Program Product

$C24-5219-1
File no. S3707/4300-39

IBM Virtual Machine/
System Product:
EXEC 2 Reference

Program Number 5664-167

Release 2

gsecond Edition (April 1982) 1

This adition, SC264-5219-1, applies te release 2 of IBM Virtual
Machine/System Product, Program Number 5664-167, and to all subsequent
versions and raleases until otherwise indicatad in the new editions or
Technical Newsletters. Changes are continually made to the information
contained herein; before using this publication in connection with the
cperation of IBM systems, consult the IBM System/370 and 4300 Processors
Biblioaraphy, GC20-0001, for the editions that are applicable and
current.

Changaes or additions to the text and illustrations are lndxcated by a
vertical lina to the left of thae changa.

Summary of Amendments

For a list of changes, sea paga iii.

It is possible that this material may contain reference to, or
information about, IBM products (machines and programs), programming, or
sarvicaes that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

Publications are not stocked at the address given below; requests for
IBM publications should be made to your IBM repraesentative or to the IBM
branch office serving your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been ramoved, commants may be addressed to
IBM Corporation, Programming Publications, Department G60, P.0. Box 6.,
Endicott, New York, U.S.A. 13760. IBM may use or distribute any of tha
information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use
the information you supply. S ’

C)Copyrfght International Business Machines Corporation 1980,1981,1982

summary of Amendments

Summary of Amendments
for $C24-5219-1

VARIABLE SHARING

Programs called from an EXEC 2 file can now directly accaess and
manipulate all variables containad in that EXEC 2 file through an
EXEC 2 facility called EXECCOMM. Variables can also be assigned
values as a side-effact of command or subcommand execution.

NEW PRE-DEFINED VARIABLE

The pre-defined variable &CMDSTRING is initialized to the .
untranslated command string availabla from the command line.

-_
-de
e

Summary of Admendments

PREFACE

Tha purpose of this publication is to definae the EXEC 2 language. It is
to be used primarily as a reference manual; it contains all of the
formats, syntax rules, and dascriptions of the argumants for EXEC 2
statamants.

For tutorial information on using tha EXEC 2 languagae, refer to
"Appendix D: EXEC 2 Primaer for Naew Users.” Thae material contained
therein may be used in conjunction with the reference section.

The refaerenca saction of this publication contains these parts:

. "Part 1: Introduction™ summarizes what tha EXEC 2 language is and
what it is capable of. It introduces and defines some of tha
terminology used throughout this manual. EXEC 2 statements and the
rulaes for interpreting them are also discussed.

. "Part 2: EXEC 2 Statements" discusses in detail the different types
of EXEC 2 statements. This discussion is followed by illustrations
of the syntax of each EXEC 2 statement and a description of the
function of each statement. "User-Daefined Functions™ and "EXEC 2
Name Substitution™ are also discussead.

. "Part 3: Notaes on EXEC 2" contains detailed discussions on
particular aspects of EXEC 2 that do not fit into a category by
themselveas.

. "Part 6: BNF Description of the EXEC 2 Syntax"™ contains a
description of the main features of the EXEC 2 syntax in Backus-Naur
Form (BNF). This section presents an alternative description of the
EXEC 2 syntax for those familiar with this type of notation. This
is not essential reading.

L] "Part 5: EXEC 2 Errors” lists the error messages and return codes
issuad by tha EXEC 2 interpretaer.

This publication also has these appendixes:

. "Appendix A: CMS EXEC and EXEC 2 Relationship”™ makaes a comparison
batween CMS EXEC and EXEC 2 statemants.

. "Appendix B: Sampla EXEC 2 Files™ gives two examples of EXECs
written in the EXEC 2 language.

* "Appandix C: EXEC 2 in CMS.™ This appendix discusses how CMS
idaentifies EXEC 2 files, tha limits CMS imposaes on using EXEC 2,
examplaes of using EXEC 2 with assembler language programs, and the
execution of XEDIT macros in EXEC 2. Appendix C also contains a
discussion of variable sharing through tha EXECCOMM interfacae.

iv IBM VM/SP EXEC 2 Referaence

. "Appendix D: EXEC 2 Primer for New Users" provides a tutorial aid
for users who are unfamiliar with the EXEC 2 language. This primer
is intended for the person who has a modest amount of CMS experience
and enough familiarity with a text editor so that the mechanics of
craeating a disk file present no serious difficulty. Users who have
already mastered a command programming language for some other
system, or who have experience with the earlier CMS EXEC facility,
may prefer to read the EXEC 2 reference material instead of the
primer. :

o "Appendix E: Useful EXEC 2 Techniques™ shows some solutions to some
common EXEC 2 programming problems.

If you are unfamiliar with writing EXEC files or need tutorial
information, you may find it helpful to read "Appendix D: EXEC 2 Primer
for New Users"™ before reading the reference section of this manual.

Note: Although EXEC 2 is designed to be system independent, the
implementation requirements of CMS (the host system) impose certain
limits on using EXEC 2. See Appendix C for details.

NOTATIONAL CONVENTIONS USEDR IN THIS BOOK

The conventions used in this publication to illustrate EXEC 2 statements
follow:

. Uppercase letters and punctuation marks (except as described below)
represent information that must be given exactly as shoun.

* Lowercase letters represent information that must be supplied by
the user.

L Information cohtained within brackets [] represents an option that
can be included or omitted. .

L Vertical lists that are gg;ianclosed in brackets represent

alternatives, one of which must be given. For example:

A
B

. Vertical lists that are enclosed in brackets represent
alternatives, one of which may be given. For exampla:

< X

Preface v

. An aellipsis (...) indicates that a variable numbar of items may be
included.

. Underlined elements repraesent an assumed (default) value in the
event a parameter is omitted.
Prerequisite Publications:

IBM Virtual Machine/System Product: Introduction, GC19-6200

Corequisite Publications:
IBM Virtual Machines/System Product: System Messagaes, SC19-6204
IBM Virtual Machine/System Product: CMS User's Guida, SC19-6210

IBM Virtual Machine/System Product: CMS Command and Macro Refarencae,
$C19-6209

IBM Virtual Machines/System Product: System Product Editor User's
Guide, S5C24-5220

IBM Virtual Machine/System Product: System Product Editor Command
and Macro Reference, 5C24-5221

vi IBM VM/SP EXEC 2 Reference

Publications that support VM/SP as used
in conjunction with VM/370 Release 6

VM/SP Licensed VM/SP Geners! informstion
Program Spcif| Menust
GC20-1842 el GC20-1838 w0) Systom
Programming Support
VM/SP Library Guide . N . Device Support
and Mester Index VM/SP introduction Note: The numbers given in VM/SP Planning snd Facilitios User's
GC19-8207 20) GC19-6200 (20) parentheses represant om Generstion Guide Guide and Reference
the Subject Code, - | sc19-6200 4 GC35-0033 (30)
VM/SP Terminal User’s | vMISP Qperating Systems | vM/5P OLTSEP and 1
Guide | inw Virtual Machine i Error Recording Guide
GC18-6208 (40) - -
tions GC19-6212 (34} ¢ 5C19-6205 @eni -
VM/SP CP Command VM/SP System Logic and
m/st’ System Messsges el Progiiimind VM/SP Operator's Guide VWIS Syatem ide Problem Determination
SC19-8204 140) Users §C19-86202 (40} SC19-6203 138} Guide Volue 1 {CP)
sC19-6211 136) C19-620 1Y20-0882 we |
S— Smeee— T
? RS s Rt B VM/SP System w‘ and
" Problem Determination
Guide Volume 2 (CMS)
EREP Messages VM/SP CMS Primer LY20-0893 (39)
GC38-1045 (40) $C24-5238 (39) ‘
‘ g VM/SP Data Aress and
Control Block Logic
VM/SP CMS User's Guide VM/SP CMS Command VM/SP Quick Guide for LY20-0891 (36}
$C19-6210 (91 and Macro Refi Users E
$C19-6209 (39) $X20-4400 e | l E
ﬂ ‘ ‘ l g . | VM/SP Service Routines :
. | Program Logic
YMII0 Bemots Spocling . | gs/vs and vm/370 0S/VS, DOS/VS, VM/370 VM/SP Commands LY20-0890 an|
Susbsystem User's Guitle - 5| Guide Language (General User) :
6C20-1816 130) GC33-4021) GC33-4010 2 8X20-4401 el l
| l B |osvseavman
‘ i Asmembier Program Logic
VYM/370 System Logic and VMISP System Product * | vmsse Commands 8v33-8041 (2
:uoii.com‘?:s'gg) Editor User's Guide % | (Other than Genera! Use) :
SY20-0888 (36} $C24-6220 39) $X20-4402 (38) i e
VM/370 interactive VM/SP System Product VM/SP SP Editor Environmentsl Recording,
Problem Control System Editor Command and Command Language Editing, and Printing
{IPCS) User's Guide Macro Reference Reference Summary {EREP) Program
GC20-1823 @an §C24-5221 (39) §X24-6122 e | GC28-0772 3n
1 |
=
Environmental Recording,
VM/SP EXEC 2 Reference X.’?L"...EZ‘ Wsc oy Editing, snd Printing
§C24-5219 (38) SX24-5124 o0 {EREP) Program Logic
$Y28-0773 137)
Legend:
-FWSNAmemmWwWhnbn is: VM/VCNA iition, Op and Terminal Use, Order N §C27-0802.
{8 A1t users of virtuat machine must use the VM/SP System Messages and Codes publication.
[l Comsins information on VM/EREP support. EREP Relesss 3 is recommended for use with VM/SP Relesss 2.
nvms Releas 6 + , the IPCS E Program Product (5748-5A1) snd the RSCS Networking Program Product (5748-XP1)
are recommended for use with VM/SP.
I3 ¢ vou want ali three of the Ret Summery publicstions, uss SBOF 3820 when ordering.

.

-t
-ts

~ Preface Vv

viii IBM VM/SP EXEC 2 Reference

Part 1: Introduction + v v v v o o « .

Exacuting EXEC 2 Programs © e e s o e o o o @

Introduction to the EXEC 2 Language e o e .
Rules for Interpreting Executable Statemaents

Part 2: EXEC 2 Statements e e e e o e o o s
Typas of Executable Statements e e e e e« a
Predefined Variables e 4 o e o o o o e 4 o o o
Control Statemants e o o e s e s s & e s e o
Predefined Functions e e e e o e o o o 4o o o o
User-Defined Functions e e e e o 4 s e s 0 e o
EXEC 2 Name Substitution

Part 3: Notes on EXEC 2 e e s e o s o o e o o
Part 4: BNF Description of the EXEC 2 Syntax
Part 5: EXEC 2 Errors e o e e s o o e o o s @

Appendix A: CMS EXEC and EXEC 2 Relationship
Converting CMS EXEC Files to EXEC 2 Files . .

EXEC Statement Comparison e o s s s e e s e e

Control Statements e e e e e e e e e e e e
Predefined Functions e o o s s s o o s o o o
Predefinad Variables
Functions Unique to EXEC 2 e e o o o & o o o
Control Statements e e e e e e e e e e s e
Predefinaed Functions e e 4 e e e s e e s e .
Predefined Variables e o o o s 6 o s s s e o
Othar e s e e o s s s e o s s e s o e o o

Appendix B: Sample EXEC 2 Files

Appendix C: EXEC 2 in CMS e e e s s e e e e e
Identifying EXEC 2 Files e s e o s e e & e s e
Calling EXEC 2 Programs from CMS Command Laevel

Summary of Limits for EXEC 2 Files in CMS . .

3

.

.

.

Using EXEC 2 Paramaeter Lists with Assembler Language

Executing XEDIT Macros in EXEC 2 e e e e e .

EXECCOMM - Sharing EXEC 2 Variables with Assembler

Appendix D: EXEC 2 Primer for New Users e e o
Commands, Return Codas, and EXEC Variables .o .
EXEC Fila Arguments e o o o o e s o o o o o @

EXEC Variable Names e e s e e s e e e e e

Conditional Intaerpretation of Statements e o .
Statement Labels e e o o o o e o o o s e o s o
Assignment Stataements e o s o 4 e o e o e o

Language Programs

.

Programs

.

-

.

.

.

.

.

.

Contants

TP

'3
4
6

10

24

31

33

35

43

46

%8
43
48
48
50
50
52
52
52
52
53

564

56
56
56
57
59
62
63

67
68
70
71
71
72
12

ix

EXEC Variable Evaluation e o o o o o s o s o o s e o o o o s o o« o 13
An Example of Generating EXEC Variable Names e
The &LOOP Control Statement e o e e o e s o s e a4 e e o o e o« o . 15
Making EXEC Files Interact with Users e £
EXEC 2 Implemantation of Editor Macros B 1
Handling Embedded Blanks e - ¥4
An Example of EDIT and CMS Commands in One File e e o s s s s+ o . 83
PARA == A Complex XEDIT Macro P - 1 |
Soma Final Words. . . . & ¢ ¢ ¢ & 4 o o ¢ ¢ o o o o o o o s o o o« 96

Appendix E: Useful EXEC 2 Techniqueas e e o s o s s e s e e o « o 97

INDEX et e s o e .4 s e 4 s s e s e 2 e s e v e s e s s ee e s 103

x IBM VM/SP EXEC 2 Reference

Bart 1: Introduction

EXEC 2 is intended for manipulating English~like words as they appear in
computer command languages. It is also capable of performing integer
arithmetic and simple string manipulation.

The notational conventions used in this publication to illustrate EXEC 2
statements are discussed in the Preface.

Executing EXEC 2 Proarams

EXEC 2 programs raeside in EXEC files, and are executed by the EXEC 2
interpreter. The EXEC 2 interpreter can be invoked by issuing a command
such as:

EXEC filename [argl [arg2 ... 1]

where "filename™ is the name of the EXEC 2 file to be executed, and
Targl"”, "arg2", ..., are arguments that are passed to it. In some
command environments (such as XEDIT) the word "EXEC"™ is omitted, and in
others (such as CMS console command mode) it is optional. (See Appendix
C for the rules on how EXEC 2 files are distinguished from other EXEC
files in CMS.) :

EXEC 2 files can have any filename. EXEC 2 files have tha filetypa EXEC
for files that are invoked from CMS command mode, and the filetype XEDIT
for files used as XEDIT macros. Other filetypes may be used for EXEC 2
files that are invoked from other environments (see Appendix C).

EXEC 2 files can have either "F" (fixed) or "V¥ (variable)} format.

Introduction to the EXEC g Language

EXEC 2 files contain EXEC 2 statements. An EXEC 2 statement occupies
one line, and may be a gomment or an gxgcutablg statement. A comment is
aline in which thae first nonblank character is an astaerisk, and is
ignored during execution. An executabla statement consists of a
sequence of pords, the first of which does not bagin with an asterisk.

A word is a string of .contiguous nonblank characters. Words are
separated from each other by one or more blanks. (Refer to Appaendix C
for implementation limits on EXEC 2 statements and words.)

Part 1: Introduction 1

An executable statement may ba:

) a null statement (which has no effect),

. a command (which is issuad to a command interpreter),

. an assignment (which manipulates EXEC 2 variables), or

L a control statement (which manipulates EXEC 2 variables, controls
exacution or flow through the file, or performs console input or
output).

Assignmants start with the name of an EXEC 2 variable, and control

statements start with an EXEC 2 control word. EXEC 2 variables and
control words begin with an ampersand. Variables are local to the
currant EXEC 2 file. Most variables are initially unset, and they have
an apparent null value. The variables &1 &2 ..., are spaecial, and are
initialized to tha arguments "argl®™, "arg2", ..., that are passed to the
EXEC 2 file. For example, if an EXEC named "TEST"™ was invokad as "TEST
XY Z", &0 would contain "TEST" and the arguments &1, &2, and &3 would
contain X, Y, and Z, respaectivaly.

The following are examples of variables:

&X
§3.1415927
&UPPER_LIMIT
$(X) -

The following are examples of control words:

&TYPE
iLooP
LEXIT

A label, appearing as the first word of a lina, may be attached to an
executable statement (including a null statement) but doaes not form part
of the statement. A label is distinguished by its first character,
which is a hyphen.

The following are axamplaes of labels:

-X

-&A ,

-(TYPE)
When an EXEC 2 file is invoked, execution starts at line number 1 and
proceeds sequentially, except when othaeruwise directed by control
statements.

2 IBM VM/SP EXEC 2 Reference

Rules for Interpreting Eiecutable Statements

Executable statements are interpreted, one at a time, according to the
following general rules. (There are a few explicit exceptions, which
arae noted elsewhere.)

1.

The statement is scanned. This discards leading, trailing, and
other surplus blanks, leaving a sequence of words separated from
each other by a single blank.

The words forming the statement are searched for the names of any
EXEC 2 variables. These variables are replaced by their values,
unless the variable is the target of an assignment, its name is
retained. (A precise description is given later in tha section
"EXEC 2 Name Substitution.") During this process, the words may
grow or shrink in length.

If, as a result of step 1, a word is raeduced to the null string, it
is discarded from tha statement so that thae next word is deemed
immediately to follow the previous one. With this exception, the
words retain their identity. For example, if the value of a
variable contains an embedded blank, the word containing it is -
still treated as one word, although when printed it might appear as
two. For more details, sea the section "Part 3: Notes on EXEC 2"
on embedded blanks. :

The statement is analyzed syntactically, and executed according to
the rules on thae following pages. Note that, except for
identifying the targets of assignment, the syntax analysis is done
after staeps 1, 2, and 3 abovae.

Part 1: Introduction 3

Part 2: EXEC 2 Statements

Iypes of Executable Statements

e Null statement.

A hull statement is an aexecutablae statement in which the number of
words is zaro.

. Commands. .
An executable statement is deemed to be a command if it contains at
least one word, and its first word doaes not start with an ampaersand.
It is issued immediately to tha host system (CMS) or to a subcommand
environment (for example, XEDIT). When it is finished, control
raturns to the EXEC 2 file, and its return code can be obtained from
the predefined EXEC 2 variablae &RC. (See the saection "EXECCOMM -
Sharing EXEC 2 Variables with Assembler Language Programs" for
possible side-effects of command execution.)

. Assignments.

An executable statement is an assignment if the first word starts
with an ampersand and the second word is an equal sign. The first
word is taken as the name of an EXEC 2 variable, and it is assigned
the value of the exprassion that follows the equal sign. The
expression may be any of the following:

null
a single word, for example: ABC
an arithmetic expression, consisting of a sequence of words
that represent positive or negativa integers, separated by
plus or minus signs, for example: 3 - 6 + -11 - 00
a function invocation, for example:
&PIECE OF &1 2 1
an arithmaetic expraession (as above) in which the last term is
replaced by a function invocation that yields a numeric value,
for axamplg:
+ =1 + &LENGTH OF &1
A variable of tha form &j, whera "j" is an unsigned integer without

leading zeros, cannot be set with an assignment statemant if "j"
axceads the number of EXEC 2 arguments that are currently set.

4 IBM VM/SP EXEC 2 Referenca

The value of the variable on the left-hand side of the assignment
statement is not modifiaed until the expression on the right-hand
side has bean aevaluated. If an assignment statement is
syntactically invalid, or if evaluation of the exprassion raesults in
numeric overflow, execution stops abnormally with an error message,
without further evaluation.

Control statements.
An axecutable statement is a control statement if the first word is
an EXEC 2 control word and the second word e@ither is absent or is

not an equal sign. Examples of control words are &GOTO, &EXIT, &IF,
and &PRINT. -

Part 2: EXEC 2 Statements 5

— e . w— — S

Tha following EXEC 2 variablaes are initializad or maintainad
automatically. ')

Initialized to its own name (the value "&").

&0

Initialized to the first word of the command string that is passed to
the EXEC 2 interpreter. The first word may be delimited according to
the parsing rules of the host system. In CMS, &0 may be daelimited by a
blank or a parenthasis. Normally, this variable has the same value as
&FILENAME, but it may be diffarent if the EXEC 2 file was invoked via a
synonym. .

&1 &2 ...

These arae the EXEC 2 arguments. They are initialized to the argumaents
Yargl®™, "arg2™, ..., which are passed to the EXEC 2 file. EXEC 2
identifies individual arguments passaed to it by the presence of a blank
character which delimits each argument. Thaey arae raset by &ARGS or
&READ ARGS, and they arae temporarily raeset by invocation of user-defined
subroutines and functions. EXEC 2 arguments beyond thae last that is sat
have an apparent null value. and cannot be sat explicitly (for example,
with an assignment statement). (Seae the dascription of &N and &INDEX.)

&ARGSTRING

Initialized to tha argumant string that is passed to the EXEC 2 fila.

It is treated as a single litaral string starting with the charactaer
immediately following thae blank which was used to delimit &0 (saee
above); or, if tha delimitar is a character rather than a blank,’
&ARGSTRING starts with the delimiter character itself. It includes any
leading, embedded, or trailing blanks. The initial value includes the
EXEC 2 argumants &1 &2 ..., but SARGSTRING is not affacted by changes {p
tham.

6 IBM VM/SP EXEC 2 Referenca

&BLANK

A word that has the value of a single blank.

&CMDSTRING

Initialized to the untranslated command string that is passed to the
EXEC 2 file. It is treated as a single literal string starting with the
first word of the command string and including any embedded or trailing
blanks.

&COMLINE

Initialized to zero, and maintained as the number of the line from which
the last command (or subcommand) was issued from the EXEC 2 file.

&DATE

The true date on the primary meridian (Greenwich Mean Time (GMT)) in the
form YY/MM/DD. &DATE is evaluated when the statement containing it is
executed. (Seae the description of &TIME.) '

&DEPTH

Maintained as the number of user-defined functions and subroutine
invocations to which raturn has not yet been made.

&FILEMODE

Initialized to tha filemode (third qualifier) of the EXEC 2 file.

&FILENAME

Initialized to the filename (first qualifier) of the EXEC 2 file.

Part 2: EXEC 2 Statements 7

SFILETYPE

Ihitialized to the filetype (second qualifier) of the EXEC 2 file (for
examplea, "EXEC");

&¢FROM

Initialized to zero, and maintained as the numbaer of the linae in the
EXEC 2 file from which the last &GOTO statement was executed.

&LINE
&LINENUM

Maintained as the number of the current linae in the EXEC 2 fila.

&LINK

Maintained as the numbaer of the line from which the currently executing
user-defined function or subroutine was invoked, or &LINK has tha valua
0 if therae are no user-dafinaed functions or subroutines in execution.

&N
&INDEX

Maintained as thae numbaer of EXEC 2 argumaents that arae set. Initially
this is the number of arguments that are passed to the EXEC 2 file. &t
is reset as a sida effact of &ARGS and &READ ARGS. &N or &INDEX is
temporarily reset by invocation of user-defined subroutines and
functions. (See the description of &1 &2)

&RC
&RETCODE

Initialized to zaero, and maintained as the return coda from tho last
command (or subcommand) issued from the EXEC 2 fila.

8 IBM VM/SP EXEC 2 Refarance

&TIME

The true time-of-day on the primary meridian (Greenwich Mean Time (GMT))
in tha form HH:MM:55. &TIME is evaluated when the stataement containing
it is executed. (See the description of &DATE.)

Part 2: EXEC 2 Statements 9

control statements

Control statemants begin with a control word, which is usually followed
by ona or more additional words. Thae control words, and the rules for
their use, are as follows.

&ARGS [wordl ([word2 ... 11

Assign "wordl"™, "word2", ..., to the arguments &1 &2 ..., and discard
any other EXEC 2 arguments that were praeviously set. The numbar of
argumants now set is thae number of words given in tha &ARGS stataement,

which may ba less or greater than the number of argumen}s previously
sat.

(Seae the description of &READ ARGS; also sea the predefined variablaes
&N, &INDEX, and &1 &2)

&BEGPRINT n k
&BEGTYPE * *
label
1
linal
line2

Print at the console "linel™, "linae2", ..., truncated if necessary at
column "k", without removing surplus blanks or replacing any EXEC 2
variables. If the truncation column is not given, or is given as "x",
the lines are not truncated by tha EXEC 2 interpratar. (CMS truncates
at 130 characters. Seae Appendix C.)

The number of lines to be printed is detefmined by thae first argument,
as follows:

n,1 Print thae given number of lines; or, if thera are insufficient
lines in the filae, print all lines to the end of tha filae.

* Print all lines to the end of the file.
label Print down to, but not including, a line that contains the given
label and nothing else; or, if such a line doaes not exist, print

all lines to the end of the fila. The label, to be recognizad,
must be wholly containad within the columns that would otherwisa

10 IBM VM/SP EXEC 2 Reference

‘be printed, und it must be the only mord within these columns.
The first character of a label must be a hyphen.

After the linés have been printed, execution continues on the line
following the last one printed. If printing is terminated by a label,
axacution continues on the lina following the label.

This and "&BEGSTACK™ are the only statements that occupy more than one
line. They are also the only statements that permit the lines of an
EXEC 2 file to be handled literally, that is, without removing surplus
blanks or replacing EXEC 2 variables.

(See the description of &PRINT and &TYPE.)

&BEGSTACK n k - EIEQ
* * LIFO -
label
1

linel

line2

Place in the console stack "linel™, "line2", ..., truncated if necessary
at column "k", without removing surplus blanks or replacing any EXEC 2
variables. If the truncation column is not given, or is given as "x",
the lines are not truncated. The lines are by default stacked FIFO
(first in, first out), but this can be changed by giving "LIFO" (last
in, first out) as tha third argument.

The number of lines to be stacked is determined by the first argument,
as follows:

n,1 Stack the given number of lines; or, if there are insufficient
lines in the file, stack all lines to the end of the file.

* Stack all lines to the end of the file.

label Stack down to, but not including, a line which contains the
given label and nothing else; or, if such a line does not exist,
stack all lines to the end of the file. Tha label, to be
recognized, must be wholly contained within the columns which
would otherwise be stacked, and it must be the only word within
these columns. The first character of a label must be a hyphen.

After the lihes have been stacked, execution continues on the line

following the last one stacked. If stacking is terminated by a label,
execution continues on the lina following the label.

Part 2: EXEC 2 Statements 11

This, &BEGPRINT, and &BEGTYPE are tha only statements that occupy more
than ona line. They are also the only statemaents that permit the lines
of an EXEC 2 file to be handled literally, that is, without removing
surplus blanks or replacing EXEC 2 variablas.

(Seae the description of &STACK.)

&BUFFER n comment

Discard the lookaside buffar (if any) together with its contents. Then,
if "n" is given, and is positive, or if "X" is given, creata a neu
lookaside buffer. If "n"™ is given, and is zero, a new lookaside Huffer
is not created. The value of "n" must not be negative. (In CMS, tha
initial buffer size is 32 lines. See Appendix C.)

The lookaside buffer is a daevice that enables the EXEC 2 intarpreter to
remember the location of labels to which reference has already been made
and to keep a privatae copy of some of the more recently executed Lihes

of tha file. The lookaside buffar can thereby improve the performance
of EXEC 2 loops, in which the same labals and lines arae used repestedly.

If "n" is givan, it defines the maximum numbar of lines that can be kept
in the buffer; if "X" is given, there is no fixed limit. For maximum
affect, the buffer should be capable of keaping the longest loop in its
entirety and should ba set up before entering the loop. An even larger
buffer may be advantageous if user-defined functions or subroutines are
invoked from within a loop.

A lookaside buffer should not be used if the EXEC 2 file is subject to
modification during execution. If it is used, the results are
unpredictable.

&CALL line—number jargl arg2 ...
labal

Create a new generation of the EXEC 2 arguments &1 &2 ..., initialized
to "argl®, "arg2"™, ..., and invoke tha specified subroutine by
transferring control to thae given line, or to a linae starting with the

given label, in such a way as to allow control to be raeturnaed with the
&RETURN statemant.

The new generation of arguments supersedes the arguments that were
previously set, making tha praevious values, and the number of arguments

12 IBM VM/SP EXEC 2 Raferancae

previously saet, temporarily inaccaessiblae. On entry to thae subroutine,
the values of the arguments, and the number of arguments set, are as
given in the &CALL statement. Their values, and the number of arguments
set, can be changed inside the subroutine in thae same way as ocutside,
such as by assignment or with the &ARGS or &READ statement.

On return, the new generation of arguments is discarded, making the

previous values, and the number of arguments previously set, again
accessible. Execution resumes on thae line following the &CALL
statement.

Tha first character of a label must be a hyphen. The search for a label
starts on the line following the &CALL statement; then, if a match is
not found before the end of the file, the search resumes at the top. If
a matching label does not exist, execution stops abnormally with an
error message.

(Sae the dascription of &RETURN; alsoc sea the section "User-Defined
Functions.™)

&CASE | |U Jcomment
M

Translate to uppercase (U) any lowercase alphabetic characters that are
read in response to subsequent &READ statements, or do not translate
them (allow "mixed" (M) cases), or (if no argument is given) do not
change the setting. dnitially the translation is set to "U™.

(See the description of &UPPER.)

&COMMAND wordl f[word2 ... 1]

Issue to the host system (CMS) the command comprising of "wordl"™,
"word2", ..., separated from each other by a single blank. When it is
finished, its return code is obtainable from the predefined EXEC 2
variables &RC and &RETCODE. The (COMMAND statement normally has the
same effect as:

wordl word2 ...

There are, howaever, the following differences:

. A-;ommand. the first word 6f which baegins with an asterisk, a
hyphen, or an ampersand can be issued by giving it as the argument

to &COMMAND; otherwise it is interpreted as a comment, a labeled
statament, an assignment, or a control statement. (Note however,

Part 2: EXEC 2 Statements 13

that these characters are not acceptabla to CMS command mode. See
Appendix C.)

. &COMMAND overridaes any praesumption of a subcommand environment and
always issues the command to the host systam (CMS).

] (See the daescription of &SUBCOMMAND and &PRESUME; see the predefined

| variables &COMLINE, &RC, and &RETCODE. Refer to the section "EXECCOMM -
| Sharing EXEC 2 Variables with Assembler Language Programs™ for possible
| side-effaects of command execution.)

&DUMP ARGS
VARI[S] [varl [var2 ... 11

Print lines at tha console of the form:

var = VALUE
where var is &1 &2 ... or "varl™, "var2",
ARGS Print one lina for each EXEC 2 argument &1 &2 ... that is saet.
VARLS] Print one line for each of the variables "varl"™, "varzﬁ. cene
The lines are truncated if their length exceeds the implementation limit

for printed output. (In CMS, the line is truncated if its length
exceads 130. See Appendix C.)

&ERROR action

Set the action which, until further notice, is to be invoked
automatically on return from any commands (and subcommands) that yield
an error return code (a return code that is not zero). Tha action may
be any executable statement, including a null statement.

The action is not inspected at the time the &ERROR stataemant is
executed. Instead, the search for and replacement of any EXEC 2
variables takes place each time the action is executad. The action is
executed as if it occupied the same line in the EXEC 2 file as the
command (or subcommand) that yielded the nonzero return coda.

What happens aftar the action depends upon the type and consequences of .
the action. If it is itself a command (or subcommand) which also yields
an error return code, execution stops abnormally with an error message;
otherwise (unless the action causes a transfer of control), execution
resumas at the line following the command that caused tha action to be
invokaed.

14 IBM VM/SP EXEC 2 Reference

initially, the error action is set to-thé null statement.

&EXIT return-code comment

2

Stop execution of the EXEC 2 file, and yield the given return code. The
return code must be numeric. If the given return code is not within the
range of return codes acceptable to the host system, the result is
defined by the implementation. (In CMS, the range is -2,147,483,648 to
+2,147,483,647. Sea Appendix C.)

&GOTO line-number comment
label

Transfer control to the given line or to the line starting with "label™.

The first charactaer of a label must be a hyphen. The search for a label
starts on the line following the &GOTO statement. Then, if a match has
not been found before the end of the file, the search resumes at the *
top. If a matching label does not exist, execution stops abnormally
with an error message.

(See thae description of &SKIP and &CALL; also see the predefined
variable &FROM.)

tIF wordl =lTQ word2 executable-statement
=Z{NE

<|Lr
<=|->|LE|NG
>|eT
>=|~<|GE|NL

If the condition is satisfied, execute the given executable statement;
otherwise, proceed to the next statement. The comparative may be given
in any of the forms shown (for example "=" or "EQ"). The comparison is
numeric if both comparands are numeric; otherwise both comparatives are
treataed as character strings, and the shorter one is (for the purpose of
the comparison) padded on the right with blanks. If "word2"™ is absent,
a null string is used in its stead.

Part 2: EXEC 2 Statements 15

¢LOOP n m

label
WHILE condition
UNTIL condition

Loop through the following "n" lines, or down to (and including) the
first line starting with "label™, for "m" times, or indafinitaly (%), or
"WHILE™ (or "UNTIL"™) the given condition is satisfied.

The values of "n" and "m" (if given) must be numeric; also "n"™ must be
positive, and "m"™ must not be negative. If "m"™ is zero, the entire loop
is ignored.

The first character of the label (if given) must be a hyphen. The label
must be attached, as the first word of the lina, to an executable
statement that lies below the &LOOP statement.

The form of the condition (if given) is similar to that of the &IF
statement previously daescribed, namely:

wordl =|EQ word2 |comment
~=[NE
<Jit
<=|->|LE|NG
>|et
>=|-<|GE|NL

The condition is evaluated before each iteration of the loop, including
tha first. If "word2™ is absent, a null string is used in its stead.
The comparison is numaric if both comparands are numeric; otherwisa,
both comparands are treated as character strings, and the shorter ona is
(for the purpose of the comparison) padded on the right with blanks.

If the condition is invalid, execution stops abnormally with an error
message that identifies the line containing the &LO0OP statement.

&PRESUME &COMMAND
&SUBCOMMAND environment

Presume that any executable statements that have the syntax of a command
(that is, the first word of tha statement does not baegin with an ~ °
ampersand) ara to be issued to the host system (CMS), or presume that.
they are to be issued to the given subcommand environment.

16 1IBM VM/SP EXEC 2 Reference

The name of tha subcommand environment is not checked uhen the &PRESUME
statement is executad. If, when a subcommand is subsequently issued,

thae environment does not exist, tha only affact is to set a spaecial
raturn coda. (In CMS, it is -3.)

Tha "&PRESUME™ control statement with no arguments is equivalent to
"SPRESUME &COMMAND™,

By convention, the presumption is initially sat to "&COMMAND" if the
EXEC 2 fila has a filetype of EXEC; otherwise, it is set to "&SUBCOMMAND
filetype™, whare "filetype" is the filetypa of the EXEC 2 file.

The presumption has no effect on &COMMAND or &SUBCOMMAND statements
since these do not have the syntax of a command.

(Sea the description of &COMMAND and &SUBCOMMAND.)

&PRINT wordl word2 ...
&TYPE

Print at the console & line containing "wordl"™, "word2", ..., separated
from each other by a single blank, or print a blank line if there are no
words given. The line is truncated if necessary. (In CMS, the line is
truncated if its length exceeds 130. See Appendix C.)

Unlike &BEGPRINT and &BEGTYPE, surplus blanks are removed and the words
to be printed are searched in the normal way for the names of EXEC 2
variables, that are replaced by their values.

{See the description of &BEGPRINT and &BEGTYPE.)

&READ n
1

*
ARGS
STRING var

VARIS] |varl [var2 ... 1
* I ...]

Read from the stack (if the stack is not empty), or read from the
console (otherwise). Then execute or assign what is read according to
the following rules.

Part 2: EXEC 2 Statements 17

n, 1, *

-ARGS

STRING

VARS

Read "n" lines, read 1 line, or read an indafinite number of
linaes (%), and sxmcute them indiwidually as if they had been
part of tha EXEC 2 filg. Reading stops (and normal execution
resumes) when "n" lines have bean read, or when a &BEGPRINT,
&BEGTYPE, &BEGSTACK, &EXIT, &GOTO, &LOOP, or &SKIP statement
is encountered. Reading is suspended if a user-defined
function or subroutine is invoked and continues when control
raturns from that invocation.

If a "&READ n" statement is read in response to a praevious
"&READ n" statement, the: new value of n is addad_to thae number
of lines that remain from the previous statement. Reading
stops if the number remaining becomes zero or less. The value
of "n" may be negativa.

If a "LREAD X" statement is read in raesponse to a previous
"EREAD n" or "&READ X" statement, or if a "&READ n" statement
is read in responsae to a praevious "&READ X" statament, an
indefinitae number of lines remain to be read.

Read a single line, assign tha words in it to the EXEC 2
arguments &1 &2 ..., and discard any other EXEC 2 arguments
that were praeviously set. The number of arguments now set is
the number of words in tha line, which may be less or greater
than the number of arguments previously set. (See the
description of &ARGS, and tha predefined variables &N, &INDEX,
and &1 &2 ...)

Read a singlae line and assign it, as a literal string, to
"var", without removing any surplus blanks or replacing any
EXEC 2 variables.

Read a single line and assign the words in it to the variablas
"varl™, "var2", If the number of words in the line read
exceeds the number of variables given in the statement, the
surplus words are discardad. If the numbar of variables
exceeds the number of words, the ramaining variables are set
to the null string. Therefore "&READ VARS™ (without any
variables) can be used to read a lina and discard it.
Asterisks (%) may be used in lieu of variable names. to
indicate that the corresponding words in the lina read ars to
be discarded. ’

In the case of &READ ARGS and &READ VARS ..., the line that is read is
scanned for words (leading, trailing, and other surplus blanks are
discarded), but the words are treated as literals (there is no
replacement of EXEC 2 variablas).

The namaes of the variables in &READ VARS and &READ STRING arae treated in
the same way as on tha left-hand side of an assignment statement. (See
the section "EXEC 2 Name Substitution.") A variable of the form &3j,
whare "j" is an unsigned integer without leading zeros, cannot be set
with &READ VARS or &READ STRING if "3 axceeds the number of EXEC 2
arguments that are currently saet.

18 IBM VM/SP EXEC 2 Reference

Lines that are rsad may or may not be translated to uppercase. The case
is determined by the translation mode that is set by the &CASE control
statement. Thae &CASE control statement is issued prior to the &READ
control statement. (See the description of &CASE.) However, if no case
is spacified, the lines read in default to uppercase.

Lines that are read are not truncated by the EXEC 2 interpreter; they
are unaffected by the setting of &TRUNC. (See the description of
&TRUNC.) :

(In CMS, the maximum length of a line read from the console is 130, and
the maximum length of a line read from the console stack is 255. See
Appendix C.)

$RETURN {word] [comment]

Return control to the most recent subroutine invocation (&CALL
statement) to which return has not yet been made; or return "word" (or
the null string) to the most recent user-defined function invocation to
which a value has not yet been returned.

The generation of EXEC 2 arguments that was created at invocation is
discarded. The previous values and the number of arguments previously
sat become accessible again. The number of lines (if any) that remain
to be read from the stack or console in response to a previous "&READ n"
statemaent is reset to the number cutstanding at the time of the
invocation. - Any loops that have been opened in the subroutine or
function, and not closed, are aborted; and any loops that were open at
the time of invocation are reinstated.

If there is both a subroutine invocation and a function invocation to
which raturn has not yet been made, return is to the more recent point
of invocation. If there is neither, exaecution stops abnormally with an
error message.

(Sea the description of &CALL; also see the section "User-Defined
Functions.")

&SKIP n comment
l .

" If n > 0, skip the next "n" lines of the EXEC 2 file. If n < 0,
transfaer control to the line that is "-n" lines above the current line.
If n =0, transfar control to the next line.

Part 2: EXEC 2 Statements 19

If an attempt is made to transfer control to a line number that is zero
or negativa, exacution stops abnormally with an error message. If
control is transferraed to a line below thae last in the EXEC 2 file,
execution stops normally with a return code of zero.

(Sea tha daescription of &60T70.)

&STACK EIFQ jwordl |[word2 ...
LIFO

Place a line in the console stack containing "wordl®™, "word2", ...,
separated from each other by a single blank, or stack a null line if
there are no words. (In CMS, stacked lines are truncated at 255. See
Appendix C.) The line is by default stacked FIFO (first in, first out),
but this can be changed by giving "LIFQO" (last in, first out) as thae
first argument.

Unlike &BEGSTACK, surplus blanks are removed and the words to be stacked
are searched in tha normal way for tha names of EXEC 2 variables, that

are replaced by their values.

(Sea tha dascription of &BEGSTACK.)

&SUBCOMMAND environment [wordl [word2 ... 1]

Issue to the given subcommand environment the subcommand comprising of
"wordl™, "word2", ..., separated from each other by a singla blank.
When it is finished, its return coda is obtainable from the predefined
EXEC 2 variable &RC.

If the given environmant does not exist, the only affect is to set a
special return coda. (In CMS, it is -3.)

Normally, it is convenient to "presume™ the environment so that this
control statement does not have to bae issued for every subcommand (saea
the description of &PRESUME, above). Tha explicit usa of the
&SUBCOMMAND statement does, howevar, allow subcommands that start with
an asterisk, a hyphen, or an ampersand to be issued. (Compare with the
description of &COMMAND.) Also note that thae statement "&SUBCOMMAND
environment™ (without any additional argumants) is thae only way of
issuing a null subcommgnd.

(Sea the description of LCOMMAND; also see the predafined variables
&COMLINE, &RC, and &RETCODE. Refer to thae section "EXECCOMM - Sharing
EXEC 2 Variables with Assembler Languagae Programs™ for possible
side-affacts of command execution.)

20 IBM VM/SP EXEC 2 Reference

- B — -
&TRACE ON output-action

. ERR :
ALL
OFF

where "output-action", if given, is:

&PRINT [wordl [word2 ...1])
or: - ' o - -
&COMMAND wordl [word2 ...1
or: T

D . o

&SUBCOMMAND . anvironment [wordl [word2 ...1]

Trace commands (and subcommands) that are issued from the EXEC 2 file;
or trace commands (and subcommands) that yield an error return code (a
return code that is not zero); or trace all executable statements:; or do
not trace any statements; or (if "%X" is given) do not change the:
setting. Tha setting remains in effect until reset. The initial
setting is OFF. : -

Trace information can be printed at the console, or passed to a command
(or subcommand) for processing. The trace destination is datermined by
the output action, as described below.

ON Whaen tracing is ON, each command is traced befora it is
- executed. Subsaquently, the return code is traced if it is not
zero. The return coda is traced on a lina by itself in the form
T++¢ E(nnn) ++3+7, '

ERR When ERR is in effect, commands that yield a nonzero return code
: are traced after execution, followed by the return code. The
raturn code is traced on a line by itself in the form
"++4+ E(nnn) 437,

ALL When ALL is in effect, every executable statement,. preceded by
its line number, is traced before it is executed. Nonzero
return codes are traced (as for ON and ERR). Loop conditions
-and lines that are read from the console are also traced. The
statement following an &IF clause, the action given in an &ERROR
statement, and the conditional phrase in & &LOOP statement are
traced as literal words (that is, without replacement of any
variables). These statements and phrases are traced again, with
the normal replacement of variables, at the time of their
exacution. A statement that is executed as a consequence of a
satisfied &IF clausae is preceded in thae trace by an ellipsis.
Words that exceed 24 characters in length are truncated in the
trace at 21 characters and followed by an ellipsis. Statements
that exceed 80 charactars in langth (with the line number and

“Part 2: EXEC 2 Statemants 21

praeceding ellipsis, if present) are truncated in the trace at an
intaegral number of words and followed by an ellipsi;.

OFF " Do not trace any statements. This is the initial satting.

% Do not change tha setting. T"&TRACE™ without argumaents is
equivalent to "&TRACE ",

output-action
The output action givas the destination of the tracing
information. The words in it are searched in the normal way for
tha names of EXEC 2 variables. These variables are raeplaced by
thair values, and the resulting sequaence of words is set aside.
Whan a trace line is produced, it is prefixed with the sequence
of words, and the resulting EXEC 2 statemaent is executed without
tracing. (See the description of &PRINT, &TYPE, &COMMAND, and
&SUBCOMMAND). If the return codae from the command or subcommand
is nonzero, execution stops abnormally with an error messagae.

Initially the output action is set to "&PRINI™, which causes the
trace to be printed at thae console. If the output action is not
given, the praevious action remains in effaect.

&TRUNC k jcommant
»*

Set the truncation column for EXEC 2 statements to "k", or set it to the
maximum valua (¥), or (if no argument is given) do not change it.
Initially, it is set to the maximum value. (In CMS, the maximum value
is 255. See Appendix C.)

This setting affects only the reading of EXEC 2 statemants from a file
and the search for labels; it does not affect lines read from the
console (that are not truncated) or lines appearing within a &BEGPRINT,
&BEGTYPE, or &BEGSTACK statement (that are separately controlled). This
setting does not affect thae length to which a statement can grow during
or after raeplacement of EXEC 2 variablas.

Changing the truncation column has the side-effect of purging the
lookasidae buffer (if there is one), and may consaquently dagrade

performance if done within a loop.

(Sea the description of &BUFFER.)

22 1IBM VM/SP EXEC 2 Refearence

LUPPER

ARGS
VAR[S]

[varl

[var2

e 31

Translate to uppercase any lowaercase alphabaetic characters in tha values
of the EXEC 2 arguments &1 &2 ..., or translate to uppercase any
louercase alphabeti; characters in the values of "varl", "var2%,

A variable of the form &j, whaere "j" is an unsigned integer without
leading zaros, cannot be translated with &UPPER VARS if "j" exceeds the
number of EXEC 2 arguments that are currently set.

(See the daescription of &CASE.)

Part 2: EXEC 2 Statements 23

A pradefined function can ba invoked only in the last term on the
right-hand sida of an assignmant statement. Tha invocation takes the
form:

fﬁnct‘on-namo OF L[argl [arg2z ... 11

The namas of the predefinaed functions, and the rules for their use are
as follows.

&CONCATENATION OF wordl |word2
&CONCAT OF

s e e

Concatenatas "wordl", "word2", ..., into a single word, without

intervening planks; or yvialds the null string if there are no words.
Example:

&A = X%

&B = LCONCAT OF XX &A 45
&PRINT &B

This results in the printed lina:

XX¥%%45
&DATATYPE OF word
&TYPE OF

Yialds tha valua NUM if "word" reprasants a valid (signed or unsigned)
number; otherwise, yields tha value CHAR.

&DIVISION OF dividend divisor
&DIV OF

Yields a numeric valua that raesults from dividing the dividand by the
divisor. Both tha dividend and tha divisor must ba numeric and the
divisor must not be zaro.

26 IBM VM/SP EXEC 2 Reference

In precise terms, the value is the integral part of the division of the
absolute value of the dividend by the absolute value of the divisor, or
minus this value if the dividend is not zero and the sign of the
dividend differs from that of the divisor.

Examples:
&W = &DIV OF 7 2
&X = &DIV OF -7 -2
&Y = &DIV OF -7 2
&Z = DIV OF 0 -2

This sets &W to 3, &X to 3, &Y to -3, and &Z to 0.

LLEFT OF word 3j

Yields a string of length "3™ in which "word™ is left-justified and
either padded with blanks or truncated on the right.

(See the description of &RIGHT OF.)

&LENGTH OF [wordl

Yialds a numeric valua representing the length of the word (that is, the
number of characters in it); or vields zero if the word is absent.

&LITERAL OF [stringl

Yields the literal string that begins with the character following the
blank that terminates "OF" and ends with the last nonblank charactaer
before or at the truncation column. Any leading or embedded blanks are
retained, and the search for and replacement of any EXEC 2 variables
that may appear in the string is suppressed. Example:

& = &LITERAL OF &X =
&X = ¥
&PRINT & &X
This results in the printed lina:

&X = xx

(See the description of &STRING OF.)

Part 2: EXEC 2 Statements 25

&LOCATION OF neadle [haystack]

Searchaes "haystack"™ for the first occurrence of "needle™, and yields a
numbar indicating its starting position, or yields zero if therae is no
occurrance (or if the langth of "neadle™ exceads that of "haystack").
Example:

&X = SLOCATION OF ANN LIZANNE
. This sets &X to 4.

(Sea the description of &PIECE OF, &SUBSTR OF, and &POSITION OF.)

&MULTIPLICATION OF i3 k ...
&MULT OF

Yialds a numaric value representing the raesult of multiplying the given
words. Thaere must ba at least two words given (i and j), and each word
must be numeric (signed or unsignad). Exampla:

&X = LMULT OF ¢ 5 6

This sats &X to 120.

LPIECE OF word i
LSUBSTR OF

1% .

Extracts that piece of "word"™ that starts at character "i", with length
"i7; or that starts at character."i" and_runs.-to the end of the word
(%).

The value of "i"™ (and "j™ if given) must be numeric; also "i"™ must be
positivae, and "j" must not ba negativa.

If the value of "i" exceeds the length of the word, the valuae of the
function is the null string. If "j" is given, but aexcaaeds the remaining
length of the word, thae remaining length is usaed instead.

Exampla:

EA
&B

&PIECE OF ABCDE 2 3
&PIECE OF ABCDE 2 999

26 IBM VM/SP EXEC 2 Referance

&C = SPIECE OF ABCDE 33 2
&PRINT &A &B &C xx

This results in the printed line:
BCD BCDE ¥x

(Sea the description of &LOCATION OF.)

&POSITION OF word [wordl ([word2 ... 1]

Compares "word" with "wordl™, "word2", ..., looking for a match, and
vields a numeric va}ue reprasenting the position of the first matching
word, or yields zero if "word" doaes not match any of the other words (or
if there are no other words given). Example:

&X = &POSITION OF THE NOW IS THE TIME
This sets &X to 3.

(Sea the description of &LOCATION OF and &WORD OF.)

&RANGE OF stem i 3

Yields a string consisting of the words that are composed by appending
to the given stem the numbers i, i+l, ..., j, the words being separated
from each other by a single blank; or yields the null string if i > 3.

The stem is treated as a literal until after the composition is
performaed. The numbers that are appended to it are stripped of any plus
sign or redundant leading zeros.)

The composed names are searched for any EXEC 2 variables, which are
replaced by their values in the usual way. If, as a result of this, a
word is reduced to the null string, it is discarded from the result, and
the next word is daeemad immediately to follow the praevious one.
Examples:

A. Irrespaective of the valuaes of &A, &A3, &A4, and &A5, the sequence:

&§X = &RANGE OF 8A 3 5
&PRINT &X

produces the same result as:

&PRINT &A3 &AG &AS5

Part 2: EXEC 2 Statements 27

B. The saquence:
&ARGS A BC DEF GHIJ KLMNO

e v o

&X = LRANGE OF & 1 &N
&PRINT X

viaelds the printed line:
A BC DEF GHIJ KLMNO
C. The sequenca:

&X = &RANGE OF AB -2 +2
&PRINT &X

vields the printed line:

AB-2 AB-1 ABO ABl AB2

&RIGHT OF word Jj

Yields a string of length "j"™ in which "word" is right-justified and
eithar extended with blanks or shortaened on the left.

{(Sea the description of &LEFT OF.)

&STRING OF [stringl

Yields the string that begins with the character following the blank
that terminates "OF" and ends with the last nonblank character befora,
or at, the truncation column, suppressing the removal of any leading or
embedded blanks in the string.

Each word in the string is searched in the usual way for the names of
EXEC 2 variables. Thesae variables ara replaced by their values.
However, blanks are not removed from the string, even if they ara
adjacent to a word that is reduced to the null string.

Example:
&A = STRING
&B = ENDS
&X = &STRING OF A PIECE OF &A HAS TWO &B
&PRINT &X

This yields the printed line:

28 IBM VM/SP EXEC 2 Reference

~ - -~-A PIECE OF STRING - HAS TWO ENDS

(See the description of &LITERAL OF.) - - = -

oy

&TRANSLATION OF wordl word?2 word3
&TRANS OF

Makes a copy of "wordl"™, modifies the charactaers in it as directed by
"word2™ and "word3™, and yields the resulting string.

The rules for modification are as follows. Each character of the copy
is considered in turn, and: : :

1. if "word2" does not contain a matching character, the character in
the copy is left unchanged; or

2. if "word2™ contains a matching character, in position "i"™ (or if it
contains several matching characters, the first of which occupies
position "i"), the character in the copy is replaced by the ith
character of "word3", or by a blank if "™word3" is not given or
contains fawer than "i" characters.

The result has the same length as "wordl"™.

Examples:

1. The sequence:

&X = ABCl23,XYZ
&X = &TRANS OF &X ABCDEF, abcdef
&PRINT &X

vields the printed line:
abcl23 XYZ
2. The sequencae:
&YY/MM/DD = 80710729

&MM/DD/YY = &TRANS OF 45678312 12345678 &YY/MM/DD
&PRINT &MM/DD/YY &YY/MM/DD

vields thae printed lina:

10/29/80 80/10/29

Part 2: EXEC 2 Stataeaments 29

30

&TRIM OF fwordl

Yields a string consisting of "word™ with any trailing blanks removed,
or yields thae null string if "word"” is not given.

&WORD OF [wordl [word2...1] i

Yields thae ith word from the given list of words, or yields the null
string if "i" is zaro or excaeads tha number of words that ara given.
The value of "™i™ must ba numaeric, and "i" must not be negatiyg.

(Sea thae description of &POSITION OF.)

IBM VM/SP EXEC 2 Raefaerence

User-pefined Functions

A user-defined function can betinvoked only in the last taerm on the
right-hand side of an assignment statement. Thae invocation takes the
form:

line-number OF argl arg2 ...
label OF

The effect is to create a new generation of the EXEC 2 arguments &1 &2
«..s initialized to "argl"™, "arg2", ..., and to invoke the given
function; that is, to transfer control to thae given line, or to a line
starting with the given label, in such a way as to allow a value to be
raturned with the &RETURN statement.

The new generation of arguments supersedes the arguments that were
previously sat, making the pravious values and the number of arguments
praviously set temporarily inaccessible. On entry to the body of the
function, the values of the arguments, and the number of arguments set,
are as given in the function .invocation. Their values, and the number
of arguments set, can be changed in the body of the function in the same
way as outside, such as by assignment or with the &ARGS or &READ
statement. On return, the new generation of arguments is discarded, and
the previous values, and the number of arguments previously set, become
accessible again.

The first character of a label must be a hyphen. The search for a label
starts on the line following the function invocation. Thaen, if a match
is not found before the end of the file, the search resumes at the top.

If a matching label does not exist, execution stops abnormally with an
error message.

(See the description of the &CALL and &RETURN control statements.)
Examplas:
A. The user-defined function
-OVERLAY OF layee layer
is to return the string "layee" overlaid by "layer". (The result
will ba different from "layer” only if "layee" is longer than

"layer".) Here is the body of the function, preceded by an example
of its invocation:

Part 2: EXEC 2 Statements 31

&S = -OVERLAY OF &S *

LI Y

% THIS FUNCTION USES "&"™ AS A TEMPORARY VARIAﬂLE
-OVERLAY & =1 + LLENGTH OF &2

&1 = IPIECE OF &1 &
&1 = &CONCAT OF &2 &1
&RETURN &1

B. Suppose there is an external program TIME that stacks the CPU time
consumed in (say) microseconds.
is to return this number as its value, raelieving its caller of the
nead to issue the external command, check the return code,
the answer. Here is the body of the function, preceded by an

example of its use:

&T = -TIME OF

The user-definaed function -TIME OF

and read

e (sequence to be timed)
&T = 0 - &T + -TIME OF
&PRINT TIME CONSUMED WAS &T

-TIME &COMMAND TIME

&IF &RC ~= 0 &GOTO -~UNEXPECTED

&READ ARGS
&RETURN &1

~UNEXPECTED &PRINT UNEXPECTED ERROR FROM TIME

&EXIT &RC

32 IBM VM/SP EXEC 2 Reference

EXEC 2 Name Substitution

The words that form an executable statement are searched for the names
of EXEC 2 variables. These variables ara replaced by their values.
This is done according to the following steps:

1. Each word is inspected for ampersands, starting with the rightmost
character of the word and proceeding to the left.

2. If an ampersand is found, thaen it, with the rest of the word to the
right, is taken as the name of an EXEC 2 variable and replaced (in
the word) by its value. This may increase or decrease the length
of the word. Initially, all variables have a null value, except:

a. the variables tﬁat represent the EXEC 2 control words and
.predefined functions; they are initialized to their own names
(for example, the value of "&IF" is "&IF"); and
b. the EXEC 2 arguments, and the other predafined variables, that
have the values specified in the section "Predefined
Varisbles."™
3. Inspection resumes at the next character to the left, and the
procedure is repeated from step 2 above, until the word is
exhausted.
There is an exception if the word is the target of an assignment. In
this case, inspection for ampersands stops on the second character of
the word.
Note that any characters that are substituted are not themselves
inspected for ampersands. They are, houwever, included in the name of

thae next variable if another ampersand is found to the left.

These rules make it possible to construct arrays of subscripted
variables.

Examples:
1. The sequence:
(Original file) (After Substitution)

&X = 123 2. & = 123
&PRINT ABC &X ABC&X 000&X 3. &PRINT ABC 123 ABC123 000123

yields the printed lina:

ABC 123 ABC123 000123

Part 2: EXEC 2 Statements 33

2. The sequence:

(Original file) (Aftaer Substitution)
&1 = 2 2. &¢I =2

EX¢I = 5 3. &X2 =5

&¢I = ¢8I -1 4. &¢I =2 - 1

EXEI = &I + 1 5. X1 =1+ 1

&X = EX&I + &X&X&I 6. &X =2 + 5

&PRINT ANSWER IS &X 7. &PRINT ANSWER IS 7

viaelds the printad lina:
ANSWER IS 7

3. Thae sequance:

(Original file) (Aftar Substitution)

&X = &CONCAT OF X &BLANK X 2. &X = &CONCAT OF X X
&LLx = 7 3. X X =7

&DUMP VARS &X &&X 4. &DUMP VARS &X &X X

vialds the printed line:

&
&

n X

X X
X 7

X n

34 IBM VM/SP EXEC 2 Raefaerence

part 3: Notes on Exec 2

1. Recursive execution

2. Termination of an EXEC 2 file

3. Console input buffer

4. Assignment statement

5. Evaluation of &DATE and &TIME

6. Size and traeatment of numbers

7. Removing plus signs and leading zeros
8. Syntax of conditional phrases

9. Embedded blanks

10. &LOOP statement

11. Closing of loops

12. Search for labels

13. Performance of label searches

14. EXEC 2 words are not resaerved words
15. Example of &TRACE ALL

16. Truncation column

Recursive execution.
An EXEC 2 filae may invoke itself recursively, or may invoke other
EXEC 2 files, by issuing the appropriate command or subcommand.
(EXEC 2 files may also invoke CMS EXEC files. Sea Appendix C.)
EXEC 2 files that have the filetype EXEC can, for example, be
invoked by means of the statement:
&COMMAND EXEC filenama <argl <arg2 ... >>
Termination of an EXEC 2 fila.
An EXEC 2 file stops exacution and returns to its caller:
a. when an &LEXIT statement is exacuted; or
b. when an attempt is made to pass control to a line beyond the
last (for example by "falling off" the end of the file), in

which case a return code of 2zero is used; or

c. when an EXEC 2 error is encounteraed, in which case a message is
printed and execution stops abnormally.

Console input buffaer.

'EXEC 2 can use the CMS console input buffer (sometimes referred to

as the console stack). This is a conceptual area in which lines can
be deposited FIFO (first in, first out), or LIFO (last in, first

out), and subsequaently retrieved by atteampts to read from the

console. It providaes a simple mechanism for communicating betuween

Part 3: Notes on EXEC 2 35

36

programs. In EXEC 2 files, lines can be deposited in the buffer
with the &STACK or &BEGSTACK stataments, and can be retrieved with
tha S$READ statement.

Assignment statement.

The word immediately following the target of an assignment must bae a
literal equal sign. It cannot be an EXEC 2 variable that has the
value of an equal sign nor an EXEC 2 variable that is discarded from
the statement due to having a null value. Conversely, if an equal
sign is to be the first word following a control word, either it
must be given as an EXEC 2 variable that has the value of an equal
sign, or there must be an intervening word that reduces to the null
string; otherwise, the statement is interpreted as an assignment,
and (if it is valid as such) the control word is assignaed a new
value (saea below, under "EXEC 2 words are not raeserved words").

With this exception, a word that is discarded due to having a null
value has no effaect on whather a statement is interpreted as an
assignment, even if it occurs at tha beginning of the statement.

For example, in thae sequenca:

&X =

&LOOP 2 2
&X &Y = 2 + 1
&X = &PRINT

the first statement in the loop is executed as an assignment to &Y,
and then (the second time) as a &PRINT statement, resulting in the
line: :

Evaluation of &DATE and &TIME.

The time is taken oncae for each execution of a statement that refaers
to the predefined variable &DATE or &TIME. Therefore, multiple
referencaes to these variables within a statement yield the same
values. If consistency (rather than currentness) is required over a
range exceeding ona statement, then the values of &DATE and &TIME
must be assigned to ordinary variables. For example,

&STACK LIFO &DATE &TIME
&READ VARS &D &T

Size and treatment of numbers.

Words that are treataed as numbers must represent integaers. No limit
is imposed on the size of a number that appears in a comparison, or
as an argument to the predefined function &DATATYPE OF. In contexts
that require numeric values, numbers must lie within a range that is
dafined by the implementation. (In CMS, the range is -2,147,483,648
to 42,147,483,647. See Appendix C.) An attempt to interpret a
number outside tha allowable range, or to derive such a number by

IBM VM/SP EXEC 2 Raferaence

arithmetic, causes numeric overflow. This overflow causas execution
to stop abnormally with an error message.

Removing plus signs and Ieading zaros.

A plus sign, and any redundant leading zZeros, can be stripped from a
numeric quantity by performing an arithmetic operation on it.

Example:
&X = 0000000000000000000012

LY = X + 0
&PRINT &X &Y

This yields the printed line:
0000000000000000000012 12
Syntax of conditional phrases.

In the conditional phrases that occur in the &IF and conditional
LLOOP statements, a missing second comparand is regarded as a null
string. The first comparand and thae comparator must always be
present; otherwise execution stops abnormally with an error maessaga.
If there is a risk of the first comparand having a null value,
syntactic validity can be ensured by prefixing both comparands with
the same character. For example, the clause

&IF 781 =/

is satisfied if, and only if, &1 is null or blank; and
&IF 781 = /PRiNT

is syntactically valid even if &1 is null.

A similar technique can be used to force character-string
comparisons even if both of the comparands are numeric. (In this
case, the prefix must not be numeric.) For example, if it is known
that &1 has a numeric value, the clause

&LIF 781 < /0

is satisfied if and only if &1 begins with a plus or minus sign. If
&1 is equal to "1V, the clause is false. Houever, if &1 is equal to
"+1", the clause is truae, since "+" is less than "0" in a
character-string comparison. (For the relative values of
characters, refer to the internal codes for the EBCDIC character

set, given in JIBM Svstem/370 Reference Summary, GX20-1850.)

Part 3: Notes on EXEC 2 37

19.

38

Embeddaed blanks.

With a few excaeptions, EXEC 2 does not embed blanks in thae valuas of
variables. The exceptions are as follous:

a. &ARGSTRING is initialized to the string containing the EXEC 2
arguments, and &CMDSTRING is initialized to the command string
exactly as passed to the EXEC 2 file. Therefore, these
variables may contain embedded blanks.

b. Tha "&READ STRING var" statemant assigns to the given variable
the complete line exactly as read, that may contain embeddaed
blanks.

c. Tha predafined variable &BLANK can ba usad to embed blanks in
the value of a variable, for example:

&Y = &CONCAT OF A &BLANK B

d. Tha predafined function &RANGE OF inserts a blank between each
word; thae predefined functions &(LITERAL OF and &STRING OF retain
embedded blanks that are given in their arguments; and the
predafined functions &LEFT OF, &RIGHT OF, and &TRANSLATION O
can yield leading, embedded, or trailing blanks. .

e. Embedded blanks can be transmitted from one variable to another
with the assignment statement, and to the EXEC 2 arguments &1 &2
«o. With tha &ARGS statement or by invocation of user-dafined
subroutines and functions.

Embedded blanks are always significant. For example, "¢IF " is not
recognized as "¢IF"; and "10 "™ and " 10" cannot be used as numbers.

Embedded blanks can be removed from the value of a variable by
stacking it and rereading it as a sequence of words. Suppose, for
example, that a line to bae read from the console is requiraed both in
its literal form (with embedded blanks, if any) and as a series of
normal words (without ambedded blanks). The following sequence
achievas this: .

&READ STRING &S
&STACK LIFO &S
&READ ARGS

Now &S5 contains the literal string, and the EXEC 2 arguments &1 &2
...» contain the constituant words.

&LOOP statement.

Thae first threae words of the &LOOP statement are searched for EXEC 2
variables (in tha normal way) when the &LO0OP statement is exaecuted.
However, the ramaindaer of the statement (whic¢h is present only if
"WHILE" or ™UNTIL" is given) is saved without inspaction. This

IBM VM/SP EXEC 2 Reference

11.

saved phrase is then interpreted as a condition each time around the

loop (including the first time). For examplea:

&J =3

&LOOP 2 UNTIL &J = 5
& = &J + 1
&PRINT &J

This fesults in the printed lines:

4
5

Closing of loops.

A loop may be in any of three mutually exclusive states: active,
suspended, or closed. A loop becomes active whan execution of its
defining &LOOP statement begins. It is suspended if another loop
becomes active before the first is closed or if a user-defined
subroutine or function is invoked. It becomes active again when the
second loop is closed or when a corrasponding &RETURN statement is
executed. A loop is closed when it is active, and when either:

a. the requiraement for termination, given in thae &LOOP statement,
is mat; or

b. control is transferraed to a line outsida the scope of the loop
by any means other than invocation of a user-defined function or
subroutineg.

In addition, the &EXIT statement closes all loops, -end the &RETURN
gitastamant closas any Jloops that have been opened during execution of
8 user-definad subroutine or function.

Examples:

a. In the following sequence, the &SKIP statement closes the loop
aftar ten iterations, since it transfars control to a line below
the last in the loop.

& =0
&LOOP 2
&) = 8J ¢+ 1
LIF &J > 9 &SKIP O

b. 1In the following sequence, the second loop closes the first loop
since it causes control to be transferred to a line outside the
scope of tha first loop.

&LOOP 1 *

&L0OP 1 1
&=

Part 3: Notes on EXEC 2 39

12.

13.

14,

40

The first loop would similarly be ciosed} for the same reason,
if the second loop statement were replaced by a &BEGPRINT,
&BEGTYPE, or &BEGSTACK statement mhich occupied more than one
line.

Search for labelg.

The search for a label to which referencae is made in a &CALL, &GOTO,
or &LOOP statement, or in the invocation of a user-definad function,
involvaes examination of the first word on each line, without raegard

to its context, or what follows it. It is, therefore, necessary to

avoid using labels that would be matched by the first word of a line
within a &BEGPRINT, &BEGTYPE, or &BEGSTACK statement.

Labels that are attachad to statements are treated literally; they
are not searched for EXEC 2 variables. Labels need not be unique.

Performance of label searchas.
a. &CALL, &GOTO0, and usar-defined functions

A &CALL statement, a &GOT0 statement, or an invocation of a
user-dafined function that transfers to a labael abovae the
currant statement tends to ba inefficient, especially in long
EXEC 2 files. It is preferable to use the &LOOP statement in
placae of an upward "§GOTO label"™ statemaent.

b. &LOOP label ...

A "&LOOP label ..." statement is converted, at tha time of its
execution, into the equivalent "&LO00OP n ..." statement.
Therefore, the overhead for finding the label is incurred only
onca, whaen the loop is entered, irrespactive of the number of
itaerations. :

EXEC 2 words arae not reserved words.

EXEC 2 control words, predefined functions, and predefined variables
are known as EXEC 2 words. EXEC 2 words baegin with an ampersand;
but, unlike ordinary variables, they havae an initial value that is
not null. .

Thae initial value of EXEC 2 control words and predefined functions
is the word itself (for axample, the value of "&IF"™ is "LIF"). If
ona of these words is assigned a diffarent value (for example, &IF =
ABC), then the feature that it represents in tha language is lost to
the EXEC 2 fila unless it, or another variablae, is reset to the old
value (for exampla &IFX = &LITERAL OF &IF) and used appropriataly.

In the case of predefined variables other than the EXEC 2 arguments,

the spacial proparties of a variable disappear if an explicit
assignment is made to it. For examplae, the statement:

IBM VM/SP EXEC 2 Refaeraence

15.

- &TIME = &TIME -
inhibits further automatic updating of the variable &TIME.

Words of the form &j, wherae "j" is an unsigned integer without
leading zeros, are resaerved for the EXEC 2 argumants. They can be
set explicitly (for example, &2 = 1) only if they are within the
range of arguments that are currently set. With this exception,
EXEC 2 words are not reserved words, and can, if desired, be used
like ordinary variables.

&READ VARS, &READ STRING, and &UPPER VARS are treated as explicit
assignments to the variables given; &ARGS, &READ ARGS, and &UPPER
ARGS are not treated as explicit assignments to &N or &INDEX.

If a feature, function, or value is accessiblae through more than one
name (for example, &PIECE OF and &SUBSTR OF), an assignment to one
of the names does not affect the other name or names.

With the exception of the arguments &1 &2 ..., there are no EXEC 2
words that end with a numeral, and it is intended that no such words
will ever be introduced. Therefore, variables such as &Al, &A2,
...» can be relied upon to have an initial value of null. However,
the names of variablas that do not end with a numaral should not be
used in a way that relies upon their initial value baing null.

Example of &TRACE ALL

Assume that an editor accepts the requests NEXT (which moves down
the file, and yields a return code of zero unless the end of file is
reached), LENGTH (which stacks the length of the current line), and
TOP (which moves to the first line in the file). The following
sample edit macro (called LONGER) searches for the next line that is
longer than the given length (passed toc the EXEC file as an
argument).

&TRACE ALL

NEXT 0

&IF &RC == 8 TOP

NEXT

&LOOP 4 WHILE &RC = 0
LENGTH

&READ VAR &L
&IF &L > &1 &EXIT
NEXT

&EXIT &RC

If tha macro is invoked at the end of the file, thae search starts
from the top.

Part 3: Notes on EXEC 2 41

Supposae that the macro is invokaed with the paramaeter 40 at the end
of a fila containing tuwo linaes, both of length 30. This is the
trace: .

2. NEXT ©

+++ E(L) +++

3. &IF 1 -= 0 TOP

3. ... TOP

4. NEXT

5. &LO0P 4 WHILE &RC = 0
~=~ LOOP WHILE 0 = 0
6. LENGTH

7. &READ VAR &L

30

8. &IF 30 > 40 &EXIT
9. NEXT

--= LOOP WHILE 0 = 0
6. LENGTH

7. &READ VAR &L

30

8. &IF 30 > 60 LEXIT
9. NEXT

+4++ E(1) ++4+ .
-=-=~ LOOP WHILE 1 = 0
10. &EXIT 1

16. Truncation Column

A truncation column may bae specified with tha &BEGSTACK, &BEGTYPE,
&BEGPRINT, and &TRUNC statements.

In all cases tha truncation column is the last column in which
characters are significant. Characters in columns that are bayond
the truncation column are ignored.
Exampla:

cevetenre] e =——=2

&TRUNC 10

&X = ABCDEFGHIJK

This sets &X to ABCDE.

42 1IBM VM/SP EXEC 2 Reference

_ part §: BNF Description of the EXEC 2 Syntax

What follows is a description of the EXEC 2 syntax in Backus-Naur Form
(BNF). This is an alternativa to the other daescriptions in this manual
and is not essential reading.

The items enclosed in the angular brackets "<" and ">" are variables
(nonterminal symbols). These items are replaced by the items to the
right of "::=", ("::=" means "is to be replaced by".) The items to the
right of "::=" may give exact replacements, other variables to be
replaced, or the final step of the syntax breakdown. Items in capital
letters are exact replacements. Items in lowercase, not surrounded by
the angular brackets, are the final step (terminals) of the syntax
breakdoun.

<exec_file> ts= <statement>
<exec_file> <statement>
<statement> $:= <comment>
<labael> <executablae_stmt>
<executable_stmt>
<comment> s ¥ anything
<label> 1= -<word>
<executable_stmt> 132 <unconditional_stmt>
<if_clause> <executable_stmt>
<word> 122 <number>
<charactaer_string>
<variable>

.
.
"

<unconditional_stmt> <assignment>
<control_stmt>
<command>

null

<if_clause>

&IF <word> <comparator> <word>

<npumber> 3

o
L]

<unsigned_integer>
+<unsigned_integer>
-<unsigned_integer>

<character_string>

<character>
<character_string><character>

Part 4: BNF Description of the EXEC 2 Syntax 43

<variable>

<assignment>

<control_stmt>

<command>

<comparator>

<unsigned_integer>

<charactaer>

<letter>

o
o

Yy
.

.

o
.

o

.
e

.

&<character_string><letter>
&<charactar_string><variable>
&<character_string>symbol
&symbol

<variable> = <rhs>

&ARGS
&BEGPRINT
&BEGTYPE
&BEGSTACK
&BUFFER
&CALL
&CASE
&COMMAND
&DUMP
&ERROR
&EXIT
&GOTO

&1IF

&LoOP
&PRESUME
&PRINT
&READ
&RETURN
&SKIP
&STACK
&SUBCOMMAND
&TRACE
&TRUNC
&TYPE
&UPPER

CP command

CMS command

XEDIT command (if working with
an XEDIT macro)

=|EQ

-=|NE

<LT
<=|->|LEING

>|6T

>=|~<|GE|NL

<digit>
<unsignaed_intaegar><digit>

<letter>

<unsigned_integer>
symbol

albleldl ... Ixlylz

44 IBM VM/SP EXEC 2 Reference

<rhs>

.
Ll]
[}

<word>
<function_invocation>
<arithmetic_rhs>

null

.
v
"

<digit> 0l11213]415|6|7|8(9

&CONCAT OF
&CONCATENATION OF
&DATATYPE OF

&DIV OF

&DIVISION OF
&LEFT OF

&LENGTH OF
&LITERAL OF
&LOCATION OF
&MULT OF
EMULTIPLICATION OF
&PIECE OF
&POSITION OF
&RANGE OF

&RIGHT OF

&STRING OF
&SUBSTR OF

&TRANS OF
&TRANSLATION OF
&TRIM OF

&TYPE OF

&WORD OF
user-defined function

.
e

<function_invocation>

<arithmetic_rhs> <arithmetic_expr>
<arithmetic_expr> + <function_invocation>

<arithmetic_expr> - <function_invocation>

<arithmetic_expr> t3= <number>
<arithmetic_aexpr> + <number>
<arithmetic_expr> - <number>

Part 6: BNF Description of the EXEC 2 Syntax 45

Part 5: EXEC 2 Errors

If the EXEC 2 interpréter finds an error, it issues the following

message:

ERROR IN EXEC FILE fn ft fm, LINE nnn - description of error

(In CMS, this is messagae DMSEXEO85E.)

Execution of the EXEC 2 file then stops abnormally with one of the
following return codas.

Return
Code

10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10019
10020
10021
10097
10098
10099

Description
of Error

FILE NOT FOUND

WRONG FILE FORMAT

WORD TOO LONG

STATEMENT TOO LONG

INVALID CONTROL WORD

LABEL NOT FOUND

INVALID VARIABLE NAME
INVALID FORM OF CONDITION
INVALID ASSIGNMENT

MISSING ARGUMENT

INVALID ARGUMENT

CONVERSION ERROR

NUMERIC OVERFLOW

INVALID FUNCTION NAME

END OF FILE FOUND IN LOOP
DIVISION BY ZERO

INVALID LOOP CONDITION

ERROR RETURN DURING &ERROR ACTION
ASSIGNMENT TO UNSET ARGUMENT
STATEMENT OUT OF CONTEXT
INSUFFICIENT STORAGE AVAILABLE
FILE READ ERROR nnn

TRACE ERROR nnn

The EXEC 2 interpreter also issuaes the following messages:

INVALID EXEC COMMAND

(In CMS, this is message DMSEXE175E.)

Return Code: 10000

46 IBM VM/SP EXEC 2 Raefarence : e

*

INSUFFICIENT STORAGE FOR EXEC INTERPRETER
(In CMS, this is message DMSEXE255T.)

Raturn Coda: 10096

Thae &CRASH statement is useful in debugging the EXEC 2 interpreter
(module DMSEXE). It is intended for usa only by IBM or customer system
support parsonnel. Note that the &CRASH command is pot used for
dabugging programs or EXEC 2 files written in the EXEC 2 language. For
information on debugging EXEC files written in the EXEC 2 language,
rafer to the &TRACE statement in this book.

A complete description of thae &CRASH command can be found in YM/SP
System Programmer's Guide.

Part 5: EXEC 2 Errors 47

Appendix A: CMS EXEC and EXEC 2 Relationship

converting CMS EXEC Files to EXEC 2 Files

CMS EXEC filaes continue to be supported without modification. Howaever, -
to take advantage of thae new function and performance available under
EXEC 2, you must convert your EXEC files to conform to EXEC 2 languaga.
The first stap in converting CMS EXEC files to EXEC 2 files is to changa
the &CONTROL statement to &TRACE. This statement determines which EXEC
interpreter will handla the EXEC file. &CONTROL indicates the CMS EXEC
interpraeter, and &TRACE indicates the EXEC 2 interpreter. This must be
the first raecord in the EXEC filew :

Next, the CMS EXEC statements must ba converted to their corresponding
EXEC 2 counterparts. A comparison baetween the languagae definitions of

CMS EXEC and of EXEC 2 follows. A section listing unique EXEC 2
functions follows the comparison saections.

EXEC gtatement Comparison

control Statements

£MS EXEC EXEC 2

&ARGS Supportaed; does not have a limit
of 30 arguments.

&BEGEMSG Not supported

&BEGPUNCH Not supported

&BEGSTACK
ALL parameter specifias ALL parameter is not supportaed.
stacking of the entire If a truncation value is not
line up to 130 characters. specified, the lines arae not
The absaence of ALL raesults truncated. &END is not supported
in truncation at 72 as a data list delimiter. The
characters. number of linas to ba stacked

can be specified with tha "n"
parameter. An "¥" will stack
lines to the end of the fila.
The "label"™ parameter allows
lines to bae stacked down to

a spacified label. Parametaers

48 1IBM VM/SP EXEC 2 Raeferance

&BEGTYPE

-&CONTINUE

&CONTROL

&LEMSG
&END

&ERROR

LEXIT
&GOTO
The parameter TOP diracts

the EXEC procaessor to the
first line of the program.

&HEX
LIF
&LOOP
&PUNCH
&READ

&SKIP
&SPACE

&STACK

Appandix A: CMS EXEC and EXEC 2 Raelationship 49

FIFO and LIFO are supported.

(Seae comment for &BEGSTACK:;
also supported as &BEGPRINT.)

Treated as a null statement.

&TRACE. &TRACE does not

support the following parameters:
MSG, TIME, PACK, NOMSG, NOTIME,
NOPACK. Uses parameter ON in
place of CMS. Parameters OFF,
ERROR(ERR), ALL are supported.
"%" has been added.

Not supported
Not supported

Supported; &CONTINUE is
treated as & null statement.

Supported

TOP is not explicitly supported.
The line number value 1 provides
equivalent function. The line
number and label parameters are
supported.

Not supported

Supported; &$ and &¥* are not
supported.

The conditional expression
must be preceded with "WHILE"
or "UNTIL". "x" has been added.

Not supported

Supportad; "%x" and STRING have
baen added.

Supported

Not supported; see &PRINT.
Supported. 4T and RT are

not supported. SET CMSTYPE HT

and SET CMSTYPE RT ara their
equivalents.

(THESE PALE NEwW ©MS SIvmAudd

&TIME
Used to request timing
information during
execution.

&TYPE

Predefined Functions

cMS EXEC

LCONCAT
&DATATYPE

&LENGTH
&LITERAL

&SUBSTR

PredefinedIVariables

C€MS EXEC

&0 Represents the filename.

&1 &2 ...

&%

50 IBM VM/SP EXEC 2 Refaerence

Not supported as a control
statement. Used as a pre-
dafinad variable to display
the true time-of-day on the
primary meridian (Greanwich
Mean Time (GMT)). See &TIME
under the saection "PREDEFINED
VARIABLES™ in this publication.

Supportad; also supported as
&PRINT.

EXEC 2

Supports &CONCAT OF and
&CONCATENATION OF

Supports &DATATYPE OF
and &TYPE OF

Supports &LENGTH OF
Supports &LITERAL OF

Supports &SUBSTR OF and
&PIECE OF

EXEC 2

Normally, this parameter
represents the filename,
but this may ba diffarent
if the EXEC was invoked by
a synonym.

Supported; does not have a limit
of 30 arguments.

Not supported, but sea &POSITION OF

and &LOCATION OF.

&6) Not supportaed, but see &POSITION OF
and &LOCATION OF.

&DISKX Not supported

&DISKx*) Not supported

lblsk? Not supported

&D0S Not supported

LEXEC Supported as &FILENAME

$GLOBAL Not supported

&GLOBALN Not supported

&INDEX Supported; also supported as &N,

does not have a limit of
30 arguments.

&LINENUM Supported; also supported as
&LINE

-4READFLAG dlot supportaed

S&RETCODE Supported; also supported as
&RC

STYPEFLAG Not supported

Appendix A: CMS EXEC and EXEC 2 Relationship 51

Functions Unique to EXEC 2

control Statements

&BUFFER
&CALL
&CASE
&§COMMAND

&DUMP

Predefined Functions
&DIVISION OF and
&DIV OF

&LEFT OF

&LOCATION OF

EMULTIPLICATION OF and
&MULT OF

&POSITION OF

Predefined vVariables

&
&ARGSTRING
&BLANK
&CMDSTRING
£COMLINE
&DATE

&DEPTH

52 IBM VM/SP EXEC 2 Refarence

LRETURN

&SUBCOMMAND

&TRACE (similar to &CONTROL
in CMS EXEC)

&TRUNC

&UPPER

&RANGE OF

&RIGHT OF

&STRING OF

&TRANSLATION OF and
&TRANS OF

&TRIM OF

&WORD OF

&FILEMODE

&FILENAME

&FILETYPE

&FROM

&LINK

&TIME

Oother

User-Defined Functions
Blanks in values of variables

Arbitrary characters allowed in variable namas

Appendix A: CMS EXEC and EXEC 2 Relationship 53

Appendix B: Sample EXEC 2 Files

1. This sample EXEC 2 file, called GRAB EXEC, copies a file from any
CMS disk to the usar's A-disk.

$TRACE

&IF &N = 0 &GOTO -TELL ,
&IF &N < 2 &GOTO -BAD

&IF &N > 3 &GOTO -BAD

&IF &N = 2 LARGS &1 &2 x
COPYFILE &1 &2 &3 &1 &2 A
&EXIT &RC

-BAD &PRINT INVALID GRAB COMMAND
&EXIT 101

-TELL &PRINT COMMAND IS: GRAB FN FT [MODE1]
&PRINT COPIES THE GIVEN FILE TO THE A-DISK,
&PRINT AND PASSES BACK THE RETURN CODE FROM
&PRINT 'COPYFILE®.

&EXIT 100

2. This sampla EXEC 2 file, called SHIP EXEC, sends a specified CMS
fila to a spacifiad user. The commaents are included for tutorial
purposes.

&TRACE

¥ COMMAND IS: SHIP USER FILENAME FILETYPE [MODE]
¥ IF THERE ARE NO ARGUMENTS GIVEN, TELL USER HOW...

$IF &N = 0 2GOTO -TELL

% CHECK THE NUMBER OF ARGUMENTS, AND USE FILEMODE
¥ OF "x" IF IT IS NOT GIVEN...,

¢IF &N < 3 &GOTO -BAD
&IF &N > 4 &GOTO -BAD
LIF &N = 3 LARGS &1 &2 &3 %

¥ SPOOL PUNCH TO RECIPIENT'S CARD-READER, OR
¥ COMPLAIN IF RECIPIENT IS NOT KNOWN TO SYSTEM...

CP SPOCL PUNCH TO &1 CLASS A
&IF &RC ~= 0 &GOTO -BADUSER

% PUNCH THE FILE, OR COMPLAIN IF FAILURE...

54 IBM VM/SP EXEC 2 Reference

PUNCH &2 &3 &4
&IF &RC -~= 0 &GOTO -ERROR

% TELL RECIPIENT WHAT HAS BEEN DONE; THEN UNSPOOL
¥ THE PUNCH, AND RETURN WITH SUCCESS...

CP MSG &1 I HAVE PUNCHED YOU MY FILE &2 &3 &4
CP SPOOL PUNCH TO % CLASS A
SEXIT

% TELL RECIPIENT INVALID SHIP COMMAND, AND RETURN
¥ WITH ERROR...

-BAD &PRINT INVALID SHIP COMMAND
$EXIT 101

¥ TELL RECIPIENT GIVEN USERID IS NOT VALID, AND
¥ RETURN WITH ERROR...

~BADUSER &PRINT &1 IS NOT A VALID USERID
&EXIT 102

¥ TELL RECIPIENT ERROR WHEN PUNCHING FILE; THEN
¥ UNSPOOL PUNCH AND RETURN WITH ERROR...

=ERROR &PRINT ERROR &RC FROM "PUNCH™ (WHILE IN SEND)
CP SPOOL PUNCH TO % CLASS A

&EXIT 103

¥ TELL USER HOW...

~TELL &PRINT COMMAND IS: SHIP USER FN FT [FM]
&EXIT 100

Appendix B: Sample EXEC 2 Files 55

Appendix C€: EXEC 2 in CMS

Identifving EXEC 2 Files

Sincae both CMS EXEC and EXEC 2 files are called in the same way, CMS
examines the first statement of tha EXEC 2 fila to detarmine which EXEC
"interprater must handle it. If tha first statement of the EXEC file is
&TRACE, CMS calls the EXEC 2 interpreter to handle it. If the first
statement is not &TRACE, CMS calls thae CMS EXEC interprater to handle
it.

€alling EXEC 2 Programs from CMS Command Level

When EXEC 2 programs are. called from command level, the command verb

(which becomaes &0) and tha arguments (which individually become &1 &2
... and collectively bacome &ARGSTRING) are translated to upparcase.

&CMDSTRING will contain the untranslated command string.

When EXEC 2 programs are invoked from another EXEC 2 program, no
translation takes place, and &CMDSTRING will be the same as the &STRING
OF &0 &ARGSTRING (if &0 was delimited by a blank) or &CONCAT OF &0
&ARGSTRING (if &0 was delimited by a parenthesis).

It is possible to 'pretend' a command-level call by using the CMS
command, CMDCALL. CMDCALL converts EXEC 2 extended plist function calls
to CMS extended plist command calls. Thae use of CMDCALL in an EXEC 2
exec allows the message "FILE NOT FOUND' to ba displayed for the ERASE,
LISTFILE, RENAME, and STATE commands. Also, an EXEC 2 program invoking
another EXEC 2 program will have the samae results as an EXEC 2 program
being called from command level. &0, &1 &2 ..., and &ARGSTRING will be
translated as stated abova. ' :

In either case, calling an EXEC 2 program from command level or invoking
an EXEC 2 program from another EXEC 2 program, the CMS convention that
parentheses are token delimiters is applied to separate &0 from
&ARGSTRING, but it is not applied to delimit &1, &2, ... from each
other.

56 1IBM VM/SP EXEC 2 Refaerance

summary of Limits for EXEC 2 Filas in cMs

Some CMS limits that apply to EXEC 2 filaes are:

EXEC 2 filaes used as CMS command files must hava the word &TRACE as
the first word in the first record of the file. In subcommand
environments, such as XEDIT for XEDIT macros, the word &TRACE is
optional. Cos :

The maximum length of an EXEC 2 line is 255.

The maximum length of a statement, after replacement of variables, is
511. (This limit is enforced only as needed by the interpretaer; some
statements can grow to a greater length.) : »

the maxisum-length of a word, after replacement of>variwbles, is-255.

The maximum laength of a>1in¢ read from the console is 130, and from
the console stack is 255.

The maximum length of a printed lina is 130.

An EXEC 2 filename can be from one to eight characters long. Tha
valid characters are A-Z, 0-9, $, &, 3, +, : (colon), - (hyphen), and

- (undarscorae). The filetype must ba EXEC for files that are invoked

from CMS command mode and XEDIT for files used as XEDIT macros.

All EXEC 2 files have an initial lookaside buffer of 32 lines (see
the &BUFFER description in the "Control Statements” section). The
&BUFFER 0 statement must be issued to delete the lookaside buffer if
the fila is to be modified while being executad.

In a context that requires numeric values, numbers must-ba in the
range -2,147,6483,648 to +2,147,6483,647.

In CMS, raeturn codes for the LEXIT control statement are limited to
the range -2,1647,483,648 to +2,147,6483,647. Attampts to exceed thaese
limits will cause the EXEC 2 file to stop abnormally with an error
message (NUMERIC OVERFLOW).

CMS commands issuad from EXEC 2 files are invoked in such a way that
most information and error messages issued by the following CMS
commands will not be typed: ERASE, LISTFILE, RENAME, STATE, and
FILEDEF. (See tha description of CMDCALL, in section "Calling EXEC 2
Programs from CMS Command Level™ above, for an exception to this
statement.) This is also trua for any other system or user command
that makes a distinction in its opaeration based on flags passed in
raegister 1. Houwever, note that a nonzero return code from any of
thaesae commands will ba reflected in tha predefined variables &RETCODE
and &RC.

-Appandix C: EXEC 2 in CMS 57

D L et . . A GRS CwE WSS Guine GNE G Gy GEEL AL GEA S CNR WD DI ML S NN ShED e N S AR e s . we o .

- EXEC 2 is dasigned to maintain a complex program environment. For

this reason, automatic clean-up will not ba invoked at the completion
of aach command within the EXEC. It is the programmaer's
rasponsibility to ensure that any necaessary clean-up functions (i.e.
STRINIT, 0S RESET, VSAM CLEAN-UP, etc.) are invoked whaen neaeded.

CP and CMS$ commands tsaued from an EXEC 2 file wust be in uppercase.

The length limit for values assigned via the EXECCOMM interface is
255. If the limit is exceedad, the raturn code from the EXECCOMM
intaerfacae is 16 (INVALID VALUE).

The length limit for the external name of a shared variable is 254.
If the limit is exceaeded, the raeturn code from tha EXECCOMM interface
is 8 (INVALID NAME).

If a "STORE™ reference is madae to an unsat EXEC 2 argument (i.a. a
variabla of tha form &i where "i" is an unsigned number without
leading zeros that exceaeds the numbar of EXEC 2 arguments that are
currently stored), no assignment is performed, and thae return code
from tha EXECCOMM interface is 8 (INVALID NAME).

If a "FETCH" raeferanca is mada to &ARGSTRING (or &CMDSTRING) via the
EXECCOMM interface and the length of &ARGSTRING (or &CMDSTRING)
exceeds 255, a length of 256 is recorded. If tha langth of the
callaer's araea excaeds 255, the value is truncated without any arror
indication. :

If a "FETCH" referaenca is made to &TIME or &DATE via the EXECCOMM
interface, the time-of-day raeturnad is the same for all raeferencas
from a given program invocation, since (as far as the EXEC 2
interpreter is concerned) the same statement is still in exacution
(see note 5, "Evaluation of &DATE and &TIME," in section 3).

58 IBM VM/SP EXEC 2 Reference

Using EXEC 2 Parameter Lists With Assembler Langsuage pPrograms

The calls illustrated below are made via CMS SVC 202 calls.

1.

EXEC 2 interpreter calling another program:

For &COMMAND word0 wordl ... wordn
RO = ACNPLIST) ;
R1 = A(tokenized CMS plist)
High-order byte of R1 is X'01°'.

For &SUBCOMMAND word0 wordl ... wordn
RO ACNPLIST)
R1 = A(=CL8"word0")
High-order byte of R1 is X'02°'.

where:

NPLIST DS OF
DC A(COMVERB)
DC A(BEGARGS)
DC A(CENDARGS)
DC A(0)

COMVERB EQU the command verb
"DC Cl'word(' :
pc ¢C* optional blanks
BEGARGS EQU the argument string
DC C'wordl'
DC C* !
DC Clword2'
pC ¢C' !

.

DC C'wordn'
ENDARGS EQU X
Calling the EXEC 2 intérpreter with a tokenized plist only:
RO = irrelevant
Rl = A(CMS tokenized plist)
High-order byte of R1 as from LA, BAL, or BALR.

Tha value of EARGSTRING in this case is set as if by the EXEC 2
statemant:

SARGSTRING = &RANGE OF & 1 &INDEX

Appendix C: EXEC 2 in CMS

59

3.

60

The EXEC 2 interpreter can be passed an extended plist, that
specifies an untokenized argument string. In addition, the
parameter list may precisaly identify tha EXEC file to be executed
(and thereby specify a filetypae other than EXEC, or an explicit
filemode); or it may identify an "in-memory file.” An "in-memory
file" is similar in concept to a fila on disk, but it is raesident in
maemory.

RO A(NPLIST)
R1 A(CMSPLIST)
High-order byta of R1 is X'01°'.

NPLIST DS OF : v
DC A(C0) (ignored by EXEC 2)
DC A(BEGARGS)
DC ACENDARGS)
DC A(8) or ACFBLOCK)

.

CMSPLIST DS OF
DC CL8'EXEC'
DC CL8'filenamae' (Ignored if fila block is given)
. (Always ignored by EXEC 2 interface)

If no FBLOCK is given for the abova instruction in the NPLIST
(i. e. A(FBLOCK) is zero), tha filename of the EXEC file is
taken from thae second 8-byte tokan of tha area addressed

by register 1. This will be the value after synonym resolution
so it may be different from &0.

X X X X X

3

BEGARGS EQU thae argument string
DC C'amp0’' no embedded blanks, becomas &0
DC C* ! singla blank separataes &0 from &ARGSTRING
DC C'argstring' becomes &ARGSTRING

ENDARGS EQU %

.

FBLOCK DS OF %% File Descriptor X
DC CL8'filename' if blank, &0 will be used - see &0
DC CL8'filetype' may be blanks for &PRESUME &COMMAND
DC CL2'filemode’ should be given as '¥', or blanks for

% in-memory filaes

% IMPORTANT NOTE: Thae default &PRESUME saetting is as follows:-
* . .
* No file block given: &COMMAND

* Filae block given, filetypa blank: = - &COMMAND o

* File block given, filetype non-blank: &COMMAND filetype

IBM VM/SP EXEC 2 Refarence

X XK XK X XK X X X X%

- -

Thus, if a filetype of EXEC is explicitly specified in the file

‘block, the default presumption will be &SUBCOMMAND EXEC, and not
&COMMAND, aeven though an EXEC file of filaetypa EXEC will be

executed. -

The following is an FBLOCK extension block. The first
halfuword specifies how many words are in the extension
block. CMS requires a valua of either zero or two.

DC XL2'0002°" Number of full words that follow
DC AL4(PGMFILE) Address of the in-memory
EXEC 2 descriptor
DC AL4Y(PGMEND-PGMFILE) Number of bytes in the
descriptor

* If no "in-memory file" is provided, the values in
* the extension must either both be zero, or be
% omitted by changing the XL2'0002* to XL2'0000°'.
PGMFILE DS OF in-memory EXEC 2 Program
DS A(line 1),F'len 1' Address and length of
file linae 1
DS A(line 2),F'len 2' Address and length of
file line 2
DS A(line 3),F'len 3' Address and length of
file linae 3
DS A(lina n),F'len n' Address and length of
% file line n

xN XK X X

4.

PGMEND DS OH

The above fields are not checked by the interpreter, but thay
arae used in error messages and in the predefined variables
&FILENAME, &FILETYPE, and &(FILEMODE. If they contain embedded
blanks, the raesults are unpredictabla.

Using the EXEC 2 interprater as a macro procassor.

The use of EXEC 2 programs as macros or command files for user
specified command processors requires functions provided by the CMS
SUBCOM function.

The following paragraphs describe how to use SUBCOM and the EXEC 2
interpreter to implement a macroAfacility.

Issue SUBCOM SVC 202 to saet up an entry point in the command
procassor. (For information on how to do this, refar to VM/SP

Svstem Programmer's Guide under SVC 202 and SUBCOM/DYNAMIC LINKAGE.)

Appandix C: EXEC 2 in CMS 61

Call EXEC 2 as in example 3 above. Tha filetype from the file
dascriptor block becomas the dafault &¢PRESUME &SUBCOMMAND
anvironmant except when it is blank, in which case the daefault
filetypa is EXEC, and the default presumption is &PRESUME &COMMAND.

When subcommands are encountered in the macro, the EXEC 2
interpreter will call the entry point specified in tha SUBCOM call.

This entry point may then take whatever action is nacessary with the
command.

Upon raturn, thae EXEC 2 intaerpreter continues with the next
statement or command.

When the EXEC 2 file terminates, control is returned to the
initiating program at tha calling point.

Executing XEDIT Macros in EXEC 2

The basic subcommand language of the XEDIT editor can be extended by
writing macros that ara executed by the EXEC 2 interpreter.

Thgse XEDIT macros are CMS files with the filetype of XEDIT.

When the EXEC 2 interpreter encounters an XEDIT subcommand, it sends the
command to XEDIT for execution.

XEDIT processes the command and returns to tha EXEC 2 file with a return

code. The EXEC 2 file then continues execution with the next statement
or command. When the EXEC 2 file completes, control returns to XEDIT.

See VM/SP System Product Editor Command and Macro Reference for further

information on XEDIT macros.

62 1IBM VM/SP EXEC 2 Referaence

EXECCOMM - Sharing EXEC 2 Variables with Assembler Language Programs -

EXEC 2 permits programs called from an EXEC 2 file to access all EXEC
variables used within that EXEC file. Variables accessed in this manner
are called "shared variables.™ The EXECCOMM facility of EXEC 2 provides
this variable sharing envircnment. Using the "FETCH™ and "STORE"
functions of EXECCOMM, programs can directly access and manipulate EXEC
2 variables. Also, the execution of commands or subcommands can result
in assignments to some of these variables as a side-effect of their
execution. It is also possible to create new variables in the called
program.

When variables are stored by a program, their names are checked for
validity, but no substitution is carried out by EXEC 2. 1In other words,
names passed through EXECCOMM are taken exactly as is, and embedded
ampersands (&) do not causa multiple substitution.

Variables are identified by an "external name," which is the same as
their "internal name,"™ but without the leading ampersand. For example,
to "fetch™ a value contained in the internal variable “&VALUE," a
program should use the external name "VALUE."

The facility works as follows:

When EXEC 2 starts to interpret a new EXEC or XELIT macro, it first sets
up a subcommand entry point called EXECCOMM. When a program (command or
subcommand) is called by EXEC 2, it may in turn use the current EXECCOMM
entry point to Stora or Fetch variable values.

To access variables, the EXECCOMM entry point is invoked using both the
normal and the extended Plist (see belouw, also see the YM/SP Svstem
Programmer's Guide). SVC 202 should be issued with register 1 pointing
to the normal Plist and the top flag byte of register 1 set to X'02°.

Appandix C: EXEC 2 in CMS 63

G — —

On return from thé SVC, raegister 15'contain§ a summary return code for
tha entire Plist. The possible return codas ara:

Return Code Meaning

0 or positive Entire Plist was processed. Ragister 15 is
the composxte OR-ing of the SHVRET flags
(see balow).

-1 Invalid entry conditions.

'-2 Insufficient storage was available for the
raquestaed operation. Processing was terminated.

-3 from SUBCOM No EXECCOMM entry point found (i.a. not called
from inside a EXEC 2 Exec).

Ihe register 1 Plist: Register 1 should point to a Plist which consists
of the eight charactar string "EXECCOMM".

Jhe register 0 Plist: Register 0 should point to the SUBCOM Plist. The
first word of tha SUBCOM plist should also point to tha word "EXECCOMM.™
No argument string should be given, so the second and third words should
be the same (e.g. point to the same address or both 0). Tha fourth word
of the Plist should point to the first of a chain of one or more request
blocks.

The call is made via CMS supervisor call SVC 202, with the Plist
registers set up as follous:

RO = A(NPLIST) (see below)
R1 = A(CL8'EXECCOMM") high-ordar byte = X'02'
whara:
NPLIST DS OF subcommand Plist
DC A(CL8'EXECCOMM') sama as register 1, but with 0 in the.
* high~ordar byte '
DeC ACARGS) null argument string
DC ACARGS) - and addraess of null argument string
DC A(SHRLIST) pointer to first variable access
* raquast block

64 IBM VM/SP EXEC 2 Raeference

| Ihe reausst block: - Each request block in the chain must be laid out as

follows:

9696 36 3 K 96 3 JE I HE JE 36 JE3E 26 JE 36 36 36 26 36 I I 36 I€ IE 3 36 36 36 36 36 I 36 I 3 JE JE D I 26 I I I I 26 I I 26 26 26 36 26 I 366 K 36 36 3E 36 36 36 36 96 I 3 36 3 36 3¢
¥ SHVBLOCK:
363 JE D6 DE D6 I I 6 DE IE IE 26 I 36 26 DE I 26 36 36 I JE JE 26 IE 26 26 36 36 3 3 3 36 2 DE 3K K 3 D 26 26 I 6 36 36 36 36 26 36 36 36 JEIE 36 3¢ 6 3 36 I6 26 3 3¢ 36 36 36 3 3¢ 3¢ 3¢ 3¢

*
SHRLIST
SHVNEXT
SHVUSER
SHVCODE
SHVRET

SHVBUFL
SHVNAMA
SHVNAML
SHVVALA
SHVVALL

SHVFETCH
SHVSTORE
*

*

*
SHVCLEAN
SHVTRUNC
SHVBADN
SHVBADV
*
SHVBADF
*

DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS

.
.

OF
A

F
cL1
XL1
H'O"

MmM» M >N

Layout of shared-variable Plist elemaent. »

Variable Accaess Request Block -
Chain pointer (0 if last block)
Not used, available for private use
Individual function coda
Individual raeturn code flag
Not used, should be zero
Length of 'FETCH' value buffer
Address of external variable name

- Length of external variable name
Address of value buffer (0 = 'none')
Length of value (set by *FETCH')

Function Codes (SHVCODE)

EQU
EQU

Return Code

EQU -

EQU
EQU
EQU

EQU

C'F!
c's:*

Xt00"-

X' 06"
X'08°
X'10°

X'80°'

FETCH - Copy value to caller's area
STORE - Stora from value supplied by caller

Flags (SHVRET)

(Decimal 0) Execution was 0K
(Decimal &) Truncation occurred during 'FETCH'
(Decimal 8) Invalid variable name (e.g. too long)
(Daecimal 16) Value too long =~ "STORE"™ not

: performad :
(Dacimal 128) Invalid function code (SHVCODE)

H oK I O O M X X X N X X X I X H X X I I X ¥ XN X) X H X X X N X X X X X

A typical calling sequence for the EXECCOMM interface might be:

LA
LA
Icm
SvVC
DC
LTR
BM

.

RO,NPLIST Subcom Plist as shown

R1,=CL3"EXECCOMM'

Name of Subcom entry point

R1,B'1000',=X"02" Insert 'subcommand call' flag
202 Issue SVC

ALG(1) Sequential return

R15,R15 Check for a negative return code
DISASTER If yes, quit

Execution was okay

Appendix C: EXEC 2 in CMS 65

S

F

|
i
|
I
!
|
i
|
|
!
|
i
|
|
|
|
]
|
|
|
|
I
|
|
|
|
i
!
|
|
|
!
|
I
|
|
|

The spacific actions for each function code are as follows:

Storae variable. SHVNAMA contains the address of the external
variable name, and SHVNAML contains the length of this name.
SHVVALA contains the address of the buffer where the "value"” of
SHVNAMA is stored, and SHVVALL contains the length of the "value."
The external name (SHVNAMA) is checkaed (e.g. length limitations),
and the corresponding internal variable (same namae as the external
name, only with a leading ampersand (&)) is set to the valuae of the
external variable. If a "STORE" referenca is made to an unset EXEC
2 argument (i.e. a variable of the form &i whera "i" is an unsignaed
number without leading zeros that exceeds thae number of EXEC 2
arguments that are currently stored), no assignment is performed.
The SHVBADN bit is set to X'08' (INVALID NAME).

Faetch variable. SHVNAMA contains the address of the extarnal
variable name, which is tha same as the internal variable name that
vou want to fetch, but without the leading ampersand (&). SHVNAML
contains the length of this external name. SHVVALA contains the
address of a buffer where the fatched variable value will be copied,
and SHVBUFL contains the length of the buffer. The external
variable name (SHVNAMA) is checked (e.g. length limitations), and
the internal variable is located and copied into the buffer. Tha
total length of the fetched variable is placed in SHVVALL, and if
the fetched value was truncated because the buffer was not big
enough, the SHVTRUNC bit is set to X'04'. If the referenced
variable is shorter than the length of tha buffer, no padding is
dona.

If there is insufficient storage (return code -2), some of the
SHRLIST elements may not have been processed. Thesae elements
(including the SHVRET field) are left unchanged.

Note: The value raeturned by a FETCH operation is a snapshot of the
internal variable at the time the operation is done. The raturned
value is therefore unaffected by subsequent STORE operations to tha
same internal variable (even within the same list).

66 IBM VM/SP EXEC 2 Reference

Appendix D: EXEC 2 Primer for Neuw Users

The function of a command programming language such as EXEC 2 is to
improve the effectiveness of a programming system by matching the
available commands to the particular needs and applications of each
user. As a CMS user, you probably have observed that some commands were
needed more frequently than others. Some of the commands you used were
short and easy to type while others involved several arguments and were
more difficult to issue. There may have been instances when you had to
look up the correct command format or issue several commands in
succession to perform an operation which would be more convenient if it
were dona by only one command. Command procedures, written using the
EXEC 2 language, can adapt existing commends to user needs by storing
commands that are issued frequently, and in the sequence that you wish
them executed, in a disk file. Within this file, the validation of
arguments can be checked and default values can be supplied. (A default
value is a specific value assumed when an argument has not been
explicitly specified. Usually, default values are chosen to be the most
frequently used argument values, so that the convenience of not having
to write that particular value is realized as many times as possible.)
The name of the file containing these commands becomes a new command
name, and hence, a new CMS command. The format of this naw command can
be tailored to the individuals needs.

To illustrate this, assuma you have the files listed in the first column
of the following table, and wish to rename them as indicated in the
second column:

Current Name Desired Name
X MEMO NEW MEMO
NEW MEMO OLD MEMO
OLD MEMO (erased)

The commands used to perform this operation are straightforward, though
they are a bit lengthy because two of the three fileids must be repeated
and filemodas are required for the RENAME commands:

ERASE OLD MEMO
RENAME NEW MEMO A OLD MEMO A
RENAME X MEMO A NEW MEMO A

EXEC 2 makes it easy for the user to issue a sequance of commands by
typing only a single command line. This is achieved by storing the
dasired commands in a disk file, and invoking the stored commands by
typing the file's name as the command name. Such files of stored
commands must have a filetype of EXEC. Note that other filetypes are
possible, but they cannot be called directly by a command that you type
at your terminal; they can bae invoked from a program, such as a text
editor. MWhen CMS reads a command typed by the user, it searches.for a

Appaendix D: EXEC 2 Primer for New Users 67

disk fila having tha same filename as the typed command name and a
filatypa of EXEC. If such a file is found, thae EXEC interpreter
interprats the command statements read from the disk file.

If we used a text editor to creata the following file named RIPPLE EXEC:

&TRACE ON

ERASE OLD MEMO

RENAME NEW MEMO A OLD MEMO A
RENAME X MEMO A NEW MEMO A

we could command the renaming of the files described above by typing the
line:

RIPPLE

The first line of the RIPPLE EXEC file is an EXEC 2 control statement.
Such statemaents affect the operation of the EXEC interpreter instead of
performing some operation in the CMS environment. The &TRACE ON
statement tells tha EXEC interpreter to display on your console any
commands that it issues before they are executed. A &TRACE OFF
statement would suppress this display of executed commands. A

&TRACE ALL statement would display EXEC control statements as well as
commands that are executed.

In the CMS environment, where the EXEC 2 interpreter coexists with the
CMS EXEC interpreter, a second purpose is served by tha &TRACE
statement. Whenever an EXEC file is to be interpreted, tha first record
of the file is read and scanned to see if the first word.is &TRACE. If
it is, the file is deemed to be an EXEC 2 filae; otherwisae, the CMS EXEC
interprater is used to interpret that fila.

EXEC control statements make it possible to conditionally interpret
statements in an EXEC file, to repeat tha interpretation of statements,
and to control the working of the EXEC interpreter in various ways.
They make it possible to write EXEC files which perform different
operations depending on the arguments entered on the EXEC command line
or the results of commands issued from thae EXEC file. This is a very
important concept, for it is this ability to modify the commands issued
from an EXEC file (and the order in which they are issued) which
underlies the most useful featuraes of EXEC files.

commands, Return Codes, and EXEC Variables

Evary command executed in CMS issuaes a return code indicating the
success or failure of tha operation requested. This return code is a
numaric value that is passed back to the callaer of the command. If a
command is issued from an EXEC filae, tha return codae gaenerated by that
command can be examined and used to control tha subsequent
interpretation of statements in the EXEC file. For example, tha ERASE

68 IBM VM/SP EXEC 2 Referance

command displayaed above in RIPPLE EXEC will yield a return coda of: 0.
(zaero) if it succeeds in erasing a file, 28 if the file to be erased
doas not exist, 36 if the file exists but is on a read-only disk, and
other values for less common conditions.

A command's return code is saved by the EXEC 2 interpreter as the value
of the EXEC variable &RC. EXEC variables are symbols that are used to
refer to values that may change during thae interpretation of an EXEC
file. You can use the symbol &RC in an EXEC stataement to refer to the
return code generated by the most recent command issued from the EXEC
file. One way the &RC variable might be used in the RIPPLE EXEC fila is
to force termination of the EXEC file (before renaming any files) if the
X MEMO file does not exist. To do this, the CMS command STATE is used
to determine whether X MEMO exists on the A-disk. STATE generates a
return coda of 0 if the designated file exists, or a return code greater
than 0 if it does not. ‘

&TRACE OFF

STATE X MEMO A

&IF &RC > 0 EXIT 1

ERASE OLD MEMO

RENAME NEW MEMO A OLD MEMO A
RENAME X MEMO A NEW MEMO A

The third statement in this file (2IF ...) tests the raeturn code from
STATE, and uses the &EXIT control statement to force immediate
termination of the EXEC file if the valua of &RC is greater than zero.
Like CMS commands and user programs, EXEC files also generate return
codes. If an EXEC file terminates because an end-of-file is reached and
there arae no more statements to interpret, the return code will be zero.
However, various errors detected by the EXEC 2 interpreter (invalid EXEC
control word, nonexistent file, and so on) wWill cause termination with a
return code greater than 10000. Or, you may write the &EXIT control
statement to terminate the EXEC file with a specific return code, as
shown above.

The ampaersand character is used at the beginning of a word to signal the
EXEC interpreter that this word is an EXEC variable or an EXEC control
word. When the EXEC 2 interpreter processes a statement from an EXEC
file, it begins by examining each word and replacing any EXEC variables
with their current values. (lLater, we'll see exactly how this is done.)
EXEC control uwords are like EXEC variables, except their values are
initialized to their names by the EXEC interpreter (that is, the value
of.&TRACE is &TRACE, the value of &IF is &IF, etc.).

&RC is one of a group of variables that are handled in a special manner
by the EXEC interpreter. They are called "predefined variables" because
the EXEC interpreter assigns values to them automatically. Some of
these predefinaed variables are given values only once, when the EXEC
interpreter starts processing a file (&FILENAME is such a variable,
whose value is the name of the EXEC file being processed). Other
pradaefined variables are assigned values whanever some spaecific action
occurs. Examples are &RC, uwhich is set to the return code value
whenaver a command is issued, and &N, which is initially set to the

Appendix D: EXEC 2 Primer for New Users 69

number of arguments present on the EXEC comﬁand line and is updated when
an EXEC control statement redaefinaes tha set of argument variables.

EXEC Filae Arguments

The EXEC variables &1 &2 &3 ... are used to refer to thae arguments in
the EXEC command invoking the file. The valua of &1 is the first word
following the name of the EXEC fila in the command line, &2 is the
second word, etc. If you refer to an argument that uwas not present in
the command line (such as &1, if no operands were uwritten), its value
will be null, and that word will disappear from any statement in which
it is used. The same is true for a reference to any other EXEC variable
that has not been assigned a valua, or has bean explicitly assigned the
null value. :

We will now modify tha RIPPLE EXEC again so that it accepts the name of
any MEMO file as an argument instead of always using tha file X MEMO:

&TRACE OFF

STATE &1 MEMO A

&IF &RC > 0 &EXIT &RC

ERASE OLD MEMO

RENAME NEW MEMO A OLD MEMO A
RENAME &1 MEMO A NEW MEMO A

Here the return coda from STATE is used as tha return code from the
RIPPLE EXEC file. A nonzero value indicates failure of the RIPPLE
command, and provides a little mora information than simply returning a
value of 1. (Refer to VM/SP CMS Command and Macro Reference for the
Responses, and the Error Messages and Return Codes issuaed by CMS for the
STATE command.)

With this RIPPLE EXEC fila, we could have any number of current, or
working, MEMO files, each with a different filename. Whenever we wish
to rename one of them (RWR MEMO, for example) we could use the command:

RIPPLE RWR

to rename it, making the original filename available to be used again.
There will always be copies of the last two files renamed, in case a
naed arose to usae one of them again. Files morae than two iterations old
are automatically erased.

There is no limit (other than disk capacity) to the number of files that
can be kept. By adding more RENAME commands to the EXEC file, we can
keep as many old files as we desire. By using some additional EXEC
control statements, wae could rename any number of files using only one
RENAME statement, interpreting it as many timas as necessary, each time
with diffarent arguments.

70 IBM VM/SP EXEC 2 Reference

EXEC Varjable Names

EXEC variables and EXEC control words always start with an ampersand.
The ampersand may be follewaed by any other characters, up to a maximum
.length of 256 characters (including the initial ampersand). This is the
maximum langth allowed for any word; it is also the maximum length
allowed for any line in an EXEC 2 fila.

The characters ampersand and blank have special meanings, and cannot be
made part of a variable name by simply writing them as part of a word.

A blank denotes tha end of a word, so it can not be included as part of
the word. An ampersand denotes the beginning of an EXEC variable name.
That name (including the ampersand) is replaced with the value of the
variable when the word containing it is evaluated during statement
interpratation. Value substitution for variable names makes it possible
to put blanks or ampersands (or any other characters) into names, but
it's principal benefit is the ability to manipulate an indefinite number
of variables by modifying the words in a few statements instead of
writing all of the variable names explicitly.

conditional Interpretation of Statements

Before looking at more sample EXEC files, we will examine the structure
of the conditional (&IF) statement more closely and introduce some other
EXEC control statements. The &IF statement is actually a compound
statement. The first part defines a condition; the second part may be
any executable statement, which is interpreted only when the condition
is true. (An executable statement is any statement except a comment.
Comment statements have an asterisk as their first nonblank character,
and are ignored by the EXEC interpreter.) The complete &IF statement
has the format:

&IF wordl cqmparator word2 statement

where “"comparator™ is =, ==, >, <, >z, or <=, The comparison is
performed numerically if both wordl and word2 are numeric data items; it
is performed on a character basis if either is not numeric. Thus,

"EIF 2 = +2" is true and "&IF 000 = 0" is true, but “&IF 1. = 1" and
WIF +A = 10" are false. A numeric data item consists of decimal
digits, optionally praecaeded by a plus or minus sign. EXEC 2 does not
support fractional numbers as numeric data.

The "statement” part of an &IF statement may be another &IF statement.
Therefore, sevaeral conditions may be written in one conditional
statement, with the last "statement" interpreted only when all of the
conditions are trua. Thus,

&IF &1 = A &IF &2 = B &EXIT

will terminate an EXEC file only if both conditions are true.

Appendix D: EXEC 2 Primer for New Users 71

statement Lahels

You may attach a label to an EXEC statemant (including the null
statement, which has no words in it) so that an EXEC control statement
can reference the labeled statement. The label must be the first word
of the statement, and it must start with a hyphen. EXEC 2 does not
consider a label to be part of a statement, so it is not inspected for
EXEC variables. References to labels, however, may involvae EXEC
variables. The most frequent referencaes to statemaent labels are &GOTO
control statemaents, which modify the regular, sequential processing of
an EXEC file. A typical &GOTO statement is:

&GOTO —END

which means continua intaerpretation of statements with the next
statement having the labal ~END. » :

When a &GOTO statement is intarpraeted, EXEC 2 searches for the specifiaed
label by reading successive statements from the disk file and examining
the first word of each statement to detarmine if it is the desired
label. If it is, sequential interpretation of statements raesumes with
that statement. If the end of the disk file is encountared without
finding the specified labal, EXEC 2 continues to read stataements,
starting at the beginning of the filae, until either the desired label is
found, or all statements bafore the one being interpreted have been
examined. '

Assignment Statements

Tha EXEC 2 assignmant statement is a special case, in that it is
recognized when tha second word of the statement (not counting a label)
is an equal sign and the first word starts with an ampersand. (This is
a simplification of the actual rule, which is discussed in Note 4 of
"Part 3. Notes on EXEC 2.") The function of tha assignment statement is
to make tha EXEC variable specified by the first word have the value
specified by the expression following the equal sign. Thus,

&OPTION = GESUNDHEIT
assigns the value GESUNDHEIT to the EXEC variable &OPTION.

&ITEM = &ITEM + 2
increments the value of &ITEM by 2, assuming the valua of $ITEM was
numeric to start with (if it was not numaeric, EXEC 2 considers it an
error and terminates interpretation of the EXEC file). ' The following:

statement:

&L = &LENGTH OF &OPTION

72 1IBM VM/SP EXEC 2 Referanca

uses the predefined function &LENGTH OF to compute the number of
charactars in the value of the variable &0PTION; that number is then
assigned as the value of the variable &L. If &OPTION has the value
GESUNDHEIT, then &L would be assigned the value 10. The right side of
an expression in an assignment statement is the only place to use a
predefined (or user-defined) function in EXEC 2. There are several
pradefinad functions used in the EXEC files discussed later.

It is possible to set a variable to the null value by using an
assignment statement:

&NOTHING =
and it is possible, of course, to have labels on assignment statemants:

-SETONE &ONE = 1

EXEC variable Evaluation

It is time to explain in detail how EXEC 2 examines a word for variable
names and replaces them with values. Inspection for EXEC variables is
performed by examining the characters in a word from right to left.
Whenever an ampersand is detected, tha ampersand and all characters to
the right of it are taken as the name of an EXEC variable, which is then
replaced by that variable's current value. After a value has replaced a
variable name in a word, the inspection process resumes with the next
character to the left, so it is possible to use EXEC variables to build
the names of other EXEC variables.

To illustrate, if &X = 1 and &1 = FIRST, the word &&X means &1, which is
replaced by the value FIRST. Suppose the value of &1 is an ampersand
instead of FIRST; then, &&X ==> &1 ==> g, but no further substitution
occurs, since there are no more characters of tha original word to be
inspected.

In the case of an assignment statement, the inspection of the first word
for ampersands is stopped just before the first character has been
tested (remember that characters are examined from right to left).
Therefore, that word ratains its initial ampersand and remains an
appropriate name for an EXEC variable. Retention of the initial
ampersand of a word also occurs in other contexts where a variable name
is required (the &READ VARS and StUPPER VARS statements, for aexample).

Recall that there are no undefined EXEC variables. If an EXEC variable
has no default or explicitly assigned value, its value is taken to be
null (the character string that has no characters in it, and whose
length is zero).

Appcndfx D: EXEC 2 Primer for New Users 73

An Example of Genarating EXEC Variable Names

We are now ready to look at an EXEC file that depends on this ability to
use an EXEC variable to build the names of othar variables. LFN EXEC
uses the CMS command LISTFILE to display information about all of the
files on all accessed disks that have the filenames (argumaents)
spacifiad on the command line invoking the EXEC fila. Because the
number of filename arguments may differ from one use to the next, the
EXEC variable &J is used to select the next argument to use in the
LISTFILE command.

&TRACE

&J = 1

~-LOOP LISTFILE &&J » » (LABEL
&J = &J +1

&IF &J <= &N &GOTO -LOOP

Supposae this EXEC file were invokid by the command
LFN NEW OLD

The first time the LISTFILE command is issued, the EXEC variable &J will
have the value 1, so &&J ==> &1 ==> NEW and the command passed to CMS is

LISTFILE NEW » % (LABEL

After the first LISTFILE command, the value of &J is incremented from 1
to 2, and the &IF statement is interpreted. Since there are two
argument words, NEW and OLD, the value of &N is 2, the condition part of
the &IF control statement is true, and the &GOTO statement is executed.
Interpretation of EXEC stataments continues with the LISTFILE statement
again, but this time &&J ==> &2 ==> OLD and the command issued is

LISTFILE OLD % % (LABEL

After &J iS incremented to 3, the &IF condition is‘false. so the &GOTO
statement is not interpreted and the EXEC file tarminates with a raeturn
code of zaro. g

If more than one of the specified filenames is found on a disk, the
output generated by this EXEC is not as pretty as it could ba. This is
because the LISTFILE command produces a title line each time it is
invoked and finds at least one fila meeting its argument pattern. The
following elaboration of LFN EXEC uses tha return code generated by the
LISTFILE command to detect when the title lina is first displayed and
uses the NOHEADER option in subsequent LISTFILE commands to prevent
duplicate title lines from being displayed.

74 1IBM VM/SP EXEC 2 Reference

&TRACE - -

&J =1

-LOOP LISTFILE &&J % % (LABEL &NOHEADER
&IF &RC = 0 &NOHEADER = NOHEADER

&) = 8J +1

&IF &J <= &N &GOTO -LOOP

Here, we take advantage of the fact that the initial value of &NOHEADER
is null, so that word disappears the first time the LISTFILE command is
interpreted. When the command is successful (that is, it produces a
return code of zero), the EXEC variable &NOHEADER is given the value
NOHEADER, and all subsequent LISTFILE commands have the NOHEADER option
following the LABEL option.

The &£LOOP Control $tatement

Thare is another way of uwriting this EXEC fila. That is by using the
&LOOP control statement, which is more efficient because it eliminates
the need for repetitively interpreting the &IF statement and searching
the file for the label -LOOP:

&TRACE

&J =1

&LOOP 3 &N
LISTFILE &&J % % (LABEL &NOHEADER
&IF &RC = 0 ENOHEADER = NOHEADER
&J = 8J + 1

The &LOOP statement can take several forms. Here, it specifies that the
three lines following tha &LOOP statement are to be repeated &N times;
that is, for as many times as there are arguments to the EXEC file. The
statements to be repeated (the scope of the loop) were indented to make
it easier to read the EXEC file. It is often more convenient to use a
label reference in a &LOOP statement instead of an absolute count of the
number of statements to ba repeated. In this case, the label is written
in place of the count and the EXEC interprater determines how many
statements to repeat:

&TRACE

& =1

&LOOP -X &N © o
LISTFILE 3&J % % (LABEL &NOHEADER
$IF ERC = 0 &NOHEADER = NOHEADER
X&) =8+

The label defining tha scope of thae loop must occur bafore the end of
the EXEC file or an error is reported. -it .is wvalid to have a loop count
of zero, in mhich case no statements within the loop are interpratad.

Appendix D: EXEC 2 Primer for New Users 75

This would happen in the above EXEC if it were invoked with no
arguments,

A loop statement that defines its scope through the:use of & iabal
referance is more rasistant to errors introduced becausa of a change
than a loop statement that specifies an absolute number of lines. The
label reference avoids a common error: forgetting to update the line
count in a &LOOP statement when a change is made that alters the number
of statements within the scope of thae loop.

Making EXEC Files Interact uwith Users

Ona of the problems accompanying tha writing of EXEC files to extend the
usar's command set is that it becomes more difficult to remember the
correct formats for invoking this larger set of commands. A very useful
technique is to make the EXEC files self-documenting; that is, whenever
they are invoked with incorrect arguments, or with a question mark as an
argument, they display a description of the correct command format and
whatever additional description the writer deems appropriate. Such
additional information might be a description of what tha file does and
how to use it, or perhaps a referenca to a MEMO file or a publication
containing more information. Here is a version of LFN EXEC with such a
feature: '

2TRACE

&IF &N = 0 &GOTO -TELL

&IF &N = 1 &IF &1 = ? &GOTO -TELL
&J =1

&LOOP -X &N

‘ LISTFILE &&J % % (LABEL &NOHEADER

&IF &RC = 0 &NOHEADER = NOHEADER

X &J = &J + 1 : :
&IF /&NOHEADER = / &EXIT 28
&EXIT :
-TELL &PRINT Format is: &FILENAME fnl fn2 ...
&PRINT Uses LISTFILE to display information about
&PRINT all files with filenames fnl, fn2, etc.
&EXIT 100

The &PRINT control statemant diraects the EXEC interpreter to parform its
usual replacement of EXEC variables with values, then to display the
words following &PRINT as a lina on tha user's console.

The above version of LFN EXEC generates a nonzero return code in any
instancae where no files waere found. Since the EXEC variable &NOHEADER
was already being used to detect a successful invocation of LISTFILE, an
appropriatae test aftar all thae LISTFILE commands have been issued is to
return a nonzero code whanever the value of &NOHEADER is null. It is
not possible to simply write

76 IBM VM/SP EXEC 2 Refaerencae

&IF ENOHEADER == NOHEADER &EXIT 28

In the case whaere ENOHEADER is null, thts would cause a syntax error in
the &IF statement because the &NOHEADER word would disappear and we
would be left with

&IF == NOHEADER &EXIT 28

A solution for testing the value of an EXEC variable that might be null
is to use some prefix on both the variable and the value compared with
it. In thae case of LFN EXEC, the slash is that prefix, and the two
statements which can result after substituting for the variable
&NOHEADER are:

&1F /NOHEADER = 7/ REXIT 28
&IF 7 = 7 &EXIT 28

for succaess (&NOHEADER = NOHEADER) or failure (ENOHEADER is null), in
that order.

All of the previous EXEC files have used only the arguments provided on
the command line to determine what function they would perform. You can
also write an EXEC file that interacts with the user, displaying
prompting messages on tha console and reading instructions or values
which are typed.

When CMS or CP reads a command line, it translates the command line into
Appercase before interpreting it. When a program, such as the EXEC
interpreter, reads a console input line, it chooses whether or not to
translate to uppercase. The EXEC control statement

&CASE M

instructs the EXEC interpreter to read subsequent input lines in mixed
case (uppercase and lowercase combined) while

&CASE U

requests translation into upper case. &CASE U is the initial setting
when the EXEC interpreter starts processing an EXEC file.

Data is read from the console using the &READ control statement. A
&READ statement may read one input line and assign it as the value of a
single EXEC variable:

&READ STRING &S
&S wWill contain the entire text of tha input line, including all blanks.
Alternatively, the input line can be separated into words and each word

assigned to an EXEC variable.

SREAD VARS &FIRST &SECOND &THIRD &FOURTH

Appendix D: EXEC 2 Primer for New Users 77

If there are more variables than words in the input line, those
variables remaining after all words have been usaed are assigned the null
value. If there arae more words than variables, the extra words=are
ignored. If you don't know how many words wiIl Be on an input linae, it
is oftan conveniant to use tha statemant:

&READ ARGS

which redaefines the EXEC argument variables &1 &2 &3 ... etc., and
assigns to &N the number of words (arguments) in the input line. All of
tha prior values for &1 &2 ... etc. are lost uwhen this is dona. So,
remember to assign any EXEC argument variables that will be needed later
to other EXEC variables before intaerpreting a &READ ARGS statement. The
predefined variable &ARGSTRING is not affactad by a &READ ARGS
statemant. Its value continues to be the original argument string
passed to the EXEC file, or whatever value the user last gave it in an
assignment statement.

It is possible to read lines from the console and interpret them as EXEC
statements using the form:

&READ n

where "n" is the number of lines to read. If no explicit number of
lines is given, only ona line will be read. An asterisk (¥) may be used
in place of a numbar to denote that statements are to be read from the
consola until a statement which modifies sequential processing of lines
is interpreted (&EXIT, &GOTO, &SKIP, etc.). It is easy to test the
effect of various EXEC statements by using the filae:

&TRACE ALL
&READ %

which reads statements from your consola and traces their
interpratation.

The next example is CPM EXEC, which enhances the CP MSG command in two
respects. First, it transmits multiline messages to ona or to a group
of VM users (the same message is sent to all of the specified users).
Second, it transmits messages in uppercase and louwercasa.

78 1BM VM/SP EXEC 2 Reference

&TRACE
&CASE M
&IF &N = 0 &GOTO -TELL
&IF &1 = ? &GOTO -TELL
&READ STRING &
&LOOP zE ANTIL /&
&X =1
&LOOP =EE &N
CP MSG &&X &
-EE &X = &X +
.=E &READ STRING
SEXIT
-TELL &BEGPRINT -X
Format is: CPM userl <user2 ...>
CP *MSG' console function is used to send lines to the
specified usaers. Enter blank or null line to end.
-X
&EXIT 101

/

fo

This EXEC uses two loops, one nested inside the other. Thae scope of
both loops is defined by labels. The inner loop containing the
statements

CP MSG &&X &
-EE &X = &X + 1

is similar to the loop in LFN EXEC; that is, it is interpreted once for
each argument. The outer loop uses a condition like an &IF statement to
determine when repetition of the loop will end. In this case, we wWwish
to repeat the loop until the user enters a null or blank line from his
console. The EXEC variable & (that is the shortest possible name for an
-EXEC variable) contains the string read from the console, and the word
MUNTIL"™ identifies the nature of the condition being tested; that is,
repeat the loop until the condition is true. Because the value of & may
be null, we use the prefix technique discussed before to avoid a null
value from destroying the syntax of our &LOOP statement. We could also
have written the first &LOOP statement like this:

&LOOP ~E WHILE /& -= 7/

which repeats while the condition is true (that is, until tha condition
is false). The choice between these two forms is purely a personal
matter of what the EXEC writer sees as easier to write or understand.

At label -TELL in this EXEC file, we seae an example of a statement
which, unlike all those seen before, requires more than one line in the
EXEC file. This, and the &BEGSTACK statement that has a similar syntax,
are the only statements that can use more than one line of an EXEC file.
The lines following &BEGPRINT are not examined for EXEC variables. The
EXEC interpraeter prints each line exactly as it is read from the disk
file, until either the end-of-file occurs, or a line is reached that
ésontain: only.the labal specified in the &BEGPRINT statement.

Appendix D: EXEC 2 Primer for New Users 79

EXEC 2 Implementation of Editor Macros

CMS commands are not the only commands that may be executed from an

EXEC 2 file. An important application of EXEC 2 is tha creation of
editor macros; that is, procedures that issua commands to an editor
instead of, or in addition to, the regular CMS command interpreter. The
benefits of such proceduraes are tha same as for EXEC 2 files containing
normal CMS commands; the avoidance of. repetitive keying of commands by
the user, and the ability to build new commands that are specially
adapted to particular applications, making tha user-to-application
interface morae efficient.

XEDIT, the System Product Editor, causes CMS to establish an interfacae
through which EXEC 2, or anothar program, can issuae editing commands.
Commands issuad through this interface are called "XEDIT subcommands™
because they are not interpreted by CMS in its regular command
environment, but instead are delivered to XEDIT, which interprets them
in its own environment.

When XEDIT receives a command that it does not recognize as one of its
basic editing commands, it determines (using the CMS command STATE)
whether there is an EXEC file (an edit macro) that implements this
command. If there is, the editor invokes the EXEC 2 interpreter to
interpret that file.

Tha EXEC file author has several means to designate whether a command in
his file is for a particular subcommand environment or for CMS. The
most explicit of thesa is to use the &SUBCOMMAND control statement.
Thus, an edit macro that has to issue a NEXT 8 command to XEDIT could
usa the statement:

&SUBCOMMAND XEDIT NEXT 8

Since most edit macros contain many subcommands, it can be convenient to
tell the EXEC 2 interpreter to send all commands to the XEDIT
environment by executing the statement:

&PRESUME &SUBCOMMAND XEDIT

All command statements interpreted after the above statemaent ara
presumed to be subcommands for the XEDIT environment, and are treated as
though they were prefaced by &SUBCOMMAND XEDIT. This presumption does
not affect commands explicitly directed to another environment by the
&SUBCOMMAND statement, so

&SUBCOMMAND Z00 ELEPHANT 3

would continua to send tha command ELEPHANT 3 to the Z00 environmant,
irrespective of a &SUBCOMMAND XEDIT presumption.

How, then, may a normal CMS command ba executed if all commands are
presumed to ba subcommands? By using the &COMMAND control statement,

80 IBM VM/SP EXEC 2 Reference

which aluays treats the accompanying command as a regular CMS command.
For examplae:

&COMMAND STATE &1 MEMO

will always be interpreted as 8 CMS command. A &SUBCOMMAND presumption
may be reset, and regular CMS command processing resumed by executing
the statement: - : . - .

LPRESUME &COMMAND

At the beginning of this primer, it was noted that a program could call
the EXEC 2 interpreter to interpret a fila that had a filetype other
than EXEC. The System Product Editor (XEDIT) does this when it
encounters an edit macro. This macro must have the filetype XEDIT
instead of EXEC. UWhen EXEC .2 intaerprets a-file not having a filetypa of
EXEC, it starts with a &S5UBCOMMAND presumption of. the filetype. Thus,
there is no need to preface XEDIT subcommands in an XEDIT macro with
&SUBCOMMAND XEDIT, unless tha default &SUBCOMMAND presumption has been
explicitly changed. 4t is mecessary, however, to preface regular CMS
commands with &COMMAND if they arae not to be passed to XEDIT. XEDIT
macros do not require an initial &TRACE statement to indicate that they
should be .interpreted by the £XEC 2 interpreter because that is
ipdicated by the wey in which XEDIT invokes the EXEC 2 program.

To illustrate just how simple an edit macro can be, consider the case
where it is desired to replace lines that currently contain:

.5 3
with the three lines:

.SK
.CE -—--—-=-—-
.SK

This can ba done using the XEDIT commands:

FIND .SK 3

REPLACE .SK

INPUT .CE ========—- :
INPUT .SK

If those commands are put into a file named REPSK XEDIT, they may be
executed by simply entering the command

REPSK
in the XEDIT environment. Of course, this only affaects the next

occurrenca of the ".SK 3" line. All occurrences could be changed by
writing a loop in the edit macro:

Appendix D: EXEC 2 Primer for New Users 81

FIND .SK 3

&LOOP 4 UNTIL &RC -= 0
REPLACE .SK
INPUT .CE ~=====m=- -
INPUT .SK
FIND .S5K 3

Note that herae take advantage of the fact that XEDIT subcommands
genaerate reaturn codes indicating their success or failure much like
regular CMS commands. In this example, tha FIND command generates a
return coda of zero if it succeeds in finding the specifiaed text, and a
raeturn code of one if it fails.

The above example contains all uppaercase data, but it may be necessary
to process mixed case data in edit macros. EXEC 2 statements may be
written in whatever case you dasirae, but control words such as &LOOP and
pradefined variables such as &RC must be in uppercase. Variables to
which you assign values, such as &X or &ZILCH, may be written in
uppercase or lowercase, but remember that &ZILCH and &zilch are two

. distinct variables. Likewise, &LOOP is an EXEC 2 control word, but
&loop is a variable. You can use variables such as &JuGGerNauT if you
like pressing thae shift kay.

Suppose we want to use thae REPSK XEDIT file for lines starting with
.5K 2, or .SK 3, or .sp 3, etc. We can use two arguments to define the
lines we are interasted in finding, as follows:

FIND &1 &2
&LOOP & UNTIL &RC -= 0
REPLACE .SK
INPUT .CE ========--
INPUT .SK .
FIND &1 &2

This works fine, but the question of case rises again. If the editor is
operating in CASE U, it will translate input commands into uppercase
baefore invoking an edit macro. Thaeraefore, if a REPSK .sp 3 command is
to work properly (meaning it is to look for ".sp 3", not ".SP 3"), it
must be entered while XEDIT is in mixed casa moda. (XEDIT allows &
second argument on a CASE subcommand, indicating whether locate and find
operations "RESPECT"™ or may "IGNORE" casa when comparing characters.
Using the "IGNORE"™ value produces a different effect than tha above
macro, because REPSK .sp 3 would find linas starting with any of these:
".sp 3", ".sP 3%, " Sp 3", W SPp 3N,

Handling Embedded Blanks

If you wanted to find a line starting with the words ".SK"™ and "3"
separated by two blanks, the above macro would fail. This happens
because when EXEC 2 preparaes a command, it builds a parameter list by
concatenating all the words of the command (after variabla substitution)

82 IBM VM/SP EXEC 2 Reference

with a single blank between words. If a word is null (that is, it has
zero characters in it), the word and its delimiting blank disappear from
the command. :)

To handle a casae having two blanks between words, we can rewrite REPSK
XEDIT using the predefined variable &ARGSTRING. This variable has an
initial value of tha entire string of arguments passed to the EXEC file.
This string does not include the command name used to invoke the EXEC

. file, nor the blank separating it from the argument string. It does
include all blanks separating the argument words, plus any additional
blanks preceding or following those words.

&C = LCONCAT OF FIND &BLANK &ARGSTRING
&C
&LOOP 4 UNTIL &RC -= 0

REPLACE .SK

INPUT .CE ---=----m-

INPUT .SK

&C

The idea here is to build the edit command we want, with blanks exactly
where we want them, as the valuae of an EXEC variable. Then, the FIND
command is represaented as a single word, and we avoid any difficulties
stemming from the combination of several words to form a command. To
build the FIND command, we use the praedefined function &CONCATENATION
OF, whose value is tha string obtained by placing all of its argument
valuas (after variable substitution) side by side without any
intervening blanks. Since we need one blank to separate the FIND edit
command from its operand, that blank is included explicitly by using the
predefined variable &BLANK, whose value is a single blank character.

Actually, it really wasn't necessary to build the FIND command quite so
carefully., dt:sould work -equally wall using FIND &ARGSTRING, but the
method displayed above is more general, and can be used to build any
possible command.

An Example of EDIT and CHS Commands in One File

The next example is an XEDIT macro that assumes the user is editing a
file such as CMS EXEC, produced when the CMS LISTFILE command is used
with thae EXEC option. Each line of this file identifies a disk file.
The format of the lines are:

&1 &2 filename filetypa filemode ...

and the function of this macro is either (1) to edit the file identified
by the current line, or (2) if thae value of the first argument is ERASE,
to execute a CMS ERASE command to remove that file from disk, then to
deleta the identifying linae from the curraent editor display. This
function is useful for claaning a minidisk of files that are no longer
wanted, because often a file must be examined baefore the decision to

Appendix D: EXEC 2 Primer for New Users 83

erasa it can be mada. The ability to examinn'and erase filaes without
having to type their fileids can ba a boon to the user who must cope
with a dozen, or maybe a hundred, files.

&F = &1

STACK 1

&READ ARGS

&IF &N = 0 &EXIT

& = SLITERAL OF &1

&IF & = &1 &ARGS &3 &4 &5

&IF &N < 2 REXIT

&IF /&F = /ERASE &GOTO -ERASE
XEDIT &1 &2 &3

&EXIT

-ERASE &COMMAND ERASE &1 &2 &3
DELETE

Tha first statement remembers the optional argument as the value of &F,
so that lataer a branch can be made to -ERASE in case the argument value
is ERASE. Next, the command STACK puts the current line from thae file
being edited into the console stack (explained in the next paragraph).
This is to prepare for the following &READ ARGS statement which reads
tha line and separatas it into words that are used to redefine the
argument variables &1 &2 ... etec. The predefined variable &N, uwhich
records tha current number of arguments, is also updated by the

&READ ARGS statament.

The consola stack may be thought of as a buffer or staging area for
consola input. Whenever CMS is asked to read the next input line from a
tarminal, it first checks to see if any lines are already available in
the console stack. If there is a line in the console stack, it is used
as the next input line; if there is no lina in the console stack, then
CMS waits until a lina has been entered from the console. Programs can
create their oun "input™ lines, and put them into the consola stack.
This is what the STACK edit command dogs. Tha console stack is an
important facility for passing data batween programs and EXEC files.

If there is nothing on the linae stacked, &EXIT terminates execution of
the EXEC file immediately. Otherwise, a test is made to see whether the
first word was literally &1, as would ba the casea for a lina from a CMS
EXEC file produced by LISTFILE. The predefined function &LITERAL OF
suppresses variable substitution in its argument string, thereby
providing a means of assigning values:containing ampersands and blanks
to EXEC variables. : . :

If an initial, literal &l is present, an &ARGS statement raedefines the
argument values to eliminate the &1 (and the &2 assumed to follow it);
therefore, what remains is tha filenamae, filetype, and filemoda. The
&ARGS statement works by evaluating the words following &ARGS, clearing
the current argument variables (for example, assigning the null string
as their value), and assigning the value of tha first non=-null word to.
&1, tha sacond to &2, etc. The variable &N is then assignad the new
number of arguments. Note that even if therae usad to be morae arguments

86 IBM VM/SP EXEC 2 Raeference k C

than were specified in the &ARGS statement, wii-the eold velaes are - -
clapred. . Jha-value of EARGSTRING is not affactad by en 2ARGS statement.
. ghollo S o
Next in the macro, is a test to ensure that there ara at least two
arguments left to be used as a filename and filetype. Then we test &F
and either branch to ~ERASE, or issue the needed XEDIT command. Note
that, if the file is to be erased, tha CMS ERASE command is explicitly
invoked by the &COMMAND statement. JIf -the &COMMAND control sord was not
ysed, EXEC.2 would presume the command was for the editor and mistakenly
pass it to XEDIT: After thae ERASE command, a OELETE command tells XEDIT
to remove the current._line, which identified the file just erased, from
the file being edited.

PARA == A complex XEDPIT Macro

The next example illustrates the complex text manipulation that is
possible with adit macros implemented in the EXEC 2 language. The
objective is to take a specified number of lines from the current file
and reformat them into a paragraph. Arguments from the command line
specify the number of lines to be reformatted and the left and right
hand margins between which the new paragraph is to be formed. This edit
macro is particularly useful for editing MEMO filas,.sr any files that
contain text that might be presented on a display screen. Modifications
to the PARA macro can adapt it for dealing with comment- lines in .
programs written in assembly language, FORTRAN, PL/I, énd even in EXEC
files.

This file is rather long, so it will be analyzed in two parts. First,
we will look at thae part that actually does the formatting -~ the
kernal, so to speak. Then we will surround that kernel with statements
that expand upon the basic command syntax, supplying default values for
arguments that were omitted and checking to see that argument values
that ware written are not flawed (by typing errors, for example) in ways
that could lead to a failure in the interpretation of the EXEC file.

You will find that, after the kernel has been developed, about twice as
many stataements are used in support of that kernel than are in the
kernel itsaelf. This is not unusual for this type of file.

The format of the PARA macro is:

PARA nlines laeftmargin rightmargin
where "nlines" is the number of lines in the fila to be reformatted,
starting with the current line. "lLeftmargin™ and "rightmargin" specify
the columns within which the reformatted text is to be placed; that is,
there will ba leftmargin-1 blanks at the beginning of each new line, and
no line will exceed tha position defined by rightmargin, unless a single
word exceaeds the paragraph width.

The basic plan of the kernel is to implement two nested loops. The
outer loop, interpreted as many times as there are input lines, uses the

Appandix D: EXEC 2 Primer for New Users 85

"STACK subcommand to put a line from the file being edited into the
consolae stack. Then the outer loop uses a &READ ARGS statement to
define the words in the stacked line as EXEC arguments. The inner loop
is interpreted once for every word, and builds an output line by
concatenating individual words and blanks onto tha end of the string &S
until the next word causes the length of &5 to exceed the right margin.
At that point, the existing &5 string is put into tha edit fila and the
naxt lina is started with the word that did not fit into the previous
string. Whenever there are no more argument words to add to &S, another
jteration of the outer loop occurs until all input lines hava been
processad. A more detailed analysis of tha file follows this listing.

&CASE M

&STACK LIFO &1 &2 &3
&READ VARS &NLINES &MLEFT &MRIGHT
&SINIT = &LEFT OF &BLANK &MLEFT
&SINIT = &PIECE OF &SINIT 2

&S = &SINIT

&LOOP ~-Z &NLINES

STACK

&IF &RC -= 0 &GOTO -END

&READ ARGS

DELETE

&X = 1

&LOOP -Z UNTIL &X > &N

&T = &CONCAT OF &S &&X &BLANK

& = &LENGTH OF &T

&IF & < IMRIGHT &GOTO -0OK

up

INPUT &S

NEXT

&T = &CONCAT OF &SINIT &&X &BLANK
-0K &5 = &T

~Z &X = &X + 1

%*

-END UP

&IF /&S == 7 INPUT &S

The first six lines perform initialization functions. &CASE M is set,
so that subsequent lines read from the console stack will not be
translated into uppercase. The values of the first three arguments are
assigned to the variables &NLINES, &MLEFT, and &MRIGHT. This is so that
these values will be available later, after the argument variables &1 &2
... have been redefined to refer to words from a line in the edit file.
It is possible to usa three assignment statements to achieve this,
namaly:

&NLINES = &1

EMLEFT = &2
&MRIGHT = &3

86 IBM VM/SP EXEC 2 Referencae

but wm;zﬂd by: stacking the three values -in one dine
in the oansole atack, dhen using a. &READ VARS statement to raead the

ckad _linR.and #88ign Lha-derds 4a-41 $0. the sasired yariables.

When a program puts a line into the console stack, it spaclf\es whether
the line is to be put "at the end of tha stack,” where it will be read
after all of the linaes already in the stack, or whether it is to be put
"at the baeginning of the stack,"™ uwhere it will be read first, when the
next input line is requested. These two choices are named "First-In
First-0ut™ and "Last-In First-0ut," respectively, and are frequently
designated by the initials FIFO and LIF0. In this case, where we wish to
immediately use the line we stack, we explicitly designate LIFO in the
&STACK mstatement. This avoids any possible complication from lines that
may already be in thae console stack.

After assigning values to the variables &NLINES, &MLEFT, and &MRIGHT, we
preparae tha initial value for the string &5. This value contains
EMLEFT-1 blanks. The predefined function &LEFT OF (and the similar
function &RIGHT OF) always generates a rasult containing the number of
characters specified by the second argument. These characters are
obtained from the word given as the first argument, adding blanks or
truncating on the right according to whether that word is shorter or
longer than the specified langth (on the left, in the case of

&RIGHT OF).

The predaefined function &PIECE OF acts just as its name implies: its
value is the specifiad piece of the word supplied as its first argument.
The second argument denotes where the result piece starts (1 means start
with the first character, etc.). An optional third argument may be used
to define how long the raesult piece is to be. If it is omitted, the
rasult contains all characters from the starting character specified by
argumant 2 to the end of the word. If the specified length is larger
than the number of characters available, the rasult is the same as if
tha length argument wera omitted.

This use of API1ECE OF .sqrvaes. to shortan the value af &SINIT by one
character, yielding a string containing exactly the number of blanks
desiraed. The value of the variable &S, which will eventually become a
reformatted output line, is initialized to the value of &SINIT.

The statements that obtain input data to be reformatted are:

&LOOP -Z &NLINES

STACK)
&IF &RC ~= 0 &GOTO -END
&READ ARGS

DELETE

X =1

Since we are to start with the current line in the adit file, STACK puts
it into the console stack. In case thaere is no current linae (XEDIT is
at the end of file, for example) we test the raturn code from STACK and
branch if it is not 2zero, meaning no line was stacked. If the STACK
command succeeds, &READ ARGS reads the stacked line and assigns the

Appendix D: EXEC 2 Primar for New Users 87

words of the line to thae variables &1 &2 ..., while also assigning the
numbaer of words (the new number of argumants) to &N. Since we now have
the words from tha line, a DELETE command removas the original line from
the file. &X will ba used as an index denoting which word (from tha saet
of new argument words &1 &2 ...) is to ba procassaed next, so it is
assignad the value 1 each time a new line is acquired.

Tha statements to format a naw line consist of:

&LOOP -Z UNTIL &X > &N
&T = SCONCAT OF &S &&X &BLANK
& = LLENGTH OF &T
&IF & < EMRIGHT &SKIP 4 .
P
INPUT &S
NEXT
&T = &CONCAT OF &SINIT &&X &BLANK
&S = &T
“Z &X = X + 1

Note that this inner loop also terminates with the statement labeled -Z.
There is no problem here; the interpretation of the two loops can be
understood by imagining there are uniqua labels for each loop, thae first
ona for the inner loop, the last one for the outer loop.

This innar loop is intaerpreted onca for each argument (zero times in the
casa of a blank line). The variable &X is initially 1, and is
incramented by one for each subsequent iteration, so the word &&X
denotes the first, second, ..., nth argument value during the first,
second, ..., nth iteration of the loop. The variable &T is assigned the
string containing the current contents of the output line, &S, followed
by the current word, &&X, and a blank. The length of the string &T is
then compared with the right margin value, &MRIGHT. If the string
length is less than thée margin, four lines are skipped to whare &S is
assigned the value of &T because wa now know the current word will fit
into the current output line. Finally, tha statement labeled -2
increments the valua of &X by one, so that the next time around, this
inner loop usaes the next input word.

If the length of the temporary variable &T exceeds &MRIGHT, the current
word will not fit into the output line &S, so the skip does not occur.
Instead, &5 is inserted into the edit file above the current line,
because we do not want to mistaka an output line for the next input
line. Tha NEXT command restores the current line pointer so that it
points to our next input line. We assign to the variable &T the initial
value of &5 (the string containing &MLEFT-1 blanks), followed by the
word &&X (which did not fit into the line just put into the edit fila),
and a single blank to separate this word from the next word. MWith this
value assigned to &T, we can continue as wa did for the case whaere the
word fit, assigning tha value of &T to the variable &5, incrementing the
value of &X, and looping for the naxt word. oo

Finally, we reach the -END labal. Wae can arrive hare either because the
attempt to STACK a lina failed, or simply becausa after processing all

88 1IBM VM/SP EXEC 2 Raeferaence

the linaes spaecified, we fell through the outer loop. .In eithaer case,
the only thing left to do is to back up one lina, and if there are any
words in the string &S, insaert that final output line into the edit
file.

The PARA XEDIT file discussed above performs the indicated function, but
it suffers from tuwo deficiencies which we shall now correct. The first
problem manifasts itself if the user incorractly specifies an argument.
For exampla, if the user typaed U instead of 7 for the first argument,
tha &LOOP ~-Z INLINES statement would fail bacause of incorrect syntax
and EXEC 2 would immediately terminate interpretation of the file. The
second problem is simply ona of convenience. It should not be necessary
to enter the paragraph margins each time the macro is used. Instead,
some default value should be assumed whenever an explicit valua is not
used.

While we are fixing up those two problems, we will take advantage of the
opportunity to incorporate two new features. If asterisk (X¥) is used as
the first argument (the number of lines to reformat), the macro will
process all lines from the current line until tha next blank line or to
the end of the file if no blank line is found. Since this will also be
used as the default "number of lines to process,” it will be possible to
issue the command PARA with no arguments. This default value will be
especially useful because the second feature we shall add is a test to
see whether the line following the last reformatted line is blank, and,
if it is, advance the current line pointer to the line following such a
blank line. Then, we will be able to enter one PARA command specifying
or implying "%" as the number of lines to process, reformat an entire
paragraph, then use the XEDIT command "=" (which means "repeat the last
command typed") to reformat the next paragraph. The "=" command may
then be raepeated to process as many consecutive paragraphs as desired.

Note that it isn't possible to assuma a default value for one argument
if an explicit value is given for a later argument. For example, if
PARA EXEC is invoked to reformat the lines before thae next blank line,
but the left margin is to be 15, the default vslue for thae first
argument must be explicitly written so that the second argument is
raally the second argument and not mistaken for tha first.

The second new feature supplies an option, INDENT, which allows us to
request that the first line of a paragraph bae indented by a desired
amount.

Since the function of the PARA command has now becoma a bit elaborate,
with daefault values, optional arguments, where the current line pointer
ends up, aetc., it would also seem like a good idea to include a TELL
function in case the user can't remember the details of the command
format or operation.

When all of these features have bean included, our little 25-line edit
macro has grown to almost 100 lines. However, the kernel described
above is basically unchanged. The other features are implemented by
relativaly short series of stataments that do not interact with one
another, so they should be comprehensible.

Appendix D: EXEC 2 Primer for New Users 89

Hera is the complete, final form of the PARA XEDIT fila.
is a detailed discussion of the its parts.

¢IF &N = 1 &IF &1 = ? &GOTO -TELL
¥ Establish default valuaes, initialize variablas.

Follouwing it

&STACK LIFO x 1 65 0 NLINES MLEFT MRIGHT 1

&READ VARS &NLINES &MLEFT &MRIGHT &INDENT &X1 &X2
% Test arguments for valid values.
LIF &N = 0 &GOTO -DOIT
&IF &1 = % ¢X = 2
&LOOP -NEXTARG UNTIL &X > 3
&IF &X > &N &GOTO -DOIT
& = &DATATYPE OF 0&&X
&IF & == NUM &GOTO -TESTOPT
&&XEX = &&X
-NEXTARG &X = &X + 1
&IF &¢X > &N &GOTO -DOIT
%
¥ Test for valid option.
-TESTOPT & = &PIECE OF &8X 1 1
&IF & -= (&GOTO -TELL
& = &LENGTH OF &&X
EIF & =1 &X = &¢X + 1
&IF & > 1 &8X = &PIECE OF &&X 2
&IF &X > &N &GOTO -DOIT
& = &LENGTH OF &&X
& = &PIECE OF INDENT&BLANK 1 &
&IF &&X -= & §GOTO ~-TELL
&X = gX + 1
&INDENT = 5
&IF &X > &N &GOTO -DOIT
& = &DATATYPE OF &iX
&IF & -= NUM &GOTO -TELL
&INDENT = &&X
&IF &N > &X &GOTO -TELL
3
~DOIT &IF &NLINES ~= % &GOTO -SKIPSEARCH
¥ Convert % into number of lines
TRANSFER LENGTH LINE
&READ VARS &L &CURLINE
&LOOP 4 UNTIL &L =0
NEXT
&IF &RC -= 0 &GOTO -EOF
TRANSFER LENGTH
&READ VARS &L
-EQOF TRANSFER LINE
&READ VARS &ELINE
&NLINES = &ELINE -~ &CURLINE
:&CURLINE
*
~SKIPSEARCH &CASE M
&SINIT = &LEFT OF &BLANK &MLEFT
&SINIT = &PIECE OF &SINIT 2
& = &INDENT + &MLEFT - 1

90 1IBM VM/SP EXEC 2 Reference

&X3 24

SIF ¢ <0 ¢ =0
&S = &LEFT OF &BLANK &
&ARGS
&LOOP -Z ENLINES
STACK
LIF &RC -~= 0 &GOTO -END
&READ ARGS
DELETE
&X =1
&LOOP -Z UNTIL &X > &N
&T = &CONCAT OF &S &&X &BLANK
& = ZLENGTH OF &T
&IF & < &MRIGHT &SKIP 4
up
INPUT &S
NEXT
&T = &CONCAT OF &SINIT &&X &BLANK
&S = &7
-Z X = & + 1
*
-END TRANSFER LENGTH
&READ VARS &L
UP
&IF 78S ~= 7 INPUT &S
&IF &L = 0 NEXT 2
LEXIT
*
-TELL XEDIT PARA TELL
&BEGSTACK =X

Format is: PARA <n <left <right>>> <(Indent <i>>
Defaults: _ ®x 1 65 5

The PARA XEDIT Macro reformats the current line, and the next n-1
lines using the specified "laft"™ and "right" margins. Optionally,
the first line reformatted may be indented "i" spaces. If "%" is
specified for the number of lines, lines are reformatted until a
blank line is encountered.

The reformatted text replaces the original text, and the current
line pointer is set to the last line of reformatted taxt, or, if
a blank line follows the last reformatted line,

the current line pointer is set to the line

following the blank line that terminated reformatting.

-X

&STACK

SET CASE M
INPUT

:8

-END OF EXAMPLE-------- ————-

Appendix D: EXEC 2 Primer for New Users

91

The XEDIT file starts with the traditional test for an information
quary. If thaere is only one argument, and if it is a question mark, go
to label ~TELL where a complete description of the PARA command is put
into the console stack. XEDIT is commanded to edit the file PARA TELL,
and the stacked lines are read into that file. Since the editor will
display that filae, thae usar will sea the entire description on his
display screen and may use the QUIT XEDIT command to return to the file
he was aediting.

If this is not simply a request for information, a set of EXEC variablaes

arae assigned initial values by the &STACK LIFO and the following

&READ VARS statements. These work just as in the kernel described
before, but this time there arae more variables involved. The extra

" spaces in thae commands are only to improve readability; they do not

affact interpretation of thae commands. Note that thaere are some commant

statements in this file, which should make it easier for a user to

locate and modify various faatures such as default values.

¥ Tast arguments for valid values.
&IF &N = 0 &GOTO -DOIT
&IF &1 = % &§X = 2
&LO0P ~-NEXTARG UNTIL &X > 3
&IF &X > &N &GOTO -DOIT
& = &DATATYPE OF 0&&X
&IF & -= NUM &GOTO -TESTOPT
&&XEX = &&X
=NEXTARG &X = &X + 1

Now that we have assigned default values for the variablaes &NLINES,
&MLEFT, &MRIGHT, and &INDENT, the above statements examine the arguments
and change any of the default values to valid values given with thae
command. Instead of repeating the statements to test that an argument
is an unsigned integer, a loop is used. Thae variable &X is an index to
the argument value baing examined and, at the same time, an index to the
name of the related EXEC variablae, stored as the values of &Xl, &X2, and
&X3. As soon as an argument value is found not to be an unsigned
integer, a branch is made to -TESTOPT to check that it is a valid INDENT
.option.

Thae &DATATYPE OF predefined function raturns the valuae NUM if its
argument is an integer, or CHAR if its argument is not an integer.
Since this edit macro will not accept a signed integer for any of thae
first three arguments (numbar of lines, left margin, and right margin),
&DATATYPE OF 0&1 will be NUM only if &1 is an unsignad integer, etc.

Note how tha assignmant statemant
EEXEX = &&X
works: if &X is 1, &&X denotaes the value of &1, while &&X&X ==> &&X1

==> ENLINES, the name of the EXEC variabla initialized to the default
valua for "nlinaes".

92 IBM VM/SP EXEC 2 Reference

Now, statements to check the validity of any MARGIN arguments:

¥ Test for valid option.
~TESTOPT & = &PIECE OF 8¢X 1 1
&IF & ~= . &GOTO -TELL

& = &LENGTH OF &&X

$IF & =1 X =8X +1

&IF & > 1 &&X = LPIECE OF &iX 2
&IF &X > &N &GOTO -DOIT

& = ELENGTH OF &&X

& = &PIECE OF INDENTE&BLANK 1 &
¢IF &&X ~= & &GOTO -TELL

&X = ¢X + 1

&INDENT = 5

&IF &X > &N &GOTO -DOIT

& = &DATATYPE OF &&X

&IF & ~= NUM &GOTO -TELL
&INDENT = g&X

&IF &N > &X &GOTO -TELL

When the above section of the macro is entered, &&¢X is the first
argument value that could not be a specification for number of lines,
left margin, or right margin. Our PARA command syntax, then, requires
that the first character of this word be a left parenthesis. This is
the first test. If it is not a left parenthesis, hence not a proper
INDENT option, branch to -TELL and display the correct command format
for the user. Once we know the left parenthesis is present, wa must
then find out whether the word starting with the left parenthesis
contains any more characters, that is, the word INDENT, or an
abbreviation for it. Possibly the user separated the word INDENT from
the left parenthesis by a blank, leaving a left parenthesis alone in
this argument word. &LENGTH OF tells us this, so if the left
parenthesis was the sole character in the current argument word, we
simply advance the index variable &X by one and look for INDENT in the
next argument word. If the left parenthesis was followed by other
characters, we use the &PIECE OF function to "cut away™ the parenthesis,
leaving the remainder of the word to be tested for INDENT.

As always, before using the next argument word, we must make a test to
see that wa haven't run out of argument values. As long as &X <= &N,
there is at least one argument word, &&X, to be examined. We use
&LENGTH OF again to determine the length of the argument, then we use
this length to form a piece of the word INDENT of the same length as thea
argument. (Actually, we append a blank to INDENT, so that in case
someone used INDENTURE or INDENTZ, etc., as an option, it mill not be
accepted.) Now that we have both the argument and the acceptable value
of the same length, if thaey ara not equal, go to -TELL to explain
things.

If the word INDENT was properly typed, it may be followed by an optional
indention amount. Therefore the variable &X is incremented again. This
is so that it may be compared with &N to see if another argument is
available, and access it if there is. Bafore making this test, houever,
the default valua of SINDENT is changed from 0 (appropriate when INDENT

Appaendix D: EXEC 2 Primer for New Users 93

is not usaed) to 5, the default indention amount whan INDENT is
specified. If another argument word remains, and if it is an integer
(this time, a signed number is paermitted), that value is assigned to
&INDENT. Finally, we check to see if any additional arguments were
given in the command. If they waere, branch to -TELL since we have no
idea what they could mean.

Only one thing remains to be done before entering the reformatting
kernel. All of the command arguments have been verified and default
values have baen supplied where appropriate, but it may be necessary to
convert the number of lines (the valua of &NLINES) from asterisk into an
actual number of lines. This is done by these statements:

¥ Convert ¥ into number of lines
TRANSFER LENGTH LINE

&READ VARS &L &CURLINE
&LOOP 4 UNTIL &L =0
NEXT

&IF &RC -~= 0 &GOTO -EOF
TRANSFER LENGTH
&READ VARS &L
-EOF TRANSFER LINE
&READ VARS &ELINE
&NLINES = &ELINE - &CURLINE
:&CURLINE

The TRANSFER command is the mechanism whereby an XEDIT macro may query
the value of internal XEDIT valuas, such as the xname and type of the
edit file, length of tha current line, line number of the current lina,
etc. The TRANSFER command arguments denote a set of variables whose
values XEDIT stacks LIFO in one line. Sometimes, more than one value is
given for a single variable name, such as CURSOR. In this casae,
however, the command: ‘

TRANSFER LENGTH LINE

causes a line containing two words to bae stacked. The first word is the
length of the current line, excluding trailing blanks. Therefore, if
the value of &L is zero, we know the curraent line is a blank line. The
second word is the current line number. This is remembered as the value
of &CURLINE, so that we can return to this line after finding the next
blank line.

The loop advances the current line pointer to tha next line and checks
for & blank line. If the return coda from NEXT is nonzero, it means we
have encountered the end-of-fila or end-of-range, which wa treat the
same as finding a blank lina. If NEXT succaeeds, the value of &L is -
updated and the loop continues until &L = 0.

Once a blank line is found, another TRANSFER command retrieves tha line
number of this line and the necaessary number of lines to process is
simply the diffaerence batween this line number and tha line number at
which we started. After computing the diffaraence, thae command :&CURLINE

94 1BM VM/SP EXEC 2 Reference

restores the current line pointer to the value it had when the macro was
entered, and we are ready to enter the raeformatting kernel.

. The only differance batween this kernel and the one discussed above
concerns the setting of the initial valua of &5 before entering the
outer loop. Instead of setting it to &SINIT, the following statements
are used in order to accommodate the possibly of a negative value for
the value of &INDENT:

& = LINDENT + EMLEFT - 1
&IF <0 & =0
&S = &LEFT OF &BLANK &

Some final words about the PARA XEDIT file. Like other edit macros,
this one is not really final, for many users will think of features they
would like to add, or changes they could make to better fit it to their
needs. Many such changes can be made rather simply, and the description
or documentation for them carried in the text of the macro itself and
presented to the user at his command (PARA ?).

For example, if you would like two blanks following a word ending with a
period, add the statements:

& = LRIGHT OF 88X 1
&IF & = ., &S = &CONCAT OF &S &BLANK

just before the statement labeled -Z2. Or, if you wanted to process
comments in EXEC files, automatically inserting "X" before each line,
you could replace the inner loop statement in the reformatting kernel:

&LOOP ~-Z UNTIL &X > &N
with the follouwing:

LIF &N = 0 &GOTO -Z

& = ¢PIECE OF &1 1 1

&¢IF & = % &1 = &PIECE OF 21 2
&LOOP ~-Z UNTIL &X > &N

&IF 784X = 7/ &6OTO -Z

and change bofh of the INPUT commands to "INPUT % §&S".

Do not balieve that all of this can be done instantly. This PARA XEDIT
file was written by the author in about two hours (including time to
correct a few errors), but hae has had a lot of experience. The first
faw XEDIT macros that you write will probably take a long time because
you are learning about EXEC 2 and you are also learning a new way of
using XEDIT. However, thae reward for writing them is more than simply a
bettaer understanding of XEDIT and EXEC 2, or some justified feeling of
accomplishment. The time will come whan your work can be done easier
and more efficiently if you write or modify an EXEC file, than you will
gain the greatest benefit from the effort invested in learning about
EXEC 2.

Appendix D: EXEC 2 Primer for New Users 95

Some Final Words

This primer has illustrated barely half of tha total facilities in

EXEC 2, though it has discussad many idaas neaded to understand and
start writing EXEC 2 files. This introduction, and perhaps a little
practice, should make it possible for the novicae to better use the
information in the EXEC 2 Refarence section. Like any programming
language, facility with EXEC 2 is gained through experience in using it.
Often it is easier (and more educational) to try something out, making
changaes as errors ara detectad, than to ponder each statement. The
trace facility helps in this. It lats the user watch whila his program
is being executed and identify most errors as they occur.

96 1IBM VM/SP EXEC 2 Reference

Appendix E: Useful EXEC 2 Technigques

The following illustrations exhibit solutions to some EXEC programming
problems. These solutions frequently involve nonobvious uses of
predefined functions to achieve the dasired result in a minimum of
sptataments. There has been no attempt to present a comprehensive
catalog of solutions. The objectiva is to give the reader some insight
into the possibilities inherent in the EXEC 2 functions.

The statement
& = &DATATYPE OF +&1

sets & to 'NUM' if, and only if, &1 contains an unsigned integer.

- - - - - - - —— - - - - - - o -

If &J is an unsigned integer not exceeding 99999999, the statement
- &J = SRIGHT OF 0000000&J 8

axtends it with leading zeros to a total length of 8.

A String of any number of blanks, 23 for example, can be created by:
&B23 = &LEFT OF &BLANK 23

A string of some character other than blanks, asterisks for example, is

easily obtainad from the string of blanks by using the &TRANSLATION OF

predefined function:

&%23 = ETRANSLATION OF &B23 &BLANK X

A multi-way branch is desired, based on an argument value supplied by
the caller and curraently in &F. However, tha value of &F must first be

Appandix E: Useful EXEC 2 Techniques 97

tested to verify it is valid -~ that is, its value is eithaer CASEl,
CASE2, etc.

& = &POSITION OF &F CASE1l CASE2 CASE3 ...
&IF & ~= 0 &GOTO -&F

&TYPE INVALID CASE: &F

~CASEl

e o

-CASE2

The statement
& = &LOCATION OF /&1 //PRINT

sets & to 2 if, and only if, &l contains the word "PRINT" or an
abbreviation for it. Note that & would have tha valua 1 if &l is null.

Supposae &1 is as given on entry, and is, therefore, known not to contain
any blanks. Then the following sequence transfers control to the label
-BLUE if &1 contains the word "BLUE"™ or an abbreviation for it, to the
label ~GREEN if &1 contains the word "GREEN" or an abbreviation for it,
«..» or to the label -ERR if &1 is null or does not contain a color or
an abbreviation therefor.

&X = &LITERAL OF ERR /ERR /BLUE /GREEN /RED /YELLOW
& =1 + &LOCATION OF /&1 &X

& = &PIECE OF &X &

&STACK LIFO &GOTO -&

&READ

The first statement assigns to &X the string containing all of the
expected labels prefaced with /7 and separated by blanks. In addition,
the first word (ERR) is included in case the value of &1 does not appear
in &X, and the second word (/7ERR) is included in case the value of &1 is
null. The third statement assigns to & that part of &X starting with
the desired label. A &GOTO statement is then stacked. This statement -
is read and interpreted by the last, &READ statement. When the stackad
line is read, it is broken into words and examined in the ordinary way,
so the desired label becomes the &GO0T0 operand, and any surplus data
from the original value of &X is treated as a comment.

98 IBM VM/SP EXEC 2 Raference

Thae argument values are to be assigned to the varisbles &Xi, for i = 1,
2, «..» &N. The object of this is to make it possible to reuse the
numeric variables without losing access to the current arguments.
Calling a user-defined function which needs the argument values that
existed before the function was invoked illustrates such a need.

&S = &RANGE OF & 1 2ZN
&STACK LIFO &S

&S = IRANGE OF %X 1 &N

&S = &TRANS OF &S % &
&STACK LIFO &READ VARS &S
&READ

The first two lines construct a string from the argument values &1 &2
+.. &N separated by blanks, and stack it. A corresponding string of
variable namas is then created in two steps. First, a string of words
#¥X1 X2 ... #¥X&N is built, then all of the asterisks in that string are
translated to ampersands. The string of variable names is then used
when stacking a &READ VARS statement. The final statement causes the
just stacked &READ VARS statement to be read and interpreted by EXEC 2.
When executing this statement, the previously stacked argument values
are read and assigned to the desired variables. Note that use of & as a
temporary variable is avoided so that its predefined value (ampersand)
will be available as an argument to &TRANS OF.

If only a (contiguous) subset of the current arguments are to be

" transferred to the variables &Xi, the arguments to &RANGE OF may be
adjusted as required. If the values of the original arguments, instead
of the current argument values, were desired, the first two lines could
be replaced with:

&STACK LIFO &ARGSTRING)

- - - - - - o -

To verify that a value is a valid hexadecimal number (contains no
characters other than the digits 0-9 and the letters A-F):

& = LTRANS OF &HEXNUM 0123456789ABCDEF
&1IF 7% ~= 7/ &GOTO -BADHEX

The first statement uses &TRANSLATION OF to translate all valid
characters in &HEXNUM into blanks. Then, the &IF condition succeeds
only if tha translation contained something other than blanks (since the
shorter word is extended with blanks for purposaes of comparing the two
strings). This corresponds to the presance of one or more untranslated
(that is, invalid) characters in &HEXNUM.

This scheme works only if it is known that there are no blanks embaedded

in EHEXNUM, or if blanks are acceptable characters. Thae following
elaboration will detect embedded blanks as invalid characters:

Appandix E: Useful EXEC 2 Techniques 99

&Z = LCONCAT OF &BLANK 0123456789ABCDEF
& = &TRANS OF &HEXNUM &Z x
&IF /& -= s/ &GOTO ~BADHEX

Hera, a blank in &HEXNUM is explicitly translated into an asterisk so
that it forces the subsequent comparison to fail.

The following EXEC file is useful when it is necessary to extract
information delimited by parentheses within a string. Blanks and nested
parantheses are retained, so PAREN EXEC may be invoked multiple times
when there are nested parenthesas. The result is two lines put into the
console stack. Tha first one, stacked LIFO, contains all characters of
the original argument string except the first left paraenthesis, thae
characters following it to the matching right parenthesis, and that
right parenthesis. The second lina contains the data excised from the
first line without the dalimiting parentheses, but includes any nested
parentheses. co

&TRACE

&A = &ARGSTRING

& = -1 + &LOCATION OF (&ARGSTRING
&IF & < 0 &GOTO -END

&A = &PIECE OF &ARGSTRING ! &

& =& +2
&B = &PIECE OF &ARGSTRING &
&IF .&B EQ . &GOTO -END

& = 1 + -NESTED OF 1

&2 &PIECE OF &B &

&A &CONCAT OF &A &Z

& =& -2

&B = &PIECE OF ¢B 1 &

-END &STACK LIFO &A

&STACK LIFO &B

SEXIT .

¥ Recursive subroutine to balance parentheses.
¥ &1 = index into string &B whare search is to start.
¥ Raturns index into &B of matching).

~NESTED &ARGS &1 0 0 0

&LOOP -X x

&2 = &PIECE OF &B &l
&3 = LLOCATION OF) &2
&4 = &LLOCATION OF (&2

&IF &4 -= 0 &IF &4 < &3 &SKIP 3
LIF &3 = 0 &3 = 1 + &LENGTH OF &2
&3 = &1 + &3 - 1
&RETURN &3

&2 = &1 + &4

-X &1 = 1 + -NESTED OF &2

"100 IBM VM/SP EXEC 2 Reference

This implementation of PAREN illustrates the use of a recursive
usar-daefined function. Noticae the &ARGS statement at the beginning of
-NESTED which creates three local variables (&2, &3 and &%) each time
the function is entered. This automatically associates a unique group
of EXEC variables with every invocation of the function (in addition to
the function's explicit arguments). Because thesae variables are unique
to an individual invocation of the user-defined function, they are
guaranteed not to conflict with any other EXEC variable name. Actually,
in this instance the technique is not necessary. The &ARGS statement
could be eliminated, and the variables &2, &3, and &4 renamed &S, &L,
and &R, without introducing an error. An error would occur only if a
subsequent modification of the EXEC file introduced one of those
variable names outside of thae -NESTED function.

The following version of PAREN EXEC illustrates an altaernative
implementation which doesn't use a user-definad function:

&TRACE
&A = LARGSTRING
& = -1 + LLOCATION OF ¢ &ARGSTRING
&IF & < 0 &GOTO —-END
&A = &PIECE OF &ARGSTRING 1 &
& =&+ 2
&B = &PIECE OF ¥ARGSTRING &
&IF .&B EQ . &GOTO -END
P =1
& =1
&LOOP -X UNTIL &LP =0
&S = &PIECE OF &B &
&R = &LOCATION OF) &S
&IF &R = 0 &GOTO —~END
&L = &LOCATION OF (&S
&IF &L ~= 0 &IF &L < &R &SKIP 3
& = & + &R
&LP = 3P - 1
$G0T0 -X
& = & + &L
&P = &LP +
-X
&Z = LPIECE OF &B &
&A = &LCONCAT OF &A &2
& =& -2
&B = &PIECE OF &B 1 &
-END &STACK LIFO &A
&STACK LIFO &B
&EXIT

Appendix E: Useful EXEC 2 Techniques 101

102 IBM VM/SP EXEC 2 Reference

& 6
&ARGS 6, 10
embedded blanks 38
&ARGSTRING 6, 56
embedded blanks 38
&BEGPRINT 10 ‘
number of lines 10
truncation column 10, 42
&BEGSTACK 11
first-in, first-out (FIF0) 11
last-in, first-out (LIF0) 11
number of lines 11
truncation column 11, 42
&BEGTYPE 10
number of lines 10
truncation column 10, 42
&BLANK 7
embedded blanks 38
example 38
&BUFFER " 12
$CALL 12
label search 40
&CASE 13
&CMDSTRING 7, 56
&COMLINE 7
&COMMAND 13, 80
&PRESUME 14, 16
&CONCAT OF 24
example 24
&CONCATENATION OF 26
example 24
&CRASH 47
&DATATYPE OF 24
&DATE 7
evaluation 36
Greenwich Mean Time (GMT) 7
&DEPTH 7
&DIV OF 24
example 25
&DIVISION OF 24
example 25
&DUMP 14
&ERROR 14
&EXIT 15

&FILEMODE 7
&FILENAME 7
&FILETYPE 8
&FROM 8
&GOTO 15
label search 490
&IF 15
comparands 15
comparatives 15
conditional interpretation 71
&INDEX 8
&LEFT OF 25
embedded blanks 38
&LENGTH OF 25
&LINE 8
&LINENUM 8
&LINK 8
&LITERAL OF 25
embedded blanks 38
example 25
&LOCATION OF 26
example 26
&LOOP 16, 75
closing 39
example 39
label search 40
&MULT OF 26
example 26
&MULTIPLICATION OF 26
example 26
&N 8
&PIECE OF 26
example 26
&POSITION OF 27
example 27
&PRESUME 16, 80
&COMMAND 14, 17
&SUBCOMMAND 17, 20
&PRINT 17
&RANGE OF 27
embedded blanks 38
example 27
&RC. 8
&READ 17
&TRUNC 19, 22
ARGS 18
embedded blanks 38
examples 77

Index 103

n,1,% 17
STRING 18 "
VARS 18
&RETCODE 8
&RETURN 19 "in memory filae"™ 60

&RIGHT OF 28
embadded blanks 38
&SKIP 19 . .
&STACK 20 ' A
first-in, first-out (FIF0) 20
last-in, first-out (LIFO0) 20

&STRING OF 28 arguments 2, 6, 10, 70
embedded blanks 38 &1 &2 ... 2, 6, 10
example 28 assembler language programs 59-62

&SUBCOMMAND 20, 80 SVC 202 calls 59, 61
&PRESUME 16, 20 tokenized plist 59

&SUBSTR OF 26 untokenized plist 60
exampla 26 assignment statement 36, 72

&TIME 9 example 36
&Greenwich Mean Time (GMT) 9 assignments 2
evaluation 36

&§TRACE 21
¥ 22 :

ALL 21, 41 B

ERR 21

example 61

OFF 22 BNF syntax 43
ON 21

output-action 22
&TRANS OF 29

embedded blanks 38 Cc

examples 29

rules for modification 29

&TRANSLATION OF 29 CMDCALL 56
embedded blanks 38 CMS 56-66
examples 29 CMS EXEC 6¢8-51
rulas for modification 29 4 &S 50

&TRUNC 19, 22 &* 50
truncation column 22, 42 &ARGS 48

&TYPE 17 ‘ &BEGEMSG 48

&TYPE OF 24 &BEGPUNCH 48

&UPPER 23 &BEGSTACK 48

&0 6 &BEGTYPE 49

&1 &2 ... 6 &CONCAT 50
&ARGS 6, 10, 18 &CONTINUE 49
&READ ARGS 6, 18 &CONTROL 49
arguments 2, 6, 10, 70 &DATATYPE 50
embedded blanks 38 &DISK* 51

’ . &DISK? 51
&DISKX 51
&DOS 51
&EMSG 49
&END 49
&ERROR 49

106 IBM VM/SP EXEC 2 Reference

LEXEC 51 example 37

&EXIT 49 syntax 37
&GLOBAL 51 ‘ console input buffer 35
&GLOBALNn 51 console stack
&GOTO 49 See console input buffer
SHEX 49 control statements 2, 5, 10-23
¢IF 49 &ARGS 6, 10
&INDEX 51 : &BEGPRINT 10
&LENGTH 50 &¢BEGSTACK 11
&LINENUM 51 &BEGTYPE 10
&LITERAL 50 &BUFFER 12
&LO0P 49 &CALL 12
&PUNCH 69 &CASE 13
&READ 49 &COMMAND 13
&READFLAG 51 ' &DUMP 14
&RETCODE 51 $ERROR 14
&SKIP 49 &EXIT 15
ESPACE 49 &GOTO 15
&STACK 49 &IF 15
&SUBSTR 50 &LOOP 16
&TIME 50 ' &PRESUME 16
&TYPE 50 &PRINT 17
&TYPEFLAG 51 &READ 17
&0 50 &RETURN 19
&1 &2 ... 50 &SKIP 19
ALL 48 &STACK 20
control statements 48 &SUBCOMMAND 20
pradefined functions 50 &TRACE 21
predefined variables 50 &TRUNC 22
T0P 49 STYPE 17

CMS EXEC and EXEC 2 &UPPER 23

relationship 48-51 control words

CMS limits 57 examples 2 :
&EXIT return codaes 57 converting CMS EXEC files to EXEC
&TRACE 57 2 files 48

console 57
console stack 57
filename 57
line length 57 ' D
lookaside buffer 57
NUMERIC OVERFLOW 57

numeric values 57 debugging the EXEC 2
printed line length 57 " interpreter 47
statement length 57 delimiters
word length 57 parenthesis 6
commands 2, 4, 68 space 6
comment 1 dividing numbers 24
concatening words 24 DMSEXEO85E 46
conditional interpretation of DMSEXE175E 46
statements 71 DMSEXE255T 47

conditional phrases

Index 105

editor macros 62, 80-82
examples 81, 86, 90
executing 62
filetypa 62
implementation 80

embedded blanks 38, 82
examples 38, 83
exceptions 38
handling 82
variables 38

errors 46
DMSEXEO85E 46
DMSEXEL175E 46
DMSEXE255T 47
messagaes 46

evaluation of &DATE and &TIME 36

examples
&BLANK 38
&CONCAT OF 24
&CONCATENATION OF 24
&DIV OF 25
&DIVISION OF 25
&LITERAL OF 25
&LOCATION OF 26
&L0O0OP 39
&MULT OF 26
&MULTIPLICATION OF 26
&PIECE OF 26
&POSITION OF 27
&RANGE OF 27
&STRING OF 28
&SUBSTR OF 26
&TRACE ALL 41
&TRANS OF 29
&TRANSLATION OF 29
assembler language
programs 59-62
assignment statement 36
conditional phrases 37
control words 2
EDIT and CMS commands in one
fila 83
editor macros 81, 86, 90
generating EXEC variable
names 74
labels 2
leading zeros 37
name substitution 33
plus signs 37

106 IBM VM/SP EXEC 2 Reference

programming techniquas 97-101
SVC 202 59
tokenizad plist 59
untokenized plist 60
user~-defined functions 31
variablae 2
exceptions
embaddad blanks 38
EXEC 2 words 41
EXEC 2 files 1
filetypae 1, 62
format 1
recursive exacution 35
samplae of 54
terminating 35
EXEC 2 in'CMS 56-66
assembler language
programs 59-62
EXECCOMM 63
identifying EXEC 2 files 56
limits in CMS 57
XEDIT macros 62
EXEC 2 interprater 1
as a macro processor 61
invoked 1
EXEC 2 language 1
EXEC 2 parameter lists 59
EXEC 2 programs 1
assembler language
programs 59-62
EXEC 2 fila 1
EXEC 2 interpreter 1
executing 1
interaction with users 76
EXEC 2 statements 1
comment 1
executable statement 1
EXECCOM 63-66
EXECCOMM
FETCH 58
length lim#t for external names
of shared variables °'58
length limit for values
assigned by 58
STORE 58
executable statements 1, 4
assignment &
assignment stataement 2
command 2, &
control statement 2, 5
interpreting 3
null statement 2, ¢
types &

FIFO (first-in, first-out) 20
function invocation
praedefined function 24
user-defined functions 31
functions
predefined 24-30
unique to EXEC 2 52
user-defined 31

HT 49

interpreting executable
statements 3

label
description of 72
example 2
performance 40
search 40
leading zeros
example 37
removing 37
left-justified 25
length of words, finding 25

LIF0 (last-in, first-out) 20, 87
limits for EXEC 2 files in CMS 57

locating a word in a character
string 26
lookaside buffer 12

messages
DMSEXEQ85E 46
DMSEXE175E 46
DMSEXE255T 47
return codes 66
mixed case data 13, 77, 82
multiplying numbers 26

name substitution
examples 33
steps 33
notes on EXEC 2 35-42
&LOOP statement 38
&TRACE ALL 41
- assignment statement 36
closing loops 39
conditional phrases 37
console input buffer 35
embedded blanks 38
evaluation of &DATE and
&TIME 36
label search 40
leading zeros 37
numbers 36
plus signs 37
recursive execution 35
reserved words 40
termination 35
truncation column 42
null statement 2, ¢
numbers
dividing 24
multiplying 26
size and treatment 36

parameter lists 59
plus signs
example 37
removing 37
predefined functions 26-30

Index

107

&CONCAY OF 24
&§CONCATENATION OF 24
&DATATYPE OF 24
DIV OF 24
&DIVISION OF 24
&LEFT OF 25
&LENGTH OF 25
&LITERAL OF 25
&LOCATION OF 26
&MULT OF 26
&MULTIPLICATION OF 26
&PIECE OF 26
&POSITION OF 27
&RANGE OF 27
&RIGHT OF 28
$STRING OF 28
&SUBSTR OF 26
&TRANS OF 29
&TRANSLATION OF 29
&TRIM OF 30
&TYPE OF 24
&WORD OF 30
format of 24
reserved words 40

predefined variables
& 6
&ARGSTRING 6
&BLANK 7
&CMDSTRING 7
&COMLINE 7
&DATE 7
&DEPTH 7
&FILEMODE 7
&FILENAME
&FILETYPE 8
&FROM 8
LINDEX 8
&LINE 8
S&LINENUM 8
&LINK 8
&N 8
&RC 8
&RETCODE 8
&TIME ¢
&0 6
&1 &2 ... 2, 6
description of 69
reserved words 40

Primer 67-96
&LO0OP control statemant 75
assignment statements 72
commands, return codaes, and

variables 68

~

108 IBM VM/SP EXEC 2 Referaence

conditional interpretation of
statements 71

adit commands and CMS
commands 83

embedded blanks 82

fila argumaents 70

genaerating variable namas 74
implementation of editor
macros 80

statement labels 72

user interaction 76

variablae evaluation 73
variable names 71

XEDIT macro example 85

programming techniquas
examplaes 97-101

recursive execution 35
removing plus signs and laeading
zeros 37
reservaed words
praedefinaed functions 490
predefined variables 640
return codas 46, 68-70
right-justified 28
RT 49

SET CMSTYPE HT 49
SET CMSTYPE RT 49
sharing EXEC 2 variables with
assemblaer language programs 63
subroutine invocation, returning
control to 19
substituting variables 33
SVC 202 call
example 59
SUBCOM function 61
syntax
BNF description 43
conditional phrases 37
pradefined functions 24
user-definaed functions 31

terminating EXEC 2 file 35

tokenized plist
example 59

translating to uppercase 56,

truncation 642

types of executable statements

4
assignments 2, 4§
commands 2, 4
control statements
null statement 2, ¢

UNTIL keyword 16
untokenized plist
"in-memory file"™ 60
example 60
uppercase data 56, 77
user interaction 76-79
user-defined functions
examples 31
form of 31
invocation 31
label search 40
returning to 19

variables
embedded blanks 38
evaluation 73
example 2
EXEC variables 68
names 71, 74

WHILE keyword 16
words
definition of

reserved 40

XEDIT macros in EXEC 2

example 85
executing 62
filetype 62

Index

109

S$C24-5219-1

IBM VM/SP: EXEC 2 Reference (File No. S370/4300-39) Printed in U. S. A. SC24-5219-1

Note: Staples can cause problems with automated mail sorting equipment.
Please use pressure sensitive or other gummed tape to seal this form.

IBM VM/SP , READER'S
EXEC 2 Reference COMMENT
SC24-5219-1 : FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its grganization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if
any, are deemed appropriate. Comments may be written in your own language; English is
not required.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

Yes No
e Does the publication meet your néeds_? O O
« Did you find the material:
Easy to read and understand? g (]
Organized for convenient use? O 0O
Complete? 0O O
Well illustrated? 0 0O
Written for your technical level? O O
e What is your occupation?
« How do you use this publication:
As an introduction to the subject? O As an instructor in class? O
For advanced knowledge of the subject? O As a student in class? 0O
To learn about operating procedures? O As a reference manual? O

Your comments:

If you would like a reply, please supply your name and address on the reverse side of this form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or
you may mail directly to the address in the Edition Notice on the back of the title page.)

!
!
S$C24-5219-1 '
1
1
. |
'
2
Reader’s Comment Form Y
* by
a
>
o
a
c
3
|
1
'
1
1
[}
]
Fold and Tape Please Do Not Staple Fold and Tape)
eeteseereseeresessasisestetatbteLe L bSEa R RS E TR eSO R SRR e AR R BAe ST A et RO RS R e s S AT A e Aa eSSt s Se s A A AP aR e SR et ene e essenrearne rerrereseasretetetere ettt eerebenet sbenesemens \
1
NO POSTAGE '
NECESSARY !
IF MAILED !
IN THE \
UNITED STATES | ,
———
: eses—— '
BUSINESS REPLY MAIL | —
PSR
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. (— :
~ =
_ SRR
POSTAGE WILL BE PAID BY ADDRESSEE: L "N
I
.]
, , prm——
International Business Machines Corporation pres——]
Department G60 R
R
P.0.Box 6 —— |
Endicott, New York 13760 [T ——————
]
|
|
vreererenreneeneanenararanns vevunnnens eeeebessstessaeasesteantiaseraeteAsher bt e et ae At s eR s bt e st eb e ek b e st e s eR et e as Attt r e s SR e beRe Rt e be e aat e R e s b setere st e sanrarabensnnetesed !
Fold Fold :
If you would like a reply, please print: 5
1
Your Name |
Company Name Department !
Street Address 1
City |
State Zip Code :
——— i = IBM Branch Office serving you 1
- - - SER S
R ——————]
- T - N
W SN G G W e [}
— — w— v l
®
|
1
1
'
1
[}
(|
1
]

l‘GlZQ'VZOS V'S N Ul paluld (6€-00EY/0LES "ON @iid) 8duesaey Z J3XI :dS/WA WaI

Staples can cause problems with automated mail sorting aquiﬁment.
Please use pressure sensitive or other gummed tape to seal this form.

Note:

IBM VM/SP READER’S
EXEC 2 Reference : COMMENT
SC24-5219-1 . FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if
any, are deemed appropriate. Comments may be written in your own language; English is
not required.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

Yes No
« Does the publication meet youf needs? O 0O
+ Did you find the material:
Easy to read and understand? 0 0
Organized for convenient use? 0O O
Complete? O (|
Well illustrated? O 0O
Written for your technical level? O O
« What is your occupation?
 How do you use this publication: .
As an introduction to the subject? 0 As an instructor in class? O
“For advanced knowledge of the subject? 0 As a student in class? 0
To learn about operating procedures? O As a reference manual? 0

Your comments:

If you would like a reply, please supply your name and address on the reverse side of this form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or
you may mail directly to the address in the Edition Notice on the back of the title page.)

SC24-5219-1

Reader’s Comment Form

Fold and Tape Please Do Not Staple Fold and Tape
' NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
I
S
BUSINESS REPLY MAIL ————
IR
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. [
N
[= ——
POSTAGE WILL BE PAID BY ADDRESSEE: S
IR
L]
International Business Machines Corporation E——
Department G60 L .]
L]
P.O.Box 6 EEE——
Endicott, New York 13760 e —
Fold Fold
If you would like a reply, please print:
Your Name
Company Name Department

- - e = = = = e BUOUOIY PIOFIOIND = e = = - - -

Street Address

Gty

State

IBM Branch Office serving you

Zip Code

L-61¢S-¥2IOS "V 'S "N ul pajuld (6€-00EY/OLES ON 3jid) @douasajey Z J3XI :dS/WA WA

Note: Staples can cause problems with automated mail sorting equipment.
Please use pressure sensitive or other gummed tape to seal this form.

IBM VM/SP READER’'S
EXEC 2 Reference COMMENT
SC24-5219-1 _ FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems.* You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if
any, are deemed appropriate. Comments may be written in your own language; English is
not required.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

Yes No
o Does the publication meet your needs? O O
e Did you find the material:
Easy to read and understand? O 0O
Organized for convenient use? O 0O
Complete? O O
Well illustrated? 0 O
Written for your technical level? a O
« What is your occupation?
« How do you use this publication:
As an introduction to the subject? O As an instructor in class?]
For advanced knowledge of the subject? D As a student in class? O
To learn about operating procedures? O As a reference manual? O

Your comments:

“If you would like a reply, please supply your name and address on the reverse side of this form.

.Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or
you may mail directly to the address in the Edition Notice on the back of the title page.)

SC24-5219-1
Reader’s Comment Form .
Fold and Tape Please Do Not Staple Fold and Tape
NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
S
A
BUSINESS REPLY MAIL S—
I
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. ——
T
o
POSTAGE WILL BE PAID BY ADDRESSEE: A
]
-
International Business Machines Corporation SE———
Department G60]
I
P.O.Box 6 r—
Endicott, New York 13760 e
Foid Fold
If you would like a reply, please print:
Your Name
Company Name Department
Street Address
City
State Zip Code

IBM Branch Office serving you

- - e e === JUIBUOIY PIOJ IOIND = = = = - -

1-6125-¥20S "V 'S "N ut paluld (6€-00EY/OLES ON 8ji4) 8duelejey Z J3X3I :dS/WA W8I

.

Note: Staples can cause problems with automated mail sorting equipment.

Please use pressure sensitive or other gummed tape to seal this form.

IBM VM/SP | READER'S
EXEC 2 Reference COMMENT
SC24-5219-1 _ | FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your

- comments about this publication, its organization, or subject matter, with the understanding

that IBM may use or distribute whatever information you supply in any way it believes
appropriate ‘without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if
any, are deemed appropriate. Comments may be written in your own language; English is
not required.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, 1o your IBM representative or to the IBM branch office serving your locality.

Yes No
« Does the publication meet your needs? 0 O
« Did you find the material:
Easy to read and understand? O O
Organized for convenient use? O O
Complete? O 0O
Well illustrated? 0O 0
Written for your technical level? 0 [m]
« What is your occupation?
. How do you use this publication:
As an introduction to the subject? 0 As an instructor in class? | O
For advanced knowledge of the subject? (] As a student in class? O
. To learn about operating procedures? O As a reference manual? O

Your comments:

If you would like a reply, please supply your name and address on the reverse side of this form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or
you may mail directly to the address in the Edition Notice on the back of the title page.)

"SC24-5219-1

Reader’'s Comment Form

Fold and Tape

Fold and Tape

..................

.................

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADbRESSEE:

International Business Machines Corporation
Department G60
P.0.Box 6

- Endicott, New York 13760

...

Fold

If you would like a reply, please print:

......

..

NO POSTAGE
NECESSARY
IF MAILED
IN THE |
UNITED STATES

- e e e e > > .unﬁuo'v’w"o‘no - ew ar an W - -

.Fold

Your Name

Company Name Department
Street Address
City
State Zip Code

IBM Branch Office serving you

1-612G-¥2JS 'V 'S ‘N ul paiulid (6E€-00EY/0LES "ON @lid) 8duesesey Z 03X :dS/WA WAl

