, a subset of this order is permissible
but be mindful of the general order when specifying a range of
registers.

Never specify register 13 as a register whose value is to be saved.

You must write the register or range of registers as decimal digits.

146 VM/SP GCS Command and Macro Reference

/

(

(

Usage Note

c\

T

------------ ~------.----

SAVE

Indicates that regardless of what other registers are saved or not
saved, registers 14 and 15 are saved.

Use this parameter if you want to save the values in registers 14 and
15 as well as those in another subset of registers, of which 14 and 15
are not a part. The other subset can be specified by the (regl) or
(regl,reg2) parameter, while registers 14 and 15 are specified by the T
parameter.

The T parameter can also be specified alone, indicating that only
registers 14 and 15 are to be saved.

id name
Specifies an identifier or label that is to be associated with the SAVE
macro instruction.

You can use this identifier as a debugging aid when you issue several
SA VE instructions. You can assign this parameter a unique,
mnemonic value that will be inserted in any dump you might request.
This allows you to associate a section within the dump with a specific
SAVE instruction, and thereby with a specific save area.

A byte containing the length of the ID NAME appears in the dump
four bytes after the address in register 15. The ID NAME itself begins
five bytes after this address.

If you write the ID NAME parameter as an asterisk (*), then the label
on the SAVE instruction itself will be assigned to it. If you omit this
parameter entirely, then the label on the appropriate CSECT
instruction will be assigned to the ID NAME parameter. If no label
appears on the CSECT instruction, then this parameter is ignored.

• The SAVE macro instruction must be the first instruction at the entry
point of any called program. This is because register 15 must contain
the address of the macro instruction, which it might not were the SAVE
instruction issued later.

Chapter 4. Program Management Service Macros 147

SAVE

Examples

SAVE (14,12)" *

The program requests that the values in registers 14, 15, and registers 0
through 12 be saved. Since an asterisk is specified and no label appears on
this instruction, the label on the appropriate CSECT instruction is assigned
to the ID NAME parameter.

SAVE (S,7),T

The program requests that the values in registers 5, 6, and 7 be saved.
Since registers 14 and 15 are not within this range and since the program
wants them saved, the T parameter is also specified.

Return Codes and ABEND Codes

The SA VE macro generates no return codes and no ABEND codes.

148 VM/SP GCS Command and Macro Reference

o

/

(.~.

(

SYNCH

SYNCH

Schedule a Synchronous Exit from One Program to Another, Possibly with a Change in
State

[label) SVNCH

Parameters

The SYNCH macro instruction schedules a synchronous exit from one
program to another. If desired, the SYNCH macro instruction allows a
supervisor state program to call another program and choose the state in
which the latter will function. In addition, the SYNCH macro instruction
allows you to control the restoration of registers belonging to the calling
program.

The SYNCH macro instruction is available in standard, list, and execute
formats.

The standard format of the SYNCH macro instruction is:

entry point
Specifies the address of the entry point that is to receive control.

The program must be resident in virtual storage.

You can write this parameter as an RX-type address or as a register.
If you write it as a register, you can choose only from among registers
(2) through (12) and register (15).

RESTORE
Indicates whether you want registers 2 through 13 restored when
control is returned to the program that issued the SYNCH instruction.
If you do not specify this parameter, then, by default, no restoration
takes place.

YES
Indicates that you do want this restoration to take place.

Indicates that you do not want this restoration to take place.

Chapter 4. Program Management Service Macros 149

SYNCH

Usage Notes

STATE
Indicates the state in which the program being called will function. If
you do not specify this parameter, then the program being called
functions in problem state, by default.

SUPV
Indicates that the program being called will function in
supervisor state.

PROB
Indicates that the program being called will function in problem
state.

• The SYNCH macro makes no validity checks on the entry point
address. Regardless of what is at that address, control is transferred to
it.

• It is not necessary for the program that issues the SYNCH instruction
to be in supervisor state. Nor must a program called by a supervisor
state program necessarily function in that state. The rule is:

If the program issuing the SYNCH instruction is a problem state
program, then the called program will also function in that state.

If the program issuing the SYNCH instruction is a supervisor state
program, then there is a choice. Use the STATE parameter to
specify in which state the called program is to function.

• It is important to remember that any program called via the SYNCH
instruction will always run in the same key as the program that called
it. This usually is not a problem. However, a supervisor state program
may call another program and specify that the latter should run in
problem state. The supervisor state program should change its own key
to that of the problem state program before it issues the SYNCH
instruction.

• It is risky to use the SYNCH macro instruction to transfer control to a
program that is not reentrant. While this practice is not prohibited, the
results are unpredictable.

150 VM/SP GCS Command and Macro Reference

i
I

"'-

o

--- - ------- - -----------

SVNCH

(7 . Examples

(

c

SYNCH (2),RESTORE=NO,STATE=SUPV

Schedule an exit to the entry point whose address is in register 2. The
program being called will function in supervisor state if the program
issuing the SYNCH macro is also in supervisor state. When control is
returned to the program that issued the SYNCH instruction, no registers
will be restored.

SYNCHIT SYNCH ENCRYPT,RESTORE=YES,STATE=PROB

Schedule an exit to an address named ENCRYPT. ENCRYPT is to function
in problem state. SYNCHIT is the label on this instruction. When control
is returned, registers 2 through 13, belonging to the program that issued the
SYNCH instruction, will be restored.

Input to the Exit Program

The exit program receives the following information in its registers.

Registers 0-13 Unchanged.

Register 14 The address to which control is to return
once the exit program completes execution.

Register 15 The address of the entry point in the exit
program being called.

Return Codes and ABEND Codes

The SYNCH macro generates no return codes.

ABEND Reason Meaning
Code Code

106 OC Insufficient virtual storage was available to
load the requested module.

206 Either an invalid parameter list was
produced or an I/O error occurred while
processing.

Chapter 4. Program Management Service Macros 151

SYNCH

. The List Format

Added Parameter

This format of the macro instruction generates an in-line parameter list,
based on the parameter values that you specify. However, this format
generates no executable code. Remember that you cannot specify any of
the parameters using register notation. Also, note that only the parameters
listed above are valid in the list format of this instruction.

MF=L
Specifies the list format of this macro instruction.

152 VM/SP GCS Command and Macro Reference

,/

SYNCH

(The Execute Format

(label] SVNCH ent ry po j n t [. RESTOR E= {MS }] [. STATE. t ~~~ }] . MF· (E .ad~re'~)

Added Parameter

(

This format of the macro instruction generates code that executes the
function, using a parameter list whose address you specify.

MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the
macro.

You can add or modify values in this parameter list by specifying them
in this instruction.

Chapter 4. Program Management Service Macros 153

XCTL

XCTL

Pass Control to a Program, Expecting Never to Regain It

[label] XCTL

Parameters

GCS provides several techniques for passing control from one program to
another. Typically, when one program passes control to another, it expects
to eventually regain it. The XCTL macro instruction allows you to pass
control from one program to another, with the former never again to regain
it.

The XCTL macro instruction is available in standard, list, and execute
formats.

The standard format of the XCTL macro instruction is:

[cr. e91 G re921Jl.{ .. :~~L.5t~. ~~~rl· .
.. . . • DEi#ad(lr .

, . , '. ,

(regl), or
(regl,reg2)

Specifies the register, or range of registers, that was saved by the
issuer of the XCTL instruction and that is to be restored and passed to
the program being called. The saving of these registers, then, becomes
the responsibility of the program being called by the XCTL macro
instruction.

You can write these as registers 2 through 12 or as assembler program
labels. If you omit the reg2 parameter, then the only register restored
is the one represented by the regl parameter. It is possible, however,
to restore a subrange of registers within the range 2 through 12. The
low register in the range must be reg! and reg2 must be the high
register in the range. If you omit these parameters entirely, no
registers are restored.

Be certain to supply a set of parentheses around this parameter. And,
if you specify a pair of register numbers, separate them with a comma.

154 VM/SP GCS Command and Macro Reference

1\
(,"")

(

(

(

(

C'"' ..
"

EP

XCTL

Specifies the name of the entry point that is to receive control.

The entry point name can be anyone of the following:

• The name of the entry point as previously defined via the
IDENTIFY macro instruction. If necessary, review the entry titled
"IDENTIFY" on page 130.

• The name of the entry point declared in a shared segment
directory via the CONTENTS macro instruction. If necessary,
review the entry titled "CONTENTS" on page 496.

• A member name (or alias) in the directory of a load library.

When looking for the entry point name that you specify, GCS searches
the following items in the following order:

1. Your private storage, since the module associated with the entry
point name may already be loaded.

2. Any shared segment directories that may have been created via
the CONTENTS macro instruction.

3. The directories of any load libraries that may have been defined
for your virtual machine via the GLOBAL LOADLIB command.
For more information on the GLOBAL command see "GCS
Commands" on page 20.

You must write this parameter as an assembler program label.

EPLOC

DE

The address containing the name of the entry point of the program
that is to receive control.

The name, as stored, can be up to eight bytes long. If less than eight
bytes long, then the name must be padded on the right with blanks.

You can write this parameter as an assembler program label or as
register (2) through (12).

Specifies the address of the name field within the directory list entry
for the entry point. You must have previously created this list entry
for the entry point using the BLDL macro instruction. Review the
entry titled "BLDL" on page 118.

You can write this parameter as an assembler program label or as
register (2) through (12).

Chapter 4. Program Management Service Macros 155

XCTL

Usage Notes

• If you issue the XCTL instruction and the load module in question is
not resident in virtual storage, then GCS will load the module for you.
Then, after the module is run, GCS removes it from storage. This is
satisfactory if you intend to pass control to the module only once.

However, loading a module into virtual storage involves a good deal of
overhead processing. If you intend to pass control to the module more
than once, it is far more efficient to issue the LOAD instruction once
yourself. This avoids all the overhead processing involved in having
GCS repeatedly load the module for you. If necessary, review the entry
titled "LOAD" on page 140.

• It is the responsibility of the program issuing the XCTL instruction to
restore registers 2 through 14 to what they were when it first received
control. Registers 13 and 14 must be restored before the XCTL
instruction is issued. Registers 2 through 12 (or a subset thereof) can
be restored at the same time or via the (regl,reg2) parameter.

The program issuillg the XCTL macro instruction can omit the (regl) or
(regl,reg2) parameters. If it does, then the XCTL macro will restore no
registers. It then becomes the responsibility of the program issuing the
XCTL instruction to restore registers 2 through 14 by itself.

• It is the responsibility of the program receiving control via the XCTL
instruction to save the registers that the program that called it was
saving.

• The program being called, using the standard format of the XCTL
instruction, may expect certain parameters be passed to it. Since the
program is using the standard format of the instruction, it must see to it
that register 1 contains the address of the parameter llst, if one is
expected.

• You can use the XCTL instruction to pass control to a serially reusable
program. If the program is under the control of another user, then you
will be placed in the WAIT state until the other user is finished.

• If the program being called is reentrant, then it is loaded into key 0
storage. This ensures that it is not accidentally modified or tampered
with.

156 VM/SP GCS Command and Macro Reference

c

(- Examples

(-

------- ~----------~

XCTL

XCTL (2,12),EP=PROGRAMC

The XCTL macro will first restore registers 2 through 12, which the
program issuing it was saving. GCS assumes that this program restored
registers 13 and 14 on its own. Then, control will pass to a program named
PROGRAMC.

TRANSCTL XCTL (4),EPLOC=(6)

Pass control to an entry point whose name can be found at the address in
register 6. The XCTL macro need only restore register 4. GCS assumes
that the program issuing the XCTL instruction restored registers 2, 3, and 5
through 14. TRANSCTL is the label on this instruction.

XCTL DE=BLDLNAM

Pass control to a certain entry point. The system is to look for the name of
this entry point in the list entry created for that entry point. The name
field of the list entry corresponds with the address of the label BLDLNAM.
The XCTL macro need restore no registers. GCS assumes that they were all
restored by the program issuing the XCTL instruction.

Return Codes and ABEND Codes

(
~

/

When control is passed to the program being called, the registers contain
the following information.

Register Unchanged. Register 1 contains the address of
0-13 the parameter list, if it was specified.

Register 14 The address to which control is to return once
the called program completes execution.

Register 15 The address of the entry point in the program
being called.

ABEND Reason Meaning
Code Code

106 OB An error was found when the supervisor
attempted to load the requested module into
virtual storage.

106 OC Insufficient virtual storage was available to
load the requested module.

206 Invalid parameter list.

406 The module is marked ONLY LOADABLE.

706 The linkage editor marked the requested load
module as NOT EXECUTABLE.

Chapter 4. Program Management Service Macros 157

XCTL

ABEND Reason Meaning o
Code Code

806 04 Either the program could not be found or no
load libraries were defined by the GLOBAL
LOADLIB command.

806 08 An unrecoverable I/O error occurred when
the BLDL control program attempted to
search the directory.

806 10 When GCS attempted to close the load
library used by the BLDL macro, it found
that the load library had never been opened.

906 The LOAD COUNT and/or USE COUNT for
the load module have reached the maximum
of 32767.

A06 Your task is already waiting for this serially
reusable module.

("
\,

o
158 VM/SP GCS Command and Macro Reference

(.. ~ The List Format

[label] XCTL

Added Parameter

(

(

XCTL

(regl (, reg2J l] [, EP=symbo 1],SF=l
,EPLOC=addr
,DE=addr

This format of the macro instruction generates an in-line parameter list,
based on the parameter values that you specify. However, this format
generates no executable code. Remember that you cannot specify any of
the parameters using register notation.

SF=L
Specifies the list format of this macro instruction.

Chapter 4. Program Management Service Macros 159

XCTL

The Execute Format

Added Parameters

This format of the macro instruction generates code that executes the
function, using a parameter list whose address you specify.

Note that only the parameters listed above are valid in the execute format
of this instruction.

SF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the
macro. This is the parameter list that was generated via the list
format of this instruction.

You can add or modify values in this parameter list by specifying them
in this instruction.

MF = (E,address)
ADDRESS specifies the address of the remote parameter list to be used
by the called program.

PARAM
Specifies one or more parameter addresses to be passed to the program
being called. XCTL builds a parameter list containing these addresses
in the order which you specify them. Then, the address of this
parameter list is passed in register 1 to the program being called.

You can write these parameters as assembler program labels or as
registers (2) through (12).

VL=l
Indicates that the program being called expects a variable number of
parameters to be passed to it.

You must write this parameter exactly as shown and you can use it
only with the PARAM parameter. To omit the VL = 1 parameter is to
say that the program being called expects a set number of parameters.

160 VM/SP GCS Command and Macro Reference

c

(

STIMER .. 162
TIME .. 166
TTIMER .. 168

(

Chapter 5. Timer Service Macros 161

STIMER

STIMER

Set a Timer

[1 abel] STlMER.

Parameters

At times, a task reaches a point where it needs to have something done for
it. The task allocates a certain time period during which it waits for some
event to occur. When told that time is up, the task resumes execution.

At other times, a task may be able to continue with other work while
waiting for some event to take place. Having allocated a certain time
period for this event, the task needs to be told when time is up.

To keep track of these time periods, a task sets a timer, specifying the
amount of time it will allow for a certain event to take place.

Use the STIMER macro instruction to set a timer to a given time period.
When time is up, your task will be notified.

The format of the STIMER macro instruction is:

{ REAL(.~~it ro~tine addreSSJ}. . WAIT'· ,

REAL

.{ .. ,.B.INIVL;:a. 9dress.',:)·DINTVL==address
.TOO=address .

Indicates that the task will continue with other work while waiting
for the specified time to elapse.

exit routine address
Specifies the address of an exit routine that will get control at the end
of the time interval.

This exit routine must be resident in virtual storage and can be
specified only with the REAL parameter.

You can write this as an RX-type address, as register (0), or as register
(2) through (12).

WAIT
Indicates that the task is to be placed in the WAIT state during the
specified time period. At the end of the time period, the task will
resume execution.

162 VM/SP GCS Command and Macro Reference

o

(

(

("---,

/

STIMER

BINTVL
Specifies the address containing the duration of time allocated for the
event.

You must store the amount of time as an unsigned 32 bit binary
number in a fullword on a fullword boundary. The low-order bit is
equivalent to 0.01 seconds.

You can write this parameter as an RX-type address or as register (1)
through (12).

DINTVL

TOD

Specifies the address containing the duration of time allocated for the
event.

You must store the amount of time as unpacked decimal digits in a
doubleword on a doubleword boundary in the following format:

HHMMSSth

HH stands for the number of hours; MM for the number of minutes;
SS for the number of seconds; t for the number of teriths of a second;
and h for the number of hundredths of a second. The maximum
amount of time you can specify is twenty-four hours.

You can write this parameter as an RX-type address or as register (1)
through (12).

Specifies the address containing the time of day that marks the end of
the time period.

You must store this time of day as unpacked decimal digits in a
doubleword on a doubleword boundary. Moreover, you must store it
according to the HHMMSSth format described above, using
twenty-four hour clock notation.

Chapter 5. Timer Service Macros 163

STIMER

Usage Notes

Examples

•

•

•

It is the responsibility of the task issuing the STIMER instruction to
provide storage for the amount of time. Likewise, the task must see to
it that the appropriate time value is stored there before issuing the
STIMER instruction.

If you choose the REAL parameter and you do not specify the address of
an exit routine, your task will never know the time has expired. Ii1
such a case, the supervisor does not notify your task that time is up.

The exit routine is responsible for saving and restoring your task's
registers. It also executes in the same state and key as did your task
when the latter issued the STIMER instruction. Once your exit routine
completes execution, it returns control to the supervisor.

Input to the exit routine is:

Registers 0 - 12 Unpredictable.

Register 13 The address of a supervisor-provided save
area.

Register 14 The address to which control will transfer
once the exit routine completes processing.

Register 15 The address of the exit routine.

• No task can have more than one timer set at the same time. If you
issue an STIMER instruction before the time period associated with a
previous STIMER instruction expires, then the second STIMER
instruction cancels and replaces the first.

• All time is measured continuously in real time.

CLOCKIT STlMER REAL,(6),TOD=(7)

The task wishes to set a timer. Since the REAL parameter is specified, the
task will continue with other work while it is waiting. The specific time of
day marking the end of the time period is stored at the address in register 7.
When time is up, the exit routine, whose address is in register 6, receives
control. CLOCKIT is the label on this instruction.

STIMER WAIT,DINTVL=(5)

The task wishes to set a timer. Since the WAIT parameter is specified, the
task will be placed in the WAIT state until time is up. The amount of time,
stored as characters, can be found at the address in register 5.

164 VM/SP GCS Command and Macro Reference

/'

c

STIMER

(Return Codes and ABEND Codes

The STIMER macro generates no return codes.

ABEND Meaning
Code

12F Your task is in problem state and the parameter list for
the macro is not in the same key as the task. You may
also have incorrectly specified the DINTVL or TOD
parameter. These must be in unpacked decimal format.

E2F A parameter unsupported by GCS was specified.
Unsupported parameters include TASK, GMT,
TUINTVL, and MICVL.

(,

c
Chapter 5. Timer Service Macros 165

TIME

TIME

Request Today's Date and the Correct Time

Parameters

Use the TIME macro instruction to ask the supervisor to send today's date
and the correct time of day to your program.

The format of the TIME macro instruction is:

BIN

Indicates that the time of day is to be returned to your program in
unsigned packed decimal format. It is stored in the following format:

HHMMSSth

HH stands for the number of hours; MM for the number of minutes;
SS for the number of seconds; t for the number of tenths of a second;
and h for the number of hundredths of a second.

Today's date is also returned to your program in packed decimal form.

If you omit all parameters from the TIME instruction, then DEC is
assumed, by default.

Indicates that the time of day is to be returned to your program as an
unsigned 32-bit binary number. The low-order bit is equivalent to 0.01
seconds.

Today's date, however, will be returned to your program in packed
decimal form.

166 VM/SP GCS Command and Macro Reference

(J

o

(Usage Notes

TIME

• The time of day is returned to your program in register o.

• Today's date is returned to your program in register 1.

• The date is stored in the following format:

OOYYDDDF

00 is a byte of zeroes. YY are the last two digits of the year. DDD is
the Julian day of the year. F is a four-bit sign character that helps you
unpack and print the date, if you request it.

• Note that the accuracy of the time and date depends upon the accuracy
of the corresponding data entered by your system operator. Your
system's response time is also a factor.

Return Codes and ABEND Codes

The TIME macro generates no return codes.

ABEND Meaning
Code

(EOB A parameter not supported by GCS was specified.
Unsupported parameters include TU, MIC, STCK, and
ZONE = GMT.

Chapter 5. Timer Service Macros 167

TTIMER

TTIMER

Cancel a Timer

Parameter

Usage Note

Use the TTIMER macro instruction to cancel a timer that you set via an
STIMER macro instruction. If necessary, review the entry titled "STIMER"
on page 162.

The format of the TTIMER macro instruction is:

CANCEL
Indicates that you wish to cancel the effect of the last STIMER
instruction. That is, the timer is to stop keeping track of elapsed time.
Also, the specified branch to an exit routine, if any, is cancelled.

This is the only parameter on the TTIMER instruction and is
required.

• The TTIMER instruction has no effect if the STIMER instruction you
are trying to cancel included the WAIT parameter.

168 VMjSP GCS Command and Macro Reference

/

\,

TTIMER

(_. Return Codes and ABEND Codes

The TTIMER macro generates no return codes.

ABEND Meaning
Code

E2E Either the CANCEL parameter was not specified or a
parameter not supported by GCS was specified.
Unsupported parameters include TU and MIC.

(

(

(

Chapter 5. Timer Service Macros 169

TTIMER

170 VM/SP GCS Command and Macro Reference

~\
(I

~j

o

(

WTO ... 172
WTOR .. 176

(

(

(

C---",
-~

Chapter 6. Console I/O Service Macros 171

WTO

WTO

Send a Message to the Virtual Machine Console, Requiring No Reply

Parameter

Usage Notes

Occasionally you will find it necessary to have a program running under
GCS send a message to the virtual machine console. Use the WTO macro
instruction for this purpose. Use of this macro instruction implies that you
do not require a response to your message.

The WTO macro instruction is available in standard, list, and execute
formats.

The standard format of the WTO macro instruction is:

'message'
Specifies the text of the message to be sent to the virtual machine
console.

Though they will not appear at the console, you must enclose the
message in single quotation marks. The message may be up to 124
characters long. If you send a message that is longer than that, it will
be truncated before it is sent. You can include in your message any
character that is permitted in a C-type (character) DC assembler
instruction.

• GCS does not support multiple line messages. Nor does it support
multiple console message handling.

• GCS performs no translation on your message at all. It is transmitted
exactly as coded.

172 VM/SP GCS Command and Macro Reference

\~.

WTO

(Return Codes and ABEND Codes

The WTO macro generates no return codes.

ABEND Meaning
Code
D23 Either an invalid parameter list exists or insufficient

space is available for processing.

c
Chapter 6. Console I/O Service Macros 173

WTO

The List Form~t

Added Parameter

This format of the macro instruction generates an in-line parameter list,
based on the parameter values that you specify. However, this format
generates no executable code.

MF=L
Specifies the list format of this macro instruction.

174 VMjSP GCS Command and Macro Reference

\
J

o

(The Execute Format

I (label]

Added Parameter

(

c

WTO

I MF· (E. address)

This format of the macro instruction generates code that executes the
function using a parameter list whose address you specify.

Note that only the parameters listed above are valid in the execute format
of this instruction.

MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the
macro.

Chapter 6. Console I/O Service Macros 175

WTOR

WTOR

Send a Message to the Virtual Machine Console, Requiring a Reply

Parameters

occasionally you will find it necessary to have a program running under
GCS send a message to the virtual machine console. Moreover, your
program may require a reply to its message.

Use the WTOR macro instruction to send a message to the virtual machine
console, to which you expect a reply.

The WTOR macro instruction is available in standard, list, and execute
formats.

The standard format of the WTOR macro instruction is:

'message'
Specifies the text of the message to be sent to the virtual machine
console.

Though they will not appear at the console, you must enclose the
message in single quotation marks. The message may be up to 121
characters long. If you send a message that is longer than that, it will
be truncated before it is sent. Since the message is assembled as a
variable-length record, it is not necessary to pad it with blanks. You
can include in your message any character that is permitted in a
C-type (character) DC assembler instruction.

reply address
Specifies the address in virtual storage into which you want the reply
placed.

The reply will be left-justified at this address.

You can write this parameter as an assembler program label or as
register (2) through (12).

176 VM/SP GCS Command and Macro Reference

/

c

(

Usage Notes

~ ---~"--~~ ~--- ~ ----

WTOR

reply length

ecb

Specifies the maximum length of the reply that your program will
accept.

This refers to the size of the reply area, the address of which you
specified in the REPLY ADDRESS parameter.

This length must be from 1 to 119 bytes.

You can write this parameter as a symbol, as decimal digits, or as
register (2) through (12).

Specifies the address of your event control block.

GCS uses this area of storage to indicate whether the reply to your
message has been received. Event control blocks are discussed in
detail in the entries titled "WAIT" on page 114 and "POST" on
page 106.

You can write this parameter as an assembler program label or as
register (2) through (12).

• The WTOR macro assigns a reply identification number to the message
it is transmitting for you. The operator will use this identification
number when responding to your message.

• GCS does not support multiple line messages. Nor does it support
multiple console message handling.

• GCS performs no translation on your message at all. It is transmitted
exactly as coded.

Return Codes and ABEND Codes

The WTOR macro generates no return codes.

ABEND Meaning
Code

D23 Either an invalid parameter list exists or insufficient
space is available for processing.

E23 The address of the event control block or the address
of the reply area was invalid.

Chapter 6. Console I/O Service Macros 177

WTOR

The List Format

Added Parameter

This format of the macro instruction generates an in-line parameter list,
based on the parameter values that you specify. However, this format
generates no executable code. Remember that you cannot specify any of
the parameters using register notation.

MF=L
Specifies the list format of this macro instruction.

178 VM/SP GCS Command and Macro Reference

(The Execute Format

[label] WTOR

Added Parameter

(

(

c

WTOR

[.reply address][.reply length][.ecb].MF=(E.address)

This format of the macro instruction generates code that executes the
function using a parameter list whose address you specify.

Note that only the parameters listed above are valid in the execute format
of this instruction. The comma before the first operand is required to
indicate the absence of the message operand which is not allowed in the
execute format.

MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the
macro.

You can add or modify values in this parameter list by specifying them
in this instruction.

Chapter 6. Console I/O Service Macros 179

WTOR

,/\

''''~j

/

180 VM/SP GCS Command and Macro Reference

~-----~ -----~----

AUTHCALL ... 182
CMDSI ... 185
EXECCOMM .. 192
GENIO ... 194

(

Chapter 7. Unauthorized GCS Service Macros 181

AUTHCALL

AUTHCALL

Call an Authorized Program from an Unauthorized Program

Parameters

An important feature of GCS is that it permits an authorized program to be
called by an unauthorized program.5 The authorized program resides in a
shared segment, having been linked to its virtual machine at GCS
initialization time. The unauthorized program resides in one of the virtual
machines that makes up the group.

The AUTHCALL macro instruction allows an unauthorized program to call
an authorized program. However, AUTHCALL is not an authorized GCS
function.

The format of the AUTHCALL macro instruction is:

EP
Specifies the name by which the authorized program is known to the
unauthorized program. Note that this name is from one to eight
alphanumeric characters long.

{ \
'; I
~j

("

)

EPLOC /
Specifies the address at which the name of the authorized program can (. ~'
be found. Again, this is the name by which the authorized program is
known to the unauthorized program.

You can write this address as an assembler program label, as register
(0), or as register (2) through (12). The name of the authorized
program, as stored at this address, should be padded on the right with
blanks if the name occupies fewer than eight bytes.

5 In this context, an "authorized program" is one running in supervisor state.
An "unauthorized program" is one running in problem state.

182 VM/SP GCS Command and Macro Reference

c

(

Usage Notes

(
Examples

(

AUTHCALL

UWORD
Specifies an optional fullword parameter that may be passed to the
authorized program when it is called by the unauthorized program.

You can use this parameter to pass any information you wish to the
authorized program.

The UWORD may be written as an assembler program label or as
register (1) through (12). If you write it as a label, then the UWORD
is passed to the authorized program as the address associated with
that label. If you write it as a register, then the UWORD is passed to
the authorized program as the contents of that register. If no UWORD
is specified, it is passed as the value zero.

• It is impossible for an unauthorized program to call an authorized
program via the AUTHCALL instruction unless the AUTHNAME
instruction is issued for that authorized program first. If necessary,
review the entry titled "AUTHNAME" on page 208.

• Any program invoked via the AUTHCALL instruction runs in key O.

AUTHCALL EP=PAT

Call an authorized program named PAT.

AUTHCALL EPLOC=(2),UWORD=(S)

Call an authorized program whose name can be found at the address in
register 2. Register 5 contains information that the program expects to
receive from the program that called it.

Chapter 7. Unauthorized GCS Service Macros 183

AUTHCALL

Input to the Authorized Program

The program being called receives the following information in its registers.

Register 0 The user word (UWORD) specified in the
associated AUTHNAME instruction.

Regist~r 1 The user word (UWORD) specified in the
AUTHCALL instruction.

Register 13 The address of the register save area.

Register 14 The address to which control is to return once
the authorized program completes execution.

Register 15 The address of the entry point in the program
being called.

Return Codes and ABEND Codes

Except for the return code noted below, the authorized program will pass its
return code to the program that called it in register 15. The AUTHCALL
macro generates the return code described below.

If you receive a return code of ·3 in register 15, do not mistake it for a
return code generated by the program that you called.

Return Meaning
Code

-3 The system could not find the program whose
address you specified.

ABEND Reason Meaning
Code Code

FCB 0100 A call was made to an authorized program
that is not available to the unauthorized
program.

FCB 0102 The GET MAIN instruction, issued by GCS,
was unable to obtain enough storage to
complete your request.

184 VM/SP GCS Command and Macro Reference

---------------- ----- --------
---~-~---------

c

(

f

(

----~ --~-- .. --.-

CMDSI

CMDSI

Issue a Command from a Program

[label] CMOSI

Occasionally you will find it necessary to issue a "command" from a
program running under GCS. In using the word "command" we do not refer
to the normal instructions peculiar to the programming language you are
using. Obviously your program will contain those. "Command," in this
context, means one of several things.

• Any command that ordinarily would be issued directly from the console.
This includes GCS commands, CP commands, and EXECs.

• Any command that you previously defined to GCS using the LOADCMD
command. For more information on the LOADCMD command see "GCS
Commands" on page 20.

If you include any such command in your program, you need a way of
telling GCS, lest it mistake the command for something else or not
recognize it at all. Use the CMDSI macro instruction to identify to GCS a
"command" that you have included in one of your programs.

The CMDSI macro instruction is available in standard, list, list address,
and execute formats.

The standard format of the CMDSI macro instruction is:

Chapter 7. Unauthorized GCS Service Macros 185

CMDSI

Parameters

command name
Specifies the command in question, with any necessary parameters or
options.

You can specify it using one of the following:

COMMAND TEXT The actual text of the command, with any
necessary parameters or options. The entire
command statement must be surrounded by
single quotation marks.

SYMBOL

REGISTER

length

The LENGTH parameter need not be specified
when using this method. If it is, it will be
ignored.

The programming language symbol on the
statement containing the command and its
options or parameters. Note that you must
specify the LENGTH parameter if you use this
method.

The register containing the address of the
command in question. Again, with this method,
you must specify the LENGTH parameter. Also,
the reference to the register must be in
parentheses.

Specifies the length of the command in bytes. This includes the
command itself, its parameters, options, operands, and all imbedded
blanks.

It must be a number from 1 to 130.

You can write this parameter as an absolute expression or as register
(2) through (12). If you write it as a register, the register must contain
the length of the command.

FILEBLK
Use this parameter in one of the following instances:

• If the System Product Interpreter is to execute a non-GCS file.

• If the Interpreter is to execute from storage.

• If the address environment is inconsistent with the filetype of the
file containing the command.

186 VMjS:P GCS Command and Macro Reference

/

(

(
Examples

c

CMDSI

This parameter specifies the address of the file block to be passed to
the System Product Interpreter, which will interpret the code
associated with the command.

This file block contains information necessary to invoke the code
properly. This includes, among other things, the filename, filetype,
and filemode of the file containing the code; its address (if in storage),
and its size. If necessary, consult the VM/SP System Product
Interpreter User's Guide or the VM/SP System Product Interpreter
Reference for more on this topic.

You can write this address as a programming language label or as
register (2) through (12).

ERROR
Specifies the address of a routine that is to receive control if an error
occurs in the CMDSI macro.

Note that this error routine does not receive control if an error occurs
in the command you are trying to execute. If you omit this parameter
and an error occurs, then control returns to the instruction
immediately following the CMDSI instruction, just as it would were
there no error.

You can write this parameter as a programming language label or as
register (2) through (12).

DOlT CMDSI MYCMD,48,FILEBLK=(8),ERROR=(6)

Issue the command at the address associated with the label MYCMD. The
command is 48 characters long. Since the command invokes an EXEC, the
address of the file block can be found in register 8. Register 6 contains the
address of an error routine that gets control if an error occurs in the
CMDSI macro. Presumably, the LOADCMD command has been issued for
the command. DOlT is the label on this instruction.

INQUIRE CMDSI 'QUERY DISK' ,ERROR=ERRl

Issue the GCS QUERY DISK command. No length is needed since length is
implicit in the single quotation marks that surround the command. ERR1 is
the label on the error routine that is to receive control in case of an error
in the CMDSI macro. INQUIRE is the label on this instruction.

Chapter 7. Unauthorized GCS Service Macros 187

CMDSI

Return Codes and ABEND Codes

The only return codes generated by the CMDSI macro are defined below.
They ar~ passed to the caller in register 15. Any other return code passed
by the CMDSI macro is really the return code from the command that it
invoked.

Return Meaning
Code
0 The command was successfully executed.

-3 The command could not be found.

ABEND Reason Meaning
Code Code
FCA 0300 The parameter list was invalid.

188 VM/SP GCS Command and Macro Reference

---~-- -------------~-

o

(The List Format

[label] CMOSI

Added Parameter

(

(-

-----~-~~-~-~----.--

CMDSI

MF=Lc.command name][.length]C.FILEBLK=addr]

This format of the macro instruction generates an in-line parameter list
based on the parameter values that you specify. However, this format
generates no executable code. Remember that you cannot specify any of
the parameters using register notation. Also, note that only the parameters
listed above are valid in the list format of this instruction.

MF=L
Specifies the list format of this macro instruction.

Chapter 7. Unauthorized GCS Service Macros 189

CMDSI

The List Address Format

Added Parameter

This format of the macro instruction does not produce any executable code
that invokes the function. However, it does produce executable code that
moves the parameter values that you specify into a certain parameter list.
If you issue the instruction using this format, then you must do so before
any related invocation of the instruction using the execute format. Also,
note that only the parameters listed above are valid in the list format of
this instruction.

MF = (L,address[,label])
ADDRESS specifies the address of the parameter list into which you
want the parameter values you mention placed. This address can be
within your program or somewhere in free storage.

LABEL is a user-specified label, ,indicating that you want to determine
the length of the parameter list. The macro expansion equates the
label you specify with the length of the parameter list.

190 VM/SP GCS Command and Macro Reference

\ /
,~ /'

o

(_- The Execute Format

[label] CMDSI

Added Parameter

(

(

---- ---- ----

CMDSI

MF=(E.address) [,command name][.length]

[.FILEBLK=addr] [.ERROR=addr]

This format of the macro instruction generates code that executes the
function, using a parameter list whose address you specify.

MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the
macro.

You can add or modify values in this parameter list by specifying them
in this instruction.

Chapter 7. Unauthorized GCS Service Macros 191

EXECCOMM

EXECCOMM

Access and Manipulate REXX Variables

Parameter

EXECs running under GCS frequently call other programs, such as
commands and subcommands. Often these programs need access to the
variables within the EXEC that called them.

Use the EXECCOMM macro instruction to set up the interface that allows
a program to gain access to the variables within the EXEC that invoked it.

The format of the EXECCOMM macro instruction is:

REQLIST
Specifies the address of the first (or only) shared variable request
block in a chain of such blocks.

A shared variable request block is a control block that defines an
EXEC variable to which your program wants access. In addition, it
describes how that variable will be used. Your program must create
one shared variable request block for each variable to which it wants
access. Moreover, if there is more than one request block, they must
be strung together in a chain.

Detailed information on the EXECCOMM facility and shared variable
request block formatting is provided in the VM/SP System Product
Interpreter Reference This book also provides an appendix titled
"REXX in the GCS Environment," which you may find helpful.

You can write this parameter as an RX-type address or as register (2)
through (12).

192 VM/SP GCS Command and Macro Reference

o

(Usage Notes

EXECCOMM

• The EXECCOMM macro stores the address of the first (or only) request
block in the chain in a register. This is then passed to the System
Product Interpreter, which processes your request. The EXECCOMM
macro then passes a return code back to your program that describes if
and how the function was completed.

• EXEC variables may be inspected, modified, or deleted by a program
that gains access to them.

• For a program within a specific task to issue the EXECCOMM
instruction, an EXEC must be active within that task.

Return Codes and ABEND Codes

(

When this macro completes processing, it passes to the caller a return code
in register 15.

Return Meaning
Code

OOR Function completed successfully.
ANY
POSITIVE
NUMBER

-1 No EXEC was active within the task.

-2 Insufficient storage is available to process your
request.

ABEND Reason Meaning
Code Code
FCB OD01 An invalid address exists in a shared variable

request block, or the address of the block
itself is invalid.

Chapter 7. Unauthorized GCS Service Macros 193

GENIO

GENIO

Use General Input/Output Devices

[1abel] GENIO

Parameters

The GENIO macro instruction allows a program to obtain, use, and release
any I/O device.6 It is an unauthorized GCS function, except for GENIO
STARTR, which is an authorized function.

The GENIO macro instruction is available in standard, list, list address,
and execute formats.

The standard format of the GENIO macro instruction is:

OPEN
Indicates that the device specified in the instruction should be opened.
for use by your program.

.\. . ./

In doing so, an entry is placed in the GCS general I/O table containing 7

information about the device and your program. Among the
information included in the table entry are the device's address, its
characteristics, the address in your program to which control is given
when an interrupt occurs on the device, and the UWORD.

No other program may open a device that has been opened by another
program. In opening a device, a program obtains exclusive use of it
until it closes the device.

The OPEN parameter requires that the address of an exit routine be
specified for the device.

6 Except for DASD devices and the virtual machine console.

194 VMjSP GCS Command and Macro Reference

{

(:

(

GENIO

EXIT
Specifies the address of the exit routine for the specified device.

This routine receives control under one of three conditions:

• An I/O interrupt occurs on the device that was opened, signalling
the end of an I/O operatIon.

• An I/O operation terminates because of error.

• An asynchronous interrupt occurs.

This exit routine is responsible for handling all interrupts occurring
on the specified device.

You can write this parameter as an assembler program label or as
register (2) through (12). If you write it as a register, then the register
must contain the address of the exit routine.

UWORD
An optional full word parameter that will be passed to the exit routine.
It can contain any value you wish.

You can write this parameter as an assembler program label or as
register (2) through (12). If you write it as a label, the address of the
label is passed to the routine. If you write it as a register, the
contents of the register are passed to the routine.

CLOSE
Indicates that the program no longer needs the device specified in the
instruction and relinquishes control of it. After this, any program
may obtain control over the device.

The program issuing the GENIO instruction with this parameter had
to have opened the device in the first place. The use of this parameter
clears the entry that was placed in the GCS general I/O table when
the device was opened. Any pending I/O requests for the device are
deleted from the virtual channel queue. And, all I/O activity for the
device is terminated.

Remember that your exit routine cannot receive control resulting from
an interrupt occurring on a closed device. Also, remember that the
GENIO instruction, with the CLOSE parameter specified, cannot be
issued from an I/O exit routine.

CHAR
Indicates that the characteristics of the specified device should be
returned to the program making the request. These characteristics
include such things as the device's class, type, and model.

It is not necessary that the device be opened for the program to
request this information. The device's characteristics are placed in

Chapter 7. Unauthorized GCS Service Macros 195

GENIO

two consecutive fullwords that your program should reserve for this
purpose.

DATA
Specifies the address of the data area into which the characteristics of
the device are to be placed. Your program must reserve two
consecutive fullwords for this purpose.

The first word will contain the characteristics of the virtual device.
The second word will contain the characteristics of the real device. If
no real device is associated with the virtual device, then the second
word will be reset to zero.

You may write this as an assembler program label or as register (2)
through (12). If you write it as a register, then that register must
contain the address of this data area.

MODIFY
Indicates that you wish to modify a real CCW (channel control word)
after the I/O operation has begun but before it has finished.

First, modify the virtual CCW. Then, issue the GENIO instruction
with the MODIFY parameter to apply the modification to the real
CCW.

Remember that you are allowed to make only the following changes to
any CCW:

• Change a TIC instruction to a NOP instruction.
• Change a NOP instruction to a TIC instruction.
• Change the address in a TIC instruction.

START
Indicates that a virtual channel program should be started on the
specified opened device.

This program is a set of channel control words that instructs the
channel which I/O operation to perform. Only one I/O operation can
be performed by a single device at one time. Another I/O operation is
not accepted by GCS until the previous I/O operation is complete. The
latter terminates either when a DEVICE END interrupt occurs, or
when an error condition arises. The I/O operation is performed in the
same key as the program requesting the operation.

STARTR
Indicates that a real channel program should be started on the
specified opened device.

This program is a set of channel control words that instructs the
channel which I/O operation to perform. The device in question must
be a real device.

196 VM/SP GCS Command and Macro Reference

(

(

~~---- --~~----- -----~

GENIO

The program issuing the GENIO instruction with the STARTR
parameter must be running in supervisor state in a key other than key
o. And, the DIAG98 parameter must be in the OPTION control
statement in the virtual machine's directory entry. Moreover, the
program is responsible for building the channel control program in
real storage using real addresses. To do this, the program should take
advantage of the page-locking and unlocking capabilities of the
PGLOCK and PGULOCK macro instructions. Review the entries
titled "PGLOCK" on page 226 and "PGULOCK" on page 228.

CCW
If you select the STARTR parameter, then CCW specifies the real
address of the first channel control word of the real channel program.

If you select the START parameter, then CCW specifies the virtual
address of the first channel control word of the virtual channel
program.

If you select the MODIFY parameter, then CCW specifies the virtual
address of the channel control word that will be modified.

You can write this parameter as an assembler program label or as
register (2) through (12). If you write it as a register, then that
register must contain the address of the first CCW.

HALT

DEV

Indicates that the active 1/0 operation of the specified device is to stop
immediately. GCS will issue a HDV (HALT DEVICE) instruction to
effect this.

Specifies the virtual address of the 1/0 device that the GENIO macro
instruction is to affect.

You can write this parameter as an assembler program label or as
register (2) through (12). If you write it as an assembler program
label, the address of the device must be in the half word at that
address. If you write it as a register, the address of the device must be
in the low-order two bytes of the register.

ERROR
Specifies the address of an error routine that is to receive control if an
error in the GENIO macro occurs.

If you omit this parameter, control will return to the instruction
immediately following the GENIO instruction, just as it would were
there no error. In such a case you should analyze the return code
before proceeding further.

Chapter 7. Unauthorized GCS Service Macros 197

GENIO

Usage Notes

• If you request it, GCS will return the characteristics of the I/O device to
a storage area your program has reserved for this purpose. This
information is returned in a specific format. For information on this
specific format, I/O device classes, types, and models, consult the
VM/SP System Facilities for Programming, (SC24-5288).

• It is an error if you issue the GENIO macro instruction with the
START, STARTR, HALT, MODIFY, or CLOSE parameter specified
before the device has been opened.

• Only an authorized supervisor state program can issue the GENIO
instruction with the ST ARTR parameter specified. This allows an
authorized program to use real channel programs to control real I/O
devices directly. The CP channel program translation, which is a
necessary middle step when using a "virtual" channel program, is
thereby bypassed.

An unauthorized program must use the START parameter.

• The exit routine receives control in the same state and key as the
program that opened the device. If the program is authorized, then the
exit is disabled, meaning it cannot be interrupted. If the program is
unauthorized, then the exit routine is enabled. I/O requests can be
issued only by an exit routine that is disabled. Moreover, I/O interrupts
are handled after the exit routine terminates.

• A distinction must be made between errors occurring in the GENIO
macro and errors occurring during the I/O operation.

If an error is found in the GENIO macro before the I/O operation has
actually been started, a return code is placed in register 15. If you
specified an address via the ERROR parameter, then control is passed,
along with the return code, to the routine at that address. If you
specified no error routine address, then control is passed to the
instruction immediately following the GENIO instruction.

If an error results from an I/O operation that waS' initiated through the
START or STARTR parameter, then the exit routine specified when the
device was opened receives control. All I/O error recovery is the
responsibility of the program that opened the device.

• The CLOSE parameter completely cuts the program off from the device
specified and makes the device generally available. This includes
deactivating the exit routine, which cannot receive control resulting
from an interrupt from a closed device.

• GCS does riot support program controlled interrupts (PCls). If a task
receives a PCI, then the interrupt is saved in the interrupt control
block. However, it will not be passed to the task's exit until the I/O
operation is complete. And, although the byte-count in the CSW is

198 VM/SP GCS Command and Macro Reference

!
j

o

(

(

(

(
Examples

GENIO

unpredictable when a PCI interrupt occurs, the byte-count is also
passed to the task's exit.

• The GENIO macro passes the following information to the exit routine .

Register 0 The UWORD parameter, as specified when the
device in question was opened.

Register 1 The address of the interrupt control block, defined
below.

The Interrupt Control Block:

0(0) Flag byte X
Synchronous Interrupt = 00
Asynchronous Interrupt = 01

1 (1) Reserved 3X

4 (4) Device address F

8 (8) Channel status word (CSW) D

10 (16) Sense bytes 6F

28 (40) End

If there was a unit check and the sense data could not be obtained, then the
first two bytes of the sense data will contain X'107E'.

Even though it may be a condition code 3 (DEVICE NOT OPERATIONAL),
the condition code from the I/O operation will be in byte 0 of the interrupt
control block's CSW.

If the ST ARTR parameter was specified, then the CCW address in the
channel status word will be a real address.

Program controlled interrupts (PCls) do not result in the scheduling of a
user's exit routine. Rather, the CSW stored as the result of a PCI will be
saved in the interrupt control block.

Keep in mind that the following three GENIO macro instructions are issued
by the same program, affecting the same device.

GENIO OPEN,DEV=(2),EXIT=GOODBYE

The program requests that a certain device be opened. The address of the
device can be found in register 2. When an interrupt occurs on this device,
the exit routine at the address associated with the label GOODBYE is to
receive control.

GENIO START,DEV=(2),CCW=(3)

The program now asks that the device. it just opened be started. Register 3
contains the address of the first CCW in the channel control program to be

Chapter 7. Unauthorized GCS Service Macros 199

GENIO

executed. If the device is not busy, then the I/O operation is begun. When
the operation is finished, the exit program at the address associated with
the label GOODBYE receives control.

GENIO CLOSE,DEV=DEVADDR

Since the program no longer needs the device, it asks that it be closed. The
address of the device can be found at the address associated with the label
DEVADDR.

Return Codes and ABEND Codes

When the GENIO macro completes execution, it passes to the caller a
return code in register 15.

General Return Codes:

Return
Code Meaning

0 Function completed successfully.

48 An invalid function was requested.

52 No device address was specified.

For the OPEN Function:

Return
Code Meaning

4 DASD devices cannot be opened as general I/O devices.

8 The specified I/O device does not exist.

12 The specified device is already opened.

16 You did not specify the address of an exit routine.

For the CLOSE function:

Return
Code Meaning

4 The specified device is not opened.

8 The program that closes a device must be the same as
the one that opened it.

12 An 1/0 exit routine cannot issue the GENIO macro
instruction with the CLOSE parameter specified.

200 VM/SP GCS Command and Macro Reference

GENIO

For the CHAR function:

Return
Code Meaning

8 The device specified does not exist.

12 The data area for storage of the device characteristics
was not specified.

For the MODIFY function:

Return
Code Meaning

4 No I/O is active on the device.

8 The device is not open or not operational.

12 The specified CCW address is not accessible to you.

16 The specified CCW address does not fall on a
doubleword boundary.

20 No CCW could be found that corresponds with the
specified address and/or device.

24 The CCW is neither a TIC nor a NOP instruction.

28 The new address of the modified CCW TIC instruction
is not accessible to you.

(- 32 The new address of the modified CCW TIC instruction
does not fall on a doubleword boundary.

36 DEVICE END and CHANNEL END have already
occurred.

44 The modified CCW cannot be a Nap instruction with
command chaining if it is the last CCW in a real
channel control program.

56 Since the I/O is queued, there is no reason to issue a
GENIO MODIFY instruction.

60 No CCW address was specified.

For the START or ST ARTR functions:

Return
Code Meaning

4 Your virtual machine is not authorized for real I/O.

8 The specified I/O device is not open.

12 The specified I/O device is busy.

16 Channel control word (CCW) address was not specified.

20 You cannot perform real I/O functions while in key O.

24 A real I/O device is required for the STARTR function.

c
Chapter 7. Unauthorized GCS Service Macros 201

GENIO

For the HALT function: CJ
Return
Code Meaning
8 The specified I/O device is not open.

12 The I/O activities of the device could not be halted.

16 The specified device is not operational.

ABEND Reason Meaning
Code Code
FCA 0500 The specified parameter list is invalid.

FCA 0501 Youi' task is not authorized to perform real
I/O functions.

" 0·
'

202 VM/SP GCS Command and Macro Reference

------------~----

(- The List Format

[1 abe 1] GENIO

(

Added Parameter

(-

(

GENIO

.
OPEN[.EXIT=exit] [.UWORD=uword] .MF=L

CLOSE

CHAR[.DATA=address]

MODIFY[.CCW=address]

START[.CCW=address]

STARTR[.CCW=address]

HALT

This format of the macro instruction generates an in-line parameter list,
based on the parameter values that you specify. However, this format
generates no executable code. Remember that you cannot specify any of
the parameters using register notation. Also, note that only the parameters
listed above are valid in the list format of this instruction.

MF=L
Specifies the list format of this macro instruction.

Chapter 7. Unauthorized GCS Service Macros 203

GENIO

The list Address Format

Added Parameter

This format of the macro instruction does not produce any executable code
that invokes the function. However, it does produce executable code that
moves the parameter values that you specify into a certain parameter list.
If you issue the instruction using this format, then you must do so before
any related invocation of the instruction using the execute format.

MF = (L,address[,label])
ADDRESS specifies the address of the parameter list into which you
want the parameter values you mention placed. This address can be
within your program or somewhere in free storage.

LABEL is a user-specified label, indicating that you want to determine
the length of the parameter list. The macro expansion equates the
label you specify with the length of the parameter list.

04 VMjSP GCS Command and Macro Reference

(The Execute Format

Clabel] GENIO

Added Parameter

c

- -- ---.. --~---------

OPEN C. EX IT=::ex; tJ C ,UWORD=uwordJ • MF= (E, address)

CLOSE

CHARC.DATA=address]

MOD~FYc,CCW=addressJ

Sf ARTC.CCW=addressJ

STARTRC.CCW=ccwJ

HALT

~DEV=dev[.ERROR=addrJ

GENIO

This format of the macro instruction generates code that executes the
function, using a parameter list whose address you specify.

Note that only the parameters listed above are valid in the execute format
of this instruction.

MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the
macro.

You can add or modify values in this parameter list by specifying them
in this instruction.

Chapter 7. Unauthorized GCS Service Macros 205

GENIO

,/

)

o
206 VM/SP GCS Command and Macro Reference

AUTHNAME .. 208
LOCKWD ... 215
MACHEXIT ... 219
PGLOCK .. 226
PGULOCK ... 228
SCHEDEX .. 230
TASKEXIT .. 233
VALIDATE .. 240

(

c
Chapter 8. Authorized GCS Service Macros 207

AUTHNAME

AUTHNAME

Define or Withdraw the Name of an Authorized Program that is to be Called by an
Unauthorized Program

Parameters

An important feature of GCS is that it permits an authorized program to be
called by an unauthorized program.7 The authorized program resides in a
shared segment that was linked to its virtual machine at GCS initialization
time. The unauthorized application resides in one of the virtual machines
that makes up the virtual machine group.

The AUTHNAME macro instruction creates (or clears, depending on your
intent) a control block that contains information the unauthorized program
needs to call the authorized program. This information includes, among
other things, the name by which the authorized program is known by the
various applications within the virtual machine group; the address of the
authorized program; the key in which the calling program is running; the
state of the calling program (problem or supervisor); and the address of a
user-defined fullword, which will be described later.

The AUTHNAME macro instruction is available in standard, list, list
address, and execute formats.

The standard format of the AUTHNAME macro instruction is:

SET
Indicates that a control block is to be created for the authorized
program in question.

Once this is done, the unauthorized program will be able to call the
authorized program.

7 In this context, an "authorized program" is one running in supervisor state.
An "unauthorized program" is one running in problem state.

208 VM/SP GCS Command and Macro Reference

(

(

(/

EP

AUTHNAME

Specifies the address of the authorized program in question.

The authorized program must be resident in a shared segment. That
is, it must be a program whose entry point is defined in a shared
segment directory that was created via the CONTENTS macro
instruction. If necessary, review the entry titled "CONTENTS" on
page 496.

This parameter is required when you use the SET option. The
parameter is meaningless with the CLR parameter.

You can write this parameter as an assembler program label or as
register (2) through (12).

UWORD

CLR

A full word of storage in the control block that you can use in any way
you please.

For example, perhaps the authorized program expects the address of a
parameter list or some other value be passed to it. You can use the
UWORD for that, if you wish. However, this parameter has meaning
only when used with the SET parameter.

You can write this parameter as an assembler program label or as
register (2) through (12). If you write it as a label, then the label itself
is placed in the UWORD field of the control block. If you write it as a
register, then the contents of that register are placed in the UWORD
field. If you omit this parameter altogether, then it is passed as a
fullword of zeroes.

Indicates that the authorized program in question is no longer needed
by any unauthorized program. Therefore, the control block for the
authorized program is cleared away.

NAME
Specifies the name by which the authorized program is known to the
unauthorized program.

If you choose the SET parampter, then thjR name refers to the
authorized program for which a control block is to be created. If you
choose the CLR option, then the name refers to the authorized
program that is no longer needed and whose control hlock is to be
cleared.

Note that this name can be no more than eight characters long.

You can write this parameter as the name of the program itself,
surrounded by single quotation marks. Or, you can write it as register
(2) through (12). If you do the latter, then the register must contain
the address where the name js stored.

Chapter 8. Authorized GCS Service Macros 209

AUTHNAME

Usage Notes

ERROR
Specifies the address of the routine that is to receive control if an
error occurs in the AUTHNAME macro.

You can omit this parameter if you wish, test the return code from the
macro, and proceed in an appropri~te manner.

Otherwise, you can write this parameter as an assembler program
label or as register (2) through (12).

• The authorized program is always loaded at GCS initialization time. It
is possible for one virtual machine to invoke this program after another
machine has cleared it. This is due to the time lag between issuing the
CLR function and completing it. The authorized program should be
designed with this in mind. If necessary, review the entry titled
"AUTHCALL" on page 182.

• It is impossible for an unauthorized program to call an authorized
program via the AUTHCALL macro unless the AUTHNAM~ macro has
been issued for the authorized program first. The control block created
by the AUTHNAME macro is, in effect, "permission" for an
unauthorized program to call an authorized program.

• Generally, the AUTHNAME macro is issued by an authorized program
(RSCS or VTAM, for example) on behalf of unauthorized programs.

•. The authorized program called by the unauthorized program (via
AUTHCALL) will have the same PSW key as the program that issued
the corresponding AUTHNAME instruction.

• The AUTHNAME macro places the control block for an authorized
program in common storage. Hence, any unauthorized application in
the group can call it.

210 VM/SP GCS Command and Macro Reference

o

(' Examples

AUTHNAME

AUTHNAME SET,NAME=BLUE,EP=(3)

Make an authorized program available to unauthorized programs. The
authorized program will be known to the unauthorized programs as BLUE.
The address of this authorized program is in register 3.

AUTHNAME SET,NAME=RED,EP=PURPLE,ERROR=REDERR

Make an authorized program available to unauthorized programs. The
authorized program will be known to the unauthorized programs as RED.
This program can be found at the address associated with the label
PURPLE. If an error occurs in the AUTHNAME macro, control will be
transferred to the routine at the address associated with the label RED ERR.

(Return Codes and ABEND Codes

(

When this macro completes processing, it passes to the caller a return code
in register 15.

Return Meaning
Code

0 Request was completed normally.

4 A control block already exists for this authorized
program.

8 The address you specified for the EP parameter is not
in a shared segment.

24 Parameter list is invalid.

44 No authorized program has the name you specified.

Chapter 8. Authorized GCS Service Macros 211

AUTHNAME

The List Format

Added Parameter

This format of the macro instruction generates an in-line parameter list
based on the parameter values that you specify. However, this format
generates no executable code. Remember that you cannot specify any of
the parameters using register notation. Also, note that only the parameters
listed above are valid in the list format of this instruction.

MF=L
Specifies the list format of this macro instruction.

212 VM/SP GCS Command and Macro Reference

o

-------~---~

AUTHNAME

(The List Address Format

[label] AUTHNAME

';,

(

Added Parameter

(

(

c

[SET. [EP:addr] [.UWORo:addrJ] .NAME='name'
CLR -

.MF-(L.address[.labelJ)

This format of the macro instruction does not produce any executable code
that invokes the function. However, it does produce executable code that
moves the parameter values that you specify into a certain parameter list.
If you issue the instruction using this format, then you must do so before
any related invocation of the instruction using the execute format.

Note that only the parameters listed above are valid in the list address
format of this instruction.

MF = (L,address[,label])
ADDRESS specifies the address of the parameter list into which you
want the parameter values you mention placed. This address can be
within your program or somewhere in free storage.

LABEL is a user-specified label, indicating that you want to determine
the length of the parameter list. The macro expansion equates the
label you specify with the length of the parameter list.

Chapter 8. Authorized GCS Service Macros 213

AUTHNAME

The Execute Format

Added Parameter

This format of the macro instruction generates code that executes the
function using a parameter list whose address you specify.

Note that only the parameters listed above are valid in the list address
format of this instruction.

MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the
macro.

You can add or modify values in this parameter list by specifying them
in this instruction.

214 VMjSP GCS Command and Macro Reference

o

(

(

LOCKWD

LOCKWD

Acquire or Release a Lock on Common or Private Storage

[1 abeiJ LOCKWD

Parameters

GCS allows several virtual machines in a virtual machine group to share
common storage. This creates competition among the machines for access
to the shared storage. Likewise multitasking within a single virtual
machine creates competition among several tasks for access to local
resources. The word "resources" includes the virtual machine's private
storage, I/O devices, tapes, disks, etc.

The LOCKWD macro instruction helps you to manage this competition. It
can allow a virtual machine to acquire exclusive use of common storage
while it accesses, and possibly modifies, the data therein. Likewise it can
allow one of several tasks within a virtual machine to acquire exclusive use
of a private resource. Once the virtual machine or task is finished, it must
then reissue the LOCKWD macro instruction to release its lock so others
can use the resource.

The LOCKWD macro instruction is an authorized GCS function.

The format of the LOCKWD macro instruction is:

RELEASE . COMMON { ACQU I RE 1-LOCK =' [LOCAL }
TEST . ,

d·,'i.' 'i

ACQUIRE
Indicates that the virtual machine or task wants to establish the lock
specified in the instruction.

RELEASE
Indicates that the virtual machine or task wants to give up the lock it
acquired previously. That lock is specified in the instruction.

TEST
Indicates that the virtual machine or task wants to know if it holds a
lock on common storage.

This parameter is valid only with the LOCK = COMMON parameter.

Chapter 8. Authorized GCS Service Macros 215

LOCKWD

Usage Notes

LOCK
Indicates that the description of the lock to be acquired or released
follows.

LOCAL
Indicates that a task within a single virtual machine either
wants to acquire or release a lock on the machine's local
resources.

COMMON
Indicates that a virtual machine within a virtual machine group
wants to acquire or release a lock on the common storage shared
by the entire group.

• Before you acquire a lock on common storage, you must first acquire a
lock on your own local resources. This ensures that your task cannot
be interrupted by any other task also seeking a lock on common
storage.

• The supervisor acquires and releases locks on behalf of a virtual
machine or task.

• If a certain virtual machine holds a lock on common storage, then no
other virtual machine in the group may acquire that lock until it is
released. A virtual machine that requests a lock on common storage
already held by another machine is placed in the WAIT state.

• If a task within a virtual machine has obtained a lock on the machine's
private storage, then that task is disabled from interrupts. This means
that no other task within the virtual machine can interrupt until the
task holding the lock releases it. In effect, no other task in the machine
may run or obtain access to private storage until this time.

• There are two ways to release a lock:

A virtual machine or task explicitly reissues the LOCKWD macro
instruction with the RELEASE parameter and lock properly
specified.

A virtual machine or task that is holding a lock terminates.

• The LOCKWD macro instruction can help manage the natural
competition for storage access among virtual machines and among
tasks. But to realize only this would be to ignore LOCKWD's richer
ability to coordinate activity among virtual machines and among tasks.

216 VM/SP GCS Command and Macro Reference

/

o

('

Examples

LOCKWD

• Often an authorized program will be called to perform work on behalf of
an unauthorized program. Usually the authorized program runs in a
different key from the unauthorized program. In such cases, the
LOCKWD macro instruction is required before the authorized program
issues the VALIDATE macro instruction. Review the entry titled
"VALIDATE" on page 240.

• Some virtual machines and tasks run in supervisor state. Those that do
are able to inspect and modify the full word in storage that contains the
lock. Under no circumstances should this fullword be modified! This
privilege is strictly reserved to th~ GCS supervisor and to no one else.

• If you have requested a lock on common storage, you must be careful to
release that lock when you are through with your task. Failure to
release any lock can cause unnecessary and prolonged delays for other
virtual machines in the group that are waiting for access to common
storage.

LOCKWD ACQUIRE,LOCK=COMMON

The task requests a lock on common storage. Presumably, the task has
already acquired a lock on its own local resources.

LOCKWD TEST,LOCK=COMMON

The task wants to know if it holds the lock on common storage.

Return Codes and ABEND Codes

When this macro completes processipg, it passes to the caller a return code
in register 15.

General Return Codes:

Return Meanlng
Code

00 The lock was successfully acquired or released.

04 For an ACQUIRE request, this return code means that
the virtual machine or task making the request already
holds the lock specified. For a RELEASE request, the
virtual machine or task making the request does not
hold the lock specified. .

Chapter 8. Authorized GCS Service Macros 217

LOCKWD

For the TEST function:

Return Meaning
Code

0 The lock is free.

4 Your machine and task hold the lock on common
storage.

S Another machine and task hold the lock on common
storage.

AB~ND Meaning
Code
0600 Your task does not hold a lock on its local resources.

Your task must aGquire a loclt on its local resources
before it tries to acquire a lock on common storage.

\

o
218 VM/SP GCS Command and Macro Reference

("

(

(

MACHEXIT

MACHEXIT

Declare or Cancel a Machine Termination Exit Routine for a Virtual Machine Group

Often it is useful to declare a machine termination exit routine for your
entire virtual machine group. This routine will receive control when one of
the virtual machines in the group resets.8

To illustrate, let us say that a virtual machine group is processing a certain
file. The authorized machine that is managing the effort needs to know if
another member of the group resets so it can make certain adjustments in
the pro~essing. A machine termination exit routine may be provided to
analyze the situation that caused a machine to reset. The exit routine may
then make the necessary adjustments or it may communicate with the
managing authorized machine so that the latter can make the adjustments.

A machine termination exit routine can help your virtual machine group
manage its common storage. A machine termination exit routine can also
perform CP SENDs to a machine, if it is running disconnected and if the
user performing the SENDs is defined as the secondary user of the target
machine.

Use the MACHEXIT macro instruction to declare or cancel a machine
termination exit routine for an entire virtual machine group.

The MACHEXIT macro instruction is an authorized GCS function.

The MACH EXIT macro instruction is available in standard, list, list
address, and execute formats.

8 A virtual machine is reset under one of the following conditions: LOGOFF,
IPL, when certain machine checks occur, and when certain authorized
commands are issued, namely SYSTEM RESET, SYSTEM CLEAR, DEFINE
STORAGE, SET ECMODE, and DEFINE CHANNELS. A virtual machine
also resets when its GCS supervisor terminates abnormally or when it issues
the IUCV SEVER or IUCV RETRIEVE BUFFER instruction. It may also be
forced to reset by the CP operator.

Chapter 8. Authorized GCS Service Macros 219

MACHEXIT

Parameters

The standard format of the MACHEXIT macro instruction is:

SET

CLR

Indicates that you are declaring a machine termination exit routine
for your virtual machine group.

Indicates that you are cancelling a machine termination exit routine (

EP

that was previously declared for your virtual machine group.

Any authorized virtual machine in the group can cancel such a
routine. It is not necessary that the routine be cancelled by the same
machine that declared it.

Specifies the address of the machine termination exit routine that you
are declaring.

The routine in question must be resident in a shared segment. That is,
a routine whose entry point is defined in a shared segment directory
that was created via the CONTENTS macro instruction. If necessary,
review the entry titled "CONTENTS" on page 496.

You can write this parameter as an assembler program label or as
register (2) through (12).

UWORD
Specifies a fullword of data that you want passed to the machine
termination exit routine, if it ever gains control.

You can use this parameter to pass any information you please.

If you write this parameter as an assembler program label, then the
address associated with that label is passed to the exit routine. If you
write it as register (2) through (12), then the contents of the register
are passed to the routine.

NAME
Specifies a one to eight-character name that identifies the machine
termination exit routine to the MACHEXIT macro.

This name must not be confused with the routine's module name,
program name, or entry point name. The name referred to by this
parameter is simply a character string used to identify the routine to

220 VM/SP GCS Command and Macro Reference

/

o

(

Usage Notes

(

MACHEXIT

the MACH EXIT macro. Outside the MACHEXIT macro environment,
this name is meaningless.

Not every authorized machine in the group knows the routine's
address. Hence, this option provides a way for any authorized
machine to refer to the exit, as, for example, when clearing it.

Note that the name for the routine is declared by the authorized
machine that declares the exit routine in the first place. That
machine must supply both the name and the address of the routine
being declared, thereby associating the name with the address.

You can write this parameter as the name itself or as register (2)
through (12). If you store it as a name less than eight characters long,
and specify it using a register, then it must be padded on the right
with blanks. A name consisting of more than eight characters would
be truncated. GCS does not allow a name consisting of all blanks. If
you write it as a register, then the register must contain the address of
the name.

ERROR
Specifies the address of an error routine that will receive control if an
error occurs in the MACHEXIT macro.

If you omit this parameter and an error occurs, then control will
return to the instruction following the MACHEXIT instruction, just
as it would were there no error.

You can write this parameter as an assembler program label or as
register (2) through (12).

• Only an authorized virtual machine can issue the MACHEXIT macro
instruction.

• A machine termination exit routine always runs in the recovery
machine designated for the virtual machine group. Moreover, it runs in
the same key as that of the virtual machine that declared it, and it
always runs in supervisor state.

• An authorized member of a virtual machine group can declare more
than one machine termination exit routine for the group. Each will run
in the event one of the machines in the group resets. However, the
routines will not necessarily run in the order in which they were
declared.

• A machine terJllination exit routine is always associated with the task
that declared it. When a task terminates, any machine termination exit
routine it may have declared is cancelled.

Chapter 8. Authorized GCS Service Macros 221

MACHEXIT

o
• In Ii typical scenario, a machine termination exit routine may be \,,)

scheduled for execution when one virtual machine resets and later be
cancelled by another virtual machine. Nevertheless, the routine would
still run because it has already been scheduled. You should take this
into account when designing your over-all processing procedure.

• No machine termination exit routine can receive control via the
AUTHCALL macro instruction. Such a routine receives control only if
it is properly declared via the MACH EXIT instruction and if some
virtual machine within the group resets.

• When the machine termination exit routine receives control, its
registers contain the following.

Register Contents

0 Bits 0 - 15: The machine ID of the virtual machine
that was reset.

Bits 16 - 31: Reserved.

1 The UWORD parameter specified in the MACHEXIT
instruction that declared the routine.

13 The address of a 72-byte save area.

14 The return address.

15 The address of the entry point in the exit routine.

Return Codes and ABEND Codes

When this macro completes processing, it passes to the caller a return code
in register 15.

Return Meaning
Code

0 Function completed successfully.

4 The specified machine termination exit routine has
already been declared.

8 The specified machine termination exit routine is not
in common storage.

24 Invalid parameter list.

44 The name of the machine termination exit routine that
you want to cancel could not be found.

222 VM/SP GCS Command and Macro Reference

o

(The List Format

[labelJ MACHEXIT

Added Parameter

(

c

MACHEXIT

MF:L[,SET[,EP=addreSSJ
,CLR

[,UWOROJ] [,NAME= {~~~e}]

This format of the macro instruction generates an in-line parameter list
based on the parameter values that you specify. However, this format
generates no executable code. Remember that you cannot specify any of
the parameters using register notation. Also, note that only the parameters
listed above are valid in the list format of this instruction.

MF=L
Specifies the list format of this macro instruction.

Chapter 8. Authorized GCS Service Macros 223

MACHEXIT

The List Address Format

Added Parameter

This format of the macro instruction does not produce any executable code
that invokes the function. However, it does produce executable code that
moves the parameter values that you specify into a certain parameter list.
If you issue the instruction using this format, then you must do so before
any related invocation of the instruction using the execute format.

Note: Only the parameters listed above are valid in the list address format
of this instruction.

MF = (L,address[,label])
ADDRESS specifies the address of the parameter list into which you
want the parameter values you mention placed. This address can be
within your program or somewhere in free storage.

o

LABEL is a user-specified label, indicating that you want to determine"")
the length of the parameter list. The macro expansion equates the
label you specify with the length of the parameter list.

o
224 VMjSP GCS Command and Macro Reference

(The Execute Format

[labelJ MACHEXIT

Added Parameter

(

(

(

c

MACHEXIT

MF=(E.address)

[. S ETC. EP=addrl
.CLR

[.UWORDJ] [.NAME: {~~~e Jl C. ERROR=addrJ

This format of the macro instruction generates code that executes the
function using a parameter list whose address you specify.

MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the
macro.

You can add or modify values in this parameter list by specifying them
in this instruction.

Chapter 8. Authorized GCS Service Macros 225

PGLOCK

PGLOCK

Lock a Certain Page of Virtual Storage into Real Storage

If your program perfOrms rea.l 1/0 operations, then the pages of storage used
for these operations must be locked into real storage.

The PGLOCK macro instruction locks a specified page of your virtual
storage into real storage. This makes the page ineligibie for page-out.

The PGLOCK macro instruction is an authorized GCS function.

The format of the PGLOCK macro instruction is:

I Il.beh•..• IpGLocK>{<re9). j
Parameter

Usage Notes

reg
Specifies the register that contains the address. of the virtual page to
be locked into real storage.

You can write this parameter as register (0) or as register (2) through
(12).

• The task that issues the PGLOCK macro instruction must be running in
supervisor state. Moreover, the DIAG98 parameter must be specified in
the OPTION control statement in the virtual machine's directory entry.

• Use of the PGLOCK macro instruction can enhance your program's
efficiency by making the CP virtual-to-real translation step
unnecessary. Moreover, it rids the system of the need to repeatedly
lock and unlock pages of your storage every time you perform an input
or output operation.

• The PGLOCK macro returns the real address of the locked page in
register 1.

• If the address you specify for the page is not on a page boundary, then
the page that contains that address will be locked into real storage.

226 VM/SP GCS Command and Macro Reference

/

o

c-

PGLOCK

• There are two ways for a page locked by the PGLOCK macro to be
unlocked:

The task that issued the PGLOCK macro instruction terminates.

A task explicitly issues the PGULOCK macro instruction, correctly
specifying the virtual address of the page to be unlocked.

• A supervisor state program often must build a channel control program
in real storage. When it does, it should use the PGLOCK instruction to
lock into real storage the page in which it is building the channel
control program. If necessary, review the entry titled "GENIO" on
page 194.

• If you engage in real input/output activities, you must observe certain
restrictions.

First, the storage size declared for your virtual machine must be large
enough to accommodate the page you wish to lock.

Second, the storage size declared for your virtual machine group's
recovery machine must be at least as large as that declared for your
machine. This is to allow for the possibility that the recovery machine
may be called upon to process exit routines you specified via the
GENIO macro instruction. If necessary, review the entry titled
"GENIO" on page 194.

Return Codes and ABEND Codes

The PGLOCK macro generates no ABEND codes.

When this macro completes processing, it passes to the caller a return code
in register 15.

Return Meaning
Code
00 Function completed successfully.

04 The user is running V = R.

08 The virtual address of the page in question is invalid.

12 GCS is unable to lock the specified page. No real page
frames are available.

16 The specified page is already locked.

20 The virtual machine issuing this instruction is not
authorized to perform any real I/O operations.

Chapter 8. Authorized GCS Service Macros 227

PGULOCK

PGULOCK

Unlock a Certain Page of Virtual Storage that was Locked in Real Storage Using
PGLOCK

Parameter

Usage Notes

If you need to lock a certain page of virtual storage into rel;ll storage, you
should take care to release it when it is no longer needed. Otherwise you
tie up an important resource.

The PGULOCK macro instruction unlocks a certain page of virtual storage
that was previously locked in real storage using the PGLOCK macro
instruction. Unlocking such a page makes it eligible for page-out once
again.

The PGULOCK macro instruction is an authorized GCS function.

The format of the PGULOCK macro instruction is:

reg
Specifies the register that contains the address of the virtual page to
be unlocked from real storage.

You can write this parameter as register (1) through (12).

• The task that issues the PGULOCK macro instruction must be running
in supervisor state. Moreover, the DIAG98 parameter must be in the
OPTION control statement in the virtual machine's directory entry.

• If a PGULOCK macro instruction is not issued for a page that is locked,
then the page is automatically unlocked when the task that locked it
terminates.

• A locked page does not necessarily have to be unlocked by the same
task that locked it.

228 VM/SP GCS Command and Macro Reference

o

o

PGULOCK

(Return Codes and ABEND Codes

(

(

(

c-

The PGULOCK macro generates no ABEND codes.

When this macro completes processing, it passes to the caller a return code
in register 15.

Return Meaning
Code

00 Function completed successfully.

04 The user is running V = R.

08 The virtual address of the page in question is invalid.

12 The specified page is not locked.

16 The virtual machine issuing this instruction is not
authorized to perform any real I/O operations.

Chapter 8. Authorized GCS Service Macros 229

SCHEDEX

SCHEDEX

Schedule an Exit to a Specific Task

Parameters

One feature of GCS is that it permits virtual machines to work together in
virtual machine groups. A virtual machine group consists of several virtual
machines sharing common storage and, usually, a common purpose. Within
each virtual machine more than one task can be running simultaneously.

For a variety of reasons, one task may decide that it needs another task to
perform work for it. The SCHEDEX macro instruction will schedule an
exit to that task. This means that the next time the second task is
dispatched the exit receives control so it can perform the needed work.

The SCHEDEX macro instruction is an authorized GCS function.

The format of the SCHEDEX macro instruction is:

ID
Specifies the identifier of the virtual machine that contains the task
requesting the exit, and the identifier of the task to which an exit is to
be scheduled.

This is a fullword parameter containing the virtual machine
identification in the high-order halfword and the task identification in
the low-order halfword.

If the task ID is zero, then the task identification will be the SYSTEM
TASK, by default.

You can write this parameter as an assembler program label, as
register (0), or as register (2) through (12). If you write it as a label,
then the machine and task identifiers must be at the address
associated with that label. If you write it as a register, then the
machine and task identifiers must be in that register. In either case,
GCS expects that they be in the proper format.

230 VM/SP GCS Command and Macro Reference

j

o

Usage Notes

(

(

c

SCHEDEX

EXIT
Specifies the address of the exit routine to be scheduled.

This routine must be in a shared segment that was linked to the
virtual machine at GCS initialization time. Once the task is
dispatched, it receives control.

You can write this address as an assembler program label, as register
(2) through (12), or as register (15).

UWORD
Specifies an optional fullword parameter that can be passed to the exit
routine in question.

You can use this parameter to pass any information you wish.

You can write this parameter as an assembler program label or as
register (1) through (12). If you write it as an assembler program
label, then the address of the label is passed to the exit routine. If you
write it as a register number, then the contents of that register will be
passed to the exit routine. If this parameter is not specified, then it is
passed with a value of zero.

• It is important to realize that the SCHEDEX macro does not turn
control over to any task. It merely schedules an exit to the appropriate
task, which receives control only when it has been dispatched.

• The use of SCHEDEX certainly is not limited to one virtual machine.
Note that the purpose of the ID parameter is not only to identify the
task in question but also the virtual machine in which it resides. For
example, TASK X, residing in VIRTUAL MACHINE A, can schedule an
exit to TASK Y, which resides in VIRTUAL MACHINE B.

• The task issuing the SCHEDEX macro instruction resumes normal
execution when it receives the return code from the macro. It does not
wait for the scheduled exit routine to run but proceeds to its own next
executable statement.

• Any exit routine scheduled via the SCHEDEX instruction runs in key o.

• A zero return code from the SCHEDEX macro does not necessarily
mean that the exit has been scheduled. What it does mean is that the
request has been sent to CPo If the virtual machine wherein the exit
resides is part of the group, then the exit will be scheduled.

Chapter 8. Authorized GCS Service Macros 231

SCHEDEX

Example

IDENT

SCHEDEX ID=IDENT,EXIT=(3)

DC H'2'
DC H'4'

Schedule an exit on the virtual machine, whose machine ID is 2, and on a
task therein, whose task ID is 4. The address of the routine to receive
control is in register 3.

Input to the Exit Program

The program to which an exit is scheduled receives the following
information in its registers. .

Register 1 The user word (UWORD) specified in the
SCHEDEX instruction.

Register 13 The address of the register save area.

Register 14 The address to which control is to return once
the exit program completes execution.

Register 15 The address of the entry point in the exit
program.

Return Codes and ABEND Codes

When this macro completes processing, it passes to the caller a return code
in register 15.

Return Meaning
Code

0 Your request has been sent to CPo

4 The virtual machine identifier that you specified was
invalid.

8 The address of the exit routine you specified is not in a
shared segment.

12 The task identifier is invalid. This return code is
meaningful only if the exit is scheduled to run on your
virtual machine.

ABEND Reason Meaning
Code Code

FCB OAOl Insufficient storage was available to satisfy a
GETMAIN instruction that the system
issued.

232 VMjSP GCS Command and Macro Reference

/'

o

(

(

(

TASKEXIT

TASKEXIT

Declare a Task Termination Exit Routine for an Entire Virtual Machine Group

[label] TASKEXIT

Parameters

A task termination exit routine, declared for an entire virtual machine
group, gains control whenever a task running within the group
terminates-either normally or abnormally.

There are several good reasons for declaring such an exit routine for a
virtual machine group. For example, several subsystem applications may be
running in various virtual machines within the group. Having a task
termination exit routine declared might help the subsystem clean up after
itself, monitor the various applications, and react to their progress.

Use the TASKEXIT macro instruction to declare a task termination exit
routine for an entire virtual machine group.

The TASKEXIT macro instruction is an authorized GCS function.

The TASKEXIT macro instruction is available in standard, list, list address,
and execute formats.

The standard format of the T ASKEXIT macro instruction is:

[. ERROR=addrJ
{ SET ~ EP=addr[.uwORo:::addrJ}.N.A ... M.· .•. E.= t ••..• :.{c.'~.; ··.c.· ... ~ .. } \,Y'eg:l ster

CLR ';e,.·/'
, ., ,~-;. ". .

SET

CLR

Indicates that you are declaring a task termination exit routine for
your entire virtual machine group.

Indicates that the task termination exit routine you specify is to be
cancelled.

Chapter 8. Authorized GCS Service Macros 233

TASKEXIT

EP
Specifies the address of the task termination exit routine in question.

This exit routine must reside in a shared segment. That is, a routine
whose entry point is defined in a shared segment directory that was
created via the CONTENTS macro instruction. If necessary, review
the entry titled "CONTENTS" on page 496.

You can write this parameter as an assembler program label or as
register (2) through (12).

UWORD
Specifies a full word of data you want passed to the task termination
exit routine if it ever gains control.

You can use this parameter to pass any information you please.

If you write this parameter as an assembler program label, then the
address associated with that label is passed to the exit routine. If you
write it as register (2) through (12), then the contents of the register
are passed to the routine.

NAME
Specifies a name used in any T ASKEXIT instruction to refer to a
certain task termination exit routine.

Do not confuse this name with the name of any entry point within the
exit routine or with the name of the routine itself. This name is
merely an identifier used by the TASKEXIT macro to distinguish one
task termination exit routine from another. The name is meaningless
outside the TASKEXIT macro environment.

This name can contain up to eight characters.

There are two ways of coding this name in the T ASKEXIT instruction:

• Write the actual name itself.

• Write a register number from (2) through (12). The register you
specify must contain the address where the name can be found. If
the name is less than eight characters long, then it must be padded
on the right with blanks.

ERROR
Specifies the address of an error routine that is to receive control if an
error is found in the TASKEXIT macro.

If you omit this parameter and an error occurs, then control will
return to the instruction following the TASKEXIT instruction, just as
it would were there no error.

234 VM/SP GCS Command and Macro Reference

J

c

(- Usage Notes

(

(

<.

c~

TASKEXIT

• Only an authorized user can issue the T ASKEXIT macro instruction.

• The exit routine that you define via the T ASKEXIT instruction must
reside in a shared segment.

• Remember that the identifier you specify in the NAME parameter is
strictly for your benefit and that of the T ASKEXIT macro. To specify
the SET and NAME parameters together is, in effect, to "declare" the
name that is to be associated with the exit routine in question.

• You can declare more than one task termination exit routine for your
virtual machine group. However, since the TASKEXIT instruction can
declare only one exit routine at a time, you will have to issue it more
than once. Each exit routine that you declare will run when a task in
your virtual machine group terminates. However, the order in which
they will run is unpredictable.

• GCS associates the PSW key and the enable flags of the task that issues
the TASKEXIT instruction with those of the task termination exit
routine.

• A task termination exit routine always runs in supervisor state.
Moreover, it is eligible for the same types of interrupts as the task that
declared it.

• Remember that besides the task termination exit routine declared for
the entire group, an individual task may have its own exit routines
declared. For example, you may have defined an exit routine via the
ESATE macro instruction that will run if the task terminates
abnormally.

•

Should this be the case, and the task terminates, GCS sees to it that the
task's exit routines are run first. Afterward the task termination exit
routine is executed.

When the task that declared the task termination exit routine
terminates, then the latter executes one last time. After that, it
disappears.

Chapter 8. Authorized GCS Service Macros 235

TASKEXIT

Example

• When the task termination exit routine gains control, its registers
contain the following:

Register Contents

0 The high-order two bytes contain the virtual
machine id in which the terminated task was
running. The low-order bytes contain the task id.

1 The UWORD.

13 Address of the register save area.

14 Return address within the GCS supervisor.

15 The address of the task termination exit routine.

DCLTE TASKEXIT SET,EP=(4),NAME=TE6,ERROR=(7)

An authorized member of a virtual machine group wants to define a task
termination exit routine for its entire group. The entry point of this
routine is at the address in register 4. Since this routine is being newly
defined, the authorized member declares the name TE6 for the routine. The
address of the error routine is in register 7. DCLTE is the label on this
instruction.

Return Codes and ABEND C;:odes

When this macro completes processing, it passes to the caller a return code
in register 15.

Return Meaning
Code

0 Function completed successfully.

4 This task termination exit routine has already been
declared for this virtual machine group.

8 The address you specified for the task termination exit
routine is not in a shared segment.

24 Invalid parameter list.

44 You specified the CLR parameter with the name of a
task termination exit routine. However, no such name
could be found for a task termination exit routine.

236 VMjSP GCS Command and Macro Reference

r--~
< \

I.) ,.

,/ "'.,

j

/

o

(~ The List Format

(
Added Parameter

(

(

TASKEXIT

[.N.AME= {nam~ } ..] .. MF=L . reg' ster
. ., ,

This format of the macro instruction generates an in-line parameter list
based on the parameter values that you specify. However, this format
generates no executable code. Remember that you cannot specify any of
the parameters using register notation. Also, note that only the parameters
listed above are valid in the list format of this instruction.

MF=L
Specifies the list format of this macro instruction.

Chapter 8. Authorized GCS Service Macros 237

TASKEXIT

The List Address Format

Added Parameter

This format of the macro instruction does not produce any executable code
that invokes the function. However, it does produce executable code that
moves the parameter values that you specify into a certain parameter list.
If you issue the instruction using this format, then you must do so before
any related invocation of the instruction using the execute format.

Note that only the parameters listed above are valid in the list address
format of this instruction.

MF = (L,address [,label])
ADDRESS specifies the address of the parameter list into which you
want the parameter values you mention placed. This address can be
within your program or somewhere in free storage.

LABEL is a user-specified label, indicating that you want to determine
the length of the parameter list. The macro expansion equates the
label you specify with the length of the parameter list.

238 VM/SP GCS Command and Macro Reference

o

(The Execute Format

[label] TASKEXIT
" "

(Added Parameter

(

c

TASKEXIT

[SET. EP=addrC,UWORo=addrJ]
CLR

[.NAME= {nam~} 1 reglster

,MF=(E,address)

This format of the macro instruction generates code that executes the
function using a parameter list whose address you specify.

Note that only the parameters listed above are valid in the execute format
of this instruction.

MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the
macro.

You can add or modify values in this parameter list by specifying them
in this instruction.

Chapter 8. Authorized GCS Service Macros 239

VALIDATE

VALIDATE

By Comparing Keys, Confirm that a Virtual Machine, Program, etc., Has Access to a
Particular Area of Storage

Virtual machines, tasks, and programs constantly request access to areas of
storage. This does not necessarily mean that they are entitled to have each
request granted. Each 2-kilobyte block of storage has a key associated with
it. This key governs access to the storage block and protects the data there
against unauthorized use.

What's more, there are two kinds of access available: fetch and store. If,
for example, a program has fetch access, it means that it can only obtain
data from the block. Fetch access prevents the program from actually
changing any of the data in the block. Store access, on the other hand,
allows a program to both obtain data from the storage block and alter the
data therein. Also there are programs that can be denied either type of
access.

The VALIDATE macro instruction confirms or denies that a program has ,/
access to a certain block of storage. If access is allowed, it indicates)

Parameters

whether the program can have fetch type access or store type access.

The VALIDATE macro instruction is an authorized GCS instruction.

The format of the VALIDATE macro instruction is:

ADDR
Specifies the starting address of the area of storage to which the
program wants access.

You can write this parameter as an assembler program label or as
register (1) through (12). If you write it as a label, then the address of
the label must be the starting address of the storage area in question.
If you write it as a register, then the register must contain this
starting address.

240 VMjSP GCS Command and Macro Reference

o

(

Usage Notes

(

KEY

VALIDATE

Specifies the key that will be compared with the key of the storage
area in question.

You can write this parameter as an assembler program label, as
register (0), or as register (2) through (12). If you write it as a label,
then the key must be contained in the four high-order bits of the byte
at the address associated with that label. If you write it as a register,
then the key must be in bits 24 through 27 of that register. If you do
not specify a key, then VALIDATE will use the key of the task that
issued the instruction.

LENGTH
The length of the storage area in question, in bytes.

If you omit this parameter, then the length is 1, by default.

You can write this parameter as an absolute expression, as register (2)
through (12), or as register (15). If you write the length as an absolute
expression, then it must be a positive integer between 1 and 224-1. If
you write it as a register, then the register must contain a positive
fullword integer within the same range.

• The VALIDATE instruction does not obtain access for any program. It
only tells whether a program is entitled to access a certain area of
storage and, if so, in what way it can access the storage.

• The supervisor determines whether the area of storage in question is
addressable. If it is, then the key specified in the VALIDATE macro
instruction is compared with the key of the area of storage in question.
If they do not match, the supervisor checks to see if the area of storage
is fetch protected. The appropriate return code is then passed to the
issuer of the macro.

• If the key of the storage area matches the key specified in the
VALIDATE macro instruction, or if the program is running in key 0,
then store access to the area is possible.

• If the keys do not match, the program is running in a key other than 0,
and the storage area is without fetch protection, then fetch access to
the area is possible.

• If the keys do not match, the program is running in a key other than 0,
and the storage area has fetch protection, then no access to the area is
possible.

Chapter 8. Authorized GCS Service Macros 241

VALIDATE

Examples

• Authorized programs often are asked to perform work on behalf of 0
unauthorized programs. Before an authorized program accesses an area ~/
of storage on behalf of an unauthorized program, it should confirm that
the latter is "sufficiently authorized" to have its work affect that
storage. This is one of the major applications of the VALIDATE macro
instruction. In addition, system routines frequently use the VALIDATE
instruction to accomplish much the same thing.

• Before an authorized program issues the VALIDATE instruction, it
should place a lock on the storage in question via the LOCKWD
instruction. This is required to prevent the key of the storage from
changing. Review the entry titled "LOCKWD" on page 215.

VALIDATE ADDR=ADDRESS,KEY=KEYI

ADDRESS DS F'5672'
KEYI DS X'EO'

Confirm that the address is accessible by a program running in key 14.

VALIDATE ADDR=(6),KEY=(7),LENGTH=(3)

Confirm that the program running in the key stored in register 7 has access
to the storage area beginning at the address in register 6. The length of the
storage area in question is in register 3.

Return Codes and ABEND Codes

The VALIDATE macro generates no ABEND codes.

When this macro completes processing, it passes to the caller a return code
in register 15.

Return Meaning
Code
0 The key of the storage area matches the key specified

in the macro instruction or, if none was specified, the
key of the program that issued the instruction.

4 The keys do not match but the storage area has no
fetch protection. Therefore, fetch access is possible.

8 The keys do not match and the storage area has fetch
protection. Therefore, no type of access is possible.

12 The storage area in question is not addressable.

16 The specified length of the storage area is less than 0
or greater than 224_1 bytes.

242 VM/SP GCS Command and Macro Reference

o

(

(

c

FREEMAIN
GETMAIN

244
251

Chapter 9. Storage Management Service Macros 243

FREEMAIN

FREEMAIN

Free a Contiguous Block of Storage

Parameters

The storage management function of GCS enables a task to dynamically
obtain and free contiguous blocks of storage as required.

Use the FREEMAIN macro instruction to free a contiguous block of
storage.

The FREE MAIN macro instruction is available in standard, list, and
execute formats.

The standard format of the FREEMAIN macro instruction is:'

RC

RU

R

E or
EU

Indicates that your register request to free the storage is conditional.

Indicates that your register request to free the storage is
unconditional.

Indicates that your register request to free the storage is
unconditional.

Indicates that this is an unconditional request to free a certain
element of storage.

244 VM/SP GCS Command and Macro Reference

o

(

(

c

Vor
vu

LV

A

SP

FREEMAIN

Indicates that your request to free the storage is unconditional.

This storage was originally obtained by using the VC or VU parameter
on the GETMAIN instruction. Hence, it was a request for a variable
amount of storage.

Specifies the length, in bytes, of the storage block you want to free.

This length should be a multiple of eight. If it is not, then GCS
rounds it up to the nearest multiple of eight.

If the R parameter is specified, then LV = (0) can be coded as well. If it
is, then the high-order byte of register 0 must contain the storage
block's subpool number and the three low-order bytes must contain
the length of the storage block.

You can write this parameter as an assembler program label or as
register (2) through (12).

Specifies the address of a one or two-word list, starting on a fullword
boundary.

If you select the E, EU, R, RC, or RU parameter, then this list need
contain only one fullword. This word must contain the address of the
block of storage to be freed.

If you select the V or VU parameter, then this list must contain two
fullwords. The first word must contain the address of the block of
storage you want to free. The second word must contain the length of
this block, in bytes.

The storage block must begin on a doubleword boundary. Its length
must be a multiple of eight. If it is not, then GCS rounds the length
up to the nearest multiple of eight.

You can write this parameter as register (2) through (12) or as an
assembler program label. If you express it as a register, and if you
select the R, RC, or RU parameter, then the register must contain the
address of the block you want to free, not the address of any fullword
that contains that address. In this case you may also use register (1)
to specify the address.

Specifies the subpool associated with the storage block you want to
free.

A subpool is identified by a number from 0 to 255. A subpool number
describes the characteristics of the block of storage to which it is
assigned. The subpool number that you specify (explicitly or by

Chapter 9. Storage Management Service Macros 245

FREEMAIN

Examples

default) must be the same as you specified in the corresponding
GETMAIN macro instruction.

For a definition of all subpool numbers, review the section on the SP
parameter in the entry titled "GETMAIN" on page 251.

If you omit this parameter, the subpool number is 0, by default. You
can write it as an assembler program label or as register (2) through
(12). Or, if the R parameter is specified, then LV=(O) can be coded as
well. If it is, then the high-order byte of register ° must contain the
storage block's subpool number and the three low-order bytes must
contain the length of the storage block.

FREEMAIN RC,LV=400,A=(2),SP=10

The task requests that 400 bytes of storage in subpool 10 be freed. Register
2 contains the address of this storage block. Since this is a conditional
request, a: return code of 0 would result if the storage were indeed freed. If
it were not, then a return code of 4 would result and the storage in question
would remain unchanged.

GETMAIN VC LA=RANGE,A=DBLWD

FREEMAIN V,A=DBLWD

The task requested a variable amount of storage within a certain range.
This range was specified in the two-word list at the address associated with
the label RANGE. The task provided a two-word list at the address
associated with the label DBLWD. When GCS gave the storage to the task,
it stored the address of the storage block in the first word of this list. It
then stored the actual length of the storage block in the second word. The
task retained the values in this two-word list and later requested that the
same storage block be freed.

246 VM/SP GCS Command and Macro Reference

o

------ -- ._-----

FREEMAIN

(Return Codes and ABEND Codes

(

(

When this macro completes processing an unconditional request, it passes
to the caller a return code in register 15.

For the Re parameter only:

Return Meaning
Code

0 Function completed successfully.

4 Function was not completed.

ABEND Meaning
Code
305 A FREEMAIN macro instruction contained a subpool

specification error.

605 Either a FREE MAIN macro instruction contained an
invalid address in the A parameter or an invalid
parameter list address was passed to the macro.

705 An unrecoverable machine, system, or other error
occurred while processing the FREEMAIN macro.

905 The address of the storage area specified in a
FREEMAIN macro instruction was not on a
doubleword boundary.

A05 Either the area you tried to free overlapped into an
already free area, or it has been locked via the
PGLOCK macro instruction.

D05 One of several things happened:

• The FREE MAIN macro attempted to free an area
of storage not allocated to your task.

• Or, you specified zero or a negative number in the
LV parameter.

• Or, the key is different from what it was when the
storage was allocated.

E05 You specified a parameter that GCS does not support.

30A A FREEMAIN macro instruction, with the R
parameter specified, contained a subpool specification
error.

70A An unrecoverable machine, system, or other error
occurred while processing the FREEMAIN macro with
the R parameter specified.

90A The address of the storage area specified in a
FREEMAIN instruction, with the R parameter
specified, was not on a doubleword boundary.

AOA Either the area to be freed by a FREEMAIN
instruction, with the R parameter specified, overlapped
into an already free area or was locked via the
PGLOCK instruction and never unlocked.

Chapter 9. Storage Management Service Macros 247

FREEMAIN

ABEND Meaning
Code
DOA One of several things happened:

• The FREEMAIN macro, with the R parameter
specified, attempted to free an area of storage not
allocated to your task.

• Or, you specified zero or a negative number in the
LV parameter.

• Or, the key is different from what it was when the
storage was allocated.

EOA A FREEMAIN instruction, with the R parameter
specified, specified another parameter that GCS does
not support.

378 A FREEMAIN macro, with the RU parameter
specified, contained a subpool specification error.

778 An unrecoverable machine, system, or other error
occurred while processing the FREEMAIN macro with
the RU parameter specified. It may also be that an
error, involving the release of free storage, occurred
within the GCS supervisor.

978 The address of the storage area specified in a
FREE MAIN macro instruction, with the RU parameter
specified, was not on a doubleword boundary.

A78 The area to be freed by the FREEMAIN instruction,
with the RU parameter specified, overlapped a free
area of storage or is an area that was locked via the
PGLOCK instruction.

D78 One of several things happened:

• The FREEMAIN macro, with the RU parameter
specified, attempted to free an area of storage not
allocated to your task.

• Or, you specified zero or a negative number in the
LV parameter.

• Or, the key is different from what it was when the
storage was allocated.

E78 A FREE MAIN instruction, with the RU parameter
specified, specified another parameter that is not
supported by GCS.

o
248 VM/SP GCS Command and Macro Reference

~--------~~------

(- The List Format

[label] FREEMAIN

Added Parameter

(-

FREEMAIN

[G[.LV=lengthJ] [.A=addressJ[.SP=numberJ.MF=L

This format of the macro instruction generates an in-line parameter list
based on the parameter values that you specify. However, this format
generates no executable code. Remember that you cannot specify any of
the parameters using register notation. Also, note that only the parameters
listed above are valid in the list format of this instruction.

MF=L
Specifies the list format of this macro instruction.

Chapter 9. Storage Management Service Macros 249

FREEMAIN

The Execute Format

Added Parameter

This format of the macro instruction generates code that executes the
function, using a parameter list whose address you specify.

Note that only the parameters listed above ~re valid in the execute format
of this instruction. '

MF = (E,address),
ADDRESS specifies the address of the parameter list to be used by the
macro.

You can add or modify values in this parameter list by specifying them
in this instruction.

250 VM/SP GCS Command and Macro Reference

/

)

c

(

(

(

(

c

,-----,- -- ~~~-

GETMAIN

GETMAIN

Obtain a Contiguous Block of Storage

[label] GETMAIN

Parameters

The storage management function of GCS enables a task to dynamically
obtain and free contiguous blocks of virtual storage as required.

Use the GETMAIN macro instruction to obtain a contiguous block of
virtual storage.

The GETMAIN macro instruction is available in standard, list, and execute
formats.

The standard format of the GETMAIN macro instruction is:

RC.LV=length

RU.LV=length

R.LV=length [,sp.numberl['BNDRY'{::~:D}l
EU,LV=length.A=address

EU,LV=length.A=address

VC.LA=length address,A=address

VU,LA=length address,A=address

RC

RU

-'" -,,-

Indicates that your register request for storage is conditional. That is,
your task will be able to continue, even if the storage you ask for is
not immediately available.

Express the amount of storage you need in the LV parameter. If the
storage is available, then you will receive its address in register 1. If
it is not available, then you will receive a return code to that effect in
register 15.

Indicates that your register request for storage is unconditional. That
is, your task will be unable to continue unless the storage you ask for
is available immediately.

Chapter 9. Storage Management Service Macros 251

GETMAIN

R

EC

EU

vc

VU

Express the amount of storage you need in the LV parameter. If the
storage is available, then you will receive its address in register 1. If
it is not available, then your task is abnormally terminated and you
will receive an ABEND code.

Indicates that your register request for storage is unconditional.

Express the amount of storage you need in the LV parameter. If the
storage is available, then you will receive its address in register 1. If
it is not available, then your task is abnormally terminated and you
will receive ,an ABEND code. Note that the BNDRY parameter
cannot be used with the R parameter.

Indicates that your request for storage is conditional.

Express the amount of storage you need in the LV parameter. If the
storage is available, then you will receive its address in the word
specified by the A parameter. If it is not available, then you will
receive a return code to that effect in register 15.

Indicates that your request for storage is unconditional.

Express the amount of storage you need in the LV parameter. If the
storage is available, then you will receive its address in the word
specified by the A parameter. If it is not, then your task is terminated
abnormally and you will receive an ABEND code.

Indicates that your request for a variable amount of storage is
conditional.

Express the acceptable size range in the LA parameter.

If the storage is available, then you will receive the address of the
storage block in the first word of the area specified by the A
parameter. The second word of that area will contain the length of
the storage block. If it is not available, then you will receive a return
code to that effect in register 15.

Indicates that your request for a variable amount of storage is
unconditional.

Express the acceptable size range in the LA parameter.

If the storage is available, then you will receive its address in the first
word of the area specified by the A parameter. The second word of
that area will contain the length of the storage block. If it is not

252 VM/SP GCS Command and Macro Reference

(

LV

LA

A

SP

c

GETMAIN

available, then your task is terminated abnormally and you receive an
ABEND code.

Specifies the length, in bytes, of the storage block you need.

This number should be a multiple of eight. If it is not, then GeS
rounds it up to the nearest multiple of eight.

If the R parameter is used, then you can code LV = (0) as well. If it is,
then the high-order byte of register 0 must contain the subpool
number and the three low-order bytes must contain the length of the
requested storage block.

You can write this parameter as an assembler program label or as
register (2) through (12).

Specifies the address of a two-word list that defines the acceptable size
range into which the requested variable length storage block may fall.

The first word in the list must contain the minimum acceptable length
of the block. The second word must contain its maximum acceptable
length. These numbers should be multiples of eight. If they are not,
then GeS rounds them up to the nearest multiples of eight.

You can write this parameter as an assembler program label or as
register (2) through (12).

Specifies the address of a one or two word list.

If the Ee, EU, ve, or VU parameter is specified, then GeS will store
the address of the storage block in the first word of this list.

If the ve or VU parameter is specified, then GeS will store the length
of the variable length storage block in the second word of this list.

You can write this parameter as an assembler program label or as
register (2) through (12).

Specifies the subpool associated with the requested block of storage.

A subpool is a number from 0 to 255 that is assigned to a block of
storage to describe its characteristics.

You can write this parameter as an assembler program label or as
register (2) through (12). If the R parameter is used, then LV = (0) can
be coded as well. If it is, then the high-order byte of register 0 must
contain the subpool number and the three low-order bytes must
contain the length of the requested storage block.

Chapter 9. Storage Management Service Macros 253

GETMAIN

Subpool numbers are defined as follows:

o Specifies private, fetch-protected storage. If the main task
issued the GETMAIN instruction, then GCS automatically
frees the storage when the task terminates. This is also true
for a subtask that was attached to a main task with the
SZERO=NO parameter specified in an ATTACH macro
instruction. Review the entry titled "ATTACH" on page 67.

However, if the subtask were attached with the SZERO = YES
parameter specified (or defaulted), then GCS associates the
storage with the oldest ancestor task with which this subtask
is sharing the subpool. Hence, the storage block is not
automatically freed by GCS when the subtask terminates.
The storage is freed only when the oldest ancestor task
terminates.

Any program can obtain storage from this subpool.

1 - 127 Specifies private, fetch-protected storage. If the main task
issued the GETMAIN instruction, then GCS automatically
frees the storage when the task terminates. This is also true
for a subtask that was attached to a main task without this
subpool having been specified in the SHSPV or SHSPL
parameter in the ATTACH macro instruction.

However, if the subtask was attached with this subpool
specified in the SHSPV or SHSPL parameter in the ATTACH
instruction, then GCS associates the storage with the oldest
ancestor task with which this subtask is sharing the subpool.
Hence, the storage is not automatically freed by GCS when
the subtask terminates. The storage is freed only when the
oldest ancestor task terminates.

Any program can obtain storage from these subpools.

229 Specifies private, fetch-protected storage. GCS will
automatically free the storage when the task terminates.

Only privileged programs can obtain storage from this
subpool.

230 Specifies private, non-fetch-protected storage. GCS will
automatically free the storage when the task terminates.

231

Only privileged programs can obtain storage from this
subpool.

Specifies common, fetch-protected storage. GCS does not free
the storage when the task that acquired it terminates. This
storage is persistent in that it must be explicitly freed by
some privileged program.

254 VM/SP GCS Command and Macro Reference

/ " (,

/

(-

(

241

243

244

GETMAIN

Only privileged programs can obtain storage from this
subpool.

Specifies common, non·fetch·protected storage. GCS does not
free the storage when the task that acquired it terminates.
This storage is persistent in that it must be explicitly freed by
some privileged program.

Only privileged programs can obtain storage from this
subpool.

Specifies private, fetch'protected storage. GCS does not free
the storage when the task that acquired it terminates. This
storage is persistent in that it must be explicitly freed by
some privileged program.

Only privileged programs can obtain storage from this
subpool.

Specifies private, non· fetch· protected storage. GCS does not
free the storage when the task that acquired it terminates.
This storage is persistent in that it must be explicitly freed by
some privileged program.

Only privileged programs can obtain storage from this
subpool.

If you specify a subpool number that is not listed above or one which
you are not authorized to use, and if your request was unconditional,
then GCS will terminate your program abnormally. If your request
were conditional, then you will receive a return code of 4.

In summary,

Subpool Private Fetch-protected Privileged Persistent

0 X X

1·127 X X

229 X X X

230 X X

231 X X X

241 X X

243 X X X X

244 X X X

BNDRY
Specifies the boundary alignment of the requested storage block.

If you omit this parameter, then the block is aligned on a doubleword
boundary, by default. Indeed, you must omit this parameter if you use
the R parameter.

Chapter 9. Storage Management Service Macros 255

GETMAIN

Usage Note

Examples

Include one of the following with the BNDRY parameter.

PAGE
Indicates that the storage block is to begin on a 4-kilobyte page
boundary.

DBLWD
Indicates that the storage block is to begin on a double word
boundary.

• GCS sets the key of the requested storage block to the PSW key of the
task issuing the GETMAIN instruction.

GETMAIN RU,LV=(5),SP=O,BNDRY=PAGE

The task requests a certain amount of storage space. This amount has
previously been stored in register 5. If the task cannot get the storage, it
will not continue processing, since this is an unconditional request.
Furthermore, the task requests that the subpool number 0 be assigned to
the storage and that it begin on a page boundary. /'\

GETMAIN EC,LV=STORE,A=BLOCK

The task requests a certain amount of storage space. This amount is stored
at the address associated with the label STORE. The address of the storage
space is to l;>e stored at the address associated with the label BLOCK.

Return Codes and ABEND Codes

When this macro completes processing, it passes to the caller a return code
in register 15.

For CONDITIONAL requests only:

Return Meaning
Code

0 Function completed successfully.

4 Function was not completed.

256 VMjSP GCS Command and Macro Reference

,
",

o

.--~ .. ---------------

GETMAIN

ABEND Meaning
Code

604 Either an invalid address was specified in the A or LA
parameter, or the macro itself received an invalid
parameter list address.

704 An unrecoverable machine, system, or other error
occurred while processing the GETMAIN macro.

804 Either there was insufficient virtual storage to execute
the GETMAIN macro, or the LV parameter specified
zero or a negative number.

B04 A GETMAIN instruction contained an error in the
specification of the subpool.

70A An unrecoverable machine, system, or other error
occurred while processing the GETMAIN macro with

(
the R parameter specified.

80A Either there was insufficient virtual storage to execute
the GETMAIN instruction with the R parameter
specified, or a length of zero was specified.

BOA A GETMAIN instruction, with the R parameter
specified, contained an error in the specification of the
subpool.

778 An unrecoverable machine, system, or other error
occurred while processing the GETMAIN macro
instruction with the RU parameter specified.

878 Either there was insufficient virtual storage to execute
the GET MAIN instruction with the RU parameter
specified, or the LV parameter specified a zero or a
negative number.

B78 A GETMAIN instruction, with the RU parameter
specified, contained an error in the specification of the
subpool.

E04 A GETMAIN instruction specified a parameter that
GCS does not support.

(

c
Chapter 9. Storage Management Service Macros 257

GETMAIN

The List Format

Added Parameter

This format of the macro instruction generates an in-line parameter list
based on the parameter values that you specify. However, this format
generates no executable code. Remember that you cannot specify any of
the parameters using register notation. Also, note that only the parameters
listed above are valid in the list format of this instruction.

MF=L
Specifies the list format of this macro instruction.

258 VMjSP GCS Command and Macro Reference

~~---- -----~~~~-

(- The Execute Format

Clabel] GETMAIN

(

Added Parameter

(

------- --- -------

ECC.LV=length]C.A=address]

EUC.LV=length]C.A=address]

GETMAIN

VC[.LA=length address][.A=address] [.SP=number]

VUC.LA=length address]C.A=address]

This format of the macro instruction generates code that executes the
function, using a parameter list whose address you specify.

Note that only the parameters listed above are valid in the execute format
of this instruction.

MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the
macro.

You can add or modify values in this parameter list by specifying them
in this instruction.

Chapter 9. Storage Management Service Macros 259

GETMAIN

"_ -"7"'

('

/
,/

o
260 VM/SP GCS Command and Macro Reference

(

GTRACE .. 262
SDUMP ... 267

Chapter 10. Serviceability Macros 261

GTRACE

GTRACE

Record User Data in the GCS Trace Table

Parameters

Sometimes, you will need certain user data recorded for you in the GCS
trace table. Any type of data you wish can be recorded in the GCS trace
table, for example an instruction or the result of some calculation.

Use the GTRACE macro instruction to record user data in the GCS trace
table.

The GTRACE macro instruction is available in standard, list, and execute
formats.

The standard format of the GTRACE macro instruction is:

DATA

LNG

ID

Specifies the address in your virtual storage where the data you want
recorded begins.

You can write this parameter as an assembler program label or as
register (2) through (12).

Specifies the number of bytes to be recorded starting at the address
you specified in the DATA parameter.

You can write this parameter as any decimal number from 1 to 256, as
a hexadecimal number from 00 to 100, or as register (2) through (12).

Specifies an identifier you want associated with the recorded data,
which you can use for documentation purposes.

This identifier will be recorded along with the specified data to make
it easier for you to find a trace entry on a terminal screen or in a
printed dump.

262 VM/SP GCS Command and Macro Reference

j

o

-
(

(-

Usage Notes

GTRACE

Valid identifier values are as follows:

o through 1023 FOR GENERAL USERS

1024 through 4095 FOR IBM USE ONLY

FID
Specifies the last two characters in the name of one of your formatting
routines.

A formatting routine processes the externally traced data, making
them suitable for printing. Since you define the data to be recorded
by the trace facility, it is your responsibility to provide any routine
that may be required to interpret and format it. When you are ready
to print the data, run TRAPRED under CMS. TRAPRED will invoke
your formatting routine, using the file containing the trace entries as
input. For more information on TRAPRED see the VM/SP y45241.

Each formatting routine must have a name that is eight characters
long. The first six of these characters must be:

·CSIYTX

The last two characters of the name can be any two-digit hexadecimal
number from X'OO' to X'FF'. These last two characters must be used
as follows:

X'OO' The data is to be dumped in
hexadecimal form (IBM USE ONLY).

X'Ol' through X'50' FOR GENERAL USERS

X'51' through X'FF' FOR IBM USE ONLY

Since the first six characters of the routine's name are known, you
need only specify the last two characters in the FID parameter. If you
omit this parameter, GCS assumes X'OO', by default.

• For the information given to the GTRACE macro to be recorded, you
must have previously issued the ETRACE or ITRACE commands. For
more information on the ETRACE or ITRACE commands, see "GCS
Commands" on page 20.

• The GCS trace table can be displayed on a terminal screen or it can be
part of a printed dump but only if the receiver of the dump is authorized
to view common storage.

To identify data recorded by the GTRACE facility, look for X'OE' in the
first two bytes of the record. Then, among this data, look in bytes 23
and 24 for the number you specified in the ID parameter.

Chapter 10. Serviceability Macros 263

GTRACE

Return Codes and ABEND Codes

The GTRACE macro generates no ABEND codes.

When this macro completes processing, it passes to the caller a return code
in register 15.

Return Meaning
Code

00 Function completed successfully.

04 The GTRACE facility (monitor class 14) is not enabled.

08 You specified an invalid value for the LNG parameter.
It was less than 1 or greater than 256.

OC You specified an invalid address for the DATA
parameter.

10 You specified an invalid value for the FID parameter.
It was less than 0 or greater than 255.

14 You specified an invalid value for the IDparameter. It
may have been less than 0 or greater than 4095. Or,
you may have specified a value from 1 to 80 for the FID
parameter. This requires that the value specified for
the ID parameter be from 0 to 1023.

lC Invalid parameter list address.

264 VM/SP GCS Command and Macro Reference

r-\
i ' "' •.. ./

(The List Format

C1 abel] GTRACE

Added Parameter

(

c

GTRACE

"';
CDATA=address] C.LNG=length] C. ID=number] C. FID=number] .MF=L'

This format of the macro instruction generates an in-line parameter list
based on the parameter values that you specify. However, this format
generates no executable code. Remember that you cannot specify any of
the parameters using register notation.

MF=L
Specifies the list format of this macro instruction.

Chapter 10. Serviceability Macros 265

GTRACE

The Execute Format

Added Parameter

This format of the macro instruction generates code that executes the
function, using a parameter list whose address you specify.

MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the
macro.

You can add or modify values in this parameter list by specifying them
in this instruction.

266 VMjSP GCS Command and Macro Reference

/

(

(

SDUMP

SDUMP

Request a Recording of the Contents of your Virtual Machine's Storage

[label] SDOMP

Parameters

A dump is a recording of the contents of a virtual machine's storage at a
given moment.

Use the SDUMP macro instruction to produce a dump of part or all of your
virtual machine's storage.

The SDUMP macro instruction is available in standard, list, and execute
formats.

The standard format of the SDUMP macro instruction is:

HDR
Specifies a string of characters that you can use to describe the dump.

This character string is placed in the dump to help you to identify it
quickly. This string can contain up to 100 characters and must be
surrounded by single quotation marks.

HDRAD
Specifies the address of a string of characters you stored previously
that describe the dump.

This character string is placed in the dump to help you to identify it
quickly. This string can contain up to 100 characters. The first byte
at this address must contain the hexadecimal length of the character
string and no single quotation marks are required.

You can write this parameter as an assembler program label or as
register (2) through (12).

Chapter 10. Serviceability Macros 267

SDUMP

STORAGE
Specifies the range of virtual storage addresses to be recorded in the
dump.

Note: From the format illustration each pair of addresses must be
separated by a comma and enclosed in parentheses. You can specify
more than one range of addresses if you wish. Just be certain that
each starting address is less than its corresponding ending address.

LIST
Specifies the address of a list that contains one or more pairs of
addresses. Each pair of addresses in the list specifies a range of
virtual storage addresses to be included in the dump.

This list can contain up to 2049 different pairs of addresses, which can
overlap each other. If they do, then CP will resolve two or more
overlapping pairs into one pair.

The high-order bit of the fullword containing the last ending address
in the list must be set to 1 to indicate the end of the list. All other
high-order bits in the list must be reset to o.

You can write this parameter as an assembler program label or as
register (2) through (12).

Usage Notes \.c

• If both the STORAGE and LIST parameters are omitted from the
SDUMP instruction, then GCS assumes that all virtual storage in the
machine is to be recorded in the dump. This includes any discontiguous
saved segments the virtual machine may be using.

• It is important to understand the rules governing who receives the spool
file containing the dump and what that file contains.

For security reasons, not every user is authorized to receive dumps
containing fetch-protected data. Those who are authorized are listed
among the authorized users at GCS build time. If a common dump
receiver was specified at GCS build time, then that individual receives
the dump. Otherwise the issuer of the SDUMP instruction receives the
dump.

Bear in mind that if the person receiving the dump is not authorized to
handle fetch-protected data, that data will be omitted from the dump.
However, all requested non-fetch-protected data and private key 14
storage will be included in the dump.

268 VM/SP GCS Command and Macro Reference

o

(Examples

(

""" -----"-- --------"--------

SDUMP

DUMPALL SDUMP HDR='ALL MY STORAGE'

A dump of the entire virtual machine's storage is requested. The character
string ALL MY STORAGE is to be placed in the dump for ready
identification. The dump is to be sent to the member of the virtual machine
group authorized to receive it. If no one is so authorized, then the dump
will be sent to the issuer of the instruction. Fetch-protected data will be
included in the dump only if the recipient is authorized to handle such data.
DUMPALL is the label on this instruction.

SDUMP HDRAD=(S),LIST=RANGES

A dump of certain portions of virtual storage is requested. The address of a
string of characters describing the dump can be found at the address in
register 5. The first byte of register 5 must contain the length of the
character string, in hexadecimal. This character string is to be placed in
the dump for ready identification. A list containing at least one pair of
addresses can be found at the address associated with the label RANGES.
Each pair of addresses in the list specifies a range of virtual storage
addresses to be included in the dump. Presumably the high-order bit of the
last ending address has been set to 1 to indicate the end of the list.

Return Codes and ABEND Codes

(-

When this macro completes processing, it passes to the caller a return code
in register 15.

Return Meaning
Code
0 All requested areas have been included in the dump.

4 Only a portion of the requested areas was included in
the dump.

8 GCS was unable to produce a dump.

ABEND Reason Meaning
Code Code
233 8 Invalid parameter list address.

Chapter 10. Serviceability Macros 269

SDUMP

The List Format

Added Parameter

This format of the macro instruction generates an in-line parameter list
based on the parameter values that you specify. However, this format
generates no executable code. Remember that you cannot specify any of
the parameters using register notation.

MF=L
Specifies the list format of this macro instruction.

270 VM/SP GCS Command and Macro Reference

o

(The Execute Format

[1 abe 1] SDUMP

Added Parameter

(

(

SDUMP

[HDR='Char string'] [.STORAGE=(start.end)]
HDRAD=char stri ng address .• LIST=l i st address

.MF=(E.address)

This format of the macro instruction generates code that executes the
function, using a parameter list whose address you specify.

MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the
macro.

You can add or modify values in this parameter list by specifying them
in this instruction.

Chapter 10. Serviceability Macros 271

SDUMP

/

272 VM/SP GCS Command and Macro Reference

_ .. _---------

CHECK (BSAM) .. 274
CLOSE (BSAM/QSAM) 276
DCB (BSAM/QSAM) 280
DCBD (BSAM/QSAM) 290
GET (QSAM) .. 292
NOTE (BSAM) ... 294
OPEN (BSAM/QSAM) 296
POINT (BSAM) ... 301
PUT (QSAM) .. 304
READ (BSAM) ... 306
SYNADAF (BSAM/QSAM) 311
SYNADRLS (BSAM/QSAM) 314
WRITE (BSAM) .. 316

(

c
Chapter 11. QSAM and BSAM Data Management Service Macros 273

CHECK (BSAM)

CHECK (BSAM)

Test the Completion of a READ or WRITE Operation

Parameter

Usage Notes

Whenever you issue a READ or WRITE macro instruction, your task needs
some way to confirm that the I/O operation completed successfully.

Use the CHECK macro instruction immediately after each READ and
WRITE instruction to determine if and how the I/O operation was
completed.

The format of the CHECK macro instruction is:

decb address

,;; .'

:: .~.,.'".

::,: ~. '.
:- ~:'

Specifies the address of the data event control block (DECB)
associated with the READ or WRITE instruction you just issued.

The data event control block is created as part of the expansion of the
READ or WRITE macro. It describes the input or output "event" that
you have asked to take place. This control block is discussed in detail
in the entries titled "READ (BSAM)" on page 306 and" 'WRITE
(BSAM),.WRITE (BSAM)" on page 316.

You can write this parameter as an RX-type address or as register (1)
through (12).

• The CHECK macro tests for errors in the last READ or WRITE
operation involving the specified DEeB.

If you issue a READ instruction and the END-OF-FILE condition has
been raised, then the CHECK macro gives control to your end-of-file
exit routine. This is the routine whose address you specified via the
EODAD parameter of the DCB instruction. (If necessary, review the
entry "DCB (BSAM/QSAM)" on page 280.)

274 VMjSP GCS Command and Macro Reference

---_._--

(

•

CHECK (BSAM)

If you did not specify an end-of-file exit routine or an error occurred
after you issued a WRITE instruction, then GCS will give control to the
error analysis routine that you specified via the SYNAD parameter in
the DCB instruction. If you failed to specify an error analysis routine,
then your task will terminate abnormally.

For each READ or WRITE instruction you issue you must also issue a
CHECK instruction. Moreover, you must issue the CHECK instruction
immediately after the READ or WRITE instruction with which it is
associated. So, the sequence

READ_ .. READ ... WRITE ... WRITE .•. CHECK ... CHECK ... CHECK ..• CHECK

is incorrect. But, the sequence

READ .•. CHECK ... READ ... CHECK ... WRITE ... CHECK ... WRITE ... CHECK

(: is correct.

('

• GCS does not support the MVS parameter DSORG on this macro
instruction. If you include it, then an error will occur.

Return Codes and ABEND Codes

ABEND Meaning
Code

001 The data control block (DCB) of the file in question
identified no SYNAD routine. Your task was
terminated abnormally.

OOA An invalid address appeared in the CHECK
instruction, the data event control block (DECB), or
the data control block (DCB).

Chapter 11. QSAM and BSAM Data Management Service Macros 275

CLOSE (BSAM/QSAM)

CLOSE (BSAM/QSAM)

Close a File with which Your Task has Finished

Parameter

Usage Notes

After a task has finished with a particular file, the file must be closed.

Use the CLOSE macro instruction to close a file that your task had
previously opened.

The· CLOSE macro instruction is available in standard, list, and execute
formats.

The 8tandard format of the CLOSE macro instruction is:

deb address
Specifies the address of the data control block associated with your
file. More specifically, it is the address of the label on the DCB macro
instruction associated with your file. If necessary, review the entry
titled "DCB (BSAM/QSAM)" on page 280.

More than one file can be closed by a single CLOSE instruction. Note
that a double-comma is required to delimit each DCB address.

You can write this parameter as an RX-type address or as register (2)
through (12).

• First, the CLOSE macro restores the data control block associated with
your file to its original condition. That is, the original information you
specified for the file in the DCB macro instruction is restored.

The file is then "logically disconnected" from the main processor.

Finally, the input or output buffer that GCS set up for the file, when its
DCB was opened, is released.

276 VM/SP GCS Command and Macro Reference

.".

o

(,

(

-----.-.----~----

CLOSE (BSAM/QSAM)

• Only the task that opened the file can close it.

Often a file is being used by more than one task. If it is a BSAM file,
then you must issue a CHECK macro instruction for each data event
control block (DECB) associated with the file before you close it. A
DECB is associated with each of the file's 1/0 events. There may be
several DECBs associated with output activity from several tasks.
Therefore, you must make certain that all the tasks have completed
their output to the file before you close it. The CHECK instruction
confirms whether there are any outstanding output events pending for
the file in question, as from a WRITE macro instruction. If necessary,
review the entries titled "CHECK (BSAM)" on page 274 and" 'WRITE
(BSAM)'.WRITE (BSAM)" on page 316.

• If you have access method control blocks (ACBs) that you wish to close,
as well as DCBs, then you can specify a combination of both in the
same CLOSE instruction. GCS is able to distinguish the address of one
from the address of the other, as long as you separate each with a
double-comma.

Return Codes and ABEND Codes

The CLOSE macro generates no return codes.

ABEND Meaning
Code
014 An error occurred during the execution of the CLOSE

macro. You will receive a message explaining this
further.

Chapter 11. QSAM and BSAM Data Management Service Macros 277

CLOSE (BSAM/QSAM)

The List Format

This format of the macro instruction generates a data management
parameter list based on the parameter values that you specify. However,
this format generates no executable code. Remember that you cannot
specify any of the parameters using register notation.

The parameter list consists of a one-word entry for each DCB in the
parameter list. The high-order byte is reserved while the three low-order
bytes contain the address of a DCB. The end of the list is marked by
setting the high-order bit of the last entry to 1. / '\

Added Parameter

The length of the list generated by the list format of this instruction must
be equal to the maximum length required by an execute format instruction
that refers to the same list. A maximum length list can be constructed in
one of two ways.

1. Issue the instruction using the list format with the maximum number of
parameters required by the execute format of the instruction that refers
to the same list.

2. Use an appropriate number of commas in the list format of the
instruction to obtain a list of the required size. For example,

CLOSE ("""",),MF=L

would create a list of five fullwords.

GCS assumes that any entries at the end of the list that are not referred to
by the instruction in the execute format were filled in by a previous
instruction.

MF=L
Specifies the list format of this macro instruction.

278 VM/SP GCS Command and Macro Reference

/

\
)

c

(The Execute Format

[label] CLOSE

Added Parameter

(-

(

(

CLOSE (BSAM/QSAM)

[([deb address]

This format of the macro instruction generates code that executes the
function usiqg a parameter list whose address you specify.

MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the
macro.

You can add or modify values in this parameter list by specifying them
in this instruction.

Chapter 11. QSAM and BSAM Data Management Service Macros 279

DeB (BSAM/QSAM)

DeB (BSAM/QSAM)

Create a Data Control Block for One of Your Files

For a program to process a file via BSAM or QSAM, a data control block
(DeB) must be created for it. A DeB contains information that defines the
characteristics of the data in the file and describes the 1/0 device
requirements for handling the data.

Normally the DeB macro instruction is issued sometime after the FILEDEF
command is issued. The FILEDEF command provides similar information
about your file. Together, the FILEDEF command and the DeB macro
instruction provide all the information necessary to the data control block.9

For more information on the FILEDEF command see "FILEDEF" on
page 33.

Use the DeB macro instruction to create a data control block for one of
your files.

\

9 It is possible for the DCB macro instruction to provide all data for the data (r\.
control block without the help of the FILEDEF command. "'-__ j

280 VM/SP GCS Command and Macro Reference

(
[label] DCB

(Parameters

(

C:

DeB (BSAM/QSAM)

The format of the DCB macro instruction is:

[BLKSIZE=absolute

.DSORG::PS[.EODAD.,'~

[.LRECL=nnnnnJ

It is required that the DSORG and MACRF parameters be specified in the
DCB macro instruction. The other parameters may be supplied in one or
more of the following ways.

• Via the DCB macro instruction.

• Via the FILEDEF command.

• Given the physical characteristics of the file.

• Direct insertion of a parameter's value or attribute into the data control
block by your program. This is not too difficult, if you take advantage
of the DCBD macro instruction. Review the entry titled "DCBD
(BSAM/QSAM)" on page 290.

However, you must be careful to insert the value in the DCB in a timely
fashion. For example, it would be useless to insert the value of the
DDNAME or the EXLST after issuing the OPEN macro instruction,
since that macro needs those values to process correctly.

Chapter 11. QSAM and BSAM Data Management Service Macros 281

DeB (BSAM/QSAM)

BLKSIZE
Specifies the maximum block length for the file, in bytes. In the case
of fixed-length, unblocked records, this parameter specifies the
maximum individual record length.

If your file contains variable-length records, then the value specified
by this parameter must include four extra bytes to accommodate the
block descriptor word (BDW). In such a case, you can write this
parameter as any number from 8 to 32756, plus four bytes for the
BDW.1°

If your file contains undefined-length records, then the field in the
DCB associated with this parameter (the DCBBLKSI field) can be
filled in with the exact value once it is known by your program.
Alternatively, it can be specified in the LENGTH parameter of a
READ or WRITE instruction. If necessary, review the entries titled
"READ (BSAM)" on page 306 and "WRITE (BSAM)" on page 316.

DDNAME
Specifies the name by which the file in question is known within your
program. This parameter corresponds exactly with the DDNAME
parameter in the FILEDEF command.

Yau can write this parameter as any label of from one to eight
alphameric characters. The first character must be alphabetic or
national.

DSORG=PS
Indicates that your file consists of physical sequential records.

Since GCS supports only physical sequential file processing, this
parameter is required.

EODAD
Specifies the address of a routine that is to receive control when the
end of an input file is reached.

It is your responsibility to provide this routine. Obviously you are
only required to do so when the file, whose DCB you are creating, is
an input file. You define whether it is an input or output file in the
MACRF parameter described below.

When GCS receives a request for input (for example, via a READ
macro instruction) and the subsequent CHECK macro instruction
indicates that the end of the file has been reached, then this EODAD
routine automatically receives control.

10 The OPEN macro simulation routine will not accept a BLKSIZE of less than
eight.

282 VMjSP GCS Command and Macro Reference

/

o

(--

(

(

c

DeB (BSAM/QSAM)

If this parameter is omitted and the END-OF-FILE condition is raised
in an input file, then control is given to the routine whose address you
specify in the SYNAD parameter, described below. If you omit both
the EODAD and the SYNAD parameters, and the END-OF-FILE
condition occurs, then your task terminates abnormally.

You can write this parameter as an RX-type address or as register (2)
through (12).

EXLST
Specifies the address of your program's exit list.

This list contains the address(es) of one or more routines that you
want executed during each OPEN macro that you request. Review the
entry titled "OPEN (BSAM/QSAM)" on page 296.

If you specify this parameter, then it is the responsibility of your task
to provide and maintain this exit list. Moreover, your task must
provide the routines to which it refers. The list must begin on a
fullword boundary, with each entry therein comprising a fullword.
The basic format of the exit list is:

1 BYTE 3 BYTES
Code Routine l's address

Code Routine 2' s address

.
Code Routine n's address

The code in the first byte of each word indicates the disposition of the
exit routine, whose address appears in the last three bytes. Note that
these are the only codes that have meaning to GCS. Any others are
ignored.

CODE MEANING

X'OO' INACTIVE routine that is not to be processed.

X'05' ACTIVE routine that is to be processed.

X'80' The last routine in the list. It is considered INACTIVE
and is not processed.

X'85' The last routine in the list. It is considered ACTIVE
and is processed.

Figure 10. Exit List Table

Just before the completion of each OPEN macro that you request, the
exit list table is searched, and each active routine is processed.

You can write this parameter as an RX-type address or as register (2)
through (12).

Chapter 11. QSAM and BSAM Data Management Service Macros 283

DCB (BSAM/QSAM)

LRECL
In the case of fixed-length record files, this parameter specifies the
length, in bytes, of each record. You can write this as a number from
1 to 32760.

In the case of variable-length record files, this parameter specifies the
maximum length of any record in the file. You can write this as a
number from 1 to 32752, plus four bytes for the record descriptor word
(RDW).

It may happen that you omit this parameter in both the FILEDEF
command and the DCB instruction. If so, and if the file already exists,
then the current LRECL value is obtained from the actual length of
the file's records. However, if your file is newly created, then its
logical record length must be supplied in one of the ways listed
earlier. Otherwise it is considered an error.

MACRF
Specifies the type of macro instructions that you will use to process
the file in question. In effect, you use this parameter to define
whether you will treat it as an input file or an output file. Moreover,
you are stating what mode of data transmission you will employ in
moving data in to or out of the file.

R

w

RP

WP

(BSAM) Specifies that the READ macro instruction will be used. j
Review the entry titled "READ (BSAM)" on page 306.

(BSAM) Specifies that the WRITE macro instruction will be
used. Review the entry titled" 'WRITE (BSAM),.WRITE
(BSAM)" on page 316.

(BSAM) Specifies that the READ and POINT macro instructions
will be used. Review the entry titled "POINT (BSAM)" on
page 301.

Specifying the RP parameter gives you the added capability of
using the NOTE macro instruction. Review the entry titled
"NOTE (BSAM)" on page 294.

(BSAM) Specifies that the WRITE and POINT macro
instructions will be used.

The WP parameter gives you the added capability of using the
NOTE macro instruction. .

284 VM/SP GCS Command and Macro Reference

(

(..

GM

GL

PM

PL

DeB (BSAM/QSAM)

(QSAM) Specifies that the GET macro instruction in MOVE
mode will be used. MOVE mode is defined in the entry titled
"GET (QSAM)" on page 292.

(QSAM) Specifies that the GET macro instruction in LOCATE
mode will be used. LOCATE mode is defined in l,e entry titled
"GET (QSAM)" on page 292.

(QSAM) Specifies that the PUT macro instruction in MOVE
mode will be used. MOVE mode is defined in the entry titled
"PUT (QSAM)" on page 304.

(QSAM) Specifies that the PUT macro instruction in LOCATE
mode will be used. LOCATE mode is defined in the entry titled
"PUT (QSAM)" on page 304.

OPTCD=J
Indicates that the first byte in the output data stream will be a 3800
table reference character.

Such a character selects a particular character arrangement table for
the printing of the output data stream on a 3800 printing subsystem.
You can use this character with ANSI control characters, if you wish.

SYNAD
Specifies the address of your error routine that is to receive control
when an unrecoverable I/O error occurs.

Under BSAM, this SYNAD routine receives control when the CHECK
macro instruction is issued. Under QSAM, it receives control
automatically during the processing of the GET or PUT macro
instruction.

If you provide no error routine and an unrecoverable I/O error occurs,
then your task terminates abnormally.

If you provide an error routine and an error occurs, then GCS
automatically saves your program's registers and turns control over to
your error routine. You must design your error routine in such a way
that it does not use the register save area pointed to by register 13.
This save area is for your program's registers. If your error routine
needs a register save area, it must construct and maintain one of its
own.

Your error routine can issue the RETUHN macro instruction, using
the address in register 14, to return control to GCS. If control returns
to GCS, then GCS returns control to the problem program, which can
then proceed as though no error occurred. If necessary, review the
entry titled "RETURN" on page 144.

Chapter 11. QSAM and BSAM Data Management Service Macros 285

DeB (BSAM/QSAM)

You min write the SYNADparameter as an RX-type address or as
register (2) through (12). Remember, your program can change the
address in this parameter anytime.

RECFM
Specifies the record format of your file.

For an existing file, the currently assigned record format is used
unless another is specified. For a new file whose DCB you are
creating, the record format is undefined, by default, unless one is
specified.

Select from among the following record formats.

VB
Indicates that the records in your file are variable long, / ".

VBA

FB

FBA

F

V

FA

VA

according to the LRECL parameter. It also indicates that these
records are to be blocked according to the BLKSIZE parameter
specified here or in the FILEDEF command.

Indicates the same as the VB parameter but also indicates that
your file contains ASA control characters.

Indicates that each record in your file is of a fixed length,
according to the LRECL parameter. Likewise, these records are
to be blocked, according to the BLKSIZE parameter as specified
here or in the FILEDEF command.

Indicates the same as the FB parameter but also indicates that
your file contains ASA control characters.

Indicates that each record in your file is of a fixed length,
according to the LRECL parameter.

Indicates that the records in your file are variable long,
according to the LRECL parameter.

Indicates that your file is composed of fixed-length records that
contain ASA control characters.

Indicates that your file is composed of variable-length records
that contain ASA control characters.

286 VM/SP GCS Command and Macro Reference

---~--"---

/"

/

o

(

Usage Notes

U

UA

DeB (BSAM/QSAM)

Indicates that the record format of your file is undefined. If the
RECFM parameter is omitted, then the record format of the file
is undefined, by default.

Indicates that the record format of your file is undefined. It also
indicates that your file contains ASA control characters.

The following table shows the contents of the registers when your
error routine receives control.

Register Bits Meaning

0 0-7 Reserved.

0 8-31 For BSAM, the address of the event control
block. For QSAM, these bits are all reset to O.

1 0 The bit is set to 1 if the error was caused by an
input operation.

1 1 The bit is set to 1 if the error was caused by an
output operation.

1 2-7 Reserved.

1 8-31 The address of the data control block for the file
in question.

2-13 0-31 The contents of the rcgiHterH that existed before
the macro instruction was issued.

14 0-7 Reserved.

14 8-31 The address in the GCS supervisor to which
control will return after your error routine
completes processing.

15 0-7 Reserved.

15 8-31 The address of your error routine.

Figure 11. Error Routine

• The data control block for a BSAM or QSAM file is created during the
assembly of the problem program. The data supplied by the FILEDEF
command and the DCB macro instruction are brought together at
execution time to form one complete data control block. The physical
characteristics on an existing disk file may also supply certain
information. Among them, they can supply all necessary data for the
DCB.

The FILEDEF command and the DCB instruction may supply the value
or attribute for the same parameter. If the value or attribute expressed
by the FILEDEF command differs from that expressed by the DCB
instruction, then the latter will supersede the former.

Chapter 11. QSAM and BSAM Data Management Service Macros 287

DeB (BSAM/QSAM)

• Any READ or WRITE macro instruction issued by your program must
be tested for completion by the CHECK macro instruction. If
necessary, review the entry titled "CHECK (BSAM)" on page 274.

• If you provide a list of exit routine addresses via the EXLST parameter,
remember that your program can dynamically alter the disposition of
each exit routine. Merely change the code in the first byte of the
fullword containing the routine's address to indicate the desired
disposition. Select from among the codes listed in Figure 10 on
page 283.

• Each of your exit routines must save the contents of register 14. The
values in registers 2 through 13 are saved by the GCS supervisor.

• Your SYNAD routine can terminate in one of two ways:

It can pass control to another routine in your program. For
example, it could pass control to a program that closes the file being
processed.

It can return control to GCS, which in turn would return control to
your original program. Control would return to the instruction
immediately following the one that caused the error.

If you choose the latter course, you must follow these conventions for
saving and restoring registers:

1. When it receives control from GCS, your SYNAD routine must not
use the register save area pointed to by register 13. If necessary,
use the SYNADAF instruction'to obtain the address of a register
save area and message buffer that your SYNAD routine can use.

However, your SYNAD routine must release both this register save
area and the message buffer, via the SYNADRLS instruction, when
they are no longer needed. If necessary, review the entries titled
"SYNADRLS (BSAM/QSAM)" on page 314 and "SYNADAF
(BSAM/QSAM)" on page 311. <

2. Your SYNAD routine must preserve the contents of registers 13 and
14 as passed to it by GCS. Depending upon your own requirements,
it may also need to save the contents of registers 2 through 12.
When control ultimately returns to your original program, registers
2 through 12 will contain the same values they contained when your
SYNAD routine returned control to GCS. GCS does not restore
your program's registers.

• Note that GCS does not support the MVS parameter LRECL=X on this
macro instruction. If you include it, then an error will occur.

288 VM/SP GCS Command and Macro Reference

C~ . \

' .. ~

DeB (BSAM/QSAM)

(Return Codes and ABEND Codes

(-

(

(

c:

The DCB macro instruction generates no return codes and no ABEND
codes.

Chapter 11. QSAM and BSAM Data Management Service Macros 289

DeBD (BSAM/QSAM)

DeaD (aSAM/QSAM)

Get the Symbolic Name for Each Field in a Data Control Block

Parameters

For a file to be of any use to you, a data control block (DCB) must be
created for it. A DCB contains information that defines the characteristics
of the data in the file and describes the 1/0 device requirements for
handling the data.

As was explained in the entry titled "DCB (BSAM/QSAM)" on page 280,
there are three ways of assigning a value to a field in a data control block.

• Via the DCB macro instruction.

• Via the FILEDEF command.

• Direct insertion of a parameter's value or attribute into the data control
block by your program.

The DCBD macro instruction helps you with the third of these alternatives
by producing a road map of the data control block that your program can
follow while inserting certain values therein.

The DCBD macro instruction creates a dummy control section (DSECT)
modelled after a real data control block. Each field in this DSECT is
assigned a symbolic name. Each symbolic name can be used as a
displacement in an assembler language instruction to gain access to the
corresponding field in the real data control block.

The format of the DCBD macro instruction is:

DSORG
Specifies the type of real data control block for which you want a
DSECT created.

Note that data control blocks for BSAM files (BS parameter below)
and QSAM files (QS parameter below) are constructed somewhat
differently, though they do have fields in common. Note also that the
PS parameter, described below, embraces the characteristics of both. (\

o
290 VM/SP GCS Command and Macro Reference

~-~~-----~-.~----~-~-- - -~- ~-----

(

(

(

Usage Notes

DeSD (SSAM/QSAM)

If you omit the DSORG parameter, then the DSECT will contain what
is called a "foundation block." A foundation block contains fields that
are common to all three types of data control blocks but only those
that are common.

You can specify one, two, or all three of the following parameters:

BS

PS

QS

Indicates that the data control block for which you want a
DSECT created is associated with a basic sequential access file.

Indicates that the data control block for which you want a
DSECT created is associated with a physical sequential access
file.

Indicates that the data control block for which you want a
DSECT created is associated with a queued sequential access
file.

• To use the DSECT to find your way around the dat.a (:ontrol block,
simply assign the address of the DeB to a base regiHter. Then, use the
symbolic name of a field in the DSECT as the displacement to the
corresponding field in the data control block.

• You can use the same DSECT to insert data into more than one data
control block. Just assign another DCB address your base register.

• Since you are the one inserting data into the data control block, you
must be certain that the data is inserted in a timely fashion. For
example, it would be useless to insert the value of the DDNAME or the
EXLST after issuing the OPEN macro instruction, since that macro
needs those values to execute properly.

Return Codes and ABEND Codes

Check the DCBD macro expansion in your source listing for a complete list
of the symbolic names and their relative addresses.

The DCBD macro generates no return codes and no ABEND codes.

Chapter 11. QSAM and BSAM Data Management Service Macros 291

GET (QSAM)

GET (QSAM)

Obtain the Next Logical Record from a QSAM File

Parameters

For a record in a QSAM data file to be processed, it must be transferred
from its secondary storage device to main storage.

Use the GET macro instruction to obtain the next logical record of a QSAM
file for your program to process.

The format of the GET macro instruction is:

deb address
Specifies the address of the data control block (DCB) associated with
the QSAM file your program is processing.

A DCB contains information that defines the characteristics of the
data stored in a file and describes the I/O device requirements for
handling the data. You are responsible for having created a DCB for
the file in question via the DCB macro instruction. If necessary,
review the entry titled "DCB (BSAM/QSAM)" on page 280.

You can write this parameter as an RX-type address or as register (1)
through (12). " ~

area address
Specifies the address of a work area into which GCS will place the
next logical record.

This parameter is valid only if you are using the GET macro in MOVE
mode. Moreover, it is your responsibility to provide storage for this
work area in your program.

If you omit this parameter while operating in MOVE mode, then GCS
assumes the address of the work area is in register o. Otherwise you
can write this parameter as an RX-type address, as register (0), or as
register (2) through (12).

292 VM/SP GCS Command and Macro Reference

()

(Usage Notes

(

GET (QSAM)

• The GET macro operates in one of two modes, namel MOVE and
LOCATE. You declare which mode is to be used in obtaining records
from a file when you create its data control block vj I the DCB macro
instruction.

MOVE MODE

LOCATE MODE

GCS moves the next logical record of the file directly
into the work area specified by the AREA ADDRESS
parameter. The system assumes that you have
provided a work area large enough to accommodate
the largest record that may emerge from the file. If
your file comprises variable-length records, then the
work area must be large enough to accommodate the
largest record plus its record descriptor word.

When the record has been successfully obtained,
GCS returns the address of the work area in register
1.

GCS moves the next logical record of the file to an
input buffer. The system then places the length of
the record in the DCBLRECL field of the file's data
control block. It then returns the address of the
input buffer in register 1.

You may process the record in the input buffer or
move it to a work area, as you wish.

• GCS assumes that the file being processed has been properly opened via
the OPEN macro instruction. If necessary, review the entry titled
"OPEN (BSAM/QSAM)" on page 296.

Return Codes and ABEND Codes

(The GET macro instruction generates no return codes.

ABEND Meaning
Code
005 Either an invalid address appears in the GET

instruction, or a required address parameter is missing.

(.•..

Chapter 11. QSAM and BSAM Data Management Service Macros 293

NOTE (BSAM)

NOTE (BSAM)

Get the Relative Position of the Last Block Read or Written in a File

(label] NOTE

Parameter

For many reasons, you may want to know the relative position of the last
block you read from or wrote in a BSAM file. You may want to save the
location of one or more of these blocks so that you can return to them at
some later time.

The relative position of the block does not refer to its address on the disk or
other such device. Rather, it refers to the block's position relative to the
beginning of the file of which it is a part.

Use the NOTE macro instruction to obtain the relative position of the last
block you processed in a BSAM fite.

The format of the NOTE macro instruction is:

deb address·

deb address
Specifies the address of the data control block (DCB) associated with
the BSAM file you are processing.

A DCB contains information that defines the characteristics of the
data stored in a file and describes the I/O device requirements for
handling its data. You are responsible for having created a DCB for
the file in question via the DCB macro instruction. If necessary,
review the entry titled "DCB (BSAM/QSAM)" on page 280.

You can write this parameter as an RX-type address or as register (1)
through (12).

294 VM/SP GCS Command and Macro Reference

I '\

/

o

(~ Usage Notes

NOTE (BSAM)

• Before you issue the NOTE instruction, you must confirm that the last
I/O operation was completed successfully. Use the CHECK macro
instruction to accomplish this. If necessary, review the entry titled
"CHECK (BSAM)" on page 274.

• The NOTE macro returns the record id (or relative position) of the last
block read or written in register 1. This is the position of the record
within the file relative to the beginning of the file, not to the beginning
of the secondary storage device. The macro stores the record id in the
following format:

•

NNNz

NNN represents the three-byte file system record number, and z, a byte
of zeroes. You must retain this value in a register or in virtual storage
for future reference.

You can use the NOTE and POINT macro instructions on any BSAM
file. (If necessary, review the entry titled "POINT (BSAM)" on
page 301.) However, you must inform GCS in advance of your intention
to do so via the MACRF parameter in the DCB macro instruction.

(Return Codes and ABEND Codes

ABEND Meaning
Code

OOA Either you specified an invalid address in the NOTE
macro instruction, or an invalid address exists in the
data control block associated with your file.

(

Chapter 11. QSAM and BSAM Data Management Service Macros 295

OPEN (BSAM/QSAM)

OPEN (BSAM/QSAM)

Prepare a File for Processing

[label]

Parameters

Before a program can use a file, they must be "logically connected" to each
other. That is, GCS must be told where the file is and what its
characteristics are. In general, this process is called "opening the file."

Use the OPEN macro instruction to open a file and prepare it for
processing.

The OPEN macro instruction is available in standard, list, and execute
format.

The standard format of the OPEN macro instruction is as follows:

deb address
Specifies the address of the data control block associated with the file
you want to open. More specifically, it is the address of the label on
the DCB macro instruction associated with your file. If necessary,

(\
I, !
"...J

\

/

review the entry titled "DCB (BSAM/QSAM)" on page 280. ',,-

You can write this parameter as an RX-type address or as register (2)
through (12).

INPUT
Indicates that your file is to be treated as an input file. Unless
otherwise specified, this parameter applies by default.

OUTPUT
Indicates that your file is to be treated as an output file.

You must specify this parameter if you are creating a new file.

UPDAT
Indicates that you intend to update an already existing file.

296 VMjSP GCS Command and Macro Reference

(Usage Notes

(

(

OPEN (BSAM/QSAM)

• Use of the OPEN macro instruction to open a file assumes that the DCB
macro instruction has also been issued for that file.

• The OPEN macro prepares your file for processing, then "logically
connects" it to your program.

First, the information you supplied using the DCB macro instruction
and the FILEDEF command are merged into one data control block.
For more information on the FILEDEF command, see "FILEDEF" on
page 33.

Where an existing file is concerned, if any information necessary to the
data control block is not provided by either of these sources, then it is
taken from the attributes of the file itself.

Later, the exit routines specified in the DCB instruction are l:!xecuted
and the processing method of your file (INPUT, OUTPUT, or UPDAT)
is designated. After a few other details are taken care of, your file is
ready for processing.

• More than one file may be opened by a single OPEN im;truction. Just
be certain that a comma delimits each entry in the list and that the
entire list is surrounded by parentheses.

• When choosing from among the INPUT, OUTPUT, and UPDAT
parameters, be mindful of what was specified by the DCB instruction in
the MACRF parameter. In this respect, the OPEN and DCB
instructions must be compatible.

For example, if input macros were specified by the MACRF parameter,
then the INPUT parameter must be applied to the corresponding OPEN
instruction.

• Only the task that opened a file can close it.

• To try to open a file that is already opened, with the same DCB,
amounts to issuing a NOP (NO OPERATION) instruction.

• It is an error to open a file specifying a DCB address that is not really
the address of a data control block. The results of such an error are
unpredictable.

• If you have access method control blocks (ACBs) that you wish to open,
as well as DCBs, then you can specify a combination of both in the
same OPEN instruction. GCS is able to distinguish the address of one
from the address of the other, as long as you separate each with a
comma.

Chapter 11. QSAM and BSAM Data Management Service Macros 297

OPEN (BSAM/QSAM)

Return Codes and ABEND Codes c
The OPEN macro generates no return codes.

ABEND Meaning
Code

013 An error occurred during the execution of the OPEN
macro. You will receive a message explaining this
further.

o
298 VM/SP GCS Command and Macro Reference

(' The List Format

[label] OPEN

(

Added Parameter

OPEN (BSAM/QSAM)

[([deb address],

This format of the macro instruction generates an in-line parameter list
based on the parameter values that you specify. However, this format
generates no executable code. Remember that you cannot specify any of
the parameters using register notation. Also, note that only the parameters
listed above are valid in the list format of this instruction.

The parameter list consists of a one-word entry for each DCB in the
parameter list. The high-order byte is reserved while the three low-order
bytes contain the address of a DCB. The end of the list is marked by
setting the high-order bit of the last entry to 1.

The length of the list generated by the list format of this instruction must
be equal to the maximum length required by an execute format instruction
that refers to the same list. A maximum length liKt can be constructed in
one of two ways.

1. Issue the instruction using the list format, with the maximum number of
parameters required by the execute format of the instruction that refers
to the same list.

2. Use an appropriate number of commas in the list format of the
instruction to obtain a list of the required size. For example,

OPEN ("""",), MF=L

would create a list of five fullwords.

GCS assumes that any entries at the end of the list that are not referred to
by the instruction in the execute format were filled in by a previous
instruction.

MF=L
Specifies the list format of this macro instruction.

Chapter 11. QSAM and BSAM Data Management Service Macros 299

----- ~---------------~

OPEN (BSAM/QSAM)

The Execute Format

Added Parameter

This format of the macro instruction generates code that executes the
function using a parameter list whose address you specify.

Note that only the parameters listed above are valid in the execute format
of this instruction.

MF = (E,address)
ADDRESS specifies the address of the parameter list to be used by the
macro.

You can add or modify values in this parameter list by specifying them
in this instruction.

300 VMjSP GCS Command and Macro Reference

/ '\

\,)

/

o

(

(

(

----------~~~- -------- ----- ---~--

POINT (BSAM)

POINT (BSAM)

Return to a Specified Block within a File

Parameters

As described in the entry titled "NOTE (BSAM)" on page 294, the NOTE
macro instruction will give you the relative position of the last block read
from or written in a file. You save one or more such locations with the
intention of returning to them at some later time.

Use the POINT macro instruction to return to one of the locations in a
BSAM file that you saved via the NOTE instruction. If you then issue a
READ or WRITE macro instruction, it is the block to which you have
returned that will be read or written. (If necessary, review the entries
titled "READ (BSAM)" on page 306 and" 'WRITE (BSAM),.WRITE
(BSAM)" on page 316.)

The format of the POINT macro instruction is:

address

deb address
Specifies the address of the data control block (DeB) associated "lith
the BSAM file you are processing.

A DeB contains information that defines the characteristics of the
data stored in a file and describes the I/O device requirements for
handling its data. You are responsible for having created a DeB for
the file in question via the DeB macro instruction. If necessary,
review the entry titled "DeB (BSAM/QSAM)" on page 280.

You can write this parameter as an RX-type address or as register (1)
through (12).

Chapter 11. QSAM and BSAM Data Management Service Macros 301

~~~------.-------~~ 



POINT (BSAM) 

Usage Notes 

block address 
Specifies the address containing the record id (or relative position) of 
the block that is to be processed next. 

The record id must be stored in a fullword on a fullword boundary. 

You can write this parameter as an RX-type address, as register (0), or 
as register (2) through (12). 

• Before you issue the POINT instruction, you must confirm that the last 
I/O operation was completed successfully. Use the CHECK m"acro 
instruction to accomplish this. If necessary, review the entry titled 
"CHECK (BSAM)" on page 274. 

• The POINT macro processes no file blocks. It merely positions a 
pointer to the block that is to be processed next. 

• The NOTE macro returns the record id (or relative position) of the last 
block read or written in register 1. This is the position of the record 
within the file relative to the beginning of the file, not to the beginning 
of the secondary storage device. The macro stores the record id in the 
following format: 

NNNz 

NNN represents the three-byte file system record number, and z, a byte 
of zeroes. Presumably you retained this value in a register or in virtual 
storage. 

• Usually, the low-order byte of the record id is reset to o. This indicates 
that the block to be affected by the next I/O instruction is the one to 
which the record id points. If you set the low-order byte of the record id 
to 1, then you indicate that the block following the block to which the 
record id points is to be processed. 

• If you are processing an output BSAM file, then you should issue one 
last WRITE instruction before you close the file. This ensures that any 
altered block is written in the file. 

302 VMjSP GCS Command and Macro Reference 

./ 



POINT (BSAM) 

( Return Codes and ABEND Codes 

ABEND Meaning 
Code 
OOA You specified an invalid address in the POINT macro 

instruction. 

( 

( 

Chapter 11. QSAM and BSAM Data Management Service Macros 303 



PUT (QSAM) 

PUT (QSAM) 

Place the Next Logical Record in a QSAM File 

Parameters 

Use the PUT macro instruction to write the next logical record in a QSAM 
file. 

The format of the PUT macro instruction is: 

dcb address 
Specifies the address of the data control block (DCB) associated with 
the QSAM file your program is processing. 

A DCB contains information that defines the characteristics of the 
data stored in a file and describes the I/O device requirements for 
handling its data. You are responsible for having created a DCB for 
the file in question via the DCB macro instruction. If necessary, 
review the entry titled "DCB (BSAM/QSAM)" on page 280. 

You can write this parameter as an RX-type address or as register (1) 
through (12). 

area address 

I 
~.. ,1 

Specifies the address of a work area from which GCS will obtain the 'c, ./ 

next logical record it will write in the file. 

This parameter is valid only if you are using the PUT macro in MOVE 
mode. Moreover, it is your responsibility to provide storage for this 
work area in your program. 

If you omit this parameter while operating in MOVE mode, then GCS 
assumes the address of the work area is in register O. Otherwise you 
can write this parameter as an RX-type address, as register (0), or as 
register (2) through (12). 

304 VM/SP GCS Command and Macro Reference 

o 



(, - Usage Notes 

PUT (QSAM) 

• The PUT macro operates in one of two modes, namely MOVE and 
LOCATE. You declare which mode is to be used in writing records in a 
file when you create its data control block via the DCB instruction. 

MOVE MODE GCS moves the next logical record to be written in 
the file from the work area specified by the AREA 
ADDRESS parameter to an output buffer. From 
there, the system moves the record to the secondary 
storage device containing the QSAM file in question. 
It then returns the address of the output buffer in 
register 1. 

LOCATE MODE The moment you issue the PUT instruction, while 
operating in LOCATE mode, GCS writes in the 
QSAM file the last record you built in the output 
buffer. It then returns the address of the next 
available output buffer to you in register 1. It is at 
this address where your program builds the next 
record to be written in the file. The system does not 
write this record in the file until you issue the PUT 
instruction again. 

• GCS assumes that the file being p"oct)HHPd has been properly opened via 
the OPEN macro instruction. If necessary, review the entry titled 
"OPEN (BSAM/QSAM)" on page 296. 

Return Codes and ABEND Codes 

The PUT macro instruction generates no return codes. 

ABEND Meaning 
Code 

( 005 Either an invalid address appears in the PUT 
instruction, or a required address parameter is mis~ing. 

Chapter 11. QSAM and BSAM Data Management Service Macros 305 



READ (BSAM) 

READ (BSAM) 

Using BSAM, Get a Block of Data from a File 

[label 

Parameters 

When obtaining input from a file, your application is responsible for 
blocking and unblocking the data. 

Use the READ macro instruction to retrieve a block of data from a BSAM 
disk or reader file and place it into a specified area of your virtual storage. 

The READ macro instruction is available in standard, list, and execute 
formats. 

The standard format of the READ macro instruction is: 

decb name 
Specifies the label that you want applied to the data event control 
block. 

A data event control block (DECB) is created within the expansion of 
the READ macro. It contains information that describes the input 
"event" you want to effect. The DECB will be defined in detail later. , 

SF 

For now, suffice to say that the DECB, as it expands within the macro, 
requires a label which you must supply. You will use this label to 
access the DECB itself. 

You must write this parameter as an assembler program label. 

Indicates that a normal, sequential, forward retrieval access method 
will be employed in obtaining the block from your file. 

Since this is the only method of extracting data from a BSAM file that 
GCS supports, the SF parameter is required and must be written 
exactly as shown. 

306 VM/SP GCS Command and Macro Reference 

c 



( 

READ (BSAM) 

deb address 
Specifies the address of the data control block (DCB) associated with 
the BSAM file you are processing. 

A DCB contains information that defines the characteristics of the 
data stored in a file and describes the I/O device requirements for 
handling its data. You are responsible for having created a DCB for 
the file in question via the DCB macro instruction. If necessary, 
review the entry titled "DCB (BSAM/QSAM)" on page 280. 

You can write this parameter as an RX-type address or as register (1) 
through (12). 

area address 
Specifies the address in your virtual storage at which you want the 
input block placed. 

It is your program's responsibility to provide and manage this area of 
storage. 

You can write this parameter as an assembler program label or as 
register (2) through (12). 

length 

's' 

Specifies the number of bytes you want extracted from your file. 

GCS begins extracting the data starting with the next available 
record, as indicated by the data control block (DCB) associated with 
your file. This data will be placed in virtual storage starting at the 
address specified by the AREA ADDRESS parameter. 

You can write this parameter as any number from 1 to 32760. 

Indicates that the number of bytes to be extracted from your file will 
be the number found in the DCBLRECL field of the file's DCB. 

This is the same number you specified previously for the LRECL 
parameter in the FILEDEF command or the DCB macro instruction. 
If necessary, review the entry titled "FILEDEF" on page 33, and the 
entry titled "DCB (BSAM/QSAM)" on page 280 in this book. 

Chapter 11. QSAM and BSAM Data Management Service Macros 307 



READ (BSAM) 

• 

• 

Control may return to your program before the READ macro completes 
processing. Therefore, you must issue the CHECK macro instruction 
after each READ instruction to be certain that the latter executed 
properly. By l.lsing the CHECK instruction you confirm whether the 
input from your file has succeeded, failed, or is incomplete. If 
necessary, review the entry titled "CHECK (BSAM)" on page 274. 

If you specified the UPDAT parameter in the OPEN instruction that 
opened your file, then both the READ and WRITE macro instructions 
must use the same DECB name. If necessary, review the entries titled 
"OPEN (BSAM/QSAM)" on page 296 and" 'WRITE (BSAM),.WRITE 
(BSAM)" on page 316. 

Input to the READ Macro 

The data event control block is created as part of the READ macro 
expansion. It defines the input "event" using the following format. 

0(0) ECB 

4 (4) Type of I/O request, thus: 
0000 1000 --- > READ 

6 (6) Length of the block being extracted 
8 (8) Address of the data control block (DCB) 

12 (C) Address in your virtual storage where the block is to 
be placed 

16 (10) Zeroes 

Note that the address of the logical input block is placed in the DECB at 12 
(C). It is through this address that you manipulate the data in the block. 

Return Codes and ABEND Codes 

The READ macro generates no return codes. 

ABEND Meaning 
Code 

001 An I/O error occurred but no SYNAD routine address 
was found in the file's DCB. 

005 Either you specified an invalid address, or an address 
was missing. 

010 You specified a parameter not supported by GCS. 

308 VMjSP GCS Command and Macro Reference 

o 



(. The List Format 

[label] READ 

Added Parameter 

( 

( ... -

/ 

READ (BSAM) 

This format of the macro instruction generates an in-line DECB based on 
the parameter values that you specify. However, this format generates no 
executable code. Remember that you cannot specify any of the parameters 
using register notation. . 

MF=L 
Specifies the list format of this macro instruction. 

Chapter 11. QSAM and BSAM Data Management Service Macros 309 



READ (BSAM) 

The Execute Format 

Added Parameter 

This format of the macro instruction generates code that executes the 
function. The access method uses the DECB whose name you specify as the 
parameter address. 

MF=E 
Specifies the execute format of this macro instruction. 

310 VM/SP GCS Command and Macro Reference 



( 

SYNADAF (BSAM/QSAM) 

SYNADAF (BSAM/QSAM) 

Obtain a Message and an Error Code that Explain an 1/0 Error 

[label] 

During input or output, errors sometimes occur. When they do, one of two 
things happens: 

• Your task terminates abnormally, 
• Or, if you have provided one, your SYNAD routine receives control. 

A SYNAD routine is a program that you provide to analyze the cause of 
any permanent I/O error your task encounters. When you define the data 
control block (DCB) associated with a file, you can also identify a SYNAD 
routine for that file. If necessary, review the entry titled "DCB 
(BSAM/QSAM)" on page 280. 

You can write your SYNAD routine to determine the cause and type of the 
error by examining: 

• The contents of the registers at the moment of error, 

• The data event control block (DECB) associated with the I/O "event" 
that caused the error (this applies only to BSAM files), 

• The exceptional condition code, 

• The standard status and sense indicators. 

Often it is simpler to issue the SYNADAF macro instruction, which will 
return a message and error code to you describing the I/O error. 

The format of the SYNADAF macro instruction is: 

ACSMETH~\{~~~~lT .PARMI = (re9~,s~er)] [. 

Chapter 11. QSAM and BSAM Data Management Service Macros 311 



SYNADAF (BSAM/QSAM) 

Parameters 

ACSMETH 
Specifies the access method you are using on the file in question. 
Specify either BSAM or QSAM. 

PARMI 
Specifies the number of the register containing the informatio~ that 
was in register I when your SYNAD routine received control. 

When the error occurred, GCS gained control. After it attempted to 
recover from the error, it passed control to your SYNAD routine. In 
so doing, GCS passed the following information to your routine in 
register 1. 

• Status bits, 
• Flag bits, 
• The address of the data control block (DCB) associated with the 

file being processed when the error occurred. 
If you moved this data to another register, then write the number of 
that register, surrounding it with parentheses. If you omit this 
parameter, then GCS assumes that you left this data in register 1. 

PARM2 
Specifies the number of the register containing the information that 
was in register 0 when your SYNAD routine received control. 

When GCS passed control to your SYNAD routine, it also passed 
certain status and control information in register O. 

If you moved the data to another register, then write the register 
number, surrounding it with parentheses. If you omit this parameter, 
then GCS assumes that you left this data in register O. 

312 VM/SP GCS Command and Macro Reference 

."" / 

o 



(~ Usage Notes 

(-

----------"--.---.-------~-

SYNADAF (BSAM/QSAM) 

• The SYNADAF macro returns the address of a buffer to you in register 
1. This buffer contains a 120-byte message, describing the result of its 
error analysis. The format of this message is: 

BYTES CONTENTS 
0-43 BLANK. You can add your own comments to the 

message in this field, if you wish. 

44-83 CSISER306S INPUT ERROR nnn ON ddname 
OR 

CSISER307S OUTPUT ERROR nnn ON ddname 

nnn specifies an I/O error code. Consult the VM/ SP 
System Messages and Codes manual for an explanation 
of messages CSI306S or CS1307S. ddname specifies the 
name of the file in question. 

84-119 BLANK. 

The message describing the SYNADAF macro's error analysis is a 
variable-length record containing EBCDIC data. If you wish, you can 
have- this message printed. 

Return Codes and ABEND Codes 

ABEND Meaning 
Code 
144 The high-order byte of register 15 should have 

contained X'02' or X'03' on entry to the SYNADAF 
SVC routine. It did not. 

244 The caller provided an invalid save area address in 
register 13. 

( 344 Either the DCBaddress or the DCB DEB address was 
invalid. 

444 The DECB address was invalid. 

c-
Chapter 11. QSAM and BSAM Data Management Service Macros 313 



SYNADRLS (BSAM/QSAM) 

SYNADRLS(BS~M/QSAM) 

Release the Message Buffer and Save Areas Created by the SYNADAF Macro 

Parameters 

Usage Note 

When you issue the SYNADAF macro instruction from your SYNAD 
routine, a message buffer, parameter save area, and register save area are 
created. This is explained in the entry titled "SYNADAF (BSAM/QSAM)" 
on page 311. 

These storage areas must be released once they are no longer needed. 
Moreover, the values contained in the registers prior to your issuing the 
SYNADAF instruction must be restored. Use the SYNADRLS macro 
instruction to effect this. 

The format of the SYNADRLS macro instruction is: 

;.;.,.,;.:' 

, ':('-'"'", 0'·' 

< .~ < .. ; ~ 

The SYNADRLS macro instruction accepts no parameters. 

• Before you issue the SYNADRLS instruction, be certain that register 13 
contains the address of the register save area provided by the 
SYNADAF macro. This save area contains the values of the registers 
that were present before you issued the SYNADAF instruction. 

The SYNADRLS macro restores these registers and releases the 
message buffer, parameter save area, and register save area. 

The SYNADRLS macro then loads register 13 with the address of 
another save area. This area contains the values of the supervisor's 
registers that were pre~ent when it passed control to your SYNAD 
routine. The third word of this save area is reset to zero, since the next 
area in the chain was just released. 

Everything is then restored to its condition prior to your issuing the 
SYNADAF instruction. 

314 VM/SP GCS Command and Macro Reference 

o 



SYNADRLS(BSAM/QSAM) 

( Return Codes and ABEND Codes 

(-

( 

( 

When this macro completes processing, it passes to the caller a return code 
in the low-order byte of register O. 

Return Meaning 
Code 
00 Function completed successfully. 

08 Function completed unsuccessfully, and nothing has 
changed. Either register 13 does not point to the save 
area provided by the SYNADAF macro, or this save 
area is improperly chained to the save area containing 
the supervisor's registers. 

ABEND Meaning 
Code 
944 Either the address of SYNADAF's save area or the 

pointer to the caller's save area was invalid. 

Chapter 11. QSAM and BSAM Data Management Service Macros 315 



WRITE (BSAM) 

WRITE (BSAM) 

Using BSAM, Add or Replace a Block of Data in a File 

Parameters 

When using BSAM to place output in a file, your application is responsible 
for blocking and unblocking the data. 

Use the WRITE macro instruction to add or replace a block of data in a 
disk file, or to add a block to a punch or printer file. 

The WRITE macro instruction is available in standard, list, and execute 
formats. 

The standard format of the WRITE macro instruction is: 

deeb name 

SF 

Specifies the label that you want applied to the data event control 
block. 

A data event control block (DECB) is created within the expansion of 
the WRITE macro. It contains information that describes the output 
"event" you want to effect. The DECB will be defined in detail later. 
For now, suffice to say that the DECB, as it expands within the macro, 
requires a label which you must supply. 

You must write this parameter as an assembler program label. 

Indicates that a normal, sequential, forward retrieval access method 
will be employed in placing the block in your BSAM file. 

Since this is the only method of placing data in a BSAM file that GCS 
supports, the SF parameter is required and must be written exactly as 
shown. 

deb address 
Specifies the address of the data control block (DCB) associated with 
the file you are processing. 

316 VM/SP GCS Command and Macro Reference 

/ 

o 

------- ----



(/ 

Usage Notes 

c 

WRITE (BSAM) 

A DCB contains information that defines the characteristics of the 
data stored in a file and describes the I/O device requirements for 
handling its data. You are responsible for having created a DCB for 
the file in question via the DCB macro instruction. If necessary, 
review the entry titled "DCB (BSAM/QSAM)" on page 280. 

You can write this parameter as an RX-type address or as register (1) 
through (12). 

area address 
Specifies the address in your virtual storage that contains the output 
block you want placed in your file. 

It is your program's responsibility to provide and manage this area of 
storage. 

You can write this parameter as an assembler program label or as 
register (2) through (12). 

length 

's' 

Specifies the number of bytes that you want placed in your file. 

GCS will begin the block at the next available record in your file, as 
indicated by the file's data control block (DCB). The data placed there 
will be taken from the area specified by the AREA ADDRESS 
parameter. 

You can write this parameter as any number from 1 to 32760. 

Indicates that the number of bytes to be placed in your file will be the 
number found in the DCBLRECL field of the file's DCB. 

This is the same number you specified previously for the LRECL 
parameter in the FILEDEF command or the DCB macro instruction. 
If necessary, review the entry titled "FILEDEF" on page 33, and the 
entry titled "DCB (BSAM/QSAM)" on page 280 in this book. 

• Control may return to your program before the WRITE macro completes 
execution. Therefore, it is required that you issue the CHECK macro 
instruction after each WRITE instruction to be certain that the latter 
executed properly. By using the CHECK instruction you confirm 
whether the output to your file has failed or is incomplete. If necessary, 
review the entry titled "CHECK (BSAM)" on page 274. 

• If you specified the UPDAT parameter in the OPEN macro instruction 
when you opened your file, then both the READ and WRITE macro 
instructions must use the same DECB name. If necessary, review the 
entries titled "OPEN (BSAM/QSAM)" on page 296 and "READ 
(BSAM)" on page 306. 

Chapter 11. QSAM and BSAM Data Management Service Macros 317 



WRITE (BSAM) 

Input to the WRITE Macro 

The data event control block (DEeB) is created as part of the WRITE 
macro expansion. It defines the output "event" using the following format. 

0(0) EeB 

4 (4) Type of I/O request, thus: 
0000 0010 --- > WRITE 

6 (6) Length of the block being written 

8 (8) Address of the data control block (DeB) 

12 (e) Address in your virtual storage where the block can 
be found 

16 (10) Zeroes 

Return Codes and ABEND Codes 

The WRITE macro generates no return codes. 

ABEND Meaning 
Code 

005 Either you specified an invalid address or an address 
was missing. 

318 VM/SP GCS Command and Macro Reference 



(C - The List Format 

[l abel] WRITE 

Added Parameter 

( 

WRITE (BSAM) 

decb name.SF[.dcb address] [.area addre.ss] [: 1~~~,~hl'MF=L 

This format of the macro instruction generates an in-line DECB, based on 
the parameter values that you specify. However, this format generates no 
executable code. Remember that you cannot specify any of the parameters 
using register notation. 

MF=L 
Specifies the list format of this macro instruction. 

Chapter 11. QSAM and BSAM Data Management Service Macros 319 



----- ------

WRITE (BSAM) 

The Execute Format 

Added Parameter 

This format of the macro instruction generates code that executes the 
function. The access method uses the DECB whose name you specify. 

MF=E 
Specifies the execute format of this macro instruction. 

320 VM/SP GCS Command and Macro Reference 

-----------------------

o 

------ ----



-----------------------

Using VSAM under GCS ................................... 322 
ACB ................................................... 338 
CHECK ................................................. 346 
CLOSE ................................................. 348 
ENDREQ ............................................... 351 
ERASE ................................................. 354 
EXLST ................................................. 356 

(- GENCB ................................................. 361 
GENCB ................................................. 370 
GENCB ................................................. 374 
GET ................................................... 383 
MODCB ................................................ 385 
MODCB ................................................ 394 
MODCB ................................................ 398 
OPEN .................................................. 406 
POINT ................................................. 409 
PUT ................................................... 412 
RPL .................................................... 414 
SHOWCB ............................................... 420 

( 
SHOWCB ............................................... 427 
SHOWCB ............................................... 431 
TESTCB ................................................ 435 
TESTCB ................................................ 445 
TESTCB ................................................ 450 

Chapter 12. VSAM Data Management Service Macros 321 



Using VSAM under GCS 

VSAM 110 Operations under GCS 

GCS applications can access VSAM disks using the VSAM interface. This 
interface comprises the macro instructions described on the following 
pages. 

This VSAM interface, as supported by GCS, is very similar to that 
supported by CMS in VM/SP Release 3. Of particular significance is that 
VSAM disks are in VSE/VSAM format. Moreover, in VM/SP 3, 
MVS/VSAM requests are mapped to VSE/VSAM requests and executed via 
VSE/VSAM code. 

The macros described ori the following pages are up to the MVS Release 3.8 
level and are contained in a CMS macro library named OSVSAM MACLIB. 
In addition, GCS includes MVS Release 3.8 levels of the OS OPEN, CLOSE, 
GET, and PUT macros to support access method control blocks (ACBs). 

Since GCS must map macro requests to VSE/VSAM before invoking the 
VSE/VSAM code, OS mapping macros affecting access method control 
blocks, exit lists, and request parameter lists (RPLs) are not supported. 
After the first macro call, these data structures are converted from the OS 
format to the VSE/VSAM format. Hence, GCS provides the TESTCB and 
SHOWCB macro instructions to test and examine the contents of these data 
structures. 

Using the RPL macro instruction, you can specify that you want your file 
processed asynchronously. This means that when the request associated 
with the RPL you are creating is scheduled, control will return to your 
program so it can continue processing. Meanwhile, your request is being 
carried out. Remember, though, that asynchronous processing is merely 
simulated by GCS. Disk I/O in GCS is always synchronous. 

GCS does not support utility functions, such as disk initialization, catalog 
definition, and file definition. These AMS functions must be performed 
under CMS. 

Keep in mind that, although GCS supports an OS/MVS macro interface, 
VSAM operations are performed by the VSE/VSAM program product. And, 
although you can use the macro instructions discussed in this section only 
for VSAM, many of them are also used for VTAM, QSAM, and BSAM-but, 
in other environments. 

322 VMjSP GCS Command and Macro Reference 

c 



(C Control-Block Manipulation Macros 

The List Format 

( 

The GENCB, MODCB, SHOWCB, and TESTCB macro instructions are 
control-block manipulation instructions. The list, list address, and execute 
formats of these instructions allow you to save virtual storage by using one 
parameter list for two or more macro invocations. You can also make your 
program reenterable, that is, executable by more than one task at a time. 
However, while the generate format of these macros enables you to make 
programs reenterable, it does not allow shared parameter lists. 

The list format of the GENCB, MODCB, SHOWCB, and TESTCB 
instructions has the same parameters as the standard form, except that you 
add the 

MF= L 

parameter. The parameter list of the macro is created in-line when you 
code MF = L. Therefore, your program is not reentrant if the parameter list 
is modified at execution time. And, since the expansion of the list format of 
a macro does not include executable code, you cannot use register notation 
or expressions that generate S-type constants. 

( The List Address Format 

( 
The Execute Format 

When you add the 

MF=(L,address[,label]) 

parameter, you create the parameter list in the area specified by ADDRESS. 
This version is reenterable, and you must supply the area via the 
GETMAIN instruction when your program is executed. (If necessary, 
review the entry titled "GETMAIN" on page 251.) You can determine the 
size of the parameter list by coding the third parameter LABEL. VSAM 
equates this parameter with the length of the parameter list. 

The execute format produces code that executes the function. The execute 
format is identical to the standard format, except that you add the 

MF=(E,address) 

parameter. ADDRESS points to the parameter list created by the list 
format of the instruction. All other parameters of the instruction are 
optional. Code them only if you wish to change entries in the parameter 
list before it is used. However, you cannot use the execute format to add or 
delete entries from the parameter list or to change the type of list. 

Chapter 12. VSAM Data Management Service Macros 323 



The Generate Format 

The generate format of these instructions builds the parameter list in a 
remote area, the address of which you specify, and passes it to VSAM for 
execution. It allows you to make your program reenterable, but it does not 
create shared parameter lists. The generate format is the same as the 
standard format, except that you add the 

MF=(G,address[,label) 

parameter. The parameter list is created in an area pointed to by 
ADDRESS. To make it possible for the parameter list to be reenterable, 
you should code ADDRESS using register notation. You must obtain this 
area via the GETMAIN instruction when the program is executed. You can 
determine the size of the parameter list by coding the third parameter 
LABEL. VSAM equates LABEL with the length of the parameter list. 

Operand Notation for the GENCB, MODCB, SHOWCB, and TESTCB Instructions 

The addresses, names, numbers, and options required with parameters in 
the GENCB, MODCB, SHOWCB, and TESTCB instructions can be 
expressed in a variety of ways: 

• As an absolute numeric expression. For example, 

COPIES=10 

• As a character string. For example, 

DDNAME=DATASET 

• As a code or a list of codes separated by commas and enclosed in 
parentheses. For example, 

OPTCD=(KEY,DIR,IN) 

• An expression valid for a relocatable A-type address constant, for 
example, 

AREA=MYAREA+4 

• As a register from 2 through 12 that contains an address or numeric 
value. For example, 

SYNAD=(3) 

Equated labels can be used to designate a register. For example, 

ERR EQU 3 

.... SYNAD=(ERR) 

324 VM/SP GCS Command and Macro Reference 

o 



( 

( 

• As an expression of the format 

(S,SCON) 

SCON is an expression valid for an S-type address constant, including 
the base-displacement form. The contents of the base register will be 
added to the displacement to obtain the value of the keyword. For 
example, if the value of the keyword being represented is a numeric 
value (that is, COPIES, LENGTH, RECLEN), then the contents of the 
base register will be added to the displacement to determine the 
numeric value. If the value of the keyword being represented is an 
address constant (that is, W AREA, EXLST, EODAD, ACB), then the 
contents of the base register will be added to the displacement to 
determine the value of the address constant. 

• As an expression of the format 

(*,scon) 

SCON is an expression valid for an S-type address constant, including 
the base-displacement form. The address specified by SCON is indirect, 
that is, it is the address of an area that contains the value of the 
keyword. The contents of the base register will be added to the 
displacement to determine the address of the fullword of storage that 
contains the value of the keyword. 

If you use an indirect S-type address constant, then the value it points to 
must meet the following criteria: 

• If it is a numeric quantity or an address, then it must occupy a fullword 
of storage. 

• If it is an,alphameric character string, then it must occupy two words of 
storage, be left justified, and be padded on the right with blanks. 

The expressions that you can use depend on the keyword you specify. 
Moreover, register and S-type address constants cannot be used when you 
code MF=L. 

The tables that follow summarize the manner in which the keyword 
parameters of VSAM control block manipulation macro instructions can be 
expressed. 

Chapter 12. VSAM Data Management Service Macros 325 



The GENeB Macro Instruction 

Indirect 
Absolute Character S-Type S-Type A-Type 

Keyword Numeric Code String Register Address Address Address 

AM x 

BLK x 

COPIES x x x x 

LENGTH x x x x 

WAREA x x x x 

BLK=ACB: 

BUFND x x x x 

BUFNI x x x x 

BUFSP x x x x 

DDNAME x x 

EXLST x x x x 

MACRF x 

MAREA x x x x 

MLEN x x x 

PASSWD x x x x 

STRNO x x x x 

BLK=EXLST: 

EODAD x x x x 

JRNAD x x x x 

LERAD x x x x 

SYNAD x x x x 

A x 

N x 

L x 

c 
326 VM/SP GCS Command and Macro Reference 



( 
Indirect 

Absolute Character S-Type S-Type A-Type 
Keyword Numeric Code String Register Address Address Address 

BLK=RPL: 

ACB x x x x 

AREA x x x x 

AREALEN x x x x 

ARG x x x x 

ECB x x x x 

KEYLEN x x x x 

NXTRPL x x x x 

OPTCD x 

RECLEN x x x x 

( 

Chapter 12. VSAM Data Management Service Macros 327 



The MODeS Macro Instruction 

Indirect 
Absolute Character S-Type S-Type A-Type 

Keyword Numeric Code String Register Address Address Address 
ACB, EXLST, x x x x 
orRPL 

ACB: 

BUFND x x x x 

BUFNI x x x x 

BUFSP x x x x 

DDNAME x x 

EXLST x x x x 

MACRF x 

MAREA x x x x 

MLEN x x x x 

PASSWD x x x x 

STRNO x x x x 

EXLST: 
EODAD x x x x 

JRNAD x x x x 

LERAD x x x x 

SYNAD x x x x 

A x 

N x 

L x 

RPt: 
ACB x x x x 

AREA x x x x 

AREALEN x x x x 

ARG x x x x 

ECB x x x x 

KEYLEN x x x x 

NXTRPL x x x x 

OPTCD x 

RECLEN x x x x 

o 
328 VM/SP GCS Command and Macro Reference 



(" The SHOWCB Macro Instruction 

Indirect 
Absolute Character S-Type S-Type A-Type 

Keyword Numeric Code String Register Address Address Address' 

ACB, EXLST, x x x x 
orRPL 

ACB: 

AREA x x x x 

FIELDS x 

LENGTH x x x x 

OBJECT x 

EXLST: 

( AREA x x x x 

FIELDS x 

LENGTH x x x x 

RPL: 
AREA x x x x 

FIELDS x 

LENGTH x x x x 

( 

Chapter 12. VSAM Data Management Service Macros 329 



The TESTeS Macro Instruction 

Indirect 
Absolute Character S-Type S-Type A-Type 

Keyword Numeric Code String Register Address Address Address 
ACB, EXLST, x x x x 
orRPL 

ERET x x x x 

ACB: 
ACBLEN x x x x 

ATRB x 

AVSPAC x x x x 

BSTRNO x x x x 

BUFND x x x x 

BUFNI x x x x 

BUFNO x x x x 

BUFSP x x x x 

CINV x x x x 

DDNAME x 

ERROR x x x x 

EXLST x x x x 

FS x x x x 

KEYLEN x x x x 

LRECL x x x x 

MACRF x 

MAREA x x x x 

MLEN x x x x 

NCIS x x x x 

NDELR x x x x 

NEXCP x x x x 

NEXT x x x x 

NINSR x x x x 

NIXL x x x x 

NLOGR x x x x 

NRETR x x x x 

NSSS x x x x 

NUPDR x x x x 

OBJECT x 

OFLAGS x 

OPENOBJ x 

330 VM/SP GCS Command and Macro Reference 

.~--~----- -



( 
Indirect 

Absolute Character S-Type S-Type A-Type 
Keyword Numeric Code String Register Address Address Address 

PASSWD x x x x 

RKP x x x x 

STMST x 

STRNO x x x x 

EXLST: 

EODAD x x x x 

EXLLEN x x x x 

JRNAD x x x x 

LERAD x x x x 

SYNAD x x x x 

A x 

N x 

L x 

RPL: 

ACB x x x x 

AIXFLAG x 

( 
AIXPC x x x x 

AREA x x x x 

AREALEN x x x x 

ARG x x x x 

ECB x x x x 

FDBK x x x x 

FTNCD x 

10 x 

KEYLEN x x x x 

NXTRPL x x x x 

OPTCD x 

RBA x x x x 

RECLEN x x x x 

RPLLEN x x x x 

Chapter 12. VSAM Data Management Service Macros 331 



Feedback Field Codes 

VSAM request macro instructions include ENDREQ, ERASE, GET, POINT, 
and PUT. After you issue one of these instructions, or the CHECK 
instruction, register 15 contains a return code that indicates the manner in 
which your request was completed. This is described even further by the 
error code placed in the FDBK field of the request parameter list (RPL) 
associated with your request. These error codes are defined as follows. 

When the Return Code in Register 15 is 0: 

Error Meaning 
Code 

0 Request completed successfully. 

4 VSAM detected an END-OF-VOLUME condition. 

8 VSAM detected a non-unique key in the alternate 
index. 

16 A control area split occurred because there was not 
enough space to make an index entry in a sequence set 
record. Some data intervals could not be used in the 
control area that was split. 

28 The record retrieved by a GET instruction, without 
UPDATE, may be a duplicate of a record in another 
control interval. Eliminate duplicate records by 
processing the data using keyed access with UPDATE. 
For sequential processing, this error code is set only 
for the first record in the control interval. 

332 VM/SP GCS Command and Macro Reference 

o 



(-' When the Return Code in Register 15 is 8: 

Error 
Code 

4 

8 

12 

16 

20 

24 

28 

Meaning 

Either VSAM encountered an END-OF-FILE condition 
during sequential retrieval, or the search argument is 
greater than the highest existing key (or relative 
record number) in the file. 

One of three things happened: 

• An attempt was made to store a record with a 
duplicate key. 

• A duplicate record was found for an alternate 
index with the UNIQUEKEY option. 

• A record already exists at the accessed record 
location. 

VSAM detected a record out of sequence in a 
key-sequenced or relative-record file. There may be a 
duplicate key or record number. 

No record was found. If a relative-record file was 
being accessed, VSAM may have detected a deleted or 
invalid empty slot at the accessed record location. 

This code can be issued for a file being accessed 
through a path if the pointer to the record is missing 
from the alternate index. Although the record is in the 
base cluster, VSAM could not find it because the 
pointer to it was missing. This situation should only 
result from a system failure during UPGRADE 
processing. 

The requested record is contained in a control interval 
that is already held in exclusive control by another 
request. 

The requested record is on a volume or extent that 
cannot be accessed because no extent blocks are 
available. 

All extents of the file are full. VSAM cannot 
suballocate any additional extents to the file for one of 
the following reasons: 

• No secondary allocation was specified. Moreover, 
no space of the required class was available for 
primary space suballocation on an additional 
volume (if one was specified). 

• The maximum number of extensions for the file has 
been exceeded. 

• No space of the required class is available for 
additional secondary allocations. 

Chapter 12. VSAM Data Management Service Macros 333 



Error Meaning c 
Code 

32 An invalid REA was specified. 

36 The key of the record to be inserted does not fall into 
an existing key range in the file. 

40 VSAM could not obtain a sufficiently large contiguous 
area of virtual storage. 

44 The work area you have supplied via the RPL 
instruction's AREA parameter is not large enough for 
the requested record. 

64 As many requests are active as the number specified in 
the STRNO parameter in the ACB instruction. 
Therefore, another request cannot be started. 

68 The type of accessing for the request does not match 
the type of accessing in the access method control 
block. For example, 

/ 

• ADR or CNV was specified, but keyed access is 
requested. 

• INPUT was specified, explicitly or by default, but 
an UPDATE request was made. 

• GET UPD ADR was requested. However, ADR was 
not specified on the ACB instruction when the 
SHAREOPTIONS(4} KSDS was opened. 

72 You requested keyed access for an entry-sequenced 
file. 

76 You requested addressed or control interval insertion 
for a key-sequenced or relative record file. 

80 You issued an ERASE instruction either for an 
entry-sequenced file (directly or via a path), or for a 
file for which control-interval processing has been 
specified. 

84 You specified LOCATE mode- for either a PUT request 
or for processing in a user buffer. 

88 A positioning error occurred. The problem program 
did one of the following things: 

• It issued a sequential GET instruction without 
having VSAM positioned first. 

• It changed from addressed to keyed access without 
having VSAM positioned for keyed-sequential 
retrieval. 

• It issued a sequential PUT instruction for a 
relative-record file without having VSAM 
positioned first. 

• It attempted to improperly switch between forward 
and backward processing. 

o 
334 VM/SP GCS Command and Macro Reference 



(-
Error Meaning 
Code 

92 You issued a PUT for UPDATE or an ERASE 
instruction without a preceding GET for UPDATE 
instruction. 

96 An attempt was made to either change the prime key of 
a record that is being updated, or to change an 
alternate key that has the UNIQUEKEY attribute. 

This produced a sequence error during sequential 
updating. For example, during REPRO REPLACE, two 
separate updates to the same record were attempted. 

100 An attempt was made to either change record length 
during update with addressed access, or to change 
record length for a relative-record file. 

104 You specified invalid or conflicting RPL options or 
parameters, as follows: ( 
• SKP together with BWD. 
• LRD without BWD. 
• CNV together with BWD. 
• ARG parameter was not specified when required. 

108 The RECLEN value specified for the RPL was one of 
the following: ( 
• Larger than the allowed maximum. 

• Equal to zero. 

• Smaller than key length plus relative key position. 

• Not equal to record (slot) size specified for a 
relative-record file. 

For alternate index upgrade processing, the alternate 
index contains too many duplicate keys. Increase the 
maximum record length to accommodate more keys. 

112 The length of the generic key specified for the RPL is 
too large or is equal to zero. 

116 Either a request to insert records was issued during 
initial loading of the file, or a request other than PUT 
insert was issued during initial loading of a 
relative-record file. Possibly an attempt was made to 
read an empty file. 

132 An attempt was made to retrieve a spanned record in 
LOCATE mode. 

136 An attempt was made to retrieve a spanned record of a 
keyed-sequenced file with addressed access. 

Chapter 12. VSAM Data Management Service Macros 335 



Error Meaning 
Code 

140 VSAM encountered an inconsistent spanned record, 
that is, one or more segments were incompletely 
updated or destroyed. 

If the request was GET, then the record (or as much of 
it as possible) was moved to the user's work area. The 
record may contain segments at different update levels. 
The RECLEN field of the RPL shows the length 
actually moved to the work area. 

If the request was sequential or skip-sequential (but 
not direct), then the file remains positioned for update 
or subsequent sequential retrieval. An update of the 
record will update the status of all segments to a 
consistent level. 

If the error was in the AIX during path access (RPL 
FTNCD = X'02'), then the base cluster is not accessed 
and no record is moved to the work area. During 
sequential or skip-sequential access, a subsequent 
request will access records with a higher alternate key 
than the one in error. 

144 VSAM encountered a pointer in an alternate index 
without an associated base record. 

148 The maximum number of pointers in the alternate 
index has been exceeded. 

156 One or more records in this control interval may 
contain duplicate data after an addressed GET 
UPDATE. Any duplicates can be eliminated by 
processing the file using keyed access. 

192 VSAM encountered an invalid relative-record number. 

196 An addressed request was issued for a relative-record 
file. 

200 An addressed or control-interval access was attempted 
via a path. 

204 The program issued a PUT to insert a record while in 
backward mode. 

o 
336 VM/SP GCS Command and Macro Reference 



('.. When the Return Code in Register 15 is 12: 

Error Meaning 
Code 

4 A READ error occurred for a file. 

8 A READ error occurred for an index set. 

12 A READ error occurred for a sequence set. 

16 A WRITE error occurred for a file. 

20 A WRITE error occurred for an index set. 

24 A WRITE error occurred for a sequence set. 

( 

( 

Chapter 12. VSAM Data Management Service Macros 337 



ACB 

Ace 

Generate an Access Method Control Block at Assembly Time 

An access method control block (ACB) defines certain characteristics of a 
file that you intend to process via VSE/VSAM. When the file is opened, 
other characteristics of the file that you defined vi~ the DLBL command are 
merged with the ACB to complete the picture. For more information on the 
DLBL command see "GCS Commands" on page 20. 

Use the ACB macro instruction to create an ACB and define therein certain 
characteristics of your file. 

This discussion of the ACB macro instruction deals only with those matters 
that involve GCS and is not intended to be an exhaustive instruction on 
this or any other VSE/VSAM topic. Presumably you are already familiar 
with VSE/VSAM through past experience and through study of the 
VSE/VSAM manuals. 

338 VM/SP GCS Command and Macro Reference 

c 



[label] ACB 

(-

( 

Parameters 

c 

ACB 

The format of the ACB macro instruction is: 

MACRF=( [AOR] CNV 
KEY 

[. NDF] 

[,OIR] . ill 
.SKP 

[.IN 1 
.OUT 

{,NRM} 
.AIX 

{,NRS} 
.RST 

[,NSR] 

rB} .UBF ) 

[.BUFND=number] [.BUFNI=number] [.BUFSP=number] 

[.DDNAME=ddname] C. EXLST=address] [.MAREA=address] 
> 

[. MLEN=number] [. PASSWD=address] E. STRNO=number] 
»> 

MACRF 
Indicates how you intend to access the file. 

You must specify all of the types of processing you intend to perform 
on the file, whether you intend to perform them concurrently or 
alternately. Moreover, the parameters you choose must be valid for 
the file in question. For example, if you specify keyed access for an 
entry-sequenced file, then you cannot open that file, much less process 
it. 

Carefully check the format box above. Note that the processing 
options are arranged in groups, each with a value that will be 
assumed by default should you fail to specify from that group. Since 
they are not positional parameters, they can be specified in any order. 

Chapter 12. VSAM Data Management Service Macros 339 



ACB 

Carefully note whether a set of brackets surrounds each individual 
member of a group, or a set of braces surrounds the entire group. In 
the former case, you may select more than one of the parameters from 
the group. In the latter case, you may select only one of them. 

ADR 

CNV 

DIR 

SKP 

Indicates addressed access to a key-sequenced or entry-sequenced 
file. 

RBAs will be used as search arguments, and sequential access is 
by entry sequence. 

Indicates access will be to the entire contents of a control 
interval rather than to an individual record. 

Indicates access to a key-sequenced or relative record file. 

Keys will be relative record numbers used as search arguments, 
and sequential access will be by key or relative record number. 

Indicates that any WRITE instruction will not be deferred for a 
direct PUT instruction. 

Indicates direct access to a key-sequenced, entry-sequenced, or 
relative record file. 

Indicates sequential access to a key-sequenced, entry-sequenced, 
or relative record file. 

Indicates skip-sequential access to a key-sequenced or relative I 

record file. ~~ 

This is valid only with keyed access in a forward direction. 

Indicates retrieval of records from key-sequenced, 
entry-sequenced, or relative record files. 

This is not a valid form of processing for an empty file. 

340 VM/SP GCS Command and Macro Reference 

o 



( 

( 

( 

c 

OUT 

ACB 

Indicates several things: 

• Storage of new records in a key-sequenced, entry-sequenced, 
or relative record file. This is not allowed with addressed 
access to a key-sequenced file. 

• Update of new records in a key-sequenced, entry-sequenced, 
or relative record file. 

• Deletion of records from a key-sequenced or relative record 
file. 

• Retrieval of records as described under the IN parameter. To 
select the OUT parameter is to select the IN parameter, by 
implication. 

NRM 

AIX 

RST 

Indicates that the file to be processed is the one specified by the 
DDNAME parameter. 

Indicates that the object to be processed is the alternate index of 
the path specified by the DDNAME parameter, rather than the 
base cluster via the alternate index. 

Indicates that the file is not reusable. 

Indicates that the file is reusable. 

Note that the OPEN macro resets the file's catalog information 
to its original status. That is, it resets it to the status it had 
before the file was open the first time. If necessary, review the 
entry titled "OPEN" on page 406. Also, the high-used RBA is 
reset to zero. 

The file must have been defined with the REUSE attribute for 
RST to be effective. Although the file is not erased, you can 
handle it as though it were a new file, and use it as a work file. 
When the OPEN macro performs the reset operation, this 
parameter is equivalent to the OUT option. DISP = NEW 
specified on the DLBL command is equivalent to selecting this 
parameter and will override the NRS parameter. 

Indicates that the resources are not shared. 

Indicates that VSAM will manage the I/O buffers. 

Chapter 12. VSAM Data Management Service Macros 341 



Ace 

UBF 

BUFND 

Indicates that the application will manage the 1/0 buffers. 

The work area specified by the RPL or GENCB instructions will 
be, in effect, the I/O buffer. The coritents of a control interval is 
transmitted directly between the work area and DASD. This 
parameter is valid only when the MACRF = CNV and 
OPTCD = MVE parameters are specified in the RPL instruction. 
If necessary, review the entries titled "RPL" on page 414 and 
"GENCB" on page 374. 

Specifies the number of I/O buffers to be used in transmitting data 
between virtual and auxiliary storage. 

The size of a buffer corresponds to the size of a control interval in the 
data component. The minimum number you can specify is 1 plus the 
number specified by the STRNO parameter. If you omit the STRNO 
parameter, then the value of the BUFND parameter must be at least 2 
because the default for the former is 1. 

The default for the BUFND parameter is the minimum number 
required to process your file. 

BUFNI 
Specifies the number of I/O buffers to be used for transmitting the ( ~, 
contents of index entries between virtual and auxiliary storage during \" 
keyed access. 

The size of this buffer corresponds to the size of a control interval in 
the index. The minimum number you can specify is 1 plus the number 
specified by the STRNO parameter. If you omit the STRNO 
parameter, then the value of BUFNI parameter must be at least 2 
because the default for the former is 1. 

The default for the BUFNI parameter is the minimum number 
required to process your file. 

BUFSP 
Specifies the maximum number of bytes of virtual storage to be used 
for the data and index I/O buffers. 

This parameter must be at least as large as the buffer size recorded in 
the catalog entry for your file. If the number you specify for this 
parameter is too small, then VSAM overrides it and uses the buffer 
size recorded in the catalog. VSAM, however, does not inform you of 
this. 

o 
342 VM/SP GCS Command and Macro Reference 



( 

f 

( 

Ci 

Ace 

If you omit this parameter, then the size of this buffer will be the 
largest of the following, by default: 

• The buffer size specified in the catalog. 

This buffer size was specified via the BUFFERSPACE parameter 
in the Access Method Services DEFINE command. If this 
parameter was omitted when your file was defined, then a default 
value was assigned to it. This default value, the minimum amount 
of buffer space allowed by VSAM, is enough to accommodate two 
data control intervals and one index control interval. 

• The buffer size determined from the BUFND and BUFNI 
parameters. 

You can also specify buffer space via the BUFSP parameter on the 
DLBL command that identifies your file. This value overrides the 
BUFSP parameter in the ACB macro instruction. Likewise, it 
overrides the BUFFERSPACE parameter in the DEFINE command if 
the latter is smaller. 

If the values you specify for the BUFND, BUFNI, and BUFSP 
parameters are inconsistent, then VSAM increases the number of 
buffers to conform with the size of the buffer area. If the value in the 
BUFSP parameter is greater than the minimum buffer size required to 
process your file and greater than the values specified in the BUFND 
and BUFNI parameters, then the extra space is allocated between the 
data and index buffers as follows: 

• If the MACRF parameter specifies direct processing, then the 
values in the BUFND and BUFNI parameters take effect.· Any 
left-over space is used for index buffers. 

• If the MACRF parameter specifies sequential processing, then the 
values in the BUFND and BUFNI parameters take effect. Space 
for one additional index buffer is allocated. Then, any left-over 
space is used for data buffers. Finally, if any left-over space 
remains that is insufficient to accommodate another data buffer, 
then it is used for another index buffer. 

If the value in the BUFSP parameter is greater than the minimum 
required to process your file, but less than those of the BUFND and 
BUFNI parameters, then enough buffer space will be made available 
to conform to the latter parameters. 

If you provide your own pool of I/O buffers for control interval 
processing, then the BUFSP, BUFND, and BUFNI parameters have no 
effect. In such a case, the AREA and AREALEN parameters of the 
RPL macro instruction determine the size of the user buffer area. (If 
necessary, review the entry titled "RPL" on page 414.) 

Chapter 12. VSAM Data Management Service Macros 343 



ACB 

DDNAME 
Specifies the name of the file you wish to process. 

This name corresponds to that specified in the DDNAME parameter of 
the DLBL command associated with the file. If you omit this 
parameter, then you can supply it via the MODCB macro instruction. 
If necessary, review the entry titled "MODCB" on page 385. 

This name must be from one to seven characters long. 

EXLST 
Specifies the address of a list of exit routine addresses. 

This is the same list that you created via the EXLST or GENCB macro 
instruction. If necessary, review the entries titled "EXLST" on 
page 356 or "GENCB" on page 370. 

If you used the EXLST instruction to create this list, then you can 
write this parameter as the label on that instruction. If you used the 
GENCB instruction, then you can write this parameter as the address 
that the GENCB macro returned to you in register 1 or as the label 
associated with an area into which you have placed this address. 

If you omit this parameter, then GCS assumes that you have supplied 
no exit routines. 

MARE A 
Specifies the address of an area into which GCS will place any console 
messages generated during processing of your file. 

This area can be used by you or your exit routines to analyze any 
errors or problems that may arise. 

MLEN 
Specifies the length, in bytes, of the area whose address is given by 
the MARE A parameter. 

The value of this parameter is zero, by default. Its maximum value is 
32K. 

PASSWD 
Specifies the address of a field that contains the highest level 
password required for the type(s) of access indicated by the MACRF 
parameter. 

The first byte of the field contains the binary length of the password. 
Eight bytes is the maximum length. If this byte is zero, it means that 
you are providing no password. 

If your file is password protected and you provide none, then VSAM 
will ask you to provide the password when it opens the file. 

344 VM/SP GCS Command and Macro Reference 

o 



( 

(-

c 

Usage Notes 

ACB 

STRNO 
Specifies the number of requests you will make that will require 
concurrent file positioning. 

A request is defined by a given request parameter list or a chain 
thereof. If records are- written in an empty file, then the value of this 
parameter is ignored and replaced by the value 1. 

If you omit this parameter, then its value is 1, by default. 

• Note that the ACB macro creates an access control block at assembly 
time. Contrast this with the GENCB instruction which generates an 
ACB at execution time. If necessary, review the entry titled "GENCB" 
on page 361. 

• Be certain that you are familiar with the material covered in the entry 
titled "Using VSAM under GCS" on page 322. 

Return Codes and ABEND Codes 

The ACB macro generates no return codes and no ABEND codes. 

Chapter 12. VSAM Data Management Service Macros 345 



CHECK 

CHECK 

Suspend Processing While Waiting for the Completion of a VSAM Request 

Parameters 

Usage Notes 

Use the CHECK macro instruction to place your task in the WAIT state 
while it waits for a certain VSAM request to take place. 

The format of the CHECK macro instruction is: 

RPL 
Specifies the address of the request parameter list (RPL) associated 
with the VSAM request in question. 

This is the same request parameter list that you created via the RPL 
macro instruction. If necessary, review the entry titled "RPL" on 
page 414. 

You can write this parameter as an assembler program label or as 
register (2) through (12). 

• VSAM requests are associated with the following macro instructions: 

ENDREQ 
ERASE 
GET 
POINT 
and PUT. 

If you specified asynchronous processing (OPT CD = ASY) in the RPL 
instruction, then issue the CHECK instruction after each of these 
instructions. 

• The request parameter list associated with your VSAM request can 
specify the ASY option. This indicates that you want your request 
processed asynchronously. Remember, though, that asynchronous 
processing is merely simulated by GCS. Disk I/O in GCS is always 
synchronous. 

346 VM/SP GCS Command and Macro Reference 

o 



( 

( 

CHECK 

• Be certain that you are familiar with the material covered in the entry 
titled "Using VSAM under GCS" on page 322. 

Return Codes and ABEND Codes 

When this macro completes processing, it passes to the caller a return code 
in register 15. If the return code is 0, 8, or 12, then the macro also returns a 
feedback code in the FDBK field of the RPL associated with the request. 
This field can be checked via the SHOWCB or TESTCB macro instructions. 
If necessary, review the entries titled "SHOWCB" on page 431 or 
"TESTCB" on page 450. 

Return Meaning 
Code 
0 Function completed successfully. 

4 Your request was not accepted. The RPL in question 
is active for another request. 

8 A logical error occurred. 

12 A physical error occurred. 

ABEND Meaning 
Code 
035 An error occurred in the macro associated with the 

request. The message preceding the ABEND code 
explains the problem further. 

03B An invalid address was detected in a VSAM control 
block or a VSAM parameter list. This means that your 
program tried to use an address to which it has no 
access. 

Chapter 12. VSAM Data Management Service Macros 347 



CLOSE 

CLOSE 

Logically Disconnect your Program from a VSAM File 

Parameters 

When a file is no longer needed by your program, the file must be closed. 

Closing a file involves recording pending updates in the file, logically 
disconnecting it from the program that was processing it, freeing storage 
that is no longer needed, updating the catalog with any changes in the 
attributes of the file, and restoring control blocks to their condition before 
the file was opened. 

Use the CLOSE macro instruction to close a VSAM file that your program 
has finished with. 

This discussion of the CLOSE macro instruction deals only with those 
matters that involve GCS and is not intended to be an exhaustive 
instruction on this or any other VSE/VSAM topic. Presumably you are 
already familiar with VSE/VSAM through past experience and through 
study of the VSE/VSAM manuals. 

The format of the CLOSE macro instruction is: 

acb address 
Specifies the address of the access method control block (ACB) 
associated with the file you wish to close. 

Note that you can specify the address of more than one, and thereby 
close more than one file. If you do specify more than one ACB 
address, be certain to separate each by a comma. 

You can write this parameter as an assembler program label or as 
register (2) through (12). If you specify the address using a register, 
then be certain that each register in the list is surrounded by a pair of 
parentheses. And, always be certain that the list itself is surrounded 
by a pair of parentheses. 

348 VM/SP GCS Command and Macro Reference 

/' ~, 

i 
\ J 

o 



Usage Notes 

( 

c 

CLOSE 

TYPE=T 
Indicates that you want all normal closing operations performed on 
the file in question, except that you do not want your program 
logically disconnected from the file. 

• The CLOSE macro completes any outstanding operations on a file. For 
example, the CLOSE macro may cause VSAM to write any index or 
data buffers that have been updated but not yet recorded in the file. 

• The CLOSE macro updates the catalog with any changes made to the 
attributes of the file, including pointers that mark the end of the file 
and statistics on its processing. (This does not apply to catalogs that 
reside on READ ONLY disks.) It restores all pertinent control blocks 
to their condition before the file was opened. It then completes any 
outstanding I/O operations that the file may have pending. 

The CLOSE macro restores the ACB to the status it had before the file 
was opened and frees the storage that the OPEN macro used to 
construct VSAM control blocks. Hence, if you wish to load records into 
a file and retrieve records therefrom all in the same run, then you must 
issue a CLOSE instruction between these two activities. 

• If an abnormal termination occurs, then GCS will attempt to close the 
ACB. If GCS is unable to do so, then you should use the Access Method 
Services VERIFY command to correct the file's catalog information. 

• Under no circumstances will GCS attempt to close ACBs during normal 
task termination. This is the program's responsibility. 

• The parameters in the CLOSE macro instruction are positional. 
Therefore, write them in the order indicated in the format box above 
and provide a comma for any that you omit. 

• Be certain that you are familiar with the material covered in the entry 
titled "Using VSAM under GCS" on page 322. 

• If you have data control blocks (DCBs) that you wish to close, as well 
as ACBs, then you can specify a combination of both in the same 
CLOSE instruction. GCS is able to distinguish the address of one from 
the address of the other, as long as you separate each with a comma. 
This is a way of saying that, for all practical purposes, this instruction 
and the one described in the entry titled "CLOSE (BSAM/QSAM)" on 
page 276 are one and the same. However, note that neither of these 
instructions, as presented herein, pertains to VTAM. 

Chapter 12. VSAM Data Management Service Macros 349 



CLOSE 

Return Codes and ABEND Codes 

When this macro completes processing, it passes to the caller a return code 
in register 15. 

Return Meaning 
Code 
0 All files were successfully closed. 

4 At least one file was not closed successfully. 

8 Either one or more CLOSE routines could not be 
loaded because insufficient virtual storage was 
available, or the modules could not be found. 
Processing cannot continue. 

If register 15 contains the return code 4, then you can use the SHOWCB 
macro instruction to display the ERROR field of each access method control 
block. If necessary, review the entry titled "SHOWCB" on page 420. The 
following table describes the possible values this field can contain. 

Error Meaning 
Code 

0 No error occurred. 

4 The file associated with this ACB is already closed. 

136 Insufficient virtual storage was available to execute 
the CLOSE macro. 

144 An unrecoverable I/O error occurred while VSAM was 
reading or writing a catalog record. 

148 An unidentified error occurred while VSAM was 
searching the catalog. 

184 An unrecoverable I/O error occurred while VSAM was 
completing outstanding I/O requests. 

ABEND Meaning 
Code 
035 An error occurred in the CLOSE macro. The message 

preceding the ABEND describes this further. 

03B An invalid address was detected in a VSAM control 
block or a VSAM parameter list. This means that your 
program tried to use an address to which it has no 
access. 

350 VMjSP GCS Command and Macro Reference 

c 

---- -- ---- --- --~-----



! ( 

-.-----.--~ 

ENDREQ 

ENDREQ 

Terminate a VSAM Request 

I [1 abe 1] I ENDREQ 

Parameter 

A VSAM request is associated with one of the following macro instructions: 
CHECK, ENDREQ, ERASE, GET, POINT, and PUT. (If necessary, review 
the entry titled "CHECK" on page 346, "ERASE" on page 354, "GET" on 
page 383, "POINT" on page 409, or "PUT" on page 412). On occasion, you 
may wish to cancel one such request that you previously made. 

Use the ENDREQ macro instruction to cancel a certain VSAM request. 

This discussion of the ENDREQ macro instruction deals only with those 
matters that involve GCS and is not intended to be an exhaustive 
instruction on this or any other VSEjVSAM topic. Presumably you are 
already familiar with VSEjVSAM through past experience and through 
study of the VSE/VSAM manuals. 

The format of the ENDREQ macro instruction is: 

I RPL=address 

RPL 
Specifies the address of the request parameter list (RPL) associated 
with the VSAM request you wish to cancel. 

This is the same request parameter list that you defined via the RPL 
macro instruction. (If necessary, review the entry titled "RPL" on 
page 414.) 

You can write this parameter as an assembler program label or as 
register (2) through (12). 

Chapter 12. VSAM Data Management Service Macros 351 



ENDREQ 

Usage Notes 

• The ENDREQ macro causes VSAM to end a request. That is, VSAM 
will forget its position for the specified RPL and will release its 
associated buffers to another RPL. Therefore, before you issue the 
ENDREQ instruction specifying an RPL for which the ENDREQ macro 
was previously executed, you must reposition VSAM. 

• Each time you issue the ENDREQ instruction, you must provide the 
system with a 72-byte save area. Be certain that before you issue the 
instruction you place the address of this save area in register 13. 

• You are limited to as many concurrent active requests as you have 
specified in the STRNO parameter of the ACB instruction. (If 
necessary, review the entry titled "ACB" on page 338.) If you want to 
issue more requests, then you must issue the ENDREQ instruction first. 

• If an I/O operation is in progress when you issue the ENDREQ 
instruction, it will be allowed to complete. This includes operations 
that are necessary to maintain the integrity of the file. 

• If your request involves a chain of RPLs, then all records specified in 
the request may not be processed. For example, two RPLs are chained 
in a PUT request to add two new records to a file. Then, an ENDREQ 
instruction is issued after VSAM started the I/O operation to add the / 
first new record. That operation will be completed. If the operation \, 
causes a control-interval split, subsequent I/O operations will be 
performed to complete the split and update the index. However, VSAM 
will then return control to the processing program without adding the 
second new record. 

• The ENDREQ macro causes VSAM to cancel the position in the file 
established for that request. It also invalidates data and index buffers 
to force refreshing of all requests subsequent to the end request. 

• Be certain that you are familiar with the material covered in the entry 
titled "Using VSAM under GCS" on page 322. 

352 VM/SP GCS Command and Macro Reference 

j 



ENDREQ 

( . Completion Codes and ABEND Codes 

(", 

When this macro completes processing, it passes to the caller a completion 
code in register 15. If register 15 contains 8 or 12, then the specific error is 
indicated in the FDBK field of the appropriate RPL. This field can be 
displayed via the SHOWCB or TESTCB macro instructions. If necessary, 
review the entries titled "SHOWCB" on page 431 or "TESTCB" on 
page 450. 

Completion Meaning 
Code 
0 Function completed successfully. 

4 The ENDREQ macro could not terminate the 
request. The specified RPL was active for another 
request. 

8 A logical error occurred. 

12 A physical error occurred. 

ABEND Meaning 
Code 
035 An error occurred in the ENDREQ macro. The 

message preceding the ABEND explains this further. 

03B An invalid address was found in a VSAM control block 
or a VSAM parameter list. This means your program 
tried to use an address to which it has no access. 

Chapter 12. VSAM Data Management Service Macros 353 



ERASE 

ERASE 

Delete a Record from a VSAM File 

Parameter 

Use the ERASE macro instruction to delete a record. This record must be 
one that you have retrieved via the GET macro instruction with the 
OPTCD = UPD parameter specified. You can delete records in a 
key-sequenced file by keyed or addressed access. However, you cannot 
delete records in an entry sequenced file. Likewise, you can delete records 
in a relative-record file by keyed access, but you cannot delete control 
intervals. If necessary, review the entry titled "GET" on page 383. 

This discussion of the ERASE macro instruction deals only with those 
matters that involve GCS and is not intended to be an exhaustive 
instruction on this or any other VSE/VSAM topic. Presumably you are 
already familiar with VSE/VSAM through past experience and through 
study of the VSE/VSAM manuals. 

The format of the ERASE macro instruction is: 

RPL 
Specifies the address of the request parameter list (RPL) associated 
with your ERASE request. 

This is the same request parameter list that you defined via the RPL 
macro instruction. (If necessary, review the entry titled "RPL" on 
page 414.) 

You can write this parameter as an assembler program label or as 
register (2) through (12). 

354 VM/SP GCS Command and Macro Reference 



(~. Usage Notes 

ERASE 

• Each time you issue the ERASE instruction, you must provide the 
system with a 72-byte save area. Be certain that before you issue the 
instruction you place the address of this save area in register 13. 

• Be certain that you are familiar with the material covered in the entry 
titled "Using VSAM under GCS" on page 322. 

Return Codes and ABEND Codes 

( 

( 

When this macro completes processing, it passes to the caller a return code 
in register 15. If register 15 contains 8 or 12, then the specific error is 
indicated in the FDBK field of the appropriate RPL. This field can be 
displayed via the SHOWCB or TESTCB macro instructions. If necessary, 
review the entries titled "SHOWCB" on page 431 or "TESTCB" on 
page 450. 

Return Meaning 
Code 

0 Your request was accepted. 

4 Your request was not accepted because the RPL you 
specified in the ERASE instruction is already active 
for another request. 

8 A logical error occurred. 

12 A physical error occurred. 

ABEND Meaning 
Code 

035 An error occurred in the ERASE macro. 

03B An invalid address was found in a VSAM control block 
or a VSAM parameter list. This means your program 
tried to use an address to which it has no access. 

Chapter 12. VSAM Data Management Service Macros 355 



EXLST 

EXLST 

Generate an Exit List at Assembly Time 

During VSAM processing, unusual conditions sometimes occur. If you 
wish, you can supply one or more exit routines to handle such conditions. 
You can then associate them with one or more access method control 
blocks (ACBs) that define the characteristics of the VSAM files you plan to 
process. 

This discussion of the EXLST macro instruction deals only with those 
matters that involve GCS and is not intended to be an exhaustive 
instruction on this or any other VSE/VSAM topic. Presumably you are 
already familiar with VSE/VSAM through past experience and through 
study of the VSE/VSAM manuals. 

Use the EXLST macro instruction to create a list of the addresses of your 
exit routines. 

The format of the EXLST macro instruction is: 

356 VM/SP GCS Command and Macro Reference 

o 



( Parameters 

( 

( 

( 

EXLST 

EODAD 
Indicates that you are providing an exit routine to handle the 
END·OF·FILE condition during sequential or skip·sequential access. 

JRNAD 
Indicates that you are providing an exit routine to handle journaling. 

LERAD 
Indicates that you are providing an exit routine that will analyze 
logical errors. 

SYNAD 
Indicates that you are providing an exit routine that will analyze 
physical errors. 

address 

N 

L 

Specifies the address of the exit routine in question. 

You can write this parameter as an assembler program label or as 
register (2) through (12). 

Indicates that the exit routine in question will be active. 

This is the case by default. 

Indicates that the exit routine in question will not be active. 

Even if the condition to which this exit routine applies arises, it will 
not receive control. 

Indicates that the address given in the ADDRESS parameter is that of 
an eight-byte field that contains the name of the exit routine in 
question. It is to be loaded into virtual storage by GCS. 

If you omit this parameter, then GCS assumes that the address you 
specify is the routine's entry point in virtual storage. 

Chapter 12. VSAM Data Management Service Macros 357 



EXLST 

Usage Notes 

• It is one thing to create a list of exit routine addresses. For them to be 
of any use to you, however, you must specify the address of this list in 
the EXLST parameter of the ACB or MODCB instruction. (If necessary, 
review the entry titled "ACB" on page 338 or "MODCB" on page 385.) 

Since the address of this list is the same as the address of the EXLST 
instruction in your program, simply refer to the label on this 
instruction when you create or modify the access method control block 
(ACB). 

• When VSAM enters one of your exit routines, the registers contain 
information that may be helpful in analyzing the situation. 

When VSAM enters an EODAD routine, the registers contain the 
following: 

Register Contents 

0 Unpredictable. 

1 The address of the request parameter list that defines 
the request that occasioned VSAM's reaching the 
end of the file. The register must contain this 
address if you return to VSAM. 

2 - 13 The same values as when the macro was issued. 
Register 13, by convention, contains the address of 
your program's 72-byte save area. This save area 
cannot be used as a save area by the EODAD routine 
if it returns control to VSAM. 

14 The return address within VSAM. 

15 The entry address to the EODAD routine. 

When VSAM enters a JRN AD routine, the registers contain the 
following: 

Register Contents 

0 Unpredictable. 

1 The address of a parameter list. For details on the 
format of this list, consult the manual titled Using 
VSE/ VSAM Commands and Macros. 

2 - 13 Unpredictable. 

14 The return address within VSAM. 

15 The entry address in the JRNAD routine_ 

358 VM/SP GCS Command and Macro Reference 

---~ ~--~---~ ~ 



( 

-----~-~~~-

EXLST 

When VSAM enters a LERAD routine, the registers contain the 
following: 

Register Contents 

0 Unpredictable. 

1 The address of the request parameter list that 
contains the feedback field that the routine should 
examine. The register must contain this address if 
you return to VSAM. 

2 - 13 The same values as when the macro was issued. 
Register 13, by convention, contains the address of 
your program's 72-byte save area. This save area 
cannot be used as a save area by the LERAD routine 
if it returns control to VSAM. 

14 The return address within VSAM. 

15 The entry address to the LERAD routine. This 
register does not contain the logical-error indicator. 

When VSAM enters a SYNAD routine, the registers contain the 
following: 

Register Contents 

0 Unpredictable. 

1 The address of the request parameter list that 
contains the feedback return code and the address of 
the message area, if any, that the routine should 
examine. If you issued a request instruction, then 
the request macro points to the RPL. If you issued a 
CLOSE macro, then the RPL was built by VSAM so 
it could close the file. Register 1 must contain one 
of these addresses if you return to VSAM. 

2 - 13 The same values as when the macro was issued. 
Register 13, by convention, contains the address of 
your program's 72-byte save area. This save area 
cannot be used as a save area by the LERAD routine 
if it returns control to VSAM. 

14 The return address within VSAM. 

15 The entry address to the LERAD routine. This 
register does not contain the physical-error 
indicator. 

• The EXLST instruction generates an exit list at assembly time. 
Contrast this with the GENCB instruction, which generates an exit list 
at execution time. If necessary, review the entry titled "GENCB" on 
page 370. 

• You can define no more than 128 exits per GCS virtual machine. 

• Be certain that you are familiar with the material covered in the entry 
titled "Using VSAM under GCS" on page 322. 

Chapter 12. VSAM Data Management Service Macros 359 



EXLST 

Return Codes and ABEND Codes 

The EXLST macro generates no return codes and no ABEND codes. 

o 
360 VM/SP GCS Command and Macro Reference 



( 

( 

( 

GENeS 

GENeB 

Generate an Access Method Control Block at Execution Time 

An access method control block (ACB) defines certain characteristics of a 
file that you intend to process via VSEjVSAM. When the file is opened, 
other characteristics of the file that you defined via the DLBL command are 
merged with the ACB to complete the picture. For more information on the 
DLBL command see "GCS Commands" on page 20. 

Use the GENCB macro instruction to create an ACB and define therein 
certain characteristics of your file. 

This discussion of the GENCB macro instruction deals only with those 
matters that involve GCS and is not intended to be an exhaustive 
instruction on this or any other VSEjVSAM topic. Presumably you are 
already familiar with VSEjVSAM through past experience and through 
study of the VSEjVSAM manuals. 

Chapter 12. VSAM Data Management Service Macros 361 



GENeB 

Parameters 

The format of the GENCB macro instruction is: 

AM=VSAM 
Indicates that you are using VSAM to process the file associated with 
the ACB in question. 

BLK=ACB 
Indicates that you wish to generate an access method control block. 

This parameter is required to distinguish it from the other two 
GENCB macro instructions. If necessary, review the entries titled 
"GENCB" on page 370 and "GENCB" on page 374. 

362 VM/SP GCS Command and Macro Reference 

~--~~. --~.~~-

/ 

o 



( 

( 

GENeB 

MACRF 
Indicates how you intend to process the file. 

You must specify all of the types of processing you intend to perform 
on the file, whether you intend to perform them concurrently or 
alternately. Moreover, the parameters you choose must be valid for 
the file in question. For example, if you specify keyed access for an 
entry-sequenced file, then you cannot open that file, much less process 
it. 

Carefully check the format box above. Note that the processing 
options are arranged in groups, each with a value that will be 
assumed by default should you fail to specify from that group. Since 
they are not positional parameters, they can be specified in any order. 
Carefully note whether a set of brackets surrounds each individual 
member of a group, or a set of braces surrounds the entire group. In 
the former case, you may select more than one of the parameters from 
the group. In the latter case, you may select only one of them. 

ADR 

CNV 

DIR 

SEQ 

SKP 

Indicates addressed access to a key-sequenced or entry-sequenced 
file. 

RBAs will be used as search arguments, and sequential access is 
by entry sequence. 

Indicates access will be to the entire contents of a control 
interval, rather than to an individual record. 

Indicates access to a key-sequenced or relative record file. 

Keys will be relative record numbers used as search arguments, 
and sequential access will be by key or relative record number. 

Indicates that any WRITE instruction will not be deferred for a 
direct PUT instruction. 

Indicates direct access to a key-sequenced, entry-sequenced, or 
relative record file. 

Indicates sequential access to a key-sequenced, entry-sequenced, 
or relative record file. 

Indicates skip-sequential access to a key-sequenced or relative 
record file. 

This is valid only with keyed access in a forward direction. 

Chapter 12. VSAM Data Management Service Macros 363 



GENeS 

OUT 

Indicates retrieval of records from key-sequenced, 
entry-sequenced, or relative record files. 

This is not a valid form of processing for an empty file. 

Indicates three things: 

• Storage of new records in a key-sequenced, entry-sequenced, 
or relative record file. This is not allowed with addressed 
access to a key-sequenced file. 

• Update of new records in a key-sequenced, entry-sequenced, 
or relative record file. 

• Deletion of records from a key-sequenced or relative record 
file. 

NRM 

AIX 

RST 

Indicates that the file to be processed is the one specified by the 
DDNAME parameter. 

Indicates that the object to be processed is the alternate index of 
the path specified by the DDNAME parameter, rather than the 
base cluster via the alternate index. 

Indicates that the file is not reusable. 

Indicates that the file is reusable. 

Note that the OPEN macro resets the file's catalog information 
to its original status. That is, it resets it to the status it had 
before the file was open the first time. If necessary, review the 
entry titled "OPEN" on page 406. Also, the high-used RBA is 
reset to zero. 

The file must have been defined with the REUSE attribute for 
RST to be effective. Although the file is not erased, you can 
handle it as though it were a new file, and use it as a work file. 
When the OPEN macro performs the reset operation, this 
parameter is equivalent to the OUT option. DISP = NEW 
specified on the DLBL command is equivalent to selecting this 
parameter and will override the NRS parameter. 

Indicates that the resources are not shared. 

364 VM/SP GCS Command and Macro Reference 

o 



( 

( 

( 

UBF 

BUFND 

GENeS 

Indicates that VSAM will manage the I/O buffers. 

Indicates that the application will manage the I/O buffers. 

The work area specified by the RPL or GENCB instructions will 
be, in effect, the I/O buffer. The contents of a control interval is 
transmitted directly between the work area and DASD. This 
parameter is valid only when the MACRF = CNV and 
OPTCD = MVE parameters are specified in the RPL instruction. 
If necessary, review the entries titled "RPL" on page 414 and 
"GENCB" on page 374. 

Specifies the number of I/O buffers to be used for transmitting data 
between virtual and auxiliary storage. 

The size of a buffer corresponds to the size of a control interval in the 
data component. The minimum number you can specify is 1 plus the 
number specified by the STRNO parameter. If you omit the STRNO 
parameter, then the value of the BUFND parameter must be at least 2 
because the default for the former is 1. 

The default for the BUFND parameter is the minimum number 
required to process your file. 

BUFNI 
Specifies the number of I/O buffers to be used for transmitting the 
contents of index entries between virtual and auxiliary storage during 
keyed access. 

The size of this buffer corresponds to the size of a control interval in 
the index. The minimum number you can specify is 1 plus the number 
specified by the STRNO parameter. If you omit the STRNO 
parameter, then the value of BUFNI parameter must be at least 2 
because the default for the former is 1. 

The default for the BUFNI parameter is the minimum number 
required to process your file. 

BUFSP 
Specifies the maximum number of bytes of virtual storage to be used 
for the data and index I/O buffers. 

This parameter must be at least as large as the buffer size recorded in 
the catalog entry for your file. If the number you specify for this 
parameter is too small, then VSAM overrides it and uses the buffer 
size recorded in the catalog. VSAM, however, does not inform you of 
this. 

Chapter 12. VSAM Data Management Service Macros 365 



GENeB 

If you omit this parameter, then the size of this buffer will be the 
largest of the following, by default: 

• The buffer size specified in the catalog. 

This buffer size was specified via the BUFFERSPACE parameter 
in the Access Method Services DEFINE command. If this 
parameter was omitted when your file was defined, then a default 
value was assigned to it. This default value, the minimum amount 
of buffer space allowed by VSAM, is enough to accommodate two 
data control intervals and one index control interval. 

• The buffer size determined from the BUFND and BUFNI 
parameters. 

You can also specify buffer space via the BUFSP parameter on the 
DLBL command that identifies your file. This value overrides the 
BUFSP parameter in the ACB macro instruction. Likewise, it 
overrides the BUFFERSPACE parameter in the DEFINE command if 
the latter is smaller. 

If the values you specify for the BUFND, BUFNI, and BUFSP 
parameters are inconsistent, then VSAM increases the number of 
buffers to conform with the size of the buffer area. If the value in the 
BUFSP parameter is greater than the minimum buffer size required to 
process your file and greater than the values specified in the BUFND 
and BUFNI parameters, then the extra space is allocated between the 
data and index buffers as follows: 

• If the MACRF parameter specifies direct processing, then the 
values in the BUFND and BUFNI parameters take effect. Any 
left-over space is used for index buffers. 

• If the MACRF parameter specifies sequential processing, then the 
values in the BUFND and BUFNI parameters take effect. Space 
for one additional index buffer is allocated. Then, any left-over 
space is used for data buffers. Finally, if any left-over space 
remains that is insufficient to accommodate another data buffer, 
then it is used for another index buffer. 

If the value in the BUFSP parameter is greater than the minimum 
required to process your file, but less than those of the BUFND and 
BUFNI parameters, then enough buffer space will be made available 
to conform to the latter parameters. 

If you provide your own pool of I/O buffers for control interval 
processing, then the BUFSP, BUFND, and BUFNI parameters have no 
effect. In such a case, the AREA and AREALEN parameters of the 
RPL macro instruction determine the size of the user buffer area. (If 
necessary, review the entry titled "RPL" on page 414.) 

366 VM/SP GCS Command and Macro Reference 

,r
'''---

c 



( 

f 

( 

( 

GENeS 

DDNAME 
Specifies the name of the file you wish to process. 

This name corresponds to that specified in the DDNAME parameter of 
the DLBL command associated with the file. If you omit this 
parameter, then you can supply it via the MODCB macro instruction. 
If necessary, review the entry titled "MODCB" on page 385. 

This name must be from one to seven characters long. 

EXLST 
Specifies the address of a list of exit routine addresses. 

This is the same list that you created via the EXLST or GENCB macro 
instruction. If necessary, review the entries titled "EXLST" on 
page 356 or "GENCB" on page 370. 

If you used the EXLST instruction to create this list, then you can 
write this parameter as the label on that instruction. If you used the 
GENCB instruction, then you can write this parameter as the address 
that the GENCB macro returned to you in register 1 or as the label 
associated with an area into which you have placed this address. 

If you omit this parameter, then GCS assumes that you have supplied 
no exit routines. 

MAREA 
Specifies the address of an area into which GCS will place any console 
messages generated during processing of your file. 

This area can be used by you or your exit routines to analyze any 
errors or problems that may arise. 

MLEN 
Specifies the length, in bytes, of the area whose address is given by 
the MARE A parameter. 

The value of this parameter is zero, by defauit. Its maximum value is 
32K. 

PASSWD 
Specifies the address of a field that contains the highest level 
password required for the type(s) of access indicated by the MACRF 
parameter. 

The first byte of the field contains the binary length of the password. 
Eight bytes is the maximum length. If this byte is zero, it means that 
you are providing no password. 

Chapter 12. VSAM Data Management Service Macros 367 



GENeB 

Usage Notes 

STRNO 
Specifies the number of requests you will make that will require 
concurrent file positioning. 

A request is defined by a given request parameter list or a chain 
thereof. If records are written in an empty file, then the value of this 
parameter is ignored and replaced by the value 1. 

If you omit this parameter, then its value is 1, by default. 

COPIES 
Specifies the number of copies of the access method control block you 
want generated. 

GCS will generate as many ACBs as you wish. Each will be identical. 
You can use the MODCB macro instruction to tailor each ACB to the 
specific file and type of processing you wish. Review the entry titled 
"MODCB" on page 385. However, unless you specify otherwise, GCS 
will generate just one copy. 

LENGTH 
Specifies the length of the area you are supplying in virtual storage to 
accommodate the ACB(s) you want to generate. Express this figure in 
bytes. 

WAREA 
Specifies the address of the area you are supplying in virtual storage \, 
to accommodate the ACB(s) you want to generate. 

This area must begin on a fullword boundary. 

If you omit this parameter, then the address of an ACB area set up by 
GCS is returned to you in register 1. Furthermore, GCS returns the 
length of the area in register o. To find the length of each ACB, just 
divide the length of the area supplied by the number of ACBs you 
specified in the COPIES parameter. Then, to access each ACB in the 
area, use this quotient as an offset from the address in register 1. 

• The GENCB instruction generates an ACB at execution time. Contrast 
this with the ACB instruction, which generates an ACB at assembly 
time. If necessary, review the entry titled "ACB" on page 338. 

• Each time you issue the GENCB instruction, you must provide the 
system with a 72-byte save area. Be certain that before you issue the 
instruction you place the address of this save area in register 13. 

I 
/ 

• Be certain that you are familiar with the material covered in the entry 
titled "Using VSAM under GCS" on page 322. 

o 
368 VM/SP GCS Command and Macro Reference 



GENeS 

(. Completion Codes, Return Codes and ABEND Codes 

(-

( 

( 

When this macro completes execution, it passes to the caller a completion 
code in register 15. 

Completion Meaning 
Code 
0 Function completed successfully. 

4 Function completed unsuccessfully. 

8 You attempted to use the execute form of the 
macro to modify a keyword that is not in the 
parameter list. 

12 The GENCB macro was not executed because an 
error occurred while a VSAM module was being 
loaded. 

If register 15 contains 0 and if the W AREA parameter was not specified, 
then register 0 contains the length of the area in which GCS builds the 
ACBs. Furthermore, register 1 contains the address of this area. 

If register 15 contains 4, then register 0 contains a return code, further 
describing the condition. 

Return Meaning 
Code 
1 The type of your request is invalid. 

2 The block type is invalid. 

3 One of the keyword codes in the parameter list is 
invalid. 

8 There is not enough virtual storage to generate the 
ACB. 

9 The area you specified in the W AREA parameter is not 
large enough to accommodate the ACB. 

14 You have specified an invalid combination of options 
in the MACRF parameter. 

15 The storage you specified in the W AREA parameter 
does not fall on a fullword boundary, as it must. 

ABEND Meaning 
Code 
03B An invalid address was found in a VSAM control block 

or a VSAM parameter list. This means your program 
tried to use an address to which it has no access. 

Chapter 12. VSAM Data Management Service Macros 369 



GENeS 

GENeB 

Generate an Exit List at Execution Time 

During VSAM processing, unusual conditions sometimes occur. If you 
wish, you can supply one or more exit routines to handle such conditions. 
You can then associate them with one or more access method control 
blocks (ACBs) that define the characteristics of the VSl\M files you plan to 
process. Review the entry titled "ACB" on page 338. 

This discussion of the GENCB macro instruction deals only with those 
matters that involve GCS and is not intended to be an exhaustive 
instruction on this or any other VSE/VSAM topic. Presumably you are 
already familiar with VSE/VSAM through past experience and through 
study of the VSE/VSAM manuals. 

Use the GENCB macro instruction to create a list of the addresses of your 
exit routines. 

The format of the GENCB macro instruction is: 

370 VM/SP GCS Command and Macro Reference 

;,-. 
( 

~. 

o 



( Parameters 

( 

c 

- ---- --------- ----

GENeB 

AM=VSAM 
Indicates that you are using VSAM to process your files. 

BLK=EXLST 
Indicates that you wish to generate an exit list. 

This parameter is required to distinguish this instruction from the 
other two GENCB instructions. If necessary, review the entries titled 
"GENCB" on page 361 and "GENCB" on page 374. 

EODAD 
Indicates that you are providing an exit routine to handle the 
END-OF-FILE condition during sequential or skip sequential access. 

JRNAD 
Indicates that you are providing an exit routine to handle journaling. 

LERAD 
Indicates that you are providing an exit routine that will analyze 
logical errors. 

SYNAD 
Indicates that you are providing an exit routine that will analyze 
physical errors. 

address 

N 

L 

Specifies the address of the exit routine in question. 

You can write this parameter as an assembler program label or as 
register (2) through (12). 

Indicates that the exit routine in question will be active. 

This is the case by default. 

Indicates that the exit routine in question will not be active. 

Even if the condition to which this exit routine applies arises, it will 
not receive control. 

Indicates that the address given in the ADDRESS parameter is the 
address of an eight-byte field that contains the name of the exit 
routine in question. It is to be loaded into virtual storage by GCS. 

If you omit this parameter, then GCS assumes that the address you 
specify is the routine's entry point in virtual storage. 

Chapter 12. VSAM Data Management Service Macros 371 



GENeB 

Usage Notes 

COPIES 
Specifies the number of copies of the exit list you want generated. 

GCS will generate as many exit lists as you wish. Each will be 
identical. You can use the MODCB macro instruction to modify the 
addresses in any of the exit lists. Review the entry titled "MODCB" 
on page 394. However, unless you specify otherwise, GCS will 
generate only one copy. 

LENGTH 
Specifies the length of the area you are supplying in virtual storage to 
accommodate the exit lists you want to generate. Express this figure 
in bytes. 

WAREA 
Specifies the address of the area you are supplying in virtual storage 
to accommodate the exit lists you want to generate. 

This area must begin on a fullword boundary. 

If you omit this parameter, then the address of an exit list area set up 
by GCS is returned to you in register 1. Furthermore, GCS returns 
the length of the area in register o. To find the length of each exit 
list, just divide the length of the area supplied by the number of lists 
you specified in the COPIES parameter. Then, to access each list in 
the area, use this quotient as an offset from the address in register 1. 

• Note that the GENCB instruction generates an exit list at execution 
time. Contrast this with the EXLST instruction which generates an 
exit list at assembly time. If necessary, review the entry titled "EXLST" 
on page 356. 

• Each time you issue the GENCB instruction, you must provide the 
system with a 72-byte save area. Be certain that before you issue the 
instruction you place the address of this save area in register 13. 

• Be certain that you are familiar with the material covered in the entry 
titled "Using VSAM under GCS" on page 322. 

372 VM/SP GCS Command and Macro Reference 

) 

o 



- . --~---.-- ------------

GENeB 

(- . Completion Codes, Return Codes and ABEND Codes 

( 

( 

When this macro completes execution, it passes to the caller a completion 
code in register 15. 

Completion Meaning 
Code 
0 Function completed successfully. 

4 Function completed unsuccessfully. 

8 You attempted to use the execute form of the 
macro to modify a keyword that is not in the 
parameter list. 

12 The GENCB macro was not executed because an 
error occurred while the module was being loaded. 

If register 15 contains 0 and if the W AREA parameter was not specified, 
then register 0 contains the length of the area in which GCS builds the 
ACBs. Furthermore, register 1 contains the address of this area. 

If register 15 contains 4, then register 0 contains a return code, further 
describing the condition. 

Return Meaning 
Code 
1 The type of your request is invalid. 

2 You selected an access method control block. This is 
invalid. 

3 One of the keyword codes in the parameter list is 
invalid. 

8 There is not enough virtual storage to generate the 
exit list. 

9 The area you specified in the W AREA parameter is not 
large enough to generate the exit list. 

10 You specified an exit without giving an address. 

15 The storage you specified in the W AREA parameter 
does not fall on a fullword boundary, as it must. 

ABEND Meaning 
Code 

03B An invalid address was found in a VSAM control block 
or a VSAM parameter list. This means your program 
tried to use an address to which it has no access. 

Chapter 12. VSAM Data Management Service Macros 373 



GENeS 

GENeS 

Generate a Request Parameter List (RPL) at Execution Time 

All VSAM functions require that you set up a request parameter list (RPL) 
that describes the characteristics of your request. These VSAM functions 
are associated with the following macros: CHECK, ENDREQ, ERASE, 
GET, POINT, and PUT. If necessary, review the entry titled "CHECK" on 
page 346, "ENDREQ" on page 351, "ERASE" on page 354, "GET" on 
page 383, "POINT" on page 409, or "PUT" on page 412. 

Use the GENCB macro instruction to create a request parameter list at 
execution time describing the characteristics of your VSAM request. 

This discussion of the GENCB macro instruction deals only with those 
matters that involve GCS and is not intended to be an exhaustive 
instruction on this or any other VSE/VSAM topic. Presumably you are 
already familiar with VSE/VSAM through past experience and through 
study of the VSE/VSAM manuals. 

374 VM/SP GCS Command and Macro Reference 

/ 

o 

-----------



( 
[label] GENCB 

c· 

( 

( ..... 
/ 

The format of the GENCB macro instruction is: 

[AM=VSAM.]BLK=RPL[.ACB=address] 

[.AREA=address] [.AREALEN=number] [.ARG=address] 

[.ECB=address] [.KEYLEN=number] [.NXTRPL=addressJ 

• OPTCD= ( [ADR] CNV 
KEY 

[:llij 
.SKP 

[ .ARD] 
.LRD 

[• FWD1 
.BWD 

AS¥ [' 1 :SYN. 

[
• NSPj 
,.NU.P 
,UPD 

[.lli]· 
.KGE 

[ . F. K.S] 
.GEN 

[• LOC] • MV.E ) 

[.RECLEN=numberJr.COPIES=number] 

[.LENGTH=numberJ[. WAREA=addressJ 

GENCB 

Chapter 12. VSAM Data Management Service Macros 375 



GENeB 

Parameters 

BLK=RPL 

ACB 

Indicates that you wish to generate a request parameter list. 

This parameter is required to distinguish it from the other two 
GENCB macro instructions. If necessary, review the entries titled 
"GENCB" on page 361 and "GENCB" on page 370. 

Specifies the address of the access method control block (ACB) 
associated with the file you are processing. 

If you created the access method control block via the ACB macro 
instruction, you can write this parameter as the assembler program 
label on that instruction. If no ACB associated with your file exists, 
then you must create one via another GENCB macro instruction 
before issuing this GENCB instruction. If necessary, review the entry 
titled "GENCB" on page 361. 

AREA 
Specifies one of two things: 

• If you select the OPT CD = MVE parameter, then the AREA 
parameter specifies the address of a work area to which a data 
record is moved to be processed and from which it is moved after 
processing. 

• If you select the OPTCD=LOC parameter, then the AREA 
parameter will specify the address of a work area. The address of 
the I/O buffer in which you process your file will be placed in this 
work area (GET only). 

AREALEN 

ARG 

Specifies the length, in bytes, of the work area whose address you 
specified in the AREA parameter. 

If you selected the OPTCD = MVE parameter, then this length must be 
no less than the size of a data record. For variable-length records, you 
must allow for the largest record in the file. 

If you selected the OPTCD = LOC parameter, then you must specify a 
length of four bytes to accommodate the address of the I/O buffer in 
which you will process each record. 

Specifies the address of a field that contains the search argument for 
one of the following: 

• Direct or skip sequential retrieval (GET). 

• Sequential positioning (POINT). 

376 VM/SP GCS Command and Macro Reference 

o 



( 

( 

(-"" 

/ 

ECB 

GENeB 

• Direct or skip sequential storage (PUT) for a relative record file. 

For keyed access (OPT CD = KEY), the search argument may be a 

• Full key (OPTCD = FKS). 

• Generic key (OPTCD = GEN). In this case, you must also specify 
its size via the KEYLEN parameter. 

• Relative record number (which is treated as a key). 

For addressed access (OPTCD = ADR), the search argument is always 
an RBA. To determine the RBA of a record to which you have gained 
access sequentially or directly by key, you can issue the SHOWCB 
macro instruction. If necessary, review the entry titled "SHOWCB" 
on page 431. 

For control interval access with user buffering and a user supplied 
RBA, the record is written only to this RBA if positioning is not 
established by a previous request. 

When records are inserted into a key sequenced file, either 
sequentially or directly, VSAM obtains the key from the record itself. 
When the records are inserted sequentially into a relative record file, 
VSAM returns the assigned relative record number in the ARG field. 

Specifies the address of the event control block associated with the 
VSAM request you will make. 

KEYLEN 
Specifies the length, in bytes, of the generic key that you are using as 
a search argument. 

You specify the search argument in the ARG parameter. However, 
you must specify its length when it is a generic key. 

You can write this parameter as any number from 1 to 255. 

NXTRPL 
Specifies the address of the next request parameter list in the chain. 

Omit this parameter from the RPL instruction that generates the last 
RPL in the chain. When you issue a request that is defined by a chain 
of RPLs, specify the address of the first RPL in the chain in the 
instruction associated with the request. 

OPTeD 
Indicates the options that will govern the request defined by the 
request parameter list you are creating. 

Carefully check the format box above. Note that the parameters are 
arranged in groups, each with a value that will be assumed by default 

Chapter 12. VSAM Data Management Service Macros 377 



GENeB 

should you fail to specify from that group. Since they are not 
positional parameters, they can be specified in any order. 

ADR 

CNV 

DIR 

SEQ 

SKP 

LRD 

Indicates addressed access to a key-sequenced or entry-sequenced 
file. 

Indicates access will be to the entire contents of a control 
interval, rather than to an individual record. 

Indicates access to a key-sequenced or relative record file. 

Indicates direct processing. 

Indicates sequential processing. 

Indicates skip-sequential processing. 

This is valid only with keyed access. 

Indicates that the user's argument determines the record to be 
located, retrieved, or stored. 

Indicates that the last record in the file will be located or 
retrieved. 

If you choose this parameter, then you must also choose the 
BWD parameter. 

FWD 
Indicates that processing is to proceed through the file in a 
forward direction. 

BWD 

ASY 

Indicates that processing is to proceed through the file in a 
backward direction for keyed or addressed access, and for 
sequential or direct processing. 

Specifies that you want your file processed asynchronously. 

This means that when the request associated with the RPL you 
are creating is scheduled, control will return to your program so 
it can continue processing. Meanwhile, your request is being 
carried out. 

378 VM/SP GCS Command and Macro Reference 

./ 

o 



NSP 

( 

i ( UPD 

KEQ 

KGE 

GEN 

LOC 

( .... 

. / 

GENeS 

Remember that asynchronous processing is merely simulated by 
GCS. Disk I/O in GCS is always synchronous. Even so, you 
must issue the CHECK instruction to obtain the results of the 
operation. If necessary, review the entry titled "CHECK" on 
page 346. 

Specifies that you want your file processed synchronously. 

This means that control will return to your program only after 
the request associated with the RPL you are creating has been 
carried out. 

Indicates that, for direct processing only, your request is not for 
update. Further, VSAM will be positioned at the next record for 
subsequent sequential processing. 

Indicates that any record retrieved will not be updated or 
deleted. Moreover, any record that is stored is a new record. 

On direct access requests, GCS does not remember the record's 
position. 

Indicates that any record retrieved can be updated or deleted. 

Indicates that the key you provide as a search argument must 
equal the key of the record. 

Indicates that if the key you specify as a search argument does 
not equal that of a certain record, then the request will affect the 
record with the next highest key. 

Indicates that you are providing a full key as a search argument. 

Indicates that you are providing a generic key as a search 
argument. 

If you select this parameter, then you must also specify the 
length of the generic key in the KEYLEN parameter. 

Indicates that, during retrieval, the record will be put in VSAM's 
I/O buffer to be processed. 

Cbapter 12. VSAM Data Management Service Macros 379 



GENeB 

MVE 

RECLEN 

Indicates that, during retrieval, the record will be moved to a 
work area for processing. For storage, it will be moved from tlle 
work area to VSAM's I/O buffer. 

Specifies the length, in bytes, of a record that is to be stored. 

If you intend to issue the PUT instruction, then this parameter is 
required. If you issue a GET instruction, then the length of the record 
involved is placed in the RPL field associated with this parameter. 
This is for the benefit of any subsequent update or sto:re requ~sts. 

COPIES 
Specifies the num'Per of copies of the request parameter list you want 
to generate. 

GCS will generate as many RPLs as you wish. Each will be identical. 
You can use the MODCB macro instruction to tailor each RPL to the 
specific file and type of processing you wish. Review the entry titled 
"MODCB" on page 398. ' 

Unless you specify otherwise, GCS will generate only one copy. 

LENGTH 
Specifies the length of the area you are supplying in virtual storage to 
accommodate the RPL(s) you want to generate. Express this figure in 
bytes. t 

WAREA 
Specifies the address of the area you are supplying in virtual storage 
to accommodate the RPL(s) you want to generate. 

This area must begin on a fullword boundary. 

If you omit this parameter, then the address of an RPL area set up by 
GCS is returned to you in register 1. Furthermore, GCS returns 'the 
length of the area in register O. To find the length of each RPL, just 
divide the length of the area supplied by the number of RPLs you 
specified in the COPIES parameter. Then, to access each RPL in the 
area, use this quotient as an offset from the add.ress in register 1. 

380 VM/SP GCS Command and Macro Reference 

o 



( Usage Notes 

GENeS 

• The GENCB macro generates an RPL at execution time. Contrast this 
with the RPL macro, which generates an RPL at assembly time. If 
necessary, review the entry titled "RPL" on page 414. 

• Each time you issue the GENCB instruction, you must provide the 
system with a 72-byte save area. Be certain that before you issue the 
instruction you place the address of this save area in register 13. 

• Be certain that you are familiar with the material covered in the entry 
titled "Using VSAM under GCS" on page 322. 

Completion Codes, Return Codes and ABEND Codes 

( 

( 

( 

When this macro completes execution, it passes to the caller a completion 
code in register 15. 

Completion Meaning 
Code 
0 Function completed successfully. 

4 Function completed unsuccessfully. 

8 You attempted to use the execute form of the 
macro to modify a keyword that is not in the 
parameter list. 

12 The GENCB macro was not executed because an 
error occurred while a VSAM module was being 
loaded. 

If register 15 contains 0 and if the W AREA parameter were not specified, 
then register 0 contains the length of the area in which GCS builds the 
RPLs. Furthermore, register 1 contains the address of this area. 

Chapter 12. VSAM Data Management Service Macros 381 



GENeB 

If register 15 contains 4, then register 0 contains a return code, further 
describing the condition. 

Return Meaning 
Code 
1 The type of your request is invalid. 

2 You selected a request parameter list. This is invalid. 

3 One of the keyword codes in the parameter list is 
invalid. 

8 There is not enough virtual storage to generate the 
RPL. 

9 The area you specified in the W AREA parameter is not 
large enough to generate the RPL. 

15 The storage you specified in the W AREA parameter 
does not fall on a fullword boundary, as it should. 

ABEND Meaning 
Code 
03B An invalid address was found in a VSAM control block 

or a VSAM parameter list. This means that your 
program tried to use an address to which it has no 
access. 

o 
382 VMjSP GCS Command and Macro Reference 

-- --- -----~------------



(~ .. 

( 

( 

GET 

GET 

Retrieve a Record from a VSAM File 

I [label] 

Parameter 

Usage Notes 

Use the GET macro instruction to retrieve a record from a VSAM file and 
place it in either an I/O buffer or a work area. 

This discussion of the GET macro instruction deals only with those matters 
that involve GCS and is not intended to be an exhaustive instruction on 
this or any other VSE/VSAM topic. Presumably you are already familiar 
with VSE/VSAM through past experience and through study of the 
VSE/VSAM manuals. 

The format of the GET macro instruction is: 

I RPL=address 
. " >-~ 

. ··<>:,~;··;.:?V~{>:>: ,;-.<: 

RPL 
Specifies the address of the request parameter list (RPL) associated 
with your GET request. 

This is the same request parameter list that you defined via the RPL 
macro instruction. (If necessary, review the entry titled "RPL" on 
page 414.) 

You can write this parameter as an assembler program label or as 
register (1) through (12). 

• Each time you issue the GET instruction, you must provide the system 
with a 72-byte save area. Be certain that before you issue the 
instruction you place the address of this save area in register 13. 

• Be certain that you are familiar with the material covered in the entry 
titled "Using VSAM under GCS" on page 322. 

Chapter 12. VSAM Data Management Service Macros 383 



GET 

Return Codes and ABEND Codes 

When this macro completes processing, it passes to the caller a return code 
in register 15. If register 15 contains 8 or 12, then the specific error is 
indicated in the FDBK field of the appropriate RPL. This field can be 
displayed via the SHOWCB or TESTCB macro instructions. If necessary, 
review the entries titled "SHOWCB" on page 431 or "TESTCB" on 
page 450. 

Return Meaning 
Code 

0 Your request was accepted. 

4 Your request was not accepted because the RPL you 
specified in the GET instruction is already active for 
another request. 

8 A logical error occurred. 

12 A physical error occurred. 

ABEND Meaning 
Code 

035 An error occurred in the GET macro. The message 
preceding the ABEND describes this further. 

03B An invalid address was found in a VSAM control block 
or a VSAM parameter list. This means that your 
program tried to use an address to which it has no 
access. 

384 VM/SP GCS Command and Macro Reference 

(!.~ .... ~ 



( 

( 

( 

MODeB 

MODeB 

MOdify Certain Fields in an Access Method Control Block (ACB) 

An access method control block (ACB) defines certain characteristics of a 
file that you intend to process via VSAM. When the file is opened, other 
characteristics of the file that you defined via the DLBL command are 
merged with the ACB to complete the picture. For more information on the 
DLBL command see "ACB" on page 338 and "GCS Commands" on page 20. 

Use the MODCB macro instruction at execution time to add or modify 
certain fields in an ACB that you previously created. 

This discussion of the MODCB macro instruction deals only with those 
matters that involve GCS and is not intended to be an exhaustive 
instruction on this or any other VSE/VSAM topic. Presumably you are 
already familiar with VSE/VSAM through past experience and through 
study of the VSEjVSAM manuals. 

Chapter 12. VSAM Data Management Service Macros 385 



MODea 

Parameters 

The format of the MODCB macro instruction is: 

ACB 
Specifies the address of the access method control block whose 
contents you want to modify. 

MACRF 
Indicates how you intend to process the file. 

You mus.t specify all of the types of processing you intend to perform 
on the file, whether you intend to perform them concurrently or 
alternately. Moreover, the parameters you choose must be valid for 
the file in question. For example, if you specify keyed access for an 
entry-sequenced file, then you cannot open that file, much less process 
it. 

386 VM/SP GCS Command and Macro Reference 

1,-,,---- _ 

o 



( 

MODeB 

Carefully check the format box above. Note that the processing 
options are arranged in groups, each with a value that will be 
assumed by default should you fail to specify from that group. Since 
they are not positional parameters, they can be specified in any order. 
Carefully note whether a set of brackets surrounds each individual 
member of a group, or a set of braces surrounds the entire group. In 
the former case, you may select more than one of the parameters from 
the group. In the latter case, you may select only one of them. 

ADR 

CNV 

DIR 

SEQ 

SKP 

Indicates addressed access to a key-sequenced or entry-sequenced 
file. 

RBAs will be used as search arguments, and sequential access is 
by entry sequence. 

Indicates access will be to the entire contents of a control 
interval, rather than to an individual record. 

Indicates access to a key-sequenced or relative record file. 

Keys will be relative record numbers used as search arguments, 
and sequential access will be by key or relative record number. 

Indicates that any WRITE instruction will not be deferred for a 
direct PUT instruction. 

Indicates direct access to a key-sequenced, entry-sequenced, or 
relative record file. 

Indicates sequential access to a key-sequenced, entry-sequenced, 
or relative record file. 

Indicates skip-sequential access to a key-sequenced or relative 
record file. 

This is valid only with keyed access in a forward direction. 

Indicates retrieval of records from key-sequenced, 
entry-sequenced, or relative record files. 

This is not a valid form of processing for an empty file. 
\ 

Chapter 12. VSAM Data Management Service Macros 387 



MODes 

OUT 
Indicates three things: 

• Storage of new records in a key-sequenced, entry-sequenced, 
or relative record file. This is not allowed with addressed 
access to a key-sequenced file. 

• Update of new records in a key-sequenced, entry-sequenced, 
or relative record file. 

• Deletion of records from a key-sequenced or relative record 
file. 

NRM 

AIX 

RST 

Indicates that the file to be processed is the one specified by the 
DDNAME parameter. 

Indicates that the object to be processed is the alternate index of 
the path specified by the DDNAME parameter, rather than the 
base cluster via the alternate index. 

Indicates that the file is not reusable. 

Indicates that the file is reusable. 

The OPEN macro resets the file's catalog information to its 
original status. That is, it resets it to the status it had before the 
file was open the first time. If necessary, review the entry titled 
"OPEN" on page 406. Also, the high-used RBA is reset to zero. 

The file must have been defined with the REUSE attribute for 
RST to be effective. Although the file is not erased, you can 
handle it as though it were a new file, and use it as a work file. 
When the OPEN macro performs the reset operation, this '''-, / 

NUB 

UBF 

parameter is equivalent to the OUT option. DISP = NEW 
specified on the DLBL command is equivalent to selecting this 
parameter, and will override the NRS parameter. 

Indicates that the resources are not shared. 

Indicates that VSAM will manage the 1/0 buffers. 

Indicates that the application will manage the I/O buffers. 

The work area specified by the RPL or GENeB instructions will 
be, in effect, the 1/0 buffer. The contents of a control interval is 

388 VM/SP GCS Command and Macro Reference 

o 



(. 

( 

BUFND 

MODeB 

transmitted directly between the work area and DASD. This 
parameter is valid only when the MACRF = CNV and 
OPTCD = MVE parameters are specified in the RPL instruction. 
If necessary, review the entries titled "RPL" on page 414 and 
"GENCB" on page 374. 

Specifies the number of I/O buffers to be used for transmitting data 
between virtual and auxiliary storage. 

The size of a buffer corresponds to the size of a control interval in the 
data component. The minimum number you can specify is 1 plus the 
number specified by the STRNO parameter. If you omit the STRNO 
parameter, then the value of the BUFND parameter must be at least 2 
because the default for the former is 1. 

The default for the BUFND parameter is the minimum number 
required to process your file. 

BUFNI 
Specifies the number of I/O buffers to be used for transmitting the 
contents of index entries between virtual and auxiliary storage during 
keyed access. 

The size of this buffer corresponds to the size of a control interval in 
the index. The minimum number you can specify is 1 plus the number 
specified by the STRNO parameter. If you omit the STRNO 
parameter, then the value of BUFNI parameter must be at least 2 
because the default for the former is 1. 

The default for the BUFNI parameter is the minimum number 
required to process your file. 

BUFSP 
Specifies the maximum number of bytes of virtual storage to be used 
for the data and index I/O buffers. 

This parameter must be at least as large as the buffer size recorded in 
the catalog entry for your file. If the number you specify for this 
parameter is too small, then VSAM overrides it and uses the buffer 
size recorded in the catalog. VSAM, however, does not inform you of 
this. 

If you omit this parameter, then the size of this buffer will be the 
largest of the following, by default: 

• The buffer size specified in the catalog . 

This buffer size was specified via the BUFFERSPACE parameter 
in the Access Method Services DEFINE command. If this 
parameter were omitted when your file was defined, then a default 
value was assigned to it. This default value, the minimum amount 

Chapter 12. VSAM Data Management Service Macros 389 



MODca 

of buffer space allowed by VSAM, is enough to accommodate two 
data control intervals and one index control interval. 

• Or, the buffer size determined from the BUFND and BUFNI 
parameters. 

You can also specify buffer space via the BUFSP parameter on the 
DLBL command that identifies your file. This value overrides the 
BUFSP parameter in the ACB macro instruction. Likewise, it 
overrides the BUFFERSP ACE parameter in the DEFINE command if 
the latter is smaller. 

If the values you specify for the BUFND, BUFNI, and BUFSP 
parameters are inconsistent, then VSAM increases the number of 
buffers to conform with the size of the buffer area. If the value in the 
BUFSP parameter is greater than the minimum buffer size required to 
process your file and greater than the values specified in the BUFND 
and BUFNI parameters, then the extra space is allocated between the 
data and index buffers as follows: 

• If the MACRF parameter specifies direct processing, then the 
values in the BUFND and BUFNI parameters take effect. Any 
left-over space is used for index buffers. 

• If the MACRF parameter specifies sequential processing, then the 
values in the BUFND and BUFNI parameters take effect. Space 
for one additional index buffer is allocated. Then, any left-over 
space is used for data buffers. Finally, if any left-over space 
remains that is insufficient to accommodate another data buffer, 
then it is used for another index buffer. 

If the value in the BUFSP parameter is greater than the minimum 
required to process your file, but less than those of the BUFND and 
BUFNI parameters, then enough buffer space will be made available 
to conform to the latter parameters. 

If you provide your own pool of I/O buffers for control interval",,-/ 
processing, then the BUFSP, BUFND, and BUFNI parameters have no 
effect. In such a case, the AREA and AREALEN parameters of the 
RPL macro instruction determine the size of the user buffer area. (If 
necessary, review the entry titled "RPL" on page 414.) 

DDNAME 
Specifies the name of the file you wish to process. 

This name corresponds to that specified in the DDNAME parameter of 
the DLBL command associated with the file. If you omit this 
parameter, then you can supply it via the MODCB macro instruction. 

This name must be from one to seven characters long. 

390 VM/SP GCS Command and Macro Reference 

---~---- ---- ------



( 

MODea 

EXLST 
Specifies the address of a list of exit routine addresses. 

This is the same list that you created via the EXLST or GENCB macro 
instruction. If necessary, review the entries titled "EXLST" on 
page 356 or "GENCB" on page 370. 

If you used the EXLST instruction to create this list, then you can 
write this parameter as the label on that instruction. If you used the 
GENCB instruction, then you can write this parameter as the address 
that the GENCB macro returned to you in register 1 or as the label 
associated with an area into which you have placed this address. 

If you omit this parameter, then GCS assumes that you have supplied 
no exit routines. 

MAREA 
Specifies the address of an area into which GCS will place any console 
messages generated during processing of your file. 

This area can be used by you or your exit routines to analyze any 
errors or problems that may arise. 

MLEN 
Specifies the length, in bytes, of the area whose address is given by 
the MAREA parameter. 

The value of this parameter is zero, by default. Its maximum value is 
32K. 

PASSWD 
Specifies the address of a field that contains the highest level 
password required for the type(s) of access indicated by the MACRF 
parameter. 

The first byte of the field contains the binary length of the password. 
Eight bytes is the maximum length. If this byte is zero, it means that 
you are providing no password. 

If the file is password protected, and you provide none, then VSAM 
will prompt you for the password when it opens the file. 

STRNO 
Specifies the number of requests you will make that will require 
concurrent file positioning. 

A request is defined by a given request parameter list or a chain 
thereof. If records are written in an empty file, then the value of this 
parameter is ignored and replaced by the value 1. 

If you omit this parameter, then its value is 1, by default. 

Chapter 12. VSAM Data Management Service Macros 391 



MODeB 

Usage Notes 

• You can add or modify any parameter listed above. However, be certain 
that the additions or modifications you make are consistent and 
non-conflicting. If you assign a value to a parameter and that new 
value conflicts or is inconsistent with that of another value, then the 
new value supplants the old. For example, if the ACB presently 
specifies the MACRF = UBF parameter, and you specify the 
MACRF = NUB parameter in the MODCB instruction, then NUB 
replaces UBF. 

• You must never try to modify the ACB of a file that is already open. If 
you do, it is an error. If you must modify an ACB for a file that is 
already open, then close the file first. 

• Each time you issue the MODCB instruction, you must provide the 
system with a 72-byte save area. Be certain that before you issue the 
instruction you place the address of this save area in register 13. 

• Be certain that you, are familiar with the material covered in the entry 
titled "Using VSAM under GCS" on page 322. 

392 VMjSP GCS Command and Macro Reference 

j 

o 



MODea 

( Completion Codes, Return Codes and ABEND Codes 

( 

(" 

When this macro completes execution, it passes to the caller a completion 
code in register 15. 

Completion Meaning 
Code 
0 Function completed successfully. 

4 Function completed unsuccessfully. 

8 You attempted to use the execute form of this 
macro instruction to modify a keyword that is not 
in the parameter list. 

12 The MODCB macro was not executed because an 
error occurred while a VSAM module was being 
loaded. 

When register 15 contains 4, then register 0 contains one of the following 
return codes. 

Return Meaning 
Code 
1 The type of request was invalid. 

2 The block type was invalid. 

3 One of the keywords in the parameter list is invalid. 

4 The block at the address you specified was not of the 
type you indicated. 

12 The file associated with the ACB in question is open. 
Hence, it cannot be modified. 

14 You specified an incompatible set of parameters for 
MACRF. 

16 You specified an invalid control block address in the 
ACB parameter. 

ABEND Meaning 
Code 
03B An invalid address was found in a VSAM control block 

or a VSAM parameter list. This means that your 
program tried to use an address to which it has no 
access. 

Chapter 12. VSAM Data Management Service Macros 393 



MODeB 

MODeB 

Modify an Exit List at Execution Time 

Mopes ...•. 

During VSAM processing, unusual conditions sometimes occur. If you 
wish, you can supply one or more exit routines to handle such conditions. 
You can then associate them with one or more access method control 
blocks (ACBs) that define the characteristics of the VSAM files you plan to 
process. Review the entry titled "MODCB" on page 385. 

This discussion of the MODCB macro instruction deals only with those 
matters that involve GCS and is not intended to be an exhaustive 
instruction on this or any other VSE/VSAM topic. Presumably you are 
already familiar with VSE/VSAM through past experience and through 
study of the VSE/VSAM manuals. 

Use the MODCB macro instruction at execution time to modify a previously 
created list that contains the addresses of your exit routines. 

The format of the MODCB macro instruction is: 

394 VM/SP GCS Command and Macro Reference 



( Parameters 

( 

( 

MODeB 

EXLST 
Specifies the address of the list of exit routine addresses that you wish 
to modify. 

EODAD 
Indicates that you are modifying the address of the exit routine that 
will handle the END-OF-FILE condition during sequential access. 

JRNAD 
Indicates that you are modifying the address of the exit routine that 
will handle journaling. 

LERAD 
Indicates that you are modifying the address of the exit routine that 
will analyze logical errors. 

SYNAD 
Indicates that you are modifying the address of the exit routine that 
will analyze physical errors. 

address 

N 

L 

Specifies the new address of the exit routine in question. 

You can write this parameter as an assembler program label or as 
register (2) through (12). 

Indicates that the exit routine in question will be active. 

Indicates that the exit routine in question will not be active. 

Even if the condition to which this exit routine applies arises, it will 
not receive control. 

Indicates that the address given in the ADDRESS parameter is the 
address of an eight-byte field that contains the name of the exit 
routine in question. It is to be loaded into virtual storage by GCS. 

If you omit this parameter, then GCS assumes that the address you 
specify in the ADDRESS parameter is the routine's entry point in 
virtual storage. 

Chapter 12. VSAM Data Management Service Macros 395 



MODeB 

Usage Notes 

• 

• 

It does not matter whether the file whose exit list you are trying to 
modify is opened or closed. You can issue the MODCB instruction in 
either case. 

The exit list you want to modify is of a certain length. You cannot 
make any modification to the list that would change its length. For 
example, if there are already three addresses in the list, you cannot add 
a fourth. You can, however, modify one of the existing three addresses. 

Remember also, that exit list addresses are stored in the exit list control 
block in the following order: EODAD, SYNAD, LERAD, JRNAD. 
Given this and the fact that you cannot lengthen an existing exit 
address list, you must be very careful how you modify it. For example, 
if your original exit list contained only an address for the LERAD 
parameter, then you could add addresses for the EODAD and SYNAD 
parameters. But,.to add one for the JRNAD parameter would increase 
the length of the list and is an error. 

• Each time you issue the MODCB instruction, you must provide the 
system with a 72-byte save area. Be certain that before you issue the 
instruction you place the address of this save area in register 13. 

• Be certain that you are familiar with the material covered in the entry 
titled "Using VSAM under GCS" on page 322. 

Completion Codes, Return Codes and ABEND Codes 

When this macro completes execution, it passes to the caller a completion 
code in register 15. 

Completion Meaning 
Code 

0 Function completed successfully. 

4 Function completed unsuccessfully. 

8 You attempted to use the execute form of this 
macro instruction to modify a keyword that is not 
in the parameter list. 

12 The MODCB macro was not executed because an 
error occurred while a VSAM module was being 
loaded. 

396 VM/SP GCS Command and Macro Reference 



(. 

( 

- ----------

MODeB 

When register 15 contains 4, then register 0 contains one of the following 
return codes. 

Return Meaning 
Code 

1 The type of request was invalid. 

2 The block type was invalid. 

3 One of the keywords in the parameter list is invalid. 

4 The block at the address you specified was not of the 
type you indicated. 

7 Either the exit list is not large enough to accommodate 
your modification or the exit entry you tried to modify 
was not in the list at all. 

10 You failed to specify an address for one of your exit 
routines. Also, you must specify either the A or N 
parameter. 

13 You attempted to activate an exii, but did not provide 
an address for it. 

16 You specified an invalid control block address in the 
EXLST parameter. 

ABEND Meaning 
Code 
03A The number of exits defined in the system has reached 

the maximum of 128. 

03B An invalid address was found in a VSAM control block 
or a VSAM parameter list. This means that your 
program tried to use an address to which it has no 
access. 

Chapter 12. VSAM Data Management Service Macros 397 



I 

MODeB 

MODeB 

Modify Certain Fields in a Request Parameter List (RPL) 

All VSAM functions require that you set up a request parameter list (RPL) 
that describes the characteristics of your request. These VSAM functions 
are associated with the following macros: CHECK, ENDREQ, ERASE, 
GET, POINT, and PUT. If necessary, review the entry titled "CHECK" on 
page 346, "ENDREQ" on page 351, "ERASE" on page 354, "GET" on 
page 383, "POINT" on page 409, or "PUT" on page 412. 

This discussion of the MODCB macro instruction deals only with those 
matters that involve GCS and is not intended to be an exhaustive 
instruction on this or any other VSE/VSAM topic. Presumably you are 
already familiar with VSE/VSAM through past experience and through 
study of the VSE/VSAM manuals. 

Use the MODCB macro instruction to modify specified fields within a 
certain request parameter list. 

398 VMjSP GCS Command and Macro Reference 

c 



(-

[1 abel] MODCB 

( 

( 

(~ 

(j 

---~-- ---

The format of the MODCB macro instruction is: 

RPL=address[,ACB=address] [,AREA=address] 

[,AREALEN=number] [,ARG=address] 

[,ECB=address] [,KEYLEN=number] [,NXTRPL=address] 

, OPTCD= ( [ADR] CNV 
KEY 

[:ill] 
,SKP 

[,AIill] 
,LRD 

[

, F. WD] 
.BWD 

[,ASV] ,SYN 

[
, NSP] ,NUP 

. ,UPD . 

[,Jilll] 
,KGE 

[.' FKS] 
.GEN 

[• LOC] ,MVE ) 

[. RECLEN=number] 

MODeB 

Chapter 12. VSAM Data Management Service Macros 399 



MODea 

Parameters 

RPL 

ACB 

Specifies the address of the request parameter list whose fields you 
want to modify. 

You cannot modify the fields of any RPL that is active. That is, an 
RPL that defines a request that has been issued, but is not yet 
completed. To confirm whether an active request is complete, issue 
the CHECK macro instruction. To cancel an active request, issue the 
ENDREQ macro instruction. If necessary, review the entries 
"CHECK" on page 346 and "ENDREQ" on page 351. 

Specifies the address of the access method control block (ACB) 
associated with the file you are processing. 

If you created the access method control block via the ACB macro 
instruction, you can write this parameter as the assembler program 
label on that instruction. If no ACB associated with your file exists, 
then you must create one via the ACB or GENCB macro instruction 
before issuing the RPL instruction. If necessary, review the entry 
titled "ACB" on page 338 or "GENCB" on page 361. 

AREA 
Specifies one of two things: 

• If you select the OPT CD = MVE parameter, then the AREA 
parameter specifies the address of a work area to which a data 
record is moved to be processed and from which it is moved after 
processing. 

• If you select the OPTCD = LOC parameter, then the AREA 
parameter will specify the address of a work area. The address of 
the 1/0 buffer in which you process your file will be placed in this 
work area (GET only). 

AREALEN 
Specifies the length, in bytes, of the work area whose address you 
specified in the AREA parameter. 

If you selected the OPTCD = MVE parameter, then this length must be 
no less than the size of a data record. For variable-length records, you 
must allow for the largest record in the file. 

If you selected the OPTCD = LOC parameter, then you must specify a 
length of four bytes to accommodate the address of the 1/0 buffer in 
which you will process each record. 

400 VM/SP GCS Command and Macro Reference 



( 

( 

( 

ARG 

ECB 

-- ----------- ~----------------

MODeB 

Specifies the address of a field that contains the search argument for 
one of the following: 

• Direct or skip sequential retrieval (GET). 
• Sequential positioning (POINT). 
• Direct or skip sequential storage (PUT) for a relative record file. 
For keyed access (OPT CD = KEY), the search argument may be a 

• Full key (OPTCD = FKS). 

• Generic key (OPTCD = GEN). In this case, you must also specify 
its size via the KEYLEN parameter. 

• Relative record number (which is treated as a key). 

For addressed access (OPT CD = ADR), the search argument is always 
an RBA. To determine the RBA of a record to which you have gained 
access sequentially or directly by key, you can issue the SHOWCB 
macro instruction. If necessary, review the entry titled "SHOWCB" 
on page 431. 

For control interval access with user buffering and a user supplied 
RBA, the record is written only to this RBA if positioning is not 
established by a previous request. 

When records are inserted into a key sequenced file, either 
sequentially or directly, VSAM obtains the key from the record itself. 
When the records are inserted sequentially into a relative record file, 
VSAM returns the assigned relative record number in the ARG field. 

Specifies the address of the event control block associated with the 
VSAM request you will make. 

KEYLEN 
Specifies the length, in bytes, of the generic key that you are using as 
a search argument (OPTCD = GEN). 

You specify the search argument in the ARG parameter. You must 
specify its length when it is a generic key. 

You can write this parameter as any number from 1 to 255. 

NXTRPL 
Specifies the address of the next request parameter list in the chain. 

Omit this parameter from the RPL instruction that generates the last 
RPL in the chain. When you issue a request that is defined by a chain 
of RPLs, specify the address of the first RPL in the chain in the 
instruction associated with the request. 

Chapter 12. VSAM Data Management Service Macros 401 



MODCB 

OPTCD 
Indicates the options that will govern the req'Qest defined by the 
request parameter list you are creating .. 

ADR 

CNV 

DlR 

SKP 

LRD 

Indicates addressed access to a key-sequenced or entry-sequenced 
file. 

Indicates access will be to the entire contents of a control 
interval, rather than to an individual record. 

Indicates access to a key-sequenced or relative record file. 

Indicates direct processing. 

Indicates sequential processing. 

Indicates skip-sequential processing. 

This is valid only with keyed access. 

Indicates that the user's argument determines the record to be 
located, retrieved, or stored. 

Indicates that the last record in the file will be located or 
retrieved. 

If you choose this parameter, then you must also choose the 
BWD parameter. 

FWD 
Indicates that processing is to proceed through the file in a 
forward direction. 

BWD 

ASY 

Indicates that processing is to proceed through the file in a 
backward direction for keyed or addressed access and for 
sequential or direct processing. 

Specifies that you want your file processed asynchronously. 

This means that when the request associated with the RPL you 
are creating is scheduled, control will ret\1rn to your program so 

402 VM/SP GCS Command and Macro Reference 

o 



( 

NSP 

UPD 

KEQ 

( KGE 

GEN 

MODeB 

it can continue processing. Meanwhile, your request is being 
carried out. 

Remember that asynchronous processing is merely simulated by 
GCS. Disk I/O in GCS is always synchronous. Even so, you 
must issue the CHECK macro instruction to obtain the results of 
the operation. If necessary, review the entry titled "CHECK" on 
page 346. 

Specifies that you want your file processed synchronously. 

This means that control will return to your program only after 
the request associated with the RPL you are creating has been 
carried out. 

Indicates that, for direct processing only, the request is not for 
update. VSAM will be positioned at the next record for 
subsequent sequential processing. 

Indicates that any record retrieved will not be updated or 
deleted. Moreover, any record that is stored is a new record. 

On direct access requests, GCS does not remember the record's 
position. 

Indicates that any record retrieved can be updated or deleted. 

Indicates that the key you provide as a search argument must 
equal the key of the record. 

Indicates that if the key you specify as a search argument does 
not equal that of a certain record, then the request will affect the 
record with the next highest key. 

Indicates that you are providing a full key as a search argument. 

Indicates that you are providing a generic key as a search 
argument. 

If you select this parameter, then you must also specify the 
length of the generic key in the KEYLEN parameter. 

Chapter 12. VSAM Data Management Service Macros 403 



MODea 

Usage Notes 

LOC 
Indicates that during retrieval, the record will be put in VSAM's 
I/O buffer to be processed. 

This parameter is not valid if you intend to invoke the PUT or 
ERASE instructions, though it is valid with the GET instruction. 
However, to update the record, you must build a new version of 
it in a work area and modify the RPL from LOCATE MODE to 
MOVE MODE before you issue any PUT instruction. For 
keyed-sequential retrieval, modifying key fields in the I/O buffer 
may cause erroneous results for subsequent GET requests until 
the record is reread. 

MVE 

RECLEN 

Indicates that, during retrieval, the record will be moved to a 
work area for processing. For storage, it will be moved from the 
work area to the I/O buffer. 

Specifies the length, in bytes, of a record that is to be stored. 

If you intend to issue the PUT instruction, then this parameter is 
required. If you issue a GET instruction, then the length of the record 
involved is placed in the RPL field associated with this parameter. 
This is for the benefit of any subsequent update or store requests. 

• Whatever value you assign to a parameter in this instruction is the 
value that will replace the one currently associated with the parameter 
in the RPL. 

• Notice that the options under the OPTCD parameter are divided into 
groups. Only one option per group can be in effect at one time. If you 
specify one option from a group in the MODCB instruction, then that 
option overrides any other option from that group that might be '-_ / 
specified in the RPL. 

• Each time you issue the MODCB instruction, you must provide the 
system with a 72-byte save area. Be certain that before you issue the 
instruction you place the address of this save area in register 13. 

• Be certain that you are familiar with the material covered in the entry 
titled "Using VSAM under GCS" on page 322. 

404 VM/SP GCS Command and Macro Reference 



MODes 

( Completion Codes, Return Codes and ABEND Codes 

( 

When this macro completes execution, it passes to the caller a completion 
code in register 15. 

Completion Meaning 
Code 
0 Function completed successfully. 

4 Function completed unsuccessfully. 

8 You attempted to use the execute form of this 
macro instruction to modify a keyword that is not 
in the parameter list. 

12 The MODCB macro was not executed because an 
error occurred while a VSAM module was being 
loaded. 

When register 15 contains 4, then register 0 contains one of the following 
return codes. 

Return Meaning 
Code 

1 The type of request was invalid. 

2 The block type was invalid. 

3 One of the keywords in the parameter list is invalid. 

4 The block at the address you specified was not of the 
type you indicated. 

11 The MODCB macro is already active on the specified 
control block. 

14 You specified an incompatible set of parameters. 

16 You specified an invalid control block address in the 
RPL parameter. 

ABEND Meaning 
Code 
03B An invalid address was found in a VSAM control block 

or a VSAM parameter list. This means that your 
program tried to use an address to which it has no 
access. 

Chapter 12. VSAM Data Management Service Macros 405 



OPEN 

OPEN 

Prepar. a VSAM File for Processing 

Parameters 

Before your program can access a file, the file must be opened for 
processing. The process of thus preparing a file includes: 

• LogicaJly connecting your program to the file. 

• Building various control biocks needed by VSAM to process the file. 

• Verifying that the file matches the one you described via the ACB or 
GENCB macro instructions. 

• And, verifying any necessary passwords to the file. (If necessary, 
review the entry titled "ACB" on page 338 or "GENCB" on page 361.) 

Use the OPEN macro instruction to prepare a VSAM file for processing. 

This discussion of the OPEN macro instruction deals only with those 
matters that involve GCS and is not intended to be an exhaustive 
instruction on this or any other VSEjVSAM topic. Presumably you are 
already familiar with VSE/VSAM through past experience and through 
study of the VSE/VSAM manuals. 

The format of the OPEN macro instruction is: 

acb address 
Specifies the address of the access method control block (ACB) 
associated with the file you wish to open. 

Note that you can specify the address of more than one, and thereby 
open more than one file. If you do specify more than one ACB 
address, be certain to separate each by a comma. 

You can write this parameter as an assembler program label or as 
register (2) through (12). If you specify the address using a register, 
then be certain that each register in the list is surrounded by a pair of 
parentheses. And, always be certain that the list itself is surrounded 
by a set of parentheses. 

406 VM/SP GCS Command and Macro Reference 

c -" / 

\ 

'" / 

c 



( 

( 

( 

Usage Notes 

OPEN 

• Be certain that you are familiar with the material covered in the entry 
titled "Using VSAM under GCS" on page 322. 

• If you have data control blocks (DCBs) that you wish to open, as well as 
ACBs, you can specify a combination of both in the same OPEN 
instruction. GCS is able to distinguish the address of one from the 
address of the other, as long as you separate each with a comma. This 
is a way of saying that, for all practical purposes, this instruction and 
the one described in the entry titled "OPEN (BSAM/QSAM)" on 
page 296 are one and the same. 

Completion Codes, Return Codes and ABEND Codes 

When this macro completes processing, it passes to the caller a completion 
code in register 15. If register 15 contains 4 or 8, then the specific error is 
indicated in the ERROR field of the appropriate ACB. This field can be 
displayed via the SHOWCB. instruction. If necessary, review the entry 
titled "SHOWCB" on page 420. 

Completion Meaning 
Code 

0 All the files specified are now opened. 

4 All the files specified are now opened. However, 
one or more warning messages have been issued. 

8 At least one of the files specified was not opened. 
The ACB associated with the file(s) not opened 
have been restored to their original condition. If 
any of these files were already opened, then their 
ACBs remain open, usable, and unchanged. 

Return Meaning 
Code 

4 The file indicated by the access method control block 
is already open. 

96 Catalog recovery for this file failed. Therefore, the file 
is not usable. 

100 The OPEN macro found an empty alternate index that 
is part of an upgrade set. 

104 The time stamp of the volume on which a file is stored 
does not match the system time stamp in the file's 
catalog record. This indicates that extent information 
in the catalog may not agree with the extents indicated 
in the volume's VTOC. 

108 The time stamps of a data and index component do not 
match. This indicates that the data and the index were 
not updated at the same time. 

Chapter 12. VSAM Data Management Service Macros 407 



OPEN 

Return Meaning 
Code 

116 The file was not properly closed. 

128 Either the DLBL command for the file or for the 
catalog is missing, or the file specified in that 
statement does not match the name of the ACB. 

132 A permanent I/O error occurred while VSAM was 
reading label information. 

136 Insufficient virtual storage is available for work areas, 
control blocks, or buffers. 

144 An I/O error, which cannot be corrected, occurred 
while VSAM was reading or writing a catalog record. 

148 Either no record for the file to be opened was found in 
the available catalog(s), or an unidentified error 
occurred while VSAM was searching the catalog. 

152 Security verification failed. The password specified in 
the access method control block for a specified level of 
access does not match the password in the catalog for 
that level of access. 

160 The parameters specified in the ACB or GENCB 
instruction are either inconsistent with each other, or 
inconsistent with the information in the catalog 
record. 

168 Either the file is not available for the type of 
processing you specified, or an attempt was made to 
open a reusable file with the RESET option while 
another user had the file open. 

180 An error occurred in opening a catalog. 

188 The file specified by the access method control block is 
not one that can be specified by an ACB. 

192 An unusable file was opened for output. 

196 Access to data was requested via an empty alternate 
index. 

232 RESET was specified for a non-reusable file, but the 
file is not empty. 

ABEND Meaning 
Code 

035 An error occurred in the OPEN macro. 

03A The number of exits defined in the system has reached 
the maximum of 128. 

03B An invalid address was found in a VSAM control block 
or a VSAM parameter list. This means that your 
program tried to use an address to which it has no 
access. 

o 
408 VM/SP GCS Command and Macro Reference 



(' 

( 

( 

(-

POINT 

POINT 

Position a Pointer for Access to a Specific Record in a VSAM File 

Parameter 

To access a certain record within a VSAM file, you must "position 
yourself' within that file and "point" to the record in question. 

Use the POINT macro instruction to position yourself forward or backward 
within the file to a specific record. 

This diE\cussion of the POINT macro instruction deals only with those 
matters that involve GCS and is not intended to be an exhaustive 
instruction on this or ~ny other VSEjVSAM topic. Presumably you are 
already familiar with YSE/VSAM through past experience and through 
study of the VSE/VSA~ manuals. 

The format of the POINT macro instruction is: 

RPL 
Specifies the address of the request parameter list (RPL) associated 
with your POINT request. 

This is the same request parameter list that you defined via the RPL 
macro instruction. (If necessary, review the entry titled "RPL" on 
page 414.) You specify the record to which you want to point in the 
ARG parameter of that instruction. 

You can write this parameter as an assembler program label or as 
register (2) through (12). 

Chapter 12. VSAM Data Management Service Macros 409 



POINT 

Usage Notes 

• 

• 

• 

• 

• 

If you specify the OPTCD = KEY parameter in the appropriate RPL 
instruction, then the POINT macro establishes a pointer indicating the 
record whose key or relative-record number you specified in the search 
argument field. You can use the POINT instruction to position either 
forward or backward within the file. 

If you specify the OPTCD = ADR or OPTCD = CNV parameter in the 
appropriate RPL instruction, then the POINT macro establishes a 
pointer indicating the record or control interval whose RBA you 
specified in the search argument field. You can use the POINT 
instruction to position either forward or backward within the file. 

VSAM also can be positioned for sequential processing by either a 
direct GET or PUT instruction. 

Each time you issue the POINT instruction, you must provide the 
system with a 72-byte save area. Be certain that before you issue the 
instruction you place the address of this save area in register 13. 

Be certain that you are familiar with the material covered in the entry 
titled "Using VSAM under GCS" on page 322. 

410 VMjSP GCS Command and Macro Reference 

C·· '\ 
.~ 



( 

( 

( 

( .. ~ .. 

POINT 

Return Codes and ABEND Codes 

When this macro completes processing, it passes to the caller a return code 
in register 15. If register 15 contains 8 or 12, then the specific error is 
indicated in the FDBK field of the appropriate RPL. This field can be 
displayed via the SHOW~B or TESTCB macro instructions. If necessary, 
review the entries titled "SHOWCB" on page 431 or "TESTCB" on 
page 450. 

Return Meaning 
Code 

0 Your request was accepted. 

4 Your request was not accepted because the RPL you 
specified in the POINT instruction is already active for 
another request. 

8 A logical error occurred. 

12 A physical error occurred. 

ABEND Meaning 
Code 

035 An error occurred in the POINT macro. The message 
preceding the ABEND describes this further. 

03B An invalid address was found in a VSAM control block 
or a VSAM parameter list. This means that your 
program tried to use an address to which it has no 
access. 

Chapter 12. VSAM Data Management Service Macros 411 



PUT 

PUT 

Store a Record in a VSAM file 

Parameter 

Usage Notes 

Use the PUT macro instruction to move a record from an I/O buffer or work 
area into a VSAM file. 

This discussion of the PUT macro instruction deals only with those matters 
that involve GCS and is not intended to be an exhaustive instruction on 
this or any other VSE/VSAM topic. Presumably you are already familiar 
with VSE/VSAM through past experience and through study of the 
VSE/VSAM manuals. 

The format of the PUT macro instruction is: 

RPL 
Specifies the address of the request parameter list (RPL) associated 
with your PUT request. 

This is the same request parameter list that you defined via the RPL 
macro instruction. (If necessary, review the entry titled "RPL" on 
page 414.) 

You can write this parameter as an assembler program label or as 
register (2) through (12). 

• Each time you issue the PUT instruction, you must provide the system 
with a 72-byte save area. Be certain that before you issue the 
instruction you place the address of this save area in register 13. 

• Be certain that you are familiar with the material covered in the entry 
titled "Using VSAM under GCS" on page 322. 

412 VM/SP GCS Command and Macro Reference 

\ 

/ 
I 



( 

( 

(-

PUT 

Return Codes and ABEND Codes 

When this macro completes processing, it passes to the caller a return code 
in register 15. If register 15 contains 8 or 12, then the specific error is 
indicated in the FDBK field of the appropriate RPL. This field can be 
displayed via the SHOWCB or TESTCB macro instructions. If necessary, 
review the entries titled "SHOWCB" on page 431 or "TESTCB" on 
page 450. 

Return Meaning 
Code 

0 Your request was accepted. 

4 Your request was not accepted because the RPL you 
specified in the PUT instruction is already active for 
another request. 

8 A logical error occurred. 

12 A physical error occurred. 

ABEND Meaning 
Code 

035 An error occurred in the PUT macro. 

03B An invalid address was found in a VSAM control block 
or a VSAM parameter list. This means that your 
program tried to use an address to which it has no 
access. 

Chapter 12. VSAM Data Management Service Macros 413 



RPL 

RPL 

Create a Request Parameter List (RPL) at Assembly Time 

Certain VSAM functions require that you set up a request parameter list 
(RPL) that describes the characteristics of your request. These VSAM 
functions are associated with the following macros: CHECK, ENDREQ, 
ERASE, GET, POINT, and PUT. If necessary, review the entry titled 
"CHECK" on page 346, "ENDREQ" on page 351, "ERASE" on page 354, 
"GET" on page 383, "POINT" on page 409, or "PUT" on page 412. Also, be 
certain that you are familiar with the material covered in the entry titled 
"Using VSAM under GCS" on page 322. 

This discussion of the RPL macro instruction deals only with those matters 
that involve GCS and is not intended to be an exhaustive instruction on 
this or any other VSEjVSAM topic. Presumably you are already familiar 
with VSEjVSAM through past experience and through study of the 
VSEjVSAM manuals. 

Use· the RPL macro instruction to create a request parameter list at 
assembly time describing the characteristics of your VSAM request. 

414 VMjSP GCS Command and Macro Reference 

" '" ! 

\ 
"- / 

o 



( 

[label] RPL 

f 

The format of the RPL macro instruction is: 

[ACB=address] [,AREA=address] 

[,AREALEN=number]e,ARG=address][,ECB=address] 

[,KEYLEN=number] [,NXTRPL=address] 

, OPTCD= ( [ADR] CNV 
KEY 

[
,DIRj .lli 
,SKP 

[ ,ARD] 
,LRD 

[. FWD] 
• BWD 

[ ,ASY] ,SYN 

[
,NSPj ,NUP 

.UPD 

[,1illl] 
,KGE 

[,FKS] 
,GEN 

[ • LOC] .MVE) 

[.RECLEN=number] 

RPL 

Chapter 12. VSAM Data Management Service Macros 415 



RPL 

Parameters 

ACB 
Specifies the address of the access method control block (ACB) 
associated with the file you are processing. 

If you created the access method control block via the ACB macro 
instruction, you can write this parameter as the assembler program 
label on that instruction. If no ACB associated with your file exists, 
then you must create one via the GENCB macro instruction. If 
necessary, review the entry titled "GENCB" on page 361. 

AREA 
Specifies one of two things: 

• If you select the OPT CD = MVE parameter, then the AREA 
parameter specifies the address of a work area to which a data 
record is moved to be processed and from which it is moved after 
processing. 

• If you select the OPTCD = LOC parameter, then the AREA 
parameter will specify the address of a work area. The address of 
the I/O buffer in which you process your file will be placed in this 
work area. 

AREALEN 

ARG 

Specifies the length, in bytes, of the work area whose address you 
specified in the AREA parameter. 

If you selected the OPTCD = MVE parameter, then this length must be 
no less than the size of a data record. For variable-length records, you 
must allow for the largest record in the file. 

If you selected the OPTCD = LOC parameter, then you must specify a 
length of four bytes to accommodate the address of the I/O buffer in 
which you will process each record. 

Specifies the address of a field that contains the search argument for 
one of the following: 

• Direct or skip sequential retrieval (GET). 
• Sequential positioning (POINT). 
• Direct or skip sequerttial storage (PUT) for a relative record file. 
For keyed access (OPTCD = KEY), the search argument may be a 

• Full key (OPT CD = FKS). 

• Generic key (OPT CD = GEN). In this case, you must also specify 
its size via the KEYLEN parameter. 

• Relative record number (which is treated as a key). 

416 VM/SP GCS Command and Macro Reference 

/' 
I 

/' 

i 

() 



( 

( 

( 

('-. 

ECB 

RPL 

For addressed access (OPTCD = ADR), the search argument is always 
an RBA. To determine the RBA of a record to which you have gained 
access sequentially or directly by key, you can issue the SHOWCB 
macro instruction. If necessary, review the entry titled "SHOWCB" 
on page 431. 

For control interval access with user buffering and a user-supplied 
RBA, the record is written only to this RBA if positioning is not 
established by a previous request. 

When records are inserted into a key sequenced file, either 
sequentially or directly, VSAM obtains the key from the record itself. 
When the records are inserted sequentially into a relative record file, 
VSAM returns the assigned relative record number in the ARG field. 

Specifies the address of the event control block associated with the 
VSAM request you will make. 

KEYLEN 
Specifies the length, in bytes, of the generic key that you are using as 
a search argument. 

You specify the search argument in the ARG parameter. However, 
you must specify its length when it is a generic key. 

You can write this parameter as any number from 1 to 255. 

NXTRPL 
Specifies the address of the next request parameter list in the chain. 

Omit this parameter from the RPL instruction that generates the last 
RPL in the chain. When you issue a request that is defined by a chain 
of RPLs, specify the address of the first RPL in the chain in the 
instruction associated with the request. 

OPTCD 
Indicates the options that will govern the request defined by the 
request parameter list you are creating. 

Carefully check the format box above. Note that the parameters are 
arranged in groups, each with a value that will be assumed by default 
should you fail to specify from that group. Since they are not 
positional parameters, they can be specified in any order. 

ADR 

CNV 

Indicates addressed access to a key-sequenced or entry-sequenced 
file. 

Indicates access will be to the entire contents of a control 
interval, rather than to an individual record. 

Chapter 12. VSAM Data Management Service Macros 417 



RPL 

DIR 

SKP 

LRD 

Indicates access to a key-~equenced or relative record file. 

Indicates direct processing. 

Indicates sequential processing. 

Indicates skip-sequential processing 

This is valid only with keyed access. 

Indicates that the user's argument determines the record to be 
located, retrieved, or stored. 

Indicates that the last record in the file will be located or 
retrieved • 

. If you choose this parameter, then you must also choose the 
BWD parameter. 

FWD 
Indicates that processing is to proceed through the file in a 
forward direction. 

BWD 

ASY 

Indicates that processing is to proceed through the file in a 
backward direction for keyed or addressed access, and for 
sequential or direct processing. 

Specifies that you want your file processed asynchronously. 

This means that when the request associated with the RPL you 
are creating is scheduled, control will return to your program so 
it can continue processing. Meanwhile, your request is being 
carried out. 

Remember that asynchronous processing is merely simulated by 
GCS. Disk I/O in GCS is always synchronous. Even so, you 
must issue the CHECK instruction to obtain the results of the 
operation. 

Specifies that you want your file processed synchronously. 

This means that control will return to your program only after 

418 VM/SP GCS Command and Macro Reference 

c 



( 

( 

NSP 

UPD 

KEQ 

KGE 

GEN 

LOC 

RPL 

the request associated with the RPL you are creating has been 
carried out. 

Indicates that, for direct processing only, you request is not for 
update. Further, VSAM will be positioned at the next record for 
subsequent sequential processing. 

Indicates that any record retrieved will not be updated or 
deleted. Moreover, any record that is stored is a new record. 

On direct access requests, GCS does not remember the record's 
position. 

Indicates that any record retrieved can be updated or deleted. 

Indicates that the key you provide as a search argument must 
equal the key of the record. 

Indicates that if the key you specify as a search argument does 
not equal that of a certain record, then the request will affect the 
record with the next highest key. 

Indicates that you are providing a full key as a search argument. 

Indicates that you are providing a generic key as a search 
argument. 

If you select this parameter, then you must also specify the 
length of the generic key in the KEYLEN parameter. 

Indicates that, during retrieval, the record will be put in VSAM's 
I/O buffer to be processed. 

MVE 

RECLEN 

Indicates that, during retrieval, the record will be moved to a 
work area for processing. For storage, it will be moved from the 
work area to VSAM's I/O buffer. 

Specifies the length, in bytes, of a record that is to be stored. 

If you intend to issue the PUT instruction, then this parameter is 
required. If you issue a GET instruction, then the length of the record 
involved is placed in the RPL field associated with this parameter. 
This is for the benefit of any subsequent update or store requests. 

Chapter 12. VSAM Data Management Service Macros 419 



SHOWCB 

SHOWCB 

Display the Fields of an Access Method Control Block (ACB) 

An access method control block (ACB) defines certain characteristics of a 
file that you intend to process via VSE/VSAM. When the file is opened, 
other characteristics of the file that you defined via the DLBL command are 
merged with the ACB to complete the picture. 

Use the SHOWCB macro instruction to display certain fields of an ACB. 
The display appears in a virtual storage work area that you set aside for 
this purpose. 

Note that the contents of each field (except the ACBLEN field) is 
determined by the corresponding parameter in the ACB macro instruction, 
the GENCB macro instruction, and/or the DLBL command. If necessary, 
review the entries titled "ACB" on page 338 and "GENCB" on page 361. 
For more information on the DLBL command see "GCS Commands" on 
page 20. Also, be certain that you are familiar with the material covered in 
the entry titled "Using VSAM under GCS" on page 322. 

This discussion of the SHOWCB macro instruction deals only with those 
matters that involve GCS and is not intended to be an exhaustive 
instruction on this or any other VSE/VSAM topic. Presumably you are 
already familiar with VSE/VSAM through past experience and through 
study of the VSE/VSAM manuals. 

420 VM/SP GCS Command and Macro Reference 

C) 



[1 abel] SHOWCB 

( 

Parameters 

( 

( 

(' 

SHOWCB 

The format of the SHOWCB macro instruction is: 

ACB=address ,AREA=address, LENGTH=number[,OBJECT= {DATA } 1 
INDEX 

,FIELDS=([ACBLEN] [,AVSPAC] [,BUFND] 

ACB 

[,BUFNI][,BUFNO][,BUFSP] 
[,CINV] [,DDNAME] [.ERROR] 
[. EXLSTJ [. FSJ [, KEYLEN] 
[.LRECL] [.MAREA] [.MLEN] 
[.NCIS] [.NDELR] [.NEXCP] 
[.NEXT] [.NINSR] [,NIXL] 
[.NLOGR][,NRETR][.NSSS] 
[.NUPDRJ [.PASSWD] [iRKPJ 
[.STMST] [,STRNO]) 

Specifies the address of the ACB containing the fields you want 
displayed. 

All ACBs are the same length. So, if you only want the ACBLEN field 
displayed, you need give no ACB address. 

If you issued the ACB macro instruction with a label attached to it, 
then you can write this parameter as that label. 

AREA 
Specifies the address of a work area that you have provided in virtual 
storage to accommodate the ACB fields to be displayed. 

The contents of the fields are displayed in this area in the order which 
you list them in the SHOWCB instruction. 

This work area must begin on a fullword boundary. 

LENGTH 
Specifies the length, in bytes, of the work area that you have provided 
in virtual storage to accommodate the ACB fields to be displayed. 

Check the field parameters listed below to determine the necessary 
length for this work area. If the area is not large enough to 
accommodate all the fields you specify, then you will receive an error 
code. 

Chapter 12. VSAM Data Management Service Macros 421 



SHOWCB 

LENGTH 
Specifies the length, in bytes, of the work area that you have provided 
in virtual storage to accommodate the ACB fields to be displayed. 

Check the field parameters listed below to determine the necessary 
length for this work area. If the area is not large enough to 
accommodate all the fields you specify, then you will receive an error 
code. 

OBJECT 
Indicates the scope of your request. 

DATA 
Indicates that the fields you specify pertain to the data contained 
in the file. 

This is the case by default. 

INDEX 
Indicates that the fields you specify pertain to the index. 

FIELDS 
Indicates which fields in the ACB you want displayed. 

Some of the ACB fields can be displayed at any time. Others can be 
displayed only after the file in question has been opened. Moreover, 
as with a key-sequenced file opened for keyed access, the fields can 
pertain to either the data or the index. 

The number following each field name specifies the number of 
full words needed in the work area to accommodate the field. 

The following fields can be displayed at any time: 

ACBLEN (1) 
The length of the access method control block in question. 

BUFND (1) 
The number of I/O buffers used for data. 

BUFNI (1) 
The number of I/O buffers used for the index. 

BUFSP (1) 
The amount of space allocated for I/O buffers. 

DDNAME (2) 
The logical name of the file associated with the ACB in question. 

422 VM/SP GCS Command and Macro Reference 

- ... ~.-.. -- - .. ~ .. ~--

( 
',,-

./ 

o 



( 

SHOWCB 

ERROR (1) 
The code returned after opening or closing the file associated 
with the ACB in question. 

EXLST (1) 
The address of the list of exit routine addresses. If none was 
specified, then this field contains O. 

MAREA (1) 
The address of the message area. If none was specified, then this 
field contains O. 

MLEN (1) 
The length of the message area. If none was specified, then this 
field contains O. 

PASSWD (1) 
The address of the field containing the password to the file 
associated with the ACB in question. The first byte of the field 
contains the binary length of the password. 

STRNO (1) 
The number of requests for which the position in the file is to be 
remembered. 

Chapter 12. VSAM Data Management Service Macros 423 



SHOWCB 

The following fields can be displayed only after the tile is open: 

AVSPAC (1) 
The amount of available space, in bytes, in the data component 
or index component. 

BUFNO (1) 
The number of I/O buffers actually in use by the data component 
or index component. 

CINV (1) 
The control interval size for the data component or index 
component. 

FS (1) 
The number of free control intervals per control area in the data 
component. If you specified the OBJECT = INDEX parameter, 
then this field contains O. 

KEYLEN (1) 
Either the full length of the prime key field or the alternate key 
field in each logical record. Which it is depends on whether you 
access the base cluster via a path. 

LRECL (1) 
The length of the records in the data component or the index 
component. For the former, with variable-length records, this is 
the maximum length of any record. For the latter, this is the 
control interval length minus seven. 

NCIS (1) 
The number of control intervals that have been split in the data 
component. If you specified the OBJECT = INDEX parameter, 
then this field contains O. 

NDELR (1) 
The number of records that have been deleted from the data 
component. If you specified the OBJECT = INDEX parameter, 
then this field contains O. 

NEXCP (1) 
The number of EXCP macros that have been issued to obtain 
access to the data component or index component. 

NEXT (1) 
The number of extents currently allocated to the data component 
or the index component. 

424 VM/SP GCS Command and Macro Reference 



( 

( 

( 

Usage Note 

_._- --_.--- ---------

SHOWCB 

NINSR (1) 
The number of records that have been inserted into the data 
component. If you specified the OBJECT = INDEX parameter, 
then this field contains O. 

NIXL (1) 
The number of levels in the index component. If you specified 
the OBJECT = DATA parameter, then this field contains O. 

NLOGR (1) 
The number of records in the data component. If you specified 
the OBJECT = INDEX parameter, then this field contains O. 

NRETR (1) 
The number of records that have ever been retrieved from the 
data component. If you specified the OBJECT = INDEX 
parameter, then this field contains O. 

NSSS (1) 
The number of control areas that have been split in the data 
component. If you specified the OBJECT = INDEX parameter, 
then this field contains O. 

NUPDR (1) 
The number of records in the data component that have ever 
been updated. If you specified the OBJECT = INDEX parameter, 
then this field contains O. 

RKP (1) 
The displacement of either the prime key field or alternate key 
field from the beginning of a data record. Which it is depends 
upon whether you access the base cluster via a path. The same 
value is displayed whether the object is index or data. 

STMST (2) 
The system time stamp, which specifies the time and date on 
which the data component or index component was closed. Bit 
51 is equivalent to one microsecond and bits 52 through 63 are 
unused. 

• Each time you issue the SHOWCB instruction, you must provide the 
system with a 72-byte save area. Be certain that before you issue the 
instruction you place the address of this save area in register 13. 

Chapter 12. VSAM Data Management Service Macros 425 



SHOWCB 

Completion Codes, Return Codes and ABEND Codes 

When this macro completes execution, it passes to the caller a completion 
code in register 15. 

Completion Meaning 
Code 
0 Function completed successfully. 

4 Function completed unsuccessfully. 

8 You attempted to use the execute form of this 
macro instruction to modify a keyword that is not 
in the parameter list. 

12 The SHOWCB macro was not executed because an 
error occurred while a VSAM module was being 
loaded. 

When register 15 contains 4, then register 0 contains one of the following 
return codes. 

Return Meaning 
Code 
1 The type of request was invalid. 

2 The block type was invalid. 

3 One of the keywords in the parameter list is invalid. 

4 The block at the address you specified was not of the 
type you indicated. 

5 Either the file associated with the ACB in question is 
not open or is not a VSAM file. 

6 Index information was requested, but no index was 
opened for the file in question. 

9 The work area you provided to accommodate the fields 
to be displayed is too small. 

15 The work area you provided to accommodate the fields 
to be displayed is not on a fullword boundary. 

16 You specified an invalid control block address in the 
ACB parameter. 

20 You specified certain parameters that can apply only if 
MACRF = LSR or MACRF = GSR. MACRF = LSR and 
MACRF=GSR are not supported by GCS. 

ABEND Meaning 
Code 
03B An invalid address was found in a VSAM control block 

or a VSAM parameter list. This means that your 
program tried to use an address to which it has no 
access. 

426 VM/SP GCS Command and Macro Reference 

/ 



( 

( 

SHOWCB 

SHOWCB 

Display the Fields of an Exit List 

[labelJ SHOWCB 

Parameters 

During VSAM processing, unusual conditions sometimes occur. If you 
wish, you can supply one or more exit routines to handle such conditions. 
If necessary, review the entries titled "EXLST" on page 356 or "GENCB" 
on page 370. You can then associate them with one or more access method 
control blocks (ACBs) that define the characteristics of the VSAM files you 
plan to process. Review the entry titled "ACB" on page 338 or "MODCB" 
on page 385. 

This discussion of the SHOWCB macro instruction deals only with those 
matters that involve GCS and is not intended to be an exhaustive 
instruction on this or any other VSE/VSAM topic. Presumably you are 
already familiar with VSE/VSAM through past experience and through 
study of the YSE/VSAM manuals. 

Use the SHOWCB macro instruction to display certain fields of an exit list. 
This display appears in a virtual storage work area that you set aside for 
this purpose. 

The format of the SHOWCB macro instruction is: 

EXLST=address.AREA=address.LENGTH=number, 

FIELDS=([EODADJ[,EXLLENJ[,JRNAD][,LERADJ[,SYNAD]) 

EXLST 
Specifies the address of the exit list whose fields you want to display. 

If you omit this parameter and specify the EXLLEN parameter, then 
the EXLLEN field will display the maximum allowable length of any 
exit list. 

If you used the EXLST macro instruction to generate the exit list, and 
you applied a label to that instruction, then you can write this 
parameter as that label. 

Chapter 12. VSAM Data Management Service Macros 427 



SHOWCB 

AREA 
Specifies the address of a work area in virtual storage you have set 
aside for the display of the exit list fields. 

This area must begin on a fullword boundary. Note that the fields are 
displayed in the order which you specify them in the SHOWCB 
instruction. 

LENGTH 
Specifies the length, in bytes, of a work area in virtual storage you 
have set aside for the display of the exit list fields. 

Each exit list field requires one fullword. Therefore, allow four bytes 
for each field yo~ specify in the FIELD parameter. If the work area is 
not large enough to accommodate all the fields you specify, then you 
will receive an error code. 

FIELDS 
Indicates the scope of your request. 

EODAD 
Indicates that the address of the END·OF·FILE routine will be 
displayed. 

EXLLEN 
Specifies one of two things: 

• If the EXLST parameter is specified, then the length of the 
exit list will be displayed. 

• If the EXLST parameter is not specified, then the maximum 
allowable length of any exit list will be displayed. 

JRNAD 
Specifies that the address of the journaling routine will be 
displayed. 

LERAD 
Specifies that the address of the logical error analysis routine 
will be displayed. ' 

SYNAD 
Specifies that the address of the physical error analysis routine 
will be displayed. 

428 VM/SP GCS Command and Macro Reference 

o 



( 

( 

Usage Notes 

SHOWCB 

• Use the SHOWCB macro instruction to display a certain field in an exit 
list only if that field exists. 

GCS will display the fields in the order in which you request them. 

• Each time you issue the SHOWCB instruction, you must provide the 
system with a 72-byte save area. Be certain that before you issue the 
instruction you place the address of this save area in register 13. 

• Be certain that you are familiar with the material covered in the entry 
titled "Using VSAM under GCS" on page 322. 

Completion Codes, Return Codes and ABEND Codes 

When this macro completes execution, it passes to the caller a completion 
code in register 15. 

Completion Meaning 
Code 

0 Function completed successfully. 

4 Function completed unsuccessfully. 

8 You attempted to use the execute form of this 
macro instruction to modify a keyword that is. not 
in the parameter list. 

12 The SHOWCB macro was not executed because an 
error occurred while a VSAM module was being 
loaded. 

When register 15 contains 4, then register 0 contains one of the following 
return codes. 

Return Meaning 
Code 
1 The type of request was invalid. 

2 The block type was invalid. 

3 One of the keywords in the parameter list is invalid. 

4 The block at the address you specified was not of the 
type you indicated. 

7 The type of exit you specified is not in the exit list. 

9 The work area you provided to accommodate the fields 
to be displayed is too small. No fields were displayed. 

15 The work area you provided to accommodate the fields 
to be displayed is not on a fullword boundary. No 
fields were displayed. 

Chapter 12. VSAM Data Management Service Macros 429 



SHOWCB 

Return Meaning 
Code 
16 You specified an invalid control block address in the 

EXLST parameter. 

ABEND Meaning 
Code 
03B An invalid address was found in a VSAM control block 

or a VSAM parameter list. This means that your 
program tried to use an address to which it has no 
access. 

o 
430 VMjSP GCS Command and Macro Reference 



f 

If 

( 

SHOWCB 

SHOWCB 

Display the Fields of a Request Parameter List 

All VSAM functions require that you set up a request parameter list (RPL) 
that describes the characteristics of your request. These VSAM functions 
are associated with the following macros; CHECK, ENDREQ, ERASE, 
GET, POINT, and PUT. If necessary, review the entry titled "CHECK" on 
page 346, "ENDREQ" on page 351, "ERASE" on page 354, "GET" on 
page 383, "POINT" on page 409, or "PUT" on page 412. Also, be certain 
that you are familiar with the material covered in the entry titled "Using 
VSAM under GCS" on page 322. 

You create a request parameter list via the RPL or GENCB macro 
instructions. If necessary, review the entry titled "RPL" on page 414 or 
"GENCB" on page 374. 

This discussion of the SHOWCB macro instruction deals only with those 
matters that involve GCS and is not intended to be an exhaustive 
instruction on this or any other VSE/VSAM topic. Presumably you are 
already familiar with VSE/VSAM through past experience and through 
study of the VSE/VSAM manuals. 

Use the SHOWCB macro instruction to display certain fields of a request 
parameter list. This display appears in a work area that you have set aside 
for this purpose. 

Chapter 12. VSAM Data Management Service Macros 431 



SHOWCB 

Parameters 

The format of the SHOWCB macro instruction is: 

RPL 
Specifies the address of the request parameter list whose fields you 
want to display. 

Since all RPLs are the same length, you can omit this parameter if the 
only field you are interested in displaying is the RPLLEN field. 

If you used the RPL macro instruction to create this request 
parameter list, and you applied a label to that instruction, then you 
can write this parameter as that label. 

AREA 
Specifies the address of a work area in virtual storage you have set 
aside to accommodate the RPL fields you want to display. 

This work area must begin on a fullword boundary. Moreover, the 
fields are displayed in this work area in the order in which you list 
them in the SHOWCB instruction. 

LENGTH 

/ 

Specifies the length, in bytes, of the work area in virtual storage you / 
have set aside to accommodate the RPL fields you want to display. 

Each RPL field requires one fullword. Therefore, allow four bytes for 
each field you specify in the FIELDS parameter. 

FIELDS 
Indicates which fields you want to display. 

ACB 
The address of the access method control block that relates the 
RPL to the file you are processing. 

AIXPC 
The number of alternate index pointers. 

432 VM/SP GCS Command and Macro Reference 

o 



(-

( 

( 

SHOWCB 

AREA 
The address of the work area that your program uses to process 
the file records. Access to this file is defined by the RPL. 

AREALEN 

ARG 

ECB 

The length of the work area whose address is specified in the 
AREA field. 

If you are using search arguments to process your file, the 
address of the field containing that search argument. 

The address of the event control block associated with the RPL 
in question. It is in this ECB that the completion of the request 
associated with the RPL is posted. 

FDBK 
The address of the feedback field that will contain the return 
code from the request associated with this RPL. 

For asynchronous requests, you must issue the CHECK macro 
instruction to place the return code in this field. (If necessary, 
review the entry titled "CHECK" on page 346.) The significance 
of this return code depends upon the contents of register 15, 
which indicates whether the request was successful or 
unsuccessful because of logical or physical error. 

FTNCD 
The code that describes the function in which a logical or 
physical error occurred. 

KEYLEN 
If you are using a generic key as a search argument, the length 
of that argument. 

NXTRPL 

RBA 

The address of the next request parameter list in the chain, if 
one exists. 

The relative byte address of the most recently processed record 
in the file. 

RECLEN 
The length of the file record, access to which is defined by the 
request parameter list. 

RPLLEN 
The length, in bytes, of any request parameter list. 

Chapter 12. VSAM Data Management Service Macros 433 



SHOWCB 

Usage Note 

• Each time YoU issue the SHOWCB instruction, you must provide the 
system with a 72-byte save area. Be certain that before you issue the 
instruction you place the address of this save area.in register 13. 

Completion Codes, Return Codes and ABEND Codes 

When this macro completes execution, it passes to the caller a completion 
code in register 15. 

Completion Meaning 
Code 

0 Function completed successfully. 

4 Function completed unsuccessfully. 

8 You attempted to use the execute form of this 
macro instruction to modify a keyword that is. not 
in the parameter list. 

12 The SHOWCB macro was not executed because an 
error occurred while a VSAM module was being 
loaded. 

When register 15 contains 4, then register 0 contains one of the following 
return codes. 

Return Meaning 
Code 

1 The type of request was invalid. 

2 The block type was invalid. 

3 One of the keywords in the parameter list is invalid. 

4 The block at the address you specified was not of the 
type you indicated. 

9 The work area you provided to accommodate the fields 
to be displayed is too small. No fields were displayed. 

15 The work area you provided to accommodate the fields 
to be displayed is not on a fullword boundary. No 
fields were displayed. 

16 You specified an invalid control block address in the 
RPL parameter. 

ABEND Meaning 
Code 

03B An invalid address was found in a VSAM control block 
or a VSAM parameter list. This means that your 
program tried to use an address to which it has no 
access. . 

434 VM/SP GCS Command and Macro Reference 

/ 

o 



TESTeB 

TESTeB 

Test a Certain Field in an Access Method Control Block (ACB) 

An access method control block (ACB) defines certain characteristics of a 
file that you intend to process via VSAM. When the file is opened, other 
characteristics of the file that you defined via the DLBL command are 
merged with the ACB to complete the picture. 

Use the TESTCB macro instruction to test the value of a certain field in an 
ACB. 

Note that the contents of each field (except the ACBLEN field) is 
determined by the corresponding parameter in the ACB macro instruction, 
the GENCB macro instruction, and/or the DLBL command. If necessary, 
review the entries titled "ACB" on page 338 and "GENCB" on page 361. 
For more information on the DLBL command see "GCS Commands" on 
page 20. 

This discussion of the TESTCB macro instruction deals only with those 
matters that involve GCS and is not intended to be an exhaustive 
instruction on this or any other VSE/VSAM topic. Presumably you are 
already familiar with VSE/VSAM through past experience and through 
study of the VSE/VSAM manuals. 

Chapter 12. VSAM Data Management Service Macros 435 



TESTeB 

The format of the TESTCB macro instruction is: 
f', 

~j 

436 VMjSP GCS Command and Macro Reference 



c: Parameters 

( 

() 

ACB 

TESTes 

Specifies the address of the ACB that contains the information you 
want to test. 

Since all ACBs have the same length, you can omit this parameter if 
the field you want to test is the ACBLEN field. 

ERET 
Specifies the address of a routine that will receive control if the 
condition you want to test for cannot be tested. 

This routine receives control if the TESTCB macro places a return 
code of 4 in register 15. Upon entry to this routine, register 0 contains 
additional information describing the error. 

The ERET routine probably should issue an ABEND instruction, since 
a failure to carry out a test is probably the result of a program logic 
error. If the ERET routine allows the program to continue, then it 
must transfer control to the continuation point, though it must not 
return to VSAM. 

OBJECT 
Indicates the scope of the test. 

DATA 
Indicates that the test will affect the data component. This is the 
case by default. 

INDEX 
Indicates that the test will affect the index component. 

ATRB 
Indicates the attribute that will be tested on the open file. Select from 
among the following attributes for which you can test. 

ESDS 
Whether an entry-sequenced file. 

KSDS 
Whether a key-sequenced file. 

REPL 
Whether some portion of the index is replicated. 

RRDS 
Whether a relative record file. 

SPAN 
Whether the file contains spanned records. 

Chapter 12. VSAM Data Management Service Macros 437 



TESTes 

SSWD 
Whether a sequence set is adjacent to the data. 

WCK 
Whether write operations for the file are being verified. 

UNQ 
Whether the alternate index requires unique keys. 

MACRF 
Indicates that a test be made to determine whether certain processing 
options are being used. The following describes the various 
processing options available for which you can test. 

ADR 

CNV 

KEY 

NDF 

DIR 

SEQ 

SKi> 

Indicates addressed access to a key-sequenced or entry-sequenced 
file. 

RBAs will be used as search arguments, and sequential access is 
by entry sequence. 

Indicates access will be to the entire contents of a control 
interval, rather than to an individual record. 

Indicates access to a key-sequenced or relative record file. 

Keys will be relative record numbers used as search arguments, 
and sequential access will be by key or relative record number. 

Indicates that any WRITE instruction will not be deferred for a 
direct PUT instruction. 

Indicates direct access to a key-sequenced, entry-sequenced, or 
relative record file. 

Indicates sequential access to a key-sequenced, entry-sequenced, 
or relative record file. 

Indicates skip-sequential access to a key-sequenced or relative 
record file. 

This is valid only with keyed access in a forward direction. 

438 VM/SP GCS Command and Macro Reference 

-----~-----

/ 

o 



( 

f 

( 

(\ 

IN 

OUT 

Indicates retrieval of records from key-sequenced, 
entry-sequenced, or relative record files. 

TESTes 

This is not a valid form of processing for an empty file. 

Indicates three things: 

• Storage of new records in a key-sequenced, entry-sequenced, 
or relative record file. This is not allowed with addressed 
access to a key-sequenced file. 

• Update of new records in a key-sequenced, entry-sequenced, 
or relative record file. 

• Deletion of records from a key-sequenced or relative record 
file. 

NRM 

AIX 

NRS 

RST 

NSR 

Indicates that the file to be processed is the one specified by the 
DDNAME parameter. 

Indicates that the object to be processed is the alternate index of 
the path specified by the DDNAME parameter, rather than the 
base cluster via the alternate index. 

Indicates that the file is not reusable. 

Indicates that the file is reusable. 

Note that the OPEN macro resets the file's catalog information 
to its original status. That is, it resets it to the status it had 
before the file was first opened. If necessary, review the entry 
titled "OPEN" on page 406. Also, the high-used RBA is reset to 
zero. 

The file must have been defined with the REUSE attribute for 
RST to be effective. Although the file is not erased, you can 
handle it as though it were a new file, and use it as a work file. 
When the OPEN macro performs the reset operation, this 
parameter is equivalent to the OUT option. DISP = NEW 
specified on the DLBL command is equivalent to selecting this 
parameter, and will override the NRS parameter. 

Indicates that the resources are not shared. 

Chapter 12. VSAM Data Management Service Macros 439 



TESTeB 

NUB 

UBF 

Indicates that VSAM will manage the I/O buffers. 

Indicates that the application will manage the I/O buffers. 

The work area specified by the RPL or GENCB instructions will 
be, in effect, the I/O buffer. The contents of a control interval is 
transmitted directly between the work area and DASD. This 
parameter is valid only when the MACRF=CNV and 
OPTCD = MVE parameters are specified iIi the RPL instruction. 
If necessary, review the entries titled "RPL" on page 414 and 
"GEN"CB" on page 374. 

ACBLEN 
The length of the access method control block in question. 

AV3PAC 
The amount of available space, in bytes, in the data component 
or index component. 

BUFND 
The number of I/O buffers used for data. 

BUFNI 
The number of I/O buffers used for the index. 

BUFNO 
The number of I/O buffers actually in use by the data component 
or index component. 

BUFSP 
The amount of space allocated for I/O buffers. 

CINV 
The control interval size for the data component or index 
component. 

DDNAME 
The logical name of the file associated with the ACB in question. 

ERROR 
The code returned after opening or closing the file associated 
with the ACB in questiop.. 

EXLST 
The address of the list of exit routine addresses. If none was 
specified, then this field contains o. 

440 VM/SP GCS Command and Macro Reference 

c 



( 

( 

FS 

TESTes 

The percentage of free control intervals per control area in the 
data component. If you specified the OBJECT = INDEX 
parameter, then this field contains O. 

KEYLEN 
The full length of the prime key field or alternate key field in 
each logical record. Which it is depends on whether you access 
the base cluster via a path. 

LRECL 
The length of the records in the data component or the index 
component. For the former, with variable-length records, this is 
the maximum length of any record. For the latter, this is the 
control interval length minus seven. 

MARE A 
The address of the message area. If none was specified, then this 
field contains O. 

MLEN 
The length of the message area. If none was specified, then this 
field contains O. 

NCIS 
The number of control intervals that have been split in the data 
component. If you specified the OBJECT = INDEX parameter, 
then this field contains o. 

NDELR 
The number of records that have been deleted from the data 
component. If you specified the OBJECT = INDEX parameter, 
then this field contains o. 

NEXCP 
The number of EXCP macros that have been issued to obtain 
access to the data component or index component. 

NEXT 
The number of extents currently allocated to the data component 
or the index component. 

NINSR 
The number of records that have been inserted into the data 
component. If you specified the OBJECT = INDEX parameter, 
then this field contains O. 

NIXL 
The number of levels in the index component. If you specified 
the OBJECT = DATA parameter, then this field contains o. 

Chapter 12. VSAM Data Management Service Macros 441 



TESTes 

NLOGR 
The number of records in the data component. If you specified 
the OBJECT = INDEX parameter, then this field contains o. 

NRETR 
The number of records that have· ever been retrieved from the 
data component. If you specified the OBJECT = INDEX 
parameter, then this field contains o. 

NSSS 
The number of control areas that have been split in the data 
component. If you specified the OBJECT = INDEX parameter, 
then this field contains o. 

NUPDR 
The number of records in the data component that have ever 
been updated. If you specified the OBJECT = INDEX parameter, 
then this field contains O. 

PASSWD 

RKP 

The address of the field containing the password to the file 
associated with the ACB in question. The first byte of the field 
contains the binary length of the password. 

Depending upon whether you access the base cluster via a path, 
the displacement of the prime key field or alternate key field 
from the beginning of a data record. The same value is displayed 
whether the object is index or data. 

STMST 
The system time stamp, which specifies the time and date on 
which the data component or index component was closed. Bit 
51 is equivalent to one microsecond and bits 52 through 63 are 
unused. 

STRNO 
The number of requests for which the position in the file is to be 
remembered. 

OFLAGS 
Indicates that a test will be made to determine whether a file for 
which the OPEN macro instruction has been issued is indeed 
open. 

OPENOBJ = PATH 
OPENOBJ=BASE 
OPENOBJ = AIX 

Indicates that a test will be made to determine whether the open 
object is a path, base cluster, or an alternative index. Select one. 

442 VM/SP GCS Command and Macro Reference 

o 



( Usage Notes 

TESTeB 

• You can use the TESTCB instruction to test only one field at a time. 
After the test, analyze the CONDITION CODE field of the PSW. It will 
indicate one of the following conditions: 

EQUAL TO 
GREATER THAN 
LESS THAN 

You can then proceed, based upon this condition code. 

• Each time you issue the TESTCB instruction, you must provide the 
system with a 72-byte save area. Be certain that before you issue the 
instruction you place the address of this save area in register 13. 

• Be certain that you are familiar with the material covered in the entry 
titled "Using VSAM under GCS" on page 322. 

Chapter 12. VSAM Data Management Service Macros 443 



TESTes 

Completion Codes, Return Codes and ABEND Codes 

When this macro completes execution, it passes to the caller a completion 
code in register 15. 

Completion Meaning 
Code 

0 Function completed successfully. 

4 Function completed unsuccessfully. 

8 You attempted to use the execute form of this 
macro instruction to modify a keyword that is not 
in the parameter list. 

12 The TESTCB macro was not executed because an 
error occurred while a VSAM module was being 
loaded. 

When register 15 contains 4, then register 0 contains one of the following 
return codes. 

Return Meaning 
Code 

1 The type of request was invalid. 

2 The block type was invalid. 

3 One of the keywords in the parameter list is invalid. 

4 The block at the address you specified was not of the 
type you indicated. 

5 Either the file associated with the ACB in question is 
not open or is not a VSAM file. 

6 Index information was requested, but no index was 
opened for the file in question. 

14 The MACRF and/or ATRB parameters contain 
incompatible options. 

16 You specified an invalid control block address in the 
ACB parameter. 

ABEND Meaning 
Code 

03B An invalid address was found in a VSAM control block 
or a VSAM parameter list. This means that your 
program tried to use an address to which it has no 
access. 

444 VMjSP GCS Command and Macro Reference 

(,c 



( 

TESTeB 

TESTeB 

Test a Certain Field in an Exit List 

During VSAM processing, unusual conditions sometimes occur. If you 
wish, you can supply one or more exit routines to handle such conditions. 
You can then associate them with one or more access method control 
blocks (ACBs) that define the characteristics of the VSAM files you plan to 
process. Review the entry titled "MODCB" on page 385. 

This discussion of the TESTCB macro instruction deals only with those 
matters that involve GCS and is not intended to be an exhaustive 
instruction on this or any other VSE/VSAM topic. Presumably you are 
already familiar with VSE/VSAM through past experience and through 
study of the VSEjVSAM manuals. 

Use the TESTCB macro instruction to test the value of a certain field in an 
exit list. 

Chapter 12. VSAM Data Management Service Macros 445 



TESTeB 

Parameters 

The format of the TESTCB macro instruction is: 

EXLST 
Specifies the address of the exit list whose information you want to 
test. 

Since the same maximum length applies to every exit list, you can 
omit this parameter if you want to test the EXLLEN field. 

ERET 
Specifies the address of a routine that will receive control if the 
condition you want to test for cannot be tested. 

This routine will receive control if the TESTCB macro places a return 
code of 4 in register 15. Upon entry to this routine, register 0 contains 
further information describing the error. 

The ERET routine probably should issue an ABEND instruction, since 
a failure to carry out a test is probably the result of a program logic 
error. If the ERET routine allows the program to continue, then it 
must transfer control to the continuation point, though it must not 
return to VSAM. 

446 VM/SP GCS Command and Macro Reference 

------""- - "---------



f·· 

... -

i ( 

( 

o 

EODAD 
JRNAD 
LERAD 
SYNAD 

TESTeB 

Specifies the exit routine about which you are asking a YES/NO 
question. 

If you specify more than one operand following one of these 
parameters, each must equal the corresponding value in the exit list 
for you to receive an EQUAL CONDITION. 

The tests you can make are as follows: 

o 
Test whether an entry is provided for the specified type of exit 
routine. 

address 

A 

N 

L 

EXLLEN 

Specifies a certain address in virtual storage. 

If this parameter is specified by itself, it means test to see if this 
address is the address of the specified exit routine. Otherwise, it 
specifies the object address of the tests described below. 

Test to see if the exit routine at the address specified is active. 

Test to see if the exit routine. at the address specified is inactive. 

Test to see if the address specified is the address of an eight-byte 
field containing the name of the module containing the exit 
routine, rather than the entry point of the exit routine. 

Specifies one of two things: 

• If you do not also specify the EXLST parameter, then this 
parameter specifies the maximum length of an exit list. 

• If you do specify the EXLST parameter, then this parameter 
specifies the actual length of the exit list. 

Chapter 12. VSAM Data Management Service Macros 447 



TESTes 

Usage Notes 

• You can use the TESTCB instruction to test for only one attribute at a 
time. After the test, analyze the CONDITION CODE field of the PSW. 
It will indicate one of the following conditions: 

EQUAL TO 
GREATER THAN 
LESS THAN 

You can then proceed, based upon the condition. 

• Each time you issue the TESTCB instruction, you must provide the 
system with a 72-byte save area. Be certain that before you issue the 
instruction you place the address of this save area in register 13. 

• Be certain that you are familiar with the material covered in the entry 
titled "Using VSAM under GCS" on page 322. 

448 VM/SP GCS Command and Macro Reference 



TESTeB 

( Completion Codes, Return Codes and ABEND Codes 

( 

( 

c 

When this macro completes execution, it passes to the caller a completion 
code in register 15. 

Completion Meaning 
Code 

0 Function completed successfully. 

4 Function completed unsuccessfully. 

8 You attempted to use the execute form of this 
macro instruction to modify a keyword that is not 
in the parameter list. 

12 The TESTCB macro was not executed because an 
error occurred while a VSAM module was being 
loaded. 

When register 15 contains 4, then register 0 contains one of the following 
return codes. 

Return Meaning 
Code 

1 "The type of request was invalid. 

2 The block type was invalid. 

3 One of the keywords in the parameter list is invalid. 

4 The block at the address you specified was not of the 
type you indicated. 

16 You specified an invalid control block address in the 
EXLST parameter. 

ABEND Meaning 
Code 

03B An invalid address was found in a VSAM control block 
or a VSAM parameter list. This means that your 
program tried to use an address to which it has no 
access. 

Chapter 12. VSAM Data Management Service Macros 449 



TESTeB 

TESTCB 

Test a Certain Field in a Request Parameter List (RPL) 

All VSAM functions require that you set up a request parameter list (RPL) 
that describes the characteristics of your request. These VSAM functions 
are associated with the following macros: CHECK, ENDREQ, ERASE, 
GET, POINT, and PUT. If necessary, review the entry titled "CHECK" on 
page 346, "ENDREQ" on page 351, "ERASE" on page 354, "GET" on 
page 383, "POINT" on page 409, or "PUT" on page 412. 

This discussion of the TESTCB macro instruction deals only with those 
matters that involve GCS and is not intended to be an exhaustive 
instruction on this or any other VSE/VSAM topic. Presumably you are 
already familiar with VSE/VSAM through past experience and through 
study of the VSE/VSAM manuals. 

Use the TESTCB macro instruction to test a certain field in a request 
parameter list. 

450 VMjSP GCS Command and Macro Reference 

---- - -- ----- ---

,/' --'"" 

o 



( 
[label] TESTCB 

Parameters 

TESTes 

The format of the TESTCB macro instruction is: 

RPL=address[,ERET=address] 

RPL 

AIXFLAG=AIXPKP 
AIXPC=number 
FTNCD=number 
IO=COMPLETE 

OPTCD=( ,ADR 
,CNV 
,KEY 
,DIR 
.SEQ 
.SKP 
.ARD 
, LRD 
, FWD 
, BWD 
,ASY 
,SYN 
,NSP 
.NUP 
,UPD 
,KEQ 
.KGE 
• FKS 
.GEN 
,LOC 
.MVE ) 

ACB=address 
AREA=address 
AREALEN=number 
ARG=address 
ECB=address 
FDBK=number 
KEYLEN=number 
NXTRPL=address 
RBA=number 
RECLEN=number 
RPLLEN=number 

- -
~ ,~ 

--,-

Specifies the address of the RPL whose field you want to test. 

Since all RPLs are the same length, you can omit this parameter if 
you are testing the RPLLEN field. 

ERET 
Specifies the address of a routine that will receive control if the 
condition you want to test for cannot be tested. 

Chapter 12. VSAM Data Management Service Macros 451 



TESTeB 

This routine will receive control if the TESTCB macro places a return 
code of 4 in register 15. Upon entry to this routine, register 0 contains 
further information describing the error. 

The ERET routine probably should issue an ABEND instruction, since 
a failure to carry out a test probably is the result of a program logic 
error. If the ERET routine allows the program to continue, then it 
must transfer control to the continuation point, though it must not 
return to VSAM. 

AIXFLAG = AIXPKP 
Indicates whether the alternate index just processed contains prime 
key pointers. 

10 = COMPLETE 
Specifies that a test will be made to determine whether an 
asynchronous request is complete. 

Under GCS this test will always show that the request is not complete. 

OPTCD 
Indicates what option or combination of options will be tested for. 
Select from among the following: 

ADR 

CNV 

KEY 

DIR 

SEQ 

Indicates addressed access to a key-sequenced or entry-sequenced 
file. 

RBAs will be used as search arguments, and sequential access is 
by entry sequence. 

Indicates access will be to the entire contents of a control 
interval, rather than to an individual record. 

Indicates access to a key-sequenced or relative record file. 

Keys will be relative record numbers used as search arguments, 
and sequential access will be by key or relative record number. 

Indicates direct access to a key-sequenced, entry-sequenced, or 
relative record file. 

Indicates sequential access to a key-sequenced, entry-sequenced, 
or relative record file. 

452 VM/SP GCS Command and Macro Reference 

\ 



(~'." -. 

( 

( 

SKP 

ARD 

LRD 

TESTes 

Indicates skip-sequential access to a key-sequenced or relative 
record file. 

This is valid only with keyed access in a forward direction. 

Indicates that the user's argument determines the record to be 
located, retrieved, or stored. 

Indicates that the last record in the file will be located or 
retrieved. 

If you choose this parameter, then you must also choose the 
BWD parameter. 

FWD 
Indicates that processing is to proceed through the file in a 
forward direction. 

BWD 

ASY 

SYN 

NSP 

Indicates that processing is to proceed through the file in a 
backward direction for keyed, addressed, sequential, or direct 
access. 

This parameter is valid for POINT, GET, PUT, and ERASE 
operations. When you specify it, the KGE and GEN parameters 
are ignored, while the KEQ and FKS parameters are assumed, by 
default. 

Specifies that you want your file processed asynchronously. 

This means that when the request associated with the RPL you 
are creating is scheduled, control will return to your program so 
it can continue processing. Meanwhile, your request is being 
carried out. 

Remember that asynchronous processing is merely simulated by 
GCS. Disk 1/0 in GCS is always synchronous. 

Specifies that you want your file processed synchronously. 

This means that control will return to your program only after 
the request associated with the RPL you are creating has been 
carried out. 

Indicates that GCS is to remember the current position within 
the file for subsequent, sequential access. 

Chapter 12. VSAM Data Management Service Macros 453 



TESTes 

NUP 

UPD 

KEQ 

KGE 

FKS 

Only the ENDREQ macro instruction will cause the position to 
be forgotten. 

Indicates that any record retrieved will not be updated or 
deleted. Moreover, any record that is stored is a new record. 

On direct access requests, GCS does not remember the record's 
position. 

Indicates that any record retrieved can be updated or deleted. 

On direct and sequential requests, GCS will remember the 
record's position. 

Indicates that the key you provide as a search argument must 
equal the key or relative record number of the record. 

You can use this parameter only if you also select the 
OPTCD= (KEY,DIR) or OPTCD= (KEY,SKP) parameter. This 
parameter is assumed by default for an RRDS, except when you 
issue the POINT instruction. 

Indicates that if the key you specify as a search argument does 
not equal that of a certain record, then the request will affect the 
record with the next highest key. 

This parameter has the same restrictions and requirements as the 
KEQ parameter. For relative record processing, this parameter 
positions to the specified relative record, whether that slot is 
empty or not. If the relative record number is greater than the 
highest existing record, then the system returns the EOD. A 
subsequent PUT instruction will insert the record at this 
position. 

Indicates that you are providing a full key as a search argument. 

GEN 

LOC 

Indicates that you are providing a generic key as a search 
argument. 

If you select this parameter, then you must also specify the 
length of the generic key in the KEYLEN parameter. 

Indicates that during retrieval, the record will be put in the I/O 
buffer to be processed. 

454 VM/SP GCS Command and Macro Reference 

---- ------_._---

o 



{ 

( 

TESTes 

This parameter is not valid if you intend to invoke the PUT or 
ERASE instructions, though it is valid with the GET instruction. 
However, to update the record, you must build a new version of 
it in a work area. Then, modify the RPL from LOCATE MODE 
to MOVE MODE before you issue any PUT instruction. For 
keyed-sequential retrieval, modifying key fields in the I/O buffer 
may cause erroneous results in subsequent GET requests until 
the record is reread. 

MVE 
Indicates that, during retrieval, the record will be moved to a 
work area for processing. For storage, it will be moved from the 
work area to the I/O buffer. 

Select from among the following parameters for other conditions to test: 

ACB 
The address of the access method control block that relates the RPL to 
the file you are processing. 

AIXPC 
The number of alternate index pointers. 

AREA 
The address of the work area that your program uses to process the 
file records. Access to this file is defined by the RPL. 

AREALEN 

ARG 

ECB 

The length of the work area whose address is specified in the AREA 
field. 

If you are using search arguments to process your file, the address of 
the field containing that search argument. 

The address of the event control block associated with the RPL in 
question. It is in this ECB that the completion of the request 
associated with the RPL is posted. 

FDBK 
Specifies the return code from the request associated with this RPL. 

For asynchronous requests, you must issue the CHECK macro 
instruction to place the return code in this field. (If necessary, review 
the entry titled "CHECK" on page 346.) The significance of this 
return code depends upon the contents of register 15, which indicates 
whether the request was successful or unsuccessful because of logical 
or physical error. . 

Chapter 12. VSAM Data Management Service Macros 455 



TESTes 

Usage Notes 

FTNCD 
The code that describes the function in which a logical or physical 
error occurred. It indicates whether the upgrade set may have been 
modified incorrectly by the request. . 

KEYLEN 
If you are using a generic key as a search argument, the length of that 
argument. 

NXTRPL 

RBA 

The address of the next request parameter list in the chain, if one 
exists. 

The relative byte address of the most recently processed record in the 
file. 

RECLEN 
The length of the file record, access to which is defined by the request 
parameter list. 

RPLLEN 
The length, in bytes, of any request parameter list. 

• You can use the TESTCB instruction to test for only one attribute at a 
time. After the test, analyze the CONDITION CODE field of the PSW. 
It will indicate one of the following conditions: 

EQUAL TO 
GREATER THAN 
LESS THAN 

You can then proceed, based upon the condition. 

, , / 

• Each time you issue the TESTCB instruction, you must provide the ~. 
system with a 72-byte save area. Be certain that before you issue the 
instruction you place the address of this save area in register 13. 

• Be certain that you are familiar with the material covered in the entry 
titled "Using VSAM under GCS" on page 322. 

456 VM/SP GCS Command and Macro Reference 



TESTeB 

r Completion Codes, Return Codes and ABEND Codes 

f 

( 

( 

When this macro completes execution, it passes to the caller a completion 
code in register 15. 

Completion Meaning 
Code 

0 Function completed successfully. 

4 Function completed unsuccessfully. 

8 You attempted to use the execute form of this 
macro instruction to modify a keyword that is not 
in the parameter list. 

12 The TESTCB macro was not executed because an 
error occurred while a VSAM module was being 
loaded. 

When register 15 contains 4, then register 0 contains one of the following 
return codes. 

Return Meaning 
Code 

1 The type of request was invalid. 

2 The block type was invalid. 

3 One of the keywords in the parameter list is invalid. 

4 The block at the address you specified was not of the 
type you indicated. 

14 The MACRF and/or ATRB parameters contain 
incompatible options. 

16 You specified an invalid control block address in the 
RPL parameter. 

ABEND Meaning 
Code 

03B An invalid address was found in a VSAM control block 
or a VSAM parameter list. This means that your 
program tried to use an address to which it has no 
access. 

Chapter 12. VSAM Data Management Service Macros 457 



TESTeB 

;< .. 
i 
~ 

o 
458 VM/SP GCS Command and Macro Reference 



IUCVCOM .............................................. 460 
IUCVINI ................................................ 477 

t 

( 

Chapter 13. LUCY Service Macros 459 



IUCVCOM 

IUCVCOM 

Communicate within the IUCV Environment 

The Inter-User Communications Vehicle (IUCV) is a CP facility that allows 
a virtual machine to send information to or receive information from other 
virtual machines, a CP system service, or itself. 

Advanced Program-to-Program CommunicationjVM (APPC/VM) is an 
application program interface (API) for communicating between two virtual 
machines that is mappable to the SNA LU 6.2 APPC interface and is based / 
on lUCY functions. For more information on APPCjVM, see the VM/SP 
Transparent Services Access Facility Reference, (SC24-5287). 

By using the GCS lUCY support, communications can take place among 
several users operating within several tasks operating within several 
virtual machines. APPC/VM, used with the Transparent Services Access 
Facility (TSAF) virtual machine component, allows these communications 
to span several systems. 

When the word "user" appears, you should take it to mean any supervisor 
or problem program. 

Use the IUCVCOM macro instruction to coordinate communication among 
users within the lUCY and APPC/VM environment. 

This treatment of the IUCVCOM macro instruction assumes that you are 
already familiar with the section dealing with lUCY in the VM/SP System 
Facilities for Programming. For more information on lUCY, see "IUCVINI" 
on page 477. 

The IUCVCOM macro instruction is available in standard, list, list address, 
and execute formats. 

460 VM/SP GCS Command and Macro Reference 



[label] IUCVCOM 

(" 

Parameters 

IUCVCOM 

The standard format of the IUCVCOM macro instruction is: 

QUERy[,OPTION B] 
CONNECT,NAME=addr,PRMLIST=addr[,OPTION A][.OPTION B] 
ACCEPT,NAME=addr.PRMLIST=addr[.OPTION A][,OPTION B] 
SEVER.NAME=addr.PRMLIST=addr[,OPTION B][.OPTION C] 
QUIESCE.NAME=addr.PRMLIST=addr[,OPTION B][.OPTION C] 
RESUME.NAME=addr.PRMLIST=addr[,OPTION B][.OPTION C] 
SEND.NAME=addr,PRMLIST=addr[.OPTION B] 
RECEIVE,NAME=addr,PRMLIST=addr[,OPTION B] 
REPLY,NAME=addr,PRMLIST=addr[.OPTION B] 
REJECT,NAME=addr,PRMLIST=addr[,OPTION B] 
PURGE.NAME=addr,PRMLIST=addr[,OPTION B] 
REP ,NAME=addr ,OPTION E[,OPTION BJ [,OPTION C] [,OPTION 0] 

OPTION A: OPTION B: OPTION C: 
[EXIT=addr] [,UWORD=addr] ERROR=addr COD~:{ ~~~l ' ... 
OPTION D: 'OPTIONE: .. <' 

PATH=addr 
[

[EX IT =addr,.] UWORD=~ddr]: ' ,., 
EXIT=addr[,UWORO=addr] .•. . , 

QUERY 
Indicates that the user wants to know the size of the external 
interrupt buffer, and the maximum number of communication paths 
that can be established in the user's virtual machine. 

GCS returns the size, in bytes, of the external interrupt buffer in 
register o. It returns the maximum number of connections possible in 
register 1. 

A user can invoke the QUERY function without first having issued 
the IUCVINI SET instruction. 

CONNECT 
Indicates that the user requests a communication path be established 
between it and the party with whom the user is trying to 
communicate. 

The user must identify the party with whom it wishes to con:municate 
via the CP IUCV or APPC/VM parameter list. The user should place 
the virtual machine identifier of the particular machine or CP system 

Chapter 13. IUCV Service Macros 461 



IUCVCOM 

service it desires in the IPVMID field of the parameter list. Then, in 
the first eight bytes of the IPUSER field, it should identify the 
particular user it wishes to contact in that machine. 

Remember that all lUCY and APPCjVM users, including privileged 
ones, must use the IUCVCOM CONNECT instruction to establish an 
IUCVor APPCjVM path. 

ACCEPT 
Indicates that the user wants to complete the communication path 
initiated by another party trying to communicate with it. 

Remember that all lUCY and APPCjVM users, including privileged 
ones, must use the IUCVCOM ACCEPT instruction to complete an 
IUCVor APPCjVM path. 

SEVER 
Indicates that the user wishes to terminate communication over the 
path in question. 

The user cannot request that all paths into its virtual machine be 
severed by setting to 1 the IPALL bit in the CP lUCY or APPC/VM 
parameter list. 

However, if the user issues an IUCVCOM SEVER instruction 
specifying the CODE = ALL parameter, then GCS issues an lUCY 
SEVER instruction for each of the user's paths, (both the lUCY and 
the APPC/VM paths). This happens because CP allows both types of 
paths to be severed regardless of its state. 

If the user specifies CODE = ONE (or allows it to default), then only 
one specific path shall be severed. Which path it is must be specified 
in the CP lUCY or APPCjVM parameter list. 

Remember that all lUCY and APPCjVM users, including privileged 
ones, must use the IUCVCOM SEVER instruction to sever an lUCY or 
APPCjVM path. 

QUIESCE 
Indicates that, while the user does not want the path in question 
severed, it does not wish to accept any incoming messages over it at 
this time. Incoming communication over the path is temporarily 
suspended. 

The user cannot request that all paths into its virtual machine be 
quiesced by setting to 1 the IPALL bit in the CP lUCY parameter list. 

However, if the user issues an IUCVCOM QUIESCE instruction, 
specifying the CODE = ALL parameter, then GCS examines each of the 
user's paths to determine its current state. If a path is in a state in 
which CP permits a quiesce to take place, then the path is quiesced. 
Otherwise, it is not. For example, CP does not permit a path to be 

462 VM/SP GCS Command and Macro Reference 

( 
'---

,/ 



C" 

r 

( 

(" 

IUCVCOM 

quiesced if its owner has not completed a pending connection via an 
IUCVCOM ACCEPT instruction. 

If the user specifies CODE = ONE (or allows it to default) then only 
one specific path shall be quiesced. Which path it is must be specified 
in the CP IUCV parameter list. 

Although incoming communication on the path in question is 
temporarily suspended, the user may still use the path to communicate 
out. 

RESUME 
Indicates that the user wants a quiesced path restored to full use. 

The user cannot request that all paths into its virtual machine be 
resumed by setting to 1 the IP ALL bit in the CP IUCV parameter list. 

However, if the user issues an IUCVCOM RESUME instruction, 
specifying the CODE = ALL parameter, then GCS examines each of the 
user's paths to determine its current state. If a path is in a state in 
which CP permits this function to take place, then the path is 
resumed. Otherwise, it is not. For example, CP does not permit a 
path to resume if its owner has not completed a pending connection 
via an IUCVCOM ACCEPT instruction. 

If the user specifies CODE = ONE (or allows it to default) then only 
one specific path shall be resumed. Which path it is must be specified 
in the CP IUCV parameter list. 

SEND 
Causes the user's message to be sent to the party at the other end of 
the specified path. 

Presumably the party at the other end of the path has consented to 
communicate via the IUCVCOM ACCEPT instruction. 

RECEIVE 
Indicates that the user accepts the data that was passed via an IUCV 
or APPC/VM SEND function or via a connection parameter list 
extension on an APPC/VM path. 

In all likelihood, there are other paths into the virtual machine that 
are owned by other users. Therefore, the RECEIVE function requires 
that the user identify the path via the IPPATHID field in the CP 
IUCV or APPC/VM parameter list. 

REPLY 
Conveys the user's response to a message sent to it by another party 
via the SEND function. 

Chapter 13. lUCY Service Macros 463 



IUCVCOM 

REJECT 
Indicates that the user refuses to receive a specific message that some 
party sent to it via the SEND function. 

The path in question must be identified in the IPP ATHID field of the 
CP IUCV parameter list. Moreover, unless the user identifies the 
specific message it rejects, then the first message found on the path is 
rejected. The user can identify the message in question in the 
IPMSGID parameter of the CP IUCV parameter list. 

PURGE 

REP 

Indicates that the user wishes to terminate or cancel a specific 
message that it sent to another party. Whether the other party 
received the message or not, the message is cancelled. 

The path in question must be identified in the IPPATHID field of the 
CP IUCV parameter list. Moreover, unless the user identifies the 
specific message it wants to purge, then the first message found on the 
path is purged. The user can identify the message in question in the 
IPMSGID field of the CP IUCV parameter list. 

Indicates that the exit routine and/or the UWORD for the specified 
path (or all the user's paths that were set up under the current task) 
are to be changed. 

If only one specified path's exit routine and/or UWORD are to be 
changed, then the REP function must be requested from the same task 
that established the path in the first place. 

If you omit the CODE parameter (or specify CODE = ONE), then you 
can use the PATH parameter to identify the single path to be affected. 
If the user specifies CODE = ALL, then all the paths the user set up 
under the current task are affected. 

Remember, that the IUCVCOM REP instruction cannot be issued by a 
privileged user. 

EXIT 
Specifies the address of an exit routine that is to receive control when 
an lUCY external interrupt occurs on the path in question. 

If you omit this parameter from the CONNECT or ACCEPT function 
(or if you specify it as a register containing zero), then the exit routine 
you specified in the IUCVINI SET instruction becomes the exit 
routine associated with this path. 

When an external interrupt occurs involving an unauthorized user, 
the exit routine gains control in the same state and key as the user. 
Furthermore, the exit runs enabled for all interrupts. 

464 VM/SP GCS Command and Macro Reference 

\~ .. 

() 



c· 

( 

IUCVCOM 

Upon entry to the exit routine, the registers contain the following: 

Register 0 The UWORD. 

Register 1 Unpredictable. 

Register 2 The address of the external interrupt buffer. 

Registers 3 - 12 Unpredictable 

Register 13 The address of a user save area. 

Register 14 The address to which control must be 
returned once the exit routine completes 
execution. 

Register 15 The address of the exit routine. 

External interrupts can occur at any time after the IUCVINI or 
IUCVCOM macro completes execution. Sometimes they occur even 
before the user's program reaches its next executable statement. 
Therefore, a user must be ready to handle such interrupts whenever 
they occur. 

When an external interrupt occurs involving an authorized user, the 
exit routine gains control in supervisor state in key o. Furthermore, 
the exit routine is disabled and cannot issue any SVC calls. 

Chapter 13. lUCY Service Macros 465 



IUCVCOM 

Upon entry to the exit routine, the registers contain the following: 

Register 0 TheUWORD. 

Register 1 Unpredictable. 

Register 2 The address of the external interrupt buffer. 

Registers 3 - 12 Unpredictable 

Register 13 The address of the 72-byte register save 
area. 

Register 14 The address to which control must be 
returned once the exit routine completes 
execution. 

Register 15 The address of the exit routine. 

Upon return from the exit routine, register 15 must contain a return 
code of either 0 (normal completion) or 4 (error). (In the case of the 
latter, GCS will sever the path involved in the error.) Moreover, 
registers 0 through 14 must contain the same values they contained 
when the exit routine received control. 

You can write this parameter as an assembler program label or as 
register (2) through (12). If you write it as a label, then the address 
associated with that label must be the address of the exit routine. If 
you write it as a register, then the register must contain the address of 
the exit routine. 

UWORD 
Specifies a fullword that will be passed to the path's exit routine in 
register 0 whenever it receives control. 

This fullword can contain anything you wish. If you omit this 
parameter, then the UWORD specified in the IUCVINI SET 
instruction is passed. 

You can write this parameter as an assembler program label or as 
register (2) through (12). If you write it as a label, then the address 
corresponding to the label is passed as the UWORD. If you write it as 
a register, then the contents of that register are passed as the 
UWORD. 

PRMLIST 
Specifies the address of the CP IUCV or APPC/VM parameter list 
associated with the function the user wishes to perform. 

Remember that every function in the IUCVCOM instruction (except 
QUERY and REP) requires such a parameter list. You are expected to 
provide one yourself. The List Format of the IUCV and APPC/VM 
macro instruction is a convenient way to create it. 

466 VM/SP GCS Command and Macro Reference 



( 

IUCVCOM 

CODE 
Indicates the scope of the IUCVCOM function that the user wishes to 
perform. 

The IUCVCOM functions SEVER, QUIESCE, RESUME, and REP 
require that their scope either be confined to one specific path or 
allowed to affect all the user's paths. If you omit this parameter 
altogether, then GCS assumes CODE = ONE, by default. 

ALL 

NAME 

Indicates that the functio~l will affect all paths owned by the 
user. 

Indicates that the function will affect only one specific path.ll 

Specifies the address of the name by which the user is known within 
the IUCV or APPCjVM environment. 

This name corresponds exactly with the name the user declared for 
the user in the IUCVINI SET instruction. 

You can write this parameter as an assembler program label or as 
register (2) through (12). If you write it as a label, then this 
eight-character name must be stored at the address associated with 
that label. If you write it as a register, then the address of the name 
must be stored in the register. 

PATH 
Identifies the specific path that is to have its exit routine and/or 
UWORD changed via the REP function. 

The PATH parameter must never be included if CODE = ALL is 
specified. However, the PATH parameter must be included for the 
REP function if CODE = ONE is specified or allowed to default. 

You can write this parameter as an assembler program label or as 
register (2) through (12). If you write it as a label, then the halfword 
at the address associated with that label must contain the path 
identifier. If you write it as a register, then the register must contain 
the address of the halfword where the path id is stored. 

11 For the SEVER function, this path is the one specified in the CP lUCY or CP 
APPC/VM parameter list. For the QUlESCE and RESUME functions, this 
path is the one specified in the CP lUCY parameter list. For the REP 
function, this path is the one specified by the PATH parameter in the 
lUCVCOM instruction. 

Chapter 13. lUCY Service Macros 467 



IUCVCOM 

Usage Notes 

ERROR 
Specifies the address of an error routine that is to gain control if an 
error is found in the IUCVCOM macro. 

If you omit this parameter and an error occurs, then control returns to 
the instruction following the IUCVCOM instruction, just as it would 
were there no error. 

You can write this parameter as an assembler program label or as 
register (2) through (12). 

• A CP IUCV or CP APPC/VM parameter list must be created for each 
IUCVCOM function that requires the PRMLIST parameter. The 
VM/SP System Facilities for Programming can provide you with more 
information on this. 

• No user can issue the IUCVCOM macro instruction before it is 
admitted to the IUCV or APPC/VM environment via the IUCVINI SET 
instruction. The IUCVCOM QUERY function is the only exception to 
this. 

• To ensure that no user tries to perform an IUCV or APPC/VM function 
on a path that another user established, each path is associated with 
the name of the user that created it. For a user to issue the IUCVCOM 
instruction with the CONNECT or ACCEPT parameter specified is to 
establish a path and, thereby, ownership of it. For a user to attempt to 
process a function on a path that does not belong to it is an error. 

• For a function to be processed, the path it is to affect must be in the 
proper state. The following describes the possible path states. 

CONNECT ISSUED A user issued an IUCVCOM CONNECT 
instruction for a certain path. However, no 
CONNECT COMPLETE interrupt has yet 
occurred on that path. 

CONNECT PENDING This is the next logical progression from the 
CONNECT ISSUED state. The CONNECT 
PENDING interrupt has occurred on the 
path, though the path is not yet complete. 
The target user can issue two types of 
instructions: 

IUCVCOM RECEIVE if there was a 
connection parameter list extension 
specified by the CONNECT on a 
APPCjVM path. The user would remain 
in a CONNECT PENDING state. 

468 VMjSP GCS Command and Macro Reference 



() 

ACTIVE 

IUCVCOM 

IUCVCOM ACCEPT which would 
complete the path and the path would 
become ACTIVE. 

This is the next logical progression from the 
CONNECT PENDING state. The target user 
has issued the IUCVCOM ACCEPT 
instruction, causing a CONNECT 
COMPLETE interrupt on the path. The path 
is now complete and communication over it 
is now possible. 

QUIESCED One of the users using an ACTIVE path has 
issued the IUCVCOM QUIESCE instruction. 
Therefore, that user will not receive 
incoming communication over the path, 
though he can commuIlicate out. For 
APPC/VM, this path state is invalid. 

SEVER IN PROGRESS One of the users using an ACTIVE or 
QUIESCED path has issued the IUCVCOM 
SEVER instruction. No communication over 
the path is possible. The only logical or 
useful thing for the other user to do is to 
issue the same instruction to sever "his half 
of the path." 

INACTIVE 

For APPCjVM, this path state will not be 
monitored. 

This state describes a null path. That is, a 
path that does not exist. 

A SEND function cannot be processed if the path is in the CONNECT 
PENDING state. In a typical scenario, one user (the SOURCE) 
attempts to establish a connection with another user (the TARGET) via 
the IUCVCOM CONNECT instruction. This places the source user's 
"half' of the path in the CONNECT ISSUED state. When a CONNECT 
PENDING interrupt occurs on the target user's "half' of the path, it is 
placed in the CONNECT PENDING state. The target user then issues 
the IUCVCOM ACCEPT instruction, placing its half of the path in the 
ACTIVE state. When a CONNECT COMPLETE interrupt occurs on 
the source user's half of the path, it too is placed in the ACTIVE state. 
Communication between the two users is now possible. 

• If a user invokes the SEVER, QUIESCE, or RESUME function with 
CODE = ALL specified, then all paths associated with that user are 
affected. When the function terminates error-free, the parameter list 
associated with the function contains data .related to the last path it 
processed. If errors occur, then the data in the parameter list is 
associated with the path that was being processed when the last error 
occurred. 

Chapter 13. lUCY Service Macros 469 



IUCVCOM 

• As with other macros in GCS, the IUCVCOM macro passes return codes 
in register 15. Other diagnostic information is available in the 
lPRCODE field of the appropriate CP lUCY or APPCjVM parameter 
list. 

Return Codes and ABEND Codes 

When this macro completes processing, it passes to the caller a return code 
in register 15. 

Return Meaning 
Code 

000 Function completed successfully. 

002 An APPCjVM parameter list was passed as input to 
IUCVCOM, and the request function has completed 
immediately. The function complete information is 
contained in the parameter list. The user's path 
specific exit will not be driven because no interrupt is 
reflected to the virtual machine by CPo 

003 An APPCjVM SENDDATA or RECEIVE function was 
requested, and has completed immediately, but error 
information has been stored in the IPAUDIT field of 
the CP APPCjVM parameter list. The user's path 
specific exit will not be driven because no interrupt is 
. reflected to the virtual machine by CP. 

008 The user issued an IUCVCOM instruction before 
admitting itself to the IUCV or APPC/VM environment 
via the IUCVINI SET instruction. 

012 The user does not own the path in question. 

016 Either the NAME parameter was not specified or its 
address is zero. 

024 Either the PRMLIST parameter was not specified or its 
address is zero. 

028 The user cannot process the SEVER, QUIESCE, or 
RESUME function with the IP ALL bit of the CP IUCV 
or APPC/VM parameter list set to 1. 

032 The path identifier was not specified in the CP IUCV 
or APPCjVM parameter list. 

040 The function name the user specified was not 
recognizable by GCS. Choose CONNECT, ACCEPT, 
SEVER, QUERY, QUIESCE, RESUME, SEND, 
RECEIVE, REPLY, REJECT, PURGE, or REP. 

044 Invalid parameter list. 

4:70 VM/SP GCS Command and Macro Reference 

/ 
I 

~ 

\ / 

c 



IUCVCOM 

r Return Meaning 
Code 

048 The state of the path is inconsistent with the function 
the user requested. For example, the user may have 
issued an IUCVCOM SEND, RECEIVE, REPLY, 
REJECT, or PURGE instruction for a path before a 
CONNECTION COMPLETE interrupt occurred on it. 
Or, the user may have issued an IUCVCOM QUIESCE, 
RESUME, SEND, RECEIVE (where a connection 
parameter list extension is not specified in the 
CONNECT on an APPC/VM path), REPLY, REJECT, 
or PURGE instruction for a path that has been only 
partially completed. That is, a path upon which a 
PENDING CONNECT interrupt has occurred. In such 
a case, the user should issue an IUCVCOM ACCEPT 
or SEVER instruction instead. 

052 Either the task that issued the IUCVCOM REP 
instruction is not the same task that established the f 
path in question, or the IUCVCOM REP instruction 
was issued by a privileged user. 

056 Invalid APPC/VM parameter list. WAIT = YES can 
only be specified by privileged IUCV users. 

Note: Privileged users must issue the APPC/VM 
macro directly for synchronous SENDs and 
RECEIVEs. 

060 Invalid IUCV connect parameter list. 
CONTROL = YES can only be specified by the GCS 
supervisor. 

076 An APPC/VM parameter list is not allowed as input on 
an IUCV SEVER, CODE = ALL. 

204 An error occurred in obtaining storage to satisfy the 
IUCV request. 204 is the return code from the 
GETMAIN macro. 

lxxx An error occurred. 'xxx' is the value in the IPRCODE 
field in the IUCV parameter list that describes the 
error. Consult the section of the VM/SP System 
Facilities for Programming that defines the fields in the 
IUCV parameter lists. 

Note: If a RETURN CODE of 1000 is passed this 
corresponds to a CONDITION CODE of 2, which 
means "no message found", had the function been 
issued directly via IUCV. These functions are PURGE, 
RECEIVE, REJECT, and REPLY. 

c 
Chapter 13. IUCV Service Macros 471 



IUCVCOM 

ABEND Reason Meaning 
Code Code 

FCA 1101 A GETMAIN macro instruction failed when 
GCS tried to obtain storage on behalf of the 
task that terminated abnormally. 

C) 
472 VM/SP GCS Command and Macro Reference 

---- - - -- -- -- ---- --



IUCVCOM 

[~ The List Format 

c 

( 

( 

(~\ 

[label] IUCVCOM MF=L 

[,NAM£=labelJ[,PRMLIST=labe1J[,EXIT=1~bel][,UWORD=labe1J 

[.CODE= {~:~ 1] [.PATH=label] 

,QUERY 

,CONNECT[.EXIT=labelJ[,UWORD=label] 

,ACCEPT[,EXIT=label][.UWORD=label] 

· sEVEt COOE= {~:a ] 

.RESUMtCOOE= {~:a ] 

.SEND 

,RECEIVE 
,REPLY 
,REJECT 
,PURGE 

[OPTIONS] 

• REP[. EXIT=1 abel] [.UWORO= 1 abel] [.COOE= {~:~ 1] [.PATH= 1 abe l] 

C,NAME=l abel] 

OPTIONS: [.NAME=addr] [. PRMLIST=addr] 

This format of the macro instruction generates an in-line parameter list 
based on the parameter values that you specify. However, this format 
generates no executable code. Remt)mber that you cannot specify any of 
the parameters using register notation. Also, note that only the parameters 
listed above are valid in the list format of this instruction. 

Chapter 13. lUCY Service Macros 473 



IUCVCOM 

Added Parameter 

MF=L 
Specifies the list format of this macro instruction. 

The List Address Format 

. . 

MFi;:(L~~ddress[. labelJ) . . . ...... .......... ' ..... . 
. [.NAME~addr]c, PRMLIST;:addrJ [.EXlT;:addrJ hUWORD=a.ddr] . . tCODE= f~:~ n [. pAtH =a ddr] .. 

• QUERY 

"CONNECT[. EX l.T;:addrJ C. UWORD=addr] 

.ACCEPT[.EXIT=addrJ[~UWORD=addrJ 

>SEVER[, tODE= {:~~H 

,QUIESCE[', CODE=t,mu: 1] 
'.C .., ALLJ 

,RECEIVE 
•• REPLY 

" REaECT 
' .• PURGE·' 

.~ . 

[OPTIONS] . 

.. , REPe,Exlt •• ddrJ [,.UWORD=a dd r I I 'CODE~g~ ~ll [,PATH-aMr] 

.... . •. [.N~ME~addreSSJ·' .', ". . ...... . ... . 

I~rtAME~a(fQrj (.PRMList;"ai:ldr,'·· 

4 7 4 VM/SP GCS Command and Macro Reference 

./ . 

('."'\. ' <oj 



[ 

Added Parameter 

( 

( 

(~) 

IUCVCOM 

This format of the macro instruction does not produce any executable code 
that invokes the function. However, it does produce executable code that 
moves the parameter values that you specify into a certain parameter list. 
If you issue the instruction using this format, then you must do so before 
any related invocation of the instruction using the execute format. 

Note that only the parameters listed above are valid in the list address 
format of this instruction. 

MF = (L,address[,label]) 
ADDRESS specifies the address of the parameter list into which you 
want the parameter values the user mention placed. This address can 
be within your program or somewhere in free storage. 

LABEL is a user specified label, indicating that you want to determine 
the length of the parameter list. The macro expansion equates the 
label you specify with the length of the parameter list. 

Chapter 13. lUCY Service Macros 475 



IUCVCOM 

The Execute Format 

Added Parameter 

This format of the macro instruction generates code that executes the 
function using a parameter list whose address you specify. 

Note that only the parameters listed above are valid in the execute format 
of this instruction. 

MF = (E,address) 
ADDRESS specifies the address of the parameter list to be used by the 
macro. 

You can add or modify values in this parameter list by specifying them 
in this instruction. 

476 VMjSP GCS Command and Macro Reference 

() 



( 

(--~\ 

IUCVINI 

IUCVINI 

Establish or Terminate a Program as an IUCV User 

The Inter-User Communications Vehicle (IUCV) is a CP facility that allows 
a virtual machine to send information to or receive information from other 
virtual machines, a CP system service, or itself. 

Advanced Program-to-Program Communication/YM (APPC/VM) is an 
application program interface (API) for communicating between two virtual 
machines that is mappable to the SNA LU 6.2 APPC interface and is based 
on IUCV functions. For more information on APPC/yM, see the VMjSP 
Transparent Services Access Facility Reference, (SC24-5287). 

By using the GCS IUCV support, communications can take place among 
several users operating within several tasks operating within several 
virtual machines. APPCjVM, used with the Transparent Services Access 
Facility (TSAF) virtual machine component, allows these communications 
to span several systems. 

When the word "user" appears, it should be taken to mean any supervisor 
or problem program. 

Use the IUCVINI macro instruction either to admit a user to or withdraw a 
user from the IUCV and APPC/VM environment. 

This treatment of the IUCVINI macro instruction assumes that you are 
already familiar with the section dealing with IUCV in the VMjSP System 
Facilities for Programming. For more information on IUCV, see 
"IUCVCOM" on page 460. 

The IUCVINI macro instruction is available in standard, list, list address, 
and execute formats. 

Chapter 13. lUCY Service Macros 477 



IUCVINI 

Parameters 

The standard format of the IUCVINI macro instruction is: 

SET 
Indicates that you want the user admitted to the lUCY or APPC/VM 
environment. 

When you select this parameter, several things occur. First, an ID 
BLOCK is created for the user. This block contains the address of the 
user's general EXIT routine and the address of its general UWORD. 
Then, this block is associated with the NAME that identifies the 
lUCY user to GCS. (All these parameters are described below.) 
Finally, the user receives permission to establish ownership of the 
lUCY or APPC/VM paths over which it will send and receive 
information. 

The user must issue the IUCVINI SET instruction once before it 
attempts to send or receive information through the lUCY or 
APPC/VM facility. If the SET function completes successfully, then 
register 0 contains the number of possible lUCY and/or APPC/VM 
connections available to the user's virtual machine. 

Note that the SET function also provides the PRIV parameter. This 
parameter allows a task running in supervisor state to establish and 
terminate a path via the IUCVCOM instruction, but to communicate 
on that path using IUCV or APPC/VM directly, rather than using the 
GCS IUCV Support. If necessary, review the entry titled "IUCVCOM" 
on page 460. 

478 VM/SP GCS Command and Macro Reference 

/ 

C) 



() 

REP 

CLR 

IUCVINI 

Indicates that you want to change the address of the user's general 
exit routine and/or its UWORD as they are recorded in the ID 
BLOCK. 

This option is provided to allow the user to specify a new general exit 
routine and UWORD, depending upon the situation at the moment. 
The general exit routine and UWORD specify the manner in which the 
user responds to PENDING CONNECT interrupts (or all interrupts if 
the exit routine and UWORD are left to default on an ACCEPT or 
CONNECT function.) The REP function allows the user to change 
the manner of that response, whenever necessary. 

The IUCVINI REP instruction can be issued only by the task that 
issued the original IUCVINI SET instruction. This function does not 
affect those paths that are already using the previous general exit 
routine as the path specific exit. These paths are recorded in the 
PATH BLOCK. To alter these, the IUCVCOM REP instruction must 
be used. Remember, though, that IUCVINI REP can never be issued 
by a user who specified PRIV = YES on an IUCVINI SET instruction. 

Indicates that you want the user to be removed from the IUCV and/or 
APPC/VM environment. 

When you select this parameter, the ID BLOCK is released and the 
user's IUCV or APPC/VM paths are severed. 

NAME 
Specifies the address of the symbolic name by which the user shall be 
known within the IUCV or APPC/VM environment. If the user is 
connecting to *IDENT for resource identification, the NAME field 
must be equal to the resource name that is being identified. 

This name was declared when the IUCVINI SET instruction was 
issued for the user. From that time to the time the IUCVINI CLR 
instruction is issued, this name must be consistently used to identify 
the user to GCS IUCV or APPC/VM. 

The name must be eight characters long and can be any string of 
characters. 

You can write this parameter as an assembler program label or as 
register (2) through (12). If you write it as a label, then the name must 
be stored at the address associated with that label. If you write it as a 
register, then the register must contain the address of the name. 

EXIT 
Specifies the address of the user's general IUCV or APPC/VM exit 
routine. 

This general exit routine will receive control each time an IUCV or 
APPC/VM pending connect interrupt occurs on a path associated with 

Chapter 13. lUCY Service Macros 479 



IUCVINI 

this name. An IUCV or APPC/VM PENDING CONNECT interrupt 
occurs on a path when some other user issues a request to 
communicate with the user via the CONNECT function. CP then 
assigns the path to the user. The general exit routine is responsible 
for reacting to this request. 

This exit routine is also considered the routine that receives control 
by default when any external interrupt occurs on a path for which the 
user has not established a path specific exit. This can happen under 
two sets of circumstances: 

1. When a PENDING CONNECT interrupt had previously occurred 
on a path for which the user issued no IUCVCOM ACCEPT 
instruction. 

2. When no exit routine was specified on the IUCVCOM CONNECT 
or IUCVCOM ACCEPT instruction that established the path. 

When an external interrupt occurs involving an unprivileged user, the 
exit routine gains control in the same state and key as the user. 
Furthermore, the exit runs enabled for all interrupts. 

Upon entry to the exit routine, the registers contain th~ following: 

Register 0 TheUWORD. 

Register 1 Unpredictable. 

Register 2 The address of the external interrupt buffer. 

Registers 3 - 12 Unpredictable 

Register 13 The address of a user save area. 

Register 14 The address to which control must be returned 
once the exit routine completes execution. 

Register 15 The address of the exit routine. 

External interrupts can occur at any time after the IUCVINI or 
IUCVCOM macro completes execution. Sometimes they occur even 
before the user's program reaches its next executable statement. 
Therefore, a user must be ready to handle such interrupts whenever 
they occur. 

When an external interrupt occurs, involving a privileged user, the 
exit routine gains control in supervisor state, in key 0, and is disabled. 
The exit cannot issue any SVC calls. 

480 VMjSP GCS Command and Macro Reference 

/ 



( 

( ~" 

. / 

IUCVINI 

Upon entry to the exit routine, the registers contain the following: 

Register 0 The UWORD. 

Register 1 Unpredictable. 

Register 2 The address of the external interrupt buffer. 

Registers 3 - 12 Unpredictable 

Register 13 The address of the 72-byte register save area. 

Register 14 The address to which control must be returned 
once the exit routine completes execution. 

Register 15 The address of the exit routine. 

Upon return from the exit routine, register 15 must contain a return 
code of either 0 (normal completion) or 4 (error). (In the case of the 
latter, GCS will sever the path involved in the error.) Moreover, 
registers 0 through 14 must contain the same values they contained 
when the exit routine received control. 

You can write this parameter as an assembler program label or as 
register (2) through (12). If you write it as a label, then the exit 
routine must begin at the address associated with that label. If you 
write it as a register, then the register must contain the address of the 
exit routine. 

UWORD 
Specifies a fullword that will be passed to the general exit routine in 
register 0, whenever the routine gains control. This parameter also 
specifies the value to be assigned to the UWORD parameter by default 
if none is specified on an IUCVCOM CONNECT or ACCEPT 
instruction 

The UWORD can contain any type of information that you wish. But, 
if you omit this parameter, a value of zero is passed as the UWORD, 
by default. 

You can write this parameter as an assembler program label or as 
register (2) through (12). If you write it as a label, then t4e UWORD 
must be stored at the address associated with that label. If you write 
it as a register, then the contents of the register are passed as the 
UWORD. 

Chapter 13. IUCV Service Macros 481 



IUCVINI 

PRIV 
Indicates whether the user will be privileged or non-privileged. If you 
omit this parameter, then the user is considered non-privileged, by 
default. This parameter is valid only when the user issuing this 
instruction is in supervisor state. 

YES 

ERROR 

Indicates that the user will be non-privileged. 

This means that the user must use the GCS Support Macro 
Instructions for all IUCV and APPC/VM activities. 

Indicates that the user will be privileged. 

This means that the user has the authority to communicate over 
a path using IUCV or APPC/VM directly, rather than via the 
IUCVCOM instruction. However, the user must establish and 
terminate the path using the IUCVCOM instruction. This 
ensures a proper match between the GCS lUCY and APPC/VM 
path table and the CP IUCV and APPC/VM path table. 

Specifies the address of an error routine that is to gain control if an 
error is found in the IUCVINI macro. 

If you omit this parameter and an error occurs, then control passes to 
the instruction following the IUCVINI instruction, just as it would 
were there no error. 

You can write this parameter as an assembler program label or as 
register (2) through (12). If you write it as a label, then the error 
routine must begin at the address associated with that label. If you 
write it as a register, then the register must contain the address of the 
error routine. 

482 VM/SP GCS Command and Macro Reference 



IUCVINI 

f l Return Codes and ABEND Codes 

( 

When this macro completes processing, it passes to the caller a return code 
in register 15. 

Return Meaning 
Code 
000 Function completed successfully. 

004 This name is already being used by another lUCY or 
APPCjVM user. 

008 The lUCY or APPCjVM facility cannot be used unless 
the IUCVINI instruction, with the SET parameter 
specified, is issued first. 

016 Either the NAME parameter was not specified or its 
address was specified as zero. 

020 Either the EXIT parameter was not specified or its 
address was specified as zero. 

040 The function requested was unrecognizable by GCS. 
Specify SET, REP, or CLR. 

044 Invalid parameter list. 

052 Either the user did not issue the IUCVINI REP 
instruction from the same task that it issued the 
IUCVINI SET instruction, or the IUCVINI REP 
instruction was issued by a privileged user. 

204 An error occurred in obtaining storage to satisfy the 
lUCY or APPC/VM request. 204 is the return code 
from the GETMAIN macro. 

lxxx An error occurred while trying to sever all the user's 
communication paths. 'xxx' is the value in the 
IPRCODE field in the SEVER parameter list. Consult 
the section of the VM/SP System Facilities for 
Programming that defines the fields in the lUCY and 
APPCjVM parameter lists. 

ABEND Reason Meaning 
Code Code 
FCA 1101 A GETMAIN macro instruction failed when 

GCS tried to obtain storage on behalf of the 
task that terminated abnormally. 

Chapter 13. lUCY Service Macros 483 



IUCVINI 

The List Format 

Added Parameter 

This format of the macro instruction generates an in-line parameter list 
based on the parameter values that you <specify. However, this format 
generates no executable code. Remember that you cannot specify any of 
the parameters using register notation. Also, note that only the parameters 
listed above are valid in the list format of this instruction. 

MF=L 
Specifies the list format of this macro instruction. 

484 VM/SP GCS Command and Macro Reference 



r-

( 

-------------------- ---~~~- ---------

IUCVINI 

The List Address Format 

[label] IUCVINI 

Added Parameter 

MF=(L.address[.label]) 

[.NAME=addr][.EXIT=addr][.UWORD=addr] [.PRIV= {~~s } 1 
.SET[.NAME=addr][.EXIT=addr][.UWORD=addr] 

.REP[.NAME=addr] [.EXIT=addr] [.UWORD=addr] 

.CLR[.NAME=addr] 

This format of the macro instruction does not produce any executable code 
that invokes the function. However, it does produce executable code that 
mO'ves the parameter values that you specify into a certain parameter list. 
If you issue the instruction using this format, then you must do so before 
any related invocation of the instruction using the execute format. 

Note that only the parameters listed above are valid in the list address 
format of this instruction. 

MF = (L,address[,labelJ) 
ADDRESS specifies the address of the parameter list into which you 
want the parameter values you mention placed. This address can be 
within the user's program or somewhere in free storage. 

LABEL is a user specified label, indicating that the user want to 
determine the length of the parameter list. The macro expansion 
equates the label you specify with the length of the parameter list. 

Chapter 13. lUCY Service Macros 485 



IUCVINI 

The Execute Format 

Added Parameter 

This format of the macro instruction generates code that executes the. 
function using a parameter list whose address you specify. 

Note that only the parameters listed above are valid in the execute format 
of this instruction. 

MF = (E,address) 
ADDRESS specifies the address of the parameter list to be used by the 
macro. 

You can add or modify values in this parameter list by specifying them 
in this instruction. 

486 VM/SP GCS Command and Macro Reference 

/ 



f· 

AUTHUSER ............................................. 488 
CONFIG ................................................ 491 
CONTENTS ............................................. 496 
SEGMENT .............................................. 500 

f 

() 
Chapter 14. Build Macros 487 



AUTHUSER 

AUTHUSER 

Specify the Authorized Users in a Virtual Machine Group 

The GROUP CONFIGURATION FILE describes a GCS virtual machine 
group. This file is divided into three data blocks. 

The Configuration Block 

The Segment Block 

Defines the virtual machine group's 
configuration so that it conforms to the 
needs of your installation. Review the 
entry titled "CONFIG" on page 491. 

Identifies which saved segments will be 
automatically linked to each member of the 
group at IPL time. Review the entry titled 
"SEGMENT" on page 500. 

The Authorized User Block Identifies which members of the group are 
"authorized." That is, which members are 
permitted to perform authorized GCS 
functions. This book describes the macros 
associated with these functions in the 
section titled Chapter 8, "Authorized GCS 
Service Macros" on page 207. 

Use the AUTHUSER macro instruction to create an authorized user block 
for the GROUP CONFIGURATION FILE. 

The format of the AUTHUSER macro instruction is: 

1 
AUT .. H.· ....... U.S .. E. R ....... · .• ·.·1· {START .' ' .• '.'}'" .... . '. NAM. E:user.'d< ..••. , •. 

.END ..... . ......•. 

Parameters 

START 
Indicates that this AUTHUSER instruction marks the beginning of 
the authorized user block. 

The authorized user block must begin with an AUTHUSER 
instruction with this parameter specified. 

488 VMjSP GCS Command and Macro Reference 

/ 

C) 



Usage Notes 

( 

( 

( 

AUTHUSER 

NAME 

END 

Specifies the userid of the virtual machine that is to have authorized 
status. 

Indicates that this AUTHUSER instruction marks the end of the 
authorized user block. 

The authorized user block must end with an AUTHUSER instruction 
with this parameter specified. 

• Most installations will not explicitly use the CONFIG, SEGMENT, and 
AUTHUSER macro instructions to build the GROUP 
CONFIGURATION FILE. Those equipped with at least one full-screen 
display terminal can take advantage of GCS build panels. These data 
entry panels, invoked by the GROUP command, eliminate the need to 
build the file by explicitly coding these macros. When you invoke the 
GROUP command without the use of a full-screen terminal, your file 
will have to be built using the editor and coding the macro instructions 
manually. 

• The GROUP CONFIGURATION FILE adopts the system name as its 
filename. This name corresponds exactly with that specified in the 
SYSNAME parameter of the CONFIG instruction. The filetype of the 
GROUP CONFIGURATION FILE is always GROUP. 

• Remember that in using the CONFIG, SEGMENT, and AUTHUSER 
instructions you are creating blocks of information. Thus, all 
occurrences of the AUTHUSER instruction must be physically grouped 
together in the GROUP CONFIGURATION FILE. The same is true of 
the CONFIG and SEGMENT macro instructions. 

Chapter 14. Build Macros 489 



AUTHUSER 

Example ( 

AUTHUSER START 
AUTHUSER NAME=GSC455JX 
AUTHUSER NAME=NHGT78FC 
AUTHUSER NAME=KJGR99BV 
AUTHUSER NAME=KJGD03NJ 
AUTHUSER END 

This example illustrates the authorized user block of a GROUP 
CONFIGURATION FILE. 

The block begins with the AUTHUSER instruction with the START 
parameter specified. Four user ids are then specified, indicating that these 
virtual machines are to have authorized status. The authorized block is 
then concluded with an AUTHUSER instruction with the END parameter 
specified. 

Return Codes and ABEND Codes 

The AUTHUSER macro generates no return codes and no ABEND codes. 

490 VMjSP GCS Command and Macro Reference 

---------------------



( 

() 

CONFIG 

CON FIG 

Define the Configuration of a GCS System (Virtual Machine Group) 

The GROUP CONFIGURATION FILE describes a GCS virtual machine 
group. This file is divided into three data blocks. 

The Configuration Block Defines the virtual machine group's 
configuration so that it conforms to the 
needs of your installation. 

The Segment Block Identifies which saved segments will be 
automatically linked to each member of the 
group at IPL time. Review the entry titled 
"SEGMENT" on page 500. 

The Authorized User Block Identifies which members of the group are 
"authorized." That is, which members are 
permitted to perform authorized GCS 
functions. This book describes the macros 
associated with these functions in the 
section titled Chapter 8, "Authorized GCS 
Service Macros" on page 207. Also, review 
the entry titled "AUTHUSER" on page 488. 

Use the CONFIG macro instruction to define the configuration of your GCS 
virtual machine group. 

Chapter 14. Build Macros 491 



CONFIG 

Parameters 

The format of the CONFIG macro instruction is:12 

SYSNAME 
The name under which this system (group) will be saved. 

Every saved system, which is what a vii-tual machine group is, must 
have a system name. The name of a GCS virtual machine group must 
correspond exactly with the filename of the GROUP 
CONFIGURATION FILE associated with the group. Likewise, this 
name must correspond with the name of the saved system as entered 
in the system name table. 

You can write this as any string of alphameric characters, eight 
characters long or less. But, you must be careful not to select a name 
that could easily be mistaken by the system for a hexadecimal device 
address, such as C or 595. 

MAXVM 
Specifies the maximum number of virtual machines that can join the 
the group whose configuration is being defined. 

You can write this parameter as any number from 1 to 65535. 

RECVM 
Identifies which virtual machine in the group will be designated as the 
recovery virtual machine. 

It is the duty of the recovery virtual machine to perform various 
clean-up tasks on behalf of any virtual machine that is reset. A 
virtual machine that is "reset" is one that has logged-off, been 
re-IPLed, etc. "Clean-up" includes running any termination exit 
routines that the reset machine may have identified. 

12 Note that the default values listed are used when the GROUP file is 
assembled. They are not put in the GROUP CONFIGURATION file by the 
GROUP command. 

492 VM/SP GCS Command and Macro Reference 

,,-/ 

o 



( 

( 

- .. ----------~~----------

CON FIG 

The recovery machine must be the first machine to join the group. 
Otherwise, an error will occur and the system will be reset. 

Write this parameter as the userid of the recovery machine. 

SDISK 
Specifies the virtual address of the system disk (S-DISK) that all 
machines in the group will attempt to access. 

If you omit this parameter, the virtual address of the S-DISK will be 
595, by default. 

YDISK 
Specifies the virtual address of the Y-DISK that is an extension of the 
S-DISK and that all machines in the group will attempt to access. 

If you omit this parameter, the virtual address of the Y-DISK will be 
59E, by default. 

TABSIZE 
Specifies the size of the GCS trace table that the virtual machine 
group will use. 

The GCS supervisor records all supervisor events in this trace table. 
Moreover, users have the option to record user virtual machine events 
in the same table via the ITRACE command and GTRACE macro 
instruction. For more information on the ITRACE and GTRACE 
commands, see "GTRACE" on page 262 and "GCS Commands" on 
page 20. 

The size of the trace table is expressed in kilobytes. You can write 
this parameter as any number from 4 to 16384, the default is 16. 

DUMPVM 
Specifies the userid of the virtual machine that is to receive all dumps 
requested by any member of the group. 

It is strongly recommended that the userid specified by this parameter 
refer to an authorized user. Remember that dumps often contain 
fetch-protected, non-key-14 data. Only authorized users are permitted 
to handle such data. Therefore, it is wise to have an authorized user 
designated to handle all dumps so that all types of data can be 
included. 

Write this parameter as the userid of the virtual machine you wish to 
designate as the recipient of all dumps. 

Chapter 14. Build Macros 493 



CON FIG 

Usage Notes 

Example 

SYSID 
Specifies the text of the system identification. 

The system id is a message displayed to each user at IPL time. It can 
contain any information that the administrators of your system wish. 
You can write this parameter as any character string of up to 130 
characters long. Note that the character string must be surrounded 
by single quotation marks.l3 If you omit this parameter, then the text 
of the system id will be a blank line, by default. 

• Most installations will not explicitly use the CONFIG, SEGMENT, and 
AUTHUSER macro instructions to build the GROUP 
CONFIGURATION FILE. Those equipped with at least one full-screen 
display terminal can take advantage of GCS build panels. These data 
entry panels, invoked by the GROUP command, eliminate the need to 
build the file by explicitly coding these macros. However, without a 
full-screen terminal, your file will have to be built using the editor and 
coding the macro instructions manually. 

• The GROUP CONFIGURATION FILE adopts the system name (virtual 
machine group name) as its filename. Its file type is always GROUP. 

• Remember that in using the CONFIG, SEGMENT, and AUTHUSER 
instructions you are creating blocks of information. Thus, all 
occurrences of the CONFIG instruction must be physically grouped 
together in the GROUP CONFIGURATION FILE. The same is true of 
the AUTHUSER and SEGMENT macro instructions. 

CONFIG SYSNAM~=MAIN,MAXVM=5,RECVM=VM1,DUMPVM=VM1,SYSID='WELCOME!' 

The name of the system being described is MAIN. It is under this name 
that the system or virtual machine group is to be saved. No more than five 
virtual machines can join this group. The virtual machine, whose userid is 
VM1, is designated as both the recovery machine and the handler of all 
dumps. And, the word "WELCOME!" is to be displayed to each user at IPL 
time. 

13 If you must include imbedded single quotation marks (') or ampersands (&) 
within,the SYSID character string, then make certain you include two single 
quotation marks or two ampersands for everyone you intend. Also, be 
certain that there are no more than 126 of them. 

494 VM/SP GCS Command and Macro Reference 

( 

/ 

o 



CONFIG 

Return Codes and ABEND Codes 

The CONFIG macro generates no return codes and no ABEND codes. 

(. 

o 
Chapter 14. Build Macros 495 



CONTENTS 

CONTENTS 

Define the Entry Points in a Saved Segment 

Parameters 

For a saved segment to be usable, the various entry points it contains must 
be defined in a directory. This directory contains the name of each entry 
point in the saved segment mapped to its address. 

Use the CONTENTS macro instruction to create such a directory (also 
called a CONTENTS MODULE) for a saved segment. 

The format of the CONTENTS macro instruction is: 

START 
Indicates that this CONTENTS instruction marks the beginning of the 
CONTENTS MODULE. In addition, it marks the beginning of the 
saved segment itself. 

NAME 
Specifies the name that an external program can use to pass control to 
the entry point. 

This name is only resolved when the ATTACH, LINK, XCTL, or 
LOAD macro instruction or the OSRUN command is issued. For more 
information see "ATTACH" on page 67, "LINK" on page 133, "XCTL" 
on page 154, "LOAD" on page 140, or "GCS Commands" on page 20. 

This name can be the actual name of the entry point. Or, when the 
EP parameter is also specified, the name can be an alias. An alias is 
simply a second name that is associated with the real name of an 
entry point. 

This name must be one of two things: 

• The label on a CSECT assembler instruction. 

496 VM/SP GCS Command and Macro Reference 

( 



[ 

( 

( 
Usage Notes 

EP 

OL 

CONTENTS 

• The operand symbol in an ENTRY assembler instruction. 

Specifies the actual name of the entry point in the saved segment. 

If you specify the real name of the entry point in the NAME 
parameter, then the EP parameter is unnecessary. However, if you 
specify an alias for the entry point name in the NAME parameter, 
then the EP parameter must be specified with the real name of the 
entry point. 

Indicates whether the code at the entry point in question is only 
loadable. 

YES 
Indicates that the code is only loadable. That is, the code is not 
executable. An example of this would be a data area. 

Remember that the LOAD macro instruction is the only macro 
instruction that can be used on such code. Instructions like 
LINK, XCTL, and ATTACH do not work on code that is only 
loadable. 

Indicates that the code is not only loadable. That is, the code is 
executable. 

If the OL parameter is omitted, then the code is considered 
executable, by default. 

END 
Indicates that this CONTENTS instruction marks the end of the 
CONTENTS MODULE. What follows, then, is the first module in the 
saved segment. 

• Each saved segment must begin with a CONTENTS MODULE. The 
first example below illustrates the contents of such a module. 

• When the CONTENTS macros in the module are assembled, they 
expand to associate each entry point name specified with its address in 
the saved segment. 

• All entry point names in a particular saved segment must be unique. 
Moreover, GCS searches multiple CONTENTS MODULES for the first 
occurrence of a particular entry point name. Therefore, if more than 
one saved segment (each with its own CONTENTS MODULE) is linked 
to your virtual machine, then all entry point names in all the saved 
segments must be unique. 

Chapter 14. Build Macros 497 



CONTENTS 

Examples 

CONTENTS START 
CONTENTS NAME=PROG1,EP=PROGRAMA 
CONTENTS NAME=PROG2,EP=PROGRAMA 
CONTENTS NAME=PROG3,EP=PROGRAMA 
CONTENTS NAME=PROGRAMB 
CONTENTS NAME=PROGRAMC 
CONTENTS NAME=DATA,OL=YES 
CONTENTS END 

PROGRAMA CSECT 

PROGRAMB CSECT 

PROGRAMC CSECT 
ENTRY DATA 

DATA DC 

The code above represents a saved segment, consisting of a CONTENTS 
MODULE and four entry points. These entry points are named 
PROGRAMA, PROGRAMB, PROGRAMC, and DATA. 

The CONTENTS MODULE begins with the CONTENTS instruction with 
the START parameter specified. Then, the entry points are defined. 

Of particular interest is the fact that the second through fourth 
CONTENTS instructions have both the NAME and EP parameters 
specified. PROGl, PROG2, and PROG3 are defined as aliases for 
PROGRAMA. If an external program invokes any of these names, then 
control will pass to the code at the entry point named PROGRAMA. 

Note that neither of the entry points named PROGRAMB and PROGRAMC 
has an alias defined for it. So, to invoke either of these, an external 
program would have to use either the name PROGRAMB or PROGRAMC. 

Further, the entry point DATA is defined as containing code that is ONLY 
LOADABLE. 

Finally, the CONTENTS MODULE is concluded with a CONTENTS 
instruction with the END parameter specified. 

498 VM/SP GCS Command and Macro Reference 

/' ' 
( 

C) 



CONTENTS 

~ .. -' -

Return Codes and ABEND Codes 

The CONTENTS macro generates no return codes and no ABEND codes. 

( 

() 
Chapter 14. Build Macros 499 



SEGMENT 

SEGMENT 

Define which Saved Segments will be Linked to Each Member of a Virtual Machine 
Group 

The GROUP CONFIGURATION FILE describes a GCS virtual machine 
group. This file is divided into three data blocks. 

The Configuration Block 

The Segment Block 

Defines the virtual machine group's 
configuration so that it conforms to the 
needs of your installation. Review the 
entry titled "CONFIG" on page 491. 

Identifies which saved segments will be 
automatically linked to each member of the 
group at IPL time. 

The Authorized User Block Identifies which members of the group are 
"authorized;" That. is, which members are 
permitted to perform authorized GCS 
functions. This book describes the macros 
associated with these functions in the 
section titled Chapter 8, "Authorized GCS 
Service Macros" on page 207. Also, review 
the entry titled "AUTHUSER" on page 488. 

Use the SEGMENT macro instruction to create a segment block for the 
GROUP CONFIGURATION FILE. 

The format of the SEGMENT macro instruction is: 

500 VM/SP GCS Command and Macro Reference 

~~- .. _- _._-- ._- ----

( 
I 

/ 



Parameters 

r 
Usage Notes 

( 

------- -----

SEGMENT 

START 
Indicates that this SEGMENT instruction marks the beginning of the 
segment block. 

The segment block must begin with a SEGMENT instruction with this 
parameter specified. 

NAME 

END 

Specifies the name of a saved s~gment that is to be linked 
automatically to each member of the virtual machine group at IPL 
time. 

Indicates that this SEGMENT instruction marks the end of the 
segment block. 

The segment block must end with a SEGMENT instruction with this 
parameter specified. 

• Most installations will not explicitly use the CONFIG, SEGMENT, and 
AUTHUSER macro instructions to build the GROUP 
CONFIGURATION FILE. Those equipped with at least one full-screen 
.display terminal can take advantage of GCS build panels. These data 
entry panels, invoked by the GROUP command, eliminate the need to 
build the file by explicitly coding these macros. However, without a 
full-screen terminal, your file will have to be built using the editor and 
coding the macro instructions manually. 

• The GROUP CONFIGURATION FILE adopts the system name (virtual 
machine group name) as its filename. Its filetype is always GROUP. 

• Remember that in using the CONFIG, SEGMENT, and AUTHUSER 
instructions you are creating blocks of information. Thus, all 
occurrences of the SEGMENT instruction must be physically grouped 
together in the GROUP CONFIGURATION FILE. The same is true of 
the CONFIG and AUTHUSER macro instructions. 

Chapter 14. Build Macros 501 



SEGMENT 

E~ample 

SEGMENT 
SEGMENT 
SEGMENT 
SEGMENT 
SEGMENT 
SEGMENT 

START 
NAME=SS5 
NAME=SS8 
NAME=SSll 
NAME=SS17 
END 

This example illustrates the segment block portion of a GROUP 
CONFIGURATION FILE. 

The block begins with the SEGMENT instruction with the START 
parameter specified. The names of four saved segments, which are to be 
linked automatically to every virtual machine group member, are then 
specified. The segment block then concludes with a SEGMENT instruction 
with the END parameter specified. 

Return Codes and ABEND Codes 

The SEGMENT macro generates no return codes and no ABEND codes. 

502 VM/SP GCS Command and Macro Reference 

( " 
•.. ) 



CVT ................................................... 504 
FLS .................................................... 506 
GCSLEVEL .............................................. 508 

Chapter 15. Data Areas Macros 503 



CVT 

CVT 

Simulate the OS Communication Vector Table 

Parameters 

usage Notes 

When using VTAM under GCS, a communication vector table is required. 

Use the CVT macro instruction to simulate the communication vector table 
in your virtual machine group's common storage. 

The format of the CVT macro instruction is: 

The CVT macro instruction accepts no parameters. 

• 

• 

The simulated CVT is in common storage following the GCS supervisor 
code. Only certain CVT fields are required to support the interface 
between GCS and VTAM. 

Within each member of your virtual machine group, the address of the 
CVT resides at location X'lO'. 

504 VM/SP GCS Command and Macro Reference 

, 
\" 



(: 

(\ 

CVT 

• The following table illustrates the format of the CVT, as simulated by 
GCS. 

Address Field 
-8 (X'-8') RESERVED 
116 (X'74') CVTDCB 
120 (X'78') RESERVED 
256 (X'100') CVTCBSP 
260 (X'104') RESERVED 

328 (X'148') CVTEXT2 
332 (X'14C') RESERVED 
348 (X'15C') END 

• Bit 1 of the CVTDCB field contains 0 when under the GCS supervisor. 
Under CMS, it contains 1. 

• The CVTCBSP field contains the address of a control block that 
contains the addresses of the VSAMjVTAM manipulative macro 
routines. The address of this control block is loaded via code generated 
by the manipulative macros themselves. Thus, it is necessary to 
maintain its address for object level VSAM and VTAM API 
compatibility. 

• The CVTEXT2 field contains the address of the common extension. 
CVTEXT is used strictly by VT AM. 

Return Codes and ABEND Codes 

The CVT macro instruction generates no return codes and no ABEND 
codes. 

Chapter 15. Data Areas Macros 505 



FLS 

FL.S 

Gain Access to Certain Fields in Your Virtual Machine's Low Storage 

Parameters 

There are several fields within your virtual machine's low storage (page 0) 
to which you can gain access. 

Use the FLS macro instruction to gain access to these fields. 

The format of the FLS macro instruction is: 

The FLS macro instruction accepts no parameters. 

Usage Notes, 

• The FLS macro instruction gives you access to the following fields 
residing in page 0 of your virtual storage: 

FLSVTAM 

FLSVMID 

FLSLVL 

FLSSIGID 

FLSATID 

FLSATB 

A fullword made available to various application 
programs, such as VTAM. 

The userid associated with your virtual machine. 

A fullword that contains the release number and service 
level of your GCS system. If you wish, you can use the 
GCSLEVEL macro instruction to map this field. 
Review the entry titled "GCSLEVEL" on page 508. 

The signal services machine id used to communicate 
with CP signal services. This field is a halfword, stored 
in binary format. 

The task id of the active task. This field is a half word, 
$tored in binary format. 

The address of the active task block. 

506 VM/SP GCS Command and Macro Reference 

o 



( 

FLSPOST 

FLSCTB 

FLS 

The branch entry address for the POST macro. If 
necessary, review the entry titled "POST" on page 106. 

The address of the trace block. 

• The following table illustrates the format of the FLS fields: 

Address Field 
o (X'O') RESERVED 

512 (X'200') FLSVTAM 

516 (X'204') FLSVMID 

524 (X'20C') FLSLVL 

528 (X'21O') FLSSIGID FLSATID 

532 (X'214') FLSATB 

536 (X'218') FLSPOST 

540 (X'21C') FLSCTB 

544 (X'220') RESERVED 

552 (X'228') END 

Return Codes and ABEND Codes 

The FLS macro instruction generates no return codes and no ABEND 
codes. 

Chapter 15. Data Areas Macros 507 



GCSLEVEL 

GCSLEVEL 

Map the Contents of the FLSLVL Field Found in Your Virtual Machine's Low Storage 

Parameters 

Usage Notes 

There are several fields in the low storage of your virtual machine (page 0) 
to which you can gain access. For more information on gaining access to 
these fields see "FLS" on page 506. 

One of these fields-the FLSL VL field-accommodates the release number 
and service level of the GCS system you are using. 

Use the GCSLEVEL macro instruction to map the release number and 
service level of your GCS system from the FLSL VL field. 

The format of the GCSLEVEL macro instruction is: 

·················.·····1 . ... ...... ... . ...~: .. -

The GCSLEVEL macro instruction accepts no parameters. 

• The number of bytes for each subfield are in parentheses. The format of 
the FLSL VL field is: 

RESERVED RELEASE SERVICE 
FOR NUMBER LEVEL 
FUTURE (1) (2) 
USE (1) 

• The subfield containing the release number actually contains a code 
that represents the release number. In the case of GCS, the RELEASE 
NUMBER field contains 01 which stands for VM/SP RELEASE 4. 

• The SERVICE LEVEL information is a halfword, stored in binary 
format. 

508 VM/SP GCS Command and Macro Reference 



( 

GCSLEVEL 

Return Codes and ABEND Codes 

The GCSLEVEL macro instruction generates no return codes and no 
ABEND codes. 

Chapter 15. Data Areas Macros 509 



./ 

510 VMjSP GCS Command and Macro Reference 



I 

( 

Summary of Changes 

To obtain editions of the VM/SP Group Control System Macro Reference, 
SC24-5250, you must order using the pseudo-number assigned to the edition. For: 

Release 4, order STOO-1842. 

Summary of Changes for VM/SP Group Control System Command and Macro Reference 

Summary of Changes 
for SC24-5250-1 
for VM Release 5 

Transparent Services Access Facility (TSAF) 

Is a facility that lets users connect to and communicate with local or remote 
virtual machines within a group of systems. With TSAF, a user can connect 
to a program by specifying a name that the program has made known, instead 
of specifying a userid and nodeid. 

LOADALL and LOADCMD operands of the QUERY Command 

The LOADALL and LOADCMD operands have been added to the Query 
command to enhance the Query command. The LOAD ALL operand displays 
the entry point names and addresses for the entry points that have been 
loaded and currently reside in the virtual machine. The LOADCMD operand 
locates the entry point addresses for all entry points that are loaded by the 
LOADCMD command. 

Group Control System Commands 

This manual was updated to include the GCS Commands. 

Manual Organization 

The GCS Commands were moved from the VM/SP Group Control System 
Guide, SC24-5249 into Chapter 1 of this manual. 

The rest of the manual retained its order fr~m the previous release. 

Miscellaneous 

Minor technical and editorial changes have been made throughout this 
manual. 

Summary of Changes 511 



512 VM/SP GCS Command and Macro Reference 



( 

( 

Glossary of Terms and Abbreviations 

This section explains or defines the terms, 
acronyms, and abbreviations that appear in this 
manual. For a complete list of terms used in VM/SP 
refer to the VM/SP Library Guide, Glossary, and 
Master Index, GC19-6207. You may also want to 
refer to the IBM Vocabulary for Data Processing, 
Telecommunications, and Office Systems, GC20-1699. 

ABEND. Abnormal End - Termination of a task 
prior to its completion due to an error condition 
that cannot be resolved by recovery facilities while 
the task is executing. 

ACB. Access method Control Block - A control 
block that links an application program to VSAM or 
ACF/VTAM. 

ACF/VTAM. (1) See Advanced Communications 
Function/Virtual Telecommunications Access 
Method. (2) In this publication, it is synonymous 
with ACF/VTAM Version 3 for VM/SP, unless 
otherwise noted. 

ACF/SSP. (1) See Advanced Communications 
Function for the System Support Program. (2) In 
this publication, ACF/SSP refers to ACF/SSP 
Version 3 unless otherwise noted. 

Advanced Communications Function for the 
System Support Program. An IBM program 
product. ACF/SSP is a collection of utilities and 
small support programs for NCP, the Network 
Control Program. You must have ACF/SSP to use 
NCP. In this manual, ACF/SSP refers to ACF/SSP 
Version 3. 

Advanced Communications Function/Virtual 
Telecommunications Access Method. A 
program product that manages the exchange of data 
in a SNA network controlled by a VM/SP operating 
system. 

asynchronous operation. An operation, such as a 
request for session establishment or data transfer, 
in which the application program is allowed to 

continue execution which the operation is 
performed. 

authorized userid. A GCS userid that you've 
provided with access to the GCS supervisor, 
supervisor state, and (in some cases) certain 
restricted CP commands. You provide this access 
by including the userid on a list of authorized 
userids compiled with the GCS GROUP EXEC. The 
virtual machine associated with an authorized 
userid is an authorized machine, and programs 
running in that machine are authorized 
applications. 

CAW. Channel Address Word - An area in storage 
that specifies the location in main storage at which 
a channel program begins. 

CCS. Console Communications Service - A CP 
component which helps process information (that's 
ultimately heading to or from a SNA terminal 
screen) as it passes between CP and VSCS (VT AM 
SNA Console Support). This helps a SNA terminal 
serve as an operator's virtual console. 

CCW. Channel Command Word - A doubleword at 
the location in main storage specified by the CAW. 
One or more CCW s make up the channel program 
that directs data channel operations. 

channel program. One or more channel command 
words that control a specific sequence of data 
channel operations. Execution of the specific 
sequence is initiated by a single start I/O 
instruction. 

CSW. Channel Status Word - An area in storage 
that provides information about the termination of 
I/O operations. 

common dump receiver. One userid in a virtual 
machine group appointed to receive other group 
members' storage dumps. Unless you specify 
otherwise, all dumped information automatically 
goes to this userid (identified with the GCS GROUP 
EXEC). It should be an authorized userid in order 

Glossary of Terms and Abbreviations 513 



to receive fetch-protected data as well as storage 
with a key other than 14. 

common lock. A double word in storage, 
controlled by the GCS LOCKWD macro. When a 
program is using common storage, it can turn the 
common lock on. Other programs that examine the 
lock and find it on cannot gain access to common 
storage. 

common storage. A shared segment of reentrant 
code that contains free storage space, the GCS 
supervisor, control blocks, and data that all 
members of a virtual machine group share. 

DCSS. DisContiguous Shared Segment - A type of 
shared segment that is not specified with the 
GROUP EXEC nor ever loaded within the VMSIZE 
of virtual machines that IPL GCS. VSAM is an 
example of a DCSS. 

dispatcher. The program in an operating system 
that places jobs or tasks into execution. 

extended plist. This is an untokenized parameter 
list. It consists of four addresses that indicate the 
extended form of a command as it was entered at 
the terminal. 

fragmented page. A page becomes fragmented 
when pieces of non-contiguous storage within it are 
allocated. This causes non-contiguous storage of 
varying lengths to be available for allocation in the 
page. 

GCS. Group Control System - A component of 
VM/SP, consisting of a shared segment that you can 
IPL and run in a virtual machine. It provides 
simulated MVS services and unique supervisor 
services to help support a native SNA network. 

514 VM/SP GCS Command and Macro Reference 

GCS supervisor. Reentrant GCS code that resides 
in common storage. 

General 1/0. A set of I/O functions that allow a 
GCS program to control attached non-DASD 
devices. 

group configuration file. A file that is created by 
the GROUP EXEC and contains the "blueprint" for 
building your virtual machine group. The name of 
this file is systemname GROUP, where 
"systemname" is the name of your GCS saved 
system. 

GROUP EXEC. A GCS installation tool that 
prompts you for the specifications needed to build a 
GCS configuration file. 

guest operating system. A second operating 
system that runs on your primary operating system. 
An example of a guest operating system is VSE 
running on VM/SP to support VCNA. 

immediate command. A command which, when 
issued after an attention interruption, causes 
program execution, tracing, or terminal display to 
stop. Another immediate command may be issued to 
resume tracing or terminal display. Immediate 
commands are executed as soon as they are entered; 
they are not stacked in the console stack. 

interactive. Pertaining to an application in which 
each entry calls forth a response from a system or 
program, as in an inquiry system. An interactive 
system may also be conversational, implying a 
continuous dialog between the user and the system. 

IPCS. Interactive Program Control System - A 
component of VM/370 ~hat permits online problem 
management, interactive problem diagnosis, online 
debugging for disk resident dumps, problem tracking 
and problem reporting. 

IPL. Initial Program Load - The initialization 
procedure that causes an operating system to begin 
operation. 

...... -----~-.. ._--_.- -.-~ .. --.--.~---------------~-

c 

o 



( 

load map. A map containing the storage addresses 
of control sections and entry points of a program 
loaded into storage. 

local lock. A doubleword in storage, controlled by 
the LOCKWD macro. When it's "on," the program 
that acquired it has exclusive use of the virtual 
machine. 

locked page. In virtual storage systems, a page 
that is not to be paged out. 

multitasking. The act of providing services for 
many tasks that are active at the same time. 

native SNA network. A VM/SP network that 
operates according to the conventions of SNA 
(Systems Network Architecture) and functions as 
part of a VM/SP system without help from a guest 
operating system. 

NCCF. (1) See Network Communications Control 
Facility. (2) In this manual, NCCF refers to NCCF 
Version 2 Release 2 unless otherwise noted. 

Network Communications Control Facility 
(NCCF). An IBM program product. NCCF 
provides a base for IBM-supplied or customer-coded 
command processors. These command processors 
enable an operator to monitor, control, and improve 
the performance of an SNA network. NCCF is an 
VTAM application program. In this manual, NCCF 
refers to NCCF Version 2 Release 2 unless 
otherwise noted. 

Network Logical Data Manager. An IBM 
program product. NLDM collects and correlates 
LU-LU session-related data and provides users with 
online access to this data. It runs as an NCCF 
application program. In this manual, NLDM refers 
to NLDM Release 2. 

Network Problem Determination Application. 
An IBM program product. NPDA helps users 

identify network problems, working from a central 
control point. NPDA uses interactive display 
techniques to present information. NPDA runs as 
an application of NCCF. In this manual, NPDA 
refers to NPDA Version 3 Release 2. 

nibble. Half a byte, equivalent to four bits or one 
hexadecimal character. 

NLDM. (1) See Network Logical Data Manager. 
(2) In this manual, NLDM refers to NLDM Release 
2. 

NPDA. (1) See Network Problem Determination 
Aid. (2) In this manual, NPDA refers to NPDA 
Version 3 Release 2. 

NUCON. The nucleus constant area of GCS which 
is invoked via the CSINUCON macro. 

paging. A time sharing technique in which pages 
are transferred between main storage and auxiliary 
storage. 

parameter list. A string of 8-byte arguments that 
are used to call a command or function. The first 
argument must be the name of the command or 
function being called. General register 1 points to 
the beginning of the parameter list. 

path. In IUCV, a linkage for communications 
established between two users in the same or 
different virtual machines. 

primary option menu. The title of the first 
screen you see with the GROUP EXEC. This menu 
asks you to name your GCS system and then directs 
you to all the other GROUP EXEC screens. 

private storage. A combination of application 
code and GCS code that is available to only one 
particular virtual machine. No virtual machine can 
access or share another's private storage areas. 

PSW. Program Status Word - An area in storage 
used to indicate which instructions are executed, 
and to hold and indicate the status of the computer 
system. 

PSW key. Bits 8 through 11 in the program status 
word. 

Glossary of Terms and Abbreviations 515 



recovery machine. The first machine to join a 
virtual machine group. It has responsibility for 
executing routines that were set with the GCS 
MACHEXIT macro and cleaning up system 
resources when machines leave the group. 

reentrant. The attribute of a program or routine 
that allows the same copy of the program or routine 
to be used concurrently by two or more tasks. 

Remote Spooling Communication Subsystem 
Networking (RSCS). A program product for 
VM/SP, it is a special-purpose subsystem that sends 
and receives messages, files, commands, and jobs 
over a computer network. In this manual, RSCS 
refers to RSCS Version 2 unless otherwise noted. 

RSCS. (1) See Remote Spooling Communications 
Subsystem Networking. (2) In this publication, it is 
synonymous with Remote Spooling Communications 
Subsystem Networking Version 2, which enhances 
the previous version of RSCS to support native SNA 
communications. 

saved segment. The body of reentrant code that 
constitutes a saved system, a shared system, a 
shared segment; or discontiguous shared segment in 
storage. 

shared segment. A named, saved segment that 
can be shared by all members of a virtual machine 
group. This segment can be specified in the GROUP 
EXEC and linked automatically to machines when 
they IPL GCS. This segment can be loaded within 
the VMSIZE. 

SIE. An extension of the constant nucleus area 
(NUCON) 

STATE BLOCK CHAIN. A chain of State Blocks 
used by the system to keep track of a particular 
task's processing activity. Also called the Active 
Stack, the State Block on the top of the stack is the 
active State Block. When the activity of the active 
State Block is completed, the State Block is popped 
off the stack and the next State Block becomes 
active. 

supervisor services. Unique services provided by 
the GCS supervisor. 

516 VM/SP GCS Command and Macro Reference 

supervisor state. A state during which the 
central processing unit can execute I/O and other 
privileged instructions. 

synchronous operation. An operation that occurs 
predictably with respect to the occurrences of a 
specified event in another process. Control is not 
returned to the program until the operation is 
completed. 

task. A basic unit of work that is used for the 
execution of a program or a system function. 

task id table. A chain of 255 entry tables which 
identify all tasks within a virtual machine by ids. 
Each entry contains the task id and a pointer to the 
task block associated with the task. 

task load list. A chain of load blocks which 
represent programs which have been brought into 
storage for a task by a LOAD SVC. 

task-user. A routine, within a GCS task, that can 
be an IUCV user. 

tokenized plist. A parameter list in which each 
item in the list is truncated or padded to the right 
with blanks to fit into an 8 character token. 

unauthorized userid. A GCS userid that runs in 
problem state and does not have access to restricted 
CP commands. 

virtual machine group. One or more virtual 
machines that have IPLed the same GCS system. 

Virtual Telecommunications Access Method 
(VTAM). A program product that controls 
communication and the flow of data in a computer 
network. It provides single-domain, 
multiple-domain, and multiple-network capability. 
VTAM runs under OS/VS1, MVS, VSE, and VM/SP. 

vmsize. The high storage boundary of a virtual 
machine. 



( 

( 

( 

VSCS (VTAM SNA Console Support). A 
component of ACF/VTAM that lets SNA terminals 
function as virtual machine consoles. 

VTAM. (1) See Virtual Telecommunications 
Access Method. (2) In this publication, it is 
synonymous with ACFjVTAM, unless otherwise 
noted. 

Glossary of Terms and Abbreviations 517 



518 VMjSP GCS Command and Macro Reference 



f 
.} 

( 

Bibliography 

Here is a list of IBM books that can help you use your system. If you don't see 
the book you want in this list, you might want to check the IBM System/370, 30xx, 
and 4300 Processors Bibliography, GC20-0001. 

Prerequisite Publications 

IBM System/360 Principles of Operation, GA22-6821 

IBM System/370 Principles of Operation, GA22-7000 

Virtual Machine/System Product (VM/SP): 

CMS Command Reference, SC19-6209 
CMS Macros and Functions Reference, SC24-5284 
CMS User's Guide, SC19-6210 
CP Command Reference, SC19-6211 
System Product Editor Command and Macro Reference, SC24-5221 
System Product Editor User's Guide, SC24-5220 
System Product Interpreter Reference, SC24-5239 
System Product Interpreter User's Guide, SC24-5238 

Corequisite Publications 

Virtual Machine/System Product (VM/SP): 

CMS for System Programming, SC24-5286 
CP for System Programming, SC24-5285 
Data Areas and Control Block Logic Volume 1 (CP), LY24-5220 
Data Areas and Control Block Logic Volume 2 (CMS), LY24-5221 
Group Control System Diagnosis Reference, L Y24-5239 
Installation Guide, SC24-5237 
Library Guide, Glossary, and Master Index, SC19-6207 
Operator's Guide, SC19-6202 
Planning Guide and Reference, SC19-6201 
Problem Reporting Guide, SC24-5282 
System Logic and Problem Determination Guide Volume 1 (CP), LY20-0892 
System Logic and Problem Determination Guide Volume 2 (CMS), 
LY20-0893 
System Messages and Codes, SC19-6204 
System Messages Cross-Reference, SC24-5264 
Service Routines Program Logic, L Y20-0890 
Transparent Services Access Facility Reference, SC24-5287 

Bibliography 519 



VM/ SP Remote Spooling Communications Subsystem (RSCS) Networking 
Version 2: 

Diagnosis Reference, L Y24-5228 
General Information, SH24-5055 
Operation and Use, SH24-5058 
Planning and Installation, SH24-5057 
Program Reference and Operations Manual, SH24-5005 

Virtual Machine/System (VM/SP) Product Pass-Through Facility: 

Guide and Reference, SC24-5208 
Logic, L Y24-5208 

Virtual Machine (VM): 

Running Guest Operating Systems, GC19-6212 
System Facilities for Programming, SC24-5288 
CP Internal Trace Table (Poster), LX24-5202 
Problem Determination Reference Information, LX23-0347 
Diagnosis Guide, LY24-5241 

ACF/NCP V4, ACF/SSP V3 Diagnosis Guide, SC30-3255 

IBM Field Engineering Programming System: General Information, G229-2228 

IBM System/370 and 4300 Processor Bibliography, GC20-0001 

IBM Vocabulary for Data Processing, Telecommunications, and Office Systems, 
GC20-1699 

Using VSE/VSAM Commands and Macros, SC24-5144 

VSE/VSAM Programmer's Reference, SC24-5145 

VSE/VSAM Messages and Codes, SC24-5146 

Notes: 

• References in text to titles of publications are given in abbreviated form. 

• The VM/SP Library Guide, Glossary, and Master Index, GC19-6207 describes 
all the VM/SP books and contains an expanded glossary and master index to 
all the books in the VM/SP library. 

• The VM/SP HPO Library Guide, Glossary, and Master Index, GC23-0187 
describes all the VM/SP HPO books and contains an expanded glossary and 
master index to all the books in the VM/SP HPO library. 

520 VMjSP GCS Command and Macro Reference 

( 
I 

C) 

----~-~--



r 

( 

The VM/SP Library (Part 1 of 3) 

Evaluation 

General 
Information 

GC20-1838 

Planning 

Planning 
Guide and 
Reference 

SC19-6201 

Applications 

Application 
Development 
Guide 

SC24-5247 

Introduction 

GC19-6200 

Running 
Guest 
Operating 
Systems 

GC19-6212 

Programmer's 
Guide to the 
SRPI 
forVM/SP 

SC24-5291 

Release 5 
Guide 

SC24-5290 

Distributed 
Data 
Processing 
Guide 

SC24-5241 

Index 

Library 
Guide, 
Glossary, and 
Master Index 

GC19-6207 

Installation 

Installation 
Guide 

SC24-5237 

Operation 

Operator's 
Guide 

SC19-6202 

Reference Summaries To order all of the Reference Summaries, use order number SBOF-3242 

Commands 
(General User) 

SX20-4401 

CMS Primer 
Summary of 
Commands 

SX24-5151 

Commands 
(Other than 
General User) 

SX20-4402 

CMS Primer 
Line-Oriented 
Summary of 
Commands 

SX24-5159 

SP Editor 
Command 
Reference 
Summary 

SX24-5122 

Problem 
Reporting 
Summary 
(Poster) 

SX24-5171 

EXEC 2 Sys.Prod 
Reference Interpreter 
Summary Reference 

Summary 

SX24-5124 SX24-5126 

Summary of 
End Use 
Tasks and 
Commands 
(Poster) 

SX24-5173 

Bibliography 521 



The VM/SP Library (Part 2 of 3) ( 
I 

~-

End Use 

Terminal CMS CMS Primer CMS CMS CMS 
Reference Primer for Line- User's Command Macros and 

Oriented Guide Reference Functions 
Terminals Reference 

GC19-6206 SC24-5236 SC24-5242 SC19-6210 SC19-6209 SC24-5284 

System System System System EXEC 2 CP 
Product Product Product Product Reference Command 
Editor Editor Interpreter Interpreter Reference 
User's Guide Command and User's Guide Reference 

Macro / --
Reference 

SC24-5220 SC24-5221 SC24-5238 SC24-5239 SC24-5219 SC19-6211 

Quick 
Reference 

SX20-4400 

( 

Diagnosis 
'/ 

System System Service Problem VM GCS 
Messages Messages Routines Reporting Diagnosis Diagnosis 
and Codes Cross- Program Guide Guide Reference 

Reference Logic 

SC19-6204 SC24-5264 LY20-0890 SC24-5282 LY24-5241 LY24-5239 

'/ 

Problem Data Areas Problem Data Areas OLTSEP VM 
Determination and Control Determination and Control and Error Problem 
Vol. 1 (CP) Blocks Vol. 2 (CMS) Blocks Recording Determination 

Vol. 1 (CP) Vol. 2 (CMS) Guide Reference 
Information 

LY20-0892 LY24-5220 LY20-0893 LY24-5221 SC19-6205 LX23-0347 

VM 
CP Internal 
Trace Table 
(Poster) 

LX24-5202 

o 
522 VM/SP GCS Command and Macro Reference 



f 

( 

( .-."! 
/ 

The VM/SP Library (Part 3 of 3) 

Administration 
/' 

VM CP for CMS for 
System System System 
Facilities Programming Programming 
for 
Programming 

SC24-5288 SC24-5285 1/ 
SC24-5286 

Auxiliary Communication Support 
/' 

VTAM 
Installation 
and Resource 
Definition 

SC23-0111 

VTAM 
Programming 

SC23-0115 

RSCS 
Networking 
Version 2 
General 
Information 

GH24-5055 

VM/Pass-
Through 
Facility 
General 
Information 

GC24-5206 

VTAM 
Customization 

SC23-0112 

VTAM 
Diagnosis 
Guide 

SC23-0116 

RSCS 
Networking 
Version 2 
Planning and 
Installation 

SH24-5057 

VM/Pass-
Through 
Facility 
Guide and 
Reference 

SC24-520B 

VTAM 
Operation 

SC23-0113 

VTAM 
Diagnosis 
Reference 

LY30-5582 

RSCS 
Networking 
Version 2 
Operation 
and Use 

SH24-5058 

VM/Pass-
Through 
Facility 
Logic 

LY24-5208 

TSAF 
Reference 

SC24-5287 

VTAM 
Messages 
and Codes 

SC23-0114 

VTAM 
Data 
Areas (VM) 

LY30-5583 

RSCS 
Networking 
Version 2 
Diagnosis 
Reference 

LY24-5228 

1/ 

/' 

GCS 
Command 
and Macro 
Reference 

SC24-5250 

VTAM 
Reference 
Summary 

SC23-0135 

RSCS 
Networking 
Version 2 

Ref. Summary 

SX24-S135 

Bibliography 523 



524 VMjSP GCS Command and Macro Reference 



( 

( 

abbreviations 513 
ABEND macro 64 

completion code parameter 64 
description 64 
dump parameter 65 
step parameter 65 
system parameter 65 
user parameter 65 

ACB macro (VSAM) 338 
bufnd parameter 342 
bufni parameter 342 
bufsp parameter 342 
ddname parameter 343 
description 338 
exIst parameter 343 
macrf parameter 339 
marea parameter 344 
mIen parameter 344 
passwd parameter 344 
strno parameter 344 

ACCESS command 21 
cuu operand 21 
description 21 
ext operand 21 
fn ft fm operand 21 
mode operand 21 

ACF/VTAM Version 3 
See VT AM (Virtual Telecommunications Access 

Method) 
ATTACH macro 67 

de parameter 68 
description 67 
dpmod parameter 69 
ecb parameter 69 
ep parameter 67 
eploc parameter 68 
etxr parameter 69 
execute format 76 
jstcb parameter 71 
list format 75 
mf parameter 76 
param parameter 68 
sf parameter 75, 76 
shspl parameter 71 
shspv parameter 71 
sm parameter 71 
szero parameter 70 
vI parameter 69 

AUTHCALL macro 182 
description 182 
ep parameter 182 
eploc parameter 182 
uword parameter 183 

AUTHNAME macro 208 
clr parameter 209 
description 208 
ep parameter 208 
error parameter 209 
execute format 214 
list address format 213 
list format 212 
mf parameter 212, 213, 214 
name parameter 209 
set parameter 208 
uword parameter 209 

AUTHUSER macro 488 
description 488 
end parameter 489 
name parameter 488 
start parameter 488 

base register 10 
bibliography 519 
BLDL macro 118 

description 118 
list address parameter 118 
o parameter 118 

CALL macro 122 
description 122 
entry point name parameter 122 
execute format 126 
id parameter 123 
list format 125 
mf parameter 125, 126 
parameter address parameter 122 
vI parameter 123 

canceling a timer 168 
CCS (Console Communication Service) 6 
chaining save areas 12 
changes, summary of 511 

Index 

Index 525 



CHAP macro 77 
description 77 
priority parameter 77 
s parameter 78 
task id parameter 78 

CHECK macro (BSAM) 274 
decb address parameter 274 
description 274 

CHECK macro (VSAM) 346 
description 346 
rpl parameter 346 

CLOSE macro 
execute format 279 
list format 278 

CLOSE macro (BSAM/QSAM) 276 
dcb address parameter 276 
description 276 
mf address parameter 278, 279 

CLOSE macro (VSAM) 348 
acb address parameter 348 
description 348 
type parameter 348 

CMDSI macro 185 
command name parameter 186 
description 185 
error parameter 187 
execute format 191 
fileblk parameter 186 
length parameter 186 
list address format 190 
list format 189 
mf parameter 189, 190, 191 

CMS (Conversational Monitor System) 
defining 33 
load libraries, defining 41 
used with SNA 5 

command format in GCS 20 
commands in GCS 

ACCESS 20 
DLBL 22 
ETRACE 28 
FILEDEF 32 
GDUMP 36 
GLOBAL 40 
HX 41 
ITRACE 42 
LOADCMD 45 
OSRUN 50 
QUERY 51 
RELEASE 57 
REPLY 58 
SET 60 

commands, stopping 42 
completion code 

system 64 
user 64 

CONFIG macro 491 
description 491 
dumpvm parameter 493 
maxvm parameter 492 

526 VM/SP GCS Command and Macro Reference 

recvm parameter 492 
sdisk parameter 493 
sysid parameter 494 
sysname parameter 492 
tabsize parameter 493 
ydisk parameter 493 

Console Communication Service (CCS) 6 
content of a save area 11 
CONTENTS macro 496 

description 496 
end parameter 497 
ep parameter 497 
name parameter 496 
01 parameter 497 
start parameter 496 

control 
conventions for passing 13 
conventions for receiving 13 

conventions 
for passing control 13 
for receiving control 13 

conventions for formatting macros 15 
conventions for passing and receiving control 13 
Conversational Monitor System (CMS) 

defining 33 
load libraries, defining 41 
used with SNA 5 

CVT macro 504 
description 504 

data path through VT AM machine 8 
DCB macro (BSAM/QSAM) 280 

blksize parameter 282 
ddname parameter 282 
description 280 
dsorgparameter 282 
eodad parameter 282 
exIst parameter 283 
lrec1 parameter 283 
macrf parameter 284 
optcd parameter 285 
recfm parameter 285 
synad parameter 285 

DCBD macro (BSAM/QSAM) 290 
description 290 
dsorg parameter 290 

defining 
CMS files 33 
CMS load libraries 41 
commands 46 
spool files 33 
VSAM files 23 

definition of GCS 2 
definition of terms 513 
DELETE macro 127 



:( 

G 

de parameter 128 
description 127 
ep parameter 127 
eploc parameter 127 
related parameter 128 

DEQ macro 80 
description 80 
execute format 85 
list format 84 
mf parameter 84, 85 
qname address parameter 80 
related parameter 82 
ret parameter 81 
rname address parameter 81 
mame length parameter 81 

DETACH macro 86 
description 86 
task id address parameter 86 

disable 
external tracing 29 
tracing of GTRACE events 43 

disk, releasing 58 
DLBL command 23 

? operand 24 
bufsp operand 27 
cat operand 26 
change operand 25 
clear operand 24 
ddname operand 23 
description 23 
dsn operand 24 
mode operand 24 
IIiult operand 25 
nochange operand 25 
perm operand 25 
qual operand 24 
vsam operand 25 

dumping virtual machine storage 37 

ENDREQ macro (VSAM) 351 
description 351 
rpl parameter 351 

ENQ macro 88 
description 88 
e parameter 89 
execute format 95 
list format 94 
mf parameter 94, 95 
qname address parameter 88 
related parameter 90 
ret parameter 89 
mame address parameter 88 
mame length parameter 89 
s parameter 89 

ERASE macro (VSAM) 354 

description 354 
rpl parameter 354 

establishing a base register 10 
EST AE macro 96 

asynch parameter 97 
ct parameter 96 
description 96 
execute format 103 
exit address parameter 96 
list format 102 
mf parameter 102, 103 
ov parameter 97 
param parameter 97 
xctl parameter 97 

ETRACE command 29 
all operand 30 
description 29 
dsp operand 29 
end operand 30 
ext operand 29 
fre operand 29 
get operand 29 
group operand 30 
gtrace operand 30 
I/O operand 30 
off operand 30 
prg operand 30 
sio operand 30 
sss operand 30 
svc operand 30 
syn operand 30 

EXECCOMM macro 192 
description 192 
reqlist parameter 192 

execute format 323 
EXLST macro (VSAM) 356 

a parameter 357 
address parameter 357 
description 356 
eodad parameter 357 
jrnad parameter 357 
I parameter 357 
lerad parameter 357 
n parameter 357 
synad parameter 357 

external tracing 29 

file 
CMS, defining 33 
VSAM, defining 23 

FILEDEF command 33 
blksize operand 35 
block operand 35 
change operand 34 
clear operand 34 

Index 527 



ddname operand 33 
description 33 
disk operand 34 
disp mod operand 36 
dsorg ps operand 36 
dummy operand 34 
Irec1 operand 35 
nochange operand 34 
perm operand 34 
punch operand 34 
reader operand 34 
recfm operand 35 

FLS macro 506 
description 506 

formatting conventions for macros 15 
FREEMAIN macro 244 

a parameter 245 
description 244 
e parameter 244 
eu parameter 244 
execute format 250 
list format 249 
Iv parameter 245 
mf parameter 249, 250 
r parameter 244 
rc parameter 244 
ru parameter 244 
sp parameter 245 
v parameter 244 
vu parameter 244 

GCS (Group Control System) 2 
at a glance 3 
defined 2 
specific purpose 2 

GCS (Group Control System) commands 20 
ACCESS 21 
DLBL 23 
ETRACE 28, 29 
FILDEF 32 
FILEDEF 33 
GDUMP 36,37 
GLOBAL 40, 41 
halting 42 
HX 41,42 
ITRACE 42, 43 
LOADCMD 45, 46 
OSRUN 50,51 
QUERY 51,52 
RELEASE 57,58 
REPLY 58,59 
SET 60,61 

GCS command format 20 
GCS definition 2 
GCS immediate commands 20 

528 VMjSP GCS Command and Macro Reference 

GCS introduction 2 
GCS macro instruction formats 14 
GCSLEVEL macro 508 

description 508 
GDUMP command 37 

description 37 
dss operand 38 
format operand 39 
hexloe operand 37 
to operand 38 

GENCB macro (VSAM) 361 
a parameter 371 
acb parameter 376 
address parameter 371 
am parameter 362, 371 
area parameter 376 
arealen parameter 376 
argparameter 376 
blk parameter 362, 371, 376 
bufnd parameter 365 
bufni parameter 365 
bufsp parameter 365 
copies parameter 368, 371, 380 
ddname parameter 366 
description 361 
ecb parameter 377 
eodad parameter 371 
exIst parameter 367 
generate an ACB at execution time 361 
generate an exit list at execution time 370 
generate an RPL at execution time 374 
jrnad parameter 371 
keylen parameter 377 
I parameter 371 
length parameter 368, 372, 380 
lerad parameter 371 
maerf parameter 362 
marea parameter 367 
mIen parameter 367 
nparameter 371 
nxtrpl parameter 377 
opted parameter 377 
passwd parameter 367 
reclen parameter 380 
strno parameter 368 
synad parameter 371 
warea parameter 368, 372, 380 

GENCB macro instruction 326 
GENCB operand notation 324 
generate format 324 
GENIO macro 194 

ccw parameter 197 
char parameter 195 
close parameter 195 
data parameter 196 
description 194 
dev parameter 197 
error parameter 197 
execute format 205 

( 
~. 

/~, 

o 



{ 

(~, 

exit parameter 194 
halt parameter 197 
list address format 204 
list format 203 
mf parameter 203, 204, 205 
modify parameter 196 
open parameter 194 
start parameter 196 
startr parameter 196 
uword parameter 195 

GET macro (QSAM) 292 
area address parameter 292 
dcb address parameter 292 
description 292 

GET macro (VSAM) 383 
description 383 
rpl parameter 383 

GETMAIN macro 251 
a parameter 253 
bndry parameter 255 
description 251 
ec parameter 252 
eu parameter 252 
execute format 259 
la parameter 253 
list format 258 
Iv parameter 253 
mf parameter 258, 259 
r parameter 252 
rc parameter 251 
ru parameter 251 
sp parameter 253 
vc parameter 252 
vu parameter 252 

GLOBAL command 41 
description 41 
loadlib operand 41 

glossary 513 
Glossary of Terms and Abbreviations 513 
Group Control System (GCS) 2 

at a glance 3 
defined 2 
specific purpose 2 

GTRACE macro 262 
data parameter 262 
description 262 
execute format 266 
fid parameter 263 
id parameter 262 
list format 265 
lng parameter 262 
mf parameter 265, 266 

halting commands and programs 42 
HX (Halt Execution) immediate command 42 

description 42 

IDENTIFY macro 130 
description 130 
entry parameter 131 
ep parameter 130 
eploc parameter 130 

IHASDW A macro 104 
description 104 
dsect parameter 104 

immediate commands in GCS 20 
initializing CMS from a SNA terminal 5 
Inter-User Communications Vehicle (IUCV) 

defined 7 
interface 

GCS (Group Control System) 2 
shared VT AM 8 

introduction to GCS 2 
ITRACE command 43 

all operand 43 
description 43 
end operand 44 
group operand 44 
gtrace operand 43 
off operand 44 
sup operand 43 

IUCV (Inter-User Communications Vehicle) 
defined 7 

IUCVCOM macro 460 
accept parameter 462 
code parameter 467 
connect parameter 461 
description 460 
error parameter 467 
execute format 476 
exit parameter 464 
list address format 474 
list format 473 
mf parameter 474, 475, 476 
name parameter 467 
path parameter 467 
prmlist parameter 466 
purge parameter 464 
query parameter 461 
quiesce parameter 462 
receive parameter 463 
reject parameter 463 
rep parameter 464 
reply parameter 463 

Index 529 



resume parameter 463 
send parameter 463 
sever parameter 462 
uword parameter 466 

IUCVINI macro 477 
clr parameter 479 
description 477 
error parameter 482 
execute format 486 
exit parameter 479 
list address format 485 
list format 484 
mf parameter 484, 485, 486 
name parameter 479 
priv parameter 481 
rep parameter 478 
set parameter 478 
uword parameter 481 

LINK macro 133 
de parameter 134 
description 133 
ep parameter 133 
eploc parameter 134 
execute format 139 
id parameter 134 
list format 138 
mf parameter 139 
param parameter 134 
sf parameter 138, 139 
vI parameter 134 

linkage registers 10 
list address format 323 
list format 323 
LOAD macro 140 

de parameter 141 
description 140 
ep parameter 140 
eploc parameter 141 
related parameter 141 

LOADCMD command 46 
description 46 

loading modules 46 
LOCKWD macro 215 

acquire parameter 215 
description 215 
lock parameter 215 
release parameter 215 
test parameter 215 

530 VMjSP (}CS Command and Macro Reference 

MACHEXIT macro 219 
elr parameter 220 
description 219 
ep parameter 220 
error parameter 221 
execute format 225 
list address format 224 
list format 223 
mf parameter 223, 224, 225 
name parameter 220 
set parameter 220 
uword parameter 220 

macro formatting conventions 15 
macro instruction formats 

execute format 14 
list address format 14 
list format 14 
standard format 14 

macro instruction formats in GCS 14 
macros 

ABEND 63 
ACB 337 
ATTACH 66 
AUTHCALL 181 
AUTHNAME 207 
AUTHUSER 487 
BLDL 117 
CALL 121 
CHAP 76 
CHECK 273, 345 
CLOSE 275,347 
CMDSI 184 
CONFIG 490 
CONTENTS 495 
CVT 503 
DCB 279 
DCBD 289 
DELETE 126 
DEQ 79 
DETACH 85 
ENDREQ 350 
ENQ 87 
ERASE 353 
ESTAE 95 
EXECCOM 191 
EXLST 355 
FLS 505 
FREEMAIN 243 
GCSLEVEL 507 
GENCB 360 
GENIO 193 
GET 291,382 
GETMAIN 250 
GTRACE 261 
IDENTIFY 129 
IHASDWA 103 

! 
("'---

o 



c 

( 

C: 

IUCVCOM 459 
IUCVINI 476 
LINK 132 
LOAD 139 
LOCKWD 214 
MACHEXIT 218 
MODCB 384 
NOTE 293 
OPEN 295, 405 
PGLOCK 225 
PGULOCK 227 
POINT 300, 408 
POST 105 
PUT 303,411 
READ 305 
RETURN 143 
RPL 413 
SAVE 145 
SCHEDEX 229 
SDUMP 266 
SEGMENT 499 
SETRP 109 
SHOWCB 419 
STIMER 161 
SYNADAF 310 
SYNADRLS 313 
SYNCH 148 
T ASKEXIT 232 
TESTCB 434 
TIME 165 
TTIMER 167 
VALIDATE 239 
WAIT 113 
WRITE 315 
WTO 171 
WTOR 175 
XCTL 153 

messages, replying to 59 
MODCB macro (VSAM) 385 

a parameter 395 
acb parameter 386,400 
address parameter 395 
area parameter 400 
arealen parameter 400 
arg parameter 400 
bufnd parameter 389 
bufni parameter 389 
bufsp parameter 389 
ddname parameter 390 
description 385 
ecb parameter 401 
eodad parameter 395 
exIst parameter 391, 395 
jrnad parameter 395 
key len parameter 401 
I parameter 395 

----------------------------

lerad parameter 395 
macrf parameter 386 
marea parameter 391 
mIen parameter 391 
modify an exit list at execution time 394 
modify certain fields in an ACB 385 
modify certain fields in an RPL 398 
n parameter 395 
nxtrpl parameter 401 
optcd parameter 401 
passwd parameter 391 
reclen parameter 404 
rpl parameter 400 
strno parameter 391 
synad parameter 395 

MODCB macro instruction 328 
MODCB operand notation 324 

native SNA 
See SNA (Systems Network Architecture) 
See Systems Network Architecture (SNA) 

nonreenterable program save areas 12 
NOTE macro (BSAM) 294 

dcb address parameter 294 
description 294 

OPEN macro 
execute format 300 
list format 299 

OPEN macro (BSAM/QSAM) 296 
dcb address parameter 296 
description 296 
input parameter 296 
mf parameter 299, 300 
output parameter 296 
updat parameter 296 

OPEN macro (VSAM) 406 
acb address parameter 406 
description 406 

operand notation for GENCB 324 
operand notation for MODCB 324 
operand notation for SHOWCB 324 
operand notation for TESTCB 324 
OSRUN command 51 

description 51 
member operand 51 
parm operand 51 

Index 531 



parameter list 47 
passing control 13 
path between SNA console and virtual machine 6 
PGLOCK macro 226 

description 226 
reg parameter 226 

PGULOCK macro 228 
description 228 
reg parameter 228 

POINT macro (BSAM) 301 
block address parameter 302 
dcb address parameter 301 
description 301 

POINT macro (VSAM) 409 
description 409 
rpl parameter 409 

POST macro 106 
completion code parameter 106 
description 106 
ecb address parameter 106 
related parameter 106 

programs 
starting 51 
stopping 42 

providing a save area 11 
purpose of GCS in VM/SP 2 
PUT macro (QSAM) 304 

area address parameter 304 
dcb address parameter 304 
description 304 

PUT macro (VSAM) 412 
description 412 
rpl parameter 412 

QUERY command 52 
description 52 
disk operand 52 
dlbloperand 55 
etrace operand 56 
filedef operand 53 
group operand 56 
itrace operand 56 
loadall operand 57 
loadcmd operand 57 
loadlib operand 54 
lock operand 56 
reply operand 56 
search operand 54 

532 VM/SP GCS Command and Macro Reference 

READ macro 
execute format 310 
list format 309 

READ macro (BSAM) 306 
area address parameter 301 
dcb address parameter 306 
decb address parameter 306 
description 306 
length parameter 307 
mf parameter 309, 310 
s parameter 307 
sf parameter 306 

receiving control 13 
reenterable program save areas 12 
register 15 

return code 0 332 
return code 12 337 
return code 8 333 

register, base 10 
registers, linkage 10 
RELEASE command 58 

description 58 
det operand 58 

releasing disks 58 
REPLY command 59 

description 59 
replying to messages 59 
requesting information 52 
RETURN macro 144 

description 144 
rc parameter 145 
reg parameter 144 
t parameter 144 

RPL macro (VSAM) 414 
acb parameter 416 
area parameter 416 
arealen parameter 416 
arg parameter 416 
description 414 
ecb parameter 417 
keylen parameter 417 
nxtrpl parameter 417 
optcd parameter 417 
rec1en parameter 419 

save areas 11 
nonreenterable program 12 
reenterable program 12 

SAVE macro 146 
description 146 
id name parameter 147 



( 

reg parameter 146 
t parameter 146 

scenario of GCS in VM/SP 5-9 
SCHEDEX macro 230 

description 230 
exit parameter 230 
id parameter 230 
uword parameter 231 

SDUMP macro 267 
description 267 
execute format 271 
hdr parameter 267 
hdrad parameter 267 
list format 270 
list parameter 268 
mf parameter 270, 271 
storage parameter 268 

SEGMENT macro 500 
description 500 
end parameter 501 
name parameter 501 
start parameter 501 

SET command 61 
description 61 
gcsbam operand 61 
gcsvsam operand 61 
sysname operand 61 

SETRP macro 110 
compcod parameter 111 
description 110 
dump parameter 111 
rc parameter 112 
regs parameter 111 
system parameter 111 
user parameter 111 
wkarea parameter 111 

shared VT AM 8 
SHOWCB macro (VSAM) 420 

acb parameter 421 
area parameter 421, 427, 432 
description 420 
display the fields of an ACB 420 
display the fields of an exit list 427 
display the fields of an RPL 431 
exIst parameter 427 
fields parameter 422, 428, 432 
length parameter 421, 428, 432 
object parameter 422 
rpl parameter 432 

SHOWCB macro instruction 329 
SHOWCB operand notation 324 
SNA (Systems Network Architecture) 2 

logging on at a SNA terminal 5 
network control unit 8 
path between terminal and virtual machine 6 
with GCS 2 

spool, defining 33 
starting programs 51 
STIMER macro 162 

bintvl parameter 162 

description 162 
dintvl parameter 163 
exit routine parameter 162 
real parameter 162 
tod parameter 163 
wait parameter 162 

stopping 
commands 42 
programs 42 

structure of a save area 11 
summary of changes 511 
SYNADAF macro (BSAM/QSAM) 311 

acsmeth parameter 312 
description 311 
parm parameter 312 

SYNADRLS macro (BSAM/QSAM) 314 
description 314 

SYNCH macro 149 
description 149 
entry point parameter 149 
execute format 153 
list format 152 
mf parameter 152, 153 
restore parameter 149 
state parameter 150 

SYSNAMES table 61 
system completion code 64 
Systems Network Architecture 

See? 
See SNA (Systems Network Architecture) 

Systems Network Architecture (SNA) 2 
logging on at a SNA terminal 5 
network control unit 8 
path between terminal and virtual machine 6 
with GCS 2 

T ASKEXIT macro 233 
c1r parameter 233 
description 233 
ep parameter 234 
error parameter 234 
execute format 239 
list address format 238 
list format 237 
mf parameter 237,238,239 
name parameter 234 
set parameter 233 
uword parameter 234 

terms 513 
TESTCB (VSAM) 435 

acb parameter 437, 455 
aixflag parameter 452 
aixpc parameter 455 
area parameter 455 
arealen parameter 455 

Index 533 



arg parameter 455 
atrbparameter 437 
description 435 
ecb parameter 455 
eodad parameter 446 
eret parameter 437,446,451 
exllen parameter 447 
exIst parameter 446 
fdbk parameter 455 
ftncd parameter 455 
io parameter 452 
jrnad parameter 446 
keylen parameter 456 
lerad parameter 446 
macrf parameter 438 
nxtrpl parameter 456 
object parameter 437 
optcd parameter 452 
rba parameter 456 
reclen parameter 456 
rpl parameter 451 
rpllen parameter 456 
synad parameter 446 
test a certain field in an ACB 435 
test a certain field in an exit list 445 
test a certain field in an RPL 450 

TESTCB macro instruction 330 
TESTCB operand notation 324 
TIME macro 166 

bin parameter 166 
dec parameter 166 
description 166 

tracing 
external tracing 29 
tracing of GTRACE events 43 

TTIMER macro 168 
cancel parameter 168 
description 168 

user completion code 64 

VALIDATE macro 240 
addr parameter 240 
description 240 
key parameter 240 
length parameter 241 

Virtual Telecommunications Access Method 
(VTAM) 

running in a group machine 7 
running on GCS 8 

VSAM under GCS 322 

534 VM/SP GCS Command and Macro Reference 

VSCS (VTAM SNA Console Support) 
running with VTAM 8 
sending information to VTAM 8 

VTAM (Virtual Telecommunications Access 
Method) 

running in a group plachine 7 
running on GCS ' 8' 

VT AM SNA Console Support 
See VSCS (VTAM SNA Console Support) 

WAIT macro 114 
description 114 
ecb parameter 114 
ecblist parameter 114 
number of events parameter 114 
related parameter 115 

WRITE macro 
execute format 320 
list format 319 

WRITE macro (BSAM) 316 
area address parameter 317 
dcb address parameter 316 
decb name parameter 316 
description 316 
length parameter 317 
mf parameter 319, 320 
s parameter 317 
sf parameter 316 

WTO macro 172 
description 172 
execute format 175 
list format 174 
mfparameter 174,175 

WTOR macro 176 
description 176 
ecb parameter 177 
execute format 179 
list format 178 
mf parameter 178, 179 
reply address parameter 176 
reply length parameter 176 

XCTL macro 154 
de parameter 155 
description 154 
ep parameter 155 
eploc parameter 155 
execute format 160 
list format 159 
mf parameter 160 

/ 



( 

param parameter 160 
reg parameter 154 

sf parameter 159,( 160 
vI parameter 160 

Index 535 



~ 
I 

I 
.1 

'I 

I 

International Business 
Machines Corporation 
P.O. Boxe 
Endicott, New York 13760 

File No. S37014311O-30 
Printed in U.S.A. 

SC24-5250-1 

_-..._ ..... -_ ...... -- -- ----- ---.. -- -.. ---- - - ---------
-~-,-

® 



( 

c 

VM/SP Group Control System 
Command and Macro Reference 
Order No. SC24-5250-1 

Is there anything you especially like or dislike about this book? Feel free to 
comment on specific errors or omissions, accuracy, organization, or 
completeness of this book. 

If you use this form to comment on the online HELP facility, please copy the 
top line of the HELP screen. 

READER'S 
COMMENT 
FORM 

___ Help Information line __ of __ 

IBM may use or distribute whatever information you supply in any way it believes appropriate without 
incurring any obligation to you, and all such information will be considered nonconfidential. 

Note: Do not use this form to report system problems or to request copies of publications. Instead, 
contact your IBM representative or the IBM branch office serving you. 

Would you like a reply? _YES _NO 

Please print your name, company name, and address: 

IBM Branch Office serving you: 

Thank you for your cooperation. You can either mail this form directly to us or give this 
form to an IBM representative who will forward it to us. 



SC24-5250-1 

Reader's Comment Form 

Fold and tape Please Do Not Staple 

BUSINESS REPLY MAIL 
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NY 

POSTAGE WILL BE PAID BY ADDRESSEE: 

--------:: === :S::i:::i= ';'= 

INTERNATIONAL BUSINESS MACHINES CORPORATION 
DEPARTMENT G60 
PO BOX 6 
ENDICOTT NY 13760-9987 

Fold and tape 

~~~= - -. '- ---- ~ .-...-.. --.... ---- -- --- .... 
=--.....=~= ®

111111 illllllllllllllllllll.I'II.I •• IIII.I"IIIIII.1

Please Do Not Staple

CUT
OR

FOLD
ALONG

LINE

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

SC24-5250-01

