
Program Product

--

SC24-5219-1
file no. S37Ct/4300-39

IBM Virtual Machine/
System Product:
EXEC 2 Reference

Program Number 5664-167

Release 2

---------------------At&.: -=':r:' --_.-

," ,-.' ,~ . / .!\ I ~'.

....
' .. ~

I
'.cond Edi tion (Apri l' 1912)".~ ,.c·'

This .dition, SC24-5219-1, applies t. r .. l 2 of IB" Virtual
"achine/System Product, Program Humber 5664-167, and to all subsequent
versions and r.l.ases until otherwise indicat.d in the new editions or
Technical Hewsl.tters. Changes ar. continually made to the information
contained her.in; before using this publication in connection with the
eperation of IBM systems, consult the l.IU:l Svst@m/370 A1UI llll Processors
Bjbljograpby, GC20-0001, fo~ the editions that ara applicable and
current.

I Changes or additions to the text and illustrations are indicated by a
vertical line to the l.ft of the chang ••

I Summarv 2f Amendments
For a list of changes, se. pag. iii.

It is possible that this material may contain referance to, or
information about, IBM products Cmachines and programs), programming, or
s.rvices that ar. not announc.d in your country. Such r.ferences or
information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

Pu~licatio"s are not stocked at the address given below; requests for
IBM publications should be made to your IBM representative or to the IBM
branch offic. serving your locality.

A for. for reader's comments is provided at the back of this
publicatioR. If the for. has been removed, commants may be addr.ssed to
IBM Corporation, Programming Publications, Department G60, P.O. Box 6, .
Endicott, Haw York, U.S.A. 13760. IBM may use or distribute any of the
information you supply in any way it b.lieves appropriate without
incurring any obligation wh.tav.r. You may, of course, continua to use
the information you supply.

~. ..'

e Copyright International Business Machine. Corporation 1980,1981,1982

VARIABLE SHARING

Summary of A.endmants

Summary of Amendments
for SC24-5219-1

Programs called from an EXEC 2 file can now directly access and
manipulate all variables contained in that EXEC 2 file through an
EXEC 2 facility called EXECCOMM. Variables can also be assigned
values a5 • si~e-effect of command or subcommand execution.

~ eRE-DEFINED VARIABLE

The pre-defined variable ICMDSTRING is initialized to the
untranslated command string available from the command line.

Summary of Admendments iii

PREFACE

The purpose of this publication is to define the EXEC 2 language. It is
to be used primarily as a raference manual; it contains all of the
formats, syntax rules, and descriptions of the arguments for EXEC 2
statements.

For tutorial information on using the EXEC 2 language, refer to
"Appendix D: EXEC 2 Primer for New Users." The material contained
therein may be used in conjunction with the reference section.

The reference section of this publication contains these parts:

• "Part 1: Introduction" summarizes what the EXEC 2 language is and
what it is capable of. It introduces and defines some of the
terminology used throughout this manual. EXEC 2 statements and the
rules for interpreting them are also discussed.

• "Part 2: EXEC 2 statements" discusses in detail the different types
of EXEC 2 statements. This discussion is followed by illustrations
of the syntax of each EXEC 2 statement and a description of the
function of each statement. "User-Defined Functions" and "EXEC 2
Name Substitution" are also discussed.

• "Part 3: Notes on EXEC 2" contains detailed discussions on
particular aspects of EXEC 2 that do not fit into a category by
themselves.

• "Part 4: BNF Description of the EXEC 2 Syntax" contains a
description of the main features of the EXEC 2 syntax in Backus-Naur
Form (BHF). This section presents an alternative description of the
EXEC 2 syntax for those familiar with this type of notation. This
i5 not essential reading.

• "Part 5: EXEC 2 Errors" lists the error messages and return codes
issued by the EXEC 2 interpreter.

This publication also has the.e appendixe.:

• "Appendix A: CMS EXEC and EXEC 2 Relationship" makes a comparison
between CMS EXEC and EXEC 2 statements.

• "Appendix B: Sample EXEC 2 Files" gives two examples of EXECs
written in the EXEC 2 language.

• "Appendix C: EXEC 2 in CMS." This appendix discusses how CMS
identifies EXEC 2 files, the limits CMS imposes on using EXEC 2,
examples of using EXEC 2 with assembler language programs, and the
execution of XEDIT macros in EXEC 2. Appendix C also contains a
discussion of variable sharing through the EXECCOMM interface.

iv IBMVM/SP EXEC 2,Raference

• "Appendix D: EXEC 2 Primer for Hew Users" provides a tutorial aid
for users who are unfamiliar with the EXEC 2 language. This primer
is intended for the person who has a modest amount of CMS experience
and enough familiarity with a text .ditor 50 that the mechanics of
creating a disk file present no serious difficulty. Users who have
already ma~tered a command programming language for some other
system, or who have experience with the earlier CMS EXEC facility,
may prefer to read the EXEC 2 reference material instead of the
primer.

• "Appendix E: Useful EXEC 2 Techniques" shows some solutions to some
common EXEC 2 programming problems.

If you are unfamiliar with writing EXEC files or need tutorial
information, you may find it helpful to read "Appendix D: EXEC 2 Primer
for Hew Users" before reading the reference section of this manual.

Hote: Although EXEC 2 is designed to be system independent, the
implementation requirements of CMS (the host system) impose certain
limits on using EXEC 2. See Appendix C for details.

NOTATIONAL CONVENTIONS USED IN THIS BOOK

The conventions used in this publication to illustrate EXEC 2 statements
follow:

• Uppercase letters and punctuation marks (except as described below)
represent information that must be given exactly as shown.

• Lowercase letters represent information that must be supplied by
the user.

• Information contained within brackets [] represents an option that
can be included or omitted.

• Vertical lists that §£S DR! enclosed in brackets represent
alternatives, one of which m.Y.Ji be given. For example:

A
B

• Vertical lists that A.tJl enclosed in brackets represent
alternatives. one of which ~ be given. For example:

Preface y

• An ellipsis (•••) indicates that a variable number of items may· be
included.

• Underlined .lements represent an assumed (default) value in the
event a parameter is omitted.

Prerequisite Publications:

IBM Virtual Machine/System Product: Introduction, GC19-6200

Corequisite Publications:

IBM Virtual Machine/System Product: System Messages, SC19-6204

IBM Virtual Machine/System Product: CMS User's Guide, SC19-6210

IBM Virtual Machine/System Product: CMS Command and Macro Reference,
SC19-6209

IBM Virt~al Machine/System Product: System Product Editor User's
Guide, SC24-S220

IBM Virtual Machine/System Product: System Product Editor Command
and Macro Reference, SC24-S221

vi IBM V"/SP EXEC 2 Reference .

Publications that 8Upport VM/SP as used

In conjunction with VM/370 Release 6

VMISPLIcenM
..... .,. SpclfiCItionl

GC2O-1142

WISP Lllnry Guide
end ndell

GC18-8207 (201

VMISP System --....
endCodn

SC19-8204

EREP MeaIges

GC38-1045

Auxiliary Suppon

......... :

(401

VM/SP TermlNiI u.r',
Guide

fOOl

(201

GC18-8208 (401

CMSUIer

r

::

if"

r-------~----~

VMISP CMS Primer

SC24-&236 (39)

~i _-------_
i·
$"

* J

VM/SP CMS u.r', Guide

SC19-8210 C391

r:
"> _--.-----......

~1_-------_

VMISP EXEC 2 Reference
SC24-5219 (311

No,.: The numbers given in
parenthaes represent
the Subject Code.

Operation.

VM/SP Opemor', Guide

SC19-8202 (401

Iys-.n
....... mming
I~'«~;'

~
t

I "'"'----r-----I
f---~---.

VMISP System
~,,*',Guide

SC19-8203

• For INA _miNI pnnquilite publlcetlon is: VMNCNA ,.w/rion, QiNmionl, end T.""in./ eM, Order Number SC27 -01502.

• All uteri of virtuel 1NCh1 ... must UII tt.. VMISI'Symm", MId CGdN publiCItlon.

• eorMi .. lftfonnetion on VMlEREP 1UPPOI1. EREP R 3 'idId for UII with VM/SP R 2.

II VM/370 components. HDwwIr, tt...PCS ElIUnIiorI 1fft Product (5'4I-SAlIand tt.. RSCS tWtworking Program Product (5741-XPll
.. recommended for !III with VMISP.

• If you .. nt all dna of SunIIMry ",,_10.-, _IIOF 3120 when orderl ...

(301

•
VMISP OL TSEP and
Error RlCording Guide

SC19-8205 (371

t.] =""r:..'=io~ ~ ~. Guide Vo'", 1 (CP) I
.... L_V_20_-_089_2_---'-3I-I'" f.

VMISP System Logic and
Problem Determination
Guide Voluma 2 (CMSI

L V2O-0893 '391

•
environmantal Recordint,
Editing. and Printing
(ERE" Program
GC28-0772 (37)

•
Environmental Recording,
editing, and Printing
(EREP) Progr8m Logic

SV28-0773 (371

Preface vi i

viii IBM V"/SP EXEC 2 Reference

contents

Part 1: Introduction ••••••
Executing EXEC 2 Programs ••••
Introduction to the EXEC 2 language

Rules for Interpreting Executable Statements

Part 2: EXEC 2 Statements
Types of Executable St.tements
Predefined Variables
Control Statements
Predefined Functions
User-Defined Functions
EXEC 2 Name Substitution

Part 3: Notas on EXEC 2

.

Part 4: BHF Description of the EXEC 2 Syntax

Part 5: EXEC'2 Errors

Appendix A: CMS EXEC and EXEC 2 Relationship
Converting CMS EXEC Files to EXEC 2 Files
EXEC Statement Comparison •••••••.

Control Statements ••••. •••.
Predefined Functions
Predefined Vari.bles

Functions Unique to EXEC 2
Control Statements
Predefined Functions
Predefined Variables
Other •••••• . .'.

Appendix B: Sample EXEC 2 Files

Appendix C: EXEC 2 in CMS • • • • • . • • • •
Identifying EXEC 2 Files •••••
Calling EXEC 2 Programs from CMS Command level •••••
Summary of limits for EXEC 2 Files in CMS ••••
Using EXEC 2 Paramater lists with Assembler Language Programs

Executing XEDIT Macros in EXEC 2 •••••••••••
EXECCOMM - Sharing EXEC 2 Variablas with Assemblar language Programs

Appendix D: EXEC 2 Pri.ar for New Users
Commands, Return Codas, and EXEC Variables
EXEC File Argumants ••••••••
EXEC Variable Namas • • • • • • •
Cond;tio~al Interpretation of Statamants •••••••••••••
Statement Labals • • • • • • • • • • • • •
Assignment St.temants

Contents

1
1
1
3

4
4
6

10
24
31
33

35

43

46

48
48
48
48
50
50
S2
S2
52
S2
53

54

56
56
56
57
59
62
63

67
68
70
71
71
72
72

ix

EXEC Variable Evaluation ••••••
An Example of Generating EXEC Variable Names
The 'LOOP Control Statement •••••••••
Making EXEC Files Interact with Users
EXEC 2 Implementation of Editor Macros
Handling Embedded Blanks •••••••••••••
An Example of EDIT and CMS Commands in One File
PARA -- A Complex XEDIT Macro • •
Some Final Words. • ••••••••••

Appendix E: Useful EXEC 2 Techniques

INDEX

x IBM VM/SP EXEC 2 Reference

.. " ...

73
74
7S
76
ao
82
IS
a5
96

97

103

!It! 11 Introduct;on

EXEC 2 is intended for manipulating English-like words as they appear in
computer command languages. It is also capable of performing integer
arithmetic and simple string manipulation.

The notational conventions used in this publication to illustrate EXEC 2
statements are discussed in the Preface.

Executing ~ I prqgrams

EXEC 2 programs reside in EXEC files, and are executed by the EXEC 2
interpreter. The EXEC 2 interpreter can be invoked by issuing a command
such as:

EXEC filename [argl [arg2 1]

where "filename" is the name of the EXEC 2 file to be executed, and
"argl", "arg2", •.• , are arguments that are passed to it. In some
command environments (such as XEDIT) the word "EXEC" is omitted, and in
others (such as CMS console command mode) it is optional. (See Appendix
C for the rules on how EXEC 2 files are distinguished from other EXEC
files in CMS.)

EXEC 2 files can have any filename. EXEC 2 files ~ve the filatype EXEC
*-r ~il.5 t~t.r. invoked from C"S co .. and .ode, and the ~l.t~ XeDIT
lor files u5ed as XEDIT .. eros. Other filetypes may be used for EXEC 2
files that are invoked from other environments (see Appendix C).

EXEC 2 files can have either "F" (fixed) or "V· (variable) format.

Introduct;on 19 the ~ I Lansyase

EXEC 2 files contain EXEC 2 statements. An EXEC 2 statement occupies
one line, and may be a comment or an executable stat@ment .. ~ comment is
-.line in tehich the first nonblank character i. an asterisk, and is
ignored during execution. An executable statement consists of a
sequence of words, the first of which does not begin with an asterisk.
A word is a string of.contiguous nonblank characters. Words are
.eparated from each other by one or more blanks. (Refer to Appendix C
for implementation limits on EXEC 2 statements and words.)

Part 1: Introduction 1

An executabla state.ent .ay be:

• a null statement (which has no effect),

• a command (which 15 issued to a command interprater),

• an 8ssignment (which manipulates EXEC 2 variablas), or

• a control statement (which manipulatas EXEC 2 variables~ controls
axacution or flow through the fila, or performs consola input or
output).

Assignmants start with the name of an EXEC 2 v.ri.bl., and control
statements start with an EXEC 2 control ~ EXEC 2 variables and
control words begin with an ampersand. Variables ara local to tha
currant EXEC 2 fila. Most variables ara initially unset, and thay have
an apparent null value. The variables &1 '2 ••• , ara special, and ara
initialized to the arguments "argl", "arg2", ••• , that are passed to tha
EXEC 2 file. For example, if an EXEC named "TEST" was invoked as "TEST
X Y Z", &0 would contain "TEST" and the arguments &1, &2, and &3 would
contain X, Y, and Z, respectively.

The following are examples of variables:

&x
'3.1415927
'UPPER_LIMIT
leX)·

The following ara examples of control words:

&TYPE
&LOOP
&EXIT

A label, appearing as the first word of a line, may be attached to an
executable statement (including a null statemant) but does not form part
of the statement. A label 15 distinguished by its first character,
which is a hyphen.

The following are examplas of labels:

-x

-&A
-(TYPE)

When an EXEC 2 fila is invoked, axecution starts at line numbar 1 and
procaeds sequentially, except when otharwise directed by control
statamants~

2 I~ V~SP EXEC 2 Rafaranca

Rul •• for Interpret;n. Executable statements

Executable statements are interpreted, one at a time, according to the
following general rules. (There are a few explicit exceptions, which
are noted elsewhere.)

1. The statement's scanned. This discards leading, trailing, and
other surplus blanks, leaving a sequence of words separated from
each other by a single blank.

2. The words forming the statement are searched for the names of any
EXEC 2 variables. These variables are replaced by their values,
unless the variable is the target of an assignment, its name is
retained. (A precise description is given later in the section
"EXEC 2 Hame Substitution.") During this process, the words may
grow or shrink ;n length.

3. If, as a result of step 1, a word is reduced to the null string, it
is discarded from the statement so that the next word is deemed
immediately to follow the previous one. With this exception, the
words retain their ;dentity. For example, if the value of a
variable contains an embedded blank, the word containing it is
still treated as one word, although when printed it might appear as
two. For more details, see the section "Part 3: Hotes on EXEC 2"
on embedded blanks.

4. The statement is analyzed syntactically, and executed according to
the rules on the following pages. Hote that, except for
identifying the targets of assignment, the syntax analys;s is done
~ steps 1, 2, and 3 above.

Part 1: Introduction 3

fIt1 I! IXIk Z statement.

~ gf Executable stltement.

• Null statement.

A null statement 15 an executable statement 1n which the number of
words is zero.

• Commands.

An executable statement 1S deemed to be a command if it contains at
least one word, and its first word does not start with an ampersand.
It is issued immediately to the host system (CMS) or to a subcommand
environment (for example, XEDIT). When it 1S finished, control
returns to the EXEC 2 file, and its return code can be obtained from
the predefined EXEC 2 variable IRC. (See the section "EXECCOMM -
Sharing EXEC 2 Variables with Assembler Language Programs" for
possible side-effects of command execution.)

• Assignments.

An executable statement is an assignment ;f the first word starts
with an ampersand and the second word is an equal S1gn. The first
word is taken as the name of an EXEC 2 var1able, and it is assigned
the value of the expression that follows the equal sign. The
expression may be any of the following:

null

a single word, for example: ABC

an arithmetic expression, consisting of a sequence of words
that represent positive or negative integers, separated by
plus or minus signs, for example: 3 - 4 + -11 - 00

a function invocation, for example:

&PIECE OF 11 2 1

an arithmetic expression (as above) ;n which the last term ;s
replaced by a function invocation that yields a numeric value,
for example:

· -1 + ILENGTH OF II

A variable of the form Ij, where ftjft IS an unsigned integer without
leading zeros, cannot be set with an assignment statement if ftjft
axceeds the number of EXEC 2 arguments that are currently set.

4 IB" VM/SP EXEC 2 Reference

•

Tha value of the variable on tha laft-hand side ~f tha assignment
statament is not modifiad until the expre~sion on the right-hand
side has been evaluated. If an assignment statement is
syntactica-lly invalid. or ;f evaluation of the expression rasults in
numeric ovarflow, execution stops abnormally with an error massage,
without further evaluation.

• ~ontrol stetem.nt~ •

An exacutable statement is a control statement if the flr~t word ,.
an EXEC 2 control word and the second word either is absent or is
not an equal sign. Examples 01 control words are &GOTO, &EXIT, &IF,
and &PRINT.

: ~.

'art 2: EXEC 2 Statements 5

pred,fined Y'ri.hll'

The ~ollow'ng EXEC 2 vartable. are initialized or .aintained
automatically.

I

Initialized to its own name (the value "I").

10

Initialized to the first
the EXEC 2 interpreter.
the parsing rules of the
blank or a parenthesis.
IFILENAME, but it .ay be
synon"m.

11 12 •••

word of the command string that ;s passed to
The first word may be delimited according to
host system. In CMS, 10 may be delimited by a
Nor.ally, this variable has the sa •• value ••
di ffer'ent if the EXEC 2 fi Ie was invoked vi. a

These are the EXEC 2 arguments. They are initialized to the arguments
"arg1", "arg2", ••• , which are passed to the EXEC 2 file. EXEC 2
identifies individual arguments passed to it by the presence of a blank
character which delimits each argument. They are reset by &ARGS or
IREAD ARGS, and they are temporarily reset by invocation of user-defined
subroutines and functions. EXEC 2 arguments beyond the last that is s,t
have an apparent null v.lu~, and cannot be set explicitly (for exam~le~
with an assignment statement). (See the description of IN and 'INDEX.>

IARGSTRIHG

Initialized to the argument str;ng that is passed to the EXEC 2 file.
It is treated as a single literal string starting with the character
immediately following the blank which was used to delimit 10 Csee
above); or, if the delimiter is a character rather than a blank,'
'ARGSTRING starts with the delimiter character itself. It includes any
leading, embedded, or trailing blanks. The initial value includes the
EXEC 2 arguments 11 12 ••• , but 'ARGSTltll&A,ilL"to .ff~:te4_~ ... 1) W
th

6 IBM VM/SP EXEC 2 Reference

I 'BLANK

A word that has the value of a single blank.

&CMDSTRING

Initialized to the untranslated command string that is passed to the
EXEC 2 file. It i5 treated a5 a single literal string starting with the
first word of the command string and including any embedded or trailing
blanks.

&COMLINE

Initialized to zero, and maintained a5 the number of the line from which
the last command (or subcommand) was issued from the EXEC 2 file.

&DATE

The true date on the primary meridian (Greenwich Mean Time (GMT» in the
form YY/MM/DD. &DATE is evaluated when the statement containing it 1s
executed. (S.e the description of 'TIME.)

IDEPTH

Maintained as the number of user-defined functions and subroutine
invocations to which return has not yet been ma,de.

IFILEMODE

Initialized to the filemode (third qualifier) of the EXEC 2 file.

&FILENAME

Initialized to the filename (first qualifier) of the EXEC 2 file.

Part 2: EXEC 2 Statements 7

I &FIlETYPE

Initialized to the ftletype (s.cond qualifier) of the EXEC 2 file (for
example, "EXEC")~

&FROM

Initialized to zero, and maintained as the number of the line in the
EXEC 2 file from which the last &GOTO statement was executed.

ILINE
ILINENUM

Maintained as the number of the current line in the EXEC 2 file.

&LINK

Maintained as the number of the line from which the currently executing
user-defined function br subroutine was invoked, or &LINK has the value
G if there are no user-defined functions or subroutines in execution.

&N
&INDEX

Maintained as the number of EXEC 2 arguments that are set. InitiallY
thi sis the number of ar~uments that are passed to the EXEC 2 file. ;ti
is reset as a side effect of &ARGS and IREAD ARGJ. IN or IINDEX 1s
temporarily reset by invocation of user-defined subroutines and
functions. (See the description of 11 &2 ••••)

IRC
&RETeODE

Initialized to zero, and maintained as the return coda from the last
command (or subcommand) issued from the EXEC 2 fila.

a IBM VM/SP EXEC 2 Raference

I

&TIME

The true time-of-day on the primary meridian (Greenwich Mean Time (GMT»
~n the form HH:MM:SS. ITIME i5 evaluated when the statement containing
it ;s executed. (See the description of IDATE.)

•

Part 2: EXEC 2 Statements 9

contral stateM.nts

Control statements begin with a control word, which Is usually ~ollowed
by ona or more additional words. The control words, and the rules for
their use, are as follows.

IARGS [wordl [word2 •••]]

Assign "wordl", "word2", ••• , to the arguments II 12 ••• , and discard
any other EXEC 2 arguments that were previously set. The number of
arguments now set ;s the number of words given in the IARGS statement,
which may be less or greater than the number of argumen:s previously
set.

(See the description of 'READ ARGS; also see the predefined variables
IN, &INDEX, and &1 &2 ••••)

&BEGPRINT
&BEGTYPE

~--------------.. --_.
linel
line2

Print at the console "linel", "line2", ••. , truncated if necessary at
column "k", without removing surplus blanks or replacing any EXEC 2
variables. If the truncation column is not given, or is given as "*",
the lines are not truncated by the EXEC 2 interpreter. (CMS truncates
at 130 characters. See Appendix C.)

The number of lines to be printed is dete~mined by the first argument,
as follows:

M-

label

Print the given number of lines; or, if there are insufficient
lines in the file, print all lines t~ the end of the file.

Print all lines to the end of the file.

Print down to, but not including, a line that contains the given
label and nothing else; or, if such a line does not exist, print
all lines to the end of the file. The label, to be recognized,
must be wholly contained within the columns that would otherwise

10 IBM VM/SP EXEC 2 Reference

~e.pr'nted, and it .ust be the only word within thase columns.
The first character of a labal must be a hyphen.

After tha linas hava baen printad,execution continues on the line
following the last one printed. If printing is terminated by a label,
exacution continues on the lina following the labal.

This and "IBEGSTACK" are the only statements that occupy more than ona
line. They are also the only statements that permit the lines of an
EXEC 2 file to be handled literally, that is, without removing surplus
blanks or replacing EXEC 2 variables.

(See tha dascription of 'PRINT and 'TYPE.)

IBEGSTACK

~------------ ---~~-------
linal
line2

Place in the console stack "linel", "line2", ••• , truncated if necessary
at column "k", without removing surplus blanks or raplacing any EXEC 2
variables. If tha truncation column is not given, or is given as "*",
the lines are not truncated. The lines are by default stacked FIFO
(first in, first out), but this can be changed by giving "LIFO" (last
in, first out) as the third argument.

The number of lines to be stacked is determined by the first argument,
as follows:

label

Stack the given number of lines; or, if there are insufficient
lines in the file, stack all lines to the end of the file.

Stack all lines to the ·end of the file.

Stack down to, but not including, a line which contains the
given label and nothing else; or, if such a line does not exist,
stack all lines to the end of the file. The label, to be
recognized, must ba wholly contained with1n tha columns which
would otherwise be stacked, and it must be the only word within
these columns. The first character of a label must be a hyphen.

Aftar the lines have baen stacked, execution co~tinues on the line
following the last one .tacked. If stacking is terminated by a label,
execution continues on the l;ne following the label.

Part 2: EXEC 2 Statements 11

This, IBEGPRIHT, and IBEGTYPE are the only statements that occupy more
than one lina. They are also the only statements that parmit the lines
of an EXEC 2 file to be handled literally, that is, without removing
surplus blanks or replacing EXEC 2 variablas.

(Sae the description of ISTACK.)

&BUFFER n
JE

Di scard the lookas; de buffer (i f any) togethe'" wi th its contents. Th'en"
if "n" 15 given, and is positive, or if "JE" is given, create a ne~
lookaside buffer. If "n" is given, and is zero, a new lookaside lILuff.er
is not created. The value of "n" must not be negative. (In CMS, ·th~
initial buffer size is 32 lines. See Appendix C.)

The lookaside buffer is a davice that enables the EXEC 2 interpre~er tQ
remember the location of labels to which reference has already be~n made
and to keep a privata copy of soma of the more recently executed ~inas
of the file. The lookaside buffer can thereby improve the performance'
of EXEC 2 loops, in which the same labels and lines are used repe.tedly.

If "n" is given, it defines the maximum number of lines that can be kept
in the buffer; if "JE" is given, there is no fixed limit. For maxlmum .
effect, the buffer should be capable of keeping the longest loop in it;
entirety and should be set up before entering the loop. An even larga~
buffer may be advantageous if user-defined functions or subroutines are
invoked from within a loop.

A lookaside buffer shou~ not be used if the EXEC 2 file is subject to
modification during execution. If it is used, the results are
unpredictable.

'CALL line-number
label

[argz ...]]

Create a new generation of the EXEC 2 arguments 11 &2 ••• , initialized
to "argl", "arg2", ••• , and invoke the specified subroutine by
transferring control to the given line, or to a line starting with the
given label, in such a way a5 to allow control to be returned with the
IRETURN statement.

The new generation of arguments supersedes the arguments that were
previously set, making the previous values, and the number of arguments

12 IBM VM/SP EXEC 2 Reference

• pr~,iou.'y .sat, .temporarily i~accessible •. On entry to the s~broutine,
the values of the arguments, and the number of arguments set, are as
given in the 'CALL statement. Their values, and the number of arguments
set~ can be changed inside the subroutine 'n the same way as outside,
such 8S by assignment or with the lARGS or 'READ statement.

On return, the new generation of arguments is discarded, making the
previous values, and the number of arguments previously set, again
accessible. Execution resumes on the line following the &CALL
statement.

The first character of a label must be a hyphen. The search for a label
starts on the line following the &CALL statement; then, if a match is
not found before the end of the fi~e, the search resumes at the toP. If
8 matching ·label does not exist, execution stops abnormally with an
error message.

(See the description of &RETURN; also see the section "User-Defined
Functions.")

&CASE

Translate to uppercase (U) any lowercase alphabetic characters that are
raad in response to subsequent 'READ statements, or do not translate
them (allow "mixed" CM> cases), or (if no argument is given) do not
change the setting. Cnitially the translation is sat to "un.

(See the description of &UPPER.)

&COMMAND word! [word2 ••.]

Issue to the host system (CMS) the command comprlslng of "word!",
"word2", •••• separated from each other by a single blank. When it is
finished, its return code is obtainable from the predefined EXEC 2
variables IRC and IRETCODE. The &COMMAND statement normally has the
same effect as:

word! word2

There.are, however, the following differences:

. I

• A command, the first word of which begins with an asterisk, a
hyphen, or an ampersand can be issued by giving it as the argument
to 'COMMAND; otherwise it is interpreted as a comment, a labeled
statement, an assignment, or a control statement. (Note however,

Part 2: EXEC 2 Statements 13

that these charact.rs are not acceptable to CMS command mode. See •
Appendix C.)

• &COMMAND overrides any presumption of a subcommand environment and
always issues the command to the host system (CMS).

I (See the description of ISUBCOMMAND and I~RESUME; se. the predefined
I variablas &COMLINE, &RC, and &RETCODE. Refer to the section "EXECCOMM -
f Sharing EXEC 2 Variables with Assembler Language Programs" for possible
I side-effects of command execution.)

&DUMP ARGS
VAR[S] [var1 [var2

Print lines at the console of the form:

var = VALUE

]]

where var is 11 &2 •.. or "var1", "var2", ••••

ARGS Print one line for each EXEC 2 argument 11 12 ••• that is set.

VAR[S] Print one line for each of the variables "varl", "var2",

The lines are truncated if their length exceeds the implementation limit
for printed output. (In CMS, the line is truncated if its length
exceeds 130. See Appendix C.)

&ERROR action

Set the action which, until further notice, is to be invoked
automaticallY on return from any commands (and subcommands) that yield
an error return code (a return code that is not zero). The action may
be any executable statement, including a null statement.

The action is not inspected at the time the &ERROR statement is
executed. Instead, the search for and replacement of any EXEC 2
variables takes place each t;me the action is executed. The action is
executed as if it occupied the same line in the EXEC 2 file as the
command (or subcommand) that yielded the nonzero return code.

What happens after the action depends upon the type and consequences of
the action. If it is itself a command (or subcommand) which also yields
an error return code, execution stops abnormally with an error message;
otherwise (unless the action causes a transfer of control), execution
resumes at the line following the command that caused the action to be
invoked.

14 IBM VM/SP- EXEC 2 Reference

Initially. ~ error .ct;~n ;5 set to-the null statement.

&EXIT [;eturn-COd8 [comment]]

Stop execution of the EXEC 2 file, and yield the given return code. The
return coda must be numeric. If the givan return coda is not within the
range of return codes acceptable to the host system, the result i.
definad by tha implementation. (In CMS, the range i. -2,147,483,648_ to
+2,147,483,647. Sea Appendix C.)

&GOTO lina-number
label

Transfer control to the given line or to the lina starting with "label".

Tha first character of a label must be a hyphen. The search for a label
starts on the line following the IGOTO statement. Then, if a match has
not been found before tha end of the file, the search resumes at the •
toP. If a matching label does not exist, axecution stops abnormally
with an error messaga.

(See the description of-'SKIP and 'CALLi also saa the predefined
variable 'FROM.)

~ .
'IF wordl =IEQ word2 executable-statement

~=INE
<ILT
<=I~>ILEING
>IGT
>=I~<IGEINL . .

If the condition Is satisfied, executa the given executable statement;
otherwise. proceed to the next .tatement. The comparative may be given
in any of the forms shown (for example "=" or wEQ"). The comparison is
numeric if both comparands are numeric; otherwise both comparatives are
treated a. character strings, and the shorter one is (for the purpose of
the comparison) padded on the right with blanks. If "word2" is absent,
a null string is used in its st.ad.

Part 2: EXEC 2 Statements 15

&LOOP n
label

m
M

WHILE
UNTIL

condition
condition

Loop through the following wnw lines, or down to (and including) the
first line starting with "label", for "m" times, or in-dafinitaiy-t1t), or
"WHILE" (or "UNTIL") the given condition is satisfied.

The values of "n" and "m" (if given) must be numeric; also "n" must be
positive, and "m" must not be negative. If "m" is zero, the entire loop
is ignored.

The first character of the label (if given) must be a hyphen. The label
must be attached, as the first word of the line, to an executable
statement that lies below the ILOOP statement.

The form of the condition (if given) is similar to that of the IIF
statement previously described, namely:

wordl =IEQ
"'=INE
<ILT
<=I"'>ILEIHG
>IGT
>=I ... <IGEIHL

word2 comment

The condition is evaluated before each iteration of the loop, including
the first. If "word2" is absent, a null string is used in its stead.
The comparison is numeric if both comparands are numeric; otherwise,
both comparands are treated as character strings, and the shorter one is
(for the purpose of the comparison) padded on the right with blanks.

If the condition is invalid, execution stops abnormally with an error
message that identifies the line containing the &LOOP statement.

&PRESUME
[

'COMMAND]
&SUBCOMMAND environment

Presume that any executable statement. that have the syntax of. command
(that is, the first word of the statement does not begin with an -.
ampersand) are to be issued to the host system (eMS), or presume that
they are to be issued to the given subcommand environment;

16 IBM VM/SP EXEC 2 Reference

Tha nama of the subcommand environment is not checked when the &PRESUME
statement i •.• xecuted. If, when a subcommand i5 subsequently issued,
the environment doe5 not .xist, the only effect is to set a special
return code. (In CMS, it i. -3.)

The "'PRESUME" control statement with no arguments is equivalent to
"&PRESUME &COMMAND".

By convention, the presumption is ini~ially sat to "'COMMAND" if the
EXEC 2 file ha5 a filetype of EXEC; otherwise, it i5 set to "'SUBCOMMAND
fil.type", where "filetype" ;s the filetype of the EXEC 2 file.

The presumption has no effect on 'COMMAND or &SUBCOMMAND statements
since these do not have the syntax of a command.

(See the description of &COMMAND and &SUBCOMMAND.)

'PRINT
'TYPE

[word1 [word2 ...]]

Print at the console a line containing "word1", "word2", ••• , separated
from each other by a single blank, or print a blank line if there are no
words given. The line is truncated if necessary. (In CMS, the line is
truncated if its length exceeds 130. See Appendix C.)

~lik. 18EGPRIHT and IIEGTYPE, surplus blanks era removed and the words
to be printed are searched in the normal way for the names of EXEC 2
variables, that are replaced by their values.

(See the description of 'BEGPRINT and &BEGTYPE.)

~ .
'READ n

1
M
ARGS
STRING var

VAR[S] [v:rl [var2 ••. ~] [M •••
~

Read from the stack (if the stack is not empty), or r.ad from the
console (otherwise). Then execute or assign what 1S read according to
the following rul8s.

Part 2: EXEC 2 Statements 17

ARGS

STRING

VARS

Read "n" lines, read 1 line, or read an indefinite number of
lines 00, anc:eacut. t.bM indi; .. duallv· ... ·if-.·thw, ha n
P.~t ~f thaEXiC 2 ~il~ Reading stops (and normal execution
resumes) when "n" lines have been read, or when a &BEGPRINT,
&BEGTYPE, &BEGSTACK, &EXIT, &GOTO, &LOOP, or &SKIP statement
is encountered. Reading is suspended if a user-defined
function or subroutine is invoked and continues when control
returns from that invocation.

If a "&READ n" statement is read in response to a previous
"&READ n" statement, the:, new, value of n· i 5 adde~,to the number
of lines that remain from the previous statement. Reading
stops if the number remaining becomes zero or less. The value
of "n" may be negative.

If a "&READ *" statement is read in response to a previous
"&READ n" or "&READ *" statement, or if a "&READ n" statement
is read in response to a previous "&READ *" statement, an
indefinite number of lines remain to be read.

Read a single line, assign the words in it to tha EXEC 2
arguments &1 &2 ••• , and discard any other EXEC 2 arguments
that were previously set. The number of arguments now set is
the number of words in tha line, which may be less or greater
than the number of arguments previously set. (See the
description of &ARGS, and the predefined variables &N, &INDEX,
and &1 &2 •••)

Read a single line and assign it, as a literal string, to
"var", without removing any surplus blanks or replacing any
EXEC 2 variables.

Read a single line and assign the words in it to the variables
"varl", "var2", .••• If the number of words in the line read
exceeds the number of variables given in the statement, the
surplus words ara discarded. If the number of variables
exceeds the number of words, the remaining variables are set
to the null string. Therefore "&READ VARS" (without any
variables) can be used to read a line and discard it.
Asterisks <*> may be used in lieu of variable nam.s;to
indicate that the corresponding words in the line read ara to
be discarded.

In the case of &READ ARGS and &READ VARS ••• , the line that is read is
scanned for words (leading, trailing, and other surplus blanks are
discarded), but the Nords are treated a. liter~s (there is no
replacement of EXEC 2 variablas).

The names of the variables in &READ VARS and &READ STRING are treated in
the same way as on the left-hand side of an assignment'statement. (See
the section "EXEC 2 Name Substitution.") A variable of the form &j,
where "j" is an unsigned integer without leading zeros, cannot be set
with &READ VARS or &READ STRING if "j" exceeds the number of EXEC 2
arguments that are currently set.

18 IBM VM/SP EXEC 2 Reference

Ljnes that are r.ad mayor may not be translated to uppercase. The case
ts determined by the translation mode that is set by the 'CASE control
statement. The ICASE control statement is issued prior to the 'READ
control statement. (See the description of ICASE.) However, if no case
is specified, the lines read in default to uppercase.

Lines that are read are not truncated by the EXEC 2 interpreter; they
are unaffected by the setting of &TRUNC. (See the description of
&TRUNC.)

(In CMS, the maximum length of a line read from the console is 130, and
the maximum length of a line read from the console stack is 255. See
Appendix C.)

&RETURN [word] [comment]

Return control to the most recent subroutine invocation (&CALL
statement) to which return has not yet been made; or return "word" (or
the null string) to the most recent user-defined function invocation·to
which a value has not yet been returned.

The generation of EXEC 2 arguments that was created at invocation is
discarded. The previous values and the number of arguments previously
set become accessible again. The number of lines (if any) that remain
to be read from the stack or console in response to a previous "&READ n"
statement is reset to the number outstanding at the time of the
invocation •. Any loops that have been opened in the subroutine or
function, and not closed, are aborted; and any loops that were open at
the time of invocation are reinstated.

If there 15 both a subroutine invocation and a function invocation to
which raturn has not yet been made, return is to the more recent point
of invocation. If there is neither, execution stops abnormally with an
error message.

(See the description of &CALL; also see the section "User-Defined
Functions.")

'SKIP

If n > 0, skip the next wnw lines of the EXEC 2 file. If n < 0,
transfer control to the line that is "-n" line. above the current line.
If n = 0, transfer control to the next line.

¥art 2: EXEC 2 Statements 19

If an attempt ;s made to transfer control to a line number that is zero
or negative, execution stops abnormally with an error message. If
control is transferred to a line below the last in the EXEC 2 fila,
axecution stops normally ·with a return code of zero.

(See tha description of IGOTO.)

&STACK [~[wordl [word2 ...]]]

Place a line in the console stack containing "word1", "word2", •.• ,
separated from each other by a single blank, or stack a null line if
there are no words. (In CMS, stacked lines are truncated at 255. See
Appendix C.) The line is by default stacked FIFO (first in, first out),
but this can be changed by giving "LIFO" (last in, first out) as the
first argument.

Unlike &BEGSTACK, surplus blanks are removed and the words to be stacked
are searched in the normal way for the names of EXEC 2 variables, that
ara replaced by their values.

(See the description of &BEGSTACK.)

&SUBCOMMAND environment [word1 [word2 ••• J]

Issue to the given subcommand environment the subcommand comprising of
"word1", "word2", ••• , separated from each other by • single blank.
When it is finished, its return code is obtainable from the predefined
EXEC 2 variable &RC.

If the given environment does not exist, the only effect is to set a
special return code. (In CMS, it is -3.)

Normally, it is convenient to "presume" the environment 50 that this
control statement does not have to be issued for every subcommand (see
the description of &PRESUME, above). The explicit use of the
&SUBCOMMAND statement does, however, allow subcommands that start with
an asterisk, a hyphen, or an ampersand to be issued. (Compare with the
description of &COMMAND.) Also note that the statement "&SUBCOMMAND
environment" (without any additional arguments) 15 the only way of
iS5uing a null subco d.

(See tha description of ICOMMAND; also see the predefined variables
&COMLIHE, IRC, and &RETCODE. Refer to the section "EXECCOMM - Sharing
EXEC 2 Variables with Assembler Language Programs" for possible
side-effects of command execution.)

20 IBM VM/SP EXEC 2 Reference

.. ; . . I" • " -
ITRACE ON output-action

ERR
ALL
OFF·
! .. . ' .

where "output-action", if given, is:

IPRINT [wordi [word2 ••• ll
or:

&COMMAND :Mordl[word2 ; ••]
or: . ; \,

'SUBCOMMAND anvironment [wordl [word2 •••]]

Trace commands (and subcommands) that are issued from the EXEC 2 file;
or trace commands (and subcommands) that yield an error return code (a
return code that is not zero); or trace all executable statements; or do
not trace any statements; or (if "*" is given) do not change th~
setting. The setting remains in effect until reset. The initial
setting is OFF.

Trace information can be printed at the console, or ~assed to a command
(or subcommand) for processing. The trace destination is determined by
the output action, a5 described below.

ON When tracing is ON, each command is traced before it is
executed. Subsequently, the return code is traced if it is not
zero. The return code is traced on a line by itself in the form
"+++ E(nnn) +++".

ERR When ERR is in effect, commands that yield a nonzero return code
are traced after execution, followed by the return code. The
return code is traced on a line by itself in the form
ft+++ E(nnn) +++".

ALL When All is in affect, avery executable statement. preceded by
its line number, is traced before it is executed. Nonzero
raturn codes ara traced (as for ON and ERR). Loop conditions
~and lfnas that are read from tha console are also traced. The
.tatement following an &IF clause, the action given in an IERROR
statement, and the conditional phrase in. ILOOP statement ara
traced as literal words (that is, without replacement of any
variables). These statements and phrases are traced again, with
the normal replacement of variables, at the time of their
executfon. A statement that fs executed as a consequence of a
satisfied &IF clause is preceded in the trace by an ellipsis.
Words that axceed 24 charactars in length are truncated in the
trace at 21 characters and followed by an ellipsis. Statements
that axceed 10 characters in length (with the line number and

Part 2: EXEC 2 Statemants 21

preceding ellipsis, if present) ere truncated in the trace a~ en
integral number of words and followed by an ellipsis.

OFF Do not trace any statements. This is the initial setting.

* Do not change the setting. "ITRACE" without arguments 1S
equivalent to "ITRACE M".

output-action

&:TRUHC

The output action gives the destination of the tracing
information. The words in it are searched in the normal way for
the names of EXEC 2 variables. These variable. are replaced by
their values, and the resulting sequance of words is sat aside.
When a trace line is produced, it is prefixed with the sequence
of words, and the resulting EXEC 2 statemant is executed without
tracing. (See tha description of IPRINT, ITYPE, ICOMMAND, and
&SUBCOMMAND). If the return code from the command or subcommand
is nonzero, execution stops abnormally with an arror message.

Ini ti·ally, the out t "act·ion i So set te -&PRINT", whi ch causes the
trace to be printed at the console. If the output action is not
given, the previous action remains in effect.

Set the truncation column for EXEC 2 statements to "k", or set it to the
maximum value (M), or (if no argument is given) do not change it.
Initially, it is set to the maximum value. (In CMS, the maximum value
is 255. Sea Appendix C.)

This setting affects only the reading of EXEC 2 statements from a file
and the search for labels; it does not affect lines read from the
console (that are not truncated) or lines appearing within a &BEGPRIHT,
&BEGTYPE, or &BEGSTACK statement (that are separately controlled). This
setting does not affect the length to which a statemant can grow during
or after raplacement of EXEC 2 variables.

Changing the truncation column has the side-effect of purging the
lookaside buffer (if there is one), end may consequently degrade
performance if done within a loop.

(See the description of &:BUFFER.)

22 IBM VM/SP EXEC 2 Raference

IUPPER ARGS
VAR[S] [varl [var2 •••]]

Translate to uppercase any lowercase alphabetic characters in the values
of the EXEC 2 arguments II 12 ••• , or translate to uppercase any
lowercase alphabetic characters in the values of "varl", "var2", ••••

A variable of the form Ij, where "j" is an unsigned integer without
leading zeros, cannot be translated with IUPPER VARS if "j" exceeds the
number of EXEC 2 arguments that are currently set.

(See the description of ICASE.)

Part 2: EXEC 2 Statements 23

Pr,defined Functipn,

A predefined function can be invoked only in the last term on the
right-hand stde of an assignment statement. The invocation takes the
for ... :

function-name OF [argl [arg2 •••]]

The names of the predefined functions, and the rules for their use are
as follows.

ICONCATENATION OF
ICONCAT OF

[wordl [word2 ...]]

Concatenates "wordl", "word2", ••• , into a single word, without
intervening blanks; or yields the null string if there are no words.
Example:

IA = MM

IB = ICONCAT OF XX IA 4S
IPRINT 18

This results in the printed line:

XXMM4S

IDATATYPE OF
ITYPE OF

Yields the value HUM if "word" represents a valid (signed or unsigned)
number; otherwise, yields the value CHAR.

IDIVISION OF
IDIV OF

dividend divisor

Yields a numeric value that results from dividing the dividend by the
divisor. Both the dividend and the divisor must be numeric and the
divisor must not be zero.

24 IBM VM/SP EXEC 2 Reference

In precise terms, the value 1S the ;ntegra1 part of the division of the
absolute value of the dividend by the absolute value of the divisor, or
minus this value if the d~vidend is not zero and the sign of the
dividend differs from that of the d;visor.

Examples:

IW = IDIV OF 7 2
IX = IDIV OF -7 -2
IY = IDIV OF -7 2
IZ = IDIV OF 0 -2

This 5et5 &W to 3, &X to 3, IY to -3, and IZ to O.

ILEFT OF word j

Yields a string of length "j" in wh;ch "word" is left-justified and
either padded with blanks or truncated on the right.

(See the description of IRIGHT OF.)

ILENGTH OF [word]

Yie1d5 a numeric value representing the length of the word (that is, the
number of characters in it); or yields zero ;f the word i5 ab5ent.

&LITERAL OF [string]

Yields the literal string that begins with the character following the
blank that terminates "OF" and ends with the last nonblank character
before or at the truncation column. Any leading or embedded blank5 are
retained, and the search for and replacement of any EXEC 2 variables
that may appear in the string is suppressed. Example:

I = ILITERAL OF IX =
IX = MM
IPRINT I IX

This results in the printed l,ne:

(Sea the description of ISTRING OF.)

Part 2: EXEC 2 Statements 25

&LOCATIOH OF needle [haystack]

Searches "haystack" for the first occurrence of "needle", and yields a
number indicating its starting position, or yields zero if there is no
occurrence (or if the length of "needle" exceeds that of "haystack").
Example:

IX = ILOCATION OF AHH LIZAHHE

This sets IX to 4.

(See the description of IPIECE OF, ISUBSTR OF, and IPOSITIOH OF.)

&MULTIPLICATIOH OF
IMULT OF

j

Yields a numeric value representing the result of multiplying the given
words. There must be at least two words given (I and j), and each word
must be numeric (signed or unsigned). Exampla:

IX = IMULT OF 4 5 6

This sets IX to 120.

IPIECE OF
ISUBSTR OF

word

Extracts that piece of "word" that starts at character "in, with length
"j"; or that starts at cha~.ct.r.-"i" and-runs ,-to. the and of the ... "'
00.

The value of "in (and "j" if given) must be numeric; also "in must be
positive, and "j" must not be negative.

If the value of "in exceeds the length of the word, the value of the
function is the null string. If "j" is given, but exceeds the remaintng
length of the word, the remaining length is used instead.

Example:

IA = &PIECE OF ABCDE 2 3
IB = IPIECE OF ABCDE 2 999

26 IBM VM/SP EXEC 2 Referance

IC = IPIECE OF ABCDE 33 2
IPRINT IA IB IC MMM

This results in the printed line:

BCD BCDE MMM

(See the description of ILOCATION OF.)

IPOSITION OF word [wordl [word2 •••]]

Compares "word" with "word1", "word2", ••• , looking for e match, and
yields a numeric value representing the position of the first matching
word, or yields zer~ if "word" does not match any of the other words (or
if there are no other words given). Example:

IX = IPOSITION OF THE NOW IS THE TIME

This sets IX to 3.

(Sea the description of 'LOCATION OF and 'WORD OF.)

IRANGE OF stem j

Yields a string consisting of the words that are composed by appending
to the given stem the nu~bers j, i+1, ••• , j, the words being separated
from each other by.a single blank; or yields the null string. if"i > j.

The stem 15 treated as a literal until after the composition is
performed. The numbers that are appended to it are stripped of any plus
sign or redundant leading zeros.

The composed names are searched for any EXEC 2 vari.bles, which are
replaced by their values in the usual way. If, as a result of this, a
word is reduced to the null string, it is discarded from the result, and
the next word 15 d.emed immediately to follow the previous one.

Examples:

A. Irrespective of the values of lA, IA3, 'A4, and lAS, the sequence:

,x = 'RANGE OF IA 3 5
'PRINT IX

produces the same result 8S:

IPRINT IA3 IA4 IA5

Part 2: EXEC 2 Statements 27

B. The sequence:

'ARGS A BC DEF GHIJ KLMNO

&X = &RANGE OF & 1 &N
&PRINT ax

yields the printed line:

A BC DEF GHIJ KLMHO

C. The sequence:

&X = &RANGE OF AB -2 +2
'PRINT 'X

yields the printed line:

AB-2 AB-l ABO A8l AB2

&RIGHT OF word j

Yields a string of length "j" in which "word" is right-justified and
either extended with blanks or shortened on the left.

(See the description of &LEFT OF.)

'STRING OF [string]

Yields the string that begins with the character following the blank
that terminates "OF" and ends with the last nonblank character before,
or at, the truncation column, suppressing the removal of any leading or
embedded blanks in the string.

Each word in the string is searched in the usual way for the names of
EXEC 2 variables. These variables are replaced by their values.
However, blanks are not removed from the string, even if they are
adjacent to a word that is reduced to the null string.

Example:

&A = STRING
&8 = ENDS
&X = &STRING OF A PIECE OF &A
&PRINT &X

This yields the printed line:

28 IBM VM/SP EXEC 2 Referanca

HAS TWO &8

",-,~ PIECE OF STRING . HAS TWO ENDS

(5 •• th.'d.scription ~f &LITERALOF.)

ITRANSLATION OF
ITRANS OF

wordl

Makes a copy of "wordl", modifies the characters in it as directed by
"word2" and "word3", and ytelds the resulting string.

The rules for modification are a. follows. Each character of the copy
15 considered in turn, and:

1. if "word2" does not contain a matching character, the character in
the copy is left unchanged; or

2. if "word2" contains a matching character, in position "in (or if it
contain. several matching characters, the first of which occupies
position "in), the character in the copy is replaced by the ith
character of "word3", or by a blank if "word3" is not given or
contains fewer than Wi" characters.

The result has the same length as "wordl".

Examples:

1. The sequence:

IX = ABCI23,XYZ
IX = ITRANS OF IX ABCDEF, abcdef
IPRINT IX

yields the printed line:

abc123 XYZ

2. The sequence:

IYY/MM/DD = 10/10/29
IMM/DD/YY = ITRANS OF 45678312 12345678 IYY/MM/DD
IPRINT IMM/DD/YY IYY/MM/DD

yields the printed line:

10/29/80 10/10/29

Part 2: EXEC 2 Statements 29

'TRIM OF [word]

Yields a string consisting of "word" with any trailing blanks removed,
or yields the null string if "word" is not given.

&WORD OF [word1 [word2 ••• 11

Yields the ith word from the given list of words, or yields the null
string if "in is zero or exceeds the number of words that are given.
The value of "i" must b. numeric, and "i" must not be negative.

(Se. the description of 'POSITION OF.)

30 IBM VM/SP EXEC 2 Referance

U,.~-pefined Functions

A user-defined function can be invoked only in the last term on the
right-hand side of an assignment statement. The ;nvocation takes the
form:

line-number OF
label OF

The effect is to create a new generation of the EXEC 2 arguments 11 12
••• , initialized to "argl", "arg2", ••• , and to invoke the given
function; that is, to transfer control ~o the given line, or to a line
starting with the given label, in such a way as to allow a value to be
returned with the IRETURN statement.

The new generation of arguments supersedes the arguments that were
previously set, making the previous values and the number of arguments
previously set temporarily inaccessible. On entry to the body of the
function, the values of the arguments, and the number of arguments set,
are as given in the function ·invocation. Their values, and the number
of arguments set, can be changed in the body of the function in the same
way as outside, such as by assignment or with the IARGS or IREAD
statement. On return, the new generation of arguments is discarded, and
the previous values, and the number of arguments previously set, become
accessible again.

The first character of a label must be a hyphen. The search for a label
starts on the line following the function invocation. Then, if a match
IS not found before the end of the file, the .earch resumes at the top.
If a matching label does not exist, execution stops abnormallY with an
error message.

(See the description of the ICALL and 'RETURN control statements.)

Examples:

A. The user-defined function

-OVERLAY OF layee layer

is to return the string "layee" overlaid by "layer". (The result
will be different from "layer" only 1f "layee" 1S longer than
"layer".) Here is the body ~f the function, preceded by an example
of its invocation:

Part 2: EXEC 2 Statements 31

IS = -OVERLAY OF IS *

M THIS FUNCTION USES "I" AS A TEMPORARY VARIABLE
-OVERLAY I = 1 + ILENGTH OF 12
II = IPIECE OF II I
II = ICONCAT OF 12 11
IRETURN 11

B. Suppose there ;s an external program TIME that stacks the CPU time
consumed in (say) microseconds. The user-defined function -TIME OF
;s to return this number as its value, relieving its caller of the
need to issue the external command, check the return coda, and read
the answer. Here is the body of the function, preceded by an
example of its use:

IT = -TIME OF
(sequence to be timed)

IT = 0 - IT + -TIME OF
IPRINT TIME CONSUMED WAS IT

-TIME aCOMMAND TIM~
IIF IRC ~= 0 IGOTO -UNEXPECTED
IREAD ARGS
IRETURN 11
-UNEXPECTED aPRINT UNEXPECTED ERROR FROM TIME
IEXIT IRC

32 IBM VM/SP EXEC 2 Rafarance

IlI2 Z'BImI Substitution

The words that form an executable statement are searched for the names
of EXEC 2 variables. These variables are replaced by their values.
This is done according to the 'following steps:

1. Each word is inspected for ampersands, starting with the rightmost
character of the word and proceeding to the left.

2. If an ampersand 1S found, then it, with the rest of the word to the
right, is taken as the name of an EXEC 2 variable and replaced (in
the word) by its value. This may increase or decrease the length
of the word. Initially, all variables have a null value, except:

a. the variables that represent the EXEC 2 control words and
,predefined functions; they are initialized to their own names
(for example, the value of "aIF" is "aIF"); and

b. the EXEC 2 arguments, and the other predefined variables, that
have the values specified in the section "Predefined
Variables."

3. Inspection resumes at the next character to the left, and the
procedure is repeated from step 2 above, until the word is
exhausted.

There is an exception if the word is the target of an assignment. In
this case, inspection for ampersands stops on the second character of
the word.

Hote that any characters that are substituted are not themselves
inspected for ampersands. They are, however, included in the name of
the next variable if another ampersand is found to the left.

These rules make it possible to construct arrays of subscripted
variables.

Examples:

1. The sequence:

(Original file) (After Substitution)

IX = 123 2. IX = 123
&PRINT ABC IX ABC&X OOO&X 3. &PRINT ABC 123 ABC123 000123

Yields the printed line:

ABC 123 ABC123 000123

Part 2: EXEC 2 Statements 33

2. The sequence:

(Original file)

II = 2
IXII = 5
II = II - 1
IXII = II + 1
IX = IXII + IXIXII
IPRINT ANSWER IS IX

yields the printed line:

ANSWER IS 7

3. The sequence:

(Ori ginal fi le)

(After Substitution)

2. II = 2
3. IX2 = 5
4. II = 2 - 1
5. IXI =1 + 1
6. IX = 2 + 5
7. IPRINT ANSWER IS 7

(After Substitution)

IX = ICONCAT OF X IBLANK X 2. IX = ICONCAT OF X X
IIX = 7 3. IX X = 7
&DUMP VARS IX IIX 4. IDUMP VARS IX IX X

yields the printed line:

IX = X X
IX X = 7

34 IBM V"/SP EXEC 2 Reference

1. Recursive execution
2. Termination of an EXEC 2 file
3. Console input buffer
4. Assignment statement
S. Evaluation of 'DATE and 'TIME
6. Size and treatment of numbers
7. Removing plus signs and leading zeros
8. Syntax of conditional phrases
9. Embedded blanks

10. 'LOOP ~tatement
11. Closing of loops
12. Search for labels
13. Performance of label searches
14. EXEC 2 words are not reserved words
15. Example of &TRACE ALL
16. Truncation column

1. Recursrve execution.

An EXEC 2 file may invoke itself recursively, or may invoke other
EXEC 2 files, by issuing the appropriate command or subcommand.
(exEC 2 files may also invoke eMS EXEC files. See Appendix C.)
EXEC 2 files that have the filetype EXEC can, for example, be
invoked by means of the statement:

ICOMMAND EXEC filename <argl <arg2 ••• »

2. Termination of an EXEC 2 file.

An EXEC 2 file stops execution and returns to its caller:

a. when an IEXIT statement is executed; or

b. when an attempt is made to pass control to a line beyond the
last (for example by "falling off" the end of the file), in
which case a return code of zero is used; or

c. when an EXEC 2 error is encountered, in which case a .essage is
printed and execution stops abnormally.

3. Console input buffer.

EXEC 2 can u.e the CMS console ;nput buffer (sometime. referred to
as the console stack). This is a conceptual area in which lines can
be deposited FIFO (first tn, first out), or LIFO (last in, first
-out), and subsequently retrieved by attempts to read from the
console. It provides a simple mechanism for communicating between

Part 3: Hotes on EXEC 2 35

programs. In EXEC 2 files, lines can be deposited in the buffer
with the ISTACK or IBEGSTACK statements, and can be retrieved with
the IREAD statement.

4. Assignment statement.

The word immediately following the target of an assignment must be a
literal equal sign. It cannot be an EXEC 2 variable that has the
yalue of an equal sign nor an EXEC 2 variable that is discarded from
the statement due to having a null value. Conversely, if an equal
sign is to be the first word following a control word, either it
must be given as an EXEC 2 variable that has the value of an equal
sign, or there must be an intervening word that reduces to the null
string; otherwise, the statement is interpreted as an assignment,
and (if it is valid as such) the control word is assigned a new
value (see below, under "EXEC 2 words are not reserved words").
With this exception, a word that is discarded due to having a null
value has no effect on whether a statement is interpreted as an
assignment, even if it occurs at the beginning of the statement.
For example, in the sequence:

IX =
&LOOP 2 2

&X IV = 2 + 1
IX = IPRINT

the first statement in the loop is executed as an assignment to IY,
and then (the second time) as a IPRINT statement, resulting in the
line:

3 = 2 + 1

s. Evaluation of IDATE and ITIME.

The time is taken once for each execution of a statement that refers
to the predefined variable IDATE or &TIME. Therefore, multiple
references to these variables within a statement yield the same
values. If consistency (rather than currentness) is required over a
range exceeding one statement, then the values of &DATE and &TIME
must be assigned to ordinary variables. For example,

&STACK LIFO &DATE &TIME
&READ VARS ID &T

6. Size and treatment of numbers.

Words that are treated as numbers must represent integers. No limit
is imposed on the size of a number that appears in a comparison, oi
as an argument to the predefined function IDATATYPE OF. In contexts
that require numeric values, numbers must lie within a range that is
defined by the implementation. (In CMS, the range is -2,147,483,648
to +2,147,483,647. See Appendix C.) An attempt to interpret a
number outside the allowable range, or to derive such a number bv

36 IBM VM/SP EXEC 2 Reference

.rithmetic, causes numeric overflow. This overflow causas execution
to .top abnormally with an error message.

7. Removing plus signs and leading zeros.

A plus .ign, and any redundant leading zeros, can be stripped from a
numeric quantity by performing an arithmetic operation on it.

Example:

IX = 0000000000000000000012
IV = IX + 0
&PRINT &X IY

0000000000000000000012 12

8. Syntax of conditional phrases.

In the conditional phrases that occur in the &IF and conditional
&LOOP statements, a missing second comparand is regarded as a null
string. The first comparand and the comparator must always be
present; otherwise execution .tops abnormally with an error messaga.
If there is a risk of the first comparand having a null value!
syntactic validity can be ensured by prefixing both comparands with
the .ame character. For axample, the clause

&IF /&1 = /

is satisfied if, and only if, 11 i. null or blank; and

IIF /11 = /PRINT

f. syntactically valid aven if 11 i. null.

A ~'milar technique can be used to force character-string
comparisons even if both of the comparands are numeric. (In this
case, the prefix must not be numeric.) For axample, if it is known
that &1 has a numeric value, the clause

&IF /11 < /0

is satisfied if and only if II begins with a plus or minus sign. If
11 is aqual to "1", the clause is false. However, if 11 is equal to
"+1", the clause is true, sinca "+"is lass than "0" in a
character-string comparison. (For the relative values of
characters, refer to the internal codes for the EBCDIC character
.et, given in ~ SVltam/l70 Rafer,nee Summary, GX20-18S0.)

'art 3: Hotas on EXEC 2 37

9. Embedded blanks.

With a few exceptions, EXEC 2 does not embed blanks in the values of
variables. The exceptions are as follows:

a. IARGSTRING is initialized to the string containing the EXEC 2
arguments, and ICMDSTRING is initialized to the command string
exactly as passed to the EXEC 2 file. Therefore, these
variables may contain embedded blanks.

b. The "&READ STRING var" statement assigns to the given variable
the complete line exactly as read, that may contain embedded
blanks.

c. The predefined variable IBLANK can be used to embed blanks in
the value of a variable, for example:

IY = ICONCAT OF A IBLANK B

d. The predefined function &RANGE OF inserts a blank between each
word; the predefined functions &LITERAL OF and &STRING OF retain
embe~ded blanks that are given in their arguments; and the
predefined functions &LEFT OF, &RIGHT OF, and &TRANSLATION OF
can yield leading, embedded, or trailing blanks.

e. Embedded blanks can b. transmitted from one variable to another
with the assignment statement, and to the EXEC 2 arguments &1 &2
••• with the &ARGS statement or by invocation of user-defined
subroutines and functions.

Embedded blanks ara always significant. For example, "&IF " is not
recognized as "&IF"; and "10 " and" 10" cannot be used as numbers.

Embedded blanks can be removed from the value of • variable by
stacking it and rereadina it as a sequence of words. Suppose, for
example, that a line to be read from the console is required both in
its literal form (with embedded blanks, if any) and as a series of
normal words (wi thout embedded blanks>. The follo.wi ng sequence
achieves this:

&READ STRING &S
&STACK LIFO &5
&READ ARGS

Now IS contains the literal string, and the EXEC 2 arguments II 12
••• , contain the constituent words.

10. &LOOP statement.

The first three words of the ILOOP statement are searched for EXEC 2
variable. (in the normal way) when the ILOOP statement is executed.
However, the remainder of the statement (whi~h is present only if
"WHILE" or "UNTIL" Is given) Is saved without inspection. This

38 IBM VM/SP EXEC 2 Reference

... vad phrase is then jnt.rpreted as a condition each time around the
loop (including the first time). For example:

IJ = 3
ILOOP 2 UNTIL IJ = 5

IJ = IJ + 1
IPRINT IJ

This results in the printed lines:

4
5

11. Closing of loops.

A loop may ba in any of three mutually exclusive states: active,
suspended, or closed. A loop becomes active when execution of its
defining ILOOP statement begins. It is suspended if another loop
becomes active before the first is closed or if a user-defined
subroutine or function is invoked. It becomes active again when the
second loop is closed or when a corresponding IRETURN statement is
executed. A loop is closed when it is active, and when either:

a. the requirement for termination, given in the ILOOP statement,
is met; or

b. control is transferred to a line outside the scope of the loop
by any means other than invocation of a user-defined function or
subroutine.

In addi ti on, the &EXIT ._t __ tclo ••• all loops, -end the &RETURN
¥ataaaant .cl~es"f\'y ,J~oP. thtlt twtv_ .p •• n_:op-aned cl~r i ng axecut i on of
.,"~5er-dafjnad. ~outj:~ . .,. .wcti.on.

Examplas:

a. In the following sequence, the ISKIP statement closes the loop
after tan iterations, sinca it transfers control to a line below
the last in the loop.

IJ = 0
ILOOP 2 M

IJ = 'J + 1
'IF 'J > 9 ISKIP 0

b. In the following .equence, the second loop closes the first loop
since it causas control to be transferred to a line outside the
scope of the first loop.

ILOOP 1 JE

ILOOP 1 1
I =

Part 3: Notes on EXEC 2 39

The first loop would similarly be closed~ for the same reason.
if the second loop statement were replaced by • aBEGPRIHT.
IBEGTYPE. or aBEGSTACK statement which occupied more than one
line.

12. Search for labels.

The search for a label to which reference is made in a 'CALL. 'GOTO.
or IlOOP statement. or in the invocation of a user-defined function.
involves axamination of the first word on each line, without regard
to its context, or what follows it. It is, therefore, necessary to
avoid using labels that would be matched by the first word of a line
within a 'BEGPRINT, 'BEGTYPE, or 'BEGSTACK statement.

Labels that are attached to statements are treated literally; they
are not searched for EXEC 2 variables. Labels need not be unique.

13. Performance of label searches.

a. 'CAll, 'GOTO, and user-defined functions

A &CAlL statement, a 'GOTO statement. or an invocation of a
user-defined function that transfers to a label above the
current statement tends to ba inefficiant, aspecially in long
EXEC 2 files. It is preferable to usa tha 'LOOP statement in
place of an upward "&GOTO label" statement.

b. &LOOP label

A "&LOOP labal ••• " statement is convertad, at tha tima of its
execution. into the equivalent "'LOOPn •.•• " statement.
Therefora. the overhead for finding the label is incurred only
onca, when the loop is entered, irrespective of the number~of
iteratton ••

14. EXEC 2 words are not reserved words.

EXEC 2 control ~ords, predefined functions. and predefined variable.
are known as EXEC 2 words. EXEC 2 words begin with an ampersand;
but, unlike ordinary variables, they have an initial value that is
not null.

The initial value of EXEC 2 control words and predefined functions
is the word itself (for example, the value of "aIF" is "'IF"). If
one of these words is assigned a different value (for example. 'IF =
ABC). than the feature that it rapresents in the language ;5 lost to
the EXEC 2 file unless it, or another variable. is reset to the old
value (for example aIFX = &LITERAL OF 'IF) and used appropriately. .

In the case of predefined variables other than the EXEC 2 arguments.
the special properties of a variable disappear if an explicit
assignment is made to it. For example, the statement:

40 IB" V"'SP EXEC 2 Reference

ITIME = ITIME

inhibits further automatic u~dating of the variable ITIME.

Words of the form Ij, where ftj" is an unsigned integer without
l.ading zeros, are reserved for the EXEC 2 arguments. They can be
set explicitly (for example, '2 = 1) only if they are within the
range of arguments that are currently set. With this exception,
EXEC 2 words are not reserved words, and can, if desired, be used
like ordinary variables.

'READ VARS, 'READ STRING, and &UPPER VARS are treated as explicit
assignments to the variables given; &ARGS, 'READ ARGS, and &UPPER
ARGS ara not treated as explicit assignments to IN or 'INDEX.

If a feature, function, or value is accessible through more than one
name (for example, IPIECE OF and ISUBSTR OF), an assignment to one
of the names does not affect the other name or names.

With the exception of the arguments 11 12 ••• , there are no EXEC 2
words that end wi th a numeral, and it .i 5 intended that no such words
will aver be introduced. Therefore, variables such as IA1, 'A2,
••• , can be relied upon to have an initial value of null. However,
the names of variables that do not end with .'nuM.ral should not be
used in a way that relies upon their initial value being null.

15. Example of &TRACE ALL

Assume that an editor accepts the requests NEXT (which moves down
the file, and yields a return code of zero unless the end of file is
reached), LENGTH (which stacks the length of the current line), and
TOP (which moves to the first line in the file). The following
sample ed,t macro (called LONGER) searches for the next line that is
longer than the given length (passed to the EXEC file as an
argument).

&TRACE ALL
NEXT 0
'IF IRC .. = 0 TOP
NEXT
'LOOP 4 WHILE 'RC = 0

LENGTH
'READ VAR 'L
'IF IL > 11 'EXIT
NEXT

IEXIT 'RC

If the macro is invoked at the and of the fila, the search starts
from the top.

Part 3: Notes on EXEC 2 41

Suppose that the macro 15 invoked with the parameter 40 at the end
of a file containing two lines, both of length 30. This is the
trace:

2. NEXT 0
+++ E(l) +++
3. IIF I ~= 0 TOP
3. ..;. TOP
It. NEXT
S. ILOOP It WHILE IRC = 0
--- LOOP WHILE 0 = 0
6. LENGTH
7. IREAD VAR IL
30
8. IIF 30 > ItO IEXIT
9. NEXT
--- LOOP WHILE 0 = 0
6. LENGTH
7. &READ VAR IL
30
8. IIF 30 > 40 IEXIT
9. NEXT
+++ Eel) +++

LOOP WHILE I = 0
10. IEXIT 1

16. Truncation Column

A truncation column may be specified with the IBEGSTACK, IBEGTYPE,
IBEGPRINT, and ITRUNC statements.

In all cases the truncation column is the last column in which
characters are significant. Characters in columns that are beyond
the truncation column are ignored.

Example:

----:----1----:----2
ITRUNC 10
IX = ABCDEFG~IJK

This sets IX to ABCDE.

42 IBM V"/SP EXEC 2 Reference

!At!!i IHf p.scr;pt;on gf 1bA ~ 1 Syntax

What follows ;s a description of the EXEC 2 syntax in Backus-Naur Form
(BNF). This is an alternative to the other descriptions in this manual
and is not essential reading.

Tha items enclosed in the angular brackets "<" and ">" are variables
(nonterm;nal symbols). Thase items are replaced by the items to the
right of "::=". (":;=" means "is to be replaced by".) The items to the
right of "::=" may give exact replacements, other variables to be
replaced, or the final step of tha syntax breakdown. Items in capital
latters ara exact replacements. Items in lowercase, not surrounded by
tha angular brackets, ara the final step (terminals) of the syntax
breakdown.

<statement>

<comment>

<label>

<word>

<unconditional_stmt>

<number>

: : =

: : =

: : =

: : =

: : =

::=

::=

: : =

::=

::=

<statement>
<exec_file> <statement>

<comment>
<labal> <executabla_stmt>
<executable_stmt>

M anything

-<word>

<unconditional_stmt>
<if_clause> <executabla_stmt>

<number>
<character_string>
<variable>

<assignment>
<control_stmt>
<command>
null

IIF <word> <comparator> <word>

<unsigned_integer>
+<unsigned_integer>
-<unsigned_integer>

<character>
<character_string><character>

Part 4: IHF Description of the EXEC 2 Syntax 43

<variable> ::= I<character_string><lettar>
I<charactar_string><variabla>
I<character_string>symbol
Isymbol

<assignment> : : = <variable> = <rhs>

<control_stmt> ::= IARGS
&BEGPRINT
&8EGTYPE
&BEGSTACK
&BUFFER
&CALL
&CASE
&COMMAND
&DUMP
&ERROR
&EXIT
&GOTO
&IF
&LOOP
'PRESUME
&PRINT
'READ
&RETURN
&SKIP
&STACK
&SUBCOMMAND
&TRACE
&TRUNC
&TYPE
&UPPER

<command> : : = CP command
CMS command
XEDIT command (i f working with

an XEDIT macro)

<comparator> : : = =IEQ
.. =IHE
<ILT
<=I .. >ILEING
>IGT
>=I .. <IGEINL

<unsigned_integer> ::= <digit>
<unsigned_integer><digit>

<character> : : = <letter>
<unsigned_integer>
symbol

<letter> ::= alblcldl ... Ixlvlz

44 IBM VM/.P EXEC 2 Reference

<rhs>

<function_invocation>

: : = <word>
<function_invocation>
<arithmetic_rhs>
null

::= 0111213141516171&19

::= ICONCAT OF
'CONCATENATION OF
IDATATYPE OF

::=

: : =

'DIV OF
'DIVISION OF
lLEFT OF
ILENGTH OF
ILITERAL OF
ILOCATION OF
IMULT OF
'MULTIPLICATION OF
IPIECE OF
IPOSITION OF
'RANGE OF
'RIGHT OF
ISTRING OF
'SUBSTR OF
'TRANS OF
lTRANSLATION OF
lTRIM OF
lTYPE OF
IWORD OF
user-defined function

<arithmetic_expr>
<arithmetic_expr> + <function_invocation>
<arithmetic_expr> - <function_invocation>

<number>
<arithmetic_expr> + <number>
<arithmetic_expr> - <number>

Part 4: IHF Description of the EXEC 2 Syntax 45

!It! Ii ~ I Error.

If the EXEC 2 interpreter finds an error, it issues the following
message:

ERROR IN EXEC FILE fn ft fm, LINE nnn - description of error

(In CMS, this is message DMSEXE08SE.)

Execution of the EXEC 2 file then stops abnormally with one of the
following return codas.

Return
Code

10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017-
10019
10020
10021
10097
10098
10099

Description
of Error

FILE NOT FOUND
WRONG FILE FORMAT
WORD TOO LONG
STATEMENT TOO LONG
INVALID CONTROL WORD
LABEL NOT FOUND
INVALID VARIABLE NAME
INVALID FORM OF CONDITION
INVALID ASSIGNMENT
MISSING ARGUMENT
INVALID .ARGUMENT
CONVERSION ERROR
NUMERIC OVERFLOW
INVALID FUNCTION NA~E
END OF FILE FOUND IN LOOP
DIVISION BY ZERO
INVALID LOOP CONDITION
ERROR RETURN DURING 'ERROR ACTION
ASSIGNMENT TO UNSET ARGUMENT
STATEMENT OUT OF CONTEXT
INSUFFICIENT STORAGE AVAILABLE
FILE READ ERROR nnn
TRACE ERROR nnn

The EXEC 2 interpreter also issuas the following messagas:

INVALID EXEC COMMAND

(In CMS, this ;s message DMSEXE17SE.)

Return Code: 10000

46 IBM VM/SP EXEC 2 Reference

•

IHSUFFICIEHT STORAGE FOR EXEC IHTERPRETER

(In CMS, this ;s .essage DMSEXE255T.)

Return Code: 10096

The ICRASH statement is useful in debugging the EXEC 2 interpreter
(module DMSEXE). It is intended for ~se only' by IBM or customer system
aupport par.onn.l. Note that the &CRASH command is DR! used for
debugging programs or EXEC 2 files written in the EXEC 2 language. For
information on debugging EXEC files written in the EXEC 2 language,
refer to the ITRACE statement in this book.

A complete description of the ICRASH command can be found in ~
System Proqrammir's Guide.

Part 5: EXEC 2 Errors 47

Appendjx Ai ~ ~ IQd ~ I R.lationshjp

Convertin, ~ ~ Files !g ~ I filii

CMS EXEC files continue to b. supported without modification. However,
to take advantage of the new function and performance available under
EXEC 2, you must convert your EXEC files to conform to EXEC 2 language.
The first step in converting CMS EXEC files to EXEC 2 files is to change
the &CONTROL statement to &TRACE. This statement determines which EXEC
interpreter will handle the EXEC file. &CONTROL indicates the CMS EXEC
interpreter, and I TRACE i ndi cates the EXEC 2 interpreter. Thi. mU5,~ be
the fi rst record in the EXEC fila ..

Next# the CMS EXEC statements must be converted to their corresponding
EXEC 2 counterparts. A comparison between the language definitions of
CMS EXEC and of EXEC 2 follows. A section listing unique EXEC 2
functions follows the comparison sections.

~ statement Comparison

Control statements

IARGS

IBEGEMSG

IBEGPUNCH

&BEGSTACK
ALL parameter specifies
stacking of the entire
line up to 130 characters.
The absence of ALL results
in truncation at 72
characters.

48 IBM VM/SP EXEC 2 Reference

Supported; does not have a limit
of 30 arguments.

Not supported

Hot supported

ALL parameter is not supported.
If a truncation value 1S not
specified, the li~es are not
truncated. lEND is not supported
as a data list delimiter. The
number of lines to be stacked
can be specified with the "n"
parameter. An "M" will stack
lines to the end of the file.
The "label" par~meter allows
lines to be stacked down to
a specified label. Parameters

&8EGTYPE

·&CONTINUE

&CONTROL

&EMSG

lEND

&ERROR

&EXIT

&GOTO
The parameter TOP directs
the EXEC processor to the
first line of the program.

&HEX

&IF

&LOOP

&PUNCH

&READ

&SKIP

&SPACE

&STACK

FIFO and LIFO are supported.

(See comment for &BEGSTACK;
also supported as &BEGPRINT.)

Treatad as a null statement.

&TRACE. &TRACE do~s not
support the following parameters:
MSG, TIME, PACK, NOMSG, NOTIME,
NOPACK. Uses parameter ON in
place of CMS. Parameters OFF,
ERRORCERR), ALL are supported.
"M" has been added.

Not supported

Not supported

Supported; 'CONTINUE is
treated as a null statement.

Supported

TOP is not explicitly supported.
The line number value 1 provides
equivalent function. The line
number and label parameters are
supported.

Not supported

Supported; &$ and &M are not
supported.

The 'conditional expression
must be preceded with "WHILE"
or "UNTIL". "M" has been added.

Not supported

Supported; "*" and STRING have
been added.

Supported

Not supported; 5ee 'PRINT.

Supported. ,jtT~d RT are
not supported. SET CMSTYPE HT
and SET CMSTYPE RT era their
equivalents.
(. ,. ... ES t ,.«.& "~a-J C.M~ t.'MM""O!)

Appendix A: CMS EXEC and EXEC 2 Relationship 49

&TIME
Used to request timing
information during
execution.

&TYPE

Predefined Functions

&CONCAT

&DATATYPE

&LENGTH

&LITERAL

&SUBSTR

Predefined Variables

&0 Represents the filename.

&1 &2 •.•

SO IBM VM/SP EXEC 2 Reference

Not supported a. a control
statement. Used a. a pre
defined variable to display
the true time-of-day on the
primary meridian (Greenwich
Mean Time (GMT». See &TIME
under the section "PREDEFINED
VARIABLES" in this publication.

Supported; also supported as
&PRINT.

Supports &CONCAT OF and
&CONCATENATION OF

Supports &DATATYPE OF
and &TYPE OF

Supports &LENGTH OF

Supports &LITERAL OF

Supports &SUBSTR OF and
&PIECE OF

Normally, this parameter
represents the filename,
but this may be different
if the EXEC was invoked by
a synonym.

Supported; does not have a limit
of 30 arguments.

Not supported, but see &POSITION OF
and &LOCATION OF.

at

IDISKX

I.DISKM

IDISK?

'DOS

'EXEC

'GLOBAL

'GLOBALn

IINDEX

'LINENUM

.:.ftEADFLAG

'RET CODE

ITYPEFLAG

Hot supported, but see IPOSITION OF
and ILOCATION OF.

Not supported

Hot supported

Hot supported

Hot supported

Supported as 'FILENAME

Not supported

Not supported

Supported; also supported as IN,
does not have a limit of
30 arguments.

Supported; also supported as
ILINE

40t supported

Supported; also supported as
IRC

Not supported

Appendix A: eMS EXEC .nd EXEC 2 Relationship 51

Functions unigue 1R ~ Z

Control statements

&BUFFER

&CALL

&CASE

ICOMMAND

&DUMP

Predefined Functions

&DIVISION OF and
&DIV OF

&LEFT OF

&LOCATION OF

&MULTIPLICATION OF and
&MULT OF

&POSITION OF

Predefined Variables

&

&ARGSTRING

&BLANK

&CMDSTRING

ICOMLINE

&DATE

&DEPTH

52 IBM VM/SP EXEC 2 Rafaranca

&RETURN

&SUBCOMMAND

&TRACE (similar to &CONTROL
in eMS EXEC)

&TRUNC

&UPPER

&RANGE OF

&RIGHT OF

&STRING OF

&TRANSLATION OF and
&TRANS OF

&TRIM OF

&WORD OF

&FILEMODE

&FILENAME

&FILETYPE

&FROM

&LINK

&TIME

ath.~

User-Defined Functions

Blanks in values of vari.bles

Arbitrary characters allowed in variable names

Appendix A: C"S EXEC and EXEC 2 Relationship S3

App.ndix Ii Ilmpl. IJIQ 2 filii

1. Thts sample EXEC 2 file, called GRAB EXEC, copies a file from any
CMS disk to the user's A-disk.

ITRACE
IIF IN = 0 IGOTO -TELL
&IF IN < 2 IGOTO -BAD
IIF IN > 3 &GOTO -BAD
&IF IN = 2 IARGS 11 12 •
COPYFILE 11 &2 13 11 &2 A
IEXIT IRC

-BAD &PRINT INVALID GRAB COMMAND
IEXIT 101

-TELL IPRINT COMMAND IS: GRAB FN FT [MODE]
&PRINT COPIES THE GIVEN FILE TO THE A-DISK,
IPRINT AND PASSES BACK THE RETURN CODE FROM
IPRINT 'COPYFILE'.
IEXIT 100

2. This sample EXEC 2 file, called SHIP EXEC, sends a specified CMS
file to a specified user. The comments are included for tutorial
pu ... pos~s.

ITRACE

• COMMAND IS: SHIP USER FILENAME FILETYPE [MODE]
• IF THERE ARE NO ARGUMENTS GIVEN, TELL USER HOW •••

IIF IN = 0 IGOTO -TELL

• CHECK THE NUMBER OF ARGUMENTS, AND USE FILEMODE
• OF "." IF IT IS NOT GIVEN .•• 4

IIF IN < 3 IGOTO -BAD
IIF IN > 4 IGOTO -BAD
IIF IN = 3 IARGS II 12 13 •

• SPOOL PUNCH TO RECIPIENT'S CARD-READER, OR
M COMPLAIN IF RECIPIENT IS NOT KNOWN TO SYSTEM •••

CP SPOOL PUNCH TO &1 CLASS A
IIF IRC ~= 0 &GOTO -BADUSER

M PUNCH THE FILE, OR COMPLAIN IF FAILURE •••

54 IBM VM/SP EXEC 2 Referene" - .>

PUNCH 12 13 14
IIF IRC ~= 0 IGOTO -ERROR

M TELL RECIPIENT 'WHAT HAS BEEN DONE; THEN UNSPOOL
M THE PUNCH, AND RETURN WITH SUCCESS •••

CP MSG 11 I HAVE PUNCHED YOU MY FILE &2 &3 14
CP SPOOL PUNCH TO * CLASS A
IEXIT

M TELL RECIPIENT INVALID SHIP COMMAND, AND RETURN
M WITH ERROR .••

-BAD IPRINT INVALID SHIP COMMAND
IEXIT 101

M TELL RECIPIENT GIVEN USERID IS NOT VALID, AND
M RETURN WITH ERROR .••

-BADUSER &PRINT II IS NOT A VALID USERID
IEXIT 102

M TELL RECIPIENT ERROR WHEN PUNCHING FILE; THEN
M UNSPOOL PUNCH AND RETURN WITH ERROR .••

-ERROR &PRINT ERROR &RC FROM "PUNCH" (WHILE IN SEND)
CP SPOOL PUNCH TO * CLASS A
&EXIT 103

M TELL USER HOW .••

-TEll IPRINT COMMAND IS: SHIP USER FN FT [FMJ
&EXIT 100

Appendix B: Sample EXEC 2 Files 55

Appendix ~ IXik Z in ~

Identifying IXik i filii

Since both CMS EXEC and EXEC 2 files are called in the same way, CMS
examines the first statement of the EXEC 2 file to determine which EXEC

"interpreter must handle it. If the first statement of the EXEC file is
&TRACE, CMS calls the EXEC 2 interpreter to handle it. If the first
statement is not &TRACE, CMS calls the CMS EXEC interpreter to handle
it.

When EXEC 2 programs are-called from command level, the command verb
(which becomes &0) and the arguments (which individually become &1 &2
.•• and collectively become &ARGSTRING) ara translated to uppercase.
&CMDSTRING will contain the untranslated command string.

When EXEC 2 programs are invoked from another EXEC 2 program, no
translation takes place, and &CMDSTRING will be the same as the &STRING
OF &0 &ARGSTRING (if &0 was delimited by a blank) or &CONCAT OF &0
IARGSTRING Cif 10 was delimited by a parenthesis).

It is possible to 'pretend' a command-level call by using the CMS
command, CMDCALL. CMDCALL converts EXEC 2 extended plist function calls
to CMS extended plist command calls. The use of CMDCALL in an EXEC 2
exec allows the message 'FILE NOT FOUND' to be displayed for the ERASE,
LISTFILE, RENAME, and STATE commands. Also, an EXEC 2 program invoking
another EXEC 2 program will have the same results as an EXEC 2 program
being called from command lavel. &0, &1 &2 ••• , and &ARGSTRING will be
translated as stated above.

In either case, calling an EXEC 2 program from command ~evel or invoking
an EXEC 2 program from another EXEC 2 program, the CMS convention that
parentheses are token delimiters is applied to separate 10 from
IARGSTRING, but it IS not applied to delimit &1, 12 •••• from each
other.

S6 IBM VM/SP EXEC 2 Reference

lummarv gf. L j ,; is :fill! GG Z f..Uu in mil
'. ;0, ~

Some OMS limits ·that apply to EXEC 2 files are:

•

•

•

•

•

•

•

•

•

•

EXEC 2 files used as CMS command files must hava the word &TRACE as
the first word 1n the first record of the file. In subcommand
environments, such as XEDIT for XEDIT macros, the word 'TRACE is
optional.

The maximum length of an EXEC 2 lina is 255.

The maximum length of a statement, after replacement of variables, is
511. (This limit is enforcad only as naeded by the interpreter; soma
statements can grow to a greater length.)

The maximum langth of e line read from tha console is 130, and from
th. console .tack is 255.

The maximum length of a printed line 1s 130.

An EXEC 2 filaname can be from one to eight characters long. Tha
valid characters are A-Z, 0-9, $, I, a, +, : (colon), - (hyphen), and
_ (underscora). The filatype must ba EXEC for files that ara invoked
from CMS command mode and XEDIT for files used as XEDIT macros.

All EXEC 2 files have an initial lookaside buffer of 32 lines (see
the IBUFFER description in the "Control Statements" .ection). The
IBUFFER 0 statement must be issued to delete the lookaside buffer if
the file is to be modified while being executed.

In a context that requires numeric values, numbers must be in the
range -2,147,483,648 to +2,147,483,647.

In CMS, return codes for the IEXIT control statement are limited to
the range ~2,147,483,648 to +2,147,483,647. Attempts to exceed these
limits will cause the EXEC 2 file to stop abnormally with an error
message (NUMERIC OVERFLOW).

• CMS commands issued from EXEC 2 files are invoked in such a way that
most information and error message. issued by the following CMS
commands will not be typed: ERASE, LISTFILE, RENAME, STATE, and

I FILEDEF. (See the description of CMDCALL, in section "Calling EXEC 2
.1 Programs from CMS Command Level" above, for an exception to this
I statement.) This is also true for any other system or user command

that makes a distinction in its operation based on flags passed in
register 1. However, note that a nonzero return code from any of
the.e commands will be reflected in the predefined variables IRETCODE
and IRC.

·Appendix C: EXEC 2 in CMS 57

I • EXEC 2 is design.d to .. int.in • co.pl.x program environm.nt. For
1 this reason, .utomatic cle.n-up will not b. invok.d at the completion

of •• ch comm.nd withIn the EXEC. It's the progr.mm.r'.
re.ponsibility to .n.ure th.t .ny n.c •••• ry cle.n-up function. (i •••
STRINIT, OS RESET, VSAM CLEAN-UP, .tc.) .r. invok.d wh.n n •• ded •.

• Th. l.ngth limit for v.lue ••• sign.d vi. the EXECCOMM int.rf.c. is
255. If the limit i •• xc •• d.d, the r.turn cod. from the EXECCOMM
int.rf.c. is 16 (INVALID VALUE).

• Th. l.ngth limit for the .xt.rnal n.m. of a .har.d variable i. 254.
If the limit is .xc •• d.d, the r.turn code from the EXECCOMM int.rfac.
is 8 (INVALID NAME).

• If. "STORE" raf.rence ,. mad. to .n un •• t EXEC 2 .rgument (i ••••
v.ri.bl. of the form Ii where "in is an unsigned numb.r without
l.ading z.ro. that excaad. the numbar of EXEC 2 .rgument. th.t ar.
curr.ntly .tor.d), no assignment is p.rformad, .nd the raturn cod.
from the EXECCOMM int.rfac. i. 8 (INVALID HAME).

• If. "FETCH" r.f.r.nca is mad. to IARGSTRIHG (or ICMDSTRIHG) via the
EXECCOMM interface .nd the l.ngth of &ARGSTRING (or ICMDSTRIHG)
exceed. 255, a length of 256 i. r.corded. If the l.ngth of the
callar'. araa .xce.d. 255, the value is truncated without any .rror
indication.

• If a "FETCH" r.fer.nc. i. mad. to ITIME or IDATE via the EXECCOMM
int.rface, the time-of-day r.turned ;. the same for all r.f.r.nc.s
from a givan program invocation, 5inc. (as far as the EXEC 2
interpr.t.r is concern.d) the sam •• tatement is still in .x.cution
(sae not. 5, "Evaluation of &DATE and ITIME," in section.3).

58 IBM V"/!P EXEC 2 R.fer.nc.

UJ.imI nG Z parameter J..iI1I Hi1b Assembler Langua,e programs

The calls illustrated below are made via CMS SVC 202 calls.

1~ EXEc 2 interpreter calling another program:

For 'COMMAND wordO wordl ••• wordn
RO = ACHPLIST)
Rl = ACtokenized CMS pliSt)
High-order byte of Rl is X'OI'.

For 'SUBCOMMAND wordO wordl ..• wordn
RO = ACHPlIST)
Rl = AC=Cl8'wordO')
High-order byte of Rl is X'02'.

where:

NPlIST DS OF
DC ACCOMVERB)
DC ACBEGARGS)
DC ACEHDARGS)
DC ACO)

COMVERB EQU M the command verb
DC C'wordO'
DC C' , optional blanks

BEGARGS EQU M the argument string
DC C'wordl'
DC C' ,
DC C'word2'
DC C' ,

DC C'wordn'
EHDARGS EQU *

2. Calling the EXEC 2 interpreter with a tokenized plist only:

RO = irrelevant
Rl = ACCMS tokenized plist)

• High-order byte of Rl as from LA, BAL, or BALR.

The value of &ARGSTRING in this case ;s .et 8S If by the EXEC 2
statement:

&ARGSTRIHG = &RANGE OF & 1 &INDEX

Appendix C: EXEC 2 in eMS 59

3. The EXEC 2 interpreter can be passed an extende~ plist, that
specifies an untokenized argument string. In addition, the
parameter list may precisely identify the EXEC file to be executed
Cand thereby speci fy a fi letype other than EXEC, or an expl i ci,t
filemode); or it may identify an "in-memory file." An "in-memory
file" is similar in concept to a file on disk, but it is resident in
memory.

RO = ACHPLIST)
R1 = ACCMSPLIST)
High-order byte of R1 ;5 X'Ol'.

NPLIST DS
DC
DC
DC
DC

OF
ACO)
A(BEGARGS)
ACENDARGS)

(ignored by EXEC 2)

A(O) or A(FBLOCK)

CMSPLIST DS OF
DC CL8'EXEC'
DC CL8'filenama' (Ignored if file block is given)

CAlways ignored by EXEC 2 interface)

* If no FBLOCK is given for the above instruction in the NPLIST
* Ci. e. ACFBLOCK) is zero), the filename of the EXEC file is
• taken from the second 8-byte token of the araa addressed
• by register 1. This will be the value after synonym resolution
• so it may be different from &0.

• •
*
* •

BEGARGS

ENDARGS

FBLOCK

EQU *
DC
DC
DC
EQU

DS
DC
DC
DC

C'ampO'
C' ,
C'argstring'

•

OF
CL8'filename'
CL8'filetype'
CL2'filemode'

the argument string
no embedded blanks, becomes 1O
single blank separates &0 from &ARGSTRING
becomes IARGSTRING

. File Descriptor .
if blank, 10 will be used - se. &0
may be blanks for lPRESUME lCOMMAND
should be given as '.', or blanks for
in-memory files

IMPORTANT NOTE: Th. default lPRESUME setting is 85 follows: .

No file block given: ICOMMAND
File block given. filetype blank: . &COMMAND,

"

File block given, filetype non-blank: ICOMMAND filetype

60 IBM VM/SP EXEC 2 Reference

•

•
M

•
* M

M

Thus, if a fi~etype of EXEC is explicitly specified in the file
-block, ~he default presumption will be ISUBCOMMAND EXEC, and not
'COMMAND, even though an EXEC file of filetype EXEC will be
executed."

M The following is an FBLOCK extension block. The first
• halfword specifies how many words are in the extension
• block. CMS requires a value of either zero or two.

DC XL2'0002' Humber of full words that follow
DC AL4CPGMFILE) Address of the in-memory

EXEC 2 descriptor
DC AL4CPGMEND-PGMFILE) Number of bytes in the

descriptor

• If no "in-memory file" is provided, the values in
• the extension must either both be zero, or be
• omitted by changing the XL2'0002' to XL2'OOOO'.

M

PGMFILE DS OF in-memory EXEC 2 Program
DS ACline l),F'len l' Address and length of

file line 1
DS AClina 2),F'len 2' Address and length of

file line 2
DS ACline 3),F'len 3' Address and length of

file line 3

DS A(l;ne n),F'I.n n' Address and length of
file line n

PGMEND DS OH

M The above fields are not checked by the interpreter, but they
• are used in error messages and in the predefined variables
M 'FILENAME, IFILETYPE, and lFILEMODE. If they contain embedded
M blanks, the results are unpredictable.

4. Using the EXEC 2 interpreter as a macro processor.

The use of EXEC 2 programs as macros or command files for user
specified command processors requires functions provided by the CMS
SUBCOM function.

The following paragraphs describe how to use SUBCOM and the EXEC 2
interpreter to implement a macro facility.

Issue SUB COM SVC 202 to .et up an entry point In the command
processor. (For information on how to do this, refer to ~
SVltem Proqrlmmer', ~ under SVC 202 and SUBCOM/DYNAMIC LINKAGE.)

Appendix C: EXEC 2 in eMS 61

Call EXEC 2 as in example 3 above. The filetype from the file
descriptor block becomes the default &PRESUME &SUBCOMMAHD
environment except when it is blank, in which case the default
filetype is EXEC, and the default presumption is &PRESUME &COMMAND.

When subcommands are encountered in the macro, the EXEC 2
interpreter will call the entry point specified in the SUBCOM call.
This entry point may than take whatever action is necessary with the
command.

Upon return, the EXEC 2 interpreter continues with the next
statement or command.

When the EXEC 2 file terminates, control is returned to the
initiating program at the calling point.

Executing XEDIT "acros ;n EXEC 2

Tha basic subcommand language of tha XEDIT editor can be extended by
writing macros that are executed by the EXEC 2 interpreter.

These XEDIT macros are CMS files with the filetype of XEDIT.

When the EXEC 2 interpreter encounters an XEDIT subcommand, it sends the
command to XEDIT for execution.

XEDIT processes the command and returns to the EXEC 2 file with a return
code. The EXEC 2 file then continues execution with the next statement
or command. When the EXEC 2 file completes, control returns to XEDIT.

See ~ System Product Editor Command ~ ~ Reference for further
information on XEDIT macros.

62 IBMVM/SP EXEC 2 Reference

IXEccoMn = tharin, ~ I yariablel Hi1b Alsembler Language programs

EXEC 2 permits programs called from an EXEC 2 file to access all EXEC
variables used within that EXEC file. Variables eccessed in this manner
are called "shared variables." The EXECCOMM facility of EXEC 2 provides
this variable sharing environment. Using the "FETCH" and "STORE"
functions of EXECCOMM, programs can directly access and manipulate EXEC
2 variables. Also, the execution of commands or subcommands can result
in assignments to some of these variables as a side-effect of their
execution. It is also possible to create new variables in the called
program.

When variables are stored by a program, their names ere checked for
validity, but no substitution is carried out by EXEC 2. In other words,
names passed through EXECCOMM are taken exactly as is, and embedded
ampersands (&) ~ n21 causa multiple substitution.

Variables are identified by an "external name," which is the same as
their "internal name," but without the leading ampersand. For example,
to "fetch" a value contained in the internal variable "&VAlUE," a
program should use the external name "VALUE."

The facility works as follows:

When EXEC 2 starts to interpret e new EXEC or XEDIT macro, it first sets
up a subcommand entry point called EXECCOMM. When a program (command or
subcommand) is called ~y EXEC 2, it may in turn use the current EXECCOMM
entry point to Store or Fetch variable values.

To access variables, the EXECCOMM entry point is invoked using both the
normal and the extended Plist (see balow, also sae tha ~ System
Programmer's Gujde). SVC 202 should be issued with register 1 pointing
to the normalPl;st and the top flag byte of register 1 set to X'02'.

Appendix C: EXEC 2 in eMS 63

On return from the SVC, register 15 contains a summary return code for
the entire Plist. The possible return codes are:

R.turn Code Meaning

o or positive Entire Plist was processed. Register 15 is
the ~ompo5ite OR-ing of the SHVRET flags
C s.e below).

-1 Invalid entry conditions.

-2 Insufficient storage was available for the
requested operation. Processing was terminated.

-3 from SUB COM No EXECCOMM entry point found C i . e. not called
from inside a EXEC 2 Exec).

I !h§ register 1 Plist: Register 1 should point to a Plist which consists
I of the eight character string "EXECCOMM".
I
I
I
I
I
I

~ register! Plist: Register 0 should point to the SUBeOM Plist. The
first word of the SUSCOM plist should a150 point to the word "EXECCOMM."
No argument string should be given, 50 the second and third words should
be the seme Ce.g. point to the same address or both 0). The fourth word
of the Plist should point to the first of a chain of one or more request

I blocks.
I
I
I The call is mede via CMS supervisor call SVC 202, with the P.list
I registers set up as follows:
J
1 RO = ACNPlIST)

Rl = A(Cl8'EXECCOMM')

where:

NPlIST DS
DC

DC
DC
DC

OF
A(Cl8'EXECCOMM')

ACARGS)
ACARGS)
ACSHRlIST)

6~ IBM VM/SP EXEC 2 Reference

Csea below)
high-order byte =

subcommand Plist

X'02'

same as register 1, but with 0 in the
high-order byte

null argument string
end address of null argument string
pointer to first vari~ble access

request block

lhI rlgYIst blAck: -. Each ,.equIst block in thl cha in must be la i d out as
follows:

WWWWWWWMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM*****MMMMMMM**MMM***MM*********
M SHVBLOCK: layout of sharld-variable Plist element. M
MM •••• M.MMM.MMMMM*MM
M

SHRLIST
SHVHEXT
SHVUSER
S~VCODE

SHVRET

SHVBUFL
SHVHAMA
SHVHAML
SHVVALA
SHVVALL

OS
OS
OS
DS
DS
OS
DS
DS
DS
OS
DS

OF
A
F
CLI
XLI
H'O'
F
A
F
A

. F

Vari able Access Request Block,
Chain pointer (0 if last block)
Hot used, available for private use'
Individual function code
Individual return code flag
Hot used, should be zero
Length of 'FETCH' value buffer
Address of external variable name
length of external variable name
Address of value buffer (0 = 'none')
Length of value (set by 'FETCH')

Function Codes (SHVCODE)
M

SHVFETCH EQU
SHVSTORE EQU

•
C'F'
C'S'

FETCH - Copy value to caller's area
STORE - Store from value supplied by caller

M Return Code Flags (SHVRET)

•
SHVCL EAH EQU ..
SHVTRUHC EQU
SHVBADH EQU
SHVBADV EQU

•
SHVBADF EQU
M

X'OO' (Decimal 0)
X'04' (Decimal 4)
x'oa' (Decimal 8)
X'lO' (Decimal 16)

X'80' (Decimal 128)

Execution was OK
Truncation occurred during 'FETCH'
Invalid variable name (e.g. too long)
Value too long - "STORE" not

performed
Invalid function code (SHVCODE)

• M • • M • • • M M MM. M • • M * * * * * M • * • * • M * • M M M M *

A typical calling sequence for the EXECCOMM interface might be:

LA
LA
ICM
SVC
DC
LTR
BM

RO,HPLIST
Rl,=CL8'EXECCOMM'
Rl,B'1000',=X'02'
202
AL4(1)
R15,R15
DISASTER

Execution was okay

Subcom Plist as shown
Hame of Subcom entry point
Insert 'subcommand call' flag
Issue SVC
Sequential return
Check for a negative return code
If yes, quit

Appendix C: EXEC 2 in CMS 65

The specific actions for each function code are as follows:

S Store variable. SHVNAMA contains the address of the external
variable name, and SHVNAMl contains the length of this name.
SHVVALA contains the address of the buffer where the "value" of
SHVHAMA ;s stored, and SHVVALL contains the length of the "value."
The external name (SHVNAMA) is checked Ce.g. length limitations),
and the corresponding internal variable Csame name as the external
name, only with a leading ampersand CI» is set to the value of the
external variable. If a "STORE" reference is made to an unset EXEC
2 argument (i.e. a variable of the form Ii where "in is an unsigned
number without leading zeros that exceeds the number of EXEC 2
arguments that are currently stored), no assignment is performed.
The SHVBADN bit is set to X'08' (INVALID HAME).

F Fetch variable. SHVHAMA contains the address of the external
variable name, which is the same as the internal variable name that
you want to fetch, but without the leading ampersand (I). SHVNAML
contains the length of this external name. SHVVALA contains the
address of a buffer where the fetched variable value will be copied,
and SHVBUFL contains the length of the buffer. The external
varia~le.name (SHVHAMA) is checked (e.g. length limitations), and
the internal variable is located and copied into the buffer. The
total length of the fetched variable is placed in SHVVALL, and if
the fetched value was truncated because the buffer was not big
enough, the SHVTRUHC bit is set to X'04'. If the referenced
variable is shorter than the length of the buffer, no padding is
done.

If there Is insufficient storage (return code -2), some of the
SHRLIST elements may not have been processed. These elements
(including the SHVRET field) are left unchanged.

Hote: The value returned by a FETCH operation is a snapshot of the
internal variable at the time the operation is done. The returned
value is therefore unaffected by subsequent STORE operations to the
same internal variable (even within the same list).

66 IBM VM/SP EXEC 2 Reference

The function of a command programming language such as EXEC 2 is to
improve the effectiveness of a programming system by matching the
available commands to the particular needs and applications of each
user. As a CMS user, you probably have observed that some commands were
needed more frequently than others. Some of the commands you used were
short and easy to type while others involved several arguments and were
more difficult to issue. There may have been instances when you had to
look up the correct command format or issue several commands in
succession to perform an operation which would be more convenient if it
were done by only one command. Command procedures, written using the
EXEC 2 language, can adapt existing commands to user needs by storing
commands that are issued frequently, and in the sequence that you wish
them executed, in a disk file. Within this file, the validation of
arguments can be checked and default values can be supplied. (A default
value is a specific value assumed when an argument has not been
explicitly specified. Usually, default values are chosen to be the most
frequently used argument values, so that the convenience of not h,ving
to write that particular value is realized as many times as possible.)
The name of the flle containing these commands becomes a new command
name, and hence, a new CMS command. The format of this new command can
be tailored to the individuals needs.

To illustrate this, assume you have the files listed in the first column
of the following table, and wish to rename them as indicated in the
second column:

Current Hame

X MEMO
HEW MEMO
OLD MEMO

Desired Hame

HEW MEMO
OLD MEMO
(erased)

The commands used to perform this operation ara straightforward, though
they are a bit lengthy because two of the three fileids must be repeated
and filemodes are required for the RENAME commands:

ERASE OLD MEMO
RENAME NEW MEMO A OLD MEMO A
RENAME X MEMO A HEW MEMO A

EXEC 2 makes it easy for the user to issue a sequence of commands by
typing only a single command line. This;s achieved by storing the
desired commands in a disk file, and invoking the stored commands by
typing the file's name as the command name. Such files of stored
commands must have a filetype of EXEC. Hote that other fil.types are
possible, but they cannot be called directly by a command that you type
at your terminal; they can be invoked from a program, such as a

o
text

editor. When CMS reads a command typed by the user, it searches. for a

Appendix D: EXEC 2 Primer for Hew Users 67

disk file having the same filename as the typed command name and a
filetype of EXEC. If such a fila is found, the EXEC interpreter
interprets the command statements read from the disk file.

If we used a text editor to create the following file named RIPPLE EXEC:

'TRACE ON
ERASE OLD MEMO
RENAME NEW MEMO A OLD MEMO A
RENAME X MEMO A NEW MEMO A

we could command the renaming of the files described above by typing the
line:

RIPPLE

The first line of the RIPPLE EXEC file is an EXEC 2 control statement.
Such statements affect the operation of the EXEC interpreter instead of
performing some operation in the CMS environment. Tha &TRACE ON
statement tells the EXEC interpreter to display on your console any
commands that it issues before they are executed. A 'TRACE OFF
statement would suppress this display of executed commands. A
'TRACE ALL statement would display EXEC control statements as well as
commands that are executed.

In the CMS environment, where the EXEC 2 interpreter coexists with the
CMS EXEC interpreter, a second purpose is served by the &TRACE
statement. Whenever an EXEC file is to be interpreted, the first record
of the file is read and scanned to see if the first word is 'TRACE. If
it is, the file is deemed to be an EXEC 2 file; otherwise, the CMS EXEC
interpreter is used to interpret that file.

EXEC control statements make it possible to conditionallY interpret
statements in an EXEC file, to repeat the interpretation of statements,
and to control the working of the EXEC interpreter in various ways.
They make it possible to write EXEC files which perform different
operations depending on the arguments entered on the EXEC command line
or the results of commands issued from the EXEC file. This is a very
important concept, for it is this ability to modify the commands issued
from an EXEC file (and the order in which they are issued) which
underlies the most useful features of EXEC files.

Commands, Return codes, An9 EXEC Variables

Every command executed in CMS issues a return code indicating the
success or failure of the operation requested. This return code 15 a
numeric value that is passed back to the caller of the command. If a
command is issued from an EXEC file, the return code generated by that
command can be examined and used to control the subsequent
interpretation of statements in the EXEC file. For example, the ERASE

68 IBM VM/SP EXEC 2 Reference

co .. and ~i.pl.yed above in'RIPPLE EXEC will yiald a return code of: 0
(zero) if it succeeds in erasing a file, 28 if the file to be erased
does not exist, 36 if the file exists but is on a read-only disk, and
other values for less common conditions.

A,command's return code is saved by the EXEC 2 interpreter as the value
of the EXEC variable IRC. ,EXEC variables are symbols that are used to
refer to values that may change during the interpretation of an EXEC
file. You can us. the symbol IRC in an EXEC statement to refer to the
return code generated by the most recent command issued from the EXEC
file. One way the IRC variable might be used in the RIPPLE EXEC file is
to force termination of the EXEC file (before renaming any files) if the
X MEMO file does not exist. To do this, the CMS command STATE is used
to determine whether X MEMO exists on the A-disk. STATE generates a
return code.of 0 if the designatad file exists, or a return code greater
than 0 if it does not.

ITRACE OFF
STATE X MEMO A
IIF IRC > 0 IEXIT 1
ERASE OLD MEMO
RENAME NEW MEMO A OLD MEMO A
RENAME X MEMO A NEW MEMO A

The third statement in this file (aIF •••) tests the return code from
STATE, and uses the lEXIT control statement to force immediate
termination of tha EXEC file if the value of lRC is greater than zero.
Like CMS commands and user programs, EXEC files also generate return
codes. If an EXEC file terminates because an end-of-file is reached and
there are no more statements to interpret, the return code will be zero.
However, various errors detected by the EXEC 2 interpreter (invalid EXEC
control word, nonexistent file, and 50 on) will cause termination with a
return code greater than 10000. Or, you may write the IEXIT control
statement to terminate the EXEC file with a specific return code, as
shown above.

The ampersand character is used at the beginning of a word to signal the
EXEC interpreter that this word is an EXEC variable or an EXEC control
word. When the EXEC 2 interpreter processes a statement from an EXEC
file, it begins by examining each word and replacing any EXEC variablas
with their current values. (latar, we'll sa. exactly how this is done.)
EXEC control words are like EXEC variables, except their values are
initialized to their names by the EXEC interpreter (that is, the value
of.ITRACE is ITRACE, the value of 'IF is &IF, etc.).

IRC is one of a group of variables that are handled in a special manner
by the EXEC interpreter. They are called "predefined variables" bacause
the EXEC interpreter assigns values to them automatically. Some of
these predefined variables are given values only once, when th~ EXEC
interpreter starts processing a file (IFILENAME is such a variable,
whose value IS the name of the EXEC file being processed). Other
predefined variables are assigned values whenever some specific action
occurs. Examples are IRC, which i. set to the return code value
whenever a command is issued, and &H, which is initially set to the

Appendix D: EXEC 2 Primer for Hew Users 69

number of arguments present on the EXEC command line and 15 updated whan
an EXEC control statement redefines the set of argument variables.

~ fill Argument.

The EXEC variables 11 12 13 ••• are used to refer to the arguments in
the EXEC command invoking the file. The value of 11 is the first word
following the name of the EXEC file in the command line, &2 is the
second word, etc. If you refer to an argument that was not present in
the command line (such as II, if no operands were written), its value
will ba null, and that word will disappear from any statement in which
it is used. The same is true for a reference to any other EXEC variable
that has not been assigned a value, or has been explicitly assigned the
null value.

We will now modify the RIPPLE EXEC again 50 that it accepts the nama of
any MEMO file as an argument instead of always using the file X MEMO:

ITRACE OFF
STATE &1 MEMO A
&IF &RC > 0 &EXIT &RC
ERASE OLD MEMO
RENAME NEW MEMO A OLD MEMO A
RENAME &1 MEMO A NEW MEMO A

Here the return code from STATE is used as the return code from the
RIPPLE EXEC file. A nonzero value indicates failure of the RIPPLE
command, and provides a little more information than simply returning a
value of 1. CRefer to VM/SP ~ Command ~ ~ Reference for the
Responses, and the Error Messages and Return Codes issued by CMS for the
STATE command.)

With this RIPPLE EXEC file, we could have any number of current, or
working, MEMO files, each with a different filename. Whenever we wish
to rename one of them CRWR MEMO, for example) we could use the command:

RIPPLE RWR

to rename it, making the original filename available to be used again.
There will always be copies of the last two files renamed, in case a
need arose to use one of them again. Files more than two iterations old
are automatically erased.

Thera is no limit (other than disk capacity) to tha number of files that
can ba kept. By adding more RENAME commands to the EXEC fila, we can
keep as many old files as we desira. By using some additional EXEC
control statements, .we could rename any number of files using oDly one
RENAME statement, interpreting it as many times as necassary, each time
with different arguments.

70 IBM VM/SP EXEC 2 Raferance

~ variable HlmII

EXEC variables and EXEC control words always start with an ampersand.
The ampersand may be foll.wed by any other characters, up to a maximum

.length of 256 characters (including the initial ampersand). This is the
maximum langth allowed for any word; it is also the maximum length
allowed for any line in an EXEC 2 fila.

The characters ampersand .• nd blank have' "SJ)eci almean i ngs, .nd cannot be
.. de part of a variable nama by simply writing them as part of a word.
A blank denotes the end of a word, so it can not be included as part of
the word. An ampersand denotes the beginning of an EXEC variable name.
That name (including the ampersand) is replaced with the value of the
variable when the word containing it is evaluated during statement
interpretation. Value substitution for variable names makes it possible
to put blanks or ampersands (or any other characters) into names, but
it's principal benefit is the ability to manipulate an indefinite number
of variables by modifying the words in a few statements instead of
writing all of the variable names explicitly.

Cond;t;on,l Interpretat;on gf statements

Before looking at more sample EXEC files, we will examine the structure
of the conditional ('IF) statement more closely and introduce some other
EXEC control statements. The 'IF statement is actually a compound
statement. The first part defines a condition; the second part may be
any executable statement, which is interpreted only when the condition
is true. (An executable statement is any statement except a comment.
Comment statements have an asterisk as their first nonblank character,
and are ignored by the EXEC interpreter.) The complete 'IF statement
has the format:

'IF wordl comparator word2 statement

where "comparator" '5 =, ~=, >, <, >=, or <=. The comparison is
performed numerically if both wordl and word2 are numeric data items; it
is performed on a character basis if either is not numeric. Thus,
"'IF 2 = +2" is true and "'IF 000 = 0" is true, but "&IF 1. = 1" and
"'IF +A = 10" are false. A numeric data item consists of decimal
digits, optionally preceded by a plus or minus sign. EXEC 2 does not
support fractional numbers as numeric data.

The "statement" part, of an 'IF statement may be another 'IF statement.
Therefore, several conditions may be written in one conditional
statement, with the last "statement" interpreted only when all of the
conditions are true. Thus,

IIF 11 = A IIF '2 = B IEXIT

will terminate an EXEC file only if both conditions are true.

Appendix D: EXEC 2 Primer for Hew Users 71

statement Label,

You may attach a label to an EXEC statement (including the null
statement, which has no words in it) 50 that an EXEC control statement
can reference the labeled statement. The label must be the first word
of th~ statement, and it must start with a hyphen. EXEC 2 does not
consider a label to be part of a statement, 50 it is not inspected for
EXEC variables. References to labels, however, may involve EXEC
variables. The most frequent references to statement labels are IGOTO
control statements, which modify the regular, sequential processing of
an EXEC file. A typical IGOTO statement is:

IGOTO -END

which means continue interpretation of statements with the next
statement having the label -END.

When a IGOTO statement is interpreted, EXEC 2 searches for the specified
label by reading succassiva statements from the disk file and examining
the first word of each statement to determine if it is the desired
label. If it is, sequential interpretation of statements resumes with
that statement. If the end of the disk file is encountered without
finding the specified label, EXEC 2 continues to read statements,
startin~ at the beginning of the file, until either the desired label is
found, or all statements before the one being interpreted have been
examined.

ASsignment statements

The EXEC 2 assignment 5tatem~nt is a special case, in that it is
recognized when the second wo~d of the statement (not counting a label)
is an equal sign and the first wo~d starts with an ampersand. (This is
a simplification of the actual rule, which is discussed in Hote 4 of
"Part 3. Hotes on EXEC 2.") The function of the assignment statement 15
to make the EXEC va~iable specified by the first word have the value
specified by the exp~ession following the equal sign. Thus,

lOPTION = GESUNDHEIT

assigns the value GESUNDHEIT to the EXEC va~iable lOPTION.

lITEM = lITEM + 2

increments the value of lITEM by 2, assuming the value of lITEM was
numeric to start with (if it was not numeric, EXEC 2 conside~s it an
e~~or and terminates interpretation of the EXEC file). > The following
statement:

IL = ILENGTH OF lOPTION

72 IBM VM/SP EXEC 2 Referenc~

uses the predefined function 'LEHGTH OF to compute the number of
characters· in the value of the variable &OPTION; that number is then
essigned as the value of the variable Il. If lOPTION has the value
GESUNDHEIT, then Il would be assigned the value 10. The right side of
an expression in an assignment statement is the only place to use a

. predefined (or user-defined) function in EXEC 2. There are several
predefined functions used in the EXEC files discussed later.

It is possible to set. variable to the null value by using an
assignment statement:

&NOTHING =

and it is ~ossible, of course, to have labels on assignment statements:

-SETOHE IOHE = 1

iXIk variable Evaluation

It is time to explain in detail how EXEC 2 examines a word for variable
names and replaces them with values. Inspection for EXEC variables ;s
performed by examining the characters in a word from~ight to left.
Whenever an ampersand is detected, the ampar.and and all characters to
the right of it are taken as the name of an EXEC variable, which 1s then
replaced by that variable's current value. After a value has replaced a
variable name in a word, the inspection_roc.5s reSUMeS with the next
character to the left, so it is possible to use EXEC variables to build
the names of other EXEC variables.

To illustrate, if &X = 1 and 11 = FIRST, the word &&X means &1, which is
replaced by the value FIRST. Suppose the value of &1 is an ampersand
instead of FIRST; then, &&X ==> &1 ==> &, but no further SUbstitution
occurs, since there are no more characters of the original word to be
inspected.

In the case of an assignment statement, the inspection of the first word
for ampersands is stopped just before the first character has been
tested (remember that characters are examined from right to left).
Therefore, that word retains its initial ampersand and remains an
appropriate name for an EXEC variable. Retention of the initial
ampersand of a word also occurs ;nother contexts where a variable name
Is required (the &READ VARS and 'UPPER VARS statements, for example).

Recall that there are no undefined EXEC variables. If an EXEC variable
has no default or explicitly assigned value, its value is taken to be
null (the character string that has no characters in it, and whose
length is zero).

Appendix D: EXEC 2 Primer for Hew Users 73

An Exampl. gf Generati"s ~ variabl. HImII

We are now ready to look at an EXEC file that depends on this ability to
use an EXEC variable to build the names of other variablese LFH EXEC
uses the CMS command LISTFILE to display information about all of the
files on all accessed disks that have the filenames (arguments)
specified on the command line invoking the EXEC file. Because the
number of filename arguments may differ from one use to the next, the
EXEC variable &J is used to select the next argument to use in the
LISTFILE command.

&TRACE
&J = 1
-LOOP LISTFILE &&J * * (LABEL
&J = &J + 1
&IF &J <= &N &GOTO -LOOP

Suppose this EXEC fila were invoked by the command

LFH NEW OLD

The first time the LISTFILE command is issued, the EXEC variable &J will
have the value 1, 50 &&J ==> &1 ==> HEW and the command passed to eMS is

LISTFILE HEW * * (LABEL

After the first LISTFILE command, the value of IJ is incremented from 1
to 2, and the &IF statement is interpreted. Since there are two
argument words, HEW and OLD, the value of IH is 2, the condition part of
the &IF control statement is true, and the &GOTO statement is executed.
Interpretation of EXEC statements continues with the LISTFILE statement
again, but this time &&J ==> &2 ==> OLD and the command issued is

LISTFILE OLD * * (LABEL

After &J is incremented to 3, the IIF condition is false, 50 the IGOTO
statement is not interpreted and the EXEC file terminates with a return
code of zero.

If more than one of the specified filenames is found on a disk, the
output generated by this EXEC is not as pretty as it could be. This is
becausa the LISTFILE command produces a title line each time it is
invoked and finds at least one file meeting its argument pattern. The
following elaboration of LFH EXEC uses the return code generated by the
LISTFILE command to detect when the title line is first displayed'~nd
uses the NOHEADER option in subsequent LISTFILE commands to prevent
duplicate title lines from being displayed.

74 IBM VM/SP EXEC 2 Reference

'TRACE-··~

IJ ": 1
-LOOP LISTFILE IIJ M M (LABEL IHOHEADER
IIF IRC = 0 &NOHEADER = NOH EADER
IJ = &J + 1
IIF IJ <= IN IGOTO -lOOP

Here, we take advantage of the fact that ~ initial value of &HOHEADER
is null, so that word disappears the first time the LISTFILE command is
interpreted. When the command is successful (that is, it produces a
return code of zero), the EXEC variable INOHEADER 15 given the value
HOHEADER, and all subsequent LISTFILE commands have the HOHEADER option
following the LABEL option.

~ ~ Control Itltement

There ;s another way of writing this EXEC file. That is by using the
&LOOP control statement, which 1s more efficient because it eliminates
the need for repetitively interpreting the &IF statement and searching
the file for the label -LOOP:

ITRACE
IJ = 1
ILOOP 3 IN

LISTFILE IIJ M M (LABEL INOHEADER
IIF IRC = 0 &HOHEADER = HOHEADER
IJ = IJ + 1

The ILOOP statement can take several forms. Hera, it specifies that the
thrae linas following the ILOOP statament are to be rapeated IN times;
that is, for as many times as there are arguments to the EXEC file. The
statements to be rapeated (the scope of the loop) were indented to make
it aasier to raad tha EXEC fila. It is of tan mora convenient to usa a
label rafarence in a ILOOP statament tnstead of an absolute count of the
number of statements to ba rapeated. In this case, the label ;5 written
in place of the count and the EXEC intarpreter determines how many
statements to rapeat:

ITRACE
IJ = 1
ILOOP -x IN

LISTFILE &&J •• (LABEL &NOHEADER
&IF &RC = 0 &NOHEADER = NOH EADER
-x &J = IJ + 1

Tha label defining the scope of tha loop must occur before the end of
the EXEC fi Ie or en error ; s reported. .·t.J.a.. fMl iei to Nva4aloop ·count
of zaro, in-Mhich ca.e no . .abte.ants within 'the loop ere interpreted.

~~

Appendix D: EXEC 2 Primer for New Users 75

This would happen in the above EXEC if it were invoked with no
arguments.

A loop statement that defines its scope through tMJ:ve .. of .1 ... 1
reference is more rest stant to errors introduced because of .- change
than a loop statement that specifies an absolute nu.mer of lines. The
label reference avoids a common error: forgetting to update the line
count in a &lOOP statement when. change is made that alters the number
of statements within the scope of the loop.

Makjn, ~ fi1AI Interact Hiib ~

One of the problems accompanying the writing of EXEC files to extend the
user's command set is that it becomes more difficult to remember the
correct formats for invoking this larger set of commands. A very useful
technique is to make the EXEC files self-documenting; that is, whenever
they are invoked with incorrect arguments, or with a question mark as an
argument, ~hey display a description of the correct command format and
whatever additional description the writer deems appropriate. Such
additional information might be a description of what the file does and
how to use it, or perhaps a reference to a MEMO file or a publication
containing more information. Here is a version of lFN EXEC with such a
feature:

&TRACE
&IF &N = 0 &GOTO -TEll
&IF &N = 1 &IF &1 = ? &GOTO -TELL
&J = 1
&lOOP -x &N

LISTFILE &&J * * (lA8El &NOHEADER
&IF &RC = 0 &NOHEADER = NOHEADER
-X &J = &J + 1

&IF /&NOHEADER = / &EXIT 28
&EXIT
-TELL &PRINT Format 15: &FILENAME fn1 fn2 •••
&PRINT Uses lISTFIlE to display information about
&PRINT all files with filenames fn1, fn2, etc.
&EXIT 100

The &PRINT control statement directs the EXEC interpreter to perform its
usual replacement of EXEC variables with values, then to display the
words following &PRINT as a line on the user's console.

The above version of lFN EXEC generates a nonzero return code in any
instance where no files were found. Since the EXEC variable &HOHEADER
was already being used to detect a successful invocation of LISTFIlE, .-n
appropriate test after all the LISTFILE commands have been issued is to
return a nonzero code whenever the value of &NOHEADER Is null. It is
not possible to simply writ.

76 IBM VM/SP EXEC 2 Reference

IIF INOHEADER -= ~OHEADER IEXIT28

In the ca.e where 'NOHEADER is null, this would cause a .yntax error in
the 'IF statement because the INOHEADER word would disappear and we
would be left with

IIF ~= NOH EADER IEXIT 28

A solution for testing the value of an EXEC variable that might be null
is to use some prefix on both the variable and the value compared with
it. In the case of LFN EXEC, the slash is that prefix, and the two
statements which can result after substituting for the variable
'NOHEADER are:

'IF /NOHEADER = / 'EXIT 28

IIF / = / 'EXIT 28

for success (INOHEADER = NOHEADER) or failure (INOHEADER is null)6 in
that order.

All of the previous EXEC· files have used only the arguments provided on
the command line to determine what function they would perform. You can
also write an EXEC file that interacts with the user, displaying
prompting massages on the console and reading-instructions or values
which are typed.

When CMS or CP reads a command line, it translates the command line into
~p~rcase before interpreting it. When a program6 such as the EXEC
interpreter, reads a console input line, it chooses whether or not to
translate to uppercase. The EXEC control statement

ICASE M

instructs the EXEC interpreter to read subsequent input lines in mixed
case (uppercase and lowercase combined) while

ICASE U

requests translation into upper case.&&ASE U ls the initial .etting
when the EXEC interpreter starts processing an EXEC file.

Data is read from the console using the IREAD control statement. A
IREAD statement may read one input line and assign it as the value of a
single EXEC variable:

'READ STRING IS

'5 will contain the entire text of the input line, including all blanks.
Alternatively, the input line can be separated into words and each word
assigned to an EXEC variable.

'READ VARS 'FIRST 'SECOND ITHIRD &FOURTH

Appendix D: EXEC 2 Primer for Hew Users 77

If there are More variables than words in the input line, those
variables remaining after .11 word. have been used are a •• igned the ftul1
value. I'f there are more words than variables, the extra No-relS
ignored. If you don't know how many words wfl'l be on an input line, it
is often convenient to use the statement:

&READ ARGS

which redefines the EXEC argument variables &1 &2 &3 ••• etc., and
assigns to &N the number of words (arguments) in the input line. All of
the prior values for &1 12 ••• etc. are lost when this is done. So,
remember to assign any EXEC argument variables that will be needed later
to other EXEC variables before interpreting a &READ ARGS statement. The
predefined variable &ARGSTRING is not affected by a lREAD ARGS
statement. Its value continues to be the original argument string
passed to tha EXEC fila, or whatever value tha usar last gave it in an
assignment statement.

It is possible to read lines from the console and interpret them as EXEC
statements using the form:

&READ n

where "n" is the number of linas to read. If no explicit numbar of
lines is given, only one line will be read. An asterisk e*) may be used
in place of a number to denote that statements are to be -read from the
console until a statement which modifies sequential processing of lines
is interpreted (&EXIT, &GOTO, ISKIP, etc.). It is easy to test the
effect of various EXEC statements by using the file:

lTRACE All
&READ *

which reads statements from your console and traces their
interpretation.

The next eXample is CPM EXEC, which enhances the CP MSG command in two
respects. First, it transmits multiline messages to one or to a group
of VM users (the same message is sent to all of the specified users).
Second, it transmits messages in uppercase and lowercase.

78 IBM VM/SP EXEC 2 Reference

ITRACE
ICASE M
IIF IN = 0 'GOTO -TELL
'IF '1 = ? 'GOTO -TELL
'READ STRING I
'LOOP _~~NTIL /1 = /

IX = 1
ILOOP ~£E IN

CP MSG IIX I
~EE IX = IX + 1

,,, .. E IREAD STRING I
IEXIT
-TELL IBEGPRINT -X
Format is: CPM user1 <user2 ••• >
CP 'MSG' console function is used to send lines to the
specified users. Enter blank or null line to end.
-X
IEXIT 101

This EXEC uses two loops, one nested inside the other. The scope of
both loops is defined by labels. The inner loop containing the
statements

CP MSG IIX I
-EE IX = IX + 1

is similar to the loop in LFN EXEC; that is, it is interpreted once for
each argument. The outer loop uses a condition like an IIF statement to
determine when repetition of the loop will end. In this case, we wish
to repeat the loop until the user enters a null or blank line from his
console. The EXEC variable I (that is the shortest possible name for an
~,fXEC variable) contains the string read from the console, and the word
'"UNTIL" identifies the nature of the condition being tested; that is,
repeat the loop until the condition is true. Because the value of I may
be null, we use the prefix technique discussed before to avoid a null
value from destroying the syntax of our ILOOP statement. We could also
have written the first ILOOP statement like this:

&LOOP -E WHILE /1 ~= /

which repeats while the condition is true (that is, until the condition
is false). The choice between these two forms is purely a personal
matter of what the EXEC writer sees as easier to write or understand.

At label -TELL in this EXEC file, we see an example of a statement
which, unlike all those seen before, requires more than one line in the
EXEC file. This, and the &BEGSTACK statement that has a similar syntax,
are the only statements that can use more than one line of an EXEC file.
The lines following &BEGPRINT are not examined for EXEC variables. The
EXEC interpreter prints each line exactly as it is read from the disk
file, until either the end-of-file occurs, or a line is reached that
~ontain. Qnl~Hthe I_bel specified in the &BEGPRINT statemant.
~ ',' ., ,

Appendix D: EXEC 2 Primer for New Users 79

~ Z Implementation gf Editor ",erol

CMS commands are not the only commands that may be executed from an
EXEC 2 file. An important application of EXEC 2 is the creation of
editor macros; that is, procedures that issue commands·to an editor
instead of, or in addition to, the regular CMS command interpreter. The
benefits of such procedures are the same as for EXEC 2 files containing
normal CMS commands; the avoidance of. repetitive keying of commands by
the user, and the ability to build new commands that are specially
adapted to particular applications, making the user-to-application
lnterface more efficient.

XEDIT, the System Product Editor, causes CMS to establish an interface
through which EXEC 2, or another program, can issue editing commands.
Commands issued through this interface are called "XEDIT subcommands"
because they are not interpreted by CMS in its regular command
environment, but instead are delivered to XEDIT, which interprets them
in its own environment.

When XEDIT receives a command that it does not recognize as one of its
basic editing commands, it determines (using the CMS command STATE)
whether there is an EXEC file (an edit macro) that implements this
command. If there is, the editor invokes the EXEC 2 interpreter to
interpret that file.

The EXEC file author has several means to designate whether a command in
his file is for a particular subcommand environment or for CMS. Tha
most. explicit of these is to use the &SUBCOMMAND control statement.
Thus, an edit macro that has to issue a NEXT a command to XEDIT could
use the statement:

&SUBCOMMAND XEDIT NEXT a

Since most edit macros contain many subcommands, it can be convenient to
tell the EXEC 2 interpreter to send all commands to the XEDIT
environment by executing the statement:

&PRESUME &SUBCOMMAND XEDIT

All command statem~nts interpreted after the above statement are
presumed to be subcommands for the XEDIT environment, and are treated as
though they were prefaced by &SUBCOMMAKD XEDIT. This presumption does
not affect. commands explicitly directed to another environment by the
&SUBCOMMAND statement, so

&SUBCOMMAND ZOO ELEPHANT 3

would continue to send the command ELEPHANT 3 to the ZOO environment,
irrespective of a &SUBCOMMAND XEDIT presumption.

How, then, maya normal CMS command be executed if all commands are
presumed to be subcommands? By using the &COMMAND control statement,

80 IBM VM/SP EXEC 2 Reference

which always treats the accompanying command as a regular eMS command.
For example:

&COMMAND STATE &1 MEMO *
will always be interpreted as a CMS command. A &SUBCOMMAND presumption
may be reset, and regular CMS command processing resumed by executing
the statement:

&PRESUME &COMMAND

At the beginning of this primer, it was noted that a program could call
the EXEC 2 interpreter to interpret a file that had a filetype other
than EXEC •. The System Product Ed; tor (XEDIT) does th; s when ; t
encounters an edit macro. Tbi •• aero lDu5t have the,filriype XEDIT
instead of EXEC. WIMan EXEC.2 intarprats .~"'il.·ftot bIIving • f,il.type of
EXEC, it.starts with • ,'SUBCOMMAND presumptiDn of~*n. ~il.tvpe. Thus,
there is no need to preface XEDIT subcommands in an XEDIT macro with
&SUBCOMMAND XEDIT, unless the default &SUBCOMMAND presumption has been
explicitly changed. It;5 ftecessary, however# to preface'regular eMS
commands with 'COMMAND if they are not to be passed to ~EDIT. X;DIT
,acros do not require an initial &TRACE statement to indicate that they
should ba :iftter~.ted by ~he eXEC 2 interpreter because that 1S
iD.c;ii ~ted by· t way ; ft· whi ch XEDIT invokes the EXEC 2 program.

To illustrate just how simple an edit macro can be, consider the case
where it is desired to replace lines that currently contain:

.SK 3

with the three lines:

.SK

.CE --~-.. -----

.SK

This can be done using the XEDIT commands:

FIND .SK 3
REPLACE .SK
INPUT .CE ---------
INPUT .SK

If those commands are put into a file named REPSK XEDIT, they may be
executed by simply entering the command

REPSK

in the XEDIT environment. Of course, this only affects the next
occurrence of the ".SK 3" line. All occurrences could be changed by
writing. loop in the edit ... acro:

Appendix D: EXEC 2 Primer for Haw Users 81

FIND .SK 3
ILOOP 4 UNTIL IRC ~= 0

REPLACE .SK
INPUT .CE ---------
INPUT .SK
FIND .SK 3

Note that her. taka advanta". of the fact that XEDIT 5ubco ... n.c:ia
generate return codes indicating their success or f.ilur. much like
regular eMS commands. In this example, the FIND command generates a
return coda of zero if it succeeds in finding tha specified text, and a
return code of one if it fails.

The above example contains all uppercase data, but it may be necessary
to process mixed case data in edit macros. EXEC 2 statements may be
written in whatever case you desire, but control words such a. ILOOP and
predefined variable. such as IRC IlUst·b. in upp.rc.... Variables to
which you assign values, such as IX or IZILCH, may b. written in
uppercase or lowercase, but remember that IZILCH and '~ilch are two
distinct variables. Likewise, &LOOP is an EXEC 2 control word, but
Iloop is a variable. You can use variables such as 'JuGGerNauT if you
like pressing the shift key.

Suppose we want to use the REPSK XEDIT file for linas starting with
.SK 2, or .SK 3, or .sp 3, etc. We can use two arguments to define the
lines we are interested in finding, as follows:

FIND 11 &2
ILOOP 4 UNTIL IRC ~= 0

REPLACE .SK
INPUT .CE ---------
INPUT .SK
FIND &1 12

•

This works fine, but the question of case rises again. If the editor is
operating in CASE U, it will tran~late input commands into uppercase
before invoking an edit macro. Therefore, if a REPSK .sP 3 command is
to work properly (meaning it is to look for ".sP 3", not ".SP 3"), it
must be entered while XEDIT is in mixed case mode. (XEDIT allows a
second argument on a CASE subcommand, indicating whether locate and find
operations "RESPECT" or may "IGNORE" case when comparing characters.
Using the "IGNORE" value produces a different effect than the above
macro, because REPSK .sp 3 would find lines starting with any of these:
".sp 3", ".sP 3", ".Sp 3", fl.SP 3".

Handl;n, Embedded Blanks

If you wanted to fi,nd a 1 f ne start i ng wi th the words ". SK" and "3"
separated by two blanks, the above macro would fail. This happens
because when EXEC 2 prepares a command, it builds a parameter list by
concatenating all the words of the command (after variable substitution)

82 IBMVM/SP EXEC 2 Reference

with. single blank ~etween words. If a word is null (that is, it has
zero characters in it), the word and its delimiting blank disappear from
the command.

To handle a case having two blanks between words, we can rewrite REPSK
XEDIT using the predefined variable IARGSTRING. This variable has an
initial value of the entire string of arguments passed to the EXEC file.
ihis .tring does not include the command· name used ~o ;nvokethe EXEC
file, nor the blank .eparating it from the argument stri-ng. It does
include all blanks separating the argument words, plus any additional
blanks preceding or following those words.

IC = lCONCAT OF FIND lBLANK lARGSTRING
lC
lLOOP 4 UNTIL lRC ~= 0

REPLACE .SK
INPUT .CE ---------
INPUT .SK
ac

The idea here is to build the edit command we want, with blanks exactly
where we want them, as the value of an EXEC variable. Then, the FIND
command is represented as a single word, and we avoid any difficulties
stemming from the combi~ation of several words to form a command. To
build the FIND command, we use the predefined function lCONCATENATION
OF, whose value is the string obtained by placing all of its argument
values (after variable substitution) si~e by side without any
intervening blanks. Since we need one blank to separate the FIND edit
command from its operand, that blank is included explicitly by using the
predefined variable lBLANK, whose value is a single blank character.

Actually, it really wasn't necessary to build the FIND command quite so
carefully. -It;NOuld MOrk-.. quellv·-well usi·ng FIND ·&ARGSTIIHG, but the
method displayed above is more general, and can be use~ to build any
possible command.

An Example 2f. Dl! ID.d mm Commands in ant f.iJJl

The next example is an XEDIT macro that assumes the user is editing a
file such as CMS EXEC, produced when the CMS LISTFILE command is used
with the EXEC option. Each line of this file identifies a disk file.
The format of the line. are:

&1 &2 filename filetvpe filemod~ •••

and the function of this Macro is either (1) to edit the file identified
by the current line, or (2) if the value of the first argument is ERASE,
to execute a CMS ERASE command to remove that file from disk, then to
delete the identifying line from the current editor display. Thi.
function is useful for cleaning a .inidisk of files that are no longer
wanted, because often a file Must be examined before the decision to

Appendix 0: EXEC 2 Primer for Hew Users 83

.... ase it can be made. The ability to exa.ine and arase files without
having to type their ~ileids can be a boon to tha user who must cope
with a dozen, or mayb. 8 hundred, files.

IF = 11
STACK 1
&READ ARGS
IIF IN = 0 IEXIT
I = ILITERAL OF 11
IIF I = 11 &ARGS &3 &4 &5
IIF IN < 2 IEXIT
IIF /IF = /ERASE IGOTO -ERASE
XEDIT 11 12 13
IEXIT
-ERASE ICOMMAND ERASE &1 &2 &3
DELETE

The fi ... st statement ... emembe ... s the optional a ... gument as the value of IF,
50 that late ... a branch can b. made to -ERASE in case the a ... gument value
is ERASE. Next, the command STACK puts the cu ent line f ... om the file
being edited into the console stack (explained in the next pa ... ag ... aph).
This is to p pare for the following &READ ARGS statem.nt which ... eads
the line and s.pa ... at.s it into wo ... ds that a used to define the
a ... gument va ... iabl.s 11 &2 ••• ate. The p ... edefined va ... iable IN, which
... eco ... ds the cu ... rent number of a ... guments, is .lso updat.d by.the
&READ ARGS stat.m.nt.

Th. console stack may be thought of as • buff 0 ... staging area fo ...
console input. Whenever CMS is ask.d to ad the n.xt input line f ... om •
t minal, it fi ... st checks to 5.e if any lin.s a l ady available in
the console stack. If there is a line in the consol. stack, it is used
as the next input lin.; if the is no line in the consol. stack, then
CMS waits until a lin. has bean ente ... ed f ... om the console. Programs can
create th.i ... own "input" lin.5, and put them into the consol. st.ck.
This is what the STACK edit command d~~. Th. consol. stack is an
impo ... tant facility for passing data betw.en p ... og ... ams and EXEC files.

If there is nothing on the linestack.d, IEXIT t minat.s ex.cution of
the EXEC file immediatelY. Oth wis., a test is made to se. wheth.r the
first word was literally 11, as would b. the cas. for a line f ... om a CMS
EXEC file p ... oduced by LISTFIlE. Th. pr.defined function ILITERAL OF
supp ... ess.s va ... iabl. substitution in its a ... gum.nt string, the ... eby
p ... ovidiDg n. of assigning v.lu •• ·;contain.iog.ampers.l'lds .• Ad blanks
to EXEC yariabl~s.

If an initial, lit al 11 i. p s.nt, an IARGS stat.m.nt .r.d.fin.s the
argument valu.s to .liminat. the 11 (and the &2 assum.d to follow it);
the for., what r.mains is the fil.nam., fil.typ., and fil.mode. The'
&ARGS statement wo ... ks by .valuating the wo ... ds following IARGS, cl.aring
the curr.nt argum.nt Yariablas (for .xample~ assigning the ,null string
as their valu.), and assigning the valu. of the first non-null wo ... d to_
Il, the second to 12, etc. Th. variable &N is then .s~ign.d the new
number of a ... guments. Not. that .ven if the ... e us.d to b. mora argum.nts

84 IBM VM/SP EXEC 2 Reference

than w acifiad in tha &ARGS state.ent, -U-w. ... W ~
~~~~,E¥~lut!'A~~9!.;.~.~t~:S~~~.~G i$ not.a'Hact .. fly .n'ARGS :stat_ant. 

Next in the macro, is a test to ensure that there are at least two 
arguments left to be used as a filename and filetype. Then we test IF 
and .ither branch to -ERASE, or issue the needed XEDIT command. Note 
that, if the file is to be erased, the CMS ERASE command is explicitly 
invoked by the ICOMMAND statement. .l, f .-the ICOf'IMAHD .. Hntrol word was not 
u..l!~,~"",,"~?CEC. 2 wouldpre.u •• th. coaund was for the .adi tor imd .i stakenly 
pass it to,XEDIT. After the ERASE command, a ~ELETE command tells XEDIT 
to remove the 4Urrent.line, which identified the file just erased, from 
the file being edited. 

!6&A = 6 cpmpl.x lUll ~ 

The next example illustrates the complex text manipUlation that is 
possible with edit macros implemented in the EXEC 2 language. The 
objective is to take a specified number of lines from the current file 
and reformat them into a paragraph. Arguments from the command line 
specify the number of lines to be reformatted and the left and right 
hand margins between which the new paragraph is t~ be formed. This edit 
macro is parti cularly useful for edi ti ng II£MO fila., o,er ·an" fi les that 
contain text that .ight be presented on a di.~lay screen. Modifications 
to the PARA macro can adapt it for dealing with c __ ant·l;n •• in 
programs written in assembly language, FORTRAN,.PLI'I.,·.nd even in'EXEC 
ti lese 

This file is rather long, so it will be analyzed ~n two parts. First, 
we will look at the part that actually does the formatting -- the 
kernel, so to speak. Then we will surround that kernel with statements 
that expand upon the basic command syntax, supplying default values for 
arguments that were omitted and checking to see that argument values 
that were written are not flawed (by typing errors, for example) in ways 
that could lead to a failure in the interpretation of the EXEC file. 
You will find that, after the kernel has been developed, about twice~$ 
m.ny .t.tements are used in support of that kernel than are in the 
kernel ·it_If. This is not unusual for this type of file. 

The format of the PARA macro is: 

PARA nlines leftmargin rightmargin 

where "nlines" 15 the number of lin8s in the file to be reformatted, 
.tarting with the current line. "Leftmargin" and "rightmargin" specify 
the columns within which the reformatted text is to be placed; that 15, 
there will be leftmargin-l blanks at the beginning of each new line, and 
no line will exceed the position defined by rightmargin, unless a single 
word exceeds the paragraph width. 

The basic plan of the kernel I. to implement two nasted loops •. The 
outer loop, interpreted as many times as there are input lines, uses the 

Appendix D: EXEC 2 Primer for Naw Users 15 



STACK subcommand to put a line from the file being edited into the 
console stack. Then the outer loop uses a IREAD ARGS statement to 
define the words in the stacked line as EXEC arguments. The inner loop 
1s interpreted onca for avary word, and builds an output line by 
concatenating individual words and blanks onto the end of the string IS 
until the next word causes the length of IS to exceed the right margin. 
At that point, the existing '5 string is put into the edit file and the 
next line is started with the word that did not fit into the previous 
string. Whenever thera ara no mora argument words to add to IS, another 
iteration of the outer loop occurs until all input lines have been 
processed. A more detailed analysis of the fila follows this listing. 

ICASE M 
&STACK LIFO &1 12 &3 
IREAD VARS 'HLIHES IMLEFT &MRIGHT 
ISIHIT = ILEFT OF IBLANK &MLEFT 
&SIHIT = IPIECE OF ISINIT 2 
IS = &SIHIT 
ILOOP -Z IHLIHES 
STACK 
IIF IRC ~= 0 'GOTO -EHD 
IREAD ARGS 
DELETE 
IX = 1 
ILOOP -Z UHTIL IX > IH 
IT = ICOHCAT OF IS IIX IBLAHK 
& = &LENGTH OF IT 
IIF I < &MRIGHT IGOTO -OK 
UP 
INPUT IS 
NEXT 
IT = &COHCAT OF 151 HIT IIX IBLAHK 
-OK IS = IT 
-z 'X = IX + 1 

* -END UP 
IIF /15 ~- / IHPUT IS 

The first six lines perform initialization functions. ICASE M is set, 
50 that subsequent lines read from the console stack will not be 
translated into uppercase. The values of the first three arguments ara 
assigned to the variables IHLIHES, IMLEFT, and IMRIGHT. This is 50 that 
these values will be available later, after the argument variables 11 &2 
..• have been redefined to refer to words from a line in the edit file. 
It is possible to use three assignment statements to achieve this, 
namely: 

INLINES = 11 
&MLEFT = &2 
&MRIGHT = 13 

86 IBM VM/SP EXEC 2 Referenca 



but ta •.. _ .. ctLTC t,·· i._ .. -.1·~.j£ad ~..,"'ckiM '*'he. thr •• ..,.l-u •• -in one:i, ne 
t n ~ .. f.'." J~u.Q..J.,.t..¥k •• ~ • .P .. ~Jl'g ,a. ~JRe.AD VAIS ,;..t.t_ant .to .r.ad the 
.~~~ ... .1.iJM'_;;"~:iJ9 .. ~x*IH'.~!i$_~.~--.t ... ~rj.bl.s • 

When a program puts a line into the console stack, it specifies whether 
the line is to be put "at the end of the stack," where it will be read 
after all of the lines already in the stack, or whether it is to be put 
"at the beginning of the stack," where it will be read first, when the 
next input line is requested. These two choices are named "First-In 
First-Out" and "Last-In First-Out,,, respectively, and are frequently 
designated by the initials FIFO and LIFO. In this case, where we wish to 
immediately use the line we stack, we explicitly designate LIFO in the 
&STACK "!Statement. Thi. avoids any possible co.aplicati·onfrolft lines that 
.play alr.ady be in th.a.consol. stack. 

After assigning values to the variables INLINES, IMLEFT, and IMRIGHT, we 
prepare the initial value for the string IS. This value contains 
&MLEFT-1 blanks. The predefined function &LEFT OF (and the similar 
function IRIGHT OF) always generates a result containing the number of 
characters specified by the second argument. These characters are 
obtained from the word given a5 the first argument, adding blanks or 
truncating on the right according to whether that word is shorter or 
longer than the specified length (on the left, in the case of 
&RIGHT OF). 

The predefined function &PIECE OF acts just as its name implies: its 
value is the specified piece of the word supplied as its first argument. 
The second argument denotes where the result piece starts (1 means start 
with the first character, etc.). An optional third argument may be used 
to define how long the result piece is to be. If it is omitted, the 
result contains all characters from the starting character specified by 
argument 2 to the end of the word. If the specified length is )arger 
than the number' of characters available, the result is the same as if 
the length argument were omitted. 

tbi 5 use .. pf .JP~IECE. Q.F,.AV.v.,,~_ t.Q .. shor.tAiu1 the value M., 'UNIT bV one 
"c;:har-acter, yi eldi ng a stri ng contai ni ng exactly the number of blanks 
desired. The value of the variable IS, which will eventuallY become a 
reformatted output line, is initialized to the value of &SINIT. 

The statements that obtain input data to be reformatted are: 

&LOOP -Z &HLIHES 
STACK 
&IF &RC ~= 0 &GOTO -END 
'READ ARGS 
DELETE 
&X = 1 

Since we are to .tart with the current line in the edit file, STA~K puts 
it into the oonsole ateck. In ca.e there i. no current line (XEDIT is 
at the end of file, for example) we test the return code from STACK and 
branch if it i. not zero, .•• aning no line wa. stacked. If the STACK 
command succeeds, IREAD ARGS reads the stacked line and assigns the 

Appendix D: EXEC 2 Primer for New Users 87 



words of the line to the variables 11 &2 •••• while also assigning the 
numbar of words (the new number of arguments) to &H. Sinca we now have 
tha words from the line. a DELETE command removes tha original line from 
the file. IX will be used as an index denoting which word (from the sat 
of naw argument words &1 &2 ••• ) is to ba processed naxt. 50 it is 
assigned the value 1 each time a new lina is acquirad. 

The statamants to format a new line consist of: 

&LOOP -Z UNTIL &X > &N 
&T = ICONCAT OF &5 &IX IBLANK 
I = &LENGTH OF IT 
&IF & < &MRIGHT &SKIP 4 

UP . 
INPUT &S 
NEXT 
&T = ICONCAT OF &SINIT I&X &BLANK 

&5 = IT 
-Z IX = &X + 1 

Hote that this inner loop also terminates with the statement labeled -Z. 
Thera is no problem here; the interpretation of the two loops can ba 
undarstood by imagining there ara uniqua labels for each loop, the first 
one for the inner loop, the last ona for tha outer loop. 

This inner loop is interpreted once for each argument (zero times in the 
case of a blank line). The variable IX is initially 1, and is 
incremented by one for each subsequent iteration, 50 the word IIX 
denotes the first, second, ••• , nth argument value during the first, 
second, ••• , nth iteration of the loop. The variable IT is assigned the 
string containing the currant contents of the output line, IS, followed 
by the current word, I&X, and a blank. The length of the string &T is 
then compared with the right margin value, IMRIGHT. If the string 
length is less than the margin, four lines are skipped to where IS is 
assignad the value of &T because we now know the current word will fit 
into the current output line. Finally, the statement labeled -Z 
increments the value of IX by ona, 50 that tha naxt time around, this 
inner loop uses the next input word. 

If the length of the temporary variable &T exceeds IMRIGHT, the current 
word will not fit into the output line IS, 50 the skip does not occur. 
Instead, IS is inserted into the edit file above the current line, 
because we do not want to mistake an output line for the next input 
line. The NEXT command restores the current line pointer 50 that it 
points to our next input line. Wa assign to the variable &T the initial 
value of IS (the string containing &MLEFT-1 blanks), followed by the 
word IIX (which did not fit into the line just put into the edit fila). 
and a single blank to separate this word from tha next word. With this 
value assigned to IT, we can continue as we did for tha case where the 
word fit, assigning the value of &T to the variable IS, incrementing tha 
value of IX. and looping for tha next word. 

Finally, we reach the -EHD label. We can arrive here aither because the 
attempt to STACK a line failed, or simply because aftar processing all 

88 IBM VM/SP EXEC 2 Reference 



the lines spacified, we ~ell through the outer loop. .In either case, 
the only thing left to do is to back up one line, and if there ara any 
words in the string &5, insert that final output lin. into the edit 
file. 

The PARA XEDIT file discussed above performs the indicated function, but 
it suffers from two deficiencies which we shall now correct. The first 
problem manifests itself if the user incorrectly specifies an argument. 
For example, if the user typed U instead of 7 for the first argument, 
the &lOOP -Z &HlINES statement would fail because of incorrect syntax 
and EXEC 2 would immediately terminate interpretation of the file. The 
second problem is simply one of convenience. It should not be necessary 
to enter the paragraph margins each time the macro is used. Instead, 
some default value should be assumed whenever an explicit value is not 
used. 

While we are fixing up those two problems, we will take advantage of the 
opportunity to incorporate two new features. If asterisk (M) is used as 
the first argument (the number of lines to reformat), the macro will 
process all lines from the current line until the next blank line or to 
the end of the file if no blank line is found. Since this will also be 
used as the default "number of lines to process," it will be possible to 
issue the command PARA with no arguments. This default value will. be 
especially useful because the second feature we shall add is a test to 
see whether the line following the last reformatted line is blank, and, 
if it is, advance the current line pointer to the line following such a 
blank line. Then, we will be able to enter one PARA command specifying 
or implying "M" as the number of lines to process, reformat an entire 
paragraph, then use the XEDIT command "=" (which means "repeat the last 
command typed") to reformat the next paragraph. The "=" command may 
then be repeated to process as many consecutive paragraphs as desired. 

Note that it isn't possible to assume a default value for one argument 
if an explicit value is given for a later argument. For example, if 
PARA EXEC is invoked to reformat the lines before the next blank line, 
but the left margin is to be 15, the default value for the first 
argument must be explicitly written so that the second argument is 
really the second argument and not mistaken for the first. 

The second new feature supplies an option, INDENT, which allows us to 
request that the first line of a paragraph be indented by a desired 
amount. 

Since the function of the PARA command has now become a bit elaborate, 
with default values,' optional arguments, where the current line pointer 
ends up, etc., it would also seem like a good idea to include a TEll 
function in case the user can't remember the details of the command 
format or operation. 

When all of these features have been included, our little 25-line edit 
macro has grown to almost 100 lines. However, the kernel described 
above 1s basically unchanged. The other features are implemented by 
relatively short series of statements that do not interact with one 
another, so they should be comprehensible. 

Appendix D: EXEC 2 Primer for New Users 89 



Here is the complete. ~inal ~orm of the PARA XEDIT file. Following it 
is a detailed discussion of the its parts. 

'IF 'N = 1 'IF &1 = ? 'G~TO -TELL 
* Establish default values, initialize variables. 
&STACK LIFO M 1 6S 0 NLINES MLEFT MRIGHT 1 
&READ VARS INLINES 'MLEFT &MRIGHT 'INDENT 'Xl IX2 IX3 &X 
M Test arguments for valid values. 
IIF &N = 0 'GOTO -DOlT 
&IF &1 = M IX = 2 
ILOOP -NEXTARG UNTIL &X > 3 

&IF &X > &N &GOTO -DOlT 
& = &DATATYPE OF O&&X 
'IF & ~= NUM &GOTO -TESTOPT 
&&X&X = &IX 
-NEXTARG IX = &X + 1 

&IF &X > &N &GOTO -DOlT 
M 

M Test for valid option. 
-TESTOPT & = &PIECE OF &&X 1 1 
IIF I ~= ( &GOTO -TELL 
& = &LENGTH OF &&X 
IIF & = 1 IX = IX + 1 
&IF I > 1 IIX = IPIECE OF &&X 2 
&IF &X > IN &GOTO -DOlT 
I = ILENGTH OF &IX 
& = &PIECE OF INDENTIBLANK 1 & 
IIF IIX ~= & &GOTO -TELL 
IX = IX + 1 
IINDENT = S 
&IF &X > &N &GOTO -DOlT 
& = IDATATYPE OF IIX 
IIF & ~= NUM &GOTO-TELL 
&INDENT = &&X 
IIF &N > IX IGOTO -TELL 
M 

-DOlT &IF INLINES ~= * &GOTO -SKIPSEARCH 
* Convert M into number of lines 
TRANSFER LENGTH LINE 
&READ VARS &L &CURLIHE 
ILOOP 4 UNTIL IL = 0 

NEXT 
&IF &RC ~= 0 &GOTO -EOF 
TRANSFER LENGTH 
&READ VARS IL 

-EOF TRANSFER LINE 
&READ VARS &ELINE 
&NLINES = IELINE - &CURLINE 
:ICURLINE 

* -SKIPSEARCH &CASE " 
lSI NIT = ILEFT OF &BLANK &MLEFT 
ISINIT = &PIECE OF &SIHIT 2 
I = IINDENT + IMLEFT'- 1 

90 IBM VM/SP EXEC 2 Reference 



IIF I < 0 & = 0 
IS = 'LEFT OF &BLANK & 
IARGS 
ILOOP -Z INLINES 
STACK 
IIF IRC ~= 0 IGOTO -END 
IREAD ARGS 
DELETE 
IX = 1 
ILOOP -Z UNTIL IX > IN 
IT = &CONCAT OF IS &&X IBLANK 
I = ILENGTH OF IT 
&IF & < &MRIGHT &SKIP 4 

UP 
INPUT IS 
NEXT 
&T = ICONCAT OF &SINIT I&X &BLANK 

IS = &T 
-Z IX = &X + 1 

* -END TRANSFER 
&READ VARS 
UP 

LENGTH 
&L 

&IF /&S ~= / INPUT &S 
&IF &L = 0 NEXT 2 
IEXIT 

* -TELL XEDIT PARA TELL 
lBEGSTACK -X 

Format ;s: PARA <n <left <right»> «Indent <i» 
Defaults: * 1 65 5 

The PARA XEDIT Macro reformats the current line, and the next n-1 
lines using the specified "left" and "right" margins. Optionally, 
the first line reformatted may be indented "itt spaces. If "*" is 
specified for the number of lines, lines are reformatted until a 
blank line is encountered. 

The reformatted text replaces the original text, and the current 
line pointer is set to the last line of reformatted text, or, if 
a blank line follows the last reformatted line, 
the current line pointer is sat to the line 
following the blank line that terminated reformatting. 

-X 
&STACK 
SET CASE M 
INPUT 
:8 

---------------END OF EXAMPLE----------------

Appendix D: EXEC 2 Primer for Hew Users 91 



The XEDIT file starts with the traditional test for an information 
query. If there is only ona argument, and if it is a question mark, go 
to label -TELL where a complete description of the PARA command is put 
into the console stack. XEDIT is commanded to edit the file PARA TELL, 
and the stacked lin8s are read into that file. Since the editor will 
display that file, the user will see the entire description on his 
display screen and may use the QUIT XEDIT command to return to the file 
he was editing. 

If this is not simply a request for information, a set of EXEC variables 
are assigned initial values by the &STACK LIFO and the following 
&READ VARS statements •. Thesa work just as in the kernel described 
before, but this time there are more variables involved. The extra 
spaces in the commands are only to improve readability; they do not 
affect interpretation of the commands. Hota that there are some comment 
statements in this file, which should make it easier for a user to 
locate and modify various features such as default values. 

M Test arguments for valid values. 
&IF &N = 0 &GOTO -DOlT 
&IF &1 = M &X = 2 
&LOOP -NEXTARG UNTIL &X > 3 

&IF &X > &N &GOTO -DOlT 
& = &DATATYPE OF O&&X 
&IF & ~= NUM &GOTO -TESTOPT 
&&X&X = &&X 
-NEXTARG &X = &X + 1 

Now that we have assigned default values for the variables &NLIHES, 
&MLEFT, &MRIGHT, and &INDENT, the above statements examine the arguments 
and change any of the default values to valid values given with the 
command. Instead of repeating the statements to test that an argument 
is an unsigned integer, a loop is used. The variable &X is an index to 
the argument value being examined and, at the same time, an index to the 
name of the related EXEC variable, stored as the values of &Xl, &X2, and 
&X3. As soon as an argument value i5 found not to be an unsigned 
integer, a branch is made to -TESTOPT to check that it is a valid IHDENT 

. option. 

The &DATATYPE OF predefined function returns the value HUM if its 
argument is an integer, or CHAR if its argument is not an integer. 
Since this edit macro will not accept a signed integer for any of the 
first three arguments (number of lines, left margin, and right margin), 
&OATATYPE OF Oil will b. HUM only if &1 is an unsigned integer, atc. 

Hote how the assignment statement 

&&XIX = &IX 

works: if &X is 1,. &&X denotes the value of 11, while &&XIX ==> IIXl 
==> &HLINES, the name of the EXEC variable initialized to the default 
value for "nlines". 

92 IBM VM/SP EXEC 2 Reference 



How, statements to check the validity of any MARGIN arguments: 

M Test for valid option. 
-TESTOPT I = IPIECE OF IIX 1 1 
IIF I ~=.( IGOTO -TELL 
I = ILENGTH OF IIX 
IIF I = 1 IX = IX + 1 
IIF I > 1 &IX = &PIECE OF &IX 2 
IIF IX > IN IGOTO -DOlT 
I = &LENGTH OF IIX 
& = IPIECE OF INDENT&8LANK 1 I 
IIF IIX ~= I IGOTO -TELL 
IX = &X + 1 
&INDENT = 5 
&IF IX > IN IGOTO -DOlT 
I = IDATATYPE OF IIX 
IIF I ~= NUM IGOTO -TELL 
IINDENT = IIX 
IIF IN > IX IGOTO -TELL 

When the above section of the macro 15 entered, IIX is the first 
argument value that could not be a specification for number of lines, 
left margin, or right margin. Our PARA command syntax, then, requires 
that the first character of this word be a left parenthesis. This is 
the first test. If it is not a left parenthesis, hence not a proper 
INDENT option, branch to -TELL and display the correct command format 
for the user. Once we know the left parenthesis is present, we must 
then find out whether the word starting with the left parenthesis 
contains any more characters, that is, the word INDENT, or an 
abbreviation for it. Possibly the user separated the word INDENT from 
the left parenthesis by a blank, leaving a left parenthesis alone in 
this argument word. ILENGTH OF tells us this, 50 if the left 
parenthesis was the sole character in the current argument word, we 
simply advance the index variable IX by one and look for INDENT in the 
next argument word. If the left parenthesis was followed by other 
characters, we use the IPIECE OF function to "cut away" the parenthesis, 
leaving the remainder of the word to be tested for INDENT. 

As always, before using the next argument word, we must make a test to 
see that we haven't run out of argument values. As long as IX <= IN, 
there ;5 at least one argument word, IIX, to be examined. We use 
&LENGTH OF again to determine the length of the argument, then we use 
this length to form a piece of the word INDENT of the same length as the 
argument. (Actually, we append a blank to INDENT, 50 that in case 
someone used INDENTURE or INDENTZ, ate., as an option, it will not be 
accepted.) How that we have both the argument and the acceptable value 
of the same length, if they are not equal, go to -TELL to explain 
things. 

If the word INDENT was properly typed, it may be followed by an optional 
indention amount. Therefore the variable IX 1s incremented again. This 
is 50 that it may be compared with IN to see if another argument is 
available, and access it if there is. Before making this test, however, 
the'default value of IINDENT is changed from 0 (appropriate when INDENT 

Appendix D: EXEC 2 Primer for New Users 93 



is not used) to 5, the default indention amount when INDENT is 
specified. If another argument word remains, and if it ;s an integer 
(this time, a signed number is permitted), that value is assigned to 
IINDENT. Finally, we check to see if any additional arguments were 
given in the command. If they were, branch to -TELL since we have no 
idea what they could mean. 

OnlY one thing remains ,to b. done before entering the reformatting 
kernel. All of the command arguments· have been verified and default 
values have been supplied where appropriate, but it may be necessary to 
convert the number of lines (the value of INLINES) from asterisk into an 
actual number of lines. This is done by these statements: 

* Convert * into number of lines 
TRANSFER LENGTH LINE 
&READ VARS &L &CURLINE 
ILOOP 4 UNTIL IL = 0 

NEXT 
&IF &Re ~= 0 &GOTO -EOF 
TRANSFER LENGTH 
&READ VARS IL 

-EOF TRANSFER LINE 
&READ VARS &ELINE 
&NLINES = &ELINE - &CURLINE 
:&CURLINE 

The TRANSFER command is the mechanism whereby an XEDIT macro may query 
the value of internal XEOIT values, such as the xname and type of the 
edit file, length of the current line, line number of the current line, 
etc. The TRANSFER command arguments denote a set of variables whose 
values XEOIT stacks LIFO in one line. Sometimes, more than one value is 
given for a single variable name, such as CURSOR. In this case, 
however, the command: 

TRANSFER LENGTH LINE 

causes a line containing two words to be stacked. The first word is the 
length of the current line, excluding trailing blanks. Therefore, if 
the value of IL is zero, we know the current line is a blank line. The 
second word is the current line number. This is remembered as the value 
of ICURLINE, 50 that we can return to this line after finding the next 
blank line. 

The loop advances the current line pointer to the next line and checks 
for a blank line. If the return code from NEXT is nonzero, it means we 
have encountered the end-of-file or end-of-range, which we treat the 
same as finding a blank lin.. If NEXT succeeds, the value of &L i& 
updated and the loop continues until IL = O. 

Once a blank line is found, another TRANSFER command retrieves the line 
number of this line and the necessary number of lines to process is 
simply the difference between this line number and the line number at 
which we started. After computing the difference, the command :&CURLINE 

94 IBM VM/SP EXEC 2 Reference' 



restores the current line pointer to the value it had when the macro was 
entered, and we are ready to enter the reformatting kernel. 

The only difference between this kernel and the one discussed above 
concerns the setting of the initial value of IS before entering the 
outer loop. Instead of setting it to ISINIT, the following statements 
are used in order to accommodate the possibly of a negative value for 
the value of IINDENT: 

& = IINDENT + IMLEFT - 1 
IIF & < 0 I = 0 
&S = &LEFT OF IBLANK & 

Some .final words about the PARA XEDIT file. Like other edit macros, 
this one is not really final, for many users will think of features they 
would like to add, or changes they could make to better fit it to their 
needs. Many such changes can be made rather simply, and the description 
or documentation for them carried in the text of the macro itself and 
presented to the user at his command (PARA f). 

For example, if you would like two blanks following a word ending with a 
period, add the statements: 

& = &RIGHT OF IIX 1 
IIF I = IS = ICONCAT OF IS &BLANK 

just before the statement labeled -Z. Or, if you wanted to process 
comments in EXEC files, automaticallY inserting "*" before each line, 
you could replace the inner loop statement in the reformatting kernel: 

ILOOP -Z UNTIL &X > IN 

with the following: 

&IF &N = 0 IGOTO -Z 
& = &PIECE OF &1 1 1 
IIF & = * 11 = &PIECE OF 11 2 
&LOOP -Z UNTIL &X > IN 
&IF /&&X = / &GOTO -Z 

and change both of the INPUT commands to "INPUT * IS". 

Do not believe that all of this can be done instantly. This PARA XEDIT 
file was written by the author in about two hours (including time to 
correct a few errors), but he has had a lot of experience. The first 
few XEDIT macros that you write will probably take a long time because 
you are learning about EXEC 2 and you are also learning a new way of 
using XEDIT. However, the reward for writing them is more than simply a 
better understanding of XEDIT and EXEC ~, or some justified feeling of 
accomplishment. The time will come when your work can be done easier 
and more efficiently if you write or modify an EXEC file, then you will 
gain the greatest benefit from the effort invested in learning about 
EXEC 2. 

Appendix D: EXEC 2 Primer for New Users 95 



This primer has illustrated barely half of the total facilities in 
EXEC 2. though it has discussed many ideas needed to understand and 
start writing EXEC 2 files. This introduction. and perhaps a little 
practice, should make it possible for the novice to better use the 
information in the EXEC 2 Raference section. Like any programming 
language, facility with EXEC 2 is gained through experience in using it. 
Often it is easier (and more educational) to try something out, making 
changes as errors are detected, than to ponder each statement. The 
trace facility helps in this. It let$ the user watch while his program 
is being executed and identify most errors as they occur. 

96 IBM VM/SP EXEC 2 Reference 



Appendjx £1 Useful IXEk I Techn;gues 

The following ;llustra~ions exhibit solutions to some EXEC programming 
problems. These solutions frequently involve nonobv;ous uses of 
predefined functions to achieve the desired result ,in a minimum of 

.,tatements. There has been no attempt to present a comprehensive 
catalog of solutions. The objective is to give the reader some insight 
into the possibilities inherent in the EXEC 2 functions. 

The statement 

1 = IDATATYPE OF +11 

sets & to 'HUM' if, and only if, 11 contains an unsigned integer. 

If &J is an unsigned integer not exceeding 99999999, the statement 

IJ = IRIGHT OF OOOOOOOIJ S 

extends it with leading zeros to • total length of S. 

A string of any number of blanks, 23 for example, can be created by: 

IB23 = ILEFT OF IBLANK 23 

A string of some character other than blanks, asterisks for example, is 
easily obtained from the string of blanks by using the &TRANSLATION OF 
predefined function: 

IM23 = ITRANSLATION OF IB23 IBLANK M 

A multi-way branch is desired, based on an argument value supplied by 
the caller and currently in IF. However, the value of IF must first be 

Appandix E: Useful EXEC 2 Techniques 97 



tested to verify it is valid -- that is, its value 15 either CASE1, 
CASE2, etc. 

& = &POSITION OF IF CASEI CASE2 CASE3 ••• 
IIF I ~= 0 &GOTO -IF 
ITYPE INVALID CASE: IF 

-CASEl 

-CASE2 

The statement 

I = &LOCATION OF /&1 I/PRINT 

sets & to 2 if, and only' if, &1 contains the word "PRINT" or an 
abbreviation for it. Note that & would have the value 1 if II is null. 

Suppose &1 is as given on entry, and is, therefore, known not to contain 
any blanks. Then the following sequence transfers control to the label 
-BLUE if &1 contains the word "BLUE" or an abbreviation for it, to the 
label -GREEN if &1 contains the word "GREEN" or an abbreviation for it, 
••• , or to the label -ERR if &1 is null or does not contain a color or 
an abbreviation therefo~. 

&X = &LITERAL OF ERR IERR IBLUE /GREEN /RED /YELLOW 
I = 1 + &LOCATION OF 1&1 &X 
& = &PIECE OF &X & 
&STACK LIFO &GOTO -& 
&READ 

The first statement assigns to &X the string containing all of the 
expected labels prefaced with / and separated by blanks. In addition, 
the first word (ERR) is included in case the value of &1 does not appear 
in IX, and the second word (/ERR) is included in case the value of II is 
null. The third statement assigns to & that part of &X starting with 
the desired label. A &GOTO statement is then stacked. This statement· 
is read and interpreted by the last, &READ statement. When the stacked 
line is read, it is broken into words and examined in the ordinary way, 
so the desired label becomes the &GOTO operand, and any surplus data 
from the original value of &X is treated as a comment. 

98 IBM VM/SP EXEC 2 Referance 



The argument values are to be assigned to the variables lXi, for i = 1, 
2, ••• , IH. The object of this is to make it possible to reuse the 
numeric variables without losing access to the current arguments. 
Calling a user-defined function which needs the argument values that 
existed bafora the function was invoked illustrates such a need. 

IS = IRAHGE OF I 1 IN 
ISTACK LIFO IS 
IS = IRANGE OF *x 1 IN 
IS = ITRANS OF IS * I 
ISTACK LIFO IREAD VARS IS 
IREAD 

The first two lines construct a string from the argument values 11 12 
liN separated by blanks, and stack it. A corresponding string of 

variable names is then created in two steps. First, a string of words 
*X1 *X2 ••• MXIH is built, then all of the asterisks in that string are 
translated to ampersands. The string of variable names is then used 
when stacking a IREAD VARS statement. The final statement causes the 
just stacked 'READ VARS statement to be read and interpreted by EXEC 2. 
When executing this statement, the previously stacked argument values 
are read and assigned to the desired variables. Hote that use of & as a 
temporary variable is avoided so that its pred~fined value (ampersand) 
will be available .s an argument to 'TRAHS OF. 

If only a (contiguous) subset of the currant arguments are to be 
transferred to the variablas lXi, the arguments to &RAHGE OF may be 
adjusted as required. If the values of the original arguments, instead 
of the current argument values, were desired, tha first two lines could 
be replaced with: 

ISTACK LIFO lARGSTRIHG 

To verify that a value 15 a valid hexadecimal number (contains no 
characters other than the digits 0-9 and the letters A-F): 

& = &TRANS OF &HEXNUM 0123456789ABCDEF 
IIF /& ~= / IGOTO -BADHEX 

The first statement use. &TRANSLATION OF to translate all valid 
characters in &HEXNUM into blanks. Then, the IIF condition succeads 
only if the translation contained something other than blanks (sinca the 
shorter word is extended with blanks for purposes of comparing the two 
strings). This corresponds to the presence of one or more untranslated 
(that is, invalid) characters in IHEXHUM. 

This schema works only if it is known that there era no blanks embedded 
in &HEXNUM, or if blanks are acceptable characters. Tha following 
elaboration will detect .mbedde~ blanks as invalid characters: 

Appendix E: Useful EXEC 2 Techniques 99 



IZ = 'CONCAT OF IBLANK 0123456789ABCDEF 
& = &TRANS OF &HEXNUM IZ M 
IIF /& ~= / &GOTO -BADHEX 

Hera, a blank in IHEXNUM is explicitly translated into an asterisk so 
that it forces the subsequent comparison to fail. 

The following EXEC fila is useful when it is necessary to extract 
information delimited by parentheses within a string. Blanks and nested 
parentheses are retained, so PAREN EXEC may be invoked multiple times 
when there are nested parentheses. The result is two lines put into the 
console stack. Tha first one, stacked LIFO, contains all characters of 
the original argument string except tha first left parenthesis, the 
characters following it to the matching right parenthesis, and that 
right parenthesis. The second line contains the data excised from the 
first line without the delimiting parentheses, but includes any nested 
parentheses. 

&TRACE 
IA = IARGSTRING 
& = -1 + ILOCATION OF ( IARGSTRING 
IIF I < 0 IGOTO -END 
&A = IPIECE OF IARGSTRING 1 & 
1 = 1 + 2 
IB = IPIECE OF IARGSTRING 1 
&IF .IB EQ. IGOTO -END 
I = 1 + -NESTED OF 1 
IZ = IPIECE OF 18 I 
IA = ICONCAT OF IA IZ 
& = 1-2 
18 = IPIECE OF IB 1 1 
-END ISTACK LIFO IA 
ISTACK LIFO &8 
&EXIT 
M Recursive subroutine to balance parenthe~es. 
* &1 = index into string &8 whera search is to start. 
* Returns index into &B of matching ). 
-NESTED &ARGS 11 0 0 0 
&LOOP -X * 

&2 = &PIECE OF &B 11 
13 = &LOCATION OF ) 12 
&4 = &LOCATION OF ( &2 
&IF &4 ~= 0 &IF 14 < 13 ISKIP 3 

&IF &3 : 0 &3 = 1 + 'LENGTH OF 12 
13 = 11 + &3 - 1 
&RETURN &3 

&2 = &1 + &4 
~X &1 = 1 + -NESTED OF '2 

100 IB" VM/SP EXEC Z Rafer"ence . 



This implementation of PAREN illustrates the use of a recursive 
user-defined function. Notice the IARGS statement at the beginning of 
-NESTED which creates three local variables (&2, &3 and &4) each time 
the function is entered. This automaticallY associates a unique group 
of EXEC variables with every invocation of the function (in addition to 
the function's explicit arguments). Because these variables are unique 
to an individual invocation of the user-defined function, they are 
guaranteed not to conflict with any other EXEC variable name. Actually, 
in this instance the technique is not· necessary. The &ARGS statement 
could be eliminated, and the variables &2, &3, and &4 renamed &5, &L, 
and &R, without introducing an error. An error would occur only if a 
subsequent modification of the EXEC file introduced one of those 
variable names outside of the -NESTED function. 

The following version of PAREN EXEC illustrates an alternative 
implementation which doesn't use a user-defined function: 

&TRACE 
&A = IARGSTRING 
& = -1 + &LOCATION OF ( &ARGSTRING 
&IF & < 0 &GOTO -END 
&A = &PIECE OF &ARGSTRING 1 & 
& = & + 2 
&B = &PIECE OF &ARGSTRING & 
&IF .&B EQ. &GOTO -END 
&LP = 1 
& = 1 
&LOOP -X UNTIL &LP = 0 

&S = &PIECE OF &B & 
&R = &LOCATION OF ) &S 
&IF &R = 0 &GOTO -END 
&L = &LOCATION OF ( IS 
&IF &L ~= 0 &IF &L < &R ISKIP 3 

I = & + &R 
&LP = ILP - 1 
&GOTO -X 

I = I + &L 
ILP = &LP + 1 
-X 

&Z = &PIECE OF &B I 
IA = &CONCAT OF &A &Z 
& = & - 2 
&B = &PIECE OF &B 1 & 
-END &STACK LIFO &A 
&STACK LIFO &B 
&EXIT 

Appendix E: Useful EXEC 2 Techniques 101 



102 IBM VM/SP EXEC 2 Referene. 



& 6 
&ARGS 6, 10 

embedded blanks 38 
&ARGSTRING 6, S6 

embedded blanks 38 
'BEGPRINT 10 

number of lines 10 
truncation column 10, 42 

&BEGSTACK 11 
first-in, first-out (FIFO) 11 
last-in, first-out (LIFO) 11 
number of lines 11 
truncation column 11, 42 

'BEGTYPE 10 
number of lines 10 
truncation column 10, 42 

&BLANK 7 
embedded blanks 38 
example 38 

&BUFFER . 12 
&CALL 12 

label search 40 
&CASE 13 
&CMDSTRING 7, S6 
&COMLINE 7 
&COMMAND 13, 80 

&PRESUME 14, 16 
&CONCAT OF 24 

example 24 
&CONCATENATION OF 24 

example 24 
&CRASH 47 
&DATATYPE OF 24 
&DATE 7 

evaluation 36 
Greenwich Mean Time (GMT) 7 

&DEPTH 7 
&DIV OF 24 

example 2S 
&DIVISION OF 24 

example 25 
IDUMP 14 
IERROR 14 
IEXIT 15 

&FILEMODE 7 
&FILENAME 7 
&FILETYPE 8 
&FROM 8 
&GOTO 15 

label search 40 
&IF 15 

comperands 15 
comparatives 15 
conditional interpretation 71 

&INDEX 8 
&LEFT OF 25 

embedded blanks 38 
&LENGTH OF 25 
&LINE 8 
&LINENUM 8 
&LINK 8 
&LITERAL OF 25 

embedded blanks 38 
example 25 

'LOCATION OF 26 
example 26 

&LOOP 16, 75 
closing 39 
example 39 
label search 40 

'MULT OF 26 
example 26 

'MULTIPLICATION OF 26 
example 26 

'N 8 
&PIECE OF 26 

example 26 
&POSITION OF 27 

example 27 
&PRESUME 16, 80 

&COMMAND 14, 17 
'SUBCOMMAND 17, 20 

'PRINT 17 
&RANGE OF 27 

embedded blanks 38 
example 27 

&RC· 8 
&READ 17 

ITRUNC 19, 22 
ARGS 18 
embedded blanks 38 
example. 77 

Index 103 



n,l,* 17 
STRING 18 
VARS 18 

&RETCODE 8 
&RETURN 19 
&RIGHT OF 28 

embedded blanks 38 
'SKIP 19 
'STACK 20 

first-in, first-out (FIFO) 20 
last-in, first-out (LIFO) 20 

&STRING OF 28 
embedded blanks 38 
example 28 

'SUBCOMMAND 20, 80 
IPRESUME 16, 20 

ISUBSTR OF 26 
example 26 

'TIME 9 
&Greenwich Mean Time (GMT) 9 
evaluation 36 

&TRACE 21 
M 22 
ALL 21, 41 
ERR 21 
example 41 
OFF 22 
ON 21 
output-action 22 

&TRANS OF 29 
embedded blanks 38 
examples 29 
rules for modification 29 

&TRANSLATION OF 29 
embedded blanks 38 
examples 29 
rules for modification 29 

&TRUNC 19, 22 
truncation column 22, 42 

&TYPE 17 
&TYPE OF 24 
tUPPER 23 
&0 6 
11 &2 ••• 6 

&ARGS 6, 10, 18 
&READ ARGS 6, 18 
arguments 2, 6, 10, 70 
embedded blanks 38 

104 IBM V"/SP EXEC 2 Referance 

"in memory fila" 60 

arguments 2, 6, 10, 70 
11 &2 ••• 2, 6, 10 

assembler language programs 59-62 
SVC 202 calls 59, 61 
tokenized plist 59 
untokenized plist 60 

assignment statement 36, 72 
example 36 

assignments 2 

BNF syntax 43 

CMDCALL 56 
CMS 56-66 
CMS EXEC 48-51 

&$ 50 
&M 50 
&ARGS 48 
IBEGEMSG 48 
IBEGPUNCH 48 
&BEGSTACK 48 
IBEGTYPE 49 
&CONCAT 50 
&CONTINUE 49 
&CONTROL 49 
&DATATYPE 50 
&DISKM 51 
&DISK? 51 
&DISKX 51 
IDOS 51 
&EMSG 49 
lEND 49 
&ERROR 49 



'EXEC 51 
'EXIT 49 
'GLOBAL 51 
'GLOBALn 51 
'GOTO 49 
'HEX 49 
'IF 49 

51 
50 

51 
50 

'INDEX 
&LENGTH 
'LINENUM 
&LITERAL 
&LOOP 49 
&PUNCH 49 
&READ 49 
'READFLAG 51 
&RETCODE 51 
&SKIP 49 
'SPACE 49 
&STACK 49 
&SUBSTR 50 
&TIME 50 
&TYPE 50 
&TYPEFLAG 51 
&0 50 
&1 &2 .•• 50 
ALL 48 
control statements 48 
predefined functions 50 
predefined variables 50 
TOP 49 

eMS EXEC and EXEC 2 
relationship 48-51 

eMS limits 57 
&EXIT return codes 57 
'TRACE 57 
console 57 
console stack 57 
filename 57 
line length 57 
lookaside buffer 57 
NUMERIC OVERFLOW 57 
numeric values 57 
printed line length 57 
statement length 57 
word length 57 

commands 2, 4. 68 
comment 1 
concatening words 24 
conditional interpretation 
statements 71 

conditional phrases 

of 

example 37 
syntax 37 

console input buffer 35 
console stack 

See console input buffer 
control statements 2, 5, 10-23 

&ARGS 6, 10 
&BEGPRINT 10 
&BEGSTACK 11 
&BEGTYPE 10 
&BUFFER 12 
&CALL 12 
&CASE 13 
&COMMAND 13 
'DUMP 14 
&ERROR 14 
&EXIT 15 
&GOTO 15 
&IF 15 
&LOOP 16 
&PRESUME 16 
&PRINT 17 
&READ 17 
'RETURN 19 
&SKIP 19 
&STACK 20 
&SUBCOMMAND 20 
&TRACE 21 
'TRUNC 22 
'TYPE 17 
'UPPER 23 

control words 
examples 2 

converting CMS EXEC files to EXEC 
2 files 48 

0 
debugging the EXEC 2 

interpreter 47 
delimiters 

parenthesis 6 
space 6 

dividing numbers 24 
DMSEXE085E 46 
DMSEXE175E 46 
DMSEXE255T 47 

Index 105 



editor macros 62, 80-82 
examples 81, 86, 90 
executing 62 
filetype 62 
implementation 80 

embedded blanks 38, 82 
examples 38, 83 
exceptions 38 
handling 82 
variables 38 

errors 46 
DMSEXE085E 46 
DMSEXE175E 46 
DMSEXE255T 47 
messages 46 

evaluation of &DATE and &TIME 36 
examples 

&BLANK 38 
&CONCAT OF 24 
&CONCATENATION OF 24 
&DIV OF 25 
&DIVISION OF 25 
&LITERAL OF 25 
&LOCATION OF 26 
&LOOP 39 
&MULT OF 26 
&MULTIPLICATION OF 26 
&PIECE OF 26 
&POSITION OF 27 
&RANGE OF 27 
&STRING OF 28 
&SUBSTR OF 26 
&TRACE ALL 41 
&TRANS OF 29 
&TRANSLATION OF 29 
assembler language 

programs 59-62 
assignment statement 36 
conditional phrases 37 . 
control words 2 
EDIT and CMS commands in one 
'file 83 

editor macros 81, 86, 90 
generating EXEC variable 

names 74 
labels 2 
leading zeros 37 
name substitution 33 
plus signs 37 

106 IBM VM/SP EXEC 2 Reference 

programming techniques 97-101 
SVC 202 59 
tokenized plist 59 
untokenized plist 60 
user-defined functions 31 
variable 2 

exceptions 
embedded blanks 38 
EXEC 2 words 41 

EXEC 2 files 1 
filetype 1, 62 
format 1 
recursive execut;on 35 
sample of 54 
terminating 35 

EXEC 2 in'CMS 56-66 
assembler lengua~e 

programs 59-62 
EXECCOMM 63 
identifying EXEC 2 files 56 
limits in CMS 57 
XEDIT macros 62 

EXEC 2 interpreter 1 
as a macro processor 61 
invoked 1 

EXEC 2 language 1 
EXEC 2 parameter lists 59 
EXEC 2 programs 1 

assembler language 
programs 59-62 

EXEC 2 file 1 
EXEC 2 interpreter 1 
executing 1 
interaction with users 76 

EXEC 2 statements 1 
comment 1 
executable statement 1 

EXECCOM 63-66 
EXECCOMM 

FETCH 58 
length lim~t for external names 
of shared variables '58 

length limit for values 
assigned by 58 

STORE 58 
executable statements 1, 4 

assignment 4 
assignment statement 2 
command 2, 4 
control statement 2, 5 
interpreting 3 
null statement 2, 4 
types ,. 



FIFO (first-in, first-out) 20 
function invocation 

predefined function 24 
user-defined functions 31 

functions 
predefined 24-30 
unique to EXEC 2 52 
user-defined 31 

HT 49 

interpreting executable 
statements 3 

label 
description of 72 
example 2 
performance 40 
search 40 

leading zeros 
example 37 
removing 37 

left-justified 25 
length of words, finding 25 
LIFO (last-in, first-out) 20, 37 
limits for EXEC 2 files in eMS 57 
locating a word in a character 
string 26 

lookaside buffer 12 

messages 
DMSEXE085E 46 
DMSEXE175E 46 
DMSEXE255T 47 
return codes 46 

mixed case data 13, 77, 82 
multiplying numbers 26 

name substitution 
examples 33 
steps 33 

notes on EXEC 2 35-42 
&LOOP statement 38 
&TRACE ALL 41 
assignment statement 36 
closing loops 39 
conditional phrases 37 
console input buffer 35 
embedded blanks 38 
evaluation of &DATE and 

&TIME 36 
label search 40 
leading zeros 37 
numbers 36 
plus signs 37 
recursive execution 35 
reserved words 40 
termination 35 
truncation column 42 

null statement 2, 4 
numbers 

dividing 24 
multiplying 26 
size and treatment 36 

parameter lists 59 
plus signs 

example 37 
removing 37 

predefined functions 24-30 

Index 107 



ICONCAT OF 24 
&CONCATENATION OF 24 
&DATATYPE OF 24 
'DIV OF 24 
&DIVISION OF 24 
&LEFT OF 25 
'LENGTH OF 25 
ILITERAL OF 25 
&LOCATION OF 26 
'MULT OF 26 
&MULTIPLICATION OF 26 
&PIECE OF 26 
&POSITION OF 27 
&RANGE OF 27 
&RIGHT OF 28 
&STRING OF 28 
&SUBSTR OF 26 
ITRANS OF 29 
&TRANSLATION OF 29 
&TRIM OF 30 
&TYPE OF 24· 
&WORD OF 30 
format of 24 
reserved words 40 

predefined variables 
& 6 
&ARGSTRING 6 
&BLANK 7 
&CMDSTRING 7 
ICOMLINE 7 
IDATE 7 
&DEPTH 7 
IFILEMODE 7 
&FILENAME 7 
&FILETYPE 8 
&FROM 8 
&INDEX 8 
&LINE 8 
&LINENUM 8 
&LINK 8 
&N 8 
&RC 8 
&RETeODE 8 
&TIME 9 
&:0 6 
11 &2 2, 6 
description of 69 
reserved words 40 

Primer 67-96 
&LOOP control statement -75 
assignment statements 72 
commands, return codes, "and 
variables 68 

108 IB" VM/SP EXEC 2 Reference 

conditional interpretation of 
statements 71 

edit commands and CMS 
commands 83 

embedded blanks 82 
file arguments 70 
generating variable names 74 
implementation of editor 
macros 80 

statement labels 72 
user interaction 76 
variable evaluation 73 
variable names 71 
XEDIT macro example 85 

programming techniques 
examples 97-101 

recursive execution 35 
removing plus signs and leading 
zeros 37 

reserved words 
predefined functions 40 
predefined variables 40 

return codes 46, 68-70 
right-justified 28 
RT 49 

SET CMSTYPE HT 49 
SET CMSTYPE RT 49 
sharing EXEC 2 variables with 
assembler language programs 63 

subroutine invocation, returning 
control to 19 

substituting variables 33 
SVC 202 call 

example 59 
SUBCOM function 61 

sy~tax 

BNF description 43 
conditional phrases 37 
predefined functions 24 
user-defined functions 31 



terminating EXEC 2 file 35 
tokenized plist 

example 59 
translating to uppercase 56, 77 
truncation 42 
types of executable statements 2, 

4 
assignments 2, 4 
commands 2, 4 
control statements 2, S 
null statement 2, 4 

UNTIL keyword 16 
untokenized plist 

"in-memory file" 60 
example 60 

uppercase data 56, 77 
user interaction 76-79 
user-defined functions 

examples 31 
form of 31 
invocation 31 
label search 40 
returning to 19 

variables 
embedded blanks 38 
evaluation 73 
example 2 
EXEC variables 68 
names 71, 74 

WHILE keyword 16 
words 

definition of 1 
reserved 40 

XEDIT macros in EXEC 2 
example 85 
execut i,ng 62 
filetype 62 

Index 109 



SC24-S219-1 

m s: 
< s: 
........ 
en 
"tJ 

m 
X 
m 
n 
f'I,,) 

::0 
!. 
(1) ... 
(1) 
::l 
(') 
(1) 

!! 
(i" 

z p 
en 
w ..... 
0 ........ 
.J,lI. 
w 
8 
I 

W 
S 
"tJ ... 
:r or 
Q. 

:r 
!= 
~ 
'l> 
en 
n 
~ 
I 

en 
f'I,,) -CD 
I --- - ---- -- - ---- - --- - ---- ------------- . -• 



mMVM/SP 
EXEC 2 Reference 
SC24-S219-1 

READER'S' 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of mM systems. Y9u may use this form to communicate your 
comments about this publication, its organization, or subject matter, with the understanding 
that IBM may use or distribute whatever information you supply in any way it believes 
appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if 
any, are deemed appropriate. Comments may be written in your own language; English is 
not required. 

Note: Copies of IBM publications are not stocked at the location to which this form is 
addressed. Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IBM representative or to the IBM branch office serving your locality. 

• Does the publication meet your needs? 

• Did you find the material: 

Easy to read and understand? 

Organized for convenient use? 

Complete? 

Well illustrated? 

Written for your technical level? 

• What is your occupation? 

• How do you use this pUblication: 

As an introduction to the subject? 

For advanced knowledge of the subject? 

To learn about operating procedures? 

Your comments: 

Yes No 

o 

o 
o 
o 
o 
o 

o 
o 
o 

o 

o 
o 
o 
o 
o 

As an instructor in class? 

As a student in class? 

As a reference manual? 

o 
o 
o 

If you would like a reply, pkase supply )'Our 1UIme and address on the reverse side of this form. 

Thank you for your cooperation. No postage stamp necessary if mailed ~ the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments or 
you may mail directly to the address in the Edition Notice on the back of the title page.) 



SC24-S219-1 

Reader's Comment Form 

Fold and Tape Please 00 Not Staple Fold and Tape 
.................................................................................................................................................................................................. 

Fold 

1111' , 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WI LL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Department G60 
P. O. Box 6 
Endicott, New York 13760 

NO POSTAGE 
NECESSARY 
IF MAILED 
INTHE 

UNITED STATES 

Fold 

If you would like a reply, please print: 

YourName __________________________________________________ __ 

Company Name __________________ Department ________ _ 
S~eetAddre~ _____________________________ __ 
ary~ ________________________________ __ 

State ____________ Zip Code _____ __ 

--- ----- IBM Branch Office serving you __________________ _ - ----- ---- ----- - - ----------_.-• 

n c .. 
2 
.... o 
A 
! 
o 
~ • r 
:; 
• 

aJ s: 
< s: 
......... 
en 
'"'0 

m 
X 
m 
(") 

N 
:0 

~ 
CD 
::::l 

2 

'"'0 
~., 
::::l 
S-a. 
:i' 
c 
~ 
'l> 
en 
(") 

~ 
I 

en 
N -CD 
I -



mMVM/SP 
EXEC 2 Reference 

. SC24-S219-1 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of mM systems. You may bsethis form to communicate your 
comments about this publication, its organization, or subject matter, with the understanding 
that mM may use or distribute whatever information you supply in any way it believes 
appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if 
any, are deemed appropriate. Comments may be written in your own language; English is 
not required. 

Note: Copies of IBM publications are not stocked at the location to which this form is 
addressed. Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IBM representative or to the IBM branch office serving your locality. 

• Does the publication meet your needs? 

• Did you find the material: 

Easy to read and understand? 

Organized for convenient use? 

Complete? 

Well illustrated? 

Written for your technical level? 

• What is your occupation? 

How do you use this pUblication: 

As an introduction to the subject? 

For advanced knowledge of the subject? 

To learn about operating procedures? 

Your comments: 

Yes No 

o 

o 
o 
o 
o 
o 

o 
o 
o 

o 

o 
o 
o 
o 
o 

As an instructor in class? 

As a student in class? 

As a reference manual? 

o 
o 
o 

If you would like a reply~ please supply your IUltne and address on the reverse side of this form. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an mM office or representative will be happy to forward your comments or 
you may mail directly to the address in the Edition Notice on the back of the title page.) 



SC24-S219-1 

Reader's Comment Form 

Fold and Tape 

FOld 

Please Do Not Staple 

""" 
BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Department G60 
P. O. Box 6 
Endicott, New York 13760 

Fold and Tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold 

If you would like a reply, please print: 

YourName __________________________________________________ __ 

Company Name ___________________ Department ________ _ 
S~eetAdd~~ _________________________________ __ 
Ory.--____________________________________ __ 

State _______________ Zip Code _____ _ 

--- ----- IBM Branch Office serving you _________________ __ 

- ----- ---- ----- - - ----------_.-• 

p .. 
o .. 
'11 
o 
i 
~ 
o 
;, • ,. 
;-
• 

1 

-I 

tD 
3: 
< 
~ , 
CJ) 
"'0 

m 
X 
m 
n 
N 
::xJ 
!. 
CD 
CD 
:::l 

~ 
-::n 
CD 
z 
9 
CJ) 
w ..... 
o , 

i 
1 
w
!! 



- "! c c -E • 
Co'._ .r: 
::1-cr-

- = = • 
.5 c 
1::-
i& 
:::f! 
;"i 
-=E 
J! E 
• ::I E= c ... -. ::I.r: .-

.r:
c - ... .- c • • · .~ E .1: • • - c .e. e M 

Co. 

I ~ 
::I = I! e 
c Co 

I! = 
- ::I • • - . Co. 

J! • U)i5: 

mMVM/SP" 
EXEC 2 Reference 
SC24-S219-1 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems.· You may use this form to communicate your 
comments about this publication, its organization, or subject matter, with the understanding 
that IBM may use or distribute whatever information you supply in any way it believes 
appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if 
any, are deemed appropriate. Comments may be written in your own language; English is 
not required. 

Note: Copies of IBM publications are not stocked at the location to which this form is 
addressed. Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IBM representative or to the IBM branch office serving your locality. 

• Does the publication meet your needs? 

• Did you find the material: 

Easy to read and understand? 

Organized for convenient use? 

Complete? 

WeD illustrated? 

Written for your technical level? 

• What is your occupation? 

• How do you use this publication: 

As an introduction to the subject? 

For advanced knowledge of the subject? 

To learn about operating procedures? 

Your comments: 

Yes 

o 

o 
o 
o 
o 
o 

o 
o 
o 

No 

o 

o 
o 
o 
o 
o 

As an instructor in class? 

As a student in class? 

As a reference manual? 

o 
o 
o 

""If you would like a reply, please supply your name and address on the reverse side of this form. 

"Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be bappy to forward your comments or 
you may mail directly to the address in the Edition Notice on the back of tbe title page.) 



SC24-5219-1 

Reader's Comment Form 

Fold and Tape Please Do Not Staple 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Department G60 
P. O. Box 6 
Endicott, New York 13760 

Fold and Tape 

NO POSTAGE 
NECESSARY 
IF MAILED 
INTHE 

UNITED STATES 

n c .. 
o ... .,. 
o 
A 
~ 
o :a • 
C 
:a • 

•..•................................................................................................................................................................................................ 
Fold Fold 

If you would like a reply, please print: 
YourName __________________________________________________ __ 

Company Name ___________________ Department _____ _ 
S~eetAddnn ____________________________________ __ 

a~-----------------------------------State ____________ Zip Code _____ _ --..- ----- IBM Branch Office serving you _________________ _ 

- ----- ----- ----- - -----------_w-e 



. -e -~ c = CD _ 

E M 
Q..._ .e 
::.
c:r -CD ca 
a» 5: 
.5 = 1::-= CD I') Q. 

=J! 
ca"'CI 
E CD 

"'CI E 
J2 E ca ::. 
Ea» = ~ _ CD 

::..e 
cab 
;~ 
.j : 
M.?: 
E .1:: 
CD M 

- C .eCD e en 
Q.CD 

= 5 ::. :: 
fJ l! 
cQ. 
fJ I: 1')= 
CD CD 

- en Q.ca 
:!.!! 
(I) A. 

mMVM/SP. 
EXEC 2 Reference 
SC24-S219-1 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of mM systems. You may use this form to communicate your 
comments about this publication, its organization, or subject matter, with the understanding 
that mM may use or distribute whatever information you supply in any way it believes 
appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if 
any, are deemed appropriate. Comments may be written in your own language; English is 
not required. 

Note: Copies of IBM publications are not stocked at the location to which this form is 
addressed. Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IBM representative or to the IBM branch office serving your locality . 

• Does the publication meet your needs? 

• Did you find the material: 

Easy to read and understand? 

Organized for convenient use? 

Complete? 

Well illustrated? 

Written for your technical level? 

• What is your occupation? 

• How do you use this publication: 

As an introduction to the subject? 

For advanced knowledge of the subject? 

To learn about operating procedures? 

Your comments: 

Yes No 

o 

o 
o 
o 
o 
o 

o 
o 
o 

/ 

o 

o 
o 
o 
o 
o 

As an instructor in class? 

As a student in class? 

As a reference manual? 

o 
o 
o 

If you would like a reply, pkase supply your 1UlIM and address on the reverse side of this form. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments or 
you may mail directly to the address in the Edition Notice on the back of the title page.) 



, SC24-5219-1 

Reader's Comment Form 

Fold and Tape Please 00 Not Staple 

111111 

BUSINESS REPLY MAIL' 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Department G60 
P. O. Box 6 

Fold and Tape 

NO POSTAGE 
NECESSARY 
IF MAILED 
INTHE, 

UNITED STATES 

. Endicott, New York 13760 

Fold . Fold 

If you would like a reply, please print: 
YourName ________________________________________________ ___ 

Company Name ______________ Department ____ _ 
S"eetAdd~~ __________________________________ ___ 
Ory __________________________________ _ 

State ________________ Zip Code ______ _ 

--- ----- IBM Branch Office serving you ___________________ _ - ------ ----- ----- ------------_.-• 

n c .. 
! 
-: 
i: 
~ 
g 
• c 
i 

aJ 
3: 
< 
3: 
........ 
en 
\J 

m 
X 
m 
(") 

N 
:n 
~ 
(; 
:::t 
n 
CD 


