

(

(

---.... ---:: '= =---= - - - -----------,-

Contains Restricted Materials of IBM
Licensed Materials - Property of IBM
© Copyright IBM Corp. 1980,1986

Virtual Machine/
System Product

System Logic and
Problem Determination
Guide Volume 2 (eMS)

Release 5

L Y20-0893-4

Fifth Edition· (December 1986)

Restricted Materials of IBM

Licensed Materials - Property of IBM

This edition, L Y20·0893·4, is a major revision of L Y20·0893·3 and applies to Release
5 of the Virtual Machine/System Product (VM/SP), Program Number 5664·167, and
to all subsequent releases and modifications until otherwise indicated in new
editions or Technical Newsletters. Changes are made periodically to the
information herein; before using this publication in connection with the operation
ofIBM systems, consult the latest IBM System/370, 3Oxx, and 4300 Processors
Bibliography, GC20-OOO1, for the editions that are applicable and current.

Summary of Changes

For a list of changes, see page 299.

Changes or additions to the text and illustrations are indicated by a vertical line
to the left of the change.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM
licensed program in this publication is not intended to state or
imply thatonly IBM's licensed program may be used. Any
functionally equivalent program may be used instead.

Ordering Publications

Publications are not stocked at the address given below; requests for copies of IBM
publications should be made to your IBM representative or to the IBM branch
office serving your locality.

A form for readers' comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to IBM Corporation,
Information Development, Dept. G60, P.O. Box 6, Endicott, NY, U.S.A. 13760. IBM
may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1980, 1981, 1982, 1983,
1984,1986

\

/
r

\ ;/

(

(

(

(

Restricted Materials of IBM

Licensed Materials - Property of IBM

Preface

This manual provides the IBM system hardware and software support
personnel with the information needed to analyze problems that may occur
on the IBM Virtual Machine/System Product (VM/SP) when used in
conjunction with VM/370 Release 6.

How This Manual is Organized

This manual is one of two volumes:

• Volume 1. VM/SP Control Program (CP)
• Volume 2. VM/SP Conversation Monitor System (CMS).

Each volume contains logic descriptions for the designated components of
VM/SP. Each of these volumes is divided into four parts: Introduction,
Method of Operation, Directory, and Diagnostic Aids.

The method of operation and program organization part contains the
functions and relationships of the program routines in VM/SP. They
indicate the program operation and organization in a general way to serve
as a guide in understanding VM/SP. They are not meant to be a detailed
analysis of VM/SP programming and cannot be used as such.

The directory contains a table of the eMS modules and their entry points.

The diagnostic aids part contains additional information useful for
determining the cause of a problem.

Appendix A, located in Volume 2, contains a description of the CMS macro
library.

Appendix B, also located in Volume 2, describes the CMS/DOS macro
library.

Appendix C, also located in Volume 2, describes CMS/DOS support modules.

Information on the Remote Spooling Communication Subsystem
Networking (RSCS), Version 2 is contained in the:

IBM VM/SP Remote Spooling Subsystem Networking, Version 2:
Diagnosis Reference, L Y24-522S.

L Y20-0893-4 I[) Copyright IBM Corp. 1980, 1986 Preface 111

Restricted Materials of IBM

Licensed Materials - Property of IBM

The control blocks supportive of the RSCS Logic are contained in:

VM/SP Data Areas and Control Block Logic Volume 2 (CMS),
LY24-5221.

How to Use this Manual

• Isolate the component of VM/370 in which the problem occurred.

• Use the list of restrictions in VM/SP System Messages and Codes to be
certain that the operation that was being performed was valid.

• Use the directories, VM/SP Data Areas and Control Block Logic
Volume 1 (CP), and VM/SP Data Areas and Control Block Logic Volume
2 (CMS) to help you to isolate the problem.

• Use the method of operation and program organization part, if
necessary, to understand the operation that was being performed.

IV System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

i

" /

;1 ".

\, .~/

Restricted Materials of IBM

Licensed Materials - Property of IBM

(

Contents

Part 1: Introduction to eMS ...•.........••..... 1

Chapter 1. Conversational Monitor System (CMS)•.... 3
The CMS Command Language 3

(
The File System .. 4
Program Development .. 8

Chapter 2. Interrupt Handling in CMS ...•.•.....•..•....•. 11
SVC Interruptions ... 11

Internal Linkage SVCs 11
Other SVCs ... 12

Input/Output Interruptions 12
Terminal Interruptions 13
Reader/Punch/Printer Interruptions 14
User-Controlled Device Interruptions 14
Program Interruptions 15
External Interruptions 15
Machine Check Interruptions 15

Chapter 3. Functional Information •....••.....••••••...•• 17
Register Usage .. 17
Structure of CMS Storage 18
Structure of DMSNUC 23

USERSECT (User Area) 23
DEVTAB (Device Table) 23

CMS Interface for Display Terminals 24

Chapter 4. OS Simulation Under CMS •••..••.•............ 27
as Data Management Simulation 27

Handling Files that Reside on CMS Disks 27
Handling Files that Reside on as or DOS Disks 28

as Macro Simulation 28
as Macros ... 30

Access Method Support 38
BDAM Restrictions 41
Reading as Data Sets and DOS Files Using as Macros 42

CMS QSAM Tape End-of-Volume Exit 46
TEOVEXIT Macro 46
Restrictions ... 50
Return Codes ... 51
Successful Completion 52

Chapter 5. VSE Support Under CMS ••••..•..•••.•••.••••• 53

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Contents V

Restricted Materials of IBM

Licensed Materials - Property of IBM

eMS Support for as and VSE VSAM Functions ... " ""."",,"... 54 ~",
Hardware Devices Supported 54 ~ .. ./

Part 2: Method of Operation and Program
Organization 57

Chapter 6. CMS Virtual Machine Initialization 65
Initialization: Loading a CMS Virtual Machine from Card Reader 65

Initializes Storage Contents and System Tables 66
Processes IPL Command Line Parameters 67

Initializing a Named or Saved System 68
Modifying a 3800 Named System 69
Processing the IMAGEMOD Command 69

Handling the First Command Line Passed to CMS 71
Setting the Virtual Machine Environment Options 71

DMSSET: Set DOS ON (VSAM) Processing 71
Querying CMS Environment Options 72

Chapter 7. Processing and Executing CMS Files 73
Maintaining an Interactive Console Environment 73

Maintaining an Interactive Command/Response Session 74
Method of Operation for DMSINT - Console Manager 76
Method of Operation for DMSITS - CMS SVC Handling Routine 77
Dynamic Linkage/SUBCOM 92

Loading and Executing Text Files 94
SLC Card Routine 96

Loading and Executing Members of LOADLIBS 111 \".

Chapter 8. Manipulating the File System 113

Chapter 9. Managing the CMS File System 115
Disk Organization ... 115
How CMS Files are Organized in Storage for an 800-Byte Record 115

File Status Tables 115
Chain Links ... 117
CMS Record Formats 118

/

Physical Organization of Virtual Disks 119
The Master File Directory 119
Keeping Track of Read/Write Disk Storage: QMSK and QQMSK 122
Dynamic Storage Management: Active Disks and Files 123
CMS Routines Used to Access the File System 124

How CMS Files are Organized in Storage for 512-, lK-, 2K-, or 4K-byte
Records on Disk ... 125

File Status Tables 125
Pointer Blocks ... 128
CMS Block Formats 131
Physical Organization of Virtual Disks 131
The File Directory, the Allocation Map, and the Disk Label 132
Keeping Track of Read/Write Disk Storage: Allocation Map 133
Dynamic Storage Management: Active Disks and Files 134
CMS Routines Used to Access the File System. 138

Chapter 10. Handling 1/0 Operations• 141

VI System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM

Licensed Materials - Property of IBM

Unit Record I/O Processing 141
Read a Card ... 142
Punch a Card .. 143
Print a File .. 144

The SETPRT Command 146
Disk I/O in CMS .. 147

Read or Write Disk I/O 148
CMS Tape Label Processing 148

Chapter 11. Handling Interruptions 149

Chapter 12. Managing CMS Storage •••.••.•.••..••...••.. 151
GETMAIN Free Storage Management 151

The STRINIT Macro 151
Releasing Storage 153

DMSFRE Free Storage Management 154
The DMSFREE Macro 154
Allocating User Free Storage 159
Allocating Nucleus Free Storage 159
Releasing Storage 160
The DMSFRET Macro 160
CMS Page Management 161

DMSFRE Service Routines 162
The DMSFRES Macro 162

Storage Protection Keys 164

(
The SET KEYPROTECT Command 164

CMS Handling of PSW Keys 165
The DMSKEY Macro 166
The DMSEXS Macro 167

CP Handling For Saved Systems 168
Effects on CMS ... 169
Restrictions on CMS 169
Overhead ... 170

Error Codes From DMSFRES, DMSFREE, and DMSFRET 170

Chapter 13. Simulating Non-CMS Environments •••..•••.... 171
OS Access Method Support 171
CMS Support for the Virtual Storage Access Method 172

Creating the DOSCB Chain ~ 172
Executing an AMSERV Function 173
Executing a VSAM Function for a VSE User 174
Executing a VSAM Function for an OS User 176

Simulating an OS Environment under CMS 180
TSO Service Routine Support 181
CMS Simulation of OS Control Block Functions 183
Operating System Simulation Routines 183
Command Flow of Commands Involving OS Access 193
OS Access Method Modules--Logic Description 195
Routines Common to All of DMSROS 200

Simulating a VSE Environment Under CMS 201
Initializing VSE and Processing VSE System Control Commands .. 201
Setting or Resetting System Environment Options 203
Process CMS/DOS Open and Close Functions 205
Contents of the CMSBAM DCSS 208

LY20-0893-4 ~) Copyright IBM Corp. 1980, 1986 Contents VJ.1

Restricted Materials of IBM

Licensed Materials - Property of IBM

Process CMS/DOS Execution-Related Control Commands 210
Simulate VSE SVC Functions 211
Process CMS/DOS Service Commands 225
Terminate Processing the CMS/DOS Environment 225

Chapter 14. Performing Miscellaneous CMS Functions •••.••• 227
CMS Batch Facility 227

General Operation of DMSBTB 227
General Operation of DMSBTP 228
Other CMS Modules Modified in CMS Batch 231

EXEC 2 and System Product Interpreter Processing 232
DMSEXI 232
DMSEXE .. . 234
READSUB/READLAB 236
Line Execution .. . 236
Assignment Processing 237
DMSREX .. . 239

Part 3: CMS Directory 241

Chapter 15. Module Entry Point Directory •.•••••..••..•••. 243

Part 4: CMS Diagnostic Aids 275

Chapter 16. Supported Devices ••••..••....•..•..•....•.• 277

Chapter 17. DMSFREX Error Codes .•••.•...••••••....••. 279
Error Codes from DMSFREE, DMSFRES, and DMSFRET 279

Chapter 18. Abend Processing ••.......••.......••...... 281
Abend Exit Routine Processing 281
CMS Abend Recovery 282
Unrecoverable Termination--The Halt Option of DMSERR 284

Appendixes . 289

Appendix A. CMS Macro Library ••...•...••..•..••...... 291

Appendix B. CMS/DOS Macro Library .•.•........••...... 295

Appendix C. CMS/DOS Support Modules .••...••••••...•. ". 297

Summary of Changes 299

Glossary of Terms and Abbreviations .••••........••...... 305

Bibliography•..............•.......•...•...... 307
Prerequisite Publication 307
Corequisite Publication 307
Supplemep.tary Publications 308
Miscellaneous Information 308

Vlll System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

-- -- ------.----...... ~---~ .. ----- --_. __ .. _-

ft{ "~

\.~j

("

~

(
!
'''"-- -'/

Restricted Materials of IBM

Licensed Materials - Property of IBM

(- Index .. 813

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Contents IX

(

X System Logic and Problem Determination (CMS)

Restricted Materi&ls of IBM

Licensed Materials - Property of IBM

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

/

tf '\
;

l~. /

(-

(

(

(

Restricted Materials of IBM

Licensed Materials - Property of IBM

Figures

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.

16.
17.

18.
19.
20.

21.

22.
23.
24.
25.
26.

27.

28.

29.
30.
31.
32.
33.

Module Flow for the VM/SP System Product Editor 6
File System for an 800-Byte Record on Disk 8
CMS Storage Map 1 20
CMS Storage Map 2 21
CMS Storage Map 3 22
Simulated OS Supervisor Calls 28
An Overview of the Functional Areas of CMS 58
Details of CMS System Functions 59
SVC 202 High-Order Byte Values of Register 1 79
CMS Command Processing 86
SVC 202 Processing 87
Register Contents When Called Routine Starts 88
PSW Fields When Called Routine Starts 89
How 800-Byte CMS File Records are Chained Together 116
Format of a File Status Table Block - Format of a File Status
Table. (for 800-Byte Disk Format) 117
Format of the First Chain Link and Nth Chain Links 118
Arrangement of Fixed-Length Records and Variable-Length
Records in Files 119
Structure of the Master File Directory 121
Disk Storage Allocation Using the QMSK Data Block 122
How 512-, 1K-, 2K-, or 4K-Byte CMS File Records are Chained
Together .. 126
Format of a File Status Table Block - Format of a File Status
Table. (For 512-, lK-, 2K-, 4K-Byte Disk Format) 127
Format of Level 3 Pointer Block Fixed-Length Record File 129
Format of Level 2 Pointer Block Variable-Length Record File 130
File System for 512-, 1K-, 2K-, or 4K-Byte Record on Disk 135
Flow of Control for Unit Record 1/0 Processing 142
Relationship in Storage between the CMS Interface Module
DMSAMS, the CMSAMS DCSS, and the CMSVSAM DCSS 173
The Relationship in Storage between the User Program, the
CMSDOS DCSS, and the CMSVSAM DCSS 175
Relationship in Storage between the User Program, OS
Simulation and Interface Routines, CMSDOS DCSS, and
CMSVSAM DCSS 177
Simulated OS Supervisor Calls 181
CMS Modules Handling SVC Functions Supported in CMS/DOS 213
SVC Support Routines and their Operation 214
Devices Supported by a CMS Virtual Machine 277
CMS Abend Codes 284

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Figures Xl

XlI System Logic and Problem Determination (CMS)

Restricted Materials of IBM

Licensed Materials - Property of IBM

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

/

Restricted Materials of IBM

Licensed Materials - Property of IBM

(Part 1: Introduction to eMS

This part contains the following information:

• Conversational Monitor System (CMS)

• Interrupt Handling in CMS

• Functional Information

• OS Macro Simulation Under CMS

• VSE Support Under CMS.

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Part 1: Introduction to CMS 1

2 System Logic and Problem Determination (CMS)

Restricted Materials of IBM

Licensed Materials - Property of IBM

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

,
''--.

(

(

Restricted Materials of IBM

Licensed Materials - Property of IBM

Chapter 1. Conversational Monitor System (CMS)

The Conversational Monitor System (CMS), the major subsystem of VM/SP,
provides a comprehensive set of conversational facilities to the user.
Several copies of CMS may run under CP, thus providing several users with
their own time sharing systems. CMS is designed specifically for the
VM/SP virtual machine environment.

Each copy of eMS supports a single user. This means that the storage area
contains only the data pertaining to that user. Likewise, each CMS user
has his own machine configuration and his own files. Debugging is simpler
because the files and storage area are protected from other users.

Programs can be debugged from the terminal. The terminal is used as a
printer to examine limited amounts of data. After examining program data,
the terminal user can enter commands on the terminal that alters the
program. This is the most common method used to debug programs that
run in CMS.

CMS, operating with the VM/SP Control Program, is a time sharing system
suitable for problem solving, program development, and general work. It
includes several programming language processors, file manipulation
commands, utilities, and debugging aids. Additionally, CMS provides
facilities to simplify the operation of other operating systems in a virtual
machine environment when controlled from a remote terminal. For
example, CMS creates and modifies job streams and analyzes virtual printer
output.

Part of the CMS environment is related to the virtual machine environment
created by CPo Each user is completely isolated fro~ the activities of all
other users, and each machine where CMS executes has virtual storage
available to it and virtual storage managed for it by CPo The CP commands
are recognized by CMS. For example, the commands allow messages to be
sent to the operator or to other users and allow virtual devices to be
dynamically detached from the virtual machine configuration.

The CMS Command Language

The CMS command language offers terminal users a wide range of
functions. It supports a variety of programming languages, service
functions, file manipulation, program execution control, and general system
control. For detailed information on CMS commands, refer to the VM/SP
CMS Command Reference.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 1. Conversational Monitor System (CMS) 3

-,------------

The File System

Restricted Materials of IBM

Licensed Materials - Property of IBM

Figure 10 on page 86 describes CMS command processing.

The Conversational Monitor System interfaces with virtual disks, tapes,
and unit record equipment. The CMS residence device is a read-only,
shared system disk. Permanent user files may be accessed from up to 25
active disks. CMS controls the logical access to these virtual disks, while
CP facilities manage the device sharing and virtual-to-real mapping.

User files in CMS are identified with three designators. The first is
filename. The second is filetype. The filetype may imply specific file
characteristics to the CMS file management routines. The third is filemode.
The filemode describes the location and access mode of the file.

The compilers available under CMS default to particular input filetypes,
such as ASSEMBLE, but the file manipulation commands and listing
commands do not default to a specific filetype. Files of a particular filetype
form a logical data library for a user. For example, the collection of all
COBOL source files, all object (TEXT) decks, or all EXEC procedures. This
allows selective handling of specific groups of files with minimum input by
the user.

User files can be created and changed directly from the terminal with the
VM/SP System Product Editor. The VM/SP System Product Editor
provides extensive context editing services. File characteristics such as
record length, record format, tab locations, and serialization options can be
specified. The VM/SP System Product Editor also provides fullscreen
support for 3270 display stations.

The major highlights of this editor include:

• Multiple views of the same or different files
• Selective column viewing
• Automatic wrapping of lines larger than the screen
• Ability to issue selected commands directly from the displayed line
• Ability to define screen format
• Extended string search functions
• Column pointing for editing within a line
• Ability to edit members contained in a CMS library
• Ability to manipulate files containing Double-Byte Character Set

(DBCS) strings.

Additionally, the VMjSP System Product Editor provides language
expansions and flexibility through the System Product Interpreter and the
EXEC 2 processor. Figure 1 on page 6 describes the modules that perform
the processing for the System Product Editor.

CMS au~omatically allocates compiler work files at the beginning of
command execution on whichever active disk has the greatest amount of
available space, and then CMS deallocates them at completion. Compiler
object decks and listing files are normally allocated on the same disk as the

4 System Logic and Problem Determination (CMS) L Y20-0893-4 if) Copyright IBM Corp. 1980, 1986

-~~- --- -----~ ---- --~~---~--~~---- ----~~-----

(

Restricted Materials of IBM

Licensed Materials - Property of IBM

input source file or on the primary read/write disk, and they are identified
by combining the input filename with the filetypes TEXT and LISTING.
These disk locations may be overridden by the user.

eMS disk files contain records stored on disks as 512-, 800-, 1024-, 2048-, or
4'096-byte records. For disks with a blocksize of 800 bytes, a single user file
is limited to a maximum of 65,533 records and must reside on one virtual
disk. The file management system limits the number of files on the virtual
disk to 3400. For disks with a b10cksize of 512, 1024, 2048, and 4096 bytes, a
single user file is limited to a maximum of 23q eMS blocks and must reside
on one virtual disk. The maximum number of data blocks available in a
variable format file on a 512-byte blocksize minidisk is about 15 times less
than 231_1. This number is the maximum number of data blocks that can be
accessed by the eMS file system due to the 5 level tree structure. The
maximum number of files on anyone disk is limited by the file management
system to 231-1. However, the actual number of files is limited by the
available disk space and the size of the user files.

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 1. Conversational Monitor System (CMS) 5

DMSXUP DMSXIN - DMSXBG

Upadate Load; process XEDIT
processing J mmm~' o~"". entry point Set up Defaults

/
r-DMSXTFl DMSXDS DMSXM.B

Read OS MEMBER option I Filetype I
data set processing I descriptor table I

L _____ J

DMSXMA DMSXDC - DMSXSU

Macro Decode Editing
Processing Subcommands Supervisor
(calis EXEC 2)

DMSXFL C : E~Sl<!.B~ _1
Subcommand I I
entry point to I Subcommand I
STATE/POINT/ I table I READ/WRITE I files in storage I L _____ ..l

Restricted Materials of IBM

Licensed Materials - Property of IBM

DMSXWS

GET
terminal's
characteristics

r-
DMSXIO -t

I
Terminal I/O

I
I

t I
I

DMSXER I
I

Format error I message

I
I

-----,
DMSXSC

Logical screen
andling h

DMSXSD

Build logical
and physical
screens

DMSXPX -----r..--____,:l --------r..--__ ---. --------.--------.1
DMSXCT

I

DMSXFC I I DMSXCG

Editing functions

DMSXFD

Editing functions

DMSXST

I Storage handling

I
I
I
I
I
I

DMSXCN

Arrange
compound
characters

I
I
I
I
I

I

I I

~
I
I
I
I
I

I I
L _____ .J
BASIC FUNCTIONS

~
I

* See Note 1

DMSXGT

GET

DMSXMC

CFIRST, CLAST,
CLOCATE,
LEFT, RIGHT,
SET VERIFY

DMSXSE

SET

DMSXQR

QUERY,
TRANSFER

L __

DMSXCM

STACK, CMS, CP

DMSXPT

PUT(D)

DMSXMD

INPUT, ADD,
REPLACE,
CREPLACE,
CINSERT

DMSXSF

Second half
of SET

DMSXED

XEDIT

• See Note 2

DMSXML
BACKWARD,
BOTTOM, DOWN,
FORWARD,
LOCATE, NEXT,
TOP, UP, FIND
family

DMSXTR

EXTRACT

DMSXMS

SORT

SUBCOMMANDS

I
I
I
I

L

I
I
I
I
I
I
I
I

Prefix
subcommand
processing

'DMSXSS

SOS

L _____ :.J
SCREEN SUPPORT

---"1
DMSXPO

POWERINP

DMSXTE

Second half
of EXTRACT

DMSXRE

RENUM

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I _____ J

*Note 1. CDELETE, CHANGE, COMPRESS, COPY, COUNT, COVERLAY, DELETE, DUPLICATE, EXPANI;>, LOWERCAS,
MERGE, MOVE, OVERLAY, RECOVER, SHIFT, UPPERCAS.

*Note 2. CMSG, CURSOR, EMSG, FILE, LPREFIX, MSG, PFILE, PRESERVE, PSAVE, PURGE, READ, REFRESH, RENUM,
REPEAT, RESET, RESTORE, SAVE, SET POINT, SET SCREEN, SET TERMINAL, TYPE.

Figure 1. Module Flow for the VM/SP System Product Editor

6 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

(

(

Restricted Materials of IBM

Licensed Materials - Property of IBM

All eMS disk files are written as 512-, 800-, 1024-, 2048-, or 4096-byte records
chained together by a specific master file entry that is stored in a table
called the file directory. A separate file directory is kept for, and on, each
virtual disk. The data records may be discontiguous, and they are allocated
and deallocated automatically. A subset of the file directory (called the
user file directory) is made resident in virtual storage when the disk
directory is made available to eMS. It is updated on the virtual disk at
least once per eMS command if the status of any file on that disk has been
changed.

Virtual disks may be shared by eMS users. The capability is provided by
VM/SP to all virtual machines, although a user interface is directly
available in eMS commands. Specific files may be spooled between virtual
machines to accomplish file transfer between users. Commands allow such
file manipulations as writing from an entire disk or from a specific disk file
to a tape, printer, punch, or the terminal. Other commands write from a
tape or virtual card reader to disk, rename files, copy files, and erase files.
Special macro libraries and text or program libraries are provided by eMS,
and special commands are provided to update and use them. eMS files can
be written onto and restored from unlabeled tapes via eMS commands.

Caution: Multiple write access under eMS can produce unpredictable
results.

Problem programs that execute in eMS can create files on unlabeled tapes
in any record and block size. The record format can be fixed, variable, or
undefined. Figure 2 on page 8 describes the file system for an 800-byte
record on disk. Figure 24 on page 135 shows the file system for 512-, 1K-,
2K-, and 4K-byte records on disk.

LY20-0893-4 @ Copyright IBM Corp. 1980, 1986 Chapter 1. Conversational Monitor System (eMS) 7

Restricted Materials of IBM

Licensed Materials - Property of IBM

DMSNUC Area of Storage Free Storage Disk Storage

AFT

There is one FST
for each file

Figure 2. File System for an BOO-Byte Record on Disk

Program Development

The Conversational Monitor System includes commands to create, compile,
modify, and correct source programs; to build test files; to execute test
programs; and to debug from the terminal. The commands of CMS are
especially useful for OS and VSE program development, but the commands
also may be used in combination with other operating systems to provide a
virtual machine program development tool.

CMS uses the OS and VSE compilers via interface modules. The compilers
themselves normally are not changed. To provide suitable interfaces, CMS
includes a certain degree of OS and VSE simulation. For OS, the
sequential, direct, and partitioned access methods are logically simulated.
The data records are physically kept in the chained fixed-length blocks, and
they are processed internally to simulate OS data set characteristics. For
VSE, the sequential access method is supported. CMS supports VSAM
catalogs, data spaces, and files on OS and DOS disks using the Access
Method Services portion of VSE/VSAM. OS supervisor call functions such
as GETMAIN/FREEMAIN and TIME are simulated.

8 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

(

(

f
"'

(

Restricted Materials of IBM

Licensed Materials - Property of IBM

For more information, about simulation restrictions in CMS see
Chapter 4, "OS Simulation Under CMS" on page 27 and Chapter 5, "VSE
Support Under eMS" on page 53.

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 1. Conversational Monitor System (eMS) 9

10 System Logic and Problem Determination (CMS)

Restricted Materials of IBM

Licensed Materials - Property of IBM

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

(

(

Restricted Materials of IBM

Licensed Materials - Property of IBM

Chapter 2. Interrupt Handling in CMS

CMS receives virtual SYC, input/output, machine, program, and external
interruptions and passes control to the appropriate handling program.

SVC Interruptions

The Conversational Monitor System is SYC (supervisor call) driven. SYC
interruptions are handled by the DMSITS resident routines. Two types of
SYCs are processed by DMSITS: internal linkage SYC 202 and 203, and
any other SYCs. The internal linkage SYC is issued by the command and
function programs of the system when they require the services of other
CMS programs. (Commands entered by the user from the terminal are
converted to the internal linkage SYC by DMSINT). The OS SYCs are
issued by the processing programs (for example, the Assembler).

Internal Linkage SVCs

When DMSITS receives control as a result of an internal linkage SYC (202
or 203), it saves the contents of the general registers, floating-point
registers, and the SYC old PSW, establishes the normal and error return
addresses, and passes control to the specified routine. (The routine is
specified by the first 8 bytes of the parameter list whose address is passed in
register 1 for SYC 202 or by a halfword code following SYC 203.)

For SYC 202, if the called program is not found in the internal function
table of nucleus (resident) routines, DMSITS tries to call in a module (a
CMS file with filetype MODULE) of this name via the LOADMOD
command.

If the program was not found in the function table, nor was a module
successfully loaded, DMSITS returns an error code to the caller.

To return from the called program, DMSITS restores the calling program's
registers, and makes the appropriate normal or error return as defined by
the calling program.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 2. Interrupt Handling in CMS 11

.... -- _. ----_._----_.---- ------_._._ .. _._._--------.. _---._.-_ .. _._--------

Other SVCs

Restricted Materials of IBM

Licensed Materials - Property of IBM

The general approach taken by DMSITS to process other SVCs supported
under CMS is essentially the same as that taken for the internal linkage
SVCs. However, rather than passing control to a command or function
program, as is the case with the internal linkage SVC, DMSITS passes
control to the appropriate routine. The SVC number determines the
appropriate routine.

In handling non-CMS SVC calls, DMSITS refers first to a user-defined SVC
table (if one has been set up by the DMSHDS program). If the user-defined
SVC table is present, any SVC number (other than 202 or 203) is looked for
in that table. If it is found, control is transferred to the routine at the
specified address.

If the SVC number is not found in the user-defined SVC table (or if the
table is nonexistent), DMSITS either transfers control to the CMSDOS
shared segment (if SET DOS ON has been issued) or DMSITS searches the
standard system table (contained in DMSSVT) of OS calls for that SVC
number. If the SVC number is found, control is transferred to the
corresponding address in the usual manner. If the SVC is not in either
table, the supervisor call is treated as an abend call.

The DMSHDS initialization programs sets up the user-defined SVC table.
Then, the user can provide his own SVC routines.

InpuUOutput Interruptions

All input/output interruptions are received by the I/O interrupt handler,
DMSITI. DMSITI saves the I/O old PSW and the CSW (channel status
word). It then determines the status and requirements of the device causing
the interruption and passes control to the routine that processes
interruptions from that device.

-/

/
DMSITI first scans CONSOLE function device entries (CDEV) until it finds ~ _,/
one containing the device address that is the same as the interrupting
device. If a matching device is found and a CONSOLE 'path' is waiting for
an interrupt:

1. The wait field is cleared in the device entry,

2. The wait bit is turned off in the I/O old PSW, and

3. DMSITI returns control to the CONSOLE service by loading the I/O old
PSW.

If no path is waiting, the interrupt is considered unsolicited and DMSITI
checks for a user-defined interrupt handling routine. If DMSITI finds one,
it passes. control to the routine. Otherwise, if the device also exists in a
console CDEV entry, DMSITI checks if any I/O was done and if an EXIT
routine is specified. If an EXIT can be called, DMSITI turns off the PSW
wait bit, loads the PSW, and exits.

12 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

(\

(

(•... ~
/

Restricted Materials of IBM

Licensed Materials - Property of IBM

If no console path performed I/O or no exits were called, the interrupt for
the virtual console is passed to the system routine (DMSCITA) found in the
CMS device table (DEVT AB). For dialed devices, the unsolicited interrupt
is ignored. If fullscreen CMS is on, attention interrupts for the virtual
console are passed to a fullscreen read routine instead of DMSCITA.

The device table (DEVTAB) contains an entry for each device in the
system. Each entry for a particular device contains, among other things,
the address of the program that processes interruptions from that device.

When the appropriate interrupt handling routine completes its processing,
it returns control to DMSITI. At this point, DMSITI tests the wait bit in
the saved I/O old PSW. If this bit is off, the interruption was probably
caused by a terminal (asyrlchronous) I/O operation. DMSITI then returns
control to the interrupted program by loading the I/O old PSW.

If the wait bit is on, the interruption was probably caused by a non-terminal
(synchronous) I/O operation. The program that initiated the operation most
likely called the DMSIOW function routine to wait for a particular type of
interruption (usually a device end). In this case, DMSITI checks the
pseudo-wait bit in the device table entry for the interruption device. If this
bit is off, the system is waiting for some event other than the interruption
from the interrupting device. DMSITI returns to the wait state by loading
the saved I/O old PSW. (This PSW has the wait bit on.)

If the pseudo-wait bit is on, the system is waiting for an interruption from
that particular device. If this interruption is not the one being waited for,
DMSITI loads the saved I/O old PSW. This again places the machine in the
wait state. Thu's, the program that is waiting for a particular interruption
is kept waiting until that interruption occurs.

If the interruption is the one being waited for, DMSITI resets both the
pseudo-wait bit in the device table entry and the wait bit in the I/O old
PSW. It then loads the PSW. This causes control to be returned to the
DMSIOW function routine, which, in turn, returns control to the program
that called it to wait for the interruption.

Terminal Interruptions

Terminal input/output interruptions are handled by the DMSCIT module.
All interruptions other than those containing device end, channel end,
attention, or unit exception status are ignored. If device end status is
present with attention and a write CCW was terminated, its buffer is
unstacked. An attention interrupt causes a read to be issued to the
terminal, unless attention exits have been queued via the STAX macro.
The attention exit with the highest priority is given control at each
attention until the queue is exhausted; then a read is issued.

Device end status indicates that the last I/O operation has been completed.
If the last I/O operation was a write, the line is deleted from the output
buffer and the next write, if any, is started. If the last I/O operation was a

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 2. Interrupt Handling in CMS 13

Restricted Materials of IBM

Licensed Materials - Property of IBM

normal read, the buffer is put on the finished read list and the next
operation is started.

If the read is caused by an attention interrupt, the line is first checked to
see if it is an immediate command (user-defined or built-in). If it is a
user-defined immediate command, control is passed to a user specified exit,
if one exists. Upon completion the exit returns to DMSCIT. If it is a
built-in immediate command (HX, for example), appropriate processing is
performed by DMSCIT.

Unit exception indicates a canceled read. The read is reissued, unless it
had been issued with ATTREST=NO, in which case unit exception is
treated as a device end.

Reader/Punch/Printer Interruptions

Interruptions from these devices are handled by the routines that actually
issue the corresponding 1/0 operations. When an interruption from any of
these devices occurs, control passes to DMSITI. The DMSITI passes
control to DMSIOW, which returns control to the routine that issued the
1/0 operation. This routine can then analyze the cause of the interruption.

User-Controlled Device Interruptions

Interrupts from devices under user control are serviced the same as eMS
devices except that DMSIOW and DMSITI manipulate a user-created device
table, and DMSITI passes control to any user-written interrupt processing
routine that is specified in the user device table. Otherwise, the processing
program regains control directly.

• Users may now specify the exit parameter for the OPEN function of the
CONSOLE macro instruction to handle unsolicited device interrupts. If
this is specified, users should NOT define an interruption routine via
the HNDINT macro for the same device. Use of the CONSOLE and
HNDINT macros should be mutually exclusive. However, if for some
reason there is both a CONSOLE exit and an HNDINT routine for the
same device, the HNDINT routine overrides a CONSOLE exit only in
the case of an unsolicited interrupt.

CONSOLE supports multiple applications for a single device whereas
HNDINT only allows one application to handle all interrupts from a
specific device. Because it is difficult to tell what application is doing
1/0 last, CONSOLE helps CMS keep track of what application is doing
1/0 or what application handled interrupts last.

• CONSOLE OPEN with EXIT supersedes an HNDINT routine when the
interrupt is solicited. Therefore, if users want to do 1/0 to a 3270 device,

F~
(

~~~f/ 

they should use the CONSOLE macro instead of the HNDINT macro. f 
~/ 

14 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

--~~ ~-- ~~---~-~-~ --------~-~-~-~-~~~~----- .~~-- -- .. ~ 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

( Program Interruptions 

(-

( 

The program interruption handler, DMSITP, receives control when a 
program interruption occurs. When DMSITP gets control, it stores the 
program old PSW and the contents of registers 14, 15, 0, 1, and 2 into the 
program interruption element (PIE). (The routine that handles the SPIE 
macro instruction has already placed the address of the program 
interruption control area (PICA) into PIE.) DMSITP then determines 
whether or not the event that caused the interruption was one of those 
selected by a SPIE macro instruction. If it was not, DMSITP passes control 
to the DMSABN abend recovery routine. 

If the cause of the interruption was one of those selected in a SPIE macro 
instruction, DMSITP picks up the exit routine address from the PICA and 
passes control to the exit routine. Upon return from the exit routine, 
DMSITP returns to the interrupted program by loading the original 
program check old PSW. The address field of the PSW was modified by a 
SPIE exit routine in the PIE. 

External Interruptions 

An external interruption causes control to be passed to the external 
interrupt handler DMSITE. If CMS IUCV support is active in the virtual 
machine and an IUCV external interrupt occurs, control is passed to the 
user exit specified on the HNDIUCV or CMSIUCV macro. If the user has 
issued the HNDEXT macro to trap external interrupts, DMSITE passes 
control to the user's exit routine. 

If the interrupt was caused by the timer, DMSITE resets the timer and 
types the BLIP character at the terminal. The standard BLIP timer setting 
is two seconds, and the standard BLIP character is uppercase, followed by 
the lowercase (it moves the typeball without printing). Otherwise, control 
is passed to the DEBUG routine. 

Machine Check Interruptions 

Hard machine check interruptions on the real processor are not reflected to 
a CMS virtual user by CPo A message prints on the console indicating the 
failure. The user is then disabled and must IPL CMS again in order to 
continue. 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 2. Interrupt Handling in CMS 15 



16 System Logic and Problem Determination (eMS) 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

LY20-0893-4 © Copyright IBM Corp_ 1980, 1986 

( 



( 

f 

f 

(---

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Chapter 3. Functional Information 

Register Usage 

The most important thing to remember about CMS, from a debugging 
standpoint, is that it is a one-user system. The supervisor manages only 
one user and keeps track of only one user's file and storage chains. Thus, 
everything in a dump of a particular machine relates only to that virtual 
machine's activity. 

You should be familiar with register usage, save area structuring, and 
control block relationships before attempting to debug or alter CMS. 

When a CMS routine is called, R1 must point to a valid parameter list 
(PLIST) for that program. On return, RO mayor may not contain 
meaningful information. For example, on return from a call to FILEDEF 
with no change, RO contains a negative address if a new FCB (file control 
block) has been set up; otherwise, RO contains a positive address of the 
already existing FCB. R15 contains the return code, if any. The use of 
registers 0 and 2 through 11 varies. 

On entry to a command or routine called by SVC 202 the following are in 
effect: 

Register Contents 

o The address of EPLIST, if available 
1 The address of the PLIST supplied by the caller 

12 The address entry point of the called routine 
13 The address of a work area (12 doublewords) supplied by SVCINT 

- the SVC handler 
14 The return address to the SVC handler 
15 The entry point (same as register 12) 

On return from a routine, register 15 contains: 

Return Code Meaning 

o 
<0 
>0 

No error occurred 
Called routine not found 
Error occurred 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 3. Functional Information 17 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

If a CMS routine is called by an SVC 202, CMS saves and restores registers 
o through 14. 

Most CMS routines use register 12 as a base register. 

Structure of eMS Storage 

Figure 3 on page 20, Figure 4 on page 21, and Figure 5 on page 22 
describes how CMS uses its virtual storage. The pointers indicated 
(MAINSTRT, MAINHIGH, and FREELOWE) are all found in NUCON (the 
nucleus constant area). 

The sections of CMS storage have the the following uses: 

DMSNUC (X I 00000' to ANUCEND). 
This is the nucleus constant area. It contains pointers, flags, and other 
data updated by the various system routines. 

Low-Storage DMSFREE User Free Storage Area (ANUCEND to 
X'OEOOO'). 
This area is a free storage area where user requests to DMSFREE are 
allocated. 

Transient Program Area (X' OEOOO' to X, 10000' ). 
Since it is not essential to keep all nucleus functions resident in 
storage all the time, some of them are made "transient." This means 
that when nucleus functions are needed, they are loaded from the disk 
into the transient program area. Such programs may not be longer 
than two pages because that is the size of the transient area. (A page is 
4096 bytes of virtual storage.) All transient routines must be serially 
reusable since they are· not read in each time they are needed. 

Low-Storage DMSFREE Nucleus Free Storage Area (X' 10000' to 
X '20000'). 
This area is a free storage area where nucleus requests to DMSFREE 
are allocated. The top part of this area contains the dummy 
hyperblocks for the S and Y disks. Each block is 48 bytes long. This 
area may be followed by the file status tables for the S2 filemode files of 
the system disk. 

If there is enough room, the FREET AB table also occupies this area, 
just below the file status tables, if they are there. Each entry in the 
FREETAB table is one byte long. Each byte represents one page (4K 
or 4096 bytes) of defined storage. 

User Program Area (X' 20000' to Loader Tables or CMS Nucleus, 
whichever has the lowest value). 
User programs are loaded into this area by the LOAD command for text 
decks or by the LOADMOD command for modules. Storage allocated 
by means of the GETMAIN macro instruction is taken from this area, 

/ 

starting from the high address of the user program. In addition, this ./ 
storage area can be allocated from the top down by DMSFREE, if there 

18 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986 

.. _ ... __ ._--_ .. _--



( 

(~ 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

is not enough storage available in the low DMSFREE storage area. 
Thus, the usable size of the user program area is reduced by the 
amount of free storage that has been allocated from it by DMSFREE. 

Loader Tables (Top pages of storage). 
The top of storage is occupied by the loader tables, which are required 
by the CMS loader. These tables indicate which modules are currently 
loaded in the user program area (and the transient program area after a 
LOAD command). The size of the loader tables can be varied by the 
SET LDRTBLS command. However, to successfully change the size of 
the loader tables, the SET LDRTBLS command should be issued 
immediately after IPL. If SET LDRTBLS is not issued immediately, 
high storage may be fragmented. 

CMS Nucleus. 
The CMS nucleus contains the reentrant code for the CMS nucleus 
routines and the system S-STAT and Y-STAT. If there is not sufficient 
room to contain the S-STAT in this area, it is placed in low DMSFREE 
nucleus storage. If there is not sufficient room to contain the Y-STAT 
in this area, the Y-disk is accessed using the ACCESS command. 

If the size of the user's virtual machine is defined below the end of the CMS 
nucleus (refer to label NUCSIGMA in Figure 4 on page 21), it is not 
possible to IPL by device name. You cannot IPL by device name because 
the CMS nucleus is too large to be loaded into the user's virtual storage. 
Therefore, the user can only IPL by the system name (such as, IPL CMS). 
The loader table is placed immediately below the CMS nucleus. 

On the other hand, if the size of the user's virtual machine is defined above 
the end of the CMS nucleus (see Figure 4 on page 21 and Figure 5 on 
page 22), the user may IPL by either device name or system name. 

IPLing by device name: 

The S-STAT, Y-STAT, and the loader table are placed above the CMS 
nucleus. If there is not enough room to contain the S-STAT above the CMS 
nucleus (NUCSIGMA), it is placed in low storage. Likewise, if there is not 
sufficient room for the loader table above the CMS nucleus (NUCSIGMA), 
the loader table is placed below the nucleus. Any left,over free space above 
the nucleus is placed on the high DMSFREE chain. 

IPLing by system name: 

The shared copy of the S-STAT, Y-STAT and nucleus is used. If there is 
sufficient room, the loader table is placed above the S-STAT and Y-STAT 
(NUCOMEGA). If there is not sufficient room to place the loader table 
above the S-STAT and Y-STAT, the loader table is placed below the 
nucleus. Any leftover free space above the S-STAT and Y-STAT 
(NUCOMEGA) is placed on the high DMSFREE chain. 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 3. Fqp,ctional Information 19 



VIRTUAL STORAGE 
NUCOMEGA ~-----------------~I----------------~ 

S-STAT and V-STAT 

NUCSIGMA 

NUCALPHA 

(Shared) 

CMS Nucleus 
(Shared) 

OS simulation, EXEC, EXEC 2. REXX. XEDIT, CMS 
interrupt hsndlers, file system, free storage management. 
loader, device I/O, debug. 

Storage Key = X '0' 

END OF STORAGE 
VMSIZE 

FREELOWE 

MAINHIGH 

MAl NSTRT 

X'20000' 

X'10000' 

X'EOOO' 

ANUCEND 

X'O' 

System Loader Table 
(Size determined by set LDRTBLS command) 

Storage Key = X'F' 

:DMSFREE requests when no more low storage is available 

Unused portion of User Program Area 

_________ Stor~KeY=~E' 

GETMAIN requests 

Storage Key = X'E' 

The User's Program 
(Program is located via the LOAD command) 

Low Storage DMSFREE Nucleus Free Storage 
Area. The upper part of this area may contain the 
S-STAT, followed bV the FREETAB, if there is 
enough room. 

Storage Key = X'F' 

Transient Program Area 

Storage Key = X'E' 

Low Storage DMSFR EE User Free Storage Area 

Storage Key = X'E' 

DMSNUC 

System Control Blocks, flags, constants, and pointers. 

Storage Key = X'F' * 

• The page starting at DMSNUCU containing OPSECT, SUBSECT, 
DBGSECT, DMSERL, TSOBLKS, USERSECT,and free storage 
hase Storage Key = X'E' • 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

CONTROL BLOCKS IN FREE STORAGE 

DECB II LDRST II AFT II ADT 

I CMSSAVE II CMSCB II FSTB I 

Figure 3. eMS Storage Map 1. CMS virtual storage usage when the CMS nucleus is larger than the 
user's virtual storage. In this case, you must IPL by system name (VMSIZE is less than 
NUCSIGMA). The arrows indicate that MAINHIGH is extended upward and FREELOWE is 
extended downward. 

20 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986 

------- ---

\ 
'- / 

/ '\ 

/ 



( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

NUCOMEGA 
(VMSIZE) 

NUCSIGMA 

NUCALPHA 

FREELOWE 

MAINHIGH 

MAINSTRT 

X '20000' 

X'10000' 

X'EOOO' 

ANUCEND 

X'O' 

VIRTUAL STORAGE 

S-STATand V-STAT 
(Shared - if IPL'd by system name) 

CMS Nucleus 
(Shared - if I PL'd by system name) 

OS simulation, EXEC, EXEC 2, REX><. XEDIT, CMS 
interrupt handlers, file system, free storage management, 
loader, device I/O, debug. 

Storage Key = X'O' 

System Loader Table 
(Size determined by set LDRTBLS command) 

Storage Key = X'F' 

DMSFREE requests when no more low storage is available 

Storage Key = X'E' or X'F' 

[ 
- - ::d~O:iO~ o~ u~r~r:r~m ~r~ - - -

____________ s.!.0~e_K::!:.X~' 

GETMAIN requests 

_____________ ~o':.g~ K!y:, X~' 

The User's Program 
(Program is located via the LOAD command) 

Storage Key = X'E' 

Low Storage DMSFREE Nucleus Free Storage 
Area. The upper part of this area may contain the 
SoSTAT, followed by the FREETAB, if there is 
enough room. 

Storage Key = X'F' 

Transient Program Area 

Storage Key = X'E' 

Low Storage DMSFREE User Free Storage Area 

Storage Key = X'E' 

DMSNUC 
System Control Blocks, flags, constants, and pointers 

Storage Key = X'F' • 

• The page starting at DMSNUCU containing OPSECT,SUBSECT, 
DBGSECT, DMSERL, TSOBLKS, USERSECT, and free storage 
has a Storage Key = X'E'. 

CONTROL BLOCKS IN FREE STORAGE 

DECB II LDRST II AFT II ADT 

CMSCS II FSTS I 

Figure 4. CMS Storage Map 2. Virtual storage usage when the user's virtual storage is equal to the eMS 
nucleus. The user may IPL by system name or device. In addition, this figure shows where there 
is insufficient room to place the loader table above S-STAT and Y-STAT. The arrows indicate 
that MAINHIGH is extended upward and FREELOWE is extended downward. 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 3. Functional Information 21 



VMSIZE 

NUCOMEGA 

NUCSIGMA 

NUCALPHA 

FREELOWE 

MAINHIGH 

MAINSTRT 

X'20000' 

X'l0000' 

X'EOOO' 

ANUCEND 

X'O' . 

VIRTUAL STORAGE 

System Loader Table 
(Size determined by set LDRTBLS commandl 

_____________ ~o~e_K~=_X!' 

DMSFREE requests, 

S-STAT and Y -STAT 
(Shared - if IPL'd by system' name I 

CMS Nucleus 
(Shared - if IPL'd by system namel 

simulation, EXEC, EXEC 2, REX><. XED IT, CMS 
interrupt handlers, file system, free storage management. 
loader, device I/O, debug. 

Storage Key = X'O' 

DMSFREE requests when no more low storage is available 

____ ~t~a!!, ~y..: X":'E' ~r !~' 

[
Unused portion of User Program Area 

____________ ~0~9!. ~:.~' 
GETMAIN requests 

Storage Key = X'E' ------------------
The User's Program 

(Program is located via the LOAD commandl 

Low Storage DMSFREE Nucleus Free Storage 
Area. The upper part of this area may contain the 
S-STAT, followed by the FREETAB, if there is 
enough room. 

Transient Program Area 

Low Storage DMSFREE User Free Storage Area 

=X'E' 

Key=X'E' 

DMSNUC 
System Control Blocks, flags, constants, and pointers 

Storage Key = X'F' • 

• The page starting at DMSNUCU containing OPSECT, SUBSECT, 
DBGSECT, DMSE ,R L, TSOBLKS, USE RSECT , and free storage 
has a Storage Kev = X'E'. 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

CONTROL BLOCKS IN FREE STORAGE 

DECB II LDRST II AFT II ADT 

CMSCB II FSTB I 

Figure 5. eMS Storage Map 3. eMS virtual storage usage when the user's virtual storage is larger than 
the eMS nucleus. The user may IPL by system name or device. In addition, this figure shows 
where there is sufficient room to place the system loader table above S-STAT and Y-STAT. The 
arrows indicate that MAINHIGH is extended upward and FREELOWE is extended downward. 

22 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

/ 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

(~ Structure of DMSNUC 

(. 

(-

DMSNUC is the portion of storage in a CMS virtual machine that contains 
system control blocks, flags, constants, and pointers. 

The CSECTs in DMSNUC contain only symbolic references. This means 
that an update or modification to CMS, which changes a CSECT in 
DMSNUC, does not automatically force all CMS modules to be recompiled. 
Only those modules that refer to the area that was redefined must be 
recompiled. 

USERSECT (User Area) 

The USERSECT CSECT defines space that is not used by CMS. A 
modification or update to CMS can use the 18 full words defined for 
USERSECT. There is a pointer (AUSER) in the NUCON area to the user 
space. 

DEVTAB (Device Table) 

The DEVTAB CSECT is a table describing the devices available for the 
CMS system. The table contains the following entries: 

• 1 console 

• 26 disks 

• 1 reader 

• 1 punch 

• 1 printer 

• 16 tapes 

• 1 dummy. 

You can change some existing entries in DEVTAB. Each device table entry 
contains the following information: 

• 
• 
• 
• 
• 

Virtual device address 
Device flags 
Device types 
Symbol device name 
Address of the interrupt processing routine (for the console). 

The virtual address of the console is defined at logon time. The ACCESS 
command can dynamically alter the virtual address of the user disks in 
DEVTAB. The virtual address of a tape can be reassigned to any of the 
addresses given in DEVTAB (TAPO - TAPF) by using CMS commands 
and/or macros. Changing the virtual addresses of the reader, printer, or 
punch in DEVT AB has no effect. 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 3. Functional Information 23 



. eMS Interface for Display Terminals 

Restricted MaterialS of IBM 

Licensed Materials - Property of IBM 

CMS has an interface allowing it to display large amounts of data in a very 
rapid fashion. This interface for 3270 display terminals (also 3138, 3148, and 
3158) is much faster and has less overhead than the normal write because it 
displays up to 1760 characters in one operation, instead of issuing 22 
individual writes of 80 characters each (that is one write per line on a 
display terminal). Data displayed in the screen output area with this 
interface is not placed in the console spool file. 

Use the CONSOLE macro instruction to access CMS fullscreen console 
services. The CONSOLE macro performs 3270 I/O operations, including 
building the Channel Command Word (CCW), issuing the DIAGNOSE code 
X I 58 I or SIO instruction, waiting for the I/O to complete, and checking any 
error status from the device. Applications must construct a valid 3270 data 
stream to write to the screen, and a 3270 data stream is returned when a 
CONSOLE READ is performed. 

The CONSOLE macro allows programs to open 'paths' to a display device. 
A path is a unique name that distinguishes one application from another 
and allows the console facility to coordinate the use of the screen. For 
example, if an application is writing to the screen, the CONSOLE macro 
tells it that another 'path' has updated the screen lastly, and, therefore, the 
screen must be reformatted. Because of this, fullscreen applications do not 
have to rewrite the entire screen every time a write is done. 

Screen coordination can be done only for applications using the console 
facility. Because some application still issue their own DIAGNOSE code 
X I 58 I, you must reformat the screen. This avoids mixing data from two 
different applications on the screen. 

The CONSOLE macro provides the following functions: 

• OPEN/CLOSE - Opening and closing a specific path to the console. 

• READ/WRITE - Reading and writing buffers that have 3270 data 
streams built by the application. In order to write to the screen, 
applications must construct a valid 3270 data stream. When a read is 
performed, the data is returned in the user's buffer. The CMS console 
facility issues the DIAGNOSE code X I 58 I for the virtual console or a 
Start I/O (S1O) for dialed devices, builds the CCW for READ and 
WRITE requests, tests conditions after I/O, and gives the result of the 
I/O operation to the application. 

• EXCP - Performing READ or WRITE I/O operations using CCWs that 
applications supply. An application must supply its own CCW if it uses 
the EXCP function. This function is intended for use with dialed 
devices. 

• WAIT· Wait for an I/O interrupt from the console device. 

• QUERY - Getting information about the device attributes (DIAGNOSE 
code X I 24 I and DIAGNOSE code X I 8C '), or if the path is opened, 

24 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

-- .. --~--------- ~~-

( 



( 

( 

(-

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

getting information about a specific path and its associated device. The 
user should provide a buffer for this information and then map the 
information using the CQYSECT mapping macro. For information 
about the CQYSECT macro, refer to VM/SP Data Areas and Control 
Block Logic Volume 2 (CMS). 

The four formats of the CONSOLE macro instruction are: 

• Standard format 
• List format (MF = L) 
• Complex List format (MF = (L,addr[,label])) 
• Execute format (MF = (E,addr». 

Note: For the detailed formats of the CONSOLE macro, see VM/ SP CMS 
Macros and Functions Reference. 

Although the CONSOLE macro is the preferred interface for fullscreen 1/0, 
the DISPW macro may be used to generate a calling sequence for the CMS 
display terminal interface module, DMSGIO. DMSGIO creates a channel 
program and issues a DIAGNOSE code X I 58 I to display the data. DMSGIO 
is a TEXT file that must be loaded to use DISPW. 

The format of the CMS DISPW macro is: 

[ label] DISPW bufad 
[ ,LINE ~ {~ }][ ,BYTES - { ;~: } 1 
[ ,ERASE = YES] 

[ ,CANCEL = YES] 

where: 

label 
is an optional macro statement label. 

bufad 
is the address of a buffer containing the data to be written to the 
display terminal. 

LINE= {; I 
is the number of the line, 0 to 23, on the display terminal that is to be 
written. Line number 0 is the default. 

BYTES = {nnmi} 
1760 

is the number of bytes (0 to 1760) to be written on the display 
terminal. 1760 bytes is the default. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 3. Functional Information 25 



ERASE=YES 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

specifies that the display screen is to be erased before the current date "'j 
is written. The screen is erased regardless of the line or number of 
bytes to be displayed. Specifying ERASE = YES causes the screen to 
go into "MORE" status. 

CANCEL=YES 
causes the CANCEL operation to be performed: the output area is 
erased. 

Note: It is advisable for the user to save registers before issuing the 
DISPW macro and to restore them after the macro because the modules 
called by the DISPW macro do not save the user's registers. The DISPW 
macro saves and restores register 13. 

26 System Logic and Problem Determination (eMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986 

/ 



( 

( 

( 

(--

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Chapter 4. OS Simulation Under CMS 

When a language processor or a user-written program is executing in the 
eMS environment and using OS-type functions, it is not executing OS code. 
Instead, eMS provides routines that simulate the OS functions required to 
support OS language processors and their generated object code. 

eMS functionally simulates the OS macros in a way that presents 
equivalent results to programs executing under eMS. The OS macros are 
supported only to the extent stated in the publications for the supported 
language processors, and then only to the extent necessary to successfully 
satisfy the specific requirement of the supervisory function. 

OS Data Management Simulation 

The disk format and data base organization of eMS are different from those 
of OS. A eMS file produced by an OS program running under eMS and 
written on a eMS disk has a different format from that of an OS data set 
produced by the same OS program running under OS and written on an OS 
disk. The data is exactly the same, but its format is different. (An OS disk 
is formatted by an OS program, such as Device Support Facility.) eMS 
does not support multi-buffering for unit record devices. There is one DeB 
per device, not per file. 

Handling Files that Reside on eMS Disks 

eMS can read, write, or update any OS data that resides on a eMS disk. 
By simulating OS macros, eMS simulates the following access methods so 
that OS data organized by these access methods can reside on eMS disks: 

• BDAM 

• BPAM 

(direct) -- identifying a record by a key or by its relative 
position within the data set. 

(partitioned) -- seeking a named member within data set. 

Note: Two BPAM files with the same filetype cannot be 
updated at the same time. 

• BSAM/QSAM (sequential) -- accessing a record in a sequence in relation 
to preceding or following records. 

L Y20-08934 © Copyright IBM Corp. 1980, 1986 Chapter 4. OS Simulation Under CMS 27 



• VSAM 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

(direct or sequential) -- accessing a record sequentially or 
directly by key or address. 

Note: CMS support of OS VSAM files is based on 
VSE/VSAM. Therefore, the OS user is restricted to those 
functions available under VSE/VSAM. 

Refer to Figure 6 and "OS Macros" on page 30, then read "Access Method 
Support" on page 38 to see how CMS handles these access methods. 

Since CMS does not simulate the indexed sequential access method (ISAM), 
no OS program that uses ISAM can execute under CMS. Therefore, no 
program can write an indexed sequential data set on a CMS disk. 

Handling Files that Reside on OS or DOS Disks 

By simulating OS macros, CMS can read, but not write or update, OS 
sequential and partitioned data sets that reside on OS disks. Using the 
same simulated OS macros, CMS can read DOS sequential files that reside 
on DOS disks. The OS macros handle the DOS data as if it were OS data. 
Thus, a DOS sequential file can be used as input to an OS program running 
under CMS. 

However, an OS sequential or partitioned data set that resides on an OS 
disk can be written or updated only by an OS program running in a real OS 
machine. / 

CMS can execute programs that read and write VSAM files from OS 
programs written in the VS BASIC, COBOL, PL/I, VS/APL, and VS 
FORTRAN programming languages. CMS also supports VSAM for use with 
DOS/VS SORT/MERGE. This CMS support is based on the VSE/VSAM 
program product, and, therefore, the OS user is limited to those VSAM 
functions that are available under VSE/VSAM. 

OS Macro Simulation 

Macro 
Name 

XDAP 

EXCP 

WAIT 

The following figure shows the OS macro functions that are partially or 
completely simulated, as defined by SVC number: 

SVC 
'Number Function 

00 Reads or writes direct access volumes 

00 Executes graphic channel programs for graphic access 
method (GAM) 

01 Waits for an I/O completion 

Figure 6 (Part 1 of 3). Simulated OS Supervisor Calls 

28 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986 

\ 
'-- -



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

( Macro SVC 
Name Number Function 

POST 02 Posts the I/O completion 

EXIT/RETURN 03 Returns from a called phase 

GETMAIN 04 Conditionally acquires user storage 

FREE MAIN 05 Releases user-acquired storage 

GETPOOL - Simulates as SVC 10 

FREEPOOL - Simulates as SVC 10 

LINK 06 Links control to another phase 

XCTL 07 Deletes, then links control to another load phase 

LOAD 08 Reads a phase into storage 

DELETE 09 Deletes a loaded phase 

( 
GET MAIN/ 10 Manipulates user free storage 

FREE MAIN 

TIME 11 Gets the time of day 

ABEND 13 Terminates processing 

SPIE 14 Allows processing program to handle program interrupts 

RESTORE 17 Effective NOP 

BLDL 18 Builds a directory for a partitioned data set 

FIND 18 Locates a member of a partitioned data set 

:{ 
OPEN 19 Activates a data file 

CLOSE 20 Deactivates a data file 

STOW 21 Manipulates partitioned directories 

OPENJ 22 Activates a data file 

TCLOSE 23 Temporarily deactivates a data file 

DEYTYPE 24 Gets device-type physical characteristics 

TRKBAL 25 Effective NOP 

FEOV 31 Sets forced EOY error code 

WTO/WTOR 35 Communicates with the terminal 

EXTRACT 40 Effective NOP 

IDENTIFY 41 Adds entry to loader table 

ATTACH 42 Effective LINK 

CHAP 44 Effective NOP 

TTIMER 46 Accesses or cancels timer 

STIMER 47 Sets timer interval and timer exit routine 

DEQ 48 Effective NOP 

SNAP 51 Dumps specified areas of storage 

ENQ 56 Effective NOP 

FREEDBUF 57 Releases a free storage buffer 

Figure 6 (Part 2 of 3). Simulated OS Supervisor Calls 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 4. OS Simulation Under CMS 29 

.----~---.~-..... 



Macro SVC 
Name Number 

STAE 60 
DETACH 62 
CHKPT 63 
RDJFCB 64 

SYNAD -
SYNADAF 68 

SYNADRLS 68 
BSP 69 
TGET/TPUT 93 
TCLEARQ 94 

STAX 96 

PGRLSE 112 

CALL -
SAVE -
RETURN -
GET/PUT -
READ -
WRITE -
NOTE/POINT -
CHECK -
DCB -
DCBD -

Function 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Allows processing program to decipher abend. conditions 

Effective NOP 

Effective NOP 

Obtains information from FILEDEF command 

Handles data set error conditions 

Provides SYNAD analysis function 

Releases SYNADAF message and save areas 

Backs up a record on a tape or disk 

Reads or writes a terminal line 

Clears terminal input queue 

Updates a queue of GMTAXEs that creates an attention 
exit block 

Releases storage contents 

Transfers control to a control section at a specified entry 

Saves program registers 

Returns from a subroutine 

Reads/Writes system-blocked data (QSAM) 

Accesses system-record data 

Write system-record data 

Manages data set positioning 

Verifies READ/WRITE completion 

Constructs a data control block 

Generates a DSECT for a data control block 

Figure 6 (Part 3 of 3). Simulated OS Supervisor Calls 

OS Macros 

Because CMS has its own file system and is a single-user system operating 
in a virtual machine with virtual storage, there are certain restrictions for 
the simulated OS function in CMS. For example, HIARCHY options and 
options that are used only by OS multi-tasking systems are ignored by 
CMS. 

Due to the design of the CMS loader, an XCTL from the explicitly loaded 
phase, followed by a LINK by succeeding phases, may cause unpredictable 
results. 

Listed below are descriptions of all the OS macro functions that are 
simulated by CMS as seen by the programmer. Implementation and 
program results that differ from those given in as Data Management Macro 

;e' 

/ 

Instructions and as Supervisor Services and Macro Instructions are stated. " 
HIARCHY options and those used only by OS multi-tasking systems are 
ignored by CMS. Validity checking is not performed within the simulation 

30 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986 



(' 

(' 

,( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

routines. The entry point name in LINK, XCTL, and LOAD (SVC 6, 7, 8) 
must be a member name or alias in a LOADLIB directory or in a TXTLIB 
directory unless the COMPSWT is set to on. If the COMPSWT is on, SVC 
6, 7, and 8 must specify a module name. This switch is turned on and off by 
using the COMPSWT macro. See the VM/SP CMS Command Reference for 
descriptions of all CMS user macros. 

Macro-BVC No. Differences in Implementation 

XDAP-SVC 0 

EXCP-SVC 0 

WAIT-SVC 1 

POST-SVC 2 

The TYPE option must be R or W; the V, I, and K options 
are not supported. The BLKREF-ADDR must point to an 
item number acquired by a NOTE macro. Other options 
associated with V, I, or K are not supported. 

The EXCP macro is supported by CMS. The EXCP macro 
executes graphic channel programs for graphic access 
method (GAM). 

All options of WAIT are supported. The WAIT routine 
waits for the completion bit to be set in the specified 
ECBs. 

All options of POST are supported. POST sets a 
completion code and a completion bit in the specified 
ECB. 

EXIT/RETURN-SVC 3 

GETMAIN-SVC 4 

Depending upon whether this is an exit or return from a 
linked or an attached routine, SVC 3 processing does the 
following: posts ECB, executes end of task routines, 
releases phase storage, unchains and frees latest request 
block, and restores registers. Do not use EXIT/RETURN 
to exit from an explicitly LOADed phase. If 
EXIT /RETURN is used for this purpose, CMS issues 
abend code AOA. 

All options of GETMAIN are supported except SP, 
BNDRY =, HIARCHY, LC, and LU. SP, BNDRY =, and 
HIARCHY are ignored by CMS. LC and LU result in 
abnormal termination if used. GETMAIN gets blocks of 
free storage. 

FREEMAIN-SVC 5 
All options of FREEMAIN are supported except SP and 
L. SP is ignored by CMS, and L results in abnormal 
termination if used. FREEMAIN frees blocks of storage 
acquired by GETMAIN. 

GETPOOL/FREEPOOL 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 

All the options of GETPOOL and FREEPOOL are 
supported. GETPOOL constructs a buffer pool and stores 
the address of a buffer pool control block in the DCB. 

Chapter 4. OS Simulation Under CMS 31 



LINK-SVC 6 

XCTL-SVC 7 

LOAD-SVC 8 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

FREEPOOL frees a buffer pool constructed by 
GETPOOL. 

The DCB and HIARCHY options are ignored by CMS. 
All other options of LINK are supported. LINK loads the 
specified program into storage (if necessary) and passes 
control to the specified entry point. 

The DCB and HIARCHY options are ignored by CMS. 
All other options of XCTL are supported. XCTL loads the 
specified program into storage (if necessary) and passes 
control to the specified entry point. 

The DCB and HIARCHY options are ignored by CMS. 
All other options of LOAD are supported. LOAD loads 
the specified program into storage (if necessary) and 
returns the address of the specified entry point in register 
O. If loading a subroutine is required when SVC 8 is 
issued, CMS searches directories for a TXTLIB member 
containing the entry point or for a TEXT file with a 
matching filename. An entry name in an unloaded TEXT 
file will not be found unless the filename matches the 
entry name. After the subroutine is loaded, CMS tries to 
resolve external references within the subroutine, and 
may return another entry point address. To insure a 
correct address in register 0, the user should bring such 
subroutines into storage either by the CMS 
LOAD/INCLUDE commands or by a VCON in the user 
program. 

DELETE-SVC 9 All the options of DELETE are supported. DELETE 
decreases the use count by one and, if the result is zero, 
frees the corresponding virtual storage. Code 4 is 
returned in register 15 if the phase is not found. 

GETMAIN/FREEMAIN-SVC 10 

TIME-SVC 11 

All the options of GETMAIN and FREEMAIN are 
supported except SP and HIARCHY, which are ignored 
by CMS. 

CMS supports only the DEC, BIN, TU, and MIC 
parameters of the TIME macro instruction. TIME 
returns the time of day to the calling program. However, 
the time value that CMS returns is only accurate to the 
nearest second and is converted to the proper unit. 

ABEND-SVC 13 The completion code parameter is supported. The DUMP 
parameter is not. If a STAE request is outstanding, 
control is given to the proper STAE routine. If a STAE 
routine is not outstanding, a message indicating that an 
abend has occurred is printed on the terminal along with 
the completion code. (' " 

\. ./ 

32 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

SPIE-SVC 14 All the options of SPIE are supported. The SPIE routine 
specifies interruption exit routines and program 
interruption types that cause the exit routine to receive 
control. 

RESTORE-SVC 17 

BLDL-SVC 18 

FIND-SVC 18 

STOW-SVC 21 

The RESTORE routine in CMS is a NOP. It returns 
control to the user. 

BLDL is an effective NOP for LINKLIBs and JOBLIBs. 
For TXTLIBs and MACLIBs, item numbers are filled in 
the TTR field of the BLDL list. The K, Z, and user data 
fields, as described in OS/ VS Data Management Macro 
Instructions, are set to zeroes. The "alias" bit of the C 
field is supported, and the remaining bits in the C field 
are set to zero_ 

All the options of FIND are supported. FIND sets the 
read/write pointer to the item number of the specified 
member. 

All the options of STOW are supported. The "alias" bit is 
supported, but the user data field is not stored in the 
MACLIB directory since CMS MACLIBs do not contain 
user data fields. 

When using the STOW macro's ADD directory function 
without closing and reopening the data set after each new 
member is added, the CLOSE macro must be issued 
within each multiple of 256 new members. The existing 
number of entries does not need to be known before the 
ADD function is started. 

OPEN/OPENJ-SVC 19/22 
All the options of OPEN and OPENJ are supported 
except for the DISP, EXTEND, and RDBACK options, 
which are ignored. OPEN creates a CMSCB (if 
necessary), completes the DCB, and merges necessary 
fields of the DCB and CMSCB. 

CLOSE/TCLOSE(CLOSE TYPE = T)-SVC 20/23 
All the options of CLOSE and TCLOSE are supported 
except for the DISP option, which is ignored. The DCB is 
restored to its condition before OPEN. If the device type 
is disk, the file is closed. If the device type is tape, the 
REREAD option is treated as a REWIND. For TCLOSE, 
the REREAD option is REWIND, followed by a forward 
space file for tapes with standard labels. 

DEVTYPE-SVC 24 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

With the exception of the RPS option, which CMS 
ignores, CMS accepts all options of the DEVTYPE macro 
instruction. In supporting this macro instruction, CMS 
groups all devices of a particular type into the same class. 

Chapter 4. as Simulation Under CMS 33 

- -------------- ------------------------



TRKBAL-SVC 25 

FEOV-SVC 31 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

For example, all printers are grouped into the printer 
class, all tape drives into the tape drive class, and so 
forth. In response to the DEVTYPE macro instruction, 
CMS provides the same device characteristics for all 
devices in a particular class. Thus, all devices in a 
particular class appear to be the same device type. 

The device type characteristics CMS returns for each 
class are: 

Class 
Printer 
Virtual reader 
Console 
Tape drive 
DASD 
Virtual punch 
DUMMY 
unassigned 

Device Characteristics 
1403 
2540 
1052 
2400 (9 track) 
2314 
2540 
none 
2314 

The TRKBAL routine in CMS is a NOP. It returns 
control to the user. 

Control is returned to CMS with an error code of 4 in 
register 15. 

WTO/WTOR-SVC 35 
All options of WTO and WTOR are supported except 
those options concerned with multiple console support. 
WTO displays a message at the operator's console. 
WTOR displays a message at the operator's console, waits 
for a reply, moves the reply to the specified area, sets a 
completion bit in the specified ECB, and returns. There 
is no check made to determine if the operator provides a 
reply that is too long. The reply length parameter of the 
WTOR macro instruction specifies the maximum length of 
the reply. The WTOR macro instruction reads only this 
amount of data. 

EXTRACT-SVC 40 
The EXTRACT routine in CMS is essentially a NOP. The 
user-provided answer area is set to zeroes and control is 
returned to the user with a return code of 4 in register 15. 

IDENTIFY-SVC 41 

ATTACH-SVC 42 

The IDENTIFY routine in CMS adds a REQUEST block 
to the load request chain for the requested name and 
address. 

All the options of ATTACH are supported in CMS as in 
OS PCP. The following options are ignored by CMS: 
DCB, LPMOD, DPMOD, HIARCHY, GSPV, GSPL, 

34 System Logic and Problem Determination (CMS) L Y20-0893·4 © Copyright IBM Corp. 1980, 1986 

/' 

./ 



( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

CHAP-SVC 44 

SHSPV, SHSPL, SZERO, PURGE, ASYNCH, and 
TASKLIB. ATTACH passes control to the routine 
specified, fills in an ECB completion bit if an ECB is 
specified, passes control to an exit routine if one is 
specified, and returns control to the instruction following 
the ATTACH. 

Since CMS is not a multitasking system, a phase 
requested by the ATTACH macro must return to CMS. 

The CHAP routine in CMS is a NOP. It returns control 
to the user. 

TTIMER-SVC 46 All the options of TTIMER are supported. 

STIMER-SVC 47 All options of STIMER are supported except for TASK 
and WAIT. The TASK option is treated as if the REAL 
option had been specified, and the WAIT option is treated 
as a NOP; it returns control to the user. The maximum 
time interval allowed is X I 7FFFFFOO I timer units (or 15 
hours, 32 minutes, and 4 seconds in decimal). If the time 
interval is greater than the maximum, it is set to the 
maximum. 

DEQ-SVC 48 

SNAP-SVC 51 

ENQ-SVC 56 

Note: If running in the CMSBATCH environment, 
issuing the STIMER or TTIMER macro affects the 
CMSBATCH time limit. Depending on the frequency, 
number, and duration of STIMERs and/or TTIMERs 
issued, the CMSBATCH limit may never expire. 

The DEQ routine in CMS is a NOP. It returns control to 
the user. 

Except for SDATA, PDATA, and DCB, all options of the 
SNAP macro are processed normally. SDATA and 
PDATA are ignored. Processing for the DCB option is as 
follows. The DBC address specified with SNAP is used to 
verify that the file associated with the DCB is open. If it 
is not open, control is returned to the caller with a return 
code of 4. If the file is open, then storage is dumped 
(unless the FCB indicates a DUMMY device type). SNAP 
always dumps output to the printer. The dump contains 
the PSW, the registers, and the storage specified. 

The ENQ routine in CMS is a NOP. It returns control to 
the user. 

FREEDBUF-SVC 57 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

All the options of FREEDBUF are supported. 
FREEDBUF returns a buffer to the buffer pool assigned 
to the specified DCB. 

Chapter 4. OS Simulation Under CMS 35 



STAE-SVC 60 

DETACH-SVC 62 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

All the options of ST AE are supported except for the 
XCTL option, which is set to XCTL=YES; the PURGE 
option, which is set to HALT; and the ASYNCH option, 
which is set to NO. STAE creates, overlays, or cancels a 
STAE control block as requested. ST AE retry is not 
supported. 

The DETACH routine in CMS is a NOP. It returns 
control to the user. 

CHKPT-SVC 63 The CHKPT routine is a NOP. It returns control to the 
user. 

RDJFCB-SVC 64 All the options of RDJFCB are supported. RDJFCB 
causes a job file control block (JFCB) to be read from a 
CMS control block (CMSCB) into real storage for each 
data control block specified. FILEDEF commands create 
CMSCBs. 

Additional information regarding CMS OS Simulation of 
RDJFCB follows: 

• The DCBs specified in the RDJFCB PARAMETER 
LIST are processed sequentially as they appear in the 
parameter list. 

• On return to the caller, a return code of zero is 
always placed in register 15. If an abend occurs, 
control is not returned to the caller. 

• Abend 240 occurs if zero is specified as the address of 
the area into which the JFCB is to be placed. 

• Abend 240 occurs if a JFCB EXIT LIST ENTRY 
(Entry type X I 07 I ) is not present in the DCB EXIT 
LIST for anyone of the DCBs specified in the 
RDJFCB PARAMETER LIST. 

• If a DCB is encountered in the parameter list with 
zero specified as the DCB EXIT LIST ('EXLST') 
address, the RDJFCB immediately returns with return 
code zero in register 15. Except for this situation, all 
of the DCBs specified in the RDJFCB PARAMETER 
LIST are processed, unless an abend occurs. 

• For a DCB that is not open, a search is don~ for the 
corresponding FILEDEF or DLBL. If one is not 
found, a test is done to determine if a file exists with 
a filename of 'FILE', a filetype of the DDNAME from 
DCB, and a filemode of 'AI'. If such a file does exist, 
then X I 40 I is placed in the JFCB at displacement 
X I 57 I (FLAG 'JFCOLD IN FIELD 'JFCBIND2'). If 

36 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

/ 

,/ 

" 
"-.."', 

" 

" 
/ 

;f''',\ 

0 



( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

• 

such a file does not exist then X J CO J (FLAG 
'JFCNEW') will be in field 'JFCBIND2'. 

For a file that is not open, but for which a DLBL has 
been specified, X J 08' is placed in the JFCB at 
displacement X '63' (field 'JFCDSORG' byte 2) to 
indicate that it is a VSAM file. 

SYNADAF-SVC 68 
All the options of SYNADAF are supported. SYNADAF 
analyzes an I/O error and creates an error message in a 
work buffer. 

SYNADRLS-SVC 68 

BSP-SVC 69 

All the options of SYNADRLS are supported. 
SYNADRLS frees the work area acquired by SYNAD and 
deletes the work area from the save area chain. 

All the options of BSP are supported. BSP decrements 
the item pointer by one block. 

TGET/TPUT-SVC 93 
TGET and TPUT operate as if EDIT and WAIT were 
coded. TGET reads a terminal line. TPUT writes a 
terminal line. 

TCLEARQ-SVC 94 

STAX-SVC 96 

PGRLSE-SVC 112 

CALL 

NOTE 

POINT 

CHECK 

DCB 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

TCLEARQ in CMS clears the input terminal queue and 
returns control to the user. 

The only option of ST AX that is supported is EXIT 
ADDRESS. STAX updates a queue of CMTAXEs each of 
which defines an attention exit level. 

Release all complete pages (4K bytes) associated with the 
area of storage specified. 

The CALL macro is supported by CMS. The CALL macro 
transfers control to a control section at a specified entry. 

All the options of NOTE are supported. NOTE returns 
the item number of the last block read or written. 

All the options of POINT are supported. POINT causes 
the control program to start processing the next read or 
write operation at the specified item number. The TTR 
field in the block address is used as an item number. 

All the options of CHECK are supported. CHECK tests 
the I/O operation for errors and exceptional conditions. 

The following fields of a DCB may be specified relative to 
the particular access method indicated: 

Chapter 4. as Simulation Under CMS 37 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Operand BDAM BPAM BSAM QSAM 

BFALN F,D F,D F,D F,D 
BLKSIZE n(number) n n n 
BUFCB a(address) a a a 
BUFL n n n n 
BUFNO n n n n 
DDNAME s(symbol) s s s 
DSORG DA PO PS PS 
EODAD a a a 
EXLST a a a a 
KEYLENl n n 
LIMCT n 
LRECL n n n 
MACRF R,W R,W R,W,P G,P,L,M 
OPTCD A,E,F,R J J 
RECFM F,V,U F,V,U, F,V,B,S,A,M,U F,V,B,U,A,M,S 
SYNAD a a a a 
NCP n n 

Access Method Support 

An access method governs the manipulation of data. To facilitate the 
execution of OS code under CMS, the processing program must see data as 
OS would present it. For instance, when the processors expect an access 

~ 

'\...j 

" 

method to acquire input source cards sequentially, CMS invokes specially / 
written routines that simulate the OS sequential access method and pass 
data to the processors in the format that the OS access methods would have 
produced. Therefore, data appears in storage as if it had been manipulated 
using an OS access method. For example, block descriptor words (BDW), 
buffer pool management, and variable records are updated in storage as if 
an OS access method had processed the data. The actual writing to and 
reading from the I/O device is handled by CMS file management. Note that 
the character string X '61FFFF61' is interpreted by CMS as an end of file 
indicator. 

The essential work of the volume table of contents (VTOC) and the data set / 
control block (DSCB) is done in CMS by a master file directory (MFD) that 
updates the disk contents and a file status table (FST). A MFD updates the 
disk contents, and a FST describes each data file. All disks are formatted 
in physical blocks of 512, 800, 1K, 2K, or 4K bytes. 

eMS continues to update the OS format, within its own format, on the 
auxiliary device for files whose fHemode number is 4. That is, the block 
and record descriptor words (BDW and RDW) are written along with the 
data. If a data set consists of blocked records, the data is written to and 
read from the I/O device in physical blocks rather than logical records. 
CMS also simulates. the specific methods of manipulating data sets. 

$- " 

If an input data set is not a BDAM data set, zero is the only value that should :" 
be specified for KEYLEN. This applies to the user exit lines as well as to the '''-J 
DCB macro instruction. 

38 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986 

------------_._-------------- -----_ .. _--- ---.~~~ 



( 

( 

( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

When the OPEN macro instruction is executed, the CMS simulation of the 
OS OPEN routine initializes the data control block (DCB). The DCB fields 
are filled in with information from the DCB macro instruction, the 
information specified on the FILEDEF command, or, if the data set already 
exists, the data set label. However, if more than one source specifies 
information for a particular field, only one source is used. 

The DCB fields are filled in this order: 

1. The DCB macro instruction in your program 

2. The fields you had specified on the FILEDEF command 

3. The data set label if the data set already exists. 

The DCB macro instruction takes precedence over the FILEDEF and the 
data set label. This FILEDEF takes precedence over the data set label. 
Data set label information from an existing CMS file is used only when the 
OPEN is for input or update, otherwise, the OPEN routine erases the 
existing file. 

You can modify any DCB field either before the data set is opened or 
through a data control block open exit. CMS supports only the data 
control block exit of the EXIT LIST (EXLST) options. 

When the data set is closed, the DCB is restored to its original condition. 
Fields that were merged in at OPEN time from the FILEDEF and the data 
set label are cleared. 

To accomplish this simulation, CMS supports certain essential macros for 
the following access methods: 

BDAM 

BPAM 

(direct) - identifying a record by a key or by its relative 
position within the data set. 

(partitioned) - seeking a named member within data set. 

Note: Two BPAM files with the same filetype cannot be 
updated at the same time. The reason for this restriction is 
that DMSSVT uses the filetype of the file in the DCB for the 
filetype of the temporary BPAM directory file. Therefore, 
when opening more than one BPAM file at the same time 
could result in MSDMSSOP036E Error Code 8. 

BSAM/QSAM (sequential) - accessing a record in a sequence in relation to 
preceding or following records. 

VSAM (direct or sequential) - accessing a record sequentially or 
directly by key or address. 

Note: CMS support of as VSAM files is based on 
VSE/VSAM. Therefore, the OS user is restricted to those 
functions available under VSE/VSAM. See "CMS Support 
for OS and VSE VSAM Functions" on page 54 for details. 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 4. as Simulation Under CMS 39 

---------------------



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

CMS also updates those portions of the OS control blocks that are needed 
by the OS simulation routines to support a program during execution. 
Most of the simulated supervisory OS control blocks are contained in the 
following two CMS control blocks: 

CMSCVT simulates the communication vector table. Location 16 contains 
the address of the CVT control section. 

CMSCB is allocated from system free storage whenever a FILEDEF 
command or an OPEN (SVC 19) is issued for a data set. The 
CMS control block consists of a file control block (FCB) for the 
data file and partial simulation of the job file control block 
(JFCB), input/output block (lOB), and data extent block (DEB). 

The data control block (DCB) and the data event control block (DECB) are 
used by the access method simulation routines of CMS. 

Note: The results may be unpredictable if two DCBs access the same data 
set at the same time. 

The GET and PUT macros are not supported for use with spanned records 
except in GET locate mode. READ, WRITE and GET (in locate mode) are 
supported for spanned records, provided the filemode number is 4 and the 
data set is in physical sequential format. 

GET (QSAM) 
All the QSAM options of GET are supported. Substitute mode is 
handled the same as move mode. When the DCBRECFM is FB, the "' .. 
filemode number is 4, the last block is a short block, and an EOF 
indicator (X' 61FFFF61, ) must be present in the last block after the 
last record. Issue an explicit CLOSE prior to returning to CMS to 
obtain the last record when LOCATE mode is used with PUT. 

GET (QISAM) 
QISAM is not supported in CMS. 

PUT (QSAM) 
All the QSAM options of PUT are supported. Substitute mode is 
handled the same as move mode. If the DCBRECFM is FB, the 
filemode number is 4, and the last block is a short block. An EOF 
indicator is written in the last block after the last record. When 
LOCATE mode is used with PUT, issue an explicit CLOSE prior to 
returning to CMS to obtain the last record. 

PUT (QISAM) 
QISAM is not supported in CMS. 

PUTX 
PUTX support is provided only for data sets opened for 
QSAM-UPDATE with simple buffering. 

READ/WRITE (BISAM) 
BISAM is not supported in CMS. 

40 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986 

/ 

i 



f 

(-

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

BDAM Restrictions 

READ/WRITE (BSAM and BPAM) 
All the BSAM and BPAM options of READ and WRITE are supported 
except for the SB option (read backwards). 

READ (Offset Read of Keyed BDAM data set) 
This type of READ is not supported because it is used only for 
spanned records. 

READ/WRITE (BDAM) 
All the BDAM and BSAM (create) options of READ and WRITE are 
supported except for the Rand RU options. 

When an input or output error occurs, do not depend on OS sense bytes. 
An error code is supplied by CMS in the ECB in place of the sense bytes. 
These error codes differ for various types of devices and their meaning can 
be found in VM/SP System Messages and Codes, under DMS message 120S. 

Note: If OPTCD J is specified in the FILEDEF command, the proper flag is 
set in the JFCOPTCD byte of the FCBSECT (simulated OS control block). 
During simulation of the OS OPEN macro, the FILEDEF value is merged 
into DCBOPTCD. Mter DCBOPTCD is set, the first data byte of output 
lines presented to the PUT (QSAM) and WRITE (BSAM) macros is 
interpreted as a table reference character (TRC) byte. CP uses the TRC 
byte to select translate tables when printing on a 3800. The translate table 
determines the font type at real print time. If the virtual printer is not a 
3800, the TRC byte is stripped off and the line is printed in the usual 
manner. 

The four methods of accessing BDAM records are: 

1. Relative Block RRR 

2. Relative Track TTR 
3. Relative Track and Key TTK 

4. Actual Address MBBCCHHR. 

The restrictions on these access methods are as follows: 

• Only the BDAM identifiers underlined above can be used to refer to 
records since the CMS simulation of BDAM files uses a three-byte 
record identifier on 512, 1K, 2K, and 4K format CMS minidisks. For 
800-byte disks, only the last two identifiers are used. 

• CMS BDAM files are always created with 255 records on the first 
logical track and 256 records on all other logical tracks, regardless of 
the block size. If BDAM methods 2, 3, or 4 are used and the RECFM is 
U or V, the BDAM user must either write 255 records on the first track 
and 256 records on every track thereafter, or the BDAM user must not 
update the track indicator until a NO SPACE FOUND message is 
returned on a write. For method 3 (WRITE ADD), this message occurs 
when no more dummy records can be found on a WRITE request. For 
methods 2 and 4, this does not occur and the track indicator is updated 

L Y20-0893·4 © Copyright IBM Corp. 1980, 1986 Chapter 4. OS Simulation Under CMS 41 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

only when the record indicator reaches 256 and overflows into the track 
indicator. 

• The user must create variable length BDAM files (in PL/I they are 
regional 3 files) entirely under CMS. Also specify, on the XTENT 
option of the FILEDEF command, the exact number of records to be 
written. When reading variable length BDAM files, the XTENT and 
KEYLEN information specified for the file must duplicate the 
information specified when the file was created. CMS does not support 
WRITE ADD of variable length BDAM files; that is, the user cannot 
add additional records to the end of an already existing variable length 
BDAM file. 

• Two files of the same filetype, both using keys, cannot be open at the 
same time. If a program that is updating keys does not close the file it 
is updating for some reason, such as a system failure or another IPL 
operation, the -original keys for files that are not fixed format are saved 
in a temporary file with the same filetype and a filename of 
$KEYSA VE. To finish the update, run the program again. 

• Variable length BDAM files must be created under CMS in their 
entirety, with the XTENT option of FILEDEF specifying the exact 
number of records to be written. When reading variable BDAM files, 
the XTENT and key length information specified must duplicate what 
was created at file creation time. CMS does not support adding 
variable length records to BDAM files. 

• Once a file is created using keys, additions to the file must not be made 
without using keys and specifying the original length. 

• Note that there is limited support from the CMS file system for BDAM 
created files (sparse). Sparse files are manipulated with CMS 
commands but are not treated as sparse files by most CMS commands. 
The number of records in the FST is treated as a valid record number. 

• The number of records in the data set extent must be specified using the 
FILEDEF command. The default size is 50 records. 

• The minimum LRECL for a CMS BDAM file with keys is eight bytes. 

Reading OS Data Sets and DOS Files Using OS Macros 

CMS users can read OS sequential and partitioned data sets that reside on 
OS disks. The CMS MOVEFILE command can be used to manipulate those 
data sets, and the OS QSAM, BPAM, and BSAM macros can be executed 
under CMS to read them. 

The CMS MOVE FILE command and the same OS macros can also be used 
to manipulate and read DOS sequential files that reside on DOS disks. OS 
macros, however, can only be used to read sequential files from DOS 
formatted CKD disks. OS macros are not supported for reading sequential 
files on DOS formatted FB-512 disks. 

42 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

,/'-

/ 

, 
'=:. 

/ 
1. 



:( 

( 

( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

The ACCESS Command 

The FILEDEF Command 

The following OS Release 20.0 BSAM, BPAM, and QSAM macros can be 
used with CMS to read OS data sets and DOS files: 

BLDL 
BSP 
CHECK 
CLOSE 
DEQ 
DEVTYPE 

ENQ 
FIND 
GET 
NOTE 
POINT 
POST 

RDJFCB 
READ 
SYNADAF 
SYNADRLS 
WAIT 

CMS supports the following disk formats for the OS and OS/VS sequential 
and partitioned access methods: 

• Split cylinders 

• User labels 

• Track overflow 

• Alternate tracks. 

As in OS, the CMS support of the BSP macro produces a return code of 4 
when trying to backspace over a tape mark or when a beginning of an 
extent is found on an OS data set or a VSE file. If the data set or data file 
contains split cylinders, an attempt to backspace within an extent, resulting 
in a cylinder switch, also produces a return code of 4. When a data set has 
been allocated or updated by OS on an OS disk, an OS CLOSE must be 
issued before CMS can read or move it. The CLOSE marks the end-of-file 
(EOF) and updates the DSILSTAR field of the Format 1 DSCB. If the 
CLOSE is not issued, CMS may read or move residual data that remains 
beyond the intended end of the file. 

Before CMS can read an OS data set or VSE file that resides on a non-CMS 
disk, you must issue the CMS ACCESS command to make the disk available 
to CMS. 

The format of the ACCESS command is: 

ACCESS cuu mode [/ext ] 

For more details, see the CMS Command Reference. You must not specify 
options or file identification when accessing an OS or DOS disk. 

You then issue the FILEDEF command to assign a CMS file identification 
to the OS data set or VSE file so that CMS can read it. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 4. as Simulation Under CMS 43 



r 

Flledef 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

The format of the FILEDEF command used for this purpose is: 

DISK [In It [1m J J 
FILE ddname _ Al 

{
or 

ddname 

zn } [ [[DISK ~ ~dnameJ [~J J { g~: !uall qua12 ... } ] 
DSN quall.qua12 .. . 

DUMMY 

Related Options: [MEMBER membername J 
CONCAT 

If you are issuing a FILEDEF for a VSE file, note that the OS program that 
will use the VSE file must have a DCB for it. For ddname in the FILEDEF 
command line, use the ddname in that DCB. With the DSN operand, enter 
the fileid of the VSE file. 

Sometimes, CMS issues the FILEDEF command for you. Although the 
eMS MOVEFILE command, the supported CMS licensed program 
interfaces, and the CMS OPEN routine each issue a default FILEDEF, you 
should issue the FILEDEF command yourself to ensure the appropriate file 
is defined. 

After you have issued the ACCESS and FILEDEF commands for an OS 
sequential data set, OS partitioned data set, or VSE sequential file, CMS 
commands (such as ASSEMBLE and STATE) can refer to the OS data set or 
VSE file just as if it were a CMS file. 

Several other CMS commands can be used with OS data sets and DOS files 
that do not reside on CMS disks. See the VM/SP CMS Command Relerence 
for a complete description of the CMS ACCESS, FILEDEF, LISTDS, LKED, 
MOVEFILE, OSRUN, QUERY, RELEASE, and STATE commands. 

For restrictions on reading OS data sets and DOS files under CMS, see the 
VM/SP CMS for System Programming. 

The CMS FILEDEF command allows you to specify the I/O device and the 
file characteristics to be used by a program at execution time. In 
conjunction with the OS simulation scheme, FILEDEF simulates the 
functions of the data definition JCL statement. 

44 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

--- ---------------------------

/ 

i 

'" ./ 



( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

FILEDEF may be used only with programs using OS macros and functions. 
For example: 

filedef filel disk proga data al 

After issuing this command, your program referring to FILE1 would access 
PROGA DATA on your A-disk. 

If you wished to supply data from your terminal for FILE1, you could issue 
the command: 

filedef filel terminal 

and enter the data for your program without recompiling. 

fi tapein tap2 (recfm fb lrecl 50 block 100 9track den 800) 

After issuing this command, programs referring to T APEIN access a tape at 
virtual address 182. (Each tape unit in the CMS environment has a 
symbolic name associated with it.) The tape must have been previously 
attached to the virtual machine by the VM/SP operator. 

To maintain OS compatibility in the EOV2/EOF2 label, you must specify 
LRECL in the output FILEDEF. 

The AUXPROC Option of the FILEDEF Command: 

The AUXPROC option can only be used by a program call to FILEDEF and 
not from the terminal. The CMS language interface programs use this 
feature for special I/O handling of certain (utility) data sets. 

The AUXPROC option, followed by a fullword address of an auxiliary 
processing routine, allows that routine to receive control from DMSSEB 
before any device I/O is performed. At the completion of its processing, the 
auxiliary routine returns control to DMSSEB signaling whether or not I/O 
has been performed. If it has not been done, DMSSEB performs the 
appropriate device I/O. 

When control is received from DMSSEB, the general purpose registers 
contain the following information: 

GPR2 = data control block (nCB address) 

GPR3 = base register for DMSSEB 

GPR8 = CMS OPSECT address 

GPRll = file control block (FeB) address 

GPR14 = return address in DMSSEB 

GPR15 = auxiliary processing routine address 

all other registers = work registers 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 4. OS Simulation Under eMS 45 

_. -,-~-.---- .. -~---.--~----- ----- - ---



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

The auxiliary processing routine must provide a save area to save the 
general registers. This routine must also perform the save operation. 
DMSSEB does not provide the address of a save area in general register 13, 
as is usually the case. When control returns to DMSSEB, the general 
registers must be restored to their original values. Control is returned to 
DMSSEB by branching to the address contained in general register 14. 

GPR15 is used by the auxiliary processing routine to inform DMSSEB of 
the action that has been or should be taken with the data block as follows: 

Register Action 

GPR15=0 No I/O performed by AUXPROC routine. DMSSEB 
performs I/O. 

GPR15 < 0 I/O performed by AUXPROC routine and error was 
encountered. DMSSEB takes error action. 

GPR15 > 0 I/O performed by AUXPROC routine with residual count in 
GPR15. DMSSEB returns normally. 

GPR15 =64K I/O performed by AUXPROC routine with zero residual 
count. 

eMS QSAM Tape End-of-Volume Exit 

TEO VEX IT Macro 

A program working with CMS simulation of OS QSAM can set up an exit 
that could be entered on the end-of-volume condition on IBM standard label 
tapes. This exit receives control after the trailer labels have been processed 
and the tape has been rewound and unloaded, provided that OS simulation 
is for something other than standard labels. For standard labels 
multivolume standard label processing is done before termination. This exit 
should not be confused with the OS DCB end-of-volume exit. The OS DCB 
end-of-volume exit continues to be unsupported. 

Use the TEOVEXIT macro instruction to set up and clear a CMS tape 
end-of-volume exit. 

The four formats of the TEOVEXIT macro instruction are: 

• Standard format 
• List format (MF = L) 
• Complex List format (MF = (L,addr[,label])) 
• Execute format (MF=(E,addr». 

46 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM·Corp. 1980, 1986 

( 

j 
/ 



( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Standard Format 

[label] 

The standard format of the TEOVEXIT macro is: 

TEOVEXIT { SET,DDNAME-{'ddname' laddr} ,EXIT~addr } 
,RETINFO =addr [ ,ERROR = addr] 

CLR,DDNAME = {, ddname' I addr} [,ERROR = addr] 

where: 

addr 

label 

SET 

CLR 

is an assembler program label or an address stored in a general 
register. If a register is used, it must be enclosed in parentheses. 

is an assembler program label. 

establishes an exit. 

clears an exit. 

DDNAME= 
is the ddname the tape end-of-volume exit is being established for. 
ddname may be from 1 to 8 alphameric characters enclosed in quotes. 

EXIT = 

label is an assembler program label that is the address of the 
program's end-of-volume processing routine. 

(Rn) is a general register. Its value is the address of the program's 
end-of-volume processing routine. 

This routine receives control after trailer labels have been processed 
and the tape has been rewound and unloaded. This routine receives 
control with the same PSW key as the call to CMS QSAM. The 
registers passed to the exit are the same as they were at the call to 
QSAM except: register 0 points to the DCB: register 1 points to the 
FCB; register 14 contains the address the routine branches to upon 
completion. If the exit does not return control to the address in 
register 14, future options are unpredictable for that file. Register 15 
contains the address of the user exit routine. 

(This attribute is required for SET. If the EXIT attribute is specified 
on CLR, it is ignored. No MNOTE is issued.) 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 4. as Simulation Under CMS 47 



List Format (MF = L) 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Note: When control is returned to the program that issued the QSAM ;--~, 
call, the registers are unaffected by changes to registers in the \._ . ./ 
end-of-volume exit. 

RETINFO= 

label is an assembler program label that is the address of a 20-byte 
half word aligned area. 

(Rn) is a general register. Its value is the address of a 20-byte 
halfword aligned area. 

The program must provide this· 20 byte, halfword aligned area for 
return information. 

(This attribute is required for SET. If the RETINFO attribute is 
specified on CLR, it is ignored. No MNOTE is issued.) 

ERROR = 

label is an assembler program label that is the address of the error 
routine. 

(Rn) is a general register. Its value is the address of the error 
routine. 

The error routine receives control if an error is found. If this 
parameter is not specified and an error occurs, control returns to the 
next sequential instruction in the calling program. 

When MF = L is coded, the TEOVEXIT macro has the following format: 

;" 

[label] TEOVEXIT MF=L [,DDNAME = ' ddname' ] [,EXIT = label] ( 
[,RETINFO = label] 

,SET [,DDNAME='ddname'] [,EXIT= label] 

,CLR [,DDNAME = ' ddname' ] 

All parameters have the same meaning as the standard format with the 
following difference: 

\ 

MF=L 
indicates that the parameter list is created in-line. No executable 
code is generated. Register notation cannot be used for macro 
parameter addresses. 

48 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Note: When using the MF= parameter, all other parameters are optional. 
When the function is executed, however, a valid combination of parameters 
must have been specified by the LIST and EXECUTE formats of the macro. 

Complex List Format (MF = (L,addr [,label])) 

[label] 

When MF = (L,addr[,label]) is coded, the TEOVEXIT macro has the 
following format: 

TEOVEXIT MF = (L, addr ['labeIJ) [ ,DDNAME = f ddname' I addr } ] 

[,EXIT= addrJ [,RETINFO = addrJ 

,SET [,DDNAME = {, ddname' I addr } ] 

[,EXIT = addrJ [,RETINFO = addrJ 

,CLR [ ,DDNAME = {, ddname' I addr } ] 

All parameters have the same meaning as the standard format with the 
following difference: 

MF = (L,addr[,label]) 
indicates that the parameter list is created in the area specified by 
addr. The address may represent an area within your program or an 
area of free storage obtained by a system service. You can determine 
the size of the parameter list by coding the label operand. The macro 
expansion equates label to the size of the parameter list. This format 
of the macro produces executable code to move the data into the 
parameter list specified by addr. However, it does not generate the 
instructions to invoke the function. If this version of the LIST format 
is used, it must be executed before any related invocation of the 
EXECUTE format. 

Note: When using the MF = parameter, all other parameters are optional. 
When the function is executed, however, a valid combination of parameters 
must have been specified by the LIST and EXECUTE formats of the macro. 

L Y20-0893-4 .© Copyright IBM Corp. 1980, 1986 Chapter 4. OS Simulation Under CMS 49 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Execute Format (MF = (E,addr» 

[label] 

Restrictions 

When MF=(E,addr) is coded, the TEOVEXIT macro has the following 
format: 

TEOVEXIT MF = (E, addr) [,DDNAME={'ddname' laddr}] [,EXIT= addr] 

[ ,RETINFO = addr] [,ERROR = addr] 

,SET [,DDNAME = {' ddname' I addr }] [ ,EXIT = addr] 

[ ,RETINFO = addr] [,ERROR = addr] 

,CLR [,DDNAME= {'ddname' I addr}] 

[ ,ERROR = addr] 

All parameters have the same meaning as the standard format with the 
following difference: 

MF = (E,addr) 
indicates that instructions are generated to execute the TEOVEXIT 
function. addr represents the location of the parameter list. 
Information in the parameter list may be changed by specifying the 
appropriate operands on the macro. 

Note: When using the MF = parameter, all other parameters are optional. 
When the function is executed, however, a valid combination of parameters 
must have been specified by the LIST and EXECUTE formats of the macro. 

1. Tape end-of-volume exit only applies to CMS OS QSAM simulation. 

2. Only mM standard label tapes are supported. If other than standard 
labels are used, you receive a return code of 16 from TEOVEXIT. 

3. The LEAVE option of the FILEDEF command is invalid. If it is used, 
you receive a return code of 20 from TEOVEXIT. 

4. The NOEOV processing option of the FILEDEF command is invalid. If 
it is used, you receive a return code of 28 from TEOVEXIT. 

5. You cannot read backwards. If it is attempted, the results are 
unpredictable. 

6. The tape end-of-volume exit is not entered if either an OPEN or a 
CLOSE is in progress. 

7. The exit must not issue I/O requests that might result in the tape 
end-of-volume exit being invoked. If it is attempted, the results are 
unpredictable. 

50 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980,·1986 



(-

( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Return Codes 

SET Function 

CLR Function 

8. The exit must not issue additional QSAM requests to the file. If it is 
attempted, the results are unpredictable. 

9. The exit must not modify or clear the FCB of the file the end-of-volume 
condition was encountered on. 

10. TEOVEXITs are cleared whenever a CLOSE or a CLOSE type T is 
issued for the file. 

If any errors occur during the processing of the TEOVEXIT macro, register 
15 contains the error return codes. 

Code Meaning 

0 End-of-volume exit is established for the specified DDNAME. This is 
the normal return. 

4 The DDNAME specified is not found. (No FILEDEF was found with 
the given DDNAME.) 

8 Device specified in the FILEDEF is not a tape device. 
12 Tape identification is invalid. (Must be TAPO-TAPF.) 
16 Tape label type is other than "SL" 
20 "LEAVE" is specified in the FILEDEF (FCB). 
24 Invalid PLIST. 
28 "NOEOV" is specified in the FILEDEF (FCB). 
32 Exit address or RETINFO address is zero. 

Code Meaning 

0 End-of-volume exit is cleared for the specified DDNAME. This is the 
normal return. A return code of 0 may also indicate the 
end-of-volume exit was not in effect, but it was still cleared. 

4 The DDNAME specified is not found. (No FILEDEF was found with 
the given DDNAME.) 

24 Invalid PLIST. 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 4. as Simulation Under CMS 51 



Successful Completion 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

On successful completion of TEOVEXIT SET (register 15 = 0), the RETINFO 
attribute contains: 

Word Meaning 

o The symbolic tape number associated with the given DDNAME 
(character T APO-T APF) 

1 The address of the FeB of the given DDNAME 
2 RESERVED 
3 RESERVED 
4 RESERVED 

52 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986 

/ 



( 

( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Chapter 5. VSE Support Under eMS 

CMS supports interactive program development for VSE. This includes 
creating, compiling, testing, debugging, and executing commercial 
application programs. The VSE programs can be executed in a CMS virtual 
machine or in a CMS Batch Facility virtual machine. 

VSE files and libraries can be read under CMS. VSAM data sets can be 
read and written under CMS. 

The CMS VSE environment (called CMS/DOS) provides many of the same 
facilities that are available in VSE. However, CMS/DOS supports only 
those facilities that are supported by a single (background) partition. The 
VSE facilities provided by CMS/DOS are: 

• VSE linkage editor 
• Fetch support 
• VSE Supervisor and I/O macros 
• VSE Supervisor control block support 
• Transient area support 
• VSE/VSAM macros. 

This environment is entered each time the CMS SET DOS ON command is 
issued; VSAM functions are available in CMS/DOS only if the SET DOS 
ON (VSAM) command is issued. In the CMS/DOS environment, CMS 
supports many VSE facilities, but does not support OS simulation. When 
you no longer need VSE support under CMS, you issue the SET DOS OFF 
command and VSE facilities are no longer available. 

CMS/DOS can execute programs that use the sequential access method 
(SAM) and virtual storage access method (VSAM), and CMS/DOS can 
access VSE libraries. 

CMS/DOS cannot execute programs that have execution-time restrictions, 
such as programs that use sort exits, teleprocessing access methods, or 
multi-tasking. DOS/VS COBOL, DOS PL/I, DOS/VS RPG II and Assembler 
language programs are executable under CMS/DOS. 

All of the CP and CMS online debugging and testing facilities (such as the 
CP ADSTOP and STORE commands and the CMS DEBUG environment) 
are supported in the CMS/DOS environment. Also, CP disk error recording 
and recovery is supported in CMS/DOS. 

With its support of a CMS/DOS environment, CMS becomes an important 
tool for VSE application program development. Because CMS/DOS is a 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 5. VSE Support Under CMS 53 



Restricted Materials qf IBM. 

Licensed Materials - Property of IBM 

VSE program development tool, it assumes that a VSE system exists, and 
uses it. The following sections describe what is supported and what is not. \..,j 

eMS Support for OS and VSE VSAM Functions 

eMS supports interactive program development for as and VSE programs 
using VSE/VSAM. eMS supports VSAM macros for as and VSE programs. 
The complete set of VSE/VSAM macros and options and a subset of 
OS/VSAM macros are supported for execution with Assembler language 
programs. 

eMS also supports Access Method Services to manipulate as and VSE 
VSAM and SAM data sets. 

Under eMS, VSAM data sets can span up to 10 DASD volumes. CMS does 
not support VSAM data set sharing. However, CMS already supports the 
sharing of minidisks or full pack minidisks. 

VSAM data sets created in CMS are not in the CMS file format. Therefore, 
eMS commands currently used to manipulate CMS files cannot be used for 
VSAM data sets that are read or written in CMS. A VSAM data set 
created in CMS has a file format that is compatible with as and DOS 
VSAM data sets. Thus, a VSAM data set created in CMS can later be read 
or updated by as or DOS. This compatibility with as is limited to VSAM 
data sets created with physical record sizes of 512, 1K, 2K, and 4K bytes. 
For further information on compatibility between OS/VS VSAM and 
VSE/VSAM, please refer to VSE/ VSAM General Information. 

Because VSAM data sets in CMS are not a part of the CMS file system, 
eMS file size, record length, and minidisk size restrictions do not a apply. 
The VSAM data sets are manipulated with Access Method Services 
programs executed under CMS instead of with the CMS file system 
commands. Also, all VSAM minidisks and full packs used in CMS must be 
initialiZed by the Device Support Facility (DSF); the CMS FORMAT 
command must not be used. 

eMS supports VSAM control blocks with the GENCB, MODCB, TESTCB, 
and SHOWCB macros. 

In its support of VSAM data sets, CMS uses rotational position sensing 
(RPS) wherever possible. CMS does not use RPS for 2314/2319 devices or 
for 3340 devices that do not have the feature. 

Hardware Devices Supported 

CMS support of VSAM data sets is based on VSE/VSAM. The disks used 
for VSAM data sets in CMS are: 

• IBM 2314 Direct Access Storage Facility 

54 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986 

j 



( 

( 

( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

• IBM 2319 Disk Storage 

• IBM 3310 Direct Access Storage 

• IBM 3330 Disk Storage Models 1 and 2 

• IBM 3330 Disk Storage, Model 11 

• IBM 3340 Direct Access Storage Facility 

• IBM 3344 Direct Access Storage 

• IBM 3350 Direct Access Storage 

• IBM 3370 Direct Access Storage, Models AI, A2, Bl, and B2 

• IBM 3375 Direct Access Storage 

• IBM 3380 Direct Access Storage. 

CMS disk files used as input to or output from Access Method Services may 
reside on any disk supported by CMS. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 5. VSE Support Under CMS 55 



56 System Logic and Problem Determination (CMS) 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

( 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

( 

( Part 2: Method of Operation and Program Organization 

f 

( .. 

This part contains the following information: 

• Initialization of the eMS virtual machine environment 

• Processing and executing eMS files 

• Processing commands that manipulate the file system 

• Managing the eMS file system 

• Handling I/O operations 

• Handling interruptions 

• Managing eMS storage 

• Simulating non-eMS operating environments 

• Performing miscellaneous eMS functions. 

The eMS description is in two parts. The first part contains figures 
showing the functional organization of eMS. The second part contains 
general information about the internal structure of eMS programs and 
their interaction with one another. 

eMS program organization is in two figures. Figure 7 on page 58 is an 
overview of the functional areas of eMS. Each block is numbered and 
corresponds to a more detailed outline of the function found in Figure 8 on 
page 59. 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Part 2: Method of Operation and Program Organization 57 



0 __ _ 
Process 
Commands that 
Manipulate the 
File System 

Process and 
Execute 
CMS Files 

Initialize the 
CMSVirtual 
Machine 
Environment 

Perform 
Miscellaneous 
CMS Functions 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Manege the 
CMS File 
System 

Simulate 
Non-CMS 
Operating 
Environments 

Hendle I/O 
Operations 

Handle 
Interruptions 

Menage the 
eMS Storage 

o 

Figure 7. An Overview of the Functional Areas of eMS 

58 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

( 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

o I Q) I 

Initialize and 
Query the eMS Process and 
Virtual Machine execute 
environment CMSfiles 

I 
I I I I 

Maintain an Process and Load and Process 
interactive execute execute MODULE Perform librarv 
console CMSfiles TEXT files files support functions 

I I I I 
DMSINI DMSINT DMSEXI DMSLDA DMSMOD DMSLBM 

Interpret Determine if Process the Generate and Generate and 
Raadthe eMS commands EXEC, EXEC 2, LOAD and load a MODULE update MACLIB 
nucleus entered at or System Product INCLUDE file files 

the console Interpreter commands 

I I I I 

( 
DMSINS DMSINA I I DMSLDR DMSNXL DMSLBT 

Initialize DMSEXT DMSEXE 

storage constants Handle Begin execution Load a Generate and 

and vlnuBI disks synonyms and Process Process of programs in nucleus update TXT LI B 

for 8 virtual abbreviations EXECs written EXECs written storage extension library 

machine in eMS eXEC in EXEC 2 

I 
language language 

I I 
DMSHTB DMSSCN DMSRCN, DMSREV DMSLSB OMSRLD 

DMSREX, DMSRFN 

Build hyperblock 
DMSRIN, DMSRTC 

Load CMS mod-Process. DMSRVA.DMSRXE 
mapping tables for command line Process du les and relocate 
the virtual s-disk and create a Process EXECs 

loader the address con-
and y-disk PLiST written in 

options stants of CMS 

REXX language 
load modules 

I I 

( 
DMSINT DMSCPF DMSLIO DMSNXD 

DMSRSF Delete 
Pan a Create a 

specified Handle first load map 
commands command Process the and perform nucleus 
entered at line to CP RXSYSFN func- 10ader I/O extensions 
the console for execution ticn REXX 

language 

I I I 
DMSITS DMSMDP DMSNXM 

DMSSET 

Set virtual Process 
Identify 

Type a load existing 
machine commend map at a nucleus 
environment functions console extensions 
OPtions via SVCcalls 

I 
DMSSLG DMSGLB 

( Changes languages; Define libraries 
returns address of to be searched 
LANGBLK for during execution; 
an application release the chain 

I I 
DMSQRS, DMSORT DMSLGT 
DMSQRU, DUSQRV 
DMSORW, DMSORX Create chain 
DMSQRV,DMSQRZ of TXTLIB 

Query the 
blocks for use 
during execution; 

virtual machine release the chain 
environment 
OPtion settings I 

DMSLlB 
DMSIDE 

Search TXT LIB 
Display libraries for 
virtual undefined 
machine symbols; close 
identification TXTLIB libraries 

( 
Figure 8 (Part 1 of 5). Details of eMS System Functions 

L Y20·0893·4 © Copyright IBM Corp. 1980, 1986 Part 2: Method of Operation and Program Organization 59 

~-~ .. --.-------------------------------------------------



G) I 

Process 
commands 
that manipulate 
the file system 

I 
I I I 

DMSPRT 

Perform general Perform data 
file support manipulation Print 8 record 
functions functions 

I I I 
DMSSTT DMSEDC,DMSEDF DMSPUN 

DMSEDI,DMSEDX 

Verify the 
existence Create and Punch a record 
of iii file and update files 
return its address 

I I I 
DMSLST DMSXBG DMSTYP 

List the names Create and 
of files on a update files Type a record 
CMSdisk 

I I I 
DMSSYN DMSUPD DMSASM 

Create synonym I nterface with 
and abbreviations Update source file the assembler 

for a file name to assemble 
files 

I I I 
DMSRNM DMSCPV DMSDSK 

Manipulate disk Load card -to-
Rename a file disk. dump file records disk-to-card 

I I I 
DMSERS DMSCMP DMSTPI 

Compare Process TAPE 
Erase a file records in command 

two files functions 

I I 
DMSSRT DMSMVE 

Sort/arrange Move data from 
records in one device to 
a file another 

I I 
DMSRDC DMSHLB,DMSHU, 

DMSHLD,DMSHLP, 
DMSHLE,DMSHLS 

Read a record Displays HELP 
description files 

I I 
DMSSPR DMSGLD 

Initialize a 
Maintain 

I- named 
3800 printer variables 

I 
DMSEIO 

Do 110 
between a 
device and 
the stack 

I 

<9 

I 

Manage virtual 
disk data 

I 
DMSACC 

Access data on 
8. virtual disk 

I 
DMSACM 

Build an active 
disk table 

I 
DMSACF 

Build file 
status table 
block fora 
virtual disk 

I 
DMSACG 

Reads the 
directory into 
contiguous storage 
by hyperblocks 
and sorts. if 
necessary 

I 
DMSHTB 

Builds hyperblock 
mapping table or 
hash table for a 
virtual disk 

DMSNAM 

Search a 
'NAMES' 
file 

I 
DMSDDL 

SEND and 
RECEIVE 
files 

I 

Manege the eMS 
fila system 

I 
I 

Locate data 
in the eMS 
file system 

I 
DMSLAD 

Find an active 
disk table 

I 
DMSLAF 

Find an active 
file table 

I 
DMSLFS 

Find 8 file 
statUI table 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

I 

Perform file 
update functions 

I 
DMSARE 

Clear an active 
disk table 

I 
DMSFNS 

Close any open 
files on disk 

I 
DMSALU 

Clear tables and 
free storage 
associated with 
disk 

T 
DMSLAF 

Create or 
delete active 
file table entries 

Figure 8 (Part 2 of 5). Details of eMS System Functions 

60 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986 

/ 

(f 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

® I 0 0 
Handle 110 Manage eMS 
Operations Storage 

Handle 
Interrupts 

I 
I I I I r I 

Perform Perform Perform Unit Perform 
Writetoa 

Wait for 1/0 Display 
Console I/O Disk I/O Record I/O Tape 1/0 Terminal to Complete 

I I I I I I 
DMSIMM DMSCIT DMSDIO DMSPIO DMSTPD DMSSCR DMSIOW OMSCIT DMSFRE 

Read or Write Load display Allocate 
Set up user I- Start an 1/0 one or more Perform print Read a buffers to be Wait for an Handle release free 
immediate Operation blocks of disk 1/0 functions PDS tape displayed on 1/0 event to console system and 
commands data a screen take place interrupts user storage 

I I I I I 
DMSCWT DMSTOO. 

DMSCIO OMSTIO DMSGIO DMSHDS DMSITS OMSSMN DMSTRK 
Allocate and 

Wah fer s Manipulate Perform read Issue a display Set up and handle fo- release user storage 
storage Read or write Handle SVC upon request by 

console event 
management card and punch a tape record to screen user-defined SVC interrupt OS GETMAINI 

to complete chains card 110 DIAGNOSE interrupts FREEMAIN 
macros 

I I I I 
DMSCAT 

DMSSRD. 
DMSCWR DMSTMA DMSHDI DMSITI DMSPAG 

OMSSWR 

Stack a line Read or write one Read an unloaded Set up and handJe I--
of console or more items to a Write a line PDS from tape Handle 110 Manage free pages 
input for disk file SOO-byte to the console and place it in a 

user-defined 1/0 
interrupts 

OMSCRD record format MACUS interrupts 

I I I 
DMSCRD DMSERD DMSRDR DMSIUC DMSITE 

Read or write one 
Read a line of or more items to Identify Set up CMS I- Handle external 
console input a disk file 1 K, 2K,. characteristics IUCV external interrupts 

or 4K-byte of a reader file exits 

( 
record format 

I I 
DMSCWR DMSPNT DMSITP 

Set the read or 
Write a line write pointer Handle program 
to the console for a file to a check interrupts 

given file item 

( 
Figure 8 (Part 3 of 5). Details of CMS System Functions 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Part 2: Method of Operation and Program Organization 61 



I 

Provide access 
method support 

DMssas 

Support OSAM 

I 
DMSSBS 

Suppon BSAM 
and BPAM 

I 
DMSSBD 

Support BDAM 

I 
OMSVIB 

Load the 
CMS/VSAM· 
shared system 
for as VSAM 
programs 

I 
DMSVIP 

Interface with 
VSAMprograms 
to perform VSAM 
functions for as 
VSAM programs 

I 
DMSVSR 

Reset fields set 
duringVSAM 
processing and 
purgnheCMSI 
VSAM DCSS 

I 
DMSAMS 

Support VSAM 
eccess method 
services 

I 
DMSCCK 

Invokes the 
VSE/VSAM 
catalog check 
S8rviceaid 

Simulata 
Non-CMS 
operating 
environmants 

I 
I 

SimuletaOb 
functions 

DMSFLD 

Interpret OSJCL 
parameters for 
use by CMS 

I 
DMSFLE 

Processes the 
CLEAR and 
LIST fUnetions 
for the FILEDEF 
command 

I 
DMSSVT,DMSSOP, 
DMSSCT,DMSSMN, 
DMSSVN,DMSSLN, 
DMSSAB, DMSLOS, 
DMSSFF, DMSSVU 

Simulate as macros 

I 
DMSSEB,DMSSTP 

Perform I/O 
functions for as 

I 
DMSROS 

AllowCMSto 
ACCESS,STATE, 
READ, NOTE, 
and BACKSPAC 
on OS disks 

I 
DMSLDS 

List information 
about OS data 

I 
DMSUTL 

List, copy, or 
compress 
LOADLIBs 

I 
OMSOSR 

Invokes a load 
module from a CMS 
LOADLIB or OS 
module library 

I 
OMSLKO 

Link-edit a CMS 
TEXT file or OS 
object module into 
a CMS LOAOLIB 

I 
DMSSNXL 

Load, 
nucleus 
extension 

I 
DMSNXD 

Delete specified 
nucleus extensions 

I 
Initialize DOS 
and process 
DOS system 
control 
commands 

I 
OMSSET 

Initialize the 
CMS/OOS 
environment 

I 
DMSOPT 

Set compiler 
options 

I 
OMSASN 

Associate svstam 
or programmer 
logical units with 
physical units 

I 
DMSLLU 

List assignments 
of logical units 

I 
DMSDLB 

Associate a 
DTF table 
filename with 
a logic:al unit 

I 
DMSXCP 

Handle SVC 0 

I 

Ptoceu DOS 
110 functions 

DMSBOP 

Simulate the 
VSE OPEN 
function 
(non disk files) 

I 

Process DOS 
execution related 
functions 

DMSDLK 

Linked;t 
DOS/VSE 
phases in 
storage 

OMSOR1,DMSOR2, DMSFET, DMSFCH 
DMSOR3 

Locate a Load a phase; 
specified file begin program 

execution 

DMSOPL 

Access a VSE 
source statement 
library 

DMSCLS 

Simulatathe 
VSE CLOSE 
function 
(non disk files) 

CMSBAM CCSS 

Simulate VSE 
OPEN/CLOSE, 
logic module, 
VTOC, and source 
statement library 
functions 

OMSVLT 

Handle raturn 
fromCMSBAM 
DCSS 

DMSETR 

Handle SVC 98 
(EXTRACT) 

I 
OMSLCK 

Handle SVC 110 
(LOCK/UNLOCK!' 

Simulate DOS 
functions 

I 

Provide DOS 
SVC simulation 

DMSDOS 

Handle 
CMS/DOSSVC 
requests 

DMSGMF 

Handles SVC 107 
(GETFLD, 
MODFLD) 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Process DOS 
service commands 

DMSSRV 

Copy bOoks from 
a source statement 
Iibrarvtoan 
output device 

DMSRRV 

Copy modules 
from a 
reloc:atable 
Ijbrarytoan 
output device 

DMSPRV 

Copy procedures 
from a procedure 
library to an 
output device 

DMSOSV 

List the 
directories 
of libraries 

OMSDSL 

Delete, compress, 
list phases of a 
OOSLI B library 

DMSGTM 

Handles SVC 34 
(GETIME) 

I 

Tarminatethe 
DOS envitonment 

OMSBAB 

Pass control to 
an abnormal 
termination 
routine via 
STXIT AS macro 

DMSITf' 

Process program 
interrupt and 
SPIE exits 

DMSDMP 

Simulate $$DUMP 
and $$PDUMP: 
issue the CP DUMP 
DIAGNOSE. 
Simulate IDUMP: 
issue the PRINTL 

DMSGVE 

Handles SVC 99 
(GETVCE) 

I 

Provide VSE 
system functions 

OMSLAB 

LABEL 
macro 
support 

OMSCVH 

Simulate 
VTOC 
requftu for 
CMS disks 

DMSDAS 

ASSGN 
macro 
support 

J 
DMSLIC 

Handles SVC 50 
(L1oes ERROR) 

DMSRPG DMSSTX OMSSUB OMSLDF OMSVIS DMSSVL 

Handles SVC 85 
(RELPAG) 

DMSNXM 

Identifvexisting 
nucleus extensions 

Handles SVC 16, 
17,37,95 (STXIT 
PC, EXIT PC, 
STXIT AB, 
EXIT AB) 

DMSFCH 

Load a phase; 
begin program 
execution 

Handles SVC 105 
(SUBSIO) 

DMSVIS 

Handles SVCs 
61,62, (GETVIS, 
FREEVIS) 

Handles SVCs 1, 
2,4,65 (FETCH 
FETCH, LOAD, 
CDLOAD) 

DMSPAG 

Manage free pages 

Handles SVCs 
61,62 (GETVIS, 
FREEVIS) 

DMSPAG 

Manage free pages 

Handles SVC 75 
(SECTVAL) 

DMSMCM 

Handles SVC 5 
IMCCOM) 

Figure 8 (Part 4 of 5). Details of CMS System Functions 

62 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

( 
\. J 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

® Perform 
Miscellaneous 
eMS functions 

I 
I I I I I I 1 

DMSIFC DMSBTB DMSDBG DMSGND DMSABN DMSABX DMSRSV 

Distributes blocks 
Check and passes Load the eMS Perform DEBUG Generate Handle Receives control of a minidisk 
CPEREP operands batch virtual functions an auxiliary abnormal when ABNEXIT between the 
to EREP machine directory termination macro is executed directory file, 

allocation map I1FCEREPll file, and user's file. 

I I I I I Sets up pointer 
blocks. 

DMSREA DMSBTP DMSDVR DMSASD DMSERR 

Provides records to Perform batch Load the Provide an Generate 
ER EP from the processing SVCTRACE auxiliary error 
VM/370 error functions module, directory messages 
recording cylinders DMSOVS 

I T 
DMSOVS DMSLAD 

( Perform Include an 
SVCTRACE auxliarv 
functions directory on 

the FST chain 

Figure 8 (Part 5 of 5). Details of eMS System Functions 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Part 2: Method of Operation and Program Organization 63 



64 System Logic and Problem Determination (CMS) 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

/ 



( 

i( 

(~ 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Chapter 6. CMS Virtual Machine Initialization 

Some steps involved in initializing a CMS virtual machine are: 

• Processing the IPL command for a virtual card reader 

• Processing the IPL command for a disk device or a named or saved 
system 

• Processing the first command line entered at the CMS virtual console 

• Setting up the options for the virtual machine operating environment. 

DMSINI and DMSINS are the two routines that are mainly responsible for 
the one-time initialization process in which the virtual card reader is initial 
program loaded (IPLed). DMSINS is called by DMSINI if the IPL is by 
device address. DMSINS also handles the IPL process when a named or 
saved system is loaded. If the IPL is by saved system name, DMSINS 
receives control directly from CP at the point immediately following the 
SA VESYS instruction. 

DMSINS stacks a command to invoke the SYSPROF EXEC, if it exists, 
unless the user specifies the NOSPROF parameter or unless the user IPLs a 
non-DASD device such as a virtual reader. If it is stacked, it is invoked 
before any user disks are accessed. The SYSPROF EXEC contains some of 
the same CMS initialization function as in DMSINS, and the SYSPROF 
EXEC is responsible for processing the first command line entered at the 
CMS virtual console and accessing the user disks. 

DMSINS passes control to DMSINT (the CMS command interpreter), but if 
the SYSPROF EXEC command is not stacked, DMSINT processes the first 
line entered from the console as a special case. The processing performed 
by this code is a part of the initialization process. DMSSET sets up the 
user-specified virtual machine environment features; DMSQRY allows the 
user to query the status of these settings. 

Initialization: Loading a CMS Virtual Machine from Card Reader 

When a virtual card reader is specified on the IPL command, for example 
OOC, initialization processing begins. Initialization refers to the process of 
loading from a card reader as opposed to reading a nucleus from a cylinder 
of a CMS minidisk or reading a named or shared system (description 
follows). 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 6. CMS Virtual Machine Initialization 65 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

IPL OOC invokes DMSINI and DMSINQ. DMSINI and DMSINQ prompt the 
user for information used in building the CMS nucleus. 

When all questions are answered, the requested nucleus is written to the 
DASD. 

Once written on the DASD, a copy of the nucleus is read into virtual 
machine storage. One track at a time is read from the disk-resident nucleus 
into virtual storage. DMSINS is then invoked to initialize storage 
constants and to set up the disks and storage space required by this virtual 
machine. 

DMSINI passes a parameter to DMSINS to indicate whether the IPL was of 
a DASD or non-DASD device and whether or not the user wants to save the 
system. If DMSINI is entered at the entry point DMSINSW, a flag will be 
appended to the parameters currently passed, to indicate that the IPL is of 
a non-DASD device, and the SYSPROF EXEC processing should be 
bypassed. If the user wants to save the system, this flag will also indicate 
this condition and will point to the saved system name. 

Some of the functions that DMSINS performs include: 

• Initializing storage constants and system tables 

• Processing IPL command line parameters (BATCH, NOSPROF, and 
AUTOCR). 

Initializes Storage Contents and System Tables 

DMSINS 
Saves the address of this virtual machine in NUCON. 

DMSFRE 
Allocates free storage to be used during initialization. 

DMSIND 
Allocates all low free nucleus storage so the system status table 
(S-STAT) can be built in high free storage. 

Reads the S-disk ADT entry and builds the S-STAT. Reads the Y-disk 
ADT entry and builds the Y-STAT. 

Releases the low nucleus free storage allocated above (to force SSTAT 
into high storage) so it can be used again. 

Stores the address of S-STAT into ASSTAT and ADTFDA in NUCON. 
DMSINS calls DMSHTB to build hyperblock mapping tables for S- and 
Y-disks (if the file status tables (FSTs) span three or more pages). 

Sorts the entries in the S-STAT and Y-STAT. 

66 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986 



( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Processes IPL Command Line Parameters 

DMSINS 
Checks for parameters BATCH, INSTSEG, AUTOCR, NOSPROF, and 
SAVESYS. 

If BATCH is specified, DMSINS sets the flag BATFLAGS. 

If INSTSEG is specified, DMSINS checks for parameters YES, NO, 
and name. For YES or name, DMSINS calls DMSEXLSS, which 
accesses the Installation DCSS or the specified DCSS and loads the 
EXECs from it. For NO, the Installation DCSS is not accessed and the 
EXECs are not loaded. 

If AUTOCR is specified, a local flag is set so that the subsequent 
console read may be bypassed and the null line input simulated. This 
action causes a PROFILE EXEC to be executed. 

If the NOSPROF parameter is specified, a local flag is set to indicate 
that the SYSPROF EXEC should not be stacked, and all CMS 
initialization should be done by DMSINS. 

If the SA VESYS parameter is specified with nothing but an associated 
systemname, DMSINS saves the CMS system. Any unrecognized 
parameters are skipped over, and parameter processing continues until 
the end of the line. 

Issues DIAGNOSE code X I 24 I to obtain the device type of the 
console. 

Issues DIAGNOSE code X I 60 I to get the size of the virtual machine 
and sets up enough storage for this virtual machine. Sets the 
FREELOWE pointer to NUCON. 

Performs time-of-day processing and OS initialization. 

DMSIND 
A validity check is performed when a saved system is IPLed to ensure 
that the saved copy of the S-STAT or Y-STAT is current. This check 
is performed only for S-disks and V-disks formatted in 512-, 1024-, 
2048-, or 4096-byte CMS blocks. For 880-byte block disks, the saved 
copy of the S-STAT or Y-STAT is used. 

A validity check consists of comparing the date that the saved 
directory was last updated with the date that the current disk was last 
updated. If the dates for the S-STAT are different, the S-STAT is built 
in your storage. If the dates for the Y-STAT are different, the V-disk 
is accessed using the CMS ACCESS command: 

ACCESS 19E Y/S * * Y2 

This means that even when the S· and V-disks are accessed in 
read/write mode and then released, the message DMSINS100W S-STAT 
and/or Y-STAT not available will result. 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 6. CMS Virtual Machine Initialization 67 

-------_._-----... -.-



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

The DASD address of the Y-disk is whatever was specified when CMS -" 
was generated, For the standard systems it is 19E. 

DMSINS 
Issues HNDIUCV SET to establish CMS as an IUCV user. 

Issues DIAGNOSE code X, BO' to determine if this user was 
automatically re-IPLed by CP and to retrieve restart information. 

If not bypassing the SYSPROF EXEC, then DMSINS stacks the 
command to invoke it, and passes the following additional information 
to the SYSPROF EXEC: 

CMS system id 
Parameter to indicate whether S-STATs and Y-STATs are 
available 
Indication of whether or not the 192 D disk should be accessed 
Restart information from CP if this is a re-IPLed user 
Parameters to indicate that SA VESYS parameter was not specified 
correctly. 
Indication of whether IUCV initialization was completed 
successfully or not. 

DMSCWR or SYSPROF EXEC 
Writes the system id message to the console. 

DMSCRD or SYSPROF EXEC 
Reads the initial CMS command line from the console. 

DMSSCN 
Puts the initial CMS command line in PLIST format. 

DMSINS or SYSPROF EXEC 
Issues ACCESS 195 A to access the batch virtual machine A-disk. 

DMSINS or SYSPROF EXEC 
If the BATCH virtual machine is not being loaded, it determines 
whether there is a PROFILE EXEC or a first command line to be 
handled. If there is a first command, it is stacked. If there is a 
PROFILE EXEC, DMSINS stacks the command to invoke it and 
passes control to DMSINT, the CMS console manager. If the 
SYSPROF EXEC finds a PROFILE EXEC, it invokes the user profile 
directly, then exits. 

Initializing a Named or Saved System 

The CMS system is designed to be used as a saved, shared system. A named 
system is a copy of the nucleus that has been saved and named with the CP 
SA VESYS command. It is faster to IPL a named system than to IPL by disk 

( 
\\...- / 

address be<:ause CP maintains the named system in page format instead of ,f -, 

eMS disk format. The initialization of a saved system is also faster because,"/ 
the SSTAT and YSTAT are already built. 

68 System Logic and Problem Determination (eMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986 

~~- ------~~~--~-----~-----~~~~-



( ... 

( 

(. 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

The shared system is a variant of the saved system. In the shared system, 
reentrant portions of the nucleus are placed in storage pages that are 
available to all users of the shared system. Each user has his own copy of 
nonreentrant portions of the nucleus. The shared pages are protected by 
CP and may not be altered by any virtual machine. 

During DMSINI processing, the virtual machine operator is asked if the 
nucleus must be written (vis message DMSINI607R). If the operator 
answers no, control passes directly to DMSINS to initialize the named or 
saved system specified by the operator in his answer to message 
DMSINI606R. 

Modifying a 3800 Named System 

The IMAGE MOD command allows an installation to modify an existing 
3800 named system without the need for generating from scratch a 
completely new one. 

The format of the IMAGEMOD command is: 

IMAGEMOD {GEN I ADD I REP I DEI I MAP} 
libname 
modname [modname] ••• 
[TERMI PRINT I DISK] 

For further information, refer to the VM/SP CP for System Programming. 

Processing the IMAGEMOD Command 

Module DMSIMA performs the following steps when processing the 
IMAGEMOD command: 

1. Analyze the input PLIST for syntax. If there is an error, exit with a 
return code of 2 and issue the appropriate message: 

• DMSIMA001E = NO MODULE NAME SPECIFIED 
• DMSIMA003E = INVALID OPTION 'option' 
• DMSIMA014E = INVALID FUNCTION 'function' 
• DMSIMA046E = NO LIBRARY NAME SPECIFIED 
• DMSIMA047E = NO FUNCTION SPECIFIED. 

2. Obtain maximum storage area (via GETMAIN macro). 

3. Unless the GEN function is specified, read the named system into 
storage just obtained with DIAGNOSE code X'74'. Leave the first 10 
pages of storage empty. This permits later expansion by 10 members. 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 6. CMS Virtual Machine Initialization 69 



Restricted Materials of IBM 

Licensed Materials --: Property of IBM 

4. Determine the type of function requested: 

• MAP 
• DEL 
• GEN 
• ADD 
• REP. 

5. If the function requested is MAP, scan the named system directory and 
format the following information about each member: 

• Name 
• Relative displacement 
• Total size. 

Determine the option requested. If the option is TERM, PRINT, or 
DISK, place the formatted information on the user's terminal, virtual 
printer, or in the CMS file' named 'libname MAP A5', respectively. 

6. If the function requested is DEL, delete the member from the directory 
and the data area of the named system. Compress the named system by 
moving up the remaining members to take up the space vacated by the 
deletion. If the member is not found, issue message DMSIMA013E. 

7. If the function requested is GEN, construct a skeleton named system in 
virtual storage. This skeleton system has no members initially. Then 
proceed as if the function were ADD. 

8. If the function requested is ADD, load the member into the CMS 
transient area. If a load error occurs, issue DMSIMA346E and exit with 
return code of 6. Add the new member entry to the end of the named 
system directory. If virtual capacity is exceeded by this addition, issue 
DMSIMA109E and exit with return code of 2. During this process, the 
directory is moved back in storage one page to prevent new data from 
overlaying existing data. Move the new member data to the end of the 
named system residing in user virtual storage. Modify the directory 
entries after this move takes place. If the member already exists, issue 
message DMSIMA751E and exit with return code of 4. 

9. If the function requested is REP, concatenate the DEL and ADD 
functions. In other words, perform the DEL function and the the ADD 
function for the specified member. 

10. Scan the input command line for more members to be processed. If 
there are no more members or if the number of members has reached 
the maximum (10), write the changed named system back to disk via 
DIAGNOSE code X, 74' (unless this was a MAP function request) and 
then exit. Otherwise, process the next member according to the 
function requested. 

70 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

(" . Handling the First Command Line Passed to CMS 

( 

DMSINT, the CMS console manager, contains the code to handle 
commands stacked by module DMSINS during initialization processing. 
DMSINT checks for the presence of a stacked command line, and if there is 
one to process, DMSINT processes it just as it would a command entered 
during a terminal session. That is, DMSINT calls the W AITREAD 
subroutine and issues an SVC 202 to execute the command. When fIrst 
command processing completes, DMSINT receives control to handle 
commands entered at the console for the duration of the session. 

Setting the Virtual Machine Environment Options 

DMSSET sets up the virtual machine environment options. This module is 
structured and relatively easy to follow, except for some sections of 
DMSSET. 

DMSSET: Set DOS ON (VSAM) Processing 

DMSSET 
(label DOS) If a disk mode is specified on the command line, ensures 
that it is valid. 

DMSLAD 
If the disk mode specifIed is valid, locates and returns the address of 
the disk. 

DMSSET 
Issues DIAGNOSE code X I 64 I FINDSYS to locate the CMSDOS or 
CMSBAM segments. If the segment is not already loaded, issues 
DIAGNOSE code X '64 I LOADSYS to load it. 

DMSSET 
Sets up the $$B-transient area for use by VSE routines. 

DMSSET 
Sets up the LOCK/UNLOCK resource table. 

DMSSET 
If SET DOS OFF has been specified, issues the DIAGNOSE code 
X '64 I PURGESY function for the CMSDOS and CMSBAM segments 
and, if VSAM has been loaded, for the CMSVSAM segment. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 6. CMS Virtual Machine Initialization 71 



Querying eMS Environment Options 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

The QUERY command, which displays CMS environment options, is 
handled by eight modules. DMSQRY is the main module. The first time 
QUERY is invoked, DMSQRY established QUERY as a nucleus extension. 
DMSQRY acquires a work area and uses DMSQRZ to initialize it. 

If the option queried is a CMS option and if the command has the correct 
syntax, DMSQRY passes control to the module that handles that option: 
DMSQRS, DMSQRT, DMSQRU, DMSQRV, DMSQRW, or DMSQRX. The 
module called performs the requested QUERY function, then returns 
control to the original caller. 

72 System Logic and Problem Determination (CMS) L Y20-0893-4 ©Copyright IBM Corp. 1980, 1986 

( , 



( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Chapter 7. Processing and Executing CMS Files 

As shown in Part 1 of Figure 8 on page 59 five general topics form the 
category "Process and Execute CMS Files". Two of these topics are 
discussed in this section: "Maintaining an Interactive Console 
Environment" and "Loading and Executing Text Files" on page 94. 

Maintaining an Interactive Console Environment 

Two levels of information are discussed in the following section. The first 
level is a general discussion of how CMS maintains an interactive console 
environment. The second level is a more detailed discussion of the methods 
of operation mainly responsible for this function. 

There are two major functions concerned with maintaining an interactive 
terminal environment for CMS: console management and command 
processing. The CMS module that manages the virtual machine console is 
DMSINT. The module responsible for command processing is DMSITS. 
Many CMS modules are called in support of these two functions, but the 
modules in the following list are primarily responsible for supporting the 
functions: 

DMSCRD 
Reads a line from the console. 

DMSCWR 
Writes a line to the console. 

DMSSCN 
Converts a command line to PLIST format. 

DMSPKT 
Translates command names. 

DMSINA 
Converts abbreviated commands to their full names. 

DMSCPF 
Passes a command line to CP for execution. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 73 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Maintaining an Interactive Command/Response Session 

Three main lines of control maintain the continuity for an interactive CMS 
session: (1) handling of commands passed to DMSINT by the initialization 
module, DMSINS (2) handling of commands entered at the console during a 
session, and (3) handling of commands entered as subset commands. The 
following lists show the main logic paths for the first two functions. 

Execute Commands Passed via DMSINS 

DMSINT 
On entry from DMSINS, processes any commands passed via the 
console read put on the user's console by that routine. That is, 
processes any commands the user stacks on the line as the first read 
that DMSINT processes. In handling the first read, if that read is 
null, control passes to the main loop of the program, which is 
described in the following section. 

DMSINM 
Retrieves the current time. 

DMSCRD 
Branches to the waitread subroutine to read a command line at the 
console. 

DMSSCN 
Waitread then calls DMSSCN to convert the line just read into PLIST 
format. Once converted to PLIST format, an SVC 202 is issued (at 
label INIT1A) to execute the function. This cycle is repeated until all 
stacked commands are executed. 

DMSFNS 
When command execution completes, calls DMSFNS (at label UPDAT) 
to close any files that may have remained open during the command 
processing. 

DMSVSR 
Ensures that any fields set by VSAM processing are reset for CMS. 
Also ensures that the VSAM discontiguous shared segment is purged. 

DMSINT 
Sets up an appropriate status message (CMS, CMS SUBSET, 
CMS/DOS, etc.). 

DMSCWR 
Writes the status message to the console. 

74 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

'- / 

( 



'( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Handle Commands Entered During a CMS Terminal Session 

DMSINT 
Branches (from label INLOOP2) to the waitread subroutine to read a 
line entered at the console. 

DMSCRD 
Reads a line entered at the console (subroutine waitread). 

DMSSCN 
Converts the command line to PLIST format (subroutine waitread). 

DMSINT 
Determines whether the command line is a null line or a comment. 

DMSLFS 
If the command line is neither a command line nor a comment, 
determines whether the command is an EXEC file. 

DMSINA (ABBREV) 
Determines whether the command is an abbreviation, and if it is, 
returns its full name. 

DMSITS 
Passes the command line to DMSITS via an SVC 202. DMSITS is the 
CMS SVC handler. For a detailed description of the SVC handler, see 
"Method of Operation for DMSITS - CMS SVC Handling Routine" on 
page 77. 

DMSCPF 
If the command could not be executed by the SVC handler, passes the 
command to CP to see if CP can execute it. 

DMSFNS 
On return from processing the command line (label UPDAT), closes 
any files that may have been opened during processing. 

DMSSMN 
Resets any flags or fields that may have been set during OS 
processing. 

DMSVSR 
Ensures that any fields set for VSAM processing are reset for CMS. 
Also ensures that the VSAM discontiguous shared segment is purged. 

DMSINT 
When the command line has been successfully executed, builds a CMS 
ready message for the user (label PRNREADY). 

DMSCWR 
Writes the ready message to the console. 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 75 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

DMSINT /' 
Returns control to DMSINT at label INLOOP2 to continue monitoring ~'j 
the CMS terminal session. 

Method of Operation for DMSINT - Console Manager 

DMSINT, the console manager, maintains the continuity of operation of the 
CMS command environment. The main control loop of DMSINT is initiated 
by a call to DMSCRD to get the next command. When the command is 
entered, DMSINT calls DMSINM to initialize the CPU time for the new 
command and then puts it in both a standard tokenized and an extended 
parameter list form by calling the scan function program DMSSCN. After 
calling DMSSCN, DMSINT checks to see if an EXEC filetype exists with a 
filename of the type-in command. (For example, if ABC was typed in, it 
checks to see if ABC EXEC exists.) If the EXEC file does exist, DMSINT 
adjusts register 1 to point to the same command set up by DMSSCN, but 
preceded by CL8'EXEC'. Then DMSINT issues an SVC 202 to call the 
corresponding EXEC procedure ('ABC EXEC' in the example). 

If no such EXEC file exists for the first word typed in, DMSINT checks for 
a translation via DMSPKT. If no translation or synonym is found, 
DMSINT makes a further check using the CMS abbreviation-check routine, 
DMSINA. If the translation or synonym is found, substitute it for the 
typed-in word. If, for example, the first word typed in had been 'E', 
DMSINT looks up 'E' via DMSPKT. If not found, then DMSINT looks up 
'E' via DMSINA. If an equivalent is found for 'E', DMSINT looks for an 
EXEC file with the name of the equivalent word (for example, EDIT EXEC). \. 
If such a file is found, DMSINT adjusts register 1 as described above to call 
the EXEC and substitutes the equivalent word, EDIT, for the first word 
typed in. Thus, if 'E' is a valid abbreviation for 'EDIT' and you have an 
EXEC file called EDIT EXEC, EDIT EXEC is invoked when you type in 'E' 
from the terminal. 

If no EXEC file is found either for the entered command name or for any 
equivalent found by DMSINA or DMSPKT, DMSINT leaves the terminal 
command as processed by DMSSCN and then issues an SVC 202 to pass 
control to DMSITS. DMSITS then passes control to the appropriate " / 
command program. When the command terminates execution, or if 
DMSITS cannot execute it, the return code is passed in register 15. 

A zero return code indicates successful completion of the command. A 
positive return code indicates that the command was completed, but with an 
apparent error. A negative code returned by DMSITS indicates that the 
typed in command could not be found or executed at all. 

In the last case, DMSINT assumes that the command is a CP command and 
issues a DIAGNOSE instruction to pass the command line to the CP 
environment. If the command is not a CP command, DMSINT calls 
DMSCWR to type a message indicating that the command is unknown and 
the main control loop of DMSINT is entered at the beginning. 

If the retw:n code from DMSITS is positive or zero, DMSINT saves the 
return code briefly and calls module DMSAUD to update the master file 

76 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



{ 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

directory (MFD) on the appropriate user's disk for the 8oo-byte records on 
disk, or to update the file directory and the allocation map, or the 
appropriate user's disk for the 512-, 1K-, 2K-, or 4K-byte records on disk. 
DMSINT also frees the TXTLIB chain and releases pages of storage if 
required. 

After updating the file directory, DMSINT checks the return code that was 
passed back. If the code is zero, DMSINT types a ready message and the 
processor time used by the given command. Control is passed to the 
beginning of the main control loop of DMSINT. If the return code is 
positive, an error message is typed, along with the processor time used. The 
command causes the typing of an error message with the format: 
DMSxxxnnnt 'text' where DMSxxx is the module name, nnn is the message 
identification number, t is the message type, and 'text' is the message 
explaining the error. Control is then passed to the beginning of the main 
control loop. 

Method of Operation for DMSITS - CMS SVC Handling Routine 

DMSITS (INTSVC) is the CMS system SVC handling routine. The general 
operation of DMSITS is as follows: 

1. The SVC new PSW (low-storage location X I 60 ') contains, in the 
address field, the address of DMSITS1. Thus, the DMSITS routine is 
entered whenever a supervisor call is executed. 

2. DMSITS allocates a system save area and a user save area. The user 
save area is a register save area used by the routine, which is invoked 
later as a result of the SVC call. 

3. The called routine is invoked (via a LPSW or BALR). 

4. Upon return from the called routine, the save areas are released. 

5. Control is returned to the caller (the routine that originally made the 
SVC call). 

Types of SVCs and Linkage Conventions 

The types of SVC calls recognized by DMSITS, and the linkage conventions 
for each, are as follows: 

Bve 201: When a called routine returns control to DMSITS, the user 
storage key may be in the PSW. Because the called routine may also have 
turned on the problem bit in the PSW, the most convenient way for 
DMSITS to restore the system PSW is to cause another interruption, rather 
than to attempt the privileged Load PSW instruction. DMSITS does this by 
issuing SVC 201, which causes a recursive entry into DMSITS. DMSITS 
determines if the interruption was caused by SVC 201, and if so, determines 
if the SVC 201 was from within DMSITS. If both conditions are met, 
control returns to the instruction following the SVC 201 with a PSW that 
has the problem bit off and the system key restored. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 77 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

SVC 202: SVC 202 is the most commonly used SVC in the CMS system. It 
is used for calling nucleus-resident routines, nucleus extensions, and 
routines written as commands (for example, disk resident modules). 

A typical coding sequence for an SVC 202 call is the following: 

LA R1,PLIST 
SVC 202 
DC AL4(ERRADD) 

The "DC AL4(address)" following the SVC 202 is optional and may be 
omitted if the programmer does not expect any errors to occur in the 
routine or command being called. If the DC statement is included, an error 
return is made to the address specified in the DC, unless the address is 
equal to 1. If the address is 1, return is made to the next instruction after 
the "DC AL4(1)" instruction. DMSITS determines whether this DC was 
inserted by examining the byte following the SVC call inline. If the byte is 
nonzero, the statement following the SVC 202 is an instruction. If the byte 
is zero, then the statement is a "DC AL4(addressY' or "DC AL4(l)". 

If you want to ignore errors, use the following sequence: 

LA R1,PLIST 
SVC 202 
DC AL4(1) 

Whenever SVC 202 is called, the contents of Register 0 and Register 1 are 
passed intact to the called routine. Register 1 must point to an 
eight-character string, which may be the start of a tokenized PLIST. This 
character string must contain the symbolic name of the routine or 
command being called. The called routine decides whether to use the 
tokenized PLIST or the extended PLIST (one of two forms) by examining 
the high-order byte of R1. (Both forms of the extended PLIST are discussed 
below.) The SVC handler only examines the name and high-order byte of 
Register 1. 

Note: Although an extended PLIST is provided, the called routine may not 
be set up to use it. 

78 System Lo~ic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

/ ' 

/ 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Extended 
PLIST 
Pointer in 

Value Meaning Register 01 

X'OO' The call did not originate from an EXEC file or a No 
command typed at the terminal. (The SVC handler 
translates the value X' 04' to X' 00' before entering 
the called program.) 

X'Ol' Either, the call is from an EXEC 2 EXEC or the Yes 
System Product Interpreter when "ADDRESS 
COMMAND" ~s specified, or the call is an IBM 
Cooperative Processing for VM/SP call (see 
SENDREQ in the VM/SP Programmer's Guide to the 
Server-Requester Programming Interface for VM/SP, 
SC24-5291). You can tell by checking the form of the 
extended PLIST, see "Extended PLIST" on page 80. 

(- (The SVC handler translates the value X' 03' to 
X, 01' before entering the called program.) 

X'02' See "Dynamic Linkage/SUBCOM" in this manual. Yes 

X'05' Used by the System Product Interpreter for external Yes 
function calls. 

X'06' The command was invoked as an immediate Yes 
command. This setting should never occur with SVC 
202.· 

X'OB' The command was called as a result of its name Yes 
being typed at the terminal, by the CMDCALL 
command to invoke the command from EXEC 2, or 
from a System Product Interpreter program when 
"ADDRESS CMS" is specified. 

X'OC' The call is the result of a command invoked from a No 
CMS EXEC file with "&CONTROL" set to something 
other than "NOMSG" or "MSG". 

X'OD' The call is the result of a command invoked from a No 
CMS EXEC file with "&CONTROL MSG" in effect 
(indicates that messages are to be displayed at the 
terminal). 

X'OE' The call is the result of a command invoked from a No 
CMS EXEC file with "&CONTROL NOMSG" in 
effect. 

X'FE' This is an end-of-command call from DMSINT (CMS No 
console command handler). See the NUCEXT 
function in the VM/SP CMS Macros and Functions 
Reference for details. 

X'FF' This is a service call from DMSABN (abend) or from No 
NUCXDROP. See the NUCEXT function in the 
VM/SP CMS Macros and Functions Reference for 
details. 

Figure 9. sve 202 High-Order Byte Values of Register 1 

( 

L Y20-0893·4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 79 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Tokenized PLIST: For a tokenized parameter list, the symbolic name of 
the function being called (8 character string, padded with blank characters .,,-j 
on the right if needed) is followed by extra arguments depending on the 
actual routine or command called. These arguments must be "tokenized." 
Every parenthesis is considered an individual argument, and each argument 
may have a maximum length of eight characters. 

Extended PLIST: For an extended parameter list (EPLIST), no restriction 
is put on the structure of the argument list passed to the called routine or 
command. The first non-blank character, left parenthesis, or right 
parenthesis following the command is treated as a delimiter. This delimiter 
determines where the pointer to the start of the argument is. 

An extended PLIST has two forms, as illustrated below. 

In the first form, RO points to the following parameter list: 

(a) DC A (COMVERB) 
(b) DC A(BEGARGS) 
(c) DC A(ENDARGS) 
(d) DC A(O) 

where the first three addresses are defined by: 

COMVERB EQU * 
DC C'cmdname' 

BEGARGS EQU * 
DC C' 

ENDARGS EQU * 

and where: 

name of command 

argument list 

(a) is the beginning address of the command 
(b) is the beginning address of the argument list. 
(c) is the address of the byte immediately following the end of the 

argument list. 
(d) may be used to pass any additional information required by individual 

called programs. If this word is not used to pass additional 
information, it should be zero so that programs receiving optional 
information via this word may detect that none is provided in this 
call. 

Notes: 

1. These four words can be moved to some location convenient for the 
command resolution routines or convenient for some other program 
executed between the caller's BVe 202 and entry to the program that the 
parameter list is intended. For this reason, the called program may not 
assume additional words following word 4, or the called program may not 
assume that the storage address of these 4 words bears any relationship to 
other data addresses. 

2. For function calls in the System Product Interpreter, two additional 
words are available. See the VM/SP System Product Interpreter 

80 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Reference for more information on function calls and the two additional 
words. 

The second form of an extended PLIST is used by IBM Cooperative 
,Processing for VM/SP (see SENDREQ in the VM/SP Programmer's Guide 
to the Server-Requester Programming Interface for VM/SP, SC24-5291). In 
the second form, RO points to the following parameter list: 

(a) DS A(eommandname) 
(b) DS F 
(e) DS F 
(d) DS A(CPRB) 

where: 

(reserved) 
(reserved) 

(a) is the address of the name of the program being called 
(b) is unused 
(c) is unused 
(d) is the address of the cooperative processing request block (CPRB). 

If your routine is being called by another routine, you can verify that your 
routine is being called using the second form of an extended PLIST. Check 
the contents of A(CPRB) + 4. At this address should contain the 
characters CPRB. 

If you want to call another routine using the second form of an extended 
PLIST, see SENDREQ in the VM/SP Programmer's Guide to the 
Server-Requester Programming Interface for VM/SP, SC24-5291. 

Why Use the Second Form of an Extended PLIST?: The second form 
provides an architected way for a routine to: 

• Pass up to 64K-l (65,535) bytes of arbitrary data and 32K-5 (32,763) bytes 
of parameters to another routine 

• Receive up to 64K-l (65,535) bytes of arbitrary data and 32K-5 (32,763) 
bytes of parameters from another routine. 

sve 203: SVC 203 is called by CMS macros to perform various internal 
system functions. It defines SVC calls when no parameter list is provided. 
For example, DMSFREE parameters are passed in registers 0 and 1. 

A typical sequence for an SVC 203 call is: 

SVC 203 
DC H'eode' 

The half word decimal code following the SVC 203 indicates the specific 
routine being called. DMSITS examines this halfword code taking the 
absolute value of the code using an LPR instruction. The first byte of the 
result is ignored, and the second byte of the resulting halfword is used as 
an index into a branch table. The address of the correct routine is loaded, 
and the control is transferred to it. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 81 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

It is possible for the address in the SVC 203 index table to be zero. In this 
case, the index entry contains an 8-byte routine or command name, which is 
processed in the same way as the 8-byte name passed in the parameter list 
to a SVC 202. 

The sign of the half word code indicates whether the programmer expects an 
error return. If an error return is expected, the code is negative. If the 
code is positive, no error return is made. The sign of the halfword code has 
no effect on determining the routine called since DMSITS takes the 
absolute value of the code to determine the called routine. 

Since only the second byte of the absolute value of the code is examined by 
DMSITS, seven bits (bits 1-7) are available as flags or for other uses. For 
example, DMSFREE uses these seven bits to indicate such things as 
conditional requests and variable requests. Therefore, DMSITS considers 
the codes H I 3 I and H I 259 I to be identical and handles them the same as 
H I -3 I and H I -259 I , except for error returns. 

When an SVC 203 is invoked, DMSITS stores the half word code into the 
NUCON location CODE203 so the called routine can examine the seven bits 
made available to it. 

All calls made by SVC 203 should be made by macros with the macro 
expansion computing and specifying the correct halfword code. 

User-Handled SVCS: The programmer may use the HNDSVC macro to 
specify the address of a routine that processes any SVC call for SVC 
numbers 0 through 200 and 206 through 255. If the HNDSVC macro is used, 
the linkage conventions are as required by the user specified SVC-handling 
routine. You cannot specify a normal or error return from a user-handled 
SVC routine. 

OS Macro Simulation SVC Calls: CMS supports selected SVC calls 
generated by OS macros, by simulating the effect of these macro calls. 

The proper linkages are set up by the OS macro generations. DMSITS does 
not recognize any way to specify a normal or error return from an OS 
macro simulation SVC call. 

VSE SVC Calls: All SVC functions supported for CMS/DOS are handled 
by the CMS module DMSDOS. DMSDOS receives control from DMSITS 
(the CMS SVC handler) when that routine intercepts a VSE SVC code and 
finds that the DOSSVC flag in DOSFLAGS is set in NUCON. 

DMSDOS acquires the specified SVC code from the OLDPSW field of the 
current SVC save area. Using this code, DMSDOS computes the address of 
the routine where the SVC is to be handled. 

Many CMS/DOS routines (including DMSDOS) are contained in a 
discontiguous shared segment (DCSS). Most SVC codes are executed 
within DMSDOS, but some are in separate modules external to DMSDOS. 
If the SVC code requested is external to DMSDOS, its address is computed 
using a table called DCSSTAB. If the code requested is executed within 

82 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



(--

( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

DMSDOS, the table SVCTAB is used to compute the address of the code to 
handle the SVC. 

DOS SVC calls are discussed in more detail in "Simulating a VSE 
Environment Under CMS" on page 201. 

Invalid SVC Calls: There are several types of invalid SVC calls 
recognized by DMSITS: 

• Invalid SVG number. If the SVC number does not fit into any of the 
classes described above, it is not handled by DMSITS. An error 
message is displayed at the terminal, and control is returned directly to 
the caller. 

• Invalid routine name in SVC 202 parameter list. If the routine named 
in the SVC 202 parameter list is invalid or cannot be found, DMSITS 
handles the situation in the same way it handles an error return from a 
legitimate SVC routine. The error code is -3. 

• Invalid SVC 203 code. If an invalid code follows SVC 203 inline, an 
error message is displayed and the ABEND routine is called to 
terminate execution. 

Search Hierarchy for SVC 202 

SVC 202 Entered from a Program: When a program issues SVC 202 and 
passes a routine or command name in the parameter list, DMSITS searches 
for the specified routine or command. (In the case of SVC 203 with a zero 
in the table entry for the specified index, the same logic must be applied.) 

As soon as the routine or command name is found, the search stops and the 
routine or command is executed. The search order is as follows: 

1. DMSITS determines if the specified name is known dynamically to CMS 
through the SUBCOM function. This step is executed only if the 
high-order byte of Rl contains X, 02 ' . 

2. DMSITS searches for a nucleus extension routine with the specified 
name. 

3. 

4. 

5. 

Note: This step is skipped if the high-order byte of register 1 contains 
X ' 03' or X ' 04 '. X, 03' indicates that an extended PLIST is provided. 
X ' 04' indicates that a tokenized PLIST is provided. X, 03' and X ' 04 ' 
are translated to X, 01' and X' 00 ' , respectively, by the SVC interrupt 
handler before the called program is entered. 

DMSITS searches for a routine with the specified name in the transient 
area. 

DMSITS searches for a nucleus-resident command with the specified 
name. 

DMSITS searches currently accessed disks for a file with the specified 
name and a filetype MODULE. CMS uses the standard search order (A 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 83 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

through Z). If this search is successful, the specified module is loaded ( " 
(via the LOADMOD command) and control is passed to the storage ~_/ 
location now occupied by the command. The table of active (open) disk 
files is searched first. An open file may be used ahead of a file that 
resides on a disk earlier in the search order. 

6. DMSITS calls 

a. DMSPKT to search the translation tables for the specified name. If 
found, DMSITS searches for a routine with the valid translation by 
repeating steps 2 through 5. 

Note: This step is skipped if this SVC call is not from DMSINT or 
DMSCSF. 

b. DMSINA to search the synonym tables for the specified name. If 
found, DMSITS searches for a routine with the valid synonym by 
repeating steps 2 through 5. 

If all searches fail, then an error code of -3 is issued. 

Commands Entered from the Terminal: When a command is entered 
from the terminal, DMSINT processes the command line and calls the scan 
routine to convert it into a parameter list consisting of 8-byte entries. 

As soon as the command name is found, the search stops and the command 
is executed. The search order is as follows: 

1. Search for an EXEC with the specified command name:2 

a. DMSINT searches for an EXEC in storage. If an EXEC with this 
name is found, DMSINT determines whether the EXEC has a USER, 
SYSTEM, or SHARED attribute. If the EXEC has the USER or 
SYSTEM attribute, it is executed. 

If the EXEC has the SHARED attribute, the INSTSEG setting is /" " 
checked. When INSTSEG is ON, all accessed disks are searched 
and the access mode of the Installation Discontiguous Shared 
Segment (DCSS) is compared to the mode of an EXEC with that 
name that resides on disk. If the access mode of the DCSS is equal 
to or higher than the disk mode, the EXEC is executed. Otherwise, 
the EXEC on disk is executed. 

b. DMSINT searches accessed disks for a file with the specified name 
and filetype EXEC. The table of active (open) disk files is searched 
first. An open file may be used ahead of a file that resides on a disk 
earlier in the search order. 

2. DMSINT calls 

a. DMSPKT to search the translation tables for the specified name. If 
found, DMSINT searches for a routine with the valid translation by (_ .~ 
repeating step 1. "' __ ./ 

84 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

b. DMSINA to search the synonym tables for the specified name. If 
found, DMSINT searches for a routine with the valid synonym by 
repeating step 1. 

3. DMSINT executes SVC 202, passing the scanned tokenized parameter 
list, with the command name in the first eight bytes of the PLIST 
pointed to by register 1 and the extended PLIST address in register O. 
DMSITS performs the search for SVC 202 as described above in "SVC 
202 Entered from a Program" on page 83. 

4. DMSINT searches for a CP command with the specified name, using the 
CP DIAGNOSE function.3 

5. If all of these searches fail, DMSINT displays the error message 
Unknown CPjCMS Command. 

See Figure 10 on page 86 for a description of this search for a command 
name. 

2 If implied EXEC is not in effect (SET IMPEX OFF), skip steps 1 and 2. 

3 If implied CP is not in effect (SET IMPCP OFF), skip step 4. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 85 



Read line from 
terminal 
("name ... ") 

Notes: 

1. If the command SET IMPEX Off 
has been executed, implied EXEC 
is not in effect. 

2. This EXEC must exist in storage 
or on DASD. 

3. A -3 return code indicates SVC 202 
processing did not find the command. 

4. If the command SET IMPCP Off 
has been executed, implied CP is 
not in effect. 

Figure 10. CMS Command Processing 

name is now a 
real name from 
a translation or 
synonym table 

Issue SVC 202 

(See SVC 202 
subroutine) 

No 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

No 

No 

Display 
UNKNOWN 
CP/CMS 
COMMAND 

Yes 

Expand the line b 
inserting EXEC in 
front of the 
command nome; 
ie. 'EXEC name' 

No 

Pass line to CP 
for processing 

Yes 

Display Ready 
L ------------------------CI message, with 

error code if 
RC--O 

86 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



( 

( 

( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Figure 11. SVC 202 Processing 

User and Transient Program Areas 

Two areas hold programs that are loaded by LOAD MOD from the disk. 
These areas are called the user program area and the transient program 
area. (See Figure 3 on page 20 for a description of CMS storage usage.) A 
summary of CMS modules and their attributes, including whether they 
reside in the user program area or the transient area, is contained in the 
VM/SP CMS Command Reference. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 87 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

The user program area starts at location X, 20000' and extends upward to .f''-

the loader tables. However, the high-address end of that area can be \... j 

allocated as free storage by DMSFREE. Generally, all user programs and 
certain system commands, such EDIT and eOPYFILE, are executed in the 
user program area. Because only one program can be executing in the user 
program area at one time, it is impossible (without unpredictable results) 
for one program executing in the user program area to invoke, by means of 
sve 202, a module that will also be executed the user program area. 

The transient program area is two pages, running from location X ' EOOO' to 
location X, FFFF '. It provides an area for system commands that may also 
be invoked from the user program area by means of an sve 202 call. When 
a transient module is called by an sve, it is normally executed with the 
PSW system mask disabled for I/O and external interrupts. 

A program executing in the transient program area may not invoke another 
program intended to execute in the transient program area. Thus, for 
example, a program executing in the transient program area may not 
invoke the TYPE command. 

There is one further functional difference between the use of the two 
program areas. DMSITS starts a program in the user program area so that 
it is enabled for all interruptions. It starts a program in the transient 
program area so that it is disabled for all interruptions. Thus, the 
individual program may have to use the SSM (Set System Mask) instruction 
to change the current status of its system mask. 

Called Routine Start-Up Table 

Figure 12 shows how registers are set up when the called routine is 
entered. 

Registers Register Registers Register Register Register Register 
Type 0-1 2 3 -11 12 13 14 15 
sve 202 Same as See note Not Address Address Return Address 

caller 1 defined of called of user address of called 
routine save to routine 

area DMSITS 

sve 203 Same as Not Not Address See note Return Address 
caller defined defined of called 2 address of called 

routine to routine 
DMSITS 

Other Same as Same as Same as Address Address Return Same as 
caller caller caller of called of user address caller 

routine save to 
area DMSITS 

Figure 12. Register Contents When Called Routine Starts 

88 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



( 

( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Returning to the Caller 

Notes: 

1. If a nucleus extension or subcommand processor, register 2 has address of 
SCBLOCK. 

2. Depends on the function being invoked. 

Figure 13 shows how the PSW fields are set up when the called routine is 
entered. 

Called Type System Mask Storage Key Problem Bit 

SVC 202 or 203 -- Disabled System Off 
Nucleus Resident 

sve 202 -- Nucleus See note 1 See note 1 Off 
Extension Module 

sve 202 or 203 -- Disabled See note 2 Ofr 
Transient Area 
Module 

sve 202 or 203 -- Enabled See note 2 Ofr 
User Area Module 

User-handled Enabled User Orf 

OS-VSE -- Disabled System Off 
Nucleus resident 

OS-VSE -- Disabled System Orf 
Transient area 
module 

Figure 13. PSW Fields When Called Routine Starts 

Notes: 

1. User defined by using the NUCEXT function. 

2. User defined by using the CMS GENMOD command or the CMS SET 
PROTECT command. 

When the called routine is finished processing, it returns control to 
DMSITS. Then DMSITS returns control to the calling routine. 

Return Location: The return is accomplished by loading the original sve 
old PSW (that was saved at the time DMSITS was first entered), after 
possibly modifying the address field. The address field modification depends 
upon the type of sve call and on whether the called routine indicated an 
error return address. 

For sve 202 and 203, the called routine places a zero in Register 15 
indicating a normal return places a nonzero in Register 25 indicating an 
error return. lacing a zero in register 15 and an error return by placing a 
nonzero in register 15. If the called routine indicates a normal return, 
DMSITS makes a normal return to the calling routine. If the called routine 
indicates an error return, DMSITS passes the error return to the calling 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 89 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

routine, if one was specified. If no error return address was specified, 
DMSITS abnormally terminates. 

For SVC 202 not followed by "DC AL4(address)" or "DC AL4(1)", a normal 
return is made to the instruction following the SVC instruction and an 
error return causes an abend. For an SVC 202 followed by "DC 
AL4(address)", a normal return is made to the instruction following the DC 
and an error return is made to the address specified in the DC, unless the 
address is equal to 1. If the address is 1, return is made to the next 
instruction after the "DC AL4(1)" instruction. In either case, register 15 
contains the return code passed by the called routine. 

For SVC 203 with a positive halfword code, a normal return is made to the 
instruction following the halfword code and an error return causes an 
abend. For SVC 203 with a negative half word code, both normal and error 
returns are made to the instruction following the half word code. In any 
case, register 15 contains the return code passed back by the called routine. 

For OS macro simulation SVC calls and user-handled SVC calls, no error 
return is recognized by DMSITS. As a result, DMSITS always returns to 
the calling routine by loading the SVC old PSW that was saved when 
DMSITS was first entered. 

REGISTER RESTORATION: Upon entry to DMSITS, all registers are 
saved as they were when the SVC instruction was first executed. Upon 
exiting from DMSITS, all registers are restored to the values that were 
saved at entry. 

The exception to this is register 15 for SVC 202 and 203. Upon return to 
the calling routine, register 15 contains the value that was in register 15 
when the called routine returned to DMSITS after it had completed 
processing. If the command invoked by the SVC called the parsing facility, 
any storage allocated by the parsing facility is returned. 

Modification of the System Save Area 

If the called routine has system status so that it runs with a PSW storage 
protect key of 0, it may store new values into the system save area. 

If the called routine wishes to modify the location where control is to be 
returned, it must modify the following fields: 

• For SVC 202 and 203, the called routine must modify the NUMRET and 
ERRET (normal and error return address) fields. 

• For other SVCs, the called routine must modify the address field of 
OLDPSW. 

To modify the registers that are returned to the calling routine, the fields 
EGPRl, EGPR2 through EGPR15 must be modified. 

If this action is taken by the called routine, the SVCTRACE facility may 
print misleading information, since SVCTRACE assumes that these fields 
are exactly as they were when DMSITS was first entered. Whenever an 

90 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

..", ,/ 

(f' "', 
I ',,-_/ 



( 

( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

SVC call is made, DMSITS allocates two save areas for that particular SVC 
call. Save areas are allocated as needed. For each SVC call, a system and 
user save area are needed. 

When the SVC-called routine returns, the save areas are not released. They 
are kept for the next SVC. If the routine invoked by the SVC called the 
parsing facility, any storage allocated by the parsing facility for parsing 
results is released up on return. At the completion of each command, all 
SVC save areas allocated by that command are released. 

DMSITS uses the system save area (DSECT SSA VE) to save the value of 
the SVC old PSW at the time of the SVC call, the calling routine's registers 
at the time of the call, and any other necessary control information. Since 
SVC calls can be nested, there can be several of these save areas at one 
time. The system save area is allocated in protected free storage. 

The user save area (DSECT EXTUAREA) contains 12 doublewords (24 
words) allocated in unprotected free storage. DMSITS does not use this 
area at all. It simply passes a pointer to this area (via register 13.) The 
called routine can use this area as a temporary work area or as a register 
save area. Each system save area has one user save area. The USA VEPTR 
field in the system save area points to the user save area. 

The exact format of the system save area can be found in VM/SP Data 
Areas and Control Block Logic Volume 2 (CMS). The most important fields 
and their uses are as follows: 

Field 

CALLER 

CALLEE 

CODE 

OLDPSW 

NRMRET 

ERRET 

EGPRS 

Usage 

(Fullword) The address of the SVC instruction that resulted 
in this call. 

(Doubleword) Eight-byte symbolic name of the called routine. 
For OS and user-handled SVC calls, this field contains a 
character string of the form SVC nnn, where nnn is the SVC 
number in decimal. 

(Half word) For SVC 203, this field contains the halfword 
code following the SVC instruction line. 

(Doubleword) The SVC old PSW at the time that DMSITS 
was entered. 

(Full word) The address of the calling routine where control 
is passed if there is a normal return from the called routine. 

(Full word) The address of the calling routine where control 
is passed if there is an error return from the called routine. 

(16 Fullwords, separately labeled EGPRO, EGPR1, EGPR2, 
EGPR3, ... , EGPR15). The contents of the general purpose 
registers at entry to DMSITS are stored in these fields. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 91 



EFPRS 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

(4 Doublewords, separately labeled EFPRO, EFPR2, EFPR4, 
EFPR6) The entry floating-point registers. The contents of 
the floating-point registers at entry to DMSITS are stored in 
these fields. 

SSA VENXT (Full word) The address of the next system save area in the 
chain. This points to the system save area being used, Or 
will be used, for any SVC call nested in relation to the 
current one. 

SSAVEPRV (Fullword) The address of the previous system save area in 
the chain. This points to the system save area for the SVC 
call in relation to which the current call is nested. 

USAVEPTR (Fullword) Pointer to the user save area for this SVC call. 

Dynamic Linkage/SUBCOM 

It is possible for a program that is already loaded from disk to become 
dynamically known by name to CMS for the duration of the current 
command; such a program can be called via SVC 202. In addition, this 
program can also make other programs dynamically known if the first 
program can supply the entry points of the other programs. 

To become known dynamically to CMS, a program or'routine invokes the 
create function of SUBCOM. To invoke SUBCOM, issue the following 
calling sequence from an assembler language program: \, / 

PLIST 

SUBCNAME 
SUBCPSW 

SUBCADDR 

LA R1,PLIST 
SVC 202 
DC AL4(ERROR) 

DS OF 
DC CL8'SUBCOM' 
DC CL8'name' 
DC XL2'0000' 
DC AL2(O) 
DC A(O) 
DC A(O) 

COMMAND NAME 
SYSTEM MASK, STORAGE KEY, ETC. 
RESERVED 
ENTRY ADDRESS, -1 FOR QUERY PLIST 
USER WORD 

SUBCOM creates an SCBLOCK control block containing the information 
specified in the SUBCOM parameter list. SVC 202 uses this control block 
to locate the specified routine. All non-system SUB COM SCBLOCKS are 
released at the completion of a command (that is, when CMS displays the 
ready message). A SUBCOM environment may be defined as a system 
SUBCOM by setting a X, 80' in the first byte of the interruption code field 
of the PLIST. See VM/SP Data Areas and Control Block Logic Volume 2 
(eMS) for a description of the SCBLOCK control block. 

When a program issues an SVC 202 call to a program that has become 
known to eMS via SUBCOM, it places X' 02' in the high-order byte of 
register 1. Control passes to the called program at the address specified by 
the called program when it invoked SUBCOM. 

92 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



( 

( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

The PSW in the SCBLOCK specifies the system mask, the PSW key to be 
used, the program mask (and initial condition code), and the starting 
address for execution. The problem-state bit and machine-check bit may be 
set. The machine-check bit has no effect in CMS under CPo The EC-mode 
bit and wait-state bit cannot be set. They are always forced to zero. Also, 
one 4-byte, user-defined word can be associated with the SUBCOM entry 
point and referred to when the entry point is subsequently called. 

When control passes to the specified entry point, the register contents are: 

R2 Address of SCBLOCK for this entry point. 

RI2 Entry point address. 

RI3 24-word save area address. 

RI4 Return address (CMSRET). 

RI5 Entry point address. 

You can also use SUBCOM to delete the potential linkage to a program or 
routine's SCBLOCK, or you can use SUBCOM to determine if an 
SCBLOCK exists for a program or routine. 

To delete a program or routine's SCBLOCK, issue: 

DC CL8'SUBCOM' 
DC CL8'program or routine name' 
DC 8X'OO' 

To determine if an SCBLOCK exists for a program or routine, issue: 

DC CL8'SUBCOM' 
DC CL8'program or routine name' 
DC A(O) SCBLOCK addressed as a returned value 
DC 4X'FF' 

Note that if'SUBCOM name' is called from an EXEC file, the QUERY 
PLIST is the form of PLIST that is issued. 

To query the chain anchor, issue: 

DC CL8'SUBCOM' 
DS CL8 
DS AL4 

DC AL4(l) 

(contents not relevant) 
Will receive chain anchor 
contents from NUCSCBLK 
Indicates request for anchor 

Note that the anchor is equal to F' 0' ifthere are no SCBLOCKs on the 
chain. 

Note: If you create SCBLOCKS for several programs or routines with the 
same name, they are all remembered, but SUBCOM uses the last one 
created. A SUB COM delete request for that name eliminates only the most 
recently created SCBLOCK making active the next most recently created 
SCBLOCK with the same name. 

L Y20-0893-4 © Copyright IBM Corp_ 1980, 1986 Chapter 7. Processing and Executing CMS Files 93 



Return Codes 

Restricted Materials· of IBM 

Licensed Materials - Property of IBM 

When control returns to CMS after a console input command has ;--" 
terminated, the entire SUBCOM chain of SCBLOCKs is released. None of 
the subcommands established during that command are carried forward to 
be available during execution of the next console command. 

Return codes from the SUB COM function are: 

Return Meaning 
Code 

o Successful completion. A new SCBLOCK was created, the 
specified SCBLOCK was deleted, or the specified program or 
routine has an SCBLOCK. 

1 No SCBLOCK exists for the specified program or routine. This 
is the return code for a delete or a query. 

25 No more free storage available. SCBLOCK cannot be created for 
the specified program or routine. 

LQading and Executing Text Files 

The CMS loader consists of a nucleus resident loader (DMSLDR), a file and 
message handler program (DMSLIO), a library search program (DMSLIB), 
and other subroutine programs. DMSLDR starts loading at the user first 
location (AUSRAREA) specified in NUCON or at a user specified location. 
When performing an INCLUDE function, loading resumes at the next 
available location after the previous LOAD, INCLUDE, or LOADMOD. 

The loader reads in the entire user's program, which consists of one or 
more control sections, each defined by a type 0 ESD record ("card"). Each 
control section contains a type 1 ESD card for each entry point and may 
contain other control cards. 

Once the user's program is in storage, the loader begins to search its files 
for library subprograms called by the program. The loader reads the library 
subprograms into storage, relocating and linking them as required. To 
relocate programs, the loader analyzes information on the SLC, ICS, ESD, 
TXT, and REP cards. To establish linkages, it operates on ESD and RLD 
cards. Information for end-of-Ioad transfer of control is provided by the 
END and LDT cards, the ENTRY control card, START command, or RESET 
option. 

The loader also analyzes the options specified on the LOAD and INCLUDE 
commands. In response to specified options, the loader can: 

• Set the load area to zeros before loading (CLEAR option). 

• Load the program at a specified location (ORIGIN option). 

94 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



I 

\ 

( 

c: 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

• Suppress creation of the load-map file on disk (NO MAP option). 

• Suppress the printing of invalid card images in the load map (NOINV 
option). 

• Suppress the printing of REP card images in the load map (NOREP 
option). 

• Load program into "transient area" (ORIGIN TRANS option). 

• Suppress TXTLIB search (NOLIBE option). 

• Suppress text file search (NOAUTO option). 

• Execute the loaded program (START option). 

• Type the load map (TYPE option). 

• Set the program entry point (RESET option). 

• Save the relocation information from the text files (RLDSA VE option). 

• Save history information (HIST option). However, you must issue the 
GENMOD command after you issue the INCLUDE or LOAD command 
with the HIST option. 

During its operation, the loader uses a loader table (REFTBL), and external 
symbol identification table (ESIDTB), and a location counter (LOCCNT). 
The loader table contains the names of control sections and entry points, 
their current location, and the relocation factor. (The relocation factor is 
the difference between the compiler-assigned address of a control section 
and the address of the storage location where it is actually loaded.) The 
ESIDTB contains pointers to the entries in REFTBL for the control section 
currently being processed by the loader. The loader uses the location 
counter to determine where the control section is to be loaded. Initially, 
the loader obtains from the nucleus constant area the address (LOCCNT) of 
the next location at which to start loading. This value is subsequently 
incremented by the length indicated on an ESD (type 0), END, or ICS card, 
or it may be reset by an SLC card. 

The loader contains a distinct routine for each type of input card. These 
routines perform calculations using information contained in the nucleus 
constant area, the location counter, the ESIDTB, the loader table, and the 
input cards. Other loader routines perform initialization, read cards into 
storage, handle error conditions, provide disk and typewritten output, 
search libraries, convert hexadecimal characters to binary, process 
end-of-file conditions, and begin execution of programs in core. If a card is 
not one of the recognized types, it is considered a comment card. As a 
comment card, it can be included in the module by specifying the HIST 
option on the LOAD or INCLUDE command and then issuing a subsequent 
GENMOD command. 

Following are descriptions of the individual subprocessors with LDR. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 95 



SLC Card Routine 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Function 
This routine sets the location counter (LOCCT) to the address 
specified on an SLC card or to the address assigned (in the REFTBL) 
to a specified symbolic name. 

Entry 
The routine is entered at the first instruction when it receives control 
from the initial and resume loading routine. It is entered at ORG2 
whenever a loader routine requires the current address of a symbolic 
location specified on an SLC card. 

Operation 
This routine determines which of the following situations exists, and 
takes the indicated action: 

1. The SLC card does not contain an address or a symbolic name. 
The SLC card routine branches, via BADCRD in the reference 
table search routine, to the disk and type output routine 
(DMSLIO), which generates an error message. 

2. The SLC card contains an address only. The SLC card routine 
sets the location counter (LOCCT) to that address and returns to 
RD, in the initial and resume loading routine, to read another 
card. 

3. The SLC card contains a name only, and there is a reference table 
entry for that name. The SLC card routine sets LOCCT to the 
current address of that name (at ORG2) and returns to the initial 
and resume loading routine to get another card. 

4. The SLC card contains a name only, and there is no reference 
table entry for that name. The SLC card routine branches via 
ERRSLC to the disk and type output routine (DMSLIO), which 
generates an error message for that name. 

5. The SLC card contains both an address and a name. If there is a 
REFTBL entry for the name, the sum of the current address of the 
name and the address specified on the SLC card is placed in 
LOCCT. Control returns to the initial and resume loading routine 
to get another card. If there is no REFTBL entry for the name, 
the SLC card routine branches via ERRSLC to the disk and type 
output routine, which generates an error message for the name. 

ICS CARD ROUTINE - C2AE1 

Function 
This routine establishes a reference table entry for the 
control-segment name on the ICS card if no entry for that name exists, 
adjusts the location counter to a fullword boundary, if necessary, and 
adds the card-specified control-segment length to the location counter, 
if necessary. 

96 System Logic and Problem Determination (CMS) LY20-0893-4© Copyright IBM Corp. 1980, 1986 

.'4 ", 
I 

\ .. ,j 



( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Entry 
This routine has one entry point, C2AE1. The routine is entered from 
the initial and resume loading routine when it finds an ICS card. 

Operation 

1. The routine begins its operation with a test of card type. If the 
card being processed is not an ICS card, the routine branches to 
the ESD card analysis routine. Otherwise, processing continues in 
this routine. 

2. The routine tests for a hexadecimal address on the ICS card. If an 
address is present, the routine links to the DMSLSBA subroutine 
to convert the address to binary. Otherwise, the routine branches 
via BADCRD to the disk and type output routine (DMSLIO). 

3. The routine next links to the REFTBL search routine, which 
determines whether there is a reference table entry for the 
card-specified control-segment name. If such an entry is found, the 
REFTBL search routine branches to the initial and resume 
loading routine. Otherwise, the REFTBL search routine places 
the control-segment name in the reference table and processing 
continues. 

4. The routine determines whether the card-specified control-segment 
length is zero or greater than zero. If the length is zero, the 
routine places the current location counter value in the reference 
table entry as the control segment's starting address (ORG2), and 
then it branches to the initial and resume loading routine. If the 
length is greater than zero, the routine sets the current location 
counter value at a fullword boundary address. The routine then 
places this adjusted current location counter value in the 
reference table entry, adjusts the location counter by adding the 
specified control-segment length to it,and branches to RD in the 
initial and resume loading routine to get another card. 

ESD TYPE 0 CARD ROUTINE - C3AA3 

Function 
This routine creates loader table and ESID table entries for the 
card-specified control section. 

Entry 
This routine has one entry point, C3AA3. The routine is entered from 
the ESD card analysis routine. 

Operation 

1. If this is the first section definition, its ESDID is proved. 

2. This routine first determines whether a loader table (REFTBL) 
entry has already been established for the card-specified control 
section. To do this, the routine links to the REFTBL search 
routine. The ESD type 0 card routine's subsequent operation 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 97 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

depends on whether there already is a REFTBL entry for this 
control section. If there is such an entry, processing continues 
with operation 5, below; if there is not, the REFTBL search 
routine places the name of this control section in REFTBL and 
processing continues with operation 3. 

3. The routine obtains the card-specified control section length and 
performs operation 4. 

4. The routine links to location C2AJI in the res card routine and 
returns to C3AD4 to obtain the current storage address of the 
control section from the REFTBL entry, inserts the REFTBL entry 
position (N - where this is the Nth REFTBL entry) in the 
card-specified ESID table location, and calculates the difference 
between the current (relocated) address of the control section and 
its card-specified (assembled) address. This difference is the 
relocation factor. It, is placed in the REFTBL entry for this 
control section. If previous ESDs have been waiting for this 
CSECT, a branch is taken to SDDEF, where the waiting elements 
are processed. A flag is set in the REFTBL entry to indicate a 
section definition. 

5. The entry found in the REFTBL is examined to determine whether 
it had been defined by a COMMON. If so, it is converted from a 
COMMON to a CSECT and performs operation 3. 

6. If the entry had not been defined previously by an ESD type 0, 
processing continues at 3. 

7. If the entry had been defined previously as other than COMMON, 
DMSLIO is called via ERRORM to print a warning message, 
"Duplicate identifier _name.". The entry in the ESID table is set 
to negative so that the CSECT is skipped (that is, not loaded) by 
the TXT and RLD processing routines. 

ESD TYPE 1 CARD ROUTINE - ENTESD 

Function 
This routine establishes a loader table entry for the entry point 
specified on the ESD card, unless such an entry already exists. 

Entry 
This routine is entered from the ESD card analysis routine. 

Operation 

1. Branches and links to REF ADR to fmd loader table entry for first 
section definition of the text deck saved by the ESD 0 routine. 

2. The routine then adds the relocation factor and the address of the 
ESD found in operation 1 or the address in LOCCNT if an ESD 
has not yet been encountered. The sum is the current storage 
address of the entry point. 

98 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986 

----~ .. ----.~ .. ---~-. _.---

;( ." 
I 



{ 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

3. The routine links to the REFTBL search routine to find whether 
there is already a REFTBL entry for the card-specified entry point 
name. If such an entry exists, the routine performs operation 4. If 
there is no entry, the routine performs operation 5. 

4. Upon finding a REFTBL entry that has been previously defined for 
the card-specified name, the routine then compares the 
REFTBL-specified current storage address with the address 
computed in operation 2. If the addresses are different, the routine 
branches and links to the DMSLIO routine (duplicate symbol 
warning); if the addresses are the same, the routine branches to 
location RD in the initial and resume loading routine to read 
another card. Otherwise, it is assumed that the REFTBL entry 
was created as a result of previously encountered external 
references to the entry. The DMSLSBC routine is called to 
resolve the previous external references and adjust the REFTBL 
entry. The entry point name and address are printed by calling 
DMSLIO. 

5. If there is no REFTBL entry for the card-specified entry point 
name, the routine makes such an entry and branches to the 
DMSLIO routine. 

ESD TYPE 2 CARD ROUTINE - C3AH1 

Function 
This routine creates the proper ESID table entry for the card-specified 
external name and places the name's assigned address (ORG2) in the 
reference table relocation factor for that name. 

Entry 
This routine has two entry points: C3AH1 and ESDOO. Location 
C3AH1 is entered from the ESD card analysis routine. This occurs 
when an ESD type 2 card is being processed. Location ESDOO is 
entered from: 

• The ESD card analysis routine, when the card being processed is 
an ESD type 2 and an absolute loading process is indicated. 

• The ESD type 0 card routine and ESD type 1 card routine, as the 
last operation in each of these routines. 

Operation 

1. When this routine is entered at location C3AH1, it first links to 
the REFTBL search routine to determine whether there is a 
REFTBL entry for the card-specified external name. If none is 
found, the REFTBL search routine sets the undefined flag for the 
new loader table entry. 

2. The routine resets a possible WEAK EXTRN flag. The routine 
next places the REFTBL entry's position-key in the ESID table. If 
the entry has already been defined by means of an ESD type 0, 1, 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 99 



ESD TYPE 4 ROUTINE - PC 

Restricted Materials of IBM 

Licensed Materials ,.... Property of IBM 

5, or 6, processing continues at operation 4. Otherwise, it 
continues at operation 3. 

3. The relocated address is placed in the RELFAC entry in the 
external name's REFTBL entry. 

4. The ESD type 2 card routine then determines (at location ESDOO) 
whether there is another entry on the ESD card. If there is 
another entry, the routine branches to location CA3A1 in the ESD 
card analysis routine for further processing of this card. 
Otherwise, the routine branches to location RD in the initial 
resume loading routine. 

Exits 
This routine exits to location CA3A1 in the ESD card analysis routine 
if there is another entry on the ESD card being processed, and it exits 
to location RD in the initial and resume loading routine if the ESD 
card requires no further processing. 

Function 
This routine makes loader table and ESIDTAB entries for private code 
CSECT. 

Operation 

1. The routine LDRSYM is called to generate a unique character 
string number of the form 00000001, which is left in the external 
data area NXTSYM. It is greater in value than the previously 
generated symbol. 

2. The CSECT is then processed as a normal type 0 ESD with the 
above assigned name. 

ESD TYPES 5 AND 6 CARD ROUTINE - PRVESD AND COMESD 

Function 
This routine creates a reference table and ESIDTAB entries for 
common and pseudo-register ESDs. 

Operation 

1. Links to ESIDINC in the ESD type 0 card routine to update the 
number of ESIDTB entries. 

2. Links to the REFTBL search routine to determine whether a 
reference table (REFTBL) entry has already been created. If there 
is no entry, the REFTBL search routine places the name of the 
item in the REFTBL. 

3. If the REFTBL search routine had to create an entry for the item, If -', 

the ESD type 5 and 6 card routine indexes it in the ESIDTB, i,,--,,/ 
enters the length and alignment in the entry, indicates whether it 

100 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986 



( 

f 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

is a PR or common, and branches to ESDOO in the ESD type 2 card 
routine to determine whether the card contains additional ESDs to 
be processed. If the entry is a PR, the ESD type 5 and 6 card 
routine enters its displacement and length in the REFTBL before 
branching to ESDOO. 

4. If the REFTBL already contained an entry, the ESD type 5 and 6 
card routine indexes it in the ESIDTB, checks alignment, and 
branches to ESDOO. 

Note: The PR alignment is coded and placed into the REFTBL. It is an 
error to encounter more restrictive alignment PR than previously defined. 
A blank alignment factor is translated to fullword alignment. 

ESD TYPE 10 ROUTINE - WEAK EXTRN 

The WEAK EXTRN routine calls the search routine to find the EXTRN 
name in the loader table. If not found, set the WEAK EXTRN flag in the 
new loader table entry. Exit to ESDOO. 

TXT CARD ROUTINE - C4AA 1 

Function 
This routine has two functions: address inspection and placing text in 
storage. 

Entry 
This routine has three entry points: C4AAl, which is entered from the 
ESD card analysis routine, and REPENT and APRI, which are entered 
from the REP card routine for address inspection. 

Operation 

1. This routine begins its operation with -a test of card type. If the 
card being processed is not a TXT card, the routine branches to 
the REP card routine. Otherwise, processing continues in this 
routine. 

2. The routine then determines how many bytes of text are to be 
placed in storage and finds whether the loading process is absolute 
or relocating. If the loading process is absolute, the routine 
performs operation 4, below; if relocating, the routine performs 
operation 3. 

3. If the ESIDTB entry was negative, this is a duplicate to CSECT 
and processing branches to RD. Otherwise, the routine links to 
the REF ADR routine to obtain the relocation factor of the current 
control segment. 

4. The routine then adds the relocation factor (0, if the loading 
process is absolute) and the card-specified storage address. The 
result is the address at which the text must be stored. This 
routine also determines whether the address is such that the text, 
when loaded starting at that address, overlays the loader or the 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 101 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

reference table. If the loader overlay or a reference table overlay -" 
is found, the routine branches to the LDRIO routine. If neither 
condition is detected, the routine proceeds with address inspection. 

5. The routine then determines whether an address has already been 
saved for possible use as the end-of-Ioad branch address. If an 
address has been saved, the routine performs operation 7. If not, 
the routine performs operation 6. 

6. The routine determines whether the text address is below location 
128. If the address is below location 128, it should not be saved for 
use as a possible end-of-Ioad branch address, and the routine 
performs operation 7. Otherwise, the routine saves the address 
and then performs operation 7. 

7. The routine then st~res the text at the address specified (absolute 
or relocated) and branches to location RD in the initial and 
resume loading routine to read another card. 

Exits 

REP CARD ROUTINE - C4AA3 

The routine exits to two locations: 

1. The routine exits to location RD in the initial and resume loading 
routine if it is being used to process a TXT card. 

2. The routine exits to location APRIL in the REP card routine if it 
is being used for REP card address inspection. 

Function 
This routine places text corrections in storage. 

Entry 
This routine has one entry point, C4AA3. The routine is entered from 
the TXT card routine. 

Operation 

1. This routine begins its operation with a text of card type. If the 
card being processed is not a REP card, the routine branches to 
the RLD card routine. Otherwise, processing continues in this 
routine. 

2. The routine then links to the HEXB conversion routine to convert 
the REP card-specified correction address from hexadecimal to 
binary. 

3. The routine then links to the HEXB conversioIl routine again to 
convert the REP card-specified ESID from hexadecimal to binary. 

4. The routine then determines whether the 2-byte correction being (1 '\ 

processed is the first such correction on the REP card. If it is the ~j 

102 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



{ 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

first correction, the routine performs operation 5. Otherwise, the 
routine performs operation 6. 

5. When the routine is processing the first correction, it links to 
location REPENT in the TXT card routine, where the REP 
card-specified correction address is inspected for loader overlay 
and for end-of-Ioad branch address saving. In addition, if the 
loading process is relocating, the relocated address is calculated 
and checked for reference table overlay. The routine then 
performs operation 7. 

6. When the correction being processed is not the first such 
correction on the REP card, the routine branches to location 
APRI in the TXT card routine for address inspection. 

7. The routine then links to the HEXB conversion routine to convert 
the correction from hexadecimal to binary, places the correction in 
storage at the absolute (card-specified) or relocated address, and 
determines whether there is another correction entry on the REP 
card. If there is another entry, the routine repeats its processing 
from operation 4, above. Otherwise, the routine branches to 
location RD in the initial and resume loading routine. 

Exits 

RLD CARD ROUTINE - C5AA1 

When all the REP-card corrections have been processed, this routine 
exits to location RD in the initial and resume loading routine. 

Function 
This routine processes RLD cards, which are produced by the 
assembler when it encounters address constants within the program 
being assembled. This routine places the current storage address 
(absolute or relocated) of a given defined symbol or expression into the 
storage location indicated by the assembler. The routine must 
calculate the proper value of the defmed symbol or expression and the 
proper address at which to store that value. 

Entry 
This routine has two entry points, C5AAI and PASSTWO. 

Operation: 

1. Location C5AAI writes each RLD card into a work file (DMSLDR 
CMSUTl). Exit to RD to process the next card. 

Location PASSTWO reads an RLD card from the work file. At 
EOF get to C6AB6 to finish this file. 

2. The routine uses the relocation header (RH ESID) on the card to 
obtain the current address (absolute or relocated) of the symbol 
referred to by the RLD card. This address is found in the 
relocation factor section of the proper reference table entry. If the 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 103 



Restricted Materials of IBM 

Licensed Materials ~ Property of IBM 

RHESID is 0, the routine branches to the LDRIO routine (invalid 
ESD). 

3. The routine uses the position header (PH ESID) on the card to 
obtain the relocation factor of the control segment in which the 
DEFINE CONSTANT assembler instruction occurred. If the PH 
ESID is 0, the routine branches to BADCRD in the REFTBL 
search routine (invalid ESID). If the ESIDTAB entry is negative 
(duplicate CSECT), the RLD entry is skipped. 

4. The routine next decrements the card-specified byte count by 4 and 
tests it for O. If the count is now 0, the routine branches to 
location RD in the initial and resume loading routine. Otherwise, 
processing continues in this routine. 

5. The routine determines the length, in bytes, of the address 
constant referred to in the RLD card. This length is specified on 
the RLD card. 

6. The routine then adds the relocation factor obtained in operation 
3 (relocation factor of the control segment in which the current 
address of the symbol must be stored) and the card-specified 
address. The sum is the current address of the location at which 
the symbol address must be stored. 

7. The routine then computes the arithmetic value (symbol address or 
expression value) that must be placed in storage at the address 
calculated in operation 6, above, and places that value at the 
indicated address. If the value is undefined, the routine branches 
to location DMSLSBB, where the constant is added to a 'string of 
constants that are to be defined later. 

8. The routine again decrements the byte count of information on the 
RLD card and tests the result for zero. If the result is zero, go to 
operation 2. Otherwise, processing continues in this routine. 

9. The routine next checks the continuation flag, a part of the data 
placed on the RLD card by the assembler. If the flag is on, the 
routine repeats its processing for a new address only--the 
processing is repeated from operation 4. If the flag is off, the 
routine repeats its processing for a new symbol--the processing is 
repeated from operation 2. 

Exits 
This routine exits to location RD in the initial and resume loading 
routine. 

104 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

r· END CARD ROUTINE· C6AA1 

\. 

{ 

( 

( 

Function 
This routine saves the END card address under certain circumstances 
and initializes the loader to load another control segment. 

Entry 
This routine has one entry point, C6AA1. The routine is entered from 
the RLD card routine. 

Operation 

1. This routine begins its operation with a test of card type. If the 
card being processed is not an END card, the routine branches to 
the LDT card routine. Otherwise, processing continues in this 
routine. 

2. The routine then determines whether the END card contains an 
address. If the card contains no address, the routine performs 
operation 7, below. Otherwise, the routine performs operation 3. 

3. The routine next checks the end-address-saved switch. If this 
switch is on, an address has already been saved, and the routine 
performs operation 7. If the switch is off, the routine performs 
operation 4. 

4. The routine determines whether loading is absolute or relocated. 
If the loading process is absolute, the routine performs operation 
6. Otherwise, the routine performs operation 5. 

5. The routine links to the REF ADR routine to obtain the current 
relocation factor, and the routine adds this factor to the 
card-specified address. 

6. The routine stores the address (absolute or relocated) in area 
BRAD for possible use at the end-of-Ioad transfer of control to the 
problem program. 

7. Goes to location PASSTWO (in RLD routine) to process RLD 
cards. 

8. The routine then clears the ESID table, sets the absolute load flag 
on, and branches to the location specified in a general register (see 
"Exits"). 

Exits 
This routine exits to the location specified in a general register. This 
may be either of two locations: 

1. Location RD in the initial and resume loading routine. This exit 
occurs when the END card routine is processing an END card. 

2. The location in the LDT card routine, that is specified by that 
routine's linkage to the END card routine. This exit occurs when 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 105 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

the LDT card routine entered this routine to clear the ESID table ./~, 

and set the absolute load flag on. ~/ 

CONTROL CARD ROUTINE· CTLCRD1 

Function 
This routine handles the ENTRY and LIBRARY control cards. 

Entry 
This routine has one entry point, CTLCRD1. The routine is entered 
from the LDT card routine. 

Operations 

1. The CMS function SCAN is called to parse the card. 

2. If the card is not an ENTRY or LIBRARY card, the routine 
determines whether the NOINV option (no printing of invalid 
card images) was specified. If printing is suppressed, control 
passes to RD in the initial and resume loading routine, where 
another card is read. If printing is not suppressed, control passes 
to the disk and type output routine (DMSLIO), where the invalid 
card image is printed in the load map. If the card is a valid 
control card, processing continues. 

ENTRY Card 

3. If the ENTRY name is already defined in REFTBL, its REFTBL 
address is placed in ENTADR. Otherwise, a new entry is made in 
REFTBL, indicating an undefined external reference (to be 
resolved by later input or library search), and this REFTBL 
entry's address is placed in ENTADR. 

4. The control card is printed by calling DMSLIO via CTLCRD; it 
then exits to RD. 

LIBRARY Card 

5. Only nonobligatory reference LIBRARY cards are handled. Any 
others are considered invalid. 

6. Each entry-point name is individually isolated and is searched for 
in the REFTBL. If it has already been loaded and defined, nothing 
is done and the next entry-point name is processed. Otherwise, the 
nonobligatory bit is set in the flag byte of the REFTBL entry. 

7. Processing continues at operation 4. 

106 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright ffiM Corp. 1980, 1986 



{ 

( 

( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

REFADR ROUTINE (DMSLDRB) 

Function 
This routine computes the storage address of a given entry in the 
reference table. 

Entry 
This routine has one entry point, REF ADR. The routine is entered for 
several of the routines within the loader. 

Operation 

1. Checks to see if requested ESDID is zero. If so, uses LOCCNT as 
requested location and branches to the return location + 44. 
Otherwise, continues this routine. 

2. The routine first obtains, from the indicated ESID table entry, the 
position (n) of the given entry within the reference table (where 
the given entry is the nth REFTBL entry). 

3. The routine then multiplies n by 16 (the number of bytes in each 
REFTBL entry) and subtracts this result from the starting address 
of the reference table. The starting address of the reference table 
is held in area TBLREF. This address is the highest address in 
storage, and the reference table is always built downward from 
that address. 

4. The result of the subtraction in operation 2, above, is the storage 
address of the given reference table entry. If there is no ESD for 
the entry, goes to operation 5. Otherwise, this routine returns to 
the location specified by the calling routine. 

5. Adds an element to the chain of waiting elements. The element 
contains the ESD data item information to be resolved when the 
requested ESDID is encountered. 

PRSERCH ROUTINE (DMSLDRD) 

Function 
This routine compares each reference table entry name with the given 
name determining (1) whether there is an entry for that name and (2) 
what the storage address of that entry is. 

Entry 
This routine is initially entered at PRSERCH and subsequently at 
location SERCH. The routine is entered from several routines within 
the loader. 

Operation 

1. This routine begins its operation by obtaining the number of 
entries currently in the reference table (this number is contained 
in area TBLCT), the size of a reference table entry (16 bytes), and 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 107 



LOADER DATA BASES 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

the starting address of the reference table (always the highest 
address in storage, contained in area TBLREF). 

2. The routine then checks the number of entries in the reference 
table. If the number is zero, the routine performs operation 5. 
Otherwise, the routine performs operation 3. 

3. The routine next determines the address of the first (or next) 
reference table entry to have its name checked. Increments by one 
the count it is keeping of name comparisons, and compares the 
given name with the name contained in that entry. If the names 
are identical, PRSERCH branches to the location specified in the 
routine that linked to it. PRSERCH then returns the address of 
the REFTBL entry. Otherwise, PRSERCH performs operation 4. 

4. The routine then determines whether there is another reference 
table entry to be checked. If there is none, the routine performs 
operation 5. If there is another, the routine decrements by one the 
number of entries remaining and repeats its operation starting 
with operation 3. 

5. If all the entries have been checked, and none contains the given 
name for which this routine is searching, the routine increments 
by one the count it is keeping of name comparisons, places that 
new value in area TBLCT, moves the given name to form a new 
reference table entry, and returns to the calling program. 

Exits 
This routine exits to either of two locations, both of which are 
specified by the routine that linked to this routine. The first location 
is that specified in the event that an entry for the given name is 
found; the second location is that specified in the event that such an 
entry is not found. 

ESD Card Codes (col. 25 ... ) 

Code Meaning 

00 SD (CSECT or START) 
01 LD (ENTRY) 
02 ER (EXTRN) 
04 PC (Private code) 
05 CM (COMMON) 
06 XD (Pseudo-register) 
OA WX (WEAK EXTERN) 

108 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986 

------------------'-'---'~' - - ,- ------, ' 

f " 

'"/ 



(-

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

ESIDTB ENTRY 

The ESDID table (ESIDTB) is constructed separately for each text deck 
processed by the loader. The ESIDTB produces a correspondence between 
ESD ID numbers (user on RLD cards) and entries in the loader reference 
table (REFTBL) as specified by the ESD cards. Thus, the ESIDTB is 
constructed while processing the ESD cards. It is then used to process the 
TXT and RLD cards in the text deck. 

The ESIDTB is treated as an array and is accessed by using the ID number 
as an index. Each ESIDTB entry is 16 bits long. 

Bits Meaning 

0 

I 
2 
3 
4-15 

If 1, this entry corresponds to a CSECT that has been previously 
defined. All TXT cards and RLD cards referring to this CSECT in 
this text deck should be ignored. 
If 1, this entry corresponds to a CSECT definition (SDD). 
Waiting ESD items exist for this ESDID. 
Unused. 
REFTBL entry number (for example 1, 2, 3, etc.) 

Bit 1 is very crucial because it is necessary to use the VALUE field of the 
REFTBL if the ID corresponds to an ER, CM, or PR; but, the INFO field of 
the REFTBL entry must be used if the ID corresponds to an SD. 

(, REFTBL ENTRY 

• 
0(0) 

NAME 

8(8) 9(9) 
FLAGI INFO 

12(C) 13(D) 
NOTEI VALUE 

16(10) 17(11) 
FLAG2 ADDRESS 

A REFTBL entry is 20 bytes. The fields have the following uses: 

NAME 
Contains the symbolic name from the ESD data item. 

( 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 109 



FLAGl 

INFO 

Loader ESD Routine 
Code Code Label 

7C 
7D 
7E 
7F 
80 
81 
82 
83 
90 

00 
01 
03 
07 
05 
04 
02 
05 
06 

XBYTE 
XHALF 
XFULL 
XDBL 
XUNDEF 
XCXD 
XCOMSET 
WEAKEXT 
CTLLIB 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Meaning 
;/ 

PR - byte alignment 
PR - halfword alignment 
PR - fullword alignment 
PR - double word alignment 
Undefined symbol 
Resolve CXD 
Define common area 
Weak external reference 
TXTLIBs not to be used to 
resolve names 

Depends upon the type of the ESD item. 

ESD Item Type 

SD (CSECT or START) 
LD (ENTRY) 
CM (COMMON) 
PR (Pseudo Register) 

VALUE 

INFO Field Meaning 

Relocation factor 
Zero 
Maximum length 

Depends upon the type of the ESD item, as does the INFO field . 
• 

ESD Item Type INFO Field Meaning 

SD (CSECT or START) Absolute address 
LD (ENTRY) Absolute address 
CM (COMMON) Absolute address 
PR (Pseudo register) Assigned value (starting from 0) 

FLAG2 

Bit Meaning 

o Unused 
1 Unused 
2 Unused 
3 Unused 
4 Unused 
5 Name was located in a TXTLIB 
6 Section definition entry 
7 N arne specifically loaded from command line 

ADDRESS 
Unused. 

/" "\ 

Entries may be created in the loader reference table prior to the actual '~ j 

defining of the symbol. For example, an entry is created for a symbol if it is 

110 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



( 

( 

(-

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

referenced by means of an EXTRN (ER) even if the symbol has not yet been 
defined or its type known. Furthermore, COMMON (CM) is not assigned 
absolute addresses until prior to the start of execution by the START 
command. 

These circumstances are determined by the setting of the flag byte. If the 
symbol's value has not yet been defined, the value field specifies the address 
of a patch control block (PCB). 

PATCH CONTROL BLOCK (PCB) 

These are allocated from free storage and pointed at from REFTBL entries 
or other PCBs. 

Byte Meaning 

0-3 
4 
5-7 

Address of next PCB 
Flag byte 
Location of ADCON in storage 

All address constant locations in loaded program for undefined symbols are 
placed on PCB chains. 

LOADER INPUT RESTRICTIONS 

All restrictions that apply to object files for the OS linkage editor apply to 
CMS loader input files. 

Loading and Executing Members of LOADLIBS 

The OS relocating loader support consists of two members: the relocating 
program (DMSLOS) and the overlay program (DMSSFF). In addition, the 
OSRUN command (DMSOSR) allows the user to invoke directly from the 
console a program residing in a CMS LOADLIB or an OS module library. 
DMSOSR executes in user storage. 

When a user program invokes the LINK, LOAD, XCTL, or ATTACH SVC, 
DMSSLN calls DMSLOS to search the libraries in the LOADLIB global list 
for the specified member name. If found, DMSLOS loads and relocates the 
requested program from either an OS module library (for example, 
SYS1.LINKLIB) or a CMS LOADLIB (created by the LKED command). If 
the member is not found, return is made to DMSSLN to search for a TEXT 
file or a member of a TXTLIB by that name. 

The program exists in the library as text records, directly followed (when 
required) by control, relocation, and position records. DMSLOS obtains, 
via the BLDL macro, the information necessary to start loading the 
program from the PDS directory entry for the program. Then, text records 
and control records are read alternately, the proper addresses are modified, 
and return is made to DMSSLN. 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 7. Processing and Executing CMS Files 111 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

The OSRUN command generates a LINK sve and therefore follows the 
same path described in the preceding paragraphs. However, if the 
requested member is not found in searching the libraries specified in the 
LOADLm global list, a search is made for a default library ($SYSLm 
LOADLIB); TEXT files and TXTLm members are not searched. 

For detailed information on the library record formats, see the OS/VS 
Linkage Editor Logic. 

112 System Logic and Problem Determination (CMS) LY20·0893·4 © Copyright IBM Corp. 1980, 1986 



{ 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Chapter 8. Manipulating the File System 

Part 2 of Figure 8 on page 59 lists the eMS modules that perform either 
general file system support functions or that perform data manipulation. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 8. Manipulating the File System 113 



114 System Logic and Problem Determination (CMS) 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

L Y20-0893·4 © Copyright IBM Corp. 1980, 1986 



( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Chapter 9. Managing the CMS File System 

A description of the structure of the CMS file system and the flow of 
routines that access and update the file system follows. 

Disk Organization 

CMS virtual disks (also referred to as minidisks) are blocks of data 
designed to externally parallel the function of real disks. Several virtual 
disks may reside on one real disk. 

A CMS virtual machine may have up to 26 virtual disks accessed during a 
terminal session, depending on user specification. Some disks, such as the 
S-disk, are accessed during CMS initialization. However, most disks are 
accessed dynamically as they are needed during a terminal session. 

How CMS Files are Organized in Storage for an SOO-Byte Record 

File Status Tables 

CMS files are organized in storage by three types of data blocks; the file 
status table (FST), chain links, and file records. Figure 14 on page 116 
shows how these types of data blocks relate to each other. The following 
text and figures describe these relationships and the individual data blocks 
in more detail. 

CMS files consist of 800-byte records whose attributes are described in the 
file status table (FST). The file status table is defined by DSECT FSTSECT. 
The FST consists of such information as the filename, filetype, and filemode 
of the file, the date on which the file was last written, and whether the file 
is in fixed-length or variable format. Also, the FST contains a pointer to 
the first chain link. The first chain link is a block that contains addresses 
of the data blocks that contain the actual data for the file. 

The FSTs are grouped into 800-byte blocks called FST blocks (these are 
sometimes referred to in listings as hyperblocks). Each FST block contains 
20 FST entries, each describing the attributes of a separate file. Figure 15 
on page 117 shows the structure of an FST block and the fields defined in 
the FST. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 9. Managing the CMS File System 115 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Note: Programs that modify the fileid of an FST can destroy the integrity ( " 
of the file system. Programs that modify any of the fields in the FSTs are ~. / 

Master 
File Directory 

Address of 
FSTB 

not supported by eMS. These programs can cause a "file not found" 
condition for the file until the disk is re-accessed. 

File Status 
Table Block 
(FSTBI 

File Status 
Table Entry 

First Chain 
Link (FCll 

r-- BOO-byte CMS Record Containing File Data Items -1 

Nth Chain 
Link (NCll 

Figure 14. How SOO-Byte CMS File Records are Chained Together 

116 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986 

\,,- / 

~. " 
! 

\", .. ..-/ 



( 

{ 

( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Chain Links 

File Status 
Table Block 

Fields in e File Status Table Entry 

FILE 

NAME 

FST 1 FILE 

FST4 

FST5 

FST20 

TYPE 

DATE LAST WRITTEN 

Write Pointer 
(Number of Item) 

Filemode 

Disk Address of 
1 st Chain Link 

22 

26 

Read Pointer 
(Number of Item) 

Number of Items in File 

30 31 . 
Fixed Variable Flag Byte 

Item Length (F) 
Maximum Item Length (V) 

Number of 
SOO-Byte Data Blocks Year 

Figure 15. Format of a File Status Table Block - Format of a File Status 
Table. (for BOO-Byte Disk Format) 

Chain links are 200- or 800-byte blocks of storage that chain the records of 
a file in storage. There are two types of chain links: first chain links and 
Nth chain links. 

The first chain link points to two kinds of data. The first 80 bytes of the 
first chain link contain the halfword addresses of the remaining 40 chain 
links used to chain the records of the file. The next 120 bytes of the file are 
the halfword addresses of the first 60 records of the file. 

The Nth chain links contain only halfword addresses of the records 
contained in the file. 

Because there are 41 chain links (of which the first contains addresses for 
only 60 records), the maximum size for any CMS file is 16,060 800-byte 
records. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 9. Managing the CMS File System 117 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

eMS Record Formats 

:r: 

::; 

eMS records are BOO-byte blocks containing the data that comprises the 
file. For example, the eMS record may contain several card images or 
.print images, each is referred to as a record item. Figure 16 shows how 
chain links are chained together. 

eMS records can be stored on disk in either fixed-length or variable-length 
format. However, the two formats may not be mixed in a single file. 

Regardless of their format, the items of a file are stored by eMS in 
sequential order in as many BOO-byte records as are required to 
accommodate them. Each record (except the last) is completely filled and 
items that begin in one record can end on the next record. Figure 17 on 
page 119 shows the arrangement of records in files containing fixed-length 
records and files containing variable-length records. 

Disk Address of 2nd Chain Link 

Disk Address of 3rd Chain Link 

• • • 
Disk Address of ' 40th Chain Link 

Disk Address of 41st Chain Link 

Disk Address of 1 st Data Block 

Disk Address of 2nd Data Block 

• • • 
Disk Address of 59th Date Block 

Disk Address of 60th Data Block 

::~ 

::~ 

Chain 
Linkage 
Directory 

Disk Address of A + Oth Data Block 

Disk Address of A + 1st Data Block 

• 
~ • :: 

• 
Disk Address of A + 398th Data Block 

Disk Address of A + 399th Data Block 

A= (n-21 • 400 + 61 
where n = Chain Link Number 

Figure 16. Format of the First Chain Link and Nth Chain Links 

118 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

------------

-,-/ 



( 

,--

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

1 
800 

t 
800 

t 
800 

1 

Data block structure for file 
consisting of fixed-length records 

1st record -- -- -- --------
----1_-

- ---- ----
2nd record --- - ---

I --------
3rd record ---- -------J ____ 
4th record -- - - - - - -- -----

5th record ---- - ---- -----
----I 

Data block structure for file 
consisting of variable-length records 

T T L1 T 1st record 

800 800 B-------- 800 

t 
L2 

- 2nd record 

EJ-----[5] ---
_ _ L3 _3~ ~c~~ L4 

800 800 800 

t t 
4th record 

t -----------
L5 

800 800 5th record 800 

1 1 r--------- 1 I 

Figure 17. Arrangement of Fixed-Length Records and Variable-Length Records in Files 

The location of any item in a file containing fixed-length records is 
determined by the formula: 

(item number - 1) x record length 
locations 

800 

where the quotient is the sequential number of the data block and the 
remainder is the displacement of the item into the data block. 

For variable-length records, each record is preceded by a 2-byte field 
specifying the length of the record. 

Physical Organization of Virtual Disks 

Virtual disks are physically organized in 800-byte records. Records 1 and 2 
of each user disk are reserved for IPL. Record 3 contains the disk label. 
Record 4 contains the master file directory. The remaining records on the 
disk contain user file-related information such as the FSTs, chain links, and 
the individual file records discussed above. 

The Master File Directory 

The master file directory (MFD) is the major file management table for a 
virtual disk. As mentioned earlier, it resides on cylinder 0, track 0, record 4 
of each virtual disk. The master file directory contains six types of 
information. 

• The disk addresses of the FST entries describing user files on that disk. 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 9. Managing the CMS File System 119 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

• A 4-byte "sentinel," which can be either FFFD or FFFF_ FFFD 
specifies that extensions of the QMSK (described below) follow_ FFFF 
specifies that no QMSK extension follow. 

• Extensions to the QMSK, if any. 

• General information describing the status of the disk: 

ADTNUM - The total number of BOO-byte blocks on the user's disk. 

ADTUSED - The number of blocks currently in use on the disk. 

ADTLEFT - Number of blocks remaining for use (ADTNUM -
ADTUSED). 

ADTLAST - Relative byte address of the last record in use on the 
disk. 

ADICYL - Number of cylinders on the user's disk. 

Unit Type - A I-byte field describing the type of the disk: 07 for a 
3340, 08 for a 2314, 09 for a 3330, OB for a 3350, OC for a 3375, OE for 
a 3380, FE for a 3370, and FF for a 3310. 

A bit mask called the QMSK, which keeps track of the status of the 
records on disk. 

Another bit map, called the QQMSK, which is used only for 2314 
disks and performs a function similar to that of QMSK. 

Figure 18 on page 121 shows the structure of the master file directory. 
Figure 14 on page 116 shows the relationship of the master file directory, 
which resides on disk, to data blocks brought into storage for file 
management purposes, for example, FSTs and chain links. 

120 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986 

/ 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

( 
I ""' .... ...------ 2 Bytes 

Byte 0 ......... 
~I 

Disk Address of 1 st FST Block 

Disk Address of 2nd FST Block (if any) 
• 
• • 

Disk Address of Nth FST Block (if any) 

Sentinel 

Disk Address of 1st OMSK extension (If any) 
• • • 

Disk Address of Nth OMSK extension (if any) 

• • • 
:; Not used - Zero filled .":~ • • 

{ Byte 364 

Byte 380 

• ... 
• ~ ADTNUM. ADTUSED. ADTLEFT. ADTLAST :: ~ 

r' (4 bytes each) 

Not used (zero) 
Byte 382 ... 

ADTCYL 
Byte 384 ... 
Byte 599 

Byte 600-+ 

~~ First 215 Bytes of OMSK =~ 
I UNIT-TYPE 

... Entire 200-Byte OOMSK Table .... 
(for 2314 only) :r 

Figure 18. Structure of the Master File Directory 

( 

( 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 9. Managing the CMS File System 121 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

QMSK for 23140r 2319 -I 1"-- 1 bit -.J j.....1 bit QMSK for 3330 

0 0 0 0 0 0 0 0 T 
0 0 0 0 0 0 0 0 1 bit 
1 2 3 4 5 6 7 8 i.... 
0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 2 
9 10 11 12 13 14 15 1 

0 0 0 0 0 0 0 0 
2 2 2 2 2 2 2 3 
2 3 4 5 6 7 8 9 

I.,. '" 
Number of QMSK Extensions 

Required (if eny) 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

U]T 
H 1 bit 
R -L 

where: 
C = Cylinder 
H = Head 
R = Record 

Bit Value Meaning 

o Block available 
Block in use '. 

0 0 
0 0 
1 2 

0 0 
0 0 
9 10 

0 0 
1 1 
3 4 

Number of Cylinders on Disk 

2314or2319 3330 3340 

1 - 11 1-6 

12 - 54 7-30 

55-96 31 - 54 

97 -139 55 -78 

140 -182 79 -102 

183 - 203 103 -126 

- 127 - 150 

- 151-174 

- 175 - 198 

- 199 - 223 

- 224 - 246 

0 0 0 0 0 0 
0 0 0 0 0 0 
3 4 5 6 7 8 

0 0 0 0 0 0 
0 0 0 0 1 1 
11 12 13 14 1 2 

0 0 0 0 0 0 
1 1 1 1 1 1 
5 6 7 8 9 10 

.. 

3350 

Figure 19. Disk Storage Allocation Using the QMSK Data Block 

Keeping Track of Read/Write Disk Storage: QMSK and QQMSK 

Because eMS does not require contiguous disk space, disk space 
management needs to determine only the availability of 800-byte blocks and. 
to chain them together. The status of the blocks on any read/write disk 
(which blocks are available and which are currently in use) is stored in a 
table called QMSK. The term QMSK is derived from the fact that a 2311 
disk drive has four 800-byte blocks per track. One block is a 
"quarter-track", or QTRK, and a 200-byte area is a "quarter-quarter-track", 
or QQTRK. The bit mask for 2314, 2319, 3310, 3330, 3340, 3350, 3370, 3375, 
or 33BO records is called the QMSK, although each BOO-byte block 
represents less than a quarter of a track on these devices. 

On a 2314 or 2319 disk, the blocks are actually grouped fifteen BOO-byte 
blocks per even/odd pair of tracks. An even/odd pair of tracks is called a 
track group. On a 3330 disk, the blocks are grouped fourteen BOO-byte 
blocks per track. On a 3340 disk, the blocks are grouped into eight BOO-byte 
blocks per track. 

When the system is not in use, a user's QMSK resides on the master file 
directory. During a session it is maintained on disk, but also resides in 

122 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

\ 

\ 
"-

"'..../ 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

main storage. QMSK is of variable length, depending on how many 
cylinders exist on the disk. 

Each bit is associated with a particular block on the disk. The first bit in 
QMSK corresponds to the first block, the second bit to the second block, 
and so forth, as shown in Figure 19 on page 122. 

When a bit in QMSK is set to 1, it indicates that the corresponding block is 
in use and not available foe allocation. A O-bit indicates that the 
corresponding block is available. The data blocks are referred to by 
relative block numbers throughout disk space management, and the disk 
I/O routine, DMSDIO, finally converts this number to a CCHHR disk 
address. 

A table called QQMSK indicates which 200 byte segments (QQTRK) are 
available for allocation and which are currently in use. QQMSK contains 
100 entries, which are used to indicate the status of up to 100 QQTRK 
records. An entry in QQMSK contains either a disk address, pointing to a 
QQTRK record that is available for allocation, or zero. QQMSK is used 
only for 2314 files; for 3330, 3340, and 3350, the first chain link occupies the 
first 200-byte area of an BOO-byte block. 

The QMSK and QQMSK tables for read-only disks are not brought into 
storage, since no space allocation is done for a disk while it is read-only. 
They remain, as is, on the disk until the disk is accessed as a read/write 
disk. 

Dynamic Storage Management: Active Disks and Files 

CMS disks and files contained on disk are physically mapped using the data 
blocks described above: for disks, the MFD, the QMSK, and the QQMSK; 
for files, the FST, chain links, and BOO-byte file records. In storage, all of 
this data is accessed by means of two DSECTs whose addresses are defined 
in the DSECT NUCON, ADTSECT and AFTSECT. 

( Managing Active Disks: The Active Disk Table 

(-

The ADTSECT DSECT maps information in the active disk table (ADT). 
This information includes data contained in the MFD, FST blocks, the 
QMSK, and QQMSK. The DSECT comprised often "slots," each 
representing one CMS virtual disk. A slot contains significant information 
about the disk such as a pointer to the MFD for the disk, a pointer to the 
first FST block, and pointers to the QMSK and QQMSK, if the disk is a 
R/W disk. ADTSECT also contains information such as the number of 
cylinders on the disk and the number of records on the disk. 

Managing Active Files: The Active File Table 

Each open file is represented in storage by an active file table (AFT). The 
AFT (defined by the AFTSECT DSECT) contains data found on disk in 
FSTs, chain links, and data records. Also contained in the AFT is 
information such as the address of the first chain link for the file, the 
current chai~ link for the file, the address of the current data block and the 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 9. Managing the CMS File System 123 



Restricted Materials· of IBM 

Licensed Materials - Property of IBM 

fileid information for the file. Figure 2 on page 8 shows the relationship 
between the AFT and other CMS data blocks. 

CMSRoutines Used to Access the File System 

DMSACC is the control routine used to access a virtual disk. In 
conjunction with DMSACM and DMSACF, DMSACC, DMSACP, and 
DMSACS build, in virtual storage, the tables CMS requires for processing 
files contained on the disk. The list below shows the logical flow of the 
main function of DMSACC. 

Access a Virtual Disk: DMSACC 

DMSACC 
Scans the command line to determine which disk is specified. 

DMSLAD 
Looks up the address of the ADT for the disk specified on the 
command line. 

DMSACC 
Determines whether an extension to a disk has been specified on the 
command line and ensures that it is correctly specified. 

DMSLAD 
In the case where an extension has been specified, ensures that the 
extension disk exists. 

DMSLAD 
Ensures that the specified disk is not already accessed as a R/W disk. 

DMSFNS 
In the case where the specified disk is replacing a currently accessed 
disk, closes any open files belonging to the duplicate disk. 

DMSACC 
Verifies the parameters remaining on the command line. 

DMSALU 
Releases any free storage belonging to the duplicl;l,te disk via a call to 
DMSFRE. Also, clears appropriate entries in the ADT for use by the 
new disk. 

DMSACM 
(Called as the first instruction by DMSACF) Reads from the Master 
File Directory, the QMSK, and the QQMSK for the specified disk. 
Also, DMSACM updates the ADT for the specified disk using 
information form the MFD. 

DMSACF 
Reads into storage all the FST blocks associated with the specified 
disk. DMSACF calls DMSHTB to build hyperblock mapping tables for 
read/only disks (if the hyperblocks that are searched span three or 

124 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

'",- -_/ 

/ 



r-

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

more pages). DMSACF also calls DMSHTB to build hash tables for 
read/write EDF disks (if the hyperblocks that are searched span two 
or more pages). 

DMSACF calls DMSACG for EDF disks that are not S- or Y-disks to 
read in the directory by hyperblocks and to sort, if necessary. 

DMSACG 
If sufficient storage is available and if the disk in question is EDF but 
not an S- or Y- disk, DMSACG is called by DMSACF. The directory is 
read into contiguous storage by hyperblocks and sorted, if necessary, 
bypassing the call to DMSALU (SORTFST). Control is then returned 
toDMSACF. 

DMSACC 
Handles error processing or processing required to return control to 
DMSINT. 

How eMS Files are Organized in Storage for 512-, 1 K-, 2K-, or 
4K-byte Records on Disk 

File Status Tables 

CMS files are organized by three types of blocks; the file status table (FST), 
pointer blocks, and file records. Figure 20 on page 126 shows how these 
types of blocks relate to each other. The following text and figures describe 
these relationships and the individual data blocks in more detail. 

CMS files consists of 512-, 1K-, 2K-, or 4K-byte CMS blocks whose 
attributes are described in the file status table (FST). The file status table 
is defined by DSECT FSTSECT. The FST consists of such information as 
the filename, filetype, and filemode of the file, the date on which the file 
was last written, and whether the file is in fixed-length or variable format. 
Also, the FST contains a pointer to the highest level pointer block or only 
data block. If it is a pointer block, this block contains addresses of the next 
lower level pointer blocks or the data blocks that contain the actual data 
for the file. 

The FSTs are grouped into 512-, 1K-, 2K-, or 4K-byte CMS blocks called 
FST blocks (these are sometimes referred to in listings as hyperblocks). 
Each FST block contains 8, 16,32, or 64 FST entries respectively (an FST is 
64 bytes long), each describing the attributes of a separate file. Figure 21 
on page 127 shows the structure of an FST block and the fields defined in 
the FST. 

Note: Programs that modify the fileid of an FST can destroy the integrity 
of the file system. Programs that modify any of the fields in the FSTs are 
not supported by CMS. These programs can cause a "file not found" 
condition for the file until the disk is re-accessed. 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 9. Managing the CMS File System 125 



File Directory 

FST 

File Status 
Table Entry 

Highest Level 
Pointer Block 
(FOP) 

Restricted MateriiHs of IBM 

Licensed Materials - Property of IBM 

Lower Pointer 
Block (LPB) 

LPB 
Addr 

Lower 
Pointer Block 

Address of a 1 K, 
2K, or 4K record 

Figure 20. How 512-. lK-. 2K-. or 4K-Byte CMS File Records are Chained Together 

126 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

- ---------------~ --------------------

/ 

" ' (" \ 



(' 

( 

( 

{ 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

File Status 
Table Block 

FST 

FST 

FST 

FST 

Fields in a File Stetus Table Entry 

o 
File 

Name 

File 

Type 

Reserved 

Reserved 

26 
Filemode Reserved 

30 31 
Reserved Fixed Variable Flag Byte 

Highest Level 
of Pointer 
Blocks 

56 

60 

Item Length (F) 
Maximum Item Length (V) 

Reserved 

File Origin Pointer (FOP) 

Number of 512, 1 K, 2K, 4K Blocks 

53 

Number of Items In File 

Pointer 
Entry 
Size 

54 

Date Last Written 

(VV MM DO HH MM SS) 

Reserved 

Figure 21. Format of a File Status Table Block - Format of a File Status 
Table. (For 512-, lK-, 2K-, 4K-Byte Disk Format) 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 9. Managing the CMS File System 127 



Pointer Blocks 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Pointer blocks are 512-, 1K-, 2K-, or 4K-byte blocks of storage that chain 
the records of a file. There are up to five levels of pointer blocks. All but 
the first level of pointer blocks contain the fullword disk address of the 
next lower level pointer block. The level-one pointer blocks contain the 
fullword disk addresses of the data blocks of the file (see Figure 22 on 
page 129 and Figure 23 on page 130). 

There are two types of pointer blocks: pointer blocks for fixed files which 
are as described above, and pointer blocks for variable files. For the 
variable files, each pointer block entry is three fullwords long. The first 
full word holds the disk address of the next lower level pointer block, the 
next fullword holds the highest item number contained in this lower 
corresponding pointer block, and the last fullword holds the displacement, 
at the data level, to the first identified item contained in a lower 
corresponding pointer block. CMS blocks are not shared by files. 

Each entry of a level-one pointer block is composed of one full word 
containing the disk address of the corresponding data block, one full word 
containing the highest item number contained in this data block, and one 
full word containing the displacement, in bytes, of the first identified item (if 
any) contained in this data block. This last fullword of the entry may hold 
the hexadecimal value X'FF ... F', indicating that the item is spanned. 

The last fullword of a pointer block holds the displacement, in bytes, of the 
last used entry, if one exists, in the block. This structure permits the 
creation of very large files. The maximum number of data blocks available 
in a variable format file on a 1K-, 2K-, or 4K-byte blocksize minidisk is 
about 231 - 1. The maximum number of data blocks available in a variable 
format file on a 512-byte blocksize minidisk is about 15 times less than 231 -

1. The maximum number of blocks available in a variable format file is 
64K. 

Each pointer block or data block is prefixed in virtual storage with a 
header. This header holds an entry called DCHTRUNK that points to the 
upper level pointer block. Associated with the DCHTRUNK value is a 
displacement that indicates the corresponding entry in this upper level 
pointer block. 

In virtual storage, each level of pointer block and the da,ta block have an 
anchor in the corresponding active file table (AFT) and are forward and 
backward chained by the prefix. 

128 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

P3(O) 
Level 3 Pointer Block 

Disk Address P2(O) 

Disk Address P2(1) 

P2(O) ~ P2(1) 

Disk Address P1 (0) Disk Address P1 (256) 

r I 
- Disk Address P1 (1) Disk Address P1 (257) 

Disk Address P1 (258) 

• - Disk Address P1 (259) Level 2 

• Pointer 

::~ • Blocks 

• :~ 
• 

f f • • 
Disk Address P1 (255) 

( P1(O) P1(1) P1(259) 

- Disk Address DB(O) Disk Address DB(256) Disk Address DB(66304) 

Disk Address DB(1) ~ Disk Address DB(257) Disk Address DB(66305) -
•••••••• 

Level 1 
• • Pointer 

( 

:~ 
• 

:~ =r' 
• 

=1" t r 
Blocks 

• • • • • • 
Disk Address DB(255) Disk Address DB(511) 

,....... 
DB(O) ~ DB(1) DB(2) DB(3) 

, 
DB(66305) 

ftem 1 item n+1 Item 

ri 
Item M 

ftem 2 Item Item Item ••••••••••••• 

• • • • • • 
"" • .... .... • "'" .... • ~ .. ~ .. ~ .. 

bdbdbd u 
Figure 22. Format of Level 3 Pointer Block Fixed-Length Record File 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 9. Managing the CMS File System 129 



P2(0) 

T f.... ~i~ A~dr~ ~IO~ _ ~ 
dp1 124 -L f- - - -0- - --

Level 2 
Pointer 
Block 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Disk Address P1 (1) 1--+--------------.., f--------
126 

f....-------
1K +d125 

dp1 

P1(0) 

f- .Eis~ Add:~ ~IO':" - T 
f-.-------

d1 = 0 

-- Disk Address 08(1) 1-------- d85 6 p 

:~---~---~1 
Disk Address 08(85) 

f-.-------
i24 1--------

d112 

dp85 

Data Block Data Block Data Block 
OB(O) OB(1) OB(92) 

-r-d1 

~ t 
d4 Item 3 

Item 1 -L 
~ 

P1 (1) 

- Disk Address DB(86) f-.------- T 
124 dp87 

I---------~ 
X'FFFFFFFF' 

~-----I 
Disk Address DB(87) t--

f-------
126 1---------

Data Block 
DB(86) 

d125 

dp87 

T 

Level 1 
Pointer 
Blocks 

Data Block 
DB(87) 

d125 Item 124 

--L f-.--r-----I 
~ 

Item 6 •••••• Item 124 Item 125 

~ 
:: ~ Item 126:: ~ 

Figure 23. Format of Level 2 Pointer Block Variable-Length Record File 

130 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

----- -----~--~~--



r 

( 

( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

eMS Block Formats 

eMS blocks are 512-, 1K-, 2K-, or 4K-byte disk records containing the data 
that comprises the file. For example, the eMS record may contain several 
card images or print images, each of which is referred to a record item. 
Figure 22 on page 129 show how pointer blocks are chained together. 

eMS file items can be stored on disk in either fixed-length or 
variable-length format. However, the two formats may not be mixed in a 
single file. 

Regardless of their format, the items of a file are stored by eMS in 
sequential order in as many 512-, 1K-, 2K-, or 4K-byte records as are 
required to accommodate them. Each eMS block (except the last) is 
completely filled and items that begin in one eMS block can end in the 
next eMS block. Figure 22 on page 129 shows the arrangement of items in 
files containing fixed-length items and files containing variable-length 
items. 

The location of any item in a file containing fixed-length items is 
determined by the formula: 

(item number - 1) x record length 
location 

512, 1K, 2K, or 4K 

where the quotient is the sequential number of the data block and the 
remainder is the displacement of the item into the data block. 

For variable-length files, each item is preceded by a 2-byte field specifying 
the length of the item. 

Physical Organization of Virtual Disks 

Virtual disks are physically organized in 512-, 1K-, 2K-, or 4K-byte disk 
records. Records 1 and 2 of each user disk are reserved for IPL. Record 3 
contains the disk label. The first block of the file directory is alternately 
exchanged between record 4 and record 5 when the directory is rewritten to 
disk. The remaining records on the disk contain information such as 
allocation map blocks, FSTBs, pointer blocks, and the individual file 
records as discussed above. 

eMS disk structures that reside on FB-512 devices are 512-, 1024-, 2048-, or 
4096-byte eMS block format. The required number of 512-byte physical 
FB-512 disk records are logically concatenated together to form each eMS 
block. For example; on a 1024-byte format disk, FB-512 physical record 
numbers 0 and 1 (origin 0) are used together to form eMS block 1 (origin 1). 
The FB-512 label occupies FB-512 block 1 (origin 0) leaving eMS blocks 2 
and 3 available for general use. 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 9. Managing the CMS File System 131 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

The File Directory, the Allocation Map, and the Disk Label 

The file directory and the allocation map have the same organization as 
files. The directory contains FSTs and the first block resides on cylinder 0, 
track 0, record 4 or record 5 of each virtual disk. The record number (4 or 
5) is maintained in the field disk origin pointer of the disk label. 

The directory itself is described by an FST that is the first FST in the first 
block. The filename for the directory is binary zero (except for byte 4 
which is binary 1), and the filetype is "DffiECTOR". 

The allocation map is described by an FST that is the second FST in the 
first block of the directory. The filename is binary zero (except for byte 4 
which is binary 2), and the filetype is "ALLOCMAP". 

The disk label resides on cylinder 0, track 0, record 3. It is 80-byte long and 
contains the following information: 

ADTIDENT 

ADTID 

ADTDBSIZ 

ADTDOP 

ADTCYL 

ADTMCYL 

ADTNUM 

ADTUSED 

ADTFSTSZ 

ADTNFST 

ADTCRED 

ADTAMNB 

ADTAMND 

CMS1 is the label identifier. 

Six characters given by the user are the volume identifier. 

One fullword; contains the disk block size that the user 
chooses at format disk time (512, 1K, 2K, or 4K). 

One fullword; contains records 4 or 5 depending upon the 
actual directory first data block address. 

One fullword; contains the number of formatted cylinders 
available for CMS files. 

One fullword; contains the maximum number of formatted 
cylinders, that is, the size of the disk. 

One fullword; the total number of 512-, 1K-, 2K-, or 4K-byte 
blocks on the user's disk. 

One fullword; the number of blocks currently in use on the 
disk. 

One fullword; the size of the FST (64 bytes). 

One fullword; the number of FSTs per block. 

Six characters; the disk creation date 
(YYMMDDHHMMSS). 

One fullword; contains the relative block number of the 
current cursor position within the allocation map. 

One fullword; contains the relative byte offset of the 
current cursor position within the block specified by 
ADTAMNB. 

132 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

/ 



( 

( 

( 

( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

ADTAMUP One fullword; contains the relative byte address within the 
allocation map that corresponds to the start of user data 
blocks. 

ADTSFNAM Eight characters; contains the name of the discontiguous 
shared segment (DCSS) if a saved file directory is to be used 
for this disk. 

Keeping Track of Read/Write Disk Storage: Allocation Map 

In CMS, disk space is composed of 512-, 1K-, 2K-, or 4K-byte blocks chained 
together. Because disk space management only determines the availability 
of blocks, not extents, it need not allocate disk space contiguously. The 
status of the blocks on any read/write disk (which blocks are available and 
which are currently in use) is stored in a table called the allocation map. 
The allocation map contains bits, each of which is associated with a 
particular CMS block. The first corresponds to the first CMS block, the 
second bit corresponds to the second CMS block, and so forth. 

When a bit in the allocation map is set to 1, it indicates that the 
corresponding block is in use and not available for allocation. A O-bit 
indicates that the corresponding block is available_ The data blocks are 
referred to by relative block numbers through disk space management, and 
the disk I/O routine, DMSDIO, finally converts this number to a CCHHR 
disk address or FB-512 block number. 

When the system is not in use, a user's allocation may reside on the 
corresponding disk. During a session, it is maintained on disk but also 
resides in real storage. The allocation map is variable in length, depending 
on how many cylinders exist on the disk. The CMS disk may reside on the 
entire physical disk pack and is limited only by the physical limit of the 
disk pack. 

A de allocation map exists in real storage when CMS disk blocks are 
deallocated. During a terminal session, a block is recorded as deallocated 
by turning on its corresponding bit in the deallocation map. 

When the disk is updated by rewriting the file directory and the allocation 
map, the current allocation map is formed by combining the allocation map 
and the deallocation map. In fact, a deallocation map block is created only 
for those allocation map blocks in which a CMS block is deallocated. 

The allocation maps for read-only disks are not brought into storage 
because no space allocation is performed for a disk while it is in read-only 
status. They remain, as is, on the disk until the disk is accessed as a 
read-write disk. 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 9. Managing the CMS File System 133 



Selective Directory Update 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

The file directory and the allocation map are built with CMS blocks (512-, 
1K-, 2K-, or 4K-bytes). The selective directory update function takes place 
when the file directory and the allocation map must be updated on the 
corresponding disk. It writes on disk only the modified blocks of the 
directory (including required pointer blocks) and the entire allocation map. 

Dynamic Storage Management: Active Disks and Files 

CMS disks are physically mapped in CMS blocks containing the file 
directory and the allocation map. CMS files on disk are mapped using FST 
blocks, pointer blocks, and 512-, 1K-, 2K-, or 4K-byte file data blocks. 

In real storage all of this data is accessed by means of two DSECTs whose 
addresses are defined in DMSNUC, ADTSECT, and AFTSECT. 10 
ADTSECTs reside in DMSNUC and the others (11 through 26) reside in free 
storage when they are used. Five AFTs reside in DMSNUC and the others 
reside in free storage. (See Figure 24 on page 135). 

Managing Active Disks: The Active Disk Table 

The ADTSECT DSECT maps information in the active disk table (ADT). 
An ADT contains significant information about the CMS disk such as the 
anchors for pointer block levels, the data block for the file directory, and 
the data block for the allocation map (if the disk is a read-write disk). The 
ADTSECT also contains disk label information. 

Managing Active Flies: The Active File Table 

Each open file is represented in storage by an active file table (AFT). The 
AFT (defined by AFTSECT DSECT) contains data found on disk in FSTs, 
the anchors for pointer block levels and the data block for the file. The 
AFT also contains such information as the read pointer and write pointer of 
the file, the number of entries in a pointer block, the number of pointer 
block levels, and the length of a pointer block entry. Figure 24 on 
page 135 shows the relationship between the AFT and other CMS blocks. 

134 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

DMSNUC Area of Storage Free Storage 

AFT LEVEL 2 

POINTER TO 
CURRENT 
LEVEL 2 
BLOCK 

LEVEL 1 POINTER 

DMSNUC I CURRENT I ~~~~t=:--, POINTER TO 

1..~~~~~~~~~ LEVEL 1 
~B~LO~C~K~ ________ ~ 

ADT 

ALLOCMAP BLK 

AFT 
CONTINUED 

ADT 
CONTINUED 

o o 0 

DATA BLOCK n+k 

ITEMi 

ITEM i+1 

ITEMp 

I 

1 0 0 0 0 
00000 
o 000 0 

Figure 24 (Part 1 of 3). File System for 512-, 1K-. 2K-. or 4K-Byte Record on Disk 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 9. Managing the CMS File System 135 



LEVEL 1 POINTER 

EVEL 1 POINTER 

HEADER 

FSTB1 POINTER 

FSTB2 POINTER 

FSTBn POINTER 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

LEVEL 1 POINTER 

FSTB n+1 POINTER 

FSTB n+2 POINTER 

FSTB n+1 POINTER 

FSTB1 FSTB2 FSTB n+3 .... ~-------r--:~--~...:..;;;,~---,---~-------f 
HEADER HEADER HEADER 

FST DIRECTOR FSTi+1 USER FST USER 

FSTALLOCMAP FSTi+2 USER FST USER 

FST1 USER 

FST2 USER 
THERE IS ONE FST 

FOR EACH FILE 

FSTi USER 

Figure 24 (Part 2 of 3). File System for 512-, lK-, 2K-, or 4K-Byte Record on Disk 

136 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp~ 1980, 1986 



( 

f 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Disk Storage CKD - DEVICE 

CYLO 
HEADO 
REC 5 

Figure 24 (Part 3 of 3). File System for 512-, 1K-, 2K-, or 4K-Byte Record on Disk 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 9. Managing the CMS File System 137 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

eMS Routines Used to Access the File System 

DMSACC is the control routine used to access a virtual disk. In 
conjunction with DMSACM and DMSACF, DMSACC, DMSACP, and 
DMSACS build, in virtual storage, the tables CMS requires for processing 
files <!Ontained on the disk. The list below shows the logical flow of the 
main function of DMSACC. 

Access a Virtual Disk: DMSACC 

DMSACC 
Scans the command line to determine which disk is specified. 

DMSLAD 
Looks up the address of the ADT for the disk specified on the 
command line. 

DMSACC 
Determines whether an extension to a disk has been specified on the 
command line, and ensures that it is correctly specified. 

DMSLAD 
In the case where an extension has been specified, calls DMSLAD to 
ensure that the extension disk exists. 

DMSLAD 
Ensures that the specified disk is not already accessed as a R/W disk. 

DMSFNS 
In the case where the specified disk is replacing a currently accessed 
disk, closes any open files belonging to the duplicate disk. 

DMSACC 
Verifies the parameters remaining on the command line. 

DMSACP 
Sets up control blocks for the remaining access processing. 

DMSALU 
Releases any free storage belonging to the duplicate disk via a call to 
DMSFRE. Als(), clears appropriate entries in the ADT for use by the 
new disk. 

DMSACM 
(Called as the first instruction by DMSACF) Reads from the file 
directory and the allocation map for the specified disk. Also, 
DMSACM updates the ADT for the specified disk using information 
from the file directory and disk label. 

DMSACF 
Reads into storage all the FST blocks associated with the specified 
disk. DMSACF calls DMSHTB to build hyperblock mapping tables for /', 
read/only disks (if the hyperblocks that are searched span three or ~j 
more pages). DMSACF also calls DMSHTB to build hash tables for 

138 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

--------------_._--



( 

f 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

The SET HASH Command 

read/write disks (if the hyperblocks that are searched span two or 
more pages). 

DMSACS 
Called by DMSACF to load a DCSS containing the FST blocks and 
hyperblock mapping tables for the disk if shared storage access is 
allowed for the disk. 

DMSACG 
If sufficient storage is available and if the disk in question is EDF but 
not an S- or Y-disk, DMSACG is called by DMSACF. The directory is 
read into contiguous storage by hyperblocks and sorted, if necessary, 
bypassing the call to DMSALU (SORTFST). Control then returns to 
DMSACF. 

DMSACP 
Handles error processing or processing required to return control to 
DMSINT. 

The SET HASH OFF command disables fileid hashing. 

SET HASH OFF 

Programs that modify the fileid fields in. a file status table (FST) when 
writing files to a disk can cause a "file not found" condition for the file 
until the disk is re-accessed. Disabling fileid hashing can alleviate this 
problem if encountered. Programs that modify any of the fields in the FSTs 
are not supported by CMS. 

Fileid hashing reduces the paging overhead when searching for files on 
R/W disks. Disabling fileid hashing may degrade performance for the eMS 
user. 

Once disabled, fileid hashing can only be re-enabled by re-IPLing CMS. 

Use the QUERY HASH command to determine whether fileid hashing is 
enabled (set on) or disabled (set off). 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 9. Managing the CMS File System 139 



140 System Logic and Problem Determination (CMS) 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

----- - ------- -----------



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Chapter 10. Handling 1/0 Operations 

CMS input/output operations for unit record, disk, and tape devices are 
always synchronous. 

Input/output operations to a card reader, card punch, or printer are 
initiated via a normal START I/O instruction. After starting the operation, 
CMS enters the wait state until a device end interruption is received from 
the started device. Because the I/O is spooled by CP, CMS does not handle 
any exceptional conditions other than not ready, end-of-file, or forms 
overflow. 

Disk and tape I/O is initiated via a privileged instruction, DIAGNOSE, 
whose function code requests CP to perform necessary error recovery. 
Control is not returned to CMS until the operation is complete, except for 
tape rewind or rewind and unload operations, which return control 
immediately after the operation is started. No interruption is ever received 
as the result of DIAGNOSE I/O. The CSW is stored only in the event of an 
error. 

CMS input/output operations to the terminal may be either synchronous or 
asynchronous. Output to the terminal is always asynchronous, but a 
program may wait for all terminal input/output operations to complete by 
calling the console wait routine. Input from the terminal is usually 
synchronous but a user may cause CMS to issue a read by pressing the 
attention key. A program may also asynchronously stack data to be read 
by calling the console attention routine. 

Unit Record 1/0 Processing 

Seven routines handle I/O processing for CMS: DMSRDC, DMSPUN, and 
DMSPRT handle the READCARD, PUNCH, and PRINT commands and pass 
control to the actual I/O processors, DMSCIO (for READ CARD and 
PUNCH) or DMSPIO (for PRINT). DMSCIO and DMSPIO issue the SIO 
instructions that cause I/O to take place. Two other routines, DMSIOW 
and DMSITI, handle synchronization processing for I/O operations. 
Figure 25 on page 142 shows the overall flow of control for I/O operations. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 10. Handling I/O Operations 141 



Read a Card 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

DMSRDC 
DMSPUN 
DMSPRT 

DMSCIO 
DMSPIO 

sto/ 
I 

Channel 

DMSIOW 

i....+-

.I<'igure 25. Flow of Control for Unit Record I/O Processing 

J 

DMSITI 

The following are more detailed descriptions of the flow of control for the 
read, punch, and print unit record control functions. 

DMSRDC 
Initializes block length and unit record size. 

DMSCIO 
Initializes areas to read records. 

DMSCIO 
Issues an SIO command to read a record. 

DMSIOW 
Sets the wait bit for the virtual card reader, and loads the I/O old 
PSW from NUCON. This causes CMS to enter a wait state until the 
read I/O is complete. 

DMSITI 
Ensures that this interrupt is for the virtual reader. If not, the I/O old 
PSW is loaded, returning CMS to a wait state. If the interrupt is for 
the reader, DMSITI resets the wait bit in the I/O old PSW and loads it 
causing control to return to DMSIOW. ~ '" 

i~.,./, 

142 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Punch a Card 

DMSIOW 
Places the symbolic name of the interrupting device in the PLIST, and 
passes control to the calling routine. 

DMSCIO 
Checks for SENSE information, and handles I/O errors, if necessary. 

DMSCWR 
Displays a control record at the console. 

DMSSCN 
If another control record is encountered, formats it via DMSSCN. 

DMSCWR 
Displays the new control record at the console. 

DMSFNS 
Closes the file when end-of-file occurs. 

DMSRDC 
Issues a CP CLOSE command to close the card reader. 

DMSPUN 
Ensures that a virtual punch is available, and processes PUNCH 
command options. 

DMSSTT 
Verifies the existence of the file, and returns its starting address. 

DMSPUN 
If requested, sets up a header record, and calls DMSCWR to write it to 
the console. 

DMSBRD 
Reads a block of data into the read buffer, and continues reading until 
the buffer is filled. 

DMSBWR 
Writes a block of data on disk. 

DMSCIO 
Initializes areas to punch records. 

DMSCIO 
Issues the SIO instruction to punch the contents of the buffer. 

DMSCIO 
Issues a call to DMSIOW to wait for completion of the punch I/O 
operation. 

LY20"0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 10. Handling I/O Operations 143 



Print a File 

DMSIOW 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Sets the wait bit on for the virtual punch device, and loads the I/O old 
PSW from NUCON. This causes CMS to enter a wait state until the 
punch operation completes. 

DMSITI 
Ensures that this interrupt is for the punch. If not, the I/O old PSW is 
loaded returning CMS to a wait state. If the interrupt is for the 
punch, DMSITI resets the wait bit in the I/O old PSW and then loads 
the PSW, returning control to DMSIOW. 

DMSIOW 
Places the symbolic name of the interrupting device in the PLIST, and 
passes control to DMSCIO. 

DMSCIO 
Checks for SENSE information, and handles I/O errors, if any. 

DMSPUN 
Handles error returns, and resets constants for the next punch 
operation. 

DMSFNS 
Closes the file, and returns control to the command handler, DMSINT. 

DMSPRT 
Determines the device type of the printer. Checks out the specified 
fileid. Checks out the options specified on the PRINT command line. 

DMSSTT 
Verifies the existence of the file, and returns its starting address. 

DMSPRT 
Determines the record size to be printed, and sets up an appropriate 
buffer area via a call to DMSFRE. 

DMSFRE 
Obtains storage space to be used as a buffer. 

DMSPRT 
Determines whether the file to be printed is a library member or an 
input file. 

DMSBRD 
Reads a record; continues reading until the buffer is filled. When the 
buffer is filled, calls DMSPIO to issue the SIO instruction to begin the 
print operation. 

144 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



( 

f 

(~ 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

DMSPIO 
Builds appropriate printer CCW chain. Issues the print SIO 
instruction, and then calls DMSIOW to wait until the I/O operation 
completes. 

DMSIOW 
Sets the wait bit for the virtual printer device, and loads the I/O old 
PSW from NUCON. This causes CMS to enter a wait state until the 
print operation completes. 

DMSITI 
Ensures that the interrupt is for the printer. If not, the I/O old PSW 
is reloaded, returning CMS to a wait state. If the interrupt is for the 
printer, DMSITI resets the WAIT bit in the I/O old PSW and loads 
that PSW, returning control to DMSIOW. 

DMSIOW 
Places the symbolic name of the device in the last word of the PLIST, 
and passes control to DMSPIO. 

DMSPIO 
Performs channel testing and handles errors. TIO instructions and 
sense SIO instructions are issued during the test processing. These 
operations are synchronized using DMSIOW and DMSITI in the 
manner described above. When the I/O completes successfully, control 
returns to DMSPRT. 

DMSPRT 
Determines whether all file records have been printed. If so, control 
returns to the caller. Otherwise, the address of the buffer is updated 
and more print operations are performed. 

Printer Carriage Control Characters Used by DMSPIO 

CMS supports the use of ASA control characters and machine carriage 
control characters for the printed output. Part of the CMS implementation 
depends upon the fact that the set of ASA control characters has almost 
nothing in common with the set of machine control characters. There are 
two exceptions to this, the characters X I C1 ' and X I C3 I • 

These two characters, when interpreted as ASA control characters, have 
the following meanings: 

C1 = Skip to channel 10 before print. 
C3 = Skip to channel 12 before print. 

The same characters, when interpreted as machine control characters, have 
the following meanings: 

C1 = Write, then skip to channel 8 after print. 
C3 = Do not write, but skip to channel 8 immediately. 

In printed lines containing carriage control characters, CMS can operate in 
two modes. In the first mode, ASA control characters or machines control 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 10. Handling I/O Operations 145 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

characters are recognized and properly interpreted. However, two 
conflicting characters are always interpreted as ASA control characters. In 
the second mode, only machine control characters are recognized. Two 
conflicting characters are treated as machine control characters. 

The.DMSPIO function uses a bit in the PLIST to indicate which of the two 
modes is in effect for printing. 

The PRINTL macro always uses ASA control character mode or machine 
control character mode. 

The PRINT command with the CC option always runs in ASA control 
character mode or machine control character mode. 

OS simulation output, which is used, for example, by the MOVEFILE 
command, uses the RECFM field in the DCB or in the FILEDEF command 
to determine which mode is to be used. If FA, VA, or U A is specified, then 
ASA control character mode or machine control character mode is used. If 
FM, VM, or UM is specified, then machine-only mode is used. If no control 
character specification is included with the RECFM, then it is assumed that 
the output line begins with a valid data character rather than with a 
control character, and single spacing is always used. 

The SETPRT Command 

The CMS SETPRT command allows a CMS user to control the facilities of 
a virtual 3800 device defined for their virtual machine. The SETPRT 
command is similar in function to the OS SETPRT macro. It allows the 
user to request multiple character arrangement tables, loading of copy 
modification, etc. The command uses the current CMS search order for 
locating disk files. Therefore, users can create their own character 
arrangement table, copy modifications, etc. and print files with user-defined 
characteristics. The SETPRT command writes 3800 CCW s and data to a 
virtual 3800 spool file to set up the real 3800 for the data to follow. If a file 
is created on a virtual 3800 and printed on a real printer of a different type, 
the 3800 load CCWs imbedded within the file are ignored and printing takes 
place as normal. However, this may create output that does not appear as 
originally intended. 

146 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

-~ ~------ -----~-.--~-.- -------~~-~ 

/ 



( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Disk 1/0 in eMS 

The format of the command is: 

SETPRT [..cHARS [(] ecce .•. [)]] 

[COPIES [<J nnn [)]] 

[COPYNR [(] nnn [)]] 

[FCB [(] ffff [)]] 

[FLASH [(] id nn [)]] 

[lNIT] 

[MODIFY [(] mmmm [n] [)]] 

Note: Due the change in pel density, customized 3800 Model 1 character 
sets are not interchangeable with the 3800 Model 3 character sets. Users 
can recode customized 3800 Model 1 character sets and build new modules 
through the use of the GENIMAGE command. The MVS Character 
Conversion Aid may also be used to convert existing customized character 
sets to the 3800 Model 3 pel density. 

DMSSPR process the SETPRT command in the following manner: 

1. Accept input PLIST and analyze. If there are errors, issue a message to 
the user and exit. 

2. Select the correct character set modules, and load these modules into 
free storage. 

3. Assign writeable character generation modules (WCGMs), and change 
the translate tables if necessary. 

4. Issue SIOs to the virtual 3800 printer. In the case of an error, terminate 
processing, and issue a message and appropriate return code. 

5. Exit with a zero return code if the operation completes successfully. 

Files residing on disk are read and written using DMSDIO. DMSDIO has 
two entry points: DMSDIOR, which is entered for a read 1/0 operation, and 
DMSDIOW, which is entered for a write operation. 

The actual disk 1/0 operation is performed using the DIAGNOSE code 
X I 18 I instruction. A return code of 0 from CP indicates a successful 
completion of the 1/0 operation. If the 1/0 is not successful, CP performs 
error recording, retry, recovery, or ABEND procedures for the virtual 
machine. 

LY20·0893·4 © Copyright IBM Corp. 1980, 1986 Chapter 10. Handling I/O Operations 147 



Read or Write Disk 1/0 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

DMSDIO 
Initialize the CCW to perform read operations. 

DMSLAD 
Obtain the address of the disk from which to read or write. 

DMSDIO 
Determines the size of the record to be read or written. 

DMSFRE 
Gets enough storage to contain the record if the request is for a record 
longer than 800 bytes. 

DMSDIO 
Reads records continually until all records for the file have been read. 

DMSFRE 
Returns the buffer to free storage if the record was longer than 800 
bytes. 

DMSDIO 
Returns to the caller. 

eMS Tape Label Processing 

DMSLBD 
Allows the user to specify tape label information that will be used by a 
program at execution time. 

DMSTLB 
Processes IBM standard tape labels for OS simulation, CMS/DOS, 
CMS commands, and the TAPESL macro. It also provides linkage to 
nonstandard user label routines for OS simulation and CMS 
commands. There are common tape label checking routines for input 
header and trailer labels and common tape label writing routines for 
output header and trailer labels. These common routines are used for 
all IBM standard label processing regardless of what operating system 
is being simulated. For OS simulation, DMSTLB also provides 
multivolume tape processing and merges the HDR2 information into 
the FCB. 

DMSTIO 
Reads or writes a tape record. Also performs tape control operations. 
Functions by issuing DIAGNOSE code X I 20 I • 

DMSTVS 
Provides tape volume switching for OS simulation. 

148 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



(-

{ 

( 

t 

(~ 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Chapter 11. Handling Interruptions 

Part 3 of Figure 8 on page 59 lists the eMS modules that process 
interruptions for CMS. These CMS modules are described briefly in 
Chapter 15, "Module Entry Point Directory" on page 243. Also, see 
Chapter 2, "Interrupt Handling in CMS" on page 11. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 11. Handling Interruptions 149 



150 System Logic and Problem Determination (CMS) 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 

----- ----- --



( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Chapter 12. Managing CMS Storage 

You can allocate free storage by issuing the GETMAIN or DMSFREE 
macros. 

Storage allocated by the GET MAIN macro is taken from the user program 
area, starting after the high address of the user program. Storage allocated 
by the DMSFREE macro can be taken from several areas. First, DMSFREE 
requests are allocated from the low-address free storage area. Otherwise, 
DMSFREE requests are satisfied from the unused portion of the user 
program area. 

There are two types of DMSFREE requests for free storage: requests for 
USER storage and NUCLEUS storage, specified in the TYPE parameter of 
the DMSFREE macro. These two types of storage are kept in 4K pages. It 
is possible, if there are no 4K pages completely free in low storage, for 
storage of one type to be available in low storage, while no storage of the 
other type is available. 

GETMAIN Free Storage Management 

I The STRINIT Macro 

All GETMAIN storage is allocated in the user program area, starting after 
the end of the user's actual program. Allocation begins at the location 
pointed to by the NUCON pointer MAINSTRT. The location MAINHIGH 
in NUCON points to the highest address of GETMAIN storage. 

The STRINIT function initializes pointers used by CMS for simulation of 
OS GETMAIN/FREEMAIN storage management. In the usual CMS 
execution environment, that is, when execution is initiated by the LOAD 
and START commands, CMS calls the STRINIT function as a part of the 
LOAD preparation for execution. In an OS environment established by 
CMS, such as OSRUN, CMS executes the STRINIT function. This should 
not be done by the user program. . In any case, the STRINIT macro should 
be issued only once in the as environment preceding the initial GETMAIN 
request. Also, the STRINIT function will make any pages allocated by 
GET MAIN available to be released by the CMS page manager. 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 12. Managing CMS Storage 151 



Restricted Materials 'of IBM 

Licensed Materials - Property of IBM 

The format of the STRINIT macro is: 

[label] STRINIT [TYPCALL= {~X~R} ] 

where: 

TYPCALL = {SVC } 
BALR 

indicates how control is passed to DMSSTG, the routine that 
processes the STRINIT macro. Since DMSSTG is a nucleus-resident 
routine, other nucleus-resident routines can branch directly to it 
(TYPCALL = BALR). Routines that are not nucleus-resident must use 
SVC linkage (TYPCALL = SVC). If no operands are specified, the 
default is TYPCALL=SVC. 

When the STRINIT macro is executed, both MAINSTRT and MAINHIGH 
are initialized to the end of the user's program in the user program area. 
The end of the user's program is the upper boundary of the load module 
created by the CMS LOAD and INCLUDE commands. This upper boundary 
value is stored in the NUCON field LOCCNT. When the user's program 
begins execution, the STRINIT macro is executed and the LOCCNT value is 
used to initialize MAINSTRT and MAIN HIGH. During execution of the 
user's program, the LOCCNT field is used in CMS to pass starting and 
ending addresses of files loaded by OS simulation. (Reissuing the STRINIT 
macro during execution of an OS program, or issuing the STRINIT macro 
without having done a CMS LOAD is not advised. The value in LOCCNT 
has not been appropriately set and this may cause a storage management 
failure.) As storage is allocated from the user program area to satisfy 
GETMAIN requests, the MAINHIGH pointer is adjusted upward. Such 
adjustments are always in multiples of doublewords, so that this pointer is 
always on a doubleword boundary. As the allocated storage is returned, the 
MAINHIGH pointer is adjusted downward. When the user issues a variable 
length GETMAIN, the control program reserves 6.5 pages for CMS usage; 
this is a designed and set value. If the user wants more space, (for example, 
for more directories) the user should free some of the variable GET MAIN 
area from the high end. 

The pointer MAINHIGH can never be higher than FREELOWE. 
FREELOWE is the pointer to the lowest address of DMSFREE storage 
allocated in the user program area. If a GET MAIN request cannot be 
satisfied without extending MAINHIGH above FREELOWE, GETMAIN 
takes an error exit, indicating that insufficient storage is available to 
satisfy the request. 

The area between MAINSTRT and MAINHIGH may contain blocks of 
storage that are not allocated, but these blocks are available for allocation 
by a GETMAIN instruction. These blocks are chained together, and the 

/ 

first block is pointed to by the NUCON location MAINLIST. See Figure 3 /" " 
on page 20 for a description of CMS virtual storage usage. \,,__ / 

152 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



{ 

( 

{ 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Releasing Storage 

The format of an element on the GETMAIN free element chain is as 
follows: 

FREPTR - pointer to next free element in 
0(0) the chain. or a if there is no next 

element 

4(4) 
FRELEN - length. 
element 

in bytes, of this 

Remainder of this free element 

The maximum amount of storage that can be obtained via the GETMAIN 
macro is determined by one of the following formulas: 

VMSIZE < 512K: 

(largest block of the user program area available) - 10 pages 

VMSIZE > = 512K: 

(largest block of the user program area available) - (12 pages + 2 
additional pages for each 256K of virtual storage over 512K) 

Storage allocated by the GETMAIN macro instruction may be released in 
any of the following ways: 

• A specific block of such storage may be released by means of the 
FREEMAIN macro instruction. 

• Whenever any user routine or eMS command abends (so that the 
routine DMSABN is entered) and the ABEND recovery facility of the 
system is invoked, all GETMAIN storage area pointers are reset. 

• Issuing a STRINIT macro releases all allocated GETMAIN storage. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 12. Managing CMS Storage 153 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

I DMSFRE Free Storage Management 

The DMSFREE Macro 

The DMSFREE macro allocates CMS free storage. The format of the 
DMSFREE macro is: 

[ label] DMSFREE DWORDS= { n} [ ,MIN = { (~) } ] (0) 

[,TYPE = {USER }] 
NUCLEUS 

[ ,ERR = {la~dr }] 

[,AREA= {~?~}] 

[.TYPCALL~ {~xrR}l 

where: 

label 
is any valid assembler language labeL 

DWORDS= {n} 
(0) 

is the number of doublewords of free storage requested. DWORDS = n 
specifies the number of doublewords directly. DWORDS = (0) indicates 
that register 0 contains the number of double words requested. 

Do not specify any register other than register o. The register number 
for register 0 cannot be expressed as an equated symbol. CMS 
returns, in register 0, the number of doublewords allocated and, in 
register 1, the address of the first byte of allocated storage. 

MIN = {n} 
(1) 

indicates a variable request for free storage. If the exact number of 
doublewords indicated by the DWORDS operand is not available, the 
largest block of storage greater than or equal to the minimum is 
returned. MIN = n specifies the minimum number of doublewords of 
free storage directly. MIN = (1) indicates that the minimum is in 
register 1. Do not specify any register other than register 1. The f' 
actual amount of free storage allocated is returned to the requestor ~/ 
via general register o. 

154 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



{ 

( 

{ 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

TYPE = {USER } 
NUCLEUS 

indicates the type of CMS storage requested: USER or NUCLEUS. 

ERR = {~addr } 

is the return address if any error occurs. laddr is any address that 
can be referred to in an LA (load address) instruction. The error 
return is taken if there is a macro coding error or if there is not 
enough free storage available to fill the request. If the asterisk (*) is 
specified for the return address, the error return is the same as a 
normal return. There is no default for this operand. If it is omitted 
and an error occurs, the system abends. 

AREA= {LOW} 
HIGH. 

indicates the area of CMS free storage requested. LOW indicates any 
free storage below the user areas, depending on the storage requested. 
HIGH indicates DMSFREE storage above the user area. If AREA is 
not specified, storage is allocated whenever it is available. 

TYPCALL = {SVC } 
, BALR 

indicates how control is passed to DMSFREE. Since DMSFREE is a 
nucleus-resident routine, other nucleus-resident routines can branch 
directly to it (TYPCALL = BALR). Routines that are not 
nucleus-resident must use SVC linkage (TYPCALL = SVC). 

The FREELOWE pointer in NUCON indicate the amount of storage that 
DMSFREE has allocated from the high portion of the user program area. 
These pointers are initialized to the beginning of the system loader tables. 

The pointer FREELOWE is the pointer to the lowest address of DMSFREE 
storage in the user program area. As storage is allocated from the user 
program area to satisfy DMSFREE requests, the pointer FREELOWE is 
adjusted downward. As the allocated storage is returned, this pointer is 
adjusted upward. Such adjustments are in multiples of 4K bytes so the 
pointer is always on a 4K boundary. As the allocated storage is returned, 
this pointer is adjusted upward when whole 4K pages are completely free. 

The pointer FREELOWE can never be lower than MAINHIGH. 
MAINHIGH is the pointer to the highest address of GETMAIN storage. If 
a DMSFREE request cannot be satisfied without extending FREELOWE 
below MAINHIGH, DMSFREE takes an error exit, indicating that 
insufficient storage is available to satisfy the request. Figure 3 on page 20 
shows the relationship of these storage areas. 

The FREETAB free storage table is usually kept in nucleus low free 
storage. However, the FREETAB may be located at the top of the user 
program area. This table contains a code indicating the use of that page of 
virtual storage. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 12. Managing CMS Storage 155 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

The codes in this table are as follows: 

Code Meaning 

USERCODE (X' 01' ) 
NUCCODE (X' 02 ' ) 
TRNCODE (X' 03 ' ) 

The page is assigned to user storage. 
The page is assigned to nucleus storage. 
The page is part of the transient program 
area. 

USARCODE (X' 04 ' ) 

SYSCODE (X' 05 ' ) 

The page is an unassigned page in the 
user program area. 
The page is none of the above. The page 
is assigned to system storage, system code, 
or the loader tables. 

Other DMSFREE storage pointers are maintained in the DMSFRT CSECT, 
in NUCON. The four chain header blocks are the most important fields in 
DMSFRT. The four chains of unallocated elements are: 

• The low storage nucleus chain 
• The low storage user chain 
• The high storage nucleus chain 
• The high storage user chain. 

For each of these chains of unallocated elements, there is a control block 
consisting of four words with the following format: 

I' I... ...... t' I II "',.,. I "'" '- .. I I I .;) l.o I LJU 

(free block descriptor) in a cache of 
FBDs used to describe the first II nil 
free blocks of storage for the 
particular chain. 

4(4) NUM - the number of elements on the 
chain 

MAX - a value equal to or greater than 
the size of the largest free element on 
the chain 

8(8) 

12(C) FLAGS - SKEY - TCODE - Unused 
Flag Storage FREETAB 
byte key code 

where: 

POINTER 
points to the first FBD (free block descriptor) in a cache of FBDs used 
to describe the first "n" free blocks of storage for the particular chain. 
"n" is 10 for the high user chain, 9 for the high nucleus chain, 6 for 
the low user chain, and 6 for the low nucleus chain. 

NUM 
contains the number of elements on this chain of free elements. If 
there are no elements on this free chain, this field contains all zeros. 

156 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

\ ..... /' 



r 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

MAX 
is used to avoid searches that will fail. It contains a number not 
exceeding the size, in bytes, of the largest element on the free chain. 
Thus, a search for an element of a given size is not made if that size 
exceeds the MAX field. However, this number may actually be larger 
than the size of the largest free element on the chain. 

FLAGS 
The following flags are used: 

SKEY 

FLCLN (X '80') - Clean-up flag. This flag is set if the chain must 
be updated. This is necessary in the following circumstances: 

• If one of the two high-storage chains contains a 4K page that 
is pointed to by FREELOWE, that page can be removed from 
that chain, and FREELOWE can be increased. 

• All completely unallocated 4K pages are kept on the user 
chain, by convention. Thus, if one of the nucleus chains 
(low-storage or high-storage) contains a full page, this page 
must be transferred to the corresponding user chain. 

FLCLB (X' 40 ' ) - Destroyed flag. Set if the chain has been 
destroyed. 

FLHC (X' 20 ') - High-storage chain. Set for both the nucleus and 
user high-storage chains. 

FLNU (X '10') - Nucleus chain. Set for both the low-storage and 
high-storage nucleus chains. 

FLPA (X' 08 ' ) - Page available. Set if there is a full 4K page 
available on the chain. This flag may be set even if there is no 
such page available. 

contains the one-byte storage key assigned to storage on this chain. 

TCODE 
contains the one-byte field FREETAB table code for storage on this 
chain. 

There are four caches of FBDs, one for each of the chains. The FBDs are 
chained together at initialization time from the head pointers found in the 
DMSFRT CSECT described above. 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 12. Managing CMS Storage 157 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Each of the FBDs in the cache has the following format: 

0(0) 

4(4) 

8(8) 

'<114~------ 4 bytes --------.~ 

POINTER - painter to the next FBD in the 
chain unless it is the last FBD in the 
cache in which case it points to the 
next block of free storage in the chain 
or is zero. 

SIZE - size of the free block in bytes 

FBDFREE - pointer to the free block that 
this FBD is describing. 

The FBDs in the cache always remain chained together, and when they do 
not describe a free block, the fields SIZE and FBDFREE are zero. When 
the cache is full, the forward pointer POINTER in the last FBD in the 
cache points to the next free block that contains the following fields: 

.4------- 4 bytes --------.~ 

0(0) POINTER - pointer to the next element 
in the free chain or is zero 

4(4) SIZE - size of this free element, in 
bytes 

Remainder of this free element 

As indicated in the illustration above, the POINTER field points to the next 
element in the chain, or contains the value zero if there is no next element. 
The SIZE field contains the size of this element, in bytes. 

The eight bytes before the first physical FBD in each cache contains eight 
bytes of information about the cache and has the following fields: 

0(0) 

4(4) 

8(8) 

.4------- 4 bytes 

CHILAST - last FBD in the cache of free 
~ointers. The forward pointer in this 

BD points to the first POINTER off the 
cache or is zero if there are none. 

CHINUM - the number of FBDs in the cache 

CHI FLAG - a flag field used by storage 
management. 

All elements within a given chain are chained together in order of 
descending storage address. This is done for two reasons: 

1. Because the allocation search is satisfied by the first free element that ('" 
is large enough, the allocated elements are grouped together at the top ~,j 
of the storage area, and prevent storage fragmentation. This is 

158 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



f 

r 

( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

particularly important for high-storage free storage allocations, because 
it is desirable to keep FREELOWE as high as possible. 

2. If free storage does become somewhat fragmented, the search causes as 
few page faults as possible. 

As a matter of convention, completely nonallocated 4K pages in high 
storage are kept on the user free chain rather than the nucleus free chain. 
This is because requests for large blocks of storage are made, most of the 
time, from user storage rather than from nucleus storage. Nucleus requests 
need to break up a full page less frequently than user requests. 

Allocating User Free Storage 

When DMSFREE with TYPE = USER (the default) is called, the following 
steps are taken to satisfy the request. As soon as one of the following steps 
succeeds, user free storage allocation processing terminates and the CMS 
page manager is notified of any full or partial pages that have been 
allocated. 

1. Search the low-storage user chain for a block of the required size. 

2. Search the high-storage user chain for a block of the required size. 

3. Extend high-storage user storage downward into the user program area, 
modifying FREELOWE in the process. 

4. For fixed requests, there is nothing more to try. For variable requests, 
DMSFREE puts all available storage in the user program area onto the 
high-storage user chain, and then allocates the largest block available 
on either the high-storage user chain or the low-storage user chain. 
The allocated block is not satisfactory unless it is larger than the 
minimum requests size. 

Allocating Nucleus Free Storage 

When DMSFREE with TYPE = NUCLEUS is called, the following steps are 
taken to satisfy the request. As soon as one of the following steps succeeds, 
user free storage allocation processing terminates and the CMS page 
manager is notified of any full or partial pages that have been allocated. 

1. 

2. 

3. 

4. 

5. 

Search the low-storage nucleus chain for a block of the required size. 

Search the high-storage nucleus chain for a block of the required size. 

Get free pages from the high-storage user chain, if they are available, 
and put them on the high-storage nucleus chain. 

Extend high-storage nucleus storage downward into the user program 
area, modifying FREELOWE in the process. 

For fixed requests, there is nothing more to try. For variable requests, 
DMSFRE puts all available pages from the high-storage user chain and 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 12. Managing CMS Storage 159 



Releasing Storage 

The DMSFRi:T Macro 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

the user program area onto the high-storage nucleus chain, and I " 
allocates the largest block available on either the low-storage nucleus ~ 7' 

chain or the high-storage nucleus chain. 

Storage allocated by the DMSFREE macro instruction may be released in 
either of the following ways: 

• A specific block of such storage may be released by means of the 
DMSFRET macro instruction. 

• Whenever any user routine on CMS command abnormally terminates 
(so that the routine DMSABN is entered) and the abend recovery 
facility of the system is invoked, all DMSFREE storage with 
TYPE = USER is released automatically. 

Except in the case of abend recovery, storage allocated by the DMSFREE 
macro is never released automatically by the system. Thus, storage 
allocated by means of this macro instruction should always be released 
explicitly by means of the DMSFRET macro instruction. Whenever a 
completely unused 4K page becomes available, it is made eligible for release 
by a call to the CMS page manager. 

The DMSFRET macro releases free storage previously allocated with the 
DMSFREE macro. 

The format of the DMSFRET macro is: 

[ label] DMSFRET DWORDS= { n} ,LOC = {laddr } 
(0) (1) 

[,ERR = {la~dr}] [,TYPCALL= f~XrR}J 

where: 

label 
is any valid Assembler language label. 

DWORDS= { n } 
(0) 

is the number of doublewords of storage to be released. DWORDS = n 
specifies the number of doublewords directly. DWORDS = (0) indicates 
that register 0 contains the number of doublewords being released. Do 
not specify any register other than register O. The register number for f" 
register 0 cannot be expressed as an equated symbol. ~ / 

160 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

LOC = {laddr} 
(1) 

is the address of the block of storage being released. laddr is any 
address that can be referred to in an LA (load address) instruction. 
LOC = laddr specifies the address directly. LOC = (1) indicates the 
address is in register 1. Do not specify any register other than 
register 1. 

ERR= {~addr} 
is the return address if an error occurs. laddr is any address that can 
be referred to by an LA (load address) instruction. The error return is 
taken if there is a macro coding error or if there is a problem 
returning the storage. If an asterisk (*) is specified, the error return 
address is the same as the normal return address. There is no default 
for this operand. If it is omitted and an error occurs, the system 
abend. 

TYPCALL= {SVC } 
BALR 

indicates how control is passed to DMSFRET. Since DMSFRET is a 
nucleus-resident routine, other nucleus-resident routines can branch 
directly to it (TYPCALL = BALR). Routines that are not 
nucleus-resident must use SVC linkage (TYPCALL = SVC). 

When DMSFRET is called, the block being released is placed on the 
appropriate chain. At that point, the final update operation is performed, if 
necessary, to advance FREELOWE, or to move pages from the nucleus 
chain to the corresponding user chain. 

Similar update operations are performed, when necessary, after calls to 
DMSFREE, as well. The CMS page manager is notified of any completely 
unallocated page. 

eMS Page Management 

The CMS page manager (DMSPAG) controls the release of allocated 
storage. When the CMS page manager is notified of a completely 
nonallocated 4K page, that page is made available for release. The page 
manager holds the available pages, and when the number exceeds a 
system-defined maximum, those pages are released via DIAGNOSE code 
X I 10 I. If storage management routines allocate any part of a 4K page 
being held, that page is no longer available for release. 

You can stop the release of available pages by issuing the SET RELPAGE 
OFF command. The page manager continues to track pages, and when you 
set RELPAGE ON, all available pages are released. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 12. Managing CMS Storage 161 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

DMSFRE Service Routines 

The DMSFRES Macro 

The system uses the DMSFRES macro to request certain free storage 
management services. 

The format of the DMSFRES macro is: 

[ label] 
- -

DMSFRES INITI 
INIT2 
CHECK 'TYPCALL={~ } CKON 
CKOFF BALR 
UREC 
CALOC - -

where: 

label 
is any valid Assembler language label. 

INITI 
invokes the first free storage initialization routines to allow free 
storage requests to access the system disk. Before INITI is invoked, 
no free storage requests may be made. After INITI has been invoked, 
free storage requests may be made. However, these requests are 
subject to the following restraints until the second free storage 
management initialization routine has been invoked: 

• All requests for USER storage are changed to requests for 
NUCLEUS storage. 

• Error checking is limited before initialization is complete. In 
particular, it is sometimes possible to release a block that was 
never allocated. 

• All requests that are satisfied in high storage must be temporary, 
because all storage allocated in high storage is released when the 
second free storage initialization routine is invoked. 

When CP's saved system facility is used, the CMS system is saved at 
the point after the system disk has been accessed. It is necessary for 
DMSFRE to be used before the size of virtual storage is known, 
because the saved system can be used on any size virtual machine. 
Thus, the first initialization routine initializes DMSFRE so that 
limited functions can be requested. The second initialization routine 
performs the initialization necessary to allow the full functions of 
DMSFRE to be exercised. 

162 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



( 

( 

f 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

INIT2 
invokes the second initialization routine. This routine is invoked 
after the size of virtual storage is known, and it performs initialization 
necessary to allow all the functions of DMSFRE to be used. The 
second initialization routine performs the following steps: 

• Releases all storage that has been allocated in the high-storage 
area. 

• Allocates the FREETAB free storage table. This table contains 
one byte for each 4K page of virtual storage. Therefore, the table 
cannot be allocated until the size of virtual storage is known. It is 
allocated in the nucleus low free storage area, if there is enough 
room available. If not, then it is allocated in the higher free 
storage area. For a 256K virtual machine, FREET AB contains 64 
bytes; for a 16 million byte machine, it contains 4096 bytes. 

• The FREET AB and all storage protection keys are initialized. 

CHECK 
invokes a routine that checks all free storage pointer chains for 
consistency and correctness. Thus, it checks to see whether any free 
storage pointers have been destroyed. This option can be used at any 
time for system debugging. 

CKON 
turns on a flag that causes the CHECK routine to be invoked each 
time a call is made to DMSFREE or DMSFRET. This can be useful 
for debugging purposes (for example, when you wish to identify the 
routine that destroyed free storage management pointers). Care 
should be taken when using this option, since the CHECK routine is 
coded to be thorough rather than efficient. Thus, after the CKON 
option has been invoked, each call to DMSFREE or DMSFRET takes 
much longer to be completed than before. This can impact the 
efficiency of system functions. 

CKOFF 
turns off the flag that was turned on by the CKON option. 

UREC 
is used by DMSABN during the abend recovery process to release all 
user storage. 

'CALOC 
is used by DMSABN after the abend recovery process has been 
completed. It invokes a routine that returns, in register 0, the number 
of doublewords of free storage that have been allocated. This number 
is used by DMSABN to determine whether the abend recovery has 
been successful. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 12. Managing CMS Storage 163 



TYPCALL = { SVC } 
BALR 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

indicates how control is passed to DMSFRES. Since DMSFRES is a 
nucleus-resident routine, other nucleus-resident routines can branch 
directly to it (TYPCALL = BALR). Routines that are not 
nucleus-resident must use SYC linkage (TYPCALL = SYC). 

Storage Protection Keys 

In general, the following rule for storage protection keys applies: system 
storage is assigned the storage key of X I FO I, while user storage is assigned 
the storage key of X I EO I. This is the storage key associated with the 
protected areas of storage, not to be confused with the PSW or CAW key 
used to access that storage. 

The specific key assignments are as follows: 

• The NUCON area is assigned the key of X I FO I , with the exception of 
the last page containing the OPSECT and TSOBLOKS areas and user 
free storage, which have a key of X I EO I • 

• Free storage allocated by DMSFREE is broken up into user storage and 
nucleus storage. The user storage has a protection key of X I EO I , while 
the nucleus storage has a key of X i FO i • 

• The transient program area has a key of X I EO I • 

• The CMS nucleus code has a storage key of X I 00 I. In saved systems, 
this entire segment is protected by CP from modification even by the 
CMS system, and so must be entirely reentrant. 

• The user program area is assigned the storage key of X I EO I , except for 
those pages which contain nucleus DMSFREE storage. These latter 
pages are assigned the key of X I FO I • 

• The loader tables are assigned the key of X I FO. 

The SET -KEVPROTECT Command 

The SET KEYPROTECT command controls the resetting of user keys, 
X'EO', when a DMSFRET occurs. The format of the SET KEYPROTECT 
command is: 

SET KEYPROTect {ON} 
OFF 

164 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



( 

r-

f 

( 

(-

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

When you issue SET KEYPROTECT ON, the storage keys for the whole 
virtual machine, except the nonshared pages, are reset according to 
FREETAB. Then whenever a DMSFRET occurs, the user keys are reset. 

SET KEYPROTECT OFF does not cause the user keys to be reset when a 
DMSFRET occurs. (SET KEYPROTECT OFF is the default setting.) If an 
ABEND occurs, the storage keys of the virtual machine are reset according 
to FREETAB and the setting for KEYPROTECT is maintained. 

To check the setting of KEYPROTECT, issue: 

QUERY KEYPROTECT 

Note: If user programs set keys, they must restore the keys to their 
original settings. If there are programs that depend on CMS resetting user 
keys, SET KEYPROTECT ON to insure that the user keys are set properly. 

eMS Handling of PSW Keys 

The CMS nucleus protection scheme protects the CMS nucleus from 
inadvertent destruction by a user program. This mechanism, however, does 
not prevent you from writing in system storage intentionally. Because you 
can execute privileged instructions, 
you can issue a LOAD PSW (LPSW) instruction and load any PSW key you 
wish. If this occurs, there is nothing to prevent your program from: 

• Modifying nucleus code 
• Modifying a table or constant area 
• Losing files by modifying a CMS file directory. 

In general, user programs and disk-resident CMS commands are executed 
with a PSW key of X ' E ' , while nucleus code is executed with a PSW key of 
X'O'. 

There are, however, some exceptions to this rule. Certain disk-resident 
CMS commands run with a PSW key of X ' 0 " because they have a constant 
need to modify nucleus pointers and storage. The nucleus routines called 
by the GET, PUT, READ, and WRITE macros run with a user PSW key of 
X, E' to increase efficiency. 

Two macros, DMSKEY and DMSEXS, are available to any routine that 
wishes to change its PSW key. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 12. Managing CMS Storage 165 



The DMSKEY Macro 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

The DMSKEY macro may be used to change the PSW key to the user value 
or the nucleus value. The format of the DMSKEY macro is: 

[ Zabel] DMSKEY {NUCLEUS [,NOSTACK ] I 
USER [,NOSTACK ] I 
LASTUSER [,NOSTACK ] I 
RESET} 

where: 

NUCLEUS 
causes the nucleus storage protection key to be placed in the PSW, 
and the old contents of the second byte of the PSW are saved in a 
stack. This option allows the program to store into system storage, 
which is ordinarily protected. 

USER 
causes the user storage protection key to be placed in the PSW, and 
the old contents of the second byte of the PSW are saved in a stack. 
This option prevents the program from inadvertently modifying 
nucleus storage, which is protected. 

LASTUSER 
The SVC handler traces back through its system save areas for the 
active user routine closest to the top of the stack. The storage key in 
effect for that routine is placed in the PSW. The old contents of the 
second byte of the PSW are saved in a stack. This option should be 
used only by system routines that should enter a user exit routine. 
(OS macro simulation routines use this option when they want to 
enter a user-supplied exit routine. The exit routine is entered with the 
PSW key of the last user routine on the SVC system save area stack.) 

NOSTACK 
This option may be used with any of the above options to prevent the 
system from saving the second byte of the current PSW in a stack. If 
this is done, then no DMSKEY RESET need be issued later. 

RESET 
The second byte of the PSW is changed to the value at the top of the 
DMSKEY stack and removed from the stack. Thus, the effect of the 
last DMSKEY NUCLEUS, DMSKEY USER, or DMSKEY LASTUSER 
request is reversed. However, if the NOSTACK option was specified 
on the DMSKEY macro, the RESET option should not be used. A 
DMSKEY RESET macro must be executed for each DMSKEY 
NUCLEUS, DMSKEY USER, or DMSKEY LASTUSER macro that 
was executed and that did not specify the NOSTACK option. Failure 
to observe this rule results in program abnormal termination. CMS 

166 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

/ 



{ 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

The DMSEXS Macro 

requires that the DMSKEY stack must be empty when a routine 
terminates. 

Note: The DMSKEY key stack has a current maximum depth of seven for 
each routine. In this context, a "routine" is anything invoked by an SVC 
call. 

The DMSEXS, "execute in system mode," macro allows a routine executed 
with a user PSW key to execute a single instruction with a nucleus PSW 
key. The single instruction may be specified as the argument to the 
DMSEXS macro, and that instruction is executed with a nucleus PSW key. 
This macro can be used instead of two DMSKEY macros. 

The format of the DMSEXS macro is: 

[label] DMSEXS op-code,operands 

The op-code and the operands of the Basic Assembler Language instruction 
to be executed must be given as arguments to the DMSEXS macro. 

For example, execution of the sequence, 

USING NUCON,O 
DMSEXS ST,R4,AUSERRST 

causes the STORE instruction to be executed with a zero protect key in the 
PSW. This sequence stores the contents of register 4 in the AUSERRST 
field in the nucleus. 

The instruction to be executed may be an EX instruction. 

Note: Programs that modify or manipulate bits in CMS control blocks, 
however, may hinder the operation of CMS causing it to function 
ineffectively. 

Register 1 cannot be used in any way in the instruction being executed. 

Whenever possible, CMS commands are executed with a user protect key. 
This protects the CMS nucleus in cases where there is an error in the 
system command that would otherwise destroy the nucleus. If the command 
must execute a single instruction or small group of instructions that modify 
nucleus storage, then the DMSKEY or DMSEXS macros are used, so that 
the system PSW key is used for as short a period of time as possible. 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 12. Managing CMS Storage 167 



CP Handling For Saved Systems 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

The explanation of saved system nucleus protection depends on the VSK, 
RSK, VPK and RPK: 

1. Virtual Storage Key (VSK) - This is the storage key assigned by the 
virtual machine using the virtual SSK instruction. 

2. Real Storage Key (RSK) - This is the actual storage key assigned by CP 
to the 2K page. 

3. Virtual PSW Key (VPK) - This is the PSW storage key assigned by the 
virtual machine, by means of an instruction such as LPSW (load PSW). 

4. Real PSW Key (RPK) - This is the PSW storage key assigned by CP, 
which is in the real hardware PSW when the virtual machine is 
running. 

When there are no shared segments in the virtual machine, storage 
protection works as it does on a real machine. RSK = VSK for all pages, 
and RPK = VPK for the PSW. 

However, when there is a shared segment (as in the case of the CMS 
nucleus), it is necessary for CP to protect the shared segment. For 
non-CMS shared segments, CP protects the shared segment by ignoring the 
values of the VSKs and VPK and assigning the real values as follows: 

. ./ 

RSK = 0 for each page of the shared segment, RSK = F for all other pages, " / 
and RPK = F, always, for the real PSW. The SSK instruction is ignored, 
except to save the key value in a table in case the virtual machine later 
does an ISK to get back. 

For the CMS saved system, the RSKs and RPK are initialized as before, but 
resetting the virtual keys has the following effects: 

• If the virtual machine uses an SSK instruction to reset a VSK, CP does 
the following; if the new VSK is nonzero, CP resets the RSK to the 
value of the VSK; if the new VSK is zero, CP resets RSK to F. 

• If the virtual machine uses a LPSW (or other) instruction to reset the 
VPK, CP does the following; If the new VPK is non-zero, CP resets the 
RPK to the value of the VPK; if the new VPK is zero, CP resets RFK to 
F. 

• If the VPK = 0 and the RPK = F, storage protection may be handled 
differently. In a real machine, a PSW key of 0 would allow the program 
to store into any storage location, no matter what the storage key. But 
under CP, the program gets a protection violation, unless the RPK of 
the page happens to be F. 

Because of this, there is extra code in the CP program check handling 
program. Whenever a protection violation occurs, CP checks to see if If·· " 

the following conditions hold; ~. /' 

168 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



f 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

The virtual machine running is the saved CMS system, running 
with a shared segment. 

The VPK = o. The virtual machine is operating as though its PSW 
key is o. 

The RSK of the page where the store was attempted is nonzero, and 
different from the RPK. 

If anyone of these three conditions fails to hold, then the protection 
violation is reflected back to the virtual machine. 

If all three of these conditions hold, then the RPK (the real protection key 
in the real PSW) is reset to the RSK of the page where the store was 
attempted. 

r Effects on CMS 

( 

Restrictions on CMS 

In CMS, this works as follows: CMS keeps its system storage in protect key 
F (RSK = VSK = F), and user storage in protect key E (RSK = VSK = 
E). 

When the CMS supervisor is running, it runs in PSW key 0 (VPK = 0, RPK 
= F), so that CMS gets a protection violation the first time it tries to store 
into user storage (VSK = RSK = E). At that point, CP changes the RPK 
to E, and lets the virtual machine re-execute the instruction that caused the 
protection violation. There is not another protection violation until the 
supervisor goes back to storing into system-protected storage. 

There are several coding restrictions that must be imposed on CMS if it is 
to run as a saved system. 

The first and most obvious one is that CMS may never modify the segments 
containing CMS nucleus code that is shared and runs with a RSK of 0, 
although the VSK=F. 

A less obvious, but just as important, restriction is that CMS may never 
modify with a single machine instruction (except MVCL) a section of 
storage that crosses the boundary between two pages with different storage 
keys. This restriction applies not only to SS instructions, such as MVC and 
ZAP, but also to RS instructions, such as STM, and to RX instructions, 
such as ST and STD, which may have nonaligned addresses on the 
System/370. An exception is the MVCL instruction. This instruction can 
be restarted after crossing a page boundary because the registers are 
updated when the paging exception occurs. 

This restriction also applies to 1/0 instructions. If the key specified in the 
CCW is zero, then the data area for input may not cross the boundary 
between two pages with different storage keys. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 12. Managing CMS Storage 169 



Overhead 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

It can be seen that this system is most inefficient when "storage-key 
thrashing" occurs -- when the virtual machine with a VPK of 0 jumps 
around, storing into pages with different VSK's. 

Error Codes From DMSFRES, DMSFREE, and DMSFRET 

For information on nonzero return codes from DMSFRES, DMSFREE, and 
DMSFRET, see Chapter 17, "DMSFREX Error Codes" on page 279. 

170 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Chapter 13. Simulating Non-CMS Environments 

The following contains descriptions for: access method support for 
non-CMS operating systems, CMS simulation of OS functions, and CMS 
implementation of VSE functions. 

r- OS Access Method Support 

( 

An access method governs the manipulation of data. To make the 
execution of OS generated code easier under CMS, the processing program 
must see data as OS would present it. For instance, when the processors 
expect an access method to acquire input source records sequentially, CMS 
invokes specially written routines that simulate the OS sequential access 
method and passes data to the processors in the format that the OS access 
methods would have produced. Therefore, data appears in storage as if it 
had been manipulated using an OS access method. For example, block 
descriptor words (BDW), buffer pool management, and variable records are 
maintained in storage as if an OS access method had processed the data. 
The actual writing to and reading from the I/O device is handled by CMS 
file management. 

The work of the volume table of contents (VTOC) and the data set control 
block (DSCB) is done by a master file directory (MFD). The MFD 
maintains the disk contents and a file status table (FST) for each data file. 
All disks are formatted in physical blocks of 512, 800, 1024, or 4096 bytes. 

CMS continues to maintain the OS format, within its own format, on the 
auxiliary device for files whose filemode number is 4. That is, the block 
and record descriptor words (BDW and RDW) are written along with the 
data. If a data set consists of blocked records, the data is written to and 
read from the I/O device in physical blocks, rather than logical records. 
CMS also simulates the specific methods of manipulating data sets. 

To accomplish this simulation, CMS supports certain essential macros for 
the following access methods: 

BDAM (direct) 
identifying a record by a key or by its relative position within the data 
set. 

BPAM (partitioned) 
seeking a named member within an entire data set. 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 171 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

BSAM/QSAM (sequential) ( ~" 
accessing a record in a sequence in relation to preceding or following \.... j 

records. 

VSAM (direct or sequential) 
accessing a record sequentially or directly by key or address. CMS 
support of OS VSAM files is based on VSEjVSAM. Therefore, the OS 
user is restricted to those services available under VSE/VSAM. 

eMS Support for the Virtual Storage Access Method 

CMS simulation of OS and DOS includes support for the virtual storage 
access method (VSAM). The description of this support is in three parts: 

• A description of the access method services program (AMSERV), which 
allows you to create and update VSAM files. 

• A description of support for VSAM functions under CMS/DOS. 

• A description of support for VSAM functions for the CMS OS 
simulation routines. 

The routines that support VSAM reside in four discontiguous shared 
segments (DCSSs). 

The CMSAMS DCSS, which contains the VSE/VSAM code to 
support AMSERV processing. 

The CMSVSAM DCSS, which contains actual VSEjVSAM code, and 
the CMSjVSAM OS interface program for processing OS VSAM 
requests. 

The CMSDOS DCSS, which contains the code that supports VSE 
requests under CMS. 

- The CMSBAM DCSS, which contains the SAM modules required 
for AMS to access SAM files. 

Note: DMSVSR, which performs completion processing fc;>r CMS/VSAM 
support, resides in the CMS nucleus. 

Creating the DOSCB Chain 

The DLBL command creates a control block called a DOSCB in CMS free 
storage. The ddname specified in this DLBL command is associated with 
the ddname parameter in the program's ACB. 

The DOSCB contains information defining the file for the system. The 
information in the DOSCB parallels the information written on the label 
information area of a real DOS SYSRES unit; for example, the name, and 
mode (volume serial number) of the data set, its logical unit specification, 

172 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986 

--~.---. ~-. -~- - --- --

/ ' 

,/ 



f 

( 

{ 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

and its data set type (SAM or VSAM). The anchor for this chain is at 
location DOSFIRST in NUCON. 

Executing an AMSERV Function 

The CMS AMSERV command invokes the module DMSAMS, which is the 
CMS interface to the VSE/VSAM access method services (AMS) program. 
Module DMSAMS loads VSE/VSAM AMS code, contained in the CMSAMS 
DCSS, by means of the LOADSYS DIAGNOSE code X I 64 I. The AMS code 
requires the services of VSE/VSAM code that resides in the CMSVSAM 
DCSS. So, that DCSS is also loaded via LOADSYS DIAGNOSE X I 64 I 

when the VSAM master catalog is opened. Figure 26 shows the 
relationship in storage between the interface module DMSAMS, the 
CMSAMS DCSS, and the CMSVSAM DCSS. 

AMSERV MODU LE 

BALR IDCAMS 

CMSVSAM DCSS 

CMSAMS DCSS 

----, 
~--~~ IDCAMS: I 

AMS Root I 
__ P~a~ __ J 

B-disk for OS 
or DOS User 

VSAM 
Master Catalog 

VSAMFE 

CMS A-disk 

SYSIPT 

SYSLST 

Figure 26. Relationship in Storage between the CMS Interface Module 
DMSAMS, the CMSAMS DCSS, and the CMSVSAM DCSS 

DMSAMS -- Method of Operation 

DMSAMS first determines whether the user is in the CMS/DOS 
environment. If not, a SET DOS ON (VSAM) command is issued to load the 
CMSDOS segment and to initialize the CMS/DOS environment. In this 
case, DMSAMS must also issue ASSGN commands for the disk modes in the 
DOSCB chain created by the OS user's DLBL commands. An ASSGN is 
also issued for SYSCAT, the VSAM master catalog. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 173 



Restricted. Materials of IBM 

Licensed Materials - Property of IBM 

DMSAMS then issues the ASSGN command for the SYSPIT and SYSLOST ,~ .'" 
files, assigning them to the user's A-disk. DLBL commands are then issued \ ... / 
associating these units with files on the user's A-disk. Input to the 
AMSERV processor is in the SYSPIT file. This file has the filetype 
AMSERV. Output from AMSERV processing is placed in the SYSLST file. 
This file has the filetype LISTING. 

DIAGNOSE code X I 64 I LOADSYS is then issued to load the CMSAMS 
DCSS, which contains the VSE/VSAM code. A VSE SVC 65 is issued to 
find the address of the VSE/VSAM root phase, IDCAMS. When the SVC 
returns with the address of IDCAMS, a branch is made to IDCAMS, giving 
control to "live" VSE/VSAM routines. 

IDCAMS expects parameters to be passed to it when it receives control. 
DMSAMS passes dummy parameters in the list labeled AMSP ARMS. 

After the root phase IDCAMS receives control, the functions in the file 
specified by the filename on the AMSERV command are executed. 

In performing the functions requested in this file, AMS may require 
execution of VSE/VSAM phases located in the CMSVSAM DCSS. The 
CMSVSAM DCSS is loaded when ASM opens the VSAM catalog for 
processing. 

On return from VSE/VSAM code, DMSAMS purges the CMSAMS DCSS 
and issues DLBL commands for the SYSIPT and SYSLST files to clear the 
DOSCB's for these ddnames. 

Control is then passed to DMSVSR, which purges the CMSVSAM DCSS. If 
the user program was not in the CMS/DOS environment when DMSAMS 
was entered, the SET DOS OFF command is issued by DMSVSR. Upon 
return the DMSVSR, DMSAMS performs minor housekeeping tasks and 
returns control to CMS. 

Executing a VSAM Function for a VSE User 

When a VSAM function, such as an OPEN or CLOSE macro, is requested 
from a VSE program, CMS routes control through the CMSDOS DCSS to 
the CMSVSAM DCSS, thus giving control to VSE/VSAM phases. 
Figure 27 on page, 175 shows the relationships in storage between the user 
program, the CMSDOS DCSS, and the CMSVSAM DCSS. The description 
below illustrates the overall logic of that control flow. 

174 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

'-'--'.- ---_._---

\ , " ./ 



{ 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

DOS VSAM Program CMSDOS DCSS DOS Transient Area CMSVSAM DCSS 

DMSDOS 
----- $$BOVSAM 

DMSBOP ----OPEN ACB1 ---- IKOVOPEN ---- $$BCVSAM ----
CLOSE ACB1 DMSCLS 

--------
$$BACLOS I KOVCLS 

----

B-disk for OS 
or DOS User 

VSAMFILE 

Figure 27. The Relationship in Storage between the User Program, the CMSnOS ncss, and the 
CMSVSAM ncss 

CMS/DOS SVC Handling 

There are four CMS/DOS routines that handle VSAM requests: DMSDOS, 
DMSBOP, DMSCLS, and DMSXCP. Within DMSDOS, several SVC 
functions support VSAM requests. These are described in "Simulating a 
VSE Environment Under CMS". 

DMSDOS VSAM PROCESSING: DMSDOS VSAM processing involves 
handling of SVC 65 (CDLOAD), which returns the address of a specified 
phase to the caller. DMSDOS searches both the shared segment table and 
the nonshared segment table for the CMSDOS and CMSVSAM segments, 
because both could be in use. Both of these segment tables contain the 
name of each phase consisting of that segment followed by the fullword 
address of that phase within the segment. 

During SVC 65 processing, DMSDOS checks to see if the IJBLKMD is 
being requested. IJBLKMD is the VSE look aside function that VSE/VSAM 
uses to gain information from the partition anchor tables. If this is the 
case, DMSDOS returns the address of the IJBLKMD that resides in the 
CMSBAM DCSS. 

If VSAM has not been loaded, a DIAGNOSE code X I 64 I LOADSYS is 
issued to load the CMSVSAM DCSS. 

DMSBOP VSAM PROCESSING: When DMSBOP is entered to process 
ACBs, it checks to see if CMSVSAM is loaded. If VSAM has not been 
loaded, DiAGNOSE code X I 64 I is issued to load the CMSVSAM DCSS. 

L Y20·0893·4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non·CMS Environments 175 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

DMSBOP then initializes the transient work area and issues a VSE OPEN (/ -", 
via SVC 2 to bring the VSAM OPEN $$BOVSAM transient into the VSE \.. . ./ 
transient area. 

When VSAM processing completes, control returns to the user program 
directly. 

DMSCLS VSAM PROCESSING: DMSCLS processing is nearly the same 
as processing for DMSBOP. When DMSCLS is entered, it checks for an 
ACB to process. If there is one, the $$BCVSAM transient work area is 
initialized and SVC 2 is issued to FETCH the VSAM CLOSE transient 
$$BCVSAM into the VSE transient area. When the VSAM CLOSE routines 
complete processing, control returns to the user program, as in the case of 
OPEN. 

Note: Since VSE does not support the 3380, CMS/DOS cannot access a 3380 
when minidisks are formatted as OS/DOS disks. 

Executing a VSAM Function for an OS User 

OS user requests for VSAM services are handled by VSEjVSAM code that 
resides in the CMSVSAM DCSS. To access this code, OS VSAM requests 
are intercepted by the CMS module DMSVIP. DMSVIP is the interface 
between the OS VSAM requests and the CMS/DOS and VSE/VSAM 
routines. 

Because DMSVIP is in the CMSVSAM segment, it is available only when ., / 
that segment is loaded. Module DMSVIB, which resides in the CMS 
nucleus, is a bootstrap routine to load the CMSVSAM segment and to pass 
control to DMSVIP. 

DMSVIP receives control from VSAM request macros in three ways: VIa 
SVC (for example, OPEN and CLOSE), via a direct branch using the 
address of DMSVIP in the ACB, and via a direct branch to the location of 
DMSVIP whose address is 256 bytes into the CMSCVT. (CMSCVT is a 
CMS control block that simulates the OS CVT control block.) 

This last technique is used by the code generated from the OS VSAM 
control block manipulation macros (GENCB, SHOWCB, TESTCB, 
MODCB). That is, the address at 256 into CVT is assumed to be the address 
of a control block that is at displacement X I 12 I has the address of the 
VSAM control block manipulation routine. To ensure that DMSVIP 
receives control from these requests, the address of DMSVIP is stored at 
256 bytes into CMSCVT. However, until the CMSVSAM segment is loaded, 
the address at CMSCVT + 256 is the address of module DMSVIP rather than 
the address of DMSVIP. The address of DMSVIP replaces that of DMSVIB 
when CMSVSAM is loaded. Both DMSVIB and DMSVIP have pointers to 
themselves at 12 bytes into themselves to ensure that this technique works. 

Figure 28 on page 177 shows the relationships in storage between the user 
program, the OS simulation and interface routines, the CMSDOS DCSS, /~ " 
and the CMSVSAM DCSS. ~ ,/ 

176 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986 



r 

( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

OS VSAM 
Program 

OPEN ACB 1 

CLOSE ACB 1 

CMS Module 
DMSSOP 

DMSSOP19 

BALR 14,15 

DMSSOP20 

BALR 14,15 

DMSVIP CMSDOS DCSS 

DOSOPEN 
DMSDOS • • • • • DMSBOP • • 

DOSCLOSE • • • DMSCLS • • • • • 

DOS Transient 
B-disk for OS 

CMSVSAM or DOS User 
Area DCSS 

IKQVOPEN VSAM 
Master Catalog 

I $$BACLOS 
I KWVCLS VSAMFILE 

Figure 28. Relationship in Storage between the User Program, OS Simulation and Interface 
Routines, CMSDOS DCSS, and CMSVSAM DCSS 

DMSVIP Processing 

The following description illustrates the overall logic of that control flow: 

DMSVIP gains control from DMSSOP when an OS SVC 19, 20 or 23 
(CLOSE TYPE = T) is issued. It also gains control on return from execution 
of a VSAM function, as described below. DMSVIP performs five main 
functions: 

• Initializes the CMS/DOS environment for OS VSAM processing 

• Simulates an OS VSAM OPEN macro 

• Simulates an OS VSAM CLOSE macro 

• Simulates an OS VSAM control block manipulation macro (GENCB, 
MODCB, SHOWCB, or TESTCB) 

• Processes OS VSAM I/O macros. 

INITIALIZING THE CMS/DOS ENVIRONMENT FOR OS VSAM 
PROCESSING: DMSVIP gets control when the first VSAM macro is 
encountered in the user program. Initialization processing begins at this 
time. The CMSDOS DCSS is loaded by issuing the command SET DOS ON 
(VSAM). ASSGN commands are also issued at this time according to the 
user-issued DLBL's indicated in the DOSCB chain. Once this initialization 
completes, DMSVIP processes the VSAM request. 

After the initialization, DMSVIP first checks to determine which VSAM 
function is being requested, OPEN, CLOSE, or a control block 
manipulation macro. 

Simulate an OS VSAM OPEN 

For OPEN processing, the DOSSVC bit in NUCON is set on and control 
passes to DMSBOP via SVC 2. Once the CMS/DOS routines are in control, 
execution of the VSAM function is the same as the execution of the 
VSE/VSAM functions described above. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 177 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

On return from executing the OPEN routine, the address of another entry 
point to DMSVIP, at label DMSVIY2, is placed in the ACB for the data set 
just opened, the DOSSVC bit is turned off, and control is passed to 
DMSSOP, which returns to the user program. DMSVIP2 is the entry point 
foreode that performs linkage to the VSAM data management phase 
IKQVSM. This is done after the first OPEN because it is assumed that, 
once opened, the user performs I/O for the phase; for example, a GET or 
PUT operation. 

When the linkage routine is entered, the DOSSVC bit is set on and control 
is given to the VSAM data management routine IKQVSM. On return from 
IKQVSM, DMSVIP turns off the DOSSVC bit and returns control to the 
user program. (Refer to "Simulate OS VSAM I/O Macros" in this section.) 

Simulate an OS VSAM CLOSE 

For CLOSE processing, the DOSSVC bit is set on and control is passed to 
the CMS/DOS routine DMSCLS via SVC 2. As in the case of OPEN, once 
control passes to the CMS/DOS routine, execution of the VSAM function is 
the same as the execution of the VSE/VSAM functions described above. 

On return from executing the VSAM CLOSE, the DOSSVC bit is turned off 
and control passes to DMSSOP, which returns to the user program. 

SIMULATE OS VSAM CONTROL BLOCK MANIPULATION 
MACROS: DMSVIP simulates the GENeB, MODCH, SHOWeB, and 
TESTCB control block manipulation macros. 

GENCB Processing: When a GENCB macro is issued with BLK=ACB or 
BLK = EXLST specified, the GENCB PLIST is passed unmodified to 
IKQGEN for execution. If GENCB is issued with BLK = RPL and 
ECB = address specified, the PLIST is rearranged to exclude the ECB 
specification, because CMS/DOS does not support ECB processing. The 
GENCB PLIST is then passed to IKQGEN for execution. 

MODCB, SHOWCB, and TESTCB Processing: When MODCB, 
SHOWCB, or TESTCB is issued, the OS ACB, RPL, and EXLST control 
blocks are reformatted, if necessary, to conform to VSE/VSAM formats. 

For MODCB and SHOWCB, the requests are passed to IKQTMS for 
processing. When MODCB is issued with EXLST = specified, ensure that 
the exit routines return control to entry point DMSVIP3. 

For TESTCB, check for any error routines the user may have specified. If 
the TESTCB specified RPL = and 10 = COMPLETE, a not equal result is 
passed to the user. All other TESTCB requests are passed to DOS, and the 
new PSW condition code indicates the results of the test. 

If an error return is provided for TESTCB, the address of DMSVIP4 is 
substituted in the PLIST. This allows DMSVIP to regain control from 
VSAM so that the DOSSVC bit can be turned off. The error routine is then 
given control after the address is returned to the PLIST. 

178 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

- ------- ----------------------- ------- - ---

_/ 



{ 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

SIMULATE OS VSAM I/O MACROS: DMSVIP simulates the OS GET, 
PUT, POINT, ENDREQ, ERASE, and CHECK I/O macros. 

GET, PUT, POINT, ENDREQ, and ERASE Processing: First, the OS 
request code in register 0 is mapped to a VSE request code. The RPL or 
chain of RPLs is rearranged to VSE format (unless that has already been 
done). 

If there is an ECB address in the OS RPL, a flag is set in the new VSE RPL 
and the ECB address is saved at the end of the RPL. 

Asynchronous I/O processing is simulated by setting active exit returns 
inactive in the user EXLST. The exception to this is the JRNAD exit. It 
need not be set inactive since it is not an error exit. Setting error exits to 
be inactive prevents VSAM from taking an error exit, thus allowing such 
an exit to be deferred until a CHECK can be issued for it. 

The VSE macro is then issued to IKQVSM via a BALR. 

VSE error codes returned in the RPL FDBK field that do not exist in OS 
are mapped to their OS equivalents. If the user has specified synchronous 
processing, this return code is passed unchanged in register 15. 

For asynchronous processing, return codes are cleared before return and 
any exist routines set inactive are reactivated in the EXLST. Also, all 
ECBs are set to WAITING status. 

CHECK Processing: For CHECK processing, return codes in the RPL 
FDBK field are checked to determine the results of the I/O operation. If 
there is an active exit routine provided for the return code, control is 
passed to that routine. Also, all WAITING ECBs are posted with an 
equivalent completion code. 

If no active exit routine is provided or if the exit routine returns to VSAM, 
the return code is placed in register 15 and control is returned to the 
instruction following the CHECK. 

CMS/VSAM ERROR RETURN PROCESSING: Two types of support for 
error routine processing are provided in DMSVIP. Entry point DMSVIP3 
provides support for user exit routines; entry point DMSVIP4 provides 
support for ERET error returns. 

User Exit Routine Processing: DMSVIP provides support for OS VSAM 
I/O error exits at entry point DMSVIP3. At this entry point the DOSSVC 
bit is turned off and the user storage key is restored. 

The address of the user routine is recovered from VIP's saved exit list 
(either the primary exit list in the work area or the overflow exit list, 
OEXLSA). 

Control then passes to the appropriate exit routine. If the routine is one 
that returns to VSAM, the DOSSVC flag is set ON and VSAM processing 
continues. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 179 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

DMSVIP can save the addresses of up to 128 exit routines during execution 
of a user program. 

ERET Error Routine Processing: DMSVIP provides support for OS 
VSAM ERET exit routines used in conjunction with the TESTCB macro. 
This support is located at entry point DMSVIP4. At DMSVIP4, the 
DOSSVC bit is turned off and the user storage key is restored. The address 
of the ERET routine is recoViered from the work area and control passes to 
that routine. 

The ERET routine may not return control to VSAM. 

Completion Processing for OS and VSE/VSAM Programs 

When an OS or VSE/VSAM program completes, control is passed to module 
DMSVSR, which "cleansup" after VSAM. DMSVSR can be called from 
three routines after OS processing: 

DMSINT if processing completes without system errors or serious user 
errors 

DMSEXT if the user program is used as part of an EXEC file 

DMSABN if there are system errors or the user program abnormally 
terminates 

After VSE/VSAM processing completes, DMSVSR is called by DMSDOS. 

DMSVSR issues an SVC 2 to execute the DOS transient routine $$BACLOS. 
$$BACLOS first checks for any OPEN VSAM files. If any are open, SVC 2 
is issued to $$BCLOSE (DMSCLS) to close the files. 

If there are no open files or if all ACB's have been closed, $$BACLOS issues 
SVC 2 to $$BEOJ4, an entry point in DMSVSR. At $$BEOJ4, a 
PURGESYS DIAGNOST 64 is issued to purge the CMSVSAM DCSS. 
DMSVSR then checks to see if an OS program has completed processing. If 
this is the case, the SET DOS OFF command is issued and control returns 
to the caller. 

Simulating an OS Environment under eMS 

When in a CMS environment, a processor or a user-written program is 
executing and utilizing OS-type functions, OS is not controlling this action, 
CMS is in control. Consequently, it is not OS code that is in CMS, but 
routines to simulate, in terms of CMS, certain OS functions essential to the 
support of OS language processors and their generated code. 

These functions are simulated to yield the same results as seen from the 
processing program, as specified by OS program logic manuals. However, 
they are supported only to the extent stated in CMS documentation and to 
the extent necessary to successfully execute OS language processors. The 

180 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

--- ---_.- ~ -_.- --

\. 

'-

/ 



( 

{ 

(-

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

user should be aware that restrictions to OS functions as viewed from OS 
exist in CMS. 

Certain TSO Service routines are provided to allow the licensed programs 
to run under CMS. The routines are the command scan and parse service 
routines and the terminal I/O service routines. In addition, the user must 
provide some initialization as documented in TSO TMP service routine 
initialization. The OS functions that eMS simulates are shown in 
Figure 29. 

TSO Service Routine Support 

TSO macros that support the use of the terminal monitor program (TMP) 
service routines are contained in TSOMAC MACLIB. The macro functions 
are as described in the TSO TMP documentation with the exception of 
PUTLINE, GETLINE, PUTGET, and TCLEARQ. 

Before using the TSO service routines, the calling program performs the 
following initialization: 

1. Stores the address of the command line as the first word in the 
command processor parameter list (CPPL). The TSOGET macro puts 
the address of the CPPL in register 1. 

2. Initializes CMS storage using the STRINIT macro. 

3. Clears the ECT field that contains the address of the I/O work area 
(ECTIOWA). 

4. Issues the STACK macro to define the terminal as the primary source of 
input. 

Macro sve No. Module Function 

XDAP 00 DMSSVT Reads or writes direct access 
volumes 

EXCP 00 DMSGAM Executes channel program for 
graphic access method (GAM) 

WAIT 01 DMSSVN Waits for an I/O completion 
POST 02 DMSSVN Posts the I/O completion 
EXIT 03 DMSSLN Returns from a called phase 
RETURN 03 DMSSLN Returns from a called phase 
GETMAIN 04 DMSSMN Conditionally acquire user storage 
FREEMAIN 05 DMSSMN Releases user-acquired storage 
GET POOL DMSSMN Simulates as SVC 10 
FREEPOOL DMSSMN Simulates as SVC 10 
LINK 06 DMSSLN Links control to another phase 
XCTL 07 DMSSLN Deletes, then links control to 

another load phase 
LOAD 08 DMSSLN Reads a phase into storage 
DELETE 09 DMSSLN Deletes a loaded phase 

Figure 29 (Part 1 of 3). Simulated OS Supervisor Calls 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-eMS Environments 181 



182 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



r-

( 

( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Macro 

POINT 
CHECK 
TGET/TPUT 
TCLEARQ 
STAX 
PGRLSE 
CALL 

SVC No. Module 

93 
94 
96 
112 

DMSSCT 
DMSSCT 
DMSSVN 
DMSSVN 
DMSSVT 
DMSSVT 

Function 

Manages data set positioning 
Verifies READ/WRITE completion 
Reads or writes a terminal line 
Clears terminal input queue 
Creates an attention exit block 
Releases storage contents 
Transfers control to a control 
section at a specified entry 

Figure 29 (Part 3 of 3). Simulated OS Supervisor Calls 

CMS Simulation of OS Control Block Functions 

Most of the simulated supervisory OS control blocks are contained in the 
following two CMS control blocks: 

CMSCVT simulates the communication vector table (CVl'). Location 16 
contains the address of the CVT control section. 

CMSCB allocated from system free storage whenever a FILEDEF 
command or an OPEN (SVC 19) is issued for a data set. The 
CMS control block consists of the CMS file control block (FCB) 
for the data file management under CMS, and simulation of the 
job file control block (JFCB), input/output block (lOB), and data 
extent block (DEB). The name of the data set is contained in the 
FCB, and is obtained from the FILEDEF argument list, or from a 
predetermined file name supplied by the processing problem 
program. 

CMS also utilizes portions of the supplied data control block (DCB) and the 
data event control block (DECB). The TSO control blocks utilized are the 
command program parameters list (CPPL), user profile table (UPT), 
protected step control block (PSCB), and environment control table (ECT). 

Operating System Simulation Routines 

CMS provides a number of routines to simulate certain operating system 
functions used by programs such as the Assembler and the FORTRAN and 
PL/I compilers. The following paragraphs describe how these simulation 
routines work. 

XDAP-SVC 0: 
Writes and reads the source code spill file, SYSUTl, during language 
compilation for PL/I Optimizer and ANS COBOL Compilers. 

EXCP-SVC 0: 
Executes a channel program. Supported for graphic access method 
(GAM) only. 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 183 



WAIT-SVC 1: 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Causes the active task to wait until one of more event control blocks 
(ECBs) have been posted. For each specified ECB that has been 
posted, one is subtracted from the number of events specified in the 
WAIT macro. If the number of events is zero by the time the last ECB 
is checked, control is returned to the user. If the number of events is 
not zero after the last ECB is checked and the number of events is not 
greater than the number of ECBs, the active task is put into a wait 
state until enough ECBs are posted to set the number of events at 
zero. When the event count reaches zero, the wait bits are turned off 
in any ECBs that have not been posted and control is returned to the 
user. If the number of events specified is greater than the number of 
ECBs, the system abnormally terminates with an error message. All 
options of WAIT are supported. 

POST-SVC 2: 
Causes the specified event control block (ECB) to be set to indicate 
the occurrence of an event. This event satisfies the requirements of a 
WAIT macro instruction. All options of POST are supported. The bits 
in the ECB are set as follows: 

Bit Setting 
o 0 
1 1 
2-7 Value of specified completion code 

EXIT-SVC 3: 
This SVC is for CMS internal use only. It is used by the CMS routine 
DMSSLN to acquire and SVC SA VEAREA on return from an 
executing program that had been given control by LINK (SVC 6), 
XTCL (SVC 7) or ATTACH (SVC 42). 

GETMAIN-SVC 4: 
Control is passed to the GETMAIN entry point in the DMSSMN 
storage resident routine. The mode is determined: VU, VC, EC. A 
call is made to GETBLK to obtain the block of storage. Control 
blocks of two fulhvords precede each section of available storage: (1) 
the address of the next block, (2) the size of this block. The head of 
the pointer string is located at the words MAINSTRT . initial free 
block, and MAINLIST - address of first link in chain of free block 
pointers. All options of GET MAIN are supported, except SP, 
BNDRY=, HIARCHY, LC, and LV. 

FREEMAIN-SVC 5: 
Releases a block of free storage. If the block is part of segmented 
storage, a control block of two fullwords is placed at the beginning of 
the released area. Adjustment is made to include this block in the 
chain of available areas. All options of FREE MAIN are supported 
except SP and L. 

LINK-SVC 6: 

/ 

Program transfer is controlled by the nucleus routine, DMSSLN. The ;f .". 

LINK macro causes program control to be passed to a designated ~.j 
phase. If the COMPSWT bit within the byte OSSFLAGS is on, 

184 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

-- .- .~---.. -.-- -~ ... -----~-- .. ~~~~-- .. -.--.-~ -----



( 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

loading is done by calling LOAD MOD to bring a CMS MODULE file 
into storage. If this flag is off, dynamic loading is initiated by calling 
LOAD. If the routine is already in storage, determined by scanning 
the load request chain, no LOAD or LOADMOD is done. Control is 
passed directly to the routine. CMS ignores the DCB and HIARCHY 
options; all other options of LINK are supported. 

XCTL-SVC 7: 
XCTL first deletes the current phase from storage. Processing then 
continues as for LINK-SVC 6, as previously described. CMS ignores 
the DCB and HIARCY options; all other options of XCTL are 
supported. 

LOAD-SVC-8: 
Control is passed to DMSSLN8 loaced in DMSSLN when a LOAD 
macro is issued. If the requested phase is not in storage, a LOAD or 
LOADMOD is issued to bring it in. Control is then returned to the 
caller. CMS ignores the DeB and HIARCHY options; all other 
options of LOAD are supported. 

DELETE-SVC 9: 
Control is passed to DMSSLN9located in DMSSLN when a DELETE 
macro is issued. Upon entry, DELETE checks to see whether the 
module specified was loaded using LOADMOD or dynamically loaded 
by LOAD or INCLUDE. If it was loaded by LOADMOD control is 
returned to the user. If it was dynamically loaded, the responsibility 
count is decremented by one and if it reaches zero, the storage is 
released using FREEMAIN, and control is returned to the user. All 
options of DELETE are supported. Code 4 is returned in register 15 if 
the phase is not found. 

GETMAIN/FREEMAIN-SVC 10: 
Control is passed to the SVC 10 entry point in DMSSMN. Storage 
management is analogous to SVC 4 and 5, respectively. All options of 
GET MAIN and FREEMAIN are supported. Subpool specifications are 
ignored. 

GETPOOL: 
Gets control via an OS LINK macro to IECQBFGI. IECQBFGI 
allocates an area of free storage using GETMAIN, sets up a buffer 
control block in the free storage, stores the address of the buffer 
control block in the DCB, and then returns control to the caller. 

TIME-SVC 11: 
This routine (TIME) located in DMSSVT receives control when a 
TIME macro instruction is issued. A call is made (by SIO or 
DIAGNOSE) to the RPQ software chronological timer device, X I FF I • 

The real time of day and date are returned to the calling program in a 
specified form. CMS supports the DEC, BIN, TU, and MIC parameters 
of the TIME macro instruction. However, the time value that CMS 
returns is only accurate to the nearest second and is converted to the 
proper unit. 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 185 



ABEND-SVC 13: 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

This routine (DMSSAB) receives control when either an ABEND 
macro or an unsupported OS/360SVC is issued. If an SVC 13 was 
issued with the DUMP option and either a SYSUDUMP or 
SYSABEND ddname had been defined via a call to DMSFLD 
(FILEDEF), a SNAP (SVC 51) specifying PDATA=ALL is issued to 
dump user storage to the defined file. A check is made to see if there 
are any outstanding STAE requests. If not, or if an unsupported SVC 
was issued, DMSCWR is called to type a descriptive error message at 
the terminal. Next, DMSCWT is called to wait until all terminal 
activity has ceased, and then, control is passed to the ABEND 
recovery routine. If a STAE macro was issued, a STAE work area is 
built and control is passed to the STAE exit routine. After the exit 
routine is complete, a test is made to see if a retry routine was 
specified. If so, control is passed to the retry routine. Otherwise, 
control passes to DMSABN unless the task that had the ABEND was 
a subtask. In that case, the resume PSW in the link block for the 
subtask is adjusted to point to an EXIT instruction (SVC 3). The 
EXIT frees the subtask, and the attaching task is redispatched. 

SPIE-SVC 14: 
This routine (SPIE) receives control when a SPIE macro instruction is 
issued. When it gets control, SPIE inserts the new program 
interruption control area (PICA) address into the program 
interruption element (PIE). The program interruption element resides 
in the program interruption handler (DMSITP). It then returns the 
address of the old PICA to the calling program, sets the program mask 
in the calling program's PSW, and returns to the calling program. All 
options of SPIE are supported. 

RESTORE-SVC 17: 
RESTORE is a NOP located in DMSSVT. 

BLDL/FIND (Type D)-SVC 18: 
SVC to entry points in DMSSOP. If an OS disk is specified, DMSSVT 
branches and links to DMSROS. See BLDL and FIND under 
description of BPAM routines in DMSSVT. 

STOW-SVC 21: 
See STOW under description of BPAM routines in DMSSVT. 

OPEN/OPENJ-SVC 19/22: 
OPEN simulates the data management function of opening one or 
more files. It is a nucleus routine and receives control from DMSITS 
when an executing program issues an OPEN macro instruction. The 
OPEN macro causes an SVC to DMSSOP. DMSSOP simulates the 
OPEN macro. The DISP, EXTEND, and RDBACK options are ignored 
by CMS; all other options of OPEN and OPENJ are supported. You 
can achieve similar results with the EXTEND option by opening the 
file with the OUTPUT option and using the DISP MOD parameter on 
the FILEDEF command. 

186 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

~~~-----~- ~-----------

/

(

(

{-

Restricted Materials of IBM

Licensed Materials - Property of IBM

CLOSE/TCLOSE(CLOSE TYPE =T)-SVC 20/23:
CLOSE and TCLOSE are simulated in the nucleus routine DMSSOP.
It receives control whenever a CLOSE or TCLOSE macro instruction
is issued. The CLOSE macro causes an SVC to DMSSOP. DMSSOP
simulates the CLOSE macro. CMS ignores the DISP option; all other
options of CLOSE and TCLOSE are supported.

DEVTYPE-SVC 24:
This routine (DEVTYPE), located in DMSSVT, receives control when
a DEVTYPE macro is issued. Upon entry, DEVTYPE moves device
characteristic information for the requested data set into a user
specified area, and then returns control to the user. All options of
DEVTYPE are supported, except RPS, which is ignored.

TRKBAL-SVC 25:
TRKBAL is a NOP located in DMSSVT.

FEOV-SVC 31:
Returns control to CMS with an error code of 4 in register 15.

WTO/WTOR-SVC 35:
This routine (WTO), located in DMSSVT, receives control when either
a WTO or a WTOR macro instruction is issued. For a WTO, it
constructs a calling sequence to the DMSCWR function program to
type the message at the terminal. (The address of the message and its
length are provided in the parameter list that results from the
expansion of the WTO macro instruction). It then calls the DMSCWT
function program to wait until all terminal I/O activity has ceased.
Next, it calls the DMSCWR function program to type the message at
the terminal and returns to the calling program. All options of WTO
and WTOR are supported except those concerned with multiple
console support.

For a WTOR macro instruction, this routine proceeds as described for
WTO. However, after it has typed the message at the terminal it calls
the DMSCRD function program to read the user's reply from the
terminal. When the user replies with a message, it moves the message
to the buffer specified in the WTOR parameter list, sets the completion
bit in the ECB, and returns to the calling program.

EXTRACT-SVC 40:
This routine (EXTRACT), located in DMSSVT receives control when
an EXTRACT macro is issued. Upon entry, EXTRACT clears the user
provided answer area and returns control to the user with a return
code of 4 in register 15.

IDENTIFY-SVC 41:
Located in DMSSVT, this routine creates a new load request block
with the requested name and address if both are valid. The new entry
is chained from the existing load request chain. The new name may
be used in a LINK or ATTACH macro.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 187

Restricted Materials of IBM

Licensed Materials - Property of IBM

ATTACH-SVC 42: (" "

Ldodc~~ed in 1 DMSb~l~~' ATTThACH o~eraltles lidke a LIN.Kf (SVC ~), wddrith '~
a ltIona capa 1 Itles. e user IS a owe to speCl y an eXIt a ess
to be taken upon return from the attached phase; also, an ECB is
posted when the attached phase has completed; and a STAI routine
can be specified in case the attached phase abends. The DCB,
LPMOD, DPMOD, HIARCHY, GSPV, GSPL, SHSPV, SHSPL, SZERO,
PURGE, ASYNCH, and T ASKLIB options are ignored; all other
options of ATTACH are supported. Because CMS is not a
multi-tasking operating system, a phase requested by the ATTACH
macro must return to CMS.

CHAP-SVC 44:
CHAP is a NOP located in DMSSVT.

TTIMER-SVC 46:
Checks to ensure that the value in the timer (hex location 50) was set
by an STIMER macro. If it was, the value is converted to an unsigned
32 bit binary number specifying 26 microsecond units and is returned
in register O. If the timer was not set by an STIMER macro a zero is
returned in register 0, after setting register 0, the CANCEL option is
checked. If it is not specified, control is returned to the user. If it is
specified, the timer value and exit routine set by the STIMER macro
are cancelled and control is returned to the user. All options of
TTIMER are supported.

STIMER-SVC 47:
Checks to see if the WAIT option is specified. If so, control is ',/
returned to the user. If not, the specified timer interval is converted
to 13 microsecond units and stored in the timer (hex location 50). If a
timer completion exit routine is specified, it is scheduled to be given
control after completion of the specified time interval. If not, no
indication of the completion of the time interval is scheduled. After
checking and handling any specified exit routine address, control is
returned to the user. All options of STIMER are supported. The
TASK option is treated as though the REAL option had been specified.
The maximum time interval allowed is X I 7FFFFFOO I timer units
(X I 00555554 I in binary, or 15 hours, 32 minutes, and 4 seconds in
decimal). If the time interval is greater than the maximum, it is set to
the maximum. If running in the CMSBATCH environment, issuing
the STIMER or TTIMER macro will affect the CMSBATCH time limit.
Depending on the frequency, number, and duration of STIMER and/or
TTIMER issued, the CMSBATCH time limit may never expire.

DEQ-SVC 48:
DEQ is a NOP located in DMSSVT.

SNAP-SVC 51:
Control is passed to SNAP in DMSSVT when a SNAP macro is issued.
SNAP fills in a PLIST with a beginning and ending address and calls
DMPEXEC. DMPEXEC dumps the specified storage along with the
registers and low storage to the printer. Control is then returned to t -~
SNAP and SNAP checks to see if any more addresses are specified. It ~ r

continues calling DMPEXEC until all the specified addresses have

188 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

--- ------- ------ ------

f'

(

(

{

Restricted Materials of IBM

Licensed Materials - Property of IBM

been dumped to the printer. Control is then returned to the user.
Except for SDATA, PDATA, and DCB, all options of the SNAP macro
are processed normally. SDATA and PDATA are ignored. Processing
for the DCB option is as follows: The DCB address specified with
SNAP is used to verify that the file associated with the DCB is open.
If it is not open, control returns to the caller with a return code of.4.
If the file is open, the FCB associated with the file is checked for a
device type of DUMMY. If the device type is DUMMY, control
returns to the caller with a return code of 0 and storage is not
dumped.

ENQ-SVC 56:
ENQ is a NOP located in DMSSVT.

FREEDBUF-SVC 57:
This routine (FREEDBUF) located in DMSSVT receives control when
a FREEDBUF macro is issued. Upon entry, FREEDBUF sets up the
correct DSECT registers and calls the FREEDBUF routine in
DMSSBD. This routine returns the dynamically obtained buffer
(BDAM) specified in the DECB to the DCB buffer control block chain.
Control is then returned to the DMSSVT routine which returns
control to the user. All the options of FREEDBUF are supported.

STAE-SVC 60:
This routine (STAE) located in DMSSVT receives control when a
STAE macro is issued. Upon entry, STAE creates, overlays or cancels
a STAE control block (SCB) as requested. Control is then returned to
the user with one of the following return codes in register 15:

Code Meaning

00 An SCB is successfully created, overlaid or cancelled.

08 The user is attempting to cancel or overlay a nonexistent SCB.

Format of SCB

0(0)

4(4)

8(8)

o or

exit

pointer to next SCB

address

parameter list address
12(C)

DETACH-SVC 62:
DETACH is a NOP located in DMSSVT.

CHKPT -SVC 63:
CHKPT is a NOP located in DMSSVT.

RDJFCB-SVC 6.4:
This routine (RDJFCB) receives control when a RDJFCB macro
instruction is issued. When it gets control, RDJFCB obtains the
address of the JFCB from the DCBEXLST field in the DCB and sets

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 189

Restricted Materials of IBM

Licensed Materials -Property of IBM

the JFCB to zero. It then reads the simulated JFCB located in ("
CMSCB that was produced by. issuing a FILEDEF into the closed l,
area. RDJFCB calls the STATE function program to determine if the
associated file exists. If it does, RDJFCB returns to the calling
program. If the file does not exist, RDJFCB sets a switch in the DCB
to indicate this and then returns to the calling program. RDJFCB is
~located in DMSSVT. All the options ofRDJFCB are supported.

• The DCB's specified in the "RDJFCB parameter list" are processed
sequentially as they appear in the parameter list.

• On return to the caller, a return code of zero is always placed in
register 15 (if an abend occurs, control is not returned to the
caller).

• Abend 240 occurs if zero is specified as the address of the area
where the JFCB will be placed.

• Abend 240 occurs if a "JFCB exit list entry" (entry type X, 07') is
not present in the "DCB exit list" for anyone of the DCB's
specified in the "RDJFCB parameter list."

• If a DCB is encountered in the parameter list with zero specified
as the "DCB exit list" ("EXLST") address, RDJFCB immediately
returns with return code zero in register 15 -- except if all of the
DCB's specified in the "RDJFCB parameter list" are processed
unless an abend occurs.

• For a DCB that is not "open," a search is done for the
corresponding "FILEDEF" and "DLBL" -- if one is not found, a
test is done to determine if a file exists with:

filename = "FILE"
filetype = ddname from DCB
filemode = "AI"

If such a file does exist, X, 40' is placed in the JFCB at
displacement X, 57' flag "JFCOLD" in field "JFCBIND2"). If such
a file does not exist, X, CO' (flag "JFCNEW" will be in field
" JFCBIND2").

• For a file that is not "open," but a "DLBL" has been specified,
X ' 08' is placed in the JFCB at displacement X' 63' (field
"JFCDSORG" byte 2) to indicate that it is a VSAM file.

Note: The switch set by the RDJFCB is tested by the FORTRAN
object-time direct-access handler (DIOCS) to determine whether or not
a referenced disk file exists. If it does not, DIOCS initializes the direct
access file.

SYNAD-SVC 68:
Located in DMSSVT, SYNAD attempts to simulate the functions
SYNADAF and SYNADRLS. SYNADAF expansion includes an SVC
68 and a high-order byte in register 15 denoting an access method.

190 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

(. "
. ,
, --/

r

(

Restricted Materials of IBM

Licensed Materials - Property of IBM

SYNAD prepares an error message line, swap save areas and register
13 pointers. The message buffer is 120 bytes: bytes 1-50, 84-119 blank;
bytes 51-120, 120S INPUT/OUTPUT ERROR nnn ON FILE: "dsname";
where nnn is the CMS RDBUF/WRBUF error code. All the options of
SYNAD are supported.

SYNADRLS expansion includes SVC 68 and a high order byte of
X ' FF' in register 15. The save area is returned, and the message
buffer is returned to free storage.

BACKSPACE-SVC 69:
Also in DMSSVT. For a tape, a BSR command is issued to the tape.
For a direct access data set, the CMS write and read pointers are
decremented by one. Control is passed to BACKSPACE in DMSSVT
when a BACKSPACE macro is issued. BACKSPACE decrements the
read write pointer by one and returns control to the user. No physical
tape or disk adjustments are made until the next READ or WRITE
macro is issued. All the options of BACKSPACE are supported.

TGET/TPUT-SVC 93:
Located in DMSSVN, this routine receives control when a TGET or
TPUT macro is issued. It is provided to support TSO service routines
needed by licensed programs. TGET reads a terminal line; TPUT
writes a terminal line. The return code is zero if the operation was
successful and a four if an error was encountered.

TCLEARQ-SVC 94:
TCLEARQ is located in DMSSVN and causes the terminal input
queue to be cleared via a call to DESBUF. At completion a return is
made to the user.

STAX-SVC 96:
Located in DMSSVT, STAX gets and chains a CMSTAXE control
block for each STAX SVC issued with an exit routine address
specified. The chain is anchored by T AXEADDR in DMSNUC. If no
exit address is specified the most recently added CMST AXE is cleared
from the chain. If an error occurs during ST AX SVC processing, a
return code of eight is placed in register 15. The only option of ST AX
which may be specified is EXIT ADDRESS.

PGRLSE-SVC 112:
Located in DMSSVT, PGRLSE receives control when a PGRLSE
macro instruction is issued. The routine checks the validity of the
beginning and end addresses of the area to be freed, or forces the right
values (AUSRAREA to the beginning, or FREELOWE to the end).
Then the routine checks the length of the area to find out if at least 1
page (4K bytes) has to be released and issues a DIAGNOSE code
X' 10' instruction to CPo The return code will set to zero in register
15 if the PGRLSE operation is successful, or to four if only a portion
of the area is released.

CALL:
Transfers control to a control section at a specified entry.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 191

---_. _._--. __ -

GET/PUT:

Restricted Materials of IBM

Licensed Materials - Property of IBM

See the DMSSQS prolog for description.

READ/WRITE:
OS READ and WRITE macros branch and link to DMSSBS. DMSSBS
branches and links to DMSSEB and, if the disk is an OS disk,
DMSSEB branches and link to DMSROS. See DMSSBS for
description.

NOTE/POINT/FIND (Type C):
OS NOTE, POINT, and FIND (type c) macros branch and link to entry
points in DMSSCT. If the disk is an OS disk, DMSSCT branches and
links to DMSROS. See DMSSCT for descriptions.

CHECK:
See the DMSSCT prolog for description.

Notes on using the OS simulation routines:

• CMS files are physically blocked in 800-byte blocks and logically
blocked according to a logical record length. If the filemode of the file
is not 4, the logical record length is equal to the DCBLRECL, and the
file must always be referenced with the same DCBLRECL, whether or
not the file is blocked. If the filemode of the file is 4, the logical record
length is equal to the DCBBLKSI, and the file must always be
referenced with the same DCBBLKSI.

• When writing CMS files with a filemode number other than four, the
OS simulation routines deblock the output and write it on a disk in
unblocked records. The simulation routines delete each 4-byte block
descriptor word (BDW) and each 4-byte record descriptor word (RDW) of
variable length records. This makes the OS-created files compatible
with CMS-created files and CMS utilities. When CMS reads a CMS file
with a filemode number other than four, CMS blocks the record input
as specified and restores the BDW and RDW control words of variable
length records.

If the CMS filemode number is four, CMS does not unblock or delete
BDWs or RDWs on output. CMS assumes on input that the file is
blocked as specified and that variable length records contain block
descriptor words and record descriptor words.

• To set the READ/WRITE pointers for a file at the end of the file, a
FILEDEF command must be issued for the file specifying the MOD
option.

• A file is erased and a new one created if the file is opened and all the
following conditions exist:

The OUTPUT or OUTIN option of OPEN is specified.

The TYPE option of OPEN is not .J.

192 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

--- ------------_._ .. _--- --

{

r

(

(

Restricted Materials of IBM

Licensed Materials - Property of IBM

The dataset organization option of the DCB is not direct access or
partitioned.

A FILEDEF command has not been issued for data set specifying
the MOD option.

• The results are unpredictable if two DCBs read and write to the same
data set at the same time.

Command Flow of Commands Involving OS Access

ACCESS COMMAND FLOW: The module DMSACC gets control first
when you invoke the ACCESS command. DMSACC verifies parameter list
validity and sets the necessary internal flags for later use. If the disk you
access specifies a target mode of another disk currently accessed, DMSACC
calls DMSALU to clear all pertinent information in the old active disk
table. DMSACC then calls DMSACF to bring in the user file directory of
the disk. As soon as DMSACF gets control, DMSACF calls DMSACM to
read in the master file directory of the disk. Once DMSACM reads the
label of the disk and determines that it is an OS disk, DMSACM calls
DMSROS (ROSACC) to complete the access of the OS disk. Upon returning
from DMSROS, DMSACM returns immediately to DMSACF, bypassing the
master file directory logic for CMS disks. DMSACF then checks to
determine if the accessed disk is an OS disk. If it is an OS disk, DMSACF
returns immediately to DMSACC, bypassing all the user file directory logic
for OS disks. DMSACC checks to determine if the accessed disk is an OS
disk; it if is, another check determines if the accessed disk replaces another
disk to issue an information message to that effect. Another check
determines if you specified any options or fileid and, if you did, a warning
message appears on the terminal. Control now returns to the calling
routine.

FILEDEF COMMAND FLOW: DMSFLD gets control first when you
issue a CMS FILEDEF command. DMSFLD adds, changes, or deletes a
FILEDEF'control block (CMSCB) and returns control to the calling
routine.

LISTDS COMMAND FLOW: The module DMSLDS gets control first
when you invoke the LISTDS command. DMSLDS verifies parameter list
validity and calls module DMSLAD to get the active disk table associated
with the specified mode. DMSLDS reads all format 1 DSCB and if you
specified the PDS option and the data set is partitioned, DMSLDS calls
DMSROS (ROSFIND) to get the members of the data set. After displaying
the DSCB (or DSCB) on your console, DMSLDS returns to the calling
routine.

OSRUN COMMAND FLOW: The module DMSOSR gets control first
when you invoke the OSRUN command. DMSOSR checks the command
syntax. The PARM = parameter, if specified, is set up according to OS
convention and a LINK (SVC 6) is issued for the member specified in the
OSRUN command. DMSITS (the sve FLIH) passes control to DMSSVT
which in turn goes to DMSSLN for processing of the LINK SVC. DMSSLN
passes control to DMSLOS. DMSLOS loads, relocates, and executes the

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 193

Restricted Materials ()f IBM

Licensed Materials - Pr()perty ()f IBM

member specified. When the member completes execution and returns
control to DMSLOS, DMSLOS returns to DMSSLN for some cleanup;
DMSSLN goes through the normal SVC return to DMSOSR. DMSOSR
goes through its termination and returns to CMS.

MOYEFILE COMMAND FLOW: The module DMSMVE gets control first
when you issue a CMS MOVEFILE command. DMSMVE calls DMSFLD to
get an input and output CMSCB and, if the input DMSCB is for a disk file,
DMSMVE calls DMSSTT to verify the existence of the input file and gets
default DCB parameters in absence of CMSCB DCB parameters. DMSMVE
uses OS OPEN, FIND, GET, PUT, and CLOSE macros to move data from
the input file to the output file. After moving the specified data, control
returns to the calling routine.

LKED COMMAND FLOW: The module DMSLKD gets control first when
you invoke a CMS LKED command. DMSLKD generates the necessary
FILEDEFs for execution of the OS linkage editor and calls the linkage
editor (HEWLFROU). When the link-edit is complete, DMSLKD receives
control to do some clean up prior to returning to CMS.

QUERY COMMAND FLOW: The module DMSQRY gets control first
when you invoke the QUERY command. DMSQRY verifies parameter list
validity and passes control to DMSQRS that calls DMSLAD to get the
active disk table associated with the specified mode. DMSQRY displays all
the information that you requested on your console. When DMSQRY
finishes, control returns to the calling routine.

RELEASE COMMAND FLOW: The module DMSARE gets control first
when you invoke the RELEASE command. DMSARE verifies parameter
list validity and checks to determine if the disk you want to release is
accessed. If the disk you want to release is currently active, DMSARE calls
DMSALU to clear all pertinent information associated with the active disk.
DMSALU first checks the active disk table for any existing CMS tables
kept in free storage. If the disk you want to release is an OS disk,
DMSALU does not find any tables associated with a CMS disk. If the disk
is an OS disk, DMSALU releases the OS FST blocks (if any) and clears any
OS FST pointers in the OS file control blocks. DMSALU then clears the
active disk table and returns to DMSARE. DMSARE then clears the device
table address for the specified disk and returns to the calling routine.

STATE COMMAND FLOW: The module DMSSTT gets control first when
you invoke the STATE command. DMSSTT verifies the parameter list
validity and calls module DMSLAD to get the active disk table associated
with the specified mode. Upon return from DMSLAD, DMSSTT calls
DMSLFS to find the file status table (FST) associated with the file you
specified. Once DMSLFS finds the associated FST, it checks to determine if
the file resides on an OS disk. If it does, DMSLFS calls DMSROS
(ROSSTT) to read the extents of the data set. Upon return from DMSROS,
DMSLFS returns to DMSSTT. DMSSTT then copies the FST (or OS FST)
to the FST copy in statefst and returns to the calling routine.

194 System Logic and Problem Determination (CMS) L Y20-08934 © Copyright IBM Corp. 1980, 1986

------' -----'- ----

Ii('"

~>j

f

r

{

{

Restricted Materials of IBM

Licensed Materials - Property of IBM

OS Access Method Modules--Logic Description

DMSACC MODULE: Once DMSACC determines that the disk you want to
access is an OS disk, it bypasses the routines that perform LOGIN UFD and
LOGIN ERASE.

If the disk you want to access replaces an OS disk, message DMSACC724I
appears at your terminal.

If you specified any options of fileid in the ACCESS command to an OS
disk, a warning message, DMSACC230W, appears to notify you that such
options or fileid were ignored. DMSACC returns to the calling routine with
a warning code of 4.

DMSACF MODULE: DMSACF verifies that the disk you want to access is
an OS disk, and, if it is, exits immediately.

DMSACM MODULE: DMSACM saves the disk label and VTOC address
in the ADT block if the disk is an OS disk. DMSACM calls the OS access
routine (ROSACC) of DMSROS to read the format 4 DSCB of the disk.
Upon successful return from DMSROS, control returns to the calling
routine. Any other errors are treated as general logon errors.

DMSALU MODULE: If the disk is an OS disk, DMSFRET returns the OS
FST blocks (if any) to free storage. DMSALU clears the OS FST pointer in
all active OS file control blocks.

DMSARE MODULE: DMSARE ensures that the disk you want to release
is an OS disk. DMSARE calls DMSALU to release all OS FST blocks.
Upon return from DMSALU, DMSARE clears the common CMS and OS
active disk table.

DMSFLD MODULE:

• DSN -- If you specify the parameter DSN as a question mark (?),
FILEDEF displays the message DMSFLD220R to request you to type in
an OS data set name with the format Q1.Q2.QN. Ql, Q2, and QN are
the qualifiers of an OS data set name. If you specify the parameter DSN
as Q1.Q2.QN, FILEDEF assumes that Ql, Q2 and QN are the qualifiers
of an OS data set name and stores the qualifiers with the format
Q1.Q2.QN. in a free storage block and chains the block to the FCB.

• CONCAT -- If you specify the CONCAT option, FILEDEF assumes that
the specified FILEDEF is unique unless a filedef is outstanding with a
matching ddname, filename, and filetype. This allows you to specify
more than one FILEDEF for a particular ddname. The CONCAT option
also sets the FCBCATML bit in the FCB to allow the OS simulation
routine to know the FCB is for a concatenated MAC LIB.

• MEMBER -- If you specify the member option, filedef stores the member
name in FCBMEMBR in the FCB to indicate that the OS simulation
routine should set the read/write pointer to point to the specified BPAM
file member when OPEN occurs.

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 195

Restricted Materials ofIBM

Licensed Materials - Property of IBM

DMSLDS MODULE: DMSLDS saves the return register, sets itself with
the nucleus protection key, clears the dsname key, and initializes its
internal flag.

DMSLDS verifies parameter list validity. The data set name must not
exceed 44 characters, and the disk mode (the last parameter before the
options) must be valid. DMSLDS joins the qualifiers with dots (.) to form
valid data set names. If you specify the data set name as a question mark
(?), DMSLDS prompts you to enter the dsname in exactly the same form as
the dsname which appears on the disk.

DMSLDS calls DMSLAD to find the active disk table block. If you specify
filemode as an asterisk (*), DMSLAD searches for all ADT blocks. If you
specify the filemode as alphabetic, DMSLAD finds only the ADT block for
the specified filemode.

If you specify the dsname (which is optional), DMSLDS sets the channel
programs to read by key. If you did not specify a dsname, DMSLDS
searches the whole VTOC for format 1 DSCBS and displays all the
requested information contained in the DSCB on your console. If you
specify the format option,. the RECFM, LRECL, BLKSI, DSORG, DATE,
LABEL, FMODE, and data set name appear on your console; otherwise,
only the FMODE and data set name appear.

If you specify the PDS option, DMSLDS calls the 'find' routine (rosfind) in
Dl\fSROS to read the member directory and pass back, one at a time, in the
fcbmembr field of CMSCB, the name of each member of the data set. This
occurs if the data set is partitioned.

After processing finishes, DMSLDS resets the nucleus key to the same
value as the user key, puts the return code in register 15, and returns to the
calling routine.

DMSLFS MODULE: DMSLFS verifies that the FST being searched for
has an OS disk associated with it. DMSLFS calls the DMSROS state
routine (ROSSTT) to verify that the data set exists and CMS supports the
data set attributes. Upon return from DMSROS, a return code of 88
indicates that the data set was not found, and DMSLDS starts the search
again using the next disk in sequence. Any other errors, such as a return
code 80, cause DMSLFS to exit immediately. A return code of 0 from
DMSROS indicates that the data set is on the specified disk: From this
point on, execution occurs common to both CMS and OS disks.

DMSMVE MODULE: If you specify the PDS option and the input is from
a disk, DMSMVE sets the FCBMVPDS bit and issues and OS FIND macro
before opening an output DCB to position the input file at the next member.
DMSMVE then stores the input member name in the output CMSCB for use
as the output filename. After reaching end-of-file on a member, the message
DMSMVE225I appears, DMSMVE closes the output DCB, and passes
control to find the next member. After moving all the members to separate
eMS files, movefile displays message DMSMVE226I, closes the input and
output DCBS, and returns control to the calling routine.

196 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

r

(

(

{

Restricted Materials of IBM

Licensed Materials - Property of IBM

DMSROS MODULE:

• ROSACC Routine -- ROSACC gets control from DMSACM after
DMSACM determines that the label of the disk belongs to an OS disk.
The ROSACC routine reads the format 4 DSCB of the disk to further
verify the validity of the OS disk. ROSACC updates the ADT to contain
the address of the high extent of the VTOC (if the disk is a DOS disk) or
the address of the last active format 1 DSCB (if the disk is an OS disk),
and the number of cylinders in the disk. If the disk is a DOS disk,
ROSACC sets a flag in the ADT. Information messages appear to notify
you that the disk was accessed in read-only mode. If the disk is already
accessed as another disk, another information message appears to that
effect. Finally, ROSACC zeroes out the ADTFLGI flag in the ADT, sets
the ADRFLG2 flag to reflect that an OS disk was accessed, and returns
control to the calling routine.

• ROSSTT Routine -- Verifies the existence of an OS data set and verifies
the support of the data set attributes.

Note: Within the ROSSTT description, any reference to FCB or
CMSCB implies a DOSCB if DOS is active.

ROSSTT gets control from DMSSTT after DMSSTT determines that the
STATE operation is to an OS disk. The ROSSTT routine searches for
the correct FCB which a previous FILEDEF associated with the data
set. If the DOS environment is active, ROSSTT locates the correct
DOSCB that defines a data set described by a previous DLBL. If
ROSSTT finds an active FST, control passes to ROSSTRET; otherwise,
ROSSTT acquires the dsname block, places its address in the FCB, and
moves the dsname in the FCB to the acquired block. ROSSTT acquires
an FST block, chains it to the FST chain, and fills all general fields
(dsname, disk address, and disk mode). ROSSTT now reads the format 1
DSCB for the data set and checks for unsupported options (BDAM,
ISAM, V ASM, and read protect).

Errors pass control back to the calling routine with an error code.
ROSSTT groups together all the extents of the data set (by reading the
format 3 DSCB if necessary) and checks them for validity. ROSSTT
bypasses any user labels that may exist and displays a message to that
effect. Next, ROSSTT moves the DSCBl BLKSIZE, LRECL, and
RECFM parameters to the OS FST and passes control to ROSSTRET.

• ROSSTRET Routine -- If the disk is not a DOS disk, ROSSTRET passes
control back to the caller. If the specified disk is a DOS disk,
ROSSTRET fills in the OS FST BLKSIZE, LRECL, and RECFM fields
that were not specified in the DSCBl. If the CMSCB fields are zero,
ROSSTRET defaults them to BLKSIZE = 32760, LRECL = 32670, and
RECFM = U. Control then returns to the calling routine.

• ROSRPS Routine -- ROSRPS reads the next record of an OS data set.
Upon entry to the ROSRPS entry point, ROSRPS calls CHKXTNT and,
if the current CCHHR is zero, SETXTNT to ensure the CCHHR and
extent boundaries are correctly set. ROSRPS then calls DISKIO and, if
necessary, CHKSENSE and GETALT to read the next record. Ifno

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 197

Restricted Materials of IBM

Licensed Materials - Property of IBM

errors exist or an unrecoverable error occurred, control returns to the (' '.
user with either a zero (I/O OK) or an 80 (I/O error) in register 15. If an"
unrecoverable error occurs, ROSRPS updates the CCWS and buffer
pointers as necessary and recalls CHKXTNT and DISKIO to read the
next record.

• ROSFIND Routine .- ROSFIND sets the CCHHR to point to a member
specified in FCBMEMBR or, if the FCBMVPDS bit is on, sets the
CCHHR to point to the next member higher than FCBMEMBR and sets
a new member name in FCBMEMBR.

Upon entry at the ROSFND entry point, ROSFND sets up a CCW to
search for a higher member name if the FCBMVPDS bit is on, or an
equal member name if the FCBMVPDS bit is off. It then calls
SETXTNT, DISKIO and, if needed, CHKSENSE and GETALT to read in
the directory block that contains the member name requested. After
reading the block, it is searched for the requested member name. If the
member name is not found, an error code 4 returns to the calling
routine. If an I/O error occurs while trying to read the PDS block, an
error code 8 returns to the calling routine. If the member name is
found, TTRCNVRT is called to convert the relative track address to a
CCHH and pass the address of the member entry to the calling routine.

• ROSNTPTB Routine -- ROSNTPTB gets the current TTR, sets the
current CCHHR to the value of the TTR, and backspaces to the
previous record.

Upon entry at the ROSNTPTB entry point, ROSNTPTB checks to
determine if a NOTE, POINT, or BSP operation was requested.

If register 0 is zero, NOTE is assumed. The note routine calls
CHRCNVRT to convert the CCHH to a relative track and returns
control to the calling routine with the TTR in register O.

If register 0 is positive upon entry into DMSROS, POINT is assumed
and ROSNTPTB loads a TTR from the address in register 0 and calls
TTRCNVRT and SETXTNT to convert the TTR to a CCHHR. Then
control returns to the calling routine.

If register 0 is negative upon entry into DMSROS, BSP (BACKSPACE)
is assumed. The backspace code checks to determine if the current
position is the beginning of a track. If not, the backspace code
decrements the record number by one and control then returns to the
calling routine. If the current position is the beginning of a track, the
backspace code calls CHRCNVRT to get the current CCHH. The
backspace code then calls rdcnt to get the current record number of the
last record on the new track, calls setxtnt to set the new extent
boundaries, and returns control to the calling routine.

DMSSCT MODULE:

• NOTE Routine -- Upon entry to note, DMSSCT checks to determine if
the DCBrefers to an OS disk. If it does, DMSSCT calls DMSROS
(ROSNTPTB) to get the current TTR. Control then returns to the user.

198 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM· Corp. 1980, 1986

---_.- ---

"<'" /

r"

(

(....
-' .. '

Restricted Materials of IBM

Licensed Materials - Property of IBM

• POINT Routine -- Upon entry to point, DMSSCT checks to determine if
the DCB refers to an OS disk. If it does, DMSSCT calls DMSROS
(ROSNTPTB) to reset the current TTR, calls CKCONCAT and returns
control to the calling routine.

• CKCONCAT Routine -- Upon entry to CKCONCAT, DMSSCT checks to
determine if the FCB MACLIB CONCAT bit is on. If it is on,
DCBRELAD + 3 sets the correct OS FST pointer in the FCB and returns
control to the calling routine. If the FCB MACLIB CONCAT bit is off,
control returns to the calling routine.

• FIND (type_C) Routine -- If the DCB refers to an OS disk, DMSSCT
calls DMSROS (ROSNTPTB) to update the TTR and control returns to
the calling routine.

DMSSEB MODULE:

• EOBROUTN Routine -- If the FCB OS bit is on, control passes to
OSREAD. Otherwise, if no special I/O routine is specified in
FCBPROC, control passes to EOB2 in DMSSEB.

• OSREAD Routine -- DMSSEB calls DMSROS to perform a read or write
and then control passes to EOBRETRN which, in turn, passes control
back to DMSSBS. DMSSBS passes control back to the routine calling
the read or write macro operation.

DMSSOP MODULE: If the MACLIB CONCAT option is on in the
CMSCB, OPEN checks the MACLIB names in the global list and fills in the
addresses of OS FSTS for any MACLIBS on OS disks. The CMSCB of the
first MACLIB in the global list merges and initializes CMSCBS.

If the CMSCB refers to a data set on an OS disk, DMSSOP checks to ensure
that the data set is accessible and the DCB does not specify output, BDAM,
or a key length. If any errors occur, error message DMSSOP036E appears
and DMSSOP does not open the DCB. DMSSOP fills them in from the OS
FST for the data set.

If the CMSCB fcbmembr field contains a member name (filled in by
FILEDEF with the member option), DMSSOP issues an OS FIND macro to
position the file pointer to the correct member. If an error occurs on the
call to the FIND macro, error message DMSSOP036E appears and DMSSOP
does not open the DCB.

DMSSVT MODULE:

• BSP (backspace) Routine -- Upon entry, backspace checks for the FCB
OS bit. If it is on, the BSP routine calls DMSROS (ROSNTPTB) to
backspace the TTR and control returns to the calling routine.

• FIND (type_D) Routine -- Upon entry to find, the find routine checks
the FCB OS bit. If it is on, the FIND routine takes the OS FST address
from the CMSCB or, if the CONCAT bit is on, from the global MACLIB
list. The FIND routine then calls DMSROS (ROSFIND) to find the
member name and TTR. DMSROS searches for a matching member

LY20-0893"4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 199

---- --- ~--------- ,-- '-

Restricted Materials of IBM

Licensed Materials - Property of IBM

name or, if the FCBMVPDS option is specified, a higher member name. r'
If the DMSROS return code is 0 or 8, or if the FCBCATML bit is not on,
control returns to the calling routine with the return code from
DMSROS. If the return code is 4 and the FCBCATML bit is on,
DMSSVT checks to determine if all the global MACLIBS were
searched. If they were, control returns to the calling routine with the
DMSROS return code. If they were not, DMSSVT issues the FIND on
the next MACLIB in the global list.

• BLDL Routine -- BLDL list = FF LL NAME TTR KZC DATA

If the ,DCB refers to an OS disk, the BLDL routine fill in the TTR,
C-byte and data field from the OS data set.

DMSQRS MODULE:

• SEARCH Routine _. The search routine ensures that any OS disk
currently active is included in the search order of all disks currently
accessible.

• DISK Routine -- The disk routine displays the status of any or all OS
disks using the following form:

'MODE(CUU): (NO. CYLS.), TYPE RIO - OS. I

DMSSTT MODULE: DMSSTT verifies that the disk being searched is an
OS disk. DMSSTT calls DMSLFS to get the FST associated with the data
set. Upon return from DMSLFS, DMSSTT checks the return code to ensure
that CMS supports the data set attributes. A return code of 81 or 82
indicates that CMS does not support the data set and message
DMSSTT229E occurs to that effect. DMSSTT then clears the FST copy
with binary zeros, and moves the filename, filetype, filemode, BLKSIZE,
LRECL, RECFM, and flag byte to the FST copy. From this point on,
common code execution occurs for both CMS and OS disks.

Routines Common to All of DMSROS

• CHRCNVRT Routine -- The CHRNCVRT routine converts a CCHH
address to a relative track address.

• CHKSENSE Routine -- CHKSENSE checks sense bits.to determine the
recoverability of a unit check error if one occurs.

• CHKXTNT Routine -- CHKXTNT checks to determine if the end of split
cylinder or the end of extent occurred, and, if so, updates to the next
split cylinder or extent.

• DISKIO Routine -- DISKIO starts I/O operation on a CCW string via a
DIAGNOSE code X '20 I •

• GETALT Routine -- GETALT switches reading from alternate track to
prime track and from prime track to alternate track. «' 'J

200 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

(

r

{

------ ---

Restricted Materials of IBM

Licensed Materials - Property of IBM

• RDCNT Routine -- RDCNT reads count fields on the track to determine
the last record number on the track.

• SETXTNT Routine -- SETXTNT sets OSFSTEND to the value of the end
of the extent and, if a new extent is specified, sets CCHHR to the value
of the start of the extent.

Simulating a VSE Environment Under eMS

CMS/DOS is a functional enhancement to CMS that provides VSE
installations with the interactive capabilities of a VM/SP virtual machine.
CMS/DOS operates as the background VSE partition; other VSE partitions
are unnecessary, since the CMS/DOS virtual machine is a one-user
machine.

CMS/DOS provides read access to real VSE data sets, but not write or
update access. Real VSE private libraries, system relocatable libraries,
source statement libraries, and core-image libraries can be read. This read
capability is supported to the extent required to support the CMS/DOS
linkage editor, the DOS/PLI, DOS/VS COBOL, and the DOS/VS RPG II
compilers, the FETCH routine, and the RSERV, SSERV, and ESERV
commands. No read or write capability exists for the VSE procedure
library, except for copying procedures from the procedure library (via the
PSERV command) or displaying the procedure library (via the DSERV
command).

CMS/DOS does not support the standard label area.

Initializing VSE and Processing VSE System Control Commands

Initialization of the CMS/DOS operating environment requires the setting
of flags and the creation of certain data areas in storage. Once initialized,
these flags and data areas may then be changed by routines invoked by the
system control commands.

DMSSET -- Initializing the eMS/DOS Operating Environment

DMSSET initializes the CMS/DOS operating environment as follows:

• Verifies that the mode, if specified, is for a DOS formatted disk

• Stores appropriate data in the SYSRES LUB and PUB

• Locates and loads the CMS/DOS discontiguous shared segment. Saves
(in NUCON) the addresses of the two major CMS/DOS data blocks,
SYSCOM and BGCOM, and the address of the CMS/DOS discontiguous
shared segment (CMSDOS)

• Locates and loads the CMSBAM shared segment if available. This
segment contains the following:

- Simulated VSE OPEN/CLOSE and logic module routines for

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 201

Restricted Materials. of IBM

Licensed Materials - Property of IBM

the VSE sequential access method

- DTFSL support for the DOS PL/I and DOS/VS COBOL
compilers

,- LBROPEN, LBRFIND, and LBRGET macro simulation as
required by the VSE ESERV program

- VSE lookaside function support as required by VSE/VSAM.

• Obtains free storage and initializes the LOCK/UNLOCK resource
control table

• Sets the DOSMODE, DOSSVC and CMSBAM bits in DOSFLAGS in
NUCON

• Assigns (via ASSGN) the SYSLOG logical unit as the CMS virtual
console.

The CMS/DOS operating environment is entered when the CMS SET DOS
ON command is issued, invoking the module DMSSET.

Data Areas Prepared for Processing During eMS/DOS Initialization

Several data areas are prepared for processing during initialization. The
main CMS data area, NUCON, is modified to contain the addresses of two
VSE data areas, SYSCOM and BGCOM. NUCON also contains the address
of the Task Control Block (TCB)."'- /

The SYSCOM DSEOT is the VSE system communications region. It
consists mainly of address constants, including the addresses of the
boundary box, the PUB ownership table, and the FETCH table. It also
includes such information as the number of partitions (always one for
CMS/DOS) and the length of the PUB table.

The BGCOM DSECT is the partition communication region. It includes
such information as the date, the location of the end of supervisor storage,
the end address of the last phase loaded, the end address of the longest
phase loaded, bytes used to set the language translator and supervisor
options, and the addresses of many other VSE data areas such as the LUB,
PUB, NICL, FICL, PIB, and PIB2T AB.

The TCB contains the addresses of the PC and AB exit routines. The TCB
also contains the addresses of the related PC and AB exit save area.

The LUB and PUB tables are also made available during initialization. The
LUB is the logical unit block table. It acts as an interface between the
user's program and the CMS/DOS physical units. It contains an entry for
each symbolic device available in the system.

Each of the symbolic names in the LUB is mapped into an element in the
PUB, the physical unit block table. The PUB table contains an entry for
each channel and device address for all devices physically available to the

202 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

-------------- ._--------

'". /

f

Restricted Materials of IBM

Licensed Materials - Property of IBM

system and also contains such information as device type code, CMS disk
mode, tape mode setting, and 7-track indicator.

Three bits are set in DOSFLAGS in NUCON: DOSMODE, DOSSVC, and
CMSBAM. DOSMODE specifies that this virtual machine is running in the
CMS/DOS operating environment. DOSSVC indicates whether OS or VSE
SVCs are operative in the operating environment. CMSBAM indicates that
various VSE functions are supported and available. If DOSSVC is set, VSE
SVCs are used. Otherwise, OS SVCs are operative.

Setting or Resetting System Environment Options

Once the CMS/DOS environment is initialized, the flags and control blocks
set during initialization can be modified and manipulated to perform the
functions specified by commands entered at the console. This section
describes the modules that set and reset the system environment options.
That is, they set those options that control compiler execution and that
control the configuration of logical and physical units in the system.

DMSOPT •• Setting and Resetting Complier Options

The CMS/DOS OPTION command invokes module DMSOPT, which sets
either the default options for the compiler or the options specified on the
command line. The nonstandard language translator options switch and
the job duration indicator byte are altered. Options are set using two
control words located in the partition communication region (BGCOM).
Bits in bytes JCSW3 or JCSW4 are set, depending on the options specified.

DMSASN •• Associate System or Programmer Logical Units with Physical Units

module DMSASN is invoked when the ASSGN command is entered.
DMSASN first scans the command line to ensure that the logical unit being
assigned is valid for the physical unit specified (for example, SYSLOG must
be assigned to either the virtual console or the virtual printer). Once the
command line is checked, PUB and LUB entries are modified to reflect the
specified assignment.

A check is made to ensure that the logical units SYSRDR or SYSIPT are
not being assigned to a DOS formatted FB-512 DASD. This is not supported
in the CMS/DOS environment because SVC 103 (SYSFIL support) is not
available.

For the PUB entry, the device type is determined (via DIAG 24) and the
device type code is placed in the PUB. Other modifications are made to the
PUB depending on the specified assignment. The LUB entry is then
mapped to its corresponding PUB.

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 203

Restricted Materials of IBM

Licensed Materials - Property of IBM

DMSDAS -- Dynamically Associated Programmer Logical Units with Physical Units

The function of DMSDAS is to assign a disk device with address X, cuu' to
a programmer logical unit (SYSOOO - SYS241).

The dynamic assign function supports assigning a DASD unit either
permanently or temporarily, changing a DASD unit temporary assign to
permanent, or unassigning a DASD. Temporary assigns are cleared either
at end-of-job or when the program is cancelled.

DMSDAS first searches the active disk table (ADT) chain to ensure that the
X, cuu' supplied is accessed; If the X' cuu' exists, DMSDAS ensures the
device is a DASD unit. The programmer LUB table is then searched
backwards to find the first available entry. A CMS PLIST is built using the
found LUB entry to call DMSASN to actually do the assign.

DMSDAS updates the appropriate LUB entry directly when performing the
unassign and change functions.

DMSLLU -- List the Assignments of eMS/DOS Physical Units to Logical Units

The function of DMSLLU is to request a list of the physical units assigned
to logical units. It performs this function by referencing information
located in the CMS/DOS data blocks, specifically SYSCOM, LUB, and PUB.
Another data block, the next in class (NICL) table, is also referenced.

The information on the command line is scanned and the appropriate items
are displayed at the user's console. If an option (EXEC or APPEND) is
specified, an EXEC file is created ($LISTIO EXEC AI) to contain the
output. If EXEC is specified, any existing $LISTIO EXEC Al file is erased
and a new one is created. If APPEND is specified, the new file is appended
to the existing file.

DMSDLB -- Associate a DTF Table Filename with a Logical Unit

DMSDLB is invoked when the CMS/DOS DLBL command is entered.
DMSDLB associates a DTF (define the file) table filename with a logical
unit. This function is performed by creating a control block called a
DOSCB, which contains information defining a VSE file used during job
execution. DLBL is valid only for sequential or VSAM disk devices.

This information parallels the label information written on a real VSE
SYSRES unit under VSE. The DOSCB contains such information as the
name, type, and mode of the referenced dataset, its device type code, its
logical unit specification, and its dataset type (SAM or VSAM).

A DOSCB is created for each file specified by the user during a terminal
session. The DOSCBs are chained to each other and are anchored in
NUCON at the field DOSFIRST. The chain remains intact for the entire
session, unless an abend occurs or the user specifically clears an entry in
the DOSCB chain. A given DOSCB is accessed when an OPEN macro is
issued from an executing user program.

The overall logical flow for DMSDLB is as follows:

204 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

- - ~~ ---~~ --~- ~--- ---~ -------~.

/

r

Restricted Materials of IBM

Licensed Materials - Property of IBM

• Scans the command line to ensure that any options entered are valid
(that is, anything to the right of the open parenthesis).

• Processes the first operand (ddname or *). When ddname is specified,
loop through the DOSCB chain to find a matching ddname. If none is
found, DMSDLB calls DMSFRE to get storage to create a new DOSCB
for this file. The old copy of the DOSCB is then saved so that, in case
of errors during processing, it can be retrieved intact. The new copy of
the DOSCB contains updates, and DOSCB replaces the old copy if there
are no errors.

• The mode specification is checked to ensure that it is a valid mode
letter; if the file is a CMS file, the mode letter must specify a CMS disk.
If DSN has been specified, the mode letter must be for a non-CMS disk.

• Process each option on the command line appropriately.

• If EXTENT or MULT is specified, a separate block of free storage is
obtained to contain information about the extent; for example, a block
is obtained to contain the VSE data set name.

• Check for errors. If there are errors, any blocks created during
processing are purged and an error message is issued. If there are no
errors, restore the old block, which has been modified to reflect current
processing, and return control to DMSITS.

Process CMS/DOS Open and Close Functions

The CMS/DOS OPEN routines are invoked in response to VSE OPEN
macros. They operate on DTF (define the file) tables and ACB (access
method control block) tables created when the DTFxx and ACB macros are
issued from an executing user program. These tables contain information
such as the logical unit specification for the file, the DTF type of the file,
the device code for the file, and so forth. The information in the tables
varies depending upon the type of DTF specified (that is, the table
generated by a unit record DTF macro is slightly different from the table
generated by a DTF disk macro).

Five routines are invoked to perform OPEN functions: DMSOPL,
DMSORl, DMSOR2, DMSOR3, and DMBOP. DMSCLS performs the
CLOSE function.

OPEN/CLOSE processing in the CMS/DOS environment depends upon the
DTF type:

• For DTFCP (disk), DTFDI (disk), and DTFSD DTF types, actual
OPEN/CLOSE processing is performed by the simulated VSE SAM
routines in the CMSBAM DCSS.

• For all other supported DTF types, OPEN/CLOSE processing is
performed totally within the CMS/DOS modules mentioned above.

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 205

Opening Flies Associated with DTF Tables

Restricted Materials of IBM

Licensed Materials - Property of IBM

Depending on the type of OPEN macro issued from a user program, one of
five CMS/DOS OPEN routines could be invoked. OPENR macros give
control to DMSORl, and depending on the DTF type specified, DMSOR2 or
DMSOR3 may be invoked. These three routines (DMSORl, DMSOR2, and
DMSOR3) request the relocation of a specified file. DMSOPL is invoked by
the VSE compilers when they need access to a source statement library.
These routines are mainly interface routines to DMSBOP, which performs
the main function of opening the specified file. Each of the routines calls
DMSBOP.

DMSBOP is the CMS/DOS routine that simulates the VSE OPEN function
for nondisk DTFs. The basic function of DMSBOP for nondisk DTFs is the
initialization of DTF tables (that is, setting fields in specified DTFs for use
by the VSE LIOCS routines). For disk DTFs, DMSBOP services an
interface routine and passes control to the CMSBAM DCSS.

When a VSE problem program is compiling, a list of DTFs and ACBs is
built. At execution time, this list is passed to DMSBOP. The logic flow of
DMSBOP is as follows:

1. Scans the list of DTF and ACB addresses, handling each item in the list
in line. When the OPEN macro expands, register 1 points to the name
of the $$B transient to receive control ($$BOPEN) and register 0 points
to the list of DTF/ACB addresses to be opened.

2. When an ACB is encountered in the table, control is passed directly to
the VSAM OPEN routine, $$BOVSAM. The VSAM routine is
responsible for Qpening the file and returning control to DMSBOP.

3. When a DTF is encountered in the table for nondisk files, DMSBOP
itself handles the OPEN:

a. For reader/punch files (DTFCD), the OPEN bit in the DTF table is
turned on. / '

b. For printer files (DTFPR), if two IOAREAs are specified, the IOREG
is loaded with the address of the appropriate IOAREA. Next, the
PUB index byte associated with the logical unit specified in the
DTF is checked to ensure that a physical device has been assigned
and the PUB device code is then analyzed. The OPEN bit in the
DTF table is then turned on.

c. For console files (DTFCN), no OPEN logic is required.

d. For tape files (DTFMT), the PUB device type code must specify
TAPE. If an IOREG is specified (for output tapes only), the address
of the appropriate IOAREA is placed in it. For input files, there is
separate processing for tapes with standard label, nonstandard
label, and no label. For output tapes, both tape data files, and work
tape files are treated as no label tapes.

206 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

r

(

f

(-

Restricted Materials of IBM

Licensed Materials - Property of IBM

4. For disk files, DMSBOP simulates the function of the VSE transient
$$BOSFBL. DMSBOP sets up in the CMSBAM DCSS the input
parameters and data areas required by the simulated VSE SAM
routines. Control is then passed to the CMSBAM DCSS by placing the
address of $IJJGTOP (the SAM OPEN/CLOSE phase) in the problem
program save area PSW and exiting via SVC 11.

5. DTFDI and DTFCP are device-independent DTFs. Processing is as
above depending upon the type of physical unit to which the DTFs are
assigned.

6. If no disk DTFs are encountered, DMSBOP opens all files in the table
and returns control to the problem program via SVC 11. If a disk DTF
is encountered, DMSBOP exits as described above in step 4 for disk
files.

7. If errors are encountered during DMSBOP processing, an error message
is issued and return is made via SVC 6.

Closing Files Associated With DTFs

DMSCLS is the CMS/DOS routine that processes CLOSE requests. Its logic
is analogous to that of DMSBOP, the OPEN routine described above: when
CLOSE expands, register 1 points to $BCLOSE and register 0 points to the
list of DTF/ACB addresses. The same table containing DTFs and ACBs
used to open files is also used to close those files. Each entry in the table is
processed as it occurs, with control passing to a VSAM CLOSE routine
($$BCVSAM) when an ACB is encountered. The OPEN bit is then turned
off.

Opening and Closing Files Associated with Disk DTFs

The OPEN and CLOSE functions for disk DTFs are performed by the
simulated VSE SAM routines located in the CMSBAM DCSS.

These routines normally issue the LABEL macro to obtain DLBL/EXTENT
information from the VSE label area, and issue the OVTOC, PVTOC, and
CVTOC macros to obtain VTOC information. These macros require special
handling in CMS/DOS. Processing is as follows:

1. DMSLAB (LABEL macro support) -- CMS/DOS does not support the
label information area in the same manner as VSE. CMS/DOS keeps
similar information in the DOSCB for the file. CMS/DOS intercepts
invocations of the LABEL macro and passes control to DMSLAB.
DMSLAB obtains the appropriate information from the DOSCB and
builds the BLDL/EXTENT record. The DLBL/EXTENT record is then
returned to the SAM routines in CMSBAM. Only the GETLBL and
GETNXL functions of the LABEL macro are supported. All other
functions result in an error return code to the SAM routines in
CMSBAM.

2. DMSCVH (OVTOC, PVTOC, and CVTOC macro support) -- In VSE
these macros are normally handled by the common VTOC handler
routines. These routines are simulated in CMSBAM and are used when

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 207

Restricted Materials of IBM

Licensed Materials - Property of IBM

accessing the VTOC on an OS or DOS formatted disk. However, when
these macros are issued for a file on a CMS formatted disk, DMSCVH
must simulate the appropriate function because CMS formatted disks do
not contain a VTOC. VTOC functions simulated by DMSCVH are as
follows:

OVTOC - open VTOC
PVTOC - read format 1 label by name
PVTOC - read format 1 label by address
PVTOC - write format 1 label in any slot
PVTOC - write format 1 label by address
PVTOC - check for file overlap
PVTOC - scratch file
CVTOC - close VTOC.

Any other requested VTOC functions is regarded as an error and the
program is cancelled via SVC 6.

3. When the SAM routines in CMSBAM complete processing, they exit via
an SVC 2 to $$BOSVLT. The functions of this transient are simulated
within CMS/DOS by the DMSVLT module. Obtained storage areas are
returned and other clean-up functions are performed. DMSVLT exits in
one of two different ways:

• If there are no more DTFs to process, control is returned to the
problem program via SVC 11.

• If there are. more DTFs to process, an SVC 2 is issued to the
appropriate $$B transient. Then, DMSBOP or DMSCLS is
eventually invoked to process the remaining DTFs.

Contents of the CMSBAM DCSS

Several VSE functions are supported within the CMSBAM DCSS as
simulated VSE phases. The simulated VSE phases and their functions are
as follows:

$IJJGTOP performs OPEN and CLOSE functions for all disk DTFs
(DTFSD, DTFDI, and DTFCP).

$IJJHCVH performs VTOC access functions for all disks in DOS format.

$IJBLBSL performs I/O operations to the VSE source statement library for
the VSE compilers and the ESERV utility program. The
compilers invoke this phase via the DTFSL macro. ESERV
invokes this phase indirectly via the LBRFIND and LBRGET
macros.

DMSLBR simulates the VSE internal macros LBROPEN, LBRFIND, and
LBRGET to the extent required by the VSE ESERV utility

,/

\. /

program. $IJBLBSL is invoked to perform I/O operations to the f "'.
VSE source statement library when appropriate. "-j

208 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

r

«

Restricted Materials of IBM

Licensed Materials - Property of IBM

$IJBLKMD performs the VSE lookaside function as required by
VSE/VSAM.

Eight VSE logic modules and two VSE SAM service routines are also
simulated as VSE phases. The logic modules handle I/O macros (GET,
PUT, POINT, etc.) for SAM files as issued by the user's program. The logic
modules and the specific type of SAM file they are associated with are as
follows:

$IJGXSDF

$IJGXSDU

$IJGXSDV

$IJGXSDW

$IJGXSVI

$IJGXSFI

$IJGXCP

$IJGXDI

DTFSD fixed length record data files on DOS formatted
FB-512 devices assigned to nonSYSFIL logical units.

DTFSD undefined record data files on DOS formatted and
CMS formatted disks assigned to nonSYSFIL logical units.

DTFSD variable length record data files on DOS formatted
FB-512 devices assigned to nonSYSFIL logical units.

DTFSD work files on DOS formatted and CMS formatted
disks assigned to nonSYSFIL logical units.

DTFSD variable length record data files on CMS formatted
and DOS formatted FB-512 device, or CMS formatted CKD
devices assigned to nonSYSFIL logical units.

DTFSD fixed length record data files on CMS formatted and
DOS formatted FB-512 device, or CMS formatted CKD
devices.

DTFCP files except for files on DOS formatted FB-512
devices assigned to SYSFIL logical units.

DTFDI files except for files on DOS formatted FB-512 devices
assigned to SYSFIL logical units.

SYSFIL logical units are not supported for use with DOS formatted FB-512
devices in CMS/DOS. SYSFIL logical units refers collectively to logical
units SYSRDR, SYSIPT, SYSLST, and SYSPCH.

The SAM service routines issue the actual I/O channel programs for SAM
files. The functions they perform are as follows:

$IJGXSSR issues I/O operations for DOS formatted FB-512 devices.

$IJGXSRI issues I/O operations for all CMS formatted disks (FB-512 or
CKD) and for DOS formatted CKD devices.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 209

--~. - -- -------- _.

Restricted Materials of IBM

Licensed Materials - Property of IBM

Process CMS/DOS Execution-Related Control Commands

The CMS/DOS FETCH and DOSLKED commands simulate the operation of
the VSE fetch routines and the VSE Linkage Editor. The three CMS
modules that perform this simulation are:

DMSFET Provide an interface to interpret the DOS FETCH command line
. and execute the phase, if START is specified on the command
line.

DMSFCH Bring into storage a specified phase from a system or private
core-image library or from a CMS DOSLIB library.

DMSDLK Link edit the relocatable output of the CMS/DOS language
translators to create executable programs.

DMSFET and DMSFCH -- Bring a Phase Into Storage for Execution

The VSE FETCH function is simulated by CMS modules DMSFET and
DMSFCH. The main control block used during a FETCH operation is
FCHSECT, which contains addressing information required for I/O
operations.

The FETCH command line invokes module DMSFET. This module first
validates the command line and issues a FILEDEF for the DOSLIB file. It
then issues a FILEDEF for a DOSLIB file. DMSFET then issues a VSE
SVC 4, which invokes the module DMSFCH to perform the actual FETCH \. __ /
operation.

DMSFCH first determines where the phase to be fetched resides. The
search order is private core-image library, DOSLIB, system core-image
library. If the phase is not found in any of these libraries, DMSFCH
assumes that the FETCH is for a phase in a system or private core-image
library. To find a DOSLIB library member, as OPEN and FIND macros are
issued (SVC 19 and 18).

When the member is found, as READ and CHECK macros are issued to
read the first record of the file (the member directory). This record
contains the number of text blocks and the length of the member.

All addressing information is stored in FCHSECT and the text blocks in
that phase are read into storage. If the read is from a CMS disk, issue the
as READ and CHECK macros to read the data. If the read is from a DOS
disk, first determine whether this is the first read for the CMS/DOS
discontiguous shared segment (DCSS). If this is the case, CCW information
is relocated to ensure that the DCSS code is reentrant. For all reads for a
DOS disk, a CP READ DIAG instruction is issued. When the entire file is
read, it is relocated (if it is relocatable).

If a DOSLIB is open, close it using an as svc 20 and return control to
DMSFET. DMSFET then checks to see whether START is specified and, if
so, an SVC 202 is issued for the CMS START command to execute the
loaded file.

2H) System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

------- ----~--- ----

f

f

Restricted Materials of IBM

Licensed Materials - Property of IBM

When all FETCH processing is complete, control returns to the CMS
command handler, DMSITS.

DMSDLK -- Simulate the Functions of the VSE Linkage Editor

CMS simulation of the VSE Linkage Editor function directly parallels the
Release 1 implementation of that function. For detailed information on the
logic of the function, see IBM DOS/ VSE Linkage Editor Logic, SY33-8556.

The modules that comprise the VSE Linkage Editor are prefixed by the
letters IJB and are separate CSECTs. All of these CSECTs have
counterparts contained within the one CMS module, DMSDLK. They are
treated as subroutines within that module, but perform the same functions
as their independent VSE counterparts and have been named using the
same naming conventions as the VSE CSECTs. For example, the IJBESD
CSECT in VSE is paralleled by the CMS DMSDLK subroutine DLKESD.

A brief description of the logic follows. The CMS/DOS DOSLKED
command invokes the module DMSDLK, which is entered at subroutine
DLKINL. DLKINL performs initialization and is later overlaid by the text
buffer and the linkage editor tables. DLKINL starts to read from a
DOSLNK file and processes ACTION statements, ifthere are any.

On encountering the first non-ACTION card (or if there is no DOSLNK
file), the main flow is entered. Depending on the input on the DOSLNK or
the TEXT file, records from either of those files may be read or records from
a relocatable library may be read. The type of card image read determines
the subroutine to which control is given for further processing.

An ENTRY card indicates the end of the input to the linkage editor. At
this point, a map is produced by subroutine DLKMAP. DLKRLD is then
entered to finish the editing of object modules by relocating the address
constants. If the phases are to be relocatable, relocation information is
added to the output on the DOSLIB. Updating of the DOSLIB library is
performed by DLKCAT using the OS STOW macro. .

A significant deviation from VSE code is the use of OS macros, in some
instances, rather than VSE macros. To take advantage of CMS support of
partitioned data sets, the OS OPEN, FIND, READ, CHECK, and CLOSE
macros are issued rather then their VSE counterparts.

Simulate VSE SVC Functions

All SVC functions supported for CMS/DOS are handled by the following
eMS modules:

DMSDOS
DMSETR
DMSGMF
DMSGTM
DMSGVE
DMSLCK
DMSLDF

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 211

DMSLIC
DMSMCM
DMSRPG
DMSSTX
DMSSUB
DMSSVL
DMSVIS
DMSXCP

Restricted Materials of IBM

Licensed Materials - Property of IBM

DMSDOS receives control from DMSITS (the CMS SVC handler) when that
routine intercepts a DOS SVC code and finds that the DOSSVC flag in
DOSFLAGS is set in NUCON.

DMSDOS acquires the specified SVC code from the OLDPSW field of the
current SVC save area. Using this code, DMSDOS computes the address of
the routine where the SVC is to be handled.

Many CMSjDOS routines (including DMSDOS) are contained in a
discontiguous shared segment (DCSS). Most SVC codes are executed
within DMSDOS, but some are in separate modules external to DMSDOS.
If the SVC code requested is external to DMSDOS, its address is computed
using a table called DCSST ABL; If the code requested is executed within
DMSDOS, the table SVCTAB is used to compute the address of the code to
handle the SVC. Figure 30 on page 213 lists the CMS modules that handle
SVC functions supported in CMS/DOS.

212 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

(/ -,
\...- ,/

Restricted Materials of IBM

Licensed Materials - Property of IBM

(Associated
Module SVCs Function
DMSETR 98 EXTRACT

DMSGMF 107 GETFLD, MODFLD

DMSGTM 34 GETIME

DMSGVE 99 GETVCE
DMSLCK 110 LOCK/UNLOCK

DMSLDF 1 FETCH
2 FETCH
4 LOAD

65 CDLOAD

DMSLIC 50 LIOCS ERRORS

DMSMCM 5 MVCOM

r DMSRPG 85 RELPAGE
DMSSTX 16 STXIT PC

17 EXIT PC
37 STXIT AB
95 EXIT AB

DMSSUB 105 SUB SID
DMSSVL 75 SECTVAL

DMSVIS 61 GETVIS
62 FREEVIS

DMSXCP 0 EXCP

Figure 30. CMS Modules Handling SVC Functions Supported in CMS/DOS

(

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 213

Functionl
Macro

EXCP

FETCH

FETCH

FORCE
DEQUEUE

Restricted Materials .ofIBM

Licensed Materials - Property of IBM

Figure 31 shows the VSE SVCs and their support in CMS/DOS simulation ,/' '.
routines, the name of the macro that invokes a given SVC code, and a brief ~ /
statement describing how the SVC function is performed.

SVCNo.
Dec Hex Support

0 0 Used to read from CMS or DOS/OS formatted disk.

The CCW's are converted to appropriate CMS I/O requests
(for example, RDBUF/WRBUF, CARDRD/CARDPH, etc.).
The CCB or 10RB is posted according to the CMS return
information. DMSDOS will call CMSXCP routine to
perform the I/O operation. If a non-zero return code
is returned from DMSXCP, a cancel is done. I/O
requests to DOS disks are handled using CP DIAGNOSE
instructions.

1 1 Used to bring a problem program phase into user
storage and to start execution of the phase if the
phase was found. Operand SYS = YES is not supported.

If the user did specify a directory list, a call to
DMSFCH is made. Otherwise, DMSDOS will build a
directory list using the specified phase name. Once
the directory list is prepared, a call to DMSFCH is
made. Upon return from DMSFCH, if the phase was
found, the entry point address of the phase is saved
in the 'SVC' save area oldpsw so that upon return to
CMS, DMSITS will then give control to the phase just
loaded. If upon return from DMSFCH there were any
errors, a cancel is done. If the phase was not
found, a message is issued and a cancel is done.

2 2 Used to bring a $$B-transient phase into the CMS
transient area (or if the phase is in the CMSDOS
segment, not to load it), and start execution of the
phase if the phase was found. Operand SYS = YES is not
supported.

A search is made through the loaded segment(s) in an
attempt to locate the specified transient. If the
phase is found in one of the segments, a call to
DMSFCH is not needed. If the phase was not found, a
call to DMSFCH is made in a similar way as in SVC 1
above. Once the transient entry point is obtained
(from storage or loaded), the address is saved in the
SVC save area (as above SVC 1) so that DMSITS gives
immediate control to the phase wanted. Errors or not
found conditions are handled as above in SVC 1.

3 3 Not supported, see note 2.

Figure 31 (Part 1 of 12). sve Support Routines and their Operation

214 Syetem Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

--------~ ----

Restricted Materials of IBM

Licensed Materials - Property of IBM

Functionl SVCNo.
Macro Dec Hex Support

LOAD 4 4 Used to bring a problem program phase into user
storage, and return the caller the entry point
address of the phase just loaded. Operand SYS = YES is
not supported.

Loading of the requested phase is done exactly as
FETCH (SVC 1) calling DMSFCH. Any errors returned
from DMSFCH are processed exactly as in fetch. A
difference between FETCH (SVC 1) and LOAD (SVC 4) is
that upon return from DMSFCH, assuming there are no
errors, the user's registers 0 and 1 are updated to
contain the address of the directory list (for the
user to test if the phase was found), and the entry
point address of the phase, respectively. If IJBSIA

r is being loaded, the address of DMSLAB is returned.
If $IJJHCV A (Common VTOC handler) is being loaded,
the address of DMSCVH is returned.

MVCOM 5 5 Provides the user with a means of altering positions
12 through 23 of the partition communications region
(BGCOM).

Before moving the specified information, a test is
made to ensure that the range (user's start address,
plus length of field to move) will not exceed the
allowed range. Once the specified range is found to

f
be within the allowed limits, the user's specified
information is moved to the partition communications
region.

CANCEL 6 6 Cancels a VSE session either by VSE program
request, or by request from any of the CMS routines
handling CMS/DOS.

Cancel will issue the message I Job cancelled due to
program reguest I. A test will be made to see if the
value of register 15 upon entry to cancel is below
256. If below, the value in register 15 will be the
return code to CMS. If equal or greater, a special
return code of 101 will be used to denote that the
cancel was issued from a user program (return code of
101 is not used for CMS error messages). Processing
then continues using the 'EOJ' code.

WAIT 7 7 Used to wait on a CCB, IORB, ECB, or TECB (note that
CMS/DOS does not support ECBs or TECBs). CCBs are
always posted by the DMSXCP routine before returning
to the caller.

The WAIT support under CMS/DOS will effectively be a
branch to the CMS/DOS POST routine.

Figure 31 (Part 2 of 12). SVC Support Routines and their Operation

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 215

Function! sve No.
Macro Dec Hex

CONTROL 8 8

LBRET 9 9

SET 10 A
TIMER

TRANS. 11 B
RETURN.

JOB CTL. 12 C
'AND'

JC FLAGS 13 D

Support

Restricted Materials of IBM

Licensed Materials - Property of IBM

Temporarily return control from a $$B-transient to
the problem program.

If a $$B-transient has to temporarily give control to
the problem program, the $$B-transient will issue an
sve 8 passing in register 0 the address of the
problem program gaining control. sve 8 routine will
store this address in the sve work area oldpsw, and
return back to CMS SVC handler (DMSITS).

Return to a $$B-transient after an SVC 8 was issued
to give control to the problem program.

The address saved before (SVC 8 above) is stored in
the SVC work area oldpsw, so that when DMSDOS returns
to the CMS SVC handler, control is given to the
$$B-transient that issued the SVC 8.

No operation. Successful return code of 0 is given in
register 15. See note 1.

Return from a $$B-transient to the calling problem
program.

The address saved when the initial SVC 2 (fetch a
$$B-transient) was issued, is stored in the CMS's SVC
work area oldpsw. Now, when DMSDOS returns to the
eMS's sve handier, control will return to the problem
program that issued the SVC 2 calling the
$$B-transient.

Resets flags to 0 in the linkage control byte in BGCOM
(communication region). If register 1 equals 0, bit 5 of
JCSW4 (COMREG byte 59) is turned off. If register 1
contains a nonzero value, the function depends on bit 8 of
register 1.

.
If bit 8 is zero, this SVC supplies supervisory support to
reset flags in the linkage control byte (displacement 57 in
BGCOM (communication region». The user has provided
the address of a mask (1 byte) in register 1. An 'AND'
operation of the mask with the linkage control byte is
performed.
If bit 8 is one, this SVC supplies the supervisory support
to reset flags in a specified byte of BGCOM
(communication region). The user has provided a
displacement in byte 2 and a mask in byte 3 of register 1.
An 'AND' operation of the mask byte with the specified
displacement in the partition communication region is
performed.

Not supported. See note 2.

Figure 31 (Part 3 of 12). SVC Support Routines and their Operation

216 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM

Licensed Materials - Property of IBM

{ Function/ sve No.
Macro Dec Hex Support

EOJ 14 E Normally terminates execution of a problem program.

The last SVC save work area is unstacked. Cleanup is
done by:

1. Clearing the CMS DOSLIB CMSCB
2. Resetting the JOBNAME in BGCOM
3. Unassigning all temporary device assignments

The last return code is loaded into register 15,
and control returns to DMSITS (CMSRET).

SYSIO 15 F Not supported. See note 2.

PC STXIT 16 10 Establish or terminate linkage to a user's program
check routine.

Locate the appropriate PC option table entry. If the
contents of register 0 is zero (terminate linkage),
determine if PC routine is active. If the PC routine
address in PC option table is negative, terminate
linkage by storing zero in routine address field of
PC option table. If the routine is not active
presently, store zeros in PC routine address field
and savearea address field in PC option table. If
register 0 is not zero, the address of the PC routine
and the savearea address is passed to the STXIT
macro. If a STXIT PC routine is active, the
complement of the new routine address is placed in
the PC option table. If not STXIT PC routine is
active, the new PC routine address and savearea
address are stored in the PC option table.

PC EXIT 17 11 Used to provide supervisory support for the EXIT
macro. SVC 17 provides a return from the user's PC
routine to the next sequential instruction in the
program that was interrupted due to the program check.

Locates the appropriate PC option table entry and
restores user's registers and PSW. Stores the
address of the PC routine in the PC option table
returns to the next sequential instruction in the
program that was interrupted.

IT STXIT 18 12 No operation. Successful return code of 0 is given in
register 15. See note 1.

IT EXIT 19 13 Not supported. See note 2.

OC STXIT 20 14 No operation. Successful return code of 0 is given in
register 15. See note 1.

OC EXIT 21 15 Not supported. See note 2.

SEIZE 22 16 No operation. Successful return code of 0 is given in
register 15. See note 1.

Figure 31 (Part 4 of 12). SVC Support Routines and their Operation

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 217

Function! SVC No.
Macro Dec Hex
LOAD 23 17
HEADER

SETIME 24 18

HALT I/O 25 19

26 lA

TP HALT 27 IB
I/O
MREXIT 28 lC

WAITM 29 ID

QWAIT 30 IE
QPOST 31 IF

32 20
COMRG 33 21

GETIME 34 22

HOLD 35 23

FREE 36 24

Support

Not supported. See note 2.

Restricted Materials of IBM

Licensed Materials - Property of IBM

No operation. Successful return code of 0 is given in
register 15. See note 1.

Not supported. See note 2.

Validate address limits. The upper address must be
specified in general register 2 and the lower address
must be specified in general register 1.

First the lower address must not be negative. An
error message DMSDOSOO5E is issued if it is. Second,
the high address cannot be negative. IT it is, the
same error message is issued. IT the low or high
address is greater than the end of the partition address
in BGCOM, the same error message is issued.
Otherwise, control returns to the caller.

Not supported. See note 2.

Not supported. See note 2.

Not supported. See note 2.

Not supported. See note 2.

Not supported. See note 2.

Reserved.
Used to provide the caller with the address of the
partition communications region.

DMSDOS provides the caller with the address of
the partition communications region, in the user's
register 1.

Provides support for the GETIME macro. sve 34
updates the date field in the communications region.
The GMT operand is not supported.

No operation. Successful return code of 0 is given in
register 15. See note 1.

No operation. Successful return code of 0 is given in
register 15. See note 1.

Figure 31 (Part I) of 12). sve Support Routines and their Operation

218 System LOgic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

~~-.~-------------- ---- -- --

Restricted Materials of IBM

Licensed Materials - Property of IBM

r- Function! SVCNo.
Macro Dec Hex Support

AB STXIT 37 25 Establish or terminate linkage to a user's abnormal
termination routine.

Supported for OPTION = DUMP or NODUMP.

Locate the appropriate AB option table entry. If RO
is zero and the AB routine is inactive, then
terminate linkage. Otherwise, if the AB routine is
active (bit 0 of the AB routine address is on), then
cancel the program.

If RO is not zero and the AB routine is active,
cancel the program. Otherwise, validate the save
area address (must be at least X' 20000' and not

r greater than the partition end), and store the AB
routine and save area addresses in the AH option
table.

ATTACH 38 26 Not supported. See note 2.

DETACH 39 27 Not supported. See note 2.

POST 40 28 Used to post an ECB, IORB, TECH, or CCB. Byte 2, bit
o of the specified control block is turned 'on'
byDMSDOS.

DEQ 41 29 No operation. Successful return code of 0 is given in
register 15. See note 1.

ENQ 42 2A No operation. Successful return code of 0 is given in
register 15. See note 1.

43 2B Reserved.

UNIT 44 2C Not supported. See note 2.
CHECKS

EMULATOR 45 2D Not supported. See note 2.
INTERF.

OLTEP 46 2E Not supported. See note 2.

WAITF 47 2F Not supported. See note 2.

CRT TRANS 48 30 Not supported. See note 2.

CHANNEL 49 31 Not supported. See note 2.
PROG.

LIOCS 50 32 Issued by a logical IOCS routine when the LIOCS is
DIAG. called to perform an operation the LIOCS was not

generated to perform.

The error message 'unsupported function in a LIOCS
routine' will be issued, and the session will then be
terminated.

RETURN 51 33 Not. supported. See note 2.
HEADER

Figure 31 (Part 6 of 12). sve Support Routines and their Operation

(

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. SimUlating Non-CMS Environments 219

Function/ SVC No.
Macro Dec Hex

TTIMER 52 34

VTAM EXIT 53 35

FREEREAL 54 36

GETREAL 55 37

POWER 56 38

POWER 57 39

SUPVR. 58 3A
INTERF.

EOJ 59 3B
INTERF.

GETADR 60 3C

GETVIS 61 3D

FREEVIS 62 3E

USE 63 3F

RELEASE 64 40

Support

Restricted Materials of IBM

Licensed Materials - Property of IBM

No operation. Successful return code of 0 is given in
register 15. See note 1. Register 0 is also
cleared.

Not supported. See note 2.

Not supported. See note 2.

Not supported. See note 2.

Not supported. See note 2.

Not supported. See note 2.

Not supported. See note 2.

Not supported. See note 2.

Not supported. See note 2.

Used by VSAM to obtain free storage for scratch use
or for obtaining an area into which a relocatable
VSAM program may be loaded.

A free storage subroutine similar to that in the
DMSSMN routine is called to obtain the needed space
(from the user area). If successful, the address is
returned in register 1, and register 15 is cleared.
If the request cannot be satisfied, a return code of
12 is passed back in register 15.

The PAGE, POOL, and SV A GETVIS option are
ignored.

Used to return the free storage obtained via an
earlier GETVIS call.

The free storage subroutine similar to that in the
DMSSMN routine is called to return the area
designated by register 1. All complete pages (4K
bytes) associated with the returned storage are
released by issuing a DIAGNOSE code X '10 I to CPo

The USE/RELEASE function has been replaced by SVC 110
(LOCK/UNLOCK) for serially controlling system
resources. All SVC 63 and 64 requests are mapped
into SVC 110 requests respectively. Return codes
previously associated with USE/RELEASE under CMS/DOS
are maintained.

Reference SVC 63.

Figure 31 (Part 7 of 12). SVC Support Routines and their Operation

220 System Logic and Problem Determination (CMS) LY20·0893-4 © Copyright IBM Corp. 1980, 1986

./

Restricted Materials of IBM

Licensed Materials - Property of IBM

Function! SVC No.
Macro Dec Hex Support

CDLOAD 65 41 U sed to load a relocatable VSAM phase into storage
unless the program has already been loaded.

If an anchor table is available, it is searched for
the given phase; if found, its load point, entry
point, and length are returned in the caller's
register 0, 1, and 14 respectively, with register 15
set to o.

If not, DMSFCH is called to find the given phase; if
found in a discontinuous shared segment, register 0,
1, and 14 are loaded as above and return made.

If the phase was found but is not loaded, storage is

r obtained (if available) from the GETVIS SVC; DMSFCH
is called again to load the program into the storage
area just obtained. An anchor table is built in the
user area (unless one already exists), the
appropriate entries made, and registers 0, 1, and 14
loaded as above, with return to caller.

If the program cannot be found, or if storage is
unavailable for either loading the program or for
building the anchor table, an error code 22 (X I 16 I)

is returned to the caller in register 15.

RUNMODE 66 42 Used by a problem program to find out if the program
is running in real or virtual mode.

The caller's register 0 is zeroed to indicate
that the program is running in virtual mode.

PFIX 67 43 No operation. Successful return code of 0 is given in
register 15. See note 1.

PFREE 68 44 No operation. Successful return code of 0 is given in register
15. See note 1.

REALAD 69 45 Not supported. See note 2.

{ VffiTAD 70 46 Not supported. See note 2.

SETPFA 71 47 No operation. Successful return code of 0 is given in register
15. See note 1.

GETCBUF/ 72 48 Not supported. See note 2.
FREECBUF

SETAPP 73 49 Not supported. See note 2.

PAGE GIX 74 4A Not supported. See note 2.

Figure 31 (Part 8 of 12). sve Support Routines and their Operation

(-

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 221

Function! SVC No.
Macro Dec Hex

SECTVAL 75 4B

SYSREC 76 4C

TRANSCCW 77 4D

CHAP 78 4E

SYNCH 79 4F

SETT 80 50

TESTT 81 51

LINKAGE 82 52

ALLOCATE 83 53

SET LIMIT 84 54

RELPAGE 85 55

FCEPGOUT 86 56

PAGEIN 87 57

TPIN 88 58

Restricted Materials of IBM

Licensed Materials - Property of IBM

Support

Used by VSAM I/O routines (ex., IKQIOA) to obtain a
sector number for a 3330, 3330-11, 3340, or 3350
device.

The appropriate sector value is calculated from the
input data supplied by the user's register 0 and 1.
If the calculation is successful, the sector number
(from 0 to 127) is returned in register O.

If any errors were detected, the noop set-sector
value of 255 (X I FF I) is returned.

Not supported. See note 2.

Not supported. See note 2.

Not supported. See note 2.

Not supported. See note 2.

Not supported. See note 2.

Not supported. See note 2.;

Not supported. See note 2.

Not supported. See note 2.

Not supported. See note 2.

Provides support for the RELPAG macro. At entry I register 1 pomts to a hst of 8-byte storage
description areas. Each entry contains the beginning
address and the length 1 of an area to be released.
A nonzero byte following an entry indicates the end
of the list. An area is released only if it contains
at least a fuli CP page (4K bytes). Pages are
released when the virtual machine calls CP via
DIAGNOSE code X I 10 I. On return, register 15 hold the
return code as follows:

register 15 = 0 all areas have been released.

register 15 = 2 one or more negative area lengths were
specified.

register 15 = 4 one or more pages t be released were
outside the user storage area.

register 15 = '16 at least one entry contains a
beginning address outside the user
storage area.

No operation. Successful return code of 0 is given in register
15. See note 1.

No operation. Successful return code of 0 is given in register
15. See note 1.

Not supported. See note 2.

Figure 31 (Part 9 of 12). SVC Support Routines and their Operation

222 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

~-~-~- ----

/

Restricted Materials of IBM

Licensed Materials - Property of IBM

r Function/ sve No.
Macro Dec Hex Support
TPOUT 89 59 Not supported. See note 2.

PUTACCT 90 5A Not supported. See note 2.

POWER 91 5B Not supported. See note 2.

XECBTAB 92 5C Not supported. See note 2.

XPOST 93 5D Not supported. See note 2.

XWAIT 94 5E Not supported. See note 2.

AB EXIT 95 5F Exit from abnormal task termination routine and
continue the task.

The linkage to either the PC or AB routine is
reestablished, and the cancel condition is reset by
clearing the ABEND indication in the partition PIB

{ extension. Control is returned to the instruction
following the exit AB macro.

TT EXIT 96 60 Not supported, See note 2.

TT STXIT 97 61 Not supported. See note 2.

EXTRACT 98 62 Support for EXTRACT macro of VSE. The caller requests
PUB information, CPUID, or storage boundary information.
Register 1 on entry points to a PLIST. Output is placed in an
area provided by caller.

GETVCE 99 63 Caller requests device information about a specific DASD.
Information is returned in an output area pointed to from the
PLiST. Register 1 contains a pointer to the PLIST on entry.

100 64 Reserved.

MODVCE 101 65 No operation. Successful return code of 0 is given in register
15. See note 1.

102 66 Reserved.

SYSFIL 103 67 Not supported. See note 2.

EXTENT 104 68 No operation. Successful return code of 0 is given in register
15. See note 1.

SUBSID 105 69 SUBSID .. the 'INQUIRY' function is supported for the
supervisor subsystem. Information returned is described by
the SUPSSID control block. The SUBSID 'NOTIFY' and
'REMOVE' functions are not supported.

LINKAGE 106 6A Not supported. See note 2.

Figure 31 (Part 10 of 12). SVC Support Routines and their Operation

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 223

Function! sve No.
Macro Dec Hex

TASK 107 6B
INTERF.

DATA 108 6C
SECURE

PAGESTAT 109 6D

LOCK! 110 6E
UNLOCK

Support

Restrieted Materials of IBM

Licensed Materials - Property of IBM

Provides macro interface support for system information
retrieval. The parameters supported are:

GETFLD:

field = ppsavar returns problem program save area address.

=savar returns current save area address.

=maintask returns maintask TID in Rl.

=aclose returns in Rl: 1 if in process, 0 if not.

= pc exit returns the pcexit routine address and save
area in RO and R1 respectively. If the exit
routine is currently active, bit 0 in RO is
set ON. If no exit is defined, it returns a 0
in both RO and Rl.

MODFLD:

field = vsamopen set bit X r 08 I in tcbflags byte if R1, = 0

=aclose set bit X '10 I in tcbflags byte if R1, = 0

The MODFLD requests for fields CNCLALL and OPENSV A I are treated as a NOP with a return code of 0

All other SVC 107 macro calls are unsupported. The error
message DMSGMF121S is issued and the request is cancelled.
See note 2.

Not supported. See note 2.

Not supported. See note 2.

Used by VSAM to control access to resources. Access
is maintained in either a 'shared' or 'exclusive'
control environment. When DOS is SET ON, counte,rs
are maintained as well as the type of control for
each resource in a table (LOCKTAB) built in free
storage. All entries not unlocked by the program are
cleared at both normal and abnormal end-of-job.

All requests for resource control are passed to SVC
110 through the DTL (define the lock) macro. SVC 63
requests are mapped into a dummy DTL and processed by
SVC 110.

Figure 31 (Part 11 of 12). SVC Support Routines and their Operation

224 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

f

r

(

Restricted Materials of IBM

Licensed Materials - Property of IBM

Functionl SVC No.
Macro Dec Hex . Support

Notes:

1. No operation:

In each case, register 15 is cleared to simulate successful
operation, and all other registers are returned unchanged,
unless otherwise noted.

2. Not supported:

For unsupported SVCs, an error message will be given,
and the SVC will be treated as a "cancel."

Figure 31 (Part 12 of 12). SVC Support Routines and their Operation

Process CMS/DOS Service Commands

DMSSRV Copies books from a system or private source statement library
to a specified output device.

DMSPRV Copies VSE procedures from a VSE system procedure library
to a specified output device.

DMSRRV Copies modules from a system or private relocatable library to
a specified output device.

DMSDSV Lists the directories of VSE private or system libraries.

DMSDSL Deletes members (phases) of a DOSLIB library; compresses a
DOSLIB library; lists the members (phases) of a DOSLIB
library.

ESERV De-edits, displays or punches, verifies, and updates edit
assembler macros from the source statement library.

Terminate Processing the CMS/DOS Environment

DMSBAB Gives control to an abnormal termination routine once linkage
to such a routine has been established via the STXIT AB
macro.

DMSITP Processes program interrupts and SPIE exits.

DMSDMP Simulates the $$BDUMP and $$BPDUMP routines; issues a
CP DUMP command directing the dump to an offline printer.

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 13. Simulating Non-CMS Environments 225

226 System Logic and Problem Determination (CMS)

Restricted Materials of IBM

Licensed Materials - Property of IBM

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted· Materials of IBM

Licensed Materials - Property of IBM

Chapter 14. Performing Miscellaneous CMS Functions

CMS Batch Facility

The CMS Batch Facility is a function of CMS. It provides a way of
entering individual user jobs through an active CMS machine from the
virtual card reader rather than from the console. The batch facility
reissues the IPL command after each job.

The CMS Batch Facility consists of two modules: DMSBTB, the bootstrap
routine (a nonrelocatable CMS module file) and DMSBTP, the processor
routine (a relocatable CMS text file that runs free storage).

General Operation of DMSBTB

The bootstrap module, DMSBTB, loads the processor routine DMSBTP and
the user exit routines BATEXITI and BATEXIT2 (if they exist) into free
storage.

DMSBTB first ensures that DMSINS (CMS initialization) has set the
BATRUN and BATLOAD flags on in the CMS nucleus constant area
indicating that either an explicit batch initial program load command has
been issued or that the CMSBATCH command has been issued immediately
after initial program load has taken place. (You will receive an error
message after issuing the CMSBATCH command if you do not specify the
NOSPROF parameter on the IPL command.) If not, error message
DMSBTB101E is typed and the batch console returns to a normal CMS
interactive environment. STATE (DMSSTT) is then called to confirm the
existence of the processor file DMSBTP TEXT. If the file does not exist,
error message DMSBTBIOOE is typed and the batch console returns to the
CMS interactive environment.

Using the "state" copy of the file status table (FST) for DMSBTP, DMSBTB
computes the size of DMSBTP TEXT file by multiplying the logical record
length by the number of logical records (no DS constants). A free storage
request is made for the size of DMSBTP, and the address of the routine is
then stored at ABATPROC in the NUCON area of the CMS nucleus.

The existence of the user exit routines is determined by STATE. If they
exist, their sizes are included in the request for free storage.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 14. Performing Miscellaneous CMS Functions 227

Restricted Materials of IBM

Licensed Materials - Property of IBM

The free storage address is translated into graphic hexadecimal format, and
the CMS LOAD command is issued to load the DMSBTP TEXT file into the
reserved free storage area. The user exit routines, BATEXITI TEXT and
BATEXIT2 TEXT are also loaded at this time. If these files do not exist, an
unresolved external reference error code is returned by the loader, but the
error code is ignored by DMSBTB because these routines are optional. If
an error (other than unresolved names) occurs, error message
DMSBTBIOIE is typed and the batch console returns to the CMS
interactive environment.

The loader tables are searched for the address of the ABEND entry point
DMSBTPAB in the loaded batch processor. When the entry is found, its
address and that of entry DMSBTPLM are stored in ABATABND and the
ABATLIMT respectively, in the NUCON area of the CMS nucleus. If the
ABEND entry point is not found in the tables, error message DMSBTBIOIE
is typed and the batch console returns to the CMS interactive
environment.

The BATLOAD flag is set off to show that DMSBTP has been loaded, the
BATNOEX flag is set on to prevent user job execution until DMSBTP
encounters a jJOB card, and finally, control is returned to the command
processor DMSINT.

If an error message is issued, DMSERR is called to type the message, and
the BATRUN and BATLOAD flags are set off before control is returned to
eMS. This allows the normal eMS interaction to resume.

General Operation of DMSBTP

The batch processor module DMSBTP simulates the function of the CMS
console read module, DMSCRD. This is accomplished by issuing reads to
the virtual card reader, formatting the card-image record to resemble a
console record, and returning control to CMS to process the command (or
data) request. DMSBTP also performs reads to the console stack if the
stack is not empty, checks for and processes the jJOB card, ensuring that it
is the first record in the user job, traps all CP commands to maintain
system integrity, and performs job initialization, cleanup and job recovery.

Upon receiving control, DMSBTP checks the BATCPEX flag in NUCON. If
the flag is set on, control was received from DMSCPF and a branch is made
to the CP trap routine to verify that the command is allowable under batch.
The function of that routine is described later. If the BATCPEX flag is off,
control was received from DMSCRD (console read module) and DMSBTP
checks for finished reads in the real batch console stack. If the number of
finished reads is not zero, control is returned to DMSCRD to process the
real console finished (stacked) reads. If the number of finished reads is
zero, a record is read from the batch virtual card reader into the CARD
buffer via an SVC call to CARDRD (DMSCIO). The record in the CARD
buffer is typed on the console via the WRTERM macro. If the BATMOVE
flag is set on (MOVEFILE executing from the console), the records in the
file are not typed on the console. ./ "

I

\. /

228 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

r-

r

{

(

Restricted Materials of IBM

Licensed Materials - Property of IBM

The record in the reader buffer is scanned to compute its length with
trailing blanks deleted. It is then moved to the CMS console read buffer,
and the computed length is stored in the original DMSCRD parameter list,
whose address is passed by DMSCRD when it initially passes control to
DMSBTP.

If the first user record is not a /JOB card, error message DMSBTPI05E is
typed and normal cleanup is performed with the BATTERM flag set on.
This flag prevents another initial program load, since it is not needed at
this time. Reads to the card reader are then issued until the next /JOB card
is found.

If the first record is a /JOB card, DMSBTP branches to its /JOB card
processing routine which calls DMSSCNN via a BALR. A check is made
for the existence of the userid and account number on the card. If the
fields exist, a CP DIAGNOSE code X I 4C I is issued to start accounting
recording for that userid and account number. If an error is returned from
CP denoting an invalid userid ot if the userid or account number fields
were missing on the /JOB card, error message DMSBTPI06E is typed and
normal cleanup is performed with the BATTERM flag set on.

The jobname, if provided on the /JOB card, is saved and a message is issued
via SVC to inform the source userid that the job has started. The spooling
devices are closed and respooled for continuous output, a CP QUERY
FILES command is issued for information purposes, and the implied CP
function under CMS is disabled and the protection feature set off via SVC
calls to SET (DMSSET). The BATPROF EXEC is executed via an SVC to
EXEC. The BATNOEX flag, which is set by DMSBTB to suppress user job
execution until the /JOB card is detected, is set off. The BATUSEX flag is
set on (for DMSCPF) to signal the start of the actual user job, and a branch
is taken to read the next card from the reader file (user job).

After reading the /JOB card, DMSBTP continues reading and checks for a
/* card, a /SET card, or a CP command. If a card is none of these, DMSBTP
passes control back to the command processor DMSINT for processing of
the command (or data).

If a /* card is read and it is the first card of the new job, it is assumed to be
a precautionary measure and thus ignored by DMSBTP which then reads
the next card. If it is not the first card, a check is made for the BATMOVE
flag. If the flag is on, the /* card indicates an end-of-file condition for the
MOVEFILE operation from the console (reader) and is consequently
translated to a null line for the MOVEFILE command.

If the BATMOVE flag is not on, the /* card is an end-of-job indicator and
an immediate branch is taken to the end-of-job routine for cleanup and
reloading of CMS batch.

When a CP command is encountered, DMSBTP branches to a routine that
first checks a table of CP commands allowable in batch. If the command is
allowed, a check is made for a reader or other spool device in the command
line. If the CP command is allowed but would alter the status of the batch
reader or any spooling device or certain disks, or if the command is not

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 14. Performing Miscellaneous CMS Functions 229

Restricted Materials'of IBM

Licensed Materials - Property of IBM

allowed at a,ll,error message DMSBTP107E is typed, and the next card is
read.

If the CP command is LINK, the device· address is stored in a table so that
DMSBTP can detach all user disk devices at the end of the job.

A CP DETACH command is examined for a device address corresponding to
the system disk, the IPL disk, the batch 195 work disk or any spool device.
If the device to be detached is any of these, error message DMSBTP107E is
displayed and the next card is read. Otherwise, DMSBTP returns control to
DMSINT (or DMSCPF if the BATCPEX flag is set on) for processing of the
command.

When a /SET control card is encountered, the card is checked for valid
keywords, valid integer values (less than or equal to the installation default
values). If an error is detected, error message DMSBTP108E is typed. An
abnormal termination message is also sent to the source userid, and the job
is terminated with normal cleanup performed. If the control card values
are valid, the appropriate fields are updated in the user job limit table
DMSBTPLM and the next card is read.

If DMSBTP detects a "not ready" condition at the reader, a message is
typed at the console stating that batch is waiting for reader input.
DMSBTP then issues the W AITD macro to wait for a reader interrupt.
When first detecting the empty reader, DMSBTP calls the CP accounting
routines via a CP DIAGNOSE code X, 4C' to charge the wait time to the
batch userid.

If a hard error is detected at the reader, DMSBTP sends an "intervention
required" message'to the system console, branches to its abnormal terminal
routine, and waits for an interruption for the reader by issuing the W AITD
macro.

When a /* card is read (with the BATMOVE flag off) or when the end-of-file
condition occurs at the reader, DMSBTP branches to the cleanup routine
that sends the source userid a message stating that the job ended normally
or abnormally (if cleaning up after an abnormal termination) and turns off
the BATUSEX flag (for DMSCPF) to signal the end of the user job.
CONW AIT (DMSCWT) is called via SVC to allow any console I/O to finish,
the spooling devices are closed (including the console), and all disks that
were made available by issuing the CP LINK command are returned by
issuing the CP DETACH command.

DMSBTP then relinquishes control by issuing the CP IPL command with
the PARM BATCH option which loads a new CMS nucleus, and the next
job is started when CMS attempts its first read to the console.

A branch is made to the CMSBTP routine when DMSBTP itself detects an
I/O error at the reader. However, the primary purpose of the routine is to
receive control not only from DMSABN when there is an abnormal
termination during the user job, but also trom DMSITE, DMSPIO, and
DMSCIO when a user job exceeds one of the batch job limits (BATXLIM ;'f "

flag is on). This routine, entry point DMSBTPAB, calls the CP DUMP ~ j

routine via SVC, and then it branches to the cleanup routine that reloads

230 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

f

{

(

Restricted Materials of IBM

Licensed Materials - Property of IBM

CMS Batch and treats the remainder of the current job as a new job with
no jJOB card. This has the effect of flushing the remainder of the job. This
technique is used because batch must keep its reader spooled "continuous."
Entry point EMSBTPAB is also used by the CMS commands that are
disabled in CMS batch. In this case (BATDCMS flag set on), an error
message is displayed and control returned to CMS.

When a CP command is called via an SVC in DMSBTP, the CMS CP
module (DMSCPF) is actually called to issue the DIAGNOSE instruction to
invoke the CP command. DMSBTP calls DMSCPF by issuing a direct SVC
202 or by issuing the LINEDIT macro with the CPCOMM option that
generates an SVC 203.

Other CMS Modules Modified in CMS Batch

Several CMS modules check whether CMS batch is running, and, if so, they
perform functions associated with batch operation. These modules are
shown in the following list:

Module Function Performed for eMS Batch

DMSINI Passes batch parameters to DMSINS

DMSINS Uses batch IPL parameters to reload CMS Batch

DMSLDR Loads DMSBTP into free storage

DMSCRD

DMSITE

DMSPIO

DMSCIO

DMSABN

DMSERR

DMSMVE

DMSSET

Passes control to DMSBTP to read from the reader rather than
from the console

Accounts for virtual time used by batch job -- ABEND if over
limit

Accounts for number of lines printed by batch job -- ABEND if
over limit

Accounts for number of cards punched by batch job -- ABEND if
over limit

Passes control to batch ABEND routine in DMSBTP

Passes control to batch ABEND routine instead of entering
disabled wait state

Turns the BATMOVE flag on and off -- allows batch to treat
moved blanks as data

Disabled if batch running, except during batch initialization

DMSRDC Disabled if batch running

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 14. Performing Miscellaneous CMS Functions 231

Restricted Materials of IBM

Licensed Materials - Property of IBM

DMSCPF Distinguished between CP command issued by user and by
batch

DMSFLD Disallows reader device specification

DMSDSK Disk load not allowed in batch

EXEC 2 and System Product Interpreter Processing

DMSEXI

Three modules process these functions: DMSEXI, DMSEXE, and DMSREX.

DMSEXI is an interface routine between CMS and either the CMS EXEC
interpreter, the EXEC 2 interpreter, or the System Product Interpreter.
DMSEXE is the EXEC 2 interpreter. DMSREX is the System Product
Interpreter.

A description of each module's method of operation follows.

MODULE NAME: DMSEXI

CALLED BY: DMSEXC for all EXEC functions

CALLS TO OTHER ROUTINES:

DMSBRD - 'RDBUF' file system function
DMSEXT - CMS EXEC processor
DMSEXE - EXEC 2 processor
DMSFRE - Get and return free storage
DMSREX - System Product Interpreter

EXTERNAL REFERENCES: NUCON, 10

METHOD OF OPERATION:

DMSEXI is an interface routine between CMS and the three EXEC
interpreters.

DMSEXI allows coexistence by routing calls to either the System Product
Interpreter, the EXEC 2 interpreter, or the CMS EXEC interpreter,
according to the following rules:

1. The caller provides an extended-form PLIST, including a file block.
DMSEXI directs the call to the EXEC 2 interpreter or System Product
Interpreter.

2. The specified EXEC file exists, has a valid format, and contains the
character '/*' as the first two non-blank characters in the first 255
characters of the first record or byte 0 of register 1 is X I 05 I. DMEXI

232 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

'-.,- - /

t

(

Restricted Materials of IBM

Licensed Materials - Property of IBM

directs the calls to the System Product Interpreter, after generating a
file block and copying or building an extended PLIST.

3. The specified EXEC file exists, has a valid format, and contains the
word "&TRACE" within the first 255 bytes of line 1 or byte 0 or register
1 is X, 01' or X, OB' and a FILEBLOK exists. DMSEXI directs the
calls to the EXEC 2 interpreter, after generating a file block and
copying or building an extended PLIST.

4. DMSEXI directs all other cases to the CMS EXEC interpreter, with the
original PLIST pointer.

There is one case where DMSEXI must build an untokenized command
string to pass to DMSEXE:

• If only a tokenized PLIST is available, DMSEXI builds a command
string by concatenating the CMS tokens, separating each by one blank,
with no leading or trailing blanks.

DMSEXI releases any storage obtained before it called DMSEXE, then
returns to the main caller with the return code from DMSEXE in register
15.

The format of the extended-form PLIST is:

PLIST DS OF (alignment)
DC
DC
DC

A(parm-string)
A(byte-following-parm-string)
A(O) or A(file-block) (the file to be executed)

The following two lines exist only if a function call:

DC A(arglist)
DC A(funret)

adlen pairs
address to store returned data pointer

The command-verb and the parm-string form a contiguous area:

COMMAND DC
DC

C'command-verb'
C'parm-string'

Trailing blanks are allowed after the command-verb.

The format of the file block is:

FILE DS OF
DC CLB'filename'
DC CLB'filetype'
DC CL2'filemode'

(alignment)
(or blank)
(or blank)
(eg. AI, or blank)

If the filename contains blanks, CMSEXI will use the first word in the
argument list (&0) as the filename.

If the filetype contains blanks, DMSEXI will use a filetype of EXEC.

If the filemode is blank, DMSEXI will use the first file with the specified
filename and filetype, found according to the file system search order.

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 14. Performing Miscellaneous CMS Functions 233

DMSEXE

Restricted Materials of IBM

Licensed Materials - Property of IBM

The format of the file block extension is:

DC
DC
DC

XL2(OOOO) or XL2(OO02)
AL4(PGMFll..E)
AL4(PGMEND-PGMFll..E)

(number of words in extension)
(address of the in-storage EXEC 2 descriptor)
(number of bytes in descriptor)

MODULE NAME: DMSEXE

CALLED BY: DMSEXI to interpret EXEC 2 statements

CALLS TO OTHER ROUTINES:

DMSERR - Write all error messages
DMSSCN - Tokenize strings
DMSPNT - 'POINT' file system function
DMSSTT - 'STATE' file system function
DMSBRD - 'RDBUF'file system function
DMSFNS - 'FINIS' file system function
DMSFRE - Get and return free storage
W AITRD - Read from the terminal
TYPLIN - Type on the terminal
ATTN - Stack lines in console stack

EXTERNAL REFERENCES: NUCON, FST, FVS, ADT

METHOD OF OPERATION:

DMSEXE reads lines from disk files, or accepts lines previously prepared by
the caller and stored in main memory.

If the lines are EXEC 2 statements, DMSEXE interprets the statements. If
the lines contain commands, DMSEXE passes the commands to CMS
command mode or a subcommand environment.

Execution continues until a statement or command explicitly terminates it,
or DMSEXE finds a statement error.

DMSEXE LOGIC DESCRIPTION:

Pseudo Code

Pseudo code is used to describe the logic of portions of DMSEXE. This
pseudo code has the following general statements:

1.

DO
statement
statement

statement

234 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

----------" -- ------- -- - ---"

'\.~ .

(

r

(

(

Restricted Materials of IBM

Licensed Materials - Property of IBM

END

"Statement" is either:

a. A description of an action to be done, or

b. Another pseudo code statement:

DO ... END,
IF ... THEN ... ELSE,
GOTO, or
CALL

2. If condition THEN statement ELSE statement.

"Condition" is a hyphenated sequence of words describing the
conditions for which the statement after "THEN" is executed.

Example: IF initial-flag-is-set
THEN perform initialization
ELSE indicate error condition

3. GOTO label

Transfer control to the label specified. A label is
followed by a colon and precedes a statement, or is on a
line by itself.

Example: GOTO George

George: ...

4. CALL name

CALLs the named subroutine.

DMSEXE General Logic Flow

After initialization, DMSEXE loops continually, reading
lines that may contain EXEC 2 statements or commands. The
logic follows:

Initialization
DO forever

Loop initialization
IF executing &loop

THEN DO
Test condition
IF condition

THEN set for top of loop
ELSE set for exit from &loop

END

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 14. Performing Miscellaneous CMS Functions 235

READSUB/READLAB

Line Execution

Restricted Materials of IBM:

Licensed Materials - Property of IBM

CALL READSUB (read next line)
IF eof

THEN IF executing-&loop
THEN error condition
ELSE exit

CALL EXECUTE (execute line)
END

READSUB is the DMSEXE subroutine that reads the next line.
READLAB, a secondary entry point to READSUB, reads the next line when
scanning forward for labels.

READSUB reads a line from:

1. The console - if the console count is non-zero,
2. The cache - if there is one, and the needed line is there,
3. 'BUF' - if the needed line is there, or
4. The file - if none of the above conditions are true.

If the line is read from the file, and there is a cache, then the line is read
into the cache.

READLAB reads a line from:

1. The cache - if there is one, and the line is there,
2. 'BUF' - if the line is there, or
3. The file - if none of the above conditions are true.

If the line is read from the file, and there is a cache, then the line is read
into the cache.

In all cases:

1. A blank and a zero byte are placed at the end of the line.
2. The file read may be either an in-storage file, or a file accessed by calls

to file system routines.

DMSEXE executes lines according to the following logic:

EXECUTE: IF comment THEN exit

IF tracing THEN trace the line

IF blank-line THEN exit

IF assignment
THEN DO

CALL ASSIGN (perform assignment)

236 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

\

'-

r-

r

(

(

Restricted Materials of IBM

Licensed Materials - Property of IBM

Exit
END

IF command
THEN DO

Pass command to CMS command mode or
subcommand environment

Exit
END

(Line must be a control-statement:)
Look up control-statement word
IF found

THEN DO
GOTO control-statement routine:

ex_ ARGS
BEGPRINT
BEGSTACK
BUFFER

Exit
END

ELSE error (invalid statement)
END EXECUTE

Assignment Processing

DMSEXE processes assignment statements according to the following logic:

ASSIGN: CALL SUBS (Substitute value of EXEC variable into
characters 2 through N of target)

Point to first word after equal sign
Call GET NEXT
IF none THEN set null value and exit
Call GETNEXT
IF none THEN set value obtained above and exit

Top-of-Ioop:
IF last-word-is-not-an-operation

THEN error
Call GETNEXT
IF none THEN error
Call GETNEXT
IF none

THEN DO
Do calculation
Set value
Exit

END
IF function-reference

THEN DO
IF not 'of' THEN error
IF system-function

THEN Call appropriate routine
to evaluate function

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 14. Performing Miscellaneous eMS Functions 237

Restricted Materials of IBM

Licensed Materials - Property of IBM

ELSE invoke user function
Exit

END
Do calculation

GOTO Top-of-Ioop
END ASSIGN

GETNEXT: Get next word
IF found

THEN DO
Call SUBS
IF null THEN GOTO GETNEXT

END
END GETNEXT

SUBS: Set pointer to end of word plus one

SUBSLP:
Decrement pointer
IF at-front-of-word THEN exit
IF not '&' THEN GOTO SUBSLP
Calculate hash using last character of name and length
Scan appropriate variable lookaside chain
IF found

THEN DO
IF Tlot-at-front-of-chain THEN put at front
IF predefined-vAriable

THEN DO
CALL predefined variable routine

and substitute value
IF at-front-of-word THEN exit
GOTOSUBSLP

END
Substitute value
IF at-end-of-word THEN exit
GOTOSUBSLP

END
ELSE DO

END
END SUBS

IF predefined-name
THEN DO

Build variable blocks
Point block to processing routine
CALL routine and substitute va1ue

END
ELSE DO

Build variable block for null
value

Substitute null
END

IF at-front-of-word THEN exit
GOTOSUBSLP

238 System LOgic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

(

r

f.'

{

(-

Restricted Materials of IBM

Licensed Materials - Property of IBM

DMSREX

DMSEXI sends EXEC files (files written in the Restructured Extended
Executor (REXX) language) to DMSREX (System Product Interpreter) if the
first two non-blank characters in the first 255 characters of the first record
are '/*'. All System Product Interpreter processing is done by DMSREX.
DMSREX has the following CSECTS:

DMSRCN Performs character conversion, console I/O, general services,
and all arithmetic

DMSREV Evaluates expressions

DMSRFN Performs all built-in functions

DMSRIN Parses input data, controls most execution decisions, and passes
clauses to DMSRXE for execution

DMSRTC Formats and displays trace information

DMSRV A Accesses and maintains variables

DMSRXE Executes individual clauses

DMSREX Reads the EXEC file and calls DMSRIN

DMSRSF Performs additional functions similar to the built-in functions

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 14. Performing Miscellaneous CMS Functions 239

240 System Logic and Problem Determination (CMS)

Restricted Materials of IBM

Licensed Materials - Property of IBM

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM

Licensed Materials - Property of IBM

(Part 3: eMS Directory

(

This part contains the following information:

• Module Entry Point Directory

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Part 3: CMS Directory 241

242 System Logic and Problem Determination (CMS)

Restricted Materials of IBM

Licensed Materials - Property of IBM

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM

Licensed Materials - Property of IBM

r

Chapter 15. Module Entry Point Directory

Module Entry
Name Points Function

DMSABN DMSABN Intercepts an abnormal termination (ABEND) and
provides recovery from the ABEND. Entered by a

r DMKABN TYPCALL = BALR macro call.
DMSABNKX Entered by a KXCHK macro to halt execution after HX

has been entered after signaling attention.
DMSABNGO Entered by any routine that sets up ABNPSW and

ABNREGS in the work area beforehand.
DMSABNXV Entered as the result of a DMSABN TYPCALL = SVC

macro call.
DMSABNRT Returns entry point from DEBUG.

DMSABX Receives control when the ABNEXIT macro is executed.
DMSABX Handles the SET or CLEAR attribute of the ABNEXIT

macro.
DMSABXR Handles the RESET attribute of the ABNEXIT macro.

DMSACC DMSACC ACCESS command, parameter checking: checks
parameters, issues error messages, sets up parameter list
to prepare for DMSACP to perform the actual access.

DMSACF READFST Reads all file status table blocks into storage for a
readlwrite disk. Reads in file management tables for a
RIO disk. For an O/S disk, control returns to the caller
after a successful return from DMSACM.

DMSACG DMSACG· For an EDF disk, not a S- or Y-disk, reads all the FST
entries by hyperblocks into storage using RDBUF. The
FSTs are sorted, if necessary, using a Quicksort
algorithm. A hyperblock structure is rebuilt in storage
to reflect the files to be ACCESSed for this disk.

DMSACM READMFD Reads the ADT, QMSK, QQMSK, and first chains link
into virtual storage from the master file directory on
disk.

DMSACP DMSACP ACCESS command: brings the user file directory for a
given disk (e.g. 191, 192) into storage, setting up the
necessary information in the active disk table for the
given disk mode letter.

DMSACS DMSACS For an EDF disk accessed RIO for all filenames and
filetypes, DMSACS loads a DCSS containing the file
status table blocks, if they are available.

DMSADD DMSADD Adds a server to a list of servers to be notified when
communications end.

LY20-0893-4© Copyright IBM Corp. 1980, 1986 Chapter 15 .. Module Entry Point Directory 243

Module Entry
Name Points

DMSALA DMSALA

DMSALC DMSALC
DMSALCU
DMSALCEC
DMSALCCB
DMSALCBC

DMSALP DMSALP

DMSALU RELUFD

SORTFST

DMSAMS DMSAMS

DMSARD DMSARD

DMSARE DMSARE

I DMSARN DMSARN

ASMHAND

DMSARX DMSARX

DMSASD DMSASD

DMSASM DMSASM

ASMPROC

DMSASN DMSASN

DMSAST DMSAST

Function

Restricted Materials of IBM

Licensed Materials - Property of IBM

Processes the ALARM command.

Allocates user memory.
Frees allocated user memory.
Issues an SYC 202 (02) to EXECCOMM subcom.
Converts EBCDIC character string to binary number.
Converts binary number to EBCDIC character string.

Marks the start of the CMS nucleus code.

For a specified disk, releases all tables kept in free
storage and clears appropriate information in the active
disk table (ADT). Also purges the DCSS if the file status
table blocks were in a DCSS.
Sorts FST entries for a CMS disk under some conditions.

Provides an interface to YSE/YSAM Access Method
Utility programs (IDCAMS). Provided for support of
CMS/VSAM.
Provides storage for the ASM3705 assembler auxiliary
directory. DMSARD contains no executable code. It
must be loaded with DMSARX and the GENDIRT
command must then be issued to fill in the auxiliary
directory entries. GENMOD must then be issued to
create the ASSEMBLE module.

Releases storage used for tables pertaining to a given
disk when that disk is no longer needed.

This is the ASM3705 command processor. It provides the
interface between user and the 370x Assembler.
This is the SYSUT2 processing routine called from
DMSSOB and used during the assembly whenever any
I/O activity pertains to the SYSUT2 file.

Provide an interface for the ASM3705 command to the
3705 assembler program.

Provides storage for the assembler auxiliary directory.
DMSASD contains no executable code. It must be loaded
with DMSASM and the GENDIRT command must then
be issued to fill in the auxiliary directory entries. The
GENMOD command must then be issued to create the
assemble module.

Processes the ASSEMBLE command. Provides the
interface between the user and the system assembler.
This is the SYSUTl processing routine (called, from
DMSSOB).

Associates logical units with a physical hardware device.
(Interface for the ASSGN command used by CMS/DOS
and CMS/VSAM.)
Gets a new CPRB, copies the one created by the
requester, and issues the SYC to the server with the
copied CPRB.

244 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM

Licensed Materials - Property of IBM

r Module Entry
Name Points Function

DMSAUD DMSAUD Reserves space on disk for writing a copy of disk and file
management tables on disk and then updates the master
file directory. When called by non-resident routines,
attempts to insure that the R/W disk hash table has been
updated with the new file (if any).

DMSAUDUP Closes all CMS files, thereby updating the master file
directory for any disks that had an output file open.

DMSBAB DMSBAB Give control to an abnormal termination routine once
linkage to such a routine has been established by STXIT
AB macro.

DMSBCT DMSBCT Handles broadcast to all the servers on the list that are
notified when communications end.

DMSBLG DMSBLG Builds the COPROC panel.

r DMSBOP DMSBOP Opens CMS/DOS files associated with the following DTF
(define the file) tables: .DTFCN, DTFCD, DTFPR,
DTFMT, DTFDI, DTFCP, DTFSD. For nondisk files, the
OPEN function is performed in its entirety by DMSBOP.
For disk files, the SAM OPEN/CLOSE routines in
CMSBAM are invoked. Once the files are opened and
initialized, I/O operations can be performed using the
file.

DMSBOR DMSBOR Processes the border commands.

DMSBRD DMSBRD Reads one or more successive items from a specified file.

(
(RDBUF) DMSBRD, itself, reads items from 800-byte formatted

disks, or calls DMSERD at the DMSERDBF entry point
to read items from 512-, 1K-, 2K-, or 4K-byte formatted
disks.

DMSBSC BASIC Processes the BASIC command. The BASIC command
invokes the CALL-OS BASIC language processor to
compile and execute the specified file of BASIC source
code.

DMSBTB DMSBTB This is the CMS batch bootstrap routine. It loads the
batch processor routine (DMSBTP) and user exit routine
(if they exit) into free storage.

DMSBTP DMSBTP Main entry; reads from the virtual card reader each time
CMS tries to execute a console read.

DMSBTPAB Entry point for abnormal conditions during user job:

• Job execution ABEND (from DMSABN)
• Job limit exceeded (from DMSITE, DMSCIO,

DMSPIO)
• Disabled CMS command (from the command)

DMSBTPLM Non-executable user job limit table referenced by
DMSITE, DMSPIO, and DMSCIO.

DMSBWR DMSBWR Writes one or more successive items into a specified disk
file. DMSBWR, itself, writes to 800-byte formatted disks,
or calls DMSERD at the DMSEWRBF entry point to
write items to 512-, 1K-, 2K-, 4K-byte formatted disks.

(

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 15. Module Entry Point Directory 245

Module Entry
Name Points
DMSCAT DMSCAT

DMSCATMK
DMSCATNB

DMSCCK CATCHECK

DMSCCP DMSCCP

DMSCCS DMSCCSVC

DMSCCSVR

DMSCDI DMSCDI

DMSCIO DMSCIOR
DMSCIOP
DMSCIOSI

DMSCIT DMSCIT

DMSCITA
DMSCITB

I I DMSCITDB
DMSCITDK

DMSCLN DMSCLN

DMSCLR DMSCLR
DMSCLS DMSCLS

DMSCMP COMPARE

DMSCPF DMSCPF

DMSCPY DMSCPY
DMSCRD DMSCRD

DMSCRDCN

DMSCRDSK

DMSCRT DMSCRT

DMSCSF DMSCSF

Function

Restricted Materials of IBM

Licensed Materials - Property of IBM

Stacks a line of console input that DMSCRD reads later
when it is called.
MAKEBUF command.
SENTRIES command.

Provides an interface to the VSE/VSAM Catalog Check
Service Aid. Provided for support of CMS/VSAM.

Returns the pointer to the top CPRB in the CPRB stack.

Console Communication Service module handles all
fullscreen console I/O functions requested via the
CONSOLE macro.
Handles reconnect processing. Entered from DMSITI
(I/O interrupt handler) when a reconnect of a previously
disconnected device occurred.

Resolves and issues CMS commands from the command
lines.
Reads one card record.
Punches one card record.
Punch caller's buffer.

Processes the interruptions for all CMS terminal I/O
operations and starts the next I/O operation upon
completion of the current I/O operation.
Processes terminal interruptions.
Starts next terminal I/O operation. I Frees I/O buffers from stacks.
DROPBUF cOImnand.

Zeros out the user word in the SCBLOCK of the SRPI
subcommand. DMSCLN is called on CMS abend after all
control blocks have been released.

Processes the CLEAR command.

Closes CMS/DOS files associated with the following DTF
(define the file) tables: DMTCN, DTFCD, DTFPR,
DTFMT, DTFDI, DTFCP, and DTFSD. For nondisk files,
the CLOSE function is performed in its entirety by
CMSCLS. For disk files, the VSE OPEN/CLOSE
routines in CMSBAM are invoked.

Compares the records contained in two disk files.

Passes a command line to CP for execution.

Processes the COPYFILE command to copy disk files.

Reads a line of console input.
Performs a linemode read from the console. Called by
LINERD (DMSWLR).
Reads a line from the program stack. Called by LINERD
(DMSWLR).

Obtains storage for a new session header, initializes it,
and chains it to the list structure anchor.

Contains the subcom environment (CMS) for the
command search function.

246 System "Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM

Licensed Materials - Property of IBM

r Module Entry
Name Points Function

DMSCST DMSCST Puts the pointer to the current CPRB on the CPRB
stack.

DMSCUR DMSCUR Processes the CURSOR command.

DMSCVH DMSCVH Simulates VTOC functions for CMS formatted disks in
the CMS/DOS environment.

DMSCWR DMSCWR Writes an output line to the console.

DMSCWT DMSCWT Causes the calling program to wait until all terminal I/O
operations have been completed.

DMSDAS DMSDAS Simulates the VSE ASSIGN macro.

DMSDBD DMSDBD Enables a user to dump his virtual storage from within
an executing program.

r DMSDBG DMSDBG Enables the user to debug his program from the terminal.
DMSDBGP Entry point for program interruptions.
DMSDBG Entry point for all other interruptions.

DMSDDL DMSDDL Send files in NETDATA form to a user on a local or a
remote node. Receive and query NETDATA files in
user's reader.

DMSDEF DMSDEF Processes the DEFINE command.

DMSDEL DMSDEL Processes the DELETE command.

DMSDEV DMSDEV Processes the CMSDEV macro. Obtains VM/SP device
characteristic information and places it in a

(user-provided buffer.

DMSDFT DMSDFT Provides IBM Cooperative Processing communications
with the work station. Initializes itself, establishes
communications with the work station, receives work
station requests and forwards them to a named server,
receives server replies and forwards them to the work
station.

DMSDID DMSDID Returns the virtual address, blocksize, and offset of a
RESERVEd mini-disk to the user.

DMSDIO DMSDIOR Reads one or more 800-byte records (blocks) from disk, or
reads one 200-byte record (sub-block) from disk.

DMSDIOW Writes one or more 800-byte records (blocks) on disk, or
writes one 200-byte record (sub-block) on disk.

DMSDIP DMSDIPOS VM to OS Count Key Data device code conversion table.
DMSDIPDI Index to device constants by device type.
DMSDIPBI Index to device constants by blocksize.
DMSDIPTI Constants table address table.
DMSDIPFB VM to OS Fixed Block Architecture device code

conversion table.

DMSDLB DMSDLB Interface for the CMS/DOS DLBL command; allows the
user to specify I/O devices extents, and certain file
attributes for use by a program at execution time. DLBL
can also be used to modify or delete previously defined
disk file descriptions.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 15. Module Entry Point Directory 247

Module Entry
Name Points
DMSDLK DMSDLK

DMSDMP DMSDMP

DMSPDP

DMSDOS DMSDOS

DMSDRO DMSDRO

DMSDRP DMSDRP

DMSDSK DMSDSK

DMSDSL DMSDSL

DMSDSV DMSDSV

I DMSEDC I DMSEDC

DMSEDF DMSEDF

DMSEDI DMSEDI

DMSEDX DMSEDX

DMSEIO DMSEIO
DMSEIOI

DMSERD DMSERDBF

DMSEWRBF

DMSERR DMSERR

DMSERS DMSERS

DMSETR DMSETR

DMSEVC DMSEVC

DMSEXD DMSEXD

DMSEXE DMSEXE

Restricted Materials of IBM

Licensed Materials - Property of IBM

Function

Interface for the CMS/DOS DOSLKED command.
Link-edit the relocatable output of the language
processors. Once link-edited, these core image phases
are added to the end of the specified DOSLIB.

Simulates the VSE $$BDUMP. A CP DUMP command is
issued, directing the dump to a virtual printer.
Simulates IDUMP, JDUMP, and PDUMP. For IDUMP,
the PRINTL macro is issued. For JDUMP and PDUMP,
a CP DUMP command is issued directing the dump to a
virtual printer.

Provides DOS SVC support. Interprets DOS SVC codes
and passes control to appropriate routines for execution
(for example, OPEN, CLOSE, FETCH, EXCP).

Deletes a server from the list of servers to be notified
when communications end.

Processes the DROP command.

Dumps a disk file to cards or loads files from card to
disk.

Provides capability to delete members (phases) of a
DOSLIB library; also, to compress a DOSLIB library;
also, to list the members (phases) of a DOSLIB library.

Lists the directories of DOS private of system packs.
-I Arranges compound (overstruck) characters into an

ordered form and disregards tab characters as special
characters.

Provides the Editor with the proper settings (CASE,
TAB, FORMAT, SERIAL, etc.) by filetype. Contains
nonexecutable code for reference by DMSEDI.

Modifies the contents of an existing file or creates a new
file for editing.

Performs initialization for the CMS Editor.

Processes EXECIO command.
Initialization routine.

Reads one or more items from a specified 512-, 1K-, 2K-,
or 4K-byte formatted disk.
Writes one or more items from a specified 512-, 1K-, 2K-,
or 4K-byte formatted disk.

Builds a message to be written at the virtual ctmsole by
DMSCWR.

Deletes a file or related group of files from read/write
disks.

Provides SVC 98 EXTRACT macro support. Called by
DMSDOS.

Issues and SVC 202 to an SRPI macro.

Processes the EXECDROP command.

Processes an EXEC 2 file.

248 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM

Licensed Materials - Property of IBM

(Module Entry
Name Points Function
DMSEXG DMSEXG Processes the DCSSGEN command.

DMSEXI DMSEXI Determine whether to call CMS EXEC, EXEC 2
processor, of System Product Interpreter. (DMSEXT,
DMSEXE or DMSREX.)

DMSEXL DMSEXL Processes the EXECLOAD command.
DMSEXM DMSEXM Processes the EXECMAP command.
DMSEXQ DMSEXQ Processes the EXECSTAT command.

DMSEXT DMSEXT Processes a CMS EXEC file.

DMSFCH DMSFCH Bring a specified phase into storage from a system or
private core image library or from a CMS DOSLIB
library. DMSFCH is invoked via SVC 1, 2, or 4 or via
the FETCH command.

r DMSFET DMSFET Provides an interface for the FETCH command; also,
provides the capability. to start execution of a specified
phase.

DMSFLD DMSFLD Interprets OS JCL DD parameters for use by CMS.

DMSFLE DMSFLE Processes the CLEAR and LIST functions for the
FILEDEF command.

DMSFLO DMSFLOLV Processes the LEAVE option of the FILEDEF command.
DMSFLONE Processes the NOEOV option of the FILEDEF command.
DMSFLODN Processes the DEN option of the FILEDEF command.
DMSFL018 Processes the 18TRACK option of the FILEDEF

command.
DMSFL09T Processes the 9TRACK option of the FILEDEF command.
DMSFL07T Processes the 7TRACK option of the FILEDEF command.
DMSFLOTR Processes the TRTCH option of the FILEDEF command.
DMSFLODC Performs FILEDEF density checking.
DMSFLOSY Processes the SYSP ARM option of the FILEDEF

command.

DMSFNC DMSFNC Nucleus resident command name table.
DMSFNCSV Standard SVC table.

(
DMSFND DMSFND Finds the message table address.

DMSFNS DMSFNSA Closes one or more input or output disk files.
DMSFNSE Closes a particular file without updating the directory or

removing it from the active file table.
DMSFNST Temporarily closes all output files for a given disk.

DMSFOR DMSFOR Physically initializes a disk space for the CMS data
management routines. For an existing disk, any
information on the disk may be destroyed. The label may
be changed and the number of cylinders allowed may be
changed. Reads and writes one track at a time.

DMSFRC DMSFRC Called by DMSFRE. Cache handler for FBDs (free block
descriptors) for storage management.

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 15. Module Entry Point Directory 249

Module Entry
Name Points

DMSFRE DMSFREB

DMSFREES

DMSFRETS

DMSFREEX

DMSFRETX

DMSFRES

DMSGET DMSGET

DMSGIO DMSGIO

DMSGLB DMSGLB

DMSGLO DMSGLO

DMSGLOIN

DMSGMF DMSGMF

DMSGND DMSGND

DMSGRN DMSGRN

DMSGRQ DMSGRQ

DMSGTM DMSGTM

DMSGTU DMSGTU

DMSGVE DMSGVE

Restricted Materials of IBM

Licensed Materials - Property of IBM

Function
Called as a result of the DMSFREE and DMSFRET
macro calls. Allocates or releases a block of storage
depending upon the code in NUCON location CODE203.
Called as a result of the SVCFREE macro call. The size
of the block is loaded from the PLIST and a DMSFREE
macro is executed. Upon return, the address of the
allocated block is stored into the PLIST.
Called as a result of the SVCFRET macro call. The size
and address of the block to be released are loaded from
the PLIST and a DMSFRET macro is executed.
Called as a result of a BALR to the address in the
NUCON location AFREE. Executes the DMSFREE
macro.
Called as a result of a BALR to the address in the
NUCON location AFRET. Executes the DMSFRET
macro.
Called as a result of executing the DMSFRES macro.
DMSFRES processes the following service routines:
CKOFF, INIT1, INIT2, CHECKS, UREC, and CALOC.

Processes the GET command.

Creates the DIAGNOSE and CCWs for an I/O operation
to a display terminal from a virtual machine.

Defines the macro libraries to be searched during
assembler processing. Defines text libraries to be

I searched by the loader for any unresolved external
f: n ~ nne l'b' 1 " b reJoerences.,eJ...Lnes .LI'-..IU ~i Taxies to ue searcnea y tne

DOS fetch for a requested phase load. Defines the load
libraries to be searched by the OS fetch support for a
requested OS simulated load module.

Handles GLOBAL V command requests to: 1) define
global variables for short term use in table(s) in storage,
or long term use in CMS files; 2) retrieve and stack
variables for use by EXECs.
Gets and initializes GLOBAL V workarea.

Provides support for SVC 107 GETFLD and MODFLD
macros. Called by DMSDOS.

Generates auxiliary system status table.

Edits STAGE1 output (STAGE2 input), builds 3705
assembler files, link-edits text files and an EXEC macro
file.
Gets service request information from the CPRB and sets
the appropriate SRPI variables in the server.

Provides support for SVC 34 GETIME macro. Called by
DMSDOS.
Issues a SUBCOM SRPI query. Checks to see if the user
word is set up to point to the Global Control Block and
returns the SCBLOCK address.

Provides support for SVC 99 GETVCE macro. Called by
DMSDOS and DMSGMF.

250 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM

Licensed Materials - Property of IBM

Module Entry
Name Points Function
DMSHDI DMSHDI Sets the CMS interruption handling functions to transfer

(HNDINT) control to a given location for an I/O device other than
those normally handled by CMS, or clears previously
initialized I/O interruption handling.

DMSHDS DMSHDS Initializes the SVCINT SVC interruption handler to
transfer control to a given location for a specific SVC
number (other than 202) or to clear such previous
handling.

DMSHID DMSHID Processes the HIDE command.

DMSHLB DMSHLB Processes and builds output for .BX HELP format word
for the HELPCONV command.

DMSHLC DMSHLC Processes options from a non-tokenized string of words.

(
DMSHLCOC Processes options keywords.
DMSHLCCK Determines if a line matches the searched abbreviation.

DMSHLD DMSHLD HELPCONV facility communication module, loaded into
free storage by DMSHLI.

DMSHLI DMSHLI Contains HELPCONV facility initialization routines.

DMSHLL DMSHLL Performs HELP initialization function and handles
TTY-type output.

DMSHLP DMSHLP HELPCONV facility module for processing HELP
description file input.

DMSHLR DMSHLR Processes HELP subcommand calls from HELPXED.
DMSHLRCL Closes a HELP file.

DMSHLS DMSHLS Contains HELPCONV facility I/O routines.
SWRTPREP Determines virtual terminal characteristics and acquires

buffer storage.
SWRTIO Performs normal virtual terminal I/O.
GOPEN Performs OPEN function for HELP description.
GREAD Routine to read HELP file input.
GCLOSE Routine to perform file closing functions on exit.

DMSHLT DMSHLT Searches for the proper HELP file.

DMSHLZ DMSHLZ Replaces pairs of highlighting characters with a single
blank.

DMSHLZOP Processes options from the parser PLIST.
DMSHLZQU Queries the userid.
DMSHLZFD Determines if a HELP disk is accessed.
DMSHLZCS Determines the validity of a .cs control word.

DMSHTB DMSHTB Builds a hyperblock mapping table for R/O disks, and
, builds hash tables for R/W disks.

DMSIAC DMSIAC Validates the subcommand and checks the prefix.
Invokes appropriate routine to handle subcommand.

DMSIDE IDENTIFY Display or stack information about the virtual machine.

DMSIMA DMSIMAMD Implements the IMAGEMOD command. This command
is used to modify specific members of a 3800 named
system. With this command, you can dynamically delete,
add, replace, and generate members for a named system.

DMSIMM DMSIMM Handles the IMMCMD macro and the IMMCMD

(command.

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 15. Module Entry Point Directory 251

Module Entry
Name Points

DMSINA DMSINA

DMSIND DMSINDI
DMSINDS

DMSINI DMSINIR
DMSINIW

DMSINM DMSINM
(GETCLK)
(CMSTIMER)

DMSINQ DMSINQ

DMSINS DMSINS

DMSINT DMSINT

DMSINTAB
SUBSET

DMSINV DMSINV

DMSIOW DMSIOW,
WAIT,
DMSIOWR,
WAITRTN

DMSITE DMSITE, I EXTINT,
DIVISITET,
TRAP

DMSITI DMSITI,
10lNT

DMSITP DMSITP

DMSITS DMSITS
DMSITSl

DMSITSCR

DMSITSNU
DMSITSOR

DMSITSK
DMSITSXS
DMSITSR

DMSITSSB

DMSIUC DMSIUC

DMSLAB DMSLAB

Function

Restricted Materials of IBM

Licensed Materials - Property of IBM

Handles either user-defined synonyms or abbreviations or
system-defined synonyms for command names.

Performs S- and Y-STAT initialization.
Validates the S- and Y-STAT.

Reads a nucleus into main storage.
Writes a nucleus onto a DASD unit.

Obtains the time from the CP timer.

Performs message initialization for DMSINI and
DMSINQ.

Controls initialization of the CMS nucleus.

Reads CMS commands from the terminal and executes
them. Entry is from DMSINS.
Entry from DMSABN.
CMS subset entry.

Performs Vector Facility initialization.

Places the virtual CPU in the wait state until the
completion of an I/O operation on one or more devices.

Processes external interruptions.

This module is entered when an I/O operation causes the
I/O new PSW to be loaded. This module handles all I/O
interruptions, passes control to the interruption
processing routine, and returns control to the
interrupted program.

Processes program interruptions and processes SPIE
exits.

Avoids CP overhead due to SVC call.
Address pointed to by the CMS SVC new PSW. This
point is entered whenever an SVC interruption occurs.
Return point to which a program called by a CMS SVC
returns when it is finished processing.
NUCEXT handling.
Return point to which a program called by an OS sve
returns when it is finished processing.
Called by an SVC by the DMSKEY macro.
Called by an SVC from the DMSEXS macro.
This is the DMSITS recovery and reinitialization routine,
called by DMSABN. DMSABN is the ABEND recovery
routine.
SUBCOM handling.

Handles the CMSIUCV and HNDIUCV macros.

Simulates the VSE LABEL macro.

252 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM

Licensed Materials - Property of IBM

r Module Entry
Name Points Function

DMSLAD DMSLAD, Finds the active disk table block whose mode matches
ADTLKP the one supplied by the caller.
DMSLADN, Finds the first or the next ADT block in the active disk
ADTNXT table.
DMSLADR Releases an active disk table block.
DMSLADW Finds the read or write disk according to input

parameters.
DMSLADAD Modifies the file status table chain to include an

auxiliary directory, or clears the auxiliary directory from
the chain.

DMSLAF DMSLAF, Finds the active file table block whose filename, filetype
ACTLKP and filemode match the one supplied by the caller.
DMSLAFNX, Finds the next or first AFT block in the active file table.
ACTNXT

f DMSLAFFE, Finds an empty block in the active file table or adds a
ACTFREE new block from free storage to the active file table, if

necessary, and places a file status entry (if given) into
the AFT block.

DMSLAFFT, Removes an AFT block from the active file table and
ACTFRET returns it to free storage if necessary.

DMSLBD DMSLBD Allows the user to specify tape label information that
will be used by a program at execution time (the
parameters are similar to those of the DOS TLBL
statement or the tape options of the OS data definition

(
statement). LABELDEF can also be used to modify,
delete, and list previously described label descriptions.

DMSLBM DMSLBM Generates a macro library, adds macros to an existing
library, and lists the dictionary of an existing macro
library.

DMSLBR DMSLBR Simulates the VSE LBROPEN, LBRFIND, and LBRGET
macros as required by the VSE ESERV utility program.

DMSLBT DMSLBT, Creates a text library, adds text files to an existing text
TXTLIB library, creates a disk file that lists the control section

and entry point names in a text library or types, at the
terminal, the control section and entry point names in a
text library.

DMSLCK DMSLCK SVC 110 LOCK/UNLOCK macro support. Called by
DMSDOS.

DMSLDF DMSLDF Provides support for SVCs 1, 2, 4, and 65 that correspond
to macros FETCH, FETCH, LOAD, and CDLOAD,
respectively. Called by DMSDOS.

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 15. Module Entry Point Directory 253

Module Entry
Name Points

DMSLDR DMSLDRA

DMSLDRB

DMSLDRC

DMSLDRD

DMSLDS DMSLDS

DMSLFS DMSLFS,
TYPSRCH
DMSLFSHM

DMSLGT DMSLGTA

DMSLGTB

I DMSLIB I DMSLIB

DMSLIC DMSLIC

DMSLIO DMSLIO

DMSLKD DMSLKD

DMSLLU DMSLLU

DMSLMX DMSLMX

DMSLOA DMSLOA

DMSLOS DMSLOS

DMSLSB DMSLSBA
DMSLSBB

DMSLBC

DMSLBD

DMSLST DMSLSTA

Restricted Materials of IBM

Licensed Materials - Property of IBM

Function

Begins execution of a group of programs loaded into real
storage. Definition of all undefined programs is
established at location zero. Entered from the START
command or internally from DMSLDRB LDT routine if
START is specified.
Processes TEXT files that may contain the following
cards: SLC, ICS, ESD, TXT, REP, RLD, END, LDT,
LIBRARY, and ENTRY. Entered from DMSLDP when
the load function is requested.
Does the processing required by various loader routines
when an invalid card is detected in a text file.
Does the processing required when a fatal I/O error is
detected in a text file.

Lists information about specified data sets residing on an
OS disk. Processes the LISTDS command.

Finds a specified FST entry within the FST blocks for
read-only or read/write disks.
Updates the R/W disk hash tables for the fileid hashing
mechanism.

Entered from DMSLDRB if not a dynamic load. Frees all
the TXTLIB blocks on the TXTLIB chain.
Reads TXTLIB directories into a chain of free storage
directory blocks. Entered from DMSLDRB.

I Searches TEXT libraries for undefined symbolsafld
closes the libraries.

Provides support for SVC 50 LIOCS ERROR. Called by
DMSDOS.

Creates the load map on disk and types it at the
terminal. Performs disk and typewriter output for
DMSLDR.

Provides an interface between CMS and the VSllinkage
editor.

Lists the assignments of logical units.

Establishes selected CMS commands (e.g., TAPE) as
nucleus extensions.

Processes the LOAD and INCLUDE commands to invoke
the relocating loader.

Provides load and relocate support for OS load modules
and CMS LOADLIB modules.

Hexadecimal to binary conversion routine.
Adds a symbol to the string of locations waiting for an
undefined symbol to be defined.
Removes the undefined bit from the REFTBL entry and
replaces the ADCON with the relocated value.
Processes LDR options.

Processes the LISTFILE command. Prints information
about the specified files.

254 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM

Licensed Materials - Property of IBM

r Module Entry
Name Points Function

DMSLSY DMSLSY Generates a unique character string of the form ZOOOOOI
for private code symbols.

DMSMAX DMSMAX Processes the MAXIMIZE command.

DMSMCM DMSMCM Provides support for SVC 5 MVCOM macro. Called by
DMSDOS.

DMSMDP DMSMSP Types the load map associated with the specified file on
the terminal.

DMSMGM DMSMGM Processes message requests from the DMSMSG and
APPLMSG macros and the XMITMSG command.

DMSMIN DMSMIN Processes the MINIMIZE command.

DMSMKS DMSMKS Creates a CPRB stack block and adds it to the chain of
stack blocks.

r DMSMOD GENMOD Processes the GENMOD command to create a file that is
a core image copy of the loaded object code.

LOADMOD Processes the LOADMOD command to load a file that is
in core image form.

DMSMVE DMSMVE Transfers data between two specified OS ddnames, the
ddnames may specify any devices or disk files supported
by the CMS system.

DMSMVG DMSMVG Handles input for the MOVEFILE command when the
input is a DOS FBA file.

DMSNAM DMSNAM Processes the NAMEFIND command. Displays or stacks
information contained in a 'NAMES' file.

DMSNAMI Installs NAMEFIND as a nucleus extension.

DMSNCP DMSNCP Reads a 3705 control program module (Emulator Program
or Network Control Program) in OS load module format
and writes a page-format core image copy on a VM/SP
system volume.

DMSNUC DMSNUC Contains CSECTS for nucleus work areas and permanent
storage.

NUCON Nucleus constant area.
SYSREF Nucleus address table.
DEVTAB Device table.
ADTSECT Active disk table.
AFTSECT Active file table.
EXTSECT External interruption storage.
IOSECT I/O interruption storage.
PGMSECT Program Interruption storage.
SVCSECT SVC interruption storage.
DIOSECT Disk I/O storage.
FVS File system storage.
OPSECT Parameter lists.
CVTSECT Simulated OS CVT.
DBGSECT Debug storage.
TSOBLKS TSO control blocks.

DMSNXD DMSNXD Processes the NUCXDROP command.

DMSNXL DMSNXL Processes the NUCXLOAD command.

DMSNXM DMSNXM Processes the NUCXMAP command.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 15. Module Entry Point Directory 255

Module Entry
Name Points

DMSOME DMSOME

DMSOPL DMSOPL

DMSOPT DMSOPT

DMSORl DMSORl

DMSOR2 DMSOR2

DMSOR3 DMSOR3

DMSOSR DMSOSR

DMSOVR DMSOVR

DMSOVS DMSOVS

DMSPAC
DMSPAGRL
DMSPAGGT
DMSPAGFL

DMSPAR DMSPAR

DMSPBK DMSPBK

DMSPBKGL

DMSPCA DMSPCA

DMSPCB DMSPCB

DMSPCC DMSPCC

DMSPCL DMSPCLEM
DMSPCLMD
DMSPCLOR
DMSPCLOT

DMSPCR DMSPCR

DMSPCT DMSPCT

DMSPCW DMSPCW

Function

Restricted Materials of IBM

Licensed Materials - Property of IBM

Marks the end of the CMS nucleus.

Reads the appropriate system directory records and
headers and determines if the specified libraries contain
any active members. Returns the disk address of the
specified system library and indicates whether or not
there are active members to be accessed on the disk.

Sets VSE options in the System Communications Region
as specified by the OPTION command.

Relocates all DTF (define the file) Table address
constants to executable storage addresses. (Called by
$$BOPENR via SVC 2).

Relocates all DTF (define the file) Table address
constants to executable storage addresses. (Called by
DMSOR1).

Relocates all DTF (define the file) Table address
constants to executable storage addresses. (Called by
DMSOR2).

Allows user to invoke a program from a CMS LOADLIB
or an OS module library.

Analyzes the SVCTRACE command parameter list and
loads the DMSOVS tracing routine.

Provides trace information requested by the SVCTRACE I command.
Provides eMS page management.
Receives notification of pages eligible for release.
Receives notification of pages not eligible for release.
Releases all eligible pages if SET RELPAGE ON is in
effect.

Parsing facility driver. Called as a result of the
P ARSECMD macro.

Creates SRPI variable names as a concatenation of prefix
and base names.
Gets a truncated string from EXECCOMM.

Convert commands, verification phase.

Convert commands, conversion phase.

Convert commands, driver.

Parsing facility, syntax error messages.
Parsing facility, parse modifier clause of parameter list.
Parsing facility, parse operand clause of parameter list.
Parsing facility, parse option clause of parameter list.

Convert commands, read and syntax check DLCS input
file.

Convert commands, write command name translation
table.

Convert commands, write output syntax definition table.

256 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

(,

~.

Restricted Materials of IBM

Licensed Materials - Property of IBM

(Module Entry
Name Points Function

DMSPDB DMSPDB Manipulate double byte character strings.

DMSP10 DMSP10 Prints one line.
DMSP10CC Puts CCWs to select translate table (for virtual 3800) and

to print the data, plus the data itself, in the caller's
buffer.

DMSP1OS1 Prints the caller's buffer, issues an S10 to the virtual
printer, and analyzes the resulting status.

DMSPKR DMSPKR Command name translation and synonym lookup driver.

DMSPKT DMSPKT Translate command names.

DMSPMD DMSPMD Parsing facility exec interface (P ARSECMD command).

DMSPNT DMSPNT Places the address of a file status table entry in the
active file table (if necessary), and sets the read pointer

{
or write pointer for that file to a given item number
within the file.

DMSPOA DMSPOA Contains the action handling routines for the
programmable operator facility.

DMSPOC DMSPOC Contains the console handler routines for the
programmable operator facility.

DMSPOD DMSPOD Contains data shared by the rest of the modules
comprising the programmable operator mainline and also
messages issued by the programmable operator mainline.

DMSPOE DMSPOE Contains exit routines for the programmable operator
facility.

DMSPOL DMSPOL Contains the supplied action routine for loading a
routing table for the programmable operator facility.

DMSPON DMSPON Contains node-checking support routines for the
programmable operator facility.

DMSPOP DMSPOP Establishes communication with the PMX, and handles
message passing, programmable operator initialization,
and termination.

DMSPOQ DMSPOQ Contains the programmable operator subroutines for
checking RTABLEs.

DMSPOR DMSPOR Contains the supplied action routines for the
programmable operator.

DMSPOS DMSPOS Contains the supplied action routine for routing a
message for the programmable operator facility.

DMSPPL DMSPPL Parsing facility, produce parsed parameter lists.

DMSPPO DMSPPO Processes the POP command.

DMSPRB Parsing facility, routine parsing driver module.
DMSPR1 Command routine parsing A.
DMSPRJ Command routine parsing B.

DMSPRE DMSPREEP Combine, link, and relocate multiple text (object) files
into a single text file.

DMSPRT DMSPRT Prints CMS files.

DMSPRV DMSPRV Copies procedures from the VSE system procedure
library to a specified output device.

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 15. Module Entry Point Directory 257

Module Entry
Name Points

DMSPSC DMSPSCAN
DMSPSCTK

DMSPSM DMSPSMGT

DMSPSMEX

DMSPST DMSPST

DMSPTC DMSPTC

DMSPTK DMSPTK

DMSPTL DMSPTL

DMSPTR DMSPTR

DMSPTT DMSPTT

DMSPUN DMSPUN

DMSPUT DMSPUT

DMSPVF DMSPVF

DMSQRF DMSQRF

DMSQl<.t! DMSQHS

DMSQRT DMSQRT

DMSQRU DMSQRU

DMSQRV DMSQRV

DMSQRW DMSQRW

DMSQRX DMSQRX

DMSQRY DMSQRYI
DMSQRY

Function

Restricted Materials of IBM

Licensed Materials - Property of IBM

Parsing facility, scan and identify tokens.
Parsing facility, scan tokens from input parameter list.

Parsing facility storage manager, get storage for output
parameter lists.
Parsing facility storage manager, expand storage for
output parameter lists.

Processes the POSITION command.

Parsing facility, find command syntax definition in
syntax definition table.

Parsing facility, find keyword translation in syntax
definition table.

Parsing facility, find modifier definition in syntax
definition table.

Parsing facility, find operand definition in syntax
definition table.

Parsing facility, find option definition in syntax
definition table.

Punches CMS files to the virtual card punch.

Processes the PUT command.

Parsing facility, validate all non-keyword data.

Processes the QUERY commands for windowing
functions.
Processes the QUERY DISK and SEARCH subcommands
from DMSQRY.

Processes the following QUERY subcommands:
ABBREV, AUTOREAD, BLIP, CMSTYPE, EXECTRAC,
HASH, IMESCAPE, IMPCP, IMPEX, INSTSEG,
LDRTBLS, PROTECT, RDYMSG, RELPAGE,
SYSNAMES, and CMSLEVEL.

Processes the QUERY FILEDEF and LABELDEF
subcommands.
Processes the QUERY INPUT, OUTPUT, and
SYNONYM subcommands.

Processes the QUERY LIBRARY, MACLIB, TXTLIB,
DOSLIB, and LOADLIB subcommands.

Processes the QUERY DOSPART, OPTION, DOSLNCNT,
UPSI, DLBL, and DOS subcommands.

Loads QUERY as a nucleus extension.
Initializes QUERY work area, if necessary. Processes
the QUERY command by passing control to one of the
following:

1. Another QUERY module: for a CMS subcommand
with the correct syntax.

2. CP: for a subcommand, other than a CMS
subcommand.

3. Caller: for a syntax error.

258 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

,/

C-, .'.;

Restricted Materials of IBM

Licensed Materials - Property of IBM

r Module Entry
Name Points Function
DMSQRZ DMSQRZ Non-executable constants used by DMSQRY to initialize

the work area for the CMS QUERY command.

DMSRCN DMSRCN Performs character conversion, console I/O, general
services, and all arithmetic.

DMSRDC READCARD Reads cards and assigns the indicated filename.

DMSRDR DMSRDR Processes the RDR command. Stacks and displays the
characteristics of the first file in the virtual reader.

DMSREF DMSREF Processes the REFRESH command.

DMSRES DMSRES Processes the RESTORE command.
DMSREV DMSREV Evaluates expressions.

DMSREX DMSREX Reads the EXEC file; calls DMSRIN.

r
DMSREXVE Handles the EXECCOMM interface.
DMSREXMS Retrieves the text of error messages.

DMSRFN DMSRFN Performs built-in functions, invokes external functions.
DMSRFNTB Table of built-in functions.

DMSRIN DMSRIN Parses input data, controls most execution decisions, and
passes clauses to DMSRXE for execution.

DMSRINIF Entry point for recursive call with INTERPRET,
subroutine/function calls, and label searches.

DMSRINCK Table of valid keywords.

DMSRLD DMSRLD Called by DMSNXL (NUCXLOAD). Loads CMS modules
and relocates the address constants of CMS load
modules.

DMSRNE DMSRNE Provides an interface for the eMS Editor RENUM
subcommand, which renumbers files with filetypes of
VSBASIC and FREEFORT.

DMSRNM DMSRNM Processes the RENAME command. Changes the fileid of
the specified file.

DMSROU DMSROU Processes the ROUTE command.

DMSROS DMSROS Accesses OS disks.
ROSACC

DMSROS+4 Verifies the existence of OS disks.
ROSSTT

DMSROS+8 Reads OS disks.
ROSRPS

DMSROS+12 Finds a member in an OS partitioned data set.
ROSFIND

DMSROS+16 Performs NOTE, POINT, and BSP functions.
ROSNTPTB

DMSRPG DMSRPG Provides support for SVC 85 RELPAG macro. Called by
DMSDOS.

DMSRRV DMSRRV Provides the capability to copy (to an output device)
modules residing on DOS system or private relocatable
libraries.

(

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 15. Module Entry Point Directory 259

Module Entry
Name Points

DMSRSF DMSRSF
DMSSYSFN
RXDIAG
RXDIAGRC
RXCMSFLA
RXSTORAG

DMSRSV DMSRSV

DMSRTC DMSRTC
DMSRTE DMSRTE

DMSRTV DMSRTV

DMSRXE DMSRXE

DMSRVA DMSRVA

DMSSAB DMSSAB

DMSSBD DMSSBD

DMSSBS
DMSSBSRT

DMSSCL DMSSCL

DMSSCN DMSSCN

DMSSCR DMSSCR

DMSSCT DMSSCTNP

DMSSCTCK
DMSSCTCE

DMSSCTTP

DMSSEB DMSSEB

DMSSEF DMSSEF

DMSSET DMSSET

DMSSFD DMSSFD

Function

Restricted Materials of IBM

Licensed Materials - Property of IBM

Loads RXSYSFN as a nucleus extension.
Processes function load requests.
Processes the DIAG function.
Processes the DIAGRC function.
Processes the CMSFLAG function.
Processes the STORAGE function.

Distributes all the blocks of a mini-disk between the
directory file, allocation map file, and user's file.
DMSRSV sets up pointer blocks for each of these files.

Formats and displays trace information.

Calls:
DMSCST to add the CPRB pointer to the stack.
DMSSRH to find the server and invoke it.
DMSUST to remove the CPRB pointer from the stack.
DMSVLD to validate the copied CPRB.
Retrieves messages from the message table.

Executes individual clauses.

Accesses and maintains System Product Interpreter
variables.

Processes OS ABEND macros.

Accesses data set records directly by item number. It
converts record identifications given by OS BDAM . . . I macros mto Ite~ numbers and uses these Item numbers
tn Qi/"In,oC'C'I ...-ono__
... _ 1LA.'V"",,,",oo ,.LCO'l"V.Luo.

Process OS BSAM READ and WRITE macros.
Entry for error return from call to DMSSBD.

Processes the SCROLL command.

Transforms the input line from a series of arguments to a
series parameter strings.

Loads display buffers and issues a macro resulting in a
CP DIAGNOSE to write to the display terminal.

Process OS POINT, NOTE, CHECK, and FIND (type C)
macros.
Process OS CHECK macro.
Handles QSAM I/O errors for DMSSQS and PDS and
keys errors for DMSSOP.
SETs and CLEARs the CMS tape end-of-volume exits.

Calls device I/O routines to do I/O and sets up ECB and
lOB return codes.

Processes the SET commands for windowing functions.

Processes the following SET subcommands: BLIP,
RDYMSG, LDRTBLS, RELPAGE, INPUT, OUTPUT,
ABBREV, REDTYPE, IMPEX, IMPCP, PROTECT,
AUTOREAD, SYSNAME, NONSHARE, CMSTYPE,
IMESCAPE, INSTSEG, EXECTRAC, DOS, DOSLNCNT,
UPSI, and DOSP ART.

Saves file status tables and the related information into a
DCSS so that users can share file directory information
for a R/O EDF disk.

260 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

~ ./

./

Restricted Materials of IBM

Licensed Materials - Property of IBM

[Module Entry
Name Points Function

DMSSFF DMSSFF Provides overlay support for OS load modules.

DMSSHO DMSSHO Processes the SHOW command.

DMSSIG DMSSIG The anchor table for the SST AT and YSTAT. Also
marks the end of the CMS nucleus code.

DMSSLG Processes the SET LANGUAGE command.
DMSSLGAL Copies the LANGBLK pointed to in the PLIST and adds

it to the chain of LANGBLKs anchored by NUCLANGA
(if one for that application is not already on the chain).
CMS uses the SVC name LANGADD to do this.

DMSSLGSV Returns the address of a language control block
(LANGBLK) on the chain of LANGBLKs anchored by
NUCLANGA. CMS uses the SVC function LANG FIND
to do this search.

(DMSSMG DMSMSG Interface to DMSFREE and DMSFRET.
DMSSIZ DMSSIZ Processes the SIZE command.

DMSSLN DMSSLN Handles OS contents management requests issued under
CMS (LINK, LOAD, XCTL, DELETE, ATTACH, EXIT).

DMSSMN DMSSMN Processes OS FREEMAIN and GETMAIN macros and
CMS calls DMSSMNSB and DMSSMNST.

DMSSOP DMSSOP Processes OS OPEN and CLOSE macros.

DMSSPM DMSSPM Determines the location in storage and the length of a
SYSPARM string.

(DMSSPR DMSSPR Processes the SETPRT command. This command sets up
a virtual 3800 printer spool file for a CMS user. With the
SETPRT command, a user can select the character
arrangement tables, copy modification modules, FCB,
and forms overlay frame for printing files with a virtual
3800.

DMSSQS DMSSQS Analyzes record formats and sets up the buffers for GET,
PUT, and PUTX requests.

DMSSRE DMSSRE Main entry for the SRPI subcommand environment.
Calls DMSGTU to get pointer to SCBLOCK and if the

f server is an SRPI macro passes control to DMSIAC;
otherwise, passes control to DMSRTE.

DMSSRH DMSSRH Searches through the SRPI search sequence (nucleus
extension, SRPI macros, modules) to find the server and
then it passes control to the server found.

DMSSRP DMSSRP Gets service reply information fron server SRPI variables
and updates the CPRB.

DMSSRQ DMSSRQ Creates new CPRB for request. Gets service information
from requester SRPI variables and updates the CPRB.
Calls DMSRTE to invoke server. Gets service reply
information from the CPRB and sets the appropriate
SRPI variables in the requester. Destroys old CPRB.

DMSSRT DMSSRT Arranges records within a file in descending sequential
order.

(

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 15. Module Entry Point Directory 261

Module Entry
Name Points

DMSSRV DMSSRV

DMSSSK DMSSSK

DMSSTC DMSSTC

DMSSTG

DMSSTGOS
DMSSTGSB
DMSSTGST
DMSSTGCL
DMSSTGSV
DMSSTGAT

DMSSTP DMSSTP

DMSSTT DMSSTT

DMSSTTV

DMSSTX DMSSTX

DMSSUB DMSSUB

DMSSVL DMSSVL

D~vfSSV:r-..J DMSSVN

DMSSVQ DMSSVQGB

DMSSVQFB

DMSSVQGD

DMSSVQFD

DMSSVQPB
DMSSVT DMSSVT

DMSSVU DMSSVU

DMSSYN SYNONYM

DMSTCA DMSTCA

DMSTIO DMSTIO

Function

Restricted Materials of IBM

Licensed Materials - Property of IBM

Provides capability to copy books from a system or
private source statement library to a specified output
device.

Sets storage protect key for a specified saved system.

Saves the pointer to the copied CPRB in the CPRB stack.

Processes CMS calls to DMSSTGST and DMSSTGSB
(STRINIT) and storage service routines.
Processes the EXECOS command.
STRINIT.
STRINIT.
OS exit reset routine.
Service routine to change nucleus variables.
Initializes storage and sets up an anchor table.

Calls tape I/O routines to do I/O and sets up ECB and
lOB return codes.
Locates the file status table entry for a given file and, if
found, provides the caller with the address of the entry.
Processes the VALIDATE command.

Provides support for SVCs 16, 17,37, and 95 that
correspond to macros STXIT PC, EXIT PC, STXIT AB,
and EXIT AB, respectively. Called by DMSDOS.

SVC 105 SUBSID macro support. Called by DMSDOS.

sve 75 SECTV AL macro support. Called by DMSDOS.

Processes the OS W AI'l' and POST macros.

Obtains a workarea for a CMS module from a stack of
USER storage.
Releases Ii workarea for a CMS module from a stack of
USER storage.
Obtains a workarea for a CMS module from CMS USER
storage.
Releases a workarea for a CMS module from CMS USER
storage.
Reinitializes a stack of CMS USER storage.
FIND, STOW, DEVTYPE, TRKBAL, WTO, WTOR,
EXTRACT, IDENTIFY, CHAP, TTIMER, STIMER, DEQ,
SNAP, ENQ, FREEDBUF, STAE, DETACH, CHKPT,
RDJFCB, SYNAD, BACKSPACE, and STAX.

Builds a keys file when a data file using keys is opened
and saves the keys in the data file when it is closed.

Processes the SYNONYM command. Sets up
user-defined command names and abbreviations for CMS
commands.
Provides CMS support for issuing a DIAGNOSE code
X I 70 I to receive time-of-day clock accounting
information.

Reads or writes a tape record or controls tape
positioning.

262 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

(
\./

Restricted Materials of IBM

Licensed Materials - Property of IBM

[Module Entry
Name Points Function

DMSTLB DMSTLB Processes IBM standard tape labels for OS simulation,
CMS/DOS, CMS commands, and TAPESL macro. Also
provides linkage to nonstandard user label routines for
OS simulation and CMS commands.

DMSTMA DMSTMA Reads and IEHMOVE unloaded PDS from tape and
places it in a CMS MACLIB.

DMSTPD DMSTPD Reads a tape consisting of card image members of a PDS
and creates CMS disk files for each member of the data
set. The PDS option allows reading unblocked tapes
produced by the OS IEBPTPCH utility or blocked tapes
produced by the OS IEHMOVE utility. The UPDATE
option provides the"./ ADD" function to blocked or
unblocked tapes produced by the IEBUPDTE utility.

DMSTPE DMSTPE Control DVOL1 and WVOL1 functions of the TAPE r command. Control functions include REW, RUN, WTM,
ERG,BSR,BSF,FSR,FSF.

DMSTPF DMSTPF Load, scan, and skip functions of the TAPE command.

DMSTPG DMSTPG Dump functions of TAPE command.

DMSTPH DMSTPH Initialization and parameter list validation for the TAPE
command.

DMSTPI DMSTPI The DMSTPI text file is the driver for the TAPE
command which performs certain tape functions, such as:
dump a CMS file, set tape mode, display or write VOL1

(labels, scan, skip, rewind, RUN, FSF, FSR, BSF, BSR,
ERG, and WTM. The DMSTPI module is composed of
the DMSTPI, DMSTPJ, DMSTPE, DMSTPF, DMSTPH,
and DMSTPG text files. DMSTPI is established as a
nucleus extension by the DMSLMX bootstrap module.

DMSTQQ DMSTQQ Allocates a 200-byte first chain link (FCL) to a calling
program.

DMSTQQX Makes a 200-byte disk area no longer needed by one
program available for allocation to another program.

DMSTRK DMSTRKA Allocates an SOO-byte disk area to a calling program.

{
DMSSTRKX Makes an SOO-byte disk area that is not longer needed by

one program available for allocation to another.

DMSTVS DMSTVS Provides tape volume switching for OS simulation.

DMSTYP TYPE Processes the TYPE command. Types all or a specified
part of a given file on the user's console.

DMSUPD DMSUPD Processes the UPDATE command. Updates source files
according to specifications in update files. Multiple
updates can be made, according to specifications in
control files that designate the update files.

DMSUPP DMSUPPER Converts data from lowercase to uppercase.

DMSUSR DMSUSR Generates second level request.

DMSUST DMSUST Returns the top most pointers in the CPRB stack to both
the current and the copied CPRB then removes them
from the CPRB stack.

DMSUTL DMSUTL List, copy, or compress LOADLIBs.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 15. Module Entry Point Directory 263

Module Entry
Name Points

DMSVAN DMSVAN

DMSVAS DMSVAS

DMSVAX DMSVAX

DMSVBM DMSVBM

DMSVIB DMSVIB

DMSVIP DMSVIP

DSMVIS DMSVIS

DMSVLD DMSVLD

DMSVLT DMSVLT

I DMSVSR I DMSVSR

DMSVVN DMSVVN

DMSVVS DMSVVS

DMSWAT DMSWAT

DMSWEX DMSWEX

DMSWID DMSWID

DMSWIDCR

DMSWIF DMSWIF

DMSWIM DMSWIM

DMSWIMLT

Function

Restricted Materials of IBM

Licensed Materials - Property of IBM

First table of Access Method Services nonshared
(nonreentrant) modules.

Contains a table of Access Method Services shared
(reentrant) modules.

Second table of Access Method Services nonshared
(nonreentrant) modules.

Contains table of simulated VSE phases located in
CMSBAM DCSS.

Loads the CMS/VSAM saved system and pass control to
the CMS/VSAM interface routine, DMSVIP.

Finds the CMS/DOS discontiguous shared segment
(DCSS); issues all necessary VSE ASSGN statements for
OS user; maps all OS VSAM macro requests to VSE
specifications; equivalents, where necessary; traps all
transfers of control between VSAM and the OS user and
sets the appropriate operating environment flags.

Provide support for SVC 61 GETVIS macro and for SVC
62 FREEVIS macro. Called by DMSDOS and DMSLDF.

Validates the CPRB returned by the server.

Simulates VSE $$BOSVLT transient. Provides return
linkage from SAM OPEN/CLOSE routines to CMS/DOS
routines.

Resets any flags or fields set by VSAM processing;
purges the VSAM discontiguous shared segment.

Contains table of VSE/VSAM nonshared (nonreentrant)
modules.

Contains table of VSE/VSAM shared (reentrant)
modules.

Processes the WAITT command.

Windowing exit to handle asynchronous interrupts.

Builds a character mode data stream. Called by
DMSWIW.
Determines placement of the cursor on the physical
screen. Called by DMSWID and DMSWIF.

Builds a field mode data stream. Called by DMSWIW.

Builds an image of the physical screen by movi~g data
from the virtual screen buffers to the image buffers.
Called by DMSWIW.
Determines if a line in a window is a top reserved line,
bottom reserved line, data line, pad line, or a border.
Called by DMSWIM and DMSWIR.

264 System Logic and Problem Determination (CMS) LY20-0893-4 © Copyright IBM Corp. 1980, 1986

--------~----

Restricted Materials of IBM

Licensed Materials - Property of IBM

r Module Entry
Name Points Function
DMSWIN DMSWINCB Performs initialization functions for windowing.

DMSWINX Special entry for XEDIT. Performs initialization
functions for windowing.

DMSWINRE Reinitializes fullscreen CMS in the event of a reconnect
onto a different terminal type.

DMSWINFS Implements the SET FULLSCREEN ON command.
Defines default virtual screens, windows, and CMS PF
keys.

DMSWIO DMSWIO Interface to call the console service to write and read the
screen.

DMSWIOWR Sets up the call to the console I/O function to write a
screen of data in fullscreen mode. Called by DMSWIW.

DMSWIORD Sets up the call to the console I/O function to read the
physical screen. Called by DMSWIR.

r DMSWIOAL Calls console to ring the alarm.

DMSWIR DMSWIR Reads the physical scre~n and processes the modified
fields. Called by DMSWVTIT (virtual screen WAIT) and
byDMSWEX.

DMSWIRST Gets temporary work buffer. Called by DMSWIR and
DMSWIM.

DMSWIRMF Finds the modified fields for a virtual screen. Called by
DMSWIR and DMSWVCRY.

DMSWIT DMSWITQU Implements the SET FULLSCREEN SUSPEND
command. Severs the connection to IUCV.

(
DMSWITFS Implements the SET FULLSCREEN OFF command.

Deletes default virtual screens, windows, and CMS PF
keys.

DMSWIW DMSWIW Refreshes the physical screen. Called by DMSWVTIT
(virtual screen WAIT) and by DMSREF (REFRESH
command).

DMSWLR DMSWLR Reads console input when FULLSCREEN in ON.
Provides the function for the LINERD macro.

DMSWLW DMSWLW Displays a line to the console when FULLSCREEN is
ON. Provides the function for the LINEWRT macro.

DMSWMI "Lowest level" windowing module. Entry points in
DMSWMM and DMSWMO call corresponding entry
points in DMSWMI.

DMSWMIFD Finds a window.
DMSWMIGF Gets the first window.
DMSWMIGL Gets the last window.
DMSWMIGN Gets the next window.
DMSWMIGP Gets the previous window.
DMSWMIGT Gets the top window.
DMSWMIDF Defines a window.
DMSWMIDL Deletes a window.
DMSWMIPD Moves a window down in the display order.
DMSWMIMF Moves a window to the bottom of the display order.
DMSWMIML Moves a window to the top of the display order.
DMSWMIPU Moves a window up in the display order.
DMSWMIUM Updates a window.

(-

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 15. Module Entry Point Directory 265

Module Entry
Name Points

DMSWMM

DMSWMMAJ
DMSWMMCL
DMSWMMHD
DMSWMMSH
DMSWMMUX
DMSWMMBA
DMSWMMBT
DMSWMMDN
DMSWMMFO
DMSWMMLE
DMSWMMRl
DMSWMMTP
DMSWMMUP

DMSWMO

DMSWMODF
DMSWMODL
DMSWMODT
DMSWMOMX
DMSWMOMN
DMSWIVIOMV

DMSWMOPD
DMSWMOMF
DMSWMOML
DMSWMOPA

DMSWMOPU
DMSWMORE
DMSWMOSB
DMSWMOSC·
DMSWMOSL
DMSWMOSR
DMSWMOSW
DMSWMOSZ

DMSWMX DMSWMX

DMSWQI
DMSWQICS

DMSWQIEX

Restricted Materials of IBM

Licensed Materials - Property of IBM

Function

"High level" windowing module. It performs "window
mapping functions." Entry points in DMSWMM call
corresponding entry points in DMSWMI.
Adjusts windows during reconnect processing.
Clears a window.
Hides a window.
Shows a window.
Updates physical screen window index buffer.
Scrolls backward.
Scrolls bottom.
Scrolls down.
Scrolls forward.
Scrolls left.
Scrolls right.
Scrolls top.
Scrolls up.

"High level" windowing module. It performs "window
mapping functions" not performed in DMSWMM. Entry
points in DMSWMO calls corresponding entry points in
DMSWMl.
Defines a window.
Deletes a window.
Disconnects windows.
Maximizes a window.
Minimizes a window.
Moves a window to a new location on the h sical p y
screen.
Moves a window down in the display order.
Moves a window to the bottom of the display order.
Moves a. window to the top of the display order.
Pops the topmost window connected to a specified virtual
screen.
Moves a window up in the display order.
Restores a window.
Sets window borders.
Sets the cursor in a window.
Sets window scroll location indicator.
Sets window reserved lines.
Sets a window to fixed or variable size.
Changes the size of a window.

XEDlT /windowing interface.

Fullscreen CP message handler.
lUCV CONNECT or SEVER the path to the CP
*MSGALL Message System Service.
External internal interrupt handler for the *MSGALL
lUCV path.

266 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

/

/

Restricted Materials of IBM

Licensed Materials - Property of IBM

r Module Entry
Name Points Function
DMSWQM Queues manager for fullscreen CMS.

DMSWQMCR Creates a new queue.
DMSWQMDL Deletes a previously defined queue.
DMSWQMMD Modifies attributes of a previously defined queue.
DMSWQMQY Queues manager query function.
DMSWQMPR Purges all the messages currently enqueued on the

specified queue.
DMSWQMPT Enqueues a message, LIFO or FIFO, on the specified

queue.
DMSWQMGT Dequeues a message from the specified queue.

DMSWRD DMSWRD Processes the W AITREAD command.

DMSWRT DMSWRT Processes the WRITE command.

DMSWST DMSWST Windowing storage pool allocation.

DMSWTE DMSWTE Processes the W AITECB function.

DMSWVC DMSWVCCL Clears a virtual screen. All buffers of virtual screen are
initialized with defaults.

DMSWVCCU Set the cursor at line and column specified in data area
or reserved areas.

DMSWVCRY Query the virtual screen information: data, cursor,
modified fields, virtual screen information, key, and
logging information.

DMSWVD DMSWVDFN Defines a virtual screen.
DMSWVDDT Deletes a virtual screen.
DMSWVDLA Deletes all virtual screens.

DMSWVI DMSWVI Interface between an application and virtual screen
functions.

DMSWVL DMSWVLPT Puts content of a virtual screen in a file.
DMSWVLGT Gets content of a file into a virtual screen.
DMSWVLST Sets logging of a virtual screen on or off.
DMSWVLPS Puts contents of a physical screen in a file.

DMSWVQ DMSWVQSC Queries a virtual screen control block.
DMSWVQFD Queries a field in the virtual screen.

DMSWVS DMSWVS Processes the setting of information in a virtual screen.

DMSWVT DMSWVTTT Force to update a virtual screen, moving data from queue
to a virtual screen.

DMSWVTIT Waits on a virtual screen.
DMSWVTIX External entry point to wait on a virtual screen.

DMSWVW DMSWVWS Writes in the data area of a virtual screen. Called by
DMSWVTTT and DMSWVI.

DMSWVWRS Writes in the reserved areas of a virtual screen. Called
by DMSWVTTT and DMSWVI

DMSWVX DMSWVX Processes the moving of data to the virtual screen
buffers.

DMSXBG DMSXBG Allocates and initializes storage for the XEDIT work
area. Processes the XEDIT command.

(

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 15. Module Entry Point Directory 267

Module Entry
Name Points

DMSXCG CDELETE
CHANGE
COMPRESS
COPY
COUNT
COVERLAY
DELETE
DUPLICAT
EXPAND
LOWERCAS
MERGE
MOVE
OVERLAY
UPPERCAS
RECOVER
SHIFT
DMSXCGLS

DMSXCM STACK
CMS
CP

DMSXCN DMSXCN

DMSXCP DMSXCP

DMSXCT CMSG
CURSOR
DMSXCTPN
DMSXCTTE
DMSXCTSC
EMSG
FILE
LPREFIX
MSG
PRESERVE
PURGE
READ
REFRESH
RENUM
REPEAT
RESET
RESTORE
SAVE
TYPE

DMSXDC DMSXDCOD

DMSXDCSY
DMSXDCST
DMSXDCSV
DMSXDCAT

Function

Restricted Materials of IBM

Licensed Materials - Property of IBM

Processes the subcommands (entry points) listed.

Locates a string in current line when ETMODE is ON.

Processes the subcommands (entry points) listed.

Arranges compound characters into canonical form;
disregards tab characters as special characters.

Simulates the VSE EXCP function (VSE SVC 0) in the
CMS/DOS environment. EXCP (Execute Channel ... I Program) requests InItiatIOn of an I/O operatIOn to a

.f" 1 . 1 ·t speCLIC _oglca_ unl •.

Processes the CMSG subcommand.
Processes the CURSOR subcommand.
Processes the SET POINT subcommand.
Processes the SET TERMINAL subcommand.
Processes the SET SCREEN subcommand.
Processes the EMSG subcommand.
Processes the FILE/PFILE subcommand.
Processes the LPREFIX subcommand.
Processes the MSG subcommand.
Processes the PRESERVE subcommand.
Processes the PURGE subcommand.
Processes the READ subcommand.
Redisplays the screen.
Processes the RENUM subcommand.
Processes the REPEAT subcommand.
Processes the RESET subcommand.
Processes the RESTORE subcommand.
Processes the SA VE/PSA VE subcommand.
Processes the TYPE subcommand.

Scans input from the terminal for a subcommand or
macro; operands are decoded and placed in buffers.
Executes the MACRO and COMMAND subcommands.
Performs synonym substitution.
Processes the SET SYNONYM subcommand.
Executes multiple synonyms.
Validates hex strings.
Adjusts a truncated DBCS string in an operand.

268 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM

Licensed Materials - Property of IBM

[Module Entry
Name Points Function

DMSXDS DMSXDSRD Reads a data set (SAM) from an OS formatted disk.

DMSXED XEDIT Processes the XEDIT subcommand; brings a file into the
ring of files in storage.

DMSXEDRT Removes an edited file from storage (QUIT).

DMSXER DMSXERMG Displays an error message in the standard CMS format:
DMSxxxnnnc message text

DMSXFC DMSXFCNX Moves the line pointer to the next line.
DMSXFCUP Moves the line pointer to the previous line.
DMSXFCPL Moves the line pointer to line number "n".
DMSXFCML Moves the current line UPI or NEXTl.
DMSXFCLA Locates a line by its address.
DMSXFCCG Moves the column pointer to the left.
DMSXFCLM Locates a specified string (FIND) in the current line.

r
DMSXFCDP Inserts the column pointer as "_" in a buffer.
DMSXFCIN Inserts a new line in the file.
DMSXFCRL Replaces a line in the file with a new one.
DMSXFCSU Deletes one line from the file.
DMSXFCRC Performs string substitution in the current line.
DMSXFCRM Performs an overlay function on the current line.
DMSXFCSP Handles special characters, ex., tab, backspace.
DMSXFCDC Displays SET VERIFY or SET TABS columns.
DMSXFCLR Defines the logical record length.
DMSXFCTR Defines the truncation column.
DMSXFCHT Defines the top of range.

(
DMSXFCBT Defines the end of range.
DMSXFCGA Defines the zone left column.
DMSXFCDR Defines the zone right column.
DMSXFCPC Sets the column pointer in column "n".
DMSXFCCC Sets the cursor to column "c" in the file.
DMSXFCCL Sets the cursor to line "I" in the file.
DMSXFCTB Sets up the tabulation columns.
DMSXFCPI Checks if a line has to be spilled.
DMSXFCLP Locates first valid SO/SI pair in a string

(ETMODE = ON).
DMSXFCCT Determines type of character (SO, SI, one-, or two-byte).
DMSXFCNT Translation routine.
DMSXFCRT Translation routine (excludes DBCS strings from

translation).
DMSXFCTT Adjusts the DBCS string when spilled or truncated.
DMSXFCAR Make adjustments to string being replaced and to

replacement string in order to preserve DBCS strings.
DMSXFCAD Make adjustments to string being deleted in order to

preserve DBCS strings.
DMSXFCPT Set the column pointer in column "n"; contains check for

left zone when ETMODE is on.

(

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 15. Module Entry Point Directory 269

Module Entry
Name Points

DMSXFD DMSXFDFI
DMSXFDSR
DMSXFDTG
DMSXFDLE

DMSXFDLN
DMSXFDSD
DMSXFDPS
DMSXFDSA
DMSXFDSB

DMSXFL DMSXFLST

DMSXFLRD

DMSXFLWR

DMSXFLPT

DMSXGT GET

DMSXIN DFPKSYN
DMSXINTF
DMSXINLA
DMSXINLD
DMSXINLX I DMSXINOP

DMSXIO
DMSXIORD
DMSXIOWR
DMSXIOMG

DMSXMA DMSXMAOP

DMSXMAEX
DMSXMARD
DMSXMARS

DMSXMB DMSXMBIN
DMSXMBRD
DMSXMBWR

DMSXMC CFIRST
CLAST
CLOCATE
LEFT
RIGHT
DMSXMCVR

DMSXMD
INPUT
ADD
REPLACE
CREPLACE
CINSERT

Function

Writes the file on disk.
Serializes the file in storage.
Performs target processing.

Restricted Materials of IBM

Licensed Materials - Property of IBM

Locates an extended string (a string with arbitrary
characters).
Locates a named line.
Computes string length between delimiters.
Parses a string argument.
Skips multiple arbitrary characters.
Skips multiple blanks.

Determines if a file is in the XEDIT ring, and if so,
returns its characteristics.
Transfers one (or more) records from XEDIT storage to
the calling program.
Transfers one (or more) records to XEDIT storage from
the calling program.
Moves the current line pointer to the record specified by
the calling program.

Process the GET subcommand.

Sets default PF keys and synonyms.
Initializes a file descriptor block.
Aborts the profile macro if an error occurs during LOAD.
Processes the LOAD subcommand.
Processes and explicit LOAD from the profile macro. I Handles XEDIT command optIOns.

Performs I/O at the terminal.
Reads at the terminal.
Writes at the terminal.
Displays'message pending in the message line.

Executes XEDIT macros (files written in EXEC 2
language or REXX language).
Executes subcommand from XEDIT macros.
States existence of a macro and reads it.
Releases a macro from free storage.

Reads the member into storage.
Reads the directory of the library and locates a member.
Writes a directory and member into a library.

Processes the CFIRST subcommand.
Processes the CLAST subcommand.
Processes the CLOCATE subcommand.
Processes the LEFT subcommand.
Processes the RIGHT subcommand.
Processes the SET VERIFY subcommand.

Processes the subcommands (entry points) listed.

270 System Logic and Problem Determination (CMS) LY20-0893--;l © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM

Licensed Materials - Property of IBM

,
l Module Entry

Name Points Function

DMSXML Processes the subcommands (entry points) listed.
BACKWARD
BOTTOM
DOWN
FIND
FINDUP
FORWARD
FUP
LOCATE
NEXT
NFIND
NFINDUP
NFUP
TOP

r UP

DMSXMS DMSXMS Arranges records within a file in a descending or
ascending sequential order (SORT macro).

DMSXPO POWERINP Allows easy input mode for script users.

DMSXPT PUT Processes the PUT su bcommand.
PUTD Processes the PUTD subcommand.
DMSXPTER Erases the temporary file used by GET/PUT(D).

DMSXPX DMSXPXCL Calls prefix macros that need to be cleared.
DMSXPXDC Decodes prefix subcommands and macros.

f
DMSXPXEX Executes prefix subcommands and macros.
DMSXPXPN Sets a prefix in the pending list.
DMSXPXRS Resets an entry in the pending list.

DMSXQR QUERY Contains the QUERY/TRANSFER subcommands.
TRANSFER Stacks variable from the editor.
DMSXQRCT Handles QUERY CTLCHAR (control character).
DMSXQRPT Handles QUERY POINT.
DMSXQRCL Handles QUERY COLOR.
DMSXQRPY Handles QUERY PREFIX SYNONYM.
DMSXQRPK Handles QUERY PF/PA key.
DMSXQRPF Displays PF/PA/Enter Key definition.

{
DMSXQRPN Handles QUERY PENDING.
DMSXQRRG Handles QUERY RING.
DMSXQRSC Handles QUERY SCREEN.
DMSXQRTK Gets the next token in the operand.

DMSXRE DMSXRE Processes the RENUM subcommand.

DMSXSC DMSXSCDP Dispatches a logical screen.
DMSXSCFL Computes to which logical screen belongs a field on the

, physical screen.
DMSXSCIM Builds and displays all the logical screens.
DMSXSCMB Manages I/O buffer.
DMSXSCMF Manages I/O buffer on full word boundaries.
DMSXSCPR Checks if the cursor is in a protected area.
DMSXSCCP Prints an image of the virtual screen (COPYKEY

function).
DMSXSCRV Displays a line in the command line.
DMSXSCCS Sets the cursor on the screen.
DMSXSCNK Processes the NULLKEY.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 15. Module Entry Point Directory 271

Module
Name

DMSXSD

DMSXSE

DMSXSF

DMSXSS

DMSXST

Entry
Points

DMSXSDCS
DMSXSDLS
DMSXSDSC
DMSXSDPH

DMSXSDLN
DMSXSDML
DMSXSDMS
DMSXSDSR
DMSXDSLA

DMSXSERA
SET

DMSXSFRS
DMSXSFCT
DMSXSFMG
DMSXSFCR
DMSXSFSL
DMSXSFDM
DMSXSFNT

SOS
DMSXSSTB
DMSXSSTF

DMSXSTLG
I DMSXSTNB

DMSXSTCP
DMSXSTEX

Restricted Materials of IBM

Licensed Materials - Property of IBM

Function

Builds VSBD's for CTLCHARs.
Builds a logical screen block.
Builds a logical screen.
Builds the virtual screen descriptive blocks for fields of
screen.
Builds a line to be displayed.
Moves a line from screen buffer in the file.
Builds the scale line.
Scans a line for CTLCHAR.
Adjusts a line for temporary SO and SI (and attributes).

Handles the SET RANGE subcommand.
Handles the SET subcommand.

Processes the SET RESERVED subcommand.
Processes the SET CTLCHAR subcommand.
Processes the SET MSGLINE subcommand.
Processes the SET COLOR subcommand.
Processes the SET SELECT subcommand.
Decodes a line number (M ± n).
Gets the next token.

Processes the SOS subcommand.
Tabs backward in the file on the command line.
Tabs forward in the file on the command line.

Gets a free line in storage.
- - ~-I Computes the number of free lmes avallable.

Combines free lines in one free block.
Dynamically extends the storage for the files.

272 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

(

l

r

Restricted Materials of IBM

Licensed Materials - Property of IBM

Module Entry
Name Points Function
DMSXSU DMSXSUQT Obtains CP terminal BRKKEY setting.

DMSXSUVR Editing supervisor.
DMSXSUPE Executes the profile macro.
QUIT Executes the QUIT subcommand.
DMSXSUFL Flushes subcommand execution if no more save area.
DMSXSUNP No operation (used when a macro ends).
DMSXSU Redisplays the last input in the input area.
DMSXSUIG Maintains file integrity on multiple windows.
DMSXSUTY Types the current line.
DMSXSUEF Types "EOF".
DMSXSUTF Types "TOF".
DMSXSUTE Types "TOF" or "EOF".
DMSXSUTP Checks displacement to a target line.
DMSXSUNC Types "NO CHANGE".
DMSXSUNF Types "NOT FOUND".
DMSXSUPR Checks for prefix subcommand or macro waiting.
DMSXSULG Computes line length.,
DMSXSUEX Executes a subcommand.
DMSXSUCK Checks if fname ftype fmode are valid.
DMSXSUTS Computes autosave identification.
DMSXSUCN Performs EBCDIC-binary conversion.
DMSXSUCC Performs binary-EBCDIC conversion.
DMSXSUCH Performs EBCDIC-hexadecimal conversion.
DMSXSUHC Performs hexadecimal-EBCDIC conversion.
DMSXSULK Checks coherency between file and logical screen.
DMSXSURV Redisplays the last entry in the input area.
DMSXSUPK Executes PFKEY/PA2/PA3/Enter Key.
DMSXSUQM Executes? command.
PQUIT Removes one file from the ring of files in storage

(protected QUIT).

DMSXTB DMSXTBHC Address of hash code table.
DMSXTBRQ Address of subcommand table.

DMSXTE Contains the second half of the EXTRACT subcommand.
DMSXTECU Assigns CURLINE settings to EXEC 2/REXX variables.
DMSXTEEX Performs an EXECCOMM.
DMSXTERG Assigns ring settings to EXEC 2/REXX variables.
DMSXTEEN Assigns enter settings to EXEC 2/REXX variables.
DMSXTEFD Finds next delimiter.
DMSXTEPA Parses an argument.
DMSXTEVR Assigns VERIFY settings to EXEC 2/REXX variables.
DMSXTECL Assigns COLOR settings to EXEC 2/REXX variables.
DMSXTESC Assigns SCREEN settings to EXEC 2/REXX variables.
DMSXTEPS Assigns PREFIX SYNONYM settings to EXEC 2/REXX

variables.
DMSXTERS Assigns RESERVED settings to EXEC 2/REXX variables.
DMSXTEPK Assigns PF/PA Key settings to EXEC 2/REXX variables.
DMSXTEHK Handles setting PFjPA Key values for a specified key.
DMSXTEPT Assigns POINT settings to EXEC 2/REXX variables.
DMSXTESY Assigns SYNONYM settings to EXEC 2/REXX variables.
DMSXTEPD Assigns PENDING settings to EXEC 2/REXX variables.
DMSXTECC Assigns CTLCHAR settings to EXEC 2/REXX variables.
DMSXTEFP Parses input up to the end of input, or delimiter, or a

blank. .
DMSXTEGS Gets storage from buffer DMSFREED in DMSXTR.
DMSXTESH Sets up SHVBLOCK.
DMSXTETB Assigns TABS settings to EXEC 2/REXX variables.
DMSXTEBK Assigns BRKKEY settings to EXEC 2/REXX variables.

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 15. Module Entry Point Directory 273

Module Entry
Name Points

DMSXTF DMSXTF

DMSXTR ,
EXTRACT
DMSXTRPA
DMSXTRSE

DMSXTRTS

DMSXUP DMSXUPCK
DMSXUPAT
DMSXUPCT
DMSXUPBL
DMSXUPDL
DMSXUPR2

DMSXWS DMSXWSWD

DMSZAP DMSZAP

DMSZAT DMSZAT

DMSZIN DMSZIN

DMSZIT DMSZIT

DMSZNR DMSZNR

I DMSZUS I DMSZUS

Function

Filetype descriptor table.

Restricted Materials of IBM

Licensed Materials - Property of IBM

Contains the EXTRACT subcommand.
Assigns editor settings to EXEC 2/REXX variables.
Performs parse and uppercase option.
Sets up SHVBLOCK for variable not requiring a special
routine to compute variable value.
Performs table search for option name.

Checks for proper serialization.
Applies one update file to the source file.
Handles CNTRL and AUX files for multi-level update.
Builds the update file (subcommands SAVE or FILE).
Handles deleted lines in the source file.
Builds error messages.

Handles vscreen and window setup and allocates image
buffer.

Processes the ZAP command. Provides a facility to
maintain CMS LOADLIB members as written by the
CMS command LKED.

Defines 8K-bytes of transient area.

Defines the end of the CMS initialization modules in user
storage.

Defines the end of the CMS nucleus in user storage.

Defines the end of NUCON (UMSNLJC).

I Defines the start of the user area.

274 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

/
(

~.

Restricted Materials of IBM

Licensed Materials - Property of IBM

r ,

(Part 4: eMS Diagnostic Aids

This part contains the following information:

• A list of devices supported by a CMS virtual machine

• DMSFREx Error Codes

• Abend Codes.

(-

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Part 4: CMS Diagnostic Aids 275

276 System Logic and Problem Determination (eMS)

Restricted Materials of IBM

Licensed Materials - Property of IBM

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of IBM

Licensed Materials - Property of IBM

[

Chapter 16. Supported Devices

Figure 32 indicates those devices that are supported by a CMS machine.

Virtual Virtual Symbolic
IBM Device Type Address6 Name (default) Device Use

(
3210, 3215, 1052, cuu7 CONI System console
3066, 3270

2314, 2319, 3310, 190 DSK8 CMS System disk (read-only)
3330,3340,3350, 1918 DSKI Primary disk (user files)
3370, 3375, 3380 cuu DSK2 Minidisk (user files)

cuu DSK3 Minidisk (user files)
192 DSK4 Minidisk (user files)
cuu DSK5 Minidisk (user files)
cuu DSK6 Minidisk (user files)
cuu DSK7 Minidisk (user files)
19E DSK9 Minidisk (user files)
cuu DSKO Minidisk (user files)
cuu DSKH Minidisk (user files)
cuu DSKI Minidisk (user files)
cuu DSKJ Minidisk (user files)
cuu DSKK Minidisk (user files)
cuu DSKL Minidisk (user files)
cuu DSKM Minidisk (user files)
cuu DSKN Minidisk (user files)
cuu DSKO Minidisk (user files)
cuu DSKP Minidisk (user files)
cuu PSKQ Minidisk (user files)
cuu DSKR Minidisk (user files)
cuu DSKT Minidisk (user files)
cuu DSKU Minidisk (user files)
cuu DSKV Minidisk (user files)
cuu DSKW Minidisk (user files)
cuu DSKX Minidisk (user files)

2540, 2501, 3505 OOC RDRI Virtual reader

2540, 3525 ooD PCHI Virtual punch

1403, 1443, 3203, OOE PRNI Line printer
3211, 3262, 3800,
3289-4, 4245, 4248

Figure 32 (Part 1 or 2). Devices Supported by a CMS Virtual Machine

(

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 16. Supported Devices 277

Restricted Materials of IBM.
Licensed Materials - Property· of IB,M

Virtual Virtual Symbolic
IBM Device Type Address6 Name (default) Device Use

2401, 2402, 2403, 180-187 TAPO-TAP7 Tape drives
2415, 2420, 3410, 288-28F TAP8-TAPF
3411, 3420, ~430,
3480, 8809, 3422

Figure 32 (Part 2 of 2). Devices Supported by a eMS Virtual Machine

6 The device addresses shown are those that are preassembled into the
CMS resident device table. These need only be modified and a new
device table made resident to change the addresses.

The virtual address of the system console may ,be any valid lJlultiplexer
address.

8 191 is the default user-accessed A-disk unless it is dynamically changed
by an ACCESS at CMS initial program load (IPL).

278 System LOgic and Problem Determination (CMS) L Y20-0893-4 ©. Copyright IBM Cprp.198Q, 1986

/

(

~ ..

t

(

(

Restricted Materials of IBM

Licensed Materials - Property of IBM

Chapter 17. DMSFREX Error Codes

Error Codes from DMSFREE, DMSFRES, and DMSFRET

A nonzero return code upon return from DMSFREE, DMSFRES, or
DMSFRET indicates that the request could not be satisfied. Register 15
contains this return code, indicating which error occurred. The following
codes apply to the DMSFREE, DMSFRES, and DMSFRET macros.

Code Error

1

2

(DMSFREE) Insufficient storage space is available to satisfy the
request for free storage. In the case of a variable request, even the
minimum request could not be satisfied.

(DMSFREE or DMSFRET) User storage pointers destroyed.

3 (DMSFREE, DMSFRET, or DMSFRES) Nucleus storage pointers
destroyed.

4 (DMSFREE) An invalid size was requested. Th~s error exit is taken
if the requested size is not greater than zero. In the case of variable
requests, this error exit is taken if the minimum request is greater
than the maximum request. (However, the latter error is not detected
if DMSFREE is able to satisfy the maximum request.)

5 (DMSFRET) An invalid size was passed to the DMSFRET macro.
This error exit is taken if the specified length is not positive.

6 (DMSFRET) The block of storage that is being released was never
allocated by DMSFREE. Such an error is detected if one of the
following errors is found:

• The block does not lie entirely inside either the free storage area
in low-storage or the user program area between FREELOWE
and FREEUPPR.

• The block crosses a page boundary that separates a page
allocated for USER storage from a page allocated for NUCLEUS
type storage.

L Y20.QS93-4 © Copyright IBM Corp. 1980, 1986 Chapter 17. DMSFREX Error Codes 279

Restricted Materials of IBM

Licensed Materials - Property of IBM

• The block overlaps another block already on the free storage
chain.

7 (DMSFRET) The address given for the block being released is not on
a doubleword boundary.

8 (DMSFRES) An invalid request code was passed to the DMSFRES
routine. Since all request codes are generated by the DMSFRES
macro, this error code (8) should never appear.

> 8 An unexpected and unexplained error has occurred in the free
storage management routine.

280 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

(

[

{

f

Restricted Materials of IBM

Licensed Materials - Property of IBM

Chapter 18. Abend Processing

When CMS abnormally terminates, the following steps are taken:

1. After checking for any SPIE, STXIT PC, STAE, or STXIT AB exits that
apply, CMS calls DMSABN, the abend recovery routine.

2. Before typing out any abend message at the terminal, DMSABN, the
abend recovery routine, checks for any abend exit routines, set by the
ABNEXIT macro.

3. If a list of exit routines exists, the current abend exit routine (that is,
the last one set) gains control. If no abend exit routines exist, CMS
abend recovery occurs.

Abend Exit Routine Processing

An abend exit routine may be established to intercept abends before CMS
abend recovery begins. You must provide the proper entry and exit linkage
for this abend exit routine. See the ABNEXIT macro in the VMjSP eMS
Macros and Functions Reference for details on the register contents when
the routine receives control.

The abend exit routine receives control with the nucleus protect key and is
disabled for interrupts. Information about the abend is available to the exit
routine i:t;l. the DMSABW CSECT in DMSNUC. The address of this area is
passed to the exit routine via register 1. In addition to the information
currently available in DMSABW, a full word specified on the ABNEXIT
macro contains information for the exit's own purposes. ABUWRD is the
name of the fullword containing the information the user enters in the
UWORD parameter of the ABNEXIT macro.

An abend exit routine may choose to avoid CMS abend recovery and
continue processing normally. To do this, the exit must issue the
ABNEXIT RESET macro. This tells CMS to clear the abend condition.
The exit routine may also return to CMS to continue abend processing.

If the exit routine returns to CMS and another abend exit routine exists, it
is given control next. Each exit on the list is given control in sequence
until all the exits have been given control or until an exit chooses to avoid
CMS abend recovery, by issuing ABNEXIT RESET, and continues
processing.

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 18. Abend Processing 281

eMS Abend Recovery

Restricted Materials or IBM

Licensed Materials - Property of IBM

If a program check occurs in the exit routine and ABNEXIT RESET was
not issued in this exit routine, DMSABN gives control to the next exit
routine on the list. If no other exit routine exists, CMS abend recovery
occurs.

You cannot set or clear abend exit routines in an abend exit routine. You
can reset an abend exit routine only in an exit routine.

If no abend exit routine exists or if the abend exit routine returns to CMS
to continue abend processing, DMSABN types out the abend message
followed by the line:

eMS

This line indicates to you that the next command can be entered.

Options available to you are:

• Issue the DEBUG command. DMSABN passes control to DMSDBG to
make the facilities of DEBUG available. DEBUG's PSW and registers
are as they were at the time the recovery routine was invoked. In
DEBUG mode, you may alter the PSW or registers. Then, type GO to
continue processing, or type RETURN to return to DMSABN.
DMSABN continues the abend recovery.

• Issue any command (other than DEBUG). DMSABN performs its abend
recovery function and passes control to DMSINT to execute the
command that was typed in.

The abend recovery function performs the following functions, in sequence:

1. Clears the console input buffer and program stack.

2. Terminates all VMCF activity.

3. Reinitializes the work area stack for reentrant CMS nucleus modules.

4. Reinitializes the SVC handler, DMSITS, and frees all stacked save
areas.

5. Clears the auxiliary directories, if any. Invokes "FINIS * * *", to close
all files, and to update the master file directory.

6. Frees storage, if the DMSEXT module is in virtual storage.

7. Zeroes out the MACLIB directory pointers.

8. Frees the CMS work area, if the CMS subset was active.

9. Frets the RLDDATA buffer, used by the CMS loader to retain
relocation information for the GENMOD process, if it is still allocated.

282 System'Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

/
I
\

'-

(

r

f

Restricted Materials of IBM

Licensed Materials - Property of IBM

10. Issues the STAE, SPIE, TTIMER, and STAX macros to cancel any
outstanding OS exit routines. Frees any TXTLIB, MACLIB, or LINK
tables.

11. Calls with a purge PLIST, all nucleus extensions that have the
"SERVICE" attribute defined.

12. Drops all nucleus extensions that do not have the "SYSTEM" attribute.
Also drops any nucleus extensions that are in type user storage.

13. Drops all SUBCOM SCBLOCKS that do not have the "SYSTEM"
attribute.

14. Frees console path and device entry control blocks.

15. Drops all storage resident execs that do not have the "SYSTEM"
attribute.

16. Clears all immediate commands that are not nucleus extensions with
the "SYSTEM" attribute; returns all associated free storage.

17. Calls DMSCLN to zero out the userword of the SRPI command.

18. Calls DMSWITAB to delete all windows and vscreens that do not have
the "SYSTEM" attribute.

19. Resets the storage keys for the whole virtual machine, except the
nonshared pages, according to FREETAB. Saves the setting for
KEYPROTECT.

20. Zeroes out all FCB, DOSCB, and LABSECT pointers.

21. Frees all storage of type user.

22. Restores the setting for KEYPROTECT.

23. Zeroes out all interrupt handler pointers in IOSECT.

24. Turns the SVCTRACE command off.

25. Closes the virtual punch and printer; closes the virtual reader with the
HOLD option.

-26. Reinitializes the VSE lock table used by CMS/DOS and CMS/VSAM.

27. Zeroes out all OS loader blocks, and frees the FETCH work area.

28. Cleans up the CMS IUCV environment based on the existence of the
CMS id block.

29. Clears all ABNEXIT set and returns storage.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 18. Abend Processing 283

Restricted Materials of IBM

Licensed Materials - Property of IBM

30. Computes the amount of system free storage that should be allocated r
and compares this amount with the amount of free storage actually ~_ ?

allocated. Types a message to the user if the two amounts are unequal.

31. Issues a STRINIT and releases any pages remaining in the flush list via
a call to DMSPAGFL, if all storage is accounted for.

Mter abend recovery has completed, control passes to DMSINT at entry
point DMSINTAB to process the next command.

Unrecoverable Termination--The Halt Option of DMSERR

Abend Module
Code Name

001 DMSSCT

There are certain times, such as when the SVC handler's pointers are
modified, that the system can neither continue processing nor try to
recover. In these cases, DMSERR with the option HALT = YES is specified
to cause a message to be typed out, after which a disabled wait state PSW is
loaded unless the NUCON field AUSERRST has been loaded.

The valid address contained in AUSERRST is assumed to be the address of
an error recovery routine and will be directly branched to. The
initialization routines of an application running under CMS must set this
address to point to a module that might, for example, request a dump and
then issue an IPL command. If the IPL command is

IPL CMS P ARM AUTOCR

and the PROFILE EXEC on virtual disk 191 invokes reinitialization, the
application has the capability of automatic recovery. This capability is
valuable for CMS service virtual machines that run permanently
disconnected and are required to stay operational.

In CP mode, the programmer can examine the PSW, whose address field
contains the address of the instruction following the call to the DMSERR
macro. The programmer can also examine all the registers, which are as
they were when the DMSERR macro was invoked.

Figure 33 lists the CMS ABEND codes and describes the cause of the abend
and the action required.

Cause of Abend Action

The problem program Message DMSSCT120S
encountered an input/output indicates the possible cause
error processing an OS macro. of the error. Examine the
Either the associated DCB did error message and take the
not have a SYNAD routine action indicated.
specified or the I/O error was
encountered processing an as
CLOSE macro.

Figure 33 (Part 1 of 5). CMS Abend Codes

284 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

'~ /

.p--
I

l.

r

(~

Restricted Materials of IBM

Licensed Materials - Property of IBM

Abend Module
Code Name Cause of Abend

034 DMSVIP The problem program
encountered an I/O error while
processing a VSAM action
macro under VSE for which
there is no OS equivalent. An
internal error occurred in a
VSE/VSAM routine.

035 DMSVIP An error occurred in
VSE/VSAM processing while
running an OS/VSAM program,
for which there is no equivalent
OS/VSAM error code.

09F DMSITP A vector operation exception
(program interrupt code X '19')
occurred at a specified location.

OCx DMSITP The specified hardware
exception occurred at a specified
location. "x" is the type of
exception:

x Type
1 OPERATION
2 PRIVILEGED OPERATION
3 EXECUTE
4 PROTECTION
5 ADDRESSING
6 SPECIFICATION
7 DATA
8 FIXED-POINT OVERFLOW
9 FIXED-POINT DIVIDE
A DECIMAL OVERFLOW
B DECIMAL DIVIDE
C EXPONENT OVERFLOW
D EXPONENT UNDERFLOW
E SIGNIFICANCE
F FLOATING-POINT DIVIDE

OD3 DMSITP A special operation exception
(program interrupt code X '13')
occurred at a specified location.

Figure 33 (Part 2 of 5). CMS Abend Codes

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

Action

Refer to VSE/ VSAM
Messages and Codes to
determine the cause of the
VSAM error.

Refer to the VSE/VSAM
documentation for the error
and return codes indicated in
the CMS error message
preceding the ABEND.

Type DEBUG to examine the
PSW and registers at the
time of the exception. Use
the CP DISPLA Y command
to examine the vector
registers.

Refer to the IBM System/370
Vector Operations, SA22-7125
for a description of the vector
operation exception.

Type DEBUG to examine the
PSW and registers at the
time of the exception.

Type DEBUG to examine the
PSW and registers at the
time of the exception.

Chapter 18. Abend Processing 285

Abend· Module
Code Name Cause of Abend

OEO DMSITP A hardware exception occurred
at a specified location.

OFO DMSITS Insufficient free storage is
available to allocate a save area
for an SVC call.

OF! DMSITS An invalid halfword code is
associated with SVC 203.

IOF2 DMSITS I The eMS nesting level of 20 has
been exceeded.

OF3 DMSITS CMS SVC (202 or 203)
instruction was executed and
provision was made for an error
return from the routine
processing the SVC.

OF4 DMSITS The DMSKEY key stack
overflowed.

OF5 DMSITS The DMSKEY key stack
overflowed.

OF6 DMSITS The DMSKEY key stack was not
empty when control returned
from a command or function.

OF7 DMSFRE Occurs when TYPCALL = SVC
(the default) is specified in the
DMSFREE or DMSFRET macro.

Figure 33 (Part 3 of 5). CMS Abend Codes

286 System Logic and Problem Determination (CMS)

Restricted Materials of IBM

Licensed Materials - Property of IBM

Action -_.-

Type DEBUG to examine the
PSW and registers at the
time of the exception. Bytes
2 and 3 of the BC Mode
Program Old PSW are the
program interrupt code. This
indicates the type of
exception that occurred.

Refer to the IBM Systemj370
Principles of Operation,
GA22-7000 or the IBM
Systemj370 Vector Operations,
SA22-7125 for a description of
the hardware exception.

If the abend was caused by
an error in the application
program, correct it; if not,
use the CP DEFINE
command to increase the size
of virtual storage and then
restart CMS.

Enter DEBUG and type GO.
Execution continues.

N one. Abend recovery takes
I place when the next

command is entered.

Enter DEBUG and type GO.
Control returns to the point
to which a normal return
would have been made.

Enter DEBUG and type GO.
Execution continues and the
DMSKEY macro is ignored.

Enter DEBUG and type GO.
Execution continues and the
DMSKEY macro is ignored.

Enter DEBUG and type GO.
Control returns from the
command or function as if
the key stack had been
empty.

When a system abend occurs,
use DEBUG to attempt
recovery.

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

,/
I

(/

Restricted Materials of IBM

Licensed Materials - Property of IBM

Abend Module
I. Code Name Cause of Abend Action

OF8 DMSFRE Occurs when TYPCALL = BALR When a system abend occurs,
is specified in the DMSFREE or use DEBUG to attempt
DMSFRET macro devices. recovery.

101 DMSSVN The wait count specified in an Examine the program for
OS WAIT macro was larger than excessive wait count
the number of ECBs specified. specification.

104 DMSVIB The OS interface to VSE/VSAM See the additional error
is unable to continue execution message accompanying the
of the problem program. abend message, correct the

error, and reexecute the
program.

155 DMSSLN Error during LOADMOD after See the last LOADMOD
an OS LINK, LOAD, XCTL, or (DMSMOD) error message for
ATTACH. The compiler switch error description. In the case
is on. of an I/O error, recreate the

module. If the module is
(

missing, create it.

15A DMSSLN Severe error during load (phase See last LOAD error message
not found) after an OS LINK, (DMSLIO) for the error
LOAD, XCTL, or ATTACH. The description. In the case of an
compiler switch is on. I/O error, recreate the text

deck or TXTLIB. If either is
missing, create it.

160 DMSXSU Occurs when XEDIT cannot None. Abend recovery takes
allocate a save area to a called place when the next
routine. command is entered.

174 DMSVIB The OS interface to VSE/VSAM See the additional error
is unable to continue execution message accompanying the
of the problem program. abend message, correct the

error, and reexecute the
program.

177 DMSVIB The OS interface to VSE/VSAM See the additional error
DMSVIP is unable to continue execution message accompanying the

of the problem program. abend message, correct the
error, and reexecute the
program. f

240 DMSSVT No work area was provided in Check RDJFCB specification.
the parameter list for an OS
RDJFCB macro.

400 DMSSVT An invalid or unsupported form Examine program for
of the OS XDAP macro was unsupported XDAP macro or
issued by the problem program. for SVC O.

500 DMSTLB A block count error was Find out what caused the
detected when reading an SL block count error. Then
tape. User replied 'cancel' to reload eMS and rerun the
message 425R or the user's job.
program contained a block count
error routine that returned a
code of 0 under OS simulation.

(.
Figure 33 (Part 4 of 5). CMS Abend Codes

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Chapter 18. Abend Processing 287

Abend Module
Code Name Cause of Abend

704 DMSSMN An as GETMAIN macro (SVC
4) was issued specifying the LC
or LU operand. These operands
are not supported by CMS.

705 DMSSMN An as FREEMAIN macro (SVC
5) was issued specifying the L
operand. This operand is not
supported by CMS.

804 DMSSMN An as GETMAIN macro (804-
80A sve 4, 80A - SVC 10) was issued

that requested either zero bytes
of storage or more storage than
was available.

905 DMSSMN An as FREEMAIN macro (905 -
90A sve 5, 90A - sve 10) was issued

specifying an area to be released
whose address was not on a
doubleword boundary.

A05 DMSSMN An as FREEMAIN macro (A05-
AOA sve 5, AOA - SVC 10) was issued

specifying an area to be released
that overlaps an existing free
area.

Figure 33 (Part 5 of 5). CMS Abend Codes

288 System Logic and Problem Determination (CMS)

Restricted Materials of IBM

Licensed Materials - Property of IBM

Action

Change the program so that
it specifies allocation of only
one area at a time.

Change the program so that
it specifies the release of only
one area at a time.

Check the program for a
valid GETMAIN request. If
more storage was requested
than was available, increase
the size of the virtual
machine and retry. If you
run out storage while trying
to acquire a large GETMAIN
area and if the size of your
virtual machine is above the
start of the eMS nucleus,
you should IPL a CMS
system generated at a higher
virtual address than the one
you are using.

Check the program for a
valid FREEMAIN request;
the address may have been
incorrectly specified or
modified.

Check the program for a
valid FREEMAIN request;
the address and/or length
may have been incorrectly
specified or modified.

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

Restricted Materials of'IBM

Licensed Materials - Property of' IBM

[Appendixes

• Appendix A: CMS Macro Library

• Appendix B: CMS/DOS Macro Library

• Appendix C: CMS/DOS Support Modules

,-

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Appendixes 289

290 System Logic and Problem Determination (CMS)

Restricted Materials of IBM

Licensed Materiallil - Property o(IBM

LY20-0893·4 © Copyright IBM Corp. 1980, 1986

(

{

Restricted Materials of IBM

Licensed Materials - Property of IBM

Appendix A. eMS Macro Library

eMS Macro
ABNEXIT

ADDENTRY

APPLMSG

BATLIMIT

CMSDEV

CMSIUCV

CMSLEVEL

COMPSWT

CONSOLE

CPRB
CQYSECT

CSMRETCD

DELENTRY

DISPW

DMSABN

DMSEXS

DMSFREE

DMSFRET

DMSFST

The following is a list and brief description of the CMS macros supported
for use by application programs.

Function

Sets or clears abend exit routines.

Tells the SRPI to notify a program when COPROC communications
end.

Accesses and displays messages from an application repository file.

Table of CPU, punch, and printer limits for user jobs running under
CMS batch.

Obtains VM/SP device characteristic information and places it in a
user-provided buffer.

Initializes or terminates IUCV communications with another IUCV
program or with CPo

Defines the value of 'release number' of the feature or licensed
program returned by QUERY CMSLEVEL. Refer to the CMSLEVEL
macro for more information.

Sets the compiler switch on or off. Refer to the VM/SP eMS Macros
and Functions Reference.

Performs CMS fullscreen I/O services.

Allocates CPRB storage or generates DSECT.

Maps console path and/or device information to a user's buffer
specified on the CONSOLE OPEN or QUERY function.
IBM Cooperative Processing return code equates.

Drops entry names previously placed on the list via ADDENTRY.

Generates the calling sequence for the display terminal interface.
Refer to the VM/SP eMS for System Programming.

Abend the virtual machine. Refer to the VM/SP eMS for System
Programming.

Execute an instruction without nucleus protection. Refer to the
VM/SP eMS for System Programming.

Gets free storage. Refer to the VM/SP eMS for System Programming.

Releases free storage. Refer to the VM/SP eMS for System
Programming.

Sets up a file status table for a given file. Refer to the VM/SP eMS
for System Programming.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Appendix A. CMS Macro Library 291

eMS Macro

DMSKEY

EPLIST

FSCB

FSCBD

FSCLOSE

FSERASE

FSOPEN

FSPOINT

FSREAD

FSSTATE

FSWRITE

HNDEXT

HNDINT

HNDIUCV

HNDSVC

IMMBLOK

IMMCMD

LANGBLK

LINEDIT

LINERD

LINEWRT

NUCON

PARSECMD

PARSERCB

PARSERUF

PRINTL

Function

Restricted Materials of IBM

Licensed Materials - Property of IBM

Sets nucleus protection on or off. Refer to the VM/SP eMS for
System Programming.

DSECT to map extended PLIST passed in register o.
Sets up a file system control block. Refer to the VM/SP eMS Macros
and Functions Reference.

DSECT that describes fields in CMS PLIST for related commands.
Closes a file. Refer to the VM/ SP eMS Macros and Functions
Reference.

Erases a file . Refer to the VM/SP eMS Macros and Functions
. Reference.

Opens a file. Refer to the VM/SP eMS Macros and Functions
Reference.

Executes the CMS POINT function.

Reads a record from a file. Refer to the VM/SP eMS Macros and
Functions Reference.

Checks for an existing file. Refer to the VM/SP eMS Macros and
Functions Reference.

Writes a record into a disk file. Refer to the VM/SP eMS Macros
and Functions Reference.

Handles external and timer interrupts. Refer to the VM/SP eMS
Macros and Functions Reference.

Handles interrupt on devices. Refer to the VM/SP eMS Macros and
Functions Reference.
Initializes or terminates a virtual machine's IUCV communications.

Handles SVCs. Refer to the VM/ SP eMS Macros and Functions
Reference.

Maps the Immediate Command Name Block.
Declares, clears, and queries Immediate commands.

Generates a language control block for an application.

Types a line to the terminal. Refer to the VM/SP eMS Macros and
Functions Reference.

Reads a line of input from the terminal. Refer to VM/SP eMS
Macros and Functions Reference.

Reads a line of input from the terminal. Refer to VM/SP eMS
Macros and Functions Reference.

Generates a DSECT CMS nucleus constant area.

Parses command arguments. Refer to the VM/SP eMS Macros and
Functions Reference.

Generates a parser control block DSECT. Refer to the VM/SP eMS
Macros and Functions Reference.

Generates a mapping for the user token validation function parameter
control block. Refer to the VM/SP eMS Macros and Functions
Reference.

Prints a line on the printer. Refer to the VM/SP eMS Macros and
Functions Reference.

292 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

/
\
"

r

f
. ~

f

(

Restricted Materials of IBM

Licensed Materials - Property of IBM

CMS Macro Function

PUNCHC Punches a card. Refer to the VM/SP eMS Macros and Functions
Reference.

PVCENTRY Generates a DSECT mapping for the parser validation code table.
Refer to the VM/SP eMS Macros and Functions Reference.

RDCARD Reads a card from the reader. Refer to the VM/SP eMS Macros and
Functions Reference.

RDTAPE Reads a record from tape. Refer to the VM/SP eMS Macros and
Functions Reference.

RDTERM Reads a record from the terminal. Refer to the VM/SP eMS Macros
and Functions Reference.

REGEQU Generates symbolic register equates. Refer to the VM/SP eMS
Macros and Functions Reference.

SCBLOCK Maps the subcommand block.

SENDREQ Sends service requests to servers.
SHVBLOCK Maps the shared variable block.

STRINIT Initializes storage. Refer to the VM/SP eMS Macros and Functions
Reference.

TAPECTL Positions a tape. Refer to the VM/SP eMS Macros and Functions
Reference.

TAPESL Processes standard HDRI and EOFI tape labels.

TEOVEXIT Sets up and clears a CMS tape end-of-volume exit.

TRANTBL Generates a DSECT mapping of system translation tables. Refer to
the VM/SP eMS for System Programming .

TVSPARMS Sets tape volume switching parameters for DMSTVS. Refer to the
VM/SP eMS for System Programming.

USERSECT Maps the user work area.

WAITD Waits until the next interrupt occurs for the specified device. Refer
to the VM/SP eMS Macros and Functions Reference.

WAITECB Waits on an ECB or a list of ECBs.

WAITT Waits until all pending I/O to the terminal has completed. Refer to
the VM/SP eMS Macros and Functions Reference.

WRTAPE Writes a record to tape. Refer to the VM/SP eMS Macros and
Functions Reference.

WRTERM Writes a record to the terminal. Refer to the VM/ SP eMS Macros
and Functions Reference.

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Appendix A. CMS Macro Library 293

294 System Logic and Problem Determination (CMS)

Restricted Materials tif IBM

Licensed Materials - Property of IBM

L Y20-0893-4 © Copyright IBM Corp. ·1980, 1986

/
!

(

[

r

Restricted Materials of IBM

Licensed Materials - Property of IBM

Appendix B. eMS/DOS Macro Library

Macro
CCB

COMRG

EOJ

OPENR

STXIT

IKQACB

IKQEXLST

IKQRPL

ABTAB

FICL

NICL

PUBOWNER

ANCHTAB

FCHTAB

MAPPUB

PUBTAB

EXCPW

LUBTAB

CMS contains a DOS macro library with the following significant entries.
A more complete list may be obtained by looking at the DOSMACRO
EXEC; this EXEC produces a list of all the macros in the DOS library.

Function
Generates the DOS/VS command control block.

Returns address of background partitions communication region;
expands to SVC 33.

Normal processing termination; expands to SVC o.
Activates a data file; simulated by DMSORl, DMSOR2, DMSOR3.

Provides/terminates supervisor linkage to user's program
check routines; simulated by DMSDOS.

DSECT for VSAM ACB (access method control block).

DSECT for VSAM EXLST control block (contains addresses of
user exit routines).

DSECT for VSAM RPL (request parameter list control block).

DSECT of abnormal termination option table.

DSECT, CMS/DOS first in class table.

DSECT, CMS/DOS number in class table.

DSECT, physical unit block ownership table.

DSECT, DOS/VS anchor table.

DOS/VS fetch table containing fetch/load parameter list.

DSECT defines fields of CMS/DOS physical unit block (PUB).

DSECT same usage as MAPPUB.

DSECT, work area for DMSXCP routine.

DSECT for CMS/DOS logical unit block.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Appendix B. CMS/DOS Macro Library 295

296 System Logic and Problem Determination (CMS)

Restricted Materials of IBM

Licensed Materials - Property of IBM

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

r

I

(

Restricted Materials of IBM

Licensed Materials - Property of IBM

Appendix C. CMS/DOS Support Modules

Phase

$IJBLKMD

$IJBLBSL

$IJGXCP

$IJGXDI

$IJGXSDF

$IJGXSDU

$IJGXSDV

$IJGXSDW

$IJBLKMD

$IJGXSFI

$IJGXSRI

$IJGXSSR

$IJGXSVI

$IJJGTOP

$IJJHCVH

DMSLBR

Modules

IJBLKMD

IJBLBSL

IJGXCP

IJGXDI

IJGXSDF

IJGXSDU

IJGXSDV

IJGXSDW

IJBLKMD

IJGXSFI

IJGXSRI

IJGXSSR

IJGXSVI

The modules listed below (by phase) make up the CMSBAM segment. The
phases and modules (except DMSLBR) retain their VSE identifiers.

IJJGDACX IJJGDAIl IJJGDAI2 IJJGDAMO IJJGDAMS IJJGDAMX
IJJGDAOI IJJGDA02 IJJGDA03 IJJGDA04 IJJGDA05 IJJGDARL
IJJGDART IJJGDAVC IJJGMFBA IJJGMIOI IJJGMLLM IJJGMMBF
IJJGMSOO IJJGMSIO IJJGMTOP IJJGSDBH IJJGSDBS IJJGSDCD
IJJGSDCI IJJGSDCI IJJGSDCW IJJGSDFP IJJGSDGC IJJGSDIl
IJJGSDI2 IJJGSDI3 IJJGSDI4 IJJGSDI5 IJJGSDLP IJJGSDMC
IJJGSDMF IJJGSDMN IJJGSDMO IJJGSDNV IJJGSDOI IJJGSD02
IJJGSD04 IJJGSD05 IJJGSD06 IJJGSD07 IJJGSDRL IJJGSDSF
IJJGSDUL IJJGSDVH IJJGSDWI IJJGSDW2 IJJGSDW3 IJJGSDW4
IJJGSDXT IJJGVDOO IJJGVDIO IJJGVMOO IJJGVMIO

IJJHCCVO IJJHCVHO IJJHOPNO IJJHRDSO IJJHSRNO IJJHWDSO

DMSLBR

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Appendix C. CMS/DOS Support Modules 297

298 System Logic and Problem Determination (CMS)

Restricted Materials of IBM

Licensed Materials - Property of IBM

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

/

'.

r

Restricted Materials of IBM

Licensed Materials - Property of IBM

Summary of Changes

Summary of Changes for the VM/SP System Logic and Problem Determination Guide Volume 2 (CMS)

Summary of Changes
for L Y20-0893-4
for VM/SP Release 5

VM/SP Enhanced Usability

VM/SP now has the following usability enhancements:

• Window functions
• Fullscreen environment for CMS
• A CONSOLE macro.

When CMS is in fullscreen mode, the user can enter commands from anywhere on
the physical screen, scroll through data, and log data into files. The CONSOLE
macro performs 3270 I/O operations.

Modified CMS Commands

GLOBAL Command
The enhanced GLOBAL command now allows you 'to list up to 63 (formerly
8) libraries from one of the supported library types (MACLIB, TXTLIB,
DOSLIB, or LOAD LIB) to be searched for macros, copy files, subroutines,
VSE executable phrases, or OS load modules when processing subsequent
CMS commands.

LOAD Command
The new HIST option of the LOAD command lets you add comments from
TEXT files into MODULE files.

INCLUDE Command
The new HIST option of the INCLUDE command lets you add comments
from TEXT files'into MODULE files.

Enhancements for EXECs in Storage

VM/SP now has an optional Installation Discontiguous Shared Segment (DCSS) to
contain frequently used EXECs and Editor Macros that your installation provides.
All users can access the DCSS and share the same executing copy of the EXECs.

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 Summary of Changes 299

I
I
I

Restricted Materials of IBM

Licensed Materials - Property of HiM

Enhanced Interactive Facility/System Profile

The system profile is an EXEC that performs some CMS initialization function
previously done in a module. By modifying this EXEC, the system programmer
will be able to tailor the CMS environment to suit the installation's needs.

Parsing Facility

The CMS parsing facility parses and translates command name arguments. This
lets users enter commands in national languages supported by VM/SP. These
languages are: American English, KANJI, Uppercase English, French, German.

To use the parsing facility, you must define command syntax in a special language,
the Definition Language for Command Syntax (DLCS). The parsing facility parses
a specified command by checking whether command arguments are specified
according to the DLCS definition for that command.

Defining command syntax in a DLCS file and using the parsing facility has the
following advantages:

1. Syntax checking is unnecessary in programs.

2. Users can invoke programs in their own national language by modifying the
DLCS file.

IBM Cooperative Processing for VM/SP

This part of eMS supports IBM Cooperative Processing on a VM/SP System. The
support includes:

• A means for work station users to coimect to VM/SP to run applications that
use VM/SP resources on their work stations.

• An application program interface call the Service Request Programming
Interface (SRPI) that allows programmers to write applications for work
station (IBM Personal Computer) users.

Device Support

Support has been added for the following device:

• 3422 Magnetic Tape Subsystem

Miscellaneous

Most CMS messages and responses are now in mixed case.

Minor technical and editorial changes have been made throughout this
publication.

300 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986

(

"-.

(

'~ /

r

Restricted Materials of IBM

Licensed Materials - Property of IBM

Summary of Changes
for L Y20-0893-3
for VM/SP Release 4

Programmable Operator/NCCF Interface

This gives an NCCF operator the ability to operate a distributed VM System.
Specifically, the programmable operator function is modified to route messages to
the NCCF operator. The NCCF operator can then direct commands to and receive
responses from the programmable operator function.

System Product Interpreter Enhancements

This item consists of:

• Two-byte code (TBC) support

\, The System Product Interpreter is modified to support processing of two-byte
KANJI characters from a fullscreen environment or from a subset of the
current XEDIT commands.

• MACLIB-member editing support

A fullscreen interface to select a member from a MACLIB for editing is
provided.

• Usability enhancements

The usability of XEDIT will be enhance through:

Mixed case messages

Programmed symbol set support

Permitting CP BRKKEY to be turned off

A p;refix macro for repeated input and automatic indenting.

EXECs in Storage

This support allows the user to load into storage the EXECs that are to remain
storage resident. The EXECs specified are loaded, prepared for execution, and
remain in storage ready for execution until specifically purged by the user.

Tape Support

This item consists of the following:

• VMFPLC2 modifications

Serviceability is improyed by increasing the patch area and resolving a block
problem.

• TAPE command modifications

Serviceability is improved by increasing the patch area.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 Summary of Changes 301

• Relocatable loader

Restricted Materials of 16M

Licensed Materials - PJ:operty oUBM

A relocatable loader to load modules as nucleus extensions.

• eMS tape volume switching
<-

Limited multivolume tape support for OS simulation.

• CMS OS simulation multivolume tape support

Support for IBM standard-labeled tapes.

• Improved OS standard-labeled tape support

Tapes created under OS simulation are made more compatible with tapes
cr.eated created by a native OS system.

Device Support

Support has been added for the following devices:

• 3290 Information Panel

• 3370 Direct Access Storage, Models A2 and B2

• 3480 Magnetic Tape Subsystem

• 4248 Printer.

Miscellaneous

Minor technical and editorial changes have been made throughout this
publication.

Summary of Changes
for L Y20-0893-2
for VM/SP Release 3

Modules DMSQRY and DMSDOS Split

The modules DMSQRY and DMSDOS have been split. DMSQRY was split into
the following modules: DMSQRS, DMSQRT, DMSQRU, DMSQRV, DMSQRW,
DMSQRX, DMSQRY, and DMSQRZ.

DMSDOS handles CMS/DOS SVC requests. DMSDOS passes control to the
appropriate module to handle the SVC. The following modules handle the SVC
functions: DMSETR, DMSGMF, DMSGTM; DMSGVE, DMSLCK, DMSLDF,
DMSLIC, DMSMCM, DMSRPG, DMSSTX, DMSSUB, DMSSVL, DMSVIS, and
DMSXCP.

CMS Enhancements - IUCV

(

~.

(-

CMS now supports IUCV communication. The two new macros, HNDIUCV and \.. ./
CMSIUCV, enable programs to invoke IUCV functions. These macros also allow

302 System Logic and Problem Determination (CMS) L Y20-Q893-4 © Copyright IBM Corp. 1980, 1986

r

Restricted Materials of IBM

Licensed Materials - Property of IBM

the user to specify exits for any IUCV external interrupts that occur on the path.
CMS support allows multiple subsystems/applications to use IUCV functions
within a virtual machine.

System Product Interpreter Information

The System Product Interpreter processing is described. All modules associated
with the System Product Interpreter are documented.

New CMS Commands

CATCHECK command
A new CMS command that allows VSAM users to invoke the VSE/VSAM
Catalog Check Service Aid to verify a catalog structure.

RESERVE command
A new CMS command that allocates all available blocks of a 512-, 1K-, 2K-,
or 4K-byte block formatted minidisk to a unique CMS file. DMSRSV
processes this command.

IMMCMD command
A new CMS command that establishes and cancels immediate commands.
This command should be issued only from EXECs. DMSIMM processes this
command.

EXECOS command
A new CMS command that resets the OS and VSAM environments under
CMS without returning to the interactive environment. DMSSTG processes
this command.

New CMS Macros

ABNEXIT macro
A new CMS macro that sets or clears abend exit routines. DMSABX
processes this macro.

W AITECB macro
A new CMS macro that waits on an ECB or a list of ECBs. DMSWTE
processes this macro.

IMMCMD macro
A new CMS macro that declares, clears, and queries immediate commands.
DMSIMM processes this macro.

TEOVEXIT macro
A new CMS macro that sets up and clears a CMS tape end-of-volume exit.

New CMS function

DISKID function
A new CMS function that obtains information on the physical organization
of a minidisk - the virtual address, the blocksize, and the offset of the
RESERVEd minidisk.

L Y20-0893.4 © Copyright IBM Corp. 1980, 1986 Summary of Changes 303

Restricted Materials of IBM

Licensed Materials - Property of IBM

Modified CMS Commands and Macros

NUCXLOAD command
A nucleus extension with the ENDCMD attribute specified receives control
at normal end-of-command processing.

FORMAT command
This command now allows you to specify a 512-byte block minidisk.

RDTERM macro
The RDTERM macro with the TYPE = DIRECT attribute specified indicates
that a line is to be read directly from the virtual machine console.

IDUMP

VSE IDUMP macro will be simulated by CMS/DOS using the PDUMP support.
The IDUMP macro produces a dump containing information about the failing
component. The CMS IDUMP support is invoked whenever a licensed program
issues the VSE'IDUMP macro.

CMSSEG was Eliminated

CMSSEG was eliminated and the code was merged into the CMS Nucleus.

PROP Enhancements

To support the new enhancements to PROP, the following modules were added:
DMSPOL, DMSPOQ, and DMSPOS.

VM/SP 3800 Model 3 Compatibility Support

The SETPRT command has been modified to allow VM/SP users to access the 3800
Model 3 library character sets (LCSs), graphic character modification modules
(GRAPHMODs), and the 10 lines-per-inch vertical space option.

Miscellaneous

Minor technical and editorial changes have been made throughout this
publication.

304 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp; ·1980, 1986

/
\

\""

I

Restricted Materials of IBM

Licensed Materials - Property of IBM

Glossary of Terms and Abbreviations

The following terms in this publication refer to the
indicated support devices:

• "2305" refers to IBM 2305 Fixed Head Storage,
Models 1 and 2.

• "270x" refers to IBM 2701, 2702, and 2703
Transmission Control Units or the Integrated
Communications Adapter (ICA) on the
System/370 Model 135. .

• "FB-512" refers to those IBM DASD devices
implementing the fixed-blocked (512-byte blocks)
architecture. Specifically, they are the IBM
3310, and the IBM 3370. Current IBM disk
storage devices are referred to as
count-key-data DASD when it is important to
distinguish between count-key-data DASD and
FB-512. Otherwise, they are collectively
referred to as DASD and disk.

• "3330" refers to the IBM 3330 Disk Storage,
Models 1, 2, or 11; the IBM 3333 Disk Storage
and Control, Models 1 or 11; and the 3350
Direct Access Storage operating in 3330/3333
Model 1 or 3330/3333 Model 11 compatibility
mode.

• "3340" refers to the IBM 3340 Disk Storage,
Models A2, B1, and B2, and the 3344 Direct
Access Storage Model B2.

• "3350" refers to the IBM 3350 Direct Access
Storage Models A2 and B2 in native mode.

• "3370" refers to the IBM 3370 Direct Access
Storage Models AI, A2, B1, and B2.

• "33~lO" refers to the IBM 3380 Storage Facility.
Information on tpe 3380 Storage Facility is for
planning purposes only until the availability of
the product.

• "3704," "3705," or "370x" refers to the IBM 3704
and 3705 Communications Controllers.

• The term "3705" refers to the 3705 I and the
3705 II unless otherwise noted.

LY20-0893-4 © Copyright IBM Corp. 1980, 1986

~~~---------~-- .- . 

• "2741" refers to the IBM 2741 and the 3767, 
unless otherwise specified. 

• "3270" refers to a series of display devices, 
namely the IBM 3275, 3276, 3277, 3278, 3279 
Display Stations, and the 3290 Information 
Panel. A specific device type is used only when 
a distinction is required between device types. 

• The term, System/370 processors, is also 
applicable to 4300 processors and 303x series 
processors unless indicated otherwise. 

• Information about display terminal usage also 
applies to the IBM 3036, 3138, 3148, and 3158 
Display Consoles when used in display mode, 
unless otherwise noted. 

• Any information pertaining to the IBM 3284 or 
3286 also pertains to the IBM 3287, 3288 and the 
3289 printers, unless otherwise noted. 

• "3262" refers to the IBM 3262 Printer, Models 1 
and 11. Information on the IBM 3262 Printer, 
Models 1 and 11, is for Planning purposes only, 
until the availability of the product. 

• "3800" refers to the IBM 3800 Printing 
Subsystems, Models 1 and 3. A specific device 
type is used only when a distinction is required 
between device types. 

Unless otherwise noted, the term "VSE" refers to 
the combination of the DOS/VSE system control 
program and the VSE/Advanced Functions program 
product. 

In certain cases, the term DOS is still used as a 
generic term. For example, disk packs initialized 
for use with VSE or any predecessor DOS or 
DOS/VS system may be referred to as DOS disks. 

The DOS like simulation environment provided 
under the CMS component of the VM/System 
Product, continues to be referred to as CMS/DOS. 

Glossary of Terms and Abbreviations 305 



306 System Logic and Problem Determination (CMS) 

Restricted Materials of IBM 

Licensed Materials - Property of IBM' 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 

( 
\ 
"--.. ~ 

( 
\ , 
'<.... / 



f 

(, 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Bibliography 

Here is a list of IBM books that can help you use your system. If you don't see 
the book you want in this list, you might want to check the IBM System/370, 30xx, 
and 4300 Processors Bibliography. 

Prerequisite Publication 

Virtual Machine/System Product 

Introduction, GC19-6200 

Terminal Reference, GC19-6206 

System Messages Cross-Reference, SC24-5264 

CMS Command Reference, SC19-6209 

CMS Macros and Functions Reference, SC24-5284 

CMS User's Guide, SC19-6210 

Corequisite Publication 

Virtual Machine/System Product 

Operator's Guide, SC19-6202 

CP Command Reference, SC19-6211 

CP for System Programming, SC24-5285 

CMS for System Programming, SC24-5286 

Transparent Services Access Facility Reference, SC24-5287 

System Messages and Codes, SC19-6204 

OLTSEP and Error Recording Guide, SC19-6205 

Interactive Problem Control System Guide, SC24-5260 

Service Routines Program Logic, L Y20-0890 

Data Areas and Control Block Logic Volume 1 (CP), LY24-5220 

Data Are!ls and Control Block Logic Volume 2 (CMS), LY24-5221 

LY20-0893-4 . © Copyright IBM Corp. 1980, 1986 Bibliography 307 



Virtual Machine 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

System Facilities for Programming, SC24-5288 

Diagnosis Guide, LY24-5241 

Running Guest Operating Systems, SC19-6212 

In addition, for EREP processing the following OS/VS Library publications are 
required: 

IBM OS/VS, DOS/VSE, VM/370 Environmental Recording Editing and 
Printing (EREP) Program, GC28-0772 

IBM OS/VS, DOS/VSE, VM/370 Environmental Recording Editing and 
Printing (EREP) Program Logic, SY28-0773. 

Supplementary Publications 

IBM System/360 Principles of Operation, GA22-6821 

IBM System/370 Principles of Operation, GA22-7000 

IBM OS/VS, DOS/VS, and VM/370 Assembler Language, GC33-4010 

IBM OS/VS and VM/370 Assembler Programmer's Guide, GC33-4021 

Miscellaneous Information 

CMS/DOS is part of the CMS system and is not a separate system. The term 
CMS/DOS is used in this manual as a concise way of stating that the DOS 
simulation mode of CMS is currently active; that is, the CMS command 

SET DOS ON 

has been previously issued. 

The phrase "CMS file system" refers to disk files that are in CMS's 512-, 800-, 
1024-,2048-, and 4096-byte block format. CMS's VSAM data sets are not included. 

308 System Logic and Problem Determination (CMS) L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

/' 



f . 
11' 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

The YM/SP Library (Part 1 of 3) 

Evaluation Index 

General Introduction Library 
Information Guide, 

Glossary, and 
Master Index 

GC20-1838 GC19-6200 GC19-6207 

Planning Installation 

Planning Running Release 5 Distributed Installation 
Guide and Guest Guide Data Guide 
Reference Operating Processing 

Systems Guide 

SC19-6201 GC19-6212 SC24-5290 SC24-5241 S924-5237 

Applications Operation 

Application Programmer's Operator's 
Development Guide to the Guide 
Guide SRPI 

forVM/SP 

SC24-5247 SC24-5291 SC19-6202 

Reference Summaries To order all of the Reference Summarle8, U8e order number SBOF-3242 

Commands 
(General User) 

SX20-4401 

CMS Primer 
Summary of 
Commands 

SX24-5151 

Commands 
(Other than 
General User) 

SX20-4402 

CMS Primer 
Line-Oriented 
Summary of 
Commands 

SX24-5159 

L Y20·0893-4 © Copyright IBM Corp. 1980, 1986 

SP Editor 
Command 
Reference 
Summary 

SX24-5122 

Problem 
Reporting 
Summary 
(Poster) 

SX24-5171 

EXEC 2 Sys.Prod 
Reference Interpreter 
Summary Reference 

Summary 

SX24-5124 SX24-5126 

Summary of 
End Use 
Tasks and 
Commands 
(Poster) 

SX24-5173 

Bibliography 309 



The YM/8P Library (Part 2 of 3) 

End Use 

Terminal CMS CMS Primer 
Reference Primer for Line-

Oriented 
Terminals 

GC19-6206 SC24-5236 SC24-5242 

System System System 
Product Product Product 
Editor Editor Interpreter 
User's Guide Command and User's Guide 

Macro 
Reference 

SC24-5220 SC24-5221 SC24-5238 

Quick 
Reference 

SX20-4400 

Diagnosis 

System System Service 
Messages Messages Routines 
and Codes Cross- Program 

Reference Logic 

SC19-6204 II 
SC24-5264 LY20-0890 

Problem Data Areas Problem 
Determination and Control Determination 
Vol. 1 (CP) Blocks Vol. 2 (CMS) 

Vol. 1 (CP) 

LY20-0892 LY24-5220 LY20-0893 

VM 
CP Internal 
Trace Table 
(Poster) 

LX24-5202 

310 System Logic and Problem Determination (CMS) 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

CMS CMS CMS 
User's Command Macros and 
Guide Reference Functions 

Reference 

SC19-6210 SC19-6209 SC24-5284 

System EXEC 2 CP 
Product Reference Command 
Interpreter Reference 
Reference 

SC24-5239 SC24-5219 SC19-6211 

Problem VM GCS 
Reporting Diagnosis Diagnosis 
Guide Guide Reference 

SC24-5282 II LY24-5241 1/ LY24-5239 1/ 

Data Areas OLTSEP VM 
and Control and Error Problem 
Blocks Recording Determination 
Vol. 2 (CMS) Guide Reference 

Information 

LY24-5221 SC19-6205 LX23-0347 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 

1 

"'--. 

/ 

'" 

/ 
! 

\ , 

( 

~" 



r 

l 

{ 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

The VII/S' Library (Part 3 of 3) 

Administration 
"/ "/ 

VM CP for CMS for 
System System System 
Facilities Programming Programming 
for 
Programming 

SC24-5288 1/ SC24-5285 

Auxiliary Communication 
"/ 

VTAM 
Installation 
and Resource 
Definition 

SC23-0111 

VTAM 
Programming 

SC23-0115 

RSCS 
Networking 
Version 2 
General 
Information 

GH24-5055 

VM/Pass
Through 
Facility 
General 
Information 

GC24-5206 

"/ 

VTAM 
Customization 

SC23-0112 

"/ 

VTAM 
Diagnosis 
Guide 

SC23-0116 

RSCS 
Networking 
Version 2 
Planning and 
Installation 

SH24-5057 

VM/Pass
Through 
Facility 
Guide and 
Reference 

SC24-5208 

II SC24-5286 

Support 
"/ 

VTAM 
Operation 

SC23-0113 

"/ 

VTAM 
Diagnosis 
Reference 

LY30-5582 

RSCS 
Networking 
Version 2 
Operation 
and Use 

SH24-5058 

VM/Pass
Through 
Facility 
Logic 

LY24-5208 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

II 

"/ 

TSAF GCS 
Reference Command 

and Macro 
Reference 

SC24-5287 SC24-5250 

VTAM VTAM Messages Reference and Codes Summary 

SC23-0135 

SC23-0114 

VTAM 
Data 
Areas (VM) 

LY30-5583 

RSCS RSCS 
Networking Networking 
Version 2 Version 2 
Diagnosis Ref. Summary 
Reference 

SX24-5135 
LY24-5228 

Bibliography 311 

,--------



312 System Logic and Problem Determination (CMS) 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

( 
~. 

/ 

( 
~ .. / 



r 
i 

c. 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

Index 

abend 
See abnormal termination (abend) 

ABEND exit 
contents of register 15, 78 
module 248 

ABEND macro 32 
ABNEXIT macro 281, 291 
abnormal termination (abend) 

CMS 
codes 279 

ACCESS command, accessing OS data sets 48 
access methods 

BDAM 39,171 
BPAM 39,171 
BSAM/QSAM 39,171 
for non-CMS environments 171 
OS 38,171 
VSAM 171 

accessing 
a virtual disk 124, 138 
the file system 124, 138 

active disk and file storage management 123, 134 
Active Disk Table 

See ADT (Active Disk Table) 
Active File Table 

See AFT (Active File Table) 
ADDENTRY macro 291 
ADT (Active Disk Table) 

used in disk management 123, 134 
AFT (Active File Table) 

used in file management 123, 134 
allocated 

free storage, types of 151 
releasing storage allocated by DMSFREE 160 
releasing storage allocated by GETMAIN 153 

allocating storage 159 
allocation 

of nucleus free storage 154, 159 
of user free storage 151, 159 
selective directory update 134 

allocation map, organization 134 
AMSERV function, execution of 173 
APPLMSG macro 291 
ASA control characters 145 
ATTACH macro 34 
AUSERRST, HALT option 284 
AUTOCR, IPL command processing 67,284 

LY20-08934 C Copyright mM Corp. 1980, 1986 

batch 
CMS 

description of 227 
modules used in 231 

BATLIMIT 291 
BDAM 

CMS support of 39, 171 
restrictions on 41 
support of 27 

BLDL macro 33 
block formats (CMS) 131 
BP,AM 

CMS support of 39, 171 
BP AM, support of 27 
BSAM/QSAM, CMS support of 39, 171 
BSAM/QSAM, support of 27 
BSAM, using the WRITE macro with a 3800 
printer 41 

BSP macro 37 

CALL macro 37 
called routine 

register contents, when started 88 
start-up table 88 

caller, returning to 89 
carriage control characters, CMS 145 
CATCHECK command 

module 246 
chain header block 

FLCLB in 157 
FLCLNin 157 
FLHC in 157 
FLNU in 157 
FLPA in 157 
format 156 
MAX in 157 
NUM in 156 
POINTER in 156 
SKEY in 157 
TCODE in 157 

chain links 117 
CHAP macro 35 
CHECK macro 37 
CHECK processing, OS VSAM 179 
CHKPT macro 36 
CLOSE/TCLOSE macro 33 
CLOSE, OS VSAM, simulation of 178 
CMS (Conversational Monitor System) 

Index 313 



ABEND codes 284 
accessing the file system 124 
called routine table 88 
CMS nucleus first part 23 
command language 3 
command. processing 74 
command, handling 71 
console management 76 
devices supported 24 
DEVTAB (Device Table) 23 
diagnostic aids 275 
directory 241 
disk organization 115, 119, 131 
disk storage management 123, 134 
DMSFRES macro 162 
DMSFRET macro 160 
dynamic storage management 123, 134 
file status table block 117, 127 
file status tables 115, 125 
first command processing 71 
functional information 17 
handling of PSW keys 165 
I/O control flow 142 
I/O operations 141 
interactive console environment 73 
interface with display terminals 24 
interrupt handling 11, 149 
introduction 3 
IPL command processing 67 
loader 94 
loader tables 19 
loading from a card reader 65 
maintaining interactive session 74 
master file directory 119, 132 
miscellaneous functions 227 
module entry point directory 243 
nucleus 19 
overview of functional areas 58 
printer carriage control 145 
printing a file 144 
processing commands entered during 74 
punching a card 143 
read disk I/O 148 
reading a card 142 
record formats 118 
register usage 17 
restrictions on, as a saved system 169 
returning to the calling routine 89 
routines that access the file system 138 
sve handling 77 
system functions 59 
system save area modification 90 
transient area 18, 87 
USERSECT 23 
virtual devices used in 277 
virtual machine initialization 65 
VSE support 53 
write disk I/O 148 

CMS commands 
ACCESS 43 

314 System Logic and Problem Determination (CMS) 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

file system manipulation 115 
FILEDEF 43 
passed via DMSINS, execution of 74 
process of, entered during CMS 75 

CMS macro library 291 
CMS/DOS 

CLOSE functions 205, 207 
compatible with VSE releases via CMSBAM 
DCSS 208 

DOSLKED command 211 
environment termination command 

DMSBAB 225 
DMSDMP 225 
DMSITP 225 

execution related control commands 210 
FETCH command 210 
initialization 201 
initialization for OS VSAM processing 177 
OPEN functions 205, 207 
service commands 

DMSDSL 225 
DMSDSV 225 
DMSPRV 225 
DMSRRV 225 
DMSSRV 225 
ESERV 225 

support modules 297 
SVC functions 

AB EXIT SVC 95 223 
AB STXIT SVC 37 219 
CANCEL SVC 13 215 
CDLOAD SVC 65 221 
COMRG SVC 33 218 
CONTROL SVC 8 216 
EOJ SVC 14 217 
EXCP SVC 0 214 
EXTRACT SVC 98 223 
FETCH SVC 1 214 
FETCH SVC 2 214 
FREEVIS SVC 62 ~20 
GETIME SVC 34 218 
GETVCE SVC 99 223 
GETVIS SVC 61 220 
JOB CTL 216 
LBRET SVC 9 216 
LIOCS DIAG SVC 50 219 
LOAD SVC 4 215 
MVCOM SVC 5 215 
PC EXIT SVC 17 217 
PC STXIT SVC 16 217 
POST SVC 40 219 
RELEASE SVC 64 220 
RELPAGE SVC 85 222 
RUNMODE SVC 66 221 
SECTV AL SVC 75 222 
simulation of 211 
SVC 26 218 
SYSFIL SVC 103 223 
TRANS/RETURN SVC 11 216 

LY20-0893-4 © Copyright IBM Corp. 1980, 1986 

/ 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

USE SVC 63 220 
WAIT SVC 7 215 

SVC functions not supported 211-225 
SVC functions treated as NOOPs 211-225 
SVC handling 175 
upgrade to VSE, through support modules in 

CMSBAM 297 
CMS/DOS macro library 297 
CMS/VSAM error return processing 179 
CMSAMS-CMSVSAM DCSSs, storage relationships 
with DMSAMS 173 

CMSBAM DCSS, contents of 208 
CMSBAM segment, modules that comprise this 
DCSS 297 

CMSCB, defined 183 
CMSCVT, defined 183 
CMSDEV macro 291 
CMSDOS-CMSVSAM-user program storage 
relationships 175 

CMSIUCV macro 291 
CMSLEVEL macro 291 
CMSVSAM-CMSDOS-user program storage 
relationships 175 

command 
handling, CMS 74,75 
language, CMS 3 
processing 

SET DOS ON 71 
command search order 83 
commands 

See CMS commands 
completion processing 

DOS VSAM programs 180 
OS VSAM programs 180 

COMPSWT macro 291 
console 

management, CMS 76 
CONSOLE macro 

accessing fullscreen services 24 
description 291 
device interrupt 14 
I/O interrupt 12 

CONSOLE path 13 
control block, manipulation macros, simulation of, 
VSAM 177 

control card routine 
ENTRY card 106 
LIBRARY card 106 

control flow for I/O processing 141 
conventions 

linkage 77 
SVCs 77 

Conversational Monitor System 
See CMS (Conversational Monitor System) 

CPRB macro 291 
CQUSECT macro 291 
CSMRETCD macro 291 

LY20·0893·4 © Copyright IBM Corp. 1980, 1986 

data base, loader 108 
data set control block (DSCB) 38 
data sets 

OS 
accessing 43 
defining 43 
reading 42 

DCB macro 37 
DCSS (discontiguous shared segment) 67,84 
deallocation map 133 
DELENTRY macro 291 
DELETE macro 32 
DEQ macro 35 
DETACH macro 36 
devices, CMS supported 24 
DEVTAB (Device Table) 23 
DEVTYPE macro 33 
diagnostic aids, CMS 275 
directory, CMS 241 
discontiguous shared segment 

See DCSS (discontiguous shared segment) 
disk 

I/O, CMS 147 
label, organization 132 
organization in CMS 115 

disk and file storage management 123, 134 
disk space, read/write, allocation 122 
disk storage management 

CMS 133 
QMSK used in 122 
QQMSK used in 122 

DISKID function 
module 246 

display terminals, CMS interface 24 
DISPSW macro 25 
DISPW macro 291 
DMSABN macro 291 
DMSABN module 

used in CMS batch processing 231 
DMSACC module 

accessing a virtual disk 124 
OS access method module 195 

DMSACF module 
OS access method module 195 

DMSACM module 
OS access method module 195 

DMSALU module 
OS access method module 195 

DMSAMS module 
DMSAMS·CMSAMS·CMSVSAM storage 
relationships 173 

operation of 173 
DMSARE module 

OS access method module 195 
DMSASN module 

invoking the ASSGN command 203 

Index 315 



DMSBOP module 
simulates VSE OPEN 206 
VSAM processing 175 

DMSBTB module 
batch processing, bootstrap module 227 
general operation of 227 

DMSBTP module 
batch processing 228 
general operation of 228 

DMSCIO module 
used in CMS batch processing 231 

DMSCLS module 
processes CLOSE requests 207 
VSAM processing 176 

DMSCPF module 
maintaining an interactive console 

environment 73 
used in CMS batch processing 231 

DMSCRD module 
maintaining an interactive console 
environment 73 

used in CMS batch processing 231 
DMSDLB module 

invoking the CMS/DOS DLBL command 204 
DMSDLK module 

simulating the VSE linkage editor function 211 
DMSDOS module 

description of 175 
DMSDOS VSAM processing 175 
DMSDSK module 

used in CMS batch processing 231 
DMSDSL module 

processes CMS/DOS service commands 225 
DMSDSV module 

processes CMS/DOS service commands 225 
DMSERR module 

AUSERRST NUCON field 284 
HALT option 284 
used in CMS batch processing 231 

DMSEXS macro 291 
DMSEXS module 

format of 166 
DMSFCH module 210 
DMSFET module 210 
DMSFLD module 

FILEDEF command 193 
OS access method module 195 
used in CMS batch processing 231 

DMSFRE module 
used in free storage management 18 

DMSFRE service routine 160 
DMSFREE macro 291 

allocating nucleus free storage 159 
allocating user free storage 159 
error codes 170, 279 
format of 154 
free storage allocation 152 
free storage pointers 152 
operands 152 
storage management 154 

316 System Logic and Problem Determination (CMS) 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

DMSFRES macro 
error codes 170, 279 
format of 162 
operands 162 

DMSFRET macro 291 
error codes 170, 279 
format of 160 
operands ·160 
releasing storage 160 

DMSFST macro 291 
DMSINA 84 
DMSINI module 

used in CMS batch processing 231 
DMSINS module 

executing commands 74 
used in CMS batch processing 231 

DMSINT 84 
DMSINT module 76 
DMSIOW module 14 
DMSITE module 15 

used in CMS batch processing 231 
DMSITI module 12 
DMSITP module 15, 225 
DMSITS module 11, 77 
DMSKEY macro 292 

format of 166 
DMSLDR module 

PRSERCH routine 107 
REFADR routine 107 
used in CMS batch processing 231 

DMSLDS module 
LISTDS command 193 
OS access method module 196 

DMSLFS module 
OS access method module 196 

DMSLKD module 
LKED command 194 

DMSLLU module 
request a list of CMS/DOS physical units 204 

DMSMVE module 
MOVEFILE command 194 
OS access method module 196 
used in CMS batch processing 231 

DMSNUC module 
located in CMS storage 18 
structure of 23 

DMSOPT module 
setting compiler options 203 

DMSOSR module 
OSRUN command 193 

DMSPIO module 
builds printer CCW chain 145 
carriage control characters used by 145 
performing channel testing 145 
used in CMS batch processing 231 

DMSPRV module 
processes CMS/DOS service commands 225 

DMSQRS module 
OS access method module 200 

LY20-08934 © Copyright IBM Corp. 1980, 1986 



Restricted Materials of IBM 

Licensed Materials - Property of IBM 

DMSQRY module 
displaying CMS environment options 72 
QUERY command 194 

DMSRDC module 
used in CMS batch processing 231 

DMSROS module 
common routines 200 
OS access method module 197 

DMSRRV module 
processes CMS/DOS service commands 225 

DMSSCT module 
OS access method module 198 

DMSSEB module 
OS access method module 199 

DMSSET module 
initializing CMS/DOS operating 

environment 201 
used in CMS batch processing 231 

DMSSOP module 
OS access method module 199 

DMSSRV module 
processes CMS/DOS service commands 225 

DMSSTT module 
OS access method module 200 
STATE command 194 

DMSSVT module 
OS access method module 199 

DMSVIP module 
interface for OS VSAM requests and CMS/DOS 

and VSE/VSAM routines 176 
DMSXCP module 

handles VSAM requests 175 
DOS 

CLOSE functions 205 
initialization 

assign logical and physical units 203 
associate a DTF table filename with a logical 
unit 204 

for OS VSAM processing 177 
list assignments of CMS/DOS logical 

units 204 
resetting CMS/DOS environment 

options 203 
resetting compiler options 203 
setting CMS/DOS environment options 203 
setting compiler options 203 

OPEN functions 205 
VSAM 

function supported by CMS 54 
ha,rdware devices supported by CMS 54 

DOSVSAM 
completion processing 180 
execution of, for a VSE user 174 

DOS-OS-VSAM-user program storage 
relationships 175 

DOSCB 204 
creation of 172 

DSCB 38,171 
DTF table 

closing files associated with 207 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

opening files associated with 206 
DTF tables, disk files in FB-512 devices 206 
dump 

DMSDBD 247 
DMSDMP 225, 248 
SVC 13 186 
SVC 51 188 
when debugging 17 

dynamic linkage, SUBCOM function 92 
dynamic storage management 

active disks 123, 134 
active files 123, 134 

editor, VM/SP System Product Editor 6 
END card routine 105 
end-of-command exit, QSAM 

contents of register 1 78 
module 259 
TEOVEXIT macro 46 

ENQ macro 35 
ENTRY control card 106 
entry point directory, CMS 241 
entry points 243 
environments 

access method support for non-CMS 171 
EPLIST macro 292 
ERET error routine processing 180 
error codes 

from DMSFREE 170, 279 
from DMSFRES 170, 279 
from DMSFRET 170, 279 

error return, CMS/VSAM, processing of 179 
error routine, ERET, processing 180 
ESD card codes 109 
ESD type 0 card routine 97 
ESD type 1 card routine 98 
ESD type 10 card routine 101 
ESD type 2 card routine 99 
ESD type 4 card routine 100 
ESD type 5 card routine 100 
ESD type 6 card routine 100 
ESERV 

processes CMS/DOS service commands 225 
ESIDTB (ESD II> table) entry 109 
EXCP macro 31 
EXEC 2 

logic flow for modules processing EXEC 2 
functions 234 

processing 234 
EXECOS command 

module 262 
executing 

CMS files 73 
text files 94 

exit routine 

Index 317 



QSAM tape end-of-volume 46 
user, processing of 179 

EXIT/RETURN macro 31 
extended PLIST 80 
external interrupt 

BLIP character 15 
HNDEXT macro 15 
in CMS 15 
timer 15 

EXTRACT macro 34 

FB-512 device, CMS block format 131 
FCB (file control block) 17 
FEOV macro 34 
file 

arrangement of fixed-length records, in 
CMS 119 

arrangement of variable-length records, in 
CMS 119 

management 4 
file control block 

See FCB (file control block) 
file directory 

physical organization 119 
selective directory update 134 

file status table 
See FST (file status table) 

file status table block 
format 117 

file system 
CMS, management 115 
manipulation commands 113 
512-, 1K-, 2K-, 4K-byte records 125 
800-byte record 115 

FILEDEF command 
AUXPROC option 45 
defining OS data sets 42 
flow 193 
format of 42 

files, OS format, support of 38 
FIND macro 33 
first chain link format 117 
first command processing, CMS 71 
format 

DMSFRES macro 162 
DMSKEY macro 166 
first chain link, in CMS 118 
nth chain link, in CMS 118 
system save area 90 
user save area 91 

free chain element format 158 
free storage management 

allocation of 
nucleus 159 
user 159 

318 System Logic and Problem Determination (CMS) 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

DMSFREE 154 
GETMAIN 151 
pointers 152, 155 

free storage table 
FREETAB 155 
NUCCODE 156 
SYSCODE 156 
TRNCODE 156 
USARCODE 156 
USERCODE 156 

FREEDBUF macro 35 
FREEMAIN macro 31 
FREETAB free storage table 155 
FSCB macro 292 
FSCBD macro 292 
FSCLOSE macro 292 
FSERASE macro 292 
FSOPEN macro 292 
FSPOINT macro 292 
FSREAD macro 292 
FSSTATE macro 292 
FST (file status table) 

CMS 115,125 
format 117, 127 

FSWRITE macro 292 
fullscreen I/O operations 24 
functional area, overview, CMS 58 

GENCB processing 178 
GET macro 40 
GETMAIN 

free element chain 158 
free storage 

allocation 151 
management pointers 154 

macro 31 
releasing storage allocated by GETMAIN 153 
simulation 20 

GETMAIN/FREEMAI N macros 32 
GETPOOL/FREEPOOL macro 31 

HALT option 284 
AUSERRST NUCON field 284 

handling 
OS files 

on CMS disks 27 
on OS and DOS disks 27 

hardware exception 286 
hash table 125 
HASH, SET command 139 

LY20-0893,4 C Copyright IBM Corp. 1980, 1986 

''.., .. , ... 

/ 



.~. 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

high-storage nucleus chain 156 
high-storage user chain 156 
HNDEXT macro 292 
HNDINT macro 292 
HNDIUCV macro 292 
HNDSVC macro 292 

I/O 
disk, CMS 141, 147 
interrupt, in CMS 12 
macros, OS VSAM, simulation of 179 

I/O control flow, CMS 142 
I/O operations to a 3270 device 14 
I/O operations, CMS 141 
ICS card routine 96 
IDENTIFY macro 34 
IMAGEMOD command, used to modify a 3800 
named system 69 

IMMBLOK macro 292 
IMMCMD macro 292 
immediate commands 

contents of register 1 78 
module 250 

initialization 
CMS virtual machine 65 
CMS/DOS, for OS VSAM processing 177 
DMSINS module 65 
for a named system 68 
for a saved system 68 
storage contents, CMS 66 
system tables 66 
VSE 201 

input restrictions, loader 111 
input/output 

See I/O 
Installation DCSS 67 
interactive console environment, CMS 73 
interrupt handling 

ABNEXIT macro 281 
CMS 

input/output interrupts 12 
sve interrupts 11 
terminal interrupts 13 

DMSINA 84 
DMSINT 84 
DMSITS 11 
external interrupts 15 
machine check interrupts 15 
macro library 291 
program interrupts 15 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 

reader/punch printer interrupts 14 
SUBCOM function 92 
user-controlled device interrupts 14 

interrupts, processing 149 
introduction, CMS 1 
INTSVC 77 
IPL 

by device name 19 
by system name 19 

IPL command processing 
AUTOCR 67,284 
CMS 67 

IUCV (Inter-User Communication Vehicle) 
module 252 

key 
real PSW 168 
real storage 168 
virtual PSW 168 
virtual storage 168 

keys, storage protection 164 

LANGBLK macro 292 
LIBRARY control card 106 
LINEDIT macro 292 
LINERD macro 292 
LINEWRT macro 292 
LINK macro 32 
linkage conventions 

SVCs 77 
LISTDS command flow 193 
LKED command flow 194 
LOAD macro 32 
loader 

CMS 111 
data base 108 
input restrictions 111 

loader tables, CMS 19 
loading 

CMS, from card reader 65 
text files 94 

low-storage DMSFREE nucleus free storage 
area 18 

low-storage DMSFREE user free storage area 18 
low-storage nucleus chain 156 
low-storage user chain 156 

Index 319 



machine carriage control characters 145 
machine check, interrupt, in CMS 15 
macro library 

CMS/DOS 297 
macro library, CMS 291 
macros 

control block manipulation, VSAM 178 
GENCB 178 
I/O 

CHECK 179 
ENDREQ 179 
ERASE 179 
GET 179 
POINT 179 
PUT 179 

MODCB 178 
OS 179 
SHOWCB 178 
TESTCB 178 

maintaining interactive session, CMS 74 
master file directory 

CMS 119,132 
structure 121 

method of operation, for EXEC 2 modules 234 
miscellaneous CMS functions 227 
MODCB processing 178 
module entry point directory, CMS 243 
module flow description, for the new VM/SP 
editor 6 

MOVEFILE command flow 194 

named system initialization 68 
named system, modifying one with the IMAGEMOD 
command 69 

non-CMS operating environments 171 
NOTE macro 37 
Nth chain link, format 117 
nucleus 

free storage, allocation 159 
storage copy of 65 

nucleus (CMS) 19 
NUCON macro 292 

320 System Logic and Problem Determination (CMS) 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

OPEN/OPENJ macro 33 
OPEN, OS VSAM, simulation of 174,177 
operating environments 

non-CMS, access method support for 171 
Operating System 

See OS (Operating System) 
operation 

ofDMSINT 76 
ofDMSITS 77 

organization, virtual disk 115 
OS (Operating System) 

control block functions, CMS simulation of 183 
data management simulation 27 
data sets, reading 42 
formatted files 38 
handling 

files on CMS disks 27 
files on OS or DOS disks 28 

macros 
description of 31 
GET 40 
PUT 40 
PUTX 40 
READ 40 
under CMS 27 
WRITE 40 

VSAM 
functions supported by CMS 54 
hardware devices supported by CMS 54 

OS access method modules 
DMSACC 195 
DMSACF 195 
DMSACM 195 
DMSALU 195 
DMSARE 195 
DMSFLD 

CONCAT 195 
DSN 195 
MEMBER 195 

DMSLDS 196 
DMSLFS 196 
DMSMVE 196 
DMSQRS 

DISK routine 200 
SEARCH routine 200 

DMSROS 
CHKSENSE routine 200 
CHKXTNT routine 200 
CHRCNVRT routine 200 
common routines 200 
DISKIO routine 200 
GETALT routine 200 
RDCNT routine 201 
ROSACC routine 197 
ROSFIND routine 198 
ROSNTPTB routine 198 

L Y20-0893-4 C Copyright IBM Corp. 1980, 1986 



(~ .. 
~. 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

ROSRPS routine 197 
ROSSTRET routine 197 
ROSSTT routine 197 
SETXTNT routine 201 

DMSSCT 
CKCONCAT routine 199 
FIND (Type C) routine 199 
NOTE routine 198 
POINT routine 199 

DMSSEB 
EOBROUTN routine 199 
OSREAD routine 199 

DMSSOP 199 
DMSSTT 200 
DMSSVT 

BLDL routine 200 
BSP routine 199 
FIND (Type D) routine 199 

OS access method support 171 
OS ACCESS, flow of commands used in 193 
OS functions 

defined 180 
simulated by CMS 181 
SVC numbers of 181 

OS macro simulation SVC calls 82 
OS simulation by CMS 181 
OS simulation routines 

ABEND SVC 13 186 
ATTACH SVC 42 188 
BACKSPACE SVC 69 191 
BLDL/FIND (Type D) SVC 18 186 
BSP 182 
CHAP SVC 44 188 
CHECK 192 
CHKPT SVC 63 189 
CLOSE/TCLOSE SVC 20/23 187 
DCB 182 
DCBD 182 
DELETE SVC 9 185 
DEQ SVC 48 188 
DETACH SVC 62 189 
DEVTYPE SVC 24 187 
ENQ SVC 56 189 
EXIT SVC 3 184 
EXTRACT SVC 40 187 
FEOV SVC 31 187 
FREEDBUF SVC 57 189 
FREEMAIN SVC 5 184 
FREEPOOL 181 
GET/PUT 192 
GETMAI~ SVC 4 184 
GETMAIN/FREEMAIN SVC 10 185 
GETPOOL 185 
IDENTIFY SVC 41 187 
LINK SVC 6 184 
LOAD SVC 8 185 
NOTE/POINT/FIND (Type C) 192 
notes on 192 
OPEN/OPENJ SVC 19/22 186 
PGRLSE SVC 112 191 

LY20"()893-4 IC> Copyright IBM Corp. 1980, 1986 

POST SVC 2 184 
provided by CMS 183 
RDJFCB SVC 64 189 
READ/WRITE 192 
RESTORE SVC 17 186 
RETURN 181, 182 
SAVE 182 
SNAP SVC 51 188 
SPIE SVC 14 186 
STAE SVC 60 189 
STAX SVC 96 191 
STIMER SVC 47 188 
STOW SVC 21 186 
SYNAD SVC 68 190 
SYNADAF 182 
SYNADRLS 182 
TCLEARQ SVC 94 191 
TGET/TPUT SVC 93 191 
TIME SVC 11 185 
TRKBAL SVC 25 187 
TTIMER SVC 46 188 
used by Assembler 183 
used by FORTRAN 183 
used by PL/I 183 
WAIT SVC 1 184 
WTO/WTOR SVC 35 187 
XCTL SVC 7 185 
XDAP SVC 0 183 

OSVSAM 
CHECK processing 179 
CLOSE, simulation of 178 
execution, user 176 
I/O macros, simulation of 179 
OPEN, simulation of 177 
program completion processing 180 

OS-DOS-VSAM-user program storage 
relationships 177 

OSRUN command flow 193 
overview, CMS, functional areas 58 

page manager 161 
parameter list 

batch 
description of 227 
modules used in 231 

DMSFREE macro 
description 154 
free storage management 154 
located in CMS storage 18 
service routines 162 

DMaITS module 
user and transient areas 87 

DMSNUC (nucleus constant area) 
located iIi CMS storage 18 
structure of 28 

Index 321 



error codes 
DMSFREE 279 
DMSFRES 279 
DMSFRET 279 

extended 80 
file 

executing 73 
processing 73 

file system 
accessing 124 
description of 4 
managing 115 
routines that access the file system 138 
512-, 1K-, 2K-, 4K-byte records 5, 134 
800-byte records 5, 7 

files 
512-, 1K-, 2K-, 4K-byte records 125 
800-byte record 115 

free storage management 
DMSFREE 154 
GETMAIN 151 

OS and VSE VSAM 
functions supported 54 
hardware devices supported 54 

program 
development facilities 8 
organization 57 

simulation 
of OS 180 
of VSE environment 201 

storage 
constant initialization 65 
maps 20 
structure of 18 

tokenized 80 
user 

area 23 
program area 18 

VSE VSAM and OS 
functions supported by CMS 54 
hardware devices supported 54 

P ARSECMD macro 292 
P ARSERCB macro 292 
P ARSERUF macro 292 
patch control block (PCB) 111 
PGRLSE macro 37 
POINT macro 37 
pointer blocks 

fixed-length record format 129 
variable-length record format 130 

pointers, free storage management 154 
POST macro 31 
printer interruptions 14 
printing a file, CMS 144 

ASA control characters 145 
machine carriage control characters 145 

PRINTL macro 292 
processing 

CMS files 73 
commands entered during CMS session 74 

322 System Logic and Problem Determination (CMS) 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

interrupts 149 
VSE system control commands 201 

program 
interruption, in CMS 15 
organization, CMS 57 

program areas 
transient 87 
user 87 

Program Status Word 
See PSW (Program Status Word) 

Programmable Operator Facility 
modules 255 

PRSERCH routine 107 
PSW (Program Status Word) 

handling of PSW keys 165 
storage protection keys 164 

PSW keys 165 
punch interruptions 14 
PUNCHC macro 293 
punching a card, CMS 143 
PUT macro 40 
PUTX macro 40 
PVCENTRY macro 293 

QMSK data block 122 
QQMSK table 122 
QSAM 

tape end-of-volume exit 46 
QSAM, using the PUT macro with a 3800 
printer 41 

query 
modules 257 

QUERY command flow 194 
querying options in the virtual machine 

environment 72 

RDCARD macro 293 
RDJFCB macro 36 
RDTAPE macro 293 
RDTERM macro 293 
READ macro 40 
read/write disk space, allocation 122, 133 
reader interruptions 14 
reading 

a card 142 
OS data sets 42 

real 
PSW key 168 
storage key 168 

record formats, CMS 118, 128, 129 

LY20-0893-4 © Copyright IBM Corp. 1980, 1966 



'.-. ... 

I 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

recovery, CMS abend 282 
REF ADR routine 107 
REFTBL 

ADDRESS field 110 
entry 109 
FLAG1 byte 109 
FLAG2 byte 110 
INFO field 109 
NAME field 109 
VALUE field 110 

REGEQU macro 293 
register 

contents of register 1 with SVC 202 78 
contents when called routine starts 88 
restoration by called routine 90 

registers, usage, CMS 17 
RELEASE command flow 194 
releasing 

allocated 153 
storage 160 

REP card routine 102 
RESERVE command 

modules 259 
RESTORE macro 33 
restrictions 

BDAM 41 
input, loader 111 
on CMS as a saved system 169 

return location, when returning to caller 89 
returning 

to caller 
register restoration 90 
return location 89 

RLD card routine 103 

save area 
CMS system 90 
user 90 

saved system 
effects on CMS 169 
handling of, CP 168 
initialization 68 
restrictions on CMS 169 

SCBLOCK macro 293 
SCBLOCK, created by SUBCOM 92 
search order, command 83 
selective directory update 134 
SENDREQ macro 293 
service routines 

DMSFREE 162 
TSO, support of 181 

SET DOS ON command processing, VSAM 71 
SET HASH command 1S9 
SETPRT command, initializing a 3800 printer 146 

LY20·0893·4 © Copyright IBM Corp. 1980, 1986 

setting options in the virtual machine 
environment 71 

SHOWCB processing 178 
SHVBLOCK macro 293 
simulating VSE functions, via the CMSBAM 

DCSS 208 
simulation routines, OS 

See OS simulation routines 
simulation, of OS by CMS 180 
SLC card routine 96 
SNAP macro 35 
spanned records, usage 40 
special operation exception 285 
SPIE macro 32 
STAE macro 35 
STATE command flow 194 
status tables, file 115, 125 
STAX macro 37 
STIMER macro 35 
storage 

allocated by DMSFREE 154 
allocated by GETMAIN 151 
allocation 151, 152 
CMS 18 
CMS nucleus first part 19 
content initialization 66 
free, allocation 151 
map, CMS 20 
organization of CMS files 

512·, 1K·, 2K·, 4K·byte records 125 
800·byte record 115 

protection keys 164 
releasing 153, 160 

storage relationships, DOS·OS·VSAM·user 
program 175 

STOW macro 33 
STRINIT macro 151,293 
SUB COM function 

calling routines dynamically 92 
return codes 94 

support modules, CMS/DOS 297 
SVC 

handling 
by user 82 
invalid SVCs 83 
linkage 77 
OS SVC simulation 82 
type of SVC 77 
VSE SVC simulation 82 

handling for CMS/DOS 175 
interrupt 

CMS internal linkage SVCs 11 
other CMS SVCs 12 

types 
user·handled 82 
201 77 
202 78 
203 81 

SVC calls 
invalid 83 

Index 323 



OS macro simulation 82 
VSE 82 

SVC functions supported in CMS/DOS . 
CMS modules handling 213 
for VSE 211 

SVC 201 77 
SVC 202 

search hierarchy 83 
SVC 203 81 
SYNADAF macro 37 
SYNADRLS macro 37 
synonym of commands 76, 84 
SYSPROF EXEC 65, 67 
system 

file, management 113 
functions, CMS 59 
save area 90 
table initialization, CMS 66 

System Product Interpreter 
CSECTS 232 
modules 259 
processing 239 

system profile EXEC 65, 67 

table entry 
ESIDTB 109 
REFTBL 109 

TAPECTL macro 293 
TAPESL macro 293 
TCLEARQ macro 37 
TEOVEXIT macro 293 

description 46 
restrictions 50 
return codes 51 

terminal interruptions 13 
termination, abnormal 

See abnormal termination (abend) 
TESTCB processing 178 
text files 

executing 94 
loading 94 

TGET/TPUT macro 37 
TIME macro 32 
tokenized PLIST 80 
transient program areas 18, 87 
translation of commands 76, 84 
TRANTBL macro 293 
TRKBAL macro 34 
TSO service routine, support of 181 
TTIMER macro 35 
TVSPARMS macro 293 
TXT card routine 101 

324 System Logic and Problem Determination (CMS) 

user 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

exit routine processing 179 
free storage, allocation of 159 
handled sves 82 
program areas 18, 87 
save area 90 

user program-CMSDOS-CMSVSAM storage 
relationships 175 

user program-VSAM-DOS-OS storage 
relationships 177 

user-control device interrupts 14 
USERSECT (User Area) 23 
USERSECT macro 293 

vector operation exception 285 
virtual 

devices used in CMS 277 
disk 

accessing 124, 138 
organization 115, 125 
physical organization 119, 131 

PSW key 165 
virtual machine 

environment 
querying options 72 
setting options 71 

initialization, CMS 65 
Virtual Machine/System Product 

See VM/SP (Virtual Machine System Product) 
virtual storage, key 168 
virtual 3800 printer, initializing via the CMS 

SETPRT command 146 
VM/SP (Virtual Machine/System Product) 

CMS 3 
System Product Editor, managing CMS files 6 

Volume Table of Contents (VTOC), support of 38 
VPK of 0 169 . 
VSAM 

CLOSE, OS, simulation of 178 
CMS support of 172 
control block manipulation macros, simulation 

of 178 
DMSDOS processing 175 
execution for OS user 176 
execution of, for a VSE user 174 
OPEN, OS, simulation of 177 
SET DOS ON command processing 71 
support of 27, 38 

VSAM-DOS-OS-user program storage 
relationships 177 

VSE 

L Y20-0893-4 © Copyright IBM Corp. 1980, 1986 



1 

Restricted Materials of IBM 

Licensed Materials - Property of IBM 

environment simulation under CMS 201 
FETCH function 210 
initialization 201 
Linkage Editor, CMS, simulation of 211 
support, under CMS 53 
SVC calls 82 
system control commands, processing of 201 

VSE commands 201 
VSE support, under CMS 53 
VSE SVCs, supported via CMS/DOS simulation 

routines 211 
VSE VSAM functions, CMS support for 54 

WAIT macro 31 
WAITD macro 293 
W AITECB macro 293 

module 264 
WAITT macro 293 
WRITE macro 40 
WRTAPE macro 293 
WRTERM macro 293 
WTO/WTOR macro 34 

XCTL macro 32 
XDAP macro 31 
XEDIT modules 264 

LY20-0893-4 e Copyright IBM Corp. 1980, 1986 

I Numerics I 
3270 device I/O operation 14 
3800 

initializing a 3800 printer with the SETPRT 
command 146 

modifying a 3800 named system, with the 
IMAGEMOD command 69 

using QSAM and BSAM macros to produce 
output 41 

512-, 1K-, 2K-, 4K-byte records 
access file system 138 
allocation map 133 
block formats 131 
chaining records 126 
directory update 134 
file status tables 125 
file system for 135 
format 129, 130 
organization, virtual disk 131 
pointer blocks 128 
read/write disk storage 133 
storage management 134 

800-byte records 5,8 
access the file system 124 
chain links 117 
chaining records 116 
file status tables 115 
master file directory 119 
organization, virtual disk 119 
read/write disk storage 122 
storage management 123 

Index 325 



Contains Restricted Materials of IBM 
Licensed Materials-Property of IBM 
© Copyright IBM Corp. 1980,1986 

International Business 
Machines Corporation 
P.O. Box 6 
EndlcoH, New York 13760 

File No. S370/4300-39 
Printed in U.S.A. 

L Y20-0893-4 

--------- - ------- - ---- - - ---------~-,-
~ 

,/ 

~-

~

i 



VM/SP System Logic and Problem Determination Guide 
Volume 2 (eMS) 
Order No. L Y20-0893-4 

Is there anything you especially like or dislike about this book? Feel free to 
comment on specific errors or omissions, accuracy, organization, or 
completeness of this book. 

If you use this form to comment on the online HELP facility, please copy the 
top line of the HELP screen. 

READER'S 
COMMENT 
FORM 

___ Help Information line __ of __ 

IBM may use or distribute whatever information you supply in any way it believes appropriate without 
incurring any obligation to you, and all such information will be considered nonconfidential. 

Note: Do not use this form to report system problems or to request copies of publications. Instead, 
contact your IBM representative or the mM branch office serving you. 

Would you like a reply? _YES _NO 

Please print your name, company name, and address: 

IBM Branch Office serving you: 

Thank you for your cooperation. You can either mail this form directly to us or give this 
form to an IBM representative who will forward it to us. 



Contains Restrleled Materials of IBM 
Licensed Material. - Property of IBM 
(Except for Customer-Originated Materials) 
© Copyright IBM Corp. 1980, 1986 
L Y20-0893-4 
File No. S370/4300-39 

Reader's Comment Form 

Fold and tape Please Do Not Staple 

BUSINESS REPLY MAIL 
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK. NY 

POSTAGE WILL BE PAID BY ADDRESSEE: 

111111 

INTERNATIONAL BUSINESS MACHINES CORPORATION 
DEPARTMENT G60 
PO BOX 6 
ENDICOTT NY 13760-9987 

1 ••• 11 •• 11.1 ••• 1.11 •• 11 ••• 1 il •• I.I •• I •• I.I ••• III ••• 1 

Fold and tape Please Do Not Staple 

--.- ------ --------- -.. ---- -- --------_~_1'_ 

~ 

CUT 
OR 

FOLD 
ALONG 

LINE 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

Fold and tap. 



II 

LY20-0893-04 


